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Abstract

For the large-scale simulation of granular material, the Nonsmooth Contact Dy-
namics Method (NSCD) is examined. First, the equations of motion of nons-
mooth mechanical systems are introduced and classified as a differential varia-
tional inequality that has a structure similar to Differential-Algebraic Equations
(DAEs). Using a Galerkin projection in time, we derive nonsmooth extensions of
the SHAKE and RATTLE schemes. A matrix—free Interior Point Method (IPM)
is used for the complementarity problems that need to be solved in each time
step. We demonstrate that in this way, the NSCD approach yields highly accurate
results and is competitive compared to the Discrete Element Method (DEM).
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1. Introduction

Granular material such as powders, pellets, sand and gravel are present in
numerous engineering applications. The main loads acting on an excavator
or wheel loader, for instance, result from the interaction of the shovel with
the ground. A simulation framework to predict these loads is a desirable
tool but still represents a great challenge today. Currently, two methods
are mainly used: the classical Discrete Element Method (DEM) [1] and Non-
Smooth Contact Dynamics (NSCD) [2, 3]. The DEM has shown its potential
to deliver loads — the so-called draft forces — that are in agreement with
experimental data [4]. But a simulation of a few seconds may take up days
to weeks of computing time. On the other hand, NSCD provides a class of
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methods that are substantially faster and more stable [5], but due to their
low accuracy, they fail to reproduce realistic draft forces.

In NSCD a large complementarity problem must be solved in every time
step. The survey [6] demonstrates that NSCD, used in combination with the
Projected Gauf§ Jacobi (PGJ) method to solve the complementarity prob-
lems, delivers visually pleasing results in very short computing time. Yet
it requires many PGJ iterations to achieve an accurate force result from a
digging scenario. In fact, it turns out that PGJ is by orders of magnitude
slower than DEM in this case.

This shortcoming of NSCD implies two tasks. The first task is to analyze
the mathematical model behind NSCD, and the second one is to replace the
PGJ method by a more accurate solver for the complementarity problems.
We present a concise and mathematically sound problem formulation that is
a generalization of the Differential Algebraic Equations (DAEs) in multibody
dynamics [7]. The constraint forces turn here into Lagrangian multipliers in
the form of differential measures. In addition, we discretize the equations in
time as extensions of the well-known SHAKE and RATTLE integrators [8].

The main obstacle is then to solve the large-scale complementarity prob-
lems accurately and reasonably fast in each time step, which replaces New-
ton’s method in smooth multibody dynamics. Noteworthy contributions
in this direction are [9], where the authors employ a semi-smooth Newton
method; [10] where the authors consider quadratic programming and Interior
Point Methods (IPM) for linear complementarity problems; [5] where Krylov
subspace methods are generalized for the solution of variational inequalities;
and finally, the PhD thesis [11], which compares active—set strategies, accel-
erated gradient—descent methods and IPMs. We propose the use of a conical
IPM. It exploits the Jordan—algebraic structure of R® and the symmetric
cones associated with Jordan algebras to tackle a large number of frictional
contacts. By combination with a conjugate gradient method and tailored
preconditioning, the IPM becomes matrix-free and remarkably efficient.

This contribution continues the work [12] and the thesis [13]. For brevi-
tiy, basic concepts such as Jordan algebras and Lebesgue—Stieltjes measures
are not included but can be found in [13]. In Sect. 2, the equations of
motion for nonsmooth mechanical systems subject to inequality constraints
are discussed while Sect. 3 shows that a Petrov—Galerkin discretization in
time yields nonsmooth pendants of the well-known SHAKFE and RATTLE
schemes. Sect. 4 contains a brief description of the IPM that is in each time
step, and numerical results are presented in Sect. 5.
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Figure 1: Position, velocity and acceleration of a bouncing ball

2. Nonsmooth Mechanical Systems

The equations of motion for a constrained mechanical system are usually
written as a DAE [7]

M(q)q = f(q,q,t) — G(q,t)" A,

0 = g(q,t). o

Here, q(t) denotes the position of the system, M(q) is the mass matrix,
f(q,q,t) are force terms, g(q,t) are the constraints acting on the system,
G(q,t) is the constraint Jacobian and A(¢) are the Lagrangian multipliers
associated to the constraints. If the Delassus matrix

N = G(q,t)M(q)G(q, )"
is invertible, it holds
qECz([to,tl]) and )\ECO([to,tﬂ).

