
University of Kaiserslautern

Department of Computer Science

Image Analysis with Long Short-Term

Memory Recurrent Neural Networks

by

Wonmin Byeon

Thesis approved by the
Department of Computer Science

University of Kaiserslautern (TU Kaiserslautern)
for the award of the doctoral degree

Doctor of Natural Sciences (Dr. rer. nat.)

Date of submission: 02 December, 2015
Date of the viva: 07 March, 2016

Dean: Prof. Dr. Klaus Schneider

PhD committee
Chairperson: Prof. Dr. Katharina Zweig
Reviewers: Prof. Dr. Andreas Dengel

apl. Prof. Dr. Marcus Eichenberger-Liwicki

D386

Abstract

Computer Vision (CV) problems, such as image classification and segmentation, have

traditionally been solved by manual construction of feature hierarchies or incorpo-

ration of other prior knowledge. However, noisy images, varying viewpoints and

lighting conditions of images, and clutters in real-world images make the problem

challenging. Such tasks cannot be efficiently solved without learning from data.

Therefore, many Deep Learning (DL) approaches have recently been successful for

various CV tasks, for instance, image classification, object recognition and detec-

tion, action recognition, video classification, and scene labeling. The main focus of

this thesis is to investigate a purely learning-based approach, particularly, Multi-

Dimensional LSTM (MD-LSTM) recurrent neural networks to tackle the challenging

CV tasks, classification and segmentation on 2D and 3D image data. Due to the

structural nature of MD-LSTM, the network learns directly from raw pixel values

and takes the complex spatial dependencies of each pixel into account. This thesis

provides several key contributions in the field of CV and DL.

Several MD-LSTM network architectural options are suggested based on the type of

input and output, as well as the requiring tasks. Including the main layers, which

are an input layer, a hidden layer, and an output layer, several additional layers can

be added such as a collapse layer and a fully connected layer. First, a single Two

Dimensional LSTM (2D-LSTM) is directly applied on texture images for segmenta-

tion and show improvement over other texture segmentation methods. Besides, a

2D-LSTM layer with a collapse layer is applied for image classification on texture

and scene images and have provided an accurate classification results. In addition,

a deeper model with a fully connected layer is introduced to deal with more complex

images for scene labeling and outperforms the other state-of-the-art methods includ-

ing the deep Convolutional Neural Networks (CNN). Here, several input and output

representation techniques are introduced to achieve the robust classification. Ran-

domly sampled windows as input are transformed in scaling and rotation, which are

integrated to get the final classification. To achieve multi-class image classification

i

on scene images, several pruning techniques are introduced. This framework provides

a good results in automatic web-image tagging. The next contribution is an investi-

gation of 3D data with MD-LSTM. The traditional cuboid order of computations in

Multi-Dimensional LSTM (MD-LSTM) is re-arranged in pyramidal fashion. The re-

sulting Pyramidal Multi-Dimensional LSTM (PyraMiD-LSTM) is easy to parallelize,

especially for 3D data such as stacks of brain slice images. PyraMiD-LSTM was tested

on 3D biomedical volumetric images and achieved best known pixel-wise brain image

segmentation results and competitive results on Electron Microscopy (EM) data for

membrane segmentation.

To validate the framework, several challenging databases for classification and seg-

mentation are proposed to overcome the limitations of current databases. First, scene

images are randomly collected from the web and used for scene understanding, i.e.,

the web-scene image dataset for multi-class image classification. To achieve multi-

class image classification, the training and testing images are generated in a different

setting. For training, images belong to a single pre-defined category which are trained

as a regular single-class image classification. However, for testing, images containing

multi-classes are randomly collected by web-image search engine by querying the cat-

egories. All scene images include noise, background clutter, unrelated contents, and

also diverse in quality and resolution. This setting can make the database possible

to evaluate for real-world applications. Secondly, an automated blob-mosaics texture

dataset generator is introduced for segmentation. Random 2D Gaussian blobs are

generated and filled with random material textures. These textures contain diverse

changes in illumination, scale, rotation, and viewpoint. The generated images are

very challenging since they are even visually hard to separate the related regions.

Overall, the contributions in this thesis are major advancements in the direction of

solving image analysis problems with Long Short-Term Memory (LSTM) without

the need of any extra processing or manually designed steps. We aim at improving

the presented framework to achieve the ultimate goal of accurate fine-grained image

analysis and human-like understanding of images by machines.

ii

Acknowledgements

I would like to express my gratitude to all those who have supported, influenced and

helped me in the process which ultimately resulted in this thesis.

First of all, I would like to thank Prof. Andreas Dengel and apl. Prof. Marcus

Eichenberger-Liwicki for their support and encouragement. This dissertation could

not be completed without their trust and constructive suggestions. My gratitude also

goes to Prof. Thomas Breuel for the opportunity to carry out my research work and

his valuable guidance throughout my study. I am also greatful to my committee mem-

bers, Prof. Didier Stricker and Prof. Katharina Zweig for their valuable comments

and suggestions. Furthermore, I would like to thank Prof. Juergen Schmidhuber for

the opportunity to visit his group and the great collaboration.

Next, I would like to thank all my colleagues at IUPR and MADM for their fruitful

comments and discussions for my research work and this dissertation. In particular,

Federico Raue, Mohammad Reza Yousefi, Nibal Nayef, Adnan UI Hasan, and Se-

bastian Palacio who reviewed my thesis and helped me out with the oral defense. I

also thank my formal colleagues, Ludwig Schmidt-Hackenberg, Ilya Mezhirov, Wanlei

Zhao, and Muhammet Bastan for the great discussions. I would like to express my

appreciation for Ingrid Romani and Brigitte Selzer for their administrative supports.

I also want to thank the colleagues at IDSIA for their valuable discussions during my

stay, especially Marijn Stollenga for the excellent collaboration. I am very greatful

to all other friends, especially Jae-Yeon Chung and Irina Cevallos who helped me out

with all the challenges living in Germany and always supported me.

My very special thanks goes to my family. My father Saesang, my mother Insuk, and

my brother, Taeyong always supports me during and beyond my thesis. Without

them, I could not go through the difficult time during my study. Therefore, I would

like to dedicate my thesis to my family.

iii

Contents

Abstract i

Acknowledgements iii

List of abbreviations xii

1 Introduction 1

1.1 Challenges in Image Analysis . 2

1.1.1 Challenges in Image Classification 3

1.1.2 Challenges in Image Segmentation 6

1.2 Background of Image Analysis . 7

1.3 Research Hypothesis and the Goal of the Thesis 9

1.4 Contributions . 10

1.5 Overview of the Thesis . 11

2 Image Analysis 14

2.1 Overview . 14

2.1.1 Local Feature-Based Approach 15

2.1.2 Learning-Based Approach . 21

2.2 Image Classification . 24

2.3 Image Segmentation . 26

2.4 Conclusion . 31

v

3 Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-
LSTM 32

3.1 Background . 33

3.1.1 Notations . 33

3.1.2 Recurrent Neural Networks 33

3.1.3 Long Short-Term Memory (LSTM) 34

3.2 Traditional Multi-Dimensional LSTM (MD-LSTM) 36

3.3 Proposed PyraMiD-LSTM: Parallel MD-LSTM 38

3.4 Conclusion . 41

4 Network Architectures for Image Analysis 42

4.1 Network Layers . 42

4.1.1 Input Layer . 43

4.1.2 Hidden Layer . 44

4.1.3 Output Layers . 44

4.2 Network Design for Image Analysis 46

4.2.1 The Dimension of Input . 46

4.2.2 Depth of the Network . 48

4.2.3 The Type of Output . 49

4.3 Network Settings and Generalization 52

4.3.1 Input Representation . 53

4.3.2 Weight Initialization . 54

4.3.3 Peephole Connections . 55

4.3.4 Regularization . 55

4.3.5 Optimization . 55

4.3.6 Network Parameters . 57

4.4 Conclusion . 58

vi

5 Image Classification 59

5.1 Texture Classification . 60

5.1.1 The Approach . 60

5.1.2 Datasets . 62

5.1.3 Experimental Setup . 63

5.1.4 Results and Analysis . 65

5.1.5 Summary . 66

5.2 Scene Understanding . 67

5.2.1 The Approach . 68

5.2.2 Datasets . 69

5.2.3 Experimental Setup . 74

5.2.4 Results and Analysis . 76

5.2.5 Summary . 79

5.3 Conclusion . 79

6 Image Segmentation 83

6.1 Texture Segmentation . 84

6.1.1 The Approach . 84

6.1.2 Datasets . 85

6.1.3 Experimental Setup . 87

6.1.4 Results and Analysis . 89

6.1.5 Summary . 89

6.2 Scene Labeling . 92

6.2.1 The Approach . 93

6.2.2 Datasets . 93

6.2.3 Experimental Setup . 96

6.2.4 Results and Analysis . 96

vii

6.2.5 Summary . 99

6.3 Conclusion . 100

7 Parallel Volumetric LSTM Networks 103

7.1 Biomedical Volumetric Image Segmentation 104

7.1.1 The Approach . 104

7.1.2 Datasets . 105

7.1.3 Experimental Setup . 106

7.1.4 Results and Analysis . 108

7.2 Conclusion . 110

8 Conclusion and Future Work 113

8.1 Concluding Remarks . 114

8.2 Future Directions . 119

Bibliography 120

Curriculum Vitae 141

viii

List of Figures

1.1 The gap between the visual contents, which are actually present inside
an image, and the contents a human focuses on 1

1.2 Examples of tasks and challenges for different image types 3

1.3 Difficulties of texture classification datasets 4

1.4 The difficulties of web-image dataset introduced by this thesis 5

1.5 Difficulties in texture segmentation dataset introduced by this thesis . 6

1.6 A stack of EM dataset for 3D volumetric image segmentation 8

2.1 The procedure of local features-based approaches 15

2.2 The Difference of Gaussians (DoG) interest point detector 18

2.3 The Scale-Invariant Feature Transform (SIFT) descriptor 20

2.4 The architecture of CNN . 22

2.5 The architecture of CNN . 24

2.6 The first post-processing strategy from CNN using super-pixels 27

2.7 The second post-processing strategy from CNN using Conditional
Random Fields (CRF) . 28

2.8 The third post-processing strategy from CNN using the segmentation
tree . 29

2.9 The composition of Recurrent Convolutional Neural Networkss (RCNNs) 30

3.1 The architectural difference between RNNs and BRNNs 34

3.2 LSTM memory block . 36

3.3 2D-LSTM memory block . 38

ix

3.4 Recurrent connections of 2D and Pyramidal Multi-Dimensional LSTM
(PyraMiD-LSTM) . 39

3.5 Topological difference between MD-LSTM and PyraMiD-LSTM . . . 40

4.1 The internal representation of each layer of the three-layered networks 50

4.2 Various architectures for different applications 52

5.1 A pipeline for texture classification 61

5.2 An overview of the scene analysis system 67

5.3 Image search for database generation 71

5.4 Examples of mid-level attribute data 72

5.5 Examples of scene data for scene analysis and web-image tagging . . 73

5.6 Confusion table with top-1 predicted semantic attribute on web scene
images . 78

5.7 The results of automatic web-image tagging 82

6.1 Existing texture segmentation datasets 85

6.2 Blob-Mosaics texture segmentation database 86

6.3 Segmentation results of blob-mosaics images 91

6.4 2D-LSTM network architecture . 92

6.5 Visualization of feature maps . 94

6.6 The behavior of output activations from the networks while training
for scene labeling . 95

6.7 Class frequency distribution and confusion table on the Stanford Back-
ground dataset . 99

6.8 The results of scene labeling on the Stanford Background dataset . . 101

6.9 Selected mislabeled examples of scene segmentation 102

7.1 Segmentation results for CNNs and PyraMiD-LSTM on EM dataset . 111

7.2 Examples of three scan methods used in the Magnetic Resonance (MR)
brain dataset and the segmentation results 112

x

8.1 Examples of mislabeled web-images for tagging. 116

8.2 Examples of failing cases in scene labeling 118

xi

List of Tables

2.1 The architecture of GoogLeNet . 26

5.1 Summary of texture datasets used in the experiments 62

5.2 Correct classification rates on five benchmark datasets of texture clas-
sification . 65

5.3 Accuracy comparisons of single visual attribute classification on web-
image dataset . 76

5.4 Accuracy comparisons for natural scene analysis on the web-image
dataset . 77

5.5 The comparison of Mean Average Precision (mAP) on SceneAtt dataset 79

6.1 Accuracy comparison of texture segmentation on texture blob-mosaics
images . 88

6.2 Pixel and averaged per class accuracy comparison for scene labeling . 97

7.1 Performance comparison on EM images 108

7.2 Performance comparison on MR brain images 109

xii

List of abbreviations

RNN Recurrent Neural Networks

BRNN Bidirectional Recurrent Neural Networks

LSTM Long Short-Term Memory

1D-LSTM One Dimensional LSTM

2D-LSTM Two Dimensional LSTM

3D-LSTM Three Dimensional LSTM

MD-LSTM Multi-Dimensional LSTM

PyraMiD-LSTM Pyramidal Multi-Dimensional LSTM

C-LSTM Convolutional LSTM

CNN Convolutional Neural Networks

RCNN Recurrent Convolutional Neural Networks

DL Deep Learning

ML Machine Learning

CV Computer Vision

NN Neural Networks

MLP Multilayer Perceptron

SVM Support Vector Machines

CRF Conditional Random Fields

RBM Restricted Boltzmann Machines

xiii

SOM Self Organizing Map

MR Magnetic Resonance

EM Electron Microscopy

GT Ground-Truth

MAP Mean Average Precision

LoG Laplacian of Gaussian

DoG Difference of Gaussians

MSER Maximally Stable Extremal Regions

SIFT Scale-Invariant Feature Transform

SURF Speeded Up Robust Features

GLOH Gradient Location and Orientation Histogram

HOG Histogram of Oriented Gradients

BoVW Bag-of-Visual-Words

FV Fisher Vector

ReLU Rectified Linear Units

SGD Stochastic Gradient Descent

xiv

Chapter 1

Introduction

Given the ever increasing volume of visual data on the Internet, the demand for

automated image analysis is growing. However, extracting the desired visual contexts

from images of various sizes, qualities, and semantics is a great challenge in the field

of Computer Vision (CV). One of the important issues in image analysis is to fill the

gap between the visual contents, which are actually present inside an image, and the

contents a human focuses on.

Here is an example, the picture of the Eiffel Tower, Figure 1.1. What is the main

content of this picture? One viewer may see the Eiffel Tower first, but another

viewer may focus on the couple in the front instead of the tower. Others may see

the (beautiful) sky, the sunset, or cloud (depending on their prior knowledge or the

Figure 1.1: This example shows the gap between the visual contents, which are actually
present inside an image, and the contents a human focuses on. The picture is taken from
http://favim.com/image/927/.

1

http://favim.com/image/927/

2 Chapter 1. Introduction

information expected from the image). The picture is obtained by querying Google

web-search1 with the string “Eiffel Tower”. However, the top two tags of the image

added by users on the website, where the picture is taken from, are “couple” and

“dusk”2. Which contents should be considered if a machine analyzes this or any

other pictures?

Due to the large diversity of images, the different types of images stand for different

challenges: finding semantic contents with their location, the overall concept, or the

specific contents of the image. Figure 1.2 illustrates some of the tasks and challenges

for different image types.

This thesis covers the two CV tasks, of image classification and segmentation, for

different types of images (texture images, natural scene images, and 3D biomedical

images). In the following section, we discuss the challenges which arise when dealing

with such tasks.

1.1 Challenges in Image Analysis

This thesis considers two main tasks of image analysis, image classification and image

segmentation. There are numerous related challenges for different types of images

considering these tasks. First, image classification is to categorize an image into one

or several class labels. An image usually contains a variety of contents3; some of them

will be concerned by users, but some may not be. Moreover, there are visually similar

images that have different class labels. These issues make the task difficult. Next,

image segmentation can be categorized as a pixel-wise classification task. The main

issues for this task is to separate the multiple foreground layers, which most people

focus on, from the background layer and to label every pixels to the corresponding

class labels.

1https://www.google.com/imghp
2http://favim.com/image/927/
3This kind of image will be referred to as a complex image in the remainder of the thesis.

https://www.google.com/imghp
http://favim.com/image/927/

1.1. Challenges in Image Analysis 3

(a) scene labeling [FCNL13] (b) face recognition [OB14]

(c) object detection [LRSM13] (d) object segmentation [NC13]

(e) pedestrian detection [KN12]
(f) action recognition [MZICS13]

Figure 1.2: Examples of tasks and challenges for different image types

1.1.1 Challenges in Image Classification

For image classification, the thesis takes account of two types of images, texture and

scene images. A texture image usually contains a material or a natural texture of an

object. A natural scene image is a generic image containing some humans, objects,

and background elements. In this section, possible challenges regarding such images

will be discussed.

4 Chapter 1. Introduction

cotton linen brown bread sponge

(a) Texture classification dataset, KTH-TIPS [KTH]. “cotton” and “linen” or “brown
bread” and “sponge” textures are visually similar.

wool

corduroy

cotton

(b) Texture classification dataset, KTH-TIPS2-a [KTH]. Same texture class in the images
are visually different.

Figure 1.3: Difficulties of texture classification datasets. Some different materials may
have similar looking textures. On the other hand, the same category materials may look
very different. Due to these characteristics, the recognition of textures cannot be easily
solved.

Texture images: Texture is a rich source of information about the contents of

images and identity of objects. However, reliable texture recognition is challenging

because texture is a property of image pixels that is both stochastic and non-local.

Most approaches to texture recognition manually design feature extractors to cope

with the non-locality, choosing specific ways of integrating information of a region

that is robust to changes in phase. An example of such an approach is Haralicks

texture features [Har79]. Figure 1.3 shows some challenges for the texture classifica-

tion task. Texture images might contain different textures in visually similar images

1.1. Challenges in Image Analysis 5

forest gravel sand sky

gravel flower flower flower

ocean stucco snow candy

Figure 1.4: The difficulties of the web-image dataset introduced by this thesis. The
images contain errors (wrong labels) or noise (logos, watermark, or irrelevant objects).

(Figure 1.3-a) or different-looking images with the same label (Figure 1.3-b). In other

words, these contain low inter-class variance (the variance between the classes) and

high intra-class variance (the variance within the class), respectively.

Natural scene images: Natural images are often complex and tend to contain

much background clutter and/or many unrelated contents. Images obtained from the

web may contain a watermark, logo or some text, for instance. Furthermore, images

from a social networking service like Twitter or Facebook are often low-resolution.

In Figure 1.4, some difficulties of images collected from the web are shown. The

focus of the picture also varies depending on the purpose behind taking or posting

the picture. In this thesis, a new web-image dataset for more realistic scenarios is

generated. In Section 5.2, the difficulties of the natural scene image dataset will be

discussed in more detail and along with the discussion on how they can be overcome.

6 Chapter 1. Introduction

Figure 1.5: Difficulties in texture segmentation introduced by this thesis (Section 6.1.2).
The randomly transformed textures (in scale, rotation, and illumination) are positioned in
an arbitrary shape. Many of these textures’ regions are visually similar or ambiguous.

1.1.2 Challenges in Image Segmentation

Image segmentation is a fundamental task for many applications such as object recog-

nition, medical imaging, and scene analysis. A uniform region is defined by homoge-

neous material or between discontinuities in depth. Here, the various challenges of

dealing with texture images, natural scene images, and 3D biomedical images will be

discussed.

Texture images: The texture has major visual cues of the surface within and

between the regions. In order to segment the disjoint uniform regions based on

textures, the combination of texture classification and image segmentation is used.

However, it is difficult to generalize the system in order to find a pattern without the

knowledge of domain, as it is affected by various external conditions, i.e., wide range

of scale, illumination, rotation, as well as internal noise of the texture. Figure 1.5

shows some examples of such challenges on an image segmentation dataset.

1.2. Background of Image Analysis 7

Natural scene images: Accurate image segmentation on scene images (i.e., scene

labeling) is an important step towards image understanding. The scene labeling task

consists of partitioning the meaningful regions of an image and labeling pixels with

their regions. Pixel labels can (most likely) not only be decided by low-level features,

such as color or texture, extracted from a small window around pixels. One challenge

when dealing with such a setting is to distinguish “grass” from “tree” or “forest”.

As a matter of fact, human people perceptually distinguish regions via the spatial

dependencies between them. For instance, visually similar regions can be predicted

as “sky” or “ocean” depending on whether they are on the top or bottom part of a

scene.

3D biomedical images: Analyzing biomedical images is one of the most im-

port subjects of study for biologists, but especially for neuroanatomists. There are

many biomedical 3D volumetric data sources, such as Computed Tomography (CT),

MR, and Electron Microscopy (EM). This volumetric image data provide higher

dimensional information but is hard to handle. Moreover, a lot of noise and low

quality images make the task very challenging. Many researchers in this field have

been investigating reliable automated segmentation and reconstruction of this data.

One of the common solutions is to process each 2D slice separately, using image

segmentation algorithms such as snakes [KWT88], random forests [WGS+15], and

CNNs [CGGS12]. Nevertheless the slices of a volume are continuous, the contex-

tual information between slices cannot be contributed to the final classification of a

pixel with such approaches. In other words, there is no easy way to integrate the

full context of each pixel in such a volume. Figure 1.6 shows some examples of 3D

biomedical volumetric datasets.

1.2 Background of Image Analysis

Designing a system, which is capable of solving the challenges discussed above, is

one of the main goals in CV communities. In both classification and segmentation,

the typical approaches are to find an appropriate representation which the system

attempts to analyze. In such approaches, the important issue is to select not only

the discriminative representation between the class, but also the generalized repre-

sentation within the class which can be applied to a large variety of data.

8 Chapter 1. Introduction

Figure 1.6: A stack of EM dataset [Seg12] (slice 1, 6, 12, and 18 from 30 slices). To
generate such a dataset, the electron beam travels in straight lines and images are captured
in (short) consecutive time points. Therefore, the slices are closely linked.

Local interest point detectors and descriptors have been proven for many years to

provide a robust and highly adaptable way to represent images. Typically, an interest

point detector selects distinctive points or regions of an image, and a descriptor

characterizes these regions using color, texture, shape, location, and so on. The

main question arising from these in such approaches is whether or not the extracted

information is invariant to the common image transformation (e.g., scaling, rotation,

or translation). Various detectors based on the edge4, corner5, and blob6 and the

descriptors7 have been introduced in the literature. More details will be discussed in

Section 1.5.

Another direction, which has been studied, is to emulate the behavior of the hu-

man brain and visual system, providing more biologically plausible alternative to

statistical learning methods. Some examples of these biologically inspired mod-

els are Neocognitron [Fuk80], Convolutional Neural Networks (CNN) [LBBH98a],

and Long Short-Term Memory (LSTM) [HS97b]. More recently, this research

field has been extensively growing as an end-to-end vision system based on Deep

4e.g., Canny [Can86], Deriche [Der87]
5e.g., Harris [HS88]
6e.g., Maximally Stable Extremal Regions (MSER) [MCUP04]
7e.g., SIFT [Low99], Speeded Up Robust Features (SURF) [BETG08], Gradient Location and

Orientation Histogram (GLOH) [MS05b], Histogram of Oriented Gradients (HOG) [DT05]

1.3. Research Hypothesis and the Goal of the Thesis 9

Learning (DL) [Ben09, Sch14, DY14]. The related algorithms (especially CNNs)

have become very successful in many computer vision applications such as im-

age classification [CMS12, KTS+14], traffic sign recognition [SL11], image cap-

tion generation [VTBE14, KSH12b], video classification [KSZ14], and face recog-

nition [LGTB97].

1.3 Research Hypothesis and the Goal of the The-

sis

The aim of this thesis is to undertake CV tasks in an efficient manner. Similar

to other DL approaches, the end-to-end system is accomplished solving the various

image analysis tasks mentioned above. One of the popular methods in DL is CNN

which handle only small local context of the pixels to be classified. Unlike CNN,

given its structural nature, LSTM, containing some internal memory storage, is able

to cooperate with the local (pixel-by-pixel) and global (label-by-label) dependencies

in a single process. Although CNNs for image data have been rewarding, LSTM-

based methods are not explored yet in CV. The main focus of this thesis is to

expand the study in both DL and CV especially with LSTM.

The research hypothesis of this study is that:

Recurrent Neural Networks (RNN) with LSTM represent a general and powerful

sequence learning method. Especially, Multi-Dimensional LSTM (MD-LSTM) net-

works, due to the architectural nature, should be able to achieve reliable and accurate

image analysis by integrating entire spatial and/or temporal context of a pixel. There-

fore, the system not only handles for 2D images but also higher dimensional data (3D

or 4D), and resolves the challenges mentioned above. It leads to a comprehensive end-

to-end vision system, which requires local and global contextual information of each

pixel to be predicted, using raw pixel values rather than selected features on complex

real-world input data.

To test this hypothesis and demonstrate the feasibility of a high performance LSTM-

based visual system, the contributions of this thesis will be presented in the following

section.

10 Chapter 1. Introduction

1.4 Contributions

Based on the challenges discussed in the previous section, this thesis stands for the

following contributions. The contributions are concerned mainly in the field of DL

and CV.

In Deep Learning

D-1: (Chapter 3) The highly promising architecture of MD-LSTM has a limita-

tion; previous MD-LSTM implementations could not exploit the parallelism of

modern GPU hardware. Therefore, the traditional MD-LSTM cannot easily

be applied to a high-dimensional and a big data input. Here, to cope with 3D

volumetric data, the traditional MD-LSTM is re-designed to Pyramidal Multi-

Dimensional LSTM (PyraMiD-LSTM). With a different topology and update

strategy, PyraMiD-LSTM is easier to parallelize, needs fewer computations

overall, and scale well on GPU architectures.

D-2: (Chapter 3 and 4) Two LSTM models for higher dimensions, the traditional

MD-LSTM and the proposed PyraMiD-LSTM, and their network architectures

are explored for image-wise and pixel-wise classification problems. The single-

layer and the deep network architectures (sometimes combined with additional

layers) resolve various image analysis tasks on several types of images. Here,

various network design choices for image analysis are suggested. The design

choices are mainly based on three factors: (1) the dimension of input, (2)

depth of the network, and (3) the type of output. All possible architectures

are analyzed and evaluated. Furthermore, the major network settings and

generalization techniques are evaluated, particularly for the LSTM network.

In Computer Vision

C-1: (Chapter 5 and 6) 2D-LSTM networks resolve diverse CV problems without

additional processing, e.g., pre-/post-processing or manual feature extraction.

The problems of texture image classification and segmentation, scene under-

standing and labeling tasks are addressed in the thesis. The approach yields

performance gain compared to other methods including CNNs for all the tasks

mentioned above, yet using a simpler model and much fewer parameters.

1.5. Overview of the Thesis 11

C-2: (Chapter 7) PyraMiD-LSTM addresses the problem of combining spatio-

temporal context of each pixel on 3D volumetric images. The entire vol-

ume is processed in a single network which takes advantage of these full con-

textual information of 3D segmentation. PyraMiD-LSTM achieved the best

pixel-wise image segmentation results in the MR brain image segmentation

contest [A. 15]8 and competitive results on EM images [Seg12] without post-

processing 9.

C-3: (Chapter 6) Automated texture segmentation dataset generation is proposed

to overcome the limitations of existing texture segmentation datasets. It creates

diverse texture blob-mosaics with their corresponding Ground-Truth (GT). All

generated texture blob-mosaics are randomly shaped and consider the follow-

ing transformations: scale, rotation, and illumination. Furthermore, a corre-

sponding evaluation scheme to measure the performance with state-of-the-art

algorithms is described.

C-4: (Chapter 5) A new web-scene image dataset is introduced for a realistic scene

understanding system. Single-attribute training data for natural scenes (a sin-

gle label per image) make the training step easier than having full images with

multiple attributes for complex web-scene image analysis. With the help of the

proposed pruning strategies, a complete scene understanding system classify-

ing multiple labels has been accomplished. Furthermore, automatic web-image

tagging is illustrated using the dataset as a more realistic application.

