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ABSTRACT

In order to improve the quality of software systems and to set up a more effective process for

their development, many attempts have been made in the field of software engineering. Reuse of

existing knowledge is seen as a promising way to solve the outstanding problems in this field. In

previous work we have integrated the design pattern concept with the formal design language

SDL, resulting in a certain kind of pattern formalization. For the domain of communication sys-

tems we have also developed a pool of SDL patterns with an accompanying process model for

pattern application. In this paper we present an extension that combines the SDLpattern

approach with the experience base concept. This extension supports a systematic method for

empirical evaluation and continuous improvement of the SDL pattern approach. Thereby the

experience base serves as a repository necessary for effective reuse of the captured knowledge.

A comprehensive usage scenario is described which shows the advantages of the combined

approach. To demonstrate its feasibility, first results of a research case study are given.

Keywords

experimental software engineering, experience base, design patterns, formal description tech-
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1 INTRODUCTION

Due to the increasing variety of modern applications and evolving network technologies, the communication ser-

vices provided by today's general-purpose protocol stacks are not always adequate. It is expected that in order to

increase flexibility and to support applications in the best possible way, customization of special-purpose protocols

will also play a major role. Here, configuring communication protocols from reusable protocol building blocks

seems to be a promising way for overcoming the additional development effort.

The reuse of predesigned solutions for recurring design problems is of major concern in object-oriented software

development in general. During the past few years, design patterns have emerged as a particularly fruitful approach

to software reuse [8] [14]. Contrary to the traditional paradigm of class and function libraries, which are solely con-

cerned with code reuse, design patterns aim to focus on the invariant parts of a design solution and offer by far

more flexibility for adaptation to the embedding context. That is, the potential of reuse is substantially increased.

Additionally, design patterns proved helpful in guiding the instantiation and documentation of frameworks, which

provide larger-scale reuse of the overall architecture and design from a certain application domain.

In [15] [17] [18] we present the SDL-pattern approach, which on principle adopts the pattern concept for the design

of communication protocols. However, in order to assure high quality of the resulting communication subsystem,

we apply a formal description technique (FDT) as design language. The FDT of our choice is SDL [20]. Thereby

we benefit from the formal basis provided by SDL, so that tool support and validation of pattern application is pos-

sible. For instance, instantiation of a pattern can be defined by precise embedding rules in terms of the SDL syntax.

Similarly, the semantic model of SDL allows to precisely state assumptions for adequate pattern application as well

as resulting properties on the embedding context. This is a major improvement compared to conventional design

patterns, which mainly rely on natural language based pattern description and, to a large degree, must still leave

pattern application to the personal skills of the system designer. Note, however, that the enhancements work within

the scope of an FDT with its formal syntax and semantics.

SDL patterns are expected to offer the same advantages as those commonly attributed to conventional design pat-

terns: patterns capture solutions, which have evolved over time and serve as an elegant way to make designs more

flexible, modular, reusable, and understandable. They reflect experiences gained in prior developments and there-

fore help designers reuse successful designs and architectures. As a consequence, the design process becomes

faster and the number of design errors decreases. Patterns even help improve the documentation and maintenance

of existing software systems, because they focus on the essentials of a design solution and thus increase the proba-

bility of being matched with a given design. However, such statements often seem to be subjective in nature. That

is, they are characterized as hypotheses that have to be validated.
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In order to validate these hypotheses, we choose experimentation as known from the field of experimental software

engineering, i.e., case studies (as defined in [22]) and controlled experiments (also denoted as ‘formal experiments’

[22]). Our experiments are planned, executed, and analyzed according to the Quality Improvement Approach (QIP)

[4], supported by goal-oriented measurement based on the GQM paradigm [3]. The collected quantitative data

serves as a basis for the improvement of the construction set of protocol building blocks. All gained experiences

(i.e., all kinds of knowledge, such as measurement data, (process-) models, SDL-patterns, or lessons learned) are

stored in a central repository: the Experience Base of the SFB 501 (SFB-EB) [12]. With the help of the SFB-EB we

transfer the gained experiences into new projects and experiments in order to allow continuous improvement of the

SDL-pattern approach.

The remainder of the paper is organized as follows: Section3 shortly introduces the concepts underlying the pro-

posed construction set of protocol building blocks, including a corresponding process model. In Section3 the

structure of the SFB-EB, as far as relevant to our approach, is described. Furthermore, a comprehensive usage sce-

nario is given to show how this structure is used to support our approach. First experiences, gained in a research

case study, demonstrate the feasibility of the combination of SDL-pattern based design and the experience base

concept (Section4). We summarize the results and conclude with an outlook in Section5.

2 THE CONSTRUCTION SET OF PROTOCOL BUILDING BLOCKS

This section summarizes concepts for a construction set of protocol building blocks from which a protocol designer

can select components and compose them into a customized, formal protocol specification. In order to get highly

flexible building blocks and to increase the quality of resulting products, we combine the design patterns approach

with SDL. For further details, the reader is referred to [15] [17] [18].

