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Abstract
Today’s communication systems are typically structured into several layers, where each layer real-
izes a fixed set of protocol functionalities. These functionalities have been carefully chosen such that
a wide range of applications can be supported and protocols work in a general environment of net-
works. However, due to evolving network technologies as well as increased and varying demands of
modern applications general-purpose protocol stacks are not always adequate.

To improve this situation new flexible communication architectures have been developed which
enable the configuration of customized communication subsystems by composing a proper set of
reusable building blocks. In particular, several approaches toautomatic configuration of communi-
cation subsystems have been reported in the literature. This report gives an overview of theses
approaches (F-CCS, Da CaPo, x-Kernel, and ADAPTIVE) and, in particular, defines a framework
which identifies common architectural issues and configuration tasks.

1 Intr oduction

Today’s communication systems are typically structured into several layers, where each layer
realizes a fixed set of protocol functionalities. These functionalities have been carefully chosen such
that a wide range of applications can be supported and protocols work in a general environment of
networks. Well-known architectures of this type are the OSI stack [9] or the Internet Protocol
Suite[17]. However, due to evolving network technologies as well as increasing demands of modern
applications general-purpose protocol stacks are not always adequate [2]. In particular, varying
demands on throughput and delay as well as on delay jitter, synchronization and multicasting are not
well supported by existing protocol stacks. Also, classical protocols are not designed to exploit the
advantages of advanced transmission technologies (e.g., fiber optics) and high-speed networks (e.g.,
ATM), which combine high bandwidth with low error rates and therefore shifted the performance
bottleneck from transmission links to protocol processing nodes. Rather, classical protocols enforce
the use of mechanisms that may actually not be needed by a given application, for instance, the use
of error control mechanisms, which leads to reduced performance [3], [27], [29].

To improve this situation new flexible communication architectures are currently being devel-
oped which enable the configuration of customized communication subsystems (a communication
subsystems upgrades a given basic communication service in order to provide a target service
requested by the user, see Figure 1) by composing a proper set of reusable building blocks. Basically
two kinds of configuration have to be distinguished. In case ofautomatic configuration the actual
configuration process is performed by special configuration tools, where the input is a specification
of the desired target service. According to the communication requirements suitable components of a
pool of predesigned protocol building blocks are automatically selected, and a corresponding sub-
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system implementation is generated. Automatic configuration generally supports the dynamic adap-
tation of an communication subsystem to varying user demands or network services. Another
possibility is to view configuring as part of protocol design (manualconfiguration), where customi-
zation of special-purpose protocols and the reduction of additional development effort is of major
concern [4]. This report exclusively deals with automatic configuration, i.e. when talking about con-
figuration, automatic configuration is meant.

Several approaches to the automatic configuration of communication subsystems have been reported
in the literature. This report gives an overview of F-CCS, Da CaPo, x-Kernel, and ADAPTIVE. In
particular, a framework which identifies common architectural issues and configuration tasks is
defined.

The remainder of the report is organized as follows: in Section 2 a framework for automatic con-
figuration is presented, which outlines the general architecture of a configurable communication
subsystem and describes necessary configuration tasks. This framework constitutes the common
ideas of the approaches considered in this report. In Section 3 the approaches F-CCS, Da CaPo, x-
Kernel, and ADAPTIVE are individually discussed and related to the framework of Section 2. We
summarize the main results in Section 4.

2 A framework for automatic configuration

This section identifies the common ideas of the configuration approaches considered in this
report. Furthermore, a uniform vocabulary is defined in order to simplify comparison. The
approaches can be classified with respect to the granularity of the employed building blocks, which
results in two basic subsystem architectures (Section 2.1). The necessary participants and tasks of the
configuration process are discussed in Section 2.2.

