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Abstract

In this paper, we discuss the problem of approximating ellipsoid uncer-
tainty sets with bounded (gamma) uncertainty sets. Robust linear pro-
grams with ellipsoid uncertainty lead to quadratically constrained pro-
grams, whereas robust linear programs with bounded uncertainty sets
remain linear programs which are generally easier to solve.

We call a bounded uncertainty set an inner approximation of an ellip-
soid if it is contained in it. We consider two different inner approximation
problems. The first problem is to find a bounded uncertainty set which
sticks close to the ellipsoid such that a shrank version of the ellipsoid is
contained in it. The approximation is optimal if the required shrinking
is minimal. In the second problem, we search for a bounded uncertainty
set within the ellipsoid with maximum volume. We present how both
problems can be solved analytically by stating explicit formulas for the
optimal solutions of these problems.

Further, we present in a computational experiment how the derived
approximation techniques can be used to approximate shortest path and
network flow problems which are affected by ellipsoidal uncertainty.

Keywords Robust optimization; Ellipsoid Uncertainty Set; Bounded Uncer-
tainty Sets; Approximation.

1 Introduction

The idea behind robust optimization is to replace uncertain parameter values
with uncertainty sets. A robust solution needs to take into account all possi-
ble parameter realizations, which may arise from the uncertainty set. Different
uncertainty sets have been proposed in the literature. Ben-Tal and Nemirovski
propose in [2] to use ellipsoid uncertainty sets. Ellipsoids are natural to repre-
sent uncertainty, since many important probability distributions are elliptical. A
probability distribution is elliptical if the superlevel sets of their density function
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are ellipsoids, i.e., the most likely realizations of the corresponding random vari-
able form an ellipsoid. A beneficial property of ellipsoid uncertainty sets is the
tractability of the robust counter part for many important problem classes. For
more information, we refer to the book of Ben-Tal, Nemirovski, and Ghaoui [1].
Another common uncertainty set is the bounded uncertainty set proposed by
Bertsimas and Sim in [4]. These sets are frequently used in the robust opti-
mization community since they own desirable properties. The most important
benefit is the fact that the robust counterpart of a linear programming prob-
lem with respect to a bounded uncertainty set is a linear programming problem
again.

1.1 Contribution

In this paper, we study the relation between ellipsoid and bounded uncertainty
sets. The goal is to find a bounded uncertainty set such that the solution that
is obtained by the robust counterpart with respect to the bounded uncertainty
set is close to the solution of the robust counterpart with respect to ellipsoid
uncertainty. To reach this goal we select a bounded uncertainty set that gives
a good approximation of the ellipsoid. As it is a priori unclear what specifies a
good approximation, we distinguish two different ways to approximate an ellip-
soid. In both cases, we search for bounded uncertainty sets which are contained
in the ellipsoid (so-called inner approximations).

The first way is to find a bounded uncertainty set such that a shrank version
of the ellipsoid is contained in the bounded uncertainty set. The goal is to
find a set such that the shrank ellipsoid is as large as possible. We derive an
explicit formula for the optimal solution of this approximation problem. Note
that a similar problem was already analyzed in [3]. Bertsimas, Pachamanova,
and Sim define in [3] a norm such that the unit ball of this norm is is equal to a
bounded uncertainty set. Further, they show how well this norm approximates
the euclidean norm, i.e., how well bounded uncertainty sets can approximate
the euclidean unit ball. We generalize their result by approximating general
ellipsoids.

The second way is to find a bounded uncertainty set within the ellipsoid
with maximum volume. First, we derive an explicit formula for the volume
of a bounded uncertainty set. Next, we develop an explicit formula for the
optimal solution of this problem which contains a constant that depends on
the dimension of the underlying space. To avoid the exact computation of this
constant, we derive an formula for its approximate value.

We define a shortest path and a network flow problem with ellipsoidal un-
certainty to test the presented approximation techniques. The main insights of
the experiments are: Replacing ellipsoid uncertainty sets with bounded uncer-
tainty sets decreases the computation time, especially for large scale problems.
Depending on the problem, the solution that is obtained by the approximate
problem may be very close to the optimal solution.

1.2 Structure of the Paper

The paper is organized as follows. In Section 2, we introduce the notation
used in the paper and define the two versions of the approximation problem.
In Section 3 and 4, we derive explicit formulas for the optimal solutions of
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the approximation problems for the case of axis-parallel ellipsoids which are
centered at the origin. The topic of Section 5 is to also handle arbitrary rotated
ellipsoids. To this end, we need to introduce the notion of a rotated bounded
uncertainty set. In Section 6, we use shortest path and network flow problems
which are affected by ellipsoidal uncertainty to test the presented approximation
techniques. We summarize our findings and post future research questions in
Section 7. Some technical lemmas which are used in Section 3 and 4 and their
proofs are given in the Appendix.

