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Abstract

We investigate a PDE-ODE system describing cancer cell invasion in a tissue network. The model
is an extension of the multiscale setting in [28, 40], by considering two subpopulations of tumor
cells interacting mutually and with the surrounding tissue. According to the go-or-grow hypothe-
sis, these subpopulations consist of moving and proliferating cells, respectively. The mathematical
setting also accommodates the effects of some therapy approaches. We prove the global existence
of weak solutions to this model and perform numerical simulations to illustrate its behavior for
different therapy strategies.
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1 Introduction

The heterogeneity of tumors is a known fact, which plays a crucial role in the response of cancer cells
to the applied therapies. Indeed, evidence has been found that cancer cells exhibit differentiated
sensitivity against ionizing radiation or chemotherapy [23, 38], and slowly cycling cells are more
resistant than their highly proliferating neighbor cells [32, 37]. A further widely accepted fact is
that cancer cells can either migrate or proliferate; this is the so-called go-or-grow dichotomy [4, 12].
Thereby, the migrating cells are less sensitive against therapy than the proliferating ones. When
modeling tumor growth and invasion in the surrounding tissue it is therefore desirable to account for
two subpopulations of cancer cells, one of which is migrating and the other is performing mitosis.
Another relevant feature of tumor migration is its multiscality: the macroscopic behavior of the
whole cell population is conditioned by processes taking place on the individual cell level and on
the subcellular scale and influences, in turn, these processes. Apart from discrete or hybrid settings
(see e.g., [3] and the references therein), several continuum models connecting the subcellular and
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the population scales or also accounting for the mesoscopic individual level dynamics of cells have
been recently proposed and analyzed e.g., in [14, 28, 39, 40] and [20, 26, 5], respectively. Newer
multiscale models also accounting for the tumor heterogeneity in the sense mentioned above (go-or-
grow dichotomy) were proposed in [6, 17, 43] and in the context of acid-mediated tumor invasion
(active vs. quiescent cells) in [29]. Here we reconsider the model in [43] (for which well-posedness was
shown locally in time) with some slight modifications and investigate the global existence of a weak
solution. The main challenge thereby comes from the splitting into the two subpopulations of moving
and proliferating tumor cells: due to the switching between the two populations, the moving cells act
on the one side as source for the proliferating ones (when they stop and advance through the cell cycle,
see Section 2), and on the other side as decay term for themselves and for the tissue. This makes it
insufficient to directly apply the method used in [40] to handle the usual difficulty coming from the
lack of derivatives in one of the equations characterizing the macroscale dynamics with haptotaxis; in
this work there will be one more equation without space derivatives, namely that for the evolution of
proliferating tumor cells, while the diffusion of the moving cells is nonlinear, its coefficient depending
on all macroscopic variables of the model.
The paper is organized as follows: Section 2 introduces the model for the dynamics of the two sub-
populations of tumor cells (migrating and proliferating, respectively) and of the normal tissue, sup-
plemented by the integrin binding dynamics on the subcellular level. The analysis of the model is
done in Section 3, where the global existence of weak solutions is proved with the aid of an entropy
functional constructed upon relying on the idea in [40]. In Section 4 we perform numerical simulations
to illustrate the behavior of the model predicting the evolution of the three cell populations under
several therapy strategies. Eventually, Section 5 provides a discussion of the results and some further
related issues to be addressed in future work.

2 The model

We introduce the following model variables: m(x, t) denotes the density of migrating cancer cells,
q(x, t) is that of proliferating cancer cells, and v(x, t) represents the density of tissue fibers in the
ECM. Moreover, let us denote by y(x, t) the concentration of integrins bound to ECM fibers and by
κ(x, t) the contractivity function of cancer cells. Then we consider the PDE-ODE system

∂tm = ∇ · (φ(κ,m, q, v)∇m)−∇ · (ψ(κ, v)m∇v) + λ(y)q − γ(y)m− ΓmRm(dr)m (2.1a)

∂tq = µqq

(
1− m+ q

Kc
− η1

v

Kv

)
− λ(y)q + γ(y)m− ΓqRq(dr)q (2.1b)

∂tv = −δv(m+ δqq)v + µvv

(
1− η2

m+ q

Kc
− v

Kv

)
− ΓvRv(dr)v (2.1c)

∂ty = k1(dc)(R0 − y)v − k−1(dc)y (2.1d)

∂tκ = −δκκ+H(y(·, t− τ)) (2.1e)

in Ω× (0,∞), where Ω ⊂ Rn is a bounded domain with smooth boundary, n ∈ {1, 2, 3} and we impose
no-flux boundary conditions and appropriate initial conditions.
Equation (2.1a) above characterizes the evolution of the density of migrating cancer cells, with diffusion
and taxis driving the motility. Thereby, both diffusion and haptotaxis coefficients depend on the
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solution in a nonlinear way. Concrete choices of these and the other coefficients of the model will be
provided in Section 4. The rest of the terms describe the exchange between the two subpopulations
of tumor cells and the therapy effects. Thereby, λ(y) denotes the rate with which proliferating (i.e.,
resting) cells advance in their cycle towards non-proliferative phases and start to move, while γ(y) is
the rate with which the moving cells stop and start proliferating. Both rates naturally depend on the
subcellular dynamics, featured here by the amount of cell surface receptors (in this work we concentrate
on integrins, a class of heterodimeric transmembrane surface proteins) binding to their insoluble ligands
in the ECM and characterized by the equation (2.1d). These dependences are motivated by the fact
that integrin activation (binding) is at the onset of a plethora of intracellular events leading among
others to cell survival, division, and motility [15, 18, 24]. The coefficients k1 and k−1 in (2.1d) denote
the binding and detachment rates, respectively. Thereby, R0 denotes the total (average) amount of
integrins of the relevant type on a cell surface, and we assume it to be constant. The density of
dividing cells evolves according to (2.1b), which contains beside the exchange and therapy terms only
a source term modeling proliferation restricted by crowding. Equation (2.1c) describes the dynamics
of the density v of ECM fibers, which are degraded upon interacting with the tumor cells and are
(partially) recovered, a process triggered by the normal tissue and limited, too, by crowding. The
decay of v is also due to the side effects of radiotherapy. Eventually, (2.1e) characterizes the evolution
of the hypothetic contractivity function depending on the variable y which as in [28, 40] connects the
subcellular level of receptor binding dynamics with the macroscopic level of population dynamics.
The applied therapy involves consecutive or concurrent radiotherapy and the administration of a
chemical agent. As in [17], the latter has the role of inhibiting integrin binding and thus negatively
influence the motility and proliferation of the tumor cells. Several integrin-targeted drugs are already
in clinical use and many others are in clinical trials or preclinical development, see e.g., [30] for a
review. In the following we will refer to the drug administration as chemotherapy, although its aim
is to inhibit integrin binding (and thus mainly reduce migration) and not necessarily to (directly) kill
the tumor cells. The effects of this chemotherapy are captured by the rates k1 and k−1 in (2.1d),
both depending on the dose dc of the drug. The radiotherapy is aimed at depleting the tumor
cells in both subpopulations, but its side effects are also decaying the normal tissue. The impact of
ionizing radiation is modeled by the terms ΓiRi(dr)i, with i ∈ {m, q, v}, Γi constants, and Ri being
functions depending on the applied radiation dose dr. As mentioned in Section 1, the cells exhibit
different sensitivities (among others, respective of their migratory vs. proliferative phenotype) when
exposed to radio and/or chemotherapy [23, 27, 38], thus Γi and Ri will be different for each of the cell
(sub)populations involved in the model. For more details we refer to Section 4 below.

3 Global existence of a weak solution

The local-in-time well-posedness of (2.1a)-(2.1e) with no-flux boundary conditions and appropriate
initial conditions was proved in [43, Section 4] by extending the ideas of [28]. Here we prove the
global existence of a weak solution of the following slightly simplified variant of (2.1a)-(2.1e), where
the diffusion coefficient of the migrating cancer cells is uniformly positive and the switching rate γ is
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constant. More precisely, we consider (see the nondimensionalized system (4.5))

∂tm = ∇ · (D(m, q, v)κ∇m)−∇ ·
(
κv

1+vm∇v
)

+ λ(y)q − γm− rm(t)m,

∂tq = µqq (1− (m+ q)− η1v)− λ(y)q + γm− rq(t)q,
∂tv = −αmv − βqv + µvv(1− v)− rv(t)v,
∂ty = K1(t)(1− y)v −K−1(t)y,

∂tκ = −δκ+H(y(·, t− τ)),

(3.1)

with x ∈ Ω and t > 0, where Ω ⊂ Rn is a bounded domain with smooth boundary, n ∈ {1, 2, 3}. In
addition, we impose no-flux boundary conditions (ν denotes the outer unit normal on ∂Ω)

D(m, q, v)κ ∂νm−
κv

1 + v
m ∂νv = 0, x ∈ ∂Ω, t > 0, (3.2)

and the initial conditions

m(x, 0) = m0(x), q(x, 0) = q0(x) v(x, 0) = v0(x), κ(x, 0) = κ0(x), x ∈ Ω,

y(x, t) = y0(x, t), x ∈ Ω, t ∈ [−τ, 0], (3.3)

where we assume that

m0 ∈ C0(Ω̄), q0, v0 ∈W 1,2(Ω) ∩ C0(Ω̄), κ0 ∈W 1,4(Ω), y0 ∈ C0([−τ, 0];W 1,4(Ω)) (3.4)

satisfy

m0 ≥ 0, q0 ≥ 0, v0 ≥ 0, κ0 > 0 in Ω̄ as well as 0 ≤ y0 ≤ 1 in Ω̄× [−τ, 0]. (3.5)

Furthermore, we assume that for any A > 0 and L > 0 there exist positive constants C1 and C2 such
that

D ∈ C3([0,∞)3) ∩W 2,∞([0,∞)× [0, A]× [0, L]), λ ∈ C1([0, 1]), H ∈ C3([0, 1]),
ri := ΓiRi(dr(·)),Kj := kj(dc(·)) ∈ C1([0,∞)), i ∈ {m, q, v}, j ∈ {1,−1},
0 < C2 ≤ D(m, q, v) ≤ C1 for all (m, q, v) ∈ [0,∞)× [0, A]× [0, L],

0 < λ2 ≤ λ(y) ≤ λ1, 0 ≤ H(y) for all y ∈ [0, 1],

0 ≤ ri(t) ≤ C3, 0 < C4 ≤ Kj(t) ≤ C3 for all t ≥ 0, i ∈ {m, q, v}, j ∈ {1,−1}

(3.6)

with positive constants Ci, λi. Moreover, the parameters γ, µq, η1, µv, α := δv+µvη2, β := δvδq+µvη2,
δ := δκ, and τ are assumed to be positive.
The global existence will be proved for the following concept of weak solutions, where in view of the
intended compactness properties we formally rewrite ∇m = 2

√
1 +m · ∇

√
1 +m (see [40]).