2.1 Subsystem architecture

As already mentioned, conventional subsystems are structured into layers, where the set of layers
and functionalities per layer is fixed. As a consequence, some layers may comprise irrelevant mech-
anisms or lack necessary mechanisms with respect to a desired target service (sometimes necessary
functionalities, for instance multicasting, are even hidden from upper layers to build a uniform inter-
face). Furthermore, the same functionality may be found in several layers. For instance, flow and
error control is conducted hop-by-hop in OSI layer 2 and end-to-end in OSI layer 4. Also, several
layers may segment and reassemble data units. To overcome the disadvantages of irrelevant, missing
or redundant functionalities configuration is based on a new subsystem architecture, where two basic
derivatives can be distinguished, which differ in granularity of the employed building blocks.

user

subsystem

target service

basic service

user

network (e.g.,Ethernet or ATM)

subsystem

Fig. 1:  communication subsystem
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For aprotocol-based architecture (Figure 2, left side) the building blocks are predesigned proto-
cols (where existing protocols such as TCP or OSI-TP4 and newly developed protocols are equally
suited). Contrary to conventional subsystems there is no rigid hierarchy of layers with a fixed set of
functionalities per layer. Rather, customized protocol stacks are configured, where the number and
functionality of layers may vary. As a prerequisite apredecessor-successor relation has to be
defined over the set of predesigned protocols. The relation determines whether two protocols may be
composed on top of each other (e.g., protocol A on top of protocol B and protocol B on top of proto-
col C to build the protocol stack of Figure 2). Protocol stacks, which are configured according to the
predecessor-successor relation form valid communication subsystems.

Each protocol comprises multipleprotocol functions (e.g., connection establishment, sequencing,
checksum calculation, or routing) which may also serve as basic architectural components. The
removal of protocol boundaries results in an architecture of separate protocol functions instead of a
protocol stack (Figure 2). Thisfunction-based architecture is more flexible as finer-grained building
blocks are employed, and it additionally supports parallel implementation. Instead of composing
complete protocols, smaller units are configured to build an entire subsystem. Similar to the proto-
col-based architecture apredecessor-successor relation over the set of predesigned protocol func-
tions contains the information about possible compositions. Only configurations according to the
predecessor-successor relation are allowed.

A protocol function may be provided by different algorithms (calledmechanisms). Flow control,
for instance, could be realized by a window-based or rate-based mechanism. Furthermore, a mecha-
nism may comprise a sending and a receiving part. For instance, in case of a window-based flow
control the sender has to administer a sending window and the receiver a corresponding receiving
window. In order to distinguish between a mechanism and its implementation the latter is called a
module (Figure 3). As a consequence apredesigned protocol function must comprise a set of possi-
ble mechanisms and corresponding modules. Examples for protocol functions and corresponding
mechanisms are listed in Table 1.

In addition to the protocol-based and function-based architecturehybrid architectures are also
possible, which combine predesigned protocols with protocols configured from a set of protocol
functions.

user

network

subsystem

Fig. 2:  subsystem architectures
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Fig. 4:  configuring a subsystem with mixed architecture
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2.2 Subsystem configuration

The architectural models of the previous section enable the configuration of customized commu-
nication subsystems with respect to specific communication requirements and offered network serv-
ices. Given a pool of predesigned building blocks a subsystem is generally configured by selecting
and composing a suitable subset. Two kinds of automatic configuration have to be distinguished. If
several users share the same service requirements the corresponding subsystem can be configured in
advance (i.e. before connection establishment) and invoked by the service user whenever needed.
This is calledstatic configuration. In case ofdynamic configuration the subsystem is configured on
demand (i.e. during connection establishment). Naturally, this increases connection set-up times, but
it supports a flexible handling of changing conditions. For instance, an overloaded communication
network can result in areconfiguration during data transfer. In order to configure a communication
subsystem the following tasks have to be performed:

• Specification of the functional and non-functional communication requirements.

• Negotiation of open configuration parameters between the communicating peers. For
instance, communicating peers need to agree on a common basic service and compatible
sender and receiver protocol machines if more than one subsystem configuration is pos-
sible. Negotiation is handled by a special meta-protocol.

• Actual configuring of the communication subsystem by selecting and composing suita-
ble building blocks.

• Instantiating the configured subsystem on the underlying platform.

Figure 5 illustrates the participating agents of the configuration process which will be discussed in
the following.

• user: The user specifies the required target service by the means of a special template (service
requirements model). It contains different parameters to describe the requested functional and
non-functional requirements. Parameters may be mandatory or optional. The user may also deter-
mine the basic service to use and prescribe specific building blocks to be integrated in the subsys-
tem.