2 Notation

We denote the index set {1, . . . , n} by [n]. The following notations are used to
represent ellipsoids and bounded uncertainty sets: An ellipsoid uncertainty set
is given by E(a0,M) = {x | (x − a0)TM(x − a0) ≤ 1}, where M is a positive
semidefinite matrix and a0 is called the center of the ellipsoid. A bounded
uncertainty set is a polytope U(a0, a,Γ) ⊂ Rn that is characterized by a0, a ∈ Rn
and a budget parameter Γ ∈ [0, n].

U(a0, a,Γ) =

{
x :

n∑
i=1

|xi − a0
i |

ai
≤ Γ, xi ∈ [a0

i − ai, a0
i + ai] ∀i ∈ [n]

}

The goal is to approximate an ellipsoid E by a bounded uncertainty set. We
start with an axis-parallel ellipsoid E(a0, D), i.e., the matrix D is a diagonal
matrix. Further, we assume that the center of the ellipsoid (and of the bounded
uncertainty set) is 0. For short, we write E(D) and U(a,Γ). We present in
Section 5 how both assumptions can be removed.

As already mentioned, we analyze two different types of approximation. In
both problems, we try to approximate an ellipsoid uncertainty set E with a
bounded uncertainty set which is completely contained in the ellipsoid. The
first idea is to find a bounded uncertainty set which is shaped in such a way
that a scaled version of E lies inside the bounded uncertainty set. The larger
the scaling factor r, the better the approximation. The scaled version of E(D)
is denoted by rE(D) = {rx : xTDx ≤ 1}. We call this problem in the following
ratio approximation. For a given matrix D, the ratio approximation problem is
formally stated as

max
r,a,Γ

r (AP-R)

s.t. rE(D) ⊂ U(a,Γ) ⊂ E(D)

The second problem tries to maximize the volume of the bounded uncertainty
set, called volume approximation. The formal problem definition is given by

max
a,Γ

vol(U(a,Γ)) (AP-V)

s.t. U(a,Γ) ⊂ E(D)
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3 Ratio Approximation

In this section, we discuss the problem (AP-R). The next theorem gives an
explicit formula to compute the optimal solution of the ratio approximation
problem.

Theorem 3.1. Let the ellipsoid E(D) ⊂ Rn be defined by the diagonal matrix

D = diag
(

1
d2

1
, . . . , 1

d2
n

)
. The optimal solution (r∗,Γ∗, a∗) of problem (AP-R) is

given by

r∗ =
1√

b
√
nc+ (

√
n− b

√
nc)2

Γ∗ =
√
n

a∗i = r∗di ∀i ∈ [n]

Proof. Symmetry allows us to reduce our analysis to the positive orthant Rn+,
since

rE(D) ⊂ U(a,Γ) ⊂ E(D)⇔ (rE(D) ∩ Rn+) ⊂ (U(a,Γ) ∩ Rn+) ⊂ (E(D) ∩ Rn+).

Hence, we assume in the following that all elements of E(D) or U(a,Γ) are
non-negative. We begin by rewriting the constraint rE(D) ⊂ U(a,Γ). Note that
x ∈ U(a,Γ) is equivalent to the following constraints

0 ≤ xi ≤ ai ∀i ∈ [n]
n∑
i=1

xi
ai
≤ Γ.

Using this equivalence, we obtain

rE(D) ⊂ U(a,Γ)⇔ max
x∈rE(D)

xi ≤ ai ∀i ∈ [n]

max
x∈rE(D)

n∑
i=1

xi
ai
≤ Γ.

Lemma A.1 and A.2 show that the optimal values of the inner maximization

problems are rdi for i ∈ [n] and r
√∑n

i=1
d2
i

a2
i
, respectively. Inserting these values

and rearranging yields

rE(D) ⊂ U(a,Γ)⇔ r ≤ ai
di
∀i ∈ [n]

r ≤ Γ√∑n
i=1

d2
i

a2
i

.

Next, we analyze the constraint U(a,Γ) ⊂ E(D). Using the definitions of both
sets yields to

U(a,Γ) ⊂ E(D) ⇔ max

n∑
i=1

x2
i

d2
i

≤ 1 ⇔ max

n∑
i=1

a2
i

d2
i

y2
i ≤ 1
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s.t. 0 ≤ xi ≤ ai ∀i ∈ [n] s.t. 0 ≤ yi ≤ 1 ∀i ∈ [n]
n∑
i=1

xi
ai
≤ Γ

n∑
i=1

yi ≤ Γ

We denote by vi =
a2
i

d2
i

the entries of vector v ∈ Rn. Lemma A.3 shows that

the value of the last maximization problem is equal to ||v||(bΓc)
(
1− (Γ− bΓc)2

)
+

||v||(bΓc+1)(Γ−bΓc)2 where ||v||(k) denotes the sum of the k largest entries of v.
Summarizing both results, we obtain

rE(D) ⊂ U(a,Γ)⇔ r2 ≤ vi ∀i ∈ [n]

r2 ≤ Γ√∑n
i=1 vi

U(a,Γ) ⊂ E(D)⇔ ||v||(bΓc)
(
1− (Γ− bΓc)2

)
+ ||v||(bΓc+1)(Γ− bΓc)2 ≤ 1.