Definition 3.1 Let T ∈ (0,∞). A weak solution to (3.1)-(3.3) consists of nonnegative functions

m ∈ L1((0, T );L2(Ω)) with
√

1 +m ∈ L2((0, T );W 1,2(Ω)) and
√
m∇v ∈ L2(Ω× (0, T )),

v ∈ L∞(Ω× (0, T )) ∩ L2((0, T );W 1,2(Ω)), q, κ ∈ L∞(Ω× (0, T )), y ∈ L∞(Ω× (−τ, T ))

4



which satisfy for all ϕ ∈ C∞0 (Ω̄× [0, T )) the equations

−
∫ T

0

∫
Ω
m∂tϕ−

∫
Ω
m0ϕ(·, 0) = −2

∫ T

0

∫
Ω
D(m, q, v)κ

√
1 +m∇

√
1 +m · ∇ϕ

+

∫ T

0

∫
Ω

κv

1 + v
m∇v · ∇ϕ+

∫ T

0

∫
Ω

(λ(y)q − γm− rm(t)m)ϕ, (3.7)

−
∫ T

0

∫
Ω
q∂tϕ−

∫
Ω
q0ϕ(·, 0) =

∫ T

0

∫
Ω

{
µqq (1− (m+ q)− η1v)− λ(y)q + γm− rq(t)q

}
ϕ, (3.8)

−
∫ T

0

∫
Ω
v∂tϕ−

∫
Ω
v0ϕ(·, 0) =

∫ T

0

∫
Ω

{
− αmv − βqv + µvv(1− v)− rv(t)v

}
ϕ, (3.9)

−
∫ T

0

∫
Ω
y∂tϕ−

∫
Ω
y0ϕ(·, 0) =

∫ T

0

∫
Ω

{
K1(t)(1− y)v −K−1(t)y

}
ϕ, (3.10)

−
∫ T

0

∫
Ω
κ∂tϕ−

∫
Ω
κ0ϕ(·, 0) =

∫ T

0

∫
Ω

{
− δκ+H(y(·, t− τ))

}
ϕ. (3.11)

(m, q, v, y, κ) is a global weak solution to (3.1)-(3.3), if it is a weak solution in Ω× (0, T ) for all T > 0.

Our main result is the existence of a global weak solution.

Theorem 3.2 Let n ≤ 3 and Ω ⊂ Rn be a bounded domain with smooth boundary and assume
that (3.4)-(3.6) are fulfilled. Then there exists a global weak solution to (3.1)-(3.3) in the sense of
Definition 3.1 satisfying

m ∈ L∞((0,∞), L1(Ω)), q, v, κ ∈ L∞(Ω× (0,∞)), y ∈ L∞(Ω× (−τ,∞)).

This result remains true for a larger class of coefficient functions.

Remark 3.3 Theorem 3.2 remains valid if the regularity assumptions in (3.6) are replaced by D ∈
C1([0,∞)3), λ,H ∈ C1([0, 1]), ri,Kj ∈ C1([0,∞)) for i ∈ {m, q, v} and j ∈ {1,−1, }. In order to
prove this variant of the theorem, one has to use appropriate regularizations, which satisfy (3.6), of
these functions in the approximate problems given below. For the ease of presentation we give the proof
only for the regularity assumptions in (3.6) and refer the reader to [39, (3.12)-(3.13)] for a related
regularization. The assumption that γ is constant is only needed to prove Lemma 3.12.

Our proof of Theorem 3.2 relies on the strategy of [40]. Namely, we construct an entropy-type func-
tional for suitable regularizations of (3.1). This functional is quasi-dissipative in a certain sense and
allows to deduce compactness properties which imply the existence of a global weak solution to the
original problem. The main additional difficulty as compared to [40] and related macroscopic hapto-
taxis systems (see e.g., the references in the introduction of [40]) is the splitting into two cancer cell
populations. Apart from the explicit dependence of v on m there is also an additional implicit feedback
of m in the third equation of (3.1) through q, which in turn depends on m via the source term γm
and satisfies an ODE without regularization by diffusion. This additional influence of m requires on
the one hand more complicated estimates in order to control the haptotaxis term and is on the other
hand the main reason for the uniform positivity assumption on the diffusion coefficient D in (3.6),
which was not necessary in [40]. Moreover, in view of the absence of the logistic proliferation term in
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the equation for m (which is now present in the equation for q), the entropy functional in Subsection
3.2 only provides an L1-bound on mε lnmε, instead of c2

ε ln cε in [40]. This leads to a slightly different
argument for the compactness.
For ε ∈ (0, 1) we approximate (3.1)-(3.3) with the regularized problems

∂tmε = ∇ · (D(mε, qε, vε)κε∇mε)−∇ ·
(
κεvε
1+vε

mε∇vε
)

+λ(yε)qε − γmε − rm(t)mε − εmθ
ε, x ∈ Ω, t > 0,

∂tqε = ε∆qε + µqqε (1− (mε + qε)− η1vε)

−λ(yε)qε + γmε − rq(t)qε, x ∈ Ω, t > 0,

∂tvε = ε∆vε − αmεvε − βqεvε + µvvε(1− vε)− rv(t)vε, x ∈ Ω, t > 0,

∂tyε = K1(t)(1− yε)vε −K−1(t)yε, x ∈ Ω, t > 0,

∂tκε = −δκε +H(yε(·, t− τ)), x ∈ Ω, t > 0,

∂νmε = ∂νqε = ∂νvε = 0, x ∈ ∂Ω, t > 0,

mε(x, 0) = m0ε(x), qε(x, 0) = q0ε(x), vε(x, 0) = v0ε(x),

κε(x, 0) = κ0ε(x), yε(x, t) = y0ε(x, t), x ∈ Ω, t ∈ [−τ, 0],

(3.12)

where θ > max{2, n} is a fixed parameter and we choose families of functions m0ε, q0ε, v0ε, κ0ε, and
y0ε, ε ∈ (0, 1), satisfying

m0ε, q0ε, v0ε, κ0ε ∈ C3(Ω̄), y0ε ∈ C3(Ω̄× [−τ, 0]), infε∈(0,1) infx∈Ω κ0ε(x) > 0,

m0ε > 0, q0ε > 0, v0ε > 0 in Ω̄, 0 < y0ε < 1 in Ω̄× [−τ, 0],

∂νm0ε = ∂νq0ε = ∂νv0ε = 0 on ∂Ω

(3.13)

for all ε ∈ (0, 1) as well as

m0ε → m0 in C0(Ω̄), q0ε → q0 and v0ε → v0 in W 1,2(Ω) ∩ C0(Ω̄),

κ0ε → κ0 in W 1,4(Ω), y0ε → y0 in C0([−τ, 0];W 1,4(Ω))
(3.14)

as ε↘ 0.
In the sequel we always assume that (3.4)-(3.6) as well as (3.13) and (3.14) are satisfied. The plan
of our proof is as follows: In Section 3.1 we will prove the global existence for each of the approx-
imate problems (3.12). Then we will construct an appropriate entropy-type functional for (3.12) in
Section 3.2. This will allow us to deduce compactness properties and the existence of a global weak
solution to (3.1) in Section 3.3.

3.1 Global existence for the approximate problems

We first prove the local existence of classical solutions to (3.12).

Lemma 3.4 For any ε ∈ (0, 1) there exist Tε ∈ (0,∞] and positive functions mε, qε, vε, yε, κε ∈
C2,1(Ω̄ × [0, Tε)), which solve (3.12) in the classical sense in Ω × (0, Tε). If moreover Tε < ∞ is
fulfilled, then

lim sup
t↗Tε

{
‖mε(·, t)‖C2+β(Ω̄) + ‖qε(·, t)‖C2+β(Ω̄) + ‖vε(·, t)‖C2+β(Ω̄)
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+ ‖yε(·, t)‖C2+β(Ω̄) + ‖κε(·, t)‖C2+β(Ω̄)

}
=∞ for all β ∈ (0, 1). (3.15)

Proof. The proof is completely similar to the one of [40, Lemma 3.1] and relies on a fixed point
argument in the space

X :=
{

(mε, qε) ∈ (Cβ,
β
2 (Ω̄× [0, T ]))2 : mε, qε ≥ 0, ‖mε‖

Cβ,
β
2 (Ω̄×[0,T ])

+ ‖qε‖
Cβ,

β
2 (Ω̄×[0,T ])

≤

‖m0ε‖Cβ(Ω̄) + ‖m0εt‖C0(Ω̄) + ‖q0ε‖Cβ(Ω̄) + ‖q0εt‖C0(Ω̄) + 1
}
.

for fixed ε ∈ (0, 1) and β ∈ (0, 1), where m0εt and q0εt are the right-hand sides of the first and second
equation of (3.12), respectively, evaluated at t = 0. �

In the following two lemmas we collect some elementary estimates which are uniform with respect to
ε ∈ (0, 1).

Lemma 3.5 For each ε ∈ (0, 1) we have the following estimates:

0 < qε(x, t) ≤ A := max

{
sup
ε∈(0,1)

‖q0ε‖L∞(Ω), 1−
λ2

µq
,
γ

µq

}
, x ∈ Ω̄, t ∈ [0, Tε), (3.16)

0 < vε(x, t) ≤ L := max

{
sup
ε∈(0,1)

‖v0ε‖L∞(Ω), 1

}
, x ∈ Ω̄, t ∈ [0, Tε), (3.17)

0 < yε(x, t) ≤ 1, x ∈ Ω̄, t ∈ [−τ, Tε), (3.18)

0 <

{
inf

ε∈(0,1)
inf
x∈Ω

κ0ε(x)

}
e−δt ≤ κε(x, t) ≤ P := max

{
sup
ε∈(0,1)

‖κ0ε‖L∞(Ω),
1

δ
‖H‖L∞((0,1))

}
(3.19)

and |∂tκε(x, t)| ≤ max
{
δP, ‖H‖L∞((0,1))

}
= δP, x ∈ Ω̄, t ∈ [0, Tε). (3.20)

Proof. As all solution components of (3.12) are positive by Lemma 3.4, (3.16)-(3.19) are immediate
consequences of comparison principles applied to the respective equations of (3.12), since (3.6), (3.13),
and (3.14) are satisfied. Then (3.20) follows from the fifth equation in (3.12) in view of (3.19) and the
nonnegativity of H. �

Lemma 3.6 For any ε ∈ (0, 1) we have∫
Ω
mε(x, t)dx ≤ B := max

{
sup
ε∈(0,1)

∫
Ω
m0ε,

λ1A|Ω|
γ

}
, t ∈ (0, Tε), (3.21)

ε

∫ t+1

t

∫
Ω
mθ
ε(x, s)dxds ≤ B + λ1A|Ω|, t ∈ (0, Tε − 1). (3.22)

Proof. In view of (3.6), (3.16), and the positivity of mε, an integration of the first equation of
(3.12) implies that

d

dt

∫
Ω
mε ≤ λ1A|Ω| − γ

∫
Ω
mε − ε

∫
Ω
mθ
ε, t ∈ (0, Tε),

which implies (3.21) and then (3.22) after another integration. �

Based on the previous estimates, we can now prove the global existence for (3.12) just like in [40,
Section 3.3]. For the sake of completeness, we give a short outline of the proof.
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Lemma 3.7 For each ε ∈ (0, 1) the solution to (3.12) exists globally in time and we have Tε =∞.