• configuration manager: The configuration manager is responsible for controlling the order of
events for configuring and especially negotiates open configuration parameters by means of a spe-

protocol function mechanism

flow control
Stop-and-Wait
window-based
rate-based

corruption control
checksum
parity

connection management

implicit
2-way-handshake
3-way-handshake
no connection (datagram)

acknowledgement

cumulative-positive
cumulative-negative
selective-positive
selective-negative

Table 1: example protocol functions and mechanisms
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cial meta-protocol. Negotiation is initiated after receiving a request from the service user to estab-
lish a connection. The result of this negotiation and the specified communication requirements are
passed to the protocol manager for actual configuration and instantiation of the communication
subsystem. Finally, the user is informed about the configuration results.

• protocol manager: The protocol manager performs the actual configuration based on the infor-
mation given by the configuration manager. In a first step the service requirements have to be
mapped on a proper set of building blocks. According to the employed subsystem architecture
these building blocks are protocols or protocol functions which are predesigned and collected in a
pool. In order to enable theselection of a proper subset the components must be described suita-
bly. This description should not only define the predecessor-successor relation, but also additional
properties such as the impact on the target service. The selection can then be performed by com-
paring the service requirements with the components‘ descriptions. The selected components are
thencomposed according to their specified predecessor-successor relations which yields acom-
ponent graph. Depending on the subsystem architecture this graph is calledprotocol graph or
protocol function graph. In case of a function-based architecture each protocol function must
additionally be mapped on a suitable mechanism and corresponding module which yields amech-
anism/module graph (see Figure 4) for each communicating peer. After configuration the compo-

instance of configured subsystem in run-time environment

configurator

routing table

configuration
manager

resource and information pool

pool

configuration management stream
user data stream

network

configurator

configuration
manager

user A user B

user interface user interface

pool

protocol
manager

protocol
manager

T

T T

Fig. 5: configuration framework
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nent graph isinstantiated on the target platform. The protocol manager therefore contains a
platform-independent part for configuration and a platform-dependent part for instantiation. The
following figure illustrates the sequence of activities and resulting descriptions.

• resource and information pool: The resource and information pool contains a collection of pre-
designed building blocks (protocols or protocol functions) specified in a proper notation. Further-
more, it contains a local database where additional information necessary for automatic
configuration and instantiation is stored. This information comprises, for instance, the local mem-
ory capacity or current network load. It must be guaranteed that a proper set of building blocks
can be selected by comparing the user provided service requirements description with the descrip-
tions of the collected building blocks and the information currently stored in the local database.
Also, the information given with the building blocks must suffice to correctly compose the
selected set of components. In case of static configuration the preconfigured subsystems are also
deposited in the pool.

• monitor:  The monitor is responsible for updating the local database. Therefore it observes all val-
ues relevant for configuration and instantiation, e.g. the current load of local resources. This is
especially important for dynamic reconfiguration.

3 Appr oaches for automatic configuration

In this section major approaches to automatic configuration are described within the framework
of Section 2. Note, that the terms of Section 2 may differ from the terms originally used in the litera-
ture.

3.1 F-CCS

F-CCS (Function-based Communication Subsystem) has been developed at the University of
Karlsruhe, Germany [22], [23], [28]-[31]. It supports dynamic configuration with a function-based
subsystem architecture. The service user requestssessions,that comprise one or more unidirectional
connections (for instance, a combination of video- and audio-streams or two unidirectional connec-
tions to yield a bidirectional data stream). For each connection a separate protocol is configured. In
order to manage the interoperation between the different data streams of a session such as synchroni-
zation of audio- and video-streams, a special entity calledsession manager is introduced. The result-
ing subsystem architecture is shown in Figure 6.

Protocol functions are described in F-PCL (Function-Based Protocol Configuration Language)

specially developed for this purpose [23]1. A generic description template for a protocol function
including the description of its mechanisms is shown in Figure 7. For each protocol function its
name and assumptions for application („Required“, „Forbidden“ ) are specified. Two exam-
ples are listed below (see [23]):

1. In [28] and [31] an earlier version of F-PCL called F-PDL (Function-based Protocol Description Language) is used.

component
graph

service
description

subsystem
implementationselection instantiationcomposition

configuration

set of
components
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DEFINE-PF Reassembly
{
REQUIRED  (Max_User_Data_Unit_Length + Max_Header) >

Max_Network_User_Data_Length;
FORBIDDEN (Segmented_Delivery_Allowed = True);