2.1 The Formal Description T echnique SDL

SDL is a description technique with a formal syntax and semantics and is designed for the specification of reactive,

distributed systems, in particular, communicating systems. The most recent version was standardized by the Inter-

national Telecommunication Union (ITU) in 1992 [15] with some updates made in 1996. It offers a textual as well

as a graphical representation. SDL is an object-oriented language capable of describing architecture, behavior, and

data. It is in widespread use in industry and is well-supported by commercial and public domain development envi-

ronments such as SDT [26], Object-GEODE [1], Cinderella, or SITE [27].

An SDL system specification is hierarchically structured into blocks. Each block is composed of either a set of

blocks or a set of processes. System behavior is modeled as a set of communicating extended finite state machines

(CEFSMs), each represented by an SDL process. SDL processes run concurrently and communicate asynchro-
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nously by signal exchange. An SDL process may be further structured in SDL services, which themselves represent

CEFSMs. In this case, an SDL process appears as the product automaton of its services. For the definition of data,

SDL offers a number of predefined data types such as integer or boolean. New data types are either derived by

using built-in constructs (e.g., structs or arrays) or by using the abstract data type concept. For the latter the behav-

ior of the operators can be defined axiomatically or algorithmically as well as by interfacing to another language

such as C.

As an object-oriented language, SDL allows the parameterized type definition of blocks, processes, services, and

signals as well as their specialization by bounding parameters, adding properties (e.g., new input signals), or rede-

fining virtual types or transitions. OO concepts not supported by SDL are multiple inheritance and dynamic bind-

ing.

One main advantage of SDL is that an SDL specification is already executable and can be used for simulation, val-

idation against test cases, and validation of general properties (such as freedom from deadlock or implicit con-

sumption). The possibility of simulating or formally analyzing a distributed system (especially its flow of control)

before implementation is of great importance in order to detect design errors in early stages of development. Note

that even code can be automatically derived from an SDL specification. Validation and simulation, as well as auto-

matic code generation (rapid prototyping) are well supported by existing SDL development tools.

2.2 SDL Patterns

An SDL pattern describes a generic solution for a recurring context-specific design problem from the domain of

communication protocols. It is assumed that the target language for pattern instantiation is SDL.

Contrary to conventional design patterns, SDL patterns add the advantages of a mathematical foundation. Instead

of specifying and applying the patterns rather informally, a formal target language such as SDL offers the possibil-

ity of precisely specifying how the application of a specific pattern is performed, under which assumptions this will

be allowed, and what properties result for the embedding context. This information is pattern specific and orga-

nized by means of a certain pattern description template. The main items of the SDL pattern description template

are sketched in the following.

The mere syntactical part of the design solution is defined by a genericSDL-fragment, which has to be instantiated

and textually embedded into the context specification when applying the pattern. SDL-fragments represent context

invariant parts of a design solution. Instantiation and embedding of SDL-fragments is prescribed in terms ofsyn-

tactical embedding rules, which, e.g., guide renaming of abstract identifiers or specialization of embedding design

elements. Usually, pattern semantics is not completely captured by an SDL-fragment. Due to language constraints
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this would otherwise result in an overspecification of the design solution and reduce the potential of reuse. Thus,

additionalsemantic properties are included, specifying preconditions for pattern application as well as behavioral

changes of the embedding context. Though semantic properties are currently stated in natural language, it is possi-

ble to express them precisely in a temporal logic. Also, restrictions on theredefinition of pattern instances are spec-

ified in order to prevent a pattern's intent from being destroyed by subsequent development steps. A comparison to

existing description templates for conventional design patterns is given in [15].

The current pool of protocol building blocks contains SDL patterns that deal, for instance, with interaction behav-

ior of distributed objects, error control (lost or duplicated messages), lower layer interfacing, or dynamic establish-

ment and closing of connections. To further illustrate the functional scope of SDL patterns, we briefly introduce

some examples. Note that the SDL patterns below are not completely specified. We basically summarize a pattern‘s

intent and skip the description items explained above. For completely defined SDL patterns, the reader is referred

to [16].

• MultipleRequestsMultipleReplies:

The MultipleRequestsMultipleReplies pattern introduces a confirmed 1:n interaction between one sending entity

and multiple receiving entities. Being triggered, the sender will initiate a request and waits until all corresponding

replies are received. After reception of a request each receiver sends at least one reply.

• Codex:

The Codex pattern provides mechanisms to allow two (or more) entities, which interact directly through SDL chan-

nels, to cooperate by means of a given communication service. In general, the introduction of a basic service

involves many specialties. Among others, these are segmentation, reassembly, upgrade of basic service quality

(e.g., in case of loss, disruption, or duplication of messages), lower layer connection setup, or routing decisions.

The Codex pattern is only concerned with a minimal subset of these functionalities, namely interfacing with the

basic service by means of service primitives. That is, Codex essentially provides a mapping from protocol data

units to basic service primitives and vice versa.

• DynamicEntitySet:

Consider a given server entity that is capable of providing its service exactly one time and terminates thereafter. In

order to offer this service several times (e.g., to more than one client), the DynamicEntitySet pattern is introduced.

