
Modeling the Effects of Software on Safety and
Reliability in Complex Embedded Systems

Max Steiner, Patric Keller, and Peter Liggesmeyer

AG Software Engineering: Dependability, TU Kaiserslautern,
{steiner,pkeller,liggesmeyer}@cs.uni-kl.de

Abstract. The development of autonomous vehicle systems demands
the increased usage of software based control mechanisms. Generally,
this leads to very complex systems, whose proper functioning has to be
ensured. In our work we aim at investigating and assessing the poten-
tial effects of software issues on the safety, reliability and availability
of complex embedded autonomous systems. One of the key aspects of
the research concerns the mapping of functional descriptions in form of
integrated behavior-based control networks to State-Event Fault Tree
models.

Keywords: safety analysis, reliability analysis, state-event fault trees

The final publication is available at http://link.springer.com/chapter/
10.1007/978-3-642-33675-1_43

1 Introduction

Recent trends concerning the automation of high-tech products like cars, air-
planes and trains lead to embedded systems of tremendous size and complexity.
This development particularly affects the quality of those systems. Important
(non-functional) quality characteristics often related to in this context are safety,
reliability and availability. The compliance with predefined quality goals is en-
sured by the increased usage of software-based mechanisms. Depending on the
nature of the considered systems, this may be crucial. Especially, in cases where
software is applied to fulfill certain safety requirements.

The way software affects safety-critical systems is manifold. But not only
safety is a factor influencing the final quality of a product. Faults introduced due
to misinterpretation, wrong design decisions, or implementation errors may lead
to unreliable services, or to reduced functionalities, which might affect the avail-
ability of the whole system. The other way around, unreliable or non-available
services may again end up in safety critical events, e.g., the failure of anti-
blocking systems of cars in emergency cases. In this regards, important ques-
tions focus on determining the impact of software faults on safety, reliability
and availability of complex software-intensive embedded systems.

In general, the range of the considered systems only differs slightly with re-
spect to its principle composition and its mission profiles: Data generated from

http://link.springer.com/chapter/10.1007/978-3-642-33675-1_43
http://link.springer.com/chapter/10.1007/978-3-642-33675-1_43


sensors, responsible for the acquisition of environmental information, is collected
and prepared for further processing. Based on the provided data, decisions are
inferred determining the behavior of the system, e.g., whether or not a colli-
sion detection system should trigger an alarm in case of an imminent collision
with other objects. Depending on the sort of system, the decision may also con-
trol actuators like engines and steering devices, as it is the case in autonomous
vehicles.

Our efforts center on finding a way to draw conclusions about influences of
software on quality characteristics like reliability, safety and availability of com-
plex software-intensive embedded systems of autonomous vehicles. The main
focus lies on how to map corresponding relations of software-artifacts of func-
tional descriptions of integrated Behavior-Based Control (iB2C) networks [9] to
safety and reliability analysis models using State Event Fault Trees (SEFT) [3].
Analyzing these mappings shall facilitate answering questions like:

– How do software-artifacts react on corrupted input data?
– At which point do software components fail?
– Given assumptions about the reliability of the input data, how imminent is

the occurrence of certain unwanted/critical system-level events with respect
to safety, reliability and/or availability?

Our research relies on the description of an autonomous vehicle demonstrator
system called ravon (Robust Autonomous Vehicle for Off-Road Navigation),
which has been developed by the Robotics Research Lab at the University of
Kaiserslautern.

The remainder is structured as follows. In Sect. 2 we provide an overview
about the type of the demonstrator system used to conduct the studies. In
Sect. 3 we review some of the related modeling techniques. Subject of Sect. 4 is
the discussion of how to use the modeling elements of State-Event Fault Trees to
map the interrelations between reliability and safety. Sect. 5 describes the way of
using the technique to assess the overall system safety based on the information
about interference to sensor (data) failure. In Sect. 6 we provide the results of
an analysis of safety subsystems of our demonstrator system. We conclude with
Sect. 7 and provide a short outlook of future work.