Proof. We fix ε ∈ (0, 1) and T > 0 and set T̂ε := min{T, Tε}. As mε ∈ Lθ(Ω × (0, T̂ε)) by (3.22),
Lemma 3.5 implies that fε := −αmεvε − βqεvε + µvvε(1− vε)− rv(t)vε is bounded in Lθ(Ω× (0, T̂ε)).
Therefore, results on maximal Sobolev regularity (see [13]) applied to the third equation in (3.12) in
conjunction with our choice θ > max{2, n} imply that W 2,θ(Ω) ↪→W 1,∞(Ω) and∫ T̂ε

0
‖∇vε(·, t)‖2L∞(Ω)dt ≤ C(T )

(
1 +

∫ T̂ε

0
‖vε(·, t)‖θW 2,θ(Ω)dt

)
≤ C5(ε, T ). (3.23)

Next, we fix A > 0 and L > 0 as in Lemma 3.5 so that by (3.6) and (3.19) there exists C6(T ) > 0
such that D(mε, qε, vε)κε ≥ C6(T ) > 0 for x ∈ Ω, t ∈ (0, T̂ε). Hence, for fixed p > 1 we multiply the
first equation in (3.12) by mp−1

ε and obtain by dropping nonnegative terms and using integration by
parts, Young’s inequality, and Lemma 3.5

1

p

d

dt

∫
Ω
mp
ε ≤ −(p− 1)C6(T )

∫
Ω
mp−2
ε |∇mε|2 + (p− 1)

∫
Ω

κεvε
1 + vε

mp−1
ε ∇vε · ∇mε + λ1A

∫
Ω
mp−1
ε

≤ (p− 1)P 2L2

4C6(T )
‖∇vε(·, t)‖2L∞(Ω)

∫
Ω
mp
ε + λ1A

(
|Ω|+

∫
Ω
mp
ε

)
, t ∈ (0, T̂ε).

Hence, in view of (3.23) an integration yields∫
Ω
mp
ε(·, t) ≤ C7(ε, p, T ), t ∈ (0, T̂ε), (3.24)

for some constant C7(ε, p, T ) > 0. As qε and vε are bounded, we deduce that fε ∈ L∞((0, T̂ε), L
p(Ω))

for any p > 1 is satisfied (fε is defined in the beginning of this proof) so that the properties of the
Neumann heat semigroup applied to the third equation of (3.12) (see [16, Lemma 4.1]) show that

‖∇vε(·, t)‖L∞(Ω) ≤ C8(ε, T ), t ∈ (0, T̂ε).

Now this estimate together with (3.24) enables us to use parabolic Hölder and Schauder estimates to
conclude that Tε cannot be finite in view of (3.15) (see the proof of [40, Lemma 3.11] for details). �

3.2 An entropy-type functional

In this section we prove the following estimate which stems from an entropy-type functional and is
the main step towards the existence of a global weak solution to (3.1).

Proposition 3.8 Let T > 0. Then there exists a constant C(T ) > 0 such that for any ε ∈ (0, 1) the
solution to (3.12) fulfills

sup
t∈(0,T )

{∫
Ω
mε lnmε +

∫
Ω

κε|∇vε|2

1 + vε
+

∫
Ω
|∇qε|2 +

∫
Ω
|∇yε|2

}
+

∫ T

0

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε

+

∫ T

0

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
+ ε

∫ T

0

∫
Ω
mθ
ε ln(mε + 2) ≤ C(T ). (3.25)
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The proof of this estimate relies on the strategy established in [40, Section 4] and consists of proving
the existence of an entropy-type functional by several integral estimates. The main difference here are
additional estimates involving powers of ∇mε and ∇qε which arise due to the splitting of the cancer
cell population. As a first step we estimate the time evolution of the first integral in (3.25) similar to
[40, Lemma 4.3].

Lemma 3.9 There exists C > 0 such that for any ε ∈ (0, 1) and all t > 0 we have

d

dt

∫
Ω
mε lnmε +

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+
ε

2

∫
Ω
mθ
ε ln(mε + 2)

≤
∫

Ω

κεvε
1 + vε

∇mε · ∇vε + C. (3.26)

Proof. We use the positivity of mε stated in Lemma 3.4 and the first equation in (3.12) to deduce
by (3.6), (3.16), and (3.21) that

d

dt

∫
Ω
mε lnmε =

∫
Ω

(lnmε∂tmε + ∂tmε)

= −
∫

Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+

∫
Ω

κεvε
1 + vε

∇mε · ∇vε +

∫
Ω
λ(yε)qε lnmε

−
∫

Ω
γmε lnmε −

∫
Ω
rm(t)mε lnmε − ε

∫
Ω
mθ
ε lnmε +

∫
Ω
λ(yε)qε

−
∫

Ω
γmε −

∫
Ω
rm(t)mε − ε

∫
Ω
mθ
ε

≤ −
∫

Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+

∫
Ω

κεvε
1 + vε

∇mε · ∇vε + λ1AB + (γ + C3)
|Ω|
e

−ε
2

∫
Ω
mθ
ε ln(mε + 2) + c5 + λ1A|Ω| for all t > 0,

where in the latter estimate we have used∫
Ω
λ(yε)qε lnmε ≤ λ1

∫
{mε≥1}

qε lnmε ≤ λ1A

∫
{mε≥1}

mε ≤ λ1AB,

ξ ln ξ ≥ −1
e for all ξ > 0 and the existence of c5 > 0 such that −ξθ ln ξ ≤ −1

2ξ
θ ln(ξ + 2) + c5 for all

ξ > 0 (see [40, Lemma 4.2]). This proves (3.26). �

Like in [40, Lemma 4.4], we are able to cancel the first term on the right-hand side of (3.26) in view
of the following pointwise estimate. However, an additional term involving |∇qε|2 is present here.

Lemma 3.10 Let P be as defined in Lemma 3.5. Then we have for any ε ∈ (0, 1)

∂t
κε|∇vε|2

1 + vε
≤ 2ε

κε
1 + vε

∇vε · ∇∆vε − ε
κε

(1 + vε)2
|∇vε|2∆vε − 2α

κεvε
1 + vε

∇mε · ∇vε

+
β2P

2µv
|∇qε|2 − 2ακεmε

|∇vε|2

(1 + vε)2
+ (2µv + δ)P

|∇vε|2

1 + vε
(3.27)

for all x ∈ Ω, t > 0.
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Proof. As vε ∈ C∞(Ω̄× (0,∞)) by parabolic regularity theory (see [22]), we have

∂t
κε|∇vε|2

1 + vε
=

2κε∇vε · ∇(∂tvε)

1 + vε
− κε|∇vε|2∂tvε

(1 + vε)2
+
∂tκε|∇vε|2

1 + vε
=: I1 − I2 + I3 (3.28)

for x ∈ Ω and t > 0. Using the third equation in (3.12), Youngs’s inequality, and (3.6), we obtain

I1 − I2 = κε

{
2ε

1

1 + vε
∇vε · ∇∆vε − 2α

mε|∇vε|2

1 + vε
− 2α

vε
1 + vε

∇mε · ∇vε − 2β
qε|∇vε|2

1 + vε

−2β
vε

1 + vε
∇qε · ∇vε + 2µv

|∇vε|2

1 + vε
− 4µv

vε|∇vε|2

1 + vε
− 2rv(t)

|∇vε|2

1 + vε
− ε |∇vε|

2∆vε
(1 + vε)2

+α
mεvε|∇vε|2

(1 + vε)2
+ β

qεvε|∇vε|2

(1 + vε)2
− µv

vε|∇vε|2

(1 + vε)2
+ µv

v2
ε |∇vε|2

(1 + vε)2
+ rv(t)

vε|∇vε|2

(1 + vε)2

}

≤ 2ε
κε

1 + vε
∇vε · ∇∆vε − ε

κε
(1 + vε)2

|∇vε|2∆vε − 2α
κεvε

1 + vε
∇mε · ∇vε +

β2

2µv
κε|∇qε|2

+
κε|∇vε|2

(1 + vε)2
·
{
− 2αmε(1 + vε)− 2βqε(1 + vε) + 2µvv

2
ε + 2µv(1 + vε)− 4µvvε(1 + vε)

−2rv(t)(1 + vε) + αmεvε + βqεvε − µvvε + µvv
2
ε + rv(t)vε

}
= 2ε

κε
1 + vε

∇vε · ∇∆vε − ε
κε

(1 + vε)2
|∇vε|2∆vε − 2α

κεvε
1 + vε

∇mε · ∇vε +
β2

2µv
κε|∇qε|2

+
κε|∇vε|2

(1 + vε)2
·
{
− 2αmε − αmεvε − 2βqε − βqεvε + 2µv − 3µvvε − µvv2

ε

−2rv(t)− rv(t)vε
}

≤ 2ε
κε

1 + vε
∇vε · ∇∆vε − ε

κε
(1 + vε)2

|∇vε|2∆vε − 2α
κεvε

1 + vε
∇mε · ∇vε +

β2

2µv
κε|∇qε|2

−2ακεmε
|∇vε|2

(1 + vε)2
+ 2µv

κε|∇vε|2

(1 + vε)2
.

By inserting this estimate into (3.28) and using (3.19) and (3.20), we arrive at (3.27). �

When integrating (3.27), we can estimate the first two terms on the right-hand side exactly as in [40,
Lemma 4.5]. Since the proof of the latter contains a mistake concerning the boundary term when
integration by parts is used, we give a correct version here.

