Generic Layout of Communication
Subsystems - A Case Study

R. Gotzhein, B. Geppert, C. Peper, F. Ro8ler
SFB 501 Report 14/96



Generic Layout of Communication Subsystems
- A Case Study

R. Gotzhein, B. Geppert, C. Peper, F. Rof3ler
{gotzhein, geppert, peper, roessler} @ informatik.uni-kl.de

Report 14/96

Sonderforschungsbereich 501

Computer Networks Group
Computer Science Department
University of Kaiserslautern
Postfach 3049
67653 Kaiserslautern

Germany



Generic Layout of Communication Subsystems
- A Case Study?

R. Gotzhein, B. Geppert, C. Peper, F. Rof3ler

Computer Science Department, University of Kaiserslautern
Postfach 3049, 67653 Kaiserslautern, Germany
{gotzhein, geppert, peper, roessler} @ informatik.uni-kl.de

Abstract

The purpose of this exposé is to explain the generic design of a customized communication
subsystem. The exposé addresses both functional and non-functional aspects. Starting point is
a real-time requirement from the application area building automation. We show how this
application requirement and some background information about the application area lead to
a system architecture, a communication service, a protocol architecture and to the selection,
adaptation, and composition of protocol functionalities. The reader will probably be surprised
how much effort is necessary in order to implement the innocuous, innocent, inconspicuous
looking application requirement. Formal description techniques (FDTs) will be used in all
design phases.

1. Introduction

A central goal of the Sonderforschungsbereich (SFB) 501 is to devise methods and techniques
for the generic development of large software systems [SFB94]. Today, large systems
typically are concurrent and distributed. Therefore, communication systems are usually an
integral part of large systems, they form the basis for applications and operating systems.
Due to the large variety of applications and technologies, the requirements on communication
systems are manifolded. It is therefore expected that they will not be satisfiable by a small
number of general-purpose protocol stacks. Rather, customization of communication systems
will play a major role.

To overcome the additional development effort resulting from customization, and in
accordance with the goals of the SFB, we propose to use the concept of genericity during all
development phases. In the following, we will illustrate some of our ideas for the generic
layout and the customization of communication subsystems using a single innocuous-looking
application requirement as starting point.

§ This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Sonderfor-
schungsbereich (SFB) 501 "Development of Large Systems with Generic Methods"



To start with, a few central notions will be briefly addressed. In Figure 1, two different
computer-communications architectures are shown. Both are layered architectures. The first
one comprises seven layers, as it is, for instance, the case for the OSI Basic Reference Model
[ISO84] or IBMs Systems Network Architecture. Also, the Department of Defense (DoD)
architecture [CeCa83] now used in the Internet falls into this category. The relatively large
number of layers and the more or less fixed set of general-purpose protocols has turned out to
be inappropriate for many applications. Here, the second architecture, consisting of basic
technology, communication subsystem, and application layer, together with special-purpose,
customized protocols, is more suitable.

application layer

application layer —t -

presentation layer

session layer communication

transport layer subsystem

network layer

data link | M-
ata link layer og

physical layer basic technology

Figure 1: Computer-communications architectures

Basic technology is referring to components of a communication system that are typically
manufactured in hardware (including microcode), such as Ethernet, ATM, and Token Ring.
Basic technology may be application-neutral - in a sense that its characteristics does in
principle allow all kinds of applications to be based on this technology -, or application-
specific. The functionality covered by the basic technology is not uniquely determined, it may
or may not, for instance, comprise routing mechanisms.

The adaptation between the basic technology and the application is established by a
communication subsystem, which together with the basic technology forms the entire
communication system. It is this communication subsystem and its generic layout on which
the case study presented in the following will focus.

Genericity is another central notion. We may distinguish between genericity of products and
of the development process. Genericity of products is supported by concepts such as
compositionality, adaptation, parameterization, and reusability!. Genericity of the

1 These concepts are not orthogonal.



development process is additionally supported by concepts such as synthesis and generation.
We will refer to these concepts in the following in order to point out potential of using
genericity for developing customized communication subsystems.

