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Abstract 
This paper briefly discusses a new architecture, Computation-In-Memory (CIM Architecture), which performs  
“processing-in-memory”. It is based on the integration of storage and computation in the same physical location 
(crossbar topology) and the use of non-volatile resistive-switching technology (memristive devices or memristors in 
short) instead of CMOS technology. The architecture has the potential of improving the energy-delay product, 
computing efficiency and performance area by at least two orders of magnitude.  
 
The need of new architecture  
Computing systems, developed since the introduction of stored program computers by John von Neumann in the forties, 
can be classified based on the location of the so-called “working set” (defined as the collection of information 
referenced by a program during its execution) into four classes (a) to (d) as shown in Figure 1. In the early computers 
(typically before the 80s), the working set was contained in main memory. Caches were introduced to reduce the gap 
between the core (CPU) and the memory speed, and increase the overall performance; the caches have become the 
location of the working set. Today’s many/multi core (parallel CPUs, GPUs, SIMD-VLIWs, vector processors) 
computing systems are still based on Von Neumann (VN) architectures; see Figure 1(c).  Recently, the design of high-
performance computing systems based on data-centric approach (i.e., memory closer the processing unit and reducing 
the memory bottleneck) rather than conventional computation-centric model is attracting a lot of attention, although the 
concept is more than 40 years old; see Figure 1(d).  In 1969, Logic-In-Memory (LIM) was originally introduced as a 
memory accelerator; i.e., add some processing units close to main memory. In 1992, LIM concept re-appeared and 
named computational RAM, and typically uses the same accelerator concept where these are supposed to perform 
operations needed by the memory such as address translations. In the late 1990s and early 2000s, Processor-In-Memory 
(PIM) was proposed and manufactured. PIM is based on splitting the main memory in different parts, each with 
surrounded computing units to bring the computation near to the memory; the architecture has a master CPU that takes 
care of the overall control. In 2004, Memory-In-Logic (MIL), which provides massive addressable memory on the 
processor, was proposed for supercomputer systems. 
 
All mentioned above efforts have tried to close the gap between processor and memory speed. However, as the 
computation and the storage are kept separately, they fundamentally use the von Neumann stored-program computer 
concept and therefore suffer from a memory bottleneck, which negatively impacts the performance [1,2,3,4].  The 
situation becomes even worse considering increasing  size  of data-intensive applications and big data-problems. 
Clearly, the speed at which data is growing has already surpassed the capabilities of today’s computation architectures.  
 
Very important is the fact that today’s computers are manufactured mainly using CMOS technology.  Such technology 
is reaching inherent physical limits due to down-scaling, and is suffering from major limitations; high static power, 
reduced reliability, reduced performance gain, and higher production cost due to increased number masks and 
manufacturing tolerances are just couple of examples [3,4]. Hence the need of new device technology that can be 
combined with - or replace CMOS to sustain the probability of technology scaling is a must.   
 
Memristor based CIM architecture  
To overcome/ mitigate one or more of the disadvantages of the prior art, recently Computing-In-Memory (CIM) 
architecture [5,6,7] has been introduced; CIM takes the data-centric computing concept much further by interweaving 
the processing units and the memory in the same physical location and therefore moving the working set into the core as 
shown in Figure 1 (e). 

Figure 2 illustrates the concept of CIM architecture; the storage and computation are integrated together in a dense 
crossbar array where memristors are injected at each crossbar junction (top electrode and bottom electrode). The 
communication is realized within the crossbar and/or with the support of  CMOS block (communication and control); 
the latter is responsible for the overall control. Figure 3 shows the different levels of the control circuits that maps an 
algorithm on the architecture.   Algorithms are compiled into macro-instructions, each  comprises a set of  micro-
instructions. Micro-instructions are primitive operations such as single add/subtract; they are translated nano-
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instructions, which are electrical signals 
(generated by CMOS control part) that 
independen  tly control the columns and 
the rows of the memristor crossbar tile. 
A tile is a flexible unit performing a 
function (micro or macro-instruction) 
determined by the compiler to minimize 
communications in memristor crossbar 
array. The controller is a state machine 
which enables and distributes required 
functions to each tile at a time. 

 
The preliminary results based on 
simulation for CIM architecture and compared with state-of-the art show 
that depending on the application, at least two order of magnitude 
improvements can be realised with regards to the energy-delay product 
per operations,  the computation efficiency (defined as the number  of 
operations per required energy), and  performance (#operations) per area 
[5,6]; CIM performance is evaluated against a conventional  architecture 
(Conv.) which is assumed to  be a fully scalable multi-core  architecture 
(22nm FinFET technology), consisting of clusters, each having 32 ALU’s 
[5,6].   
 
The results clearly show an increase computing energy and area efficiency by orders 
of magnitude; this enables the computation of currently infeasible big data 
applications, fuelling important societal change! 
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Fig. 2: CIM concept 

Fig. 3: Control circuit levels 

Fig.1: Classification of computing systems based on working set location 
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