2 Demonstrator: RAVON

ravon is a mobile robot developed by the Robotics Research Lab at the Univer-
sity of Kaiserslautern to research off-road navigation of autonomous vehicles [11].
It uses several different sensor systems to perceive its environment. Laser scan-
ners are used for front and back distance measuring and obstacle detection.
Additional information about the environment is added with cameras. Pressure
sensitive bumper systems at the front and the back of the robot cause an emer-
gency stop if triggered. All sensor systems are processed by the software part
of the system, which then generates control values for the actuators. The con-
trol software is realized using the behavior-based control architecture iB2C [9].



ravon has four electric wheel hub motors bringing it to a maximum velocity of
10 km/h. Its total weight of 750 kg brings up a potential risk of serious damage
to itself and the environment including injuries in collisions with humans. It is
therefore imperative that the system is analyzed for residual risks despite of the
built-in safeguards. Unfavorable environmental conditions could lead to a non-
detection of an obstacle by one or more sensors. In a safety analysis it has to
be examined how such a fault affects the driving behavior and if it leads to an
accident.

2.1 Behavior-based Network Description.

In ravon a behavior-based control framework named iB2C [9] is used. The con-
trol architecture is a layer-based network consisting of several behavior modules.
An iB2C behavior has several behavior-specific input and output signals to de-
termine its influence on the behavior network. In addition to the behavior signals
a behavior module has an input and output vector for values controlled by the
behavior.

Interaction between behavior modules is realized by fusion behaviors, which
combine outputs from different modules to one single output. Two different kinds
of fusions are used in ravon: maximum fusion and weighted fusion. The maxi-
mum fusion forwards the output vector of the behavior with the highest activity.
The weighed fusion merges the output vectors of the input behaviors, which are
weighted with their corresponding activity. All driving motions can be altered
by safety behaviors by slowing down or changing direction.

In [9] some more complex design patterns for iB2C are described. As they
are used frequently, it is planned to implement direct translations or at least
translation templates for SEFT generation. The most important and most fre-
quently used pattern is the behavioral group pattern. A behavioral group is a
hierarchical abstraction of several behaviors, which manipulate the same output
values. They are combined into a group, which looks like a behavior from the
outside.

3 Related Work

Cheung et al. [1] provided a framework for reliability prediction of software
components at the architectural level. Their model consists of three phases:
First, determine system states including normal and abnormal behavior. Second,
determine transitions with help of hidden Markov models and other sources
of information, which is still a challenge. Third, solve the model and compute
reliability via steady state analysis and the calculation of the probability of
being in a failure state. They only consider reliability in their analysis. It might
be possible to extend the technique to analyze safety and availability. We did not
use this approach, because with SEFTs we can model everything Markov-models
can describe, and additionally SEFTs can be used to analyze safety. Also, we
have a tool, with which we can create and analyze SEFTs.



Min et al. [7] propose template software fault trees for Ada95 code for safety
analysis on a very low abstraction level. They use standard fault trees, which
do not take into account the component structure of larger systems. Only im-
plementation errors are analyzed, and McDermid states in [6] “that many safety
problems relate to requirements faults, not mistakes in coding”. As a conse-
quence, additional analyses are needed to check for faults in earlier development
stages.

Lano et al. [5] propose HAZOP (hazard and operability study) guide words
for the analysis of object-oriented models in UML. They provide new guide word
interpretations for state transition, class and sequence diagrams. HAZOP is used
to find system failures, which themselves have to be analyzed further. It can be
used before a fault tree analysis to determine possible top events.

Förster and Trapp [2] developed a Fault Tree based method to cope with
the problem of few or no information about failures early in the development.
They base the analysis on Component Fault Trees (CFT) [4] to model system
composition. The uncertainty of (software) safety probabilities for basic events is
modeled with the help of probability distributions over intervals instead of single
probabilities. For calculating an overall probability distribution, every interval is
sampled many times and the overall probability per sample is calculated. CFTs
offer the possibility to model big systems with many components in a structured
way. In embedded systems the state of the system changes as a reaction on
events. Therefore a reliability or safety analysis has to be able to consider states
as well as events. CFTs do not support the distinction of states and events, which
is possible in Petri-nets.