Thereby an administrator dynamically creates a new server entity for each service request and subsequently acts as

a proxy.
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2.3 Configuration Pr ocess

For the design of SDL protocol specifications we have defined a configuration process supporting the reuse of pro-

tocol building blocks represented as SDL patterns (Fig.1). The configuration process suggests incremental proto-

col engineering, where the whole set of communication requirements is first decomposed, i.e., partitioned and

(where appropriate) simplified. Decomposition classifies as an analysis task that identifies separate protocol func-

tionalities. Thereby it is possible to consider a protocol functionality under different assumptions. For instance,

interaction sequences for connection establishment are less complex on top of a reliable basic service rather than an

unreliable basic service. Experience has shown that protocol functionalities can often be specified one after the

other and - in addition - be completed stepwise (e.g., adapted to the non-ideal properties of an underlying basic ser-

vice; see, e.g., [15] [23] [19]). This suggests that we perform an individual development step in order to incorporate

an additional protocol functionality or relax a corresponding simplification. Thereby, each development step

divides into analysis, design, and validation and yields an executable SDL design specification. In the following,

the different activities within a development step are sketched.

First, an object-oriented analysis of the current protocol functionality is performed. This results in an analysis

model updated from the previous development step. It is suggested to provide an OMT [24] or UML [5] object

model and an MSC [21] use case model which together identify participating objects and typical interaction sce-

narios.

The analysis model is realized in the following design activity. Here, SDL patterns come into place. Starting point

is the context SDL specification, i.e., the SDL design specification obtained from the previous development step1.

This may, e.g., be a protocol specification, which relies on reliable basic service. Hence the design problem (stated

in the analysis model) could then be to suit the protocol to an unreliable basic service. In order to meet the new

requirements, a number of design steps are performed where individual SDL patterns are applied to the context

specification. Note that for some design problems the pool of predefined protocol building blocks may not contain

an adequate solution, so that an adhoc solution must be found. The selection of an SDL pattern is supported by sev-

eral items of the SDL pattern description template, namelyintent, motivation, structure, message scenario, seman-

tic properties, and cooperative usage. As patterns represent generic design solutions, the corresponding

SDL-fragment has to be adapted in order to seamlessly fit the embedding context. This is instructed by therenam-

ing parts of thesyntactical embedding rules. Finally, the resulting pattern instance has to be composed with the

embedding context, which is prescribed by the specialization part of the syntactical embedding rules and also by

redefinition rules of embedding pattern instances.

1 For the first development step, the initial context specification is either empty or given by an instantiated SDL framework.
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Figure 1.  Configuration process model (partial)
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The result of this design activity is an intermediate SDL design specification which is subsequently validated

against the analysis use case model by performing MSC-based validation and simulation. The correctness of the

SDL specification concerning general properties such as freedom from deadlocks is also checked. If any faults are

discovered, a return to one of the previous development or design steps is needed (not shown in Fig.1). Otherwise

the validated specification serves as the context specification for the next development step. If all simplifications

are eliminated and all requirement subsets are implemented, the final design specification is given by the validated

design specification of the last development step.

3 THE EXPERIENCE BASE: SFB-EB

This section describes the current instantiation of the Experience Base of the SFB501. First, the logical structure

of the Experience Base is sketched, as far as it is relevant to the SDL-pattern based design of communication proto-

cols (Section3.1). Then a usage scenario about how this structure supports the SDL-pattern approach is given in

Section3.2.

3.1 Logical structure of the SFB-EB

The SFB-EB acts as a repository for experience. Therefore, a logical structure was defined that organizes the Expe-

rience Base and supports the search and retrieval of experience elements. Fig.2 shows the parts of the logical struc-

ture that are relevant for the SDL-pattern approach.

As shown, the SFB-EB is subdivided into two sections, calledexperiment-specific section andorganization-wide

section.These sections are similar to the project databases and organization-wide database described by Basili et.

al. [2]. In the experiment-specific section all information concerning single projects, like case studies and con-

trolled experiments, are stored according to predefined templates [9]. These templates are based on the steps of the

QIP and are completed while the project is conducted, i.e., planned, executed, and analyzed.

The organization-wide section stores experience relevant to several projects (such as the SDL pattern pool). It con-

sists of differentareas. Areas are the main building blocks of the SFB-EB. They can be seen as modules that are

added to the existing SFB-EB instantiation depending on what should be supported. Therefore, all areas are dis-

junct. An example for an area is the glossaries area which provides definitions for terms commonly used in projects

and experience elements.

Areas can be further refined (indicated by the dashed lines in Fig.2). For example, the glossaries area is split up

into a GQM glossary defining terms concerning GQM-based [3] measurement activities, an SDL glossary with
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SDL-related definitions, and a general Software Engineering glossary providing definitions for terms like process,

product, etc..

Besides the glossaries area, the following areas are instantiated:

The component repositories area.This area contains components that can be reused in different projects. For

example, SDL patterns such as the DynamicEntitySet pattern (Section 2.2), or C++ code for checksum algorithms

are stored here.

The process modeling area.Process, product, and resource models, describing how to conduct a project or apply

a technique, are offered in this area. For example, the configuration process for the application of the construction

set of protocol building blocks (Section 2.3), the SOMT process model [25], or the Bræk and Haugen [6] model for

case studies

Experiment-specific section Areas of the Organization-wide section

process modeling

technologies

glossaries

literature

qualitative
experiences

components repositories

methods

tools

techniques

SE glossary

SDL glossary

GQM glossary

code SDL
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technologies
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others
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Figure 2.  Logical Structure of the SFB-EB regarding SDL pattern oriented
development of communication protocols
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developing real-time systems with SDL are provided. Most of these models are represented using the process mod-

eling language MVP-L [7].

