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Abstract— In this paper, we show the feasibility of low supply 

voltage for SRAM (Static Random Access Memory) by adding 

error correction coding (ECC). In SRAM, the memory matrix 

needs to be powered for data retentive standby operation, 

resulting in standby leakage current. Particularly for low duty-

cycle systems, the energy consumed due to standby leakage 

current can become significant. Lowering the supply voltage 

(VDD) during standby mode to below the specified data retention 

voltage (DRV) helps decrease the leakage current. At these VDD 

levels errors start to appear, which we can remedy by adding 

ECC. We show in this paper that addition of a simple single 

error correcting (SEC) ECC enables us to decrease the leakage 

current by 45% and leakage power by 72%. We verify this on a 

large set of commercially available standard 40nm SRAMs. 

Keywords— Low leakage; SRAM; Data retention voltage 

(DRV); Error correcting coding (ECC); Hamming code; SECDED 

I. INTRODUCTION 

A new class of smaller, cheaper computers is developed 

approximately every decade. This trend was identified by 

Gordon Bell, and it is referred to as Bell’s Law [1]. This trend 

is continued with current millimeter-scale computer systems 

for ubiquitous applications in domains such as Internet-of-

things (IoT), wearable computing, smart home and office 

environments, smart grid solutions, and personal identification 

products. Low power design solutions are at the heart of this 

evolution to improve form-factor, design costs and battery life. 

It is important to realize that for these (low duty-cycle) 

applications, energy consumption in static modes (leakage) 

with data retention is often equally or more important than 

dynamic energy consumption [2]. 
A common method of decreasing (static and dynamic) 

power consumption is supply voltage (VDD) scaling [3]. 
Although VDD scaling is an effective method to decrease 
power consumption in digital logic, possibility for VDD 
scaling on memory (SRAM) is limited. With CMOS 
technology scaling (especially 90nm and beyond), the problem 
gets worse due to increased leakages and limited voltage 
reduction in SRAM compared to logic [4][5]. For example, 
moving from 90nm to 45nm technology, SRAM supply 
voltage is scaled from 1.2V to 1.1V only. It is also observed 
that the relative contribution of leakage energy due to on-chip 
memory is increasing due to increased amount of memory 
content [6]. This causes the standby leakage of SRAM memory 

to become a major bottleneck for ultra-low power data 
retentive standby operation.  

In standby mode, the bit cell matrix needs to remain 
powered for data retention and peripheral circuitry can be 
powered-off [7]. Consequently, the bit cell matrix is 
responsible for leakage during the standby operation. During 
standby operation, the supply voltage of SRAM memory cells 
can be decreased while ensuring data-retention. This critical 
voltage level for reliable data retention is called data-retention 
voltage (DRV). Typically, leakage current value grows 
exponentially with the VDD value during retention [8]. There 
has been extensive research on design techniques that attempt 
to decrease standby leakage for SRAM memory. In general, the 
approaches can be categorized into three groups: 

A) Bit cell design optimizations such as design of different 

6T cells or cells with more transistors [7], selective power 

gating[9], simultaneous dynamic voltage scaling and 

adaptive body biasing[10]. These approaches require a 

redesign of the memory cell. Observe that SRAM bit cell 

design cycle is quite long due to relatively large amounts 

of testing and validation data assessment. Therefore, 

many SOC design companies are relying on the bit cells 

supplied by the memory vendors (especially for advanced 

technology nodes) and SOC designers cannot do any 

more optimization on bit cell themselves. Furthermore, in 

general approaches with more transistors are costlier in 

silicon area. 

B) Memory architecture optimization e.g. in [11], SRAM 

capacity is reduced at lower voltage by masking the error 

bits. However, memory requirements in applications are 

fixed and cannot be reduced generally. In [12], error bits 

are mapped to additional redundant bits. This makes the 

address decoding logic exceedingly complex. Overall, 

such techniques are very intrusive to overall system 

design which make them difficult to deploy. 