DEFINE-PFM Stream_Reassembly_N ...
DEFINE-PFM Stream_Reassembly_P ...
}

DEFINE-PF Retransmission
{
REQUIRED (! Data_Loss_Tolerated) |

(Bit_Data_Loss_Network > Bit_Data_Loss_ThresholdValue) |
(Packet_Data_Loss_ThresholdValue = 0);

FORBIDDEN (Jitter_ThresholdValue <=
((2 * Delay_Max) + Expected_Processing_Time_Receiver));

DEFINE-PFM Selective_Retransmission ...
DEFINE-PFM Cumulative_Retransmission ...
}

Furthermore, possible mechanisms are specified. It must be stated, if the mechanism is instantiated
as part of the sender and/or receiver protocol machine („Sender“, „Receiver“ ). Similar to
protocol functions, assumptions for the application of mechanisms have to be specified
(„Required“, „Forbidden“ ). The input and output parameters („Input“, „Output“ )
define data dependencies, while the control flow depends on possible predecessor and successor pro-
tocol functions („Pred“, „Succ“ ). Pointers to the corresponding module („Code“ ) and to nec-

DEFINE-PF PF1
{
REQUIRED
FORBIDDEN

DEFINE-PFM mechanism-x
{
SENDER
RECEIVER
REQUIRED
FORBIDDEN
INPUT „needed input parameters“
OUTPUT „produced output parameters“
SUCC „allowed successor functions“
PRED „allowed predecessor functions“
TIME „expected processing time“
MEMORY „expected memory“
CODE „reference to C-module“
PFIB „reference to additional data“
}

PFM mechanism-y
{...}
}

Fig. 7:  specification of a protocol function (PF)
in F-PCL

„assumption s fo r application
of mechanism x“}

„is mechanism x part of
sender and/or receiver?“}

„assumption s fo r application
of functio n PF1“}

user

...
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Fig. 6:  subsystem architecture of F-CCS ( only
one session illustrated)
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essary databases („PFIB“ ) such as routing tables are given. The expected memory and processing
time of the module is also specified („Time“, „Memory“ ). Below, an example mechanism for
theRetransmission protocol function is specified [23]:

DEFINE-PFM Selective_Retransmission
{
SENDER True;
REQUIRED Bit_Data_Loss_Network > Bit_Error_Rate_Limit;
INPUT Session_ID, Data_Stream_ID, sequence_number;
OUTPUT Session_ID, Data_Stream_ID, bufferinfo;
PRED Negative_Selective_Acknowledgement,

Positive_Cumulative_Acknowledgement;
SUCC Window_Flow_Control, Rate_Flow_Control,

NetworkServiceInterface_Out_to_below;
TIME 100 * ySec;
MEMORY 300 * Byte;
CODE ret_sel.lku;
}

Examples for protocol functions and corresponding mechanisms in F-CCS are listed in Table 2.

In order to initiate configuration the user specifies the requirements for each data stream of a ses-
sion (step① in Figure 8). The service requirements model is shown in Table 3. For each quantitative
parameter athreshold value (mandatory), a preferreduseful value (optional), and an average value
(optional) are requested. The user can also prescribe specific functions or mechanisms to be applied
for protocol configuration.

protocol function mechanism

retransmission

go-back-N (cumulative),
positive-selective, negative-selective,
automatic repeat request,
timer controlled

acknowledgement
cumulative-positive, cumulative-negative
selective-positive, selective-negative

checksum
header, user data, packet,
combination of different checksums

connection management

0-way-handshake (implicit, reliable),
1-way-handshake (implicit, unreliable),
2-way-handshake (explicit, unreliable),
3-way-handshake (explicit, reliable),
no connection (datagram)

flow control
Stop-and-Wait
window-based
rate-based

routing
source-routing,
record-routing

protocol error handling
report-error,
discard-PDU

sequencing
sequence number,
time stamp

Table 2: example protocol functions and mechanisms in F-CCS [23]
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The localconfiguration manager informs the remote configuration manager about the service
requirements, to make sure that the communicating peer is willing to accept the session (step② in
Figure 8). For each data stream, the configuration manager instructs the protocol manager to config-
ure a suitable protocol (step③ in Figure 8). After configuration the protocol manager informs the
configuration manager about the resulting protocol mechanism graph (step⑦ in Figure 8). This
description is passed to the remote configuration manager, which itself asks its protocol manager for
instantiation (step⑧ in Figure 8). If the remote configuration manager signals that the requested ses-
sion is established, and the local protocol manager has also finished instantiation (step⑨ in
Figure8), the configuration managers inform the users to start data transfer (step⑩ in Figure 8).