1.5 Overview of the Thesis

The goal of this thesis is structured into five main chapters. Chapter 2 describes the

background of image analysis. Chapter 3 explains different LSTM models for 2D and

3D data for different tasks. The remainder of chapters introduces the details of each

task with a different LSTM network architecture. Chapter 5 and Chapter 6 present

the details of image classification and segmentation tasks with MD-LSTM networks,

respectively. Finally in Chapter 7, PyraMiD-LSTM is proposed for 3D volumetric

image segmentation, before the thesis is concluded in Chapter 8.

8The results can be found in http://mrbrains13.isi.uu.nl/results.php
9The results can be found in http://brainiac2.mit.edu/isbi_challenge/leaders-board

http://mrbrains13.isi.uu.nl/results.php
http://brainiac2.mit.edu/isbi_challenge/leaders-board

12 Chapter 1. Introduction

In Chapter 2, a brief overview of image analysis tasks is given. Additionally,

the related works on image classification and segmentation are also summarized for

better understanding of following chapters.

In Chapter 3, LSTM-based methodologies for image analysis tasks are described.

First, the main structure of standard RNNs and Bidirectional Recurrent Neural Net-

workss (BRNNs) are compared. The study of LSTM and MD-LSTM is then described

in more detail which is followed by a new sophisticated LSTM, PyraMiD-LSTM to

resolve some limitations that the traditional MD-LSTM has.

In Chapter 4, the details of all possible layers are described before suggesting

the possible network architectures for image analysis tasks on various types of im-

ages. Furthermore, the specific network settings and generalization techniques for

the network training is explained.

In Chapter 5, the focus lies on classification tasks of texture and natural scene

images: texture image classification and scene understanding. Different learning

strategies for texture classification are explored. Diverse input and output repre-

sentation schemes dramatically increase the performance. These schemes are then

extended to the web scene images which contain a wide variety of noise (e.g., wa-

termarks and unrelated contents). To handle this issue, several pruning rules are

introduced (to retain the system robust). Also a new web-image dataset is created

(to have a robust training). These strategies are successfully adapted to a web-image

tagging system and show the performance with a large margin compared to other

baseline approaches including CNNs. Furthermore, the system is also evaluated on

the publicly available dataset (outdoor scene attribute dataset) to show the perfor-

mance gain (about 21%).

In Chapter 6, we move our focus to the segmentation tasks on texture and nat-

ural scene images: texture image segmentation and scene labeling. First, a new

Automated Texture Blob-Mosaics Database Generator is proposed to overcome the

limitations of current texture segmentation datasets. Here, a new evaluation criteria

is also proposed. The evaluation on this dataset for the segmentation task shows

that 2D-LSTM network architecture with only a single layer performs better than

1.5. Overview of the Thesis 13

other texture image-based segmentation algorithms. Secondly, a deeper model of

2D-LSTM networks for segmentation is studied to carry more complex images out;

natural scene images may contain a lot more clutter and noise. The networks take

into account the complex spatial dependencies of each pixel and accomplish classi-

fication, segmentation, and context integration all within one model. With much

lower computational complexity compared to other DL methods, the LSTM model

achieves state-of-the-art performance over two popular scene labeling datasets.

In Chapter 7, a new LSTM model, PyraMiD-LSTM, is proposed. The context

information flow is re-arranged from cuboid (in MD-LSTM) to pyramidal for better

parallelization especially for 3D volumetric data. This model is applied to two chal-

lenging datasets involving segmentation of biological volumetric images and achieve

competitive or the best results on two datasets.

In Chapter 8, methodologies, contributions, and results are summarized. Further

possible challenges are discussed as future work.

Chapter 2

Image Analysis

This chapter provides a background on image analysis, with a focus on image clas-

sification and segmentation. It outlines the recent methodologies that are connected

to the work presented in this thesis.

Image analysis consists in understanding the contents of given images by detecting

objects or faces, removing noise, detecting shapes or edges, extracting regions or

visual contents. The analysis of images has been extensively studied for several

decades. There are two different directions of approaches for image analysis: local

feature-based and learning-based approach. The first direction had been popular

in the CV field in early years; they are also called early vision algorithms. More

recently, the second direction has been densely studied and improved. As mentioned

in Chapter 1, there are many challenges in achieving reliability and accuracy in an

image analysis system. This chapter describes basic ideas to solve the issues and

a brief overview of the most common approaches used in this field, leading to the

motivation of the study for the remaining chapters.

Section 2.1 provides an overview about the typical approaches of image representation

for image analysis. Section 2.2 and Section 2.3 cover the key state-of-the-art methods,

especially for image classification and segmentation.

2.1 Overview

Approaches for image analysis are divided into two major directions.

14

2.1. Overview 15

• Handcrafted local features: Manually designing the specific feature representa-

tion according to the task and type of images

• Learning-based features: Automatically learning feature representation from

raw input data

This section provides an overview about commonly used methods in each direction.

2.1.1 Local Feature-Based Approach

The main procedure of this direction is illustrated in Figure 2.1. The most distinctive

points/regions (local interest point/region detectors) are first selected, then the most

relevant information around the points/regions are extracted for the specific task

(local descriptors). In the end, a classifier is utilized for final image- or pixel-level

classification over the extracted descriptions.

Feature Detection

There are many ways of detecting and representing relevant regions based on parts,

intensities, gradients, color, texture, or mixtures of them. The local detector selects

a set of (local) interest points or regions which are extracted from stable, reliable,

and unique positions on different images. Most of detectors find the local area in

the image with a large variation in intensity (edges) in all directions (corners). The

field of this research has a long history, but the commonly used local detectors are

Hessian [Bea78], Harris [HS88], and Laplacian [Lin98].

Feature Detection Feature Description Feature Encoding ClassificationImage Acquisition

…

Figure 2.1: The procedure of local features-based approaches. The typical pipeline is
composed of the four steps: (1) feature detection (e.g., key-point detection), (2) feature
description (e.g., SIFT), (3) Feature encoding (e.g., BoVW), and (4) classification (e.g.,
SVM). More details of each step will be discussed in the following.

16 Chapter 2. Image Analysis

Hessian detector: The Hessian detector [Bea78] searches for an image point

which has strong derivatives in two orthogonal directions using the matrix of second

order derivatives.

H(x, y) =

Ixx(x, y) Ixy(x, y)

Ixy(x, y) Iyy(x, y)

 , (2.1)

where Ixx, Ixy, and Iyy are the second partial derivatives in the x direction, in the

x and the y direction, and in the y direction respectively. The maximum of the

determinant of the Hessian matrix becomes an interest point.

det(H) = IxxIyy − Ixy2 (2.2)

Harris corner detector: Harris [HS88] corner is detected based on the changes

in image intensity around a point (x, y) using the second momentum matrix.

C(x, y) =

 I2x(x, y) IxIy(x, y)

IxIy(x, y) I2y (x, y)

 , (2.3)

where Ix and Iy are the first derivatives in x and y directions respectively. In general,

Gaussian filters are used to calculate the image derivatives. The corner is defined

when the first two eigenvalues are both large, otherwise, if only one of them is large,

the point is defined as an edge. Instead of explicitly comparing eigenvalues, the

determinant and the trace of the matrix C(x, y) can be computed to find the point.

The interest point should satisfy the following condition:

det(C)− α(trace(C))2 = λ1λ2 − α(λ1 + λ2)
2 > t, (2.4)

where α is a constant [0.04− 0.06] and t is a threshold.

Since these approaches have their own distinct characteristics, the combination of

those key-point detectors, as well as the addition of other invariance properties

like scale or rotation are investigated. Examples of these approaches are Harris-

Laplace [MS02], scale invariant Harris-Laplacian [MS04], Laplacian of Gaussian

(LoG) [Lin98], and Difference of Gaussians (DoG) [Low04]. The detectors explained

above are robust to rotation, illumination changes, and noise, but not to changes of a

scale. To deal with scale invariance, LoG and DoG detectors are introduced using a

scale space representation. A scale space representation is the most widely used multi-

2.1. Overview 17

scale representation, based on the scale space theory introduced by Witkin [Wit84].

The scale space is a set of Gaussian smoothed images of the original image with var-

ious sizes of kernels. It is subsequently combined with the pyramid representation,

in which each scale is represented by various image resolutions.

Laplacian of Gaussian (LoG): The LoG [Lin98] detector can be computed

based on the scale space representation.

First, the Gaussian kernel is computed as follows:

G(x, y) =
1

2πσ2
n

e
−x

2+y2

2σ2n , (2.5)

where n is the scale. LoG is then computed by the second derivatives of the Gaussian

52G(x, y) at each scale n. Finally, the interest regions are detected based on the

maximal response of their neighbors over all scales.

Difference of Gaussians (DoG): Instead of all computations of LoG in the scale

space, this process can be approximated by DoG, which is computed by subtracting

two adjacent scales.

D(x, y) = G(x, y;σn+1)−G(x, y;σn) (2.6)

The interest points are found by comparing the pixel’s eight neighbors and with

the nine neighbors of the adjacent level scales (see Figure 2.2–a). DoG is generally

combined with the pyramid representation; several scales n are computed on various

image resolutions (see Figure2.2–b). This increases the accuracy of detecting robust

interest point locations.

Harris-Laplacian interest point detector: The Harris-Laplacian detec-

tor [MS04] builds up two separate scale spaces for the Harris function and the Lapla-

cian. The interest points are selected based on localized candidate points on each

scale (Harris) and the maximal response over scales (Laplacian). The detected points

are robust to scale changes, rotation, illumination changes, and noise.

18 Chapter 2. Image Analysis

Scale

(a) The point selection in a scale space

original image

σ

σ

σ

σ

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

. . .

Scale
(first
octave)

(b) The DoG interest point detector

Figure 2.2: The DoG interest point detector. (a) The interest point is selected from
the maxima response of the DoG. The current pixel (marked as X) is compared to the 8
neighboring pixels of the current scale and the 18 neighboring pixels of the adjacent level
scales. (b) The DoG is performed in the pyramid scale space. The difference between the
Gaussian smoothed images with different σ is computed (a scale space). This process is
performed in several image resolutions (an image pyramid). The figure is reproduced from
[Low04].

2.1. Overview 19

Feature Description

The most popular descriptors used with the detectors mentioned above are gradient-

based descriptors that use local histograms of image gradients. For example,

SIFT [Low99], HOG [DT05], shape contexts [BMP02], and generalized shape con-

texts [MM03] compute orientation and/or spatial histograms of the local region

around a pixel. These approaches themselves take scale and rotation invariance into

account. Here, the two most popular descriptors, SIFT and HOG will be explained

in more detail.

Scale-Invariant Feature Transform (SIFT): In general, SIFT [Low99] is com-

bined with the DoG interest point detector. The main focus of this descriptor is to

achieve the robustness to deformations, noise and small translation (shifting). The

localized gradient orientation histogram is constructed on each detected point. The

image gradient magnitude m(x, y) and the orientation θ(x, y) are first computed

around the detected points (a 16×16 grid).

The computations are in the following:

m(x, y) =
√

(G(x+ 1, y)−G(x− 1, y))2 + (G(x, y + 1)−G(x, y − 1))2, (2.7)

θ(x, y) = atan2(G(x, y + 1)−G(x, y − 1), G(x+ 1, y)−G(x− 1, y)), (2.8)

where G(x, y) is the Gaussian smoothed image. The orientation histogram is created

from 4×4 subregions with 8 bins each in a 16×16 grid (see Figure 2.3). When

accumulating the histogram from the orientation θ(x, y), each bin is weighted by the

magnitude m(x, y). Therefore, 4×4 = 16 histograms with 8 bins create a vector with

128 elements, which becomes a vector of the feature descriptor for an interest point.

This vector is then normalized to the unit length. This normalization adjusts the

changes of image contrast. The values are then thresholded with a value of 0.2 and

normalized again to the unit vector in order to reduce the non-linear illumination

changes. There are extensions like color SIFT and dense SIFT that compute SIFT

on the color space and on the whole image (without any detector), respectively.

Histogram of Oriented Gradients (HOG): HOG [DT05] computes a gradient

orientation histogram as SIFT. The difference from SIFT is that the computation is

performed over a grid of an entire image; the SIFT descriptor is computed around

20 Chapter 2. Image Analysis

Image gradients Keypoint descriptor

Figure 2.3: The SIFT descriptor. The gradient magnitude and orientation are computed
around 16×16 window of the detected interest point (left). The orientation histogram is
then constructed over 4×4 subregions (right). In this figure, 2×2 subregions from 8×8 are
shown. The figure is reproduced from [Low04].

a scale-invariant interest point. In addition, each bin of the histogram in HOG

represents the number of edge pixels having orientations. The HOG descriptor is

normalized with respect to image contrast, but not with respect to orientation. This

descriptor was especially successful with human detection [DT05].

Feature Encoding

Besides, one of the most successful frameworks based on SIFT-like features is

BoVW [AR02, OFPA04, CDF+04, MS05a], which encodes the descriptions into code-

books. The similar descriptions are first grouped and clustered together, then the

center of each group is defined as a representative of the group, building a visual code-

book. When classifying the images, each descriptor finds the closest visual words and

the category with the most frequent words is selected.

Classification

At the end, these representative features are classified using a classifier. One of

the most widely used classifiers is the Support Vector Machines (SVM) with a pre-

defined kernel such as linear or Chi-square. The SVM classifier has been combined

with the descriptors mentioned above and applied in diverse CV applications such as

object detection [PP00], object recognition [DS03], image classification [DBLFF10],

human action classification [NFF07], and human body detection [RST02]. More

recently, Random Forests classifier has become an alternative classifier in numerous

2.1. Overview 21

tasks such as object segmentation [SCZ08], image classification [BZM07a], and object

detection [GRVG12].

These approaches generate a very compact representation of an image, and different

methods can be easily combined to provide additional robustness. Despite the success

of these approaches, the main drawback of this framework is that the performance

depends heavily on the feature representation of the input. However, the manually

designed feature representation is usually task-specific and both over-specified and

incomplete.

2.1.2 Learning-Based Approach

The second direction comes from Deep Learning (DL)1 [Ben09, DY14, Sch14], in the

field of Machine Learning (ML), which tackles the drawback mentioned above. DL-

based approaches learn or try to model the high-level representation of input data

by using multiple layers with some non-linear operations. In general, these learning-

based models require several important components [BL07]: the representation of

the data (pre-processing or feature extraction), the architecture of a model (types of

layers and operations), the loss function, and the regularizer.

Several factors have been discussed by Bengio et al. [BCV13]2 to explain why DL

becomes an outstanding direction. First, it provides automated feature learning,

which resolves the drawback of the previous approaches mentioned above. Secondly,

it provides a distribute representation. When input is huge and sparse, the model

from learning-based algorithms can easily overfit. However, DL-based approaches

can learn a large amount of features in different levels, which provide diverse and

sparse representation from the large input. When the network gets deeper, it can

learn different levels of abstraction of images — gradually more abstract in higher

layers. Therefore, the system can provide automated feature learning with general

image representation without any prior knowledge of the task.

Previously, deep but shallow NNs have been applied to image analysis with some

engineered features. In general, a deep model is hard to train as it can easily lead to

local optima [EBC+10]. To avoid this issue, a weight initialization technique of NN

as pre-training using Restricted Boltzmann Machines (RBM) is introduced [HS06,

1Note that here the focus of Deep Learning (DL) lies in Neural Networks (NN).
2The authors referred to it as “representation learning”

22 Chapter 2. Image Analysis

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5

C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection

OUTPUT
 10

Figure 2.4: The architecture of CNN introduced by LeCun et al. [LBBH98a]. The network
consists of convolutional layers (convolutions), pooling layers (subsampling), and several
fully connected layers. The network outputs ten classes of handwriting digits. The ReLU
layer is not included in this architecture. Each plain represents a feature map. The figure
is reproduced from [LBBH98a].

EBC+10]. The new breakthrough in CV is to train very large and deep CNN on the

ImageNet database3 [KSH12b], which contain huge and diverse natural images used

for image classification. Therefore, the DL-based end-to-end system became one of

the most common approaches for image analysis.

Convolutional Neural Networks (CNN)

One of the most popular approaches, CNNs [Fuk80, LBBH98b], is a variation of

Multilayer Perceptron (MLP) designed to reduce the pre-processing steps that are

commonly necessary for image analysis tasks. In CNNs, each pixel is processed by

a single neuron, which acts like a filter (called a “filter bank”), and these filters are

learned from the input (unlike other filter-based feature extractors). The filters are

shared over all pixels (weight sharing) which reduces the number of weights and the

size of the networks. The network contains various types of layers: an input layer,

convolutional layer(s), Rectified Linear Units (ReLU) layer(s), pooling layer(s), and

fully connected layer(s) with a loss function. Figure 2.4 shows one of the CNN

architecture introduced by LeCun et al. [LBBH98a].

The input layer first takes a raw pixel value of the image.

The convolutional layer then computes a rectangular grid of neurons, which

become a filter or a feature map. Given a set of filters (weights of neurons)

3http://image-net.org/

http://image-net.org/

2.1. Overview 23

w1, w2, ..., wk, ..., wK , where K is the number of neurons of the layer,

fk = wk ∗ x, (2.9)

where x is an input image or output from the previous layer, (∗) is a convolution

operation, and fk is the kth feature map. This layer results in feature maps (filters)

with the size n×n×q, where n is smaller than the dimension of the image, and q is

the number of channels (3 in color). These filters are locally connected, and each of

them is convolved with the image to produce K feature maps that learn the variety

of features from the same image.

The ReLU layer computes an element-wise activation function to increase nonlin-

earity:

f(x) = max(0, x) (2.10)

Compared to other commonly used activations functions like sigmoid, or hyperbolic

tangent, ReLU is faster without affecting the size of dimensions (n×n×k).

The pooling layer takes small rectangular blocks from the ReLU layer that are sub-

sampled in this layer. Typically mean or max-pooling over p×p regions is performed,

where p is between 2 to 5. A max-pooling function can be computed as:

PV = maxv∈V hv, (2.11)

where v is the index of the pooling region (within the p×p region), V is the pooling

region, and h is an activation within the region. This layer helps to create translation-

invariant features. After the pooling layer, another nonlinearity function like additive

bias or sigmoid is applied to each feature map.

The fully connected layer computes the final class score after several stacks of

convolutional, ReLU, and pooling layers. The fully connected layer is the same as

MLP (with weights W and biases b). The network is typically trained with back-

propagation and some loss function such as the cross-entropy function with the soft-

max function (the details of the loss function will be discussed in Chapter 4).

The research on CNN has been rapidly progressing in recent years for CV tasks

such as image classification [KSH12b], object recognition [GDDM14a], object de-

tection [TGJ+15], action recognition [SZ14, JXYY13], video classification [KTS+14],

pose estimation [PSCZ15], face detection [LLS+15], and scene labeling [LSD15, PC14,

24 Chapter 2. Image Analysis

FCNL13, KEF+14].

The following sections focus on more specific tasks of image analysis, image classifi-

cation and segmentation.

2.2 Image Classification

Image classification is the task of assigning a given image to one of many predefined

class labels. The label can be an object or other visual concept of the image. Pre-

viously, commonly used databases in this research (e.g., CIFAR4, MNIST5) mainly

dealt with a small number of classes and low-resolution images. In traditional CV, the

approaches are often confined to these restricted databases. As image classification

data resources become larger and more complex (e.g., ImageNet6), a generalization

of such tasks becomes more important. Moreover, current digital images found on

the web are rich in content and tend to have target objects occupying a large fraction

of the input image. Thus, not all of the contents are related to the class label of the

input image. Also, the information the contents carry is in general very redundant.

Earlier research focused more on separating the foreground from the background or

extracting informative features based on plain visual cues like texture, color, and

shape. The former approaches conducted segmentation first as a pre-processing step

to discard background clutters or unrelated contents. The performance of segmenta-

tion is very important in this case, as the output of the segmentation is used for the

classification. The issues of segmentation will be discussed in the next section. The

latter approaches use sophisticated handcrafted feature detectors and descriptors,

sometimes combined with simple classifiers discussed in the last section.

Recently in DL, most of the cited works for image classification make use of CNNs.

In fact, CNNs became very popular in this field since Krizhevsky et al. [KSH12a] won

the ImageNet challenge 2012 for the first time with CNNs7. They applied CNNs to

the biggest database for image classification, ImageNet, containing 1000 categories

and 1.2 million images. To train a large amount of data, the networks have become

wide and deep; five convolutional layers (with pooling), three fully-connected layers,

4http://www.cs.toronto.edu/~kriz/cifar.html
5http://yann.lecun.com/exdb/mnist/
6http://image-net.org/
7http://image-net.org/challenges/LSVRC/2012/results

http://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://image-net.org/
http://image-net.org/challenges/LSVRC/2012/results

2.2. Image Classification 25

Figure 2.5: The architecture of CNN. The network consists of convolutional layers (con-
volutions), pooling layers (subsampling), and several fully connected layers. The network
outputs ten classes of handwriting digits. The ReLU layer is included in the later architec-
tures of CNN. Each plain is a feature map. The figure is reproduced from [KSH12a].

as well as a ReLU layer explained earlier (in Section 2.1) are included. The overall

architecture is shown in Figure 2.5. The input layer receives the input image with the

size 224×224×3. The first convolutional layer filters 96 kernels of size 11×11×3 with

a stride of 4 and is followed by max-pooling. The second convolutional layer has 256

kernels of size 5×5×48, then the outputs are max-pooled. The third convolutional

layer has 384 kernels of size 3×3×256, the forth has 384 kernels of size 3×3×192, and

the fifth has 256 kernels of size 3×3×192. The last three convolutional layers do not

combine with the pooling layer. Finally, two fully connected layers with 4096 neurons

are presented before the output layer with 1000 classes. The ReLU layer is applied

to every convolutional and fully connected layers. Since both the size of the networks

and the amount of data are huge, the computations are extremely expensive (60 mil-

lion parameters and 650,000 neurons). Therefore, an efficient GPU implementation

(with two GPUs) was introduced. The authors also introduced some techniques to

avoid overfitting such as data augmentation and dropout; these techniques will be

explained in Section 4.3.

Later, research shifted its focus on increasing the number of layers (deeper) and

the size of hidden units per layer (wider) [LCY13, SEZ+13, ZF14, SLJ+15]. One

of the models by Szegedy [SLJ+15], known as GoogLeNet, won the same challenge

as Krizhevsky’s in 20148. They carefully designed the depth and width of the net-

work by stacking the local optimal sparse structure, hence being able to train a 22

layer deep model. The main architecture of GoogLeNet is summarized in Table 2.1.

8http://image-net.org/challenges/LSVRC/2014/results

http://image-net.org/challenges/LSVRC/2014/results

26 Chapter 2. Image Analysis

Table 2.1: The architecture of GoogLeNet. The network has 22 layers (layers with param-
eters; or 27 layers including pooling layers). An inception layer is a sub-network combining
several convolution filters with 1×1 reduction filter and a max-pooling layer. Here, nine in-
ception layers are added with the width (the size of layer) range from 256 to 1024 filters. In
the first row, ‘params’ is the number of parameters, and ‘ops’ is the number of operations.
The table is reproduced from [SLJ+15].

type patch size (stride) output size depth params ops

convolution 7×7 (2) 112×112×64 1 2.7K 34M

max pool 3×3 (2) 56×56×64 0

convolution 3×3 (1) 56×56×192 2 112K 360M

max pool 3×3 (2) 28×28×192 0

inception 28×28×256 2 159K 128M

inception 28×28×480 2 380K 304M

max pool 3×3 (2) 14×14×480 0

inception 14×14×512 2 364K 73M

inception 14×14×512 2 437K 88M

inception 14×14×512 2 463K 100M

inception 14×14×528 2 580K 119M

inception 14×14×832 2 840K 170M

max pool 3×3 (2) 7×7×832 0

inception 7×7×832 2 1072K 54M

inception 7×7×1024 2 1388K 71M

avg pool 7×7 (1) 1×1×1024 0

dropout (40%) 1×1×1024 0

linear 1×1×1000 1 1000K 1M

softmax 1×1×1000 0

The inception layer is a set of convolutional layers and a pooling layer. This layer

concatenates several sizes of convolution filters (1×1, 3×3, and 5×5) with the max-

pooling (3×3). In addition, 1×1 convolutions with ReLU are used before 3×3 and

5×5 convolutions and after max-pooling to avoid a computational blow up within

a few stages. These 1×1 convolutions keep the representation sparse and compress

the information efficiently. Overall, the number of layers including all blocks in the

inception layers is around 100.

2.3. Image Segmentation 27

2.3 Image Segmentation

Accurate image segmentation is an important step towards image understanding.

The image segmentation task consists of partitioning the meaningful regions of an

image and labeling pixels with their regions. The higher-level representation of im-

ages (their global context) is typically constructed based on the similarity of the low-

level features of pixels and on their spatial dependencies using a graphical model.

The graphical models construct the global dependencies based on the similarities of

neighboring segments. The most popular graph-based approaches are Markov Ran-

dom Fields (MRF) [GFK09a, KK10, LJ08, TL10] and Conditional Random Fields

(CRF) [HZCP04, RTK09]. However, such methods require pre-segmentation, super-

pixels, or candidate areas.

More recently, DL has become a very active area of research (in the field of CV in gen-

eral including image classification). Socher et al. [SyLNM11] has attempted to com-

bine color and texture features from over-segmented regions by Recursive Neural Net-

works. This work has been extended by another work of Socher et al. [SHB+12], which

combined it with CNNs. With regards to segmentation, CNN-based approaches are

the most popular as end-to-end supervised segmentation [GBC, FCNL13].

Farabet et al. [FCNL13] introduced multi-scale CNNs to learn scale-invariant fea-

tures, but had problems with global contextual coherence and spatial consistency.

These problems were addressed by combining CNNs with several post-processing

algorithms, i.e., super-pixels, CRF, and segmentation trees.

The first post-processing strategy, super-pixels, which over-segments the relevant re-

gions of an input image. From the class prediction produced by CNN, the average

class distribution is computed within the super-pixel to aggregate the predictions of

each super-pixel region (see Figure 2.6).

Since super-pixel-based post-processing takes only local dependencies within each

super-pixel into account, CRF-based post-processing is introduced to involve a global

understanding of the scene. First, a graph is constructed among pixels of an image,

and then an optimal segmentation based on an energy function is found [SWRC06].

The energy function is composed of a unary and a pairwise term. The unary term

is the output of super-pixel post-processing. The pairwise term Ψ(li, lj) is computed

as follows:

Ψ(li, lj) = exp(−β ‖OI‖i)1(li 6= lj), (2.12)

28 Chapter 2. Image Analysis

argmax

superpixels

class prediction

classifier
2 layer-

MLP

average
across
super-
pixels

F
feature maps

Figure 2.6: The first post-processing strategy from CNN using super-pixels. The class
prediction of CNN is averaged within the super-pixel regions. The figure is reproduced
from [FCNL13].

superpixels

class prediction

classifier
2 layer-

MLP

average
across
super-
pixels

F

image gradient

pairwise
term

I

unary
term

energy
minimization
in the graph

via
α-expansion

feature maps

Figure 2.7: The second post-processing strategy of CNN using CRF. The graph is
constructed within pixels. The energy function in CRF consists of unary term and pairwise
term. The output of super-pixel post-processing explained above is used as unary term,
and the pairwise term are defined using the L2 norm of the gradient of the image. CRF
minimizes the energy function and finds the optimal graph. The figure is reproduced from
[FCNL13].

where β is a constant, ‖OI‖i is the L2 norm of the gradient of the image I at the

pixel i, 1(·) is the indicator function which is 1 if the input is true, and 0 otherwise.

The energy function is minimized using alpha-expansions [BK04]. An illustration of

the procedure is shown in Figure 2.7.

These two methods explained above are based on arbitrary segmentation of the im-

age. The third technique, segmentation tree, automatically analyzes the best level

of compositions of an image using a segmentation tree. The components of the tree

Ck are encoded by a component-wise max-pooling feature vector of a spatial grid

(see Figure 2.8). A classifier (2 layer-MLP) is trained to estimate the histogram of

2.3. Image Segmentation 29

C1 C2 C3 C4

C6 C7

C9

C5

C8

S1 S2 S3 S4

S6 S7

S9

S5

S8

S1 S2 S3 S4

S6 S7

S9

S5

S8

k∩C pooling

classifier
2 layer-

MLP

purity coverF

F

kC

feature maps

Figure 2.8: The third post-processing strategy of CNN using the segmentation tree. Ck is
the kth component, and Sk is the cost associated with the predicted class distribution. At
the end, each Ck, chosen based on the optimal purity cover is labeled using the predicted
class distribution. The figure is reproduced from [FCNL13].

all categories from the component, which are then selected according to the purity

cost. The purity cost is computed based on the entropy of the class distribution that

find a consistent segmentation; pixels in one segment belong to only one category.