Hence, we can rewrite problem (AP-R) by the following optimization problem

maximize r

s.t. r2 ≤ vi ∀i ∈ [n]

r2 ≤ Γ2∑n
i=1

1
vi

||v||(bΓc)
(
1− (Γ− bΓc)2

)
+ ||v||(bΓc+1)(Γ− bΓc)2 ≤ 1

We claim that an optimal solution exists for this problem with vi = vj for all

i, j ∈ [n]. Assume that (r̃, Γ̃, ṽ) is an optimal solution of this problem. We denote
by v = 1

n

∑n
i=1 vi the average of the components of ṽ and by v̂ = (v, . . . , v)T the

vector containing v in every component. We claim that (r̃, Γ̃, v̂) is also feasible
for this problem and, hence, optimal. Note that r̃2 ≤ mini∈[n] ṽi directly implies
r̃2 ≤ v. Further, Lemma A.4 implies that

Γ̃2∑n
i=1

1
vi

≤ Γ̃2∑n
i=1

1
v

.

Finally, using Lemma A.5, we obtain that

||v̂||(bΓc)
(
1− (Γ− bΓc)2

)
+ ||v̂||(bΓc+1)(Γ− bΓc)2 ≤

||v||(bΓc)
(
1− (Γ− bΓc)2

)
+ ||v||(bΓc+1)(Γ− bΓc)2.

This shows the claim that (r̃, Γ̃, v̂) is feasible for the problem. Hence, adding
the constraint that γ = vi for all i ∈ [n] does not change the optimal value of
this problem. Adding this constraint simplifies the problem to

maximize r

s.t. r2 ≤ γ

r2 ≤ Γ2

n
γ

γ(bΓc)
(
1− (Γ− bΓc)2

)
+ γ(bΓc+ 1)(Γ− bΓc)2 ≤ 1
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Rearranging the last inequality yields

γ(bΓc)
(
1− (Γ− bΓc)2

)
+ γ(bΓc+ 1)(Γ− bΓc)2 ≤ 1

⇔ γ ≤ 1

bΓc+ (Γ− bΓc)2
.

The optimal value of γ is readily given by 1
bΓc+(Γ−bΓc)2 . Hence, the optimization

problem can be further simplified to

max min

(
1√

bΓc+ (Γ− bΓc)2
,

Γ
√
n
√
bΓc+ (Γ− bΓc)2

)
.

Since 1√
bΓc+(Γ−bΓc)2

is strictly decreasing in Γ and Γ√
n
√
bΓc+(Γ−bΓc)2

strictly

increasing, the minimum of both functions is maximized if they are equal. This
yields to the final equation

1√
bΓc+ (Γ− bΓc)2

=
Γ

√
n
√
bΓc+ (Γ− bΓc)2

⇔ Γ =
√
n

Therefore, the optimal value of r∗ is given by r∗ = 1√
bΓ∗c+(Γ∗−bΓ∗c)2

and, since

ai =
√
vidi, we obtain that a∗i = r∗di. This concludes the proof.

Note from the proof of Theorem 3.1 can be observed that if Γ is fixed, it is
still optimal to set ai to 1√

bΓc+(Γ−bΓc)2
. We will show in the next section that

the same holds true in the case of volume approximation.

4 Volume Approximation

In this section, we discuss problem (AP-V). Before we consider the optimization
problem, we derive a formula for the volume of a bounded uncertainty set.

Lemma 4.1. The volume of a bounded uncertainty set U(a,Γ) is given by

vol(U(a,Γ)) =

(
n∏
i=1

ai

)
2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n.

Proof. We restrict again our analysis to the positive orthant, since U(a,Γ) is
symmetric with respect to the origin. We denote by U+(a,Γ) the non-negative
part of U(a,Γ), i.e., U+(a,Γ) := U(a,Γ) ∩ Rn+. Note that vol(U(a,Γ)) =
2n vol(U+(a,Γ)). Clearly, U+(a,Γ) ⊂ ×n

i=1[0, ai]. We compute vol(U+(a,Γ))
using the idea of Monte Carlo sampling. Sample n random variables Xi ∼
U [0, ai]. The experiment is successful if X = (X1, . . . , Xn)T ∈ U+(a,Γ). De-
note by p the success probability of this experiment. We use the theory of Monte
Carlo sampling [6] to conclude that vol(U+(a,Γ)) = p · vol(×n

i=1[0, ai]).
Let Yi ∼ U [0, 1] for i ∈ [n], and define Y n :=

∑n
i=1 Yi. The distribution of

random variable Y n is known as the Irwin-Hall distribution [7]. The distribution
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function FY n is given by the following formula

FY n(Γ) =
1

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n.