The protocol manager transforms a service specification into a protocol function graph and
finally generates the implementation. If enough local resources such as memory or processor capac-
ity are available on both sides (step④ and⑤ in Figure 8), the protocol can be configured in the fol-
lowing way (step⑥ in Figure 8):

1. Selection of protocol functions:
the set of service parameters given by the user is mapped on a set of protocol functions. Some of
the protocol functions and service parameters are directly related. For instance, ifordered delivery
is requested, this demands the incorporation of the protocol functionsequencing into the subsys-
tem. If nodata loss is tolerated, the protocol functionflow control must be selected thus increas-
ing thedelay for data transmission. Other protocol functions depend on network characteristics.
For instance, if the underlying network does not support sufficiently large frames the functions
segmentation and reassembly are selected. Furthermore, some protocol functions may be pre-
scribed by the user, and others are mandatory for each protocol, like sending (NetworkService-
Interface_Out_to_below) and receiving (NetworkServiceInterface_In_from_below). According to
these dependencies and therequired- andforbidden-conditions of the protocol functions (see Fig-
ure 7) suitable protocol functions are selected.

2. Selection of mechanisms/modules:
mechanisms and modules are selected as prescribed byrequired- and forbidden-conditions. In
case of multiple candidates the first mechanism listed is chosen.

3. Composing the mechanism graph:
depending on the predecessor-successor relation the set of mechanisms is transformed into a
mechanism graph.

4. Consistency check:
finally, data dependencies as specified by input/output parameters are checked.

quantitative require-
ments
(threshold, average, useful)

qualitative requirements

throughput
delay
delay jitter
response time
rate
data corruption
data loss

session manage-
ment:

inter-stream synchronization
session update

stream manage-
ment:

ordered data delivery
multicasting
error tolerance (data loss, replication, corruption)
expedited data transfer
intra-stream synchronization
syntax selection
security (data security, authorization)

data unit mani-
pulation:

limited size of data units
segmented delivery

Table 3: service parameters in F-CCS [23], [31]
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The configuration manager is informed about the resulting mechanism graph (step⑦ in Figure 8). In
a last step the sender and receiver modules are instantiated. The configuration algorithm is imple-
mented on a Transputer platform as described in [23].

As delay in session establishment is an important criterion for configuration at run-time, four
service classesare predefined with preconfigured protocol function graphs (static configuration)
[31]. One service class supports unreliable real-time data transfer, where data corruption, loss, and
duplication is tolerated up to certain threshold values (user specified), and ordered delivery as well
as guarantees on delay, rate, and jitter are always met. Possible applications are, for instance, voice
and video transmission. The second service class supports reliable real-time data transfer though rate
and jitter is not guaranteed. Additionally expedited data transfer is supported. Possible applications
are process-control applications. The third and fourth service classes support unreliable non-real
time data transfer and reliable non-real time data transfer, respectively. The preconfigured protocol
function graphs are deposited in the pool and can be retrieved by the protocol manager during ses-
sion establishment.

user configurationprotocol network

network

interfacemanager managerinterface

user A
(sender)

user B
(receiver)

pool userconfiguration protocolnetwork
interface managermanager interfacepool

instantiation

instantiation

configuration

resource
test

resource
test

① ②

③

②

④

⑤
⑤

⑤
⑤⑤

⑥

⑦
⑧

⑧

⑨

⑨

⑨

⑩

⑩

step①: user requests session establishment
step②: configuration manager of partner side is informed
step③: protocol manager is instructed to configure protocols
step④+⑤: protocol manager asks local and remote resource situation
step⑥: protocol manager looks up suitable protocol functions and mechanisms
step⑦+⑧: resulting mechanism graph are given to the remote protocol manager
step⑨: configuration manager is informed about finished protocol instantiation
step⑩: user is informed to start data transfer

Fig. 8:  order of events during configuration in F-CCS
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3.2 Da CaPo

Da CaPo (Dynamic Configuration of Protocols) is another approach to dynamic configuration of
function-based subsystems ([12]-[16], [24]-[26]). It was developed at the Computer Engineering and
Networks Laboratory, ETH Zürich. Contrary to F-CCS, Da CaPo does not distinguish between con-
nections and sessions. Thus multiple data streams can be handled by the same protocol.