Figure 2.8 illustrates the procedure of the segmentation tree approach. For more

details of these three post-processing techniques, see the original work by Farabet et

al. [FCNL13].

Later, Kekeç et al. [KEF+14] improved CNNs by combining two CNN models, learn-

ing context information and visual features from separate networks. Both mentioned

approaches improved accuracy through carefully designed pre-processing steps to help

the learning, i.e., class frequency balancing by selecting the same amount of random

patches per class and by selecting a specific color space for the input data.

In order to improve modeling of long range dependencies, Pinheiro et al. [PC14]

introduced RCNNs for scene labeling. They first revealed the use of large input

patches to consider larger contexts. This, however, resulted in a reduction of the

resolution of the final label image and a huge redundancy of overlapping regions

making the learning inefficient. RCNNs train various sizes of the same input image

(the instances) recurrently to learn increasingly large contexts for each pixel, whilst

ensuring that the larger contexts are coherent with the smaller ones. Each instance is

trained with the typical CNNs, the parameters (W, b) are shared between instances.

The pth instance of the network F p is defined as:

F p =
[
f(F p−1, Ipi,j,k)

]
, F 1 = [0, Ii, j, k] , (2.13)

30 Chapter 2. Image Analysis

where f is the output of the network, Ipi,j,k is the scaled version of Ip−1i,j,k at the pixel

(i, j) of the image k. Here, the network of the current (pth) instance is trained with

the feature maps of the previous ((p − 1)th) instance and the input image of the

current instance.

Finally, the system maximizes the likelihood of all instances:

L(f) + L(f◦f) + · · ·+ L(f◦pf), (2.14)

where L(f) is a likelihood (here, log-likelihood is used), ◦p is the composition of the

typical CNNs performed p times (see Figure 2.9).

To accurately localize the object segmentation, some of the recent research in the

field combined CNN with CRF. Chen et al. [CPK+14] employed fully-connected

CRF as post-processing on top of the probability map of CNNs. Their performance

in the PASCAL VOC 2012 benchmark9, which is one of the most popular seman-

tic image segmentation challenges, has achieved as the state-of-the-art method for

image segmentation. Later, Zheng [ZJR+15] accomplished a complete end-to-end

segmentation system by integrating CRF inside the framework.

2.4 Conclusion

Though CNNs were inspired by humans’ visual mechanisms, there are several weak-

nesses to fulfill CV tasks. CNNs require specific kernel sizes, and these kernels only

see local context. Therefore, the networks rely on certain scales of context and need

further processing to combine with global contextual information if it is necessary

for the specific task (as in image segmentation). LSTM takes the local and global

contexts into account by nature in a single process, which overcome such issues. In

the following chapters, the details of LSTM and how it is applied to image analysis

tasks will be discussed.

9http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=

11&compid=6

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6

2.4. Conclusion 31

f
f

f ◦ f

f

f ◦ f

f ◦ f ◦ f

2 instances

1 instance

3 instances

Figure 2.9: The composition of RCNNs. This figure illustrates the composition of one,
two, and three instances. The figure is reproduced from [FCNL13].

Chapter 3

Multi-Dimensional LSTM

(MD-LSTM) and Its Variant,

PyraMiD-LSTM

This chapter presents two different LSTM models for 2D and 3D data, MD-LSTM

and PyraMiD-LSTM. First, the background of LSTM and the traditional MD-LSTM

for 2D data are described. Based on the traditional MD-LSTM model, a new par-

allelizable variant of MD-LSTM, PyraMiD-LSTM. Since the traditional MD-LSTM

cannot be easily parallelized due to its architectural nature. This issue has been

improved through the changes of the connection topology, which creates the inde-

pendencies of a sequential flow. This model is efficient especially for 3D data.

Section 3.1 explains the background of MD-LSTM. First, the architecture of both

RNN and BRNN, as well as their difference between them are discussed before pre-

senting the standard LSTM. Section 3.2 explains MD-LSTM in details. In Sec-

tion 3.3, a new LSTM model for 3D volumetric data is introduced1.

1This work presented in Section 3.3 in this chapter appeared in NIPS 2015 [SBLS15] and Marijn
F. Stollenga was equally contributed to this work.

32

3.1. Background 33

3.1 Background

This section describes the prior research related to MD-LSTM, which are RNN,

BRNN, and traditional LSTM. These relevant studies with the detailed description

provide how MD-LSTM is developed and improved over the past decade.

3.1.1 Notations

Here, the common notations used in this thesis are defined.

• an input sequence, x = (x1, x2, · · · , xt−1, xt, xt+1, · · · , xT), where T is the length

of the sequence

• a target sequence of the given input sequence,

y = (y1, y2, · · · , yt−1, yt, yt+1, · · · , yT), where T is the length of the sequence

• the predicted output of the given input sequence,

y∗ = (y∗1, y
∗
2, · · · , y∗t−1, y∗t , y∗t+1, · · · , y∗T), where T is the length of the sequence

• (·) is a matrix multiplication

• (}) is an element-wise multiplication

3.1.2 Recurrent Neural Networks

RNNs are neural networks, which are used for training with sequence data like speech

or handwriting. Their self-hidden states (internal memory) store the temporal be-

havior of an input sequence and allow to predict the corresponding class labels based

on the previous context of the sequence. The RNNs compute the current hidden

state (ht) by:

ht = φ(W · xt +H · ht−1 + b), (3.1)

where ht−1 is the recurrent hidden state of t − 1, which is a point of time lying in

the past. W and H are weight matrices and b is a bias vector. φ is a non-linear

activation function, usually logistic sigmoid (sigm) or hyperbolic tangent (tanh):

sigm(x) =
1

(1 + e−x)
(3.2)

34Chapter 3. Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-LSTM

xt-1

xt

xt+1

..
.

..
.

yt

Input Hidden Layer Output

LSTM
t-1
t

..

(a) standard RNNs

xt-1

xt

xt+1

..
.

..
.

yt

Input Hidden Layer Output

LSTM
t-1
t

..

LSTM
 t

t+1

..

(b) bidirectional RNNs

Figure 3.1: The architectural difference between RNNs and BRNNs. xt is the input in
current time, yt is the corresponding output. The arrow shows the information flow of a
LSTM module

tanh(x) =
e2x − 1

e2x + 1
(3.3)

An extension to BRNN [SP97] adds another self-hidden state for taking the other

direction into account — the future time t + 1. Figure 3.1 shows the architectural

difference between RNNs and BRNNs. The standard RNNs have one LSTM memory

block to carry the past context of the sequence. However, the bidirectional RNNs pass

through two memory blocks, which take both past and future contextual information

into account. Therefore, BRNNs are effective when the length of the sequence is

known.

However, the approach is still limited due to the vanishing gradient problem [BSF94,

HBFS01]. The main problem is that the networks cannot capture long sequence

dependencies; the gradient information either decays or blows up exponentially in

case the input has more than 5-10 time lags [HS97b, Ger01].

3.1.3 Long Short-Term Memory (LSTM)

As discussed in the previous section, RNNs fail to learn long-term sequences. To avoid

the problem, LSTM has been introduced by Hochreiter and Schmidhuber [HS97a].

Unlike RNNs, a memory block in LSTM has a self-hidden unit (memory cell) with

a recurrent connection, and two gating units (input and output gates) which control

3.1. Background 35

the access of information to the memory cell according to the previous context. Later,

Gers et al. [GSC00] modified this initial architecture by adding a forget gate; it learns

the behavior of the memory self-reset (forgetting). LSTM networks are successfully

applied for sequence labeling such as off-line handwriting recognition [GLF+09] and

speech recognition [SSB14].

This thesis follows the most commonly used architecture described in [Gra12]. A

LSTM memory block includes three gates: an input gate (i), a forget gate (f), and

an output gate (o), which overwrite, keep, or retrieve the memory from the memory

cell (c) at the time t.

First, input gate (it) and forget gates (ft) are computed by:

it = sigm(Wi · xt +Hi · ht−1 + Ci · ct−1 + bi), (3.4)

ft = sigm(Wf · xt +Hf · ht−1 + Cf · ct−1 + bf), (3.5)

Afterwards, the current memory cell (ct) is updated by an amount of the previous

contents (ct−1) for forgetting and the new memory (c̃t) for including.

c̃t = tanh(Wc̃t · xt +Hc̃t · ht−1 + bc̃t), (3.6)

ct = ft } ct−1 + it } c̃t, (3.7)

At the end, the final activation at the current position (ht) is calculated with the

output gate (ot), which regulates the amount of information to output.

ot = sigm(Wo · xt +Ho · ht−1 + Co · ct + bo) (3.8)

ht = ot } tanh(ct), (3.9)

x, i, f, c̃, c, o, h ∈ RT , where T is the length of the input. xt is the input activation at

the current time (t), and ht−1 is the output activations from the past time (t − 1).

W , H, and C are weight matrices for input to gates, recurrent connections, and cell

to gates. The LSTM memory block is illustrated in Figure 3.2.

36Chapter 3. Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-LSTM

C

x

sigm

sigm

tanh

tanh

sigm

i

Hf

c̃

Wf

ht

ht − 1

xt

Cell state

Output gate

Input gate

Forget gate

C

o

peephole connections

x

x

x

ht − 1

ht − 1

xt

xt

H

Wi

i

Cf

C

Wo

Ho

W c̃H

xt ht − 1

Figure 3.2: LSTM memory block.

3.2 Traditional Multi-Dimensional LSTM (MD-

LSTM)

The LSTM model explained above is for one dimensional sequences; the model

has one memory block with one self-recurrent connection. The main difference of

MD-LSTM in the operations compared to the One Dimensional LSTM (1D-LSTM)

is that multiple connections exist for each axis. These connections carry the neighbor-

ing contextual information. For instance on 2D images, there exist two self-recurrent

connections which connect to the cell (x and y axes). Additionally, each LSTM

module is computed independently to collect the surrounding contextual information

in all directions: 2dim LSTM modules (for 2D images 22 = 4: top-left, top-right,

3.2. Traditional Multi-Dimensional LSTM (MD-LSTM) 37

bottom-left, and bottom-right). In Figure 3.4–a, the connections and the context

information flow of 2D-LSTM are illustrated.

The main idea of MD-LSTM has first been introduced by Graves et al. [GFS07a] and

has been applied in many applications such as handwriting recognition [GS08] and

binarization [GFS07a]. Recently, different ways of dealing with multi-dimensional

data in the networks has been addressed [VKC+15, KDG15]. In this thesis, the

standard 2D-LSTM architecture with peepholes described in [GS08] are mainly used.

Similar to 1D-LSTM, three gates (input (i), forget (f), output (o) gates) as well as

the cell state (c) are computed over all pixels, recursively. Here, LSTM operations

for one direction are summarized:

it = sigm(Wi · xt +
∑
p∈P

(Hp
i · h

p
t−1 + Cp

i · c
p
t−1) + bi), (Input gate)

fp
′

t = sigm(Wf · xt +
∑
p∈P

(Hp
f · h

p
t−1) + Cp′

f · c
p′

t−1 + bp
′

f), (Forget gate for the axis p′)

c̃t = tanh(Wc̃t · xt +
∑
p∈P

(Hp
c̃t
· hpt−1) + bc̃t),

ct =
∑
p∈P

(fpt } cpt−1) + it } c̃t, (Cell state)

ot = sigm(Wo · xt +
∑
p∈P

(Hp
o · h

p
t−1) + Co · ct + bo), (Output gate)

ht = ot } tanh(ct), (Net-output)

where P indicates the connections along with the axes (x and y for 2D). The

2D-LSTM memory block is illustrated in Figure 3.3.

As mentioned earlier, the computation above is for one direction (one LSTM memory

block) of the context of the input. In other words, the final output ht actually

indicates hdt : d ∈ D, where D indicates the directions over the axes.

at =
∑
d∈D

hdt , (3.10)

zt = Wy · at + by, (3.11)

At the end, zt is sent to the next layer.

38Chapter 3. Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-LSTM

C

sigm

sigm

tanh

tanh

sigm

ht

Cell state

Output gate

Input gate

Forget gate(x)

x

peephole connections

ht−1
x

x

sigm

Forget gate(y)

y

x

x

x

x

Cf

Ci
y

xt
Wi

xt

xt

xt

xt
W

c̃W

Wf

Wf

y

Ci

Ci
x

oC

o

ht − 1

Ho y
y

Ho

h
t − 1

x

x

ht − 1

H y
y

i

ht − 1

Hi

x

x

ht − 1

y

H
y

c̃

ht − 1

H
x

x
c̃

H

h
t − 1

x

x

H

ht − 1

x

x
f

f

Hh
t − 1

f

yy

H
h

t − 1

f

y
y

Figure 3.3: 2D-LSTM memory block.

3.3 Proposed PyraMiD-LSTM: Parallel MD-

LSTM

Theoretically, the MD-LSTM model is capable of expanding the model to higher

dimensions. However, in practice difficulties arise from the fact that an exponential

amount of computations are needed; 2D-LSTM requires four LSTM modules, and

3D-LSTM needs 8 modules to cover all directions. Moreover, MD-LSTM cannot

be easily parallelized, due to the sequential nature of RNNs. Therefore, a new and

easily parallelizable LSTM model for more than two dimensional data is proposed;

3.3. Proposed PyraMiD-LSTM: Parallel MD-LSTM 39

(a) 2D-LSTM (b) ’turned’ 2D-LSTM (c) PyraMiD-LSTM

Figure 3.4: Recurrent connections and their context information flow of 2D and
PyraMiD-LSTM. The red one is the current pixel. The arrow indicates the recurrent
connections and corresponding context information flow. The current pixel implicitly car-
ries the yellow pixels. (a) 2D-LSTM: The model evaluates the context of each pixel
recursively from neighboring pixels along the axes. After turning the order by 45◦ like (b),
dependencies of the current pixel become a plane (a column vector in the 2D case). (c)
PyraMiD-LSTM: The gaps are filled by adding extra connections to process more than
two elements of the context.

3D volumetric data is mainly considered here.

As mentioned earlier, MD-LSTM, aligns LSTM-units in a grid and connects them

over the axis. Multiple grids are needed to process information from all directions.

However, a small change in connections can greatly facilitate parallelization. If the

connections are rotated by 45◦, all input to all units come from either left, right, up,

or down (left in case of Figure 3.4–b), and all elements of a row in the grid row can

be computed independently. However, this introduces context gaps as in Figure 3.4–

b. By adding an extra input, these gaps are filled as in Figure 3.4–c. Expanding

this approach into three dimensions results in a Pyramidal Connection Topology. In

other words, the context of a pixel is formed by a pyramid in each direction.

One of the striking differences between PyraMiD-LSTM and MD-LSTM is the shape

of the scanned contexts. Each LSTM memory block of MD-LSTM scans rectangle-like

contexts in 2D or cuboids in 3D. On the other hand, PyraMiD-LSTM scans triangles

in 2D and pyramids in 3D (see Figure 3.5). MD-LSTM needs 8 LSTM memory

blocks to scan a volume, while PyraMiD-LSTM needs only 6, since it takes 8 cubes

or 6 pyramids to fill a volume. Given a dimension d, the number of LSTM memory

blocks grows as 2d for an MD-LSTM (exponentially) and 2×d for a PyraMiD-LSTM

(linearly).

40Chapter 3. Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-LSTM

A similar connection strategy has been previously addressed [WDB+08]; the approach

speeds up non-Euclidian distance computations on surfaces. There are however im-

portant differences:

• We can exploit efficient GPU-based CUDA convolution operations, which are

different from the operations performed in CNNs.

• As a result of these operations in LSTMs, input filters that are bigger than

the necessary 3 × 3 filters arise naturally, creating overlapping contexts. Such

redundancy turns out to be beneficial and is used in our experiments.

• Several layers of complex LSTM processing with multi-channeled outputs and

several state-variables in LSTM for each pixel are applied — instead of having

a single value per pixel as in distance computations.

• Our application is focused on 3D volumetric data.

Here, the details of PyraMiD-LSTM with the computations for 3D volumes

are described. The network consists of six LSTM memory blocks with RNN-

tailored convolutions called Convolutional LSTM (C-LSTM), one for each di-

rection, to create the full context of each pixel. Note that each of these

C-LSTM is entire LSTM computations, processing the entire volume in one di-

rection. The directions D are formally defined over the three axes (x, y, z): D =

{(·, ·, 1), (·, ·,−1), (·, 1, ·), (·,−1, ·), (1, ·, ·), (−1, ·, ·)}.

Each C-LSTM performs all computations in a plane moving into the defined direction.

The input is x ∈ RW×H×D×C , where W is the width, H the height, D the depth,

Figure 3.5: On the left we see the context scanned so far by one of the 8 LSTMs of a
3D-LSTM: a cube. In general, given d dimensions, 2d LSTMs are needed. On the right we
see the context scanned so far by one of the 6 LSTMs of a 3D-PyraMiD-LSTM: a pyramid.
In general, 2× d LSTMs are needed.

3.4. Conclusion 41

and C the number of channels of the input, or hidden units in the case of second- or

higher layers. Similarly, we define the volumes fd, id, od, c̃d, cd, hd, h ∈ RW×H×D×O,

where d ∈ D is a direction and O is the number of hidden units per pixel. Since each

direction needs a separate volume, we denote volumes with (·)d.

The time index t selects a slice in direction d. For instance, for direction d = (·, ·, 1),

vdt refers to the plane x, y, z, c for x = 1..X, y = 1..Y, c = 1..C, and z = t. For a

negative direction d = (·, ·,−1), the plane is the same but moves into the opposite

direction: z = Z − t. A special case is the first plane in each direction, which does

not have a previous plane, hence we omit the corresponding computation.

C-LSTM equations:

it = sigm(xt ∗Wi + ht-1 ∗Hi + bi), (Input gate)

ft = sigm(xt ∗Wf + ht-1 ∗Hf + bf), (Forget gate)

c̃t = tanh(xt ∗Wxc̃ + ht-1 ∗Hc̃ + bc̃),

ct = c̃t � it + ct-1 � ft, (Cell state)

ot = sigm(xt ∗Wo + ht-1 ∗Ho + bo), (Output gate)

ht = ot � tanh(ct), (Net-output)

where (∗) is a convolution and h is the output of the layer. Note that in 3D vol-

umes, convolutions are performed in 2D; in general a n-D volume requires n-1-D

convolutions. All convolutions have stride 1, and their filter sizes should at least be

3 × 3 in each dimension to create the entire context. All biases are the same for all

LSTM units (i.e., no positional biases are used). Further processing is the same as

Equation 3.10 and Equation 3.11.

3.4 Conclusion

Here, the traditional MD-LSTM and its improved version, PyraMiD-LSTM are pre-

sented. In the next section, how these two LSTM models are employed in the network,

the details of each layer of the networks, and their architectural choices for image

analysis will be described. Also, the details of network settings and the generalization

techniques for the network training will be explained.

Chapter 4

Network Architectures for Image

Analysis

This chapter describes each layer of the LSTM network and provides a number of net-

work architecture options for MD-LSTM-based image analysis and possible network

settings for efficient training. All architectural options of the network and settings

described here are subsequently analyzed.

Section 4.1 explains the details of possible layers in the LSTM network. In Section 4.2,

the design choices with these layers for image analysis are described. Finally, the

possible network settings and generalization techniques of the networks are described

in Section 4.3.

4.1 Network Layers

In this section, all possible architectures combined with various layers are presented

with a focus on CV tasks. The main architecture of the network in this thesis can be

divided into three layers: an input layer, a hidden (LSTM) layer, and an output layer.

Additional layers such as a fully connected layer and a collapse layer can be included

in the hidden layer and the output layer, respectively. Two different target coding

schemes, i.e. a standard and a probabilistic target coding scheme, are introduced

and applied depending on the task and the input.

42

4.1. Network Layers 43

4.1.1 Input Layer

As in other DL approaches, the LSTM networks directly receive raw pixel values as

input; the image can be a grayscale or color image, but here only an RGB color image

is used as input. The input (3×n×n) can be one pixel (n = 1) or a window (n > 1).

When the input is a single pixel, it will result in having a very long sequence of entire

pixels to learn in each iteration. In the worst case, LSTM is required to carry the

contextual information of whole pixels to learn dependencies. Though the issue of

long-term dependencies is eased in LSTM (compared to RNNs), Hochreiter found

that LSTM can learn to bridge between 1000 discrete steps at most [HBFS01].

Since, adjacent pixels in an image, especially with a high-resolution, tend to have

similar values, the dependencies within the pixels can be redundant. Based on this

assumption, the window-input is utilized depending on the task and the resolution

of the image. Each window can be viewed as a super-pixel. This super-pixel-input

combines the local correlation of the pixels but maintains global coherence of the

image. If images are present in high resolution and quality, the window-input inte-

grates the local context and reduces the total discrete input steps. It helps in both

localizing the area and keeping the longer range dependencies without losing global

context. Moreover, the window-input speeds-up the inference process.

For classification, since the precise positioning is not necessary as an output, the

window-input is effective regardless of the resolution of the image. However, the

window-input at the end affects the size of the final output of the segmentation1. The

final size of the output matters for the image segmentation task. This issue can easily

be solved by up-scaling with some interpolation method, e.g., cubic interpolation.

Thus, the issue does not heavily influence the final results. Nevertheless, if the size

of the total input is small enough, pixel-level input is still better as it provides more

precise output position than the output of an interpolation. In this thesis, window-

input is applied, if the resolution of the input image is higher than 100×100.

Another issue concerning the window-input in segmentation is that one window-input

with many pixels is compared to one target label in a typical error computation,

meaning that a single label from these pixels should be selected. In Section 4.1.3, a

probabilistic target coding scheme is introduced to resolve this problem.

To obtain windows from the input, an image is split into a grid, which can be thought

1Each window is assigned to a label instead of a pixel

44 Chapter 4. Network Architectures for Image Analysis

of as non-overlapping windows. Initially, both overlapping and non-overlapping

window-input was tested, and it was found that the latter performed just as well,

but faster.

4.1.2 Hidden Layer

The main parts of hidden layers are LSTM memory blocks. In addition, fully con-

nected layers can optionally be added for deeper networks.

LSTM Layer

The details of an LSTM layer are described in the last sections (mainly in Section 3.2

and 3.3). Each LSTM memory block is computed for all directions before the output

activations are combined into one final output to send it to the next layer. This layer

can be hierarchically stacked for a deeper model.

Fully Connected Layer

This layer has full connections with a nonlinear activation function. The output

of the connections is combined and squashed by the hyperbolic tangent (tanh). As

indicated by Graves [Gra12], this layer helps to control the number of weights for the

next layer. It also controls (mainly increases) the amount of features from the results

of LSTM layers and provides a smoother information flow to the next layer. This

layer is especially helpful in case of complex input and deeper networks. In Figure 6.5

of Section 6.2.1, some examples of feature maps from this layer are visualized.

4.1.3 Output Layers

Collapse Layer

This layer is mainly used for Image-level Classification. The main idea is initially

introduced by Graves [Gra08], but has not been used. From the hidden layer, an

input (a pixel or window) has its own prediction. The required output of image

classification is a single label of an input image. Therefore, all of these predictions

need to be contributed to a single class label at the end. This layer is mainly for

integrating all predictions of an input pixel or a window into one final output. This

integration occurs between the hidden layer and the classification layer, i.e., softmax

layer. All activations over the whole input are added and sent to the final layer. The

4.1. Network Layers 45

operation is the sum over all the pixels (input):

n =
T∑
t=1

pt, (4.1)

where T is the length of input, p is the output from the hidden layer, and n is the

final activation vector.

Softmax Layer

Finally, the activations from the last layer, contained in M , are fed to a softmax layer,

which will output the class probabilities for input wi: Pr(c|wi) = Softmax(M).

The output of the last hidden layer is normalized with the softmax function:

Pr(c|wi) =
eac(wi)∑

l∈{1,...,L} e
al(wi)

,

where a(wi) is the final activation of the input wi, c is the target class of the input,

and l is the one of the predefined target sets. Here, wi is either an input image

(for image-level classification: image classification) or a pixel/window (for pixel-level

classification: image segmentation) depending on the required output of the task.

Our goal is to find the maximum likelihood of all training samples. Various objective

functions (loss/error function) can be used such as the cross-entropy error function

or the squared error function. As the cross-entropy error function is most commonly

used throughout this thesis, it will be further explained in the following:

E = −
C∑
c=1

zc ln Pr(c|wi), (4.2)

where zc ∈ {0, 1} is an integer value from the true probability vector corresponding

to the target class c. Note that, the true probability vector is constructed based on

its target class; 1 is assigned for the target class and 0 for others. Pr(c|wi) is the

predicted probability of the class c.

Standard target coding: To compare the multi-class probability (Pr(c|wi)) with

the target c for errors, a 1-of-K coding scheme is typically used, which It encodes

the desired output. Note that, 1-of-K coding scheme is a binary vector with all

46 Chapter 4. Network Architectures for Image Analysis

elements set to zero except for the one which corresponds to the correct class. In the

Equation (4.2), zc is an element of the encoding vector according to c.

Probabilistic target coding: In general, the number of targets corresponds to

the length of the input. In image segmentation however, when the input is not one

pixel, the number of target labels is greater than one. In this case, the target is not

only a single class, but can contain multiple classes. Let us assume that the input is

a window, sized n×n, n > 1. In this case, errors are quantified within this window

using a probabilistic target coding scheme. The error function (Equation (4.2)) is

modified using the probability of an occurrence of the class c.

E = −
C∑
c=1

fc
n×n

ln Pr(c|wi), (4.3)

where fc is the frequency of occurrence for class c in wi, and n×n is the size of wi.

4.2 Network Design for Image Analysis

This section explains the network design choice for various CV problems that are

addressed in this thesis. The major concern of the network architecture design is

to determine the kind of task the network aims for. Here, the architectural options

are suggested depending on the type of input and output, as well as the required

tasks. Thus, the network architectures are constructed based on three factors: the

dimension of input, depth of a network, and the type of output. As mentioned earlier,

the typical networks are with three layers: an input layer, a hidden layer with LSTM,

and an output layer.

4.2.1 The Dimension of Input

This work focuses on processing multi-dimensional input (2D and 3D). When deal-

ing with multi-dimensional data, the traditional approaches, e.g., MLP, pre-process

the data into one dimension before sending it to the network. To deal with high-

dimensional data without any extra processing, the LSTM layer takes a wide range of

4.2. Network Design for Image Analysis 47

contextual information in MD-LSTM. Here, two different LSTM connection strate-

gies for the context flow of information are introduced: axis-wise connections (Fig-

ure 3.4–a) and column-wise connections (Figure 3.4–c). Depending on the dimension

of input, one connection strategy is more efficient than the other.

2D input data: For 2D data, the traditional MD-LSTM memory block includes

two recurrent connections as shown in Figure 3.4–a. These two recurrent connections

access the pixels along the x and y axes. Thus, one memory block takes one direction

of the image into account. For all directions, four LSTM memory blocks are necessary:

left-top, left-down, right-top, and right-down. These access directions can be formally

defined over the two axes (x, y): Da2D = {(−1,−1), (−1, 1), (1,−1), (1, 1)}. These

memory blocks and their connections in the network are shown in Figure 4.2–a, b, c

(in the LSTM Layer).

There is another possibility to process 2D data, which uses to have column-wise

connections. In this case, at least three recurrent connections are required along

with an axis (x or y, see Figure 3.4–c). It also requires four LSTM memory blocks

in the 2D case: left, right, top, down. The access directions can be formally defined

as follows Db2D = {(·,−1), (·, 1), (1, ·), (−1, ·)}.

The latter strategy seems to require more computations than the former one; both

strategies need to process four directions but the former one has two connections

and the other has three connections. However, the LSTM computations with the

column-wise connection can be efficiently computed with the convolution operation.