C) Error correction coding (ECC) for SRAM has been 

proposed in recent years for decreasing SRAM power 

[13][14]. This approach is based on observing that as 

VDD gets lower, leakage power decreases and number of 

error bits gradually start increasing during retention. The 

proposed method  uses error correction coding (ECC) to 

eliminate these error bits. Mostly single error correcting 

codes like hamming codes have been used for this aim. In 

general, deploying ECC is relatively straightforward and 
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can be invisible to the rest of the system, provided that the 

system requirements (e.g., speed, area etc.) can be met. 

Moreover, ECC techniques are already industrially 

accepted to improve the reliability [15]. 

      Various published approaches in B) and C) rely on adding 

limited redundant bits in the SRAMs to overcome the bit-

errors due to standby mode voltage reductions. However, 

theoretical analysis to determine the relationship between the 

amounts of redundancy needed for a corresponding supply 

voltage scaling is missing. It must also be noted that adding 

redundancy comes at a cost (area, dynamic power, speed), 

which should be evaluated at system level. To the best of our 

knowledge, system level evaluation of incorporating ECC 

based SRAM is not covered in the literature. Moreover, the 

conclusions in past publications have not been based on 

statistically significant sets of measurements to reach the bit 

error probability (BER) levels targeted for reliable memory 

operation. These limitations restrict the adoption of above 

techniques for industrial purposes. In this paper, we aim to 

overcome the above limitations. The theoretical analysis is 

demonstrated for approach C), but can easily be extended for 

approach B). 

      In section II, we introduce the architectural constraints, 

tradeoffs with respect to the choice of ECC and the conditions 

for applicability of ECC to a particular SRAM memory which 

should be considered before deploying ECC. In section III, we 

derive the empirical relationship between SRAM BER with 

and without ECC. Here, we will also discuss how to correlate 

the above with the voltage scaling limit for SRAM. The above 

theoretical analysis is used and verified on 40nm testchip in 

section IV. Here, statistically sufficient measurements results 

for SRAM BER at low voltages are shown. These 

measurements verify that the application of simple single error 

correcting (SEC) ECC can result in significant power savings 

in standby mode. In section V, we present synthesis and power 

analysis results on an ECC design and analyze the added 

overhead in power and area due to addition of ECC and 

discuss the tradeoffs for low duty-cycle systems, and finally in 

section VI, we present the conclusions of our work. 

II. ARCHITECTURAL CONSTRAINTS 

      In this section, we begin by introducing the system level 

constraints and voltage scaling constraints for using ECC 

based SRAM in the design. These constraints are applied to 

evaluate the system performance using ECC in the following 

sections. 

A. System Design Limitations 

ECC is widely applied to semiconductor memories to 

prevent errors in memory [16][17]. Although the most 

common use is in DRAM and flash memories, some SRAM 

memories also include an ECC option, to prevent soft or 

lifetime errors on the operation [15][18]. However, system 

level design trade-offs should be accounted for the feasibility 

of ECC. Clearly, adding ECC increases the amount of 

memory (coding adds redundancy bits) and logic (for 

encoding and decoding). This results in additioal area. 

Furthermore, such a system requires that during normal 

operation, data is to be ECC-encoded before writing to SRAM 

and ECC-decoded after reading from SRAM. This will 

increase the data access time to SRAM, i.e. speed and latency 

will be negatively impacted. As ECC will become part of an 

embedded memory subsystem, the system clock and memory 

access time will limit the latency the encoding and decoding 

circuit is allowed to have. To give an example, a system with 

50 MHz (20ns clock period) is quite common for low-duty 

cycle applications. If we assume that the data access time of 

SRAM accounts for about 40% of timing critical path, i.e. 8ns, 

the ECC encoder/decoder needs to have a latency that is 

relatively shorter, if it is to be hidden in the access cycle. For 

this reason, we try to limit our analysis to very simple ECC 

that has 1-2ns of latency. Moreover, due to wider SRAM 

wordsize and ECC (Encoder, Decoder) requires additional 

dynamic power. These costs must be evaluated with the 

benefit of static power decrease that will be achieved  by 

adding ECC. This trade-off is especially relevant for low duty-

cycle systems that are limited by static energy use. These are 

the systems we are targeting in this work. 