Moreover, (1) is then a DAE of index 3.

The presence of contact dynamics, however, involves a loss of regularity
for all unknowns in (1). The example of a bouncing ball illustrates this, see
Figure 1. A perfectly rigid ball accelerates under gravity towards the ground.
At the time of impact, the ball’s velocity must change instantaneously from
a negative value v~ to a positive value —e - v~, where e is the coefficient
of restitution. Thus, the position of the ball cannot be in C? ([to,?;]). In



fact it is not even in C!, hence the term nonsmooth. As a consequence,
such nonsmooth systems cannot be formulated as a DAE anymore. Instead,
a weak form based on Differential Variational Inclusions (DVI) is required
where only the net motion within any time interval is described.

Consider a mechanical system consisting of m rigid bodies with six degrees
of freedom each. Let the position of every rigid body be described by an
absolutely continuous function in time, i.e. q € AC™"([to,t1]). Let v = q
denote the velocity of the system and M(q) € AC*™*"([t;,t,]) the mass
matrix. The Lagrangian function

1
L(q7 V) = T(qv V) - V(q) = §VTM(q)V - V(Q), (2)
is the difference of kinetic energy T'(q, v) and potential energy V(q).
Leaving inequality constraints aside, a nonsmooth version of the Euler-
Lagrange equations can be derived from Hamilton’s principle of stationary
action, see [13]. It reads

t1 oL t1 oL 5
[o@)e-Lor(2) wermn o
to to

Here, d (OL/0v) is the Lebesque—Stieltjes measure of the function of bounded
variation p = 0L/0v. The measure can be identified with the distributional
derivative of p. It is not possible to derive the classical Euler Lagrange Equa-
tions if the momentum p is not a differentiable function in time everywhere.
A short notation for Equation (3) is given by

oL oL
o(2) %

A convenient way to deal with inequality constraints is via conical in-
clusions. A subset K € RY is called a convex cone if for all o, 3 > 0 and
x,y € K it holds

ax+ Py € K.

To motivate the use of conical inclusions, consider the following examples.
(i) In every vector space the set K = {0} is a convex cone and it holds

glq,t) e K & g(q,t)=0.



Therefore, equality constraints can be written as a conical inclusion.
(i1) For K =R, C R it holds

g(q,t) e K & g(q,t) > 0.

Inequality constraints can hence be written as conical inclusions.
(#i) The Coulomb Friction cone

Ku:{ [i:}GRxRQ

> [ }

with frictional coefficient p is a convex cone. In general, friction cannot
be interpreted as a constraint, but it is possible to approximate Coulomb
friction using a conical constraint within short intervals [t,¢ + €], see [13,
Section 4.2.2]. This model is based on the constraint

a(qt) = {¢n+ufHW¢Mdt}EKL

N
where
K = M ERXR | > ulvell b, p= n | cR xR
a Uy o [oN

are the dual cone of K, and the normal and tangential contact displacement
of two bodies, respectively. This approximation extends the Coulomb friction
model of DeSaxcé and Feng [14]. In [13] it is shown that the introduced error
is small in low order time integration methods. The great benefit is that
friction can be treated together with other constraints in a unified framework.

Theorem 1. Let K C RY be a convex cone. Assume the following assump-
tions hold.

(a) S AC6m([t0, tl])

(b) g: R x [tg,t1] — RY is a continuously differentiable function.
(c) glq(t),t) € K for allt € [to, t1].

(d) It holds for every t € [to,t1]

im G(q(t), 1) — Kgqn.) = RY
where

G(q(t%t) = %S)’t) c RNV x6m



18 the constraint Jacobian and

Kg(qt)t) = K + span (g(q(t),t)).