The technologies area.For different techniques, methods, and tools, so-calledtechnology packages are stored in

this area. These packages contain basic information about the technologies and help to select the appropriate tech-

niques when setting up a new project. The SDT (SDL Design Tool) package, e.g., helps newcomers to get into the

SDL development environment.

The qualitative experiences area.All lessons learned while conducting projects are represented in this area. They

are categorized according to the topics they are dealing with. Currently we deposit experiences about adequate

decomposition of communication requirements in this area (Section 2.3).

The literatur e area.Background knowledge in the form of (external) references, on-line documents, and contact

addresses is provided within this area. For instance, a reference to the SDL forum society web page2, or relevant

papers dealing with communication protocols can be found here.

Between the areas of the organization-wide section listed above and the experiment-specific section, differentrela-

tions are defined. Some typical relations are `experience element X uses experience element Y´ or `experience

element X isderived_from experience element Z´ where X,Y and Z belong to different areas/sections. These rela-

tions help support the search for experience elements in a given project context. For instance, from an experience

element that describes a concrete process model of a project (and therefore is stored in the experiment-specific sec-

tion), one can follow theuses relations to the experience elements that describe the technologies addressed within

the process model (Note that for a certain SDL pattern project different description techniques for protocol analysis

or different code generators for simulation could be applied). From the same process model, thederived_from

relation helps finding the experience element describing the general process model from which the actual one was

derived and which is stored in the process modeling area.

The areas and the defined relations together form a framework that represents the logical structure of the SFB-EB.

Note that the SFB-EB is also developed and used for contexts other than the SDL pattern approach.A detailed dis-

cussion of the complete logical structure and the technical realization using HTML-pages that are accessible via

the SFB 501 intra-net can be found in [13].

2 http://www.sdl-forum.org/
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3.2 A usa ge scenario

This section discusses a specific usage scenario on how the SFB-EB supports the SDL pattern approach. The given

scenario only describes steps that are already supported by the SFB-EB. Usage scenarios on how the SFB-EB

structure supports systematic reuse in projects according to the steps of the QIP are given in [10] and [11].

Planning a project:

When setting up a new project, it must first be characterized. The answers to questions like “What is the goal of the

project?”, “ In which environment is the project to be conducted?”, and “Are there time restrictions for the project?”

give first hints for planning the project. With this information one can search the process modeling area of the

SFB-EB for similar project plans and descriptions of technologies suitable for the new project. At the end of this

first step:

• A new entry for the project is created in the experiment-specific section of the SFB-EB. In accordance with
the predefined template all documents produced for the project will be stored in this entry.

• The characterization of the new project is stored in the new entry of the experiment-specific section.

• A project plan and/or technology description from the organization-wide section that can be adapted to the
new project is selected from the SFB-EB.

Let us assume that the new project were to develop a communication protocol, in the environment of the SFB 501,

by the end of the year. A process description for developing communication software with SDL patterns was found.

Theuses relation of the process description provides a link to the SDL technology package in the technologies

area. Unfortunately, there are nohas_part relations from the SDL technology package to some lessons learned in

the quantitative experiences area that would support us with more information about the usage of SDL in former

projects. But with the help of theused_in relation(s) stored with the process description, information about former

projects that used the process before can be viewed.

In the next planning step a project plan has to be defined for the new project. The plan has to include information

about resources (people and tools) that will be used. For this purpose, information is needed about appropriate

technologies that have been selected for the project. This is supported by the technology packages stored in the

technology area. In addition to this, the goal(s) of the project, regarding the validation of some hypotheses, will be

defined in a quantitative manner using the GQM paradigm [3]. At the end of this planning step:

• A concrete project plan is added to the project entry in the experiment-specific section.

• A list of needed resources (people and technologies to be used) exists.

• The quantitatively defined goal(s) of the project is stored in the project entry in the experiment-specific sec-
tion together with the GQM plan(s), measurement plan, and questionnaires that will be used to control the
project in the execution phase.



11

SFB 501 A1/B4 THE EXPERIENCE BASE: SFB-EB

• A derived_from / used_in relation between the project plan of the project and an experience element in
the process modeling area might be added to the SFB-EB.

• Uses / used_in relations between technologies used in the project and technology packages in the technol-
ogies area might also be added to the SFB-EB.

Let us assume that the new project uses the configuration process described in Section2.3. Therefore, SDL patterns

will be used to develop the communication protocol. A project plan is developed and researchers from the Univer-

sity of Kaiserslautern are chosen to develop the communication protocol.

Finally, it must be checked if all needed resources are ready to be used in the project. This includes the setup and

installation of the needed tools and maybe the preparation of training of the people regarding the technologies and

development process that will be used within the project. The installation of the tools may be supported by the

description given in the technology packages and/or the links given by theexplained_in relations from the tech-

nology packages of the tool to the literature area. The same relations may also support the setup of the training

material or the technologies or the used process description from the process modeling area. Reading the lessons

learned regarding technologies can help avoid problems in the new projects. At the end of this planning step:

• All tools needed for the project are installed and ready to use.

• Training materials for the people that will conduct the project are prepared.