B. ECC Trade-offs and Voltage Scaling Constraints 

In general, area and latency overhead of different ECC 

types have been investigated by others, e.g. in [19]. In our 

work, we do not wish to repeat this analysis but instead choose 

directly for SEC Hamming codes because of their simplicity 

and low costs. It is clear that our stringent area and latency 

overhead requirements (as explained previously) will not be 

possible to satisfy with a higher complexity code [19]. We 

will elaborate further on the overhead of ECC in section V. 

Before moving further let us quickly revise the basics of 

Hamming code. 

Hamming codes are linear block codes denoted by (n, k) 

where k is the number of data bits and n is the total code word 

length [20]. For each integer r, an (n, k) Hamming code word 

can be constructed where n=2r-1 and k=n-r. The code rate 

becomes k/n. Such a code corrects one error per code word, 

i.e. 1 error per n (encoded) bits, also called a SEC code. It 

follows that in the original Hamming code word, data size is 

always n-k = 2r-1-r bits, e.g. the codes become (15, 11), (31, 

26), (63, 57), (127,120), etc. In practice, the codes are often 

shortened according to the data size required, such as (38, 32) 

SEC code for a 32-bit word size. Furthermore, an additional 

parity bit is often added to enable the detection (but not 

correction) of double errors, called single error correcting 

double error detecting (SECDED) code. 

In order to use Hamming codes we need to first establish 

the conditions for this to be feasible. For this, we can translate 

number of error bits during retention into BER for SRAM. 

First condition is that the BER at retention changes gradually 

with the standby VDD. This is illustrated by hypothetical BER 

vs VDD graphs as shown in Figure 1. Full lines represent raw 

BER and dashed lines represent BER when coding is applied. 

It can be seen that the slope of the graph determines how 

effective ECC can be applied to lower the VDD. Note that in 
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both cases the BER ‘drop’ the ECC enables is roughly the 

same, although the VDD advantage is significantly higher in 

 
Figure 1  Sharp (left) Vs gradual (right) decrease of raw 

BER with increased VDD. 

Figure 2 SECDED example for error distribution impact: 

(a) possible to correct errors (b) not possible to correct  

 

the gradually decreasing case at the right.  

Another important condition is the distribution of errors in 
the memory. This is shown in the example in Figure 2.When 
multiple errors occur in one code word, a SEC code cannot 
correct them. Having a SECDED code makes possible to detect 
the two error case, and the (rare) case of triple error will result 
in mis-correction. So even if the number of occurring errors is 
similar, depending on the distribution it can be possible or not 
to correct them with a SEC/SECDED code. 

III. THEORETICAL ANALYSIS: ECC FOR LOW VOLTAGE SRAM 

In this section, we present the theoretical analysis needed to 
derive the impact of ECC on SRAM BER. This helps us in 
determining the voltage scaling limits to enable low voltage 
standby mode for SRAM. 

A. ECC impact on SRAM BER 

We begin by assuming the SRAM bit cell error likelihood 
to be equal at all cell locations and independent of neighboring 
errors (in the coming sections, we shall show by means of 
measurement results that these assumptions hold for the SRAM 
memory we target). Let the memory in question have  bits in 
total, whereby each bit has an error probability, , i.e., uncoded 
(raw) BER= . Yield is defined by the probability of having no 
errors in the complete memory: 

                        (1) 

Figure 3 illustrates the relationship given in (1). In this 
work, we are targeting a 16kB SRAM memory design with 32-
bit words and 4096 lines. Accordingly, we need a BER of 10-9 
assuming we need to reach a 99.99% yield. Addition of ECC to 

correct the errors in the memory matrix changes the BER. In 
this case we talk about coded BER for a given . 