The success probability p is equal to FY n(Γ), since

P (“success”) = P

(
n∑
i=1

Xi

ai
≤ Γ

)
= P

(
n∑
i=1

Yi ≤ Γ

)
= P (Y n ≤ Γ) = FY n(Γ).

Combining these formulas concludes the theorem:

vol(U(a,Γ)) = 2n vol(U+(a,Γ)) = 2n · p · vol(
n×
i=1

[0, ai])

=

(
n∏
i=1

ai

)
2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n

Next, we consider the optimization problem for a fixed value of Γ.

max
a

vol(U(a,Γ)) (AP-V(Γ))

s.t. U(a,Γ) ⊂ E(D)

Lemma 4.2. Let the ellipsoid E(D) ⊂ Rn be defined by the diagonal matrix

D = diag
(

1
d2

1
, . . . , 1

d2
n

)
. The optimal solution a∗ of problem (AP-V(Γ)) is given

by

a∗i =
di√

bΓc+ (Γ− bΓc)2
, i ∈ [n]

Proof. Since the logarithm is a strictly increasing function, we can maximize
log(vol(U(a,Γ))) instead of vol(U(a,Γ)). Like in the proof of Theorem 3.1, we

define vi =
a2
i

d2
i
.

log(vol(U(a,Γ))) = log

 n∏
i=1

ai
2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n


= log

(
n∏
i=1

ai

)
+ log

2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n


=

n∑
i=1

1

2
log(vid

2
i ) + log

2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n


=

1

2

n∑
i=1

log(vi) +

n∑
i=1

log(di) + log

2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n


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Since Γ is fixed in (AP-V(Γ)), it is sufficient to maximize
∑n
i=1 log(vi). Using

Lemma A.3, the constraint U(a,Γ) ⊂ E(D) can be represented by
||v||(bΓc)

(
1− (Γ− bΓc)2

)
+ ||v||(bΓc+1)(Γ − bΓc)2 ≤ 1. Hence, the optimization

problem can be written as

maximize

n∑
i=1

log(vi)

s.t. ||v||(bΓc)
(
1− (Γ− bΓc)2

)
+ ||v||(bΓc+1)(Γ− bΓc)2 ≤ 1

Let ṽ be an optimal solution of the optimization problem. We denote by
σ(n) all permutations of [n] and by ṽπ the vector ṽ whose entries are permuted
by π ∈ σ(n). Similar to the proof of Lemma A.5, we consider v̂ = 1

n!

∑
π∈σ(n) ṽ

π

the average over all permutations of ṽ. Note that v̂ is feasible for the problem.
Since the objective function f(v) =

∑n
i=1 log(vi) is concave, we obtain that

f(v̂) = f

 1

n!

∑
π∈σ(n)

ṽπ

 ≥ 1

n!

∑
π∈σ(n)

f(ṽπ) = f(ṽ)

Hence, v̂ is an optimal solution. Therefore, we may add the constraint
γ = vi ∀i ∈ [n] without changing the optimal value of the problem. This
simplifies the problem to

maximize n · log(γ)

s.t. γ(bΓc)
(
1− (Γ− bΓc)2

)
+ γ(bΓc+ 1)(Γ− bΓc)2 ≤ 1

Since the objective function is strictly increasing, the optimal value of the
problem is given by γ∗ = 1

bΓc+(Γ−bΓc)2 . Using that ai =
√
vidi, we obtain the

claimed value of a∗i = di√
bΓc+(Γ−bΓc)2

.

Lemma 4.3. The optimal objective value of problem (AP-V(Γ)) is given by(
n∏
i=1

di

)
(bΓc+ (Γ− bΓc)2)−

n
2

2n

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n.

Proof. Immediate consequence of Lemma 4.1 and 4.2.

Lemma 4.3 shows that the optimal Γ∗ which is a minimizer of (AP-V) must also
be a minimizer of

fn(Γ) = (bΓc+ (Γ− bΓc)2)−
n
2

1

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n

Note that this function is independent of the ellipsoid E(D) (and only depends
on n). Denote by Γ∗(n) the minimizer of fn(Γ).
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Theorem 4.4. Let the ellipsoid E(D) ⊂ Rn be defined by the diagonal matrix

D = diag
(

1
d2

1
, . . . , 1

d2
n

)
. The optimal solution (Γ∗, a∗) of problem (AP-V) is

given by

Γ∗ = Γ∗(n)

a∗i =
di√

bΓ∗(n)c+ (Γ∗(n)− bΓ∗(n)c)2
, i ∈ [n]

4.1 Approximation of Γ∗(n)

Since the exact computation of the minimum of fn(Γ) is computationally very
expensive, we use an approximate function f̃n. First, we replace bΓc + (Γ −
bΓc)2 with Γ. Second, we use the central limit theorem to replace the sum
resulting from the Irwan-Hall distribution. Denote by Yi ∼ U [0, 1] random
variables which are independent uniform distributed in [0, 1] and by Z ∼ N (0, 1)
a standard normal distributed random variable. Then, we have