The presentation of the case study is structured as follows. In Section 2, the application
requirement is presented. Early design decisions then lead to a refined system architecture
(Section 3) and a communication service (Section 4). This communication service is proven
adequate w.r.t. the application requirement (Section 5). Next, a communication protocol
providing this service is configured (Section 6). Finally, implementation issues will be briefly
addressed (Section 7). We conclude with some remarks.

2. Application requirement

Starting point is a real-time requirement? from the application area building automation, which
has been worked out by the customer embodied by project D1 in cooperation with the
contractor embodied by Team 1 and Team 2. The requirement is the following:

"Each time hazardousCondition holds continuously for at least T time units, the upper
sash must be closed within this time span and must then remain closed as long as
hazardousCondition holds."

Formally3: O (hazardousCondition = _ upperSashClosed) (arq)

This allows to leave the windows open if hazardousCondition holds for less than T time
units; however, the windows may be closed at any time, if hazardousCondition holds.

We have used a real-time temporal logic with customized operators (in the example, we have
introduced a new operator called "bounded response and continuity operator" [KrGoPe96]).
This has allowed us to be concise and to formally capture certain non-functional aspects.

hazardousCondition is an auxiliary predicate with the following important property:
O ([hazardousCondition] — O_r3 hazardousCondition) (aay)

Informally, once hazardousCondition becomes true, it remains true for at least 73 time units
before becoming false again.

The auxiliary predicate hazardousCondition has been defined in terms of a primitive predicate
hazardousSituation in [PeGoKr96, GoKrPe96]. Examples of a hazardous situation (not to be
confused with hazardous condition!) are: heavy winds, heavy rainfall, danger of burglary (e.g.
during darkness). While hazardous situations can occur at all moments in time, and can exist
for an arbitrary time span, the predicate hazardousCondition should not change its value too
frequently. Otherwise, this may lead to a frequent opening and closing of windows. By
choosing 73 suitably, frequent window actions can be avoided.

2 For a more comprehensive treatment, see [PeGoKr96].

3 The logic used in this section is called tTL (tailored real-time temporal logic) and introduced in [KrGoPe96].
The customized operator in the formula can be defined syntactically: p =_; g =p¢ 7@ W —9).



While working on the application requirements in the area of building automation, we have
found that most of them obey a small number of syntactic patterns, like the requirement above
or the definition of hazardousCondition (see [PeGoKr96, GoKrPe96]). This has led us to the
hypothesis that by developing a customized communication subsystem for each such pattern,
we will be able to reuse the development process as well as its products with some
adaptations. As a result, both development process and products will be highly generic. Note
that the patterns may be different in other application areas.

3. System architecture

Based on a set of requirements supplied by the customer, Team 2 has developed a system
architecture as part of the system design. The architecture shown in Figure 2 is extracted from
that system architecture and contains only those components relevant to the application
requirement above, which are:

* A control cell ccSafety. One of the tasks of ccSafety is to realize the above requirement by
appropriate interaction with other components. Interaction could, for instance, occur by
message passing, shared variables, or procedure call.

* A (logical) sensor senHazCon perceiving the predicate hazardousCondition. There may be
several physical sensors and also some processing involved in determining the current
value of hazardousCondition. This is a matter of implementation and not considered at
this stage. It is, however, important how much time may pass from hazardousCondition
being satisfied until this is recorded by sensors, processed and ready for being
communicated via ipHazCon. This time Tsep ] is part of T.

* A (logical) actuator actUSash controlling the upper sash. There may be several physical
actuators involved in closing the upper sashes. As before, this is an implementation
matter. Again, some time will pass from the reception of a signal to close the upper sashes
via ipUSash until they are finally closed. This time 7¢¢] is part of 7.

» Components may interact via common interaction points [Got90] ipHazCon and ipUSash.
Thus, the ability of components to interact is architecturally modeled.

In order to realize the requirement, suitable cooperation of components is necessary. This
cooperation has to be such that firstly, the specified relative order of events is realized (a
functional requirement), and secondly, the specified timing constraints are observed (a non-
functional requirement). If the times Tsep ] and Tger] are determined, we have T - Tgep ] -
Tact] time units from the recording of a hazardous condition until the order to close all upper
sashes must be given.