This characteristic is especially advantageous when the dimension is higher, which

will be discussed with 3D data in the following. In the experiments with 2D data,

this thesis employs the MD-LSTM with axis-wise connections in the LSTM Layer.

3D input data: In traditional MD-LSTM for 3D data, three recurrent connec-

tions are needed along with the axes: (x, y, z). This requires eight access directions

to process the whole context. These access directions can be formally defined as:

Da3D = {(−1,−1,−1), (−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,

−1), (1, 1, 1)}.

The connections with column-wise dependencies in 3D data become plain-wise con-

nections. The number of connections is typically nine for one direction, and six LSTM

48 Chapter 4. Network Architectures for Image Analysis

memory blocks are required to process all directions. As mentioned earlier, LSTM

computations with this connection strategy are convertible to the convolution oper-

ations. The number of connections are decided by the filter size; the filter size 3× 3

has nine connections. All directions with plain-wise connections can be defined as

follows: Db3D = {(·, ·,−1), (·, ·, 1), (·,−1, ·), (·, 1, ·), (−1, ·, ·), (1, ·, ·). This connection

strategy is used in PyraMiD-LSTM. refer to Section 3.3 for more details.

In fact, MD-LSTM stands in need of tremendous computations to process all direc-

tions, especially for higher dimensions and a big data input. Therefore, the former

connection strategy, which the parallel computation is not possible due to the de-

pendencies of each pixel, is a critical limitation for 3D data. The latter connection

strategy can easily solve the issue with parallel convolution computation by utilizing

the GPU. Figure 4.2–d (in the LSTM Layer) illustrates the plain-wise connections

and their context information flow on 3D volumetric data. Later in Chapter 7, we

explain how the parallel volumetric LSTM network (PyraMiD-LSTM) is applied to

3D volumetric images.

4.2.2 Depth of the Network

Depth has an important influence on the performance of the network. This thesis

investigates both a single-layer and a deep (multi-layer) network for image analysis

tasks.

A single-layer network: This is a network with one hidden layer. Since building

deep representation is an issue in CV and ML communities, a single-layer network

does not seem attractive. Deep representation is known to provide different level of

abstraction of images that is able to have automated feature learning. However, it

needs a lot of computations (parameter weights) and is hard to train; the issue was

discussed in Chapter 2. Instead, LSTM processes the range of contextual informa-

tion recursively. By making use of the memory cell and gates, the LSTM memory

block decides to remove or keep information of each pixel. In addition, the multi-

ple independent memory blocks of MD-LSTM take various directions of an image

into account. This structure is theoretically able to extract the abstract representa-

tion of an input image. The experiments in this thesis will show that a single-layer

MD-LSTM network can be successfully applied to noisy texture and natural scene

4.2. Network Design for Image Analysis 49

images (in Section 5.1, Section 5.2, and Section 6.1).

A deep network: A single-layer LSTM network has achieved good experimental

results in many challenging image analysis tasks in this thesis. However, to classify

input data containing a high intra-class variation and noise, higher-level abstraction

modeling is required for a more generalized system. Moreover, LSTM tends to strug-

gle with a long-term dependencies meaning that the training becomes harder with

increasing length of the data; the long-term dependency problem is addressed in Sec-

tion 3.1.3. These issues are reduced with a deeper model. In this thesis, the deep

model consists of three stacks of both the LSTM and the fully connected layer. Note

that the fully connected layer is added between two LSTM layers, and the size of

the fully connected layer is bigger than that of the LSTM layer. Hence, more com-

binations of low-level representations from the previous LSTM layer are produced.

This helps to provide more diverse abstract representations to the deeper layer and

to control the number of weights to the next layer. Figure 4.1 presents the internal

representation of each layer of the three-layered networks after convergence, including

all of the LSTM memory blocks as well as the fully connected layers.

4.2.3 The Type of Output

Depending on the shape or the type of the required output, the output layer needs to

be designed accordingly. In this thesis, two domains of image analysis are addressed:

image classification and segmentation. Image classification requires output with one

desired label per image, but segmentation requires a set of desired labels per image

which should be the same size as the input image. Here, the issue is solved with

adding a layer before the final classification layer.

For Image classification: Since the LSTM layer results in an output activation

vector (the class probabilities) for each pixel, the network needs to finalize the highest

score of the class over all pixels for the task. Therefore, the entire output is integrated

into a collapse layer after the hidden layer. The output of this layer is sent to the

output layer, commonly a softmax layer. Finally, the main architecture for image

classification includes an input layer, one or multiple hidden layers, a collapse layer,

and an output layer. The architecture for the task is illustrated in Figure 4.2–a.

50 Chapter 4. Network Architectures for Image Analysis

LSTM Layer-1 FC Layer-1

FC Layer-2
LSTM Layer-2

LSTM Layer-3

sky tree

road grass

foreground

mountain

buildingwater

Figure 4.1: The internal representation of each layer of the three-layered networks. The
networks are composed of the input layer, (the first) LSTM layer with a fully connected
layer, (the second) LSTM layer with a fully connected layer (FC layer), (the last) LSTM
layer, and the output layer with softmax. The lighter color represents higher activations.

4.2. Network Design for Image Analysis 51

LSTM Layer

Input Ik

3

S

S

S

S

 3xnxn 3xnxn

 3xnxn 3xnxn

LSTM LSTM

LSTMLSTM

 ∑

Collapse
layer

Pr (c∣Ik)

Output∑∑∑∑
Pr (c∣w i)

∑

Hidden Layer

 wi
3

n

n

(a) 2D image classification

LSTM Layer

Input Ik

3

S

S

S

S

 3xnxn 3xnxn

 3xnxn 3xnxn

LSTM LSTM

LSTMLSTM

 ∑
Pr (c∣wi)

Output

Hidden Layer

Softmax

 wi
3

n

n

(b) 2D image segmentation (a single hidden layer)

LSTM Layer

Input Ik

3

s

s

s

s

 3xnxn 3xnxn

 3xnxn 3xnxn

LSTM LSTM

LSTMLSTM

wi ∑
Pr(c∣wi)

Output

Softmax

1

t

Fully connected
Layer

tanh
3

n

n

...

Hidden Layer

(c) 2D image segmentation (multiple hidden layers)

52 Chapter 4. Network Architectures for Image Analysis

LSTM Layer

Input Ik

d

wi ∑
Pr (c∣wi)

Output

Softmax

1

t

Fully connected
Layer

tanh
3

n

n

...

Hidden Layer

C-LSTM C-LSTM C-LSTM

C-LSTMC-LSTMC-LSTM

(d) 3D image segmentation (multiple hidden layers)

Figure 4.2: Various architectures used in this thesis for different applications. s and t are
the number of hidden units in each layer, which is not visualized in (d). d is the depth of
volumetric data. The input consists of RGB images. Hence, the size of the input is always
3.

For Image segmentation: One of the advantages of LSTM for images is that

the model delivers a per-pixel prediction without any extra processing. Therefore,

the network does not need any extra layer. The main layers for image segmentation

are an input layer, one or multiple hidden layers, and an output layer. The output of

LSTM is directly sent to the output layer. Figure 4.2–b, c, d shows the architectures

used in this thesis for image segmentation.

Figure 4.2 summarizes the different architectures used in this thesis for various CV

tasks. Figure 4.2–a and b visualize a single-layer network for image classification and

segmentation of 2D texture images, respectively. Figure 4.2–c depicts a deep network

for image segmentation on 2D scene images. Finally, Figure 4.2–d represents for 3D

volumetric segmentation with a deep network.

4.3 Network Settings and Generalization

There can be different settings and generalization techniques of the networks de-

pending on their conditions and tasks. This section discusses the possible network

settings and generalization techniques to optimize the final performance: input nor-

4.3. Network Settings and Generalization 53

malization, weight initialization, peephole connections, regularization, optimization

for training, and other network parameters.

4.3.1 Input Representation

Keeping an appropriate range of input values is essential for any machine learning

tasks, especially for NNs [LBOM98]. There are several ways of changing a range of

input values: scaling, normalization, standardization.

Scaling is to add or subtract input values by a pre-defined constant before multiplying

or dividing with another constant. One example is to make a consistent unit of

measurement from different types of data.

Normalization can be viewed as a way of scaling. This computation provides a range

of input values in certain scales. One of the common normalization techniques is the

Max-min normalization.

x̄t =
xt − xmin
xmax − xmin

, (4.4)

where xmax and xmin are the maximum and minimum values over the given input,

and x̄t is the normalized input of xt. This normalization technique keeps all input

values in the range of [0, 1], however it is also possible to keep the middle of the range

at 0 and the interval of size 2 by using the following formula:

x̄t =
xt − ((xmax − xmin)/2)

(xmax − xmin)/2
, (4.5)

Here, the normalized input x̄t will be in the range of [−1, 1].

Standardization (also called Z-score Normalization) centers the values around 0, i.e.

keeping a mean of 0, with a standard deviation of 1 by calculating mean and standard

54 Chapter 4. Network Architectures for Image Analysis

deviation (Z-score) over the training data.

µ =
1

T

T∑
i=1

xi, (4.6)

σ =

√√√√ 1

T

T∑
i=1

(xi − µ)2, (4.7)

x̄t =
xt − µ
σ

, (4.8)

where µ and σ compute the mean and the standard deviation of the input data,

respectively.

The purpose of this process is to provide compact but distinctive components of

the input vectors between classes. It mainly performs uniform scaling to keep a

certain range of variation in the input space. Therefore, the training becomes faster

and reduces the chance of local optima. The choice of this process depends on the

type of input, the activation functions (in NN) and the range of weight values; the

weight initialization scheme is discussed in Section 4.3.2. A suitable range of input

values with the corresponding weights and biases can have a huge effect on network

performance. If not specified otherwise, this thesis assumes that the input to be

normalized into the range [0, 1]. Standardization is applied in some experiments,

especially for natural scene images, to maximize the variance of pixel values. However,

standardization had no effect on performance and speed.

4.3.2 Weight Initialization

The initial weights can significantly affect the training process [LBOM98]. In general,

weight values are randomly chosen from small values. In fact, the values should not

be in a certain range to avoid very small gradients — small gradients slow down the

training process. This thesis follows the same weight initialization as the one from

Gers et al. and Graves [GSS02, Gra12]: Gaussian distribution with a mean value

of 0 and a standard deviation of 0.1. For LSTM, all gate activations and biases are

initialized to zero. As mentioned earlier in Section 3.1.3, it is hard to learn long-term

dependencies even with LSTM. We assume that using a high-quality image as an

input tends to raise a long-term dependency issue as the length of the input is longer

4.3. Network Settings and Generalization 55

than the length of other data types, e.g., off-line handwriting. Therefore, some extra

experiments are performed to see the effect of biasing forget gates with regards to

the issue. Higher bias values are set at the beginning of the experiments, i.e., +1.0,

+2.0, or +7.0. However, these initial bias setting did not affect performance.

4.3.3 Peephole Connections

The initial LSTM model proposed by Hochreiter et al. [HS97a] and some recent

studies [LZCR15] do not have peephole connections which connect from a cell to a

gate (i.e., Ci · ct−1, Cf · ct−1, and Co · ct−1, see Section 3.2). Omitting them did not

result in any performance penalties in experiments of this thesis, but resulted in less

computations and therefore in a shorter processing time. The connections were kept

for most of the experiments (classification and segmentation tasks) but discarded for

the later work (volumetric segmentation).

4.3.4 Regularization

Several regularizers are introduced to address the problem of overfitting, such as

Dropout [HSK+12] and DropConnect [WZZ+13]. The main idea of these approaches

is to randomly remove a subset of unit activations (Dropout) or connections (Drop-

Connect) in each layer. The networks with these regularizers are forced to learn

very sparse representations, which results in a more robust training. They appear

to be very effective at improving the quality of predictions. Alternatively, L1 and

L2 regularization and weight decay can be used [Sla14]. In this thesis, Dropout was

tested with the PyraMiD-LSTM model; limited to non-recurrent connections (50%

dropout on fully connected layers and/or 20% on input layer), but it showed no effect

on performance.

4.3.5 Optimization

There are several ways of optimizing a set of weight parameters so that the error based

on the gradient information is minimized2. There is a range of different minimiza-

2The commonly used error functions are Mean Square Error (MSE) or Cross-Entropy Error
(Equation 4.2)

56 Chapter 4. Network Architectures for Image Analysis

tion approaches investigated by the literature. Some of the examples are Stochastic

Gradient Descent (SGD), momentum, RMS-prop [TH12], AdaGrad [DHS11], or com-

binations of them. This thesis has mainly been experimenting with on-line3 SGD with

momentum and RMS-prop with momentum.

SGD is the most common way of updating weights in NNs. It computes the gradient

of the parameters using only a single (on-line) or a few training examples (mini-

batch).

The formula is as follows:

θ = θ − λlr∇θE(y, y∗), (4.9)

where y is the target, y∗ is the predicted network output, E is the predefined error

function. ∇ is the gradient, θ is the weight, and λlr is the learning rate.

This way, the update steps per iteration can be unstable, leading to local optima or

poor convergence. This issue can be avoided by using momentum with SGD.

Momentum uses the history of the previous update V and combines it with the next

update. This results in a more stable update compared to the standard SGD, as it

can prevent some uncertain jumps.

The formula of the SGD with momentum is as follows:

V = αV + λlr∇θE(y, y∗), (4.10)

θ = θ − V, (4.11)

where α is the momentum coefficient.

RMS-prop with momentum is another extension to overcome the problem of the

standard SGD. Using an average of squared gradients, it attempts to reduce a mono-

tonically decreasing learning rate, meaning that even weights with small gradients

get updated. This also helps to deal with vanishing gradients [Hoc91]. Let us define

a
ρ←− b to be an = ρan + (1− ρ)bn, where a, b ∈ RN .

3The weights are updated per sample.

4.3. Network Settings and Generalization 57

The following equations hold for every epoch:

MSE
ρMSE←−−− ∇2

θE(y∗, y), (4.12)

G =
∇θE(y∗, y)√

MSE + ε
, (4.13)

M
ρM←−− G, (4.14)

θ = θ − λlrM, (4.15)

where MSE represents a running average over the variance of the gradient, ∇2 is

the element-wise squared gradient, G the normalized gradient, ε is the smoothing

constant to prevent division by zero, and M the smoothed gradient.

In this work, networks will mostly be trained with SGD with momentum, with the

exception of 3D biomedical image segmentation which uses RMS-prop with momen-

tum.

4.3.6 Network Parameters

The Learning rate is commonly set to a very small value. In general, choosing

the appropriate learning rate is fairly difficult. In earlier works, the learning rate

of 1D-LSTM was normally set to a value between 10−4 and 10−5 [Gra12], and for

MD-LSTM between 10−5 and 10−6 [GFS07b]. In this thesis, a small subset of the

training or validation set was preliminarily tested with a range of constant values

between 10−3 and 10−7. The results of these tests showed that as the learning rate

decreases, error changes become more stable over the iterations, especially when

using a large sized input for segmentation. Note that, there is another possibility

to set an adaptive learning rate which allows to change the learning rate during the

training process to provide stable learning. For the final experiments, the learning

rate has been fixed to either 10−4 or 10−6, depending on the task and the size of

input. Momentum is typically set to 0.9, which remains constant throughout the

experiments conducted in the scope of this thesis.

58 Chapter 4. Network Architectures for Image Analysis

4.4 Conclusion

This chapter described the details of LSTM networks for 2D and 3D image analysis.

The details of the network architectures and network settings were explained. In

the following three chapters, the network architectures introduced here will be eval-

uated on various types of images and tasks: image classification on 2D texture and

scene images, image segmentation on 2D texture and scene images, as well as on 3D

biomedical volumetric images. The next chapter will start with the experiments of

2D-LSTM for image classification on texture and scene images.

Chapter 5

Image Classification

In this chapter, the 2D-LSTM model presented in the last chapter has been evaluated

on various types of images: texture and scene images. Here, an additional layer, called

a collapse layer is added between the hidden layer and the output layer to combine

all output activations of input pixels. These accumulated activations contribute to

the final class label of a given input image. The network for classification consists

of four layers: an input layer, a hidden layer with LSTM, a collapse layer, and an

output layer (see Section 4.1 and Section 4.2 for more details).

Texture images are firstly applied to see how well LSTM-based image classification

works compared to other approaches. Here, several ways of feeding the input into the

network and the output integration technique are presented. The input is represented

as multi-patches with a variety of transformations: scaling, rotation, and translation.

The patch-wise input can easily be combined with such transformations providing

flexibility of input representation and invariance in the network. Compared to using a

2D image as a whole, multi-patch input with the output integration has the flexibility

to represent the pixels to the wide range of scaled and rotated textures which produce

consistently better results on five widely used datasets for texture classification.

As for more realistic scenarios, this approach is subsequently applied to natural scene

images, collected from web-searches. Due to the lack of availability of a large and

realistic data source, a new web-scene image dataset is created. This dataset con-

tains different types of images for training and testing. For training, images contain

a single visual content per image (e.g., sky, grass, and building). It makes training

easier as compared to using complex and noisy scene images directly. For testing

59

60 Chapter 5. Image Classification

purposes, natural scene images are randomly collected from the web, which con-

tain many unrelated contents and noise. With help of several pruning rules, the

images are classified with multiple labels under such conditions. The experiments

on the web-scene image dataset show that LSTM-based classification outperforms

other methods including CNN which is one of the most popular approaches in the

field. The approach yields good results on automatic web-image tagging, which is

the real-world application using this approach. Further experiments on the recently

published dataset, outdoor scene attribute dataset reports a significant improvement

over the baseline [WJWZ13] and CNN (the improvement ca. 21% compared to the

best accuracy of other approaches).

The work presented in this chapter appeared in ICPR 2014 [BLB14] and Pattern

Recognition Letter 2015 [BLB15]. Section 5.1 describes the details of an approach

for texture classification and its experiments. Section 5.2 presents the attribute

learning with LSTM on natural scene images and shows the experimental results on

multi-label scene understanding and its application, web-image tagging.

5.1 Texture Classification

The main purpose of this work is to examine how well LSTM-based texture classifica-

tion works compared to other approaches. A standard 2D-LSTM is directly applied

to raw RGB value of pixels, without any manually designed feature extraction or

pre-processing. Here, multi-patch input with various transformations1 and the out-

put integration technique increased the quality of the performance and reliability of

the networks for classification. The complete flow diagram of the approach is shown

in Figure 5.1.

5.1.1 The Approach

Training: The network receives input from raw RGB pixel values. In general, the

training data in the datasets have a small number of samples and are under fixed

conditions; they are under small changes in pose, scale, and illumination, and the

samples are not diverse enough to generalize the network. To achieve robust training,

1i.e., scaling, rotation, and translation

5.1. Texture Classification 61

Figure 5.1: A pipeline for texture classification. The input image is the raw RGB pixel
values. For training, the multi-patch input with diverse transformations are is considered
(Both with transformations in (2) and without transformations in (1) on the training input
data are evaluated in the experiment.) To apply the various transformations, an amount
of random patches are first sampled. These multi-patches are randomly rotated and scaled
then sent to the networks. Finally, predicted outputs are integrated to decide the final
output; the maximum score of class probabilities and its corresponding label are selected
as a final output of the image.

several transformations like rotation, scaling, and translation are applied on multi-

patches sampled from an input image The network is primarily trained on (1) the

original patches, (2) transformed patches, (3) an image as whole. In Section 5.1.4,

the performance of these are all evaluated. To transform an input image, randomly

sized patches are first selected at a random position. They are then rotated and

scaled-up or down into the size of n× n. This process is repeated multiple times for

each input image. It allows us to train on randomly scaled and rotated samples as

well as on the original patches, which can easily be applied to the network without

prior knowledges of the image resolution and condition. This way, our model can

capture the variation of each attribute under limited number of training samples and

keep the input dimension constant to retain one optimal model for different data.

Output integration: The networks are expected to output conditional proba-

bilities of all labels given each patch j: Pr (label | patchj). To determine the final

class of an image, further integration process is required. Since we sampled the ran-

dom parts of an image, some patches have higher distinctive patterns and some may

contain noise or ambiguous patterns. For this reason, all output from the network

(the class distributions) are smoothed before deciding the final prediction that find

the most probable label of the image. The output vectors over all patches are first

averaged, and then the label with the maximum score over the vector becomes the

62 Chapter 5. Image Classification

Table 5.1: The summary of texture datasets used in the experiments. Each database has
various challenging problems for separate experimental designs. Textures in each dataset
are taken under a variety of conditions, quality, and resolutions. KTH-TIPS includes
specific texture from materials under varying illumination, poses, and scales. Other datasets
are from natural textures of a scene or an object. OuTex, VisTexL, and VisTexP contain
a variety of textures with small number of training images. In contrast, NewbarkTex
is composed of six tree bark classes with a larger number of training images. However,
variation between classes is not distinctive. Difficulties on these datasets are shown in
Figure 1.3.

Image size # Texture
Training

Test Type of texture
per class

KTH-TIPS [KTH] 200× 200 10 40 410 material

OuTex [out]
128× 128 68 10 680 natural texture

(OuTex-TC-00013)

VisTexL [visa]
128× 128 54 8 432 natural texture

(Contrib-TC-00006)

VisTexP [visb] 128× 128 55 8 440 natural texture

NewbarkTex [bar] 64× 64 6 136 816 natural texture

final decision:

arg max
label

1

patches

#patches∑
j=1

Pr (label | patchj) (5.1)

5.1.2 Datasets

The dataset KTH-TIPS [KTH] includes various conditions, namely nine scales span-

ning two octaves, three different illumination directions, and three different poses.

Some materials have very similar textures like cotton and linen or sponge and brown

bread, which make the database challenging. For comparison, the evaluation setup

proposed by Zhang et al. [ZMLS07] has been followed.

The dataset OuTex [out] contains 68 classes of various color textures with 128× 128

sized image. Half of the images for training (680 images out of 1360 images) and

the remaining is used for testing. Several image categories have similar color and

texture, so discriminating only by their pixel values is not trivial.

5.1. Texture Classification 63

The next datasets VisTexL [visa] and VisTexP [visb] are both designed for natural

color textures under non static conditions. The same scheme is used to generate the

dataset. For VisTexL, 864 disjoint sub-images are generated from 54 texture images.

VisTexP includes 55 texture classes with 880 sub-images. For both datasets, each

image (size 512× 512) is split into 16 sub-images (size 128× 128). These sub-images

are considered as the same class. As for the OuTex set, half of the images are used

in the training phase.

Recently, a new benchmark color texture image test suite, NewbarkTex [bar] is pro-

posed using a subset of the BarkTex dataset [MVK+02, Pal04, PL02, PVM07]. Six

tree bark classes with 68 images per class (128× 128) are divided into 4 sub-images

(size 64 × 64). A total of 272 sub-images per classes (total 1,632 images) are built

which are again divided into halves for training and testing.

5.1.3 Experimental Setup

All the experiments have been performed by using the RNNLIB library2. For the

statistical evaluation proposed by Flexer [Fle96], a preliminary test is repeated five

times with numerous parameters to find the appropriate network architecture. The

optimal parameters are then applied to the datasets with randomly divided training

and testing samples. It is repeated 50 times and reported the average accuracy. All

five datasets have been evaluated directly on the raw RGB pixel values.

Input representation: As mentioned in Section 5.1.1, a wide range of scale and

rotation are considered as input. For rescaling the input images, patches between

50×50 and 80×80 are randomly sampled, then resized to 64×64 pixels. The scaled

patches are then rotated at angles between 0◦ - 360◦. Both scale and rotation are of

1 pixel or 1◦ increment. Besides, the number of patches extracted in an image also

affects the performance since randomly rotated and scaled patches increase diversity.

Very small and large number of patches (10 and 200) have been examined for all

experiments to evaluate the influence of performance.

Input block and LSTM networks: To find an optimal network model with

proper input size and its corresponding input block, the range of parameters (hidden

2http://sourceforge.net/projects/rnnl/

http://sourceforge.net/projects/rnnl/

64 Chapter 5. Image Classification

size = {15, 25, 50, 75, 100}, input block size = {non-block (pixel-wise), 5, 10, 15, 20,

25} with the input pixels = {64× 64, 100× 100, 200× 200}) has been preliminarily

examined. If no input block is used, the block is considered as one pixel (pixel-wise).

An important finding from this experiment is that training became more difficult as

the length of input increases. It is mainly due to the long-term dependency issue

of LSTM mentioned in Section 3.1.3 and Section 4.1. The proper training has been

started when the size of the input block is bigger than 5 × 5 if the input image has

more than 50 × 50 pixels. In othe words, MD-LSTM cannot learn when the length

of input is longer than 2500 pixels, but he total length of the input became shorter

by using the input block. Thus, the network can avoid the difficulty of learning long-

term dependencies in the long length input. In addition, the MD-LSTM network

did not converge if the size of input block is small but the number of hidden units

is big; pixel-level (block size 1 × 1) or block size 5 × 5 when a hidden size is bigger

than 25. These preliminary experiments have shown the influence of input block and

relationship of input and hidden size with block size. At the end, the input block size

of 5 with 15 hidden unit was set with a input size of 64×64 pixels for all experiments.

The learning rate and momentum have been fixed for all experiments to 1e-4 and

0.9, respectively.

Evaluation: The performance is evaluated using per-patch and per-image ac-

curacy in order to compare the effectiveness of a patch-based input representation.

Given input = {i1, i2, · · · , iN} with corresponding labels = {l1, l2, · · · , lN}, the patch

= {p1, p2, · · · ,pM , · · · ,pT} are samples from N images. N is the number of images,

M is the number of patches per image, and T = M ×N . The classification accuracy

per-patch is computed as follows:

accuracyper-patch =
1

T

T∑
t=1

1 arg maxl Pr (l | pt) = lg,

0 otherwise,
(5.2)

where p, l, and lg indicate the input patch, its predicted label, and the GT label,

respectively.

Furthermore, per-image accuracy is measured using an integrated score of all patches:

accuracyper-image =
1

N

N∑
n=1

1 arg maxl
1
M

∑M
m=1 Pr (l | pm) = lg,

0 otherwise,
(5.3)

5.1. Texture Classification 65

Table 5.2: Correct classification rates (avg. accuracy, %) on five benchmark datasets of
texture classification. The experiments of all datasets with the best resulted parameters
are repeated 50 times for the statical evaluation and the averaged accuracies are reported
(the size of input patch = 64 × 64, the size of input block = 5×5, the number of hidden
units = 15, the learning rate = 1e−4). The performance is compared to the state-of-the-art
methods for texture classification. The LSTM networks lead to superior performance on
most datasets. Note that the performance in bold is statistically significant with 95% confi-
dence among other methods, and underlined numbers indicate comparable results. Baseline
methods: Basic Image Features based on steerable filters (BIF), Multi-scale Local Binary
Patterns (LBP), Principal Curvatures with four scales (PC), Rotation invariant multi-
scale features (MLEP), Semi-joint Texton descriptor (STD), Homogeneous texture+color
structure (HTD+CSD), Multispectral co-occurrence (MM), and Haralick from reduced
size chromatic co-occurrence (RSCCMs)

Dataset KTH-TIPS OuTex VisTexL VisTexP NewbarkTex

test samples 610 680 432 440 816

BIF [CG10] 98.50 - - - -

LBP [ZLZ13] 93.17 - - - -

PC [ZZL12] 97.52 - - - -

MLEP [ZLZ13] 96.41 - - - -

STD [AV12] - 90.32 99.25 98.89 -

HTD+CSD [MOVY01] - 86.71 99.56 98.53 -

MM [ADBB04] - 94.1 - 97.9 -

RSCCMs [PVM10] - - - - 75.9

LSTM networks 100 94.70 99.09 99.07 78.2

5.1.4 Results and Analysis

The five tested datasets are fed in three different ways: (1) a 2D image as whole,

(2) multi-patches without any transformations, (3) multi-patches with transforma-

tions in scale and rotation. Note that the results reported in Table 5.2 are with

input type (3), which have gotton the best accuracy among them. Here, the per-

formance of all of these input are compared and anlayized. With input type (1),

KTH-TIPS and NewbarkTex have already been reached the best accuracy among

the feature extraction based approaches (99.48% and 78.2% respectively) and others

are comparable (93.09% for OuTex, 89.55% for VisTexL and 90.0% for VisTexP).