1

n!

bΓc∑
k=0

(−1)k
(
n
k

)
(Γ− k)n = P

(
n∑
i=1

Yi ≤ Γ

)

= P

(
n∑
i=1

Yi −
n

2
≤ Γ− n

2

)

= P

(∑n
i=1 Yi −

n
2√

n
12

≤
Γ− n

2√
n
12

)

≈ P

(
Z ≤

Γ− n
2√
n
12

)

= Φ

(
Γ− n

2√
n
12

)

where we use that E (
∑n
i=1 Yi) = n

2 and σ (
∑n
i=1 Yi) =

√
n
12 [7]. We can re-

place the standardized sum with a standard normal distributed random variable
due to the central limit theorem. Using both replacements, we obtain

f̃n(Γ) = Γ−
n
2 Φ

(
Γ− n

2√
n
12

)

Denote by Γ∗(n) (Γ̃∗(n)) the minimizer of fn(Γ) (f̃n(Γ)). In Figure 1,
we compare the different values. Interestingly, the linear function h(n) =
0.3947n+0.98 seems to yield a good approximation of Γ̃∗(n) at least for n ≤ 200.
Note that Γ̃∗(n) cannot be given exactly by some linear function since this lin-
ear function could be used to derive an analytical expression of Φ, which is
impossible. The experiments indicate that the true function is sublinear. Note
that the central limit theorem is only applicable if n is large enough. We start
using the approximate function f̃n for n = 30. We ran into numerical problems
computing Γ∗(n) for n > 43.
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Figure 1: The values Γ∗(n) [Γ̃∗(n)] are shown as blue cycles [red boxes] on
the y-axis. The function Γ̃∗(n) can be approximated by the linear function
h(n) = 0.3947n+ 0.98.

5 General Ellipsoids

In this section, we shortly discuss how arbitrary ellipsoids E(a0,M) which are
not axis-parallel and not centered at the origin, i.e., M is not a diagonal ma-
trix and a0 6= 0, may be approximated by a polyhedron. Shifting the cen-
ter is straightforward, just use a0 as center for the bounded uncertainty set
U(a0, a,Γ). However, in the case of ellipsoids which are not axis-parallel the
standard bounded uncertainty set is not able to cover the orientation of the
ellipsoid correctly. The idea is to first shift the center of the ellipsoid to the
origin, then to rotate the ellipsoid such that it becomes axis-parallel. The next
step is to fit a bounded uncertainty set to the rotated ellipsoid and to rotate
the fitted uncertainty set back. Lastly, the polyhedral set is shifted by a0 to
approximate the original ellipsoid. The so obtained polyhedron is defined as
rotated bounded uncertainty set.
The rotation which converts a general ellipsoid to one that is axis parallel is
obtained by the eigendecomposition of the matrix M :

M = RDRT

where D is a diagonal and R an orthogonal matrix. Rotating E(M) with matrix
RT yields the axis parallel ellipsoid E(D) [9], i.e.,

RT (E(M)) = {RTx : x ∈ E(M)} = E(D)
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The procedure of shifting, rotating, fitting, re-rotating, and re-shifting combined
with Theorem 3.1 and 4.4 results in the following theorem.

Theorem 5.1. Given a general ellipsoid E(a0,M) ⊂ Rn with M = RDRT and

D = diag
(

1
d2

1
, . . . , 1

d2
n

)
. The rotated bounded uncertainty set which gives the

best approximation of this ellipsoid is described by

RTi (x− a0) ≤ zi ∀i ∈ [n]

−RTi (x− a0) ≤ zi ∀i ∈ [n]

zi
√
bΓ∗c+ (Γ∗ − bΓ∗c)2 ≤ di ∀i ∈ [n]

n∑
i=1

zi

√
bΓ∗c+ (Γ∗ − bΓ∗c)2

di
≤ Γ∗.

For ratio approximation Γ∗ is set to
√
n.

For volume approximation Γ∗ is set to Γ∗(n).

Proof. Let U(a,Γ) be the optimal approximation of the rotated ellipsoidRT (E(M)).
Then, R(U(a,Γ)) is the optimal approximation of E(M). Further, {a0} +
R(U(a,Γ)) approximates the original ellipsoid E(a0,M). The linear descrip-
tion of the rotated bounded uncertainty set is an immediate consequence of the
simple observation that

x ∈ {a0}+R(U(a,Γ))⇔ x− a0 ∈ R(U(a,Γ))⇔ RT (x− a0) ∈ U(a,Γ).

The choices of Γ∗ are given by Theorem 3.1 and 4.4.

Note that the robust counterpart of a linear program with a rotated bounded
uncertainty set is a linear program again. We present some ellipsoids in R2 and
their best possible inner approximations by rotated bounded uncertainty sets in
Figure 2. Note that for n = 2, we have that Γ∗ =

√
2 is optimal for ratio and

volume approximation.
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Figure 2: Some ellipsoids and the corresponding approximations by rotated
bounded uncertainty sets. We choose Γ∗ =

√
2 which is optimal for ratio and

volume approximation for n = 2.