Then there ezists a Lebesque—Stieltjes measure dX with dAX(I) € K* for all
subintervals I C [to,t1] such that

b OL t oL t
Td(-)::/ T(—)<h+/n TG(q,t)T dX 4
Z;w . t0¢ % tow (a,) (4)

for all p € AC*™([ty,t1]) and

t1
0= [ ela®). 0 ax 9
0

For the proof we refer to [13, Theorems 3.1 and 3.2]. The measure dA
is the equivalent of a Lagrangian multiplier. It can be identified with the
reaction force associated to the constraint. Moreover, (4) is a Measure Dif-
ferential Equation (MDE) and (5) a Cone Complementarity Problem (CCP),
yielding in total a Differential Variational Inequality (DVI) [15]. A compact
notation for (4) and (5) reads

oL\ 0L .

K>g(qt) L dxeK*

Finally, by inserting (2) and using f(q, v,t) := =VV(q) — %Val\gflq)v, one

obtains the equations of motion

M(q)dv = f(q,v,t)dt + G(q,t)" dX (6a)
K>glqt) L dieKk* (6b)

Since g is a continuously differentiable function and q is absolutely contin-
uous, the function g(q(+), ) is an absolutely continuous function. According
to Theorem 1 the Lagrangian multipliers are from the dual space of abso-
lutely continuous functions. The dual space of absolutely continuous func-
tions consists of signed Radon measures, i.e., distributions [16, 17]. Therefore
impulsive forces are automatically included in this formulation simply due to
the assumption of absolute continuity of positions.
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The complementarity conditions frequently encountered when dealing
with nonsmooth mechanical systems are a direct corollary from Theorem 1.
Consider the case, where all constraints are inequality constraints, i.e. the
cone K is the positive orthant K = Rf . It holds K* = K, and therefore
the reaction forces must be positive. The complementarity in (5) means that
if one component of g(q,t) is positive in a time interval, the corresponding
component in dA must be zero and vice versa.

Finally, for equality constraints, i.e. K = {0}, it holds K* = R" and the
complementarity condition (5) reduces to g(q,t) = 0. If q is continuously
differentiable and v is absolutely continuous, it holds dv = vdt = qdt and
the DAE (1) can be derived from the DVI (6) by using the fundamental
lemma of the calculus of variations. In this sense, (6) is a generalization of
(1) that is able to deal with nonsmooth impacts and inequality constraints.

3. Time Discretizaton

Clearly, Taylor expansion of q(t + At) and v(t + At) is inappropriate
for deriving numerical methods in the nonsmooth case. The DVI (6) is a
variational formulation in a function space setting and resembles the weak
form of a partial differential equation where the spacial descretization is
achieved by the Galerkin projection. A similar approach is used here in
time rather than space, based on [18]. As starting point, consider a one
dimensional problem where ¢ : [to,t1] — R is absolutely continuous and
v =q: [to,t;] — R of bounded variation. The MDE (6a) then reads

t1 t1 t1
/ oM (q)dv = / of dt + / #G(q, )" dX\ for all ¢ € Dy, (7)
to

to to

where
Dy ={ q € AC[ty,t1] | ¢ € SBV(ty,t1) and q(to) = q(t1) =0 }

and A\, v € SBV(ty,t1). The function space SBV (t, ;) denotes the space of
functions of bounded variation without a Cantor part, see [13] for details. The
idea is to satisfy (7) in finite dimensional subspaces of Dy and SBV (¢, t1).

Let {[t;,ti+1],0 < @ < s} be a partition of [ty,¢;] and assume, for sim-
plicity, that the step size h; = t;41 — t; is constant, i.e. h := hy = h; for
all j,k € {0,...,s}. An intuitive choice for a finite dimensional subspace of
Dy C AC[ty, t1] is the set of continuous, piecewise linear functions

A={ ¢ €Dy continuous, piecewise linear in [t;, t;41] } C Do.