Let us assume that the tools needed for the project already have been implemented, but the chosen researchers, that

should conduct the project, do not have sufficient knowledge about communication protocols using SDL and design

patterns. Therefore they are asked to read the technology packages stored in the technologies area and the SDL

glossary in the glossary area. Furthermore, they can use theexplained_in link to the web page of the SDL forum

society to gain further knowledge about SDL and thedefined_in relations to look up the definitions of commonly

used terms in the glossaries.

Executing the project:

The project is executed according to the project plan. If possible, components from the component repository area

will be reused for the new project. Furthermore, measurement data is collected according to the GQM-based mea-

surement program to control the project and gain new knowledge that can be used to test the hypotheses that have

been formulated for the project. At the end of the execution step:

• Measurement data has been collected and stored in the project entry in the experiment-specific section.

• Used_in andderived_from relations between objects from the component repositories and the new project
might be added to the SFB-EB.
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Let us assume that the project has been developed according to the process described in Section2.3. The develop-

ers used SDL patterns from the component repositories area to develop the communication protocol.Defined_in

andexplained_in relations between the objects of the component repositories and the technology packages have

been used to look up some definitions when problems occur. Furthermore, some experiences with the SDT tool and

the SDL patterns have been made that have not been expected. Therefore, these experiences have been reported,

i.e., written down and stored in the project entry of the experiment-specific section. Note that thegained_in and

offers relations to the qualitative experiences area are not added during the execution of the project. This is done

later when the project experiences are analyzed and fixed. Last, but not least, the new communication protocol was

developed.

Fixing the project experiences:

The data that has been collected during the execution of the project is now processed and analyzed. With its help

the questions concerning the measurement program goals are answered, i.e., the hypotheses that were formulated at

the beginning of the project are tested to see if they have been validated or must be rejected.

To find out if additional knowledge that was not captured by the measurement data, was gained while executing the

project, the people from the development team are interviewed. From these interviews and the experience that has

been reported and stored in the project entry of the experiment-specific section, lessons learned are formulated and

stored in the qualitative experiences area, if they are of interest for other projects. Both the analyzed measurement

data and the captured lessons learned can then be used to improve the technologies (e.g., tools), process models

(e.g., the SDL-pattern process), and components (e.g., the SDL- patterns) that were used in the project. At the end

of the analysis step:

• The hypotheses that were to be tested can be validated or must be rejected.

• New lessons learned might be introduced into the qualitative experiences area and theis_about / has_part
relations from the qualitative experiences area to the project entry in the experiment-specific section are intro-
duced.

• Technologies, process models, and components might have been validated and can be more trusted when
being selected for use in upcoming projects.

After we have described all relevant actions that can be supported by the current structure of the SFB-EB in this fic-

tive scenario the next section discusses experiences gained in a concrete research case study that was conducted

within the SFB 501.



13

SFB 501 A1/B4 FIRST EXPERIENCES: A CASE STUDY

4 FIRST EXPERIENCES: A CASE STUDY

To check some of our hypotheses, a first case study has been set up. In general, several goals of the case study

would be interesting in order to evaluate our SDL pattern approach. These include, e.g., the analysis of our con-

struction set of protocol building blocks with respect to reduction of development effort or the readability / intelli-

gibility of our pattern descriptions. For the initial case study we decided to analyze the influence of pattern usage

on the number and distribution of errors and faults (For a definition of these terms see Fig.3). This serves as a base-

lining for future experiments. The other goals are not part of the initial case study, but were postponed to later

projects. This is due to the fact that our case study is performed as students’ project work and, therefore, has a time

limitation of four months. As subject of development we have chosen the Real Time Transport Protocol (RTP) of

the Internet protocol suite. Our decision was driven by the fact that we already had experiences with the reengineer-

ing of Internet-based protocols and that RTP is well suited to complete the set of protocols we already developed

(e.g., IPv6 or ST2+ [23]).

During the planning of the project, suitable technologies had to be chosen. As the subject of analysis is our con-

struction set of protocol building blocks, we (re)used the corresponding SDL-pattern process (Section 2.3) as it is

stored in the process modeling area of the Experience Base.

In the next step, a project plan was defined based on the process description. Students that attended a lecture about

communication protocols at the University of Kaiserslautern were chosen to conduct the project as part of their

education. It was decided to use the SDT-tool from Telelogic to support the design, FrameMaker as a word proces-

sor, and the SFB-EB with the stored information about the SDL patterns as the only tools for the project.

The chosen experimental goal of the case study was formalized according to the GQM paradigm. The white oval in

Fig. 3 shows the formalized goal describing the object, purpose, quality focus, viewpoint, and context of the study.

After the goal was fixed, we formulated questions that refine the quality focus of our study, with additional ques-

tions that capture the variation factors which have influence on the results of the observed quality factors. The qual-

ity focus we identified is characterized by the following items:

• The distribution of faults to fault types such as deadlock, implicit consumption of signals, incomplete or incor-

rectly implemented requirements. The hypothesis we proposed is that 50% of the faults normally correspond to

the last fault type.

• The error type that caused a fault, with the types being named according to the activity in which they occurred.

Examples are design error, selection error, decomposition error, or analysis error. We expect that 70% of faults
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are due to errors made during design.

