
Embedded ECC Solutions for
Emerging Memories (PCMs)

M. Ferrari, A. Tomasoni
IEIIT, Consiglio Nazionale delle Ricerche

Via Ponzio 34/5, 20133 Milano, Italy
{marco.ferrari,alessandro.tomasoni}@ieiit.cnr.it

S. Bellini
DEIB, Politecnico di Milano

P.za L. da Vinci, 20133 Milano, Italy
sandro.bellini@polimi.it

P. Amato, M. Sforzin, C. Laurent
Micron Semiconductor Italia s.r.l.

Via Torri Bianche 24, 20871 Vimercate (MB), Italy
{pamato,claurent,msforzin}@micron.com

Abstract—Emerging Memories (EMs) could benefit from Error
Correcting Codes (ECCs) able to correct few errors in a few
nanoseconds. The low latency is necessary to meet the DRAM-
like and/or eXecuted-in-Place requirements of Storage Class
Memory devices. The error correction capability would help
manufacturers to cope with unknown failure mechanisms and
to fulfill the market demand for a rapid increase in density. This
paper shows the design of an ECC decoder for a shortened BCH
code with 256-data-bit page able to correct three errors in less
than 3 ns. The tight latency constraint is met by pre-computing
the coefficients of carefully chosen Error Locator Polynomials, by
optimizing the operations in the Galois Fields and by resorting to
a fully parallel combinatorial implementation of the decoder. The
latency and the area occupancy are first estimated by the number
of elementary gates to traverse, and by the total number of
elementary gates of the decoder. Eventually, the implementation
of the solution by Synopsys topographical synthesis methodology
in 54 nm logic gate length CMOS technology gives a latency
lower than 3 ns and a total area less than 250 · 103 µm2.

Index Terms—Error Correction Codes, Flash Memories,
DRAM, Emerging Memories, Storage Class Memories.

I. INTRODUCTION

In the last four decades memory technologies have evolved
and consolidated in two mainstreams: DRAM and NAND
flash memories. In DRAMs information is stored accumulating
electrons in capacitors whereas in NAND flash memories
electrons are stored in a floating gate or in an oxide layer
in case of charge trap NAND. As a consequence, DRAMs
have low latency read/write operations, they are volatile and
much closer to the CPU in the memory hierarchy. NAND
flash memories are high density, non-volatile and more suitable
to storage application. Both technologies suffer from the
continuous scaling of their electron containers that weakens
the memory reliability.

On one side new materials and geometries, such as 3D mem-
ories or Cross Point architectures, are investigated to extend
the life of DRAM and NAND. On the other, new memory
concepts are emerging [1] where the storage mechanisms are
different for each type of Emerging Memory (EM). In Phase
Change Memory (PCM, [2]) the state is stored in the structure
of the material. In metal oxide resistive RAM (Ox-RAM, [3])
the state is stored in the oxygen location. In copper resistive
RAM (Cu-RAM, [4]) it is stored in copper location. In Spin
Transfer Torque Magnetic RAM (STTMRAM, [5]) it is stored
in the electron spin. In Ferroelectric RAM (Fe-RAM, [6]) it

Fig. 1. The gap between Volatile and Non-Volatile memories may be filled
by Emerging Memories.

is stored in the ion displacement. In correlated electron RAM
(Ce-RAM or Mott memories [7]) the state is stored in the
resistive state of Mott insulators.

To displace mainstream technologies an EM should show
overwhelming advantages. Moreover, EMs based on inno-
vative physical principles are hardly able to reach a high
reliability. Yet, emerging technologies can play a fundamental
role in improving the memory hierarchy. A classification
of consolidated technologies, based on Cost/byte and per-
formance (latency), shows a wide gap between DRAM and
NAND (see Fig. 1). The DRAM Cost/byte is about 10 times
larger than the NAND one, while the NAND latency is 1000
times higher than the DRAM one. The class of storage devices
that can fill this gap, referred to as Storage Class Memories
(SCM) must be both non-volatile/high density and low latency,
and offers many opportunities to EMs.