7
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(a) The basis function ¢'(t) of the (b) The basis function 7 (¢) of the
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Figure 2: Basis functions for finite dimensional subspaces of D, and
SBV|to, 1)

A basis for A is given by By = { '€ A, i=1,..,5s }, where the ¢'s
are hat—functions,
‘ (t—t;)/h if t € [t;_1, L],
Q' (t)=q (tipa —1)/h ift € [t tia],
0 else,

see Fig. 2(a). The specific choice for a basis is arbitrary, but it makes sense
to choose functions that are easy to integrate and have small support. A
simple finite dimensional subspace of SBV[to,t;) is the space of piecewise
constant functions. These functions are allowed to have jumps at the interval
boundaries. Consider the space

B ={ 1 € SBV]ty,t1) piecewise constant in [t;,t;11) } C SBV][to,t1)

with basis .
Bg={ ¢ €B, j=0,.,s }.

The basis functions are given by

W (t) :{ (1) Slste,e et ®

see Figure 2(b).
We can write v, A € B as a linear combination of functions from Bg,

v = zs:vjl/)j and A= i/_\jgbj
j=0 Jj=0
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with coefficients v/, M) € R. By construction, o’ corresponds to constant
velocity in the interval [t;,¢;11). The same holds for \; and A. To indicate
this, we write

S

v = Zvj“/%j and A\ = Z N2y, (9)

j=0 j=0

where v7+/2 and A+/2 denote the constant values of v and A in the interval
[t;,tj+1), respectively.
Next, introduce the abbreviation ¢’ := ¢(t;) and substitute

k' = /OT ' f dt (10)

for the force term. Usually, the external forces are known in advance, and
the integral can be evaluated using appropriate quadrature methods.

To satisfy the MDE (7) in finite dimensions, it suffices to test it against
all ¢ € Ba. Insertion of (9) and (10) into (7) yields

S

/T »'M(q)d (Z “”1/2W> =k + /T P'G(q, )" d (Z Ak“/%’“)
0 0 k=0

=0
S T S T

o St [ e -k + N [ peaTa o
=0 k=0

for all ¢* € B4. Here, the Lebesgue—Stieltjes measure of ¢/ is given by the
difference of two point measures,

| 1, iftel
dyd =6, — 61,y (1) = { 0 ellse.

Finally, by evaluating the integrals in (11) and inserting A from (9) into the
CCP 0= fOTg(q(t), t) d), one obtains the DVI in finite dimension

Mg (o2 =03 2) = B 4 Gl )", (122)
K>g(d,t)) L ek (12b)

for all j =1,...,s. Here,

,yj — N2 _ N2 ¢ Ko

9



appears as a new unknown. From a physical point of view, 4/ can is the
reaction impulse of the constraint at time ¢;. The equations of motion (12)
hold in the same way for a rigid body system with m rigid bodies in three
dimensions, i.e., for trajectories q : [0, 7] — R%™:

qj+1 — qj 4 th+1/2, (13&)
M) (/2 = Vi) =4+ G 1) (130)
K>g(d,t;)) L ~'eK" (13c¢)

The complementarity in the CCP (13c) means that the scalar product of
g(q’,t;) and 4/ must be zero.

Unfortunately, (13) yields an explicit integration method that is not of
much use. Whenever g(q’,t;) is in the interior of K, the CCP (13c) is
trivially satisfied by 4/ = 0. We can immediately evaluate (13b) to calculate
vJ*1/2 But then there is no guarantee that the constraints are satisfied at
the end of the time step, i.e., that

g(g’™, tiv1) = gla’ + ACARGS tjit1) € K.