6 Computational Experiment

In this section, we use a shortest path and network flow problem with ellip-
soidal uncertainty to evaluate the robust counterpart resulting from ellipsoid
and bounded uncertainty sets. For the shortest path problem, we compare the
solution times of the different robust counterparts. The network flow problem
is used to evaluate the quality of the approximation for different values of Γ.
The experiments are solved on a Intel Core i5-3470 processor, running at 3.20
GHz, 8 GB RAM under Windows 7. We used CPLEX version 12.6 to solve the
optimization problems.

For both problems, the underlying networks are layered graphs. A layered
graph G = (V,A) is described by two parameters, the width w ∈ N and the
number of layers l ∈ N. The node set V = {s} ∪ V1 ∪ V2 ∪ · · · ∪ Vl ∪ {t}, where
Vi = {vi1, . . . , viw} is the ith layer consisting of w nodes. The arcs go from s to
V1, from each node of Vi to each node of Vi+1 for i ∈ [l−1], and from each node
of Vl to t (see Figure 3). We denote by n the number of arcs in G.

The costs of each arc a are given by ca. We assume that the cost vector c is
affected by ellipsoidal uncertainty, i.e., c ∈ E(c,M) where c is the average cost
vector and M a symmetric and positive definite matrix. The eigendecomposition
of M is given by M = RDRT , where R is a orthogonal matrix and D a diagonal
matrix. We use the following procedure to sample the cost vector c and the
matrix M . Each entry of c and each diagonal entry of D is chosen uniform at

12



s t

Figure 3: A layered graph G with l = 4 and w = 3.

random from the interval [0, 10]. The rotation matrix R is generated iteratively.
At the beginning, we set R = I, where I ∈ Rn×n is the unit matrix. We repeat
the following procedure r times: We choose uniform at random two different
indices from [n] and an angle φ uniform from [0, 2π]. Denote by H(i, j, φ) ∈
Rn×n the two dimensional rotation matrix that is lifted to the Rn×n:

(H(i, j, φ))y,z =



1 , if y = z, y 6= i, y 6= j

cos(φ) , if y = z, y ∈ i, j
−sin(φ) , if y = i, z = j

sin(φ) , if y = j, z = i

0 , else

We update R, by R := H(i, j, φ)R. Finally, after r rotations, we compute
M = RDRT .

6.1 Runtime

First, we consider the problem of finding the cheapest path from s to t under the
worst scenario of E(c,M). Note that this problem is equivalent to the reliable
shortest path problem if the arc costs c are assumed to be normally distributed
[5]. The goal of the reliable shortest path problem is to find a path P that
minimizes t with the constraint that P(c(P ) ≤ t) ≥ α for some α ∈ [0.5, 1).

Denote by X the set of all binary vectors that represent an s-t path, i.e.,
x ∈ X if and only if {a ∈ A : xa = 1} is the arc set of a path from s to t. The
resulting optimization problem is given by

min
x∈X

max
c∈E(c,M)

cTx.

This is equivalent to the following quadratically constraint integer program
since max{c:cTMc≤1} c

Tx =
√
xTM−1x

min cTx+ z (P)

s.t. xTM−1x ≤ z2

x ∈ X .

13



We use the presented techniques to approximate E(M) with a rotated bounded
uncertainty set R(U(a,Γ)). The resulting problem is given by

min
x∈X

(
cTx+ max

c∈R(U(a,Γ))
cTx

)
.

This is equivalent to

min
x∈X

(
cTx+ max

c∈U(a,Γ)
cTRTx

)
.

Dualizing the inner maximization problem, we obtain a compact mixed integer
programming formulation

min cTx+ aT p+ Γη (P ′)

s.t. πi − pi −
η

ai
≤ 0 ∀i ∈ [n]

− πi ≤ RTi x ≤ πi ∀i ∈ [n]

p, η ≥ 0

x ∈ X

The focus of the first experiment is to compare the time that is necessary
to solve P and P ′. We did two different runs of the experiment. In the first
run, we fix the number of rotations r to 1000 and vary the number of layers l
from 2 to 101. In the second run, we fix the number of layers l to 50 and vary
the number of rotations from 0 to 3000. In both runs, we set the width w of
the underlying graph to 4. For each run, we solve 1000 different shortest path
problems. The time limit for a single shortest path problem is set to 30 seconds.
We choose a and Γ as suggested by Theorem 3.1, i.e., Γ =

√
n. The results of

both runs are shown in in Figure 4 and 5.
For a small number of layers, less than 20, problems P and P ′ are basically

solved at the same time. Further increasing the number of layers increases not
only the average but also the variance of the solution time of P. Note that 100
layers are not enough to impact the computation time of P ′.