In general, T - Tgen] - Tact] may be shared among the components in an arbitrary way. In this
exposé, we will make the assumption that each component has a fixed share, and that the sum
of these shares be equal to or less than the available time span. This assumption reduces
flexibility, but allows to consider each component independently.



ccSafety

/

senHazCon actUSash

Figure 2: Extract of the conceptual system architecture

Note that the architecture in Figure 2 still allows for a variety of design decisions. For
instance, in a centralized solution, interaction between components could be by procedure call,
interrupt or shared variables. In a decentralized solution, interaction may occur, for instance,
through message passing. The same or a different communication system may be introduced
for each of the interaction points. The sensor and actuator components may be refined into
smaller components including physical sensors and actuators, which communicate via some
shared medium. This medium may also be shared among the components shown in Figure 2,
or be a separate medium. These are design decisions which are by no means predetermined at
this stage of development. What the architecture shows is a conceptual design that may be
implemented in many different ways.

4. Interaction properties

In the following, we will focus on the interaction points ipHazCon and ipUSash, which
determine the kind of interaction between the agents ccSafety, senHazCon and actUSash.
ipHazCon and ipUSash will be customized according to the needs of the application.
Therefore, interaction point properties have to be defined first. To formalize these properties,
we use a first-order real-time temporal logic. This logic is explained in [Got93] and
[KrGoPe96], respectively.

The component ipHazCon is the conceptual location where interactions between ccSafety and
senHazCon occur.

ipH1 O Vv, ts. ([ccSafety.? value.resp(v,ts)]
D now-ts < Tippyy A #® [senHazCon.! value.resp(v,ts)])

If ccSafety accepts (receives, reads) the value v with timestamp zs, where v is assumed
to be the value of hazardousCondition at time ts, v must satisfy two conditions:



* At the time of acceptance, v is not older than Te,7 + Tsen2 + Tiprrr. This relies on
the assumption (specified as a local property of the agent senHazCon, see Section
5) that the timestamp s is correctly set.

* v has been offered (sent, written) by senHazCon before. In other words, values
must not be created by the interaction point.

ipHy O (at ccSafety.? value.resp D () [ccSafety.? value.resp])

<TipH?2

If ccSafety is ready to accept (receive, read) the value of hazardousCondition, it will
accept (receive, read) some value within Tjyzp.

Properties ipH1 and ipH» taken together restrict interactions occurring between ccSafety and
senHazCon without determining a particular interaction paradigm. For instance, shared
variables, interrupts, procedure calls or message passing may be used. If shared variables are
used, then ! value.resp corresponds to writing, ? value.resp to reading. If interaction is by
procedure call, then value.req (not constrained by ipHj and ipHp) corresponds to the
procedure call, value.resp to the return. Another option for implementation is the rate of value
acceptance of ccSafety, which may be different from the rate of value offering of senHazCon.

At this point, we make the design decision to use message passing for interaction between
ccSafety and senHazCon, which is in line with the goal of developing large systems, as
message passing is a frequent interaction paradigm in distributed systems. As a consequence, /
corresponds to sending, ? to receiving a message. With this design decision, we can understand
ipH; and ipH» as the specification of a communication service. This service is the starting
point for the customization of a communication protocol.

The component ipUSash is the conceptual location where interactions between ccSafety and
actUSash occur.

ipUy O Vs. #ccSafety.! set.req(s)] = #|lactUSash.? set.req(s)])

The number of set requests with parameter value s passed to actUSash does not exceed
the number of set requests by ccSafety with the same parameter value.

ipUy O (at ccSafety.! set.req D ) [ccSafety.! set.req))

<TipUI

When ccSafety is ready to request the closing of the upper sashes at ipUSash, the
request occurs within T, y;.

ipU3z O (at actUSash.? set.req A #[ccSafety.! set.req] > #[actUSash.? set.req]|

> <>STipU2 [actUSash.? set.req])

When actUSash is ready to accept a request to close the upper sashes at ipUSash, and
there is a pending request, the request is accepted within T, p.

Similar to ipHazCon, the properties of ipUSash leave many options for implementation.

We expect that for application requirements following the same syntactic pattern, we may
define similar communication services. Thus, we will be able to reuse the development



process as well as its products with small variations. As a result, both development process
and products will be highly generic.