Lemma 3.11 For any T > 0 there is C̃(T ) > 0 such that for each ε ∈ (0, 1) we have

2ε

∫
Ω

κε
1 + vε

∇vε · ∇∆vε − ε
∫

Ω

κε
(1 + vε)2

|∇vε|2∆vε

≤ −3

2
ε

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 − 2ε

∫
Ω

1

1 + vε
∇κε · (D2vε · ∇vε)

+ ε

∫
Ω

1

(1 + vε)2
|∇vε|2∇κε · ∇vε + εC̃(T )

∫
Ω

|∇vε|2

1 + vε
for all t ∈ (0, T ). (3.29)
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Proof. Using that ∂νvε = 0 on ∂Ω implies ∂ν |∇vε|2 ≤ cΩ|∇vε|2 on ∂Ω with some cΩ > 0 depending
only on the curvatures of Ω (see e.g. [31, Lemma 4.2]), we may integrate by parts and have (with
∂i := ∂xi)

2

∫
Ω

κε
1 + vε

∇vε · ∇∆vε = 2
n∑

i,j=1

∫
Ω

κε
1 + vε

∂jvε∂iijvε

≤ −2
n∑

i,j=1

∫
Ω

κε
1 + vε

(∂ijvε)
2 + 2

n∑
i,j=1

∫
Ω

κε
(1 + vε)2

∂ivε∂jvε∂ijvε − 2
n∑

i,j=1

∫
Ω

∂iκε
1 + vε

∂jvε∂ijvε

+ cΩ

∫
∂Ω

κε
1 + vε

|∇vε|2 dσ

as well as

−
∫

Ω

κε
(1 + vε)2

|∇vε|2∆vε = −
n∑

i,j=1

∫
Ω

κε
(1 + vε)2

(∂jvε)
2∂iivε

= 2
n∑

i,j=1

∫
Ω

κε
(1 + vε)2

∂ivε∂jvε∂ijvε − 2
n∑

i,j=1

∫
Ω

κε
(1 + vε)3

(∂ivε)
2(∂jvε)

2 +
n∑

i,j=1

∫
Ω

∂iκε
(1 + vε)2

∂ivε(∂jvε)
2

for all t > 0. Adding both estimates implies

2

∫
Ω

κε
1 + vε

∇vε · ∇∆vε −
∫

Ω

κε
(1 + vε)2

|∇vε|2∆vε

≤ −2
n∑

i,j=1

∫
Ω

κε
1 + vε

·

∣∣∣∣∣∂ijvε − ∂ivε∂jvε
1 + vε

∣∣∣∣∣
2

− 2

∫
Ω

1

1 + vε
∇κε · (D2vε · ∇vε)

+

∫
Ω

1

(1 + vε)2
|∇vε|2∇κε · ∇vε + cΩ

∫
∂Ω

κε
1 + vε

|∇vε|2 dσ

= −2

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 − 2

∫
Ω

1

1 + vε
∇κε · (D2vε · ∇vε)

+

∫
Ω

1

(1 + vε)2
|∇vε|2∇κε · ∇vε + cΩ

∫
∂Ω

κε
1 + vε

|∇vε|2 dσ (3.30)

for all t > 0, where in the latter identity we use

∂ij(ln(1 + vε)) =
∂ijvε
1 + vε

− ∂ivε∂jvε
(1 + vε)2

=
1

1 + vε

(
∂ijvε −

∂ivε∂jvε
(1 + vε)

)
. (3.31)

For estimating the boundary term in (3.30), we use an idea from [19]. Namely, we fix r ∈ (0, 1
2), set

a := r + 1
2 ∈ (0, 1), and use as in [19] the compact embedding of W r+ 1

2
,2(Ω) into L2(∂Ω) (see [11,

Proposition 4.22(ii) and Theorem 4.24(i)]) and the fractional Gagliardo-Nirenberg inequality (see [19,
Lemma 2.5]). Upon a combination with (3.19) and Young’s inequality, for any η > 0 there is Cη > 0
such that

cΩ

∫
∂Ω

κε
1 + vε

|∇vε|2 dσ ≤ C5‖∇vε‖2
W r+ 1

2 ,2(Ω)
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≤ C6

(
‖∇|∇vε|‖2aL2(Ω)‖∇vε‖

2(1−a)
L2(Ω)

+ ‖∇vε‖2L2(Ω)

)
≤ η‖∇|∇vε|‖2L2(Ω) + Cη‖∇vε‖2L2(Ω) for all t > 0. (3.32)

In view of ∇|∇vε| = D2vε·∇vε
|∇vε| , (3.31), (3.17), and the inequality∫

Ω

|∇Ψ|4

(1 + Ψ)3
≤ (2 +

√
n)2

∫
Ω

(1 + Ψ)
∣∣∣D2 ln(1 + Ψ)

∣∣∣2, (3.33)

which is valid for all 0 ≤ Ψ ∈ C2(Ω̄) with ∂νΨ = 0 on ∂Ω (see [44, Lemma 3.3] for a proof), we further
estimate ∫

Ω
|∇|∇vε||2 ≤

∫
Ω

∣∣D2vε
∣∣2

≤
∫

Ω
2(1 + vε)

2
∣∣D2 ln(1 + vε)

∣∣2 +

∫
Ω

2
|∇vε|4

(1 + vε)2

≤ 2(1 + L)

(∫
Ω

(1 + vε)
∣∣D2 ln(1 + vε)

∣∣2 +

∫
Ω

|∇vε|4

(1 + vε)3

)
≤ C7

∫
Ω

(1 + vε)
∣∣D2 ln(1 + vε)

∣∣2 for all t > 0 (3.34)

with C7 := 2(1 + L)(1 + (2 +
√
n)2) > 0.

As (3.19) implies the existence of C8(T ) > 0 such that κε ≥ C8(T ) in Ω× (0, T ), we insert (3.34) into

(3.32), use (3.17) and choose η := C8(T )
2C7

> 0 to obtain

cΩ

∫
∂Ω

κε
1 + vε

|∇vε|2 dσ ≤ ηC7

∫
Ω

(1 + vε)
∣∣D2 ln(1 + vε)

∣∣2 + Cη

∫
Ω
|∇vε|2

≤ ηC7

C8(T )

∫
Ω
κε(1 + vε)

∣∣D2 ln(1 + vε)
∣∣2 + Cη(1 + L)

∫
Ω

|∇vε|2

1 + vε

≤ 1

2

∫
Ω
κε(1 + vε)

∣∣D2 ln(1 + vε)
∣∣2 + Cη(1 + L)

∫
Ω

|∇vε|2

1 + vε

for all t ∈ (0, T ). By inserting the latter estimate into (3.30), we obtain (3.29). �

Next we provide an appropriate estimate for the additional term
∫

Ω |∇qε|
2 coming from (3.27). This

is the only place where we need the assumption that γ is constant.

Lemma 3.12 There exists C > 0 such that for each ε ∈ (0, 1) and all t > 0 we have

d

dt

∫
Ω
|∇qε|2 ≤ C

{∫
Ω
|∇qε|2 +

∫
Ω

|∇mε|2

mε
+

∫
Ω

|∇vε|2

1 + vε
+

∫
Ω
|∇yε|2

}
. (3.35)

Proof. We have qε ∈ C∞(Ω̄ × (0, Tε)) by parabolic regularity theory and ∂ν |∇qε|2 ≤ cΩ|∇qε|2
on ∂Ω in view of ∂νqε = 0 on ∂Ω and the smoothness of ∂Ω (with cΩ as defined in the proof of
Lemma 3.11). Hence, the second equation of (3.12) and integration by parts in conjunction with
Young’s and Hölder’s inequalities, (3.6), and Lemma 3.5 yield

1

2

d

dt

∫
Ω
|∇qε|2 =

∫
Ω
∇qε · ∇(∂tqε)
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= ε

∫
Ω
∇qε · ∇∆qε +

∫
Ω

(µq − λ(yε)− rq(t))|∇qε|2 −
∫

Ω
λ′(yε)qε∇qε · ∇yε

−2µq

∫
Ω
qε|∇qε|2 − µq

∫
Ω
mε|∇qε|2 − µq

∫
Ω
qε∇qε · ∇mε − µqη1

∫
Ω
vε|∇qε|2

−µqη1

∫
Ω
qε∇qε · ∇vε +

∫
Ω
γ∇qε · ∇mε

≤ −ε
∫

Ω

∣∣D2qε
∣∣2 +

ε

2

∫
∂Ω
∂ν |∇qε|2dσ +

(
µq − λ2 +A2‖λ′‖2L∞((0,1))

)∫
Ω
|∇qε|2

+
1

4

∫
Ω
|∇yε|2 − 2µq

∫
Ω
qε|∇qε|2 −

3µq
4

∫
Ω
mε|∇qε|2 + µqA

2

∫
Ω

|∇mε|2

mε

+2µq

∫
Ω
qε|∇qε|2 +

µqη
2
1A

8

∫
Ω
|∇vε|2 +

µq
4

∫
Ω
mε|∇qε|2 +

γ2

µq

∫
Ω

|∇mε|2

mε

≤ −ε
∫

Ω

∣∣D2qε
∣∣2 +

εcΩ

2

∫
∂Ω
|∇qε|2dσ +

(
µq − λ2 +A2‖λ′‖2L∞((0,1))

)∫
Ω
|∇qε|2

+
1

4

∫
Ω
|∇yε|2 +

(
µqA

2 +
γ2

µq

)∫
Ω

|∇mε|2

mε
+
µqη

2
1A(1 + L)

8

∫
Ω

|∇vε|2

1 + vε
(3.36)

for all t > 0. Concerning the second term on the right-hand side, we fix r ∈ (0, 1
2) and a := r+ 1

2 ∈ (0, 1)

and use the compact embedding of W r+ 1
2
,2(Ω) into L2(∂Ω) and the fractional Gagliardo-Nirenberg

inequality to estimate like in (3.32) and (3.34)

εcΩ

2

∫
∂Ω
|∇qε|2dσ ≤ εC5‖∇qε‖2

W r+ 1
2 (Ω)
≤ εC6

(
‖∇|∇qε|‖2aL2(Ω)‖∇qε‖

2(1−a)
L2(Ω)

+ ‖∇qε‖2L2(Ω)

)
≤ ε‖∇|∇qε|‖2L2(Ω) + εC7‖∇qε‖2L2(Ω) ≤ ε

∫
Ω

∣∣D2qε
∣∣2 + C7

∫
Ω
|∇qε|2

in view of ε ∈ (0, 1). Inserting this into (3.36), we end up with (3.35). �

In a final preliminary step we estimate suitable terms involving ∇yε and ∇κε like in [40, Lemmas 4.7-
4.8].