High performance, DRAM-like SCM devices need to be fast
and reliable, thus they could benefit from embedded algebraic
Error Correction Codes (ECCs) able to correct a few errors
just in a few nanoseconds (Section II). DRAM is already
adopting binary Hamming codes to correct one error per page
[8]. For high performance SCM devices it looks natural to
extend to 2, 3, or more bits the protection against errors. For
example, in [9] for HfOX-based resistive memory a bit-error-

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern



rate of ∼ 10−8 is reported. By applying a BCH3 to such bit-
error-rate it is possible to achieve DRAM reliability target. As
another example, the authors of [10] describe some techniques
to improve STTMRAM reliability such that a triple-error-
correcting code is enough to achieve the target block failure
rate of 10−9.

The 2-error correction case has already been treated in
[11],[12]. In this paper we aim at fast decoding of a 3-
error correcting BCH code, with latency in the order of few
nanoseconds to fill the gap between DRAM-like and NAND-
like memories. BCH codes are already adopted in NAND
flash memories, where they are applied to large pages of
thousands of data bits, to correct tens of errors. The mild
latency constraints of NAND allow traditional BCH decoding.
The iterative Berlekamp-Massey (BM) algorithm computes
the coefficients of the Error Locator Polynomial (ELP), and
the sequential Chien algorithm finds its roots, i.e., the error
positions. This classical approach is not compatible with
high speed SCM devices. One single iteration of the BM
algorithm, implemented even in High-Throughput decoders
[13] with error correction capability higher than 2, would
require the same latency of the whole decoding process we
propose in our design (see [14]). On the other hand, fully
parallel solutions for low latency decoding proposed so far
such as [15] and [16] cannot guarantee full correction of
any 3-bits error pattern. To achieve this challenging latency
and error correction target, in this paper all the iterative and
sequential processes of the decoding algorithm are replaced by
full parallel and combinatorial implementations of the same
functions (Section III). When processing the syndromes of
the code, great care is to be taken to avoid time-consuming
operations in the Galois Field (GF). A careful optimization of
all aspects that can speed up the decoding process is carried
on across all stages of the decoding algorithm. The solution
shown in this paper (Section IV) works for any codeword size,
but for the sake of clarity the discussion is focused on the
management of a 256-data-bit page.

II. CODE DEFINITION AND SHORTENING

The ECC error correction capability t directly impacts the
device reliability. In memory jargon, the fraction of bits that
contains incorrect data before applying ECC is called the raw
bit error rate (RBER), while the error rate after applying ECC
is called the uncorrectable bit error rate (UBER). Instantaneous
UBER is defined as the probability that a codeword will fail,
divided by the number of user bits in the codeword. For
instance, Fig. 2 shows UBER as a function of RBER for
t = 1, 2, 3, applying the ECC to a 256-data-bit page. If the
target UBER is 10−15, an RBER equal to 6 · 10−6 can be
tolerated with t = 3 that is our goal. This RBER is one decade
higher than that with t = 2, and three decades high than that
with t = 1. At RBER = 10−8 each additional unity of t reduces
UBER by six decades.

The minimum Hamming distance of a binary code C able
to correct t = 3 errors is d = 7. The generator polynomial
of a BCH code designed in GF (2m) with distance 7 has 6

Fig. 2. UBER as function of RBER for 256-data-bit page ECC and different
correction capabilities.

consecutive roots in the exponential representation of αi, plus
the conjugate roots [17]

g(x) =

m−1∏
i=0

(
x− α2i

)(
x− α3 · 2i

)(
x− α5 · 2i

)
. (1)

To encode a data page of K = 256 bits, we need a BCH code
designed in a larger field, for example in GF (29) = GF (512).
The final code C can be obtained by shortening a primitive
code of length N ′ = 511, with N ′ − K ′ = mt = 27 parity
bits, K ′ = 484 information bits and generator polynomial

g(x) = x27 + x26 + x24 + x22 + x21 + x16

+ x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1.