• The distribution of the design steps in which an error occurred to the different development steps. Development

steps are characterized by requirements that are to be realized. Examples are protocol operations or basic ser-

vice-related tasks. As a hypothesis we state that 60% of the errors occur in development steps in which protocol

operations are to be realized. Therefore our pattern pool should preferably support these kinds of design prob-

lems.

• The distribution of errors to adhoc design steps and design steps supported by SDL patterns. We expect that

90% of errors occur in adhoc design steps.

Figure 3.  Excerpts from the GQM plan “errors and faults”

GQM plan err ors and faults

This GQM plan is designed for a case study regarding the construction set of protocol building blocks. A quality

model based on error and fault occurrences is defined. Therefore, the following definitions are used:

• Def. failure:  Departure of observed behavior from expected behavior

• Def. fault:  Inconsistency in product that causes failure(s);

• Def. error:  Human action resulting in software with fault(s);

Anal yze the construction set of protocol building blocks

for the purpose of  characterization

with respect to  errors and faults

from the vie wpoint of  the project leader

in conte xt of  the project RTP.

[…]

Question and metric form the Model Definition:

Q: Which type of faults occurred and how are they distributed to the different types?
M: type of fault

[deadlock / implicit consumption / requirement not completely covered / requirement not correctly implement-
ed / other]

[…]

A surveyed variation factor regarding the listed question above is described by the following question:
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Actually, the quality focus is influenced by some variation factors. An example is the knowledge of the developer

about other communication protocols. The more familiar the developer is with the communications area, the less

faults of the type deadlock, implicit consumptions, or requirements not correctly implemented will occur. In Fig.3

an example for a question of the quality focus with a corresponding question that describes a variation factor and

how it influences the quality focus is given. (The complete GQM plan can be found in appendixA)

Finally, we prepared some training materials about our construction set of protocol building blocks and communi-

cation protocols in general. For this, knowledge stored in the literature and glossaries area of the experience base

was used. Since no tools needed to be prepared, the planning phase was completed and we started the execution of

the project according to the project plan supervised by the measurement program. The needed data were collected

with the help of questionnaires that had to be filled out at the beginning or end of predefined steps of our process

model.

Right now we are in the phase of analyzing the collected data. As a first result we can state that decomposition

plays a more important role than expected. Good decomposition is a prerequisite for successful design with a low

number of errors. What we have to improve is that enough time should be allowed for the decomposition activity

and that it should also be better supported by the experience base. Therefore we will add our experiences concern-

ing decomposition as certain rules of thumb. The usage of the experience base has been found useful throughout

the case study. Nevertheless, we found that it is necessary to extend the training with a more detailed section about

how to use the information of the experience base.

5 CONCLUSION AND OUTLOOK

We have introduced the SDL pattern approach which integrates the well-known design patterns concept with the

formal design language SDL. As a major advantage, SDL patterns allow to precisely specify knowledge about pat-

tern application and its impact on the embedding context. We consider formalization to be a prerequisite for tool

support and validation of pattern application. To show the feasibility of the approach, several test projects have

been conducted [16] [19] [23]. However, with the current status of the approach we wish to have a more systematic

method to investigate certain details concerning SDL patterns. Additionally, it is essential to have an infrastructure

available that helps to continuously improve the concepts, as good patterns mainly arise from practical and

well-founded experiences. For this purpose we combined the SDL pattern approach with the experience base con-

cept. The SFB-EB serves as a central reuse repository for all kinds of SDL pattern specific experiences and allows

us to effectively set up new projects with a corresponding measurement program. Knowledge is systematically

transferred into new projects and experiments, so that the SDL pattern approach can be continuously improved. A
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usage scenario for the SFB-EB was discussed in detail, in which the main activities are planning, executing, and

analyzing the project. Also, a research case study on the experiment-based evaluation of the SDL pattern approach

was conducted. As a first result it turned out that an adequate knowledge of pattern-based design in general is of

great importance for the success of a project, which made us reconsider the quality of our training material in the

SFB-EB. Furthermore, experience has shown that decomposition and analysis have greater impact on pattern-based

development than expected. With the current pool of SDL patterns, a bad decomposition or analysis model may

result in poor coverage of SDL patterns in the resulting specification. However, further experiments will have to

clarify the exact reasons.

From our first results with the SFB-EB we infer that it is a valuable means for supporting the evaluation and contin-

uous improvement of the SDL pattern approach. Thus we plan to conduct more SDL-pattern based projects within

this context. This necessitates some extensions of the SFB-EB. For instance, we have to add a measurement area to

the organization-wide section of the SFB-EB to store basic GQM plans (e.g., to rate the quality of newly-defined

patterns). In the long run, it may also be necessary to fully realize the QIP steps during a project, and, therefore,

complete our Experience Base to an Experience Factory [2].
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Appendix

A GQM PLAN ERRORS AND FAULTS

This GQM plan is designed for a case study in the subproject B4 of the SFB 501. The goal of the case study
is to give a first characterization of the process using the construction set of protocol building blocks de-
veloped within B4. Therefore a quality model based on error and fault occurrences is defined.

Analyse: the construction set of protocol building blocks [object of study]
for the purpose of:characterization [purpose of study]
with r espect to:errors and faults [quality focus of study]
fr om the Viewpoint of: the project leader [viewpoint of study]
in the Context of: the project RTP. [context of study]

Process Definition

Domain Conformance

D_1: How great is the experience of developer with SDL?