Lemma 3.13 There is C > 0 such that for any ε ∈ (0, 1) and all t > 0 we have

d

dt

∫
Ω
|∇yε|2 ≤

∫
Ω
|∇vε|2 + C

∫
Ω
|∇yε|2 and

d

dt

∫
Ω
|∇yε|4 ≤

∫
Ω
|∇vε|4 + C

∫
Ω
|∇yε|4

and
d

dt

∫
Ω
|∇κε|4 ≤ C

∫
Ω
|∇yε(·, t− τ)|4.

Proof. In view of vε ∈ C∞(Ω̄×(0,∞)) and (3.13) we may use the fourth equation in (3.12), Young’s
inequality, (3.6), and Lemma 3.5 to obtain

1

4

d

dt

∫
Ω
|∇yε|4 =

∫
Ω
|∇yε|2∇yε · ∇(∂tyε)

= K1(t)

∫
Ω

(1− yε)|∇yε|2∇yε · ∇vε −K1(t)

∫
Ω
vε|∇yε|4 −K−1(t)

∫
Ω
|∇yε|4
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≤ 3

4
C

4
3
3

∫
Ω
|∇yε|4 +

1

4

∫
Ω
|∇vε|4 (3.37)

as well as

1

4

d

dt

∫
Ω
|∇κε|4 =

∫
Ω
|∇κε|2∇κε · ∇(∂tκε)

= −δ
∫

Ω
|∇κε|4 +

∫
Ω
H ′(y(·, t− τ))|∇κε|2∇κε · ∇yε(·, t− τ)

≤ 1

4

(
3

4δ

)3

‖H ′‖4L∞((0,1))

∫
Ω
|∇yε(·, t− τ)|4.

The estimate concerning
∫

Ω |∇yε|
2 can be proved like in (3.37). �

Now we are in a position to prove Proposition 3.8, the main result of this section. The proof is similar
to the one of [40, Lemma 4.1].
Proof of Proposition 3.8. We fix T > 0 and ε ∈ (0, 1) (all constants Ci below do not depend on
ε and their dependence on T is indicated). Then (3.19) implies the existence of C5(T ) > 0 such that

κε(x, t) ≥ C5(T ) > 0 for all x ∈ Ω, t ∈ (0, T ). (3.38)

Hence, with C6(T ) := (2+
√
n)2

C5(T ) > 0, we obtain from (3.17) and (3.33) that∫
Ω
|∇vε|4 ≤ (1 + L)3

∫
Ω

|∇vε|4

(1 + vε)3
≤ (1 + L)3C6(T )

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 (3.39)

for all t ∈ (0, T ). Hence, using (3.31), Young’s inequality, (3.38), (3.39), and (3.17), we estimate the
second and third term on the right-hand side of (3.29) according to

−2ε

∫
Ω

1

1 + vε
∇κε · (D2vε · ∇vε) + ε

∫
Ω

1

(1 + vε)2
|∇vε|2∇κε · ∇vε

= −2ε

∫
Ω
∇κε · (D2 ln(1 + vε) · ∇vε)− ε

∫
Ω

1

(1 + vε)2
|∇vε|2∇κε · ∇vε

≤ ε

4

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 + 4ε

∫
Ω

|∇κε|2|∇vε|2

κε(1 + vε)
+

ε

2C6(T )

∫
Ω

|∇vε|4

(1 + vε)3

+
27εC3

6 (T )

32

∫
Ω

(1 + vε)|∇κε|4

≤ ε

4

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 +

3ε

4C6(T )

∫
Ω

|∇vε|4

(1 + vε)3
+ 16εC6(T )

∫
Ω

(1 + vε)

κ2
ε

|∇κε|4

+
27εC3

6 (T )(1 + L)

32

∫
Ω
|∇κε|4

≤ ε

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2 + ε

(
16C6(T )(1 + L)

C2
5 (T )

+
27C3

6 (T )(1 + L)

32

)∫
Ω
|∇κε|4

for all t ∈ (0, T ). Inserting the latter estimate and (3.29) into the integrated version of (3.27) and
using (3.38), we have

d

dt

∫
Ω

κε|∇vε|2

1 + vε
+ 2α

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
+
ε

2

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2
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≤ −2α

∫
Ω

κεvε
1 + vε

∇mε · ∇vε +
β2P

2µv

∫
Ω
|∇qε|2 + C7(T )

∫
Ω

κε|∇vε|2

1 + vε
+ εC7(T )

∫
Ω
|∇κε|4

for all t ∈ (0, T ) with some C7(T ) > 0. Multiplying this by 1
2α and adding it to (3.26), we deduce the

existence of C8 > 0 such that

d

dt

{∫
Ω
mε lnmε +

1

2α

∫
Ω

κε|∇vε|2

1 + vε

}
+

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+

∫
Ω
κεmε

|∇vε|2

(1 + vε)2

+
ε

2

∫
Ω
mθ
ε ln(mε + 2) +

ε

4α

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2

≤ C7(T )

2α

∫
Ω

κε|∇vε|2

1 + vε
+
β2P

4αµv

∫
Ω
|∇qε|2 + ε

C7(T )

2α

∫
Ω
|∇κε|4 + C8 (3.40)

for all t ∈ (0, T ). Next, let C2 > 0 in (3.6) be fixed according to A and L defined in Lemma 3.5. Then
(3.38) implies that D(mε, qε, vε)κε ≥ C2C5(T ) in Ω × (0, T ). Denoting further the constant C from

Lemma 3.12 by C9 > 0 and setting C10(T ) := C2C5(T )
2C9

> 0, we obtain from (3.40), Lemma 3.12, and
(3.38) that

d

dt

{∫
Ω
mε lnmε +

1

2α

∫
Ω

κε|∇vε|2

1 + vε
+ C10(T )

∫
Ω
|∇qε|2

}
+

1

2

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε

+

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
+
ε

2

∫
Ω
mθ
ε ln(mε + 2) +

ε

4α

∫
Ω
κε(1 + vε)

∣∣∣D2 ln(1 + vε)
∣∣∣2

≤ C11(T )

(∫
Ω

κε|∇vε|2

1 + vε
+

∫
Ω
|∇qε|2 +

∫
Ω
|∇yε|2

)
+ ε

C7(T )

2α

∫
Ω
|∇κε|4 + C8 (3.41)

for all t ∈ (0, T ) with some C11(T ) > 0. Next, we denote the constant C from Lemma 3.13 by C12 > 0.

In view of |∇vε|2 ≤ 1+L
C5(T )

κε|∇vε|2
1+vε

(due to (3.17) and (3.38)) and (3.39) we conclude from (3.41) and

Lemma 3.13 with C13(T ) := 1
4α(1+L)3C6(T )

> 0 that

d

dt

{∫
Ω
mε lnmε +

1

2α

∫
Ω

κε|∇vε|2

1 + vε
+ C10(T )

∫
Ω
|∇qε|2 +

∫
Ω
|∇yε|2 + ε

∫
Ω
|∇κε|4

+εC13(T )

∫
Ω
|∇yε|4

}
+

1

2

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
+
ε

2

∫
Ω
mθ
ε ln(mε + 2)

≤ C14(T )

(∫
Ω

κε|∇vε|2

1 + vε
+

∫
Ω
|∇yε|2

)
+ C11(T )

∫
Ω
|∇qε|2 + ε

C7(T )

2α

∫
Ω
|∇κε|4 + C8

+εC12

∫
Ω
|∇yε(·, t− τ)|4 + εC12C13(T )

∫
Ω
|∇yε|4 (3.42)

for all t ∈ (0, T ) with some C14(T ) > 0. Defining for t ≥ 0 the nonnegative functions

Eε(t) :=

∫
Ω
mε lnmε +

1

2α

∫
Ω

κε|∇vε|2

1 + vε
+ C10(T )

∫
Ω
|∇qε|2 +

∫
Ω
|∇yε|2 + ε

∫
Ω
|∇κε|4

+εC13(T )

∫
Ω
|∇yε|4 +

|Ω|
e
,
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Dε(t) :=
1

2

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
+
ε

2

∫
Ω
mθ
ε ln(mε + 2),

hε(t) :=

∫
Ω
|∇yε(·, t)|4, with εhε(t− τ) ≤ 1

C13(T )
Eε((t− τ)+) + sup

s∈[−τ,0]

∫
Ω
|∇y0ε(·, s)|4,

we deduce from (3.42) that there is C15(T ) > 0 such that

d

dt
Eε(t) +Dε(t) ≤ C15(T ) (Eε(t) + εhε(t− τ)) for all t ∈ (0, T ).

As this corresponds to [40, (4.31)] and supε∈(0,1) Eε(0) is finite due to (3.14), we may proceed as in the
proof of [40, Lemma 4.1] to obtain C16(T ) > 0 with

sup
t∈(0,T )

Eε(t) ≤ C16(T ) and

∫ T

0
Dε(t)dt ≤ C16(T ),

which proves (3.25). �

3.3 Global weak solution to the original problem

From estimate (3.25), which we gained from the entropy-type functional Eε, we will derive appropriate
compactness properties for the solutions of (3.12) which then will imply the convergence to a global
weak solution of the original problem (3.1)-(3.3). Large parts of our proofs rely on the ideas from [40,
Section 5]. We first collect properties of mε.

Lemma 3.14 Let T > 0 be arbitrary. Then there is a constant C(T ) > 0 such that for any ε ∈ (0, 1)∫ T

0
‖
√

1 +mε(·, t)‖2W 1,2(Ω)dt ≤ C(T ) (3.43)

is fulfilled. Moreover, (
√

1 +mε)ε∈(0,1) is strongly precompact in L2((0, T );Lp(Ω)) for any p ∈ (1, 6)
and (mε)ε∈(0,1) is strongly precompact in L1((0, T );L2(Ω)).