The shortened (283, 256) BCH code is obtained deleting
228 selected data bits. In the following in ∈ {0, 1, . . . , 510},
with n ∈ {0, 1, . . . , 282}, indicates the degree of the nth
element of the shortened codewords. The choice of 256 data
bits out of 484 gives many degrees of freedom that can
be spent to achieve particular features of the final code.
For instance, in the original parity check matrix H ′ of size
27 × 511, the 256 information positions can be chosen so
that one parity bit is always zero. Therefore it is possible to
reduce also the number of parity check bits. This feature has
the highest priority in our design, to save memory for the
parity bits. The final code C has only 26 parity bits, i.e. it is a
shortened (282, 256) BCH code. The choice of the shortened
parity bit and data positions still leaves a residual degree of
freedom that is spent to speed up the computation latency of
one block, for the reasons explained later in Section IV.

III. ULTRA FAST DECODING OF BCH CODES

To minimize the decoding latency, the decoder has been
carefully designed. The iterative BM algorithm, usually imple-
mented in NAND memories with ECC of high error correction
capability, is not affordable with tight latency constraints.
Instead, it can be replaced by the parallel evaluation of the ELP

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern



Fig. 3. Block diagram of the standard BCH decoding process.

symbolic expressions, selected through a decision tree [18]. It
is important to deal with a limited number of ELP expressions.
Any time consuming computation must be avoided whenever
possible. Complex evaluations must be carried in parallel with
the other terms, to avoid bottlenecks in the decoder.

The decoding algorithm is composed of the four classical
stages shown in Fig. 3, namely syndrome evaluation, ELP
computation, exhaustive search of the roots of the ELP, and
final correction. The latency of these four steps is carefully
optimized, both independently and jointly, as outlined in the
next subsections.

A. Syndrome evaluation

Starting from the received sequence y = yi0 . . . yi281 , with
yin ∈ GF (2), the syndromes Sb ∈ GF (29), with b ∈ {1, 3, 5},
can be computed by

Sb = y(αb) =

281∑
n=0

yinα
bin .

These operations can be rewritten in matrix form as

Sb = yWb (2)

where each Wb is a 282×9 binary matrix whose rows are given
by the polynomial representations of αbin with n = 0 . . . 281.
The three Wb matrices can be combined in a single 282× 27
matrix W = [W1W3W5].

As no column of Wb has Hamming weight w larger than
256, the depth of the logic computing (2) is dlog2(w)e = 8.
The total latency of this stage is thus 8TX where TX is the
latency of a single XOR gate1.

B. Error Locator Polynomial analysis

When three errors occur (ν = 3), say in positions n1, n2, n3,
the ELP with roots in α−ni reads

Λ(x) = (1− xαn1) (1− xαn2) (1− xαn3) =

= 1 + Λ1x+ Λ2x
2 + Λ3x

3.

The coefficients of Λ(x), evaluated running the BM algorithm
in symbolic form, are [18]

Λ1 = S1, Λ2 =
S5 + S2

1S3

S3 + S3
1

, Λ3 =
S5S1 + S6

1 + S2
3 + S3

1S3

S3 + S3
1

1Unless explicitly specified, gates have only 2 inputs.

and can be computed once S1, S3, S5 are available. Among
the elementary operations the division is too demanding, and
must be avoided. In case of three errors S3 +S3

1 6= 0. An ELP
with the same roots α−ni is

Λ(x) = A+Bx+ Cx2 +Dx3 (3)

where
A , S3 + S3

1

B , S1A = S1S3 + S4
1

C , S5 + S2
1S3

D , S5S1 + S6
1 + S2

3 + S3
1S3.

(4)

This form requires no divisions.
If S3 + S3

1 6= 0 but S5S1 + S6
1 + S2

3 + S3
1S3 = 0 we are in

the case of two errors (ν = 2). The symbolic BM algorithm
delivers the ELP (multiplied by S1)

Λ(x) = A′ +B′x+ C ′x2 (5)

where
A′ , S1, B

′ , S2
1 , C

′ , S3 + S3
1 . (6)

The choice between two different ELPs (3) and (5) is driven by
the value of D, whose computation is the most time consuming
(as will become clear at the end of the section). This increases
the decoding latency.