With multi-patch input (input type (2) and (3)), per-image accuracy are much more

scattered than when using per-patch (the difference was about 3%). The number

66 Chapter 5. Image Classification

of patches per image has also an important role on classification performance. The

performance with more number of patches (maximum 200 in our experiment) per

image is higher on most datasets (around 2% higher for all datasets except OuTex)

than other approaches. The best results using LSTM networks compared with dif-

ferent feature extraction based methods are summarized in Table 5.2. Overall, the

best accuracy of our approach led to the superior performance on most of the bench-

mark datasets. Specifically, 200 patches per-image accuracy of KTH-TIPS dataset

have achieved 100% (1.5% higher) and NewbarkTex dataset achieved 78.2% (2.3%

higher). The Statistical significance is lower for the dataset OuTex, VisTexL and

VisTexP because of extremely small number of training samples with a large number

of textures (only 10 images per class in OuTex (68 textures) and 8 images per class in

VisTexL (54 textures) and VisTexP (55 textures). However, it still gives comparable

performance. The results show that LSTM combined with the multi-patch input with

various transformations is very powerful to discriminate the raw pixel level images.

5.1.5 Summary

This section explored the capacity and efficiency of 2D-LSTM for image classification.

The network is examined on texture images and show a high performance gain on five

commonly used texture classification datasets. In the following section, the system

handles natural scene images that may contain an amount of clutter, noise as well as

some ambiguous contents in an image.

5.2. Scene Understanding 67

5.2 Scene Understanding

The task of scene understanding is to classify all containing semantics from a scene.

Unlike object recognition, scenes cannot be identified by a single category; each

scene contains multiple salient attributes, for instance, sky, buildings, and ground.

Recently, learning higher-level semantic contents, such as object parts and materi-

als, beyond the plain visual cues, such as color and texture, has achieved significant

performance gains [FZ07, MLKS13] in object recognition. Inspired by the idea of

learning semantic attribute, mid-level attribute learning is introduced in this section

to describe scene images. The mid-level attributes in scenes are visual concepts,

which are closely related to the visual properties, such as sky, ocean, or sand. The

learning process is similar to texture/material classification as described in the pre-

vious section. However, in this section, networks are trained on mid-level attributes,

which are part of a scene and appear in complex scenes along many other elements.

They are then evaluated on natural scenes containing a mix of mid-level attributes

collected from web-searches. The diagram of the approach is illustrated in Figure 5.2.

5.2.1 The Approach

Mid-level Attribute Learning: An LSTM network model takes mid-level at-

tribute images containing a single attribute per-image, like sky, ocean, or building.

Some examples of mid-level attribute images are shown in Figure 5.2–left. The

multi-patches with transformations in scale and rotation (input type (3) explained

in Section 5.1.1) are also applied for attribute learning.

Visual Attribute Classification: After training, models are first evaluated on

single-attribute images similar to the training data (Experiment 1; Figure 5.2, left).

During the training phase, a number of patches are randomly extracted from a single

image and passed through the network. Like the texture classification task, the

outputs of given patches from the networks are then integrated into one attribute

label. Due to the way the dataset is generated, images contain irrelevant (noise,

clutter, or watermark) and mislabeled regions. We use the following smoothing

process to correct these. As in the input integration step (Equation 5.1), the best label

68 Chapter 5. Image Classification

Image search engine

Pr(label∣patchi)

“sky” “sky,ocean,sand”

Experiment 1 Experiment 2

Figure 5.2: An overview of the scene analysis system. Training: Mid-level attribute
learning (red). 2D LSTM recurrent neural network model is trained on the mid-level visual
attribute data collected from a web image search engine. Experiment 1: Visual attribute
classification (blue). It is firstly tested on single attribute images. The images contain only a
single attribute per image (e.g., “sky”) Experiment 2: Natural scene analysis (green). Real-
world scene images are used for this experiment. These images include several attributes,
e.g., “sky, ocean, and sand”.

is determined by the average of all of output scores. To evaluate the performance, per-

image accuracy (Equation 5.3) is measured using an integrated score (Equation 5.1).

Natural Scene Analysis: Although the networks are trained only on specially

constructed data (attribute images), they are evaluated on natural images obtained

from the web-searches containing a mix of mid-level features (Experiment 2; Fig-

ure 5.2, right). Like the visual attribute classification task, multi-patch inputs are

sent to the network model, and each patch is classified according to its mid-level

attribute. The natural images obtained from the web-searches contain a wide range

of scales, resolutions, rotation, and clutter. The following experiments are intended

to demonstrate that our method works on such images and can be directly applicable

to more realistic applications. Here, to handle the scene images containing multiple

attributes, two pruning rules, probabilistic patch pruning and top-k rank pruning, are

introduced.

The random multi-patches may contain noise or unrelated contents, such as logos,

watermarks, or ambiguous attribute textures. To avoid these issues, two pruning

5.2. Scene Understanding 69

rules are introduced. Such noisy patches are first pruned using Probabilistic patch

pruning to avoid the confusion on the final decision. This pruning rule is based on the

posterior class probability Pr (l | p) of the label l given the patch p and a threshold

Tp:

max
l

Pr (l | p) > Tp (0 < Tp ≤ 1) (5.4)

Another pruning rule for robust classification is Top-k rank pruning. The basic ob-

servation for this rule is that the highly probable visual patterns, which tend to recur

frequently, are the main semantic regions of the scene. For the remaining patches

after probabilistic patch pruning, the ranking score is computed from the output in-

tegration (Equation 5.1), and the potential attributes are then ranked based on their

ranking score. Since the number of semantic regions (the number of k) is uncertain,

we cannot easily define an optimal k. To handle this problem, top-k ranked list passes

the threshold Tr:

1

S

S∑
s=1

Pr (l | ps) > Tr (0 < Tr ≤ 1), S > Np, (5.5)

where S is the number of patches with a corresponding label after the patch pruning.

Np is a constant integer value for pruning predicted labels that are not stable. The

label is also rejected if the final number of patches of the label is less than Np. Thus,

it prunes unreliable class labels from a statistical observation (the frequencies of the

highly probable patches of the label) on the image.

5.2.2 Datasets

(Proposed) Web-Scene Image Dataset

Google’s image search3 is used for collecting both the attribute and the scene images.

Twelve common mid-level categories are chosen: some frequent and generic in out-

door scenes (building, flower, forest, grass, snow, ocean, sand, sky, and gravel), and

narrow (stucco, candy, and meat). The aim of constructing this dataset is to achieve

the following properties: 1) plenty of diverse samples are created, 2) the uncontrolled

raw web-data containing noise and errors are directly applied to the algorithm with-

out manual annotation or pre-selection, 3) randomly collected scene images (unseen

3http://images.google.com

http://images.google.com

70 Chapter 5. Image Classification

and unknown data) represent the real-world data and the understanding of them is

only by the visual attribute information, and 4) web-images retrieved from a web

image search are used directly for tagging, which represent a more realistic scenario.

Attribute data: Ideal training data for this task would consist of manually seg-

mented and labeled natural images, as for example, found in the databases [GFK09b,

WJWZ13]. However, little training data of that form is available. Therefore, the

training data is created using a web-search engine querying the attribute-texture,

“keyword + texture”, e.g., “building texture”. The images are with mostly well

oriented visual attribute patterns (see Figure 5.3).

From the search, around 95 images for each class with different sizes have been

obtained. The collection of images is then split into 8-24 disjoint sub-images that

are used for mid-level attribute representation. Note that, we follow the same data

generation procedure as other common texture classification datasets4. The dataset

is divided into training (350 images per class), testing (196 images per class), and

validation (50 images per class). The training and validation sets are used for texture

learning and the learned model is tested using the test set. Some examples of the

visual attribute dataset from the web are shown in Figure 5.4. Here, no manual

correction or validation is considered from the collected images, so the training data

contains noisy label5 and other artifacts (see Figure 1.4). The experiments show that

the LSTM networks trained on such noisy data can be immediately applicable on the

web. Around 600 attribute images per class are generated and are split by assigning

60% to the training set, 10% to the validation set, and 30% to the test set.

Scene data: Natural scene images contain a mix of mid-level attributes. Scene

images are randomly collected from the web-search using “keyword” as query, e.g.,

“building”. The only data-cleaning that has been performed is to discard duplicated

images in the results; there is also no overlap between scene and visual attribute data.

This means that for each category, a wide range of representations of that category

may occur. They may contain multiple (most likely including the keyword), single,

or not related visual attributes which images are more challenging (see Figure 5.5).

4e.g., KTH-TIPS and KTH-TIPS2 texture image database (http://www.nada.kth.se/cvap/
databases/kth-tips/download.html)

5Web-search engine may retrieve wrong output from the query

http://www.nada.kth.se/cvap/databases/kth-tips/download.html
http://www.nada.kth.se/cvap/databases/kth-tips/download.html

5.2. Scene Understanding 71

(a) visual attribute image (keyword: “building texture”)

(b) scene image (keyword: “building”)

Figure 5.3: Image search for database generation: Images returned from Google’s image
search for the class “building” ((a) visual attribute data, (b) scene data). The collected
images may have well-conditioned natural images but also lower quality images: drawings
or cartoon of the keyword, watermarks or logos, extensive noise, background or irrelevant
parts, low-resolution texture or some other fault. However, neither the training nor the
test sets have passed through any post-selection or manual annotation. Using randomly
collected images from the Internet, the experiments show the robustness of our approach
which itself handles these issues.

72 Chapter 5. Image Classification

Bu Ca Fl Fo Gr Ga Me Oc Sa Sk Sn St

Figure 5.4: Examples of mid-level attribute data. The selected keywords: building(Bu),
candy(Ca), flower(Fl), forest(Fo), grass(gr), gravel(ga), meat(Me), ocean(Oc), sand(Sa),
sky(Sk), snow(Sn), and stucco(St).

For example, images with the query “stucco” contain a building or a person applying

the stucco on a building. In addition, web-images contain watermarks, logos, or

are low-resolution images which have been also included in this scene data. Some

examples of the scene images, their keyword, and visually recognizable attributes in

the scene, are shown in Figure 5.5. This data is made only for the test phases, i.e.,

scene analysis and web-image tagging. 540 scene images containing multiple classes

in each image are used for estimating scene attributes.

Outdoor Scene Attribute (SceneAtt) Dataset

The approach is also evaluated on the public scene dataset (SceneAtt) proposed

by [WJWZ13]. This dataset is selected since this study is the most similar to our

work. As reported in [WJWZ13], most of the public scene datasets focused on the

specific objects, humans or the functional activities; in contrast, our goal is to ana-

lyze the all visible contents of the scene. Furthermore, this dataset contains precise

text descriptions with weak labels (not precise), which makes the experiment more

complex and realistic.

The dataset is collected from LMO [LYT09], SUN attribute dataset [PH12], Google

images, and Flickr. It consists of 1226 images of 256 × 256 pixels and 30 noun +

adjective attribute pairs. The dataset is split into 645 images for training and the

5.2. Scene Understanding 73

keyword: buildling keyword: stucco

building,
ocean, sky

building,
grass, sky

building,
grass, sky

stucco,
building, sky,

grass

stucco,
building, sky,

grass

stucco

keyword: sky keyword: ocean

sky, ocean sky, grass sky, building
ocean, grass,

sky
ocean, sand,

sky
ocean, flower

keyword: flower keyword: snow

flower, sky flower, forest flower, sky snow snow, building
snow, forest,

sky

keyword: meat keyword: sand

meat meat meat sand, sky sand, sky
sand, sky,

ocean

Figure 5.5: Examples of scene data for scene analysis and web-image tagging. The
selected keywords: building, candy, meat, flower, forest, grass, snow, ocean, sand, sky,
gravel, and stucco (same as visual attribute classification task). The searched query on
web image search is shown above the images, and visually recognizable attributes are listed
below each image. The scene image normally contains multiple visual attribute parts. For
instance, the top first image with the query “building” includes sky, ocean, and building
parts.

74 Chapter 5. Image Classification

rest for testing.

5.2.3 Experimental Setup

Web-Scene Image Dataset: Two separate experiments are performed to eval-

uate and compare the performance of our approach. The first experiment evaluates

the quality of mid-level attribute learning using the attribute data (containing a sin-

gle attribute). The second part considers a more realistic scenario; the attribute

regions in a scene image are analyzed using the learned model, and the best tags are

extracted using the pruning rules.

For training, 200 patches from an input image are randomly sampled with a size

between 50 × 50 and 80 × 80. The patch is then rotated at angles of 0◦ - 360◦ and

rescaled to 64 × 64. Both scale and rotation are with 1 pixel or 1◦ level increment.

For testing on scene images, 200 patches are collected for final top-k prediction. A

fixed number of patches are extracted for all images, despite the huge variations in

resolution. This shows the robustness of the approach under a variety of images. The

threshold of the pruning rules, Tp, Tr, and Np are selected empirically to 0.6, 0.4,

and 10, respectively. The same parameters are kept for all experiments.

For LSTM training, the RNNLIB library6 is used. For all experiments, the size of the

input block, hidden size, and learning rate are fixed in 5, 15, and 1e-4 respectively.

As a baseline, the performance is compared to feature-based and filter-based methods:

• (feature-based) C-PHOW-BoVW: PHOW features on the three HSV image

channels and BoVW [BZM07b]. The PHOW feature is a variant of dense-SIFT

descriptors, extracted at multiple scales.

• (feature-based) C-PHOW-FV: PHOW features on the three HSV image chan-

nels and Fisher Vector (FV) [PD07, SP11].

• (feature-based) C-DSIFT-FV: Dense-SIFT features on the three HSV image

channels and FV.

• (filter-based) C-Gabor: Gabor with color chromatic features.

6http://sourceforge.net/projects/rnnl/

http://sourceforge.net/projects/rnnl/

5.2. Scene Understanding 75

• (filter-based) C-Co-occurrence: Co-occurrence with color chromatic features.

As features, standard dense-SIFT and PHOW feature are used. After, multiple

encoding schemes including BoVW and FV are applied on the extracted feature.

The detailed feature encoding steps are as follows: Firstly, a dense feature extractor

is applied on input images. The features are then clustered using k-means, then

vector quantization is performed using either a kd-tree (for BoVW) or a Gaussian

mixture model (for FV). Finally, visual words are accumulated into histograms with

a spatial pyramid encoding. 80 dimensions, 1024 words and 64 words are used for

PCA, BoVW, and FV, respectively. The open library VLFeat [VF10] has been used

for all feature extraction and classification methods.

For the comparison with filter-based approaches, the best low-level features re-

ported in [BHSF11b], Co-occurrence and Gabor with color chromatic features [DW01,

ADBB04, BHSF11b], are selected. Eight co-occurrence matrices corresponding to

one-pixel displacements along the following eight directions: {0◦, 45◦, . . . , 315◦} are

used. Five statistical features, namely contrast, correlation, energy, entropy, and

homogeneity, are extracted in each direction, and averaged for rotation invariance.

These features are normalized between 0 and 1. For Gabor filter, a bank of filters with

the following parameters is used: number of frequencies = 4, number of orientations

= 6, maximum frequency = 0.327, frequency ratio = half-octave. All parameters

are set based on the work from [BHSF11b]. All features are extracted in HSV color

space and SVMs with Chi Squared kernels of period 2 have been used as classifiers.

All above parameters are optimized empirically.

For CNN experiments, the Caffe library [Jia13] is used. Hyper parameter search

is carried out based on the work of [KSH12a]. The optimal structure identified by

this process consists of five convolutional and two fully-connected layers with half

the size of dimensions of the Krizhevsky’s network architecture [KSH12a]. It is

observed from the experiments that using fewer than five layers result in significant

decreases in recognition performance, e.g., 95.79% with five convolutional and two

fully-connected layers, and 90.09% with four convolutional and one fully-connected

layer. Pre-training on ImageNet for the network initialization for NN-based methods

is often effective [GDDM14b], but it is not used for both LSTM networks and CNNs

in these comparisons.

76 Chapter 5. Image Classification

Table 5.3: Accuracy comparisons of single visual attribute classification on web-image
dataset (The best score is shown in bold). In order to compare the performance, all
of our experiments have been following the same experimental setup. Visual Attribute
Classification (single attribute classification): The best accuracy of our approach lead to
superior performance compared to other common approaches. (No. test samples = 2352,
95% confidence interval = ±0.20).

Method
Attribute

weights for NNs
Accuracy (%)

C-PHOW-BoVW, SVM [BZM07b] 59.86 -

C-PHOW-FV, SVM [SP11] 68.28 -

C-DSIFT-FV, SVM 72.66 -

C-Gabor, SVM [BHSF11b] 62.12 -

C-Co-occurrence, SVM [BHSF11b] 75.21 -

CNNs [KSH12a] 95.79 38,802,300

LSTM networks 97.32 100,272

C-: HSV color space

SceneAtt Dataset: CNNs and the LSTM networks are trained on 645 training

images with the same parameter setting as the web images from our database. This

experiment is intended as a harder test case because of more attributes, different

descriptions, and small training samples. It means that it is not appropriate to use

the model trained from the previous experiment (on web-scene image dataset) for

this dataset. Thus, a new LSTM model is trained and evaluated using the same

training and test data as Wang’s work [WJWZ13].

5.2.4 Results and Analysis

Web-image Dataset: The first experiment on single attribute images shows that

our approach outperforms other baseline methods and CNNs (Table 5.3). As pointed

out by [MS05b], many popular methods are limited to the specific types of texture

features. For instance, PHOW-BoW performs well only on repetitive-textures and

some structured-textures, e.g., gravel and building. In addition, Co-occurrence or

Gabor feature discriminates well on limited color-texture image datasets [BHSF11b],

but suffers from various attribute types and its diversity. As the worst case, if there is

5.2. Scene Understanding 77

Table 5.4: Accuracy comparisons for natural scene analysis on the web-image dataset (The
best score is shown in bold). In order to compare the performance, all of our experiments
have been following the same experimental setup including the number of weights. Natural
scene Analysis: multi-attribute classification; since we cannot directly make one decision
of a classifier for scene analysis (multiple visual attributes), top-k ranked list is used to
decide the highest probable visual attribute classes of a scene. The visual attributes are
listed based on its ranking score in descending order, and top-3 and top-5 accuracies are
considered to compare the performance of our approach with other methods (No. test
samples = 540, 95% confidence interval = ±0.42).

Method
Scene

Top-1 (%) Top-3 (%) Top-5 (%)

C-PHOW-BoVW, SVM [BZM07b] 8.56 31.91 48.84

C-PHOW-FV, SVM [SP11] 8.38 35.12 53.30

C-DSIFT-FV, SVM 9.09 32.98 50.62

C-Gabor, SVM [BHSF11b] 42.34 70.88 81.03

C-Co-occurrence, SVM [BHSF11b] 46.17 74.52 82.38

CNNs [KSH12a] 56.81 79.85 90.21

LSTM networks 71.43 84.23 94.25

C-: HSV color space

not enough textures on a given image, the algorithm cannot extract sufficient number

of features whichever feature detectors or descriptors are chosen. However, the re-

sults from 2D-LSTM networks outperform other approaches under various attribute

types and transformations, including the low-textured attribute and huge distortions,

without any hand-designed features.

Here, the real-world application, automatic web-image tagging, is further demon-

strated using mid-attribute learning and the proposed web-scene image dataset. The

quality of scene analysis is evaluated using top-k ranked list (Table 5.4). It predicts

the top-k most relevant attributes. k is the maximum number of attributes (tags) in

the scene to be predicted and the ranking score indicates highly probable attributes.

The confusion table (k = 1) is shown in Figure 5.6; the major portion of keywords

is predicted as top-1. The scene images include multiple attributes, where a ma-

jor portion does not always correspond to the keyword — the weakness of the web

image search engine. Therefore, a considerable number of images in each class are

predicted as sky, and it shows that the system can potentially improve the image

78 Chapter 5. Image Classification

Sheet1

Page 1

Mean diagonal = 71.44%

T
ru

e
La

be
l

Bu 77.8 17.8

Ca 73.3 15.6

Me 48.9 37.8

Fl 88.9 8.9

11.1 64.4 22.2

Gr 13.3 68.9 15.6

Sn 75 16.0

86.7 8.9

75.6 13.3

100

Ga 35.6 48.9

St 26.7 20.0 48.9

Bu Ca Me Fl Gr Sn Ga St

Predicted Label

Fo

Oc

Sa

Sk

Fo Oc Sa Sk

Figure 5.6: Confusion table with top-1 predicted semantic attribute on scene images.
The column is the top-1 predicted semantic attribute and the row is the GT label (labels
from top to bottom (column) and left to right (row): building(Bu), candy(Ca), meat(Me),
flower(Fl), forest(Fo), grass(Gr), snow(Sn), ocean(Oc), sand(Sa), sky(Sk), gravel(Ga),
stucco(St)).

search engine. Especially, the query “stucco” is predicted as building in some im-

ages, since the stucco could be a part of the building depending on the scale. In this

case, building-like images are retrieved from the web-search engine. However, LSTM

networks predict them as building on the top-1 list (see the last column in Figure 5.7;

keyword: stucco, tagging result: building, sky, and gravel).

Since most scene images in the dataset contain around one to five semantic classes

(mostly up to three), top-5 lists are most likely to provide all semantic parts. For per-

formance evaluation, top-1, top-3, and top-5 results are compared with their keyword

(The keyword is considered as a GT label). In addition, automatic tagging results of

each image are shown; Figure 5.7 shows examples of the tagging results and one can

see that they are correctly predicted by using their associated top-ranked list.

SceneAtt Dataset: In Table 5.5, Mean Average Precision (MAP) scores of LSTM

and CNNs are compared with the methods reported in [WJWZ13]. The best method

in [WJWZ13], HST-att learns the spatial layout and attribute association by the

5.3. Conclusion 79

Table 5.5: The comparison of Mean Average Precision (mAP) on SceneAtt dataset.

Method MAP(%)

eKernel+SVM [XHE+10] 64.48

BoW+SPM [LSP06] 53.11

HST-geo [WWZ13] 51.67

HST-att [WJWZ13] 67.58

CNNs [KSH12a] 63.24

LSTM networks 88.59

scene’s appearance model. It then finds the most probable parse tree of the adjec-

tive and noun description. To compare with CNNs, the same architecture is trained

(without pre-training) as in the previous experiments. Using a simple LSTM net-

work, MAP went about 21% higher than HST-att, and 25% higher than CNNs. The

performance of CNNs can further be improved by using the pre-trained model on

ImageNet as mentioned earlier, since the training data is scarce.

5.2.5 Summary

This section presents ways of resolving the issues of natural web-scene images. These

web-images are extremely noisy and contain numerous unrelated visual content. Fur-

thermore, an unknown number of visual content under these conditions makes the

task challenging. 2D-LSTM networks with multi-patch pruning rules show a perfor-

mance gain with a large margin on both Web-scene image and SceneAtt datasets.

Web-image tagging application illustrates that this approach can be applied to a

real-world scanario.

5.3 Conclusion

In this chapter, a 2D-LSTM network model for image classification has been de-

scribed. MD-LSTM with an activation integration layer (collapse layer) results im-

age classification without any extra steps. Here, a simple network architecture works

well compared to non-neural network methods, and that among neural networks,

80 Chapter 5. Image Classification

2D-LSTM networks outperform deep CNNs with only a small number of hidden units

compared to CNNs. The experiments show that data augmentation, multi-patch in-

tegration, and pruning rules combined with LSTM networks can deal with several

types of images: texture/material images and randomly collected scene images.

We now turn to a more complex underlying problem in computer vision, i.e., image

segmentation in the next chapter. By taking advantage of LSTM’s unique charac-

teristics, pixel-level classification is introduced in an end-to-end manner.

5.3. Conclusion 81

image
keyword

image
keyword

tagging result tagging result

building ocean

sky, building,
ocean

sky, sand, ocean

grass sand

sky, grass sky, sand

sky sky

sky ocean, sky

ocean ocean

sky, ocean ocean, sky

forest forest

forest, sky, grass forest, sky

snow ocean

sky, snow sky, ocean

grass grass

sky, forest snow, grass

sky sky

sky, ocean sky

82 Chapter 5. Image Classification

image
keyword

image
keyword

tagging result tagging result

candy candy

candy candy

building building

sky, building,
ocean

building, sky

snow ocean

sky, snow sky, sand, ocean

ocean ocean

sky, ocean ocean, sky

forest stucco

forest, grass, sky stucco

stucco ocean

building, sky,
gravel

sky, ocean

Figure 5.7: The results of automatic web-image tagging. Top-3 after the patch pruning
is used as tags of each image (The order of the list indicates a higher rank). As it can be
seen from tagging results, relevant attributes are well-detected for each scene. Our system
can even improve upon the retrieval system. For instance, the wrongly retrieved image
from a web-search engine (e.g., the left bottom image — keyword: stucco, correct semantic
attributes: building, sky) can be corrected by our tagging system.

Chapter 6

Image Segmentation

This chapter presents 2D image segmentation (pixel-level classification) using

MD-LSTM network architecture as described in Section 4.1 and Section 4.2. As

mentioned in Section 1.1.1, many segmentation methods mainly consider a small lo-

cal context around each pixel for segmentation. The main issue in segmentation is

to integrate a large input context into a local decision. Similarly, due to the archi-

tectural nature of MD-LSTM, the neighboring context around each pixel is taken

into account. Furthermore, LSTM itself carries long range contextual information

which enables the networks to perform accurate segmentation without any extra pro-

cessing. In other words, LSTM networks take into account the local (pixel-by-pixel)

and global (label-by-label) dependencies in a single process which is a huge advan-

tage for segmentation. Therefore, it skips any additional processing like graphical

modeling or a multi-scale pyramid which are commonly used for other segmentation

approaches.

The basic architecture consists of an input layer, a hidden layer with LSTM, and an

output layer. Additionally, a fully-connected layer can be inserted after the LSTM

layer. This layer controls the number of weights and information passing to the next

layer when the networks are deeper [Gra12]. Especially when applied on images, this

layer acts as a feature mapping layer. More details can be found in Section 6.2.1.

The architecture in this chapter is applied to texture and scene images. First to

evaluate the networks on texture images, a database of automatically generated blob

mixtures of textures is introduced. It generates randomly shaped blobs filled with

textures with illumination changes and various transformations in scale, rotation,

83

84 Chapter 6. Image Segmentation

and translation. A standard single 2D-LSTM network model is directly applied on

the dataset and shows the performance gain compared to other texture segmentation

approaches.

Secondly, a deeper and more complex architecture is explored for more challenging

set of images, i.e., natural scene images containing background clutter and noise. The

performances compared to state-of-the-art methods including DL approaches show

that the LSTM-based approach achieves better segmentation results with a much

lower computational complexity.

The work presented in this chapter appeared in ICIP 2014 [BB14] and CVPR

2015 [BBRL15]. Section 6.1 describes the details of the proposed approach for tex-

ture segmentation and its experiments. In section 6.2, a deeper model is presented

and evaluated on natural scene images.

6.1 Texture Segmentation

This section presents a network model producing reliable segmentation results com-

pared to other texture segmentation methods. The new dataset is challenging even

with human eyes. This section shows how the LSTM-based approach can accurately

segment and integrate relative regions without extra processing.

6.1.1 The Approach

The network is designed with an input layer, a single and shallow hidden layer with

four LSTM memory blocks. Each pixel passes through these LSTM memory blocks

independently before being combined into one activation. After a softmax layer, the

networks output a class probability vector of the input pixel. Finally, a pixel class

label is predicted based on the maximum score of the output. The size of the input

vector (i.e., the number of pixels) closely affects the number of hidden units. The

optimal parameters for training in our task will be discussed in Section 6.1.3.

6.1. Texture Segmentation 85

Figure 6.1: Existing texture segmentation datasets. In the first row, the first two images
are five texture mosaics from Brodatz album [Bro66], the third image is another five texture
mosaics from MIT VisTex dataset [visb], and images in the second row are from the Prague
texture segmentation dataset [HM08].