Furthermore, we expect that similar communication services can be integrated to form a single
service, which could - in a broad sense - be understood as the multiplexing of application
requirements over a single communication system.

5. On the proof of the application requirement

So far, we cannot be certain whether it is possible to customize a communication system that
satisfies the specification of ipHazCon and ipUSash. With the interaction paradigm being
determined, we still have to make certain assumptions concerning the behaviour of the agents
ccSafety and senHazCon. This is, however, typical in the context of open systems and follows
the rely/guarantee pattern. One such assumption, for instance, is that if senHazCon offers a
value v at ipHazCon, v is a value of hazardousCondition that has a determined maximum age
and is associated with a correct timestamp zs. Assumptions sufficient for proving the
application requirement are listed below.

The component senHazCon processes data probed from the physical environment in order to
evaluate the environment predicate hazardousCondition. Since this evaluation may take some
time, we introduce a predicate sSenHazCon associated with senHazCon, which represents the
current status of processing. This predicate can be understood as an auxiliary predicate to
make the specification more readable. There is no need to represent it in an implementation.

sen] O (hazardousCondition = _r, , sSenHazCon)

Each time hazardousCondition holds continuously for at least T, 1, sSenHazCon must
become true within that time span and must remain true as long as hazardousCondition
holds* .

seny O¢ <Tson2 [at senHazCon.! value.resp]

senHazCon offers value responses with a minimum rate. Note the use of the action
operator, which has the effect that the parameters of the value response do not age
beyond Tsenz.

seny O Vv,ts. ([at senHazCon.! value.resp(v,ts)] D v = sSenHazCon A ts = now)

A value response is parameterized with the current value of sSenHazCon and the
current time.

The component ccSafety is responsible for accepting (processed) data about the physical
environment from senHazCon, and for requesting appropriate action by actUSash. To make
the specification (and the proof) more readable, an auxiliary predicate sCcHazCon is
associated with ccSafety. The following constraints apply:

4 If Ty,,; = T3 (see Section 2), the requirement simplifies to: each time hazardousCondition holds,
sSenHazCon must become true within 7,,; and must remain true as long as hazardousCondition.



cc; O¢ <Tpep @ ccSafety.ipHazCon.? value.resp

ccSafety must be ready to accept the value of sSenHazCon frequently enough.

ccy O Vis. ([sCcHazCon] D §) at ccSafety.ipUSash.! set.req(close))

<Tec2

If a hazardous condition is reported, ccSafety is ready to request the closing of the
upper sashes within 7).

cc3 O Vv is. ([ccSafety.ipHazCon.? value.resp(v,ts)]
D (sCcHazCon=v W v'ts'. ([ccSafety.ipHazCon.? value.resp(v'ts')] A v = V"))

sCcHazCon always equals the last reported value of sSenHazCon.
cc4 O (sCcHazCon D - [at ccSafety.ipUSash.! set.req(open)])

If the last reported value of sSenHazCon has been true, then no request to open the
upper sashes must be issued.

The component actUSash is responsible for opening and closing the upper sashes. To make
the specification (and the proof) more readable, an auxiliary predicate sActUSash is associated
with actUSash. The constraints are:

act; O Vv. ([actUSash.ipUSash.? set.req(v)]
D (sActUSash =v W Av'. (lactUSash.ipUSash.? set.req(v')] A v = V"))

sActUSash always equals the value of the last set request.

acty O ((sActUSash = close = _t, .,
(sdctUSash = open = _r, ,; —~ upperSashClosed))

upperSashClosed) A

Each time (sActUSash = close) holds continuously for at least 7,7, upperSashClosed
must become true within that time span and must remain true as long as (sActUSash =
close) holds (analogously in case (s4ctUSash = close) does not hold).

acty O <Taepr @ actUSash.? set.req

actUSash offers to accept set requests with a minimum rate.

From the properties stated in Sections 4 and 5, we have formally proven the application
requirement. More precisely, we have proven the following:

|=i (seny A seny A seng A ipHj A ipHp A cCp A ccy A CC3 A CCq A
ipU1 A ipUz A ipU3 A acty A acty A act3 A aaj)
D ar

The existence of this proof provides evidence that the communication service is indeed
suitable and sufficient.