If D = 0 and also C ′ = A = 0, the ELP computed by the
BM algorithm has degree one and reads

Λ(x) = A′′ +B′′x (7)

with A′′ = 1 e B′′ = S1. Finally, if also S1 = 0 we are in
the error free case (S1 = S3 = S5 = 0). Note that the ELP
(5) reduces to (7) when S3 + S3

1 = 0, whereas the error free
case requires a separate test because if also S1 = 0, the ELP
(5) is null for any x.

Following [18] we thus need three different ELPs, whose
choice is driven by the most time-consuming term D.

C. ELPs from the Key equation

An alternative to the BM algorithm is the symbolic solution
of the Key Equation. The same ELP is obtained when ν =
t = 3. If ν < 3 we have more equations than unknowns, and
we can pick arbitrarily ν of them.

In particular, let D = 0. Then ν < 3, and the unknowns Λ1

and Λ2 obey four equations

S5Λ1 + S4Λ2 = S6 (8)
S4Λ1 + S3Λ2 = S5 (9)
S3Λ1 + S2Λ2 = S4 (10)
S2Λ1 + S1Λ2 = S3. (11)

From (10) and (11) we get Λ1 = S1. From (9) and (11) we
obtain

Λ2 =
S5 + S2

1S3

S3 + S3
1

that is the same Λ2 of (3). The two expressions of Λ(x) match
when ν = 2. In fact, let αn1 = u and αn2 = v. We have

S1 = u+v, S3 +S3
1 = uv(u+v), S5 +S2

1S3 = u2v2(u+v)

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern



and finally
S3 + S3

1

S1
= uv =

S5 + S2
1S3

S3 + S3
1

.

Therefore (3)-(4) hold both in case of two or three errors.
When D = 0 the coefficients A,B,C of (4) correctly identify
the two error positions.

From (9) and (10) we can infer the condition for ν = 2 that
reads

S4S2 + S2
3 6= 0 ⇔ S6

1 + S2
3 6= 0 ⇔ S3 + S3

1 6= 0

and thus the condition for ν = 2 or 3 (and for the use of the
ELP (3)) is simply A 6= 0. This is a great advantage because
the computation of A is much faster than the computation of
D, as we will show in Section IV.

When A = 0 and S1 6= 0, we have ν ≤ 1 and five equations
for Λ1. They all lead to

Λ1 = S1.

Finally, when S1 = 0 the sequence is error free, and the
correction must be disabled.

In conclusion, the decision tree has just two ELPs to choose
from:
• when A 6= 0, Λ(x) = A+Bx+Cx2 +Dx3, with A, B,
C, D given in (4)

• when A = 0, Λ(x) = 1 + S1x, that includes as a special
case the ELP with no roots Λ(x) = 1 when S1 = 0.

D. Exhaustive Search of the ELP roots

The fastest search for the ELP roots is the parallel test
Λ
(
α−in

)
= 0, ∀in. When ν ≥ 2 (A 6= 0), the test can be

run checking the expression

Aα3i +Bα2i + Cαi +D = 0 (12)

which is obtained multiplying each side of the equation
Λ
(
α−i

)
= 0 by α3i.

Since the evaluation of D is the most time-consuming,
expression (12) enables the fastest test. The computation of
Aα3i, Bα2i and Cαi can be carried in parallel with D as
soon as A,B and C get available.

In the simplified ELP case of ν ≤ 1 (A = 0), the search can
be run by the same hardware. We simply replace the coefficient
C with 1 and D with S1, to obtain the correct ELP. In fact,
in this case, A = 0, and B = S1A = 0.

IV. DECODER ARCHITECTURE

In this Section we analyze the overall architecture of the
proposed decoder shown in Fig. 4.

1) Syndrome Evaluation: The first step is realized by the
blue blocks in Fig. 4. These blocks implement the linear
combinations (2) of the received vector y producing the three
9-bit syndromes S1, S3, S5 ∈ GF (512). Each block requires
about 1200 gates. As anticipated in Section III the longest
chain requires 8TX for each block. Hence the values of
S1, S3, S5 get available 8TX seconds after reading the data.