 

Figure 3 Memory cell bit error rate (BER) for different 

memory sizes and memory yield. 
    

Let’s derive analytically the relationship between the two 
for a single error correction per word code. For this, we define 
WER (word error rate), which is the probability of having one 
or more error bits per memory word. Assuming each memory 
word is m bits, the raw WER can be obtained as  

                              mpWER )1(1             (2)  

If we introduce redundancy of n bits per word, then the 
probability of having exactly f errors in an m-bits word (with n 
bits parity)  

)(

_____ )1()( fnmfnm

fbitsmofouterrorsf ppP               (3) 

   Therefore, for a single error correcting code (f=1) for each 
memory word of size m, the coded WER and BER can by 
calculated as 

  1)1()()1(1   nmnm

coded ppnmpWER    (4) 

           













 nm

WER

coded

coded

BER

)1log(

101           (5) 

It should be noted that when the independence assumption 
holds, the likelihood of multiple errors per memory word 
decreases fast with decreasing . For example, for m=32, n=0 
and =10-6, the probability of one error per word becomes 3.2 
x 10-5 while having two errors per word is as low as 5 x 10-10. 
In other words, if the raw BER is moderately low and the equal 
likelihood and independence assumptions hold, then the 
likelihood of burst errors is very low. From the above analysis, 
we can determine the error correction requirements to fulfill 
the desired yield. In Figure 4, the tradeoff between the error 
correction performance versus code word size and memory 
overhead ((n-r)/r) for a SEC code is plotted for several raw 
BER values. The memory overhead and the corresponding 
code word size are shown on the left and right axes. By using 
above,  we can link between  the raw and coded BER for a 
given word size requirement. It can be seen here that the target 
BER of <10-9 can be reached from a raw BER of 10-5 for 
codeword size of 63 bits.  This corresponds to  the shortened 
code (38,32), which we can use for our system of interest.
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Figure 4 Memory overhead vs BER correction for single error correcting (SEC) Hamming codes. 

 

B. Voltage scaling limits for ECC Deployment 

     Next step is to determine the voltage scaling limits for ECC 
deployment. This can be done by the mapping of raw BER into 
the voltage scaling curves to determine the allowed VDD in the 
system during standby. Our calculations from previous 
subsection lead us to expect that starting from a moderately 
low raw BER, a single error correcting code can help 
significantly in lowering the BER to the target value. The 
corresponding VDD will be the voltage scaling limit for 
SRAM. In section IV, we will show with measurement results 
that this indeed is the case for the SRAM standby errors. 

IV. MEASUREMENT RESULTS 

    In this section, we present the measurement results for 

40nm SRAM bit cell data retention performance as a function 

of VDD. Our test chip is realized in commercially available 

standard 40nm CMOS process. It contains multiple instants of 

16kB SRAM arranged in 4096 words of 32 bits each and 

measurement board is shown in Figure 5. The standard 

specifications for such memories suggest 0.8V minimum 

voltage during standby. To perform measurements, we first 

load the desired data into the SRAM at nominal voltage. After 

that, the clock to the memory is stopped (i.e. standby mode), 

then we lower the SRAM supply voltage and wait for 1s.  

 

Figure 5 40nm test chip and board setup used for 

measurements to determine BER vs standby VDD. 

Next, we raise the voltage again to nominal value and read the 

contents of the memory. Comparing the readout data and 

original data provides us an error map of the SRAM for data 

retention at low voltage. After this, SRAM data is refreshed. 