Hypothesis: Less experience results in more faults of the type deadlocks, implicit consump-
tion, and requirements not correctly implemented. (see Q_1)

D_1.1: Has the developer known SDL before the current project?

MD_1.1.1: knowledge about SDL
[yes / no]

D_1.2: If question D_1.1 was answered with yes: Where was the knowledge about SDL
gained?

MD_1.2.1: origin of knowledge about SDL
[courses … / labs … / seminars … / literature … / WWW … / others …]

D_1.3: If question D_1.1 was answered with yes: How often and how long was SDL used for
developing software designs before?

MD_1.3.1: usage of SDL in former projects
[list of projects with project duration in months]

D_2: Of what kind is the knowledge of the developer about communication protocols?

Hypothesis: The smaller the knowledge, the more faults of the type deadlocks, implicit con-
sumption, and requirements not correctly implemented will occur. (see Q_1)

D_2.1: Has the developer knowledge of communication protocols?
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MD_2.1.1: knowledge of communication protocols
[yes / no]

D_2.2: If question D_2.1 was answered with yes: Which communication protocols does the
developer know and where was the knowledge gained?

MD_2.2.1: origin of knowledge about communication protocols
[list of communication protocols with source of knowledge](source of
knowledge: e.g., courses / labs / seminars / HiWi jobs)

D_2.3: If question D_2.1 was answered with yes: Which communication protocols have been
developed before and in which context?

MD_2.3.1: usage of communication protocols in former projects
[list of projects with used protocols]

D_3: Knowledge and understanding of the construction set of protocol building blocks?

Hypothesis: The worse the knowledge and understanding of the construction set of protocol
building blocks, the more faults of the type deadlocks, implicit consumption, and
requirements not correctly implemented will occur. (see Q_1)

Hypothesis: In design parts with support of SDL patterns the number of errors will be lower.
(see Q_4)

D_3.1: Does the developer have knowledge about pattern based design in general?

MD_3.1.1: knowledge about general pattern based design
[yes / no]

D_3.2: If question D_3.1 was answered with yes: Where was the knowledge gained?

MD_3.2.1: origin of knowledge about general pattern based design
[list of sources]

D_3.3: If question D_3.1 was answered with yes: How often and how long was general pattern
based design used for developing software designs before?

MD_3.3.1: usage of general pattern based design in former projects
[list of projects with project duration in month]

D_3.4: Does the developer have knowledge about the construction set of protocol building
blocks?

MD_3.4.1: knowledge about the construction set of protocol building blocks
[yes / no]

D_3.5: If question D_3.4 was answered with yes: Where was the knowledge gained?
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MD_3.5.1: origin of knowledge about the construction set of protocol building
blocks
[list of sources]

D_3.6: If question D_3.4 was answered with yes: How often and how long was the construc-
tion set of protocol building blocks used for developing software designs before?

MD_3.6.1: usage of the construction set of protocol building blocks in former
projects
[list of projects with project duration in month]

D_3.7: Did the developer apply SDL patterns whenever possible?

MD_3.7.1: SDL patterns applicable for the design step
[list of SDL pattern names (e.g. TimerControlledRepeat, BlockingRe-
questReply, DynamicEntitySet, Codex, …)]

MD_3.7.2: selected SDL pattern
[SDL pattern name]
Developer selects SDL patterns but still has the chance of applying the
SDL pattern or deciding against the SDL pattern

MD_3.7.3: number of applied SDL patterns in development step
[integer]
Developer selects SDL pattern in design step and applies the offered SDL
pattern.

D_4: How is the quality of the construction set of protocol building blocks?
(The quality includes the offered experience regarding SDL patterns!)

Hypothesis: Higher quality reduces the number of faults. (see Q_1)

Hypothesis: Greater experience regarding SDL patterns results in less selection, decomposi-
tion, and analysis errors. (see Q_2)

Hypothesis: The better the coverage of a development step, the less errors occur. (see Q_3)

Hypothesis: The higher the quality the less the number of errors in the SDL pattern. (see Q_4)

D_4.1: How often was the description of a selected and applied SDL pattern incorrect?

MD_4.1.1: quality of SDL pattern description
[correct / inconsistent / incomplete / has SDL error / others …]

D_4.2: Why was no SDL pattern applied in the design step?

MD_4.2.1: design step without applied SDL pattern
[name of design step]
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MD_4.2.2: reasons for not applying SDL pattern
[no pattern was offered / selected pattern was not understandable / others
…]

D_4.3: Are there types of development steps not mentioned in the offered “experiences”?

MD_4.3.1: development step types not mentioned in “experiences”
[list of new development step types with short characterization]

D_5: How is the complexity of the communication requirements?

Hypothesis: The more complex the communication requirements, the more faults occur. (see
Q_1)

Hypothesis: The more complex the communication requirements, the more selection and de-
composition errors occur. (see Q_2)

Hypothesis: The more complex the communication requirements, the more errors will occur
in AdHoc design steps. (see Q_4)

D_5.1: Which concurrent protocol functions could be identified?

MD_5.1.1: concurrent protocol functions
[list of function names]
usually protocol (i.e. project) specific names

D_5.2: Are protocol functions partitioned into layers?