3.1. The SHAKE Integrator

A simple way of transforming (13) into a meaningful method is by intro-
ducing some implicitness into the CCP (13c). We replace (13) by

g =g’ + vt (14a)
M(q") (V72 —vITV2) =1 + G(d 1), (14b)
Ksg(d™ ) L ~ ek (14c)

One can combine (14a) and (14b) to obtain a scheme without velocity terms
in the recursion,

o' —2¢ +¢' = (¢ —d) — (d ¢’
= h(VIT2 —yIiTl/2)

=hM(q’)™ (K + G(d, 1))

This demonstrates that (14) is exactly the SHAKE integrator for nonsmooth
mechanical systems with impact, cf. [8, Equation 6.10].
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The main task of SHAKE in each step is to solve the CCP (14c). The
reaction impulse 47 solves the nonlinear, not necessarily convex, constrained
optimization problem

min v/ g(q’ ™, tj41) (15)

such that

g(qj+1,t]’+1) E K; ’Y] E K*7
qj+1 _ qj +h [ijl/Q + M(qj)fl (kj + G(qj7tj>T7j)} : <16>

Depending on g, this problem may be very challenging and even not be
solvable at all. This is the case especially for frictional constraints. Anitescu
proposes in [19] a convexification scheme to simplify the solution. In our
work the constraint g is replaced by a linearized (and scaled) version

j It . 4 Oe(a? . t.
U_Hl e w + G(qj,tj)Vﬁl/Q + g(gta g) (17)
1 A A 1 '
~ Eg(q] +hvI T2 4 h) = Eg(q]—H)th,-l)-

Inserting (14b) into (17) yields

wt =G ) M(d)) T G(d )Ty

J t. Oo(a’. ¢, _ , , ,
Bt OBy i 1) (v 1 aa(a) )
— NIy 41
where
NI .= G(qj,tj)M(qj)’lG(qj,tj)T and (18)
, 'y Oe(al . t. A ) A A
= g(qhv i) i g(gta i) + G t)) (VJ—1/2 +M(q])_1k]). (19)

The CCP (14c) of SHAKE thus simplifies to
K>wt =N~ +# 1 ~/ e K* (20)

Note that N7 and 7/ depend only on values from the previous step. The only
remaining unknown is the reaction impulse 4?. We also observe that the De-
lassus matrix N/ is symmetric and positive semi-definite. For the simulation
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of granular material, it is, however, almost certainly rank—deficient. The nu-
merical method used to solve the CCP should be able to cope with this. The
conical constraints u/*! € K now appear as regularized, velocity-based con-
straints, and the resulting complementarity problem is, in fact, very similar
to the convexified problem in [19].

3.2. An Eaxtension of RATTLE

One downside of SHAKFE in case of impacts is that the reaction impulses
~7 might not converge as the step size tends to zero. This is an issue when
reaction forces are of interest since 47 is the integral of all reaction forces over
one time step. The problem of nonconvergence can easily be demonstrated
with a one-dimensional example of a point mass ¢ subject to no external
forces moving towards the ground. The ground is modeled via the constraint
q > 0. This constraint corresponds to a completely inelastic impact law.
Assume that it holds ¢(¢;) > 0 and the point mass would impact the ground
in continuous time at t. € [t;,t;+1]. Then (14) yields a reaction impulse 4/
and a velocity v/1/2 such that

q(tje1) = q(ty) + 12 = 0.
But because ¢(t;) > 0 it holds
u(ty) = V2 <,

i.e., the point mass has impacted with the ground but still has a negative
velocity. Only after an additional step will it hold g(¢;,2) = 0 and v(t},,) = 0.
Therefore, an impact is resolved by (14) always within two time steps, and
the values of the reaction impulses 47/ and 4™ depend on when exactly in
the interval [¢;, ¢;41] the impact would have occurred in continuous time, see
Fig. 3. Hence, the values of the reaction impulses directly depend on the
time discretization.