Proof. In view of (3.38) and (3.6) with C2 = C2(A,L) according to A,L from Lemma 3.5, we have

D(mε, qε, vε)κε ≥ C2C5(T ) for all x ∈ Ω, t ∈ (0, T ). (3.44)

Hence, we obtain from (3.21) and Proposition 3.8 that∫ T

0
‖
√

1 +mε‖2W 1,2(Ω) =

∫ T

0

∫
Ω

(1 +mε) +
1

4

∫ T

0

∫
Ω

|∇mε|2

1 +mε

≤ T (|Ω|+B) +
1

4C2C5(T )

∫ T

0

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
≤ C6(T )

for all t ∈ (0, T ) with some C6(T ) > 0, which proves (3.43). Next let k ∈ N be such that k > n+2
2 . We

claim that ∫ T

0
‖∂t
√

1 +mε(·, t)‖(Wk,2
0 (Ω))∗

dt ≤ C7(T ) (3.45)

16



with some C7(T ) > 0. To this end, we fix t ∈ (0, T ) and Ψ ∈ C∞0 (Ω) and deduce from the first equation
in (3.12) by using integration by parts, Young’s inequality, (3.6), Lemma 3.5, and Lemma 3.6 that

2

∫ T

0

∫
Ω
∂t
√

1 +mεΨ =

∫ T

0

∫
Ω
∂tmε

Ψ√
1 +mε

=
1

2

∫ T

0

∫
Ω

D(mε, qε, vε)κε

(1 +mε)
3
2

|∇mε|2Ψ−
∫ T

0

∫
Ω

D(mε, qε, vε)κε

(1 +mε)
1
2

∇mε · ∇Ψ

−1

2

∫ T

0

∫
Ω

κεvεmε

(1 + vε)(1 +mε)
3
2

∇mε · ∇vεΨ +

∫ T

0

∫
Ω

κεvεmε

(1 + vε)(1 +mε)
1
2

∇vε · ∇Ψ

+

∫ T

0

∫
Ω

(
λ(yε)qε − γmε − rm(t)mε − εmθ

ε

) Ψ√
1 +mε

≤ 1

2
‖Ψ‖L∞(Ω)

∫ T

0

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε

+‖∇Ψ‖L∞(Ω)

{
T |Ω|C1P

4
+

∫ T

0

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε

}
+‖Ψ‖L∞(Ω)

{
1

C2

∫ T

0

∫
Ω
D(mε, qε, vε)κε

|∇mε|2

mε
+
L2

16

∫ T

0

∫
Ω
κεmε

|∇vε|2

(1 + vε)2

}
+‖∇Ψ‖L∞(Ω)

{
T |Ω|PL2

4
+

∫ T

0

∫
Ω
κεmε

|∇vε|2

(1 + vε)2

}
+‖Ψ‖L∞(Ω) {T |Ω|λ1A+ T (γ + C3)B + (T + 1)(B + λ1A|Ω|)}

≤ C8(T )‖Ψ‖W 1,∞(Ω) (3.46)

in view of Proposition 3.8. Since W k,2
0 (Ω) is continuously embedded into W 1,∞(Ω) due to k > n+2

2 ,
there is some C9 > 0 such that∫ T

0
‖∂t
√

1 +mε(·, t)‖(Wk,2
0 (Ω))∗

dt =

∫ T

0
sup

Ψ∈C∞0 (Ω),‖Ψ‖
W
k,2
0 (Ω)

≤1

∫
Ω
∂t
√

1 +mε(·, t)Ψ ≤ C9C8(T ),

which proves (3.45). Now let p ∈ (1, 6) be arbitrary. Then in view of n ≤ 3 and k > n+2
2 the em-

bedding W 1,2(Ω) ↪→ Lp(Ω) is compact and Lp(Ω) is continuously embedded into the Hilbert space

(W k,2
0 (Ω))∗. As (3.43) and (3.45) imply that (

√
1 +mε)ε∈(0,1) is bounded in L2((0, T );W 1,2(Ω)) and

(∂t
√

1 +mε)ε∈(0,1) is bounded in L1((0, T ); (W k,2
0 (Ω))∗), the strong precompactness of (

√
1 +mε)ε∈(0,1)

in L2((0, T );Lp(Ω)) is a consequence of the Aubin-Lions Lemma (see e.g. Theorem 2.3 and Remark 2.1
in Chapter II of [42]). In particular, the case p = 4 along with mε ≥ 0 implies the strong precompact-
ness of (mε)ε∈(0,1) in L1((0, T );L2(Ω)). �

Next, we prove appropriate compactness properties for the other solution components.

Lemma 3.15 Let T > 0 be arbitrary. Then there is a constant C(T ) > 0 such that for any ε ∈ (0, 1)

sup
t∈(0,T )

{∫
Ω
|∇qε(·, t)|2 +

∫
Ω
|∇vε(·, t)|2 +

∫
Ω
|∇yε(·, t)|2 +

∫
Ω
|∇κε(·, t)|2

}
≤ C(T ) (3.47)
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is satisfied. Moreover, (qε)ε∈(0,1), (vε)ε∈(0,1), (yε)ε∈(0,1), and (κε)ε∈(0,1) are strongly precompact in
L2(Ω× (0, T )).

Proof. The estimates concerning ∇qε, ∇vε, and ∇yε claimed in (3.47) are immediate consequences

of Proposition 3.8 and |∇vε|2 ≤ 1+L
C5(T )

κε|∇vε|2
1+vε

(by (3.17) and (3.38)). The estimate concerning ∇κε
then follows from the estimate on ∇yε, (3.14), and

1

2

d

dt

∫
Ω
|∇κε|2 ≤

1

4δ
‖H ′‖2L∞((0,1))

∫
Ω
|∇yε(·, t− τ)|2 for all t > 0,

which can be proved like in Lemma 3.13. Furthermore, (3.6), (3.12), and Lemma 3.5 imply the
existence of C6 > 0 such that

sup
t∈(0,∞)

{
‖∂tyε‖L∞(Ω) + ‖∂tκε‖L∞(Ω)

}
≤ C6. (3.48)

When combined with (3.21) and (3.47), they further yield (in a way similar to (3.46))∫ T

0
‖∂tqε(·, t)‖(Wk,2

0 (Ω))∗
dt+

∫ T

0
‖∂tvε(·, t)‖(Wk,2

0 (Ω))∗
dt ≤ C7(T ) (3.49)

with some C7(T ) > 0. Hence, the claimed strong precompactness of the solution components in
L2((0, T );L2(Ω)) is a consequence of (3.47)-(3.49), Lemma 3.5, and the Aubin-Lions Lemma (like in
the end of the proof of Lemma 3.14). �

Finally, we are in a position to prove the existence of a global weak solution to the original problem
(3.1)-(3.3) like in the proof of [40, Theorem 1.1].
Proof of Theorem 3.2. First of all, by Lemmas 3.5, 3.6, 3.14, and 3.15 there exist nonnegative
functions m, q, v, y, and κ having the regularity properties stated in Definition 3.1 and claimed in
Theorem 3.2 such that along a suitable sequence ε = εj ↘ 0 as j →∞ we have for any T > 0

lε → l strongly in L2(Ω× (0, T )) and a.e. in Ω× (0,∞), for l ∈ {
√

1 +m, q, v, y, κ},

mε → m strongly in L1((0, T );L2(Ω)) and a.e. in Ω× (0,∞),

∇
√

1 +mε ⇀ ∇
√

1 +m and ∇vε ⇀ ∇v weakly in L2(Ω× (0, T )),
√
mε∇vε ⇀

√
m∇v weakly in L2(Ω× (0, T )).

(3.50)

Here we deduce the last convergence from
√
mε →

√
m strongly in L2(Ω × (0, T )) (and a.e.) and

∇vε ⇀ ∇v weakly in L2(Ω× (0, T )), as Proposition 3.8, (3.17), and (3.38) imply that∫ T

0

∫
Ω
mε|∇vε|2 ≤

(1 + L)2

C5(T )

∫ T

0

∫
Ω
κεmε

|∇vε|2

(1 + vε)2
≤ C6(T )

for all ε ∈ (0, 1) with some C6(T ) > 0. For fixed T > 0 and ϕ ∈ C∞0 (Ω̄ × [0, T )) we obtain from the
first equation in (3.12) that

−
∫ T

0

∫
Ω
mε∂tϕ−

∫
Ω
m0εϕ(·, 0) = −2

∫ T

0

∫
Ω
D(mε, qε, vε)κε

√
1 +mε∇

√
1 +mε · ∇ϕ
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+

∫ T

0

∫
Ω

κεvε
1 + vε

√
mε
√
mε∇vε · ∇ϕ+

∫ T

0

∫
Ω

(λ(yε)qε − γmε − rm(t)mε)ϕ− ε
∫ T

0

∫
Ω
mθ
εϕ (3.51)

for all ε ∈ (0, 1). Passing to the limit ε = εj ↘ 0, we deduce from (3.50), (3.6), and (3.14) that
each of the terms in (3.51) except the last one converges to the respective term of (3.7). Here we
use that [40, Lemma 5.10] along with 0 ≤ D(mε, qε, vε)κε ≤ C1P and 0 ≤ κεvε

1+vε
≤ PL (see (3.6)

and Lemma 3.5) imply that D(mε, qε, vε)κε
√

1 +mε → D(m, q, v)κ
√

1 +m and κεvε
1+vε

√
mε → κv

1+v

√
m

strongly in L2(Ω× (0, T )).
Concerning the last term in (3.51), we denote the constant C(T ) from Proposition 3.8 by C7(T ). Then

for given η > 0 we choose S > 0 such that C7(T )
ln(S+2) ≤

η
2 and obtain from Proposition 3.8 that

ε

∫ T

0

∫
Ω
mθ
ε = ε

∫ T

0

∫
Ω
χ{mε≤S}m

θ
ε + ε

∫ T

0

∫
Ω
χ{mε>S}m

θ
ε

≤ εT |Ω|Sθ +
ε

ln(S + 2)

∫ T

0

∫
Ω
mθ
ε ln(mε + 2) ≤ η

2
+
η

2

for all ε ∈ (0, ε0) such that ε0T |Ω|Sθ ≤ η
2 . This implies that the last term in (3.51) converges to zero

as ε↘ 0. Similarly, (3.8)-(3.11) can be verified by using (3.50), (3.6), (3.14), and (3.47). �

4 Numerical simulations

In this section we perform numerical simulations of the system (2.1a)-(2.1e) for n = 2 and Ω = (0, 1)2.
All simulations are performed with MATLAB and the cell-centered unstructured triangular mesh
generation is implemented via the DistMesh MATLAB function package [33]. Space discretization is
done via the Finite Volume Method (see e.g., [7, 1]) and the time discretization is implemented via an
explicit one-step Euler method.
In our simulations we use for the terms and coefficients in (2.1a)-(2.1e) the following definitions:

φ(κ,m, q, v) := Dcκ
1 + mq

K2
c

+ mv
KcKv

+ qv
KcKv

1 + m
Kc

( q
Kc

+ v
Kv

)
, ψ(κ, v) :=

DHκv

Kv + v
,

λ(y) := λ0(R0 + y), γ(y) :=
γ0

R0 + y
,

H(y(·, t− τ)) := My(t− τ). (4.1)