6.1.2 Datasets

(Proposed) Blob-Mosaics Texture Segmentation Database

There are a few public databases for texture segmentation [HM08, USC]. The existing

texture segmentation databases are commonly generated by synthetic compositions,

which are obtained from a collection of polygon masks. These masks consist of

constant Voronoi polygons and is used for all images. This generation technique has

some limitations. Since the shape of the regions is static, classifiers tend to learn

the shape instead of the actual texture signature. Moreover, the boundary of each

texture region includes strong edges and/or corners that affect the performance of

segmentation. Therefore, The performance from such datasets does not correspond

to the purpose of texture segmentation. Figure 6.1 shows examples of existing texture

segmentation datasets facing these issues.

To avoid these issues, a new database using 2D Gaussian blobs is proposed. Images

are composed of random 2D Gaussian blobs and each blob is filled with random

material textures. To generate blob-mosaic images, a 100 × 100 sized plain image

is first initialized with normal distributed values [0, 1]. The initialized noise image

is then smoothed by a Gaussian filter (σ = 10.0). After the binalization with the

median value, randomly shaped blobs are generated. Each blob regions are labeled

86 Chapter 6. Image Segmentation

(a) Blob-mosaics image generation

Figure 6.2: Blob-Mosaics texture segmentation database. The procedure of creating blob-
mosaics image is as follows: 1) Gaussian filtering is applied on a randomly initialized image
(100 × 100 pixels with normal distributed values [0-1]). 2) Thresholding is performed for
binarization (Median is selected as a threshold value). Randomly shaped regions are gen-
erated in this step. 3) Texture images from the KTH-TIPS2-a dataset [KTH] are randomly
assigned to the regions. Note that, the dataset KTH-TIPS2-a itself includes material tex-
tures with various conditions (different scales, illumination directions, and poses). Thus,
the final blob-mosaics images include random shapes in different positions, as well as tex-
tures under various transformations and conditions.

and assigned to a random texture. The texture images used here are from KTH-

TIPS2-a dataset [KTH], consists of texture images from eleven distinct materials

under varying illumination, poses, and scales. Thus, final blob-mosaics images include

randomly shaped regions, as well as textures under various conditions, so it provides

diverse challenges for texture segmentation. Figure 6.2–a illustrates the flowchart for

generating blob-mosaics images along with some example images from the dataset

itself. 4000 images are generated for training and the segmentation models are tested

on 630 images.

6.1. Texture Segmentation 87

6.1.3 Experimental Setup

All the experiments of LSTM networks have been run by using RNNLIB [Gra]. In

order to validate the proposed model, several approaches commonly used for segmen-

tation are compared with the LSTM model.

The baseline methods are listed below:

• Gray-Haralick+Naive Bayes: 6 patch-wise Haralick features (gray) and Naive

Bayesian classifier [AK11]. The six Haralick features used here are contrast,

energy, homogeneity, correlation, dissimilarity, and angular second moment in

four directions, 0◦, 45◦, 90◦, and 135◦.

• Color-Haralick+Naive Bayes: patch-wise 13 Haralick combined with color

chroma features on the three HSV image channels and Naive Bayesian clas-

sifier [AK11, BHSF11a]. The 13 Haralick features used here are angular second

moment, contrast, correlation, sum of squares (variance), inverse difference

moment, sum average, sum variance, sum entropy, entropy, difference variance,

difference entropy, and two information measures of correlation. Note that

the maximal correlation coefficient is not included due to some computational

instability.

• GMM-HMRF: the combination of a Gaussian Mixture Model(GMM),

Expectation Maximization (EM), and Hidden Markov Random Fields

(HMRF) [Wan12].

The first comparison method, 6 Haralick features have been extracted on 9×9 patches

and each pixel is classified by a Naive Bayesian classifier. The second one consisted on

13 Haralick features with color (color-chroma) in HSV space. For the last comparison,

GMM-HMRF, the number of regions (K = 3, 5) was initialized, and HMRF-EM was

performed on RGB images with 20 EM iterations and 20 MAP iterations. For LSTM

networks, several sizes of hidden units (h = 10, 30, 50, 80) have been tested. The

input and output sizes are set to 3 (Red, green, and blue pixels) and 11 (the number

of texture class), respectively. The learning rate of 1e − 5 and a momentum of 0.9

are fixed for all of our experiments.

88 Chapter 6. Image Segmentation

Segmentation quality measurement: The pixel-based classification without

any spatial information can result in imprecise or noisy segmented area. To measure

and judge the robustness of these factors for the proposed methods, segmentation

accuracy was measured by area-based quality. Though the area-based accuracy is

simply measured by the ratio between the predicted area and the area of correspond-

ing GT; there is no direct way to map the predicted region onto the GT. To find the

best possible overlap between them, we first sort the predicted regions from large to

small. It helps to avoid a double assignment of regions. The maximum overlapped re-

gion between the predicted image and the GT image are matched and the overlapping

ratio is the area-quality of the segmentation. Hence, the most probable similarities

between the GT image and the predicted image are found and the accuracy of the

segmentation per image (AccI) is computed as follow:

AccI =
1

R

R∑
r=1

Agr
⋂
Asr

Agr
,

where R is the number of region in the GT, Agr is the area with label r in the GT, Asr

is the maximum portion of the corresponding area for label r in the predicted image,

and Agr
⋂
Asr is the area of overlapping portion between Agr and Asr.

6.1.4 Results and Analysis

The best area-based segmentation quality (averaged over the 630 test samples) is

compared in Table 6.1. LSTM networks led to superior performance with the best K

= 3 (for GMM-HMRF) and h = 30 (for LSTM networks). Performances with hidden

size 30 and 50 are comparable (the difference was only about 0.4%). Segmentation

results in Figure 6.8 show the effectiveness of our method. Particularly, many of

other approaches have failed except LSTM networks under the difficult blob-mosaics

images.

6.1.5 Summary

This section presented a simple way of resolving texture segmentation problem with

small LSTM-based networks, i.e., a single hidden layer with 30 hidden units. The

task has become challenging by introducing a new texture segmentation dataset

6.1. Texture Segmentation 89

Table 6.1: Accuracy comparison of texture segmentation on texture blob-mosaics images.
To compare the segmentation performance, three different methods are selected: (1) patch-
wise classification with gray texture features (Gray-Haralick+Naive Bayes), (2) patch-wise
classification with gray and color texture features (Color(HSV)-Haralick+Naive Bayes), and
(3) Gaussian mixture model+Expectationmaximization+Hidden Markov Random Field
(GMM-HMRF). Haralick features are one of the most common texture features extracted
from Grey level co-occurrence matrix (GLCM). For GMM-HMR, the best result on the
table is with the initial region K=3). The accuracy is measured by are-based quality. The
details of segmentation quality measurement is explained in Section 6.1.3. The LSTM has
obtained the highest average accuracy for texture segmentation. The best score is shown
in bold.

method avg. acc.(%)

Gray-Haralick+Naive Bayes [AK11] 43.87

Color(HSV)-Haralick+Naive Bayes [AK11, BHSF11a] 49.34

GMM-HMRF [Wan12] 71.20

LSTM networks 90.88

where images are random blob-mosaics filled with transformed textures: Scaling,

rotation, translation, and illumination are considered. The proposed evaluation cri-

teria is adequate for the blob-mosaics segmentation quality measurement. Finally,

our LSTM-based approach outperforms other texture segmentation algorithms using

this criteria. In the next section, a deeper network model is designed to cope with

high-resolution and noisy input images, naming natural scene images. The system

skips any specific pre- or post-processing unlike other DL-based algorithms for such

a task.

90 Chapter 6. Image Segmentation

6.1. Texture Segmentation 91

Figure 6.3: Segmentation results of blob-mosaics images. From left to right column are
original image (Original), Ground-Truth (GT), Haralick gray features with Naive Bayesian
classifier (Haralick1), Haralick color features with Naive Bayesian classifier (Haralick2),
and HMM-HMRF (The initial region K = 3 (HMRF1) and 5 (HMRF2)), and LSTM
networks (learning rate (lr) = 1e-5, hidden size (h) = 30 (LSTM1) and 50 (LSTM2)). The
segmentation results show the superior performance of the proposed method.

92 Chapter 6. Image Segmentation

n

Input I k

LSTM LSTM

LSTM LSTM

3xnxn

2D LSTM Layer

3

nw i

S

T

3

LSTM

M

LSTM

LSTMLSTM

…. ∑

1

1

1

1

Pr (c∣wi)
Output

Softmax

Hidden Layer

…. sky tree

road grass

foregroundmountainwater building

(S = 10) x (4 directions) T = 20 (M = 50) x (4 directions)
L = 8 (the number of class)

 3xnxn

 3xnxn 3xnxn Feedforward Layer

 ∑

Figure 6.4: 2D-LSTM network architecture. An input image Ik is divided into non-
overlapping windows wi (a grid sized n×n). Each window per RGB channels (3×n×n) is
fed into four separate LSTM memory blocks. The current window of an LSTM block is
connected to its surrounding directions x and y, i.e., left-top, left-bottom, right-top, and
right-bottom; it propagates surrounding contexts. The output of each LSTM block is then
passed on the feed-forward layer, which sums all directions and squash it by the Hyperbolic
tangent (tanh). At the last layer, the outputs of the final LSTM blocks are summed up and
sent to the softmax layer. Finally, the networks output the class probabilities (Pr(c|wi))
for each input window. The bottom images are corresponding outputs for each layer.

6.2 Scene Labeling

Image segmentation consists in grouping the relevant pixels into a region and assign

a corresponding label for that region. Scene labeling is a segmentation task especially

for natural scene images, which are in general very diverse in resolution, quality, and

contents. As mentioned in Chapter 3, LSTM networks are limited to learn long-

term dependencies which can most likely occur in such data. This section presents

how a LSTM handles this issue and learns instances with large variation within

a class. 2D-LSTM takes into account local (pixel-by-pixel) and global (label-by-

label) contextual information in a single process. In other words, it can skip any

additional processing or conditions like multi-scale or different patch sizes to solve

the scene labeling task with minimum human and machine effort. The experiments

show how LSTM networks generalized well for any vision-based task and efficiently

learn without any task-specific features.

6.2. Scene Labeling 93

6.2.1 The Approach

The input is first divided into a non-overlapping gird of size n×n, (n > 1). The

values in an image tend to have gradual changes (within 2-3 pixels). The input with

small windows keep the local context and reduce the burden of learning long-term

dependencies for the network. More detailed explanation of this phenomenon is in

Section 4.1.1. For one window input wi, four LSTM modules carry the information

from each direction (left-top, right-top, left-down, and right-down). These are added

and sent to the fully connected (Feed forward) layer. These steps (the LSTMs and the

fully connected layer) can be repeated many times. At the end, the activation passes

the softmax layer and get the final class probabilities of the window, wi: Pr(c|wi).
A standard loss function like cross-entropy error function (Equation (4.2)) computes

the error between a predicted probability vector and a true probability vector (1 for

the true label and 0 for others, 1-to-K target coding). Since the size of the input is

more than one pixel and each pixel has a corresponding label (n×n labels from n×n
input pixels), the true probability vector can also be represented as probabilities of

the occurrence of classes within the window wi. For that reason, probabilistic target

coding is applied for the output layer. Section 4.1.3 explains in more detail the coding

scheme. Figure 6.4 visualizes the process explained above, and Figure 6.6 shows the

behavior of learning process.

One important factor with this architecture is that the fully connected layer acts

as a feature mapping from a 2D-LSTM layer, so the amount of features from all

contextual information on the image is generated and combined together in this

layer. The size of the layer corresponds to the number of feature maps; the bigger

the size of feed-forward layer the more features it creates. Figure 6.5 shows what

types of contextual information are learned in each layer. More detailed features are

created in lower levels and more abstract and complex features are focused at higher

levels with global contexts.

6.2.2 Datasets

Our approach has been tested on two fully labeled outdoor scene datasets: the Stan-

ford Background dataset [GFK09a] and the SIFT Flow dataset [LYT11]. The Stan-

ford Background dataset contains 715 images composed of 8 common labels chosen

from existing public datasets (572 images used for training, the rest for testing).

94 Chapter 6. Image Segmentation

Layer1

Layer2

sky

tree road grass

foregroundmountainwater building

Figure 6.5: Visualization of feature maps in each layer. The activations are sampled after
the convolutional summing of four LSTM blocks. Each activation from the input window
is projected down to the image space. Each image represents the features from each hidden
node of the corresponding layer. Note that a lighter color represents higher activations.

6.2. Scene Labeling 95

Figure 6.6: The behavior changes of output activations from the networks while training
for scene labeling, and after convergence. The first feature map (at iteration 100) and the
last feature map (after convergence) are also compared. All activations are captured every
300 iterations. Lighter colors correspond to higher activations.

96 Chapter 6. Image Segmentation

Note that one of the labels, “foreground” contains unknown objects. Each image

has a different resolution (on average 320×240). The SIFT Flow dataset consists of

2688 images of 256×256 pixels each. The dataset is split into 2488 images used for

training and the rest for testing. The images include 33 semantic labels labeled by

LabelMe users.

6.2.3 Experimental Setup

All LSTM network models in our experiments have three layers. The second and

third layer have 20 LSTM units with 30 units in the feed-forward layer and 50 LSTM

(no feed-forward layer at the final level) respectively. In the first layer, the hidden

size was decided based on the size of window, i.e., 4 LSTM with 10 units in the feed-

forward layer for 3×3 input windows and 10 LSTM with 12 units in the feed-forward

layer for 5×5 input windows. At the end, the output of the networks is reduced

by a factor of window-size, which is up-scaled with cubic interpolation for the final

evaluation. On-line gradient descent was used for training with a learning rate of

10−6 and a momentum of 0.9.

Evaluation: Both pixel accuracy and class-average accuracy are reported to com-

pare our performance with other approaches. The pixel accuracy measures the ratio

of true positive pixels over all pixels, and the class-average accuracy averages over all

class accuracies using an equal weight for all classes. The measure of class-average

accuracy has more impact when the classes are imbalanced in test images, which is

common on outdoor scene images, e.g., most scenes contain “sky” but not “tree”.

6.2.4 Results and Analysis

Table 6.2 compares the performance of LSTM networks with the current state-of-the-

art methods on the Stanford Background dataset and the SIFT Flow dataset. Note

that the compared methods combined with pre- or post-processing and multi-scaled

ones are not considered in the table to make the comparison as fair as possible. How-

ever, single-scale LSTM networks are still comparable to the multi-scale versions of

state-of-art-methods, e.g., pixel accuracy of 78.8% for multi-scale CNNs [FCNL13],

76.36% for multi-scale augmented CNNs [KEF+14], and 78.56% for single-scale

6.2. Scene Labeling 97

Table 6.2: Pixel and averaged per class accuracy comparison on the Stanford Background
dataset (top) and the SIFT Flow dataset (bottom). The best scores under unbalanced class
frequency are shown in bold. For the Stanford Background dataset, the approaches which
include pre- or post-processing, and/or multi-scale pyramids are not reported here as they
cannot be directly compared (for the SIFT Flow dataset, ConvNet only reported accuracy
on a multi-scale version [FCNL13]). LSTM networks lead to high performance with a very
fast inference time on CPU. Balancing the class frequencies of input images would improve
the class-average accuracy, but is not realistic for scene labeling in general. The performance
of RCNN reported here is from two instances. For more details, see Section 6.2.4. CT and
W indicate the average computing time per image and window size respectively. Baseline
methods: Superparsing [TL10], Singlescale and Multi-scale ConvNet [FCNL13], Augmented
CNNs [KEF+14], and Recurrent Convolutional Neural Networks (RCNN) [PC14]

Stanford Background dataset

Method

Pixel Class Class CT #
Acc. Acc. frequency (sec.) parameters

(%) (%)

Superparsing 77.5 - - 10 to 300 -

Singlescale ConvNet 66 56.5 balanced 0.35 (GPU) -

Augmented CNNs 71.97 66.16 balanced - 701K

Recurrent CNNs 76.2 67.2 unbalanced 1.1 (GPU) -

LSTM networks (W 5×5) 77.73 68.26 unbalanced 1.3 (CPU) 173K

LSTM networks (W 3×3) 78.56 68.79 unbalanced 3.7 (CPU) 155K

SIFT Flow dataset

Method

Pixel Class Class CT #
Acc. Acc. frequency (sec.) parameters

(%) (%)

Multi-scale ConvNet 67.9 45.9 balanced - -

Augmented CNNs 49.39 44.54 balanced - 1225K

Recurrent CNNs 65.5 20.8 unbalanced - -

LSTM networks (W 5×5) 68.74 22.59 unbalanced 1.2 (CPU) 178K

LSTM networks (W 3×3) 70.11 20.90 unbalanced 3.1 (CPU) 168K

98 Chapter 6. Image Segmentation

LSTM networks. Multi-scale CNNs with further post-processing, i.e., super-pixel,

CRF, and segmentation tree, slightly improve the accuracy, but are around 15-100

times slower than without post-processing.

With RCNNs, two instances1 are considered for the accuracy comparison. Note that

higher network instances increase the context patch size to correct a final prediction.

An increase in the number of instances maintains the capacity of the system constant

(since the network weights are shared), but it causes a dramatic growth in training

time. The testing time is reported as increasing tenfold when one more instance added

to the network. With pixel accuracy, LSTM networks perform about 2 percentage

points better compared to RCNN with two instances, but around 2 percentage points

worse than RCNN with three instances on the Stanford Background dataset. On the

SIFT Flow dataset, the accuracy of LSTM networks is around 4 percentage points

higher than RCNN with two instances, but around 7 percentage points lower than

with three instances. However, the differences of average per class accuracy are less

than 1% with both two and three instances on all datasets. Overall, our LSTM

network model is efficient in training and testing — LSTM networks do not need

time-consuming computations to combine long-range context information. LSTM

achieves results higher than state-of-the-art methods without any extra effort in an

end-to-end manner.

The confusion matrix on the Stanford Background dataset is reported in Figure 6.7.

“mountain” is the hardest class (only 9.5% class accuracy), but this is explained by

the small size of the training and the testing sets compared to other classes (see the

class frequency distribution in Figure 6.7). Note that other methods solved this issue

by balancing class frequencies, yet doing so is not realistic. The labels being confused

most often are “mountain” with “tree” or “building”, and “water” with “road”. It

is clear from the class frequency distributions in Figure 6.7 that “mountain” and

“water” have the least frequent samples in both the training and testing sets. The

visual labeling result of confused classes is shown in Figure 6.9. These are mostly

well-segmented but mislabeled.

Selected examples of labeling results from the Stanford dataset are shown in Fig-

ure 6.8. Our approach yields very precise pixel-wise labeling. Figure 6.9 shows an

example of misclassification with the corresponding GT. The results in the first and

1RCNNs compute a sequential series of networks. The networks train various sizes of the same
input image recurrently in order to learn increasingly large contexts for each pixel. For more details,
see the original paper [PC14].

6.2. Scene Labeling 99

sk tr ro gr wa bu mo fo

class label

0

5

10

15

20

25

ra
ti

o
 (

%
)

train
test

sk
y

tr
e
e

ro
a
d

g
ra

ss

w
a
te

r

b
u
ild

in
g

m
o
u
n
ta

in

fo
re

g
ro

u
n
d

sky

tree

road

grass

water

building

mountain

foreground

94.4 1.3 0.0 0.1 0.9 2.3 0.1 0.9

4.9 65.2 1.0 3.2 0.9 18.5 1.2 5.0

0.0 0.5 88.8 0.8 1.4 2.5 0.0 6.0

0.2 2.2 4.5 85.4 0.2 3.0 0.8 3.8

3.2 0.6 16.7 0.6 60.6 8.0 0.2 10.2

2.2 6.6 2.5 0.4 0.3 78.9 0.3 8.9

10.5 21.7 4.9 13.8 4.9 22.7 9.4 12.0

2.2 4.3 9.7 5.0 1.2 14.0 0.3 63.3

Mean diagonal = 68.3(%)

tr
u
e
 l
a
b
e
l

predicted label

Figure 6.7: The left figure shows the distribution of class frequencies of the Stanford
Background dataset (the ratio of all classes sums to 100%). Categories of the dataset
are sky (sk), tree (tr), road (ro), grass (gr), water (wa), building (bu), mountain (mo),
and background. As it can be seen, there are similar distributions between training and
testing data, but diverse between classes. For instance, the difference between the highest
distribution “building” and the lowest distribution “mountain” is of about 20 percentage
points. The figure on the right shows the confusion table on the Stanford Background
dataset. As it can be observed, the percentage of misclassification labels is correlated
with the frequency of the class in the dataset. For instance, the training and testing sets
contain only 2% of “mountain” labels and less than 5% of “water” and “grass” labels. As
a consequence, “mountain” was confused with “tree” and “building”, “water” with “road”,
and ‘tree” with “building”. From these mislabeling results, we can observe that the wrong
predictions are often caused in the label prediction level but not the segmentation level
(some examples are shown in Figure 6.9).

second row are mislabeled in the GT image (human mistakes), but correctly clas-

sified by LSTM networks. The misclassification regions from the third row mostly

include very foggy mountains, so it is not visible even to the human eye. The results

from the fourth to sixth rows show a precise segmentation but an incorrect labeling

(because of the ambiguity of the label’s characteristics). All of these examples reflect

challenges of the datasets and the task itself.

100 Chapter 6. Image Segmentation

6.2.5 Summary

This section shows how deep LSTM networks excel on the task of where large images

dealing with the long-term dependencies. Each pixel on the complex and noisy

scene images is accurately labeled by combining local and global context within a

network model. The experiments show that LSTM networks outperform other state-

of-the-art approaches including DL-based algorithms. Furthermore, only with a CPU

implementation, the running time of our approach is comparable or better than other

state-of-the-art approaches that use GPU.

6.3 Conclusion

This chapter presented an entirely learning-based approach for image segmentation.

The architecture for segmentation is simple and well-adapted on different type of

images: texture and scene images. Both a single-layer and a deeper network has

been successfully applied for texture and scene images, and show performance gains

without any hand-crafted features, pre- or post-processing techniques, and multi-

scale pyramids from input images. Beside, this architecture has a (comparatively)

fast training and testing time on a single-core CPU, as it uses a smaller number of

parameters than other DL approaches.

In the next chapter, the architecture for segmentation with an advanced LSTM model

(PyraMiD-LSTM) for 3D volumetric data will be introduced. PyraMiD-LSTM is

easy to parallelize, especially for 3D data. Hence, fast biomedical volumetric images

segmentation with PyraMiD-LSTM will be presented.

6.3. Conclusion 101

Input image Ground truth Predicted image

Figure 6.8: The results of scene labeling on the Stanford Background dataset. First
column: input image; Second column: GT; Third column: predicted image. Colors on
images indicate labels, and the predicted images indicate a correct labeling. There are
identical colors on the GT images and the predicted images.

102 Chapter 6. Image Segmentation

Input image Ground truth Predicted image

Figure 6.9: Selected mislabeled examples from LSTM networks. The first and second
errors are mainly from mislabeling in the GT: human mistake — the car and human parts
are labeled as “road” instead of its label “foreground” in the GT. The third misclassified
regions are from very foggy forest. Furthermore, the reflection of a car wheel on the water is
misclassified as a wheel (label “foreground”). These examples are understandable mistakes.
The results show the difficulties of our dataset and the ambiguity of actual labels. The
fourth to sixth examples show common mistakes of LSTM networks — the well-segmented
regions are mislabeled. First row: road (gt) to grass (predicted); Second row: water (gt)
to road (predicted); Third row: grass (gt) to road (predicted)

Chapter 7

Parallel Volumetric LSTM

Networks

In this chapter, PyraMiD-LSTM proposed in Chapter 3.3 is applied to biomedical

volumetric image segmentation. As mentioned earlier, a great benefit of LSTM is

to take into account the local and global context of each pixel through all pixels.

The last two chapters have presented MD-LSTM for 2D image. They show that

LSTM brings strong correlation along the x and y axes and can effectively learn

two-dimensional context. Therefore, MD-LSTM applicability can theoretically be

extend to 3D or 4D data. However, the computational cost of processing the entire

context in LSTM is a serious drawback. Moreover, the natural architecture of LSTM

involves a recurrent connection which processes the meaningful interdependencies of

the continuous Due to this characteristic, it is hard to parallelize on GPUs, unlike

CNNs. PyraMiD-LSTM instead introduces the independencies of its computational

flow by changing its connection topology, which makes the parallelization feasible.

This work presented in this chapter appeared in NIPS 2015 [SBLS15] and Marijn F.

Stollenga was equally contributed to this work. The following section presents the

details of the approach and the experiments on 3D biomedical data.

103

104 Chapter 7. Parallel Volumetric LSTM Networks

7.1 Biomedical Volumetric Image Segmentation

Though biomedical image analysis is an important topic in the field of biology and

medical science, there are limited approaches to achieve fully-automatic and accurate

segmentation. Biomedical images, such as MR brain images and EM images, contain

a large amount of noise and are mostly volumetric (see Figure 1.6). As mentioned in

Section 1.1.1, most previous approaches treat these volumetric data as 2D slices and

apply some image segmentation algorithms commonly used in CV field.

Three Dimensional LSTM (3D-LSTM), however, can process the full context of each

pixel in such a volume through 8 sweeps over all pixels by 8 different LSTMs, each

sweep in the general direction of one of the 8 directed volume diagonals. Here, the

novel PyraMiD-LSTM, a variant of 3D-LSTM, uses a rather different topology and

update strategy which is easier to parallelize, needs fewer computations overall, and

scales well on GPU architectures.

7.1.1 The Approach

The network contains an input layer, several hidden layers including C-LSTM lay-

ers and fully connected layers, and an output layer with softmax. The network

architecture for 3D volumetric image segmentation is shown in Figure 4.2–d. Ran-

domly rotated and flipped input is sampled from random locations before fed to

C-LSTM. Note that the data augmentation is performed during training, but

not testing. C-LSTM performs a LSTM computations with convolution opera-

tion in a plain. Six C-LSTM compute the LSTM gates and the memory cell over

three axes (x, y, z): {(·, ·, 1), (·, ·,−1), (·, 1, ·), (·,−1, ·), (1, ·, ·), (−1, ·, ·)}. The stan-

dard MD-LSTM, whose operations are matrix multiplication, has the recurrent con-

nections along with the axes. Unlike the standard MD-LSTM, C-LSTM use convo-

lution to perform LSTM operations, and the recurrent connections are in a plane.

Figure 3.4 shows the context information flow of MD-LSTM and PyraMiD-LSTM.

As can be seen in Figure 3.5, the connection topology in MD-LSTM becomes a cube

and in PyraMiD-LSTM becomes a pyramid. The outputs from all C-LSTMs are

combined and sent to the fully connected layer. tanh is used as a squashing func-

tion in the hidden layer. Several of these C-LSTM and fully connected layers, i.e.,

PyraMiD-LSTM layers, are stacked before an output layer. The last layer is fully-

7.1. Biomedical Volumetric Image Segmentation 105

connected and uses a softmax function to compute probabilities for each class for

each pixel. See Section 3.3 for the details of the computations.

7.1.2 Datasets

The approach is evaluated on two 3D biomedical image segmentation datasets: EM

and MR Brain images.

Electron Microscopy (EM) dataset: The EM dataset [CSP+10] is provided

by the ISBI 2012 workshop on Segmentation of Neuronal Structures in EM Stacks

[Seg12]. Two stacks consist of 30 slices of 512× 512 pixels obtained from a 2× 2×
1.5 µm3 microcube with a resolution of 4× 4× 50 nm3/pixel and binary labels. One

stack is used for training, the other for testing. Target data consists of binary labels

(membrane and non-membrane).

Magnetic Resonance (MR) Brain dataset: The MR Brain images are pro-

vided by the ISBI 2015 workshop on Neonatal and Adult MR Brain Image Segmen-

tation (ISBI NEATBrainS15) [A. 15]. The dataset consists of twenty fully annotated

high-field (3T) multi-sequences: 3D T1-weighted scan (T1), T1-weighted inversion re-

covery scan (IR), and fluid-attenuated inversion recovery scan (FLAIR). The dataset

is divided into a training set with five volumes and a test set with fifteen volumes. All

scans are bias-corrected and aligned. Each volume includes 48 slices with 240× 240

pixels (3mm slice thickness). The slices are manually segmented through nine labels:

cortical gray matter, basal ganglia, white matter, white matter lesions, cerebrospinal

fluid in the extracerebral space, ventricles, cerebellum, brainstem, and background.