Sacha proposes in [10] an analysis called Transnet using structured Petri-
nets. The analysis based on Petri-nets is similar to ours as we also conduct a
reachability analysis. One drawback with Petri-nets is that the nets are con-
siderably large, even for relatively small systems. SEFTs combine the ability to
model states and events of Petri-nets with the ability to model component-wise
like CFTs.

4 State-Event Fault Trees

In our approach we use State-Event Fault Trees (SEFT) [3] to analyze safety
and reliability from a functional system description. SEFTs are a combination
of deterministic state machines, Markov chains and Fault Trees [14], and can
model system states as well as timing constraints. Quantitative evaluation is done
by translating SEFTs into deterministic and stochastic Petri-nets (DSPN [8]).
DSPNs are an extension of Generalized Stochastic Petri-nets (GSPN) to addi-
tionally model deterministic delay. A DSPN is a timed variant of Petri-nets,
which means the time a transition waits, before it fires, is specified.

In [3] a SEFT-to-DSPN translation algorithm, which we use, is described.
A SEFT has a finite state space, and a component is in exact one state at
a time – the active state – and stays in that state for some time. The state
of a component is described as a state expression: “component c is in state s



at time t”. A probability can be assigned to a state expression for each point
in time. Contrary to a state, an event has no duration. State transitions are
events, but additional events are possible. As in DSPNs events can occur after a
deterministic or exponentially distributed probabilistic delay. They can also be
triggered by other events. In addition to the standard boolean gates used in Fault
Trees (AND, OR), several new gates are introduced. For example History-AND
remembers events that have occurred in the past, and Priority-AND additionally
remembers if they have occurred in a given order.

As a result, one receives a directed acyclic graph (one cause can trigger multi-
ple effects). In the graph causal loops are forbidden, except if some explicit delay
is introduced into the cycle. Event ports allow triggering relations across com-
ponent borders. SEFTs are constructed like Fault Trees: start with an undesired
state or event, and find influences or causes. Basic events of FTs correspond
to solitary exponentially distributed events in SEFTs. Subcomponents can be
modeled by other means like Markov chains and easily included into the SEFT.

5 Modeling Approach

In this Section, the approach to apply SEFTs on functional system models is
described on the example of ravon. Starting with the general process chain, a
description of all steps from iB2C behavior modules to failure probabilities is
given.

5.1 Process Chain

Fig. 1 shows the different steps of our approach to analyze the safety and relia-
bility of a functional model. First, a SEFT of the behavior network is developed
describing how failures are propagated through the system hierarchy. After mod-
eling the structure, probabilities for basic events are entered. This is done using
the tool ESSaRel [13]. The SEFT can not be analyzed directly, so it is converted
into a DSPN via an export function to the TimeNET [12] format. TimeNET is
a tool for analyzing DSPNs. Now, interesting places have to be identified, for
which a reachability analysis will be done. Usually, such places are the failure
states of the topmost component in the model. In TimeNET probabilities for
system states can be calculated. It can be expressed if a desired system state is
reached with a certain probability, or an undesired state (failure state) is reached
with a certain probability. This probability can be compared to a threshold to
see if predefined constraints are met.

5.2 Translation from iB2C to SEFT

Before an analysis can be done, the system has to be modeled with regard to
failure propagation. In ESSaRel a system can be modeled component-wise. Sin-
gle iB2C behavior modules, fusion behaviors, whole behavior groups or behavior



transition probabilities

Behavior 
Network

Safety Model
as SEFT

Safety Model
as DSPN

identify interesting places (desired or undesired)
define measure to calculate probability

Reachability,
Probability for System States,

Reliability of Components
ESSaRel

Export to 
TimeNET

Analysis in 
TimeNET

Fig. 1. Process chain

patterns can be seen as components. In the following, two architectural compo-
nents seen in iB2C are briefly described with a translation scheme into a SEFT.
More detailed descriptions of iB2C components can be found in [9].