MD_5.2.1: requirements partitioned into layers
[list of layers with name + characterization]

D_5.3: What protocol phases are included?

MD_5.3.1: name of included protocol phases
[connection set-up, connection tear down, data transfer, others …]

D_5.4: What type of service shall be realized?

MD_5.4.1: type of service
[reliable / unreliable, connection-oriented / connection-less, win-
dow-based flow control / rate-based flow control, non-functional (like de-
lay, jitter, max. throughput), others …]
Note: more then one type can be selected!
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Qualities

Model :errors and faults
Def. Failure: Departure of observed behaviour from expected behaviour
Def. Fault: Inconsistency in product that causes failure(s);
Def. Error: Human action resulting in software with fault(s);

Model Definition

Q_1: Which type of faults occurred and how are they distributed to the different types?

MQ_1.1: type of fault
[deadlock / implicit consumption / requirement not completely covered / require-
ment not correctly implemented / other …]

Q_2: For each detected fault: What type of errors caused the fault?

MQ_2.1: type of error
[design error / selection error / decomposition error / analysis error]

MQ_2.2: errors that caused the fault
[list of errors]

Q_3: In which design steps did an error occur and how are the errors distributed over the development
steps?
List of all applied development steps can be calculated from all names mentioned in MQ_3.2.

MQ_3.1: design step in which the design error occurred
[name of design step]

MQ_3.2: development step of design step
[protocol operations / basic service / mode / multiplicity / other …]

MQ_3.3: development step of selection error, decomposition error or analysis
error
[protocol operations / basic service / mode / multiplicity / other …]

Q_4: How are (design) errors distributed to AdHoc design steps and SDL pattern supported design
steps?

MQ_4.1: design step in which the design error occurred
[name of design step]
Note: identical with MQ_3.1!

MQ_4.2: type of design step
[pattern design step / AdHoc design step]
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B AN EXAMPLE Q UESTIONNAIRE FROM THE RTP CASE STUDY

Q 1: Do you have knowledge about SDL? ❒ yes ❒ no

If answered with „yes“:

Q 1.1: Where was your knowledge gained?
(KTPS course, Rechnernetze course, SFB lab, Rechnernetze seminar, literature,
WWW, Hiwi job, ...)
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

Q 1.2: Have you already applied SDL in former projects? ❒ yes ❒ no

If answered with „yes“:

Q 1.2.1: Which projects and how long did they last (in month)?
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________

Questionnaire FB 1

To be filled in by: Protocol developer before decomposition
(once at the beginning of the case study)

Date: __.__.____ Bearbeiter:__________________________________

Validated by: A1 Person: _________________________ Date: __.__.____

RTP Project of B4 Page: 1/4
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Q 2: Do you have knowledge about communication protocols? ❒ yes ❒ no

If answered with „yes“:

Q 2.1: Please list protocols you are familiar with?
(e.g. IP, TCP, OSI-TP, Alternating-Bit, XTP)
____________________________________________________________________
____________________________________________________________________

Q 2.2: Where was your knowledge gained?
(KTPS course, Rechnernetze course, SFB lab, Rechnernetze seminar, literature,
WWW, Hiwi job, ...)
____________________________________________________________________
____________________________________________________________________

Q 2.3: Have you already developed some communication protocols in
former projects? ❒ yes ❒ no

If answered with „yes“:

Q 2.3.1: Which projects and how long did they last (in month)?
___________________________________________________________
___________________________________________________________

Questionnaire FB 1

To be filled in by: Protocol developer before decomposition
(once at the beginning of the case study)

Date: __.__.____ Bearbeiter:__________________________________

Validated by: A1 Person: _________________________ Date: __.__.____

RTP Project of B4 Page: 2/4
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Q 3: Do you have knowledge about pattern-based design in general? ❒ yes ❒ no

If answered with „yes“:

Q 3.1: Where was your knowledge gained?
(course, lab, seminar, literature, WWW, Hiwi job, ...)
_____________________________________________________________________
_____________________________________________________________________
_____________________________________________________________________

Q 3.2: Have you already applied pattern-based design in former projects?
❒ yes ❒ no

If answered with „yes“:

Q 3.2.1: Which projects and how long did they last (in month)?
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________
___________________________________________________________

Questionnaire FB 1

To be filled in by: Protocol developer before decomposition
(once at the beginning of the case study)

Date: __.__.____ Bearbeiter:__________________________________

Validated by: A1 Person: _________________________ Date: __.__.____

RTP Project of B4 Page: 3/4
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Q 4: Do you have knowledge about the construction set of protocol building blocks? ❒ yes ❒ no

If answered with „yes“:

Q 4.1: Where was your knowledge gained?
(SFB lab, literature, Hiwi job,...)
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________
____________________________________________________________________

Q 4.2: Have you already applied the construction set of protocol building blocks in former
projects? ❒ yes ❒ no

If answered with „yes“:

Q 4.2.1: Which projects and how long did they last (in month)?
__________________________________________________________
__________________________________________________________
__________________________________________________________
__________________________________________________________

Questionnaire FB 1

To be filled in by: Protocol developer before decomposition
(once at the beginning of the case study)

Date: __.__.____ Bearbeiter:__________________________________

Validated by: A1 Person: _________________________ Date: __.__.____

RTP Project of B4 Page: 3/4
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