The solution time of P scales similarly with the number of rotations: An
increasing number of rotations leads to an increase of the average and of the
variance of the computation time. But, increasing the number of rotations
shows also an effect on the solution time of P ′. Nevertheless, P ′ is still solved
considerably faster than P.

For both runs, the solutions found by P ′ are almost optimal. In particular,
the solutions found by P ′ are on average 0.05% worse than the optimal solution.
Indeed in 1160 of 2000 instances the optimal solutions of both problems are
equal. Note that 123 instances could not be solved to optimality within the
time limit. For these instances, we assume that the optimal solution is equal
to the best solution found within the time limit or to the solution of P ′ if this
solution is better (this happened 68 times).
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Figure 4: The red dots represent the time to solve P and the black triangles the
time to solve P ′. The computation time is given in seconds. The time limit is
set to 30 seconds.
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Figure 5: The red dots represent the time to solve P and the black triangles the
time to solve P ′. The computation time is given in seconds. The time limit is
set to 30 seconds.
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6.2 Quality of Approximation

In the second experiment, we do some modifications of the experiment setup to
generate problems for which the solutions of P ′ are not almost optimal.

First, we set the average cost vector c = 0. Note that the resulting problem
is equivalent to the quadratic shortest path problem (if the objective function
is squared), which is a very challenging problem as presented in [8]. Second,
we replace X with conv(X ), i.e., we shift the feasible space from s-t paths to
s-t flows with flow value 1. This increases the solutions space and allows for
a bigger gap between the exact and the approximate problem. As a result,
the uncertainty set and its shape become more important for the value of the
objective function. Note that under this setup scaling of E(M) and U(a,Γ) by
an arbitrary factor λ > 0 has no impact on the optimal solution, since

max
c∈λE(M)

cTx = max
λc̃∈λE(M)

λc̃Tx = λ max
c̃∈E(M)

c̃Tx and

max
c∈λU(a,Γ)

cTx = max
λc̃∈λU(a,Γ)

λc̃Tx = λ max
c̃∈U(a,Γ)

c̃Tx.

In one run of the experiment, we first generate a random matrix M , as
described above, with r = 1000 for the layered graph with w = l = 5. Note that
the number of arcs is equal to n = 110. Next, we compute the optimal solution
of the problem

min
√
xTM−1x (F)

s.t. x ∈ conv(X )

For each value of Γ from 1 to 110, we solve the approximate problem

min
x∈conv(X )

max
c∈U(a,Γ)

cTRTx (F(Γ))

where the bounded uncertainty set U(a,Γ) is computed according to Lemma 4.2.
We denote by xΓ the optimal solutions of F(Γ) and by x∗ the optimal solution

of F . Finally, we compute
√

xΓM−1xΓ

x∗M−1x∗ to compare the performance of xΓ and

x∗. We execute 1000 runs of this experiment. The averaged results are shown
in Figure 6.

The best approximation is achieved for Γ = 41. Interestingly, this is really
close to Γ∗(110) ≈ 44, the optimal Γ with respect to (AP-V). Note that we have
tried to make the gap between F and F ′ as large as possible by setting c = 0
and relaxing the integrality constraints. However, the gap for the optimal Γ is
still below 10%.

We summarize the findings of both experiments. The first experiment un-
derlines the expectation that P ′ is better suited for large scale problems than
P. The second experiment shows that the right choice of Γ is important to get
a good approximation of the original problem.
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Figure 6: We evaluate xΓ using the objective function of problem F and compare

it to the objective value of x∗ by computing
√

xΓM−1xΓ

x∗M−1x∗ (shown on the y-axis).

The values are averaged over 1000 runs.

7 Conclusions

We derived explicit formulas for the approximation of ellipsoid uncertainty sets
by bounded uncertainty sets. To approximate ellipsoid uncertainty sets that
are not axis-parallel, we introduced the rotated bounded uncertainty set as a
generalization of the classic bounded uncertainty set. We proved that for a fixed
budget parameter Γ, the optimal bounded uncertainty sets for the ratio and
volume approximation problem are identical. The optimal solutions differ only
in the choice of Γ. For ratio approximation, the optimal choice of Γ is equal to√
n, whereas for volume approximation, we have Γ ≈ 0.4n (for n ≤ 200), where

n is the dimension of the underlying space.
In the experimental result section, we test the derived approximation tech-

niques. In the first experiment, we consider a shortest path problem with an
ellipsoid uncertainty set. For large scale problems, the approximate problem can
be solved considerably faster than the original one and yields solutions which
are almost optimal. In the second experiment, we use a relaxed version of the
former problem to show the influence of the choice of Γ on the quality of the
approximation. For the presented problem, the Γ maximizing the volume of the
bounded uncertainty set proves to be a good choice.

The derived approximations give rise to interesting research questions: Are
there other tractable polytope families beside the bounded uncertainty sets
which can be used to approximate ellipsoids with the same or even better ap-
proximation properties? Which problem classes are well suited for ratio or vol-
ume approximation? How does scaling of the bounded uncertainty set influences
the quality of the approximation?
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A Appendix

Lemma A.1. maxx∈rE(D) xi = rdi

Proof. The constraint defining the scaled ellipsoid rE(D) is
∑n
i=1

x2
i

d2
i
≤ r2.