2) Error Locator Polynomial: The second step is run in
parallel for the four coefficients of the ELP, by the blocks
colored with light green in Fig. 4. The fastest to compute is
A, that requires a cube and one addition, and takes in our
implementation 4 XOR levels and one AND level (see the
Appendix). The value of A is thus ready TA + 12TX seconds
after data reading. The result of the test A = 0 is conveyed
at the output of the blocks computing C and D, because their
values need to be replaced if the test is true. The values of B
and C are available TX seconds later than A (both require a
product operation) and are conveyed to the Root Search stage.
The approximate gate count of each block is in the order of
200 gates for B and C and 150 gates for A. The computation
of D requires about 600 gates and a latency TA + 10TX ,
including the change D → S1 if A = 0. The various addends
of D are carefully combined. S2

3 is the first term available
and it is added to S6

1 as soon as it is computed. The result
gets available at the same time as S1S3 and their sum can
be inserted during the computation of S3

1S3 without latency
penalty. The value of D is thus ready 2TA + 16TX after data
reading. No linear combinations of D are needed.

3) Root Search: The root search computes Aα3i +Bα2i +
Cαi+D for each i survived after shortening. This computation
requires 9 linear combinations of the bits of A,B and C, for
each i. The overall number of possible linear combinations
is 511, and we need almost all of them (1.8 kgates for each
block). We have a last degree of freedom left in the choice
of the data positions surviviving the shortening stage (see
Section II). We spend this choice excluding from the linear
combinations of one coefficient the sum of all its 9 bits, that
would take 4 levels of XOR. We spend this feature on the
coefficient B. This way, the linear combinations of B require
only 3 XOR levels and get available after TA+16TX from data
reading, exactly as the linear combinations of A that require
4 XOR levels. For each position i this choice allows to add
the terms coming from A and B at the same time, having
the result ready when Cαi comes, TX seconds later. This is
shown for a single position i in the gray cloud in Fig. 4. When
the addition Aα3i + Bα2i + Cαi is ready, TX seconds later,
the value of the coefficient D is also ready, and the overall
ELP computation is completed TA + 19TX seconds after data
reading.

Finally, the ELP root test requires two levels of OR gates
with three input (latency T3O each) and the correction bi =
yi + ei is completed TA + 20TX + 2T3O seconds after data
reading.

A first-order approximation of the area occupancy as a
function of m comes from the formulae in Table I. These
provide an over-estimate of the actual area, because they do
not take into account any optimization. In GF(512) and for
a (282, 256) code, the estimates are 1260 XOR for each Si,
193 XOR + 36 AND for A, 198 XOR + 81 AND for B (and
for C too), 715 XOR + 234 AND for D, 1788 XOR for each
linear combination, and 8192 XOR for the correction blocks.
Through a careful optimization the blocks A,B,C,D can be
almost halved even though most of the overall complexity

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern



Fig. 4. Conceptual architecture and latency block-by-block of the 3-error BCH Ultra-Fast decoder.

(approximately 18 kgate) is concentrated outside these blocks.

TABLE I
THEORETICAL ESTIMATES OF AREA OCCUPANCY FOR THE BCH3

DECODER BLOCKS IMPLEMENTED IN GF(2m).

Block Area
Si m

(
n
2 − 1

)
XOR

A 1
4m(m2 +m− 4) XOR + 1

2m(m− 1) AND

B,C 1
2 (5m2 −m) XOR +m2 AND

D 1
2m

3 + 5m2 − 6mXOR + 3m2 −mAND

Comb (2m − 1)(m
2 − 1) XOR

Correction k
2 (7m+ 1) XOR

A. Synthesis example

The solution proposed has been implemented following the
Synopsys topographical synthesis methodology using a 54 nm
logic gate length CMOS technology. In such implementation
the decoding latency is smaller than 3 ns, and the area oc-
cupancy of the decoder is about 250 · 103 µm2. Unlike the
theoretical estimates in terms of number of elementary gates,
these results take into account the buffering of the longer
interconnections as well as the routing of signals which may
increase the total decoder area occupancy. A trade-off between
latency and area occupancy is possible, depending on the
specific application.