6. Protocol specification

In this section, we will explain how a customized communication subsystem for the service as
specified by ipH; and ipHy is configured. Before the configuring can be done, a pool
consisting of elements called protocol building blocks has to be created. Based on the required
service, a subset of these building blocks will be selected, adapted and composed to yield the
customized communication subsystem. The result of this configuration process is listed in the
appendix.

We specify protocol building blocks and the configured subsystem using SDL-92, which is an
internationally standardized FDT [ITU92, Ols94]. Unlike most other FDTs, SDL is widely
used in industry, and well-supported by tools. The language contains a set of graphical
constructs, which improves readability of specifications and thus the acceptance of the
language itself. Unlike the temporal logic used so far, SDL does not support the specification
of non-functional aspects. However, being an operational technique, SDL is more appropriate
for specifying the mechanisms occurring in communication protocols as compared to temporal
logic.

Figure 3: Service architecture: Figure 4: Protocol architecture:
SystemControll SystemControl3

Figure 3 shows an SDL-specification of an open system with two blocks named ipHazCon
and ipUSash. These blocks are linked to the environment by so-called channels. The



relationship to the conceptual architecture of Figure 2 is obvious: the blocks represent the
interaction points named ipHazCon and ipUSash. ccSafety, senHazCon, and actUSash are not
part of the communication system and therefore not included in the SDL-specification.

It is straightforward to refine this structure into the usual protocol architecture. However, this
would result in separate components representing the basic technology, which is not the way
we want to realize the communication services represented by ipHazCon and ipUSash.
Instead, we want to place the communication subsystems related to these services on a single
component representing the basic technology. As a consequence, the structure obtained after
the refinement of the service architecture needs some modification.

We have devised a small number of transformation rules (not stated in this exposé) stating
how the internal system structure may be modified without affecting the external behaviour of
the open system. Suitable application of these transformation rules leads to the protocol
architecture shown in Figure 4. This architecture consists of a single component representing
the basic technology, and four components that together form the communication subsystem
to be configured. Please note that the external appearance of this system is identical to the
system in Figure 3.

The following examples refer to the block SensorPart (see Figure 4).

Figure 5: Protocol building block: Service Figure 6: Protocol entity: Process Type
Type HandleData ReliableTransport S

10



SDL supports the specification of protocol building blocks through self-contained units called
services [Ols94]. Note that these so-called services are not related to communication services
as defined earlier, rather they define transition systems. A simple service (or protocol building
block), consisting of an automaton with a single transition, is shown in Figure 5. In this
transition, an input signal is accepted, and a PDU is partially assembled.

Apart from the fact that non-functional behaviour can not be expressed in SDL, there are other
limitations needing further attention. From a semantical point of view, it should be noted that
services in SDL are incomplete specifications and therefore only become formally meaningful
when being part of a complete specification. Another important limitation is that with SDL, it
cannot be expressed how and when protocol building blocks may be composed. This
"composition intelligence" has therefore to be specified using some meta-language.

Given a pool of protocol building blocks, a protocol architecture, and a service specification,
suitable protocol building blocks that together form the customized protocol have to be
selected. This certainly is a highly creative step of the design process which can be guided by
heuristics and other means.

Building blocks may still be generic in the sense that service-specific information needs to be
added, leading to an adaptation of building blocks. This can, for instance, be supported in SDL
by suitable parameterization, or by redefinition of transitions and types.

Once the protocol building blocks are selected and adapted, they have to be composed to yield
a communication subsystem consisting of protocol entities. In SDL, a protocol entity can be
represented by a process, which is configured by composing services. An example is shown in
Figure 6, which includes the protocol building block HandleData shown earlier. A process of
that type is then contained in SensorPart (see Figure 4).

The entire process of configuring a communication subsystem, consisting of the selection,
adaptation and composition of protocol building blocks, provides for a high degree of
reusability and genericity. Protocol building blocks may be combined in many ways, leading to
customized communication subsystems. We have shown how certain language features of
SDL-92 may be used to support this process. Additional language features such as
inheritance, redefinition, and procedures offer further potential for a generic layout of
communication subsystems.