The ith component is maximized by setting xj = 0 for j 6= i and xi = rdi.

Lemma A.2. maxx∈rE(D)

∑n
i=1

xi

ai
= r
√∑n

i=1
d2
i

a2
i

Proof. The maximum of a linear function over an ellipsoid is attained at the
boundary of the ellipsoid. Hence, the optimization problem is equivalent to

maximize

n∑
i=1

xi
ai

s.t.

n∑
i=1

x2
i

d2
i

= r2.
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Using the Karush-Kuhn-Tucker theorem leads to the following equations

1

ai
+ 2λ

x∗i
d2
i

= 0 ∀i ∈ [n]

n∑
i=1

x∗2i
d2
i

= r2.

Under the assumption that x∗ ≥ 0, the system is uniquely solved by

x∗i = r
d2
i

ai

√∑n
i=1

d2
i

a2
i

.

Computing the objective function at the point x∗ completes the proof

n∑
i=1

x∗i
ai

= r

√√√√ n∑
i=1

d2
i

a2
i

.

Lemma A.3. The optimal value of the optimization problem

max

n∑
i=1

a2
i

d2
i

y2
i

s.t. 0 ≤ yi ≤ 1 ∀i ∈ [n]
n∑
i=1

yi ≤ Γ

is given by ||v||(bΓc)
(
1− (Γ− bΓc)2

)
+||v||(bΓc+1)(Γ−bΓc)2 where v = (v1, . . . , vn)T

and vi =
a2
i

d2
i

for i ∈ [n].

Proof. With out loss of generality, we assume that v1 ≥ v2 ≥ · · · ≥ vn. We
claim that a optimal solution y∗ of the maximization problem is given by

y∗i =


1, 0 ≤ i ≤ bΓc
Γ− bΓc, i = bΓc+ 1

0, else

Let i < j. Assume that a vector ỹ is optimal and ỹi < ỹj . Switching the ith

and jth entry of ỹ does not decrease the objective value, since v2
i ỹ

2
i + v2

j ỹ
2
j ≤

v2
i ỹ

2
j +v2

j ỹ
2
i . Hence, we can assume without loss of generality that yi ≥ yj . Note

that every vector y can be seen as a weight distribution of Γ units of weight
to n different components. Transferring ε > 0 units of weight from the jth

component to the ith component does not decrease the objective function, since

v2
i (yi + ε)2 + v2

j (yj − ε)2 − v2
i y

2
i − v2

j y
2
j

= v2
i (y2

i + 2εyi + ε2 − y2
i ) + v2

j (y2
j − 2εyj + ε2 − y2

j )
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= (v2
i + v2

j )ε2 + 2ε(v2
i yi − v2

j yj)

≥ (v2
i + v2

j )ε2 + 2ε(v2
j yi − v2

j yi)

= (v2
i + v2

j )ε2 ≥ 0.

This argument proves that y∗ is an optimal solution of the maximization

problem. Therefore, the optimal value of the problem is given by
∑bΓc
i=1 vi +

(Γ− bΓc)2vbΓc+1. Rearranging yields the claimed value

bΓc∑
i=1

vi + (Γ− bΓc)2vbΓc+1 = ||v||(bΓc) + (Γ− bΓc)2(||v||(bΓc+1) − ||v||(bΓc))

= ||v||(bΓc)(1− (Γ− bΓc)2) + ||v||(bΓc+1)(Γ− bΓc)2.

Lemma A.4. Let vi > 0 for i ∈ [n] and v = 1
n

∑n
i=1 vi. Then,

n

v
≤

n∑
i=1

1

vi
.

Proof. We have to show that n2 ≤
∑n
i=1 vi

∑n
i=1

1
vi

. This holds since

n∑
i=1

vi

n∑
i=1

1

vi
=

n∑
i,j=1

vj
vi

=
1

2

n∑
i,j=1

(
vj
vi

+
vi
vj

)
≥ 1

2

n∑
i,j=1

2 = n2.

Lemma A.5. Let vi > 0 for i ∈ [n], v = 1
n

∑n
i=1 vi, and v̂ = (v, . . . , v)T . Then,

for any k ∈ [n],
||v̂||(k) < ||v||(k).

Proof. Denote a reordered version of v by vπ = (vπ(1), . . . , vπ(n))
T where π ∈

σ(n) is a permutation of {1, . . . , n}. Observe that the function f(v) = ||v||(k)

is convex and that f(vπ) = f(v) for all π ∈ σ(n). Using these two properties
concludes the proof, since

f (v̂) = f

 1

n!

∑
π∈σ(n)

vπ

 ≤ 1

n!

∑
π∈σ(n)

f (vπ) =
n!

n!
f (v) = f(v).
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