Thereby, we assume that the diffusion is enhanced by cell-cell and cell-tissue interactions and restrained
by the interactions between moving cells and immotile components (proliferating cells and normal
tissue). As in [28, 40], the diffusion is also supposed to be favorized by the cell contractivity. The
haptotactic sensitivity is (moderately) aided by the interaction between moving cells and tissue and
proportional to the cell’s ability to contract and change its shape. In the switching rates λ and γ
the constant R0 denotes (as mentioned in Section 2) the total amount of relevant integrins on a cell’s
surface: we assume that all cells have the same (average) amount. Furthermore, we assume that a
lower concentration of bound integrins inhibits the mesenchymal motion and hence, due to the go-
or-growhypothesis, causes a moving cell to switch to the proliferative regime. On the other hand,
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increased receptor binding promotes contractivity and mesenchymal motion. Thus, the switching rates
γ and λ are decreasing and increasing functions, respectively.
The effects of chemotherapy are described by way of dependence of the integrin binding/detachment
rates on the chemotherapeutic dose dc:

k1(dc) := k̂1 − bddc,
k−1(dc) := k̂−1 + uddc, (4.2)

where dc(t) :=
l̂∑

i=1
d̂c(t̂i)ηε(t − t̂i), ηε ∈ C∞0 ((−ε, ε)) satisfies ηε(0) = 1 and 0 ≤ ηε ≤ 1, with ε being

very small, d̂c is the administered dose and t̂i (i = 1, . . . , l̂) are the times when the chemotherapy
is applied. As we are not concerned here with the issue of an optimal treatment schedule, we will
assume for simplicity a uniform dose distribution, i.e., d̂c(t̂i) = d̂c = constant for all i = 1, . . . , l̂,
where l̂ denotes the number of chemotherapy fractions. The values of the constants k̂1, k̂−1, bd, ud are
specified in Table 1. The same applies for all constants used in this model.
The radiotherapy is described by the following terms:

Rj(dr) :=

l∑
i=1

(1− Sj(αj , βj , dr))ηε(t− ti), ti ∈ radiotherapy

Sj(αj , βj , dr) := exp(−l(αj d̂r + βj d̂
2
r)) = exp(−αjdr(1 + d̂r/(αj/βj))), (4.3)

where t is the current time, j ∈ {m, q, v} represents the type of irradiated cells, dr is the total dose
and d̂r is the dose per fraction. ˝radiotherapydenotes the set of times ti at which ionizing radiation
is applied. The function Sj(αj , βj , dr) denotes the survival fraction of the population of type j after
application of radiotherapy, hence we adopted the linear quadratic (LQ) model [8, 10], which in spite of
its shortcomings [21] is still the standard choice in radiation treatments (see e.g., [35]). The parameter
αj represents lethal lesions produced by a single radiation track (they are linearly related to the
dose: αjdr , cell kill per Gy), while βj characterizes lethal lesions produced by two radiation tracks
(quadratically related to the dose: βjd

2
r , cell kill per Gy2). The relevant parameter in the LQ model

is actually the radiation sensitivity αj/βj , which correlates to the cell cycle length: late responding
tissues with a slow cell cycle have a small αj/βj ratio, while it is large for early responding, highly
aggressive cancers [37].

4.1 Nondimensionalization

For convenience of notation and computations we nondimensionalize the system (2.1a)-(2.1e) and
introduce the following rescaling:

m̃ :=
m

Kc
, q̃ :=

q

Kc
, ṽ :=

v

Kv
, ỹ :=

y

R0
,

t̃ :=
t

T
, x̃ :=

x

L
, ϑ̃ :=

t

χT
, (4.4)

where T and L denote the reference time and length scale, respectively, ϑ is the time variable cor-
responding to the much faster subcellular dynamics, and χ ∈ (0, 1) is a scaling constant. Using the
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rescaling (4.4) we obtain the following system in dimensionless form (we omit the tildes to simplify
the notation):

∂tm = ∇ · (φ(κ,m, q, v)∇m)−∇ · (ψ(κ, v)m∇v) + λ(y)q − γ(y)m− ΓmRm(dr)m

∂tq = µqq (1− (m+ q)− η1v)− λ(y)q + γ(y)m− ΓqRq(dr)q

∂tv = −δv(m+ δqq)v + µvv (1− η2(m+ q)− v)− ΓvRv(dr)v

∂ϑy = k1(dc)(1− y)v − k−1(dc)y

∂ϑκ = −δκκ+H(y(·, t− τ))

(4.5)

where the rescaled motility functions and transition rates are given by:

φ(κ,m, q, v) = Dcκ
1 +mq +mv + qv

1 +m(q + v)
, ψ(κ, v) =

DHκv

1 + v
,

λ(y) = λ0(1 + y), γ(y) =
γ0

1 + y
. (4.6)

4.2 Implementation

We approximate the solution to (4.5) by piecewise constant functions on each triangle Ωi (with tes-
sellation

⋃
i∈I Ωi = Ω, I being an index set). Specifically, the time marching is done by the one-step

Euler method to advance the ODE solutions S(k) := (q(k), v(k), y(k), κ(k)) → S(k+1) from the time
level k ∈ N0 to k + 1. Although this method is only of first order in time, we employ the operator
splitting for separating the diffusion (with source terms) and the advection terms in order to advance
the piecewise constant PDE solution m(k) → m(k+1). Thus, the scheme’s overall accuracy is of first
order in space and time as well. The operator splitting consists of two steps:
Step 1: m(k) → m(∗) solving the advection problem ∂tm = −∇ · (ψ(κ, v)m∇v) for one time step 4t,
using m(k) as the initial value. We use a monotone, E-flux scheme, such as the Godunov method (see
e.g., [1, 25]), which is given by the following:

m
(∗)
i = m

(k)
i −

4t
|Ωi|

 ∑
j∈A(i)

|∂Ωij |E−→nij (m
(k)
i ,m

(k)
j )

 ,

where
m

(k)
i = 1

|Ωi|
∫

Ωi
m(k) is the average value of the piecewise constant solution m(k) over the triangle Ωi

(with tessellation
⋃
i∈I Ωi = Ω, I being an index set) at the time level k,

A(i) is an index set of the neighboring triangles of Ωi,
∂Ωij is the boundary edge between triangles Ωi and Ωj ,

E−→nij (m
(k)
i ,m

(k)
j ) is the Godunov flux from Ωi to Ωj ,

−→nij is the outward unit normal, pointing out of
Ωi and into Ωj . The Godunov flux is given by:

E−→nij (m
(k)
i ,m

(k)
j ) =


min

u∈[m
(k)
i ,m

(k)
j ]

f(u)nx + g(u)ny, if m
(k)
i ≤ m

(k)
j

max
u∈[m

(k)
j ,m

(k)
i ]

f(u)nx + g(u)ny, otherwise.
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Here, nx, ny denote the x and y components of the unit normal −→nij . The functions f and g are given
by:

f(u) = u · ψ(κ
(k)
i , v

(k)
i )∂xv

(k)|∂Ωij

g(u) = u · ψ(κ
(k)
i , v

(k)
i )∂yv

(k)|∂Ωij ,

where

∂xv
(k)|∂Ωij =

v
(k)
j − v

(k)
i

|xj − xi|
,

∂yv
(k)|∂Ωij =

v
(k)
j − v

(k)
i

|yj − yi|
,

ψ(κ
(k)
i , v

(k)
i )|∂Ωij =

1

2

(
ψ(κ

(k)
i , v

(k)
i ) + ψ(κ

(k)
j , v

(k)
j )
)
,

with (xi, yi) being cell center coordinates on the triangle Ωi, v
(k)
i and κ

(k)
i are cell averages at the time

level k defined similarly as above.
Step 2: m(∗) → m(k+1) solving the reaction-diffusion problem ∂tm = ∇ · (φ(κ,m, q, v)∇m) + λ(y)q−
γ(y)m − ΓmRm(dr)m for one time step 4t, using m(∗) as the initial value. The scheme is given by
the following:

m
(k+1)
i = m

(∗)
i −

4t
|Ωi|

 ∑
j∈A(i)

|∂Ωij |D−→nij (m
(∗)
i ,m

(∗)
j )

+4tP (∗)
i ,

where

D−→nij (m
(∗)
i ,m

(∗)
j ) = φ(κ

(k)
i ,m

(∗)
i , q

(k)
i , v

(k)
i )

(
∂xm

(∗)nx + ∂ym
(∗)ny

)
|∂Ωij

P
(∗)
i = λ(y

(k)
i )q

(k)
i − γ(y

(k)
i )m

(∗)
i − ΓmRm(d(k)

r )m
(∗)
i .

Here, the spatial derivatives and the function φ at the boundary edge are approximated similarly as

above. The average values y
(k)
i , q

(k)
i at the time level k are defined similarly as above and d

(k)
r is the

irradiation dose at time level k.
We use the one-step explicit Euler method to obtain the solutions q

(k+1)
i and v

(k+1)
i :

q
(k+1)
i = q

(k)
i +4tµqq(k)

i (1− (m
(k)
i + q

(k)
i )− η1v

(k)
i )

−4tλ(y
(k)
i )q

(k)
i +4tγ(y

(k)
i )m

(k)
i −4tΓqRq(d

(k)
r )q

(k)
i

v
(k+1)
i = v

(k)
i −4tδv(m

(k)
i + δqq

(k)
i )v

(k)
i +4tµvv(k)

i (1− η2(m
(k)
i + q

(k)
i )− v(k)

i )

−4tΓvRv(d(k)
r )v

(k)
i

The numerical solution y
(k+1)
i at the time level k+1 is obtained by the following consecutive application

of the one-step implicit Euler method:

y
(k+χ(j+1))
i =

y
(k+χj)
i +4tk1(d

(k)
c )v

(k)
i

1 +4tk1(d
(k)
c )v

(k)
i +4tk−1(d

(k)
c )
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where j = 0, 1, ..., 1
χ − 1, 4t = 4t

χ is the time step for subcellular dynamics, d
(k)
c and y

(k+χ(j+1))
i are

the drug doses and the solution, respectively, at the time level k + χ(j + 1), with χ ∈ (0, 1) being
the time scaling constant. That is, for one single event in one time step 4t on the macroscopic level,
there are 1/χ events taking place on the microscopic level. This reflects the assertion of subcellular
dynamics being much faster.

Similarly, the numerical solution κ
(k+1)
i is obtained by the following implicit Euler method:

κ
(k+χ(j+1))
i =

κ
(k+χj)
i +H(y

(k+χ(j+1)− τ
4t

)

i )

1 +4tδκ
,

for j = 0, 1, ..., 1
χ − 1. Thus, the numerical scheme is completely defined.