The same procedure is carried out repeatedly for various 

voltage settings. Moreover, this testing is carried out on 

multiple datasets: all 0s, all 1s, alternate 1010s, alternate 

0101s and all random bits. The tests are carried out on 21 

different samples. In total, 14-Mbit of SRAM was measured at 

room temperature and SRAM supply was lowered in steps 

down to 275mV. On the measured data, the two main 

conditions from the previous section are verified next.    
Figure 6 shows the measured BER as a function of supply 

voltage during data retention. Note that there is no sudden drop 
in the BER curve, which is, as discussed earlier and depicted in 
Figure 1, encouraging for the potential drop in VDD using 
ECC. Furthermore, as shown in Figure 4, a BER of 10-5-10-6 is 
sufficient to reach the target BER of 10-9 using ECC assuming 
equally likely and independent errors. This means that ECC 
can allow us keeping the SRAM at 400mV during standby 
mode for data retention. Also, observe that the total amount of 
tested bits provide sufficient confidence for this conclusion.  

We still need to confirm the equal likelihood and 

independence assumptions we made in section II. To this end, 

we analyzed the cumulative bit error map plotted in Figure 7. 

Here the 32x4096 bit memory is shown wrapped into a matrix 

of size 256x512. In this matrix, the cumulative number of 

errors (from 0.8V to 0.4V) from different memory instants and 

samples are noted. An extensive analysis of the bit errors has 

shown that no burst errors are visible above a supply voltage 

of 375mV. Below 325mV, we start seeing a few double errors. 

This is however expected as likelihood of two errors per word 

becomes high (around 10-4) at the BER (10-3) at this voltage, 

as can be calculated from equation (3). Above 400mV this 

probability becomes much lower (~ 10-8 due to BER=10-5). To 

sum up, it can be seen that burst errors are not likely in the 

measured memories and the error likelihood seems in 

accordance with the equal likelihood and independence  
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Figure 6 Bit error rate (BER) vs standby VDD (measured 

data). Graph above shows sample points as measured and 

the graph below depicts the average BER. 

 

conditions of section II. By zooming into different areas, 

examples of the random behavior discussed above can be 

seen. From these measurements, we conclude that data 

retention requirements during standby mode can be met for 

SRAM supply voltage of 0.4V and above in these SRAM 

memories. Similar results have been measured for different 

temperatures from -40C to 85C. This concludes that a SEC 

scheme can be deployed to facilitate the SRAM standby mode 

voltages from 0.8V to 0.4V. 