V. CONCLUSIONS

This paper presents the theoretical derivation and imple-
mentation of an Ultra-Fast algebraic BCH decoder with error

correction capability t = 3 and 256-data-bit page, for emerging
memories. Embedding such a decoder into emerging memory
devices pushes these technologies towards the market, man-
aging the effects of unknown failure mechanisms that may
arise in technologies not yet implemented on a large scale.
Although all the description has been given for a 256-data-bit
page, the proposed solution is technology independent and can
be applied to any block size.

Of course the technology node of the CMOS logic impacts
the area and the final latency of the decoder. The solution
implemented by Synopsys topographical synthesis methodol-
ogy in 54 nm logic gate length CMOS technology results in a
latency lower than 3 ns with an area occupancy smaller than
250 · 103 µm2.

APPENDIX. ELEMENTARY OPERATIONS IN
GF (2m) = GF (512)

A. Multiplication of two variables

Different structures have been proposed to compute c = ab.
In this project, we have adopted the Mastrovito multiplier [19],
that allows for different latencies of the factors a and b. We
can write c = ab as

c = ab = a

m−1∑
j=0

bjα
j =

m−1∑
j=0

bj(aα
j).

The products

aαj =

m−1∑
i=0

a
(j)
i αi, j = 0, . . . ,m− 1

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern



can be prepared in advance. The m products and m − 1

additions in ci =
∑m−1

j=0 bja
(j)
i start when also b is available.

The total latency depends on the binary representation of the
powers αj to αm−1+j (j = 1 . . .m − 1). For instance in
GF(512) the maximum latency for the terms a

(j)
i is 2TX .

Some terms require only TX and can be multiplied in advance
by the corresponding bj (if available). With this precaution,
the computation of each bit ci can be completed within 3TX ,
despite nine addends, and the total latency of the operation is
TA + 5TX (with a maximum allowed delay TX for b). Even
an additional sum, i.e., ab + d or ab + d2 or even ab + d4,
can be completed in parallel during the computation of ab.
An equivalent implementation can be done also for c = a2b.
Powers a2

k

(see next subsection) are linear combinations of a
whose evaluation can be embedded in the terms a2

k

αj with
no additional delay.

B. Powers an

The computation of powers as c = a2
k

is simple, as they
require only linear combinations of the bits ai for each bit
cj . The latency depends on the actual field. For example, in
GF(512) α2 requires one single level of XOR, whereas α4

requires 2TX .
The computation of powers c = an with n 6= 2k is

complicated by the fact that non linear terms are required.
To minimize the latency we can separate a linear part from a
non-linear one as done, e.g., for a3 in [12](

m−1∑
i=0

aiα
i

)3

=

m−1∑
i=0

aiα
3i +

m−2∑
i=0

m−1∑
j=i+1

aiaj(α
2i+j +αi+2j).

By carefully optimizing the sequence and order of sums and
products, the computation of a3 can be completed within TA+
4TX . A similar implementation, with the same latency, can be
done also for a6.

As to the computation of c = ab3, the minimum latency
is achieved computing b3 as described above, and the terms
aαj (j = 0 . . .m− 1) in the meantime. The products require
a single level of m2 AND, and the final sum of products can
be optimized. In a similar manner, the evaluation of terms like
ab3 + d + e + . . . can be realized without additional latency.
Table II summarizes the operations latency.

TABLE II
SUMMARY OF THE COMPUTATION LATENCY (AND ALLOWED DELAYS OF

THE VARIOUS TERMS) FOR THE OPERATIONS IN GF(512).

operation latency b delay c delay
a2 TX
a4 2TX

ab+ c2 TA + 5TX TX TX
a2b+ c TA + 5TX TX 3TX
a3 + b TA + 4TX 3TX
a6 TA + 4TX

REFERENCES

[1] G. Atwood, “Current and emerging memory technology landscape,” in
in 2011 Flash Memory Summit, Santa Clara, CA, Aug. 2011.

[2] C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, and D. Vimer-
cati, “A 45nm 1Gb 1.8V phase-change memory,” in 2010 IEEE In-
ternational Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), S. Francisco, CA, Feb. 2010, pp. 270–271.