4.3 Parameter assessment

Before performing numerical simulations, we first assess the model parameters. In the following we
consider a rectangular domain Ω = (0, 1)2, the time step for the microscopic level 4t = 0.1, and the
scaling constant χ = 0.01, along with the delay τ = 6. The parameters used for our simulations are
given in the following table:

Parameter Range Source Parameter Range Source

k̂1 = 1 fixed [17] δv = 0.1 0.5-10 [2]

k̂−1 = 0.5 fixed [17] δq = 0.5 0-50 [9]
bd = 0.1 fixed estimated ud = 0.1 fixed estimated
δκ = 2 fixed [28] M = 2 fixed [28]

µv = 0.02 5 · 10−3—2 · 10−1 estimated η2 = 2.72 1—5 [28]
Γv = 0.0315 0.03—0.045 [29] αv

βv
= 0.1Gy 0.1—1 [29]

µq = 0.5 0.5—2 [2] η1 = 1.75 1.5—3 [29]
λ0 = 0.2 fixed [29] γ0 = 0.3 fixed [29]
Γq = 0.5 fixed [29]

αq
βq

= 10Gy fixed [29]

Dc = 10−3 10−5—10−3 [2] DH = 1 10−2—1 [2]
Γm = 0.08 fixed [29] αm

βm
= 8Gy fixed [29]

T = 0.6 · 106s fixed [2] L =
√

10cm fixed [2]

Table 1: Parameters used in the model.

We assume a hyperfractionated radiotherapy with a daily dose of 2Gy, i.e. d̂r = 2. The dose of
chemotherapeutic drug is taken such that the integrin binding rate is reduced by half, while the
unbinding rate is increased twofold, i.e. d̂c = 5.

4.4 Initial conditions

We simulate the initial condition v0 of the ECM density with the help of uniformly distributed random
numbers on the interval (0, 1):

v0(x, y) ∼ U(0, 1), (x, y) ∈ Ω.
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We assume that the initial density of the migrating cancer cells m0 constitute 70% of the total initial
cancer cell density c0 := m0 + q0. The function c0 is given by the following:

c0(x, y) = exp

(
−(x− 0.5)2 + (y − 0.5)2)

2ε2

)
, (x, y) ∈ Ω,

where we took ε = 0.08. This shape of the initial (overall) cancer cell density corresponds to a very
localized tumor situated in the center of the simulation domain. Since c0 > 0 in Ω, we take the initial
condition y0 of the concentration of bound integrins on an individual cancer cell to be proportional to
the density v0 of normal tissue. Furthermore, we assume the initial condition κ0 of the contractivity
function to be proportional to v0 as well. Thus, y0 and κ0 are given by the following:

y0 = ξ1v0, κ0 = ξ2v0,

where ξ1, ξ2 ∈ (0, 1). In our simulations we used ξ1 = 0.5 and ξ2 = 0.4. The plots of c0 and v0 are
shown in Figure 1.

(a) Initial total cancer cell density c0 (b) Initial density of normal tissue v0

Fig. 1: Initial conditions for tumor cells and normal tissue

4.5 Results

In this section we present the simulation results obtained by applying the numerical method described
in the previous subsection. The treatment schedules are as follows:

• Strategy 0: No therapy. Simulation of the evolution of (2.1a)-(2.1e) for 9 weeks.

• Strategy 1: 3 weeks of neoadjuvant chemotherapy, followed by 6 weeks of concurrent chemo-
and radiotherapy.

• Strategy 2: 3 weeks of no therapy, followed by 6 weeks of radiotherapy.

All strategies, except strategy 0, are started 1 week after the diagnosis time t = 0 (we assumed one
week is needed for the therapy planning). Chemo- and radiotherapy are applied during weekdays with
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breaks during weekends. These allow the healthy tissue to recover from irradiation therapy, however
they also have a similar effect (at an even higher degree) on the neoplastic tissue.
Fig. 2 shows that the tissue is mainly degraded around the original tumor site, as expected. Fur-
thermore, the invasion into the surrounding tissue is clearly visible, whereby the cancer cells with
migrating phenotype are able to surpass the regions with lower ECM density. While the migrating
cells are able to spread into ECM-dense regions, the proliferating ones remain concentrated around
the initial tumor bed where the ECM is sparse.

Fig. 2: Strategy 0 (no therapy). Densities of the moving cells (left column), the proliferating cells
(middle column), and the normal tissue (right column) at 4 weeks (top row) and 10 weeks (bottom
row) after diagnosis.

The effect of combining chemo- and radiotherapy (strategy 1, Fig. 3) compared with irradiation only
(strategy 2, Fig. 4) can be seen in Fig. 5 (densities with strategy 2 minus strategy 1). We can observe
that combination of integrin binding inhibition with radiotherapy yields a better outcome on the
periphery of the tumor, since fewer cancer cells invaded the surrounding tissue. Moreover, the ECM
is degraded to a lesser extent on the periphery as well. Also, due to strategy 2 there is a larger pocket
of proliferating cancer cells, visible in the bottom middle plot of Fig. 5. Therefore, the combination
of such chemo- and radiotherapy seems to be helpful especially in inhibiting the cancer spread. On
the other hand, also notice that it results in higher cancer cell density around the original tumor
site, with an enhanced degradation of the peritumoral tissue. This tumor localization can, however,
be beneficial for follow-up therapies and suggests a possible reduction of the combined chemo- and
radiotherapy duration and a concentration instead at the end of the therapy on the cell kill, when it
is easier to deplete the proliferating (hence therapy respondent and rather immotile) cells.
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Fig. 3: Strategy 1. Densities of the moving cells (left column), the proliferating cells (middle column),
and the normal tissue (right column) at 4 weeks (i.e., at the end of the neoadjuvant chemotherapy,
top row) and 10 weeks (i.e., at the end of all therapy, bottom row).

Fig. 4: Strategy 2. Densities of the moving cells (left column), the proliferating cells (middle column),
and the normal tissue (right column) at 4 weeks (i.e., after no therapy, top row) and 10 weeks (i.e.,
at the end of radiotherapy, bottom row).
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Fig. 5: Difference between strategy 2 and strategy 1. Shown are differences in the densities of moving
cells (left column), proliferating cells (middle column), and normal tissue (right column), respectively,
each of them under strategy 2 minus the same densities under strategy 1, at 4 weeks (top row) and
10 weeks (bottom row). Contour lines indicate initial total cancer cell densities above 0.2.

To assess the effect of the contractivity function –which we associate with the ability of cells to change
their shape and to adapt their motion according to the local structure of the surrounding ECM1, see
also [28]– we plot in Figure 6 its values computed under each of the therapy strategies, along with the
corresponding differences, both in the middle of the 9th therapy week and at the end of it, when tissue
recovering takes place. We also show in Figure 7 differences between the densities of the two tumor
cell subpopulations and of the normal tissue in the cases with (κ = κ(y)) and without contractivity
(κ ≡ constant) under strategy 12 (bottom row), also looking at the differences between the two therapy
strategies in the absence of contractivity (top row).
When contractivity is ignored we observe a similar behavior of the cancer cell and normal tissue
densities under both therapy strategies (Figure 7, top row). However, the difference between the
two strategies is much smaller than in the case with contractivity (compare top row of Figure 7
with bottom row of Figure 5). Furthermore, Figure 6 shows that during therapy (top row) the
contractivity is reduced under strategy 1, while during the weekend breaks (bottom row) there are
only small differences between the two therapy strategies. This behavior is mainly due to the inhibition
of integrin binding by the chemotherapy. In the presence of contractivity more migrating cells are
under way in the peritumoral region; integrin inhibition will reduce contractivity and whence their
density (Fig. 7, bottom row, left). The higher contractivity seems to be beneficial for proliferating

1These effects are actually controled by the subcellular dynamics exerting (or not) a direct influence on the motility
of the cells via diffusion and taxis coefficients

2The contractivity function depends on the integrin binding and the latter is supposed to be impaired by the
chemotherapy only involved in strategy 1.
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cells almost exclusively at the original tumor site, while at distant sites the reduced (or even absent)
contractivity will induce the migrating cells to stop and proliferate (see Fig. 7, bottom row, middle).

Fig. 6: Contractivity function under strategy 1 (left column), strategy 2 (middle column) and the
difference between the two strategies, i.e. contractivity under strategy 2 - contractivity under strategy
1 (right column), in the middle (top row) and at the end (bottom row) of the nineth therapy week .

5 Discussion

In this work we considered a multiscale model for tumor invasion through the tissue network, which
takes into account the tumor heterogeneity w.r.t. migration and proliferation phenotypes and its
influence on the outcome of some therapy approaches. The latter involve chemotherapy (aiming at
inhibiting the binding of receptors on the cell surface to their insoluble ligands in the ECM) and
radiotherapy, with the purpose of depleting the neoplastic tissue. We proved the global existence of
weak solutions to the coupled PDE-ODE system by constructing an appropriate entropy functional.
To the best of our knowledge, this is the first global existence result for a haptotaxis equation which
contains nonlinear diffusion and taxis coefficients and is coupled with two macroscopic ODEs. The
problem of (global) boundedness and uniqueness of solutions remains open. This also applies to the
situation with degenerate diffusion or even to the nondegenerate case where, however, the solution-
dependent diffusion coefficient does not satisfy the uniform positivity assumption required in Section 3.
While some results about PDE-ODE systems with degenerate diffusion have recently become available
for pure macroscopic models of tumor invasion with haptotaxis [41, 45, 46], by our knowledge there
are no corresponding references for multiscale models with or without splitting into two or more
subpopulations. These issues are still to be investigated.
The numerical simulations in Section 4 show that the model predicts -under biologically reasonable
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Fig. 7: Top row: difference between strategy 2 and strategy 1 in the absence of contractivity. Bottom
row: difference between the cases with and without contractivity, both under strategy 1. Shown are
the densities of moving cells (left column), proliferating cells (middle column), and normal tissue (right
column), all at 10 weeks. Contour lines indicate initial total cancer cell densities above 0.2

parameter choices- the expected behavior: irregular patterns of tumor spread with new foci due
not only to the migrating cells, but also to the proliferating ones, as consequence of the dynamic
switch between the two subpopulations; the more localized and close-to-tumor development of the
proliferating cells, along with the corresponding degradation of the host tissue. Concerning the two
therapy strategies, the neo-adjuvant chemotherapy followed by concurrent chemo- and radiotherapy
seems to be more effective than radiotherapy alone. This also applies to chemotherapy alone (results
not shown), as the latter is not directly aimed at cell kill. These findings are in accordance with clinical
experience [36, 34]. The multiscality of our model makes it particularly adequate to investigate the
effects of a chemical agent impairing the receptor binding ability on the overall response of the tumor,
thereby also opening the way to enhance the prediction of the neoplastic lesion extent into the tissue.
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