A remedy is to append the system with an additional discrete velocity v’

12



q,v q,v

Figure 3: Time step for a point mass impacting ground. Dashed blue line:
position in continuous time; solid blue line: result of SHAKFE. The scenar-
ios on the left and right are identical except that the time window [t;, ;1]
around the continuous impact time ¢, is shifted on the right. As a conse-
quence, the values of 47/ and 47*! differ for both simulations.

that differs from g and to solve two CCPs instead of one:

gt = + hvit2 (21a)
M(q/)(v/T2 — 7)) = K + G(¢, t,) T, (21b)
Kogl@d™ i) L ~ € K, (21c)
M(q?) (7t =) = G(d 1), (21d)
G(a™ )" + %;EH) € Tr(g(a™, tj41))

L) e Ti(g(d™ ! ti)). (21e)

Here, (21a) — (21c¢) correspond to the SHAKE steps (14) while (21d) and
(21e) satisfy the constraint on velocity level using the additional velocity
v. Furthermore, Tk (g(q’*!,t;41)) is the tangent cone to K evaluated at

g(d’™ ).
The total reaction impulse

v =]+

in the j—th time step now converges with A — 0. The algorithm (21) results
in the same solution as algorithm (14) for the positions q’ and differs only
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with respect to the reaction impulses. The scheme (21) is very similar to
the RATTLE algorithm. Yet, there are two major differences that should be
emphasized. Firstly, in contrast to the original version, the newly introduced
velocity v/ has no direct physical interpretation. It is merely an auxiliary
variable to ensure the convergence of the reaction impulses with A — 0.
Secondly, the force term k/ only contributes to the real velocity viT1/2 of
the dynamical system and plays no role in (21e). Obvioiusly, the computa-
tional effort for (21) is about twice the one for (14), and for this reason we
concentrate now on the implementation of SHAKE.

4. Solving the CCP in Each Time Step

A time step of a simulation of granular material using SHAKE consists
of three tasks. The first task is collision detection to obtain all pairs of
rigid bodies that could potentially come into contact. The second task is the
computation of reaction impulses by solving the CCP (20), and finally the
integration of the reaction impulses to new velocities and positions via (14a)
and (14b).

Of these tasks, the solution of the CCP (20) is the most time consuming.
We propose the use of a matrix—free interior point method and provide here
a short outline. For the details we refer to [12, 13].

4.1. Outline of the Interior Point Method

For simplicity, assume that all conical inclusions result from a contact
model with Coulomb friction and a completely inelastic impact law. Then,
the CCP (20) of SHAKE can be written as

K.3y7 L u=Ny+rek;, (22)

where K, = K, x... x K, is the direct product of the friction cones of the n
contacts. Superscripts referring to the current time step have been dropped
for better readability.

It turns out to be convenient to transform the CCP (22) to a CCP with
a symmetric cone C = C*. This is achieved using the linear transformations

T Ty
x=T,-v= vy and y=T,-u= ‘u
T Ty

Hn Hn

14



with

125 1
T, = 1 and TY = Lbi
1 Fi
By writing N = T,N7,7! and r = T,¥ € R*", the CCP (22) is equivalent to
C>x 1L y=Nx+rec, (23)

where C = C' X .... x C with

c:Kuzlz{ [f{n]eRxRQ ‘ Tn > 1% }

t

It can be shown that
X?yl:07 Xz7Y’L€C = Xioyi:07

where
T

_ Xy 2
oY= |:1'nYt+ynXt:| eRxK

denotes the Jordan product of

X:[xn],y:[ynleRxRQ.

Xt Yt

The interior point method is iterative. In each iteration one solves

y=Nx+r and x;0y; = [g}

for one a > 0 and every i = 1, ...,n using one Newton iteration. In a second
step the so—called centralizing parameter « is decreased and the process is
repeated. It holds

x;0y; >0 as a—0

and the method approaches the solution of the CCP via a sequence of regu-
larized problems with beneficial numerical properties. The main task within
a Newton step consists of solving a set of linear equations

AAx = Db,

where A = W + N is composed of the Delassus matrix N that remains
constant during all iterations and a block-diagonal matrix W consisting of
one 3 X 3 block per contact. One intrinsic property of the IPM is the fact that
k(A) € O (a™?), i.e., the condition of the linear system deteriorates close to
the exact solution.

15



11
SE 3|

spread of eigenvalues
S 39
il
i
i
A
b
i
P
==F
._F
._FI
._F‘
._Fq
=
—
__ﬁ
-_—

10" ==no regularization

=== regularization

15| ==block—diagonal preconditioner

0 10 20 30 40 50 60 70
IPM iterations

Figure 4: The distribution of eigenvalues in one time step of a simulation.