Behavior Modules. A behavior usually controls one or more control values
like a velocity or a joint angle. These values have to be within certain boundaries
in certain situations for the system to be in a state, in which no safety condition
is violated. Additionally, the activity of a behavior module is closely related to
the environmental situation. A model of such a behavior observes deviations
from desired values of control values and activities.

Some modeling rules can be formulated: First, determine possible states of
control values and/or activity. Possible states are one or more failure states and
a state for normal operation. Next, determine causes for state transitions and
model them as events. Events that are caused by the environment of the sys-
tem should be modeled with a failure rate (either deterministic or exponentially
distributed events). Events that are triggered by other events from other com-
ponents are of the type “Triggered Event”.

In Fig. 2 an example SEFT of a simple behavior module is shown. It con-
sists of one OK state (out_vel_ok) and one failure state (out_vel_high). The
init event is pointed at the OK state. Two events (no_obstacle_detected and
sensors_working) switch between the states. The events are connected to event
outports (black triangles), which are used to connect this component to others.

Fusion Behaviors. As stated in Sect. 2.1, behaviors that influence the same
control values are merged with fusion behaviors. The failure modes of a fusion
behavior result from the failure modes of its input behaviors. For a maximum
fusion only the failure modes of the behavior with the highest activity are prop-
agated. The maximum fusion results in an “OR” gate for the failure modes and
an “History-AND” gate for the normal modes. That means if at least one of the
behaviors is in the failure mode, the output of the fusion behavior is also in the
failure mode. On the other hand, if both input behaviors are in normal mode,
the fusion behavior is also in normal mode.

For the weighted fusion there are a few ideas that still have to be imple-
mented: As for the maximum fusion the failure modes of the weighted fusion
depend on the ones from the input behaviors. In contrast to the maximum fu-
sion the weighted fusion has an infinite number of states. To be able to model



E

E

E

E

E

E

E
E

event_out_vel_highevent_out_vel_ok no_obstacle_detected
λ = 1.0s⁻¹

λ = 5.0s⁻¹
sensors_working

S
out_vel_ok

out_vel_high
S

init

Fig. 2. Example SEFT for a simple behavior

these with a SEFT, they have to be classified. For the first modeling attempt,
the weighted fusion can be abstracted as a maximum fusion.

In Fig. 3 an example SEFT of a maximum fusion behavior with two input
behaviors is shown. The states are determined by the merged behaviors. At least
one OK state and one failure state is needed. Events are triggered events in con-
trast to the exponentially distributed events of behavior modules. State changes
depend on the inputs of this component (white triangles are event inports). In-
puts of failure events are merged with an OR gate (≤ 1), inputs of OK events
with a History-AND (H&). Like in the previous example, the events are also
connected to event outports (black triangles).

5.3 Translation from SEFT to DSPN

The translation from SEFT to DSPN is done using the translation rules described
in [3], which are implemented as an export function in ESSaRel. SEFTmodels are
translated component-wise, events become transitions and states become places.
The init node transforms into an initial marking of the place corresponding to
the state, to which the init node is connected. Gates are translated according to
a dictionary in [3]. Component ports also have a special translation.

At the bottom of Fig. 4 an example SEFT and its corresponding DSPN are
shown. The SEFT model depicts one component with two states, two events and
two event outports to connect the component to others. This SEFT is translated
into the DSPN shown below the SEFT. The states are directly translated into
places. Same names indicate corresponding states and places. The places have an
additional prefix indicating the component. This is needed to distinguish places
with the same name that come from different components. The same holds for
events and transitions. The exponentially distributed trigger rates of the events
in this example are translated into exponentially distributed delays of the DSPN
transitions. The two event outports are translated to one place and one transition
each. Other components can be attached to these transitions.