[3] Tz-yi Liu et al., “A 130.7mm2 2-layer 32Gb ReRAM memory device
in 24nm technology,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2013 IEEE International, S. Francisco, CA,
Feb. 2013, pp. 210–211.

[4] W. Otsuka et al., “A 4Mb conductive-bridge resistive memory with
2.3GB/s read-throughput and 216MB/s program-throughput,” in 2011
IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), S. Francisco, CA, Feb. 2011, pp. 210–211.

[5] K. Tsuchida et al., “A 64Mb MRAM with clamped-reference and
adequate-reference schemes,” in 2010 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), S. Francisco,
CA, Feb. 2010, pp. 258–259.

[6] K. Udayakumar et al., “Low-power ferroelectric random access memory
embedded in 180nm analog friendly CMOS technology,” in 2013 5th
IEEE International Memory Workshop (IMW), Monterey, CA, May
2013, pp. 128–131.

[7] N. F. Mott, Metal-Insulator Transitions, Second Edition. 4 John St,
London, GB: Taylor & Francis, Inc., 1990.

[8] JEDEC, “Low power double data rate 4 (LPDDR4),” Aug. 2014,
JESD209-4. [Online]. Available: https://www.jedec.org/

[9] B. Ji et al., “In-line-test of variability and bit-error-rate of hfox-
based resistive memory,” in Memory Workshop (IMW), 2015 IEEE
International, May 2015, pp. 1–4.

[10] Y. Emre, C. Yang, K. Sutaria, Y. Cao, and C. Chakrabarti, “Enhancing
the reliability of stt-ram through circuit and system level techniques,” in
Signal Processing Systems (SiPS), 2012 IEEE Workshop on, Oct 2012,
pp. 125–130.

[11] W. Xueqiang, P. Liyang, W. Dong, H. Chaohong, and Z. Runde, “A
high-speed two-cell BCH decoder for error correcting in MLC nor flash
memories,” IEEE Trans. on Circuits and Systems II: Express Briefs,
vol. 56, no. 11, pp. 865–869, Nov. 2009.

[12] P. Amato, C. Laurent, M. Sforzin, S. Bellini, M. Ferrari, and A. Toma-
soni, “Ultra fast, two-bit ECC for emerging memories,” in Proc. of
6th IEEE International Memory Workshop (IMW), Taipei, Taiwan, May
2014, pp. 79–82.

[13] W. Liu, “Low-Power High-Throughput BCH Error Correction VLSI
Design for Multi-Level Cell NAND Flash Memories,” in Proc. of
Workshop on Signal Processing Systems Design and Implementation
(SIPS), Banff, Canada, Oct 2006, pp. 303–308.

[14] D. Strukov, “The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories,” in Proc. of 40th
Asilomar Conference on Signals, Systems and Computers (ACSSC),
Pacific Grove, CA, Oct 29th - Nov 1st 2006, pp. 1183–1187.

[15] X. Wang et al., “An On-Chip High-Speed 4-bit BCH Decoder in MLC
NOR Flash Memories,” in Proc. of IEEE Asian Solid-State Circuits
Conference, Taipei, Taiwan, Nov 16-18 2009, pp. 229–232.

[16] C. Badack, T. Kern, and M. Gossel, “Modified DEC BCH codes for
parallel correction of 3-bit errors comprising a pair of adjacent errors,” in
Proc. of IEEE 20th International On-Line Testing Symposium (IOLTS),
Platja dAro, Catalunya, Spain, Jul 7-9 2014, pp. 116–121.

[17] S. Lin and D. J. Costello, Error Control Coding, Second Edition. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2004.

[18] C. Kraft, “Closed solution of Berlekamp’s algorithm for fast decoding
of BCH codes,” IEEE Trans. Inf. Theory, vol. 39, no. 12, pp. 1721 –
1725, Dec. 1991.

[19] E. Mastrovito, “VLSI designs for multiplication over Finite Fields
GF(2m),” Lecture Notes in Computer Science, Springer-Verlag, vol.
357, pp. 297–309, Mar. 1989.

1st Intl. Workshop on Emerging Memory Solutions, DATE Conference 2016, Dresden, Germany

2016, KLUEDO, Publication Server of University of Kaiserslautern