Following the ISBI NEATBrainS15 workshop procedure, all labels are grouped into

four classes and background: 1) cortical gray matter and basal ganglia (GM), 2)

white matter and white matter lesions (WM), 3) cerebrospinal fluid and ventricles

(CSF), and 4) cerebellum and brainstem. Class 4) is ignored for the final evaluation

as required.

106 Chapter 7. Parallel Volumetric LSTM Networks

7.1.3 Experimental Setup

All experiments are performed on a desktop computer with an NVIDIA GTX TITAN

X 12GB GPU. For GPU implementation, the NVIDIA CUDA Deep Neural Network

library (cuDNN) [CWV+14] is used. On the MR brain dataset, training took around

three days, and testing per volume took around 2 minutes.

Exactly the same hyper-parameters and architecture are used for both datasets. Our

networks contain three PyraMiD-LSTM layers. The first PyraMiD-LSTM layer has

16 hidden units followed by a fully-connected layer with 25 hidden units. In the next

PyraMiD-LSTM layer, 32 hidden units are connected to a fully-connected layer with

45 hidden units. In the last PyraMiD-LSTM layer, 64 hidden units are connected to

the fully-connected output layer whose size equals the number of classes.

The convolutional filter size for all PyraMiD-LSTM layers is set to 7× 7. The total

number of weights is 10,751,549, and all weights are initialized according to a uniform

distribution: U(−0.1, 0.1).

Training: RMS-prop with momentum [TH12] is applied here (see Section 4.3.5).

The error function is the squared loss:

E = (y∗ − y)2, (7.1)

where y∗ is the target, y is the predicted output from the network. The squared loss

is chosen here as it produced better results than using other error function like the

log-likelihood error function 4.2.

A decaying learning rate is used: λlr = 10−6 + 10−2
(

100

√
1
2

)epoch
, which starts at

λlr ≈ 10−2 and halves every 100 epochs asymptotically towards λlr = 10−6. Other

hyper-parameters used are ε = 10−5, ρMSE = 0.9, and ρM = 0.9.

Sub-volumes and augmentation: The full dataset requires more than the 12

GB of memory provided by our GPU, hence training and testing are performed on

sub-volumes. A position in the full data and extract a smaller cube are randomly

picked (see the details in Bootstrapping). This cube is possibly rotated at a random

angle over some axis and can be flipped over any axis. EM images are rotated over

7.1. Biomedical Volumetric Image Segmentation 107

the z-axis and flipped sub-volumes with 50% chance along x, y, and z axes. For MR

brain images, rotation is disabled; only flipping along the x direction is considered,

since brains are (mostly) symmetric in this direction.

During test-time, rotations and flipping are disabled and the results of all sub-volumes

are stitched together using a Gaussian kernel, providing the final result.

Pre-processing: Each input slice is normalized towards a mean of zero and vari-

ance of one, since the imaging methods sometimes yield large variability in contrast

and brightness. The complex pre-processing common in biomedical image segmen-

tation [WGS+15] is not applied.

The only prior processing is simple pre-processing on the three datatypes of the MR

Brain dataset, since they contain large brightness changes under the same label (even

within one slice; see Figure 7.2). From all slices the Gaussian smoothed images are

subtracted (filter size: 31×31, σ = 5.0), then a Contrast-Limited Adaptive Histogram

Equalization (CLAHE) [PAA+87] is applied to enhance the local contrast (tile size:

16× 16, contrast limit: 2.0). An example of the images after pre-processing is shown

in Figure 7.2. The original and pre-processed images are all used, except the original

IR images (Figure 7.2–b), which have high variability.

Bootstrapping: To speed up training, three learning procedures are performed

with increasing sub-volume sizes: first, 3000 epochs with size 64 × 64 × 8 and then

2000 epochs with size 128 × 128 × 15. Finally, for the EM-dataset, we train 1000

epochs with size 256× 256× 20, and for the MR Brain dataset 1000 epochs with size

240× 240× 25. After each epoch, the learning rate λlr is reset.

Evaluation: For EM images, three error metrics evaluate the following factors:

• Rand error [Ran71]: 1 - F-score of rand index, which measures similarity be-

tween two segmentations on the foreground.

• Warping error [JBR+10]: topological disagreements (object splits and mergers)

• Pixel error: 1 - F-score of pixel similarity

108 Chapter 7. Parallel Volumetric LSTM Networks

Table 7.1: Performance comparison on EM images. Some of the competing methods
reported in the ISBI 2012 website are not yet published. Comparison details can be found
under http://brainiac2.mit.edu/isbi_challenge/leaders-board.

Group Rand Err. Warping Err.(×10−3) Pixel Err.

Human 0.002 0.0053 0.001

Simple Thresholding 0.450 17.14 0.225

IDSIA (CNNs) [CGGS12] 0.050 0.420 0.061

DIVE 0.048 0.374 0.058

PyraMiD-LSTM 0.047 0.462 0.062

IDSIA-SCI 0.0189 0.617 0.103

DIVE-SCI 0.0178 0.307 0.058

For Magnetic Resonance (MR) brain images, the results are compared based on the

following three measures:

• The DICE overlap (DC) [Dic45]: spatial overlap between the segmented volume

and ground truth

• The modified Hausdorff distance (MD) [HKR93]: 95th-percentile Hausdorff

distance between the segmented volume and ground truth

• The absolute volume difference (AVD) [BPA+09]: the absolute difference be-

tween segmented and ground truth volume, normalized over the whole volume.

7.1.4 Results and Analysis

Membrane segmentation is evaluated through an on-line system provided by the

ISBI 2012 organizers. The measures used are the Rand error, warping error and

pixel error [Seg12]. Comparisons to other methods are reported in Table 7.1. The

teams IDSIA and DIVE provide membrane probability maps for each pixel, like our

method. Note that, the IDSIA team uses a state-of-the-art deep CNNs [CGGS12].

These maps are adapted by the problem-specific post-processing technique of the

teams SCI [LJST14], which directly optimizes the rand error (DIVE-SCI (top-1) and

IDSIA-SCI (top-2)); this is most important in this particular segmentation task.

http://brainiac2.mit.edu/isbi_challenge/leaders-board

7.1. Biomedical Volumetric Image Segmentation 109

Without post-processing, PyraMiD-LSTM networks outperform other methods in

rand error, and are competitive in wrapping and pixel errors. Of course, performance

could be further improved by applying post-processing techniques. Figure 7.1 shows

some examples of segmentation results of PyraMiD-LSTM and the comparison with

CNNs [CGGS12]. Both results are without any problem-specific post-processing.

However, some mild post-processing is applied for CNNs [CGGS12]. The mild post-

processing technique used in [CGGS12] is in the following. First, the output of CNNs

are calibrated with a polynomial function. After calibration, the output is spatially

smoothed by a median filter. As can be seen in Figure 7.1, the segmentation results

from PyraMiD-LSTM are cleaner, smooth, more accurate, as well as have less broken

edges without any post-processing compared to CNN.

MR brain image segmentation results are evaluated by the ISBI NEATBrain15 or-

ganizers [A. 15] who provided the extensive comparison to other approaches on

http://mrbrains13.isi.uu.nl/results.php. Table 7.2 compares our results to

those of the top five teams. The organizers compute nine measures in total and

rank all teams for each of them separately. These ranks are then summed per

team, determining the final ranking (ties are broken using the standard deviation).

PyraMiD-LSTM leads the final ranking with a new state-of-the-art result and out-

performs other methods for Cerebrospinal Fluid in all metrics.

Table 7.2: Performance comparison on MR brain images.

Structure Gray Matter White Matter Cerebrospinal Fluid

Metric
DC MD AVD DC MD AVD DC MD AVD Rank

(%) (mm) (%) (%) (mm) (%) (%) (mm) (%)

BIGR2 84.65 1.88 6.14 88.42 2.36 6.02 78.31 3.19 22.8 6

KSOM GHMF 84.12 1.92 5.44 87.96 2.49 6.59 82.10 2.71 12.8 5

MNAB2 84.50 1.69 7.10 88.04 2.12 7.73 82.30 2.27 8.73 4

ISI-Neonatology 85.77 1.62 6.62 88.66 2.06 6.96 81.08 2.66 9.77 3

UNC-IDEA 84.36 1.62 7.04 88.69 2.06 6.46 82.81 2.35 10.5 2

PyraMiD-LSTM 84.82 1.69 6.77 88.33 2.07 7.05 83.72 2.14 7.10 1

http://mrbrains13.isi.uu.nl/results.php

110 Chapter 7. Parallel Volumetric LSTM Networks

7.2 Conclusion

This chapter introduces a parallelizable variant of MD-LSTM, PyraMiD-LSTM,

which resolves a problem that the highly promising architecture of MD-LSTM has;

previous MD-LSTM implementations could not exploit the parallelism of modern

GPU hardware. This issue has been improved through a novel sequential flow of

information proposed here, which arguably makes parallelization much easier. The

method is evaluated on two challenging benchmarks for biological volumetric image

analysis, and has achieved state-of-the-art segmentation results.

7.2. Conclusion 111

input CNNs with post-processing PyraMiD-LSTM

Figure 7.1: Segmentation results for CNNs and PyraMiD-LSTM on EM dataset (slice
8, 13, 24, 27). The results from CNNs are by Ciresan et al. [CGGS12]. In this work,
a polynomial function post-processor is applied to the CNN’ outputs. The results from
PyraMiD-LSTM is the direct output from the network.

112 Chapter 7. Parallel Volumetric LSTM Networks

(a) T1 (b) IR (c) FLAIR

(d) T1 (pre-processed) (e) IR (pre-processed) (f) FLAIR (pre-processed)

(g) segmentation result from PyraMiD-LSTM

Figure 7.2: Slice 19 of the test image 1. (a)-(c) are examples of three scan meth-
ods used in the MR brain dataset, and (d)-(f) show the corresponding images after
our pre-processing procedure (see pre-processing in Section 7.1.3). Input (b) is omitted
due to strong artifacts in the data — the other datatypes are all used as input to the
PyraMiD-LSTM. The segmentation result is shown in (g).

Chapter 8

Conclusion and Future Work

This thesis has presented an LSTM-based framework for solving the problem of

image analysis, with a focus on image classification and segmentation. There exist a

number of challenges regarding these tasks with a variety of changes in illumination,

view point, scale, and so on. Furthermore, images taken from the web are very

diverse in resolution, quality, and context with a lot of noise and clutter. Therefore,

this thesis has designed a system that is capable of solving such challenges in an

end-to-end manner based on the hypothesis; MD-LSTM leads to the comprehensive

vision system using raw pixel values rather than selected features on complex real-

world input data (see Section 1.3 for the details of the research hypothesis of this

thesis).

The main contributions build upon ideas emerging from the field of CV and DL to

provide a general approach for various types of images: texture images, natural scene

images, and biomedical volumetric images. MD-LSTM has an elegant recursive way

of taking each pixel’s entire spatio-temporal context into account. The evaluations

have shown that MD-LSTM provides promising results on those images, and that

MD-LSTM outperforms the state-of-the-art approaches including deep CNNs, which

supports the validity of the hypothesis of this study.

113

114 Chapter 8. Conclusion and Future Work

8.1 Concluding Remarks

This thesis has investigated the MD-LSTM model and its network architecture

for various CV problems. The key contributions are: the architecture design of

MD-LSTM networks for 2D and 3D images, the automatic image analysis framework

for image classification and segmentation, and the advanced databases for texture

segmentation and multi-class scene classification. In this section, the details of the

key contributions and some remarks or limitations of each contribution are discussed.

Traditionally, MD-LSTM is connected with two self-hidden units along with the axes

(x and y in 2D) that carry the neighboring context of each pixel. The main drawback

of the traditional method is that it is hard to parallelize due to the dependencies

between the pixels, especially when using higher dimensional data. Therefore, a new

MD-LSTM architecture, PyraMiD-LSTM, is proposed, which solves the problem

that MD-LSTM has. PyraMiD-LSTM changes the connection strategy that makes

parallelization much easier. The implementation on GPU hardware is efficient and

fast in dealing with large volumetric data.

With these two MD-LSTM models, various network design choices for image analysis

are suggested. The major design choices are based on three main factors: (1) the

dimension of input, (2) the depth of the network, and (3) the type of output.

First, regarding the dimension of input, this thesis mainly uses 2D and 3D data.

For the efficiency issue, the traditional MD-LSTM is mainly applied for 2D data

and PyraMiD-LSTM for 3D data. MD-LSTM has less computations but cannot

parallelize. Instead, PyraMiD-LSTM can efficiently be parallelized and makes use of

more effective computations for high-dimensional data.

The choice of depth of the network is based on the input and the task. A deeper

network builds higher-level abstraction in each layer. However, it requires more

parameters and is hard to train. Several experiments in this thesis show that a

single-layer network with LSTM can be successfully applied to challenging texture

and scene images. In addition, especially for high-resolution images and for the

images including high intra-class variation, a stack of LSTM layers is combined with

a fully connected layer to a deeper network. The fully connected layer between

the LSTM layers controls the number of weight parameters and provides a feature

mapping between the LSTM layers.

8.1. Concluding Remarks 115

The type of output matters when designing the output layer. In this thesis, the main

tasks consist of image classification (a single label per image) and image segmentation

(a set of labels that is the same size as the number of input pixels). In general, the

output from the last hidden layer (either from the LSTM or the fully connected

layer) is the activation vector per pixel. For segmentation, this output is directly

sent to the softmax layer to produce the class probabilities per pixel. However,

for classification, the network needs to find the highest score of the class over all

pixels that provide the final class label of an input image. Therefore, an additional

layer, a collapse layer, combining all activations over all pixels, is added between the

hidden layer and the output (softmax) layer. These architecture options are able

to make LSTM possible to solve diverse CV problems. Furthermore, a number of

network settings and generalization techniques for a MD-LSTM network are analyzed

and evaluated. They include the input representation, the weight initialization, the

peephole connection, the regularization techniques, the optimization techniques for

the weight updates, and other hyper-parameter settings.

These network architectures mentioned above are evaluated on texture images, natu-

ral scene images, and biomedical volumetric images. A number of problems of image

analysis are addressed by in this thesis: texture classification, scene understanding,

texture segmentation, scene labeling, and 3D biomedical volumetric image segmen-

tation.

The 2D-LSTM with the network for classification is evaluated on texture and scene

images. With the texture data (texture classification), the network has been evalu-

ated on five common benchmarks containing high intra-class variance (the variance

within the class) and low inter-class variance (the variance between the classes). Al-

though the classification on such data is very challenging, 2D-LSTM achieved the

best performance on all datasets.

For scene understanding, each image contains multiple categories with a great amount

of noise and unrelated contents. By performing two pruning rules on the output of the

network, the system is able to produce the reliable multiple target output without

any prior knowledge. This system is successfully applied to automatic web-image

tagging. The images used in this experiment are collected from web-image search.

The instance of each category is very diverse and images contain noise, clutter, and

unrated contents. In some cases, the query word (keyword) does not match with the

retrieved image— the web retrieval system is not accurate. Figure 8.1 shows some

116 Chapter 8. Conclusion and Future Work

image
keyword

image
keyword

tagging result tagging result

flower flower

sky, flower,
candy

sky, flower,
candy

gravel forest

building, stucco
flower, forest,
ocean

forest ocean

sky, forest,
ocean

ocean, sky

Figure 8.1: Examples of mislabeled web-images for tagging. Some examples show that
the system can even improve the retrieval system.

examples of wrongly labeled images or images with ambiguous labels. The tagging

results of the two images on the top with the keyword “flower” contain “candy”,

which is a totally different object. However, it may be recognized by having a similar

texture and color from the distance. The image with the keyword “gravel” (the

left in the second row) has a large portion of a concrete rooftop. LSTM networks

correctly classified the image as “building” and “stucco” which is more logical than

the original keyword of the image “gravel”. The tagging results of the image with

the keyword “forest” (the right in the second row) contain “ocean” which is not

the correct classification. However, in some cases, the labels are not clearly visible

in the image but are correct. For instance, in the left image in the last row, the

image showing a forest under water is correctly tagged with the keyword “ocean”

and “forest”. In the right one, “sky” is not visible, but the image was captured

under the ocean with shafts of light (from the sky) cuttng into the ocean. In this

scenario, the logical answer is “ocean” with “sky”.

2D-LSTM with only a single hidden layer is investigated and evaluated for texture

segmentation. Unlike other texture segmentation methods, LSTM precisely segments

the related regions without any hand-crafted feature extractors. Here, the dataset is

8.1. Concluding Remarks 117

challenging but the size of the images is pretty small; up to 100× 100.

To have more realistic scenarios, the LSTM is applied to a real-world scene images

(scene labeling). Here, a deep network is employed to provide more robust clas-

sification accuracy with noisy natural images. However, there exists an issue on

high-resolution scene images. The scene images contain large areas of background

categories, such as sky and ground, but some foreground categories may appear

among these backgrounds. In this case, the small regions of foreground tend to be

forgotten and decayed by the large portion of background. Some examples of mis-

classification in such scenarios is shown in Figure 8.2. As can be seen, there are some

mislabeled foreground categories which are labeled as a background.

Finally, a deep network with PyraMiD-LSTM is evaluated on volumetric data for 3D

biomedical image segmentation. The network with the GPU compatible implementa-

tion is successfully applied to two challenging benchmarks for biological volumetric

image analysis and has outperformed other state-of-the-art methods.

To validate the framework on appropriate datasets, which is crucial for real-world

application, a realistic dataset for each task is necessary. This thesis has introduced

two challenging datasets for texture segmentation and scene understanding.

First, due to some limitations of current available texture segmentation datasets,

an Automated Blob-Mosaics Texture Dataset Generator is proposed. It generates

random 2D Gaussian blobs, where each blob is filled with random material textures

with varying changes in illumination, pose, and scale. This dataset is challenging as

it is hard to separate the related regions by human eyes.

The next dataset is generated for web-image analysis — the web-scene image dataset.

The categories are decided based on some frequent and generic outdoor scenes (build-

ing, flower, forest, grass, snow, ocean, sand, sky, and gravel) and narrow in- and

outdoor scenes (stucco, candy, and meat). The dataset consists of images collected

from web-image search and offers different settings for training and testing. Images

for training belong to a single category, so the network can be carefully trained with

the individual categories. For testing, scene images are rich in context and highly

variable in their variety of noise (watermarks, logos, or unrelated contents) and clut-

ter. Furthermore, each image contains multiple categories that need to be classified.

118 Chapter 8. Conclusion and Future Work

Input image Ground truth Predicted image

Figure 8.2: Examples of failing cases in scene labeling

8.2. Future Directions 119

This setting is challenging since multi-class image classification1 is an open issue in

CV communities.

8.2 Future Directions

Overall, the contributions in this thesis are major advancements in the direction of

solving image analysis problems with LSTM without the need of any extra process-

ing or manually designed steps. This section provides future directions and discusses

some open issues in image analysis and the LSTM-based network. The aim of this

thesis and the proposed directions is to improve the presented framework to achieve

the ultimate goal of accurate fine-grained image analysis and human-like understand-

ing of images by machines.

Reliable web-image tagging system: Due to time constraints, the size of the

web-image dataset created here is not particularly large (12 categories, training: 350

attribute images per class, testing: 540 scene images). With learning-based algo-

rithms, especially deep NNs, more training data is helpful to generalize the task and

avoid overfitting. Furthermore, the number of categories is relatively small compared

to ohter popular datasets of larger size, e.g., ImageNet (1000 categories, 1.2 million

training images). We believe that the automatic web-image tagging system will be

improved as image data grows.

Segmentation without target labels: Annotating images is one of the major

issues in image segmentation. Note that the annotation is generally performed by

humans, and manually performing the precise pixel-wise labeling needs a large effort.

Therefore, generating image segmentation datasets with target labels is not easy. NN-

based algorithms typically incorporate supervised learning. However, unsupervised

learning2 has recently become a popular direction in DL, e.g., Autoencoder. Another

example, specifically designed for clustering, is Self Organizing Map (SOM), which

is popularly applied for image segmentation. With this in mind, unsupervised learn-

1An image is classified into more than two classes.
2Unsupervised learning is a type of ML algorithm which is trying to learn patterns from unlabeled

data.

120 Chapter 8. Conclusion and Future Work

ing with a deep architecture can be a desirable direction for solving the annotation

problem of image segmentation.

3D segmentation on videos: In Chapter 7, 3D volumetric segmentation is pre-

sented on biomedical images. As can be seen from the experiments, PyraMiD-LSTM

or MD-LSTM provides an ability of taking the long-range spatio-temporal context

of each pixel into account. Also, LSTM naturally brings the benefits of learning the

context of multidimensional data. The assumption here is that PyraMiD-LSTM can

be shifted across volumetric images or videos to segment them, since PyraMiD-LSTM

was successfully applied to 3D volumetric data. PyraMiD-LSTM, thereby, can learn

the dependencies in spatio-temporal domains, which is desirable for video analysis.

Bibliography

[A. 15] A. M. Mendrik, K. L. Vincken, H. J. Kuijf, G. J. Biessels, and M.

A. Viergever (organizers). MRBrainS Challenge: Online Evaluation

Framework for Brain Image Segmentation in 3T MRI Scans, http:

//mrbrains13.isi.uu.nl, 2015.

[ADBB04] Vincent Arvis, Christophe Debain, Michel Berducat, and Albert Be-

nassi. Generalization of the cooccurrence matrix for colour images: ap-

plication to colour texture classification. Image Analysis and Stereology,

23(1):63–72, 2004.

[AK11] Omar S Al-Kadi. Supervised texture segmentation: a comparative

study. In Applied Electrical Engineering and Computing Technologies

(AEECT), 2011 IEEE Jordan Conference on, pages 1–5. IEEE, 2011.

[AR02] Shivani Agarwal and Dan Roth. Learning a sparse representation for

object detection. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and

Peter Johansen, editors, Computer Vision ECCV 2002, volume 2353

of Lecture Notes in Computer Science, pages 113–127. Springer Berlin

Heidelberg, 2002.

[AV12] Susana Alvarez and Maria Vanrell. Texton theory revisited: A bag-of-

words approach to combine textons. Pattern Recognition, 45(12):4312–

4325, 2012.

[bar] NewbarkTex image test suite. https://www-lisic.univ-littoral.

fr/~porebski/BarkTex_image_test_suite.html.

[BB14] Wonmin Byeon and Thomas M. Breuel. Supervised texture segmen-

tation using 2d {LSTM} networks. In Image Processing (ICIP), 2014

IEEE International Conference on, pages 4373–4377, Oct 2014.

121

http://mrbrains13.isi.uu.nl
http://mrbrains13.isi.uu.nl
https://www-lisic.univ-littoral.fr/~porebski/BarkTex_image_test_suite.html
https://www-lisic.univ-littoral.fr/~porebski/BarkTex_image_test_suite.html

122 BIBLIOGRAPHY

[BBRL15] Wonmin Byeon, Thomas M. Breuel, Federico Raue, and Marcus Li-

wicki. Scene labeling with {LSTM} recurrent neural networks. In Com-

puter Vision and Pattern Recognition (CVPR), 2015 IEEE Conference

on, June 2015.

[BCV13] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation

learning: A review and new perspectives. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 35(8):1798–1828, 2013.

[Bea78] P. R. Beaudet. Rotationally invariant image operators. In International

Conference on Pattern Recognition, 1978.

[Ben09] Yoshua Bengio. Learning deep architectures for ai. Foundations and

Trends in Machine Learning, 2(1):1–127, January 2009.

[BETG08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool.

Speeded-up robust features (surf). Computer Vision and Image Un-

derstanding, 110(3):346 – 359, 2008. Similarity Matching in Computer

Vision and Multimedia.

[BHSF11a] Francesco Bianconi, Richard Harvey, Paul Southam, and Antonio

Fernández. Theoretical and experimental comparison of different ap-

proaches for color texture classification. Journal of Electronic Imaging,

20(4):043006–043006, 2011.

[BHSF11b] Francesco Bianconi, Richard Harvey, Paul Southam, and Antonio

Fernndez. Theoretical and experimental comparison of different ap-

proaches for color texture classification. Journal of Electronic Imaging,

20(4):043006–043006–17, 2011.

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-

cut/max- flow algorithms for energy minimization in vision. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124–

1137, Sept 2004.

[BL07] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards

ai. In L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, editors,

Large-Scale Kernel Machines. MIT Press, 2007.

BIBLIOGRAPHY 123

[BLB14] Wonmin Byeon, M. Liwicki, and T.M. Breuel. Texture classification

using 2d {LSTM} networks. In Pattern Recognition (ICPR), 2014 22nd

International Conference on, pages 1144–1149, Aug 2014.

[BLB15] Wonmin Byeon, Marcus Liwicki, and Thomas M. Breuel. Scene analy-

sis by mid-level attribute learning using 2d {LSTM} networks and an

application to web-image tagging. Pattern Recognition Letters, 63:23 –

29, 2015.

[BMP02] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recog-

nition using shape contexts. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 24(4):509–522, Apr 2002.

[BPA+09] Kolawole Oluwole Babalola, Brian Patenaude, Paul Aljabar, Julia Schn-

abel, David Kennedy, William Crum, Stephen Smith, Tim Cootes,

Mark Jenkinson, and Daniel Rueckert. An evaluation of four auto-

matic methods of segmenting the subcortical structures in the brain.

NeuroImage, 47(4):1435 – 1447, 2009.

[Bro66] P Brodatz. Textures: A photographic album for artists and designers

dover publications. New York, USA, 1966.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-

term dependencies with gradient descent is difficult. Neural Networks,

IEEE Transactions on, 5(2):157–166, 1994.

[BZM07a] A. Bosch, A. Zisserman, and X. Muoz. Image classification using ran-

dom forests and ferns. In Computer Vision, 2007. ICCV 2007. IEEE

11th International Conference on, pages 1–8, Oct 2007.

[BZM07b] Anna Bosch, Andrew Zisserman, and Xavier Muoz. Image classification

using random forests and ferns. In Computer Vision, 2007. ICCV 2007.

IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

[Can86] John Canny. A computational approach to edge detection. Pat-

tern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-

8(6):679–698, Nov 1986.

[CDF+04] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski,

and Cédric Bray. Visual categorization with bags of keypoints. In

124 BIBLIOGRAPHY

Workshop on statistical learning in computer vision, ECCV, volume 1,

pages 1–2. Prague, 2004.

[CG10] Michael Crosier and Lewis D Griffin. Using basic image features

for texture classification. International Journal of Computer Vision,

88(3):447–460, 2010.

[CGGS12] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep

neural networks segment neuronal membranes in electron microscopy

images. In Advances in Neural Information Processing Systems (NIPS),

pages 2852–2860, 2012.

[CMS12] D. C. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural

networks for image classification. Technical report, IDSIA, February

2012. arXiv:1202.2745v1 [cs.CV].

[CPK+14] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-

phy, and Alan L. Yuille. Semantic image segmentation with deep con-

volutional nets and fully connected crfs. CoRR, abs/1412.7062, 2014.

[CSP+10] Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin

Schmid, Anchi Cheng, Jim Pulokas, Pavel Tomancak, and Volker

Hartenstein. An integrated micro-and macroarchitectural analysis of

the drosophila brain by computer-assisted serial section electron mi-

croscopy. PLoS biology, 8(10):e1000502, 2010.

[CWV+14] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-

hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Effi-

cient primitives for deep learning. CoRR, abs/1410.0759, 2014.

[DBLFF10] Jia Deng, AlexanderC. Berg, Kai Li, and Li Fei-Fei. What does classi-

fying more than 10,000 image categories tell us? In Kostas Daniilidis,

Petros Maragos, and Nikos Paragios, editors, Computer Vision ECCV

2010, volume 6315 of Lecture Notes in Computer Science, pages 71–84.

Springer Berlin Heidelberg, 2010.

[Der87] Rachid Deriche. Using canny’s criteria to derive a recursively imple-

mented optimal edge detector. International Journal of Computer Vi-

sion, 1(2):167–187, 1987.

BIBLIOGRAPHY 125

[DHS11] John Duchi, E Hazan, and Y Singer. Adaptive subgradient methods for

online learning and stochastic optimization. The Journal of Machine

Learning, 12:2121–2159, 2011.

[Dic45] Lee R. Dice. Measures of the amount of ecologic association between

species. Ecology, 26(3):pp. 297–302, 1945.