V. SYSTEM VIEW FOR SRAM WITH ECC 

      After noting the feasibility of ECC during standby mode, 

let us evaluate the ECC deployment cost and benefits in the 

overall system (as described in qualitatively in section II). To 

quantify all this, we look into the hardware cost of ECC for an 

SRAM module of 4k words of 32 bit each in commercially 

available 40nm CMOS process. Such an SRAM has a speed of 

approximately 130 MHz in slow corner, 0.99V VDD, -40C. It 

requires an area of 64000µm2 and consumes 11µA/MHz for 

its read/write operations in dynamic mode. We use for our 

analysis here a (39, 32) SECDED design consisting of encoder 

and decoder units. Our synthesis results indicate that 

SECDED design (39, 32) requires 580 µm2 logic cell area 

with delay-time of 1.6ns at optimal performance-per-area  

 
Figure 7 Cumulative bit error map for 0.4V to 0.8V VDD 

illustrating the absence of burst errors 
 
(PPA) [2]. For encoding and decoding, power consumption is 
0.3µA/MHz and 2.2µA/MHz respectively. Assuming an equal 
amount of read and write to the SRAM, the ECC block will 
consume 1.25µA/MHz  Additionally, we will now require 39 
bits 4k word SRAM in order to accommodate the 7 parity bits 
(note that the use of SEC will decrease this overhead. 
However, at low voltages double error detection starts to be 
required. In this case, the SRAM area becomes 74000µm2 and 
dynamic power consumptions increases to 13µA/MHz power 
at 130MHz throughput. This means that our example SRAM 
memory will have 20% speed, 15% area and 29% dynamic 
power overhead. By reducing the SRAM voltage from 0.8V to 
0.4V during standby mode, a leakage current drop of 45% and 
a power consumption drop of 72% is achieved under typical 
process and temperature conditions. These figures include the 
overhead of increased memory due to additional parity bits in 
SRAM due to ECC unit. In Table 1, these numbers are 
summarized in normalized form. Note that in the standby mode 
no data access to SRAM is allowed (hence, retention only), 
while in dynamic mode data access is allowed. For overall 
system energy budgeting, one must carefully analyze the 
impact of ECC in standby and dynamic operating mode. 

Table 1 : Comparison overview (normalized) 

Mode Parameter 

Existing 
approach 

Proposed approach 

SRAM SRAM 
ECC 

Encoder & 
Decoder 

Overall 
impact 

  Area 1 1.15x ~0 1.15x 

Standby 

Min. VDD 1 0.5x 0 0.5x 

Current 1 0.55x 0 0.55x 

Power 1 0.28x 0 0.28x 

Dynamic 
(Read 

/Write) 

VDD 1 1x 1x 1x 

Current 1 1.18x 0.114x 1.29x 

Power 1 1.18x 0.114x 1.29x 

Latency 1 1x 0.2x 1.2x 
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     Typically, in an overall microcontroller system where 
SRAM consumes about 20-30% of total power [21], one will 
have about 5-9% dynamic power overhead due to ECC in 
SRAM (refer to Table 1). However, during standby mode 
operation a large portion of energy consumption comes from 
the SRAM leakage. Standard microcontroller datasheet 
indicates 15-99% standby mode leakage contribution from 
SRAMs depending on the data retention requirements [22]. For 
various low duty cycle applications [23][24] where standby 
mode leakage power is more dominant for overall energy 
budgeting and battery lifetime, the overhead in the dynamic 
mode can be accommodated due to significantly lower energy 
during standby mode.  On the other hand, if energy costs in 
dynamic mode dominates, the ECC deployment is not 
advisable. This correlation can be used to quantify the duty-
cycle beyond which ECC should be activated in a system. It 
must also be noted that the area overhead due to ECC encoder 
and decoder logic is not of primary interest, as the simplicity of 
Hamming codes and the shrinking CMOS feature sizes enable 
the ECC area overhead to become insignificant. 

VI. CONCLUSIONS 

We have demonstrated the feasibility of ECC for reducing 

the standby leakage current of SRAM memories. Using both 

theoretical analysis and large set of memory error test 

measurements, we have shown that ECC based SRAM can be 

used to retain data until significantly lower voltages than 

standard SRAM specifications (shown here for 0.8V to 0.4V 

standby VDD drop for 4kx32 SRAM). This can provide 

substantial (up to 45%) decrease in standby leakage current 

for SRAM memories in commercially available standard 

40nm CMOS process. The scaling down of voltage results in 

72% decrease in leakage power for SRAM. This has shown to 

be practically feasible with a single error correcting code.  

There is no change to the memory instance interface to the 

system, which enables straightforward integration to a SoC. 

The additional processing due to ECC encoding and decoding 

result in power consumption overhead in dynamic mode. We 

have shown that the power overhead for one ECC unit per 

memory instance of 4kx32 bits can result in 27% increase in 

dynamic power consumption for SRAM. However, the 

overhead is 5-8% for the overall system. In terms of latency, 

using a simple SEC encoder/decoder enables relatively low 

latency. For this design, it is around 1.6ns, however, with 

appropriate optimization it can be decreased further.  

To sum up, we have shown that addition of simple SEC 

ECC can help decrease the standby power in SRAM memories 

significantly, e.g. 70% in the presented system. The addition 

of ECC has minimum impact in the memory access latency 

and the integration is straightforward. Increase in system area 

and dynamic power are relatively small 
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