Protocol functions of Da CaPo include, for instance, flow control, error control, sequencing, seg-
mentation or reassembly. Instead of listing the possible predecessors and successors for each proto-
col function and composing a corresponding protocol function graph during configuration (such as
F-CCS works) Da CaPo deposits a set of precomposed protocol function graphs in a pool. During
configuration a graph is selected, that meets the communication requirements of the user and the
characteristics of the chosen basic service (it is assumed, that for each pair of possible target and
basic services a corresponding protocol function graph exists [14]). In order to complete configura-
tion a proper mechanism is selected for each protocol function of the selected graph.

User requirements as well as the characteristics of mechanisms and network services are specified
by the means of a special notation, which is defined in [14] and [15]. In particular, a set of quality of
service (QoS) attributes such as throughput or delay jitter is defined, where each possible network
service is characterized by specifying its attribute values. By the influence of the communication
subsystem QoS characteristics of the basic service can degrade or improve when observed at the tar-
get service interface. For each mechanism certain functions are assumed that calculate the mecha-
nisms individual influence on QoS degradation or improvement, respectively (e.g., a mechanism
may guarantee an error rate of10-9 and reduce the throughput to 90%). The communication require-
ments are specified by thresholds or don‘t care values ‘*‘ for each QoS attribute. The importance of
an attribute with respect to the other attributes is defined by aweight function.

The user initiates configuration by specifying the required target service (step① in Figure 9).
Additionally the user instructs the configuration manager to either perform a local or a global config-
uration. In case of alocal configuration the local protocol manager is asked to configure a suitable
mechanism graph for the requested service (step② in Figure 9). The resulting graph (step⑤ in Fig-
ure 9) is forwarded to the configuration manager of the communicating peer (step⑥ in Figure 9).
Finally, both protocol managers start instantiation (step⑦ in Figure 9).

In the case ofglobal configurationthe configuration managers have to negotiate a common con-
figuration. Therefore the requirements specification is additionally passed to the remote manager
(step❶ in Figure 9) to also initiate configuration at the remote side (step❷-❹ in Figure 9). Both pro-
tocol managers return a set of possible configurations (step⑤ and❺ in Figure 9). Local results are
passed to the remote configuration manager (step⑥ in Figure 9), which instructs its protocol man-
ager to select one configuration (step❻ in Figure 9). The resulting mechanism graph is returned
(step❼ in Figure 9) and both protocol managers start instantiation (step⑦ in Figure 9). Actually, a
second version of global configuration is provided, because data transfer can start immediately with
a default protocol until global configuration is finished.

Before configuration the protocol manager checks if enough local resources are available (step③
and❸ in Figure 9). Afterwards it performs theconfigurationby selecting a protocol function graph
and suitable mechanisms for each protocol function contained (step④ and❹ in Figure 9). In detail
the following steps are conducted [12]:

1. reduction of the set of mechanisms:
First the set of possible mechanisms is reduced. Therefore the mechanisms are ordered depending
on the end-system load introduced. Those mechanisms which introduce an end-system load too
high, which are not available (e.g. mechanisms with missing hardware modules), or which violate
a threshold value, are eliminated.

2. selection of protocol function graphs:
The requested service is mapped onto a set of possible protocol function graphs, which contains
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one graph for each possible basic service. Only protocol function graphs are selected, with a net-
work service performance, that at least meets the user requirements.

3. selection of a suitable mechanism graph:
The resulting protocol function graphs are transformed into mechanism graphs and analysed one
after the other. During construction of a mechanism graph the influence of the selected mecha-
nisms on the QoS characteristics are incrementally calculated. If a threshold value is violated the
next protocol function graph is considered. If it turns out, that several mechanism graphs meet the
user requirements acompliance degree is calculated (by the means of weight functions that deter-
mine the importance of each QoS attribute) to select the best suited graph.