[DS03] G. Dorko and C. Schmid. Selection of scale-invariant parts for object

class recognition. In Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on, pages 634–639 vol.1, Oct 2003.

[DT05] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, volume 1, pages 886–893

vol. 1, June 2005.

[DW01] Alexandru Drimbarean and Paul F Whelan. Experiments in colour

texture analysis. Pattern Recognition Letters, 22(10):1161–1167, 2001.

[DY14] Li Deng and Dong Yu. Deep Learning: Methods and Applications. NOW

Publishers, 2014.

[EBC+10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-

zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-

training help deep learning? J. Mach. Learn. Res., 11:625–660, March

2010.

[FCNL13] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierar-

chical features for scene labeling. Pattern Analysis and Machine Intel-

ligence, IEEE Transactions on, 35(8):1915–1929, Aug 2013.

[Fle96] Arthur Flexer. Statistical evaluation of neural network experiments:

Minimum requirements and current practice. Cybernetics and Systems

Research, pages 1005–1008, 1996.

[Fuk80] K. Fukushima. Neocognitron: A self-organizing neural network for a

mechanism of pattern recognition unaffected by shift in position. Bio-

logical Cybernetics, 36(4):193–202, 1980.

[FZ07] Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In

Advances in Neural Information Processing Systems 20, Proceedings of

126 BIBLIOGRAPHY

the Twenty-First Annual Conference on Neural Information Processing

Systems, Vancouver, British Columbia, Canada, December 3-6, 2007,

2007.

[GBC] David Grangier, Lon Bottou, and Ronan Collobert. Deep convolutional

networks for scene parsing.

[GDDM14a] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-

ference on, pages 580–587, June 2014.

[GDDM14b] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In

Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Con-

ference on, pages 580–587, June 2014.

[Ger01] Felix Gers. Long short-term memory in recurrent neural networks, 2001.

[GFK09a] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric

and semantically consistent regions. In Computer Vision, 2009 IEEE

12th International Conference on, pages 1–8, Sept 2009.

[GFK09b] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric

and semantically consistent regions. In Computer Vision, 2009 IEEE

12th International Conference on, pages 1–8, Sept 2009.

[GFS07a] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Multi-

dimensional recurrent neural networks. In Artificial Neural Networks–

ICANN 2007, pages 549–558. Springer, 2007.

[GFS07b] Alex Graves, Santiago Fernndez, and Jrgen Schmidhuber. Multi-

dimensional recurrent neural networks. In JoaquimMarques de S, LusA.

Alexandre, Wodzisaw Duch, and Danilo Mandic, editors, Artificial Neu-

ral Networks ICANN 2007, volume 4668 of Lecture Notes in Computer

Science, pages 549–558. Springer Berlin Heidelberg, 2007.

[GLF+09] A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and

J. Schmidhuber. A novel connectionist system for improved uncon-

strained handwriting recognition. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 31(5), 2009.

BIBLIOGRAPHY 127

[Gra] Alex Graves. Rnnlib: A recurrent neural network library for sequence

learning problems. http://sourceforge.net/projects/rnnl/.

[Gra08] Alex Graves. Supervised sequence labelling with recurrent neural net-

works. PhD thesis, Technische Universitt Mnchen, 2008.

[Gra12] Alex Graves. Supervised sequence labelling with recurrent neural net-

works, volume 385. Springer, 2012.

[GRVG12] Juergen Gall, Nima Razavi, and Luc Van Gool. An introduction to

random forests for multi-class object detection. In Frank Dellaert, Jan-

Michael Frahm, Marc Pollefeys, Laura Leal-Taix, and Bodo Rosenhahn,

editors, Outdoor and Large-Scale Real-World Scene Analysis, volume

7474 of Lecture Notes in Computer Science, pages 243–263. Springer

Berlin Heidelberg, 2012.

[GS08] Alex Graves and Juergen Schmidhuber. Offline handwriting recognition

with multidimensional recurrent neural networks. In Advances in Neural

Information Processing Systems, pages 545–552, 2008.

[GSC00] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget:

Continual prediction with LSTM. Neural Computation, 12(10):2451–

2471, 2000.

[GSS02] F. A. Gers, N. Schraudolph, and J. Schmidhuber. Learning precise

timing with LSTM recurrent networks. Journal of Machine Learning

Research, 3:115–143, 2002.

[Har79] Robert M Haralick. Statistical and structural approaches to texture.

Proceedings of the IEEE, 67(5):786–804, 1979.

[HBFS01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhu-

ber. Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies, 2001.

[HKR93] D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing

images using the hausdorff distance. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 15(9):850–863, Sep 1993.

http://sourceforge.net/projects/rnnl/

128 BIBLIOGRAPHY

[HM08] Michal Haindl and Stanislav Mikes. Texture segmentation benchmark.

In Pattern Recognition, 2008. ICPR 2008. 19th International Confer-

ence on, pages 1–4. IEEE, 2008.

[Hoc91] S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.

Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Tech-

nische Universität München, 1991. Advisor: J. Schmidhuber.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector.

In Alvey vision conference, volume 15, page 50. Citeseer, 1988.

[HS97a] S Hochreiter and J Schmidhuber. Long short-term memory. Neural

Computation, 9(8):1735–1780, Nov 1997.

[HS97b] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[HS06] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimension-

ality of data with neural networks. Science, 313(5786):504–507, 2006.

[HSK+12] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,

and Ruslan R. Salakhutdinov. Improving neural networks by pre-

venting co-adaptation of feature detectors, 2012. Technical Report

arXiv:1207.0580.

[HZCP04] Xuming He, R.S. Zemel, and M.A. Carreira-Perpindn. Multiscale con-

ditional random fields for image labeling. In Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE

Computer Society Conference on, volume 2, pages II–695–II–702 Vol.2,

June 2004.

[JBR+10] V. Jain, B. Bollmann, M. Richardson, D.R. Berger, M.N. Helmstaedter,

K.L. Briggman, W. Denk, J.B. Bowden, J.M. Mendenhall, W.C. Abra-

ham, K.M. Harris, N. Kasthuri, K.J. Hayworth, R. Schalek, J.C. Tapia,

J.W. Lichtman, and H.S. Seung. Boundary learning by optimization

with topological constraints. In Computer Vision and Pattern Recogni-

tion (CVPR), 2010 IEEE Conference on, pages 2488–2495, June 2010.

[Jia13] Yangqing Jia. Caffe: An open source convolutional architecture for fast

feature embedding. http://caffe.berkeleyvision.org/, 2013.

http://caffe.berkeleyvision.org/

BIBLIOGRAPHY 129

[JXYY13] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural

networks for human action recognition. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 35(1):221–231, Jan 2013.

[KDG15] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves. Grid long short-

term memory. CoRR, abs/1507.01526, 2015.

[KEF+14] Taygun Kekeç, Rémi Emonet, Elisa Fromont, Alain Trémeau, Chris-

tian Wolf, and France Saint-Etienne. Contextually constrained deep

networks for scene labeling. In Proceedings of the British Machine Vi-

sion Conference, 2014, 2014.

[KK10] M.P. Kumar and D. Koller. Efficiently selecting regions for scene under-

standing. In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 3217–3224, June 2010.

[KN12] L. Kratz and K. Nishino. Tracking pedestrians using local spatio-

temporal motion patterns in extremely crowded scenes. Pattern Anal-

ysis and Machine Intelligence, IEEE Transactions on, 34(5):987–1002,

May 2012.

[KSH12a] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classifi-

cation with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25, pages 1106–1114, 2012.

[KSH12b] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet

classification with deep convolutional neural networks. In F. Pereira,

C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in

Neural Information Processing Systems 25, pages 1097–1105. Curran

Associates, Inc., 2012.

[KSZ14] Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel. Unifying

visual-semantic embeddings with multimodal neural language models.

arXiv preprint arXiv:1411.2539, 2014.

[KTH] KTH-TIPS and KTH-TIPS2 texture image database. http://www.

nada.kth.se/cvap/databases/kth-tips/download.html.

[KTS+14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and

Li Fei-Fei. Large-scale video classification with convolutional neural

http://www.nada.kth.se/cvap/databases/kth-tips/download.html
http://www.nada.kth.se/cvap/databases/kth-tips/download.html

130 BIBLIOGRAPHY

networks. In Computer Vision and Pattern Recognition (CVPR), 2014

IEEE Conference on, pages 1725–1732, June 2014.

[KWT88] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes:

Active contour models. International Journal of Computer Vision,

1(4):321–331, 1988.

[LBBH98a] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, Nov 1998.

[LBBH98b] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998.

[LBOM98] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In

G. Orr and Muller K., editors, Neural Networks: Tricks of the trade.

Springer, 1998.

[LCY13] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. CoRR,

abs/1312.4400, 2013.

[LGTB97] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recogni-

tion: a convolutional neural-network approach. Neural Networks, IEEE

Transactions on, 8(1):98–113, Jan 1997.

[Lin98] Tony Lindeberg. Feature detection with automatic scale selection. In-

ternational Journal of Computer Vision, 30(2):79–116, 1998.

[LJ08] D. Larlus and F. Jurie. Combining appearance models and markov

random fields for category level object segmentation. In Computer Vi-

sion and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on,

pages 1–7, June 2008.

[LJST14] Ting Liu, Cory Jones, Mojtaba Seyedhosseini, and Tolga Tasdizen. A

modular hierarchical approach to 3d electron microscopy image segmen-

tation. Journal of Neuroscience Methods, 226(0):88 – 102, 2014.

[LLS+15] Haoxiang Li, Zhe Lin, Xiaohui Shen, Jonathan Brandt, and Gang Hua.

A convolutional neural network cascade for face detection. June 2015.

BIBLIOGRAPHY 131

[Low99] D.G. Lowe. Object recognition from local scale-invariant features. In

Computer Vision, 1999. The Proceedings of the Seventh IEEE Interna-

tional Conference on, volume 2, pages 1150–1157 vol.2, 1999.

[Low04] DavidG. Lowe. Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2):91–110, 2004.

[LRSM13] Tian Lan, M. Raptis, L. Sigal, and G. Mori. From subcategories to vi-

sual composites: A multi-level framework for object detection. In Com-

puter Vision (ICCV), 2013 IEEE International Conference on, pages

369–376, Dec 2013.

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-

tional networks for semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 3431–

3440, 2015.

[LSP06] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories. In Com-

puter Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 2, pages 2169–2178, 2006.

[LYT09] Ce Liu, J. Yuen, and A Torralba. Nonparametric scene parsing: Label

transfer via dense scene alignment. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1972–1979,

June 2009.

[LYT11] Ce Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via

label transfer. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 33(12):2368–2382, Dec 2011.

[LZCR15] Liang Lu, Xingxing Zhang, Kyunghyun Cho, and Steve Renals. A study

of the recurrent neural network encoder-decoder for large vocabulary

speech recognition. In Sixteenth Annual Conference of the International

Speech Communication Association, 2015.

[MCUP04] J Matas, O Chum, M Urban, and T Pajdla. Robust wide-baseline stereo

from maximally stable extremal regions. Image and Vision Computing,

22(10):761 – 767, 2004. British Machine Vision Computing 2002.

132 BIBLIOGRAPHY

[MLKS13] Roni Mittelman, Honglak Lee, Benjamin Kuipers, and Silvio Savarese.

Weakly supervised learning of mid-level features with beta-bernoulli

process restricted boltzmann machines. In Computer Vision and Pat-

tern Recognition (CVPR), 2013 IEEE Conference on, pages 476–483.

IEEE, 2013.

[MM03] G. Mori and J. Malik. Recognizing objects in adversarial clutter: break-

ing a visual captcha. In Computer Vision and Pattern Recognition,

2003. Proceedings. 2003 IEEE Computer Society Conference on, vol-

ume 1, pages I–134–I–141 vol.1, June 2003.

[MOVY01] Bangalore S Manjunath, J-R Ohm, Vinod V Vasudevan, and Akio Ya-

mada. Color and texture descriptors. Circuits and Systems for Video

Technology, IEEE Transactions on, 11(6):703–715, 2001.

[MS02] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest

point detector. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and

Peter Johansen, editors, Computer Vision ECCV 2002, volume 2350

of Lecture Notes in Computer Science, pages 128–142. Springer Berlin

Heidelberg, 2002.

[MS04] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant

interest point detectors. International Journal of Computer Vision,

60(1):63–86, 2004.

[MS05a] K. Mikolajczyk and C. Schmid. A performance evaluation of local de-

scriptors. Pattern Analysis and Machine Intelligence, IEEE Transac-

tions on, 27(10):1615–1630, Oct 2005.

[MS05b] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation

of local descriptors. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 27(10):1615–1630, 2005.

[MVK+02] Christian Münzenmayer, Heiko Volk, Christian Küblbeck, Klaus

Spinnler, and Thomas Wittenberg. Multispectral texture analysis us-

ing interplane sum-and difference-histograms. In Pattern Recognition,

pages 42–49. Springer, 2002.

[MZICS13] Shugao Ma, JianMing Zhang, N. Ikizler-Cinbis, and S. Sclaroff. Ac-

tion recognition and localization by hierarchical space-time segments.

BIBLIOGRAPHY 133

In Computer Vision (ICCV), 2013 IEEE International Conference on,

pages 2744–2751, Dec 2013.

[NC13] C. Nieuwenhuis and D. Cremers. Spatially varying color distributions

for interactive multilabel segmentation. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 35(5):1234–1247, May 2013.

[NFF07] J.C. Niebles and Li Fei-Fei. A hierarchical model of shape and appear-

ance for human action classification. In Computer Vision and Pattern

Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June

2007.

[OB14] Enrique G. Ortiz and Brian C. Becker. Face recognition for web-scale

datasets. Computer Vision and Image Understanding, 118:153 – 170,

2014.

[OFPA04] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and

boosting for generic object detection and recognition. In Toms Pajdla

and Ji Matas, editors, Computer Vision - ECCV 2004, volume 3022

of Lecture Notes in Computer Science, pages 71–84. Springer Berlin

Heidelberg, 2004.

[out] OuTex image test suite. http://www.outex.oulu.fi/index.php?

page=classification.

[PAA+87] Stephen M. Pizer, E. Philip Amburn, John D. Austin, Robert Cromar-

tie, Ari Geselowitz, Trey Greer, Bart Ter Haar Romeny, and John B.

Zimmerman. Adaptive histogram equalization and its variations. Com-

put. Vision Graph. Image Process., 39(3):355–368, September 1987.

[Pal04] Christoph Palm. Color texture classification by integrative co-

occurrence matrices. Pattern Recognition, 37(5):965–976, 2004.

[PC14] Pedro Pinheiro and Ronan Collobert. Recurrent convolutional neural

networks for scene labeling. In Tony Jebara and Eric P. Xing, editors,

Proceedings of the 31st International Conference on Machine Learning

(ICML-14), pages 82–90. JMLR Workshop and Conference Proceed-

ings, 2014.

http://www.outex.oulu.fi/index.php?page=classification
http://www.outex.oulu.fi/index.php?page=classification

134 BIBLIOGRAPHY

[PD07] Florent Perronnin and Christopher Dance. Fisher kernels on visual

vocabularies for image categorization. In Computer Vision and Pattern

Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,

2007.

[PH12] G. Patterson and J. Hays. Sun attribute database: Discovering, an-

notating, and recognizing scene attributes. In Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2751–

2758, June 2012.

[PL02] Christoph Palm and Thomas M Lehmann. Classification of color tex-

tures by gabor filtering. Machine Graphics and Vision, 11(2/3):195–

220, 2002.

[PP00] Constantine Papageorgiou and Tomaso Poggio. A trainable system for

object detection. International Journal of Computer Vision, 38(1):15–

33, 2000.

[PSCZ15] Tomas Pfister, Karen Simonyan, James Charles, and Andrew Zisser-

man. Deep convolutional neural networks for efficient pose estimation

in gesture videos. In Daniel Cremers, Ian Reid, Hideo Saito, and Ming-

Hsuan Yang, editors, Computer Vision – ACCV 2014, volume 9003 of

Lecture Notes in Computer Science, pages 538–552. Springer Interna-

tional Publishing, 2015.

[PVM07] Alice Porebski, Nicolas Vandenbroucke, and Ludovic Macaire. Iterative

feature selection for color texture classification. In Image Processing,

2007. ICIP 2007. IEEE International Conference on, volume 3, pages

III–509. IEEE, 2007.

[PVM10] Alice Porebski, Nicolas Vandenbroucke, and Ludovic Macaire. Com-

parison of feature selection schemes for color texture classification. In

Image Processing Theory Tools and Applications (IPTA), 2010 2nd In-

ternational Conference on, pages 32–37. IEEE, 2010.

[Ran71] William M. Rand. Objective criteria for the evaluation of clustering

methods. Journal of the American Statistical Association, 66(336):846–

850, 1971.

BIBLIOGRAPHY 135

[RST02] Remi Ronfard, Cordelia Schmid, and Bill Triggs. Learning to parse

pictures of people. In Anders Heyden, Gunnar Sparr, Mads Nielsen,

and Peter Johansen, editors, Computer Vision ECCV 2002, volume

2353 of Lecture Notes in Computer Science, pages 700–714. Springer

Berlin Heidelberg, 2002.

[RTK09] Chris Russell, Philip H. S. Torr, and Pushmeet Kohli. Associative

hierarchical crfs for object class image segmentation. In in Proc. ICCV,

2009.

[SBLS15] Marijn F. Stollenga, Wonmin Byeon, Marcus Liwicki, and Juergen

Schmidhuber. Parallel multi-dimensional {LSTM}, with application to

fast biomedical volumetric image segmentation. In Neural Information

Processing Systems (NIPS), 2015 Conference on, 2015.

[Sch14] J. Schmidhuber. Deep learning in neural networks: An overview. Tech-

nical Report IDSIA-03-14 / arXiv:1404.7828v1 [cs.NE], The Swiss AI

Lab IDSIA, 2014.

[SCZ08] Florian Schroff, Antonio Criminisi, and Andrew Zisserman. Object class

segmentation using random forests. In BMVC, pages 1–10, 2008.

[Seg12] Segmentation of Neuronal Structures in EM Stacks Challenge.

IEEE International Symposium on Biomedical Imaging (ISBI),

http://tinyurl.com/d2fgh7g, 2012.

[SEZ+13] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob

Fergus, and Yann LeCun. Overfeat: Integrated recognition, localiza-

tion and detection using convolutional networks. CoRR, abs/1312.6229,

2013.

[SHB+12] Richard Socher, Brody Huval, Bharath Bath, Christopher D Manning,

and Andrew Y Ng. Convolutional-recursive deep learning for 3d object

classification. In Advances in Neural Information Processing Systems,

pages 665–673, 2012.

[SL11] Pierre Sermanet and Yann LeCun. Traffic sign recognition with multi-

scale convolutional networks. In Proceedings of International Joint Con-

ference on Neural Networks (IJCNN’11), pages 2809–2813, 2011.

136 BIBLIOGRAPHY

[Sla14] Thomas Grant Slatton. A comparison of dropout and weight decay for

regularizing deep neural networks. In An Undergraduate Honors College

Thesis, University of Arkansas, 2014.

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew

Rabinovich. Going deeper with convolutions. June 2015.

[SP97] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural net-

works. IEEE Transactions on Signal Processing, 45:2673–2681, Novem-

ber 1997.

[SP11] Jorge Sánchez and Florent Perronnin. High-dimensional signature com-

pression for large-scale image classification. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1665–

1672. IEEE, 2011.

[SSB14] Hasim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term

Memory recurrent neural network architectures for large scale acoustic

modeling. In Proc. Interspeech, 2014.

[SWRC06] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi.

Textonboost: Joint appearance, shape and context modeling for multi-

class object recognition and segmentation. In Ale Leonardis, Horst

Bischof, and Axel Pinz, editors, Computer Vision ECCV 2006, volume

3951 of Lecture Notes in Computer Science, pages 1–15. Springer Berlin

Heidelberg, 2006.

[SyLNM11] Richard Socher, Cliff Chiung yu Lin, Andrew Y. Ng, and Christopher D.

Manning. Parsing natural scenes and natural language with recursive

neural networks. In Proceedings of the International Conference on

Machine Learning (ICML-11), 2011.

[SZ14] Karen Simonyan and Andrew Zisserman. Two-stream convolu-

tional networks for action recognition in videos. In Z. Ghahramani,

M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors,

Advances in Neural Information Processing Systems 27, pages 568–576.

Curran Associates, Inc., 2014.

BIBLIOGRAPHY 137

[TGJ+15] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and

Christoph Bregler. Efficient object localization using convolutional net-

works. June 2015.

[TH12] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA:

Neural Networks for Machine Learning, 4, 2012.

[TL10] Joseph Tighe and Svetlana Lazebnik. Superparsing: Scalable nonpara-

metric image parsing with superpixels. In Kostas Daniilidis, Petros

Maragos, and Nikos Paragios, editors, Computer Vision ECCV 2010,

volume 6315 of Lecture Notes in Computer Science, pages 352–365.

Springer Berlin Heidelberg, 2010.

[USC] The usc texture mosaic images. http://sipi.usc.edu/database/

database.php?volume=textures.

[VF10] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable li-

brary of computer vision algorithms. In Proceedings of the international

conference on Multimedia, pages 1469–1472. ACM, 2010.

[visa] VisTexL image test suite. http://www.outex.oulu.fi/index.php?

page=contributed.

[visb] VisTexP texture image database. http://vismod.media.mit.edu/

vismod/imagery/VisionTexture/distribution.html.

[VKC+15] Francesco Visin, Kyle Kastner, Kyunghyun Cho, Matteo Matteucci,

Aaron C. Courville, and Yoshua Bengio. Renet: A recurrent neu-

ral network based alternative to convolutional networks. CoRR,

abs/1505.00393, 2015.

[VTBE14] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan.

Show and tell: A neural image caption generator. arXiv preprint

arXiv:1411.4555, 2014.

[Wan12] Quan Wang. GMM-based hidden markov random field for color image

and 3d volume segmentation. CoRR, abs/1212.4527, 2012.

http://sipi.usc.edu/database/database.php?volume=textures
http://sipi.usc.edu/database/database.php?volume=textures
http://www.outex.oulu.fi/index.php?page=contributed
http://www.outex.oulu.fi/index.php?page=contributed
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/distribution.html
http://vismod.media.mit.edu/vismod/imagery/VisionTexture/distribution.html

138 BIBLIOGRAPHY

[WDB+08] Ofir Weber, Yohai S Devir, Alexander M Bronstein, Michael M Bron-

stein, and Ron Kimmel. Parallel algorithms for approximation of dis-

tance maps on parametric surfaces. ACM Transactions on Graphics

(TOG), 27(4):104, 2008.

[WGS+15] Li Wang, Yaozong Gao, Feng Shi, Gang Li, John H. Gilmore, Weili

Lin, and Dinggang Shen. Links: Learning-based multi-source integra-

tion framework for segmentation of infant brain images. NeuroImage,

108(0):160 – 172, 2015.

[Wit84] Andrew P. Witkin. Scale-space filtering: A new approach to multi-

scale description. In Acoustics, Speech, and Signal Processing, IEEE

International Conference on ICASSP ’84., volume 9, pages 150–153,

Mar 1984.

[WJWZ13] Shuo Wang, Jungseock Joo, Yizhou Wang, and Song-Chun Zhu. Weakly

supervised learning for attribute localization in outdoor scenes. In Com-

puter Vision and Pattern Recognition (CVPR), 2013 IEEE Conference

on, pages 3111–3118, June 2013.

[WWZ13] Shuo Wang, Yizhou Wang, and Song-Chun Zhu. Hierarchical space

tiling for scene modeling. In Computer Vision–ACCV 2012, pages 796–

810. Springer, 2013.

[WZZ+13] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L. Cun, and Rob Fergus.

Regularization of neural networks using dropconnect. In Sanjoy Das-

gupta and David Mcallester, editors, Proceedings of the 30th Interna-

tional Conference on Machine Learning (ICML-13), volume 28, pages

1058–1066. JMLR Workshop and Conference Proceedings, May 2013.

[XHE+10] Jianxiong Xiao, J. Hays, K.A Ehinger, A Oliva, and A Torralba. Sun

database: Large-scale scene recognition from abbey to zoo. In Computer

Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,

pages 3485–3492, June 2010.

[ZF14] MatthewD. Zeiler and Rob Fergus. Visualizing and understanding con-

volutional networks. In David Fleet, Tomas Pajdla, Bernt Schiele, and

Tinne Tuytelaars, editors, Computer Vision ECCV 2014, volume 8689

of Lecture Notes in Computer Science, pages 818–833. Springer Inter-

national Publishing, 2014.

BIBLIOGRAPHY 139

[ZJR+15] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vib-

hav Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip H. S.

Torr. Conditional random fields as recurrent neural networks. CoRR,

abs/1502.03240, 2015.

[ZLZ13] Jun Zhang, Jimin Liang, and Heng Zhao. Local energy pattern for

texture classification using self-adaptive quantization thresholds. 2013.

[ZMLS07] Jianguo Zhang, Marcin Marsza lek, Svetlana Lazebnik, and Cordelia

Schmid. Local features and kernels for classification of texture and ob-

ject categories: A comprehensive study. International journal of com-

puter vision, 73(2):213–238, 2007.

[ZZL12] Jun Zhang, Heng Zhao, and Jimin Liang. Continuous rotation invari-

ant local descriptors for texton dictionary-based texture classification.

Computer Vision and Image Understanding, 2012.

140 BIBLIOGRAPHY

Curriculum Vitae

• Name: Wonmin Byeon

• Email: wonmin.byeon@gmail.com

• Education and Work Experience

– Ph.D. in Computer Science

University of Kaiserslautern (TU KL), Germany, 2012 - 2016

Advisor: Prof. Thomas M. Breuel and Prof. Andreas Dengel

– Visiting researcher

Dalle Molle Institute of Artificial Intelligence (IDSIA)

Swiss AI Lab, Artificial Intelligence team, Switzerland, 2015

Advisor: Prof. Juergen Schmidhuber

• Reserch Interest

– Machine Learning

∗ Long Short-Term Memory Recurrent Neural Networks (LSTM)

∗ Convolutional Neural Networks (CNNs)

∗ Deep Learning

– Computer Vision

∗ Image and video analysis

∗ Image/Video Classification and Segmentation

	Abstract
	Acknowledgements
	List of abbreviations
	Introduction
	Challenges in Image Analysis
	Challenges in Image Classification
	Challenges in Image Segmentation

	Background of Image Analysis
	Research Hypothesis and the Goal of the Thesis
	Contributions
	Overview of the Thesis

	Image Analysis
	Overview
	Local Feature-Based Approach
	Learning-Based Approach

	Image Classification
	Image Segmentation
	Conclusion

	Multi-Dimensional LSTM (MD-LSTM) and Its Variant, PyraMiD-LSTM
	Background
	Notations
	Recurrent Neural Networks
	Long Short-Term Memory (LSTM)

	Traditional Multi-Dimensional LSTM (MD-LSTM)
	Proposed PyraMiD-LSTM: Parallel MD-LSTM
	Conclusion

	Network Architectures for Image Analysis
	Network Layers
	Input Layer
	Hidden Layer
	Output Layers

	Network Design for Image Analysis
	The Dimension of Input
	Depth of the Network
	The Type of Output

	Network Settings and Generalization
	Input Representation
	Weight Initialization
	Peephole Connections
	Regularization
	Optimization
	Network Parameters

	Conclusion

	Image Classification
	Texture Classification
	The Approach
	Datasets
	Experimental Setup
	Results and Analysis
	Summary

	Scene Understanding
	The Approach
	Datasets
	Experimental Setup
	Results and Analysis
	Summary

	Conclusion

	Image Segmentation
	Texture Segmentation
	The Approach
	Datasets
	Experimental Setup
	Results and Analysis
	Summary

	Scene Labeling
	The Approach
	Datasets
	Experimental Setup
	Results and Analysis
	Summary

	Conclusion

	Parallel Volumetric LSTM Networks
	Biomedical Volumetric Image Segmentation
	The Approach
	Datasets
	Experimental Setup
	Results and Analysis

	Conclusion

	Conclusion and Future Work
	Concluding Remarks
	Future Directions

	Bibliography
	Curriculum Vitae