7. Implementation issues

With the protocol subsystem being specified in SDL, it is in principle possible to use one of
the commercially available SDL-compilers to automatically or semi-automatically generate
executable protocol code. There exists, however, only little experience with generating code for
real-time protocols. As SDL-92 does not support the specification of timing constraints®, it

6 SDL-92 supports the concept of timers. This, however, is done on a syntactical basis only and has no
semantical foundation.

11



cannot be expected that existing commercial SDL-compilers can be used here. This is an issue
for further study and can only be solved in the long run.

Another implementation issue is optimization. There exists potential for integrating
communication subsystems of a single node into one subsystem. This integration may be
performed in a reusable way on the specification level such that the integrated subsystem is
again specified in SDL. In Figure 4, for instance, the blocks ControlPartl and ControlPart2
may be integrated into a single block, and processes be fused.

The implementation of the communication subsystem interfaces with the underlying basic
technology. We have already built an experimental network based on a token ring protocol and
have developed a driver capable of certain deterministic timing guarantees. Future plans
foresee the replacement of this basic technology by an ATM network. Due to the generic
layout of the communication subsystem, the adaptation effort caused by this replacement is
expected to be small.

8. Concluding remarks

We have identified potential for the generic layout of communication subsystems, illustrated
by a case study. This potential can be classified into: genericity of products and of the
development process.

* In building automation, we have so far encountered a relatively small number of syntactic
patterns of application requirements. This may lead to reuse through adaptation. The
syntactic patterns may, of course, be different in other application areas.

* Application requirements following the same syntactic pattern may be supported by
similar communication services. Again this may lead to reuse through adapation.

* Also, we have addressed the configuring of customized communication subsystems, which
leads to reusability based on a predefined set of protocol building blocks, their adaptation,
and composition.

* Genericity of the development process has been identified in all stages of protocol
development. We have argued that in the early design stages and for the given application
domain, products follow a relatively small number of syntactic patterns. Since these
products are therefore similar, the design processes will be largely reusable. With respect
to the protocol development, strategies and heuristics to support the configuring still have
to be investigated. We are only just beginning to understand the systematics underlying
this process.

* As far as the derivation of executable code is concerned, semi-automatic code generation
from the operational formal specification seems to be promising.

It should be pointed out that broad use of FDTs has been made in all stages of development.
Also, non-functional aspects have been formally treated as illustrated by a case study. In
summary, there is large potential for generic methods and techniques, which we have only just
started to exploit.

12



13

References

[CeCa83] Cerf, V., Cain, E.: The DoD Internet Architecture Model, Computer Networks, Vol. 7,
1983

[Got90] Gotzhein, R.: The Formal Definition of the Architectural Concept "Interaction Point",
in: S. T. Vuong (ed.), Formal Description Techiques, 1I, North-Holland, 1990, pp. 67-81.

[Got93] Gotzhein, R.: Open Distributed Systems - On Concepts, Methods and Design from a
Logical Point of View, Vieweg Wiesbaden, 1993

[GoKrPe96] R. Gotzhein, M. Kronenburg, and C. Peper: Specifying and Reasoning about Generic
Real-Time Requirements - A Case Study, SFB 501 Report 15/96, University of Kaiserslautern,
Germany, 1996

[ISO84] ISO/CCITT: Information Processing Systems - Open Systems Interconnection - Basic
Reference Model, ISO 7498/CCITT Recommendation X.200, 1984

[ITU92] ITU, Geneva: Specification and Description Language (SDL), 1994

[KrGoPe96] M. Kronenburg, R. Gotzhein, and C. Peper: A Tailored Real-Time Temporal Logic
for Specifying Requirements of Building Automation Systems, SFB 501 Report 16/96,
University of Kaiserslautern, Germany, 1996

[O1s94] Olsen, A., et al.: Systems Engineering Using SDL-92, North-Holland, 1994

[PeGoKr96] C. Peper, R. Gotzhein, and M. Kronenburg: A Generic Approach to the Formal
Specification of Real-Time Requirements of Building Automation Systems, SFB 501 Report
1/97, University of Kaiserslautern, Germany, 1997

[SFB94] Sonderforschungsbereich 1496, Entwicklung groBer Systeme mit generischen Methoden,
Finanzierungsantrag, University of Kaiserslautern, 1994



Appendix

14



15



16



17



18



19



20



21



22