4.2. Preconditioning of the Linear Systems

The IPM can be implemented without the explicit construction of the
usually large system Matrix A if the linear systems are solved using a Krylov
subspace method, which only requires dot products and evaluations of the
matrix vector product with A. The matrix vector product with A is computed
by means of data associated to rigid bodies and all contacts without having
to explicitly store the matrix in memory [20]. This is crucial as the matrix
N changes its size and structure with each new contact.

Krylov subspace methods critically rely on good preconditioning, espe-
cially since the condition of A deteriorates close to the exact solution. Pre-
conditioners such as Incomplete Lower Upper (ILU) or Incomplete Cholesky
(IC) factorizations make no sense in combination with a matrix—free Krylov
method. In our case, it turns out that a simple block—diagonal preconditioner
suffices and delivers robust results, see [21] for a worst—case bound that is
independent of the centralizing parameter . An example that underlines
this is given in Fig. 4. It shows the distribution of the eigenvalues of A,
picked from one time step of a simulation of a static pile of 2,048 spherical
non-rotational particles, with regularized linear system and block-diagonal
preconditioner.

5. Numerical Results

The SHAKE scheme (14) and the IPM have been implemented in C++.
As first benchmark we consider one time step of a simulation of a pile of 2, 048
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(a) Test Problem 1 (b) Test Problem 2 (c) Test Problem 3

Figure 5: Three test problems with 2048, 5040 and 10192 particles

error

=v-IPM-MF: Test Problem [
—4—PM-MF: Test Problem 2|
—o—[PM-MF: Test Problem 3
-¥-PGJ: Test Problem 1 -
-4 -PGJ: Test Problem 2
-e-PGJ: Test Problem 3

= I I I

1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120
calculation time [s]

I I

Figure 6: Error of PGJ and IPM depending on computing time

nonrotational spheres, Fig. 5(a). Two bodies are considered as potentially in
contact if the minimum distance between them is less than half of the mean
radius of the particles. This results in n = 8, 378 potential contacts between
pairs of spheres and 25,135 unknowns in the CCP (22), which defines Test
Problem 1. Test Problem 2 is a similar pile with 5,040 nonrotational spheres,
n = 21,050 potential contacts and 63,151 unknowns in (22). Test Problem
3 consists of a pile with 10,192 spheres, n = 43,409 contacts and 130, 228
unknowns in (22).

We compared different Krylov subspace methods and found that Con-
jugate Gradient (CG) was slightly faster than the Bi-Conjugate Gradient
Method (BiCGstab) and much faster than the Generalized Minimum Resid-
ual Method (GMRES) in most cases. We also found the matrix—free imple-
mentation (denoted IPM-MF) using a block—diagonal preconditioner to be
faster by several orders of magnitude in comparison to our implementation
using a sparse matrix library and the ILU or IC preconditioners.
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Figure 7: Computing time to achieve an error less than the tolerance tol

We compared the matrix—free IPM with the Projected Gaufl Jacobi Method!.
Figure 6 shows the convergence of PGJ and IPM for all three test cases. PGJ
struggles specifically with larger problems. Its convergence rate stalled al-
most completely before a reasonably small error was achieved. Figure 7 shows
how IPM-MF and PGJ scale with the problem size. Figure 7(a) shows the
computing time that was needed to achieve an error of less than 5 - 1072
This is a very loose error bound where PGJ scales better with the problem
size than IPM-MF. While IPM-MF beats PGJ in terms of computing time
for the two smaller test cases, PGJ catches up for Test Problem 3, due to
the additional overhead of IPM-MF in comparison to PGJ.

Figure 7(b) demonstrates that IPM-MF shines in terms of scalability with
increasing accuracy requirements. If the error tolerance is set to 1072, PGJ
is slower than IPM-MF in all three test cases. To achieve an error below
5-107% on Test Problem 3, 73,600 PGJ iterations were necessary while IPM
needed 2,757 Krylov iterations. PGJ requires here more than 200 times the
computing time of IPM-MF. To conclude, IPM-MF scales better with the
problem size than PGJ does whenever the accuracy requirements are high.