E

E

E

E

E

E

E
E

event_out_vel_highevent_out_vel_ok in_vel_high

S
out_vel_ok out_vel_high

S

init

E

E

E

E E

>=1

E

E E

H&

E

E
event_Forward_in_vel_ok

event_Front_EM_Stop_in_vel_ok

event_Forward_in_vel_high

event_Front_EM_Stop_in_vel_high

in_vel_ok

Fig. 3. Example SEFT for a maximum fusion with two input behaviors
(Front_EM_Stop and Forward)

5.4 Analysis in TimeNET

When the SEFT is translated into a DSPN, it can be analyzed with TimeNET.
The translation is done, because with DSPNs it is possible to calculate the
reachability of states and the probability for the system to end up in a certain
state. It is possible to draw conclusions about system reliability by calculating the
probability that the system is in the OK state. If there exists a repair transition
to leave each of the failure states, availability can be measured by calculating
the probability of the system to be in the OK state at the top component at a
given time. Also, safety can be analyzed by calculating the probability for the
system to be in a safety-critical failure state. The same can be done for each
single component, if desired.

Before the analysis can be done, a separate measure has to be defined for
each observed state. An example measure result = P{#P1=1}; would result in
the probability that place #P1 contains one token. TimeNET then calculates the
probabilities for the system to be in the defined states during runtime.

6 Results

As an example a small part of the ravon system is modeled. The modeled part
controls the forward velocity of ravon. Two different behaviors can slow down
the robot by overwriting the velocity value. Fig. 4 shows the translation of the
whole example. In the top-left part the SEFT model is shown consisting of five
components, which are connected via their component ports. Two components
are connected via a fusion behavior (second component to the top). On the



right, the corresponding DSPN can be seen. Below, one component is enlarged
to depict the translation in more detail:

(G) Front Emergency Stop is a behavior group, abstracted as a module,
which could be modeled in more detail later on. It uses the bumper sensors to
detect obstacles by touch and reduces the output velocity down to zero if an
obstacle is detected. We identified “output velocity too high” as the only failure
mode of this behavior at this abstraction level, making this one failure state
in the SEFT model. With the OK state (out_vel_ok), we need events, which
enable the transitions between the failure state and the OK state. As initial
state, the OK state is selected, because it is assumed that the system is OK at
the beginning.

In the SEFT model of (G) Front Emergency Stop each event has a trigger
rate (λ) assigned, which indicates how often the events are happening per second.
At the moment, this rate has been arbitrarily chosen, because it is not yet
interesting to have accurate values for this small example. In case of the event
“no obstacle detected”, it is the failure rate of the obstacle detection, the rate of
the other event is the rate, with which the system detects obstacles, depending
on sensor speed.

At the bottom of Fig. 4 the enlarged translation of the previous SEFT is
shown. States are translated to places, events to transitions, the init event to
an initial marking, and the component ports to transit structures consisting of
places and triggered events. The trigger rate of the modeled events is translated
into a transition with an exponentially distributed delay.

With this model, the probability, that the modeled components end up in
a failure state, can be determined. For example, the reliability of the compo-
nent (G) Front Emergency Stop depends on the probability, that it is in the
OK state. This probability depends on the failure and repair rates given in the
model and can be determined by an analysis with TimeNET. TimeNET can do
a reachability analysis and calculate probabilities for the system to be in certain
states.

Using this method, it is possible to analyze safety, reliability and availabil-
ity of complex behavior-based systems. The propagation of failures from sensors
through the control software can be modeled and quantitatively analyzed, pro-
vided reliability data for the sensors is available. The same could be achieved
with DSPNs, but with greater modeling effort for larger systems.

The advantage of the proposed method is, that is possible to model software-
intensive embedded systems with system states and externally triggered events
(sensor inputs). The modeling in SEFT is easier than with Petri-nets, because
complex systems can be modeled component-wise, instead of building one large
net. Also, system states and events, that contribute to a failure, can be combined
using logic gates like in fault trees.