As a final test, the IPM is applied to an industrial size problem that
demonstrates the application of our approach to large-scale problems with
sufficient accuracy. A rectangular blade moves through a trench filled with
granular material, Fig. 8. The material consists of 105,144 spherical, non-
rotational particles with radii randomly distributed between 0.008 m and

1See [20] for details on the Projected Gau§ Jacobi Method for CCPs.
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Figure 8: Blade moving through a trench of dry granular material.

0.016 m. The material has a bulk density of 1,382kg/m?. All contacts have
the same frictional coefficient of ;1 = 0.25. The blade has a width of 0.2 m.
It moves at a constant speed of 0.2m/s and initial depth of 0.2 m.

A simulation is run with IPM-MF and step size h = 1072 s. In every step
a CCP with an average of 1,261,972 unknowns needs to be solved until the
error falls below a predefined tolerance. Reaction forces acting on the blade
are computed by dividing the reaction impulses by the step size. The draft
force result was compared to the same reference DEM solution as in [6].

The simulation with a tolerance of 10~2 failed due to instability. At the
beginning of the iteration reaction impulses are unrealistically large, and
stopping the iteration prematurely leads to separation of particles. For sim-
ulations with tolerances below 10~*, unrealistic separation of material could
not be observed, see Figure 9.

Figure 10 shows the draft force result for the simulations with tolerances
of 1073, 107, 107® and 107%. The draft forces are far off for low accuracy
requirements but for tolerances of 107° and 1076 the results agree with the

Figure 9: Illustration of simulation for moving blade
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Figure 10: Horizontal draft forces acting on the blade for IPM simulations
at different accuracy requirements and a time step size of h = 1072 s

tolerance RTF # iterations error(vy,u)
1073 20,884 3,428 7.06- 1074
1074 61,291 10,439 8.69-107°
107° 83,945 15,357 9.35-107¢
1076 107,650 20,196 4.20-107°

Table 1: Real time factor (RTF), average number of Krylov iterations per
time step and average errors for simulation at a time step size of h = 1072 s

DEM reference solution. The draft forces converge to the reference solution
with increasing accuracy of the CCP.

Table 1 shows the real time factor, the average number of Krylov itera-
tions per time step and the average errors. The simulation with a tolerance
of 107° achieved a result that was in good agreement with the DEM simu-
lation at a real time factor of 83,945. The reference DEM simulation took
73,678 seconds of computing time per second of simulation, so it was in total
12.2% faster than IPM. The best draft force result achieved with PGJ was
at a time step size of 107 s and 2,000 PGJ iterations at a real time factor
of 892,780. Thus, IPM was marginally slower than DEM but more than 10
times faster than PGJ.
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6. Conclusion and Outlook

A concise mathematical model for nonsmooth mechanical systems has
been presented that extends the notion of classical DAEs in multibody dy-
namics. Discretization in time by a Galerkin projection leads to nonsmooth
versions of SHAKE and RATTLE, where the latter has the property that
the Lagrange multipliers converge as the step size tends to zero.

In every time step of a simulation, a cone complementarity problem must
be solved, and here our choice of the interior point method turns out to
be competitive and superior to projected Gauf-Jacobi for higher accuracy.
Using matrix—free Krylov solvers and a simple but effective preconditionier,
the IPM achieves the same result in terms of draft forces as the classical
DEM in a comparable amount of time.

Many questions, however, remain open in this emerging field. In partic-
ular, the numerical analysis lacks appropriate norms and tools to measure
and prove convergence. Concerning the computational aspects, the IPM can
further be parallelized using domain decomposition methods. If a parallel
version of the IPM is used as a solver and there is a reliable error measure
that guarantees good force estimates below a certain threshold, NSCD has
the potential to outperform classical DEM for all kinds of applications while
maintaining its good stability properties.
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