7 Conclusion

We proposed a method to apply State-Event Fault Trees on functional descrip-
tions of hardware and software to analyze safety, reliability and availability.
The main contribution are translation rules from the functional description of
behavior-based systems to an SEFT model. In this SEFT model desired and
undesired system states are selected. The analysis of the SEFT is done via trans-
formation into a DSPN. The results are probabilities that the system or system
components are in previously selected states. From this probabilities the system
reliability, availability or, in case of safety related components, the system safety
can be measured.

The next steps will be to develop translation schemes for all of the patterns,
and to expand the existing translations.

Acknowledgement. This work was funded by the German Ministry of Educa-
tion and Research (BMBF) in the context of the “Virtuelle und Erweiterte Real-
ität für höchste Sicherheit und Zuverlässigkeit Eingebetteter Systeme – Zweite
Phase” (ViERforES II) project. We also thank our colleagues from the Robotics
Research Lab of the University of Kaiserslautern for providing us with the input
data.

References

1. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of
software component reliability. In: Proceedings of the 30th international conference
on Software engineering. pp. 111–120. ICSE ’08, ACM, New York (2008)

2. Förster, M., Trapp, M.: Fault tree analysis of software-controlled component sys-
tems based on second-order probabilities. In: ISSRE 2009 proceedings (2009)

3. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees–a safety analysis
model for software-controlled systems. Reliability Engineering & System Safety
92(11), 1521 – 1537 (2007), sAFECOMP 2004, the 23rd International Conference
on Computer Safety, Reliability and Security

4. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: 8th Australian Workshop on Safety Critical Systems and Software. Canberra
(October 2003)

5. Lano, K., Clark, D., Androutsopoulos, K.: Safety and security analysis of object-
oriented models. In: Safecomp (2002)

6. McDermid, J.: Software hazard and safety analysis. In: Formal Techniques in Real-
Time and Fault-Tolerant Systems. LNCS, vol. 2469, pp. 23–34. Springer-Verlag
Berlin Heidelberg (2002)

7. Min, S.Y., Jang, Y.K., Cha, S.D., Kwon, Y.R., Bae, D.H.: Safety verification of
ada95 programs using software fault trees. In: Computer Safety, Reliability and
Security (1999)

8. Priese, L., Wimmel, H.: Petri-Netze. Springer (2008)
9. Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems

using the behavior-based control architecture iB2C. Robotics and Autonomous
Systems 58(1), 46–67 (January 2010)



10. Sacha, K.: Safety verification of software using structured petri nets. In: Computer
Safety, Reliability and Security (1998)

11. Schäfer, B.H.: Robot Control Design Schemata and their Application in Off-road
Robotics. Ph.D. thesis, TU Kaiserslautern (2011)

12. TU Berlin, R.: Timenet 4.0. www.tu-ilmenau.de/TimeNET (2007)
13. TU Kaiserslautern, A.s., IESE, F.: Embedded system safety and reliability analyzer

(essarel). http://www.essarel.de (2009)
14. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. U.S. Nu-

clear Regulatory Commission (1981)

www.tu-ilmenau.de/TimeNET
http://www.essarel.de


(F) Velocity

(F) Forward Stop

(F) Forward

(G) DriveMode Safety Control

(G) Front Emergency Stop

SEFT

DSPN

SEFT DSPN

P_Front_EM_Stop_out_vel_ok P_Front_EM_Stop_out_vel_high

P_Front_EM_Stop_no_obstacle_detected

P_Front_EM_Stop_sensors_working

P_Front_EM_Stop_TRANSIT2
P_Front_EM_Stop_TRANSIT1

E

E

E

E

E

E

E
E

event_out_vel_highevent_out_vel_ok no_obstacle_detected
λ = 1.0s⁻¹

λ = 5.0s⁻¹
sensors_working

S
out_vel_ok

out_vel_high
S

init

Fig. 4. Top-left: the SEFT model of the example system, consisting of five components.
Top-right: the corresponding DSPN. Middle: one enlarged component of the SEFT.
Bottom: the enlarged translation to DSPN of the SEFT


	Modeling the Effects of Software on Safety and Reliability in Complex Embedded Systems