The resulting mechanism graph is returned to the configuration manager (step⑤ and❺ in Figure
9). Finally, the protocol manager is instructed to instantiate the mechanism graph (step⑦ in Figure
9). The configuration tool is implemented in ANSI C on a Sparc 10/20 with a UNIX environment
(SunOS 4.1.3).

user configurationprotocol network

network

interfacemanager manager

user A
(sender)

user B
(receiver)

pool
userconfiguration protocolnetwork

interface managermanager interfacepoolinterface

configuration
configuration

instantiation

instantiation

resource
test

resource
test

comparision

step①: user requests connection establishment
step❶: service requirements are passed to remote side
step②, ❷: protocol manager is instructed to configure protocol
step③, ❸: protocol manager informs about local resource situation
step④, ❹: protocol manager looks up suitable protocol graphs and mechanisms
step⑤, ❺: configuration manager is informed about (set of) mechanism graph
step⑥: (set of) mechanism graph is given to the remote side
step❻+❼: remote protocol manager selects a mechanism graph
step❼: resulting mechanism graph is returned to initiating side
step⑦: protocol manager is instructed to instantiate mechanism graph
step⑧: user is informed to start data transfer

steps①-⑦ are necessary for local configurations; for global configurations steps❶-❼ have
to be performed additionally

①

②
③

④

⑤
⑥

⑦
⑦

❶

❷ ❸

❹

❺

❻

❼❼

⑧ ⑧

Fig. 9:  order of events during configuration in Da CaPo
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In order to reduce the time for configuration Da CaPo also supports the use of predefined services
(static configuration). The corresponding mechanism graphs are stored in the resource pool and
instantiated when requested by the user.

3.3 x-Kernel

Thex-kernel is an experimental operating system kernel developed at the University of Arizona [8],
[11]. The architecture of thex-kernel enables the configuring of protocol-based subsystems embed-
ded in the kernel. Thus all subsystems to be included in the kernel have to be defined during kernel
configuration, i.e. dynamic configuration is not possible.

Contrary to F-CCS and Da CaPo, thex-kernel relies on a protocol-based architecture. Example
building blocks are IP, TCP, UDP, TFTP, RPC or NFS. All building blocks offer the same set of
operations. Figure 11 lists some examples. This provides a common interface, which simplifies the
task of composing the different protocols. Starting with the application, each protocol invokes the
uniform operations exported by the other protocols on which it depends. The predecessor-successor
relation is defined by a protocol dependency graph, where each path represents a possible protocol
stack (see Figure 10).

The protocol dependency graph is defined during configuration of the operating system kernel. The
graph, which is specified in a special graph description language, is read by a composition tool gen-
erating C code and instantiated at kernel boot time. Each resulting path in the graph can be inter-
preted as a preconfigured subsystem stored in a resource pool.

Fig. 10:  protocol-based architecture of thex-kernel
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Uniform pr otocol interface:

session = open(high_level_protocol, low_level_protocol, participants)
A high-level protocol calls a low-level protocol to open a session with the
given participant set.

push(session, msg)
Pass a message down to a session.

pop(session, msg)
Pass a message up to a session.

close(session)
Close a session.

Fig. 11:  example operations of the x-kernel components [11]



15

3.4 Other approaches

In the following, four variants of the previously discussed approaches are sketched.

AVOCA  [10] is a further stage of thex-kernel. The communication subsystem is still embedded in
the kernel, but AVOCA differs from the originalx-kernel in the granularity of the building blocks:
instead of composing complete protocols, finer-grained „micro protocols“ are employed, represent-
ing protocol mechanisms such as demultiplexing, segmentation, reassembly, routing or data encod-
ing. These micro protocols provide the same uniform protocol interface as the originalx-kernel
protocols (see Figure 11). A protocol graph in AVOCA lists all possible configurations of mecha-
nisms. In order to ensure, that each message is proccessed by the proper mechanisms, so called vir-
tual protocols are introduced, which guide the messages through the protocol graph depending on
their header information (Figure 12).

The System for Constructing Configurable High-Level Protocols is another stage of thex-ker-
nel [1]. It realizes a hybrid architecture, where configured protocols are composed with standardx-
kernel protocols. Therefore the configured protocols have to offer the same uniform protocol inter-
face as the x-kernel protocols. Mechanisms are, for instance, reliability, failure detection and
acknowledgement. Selected and/or user-written mechanisms are linked with library routines to form
a configured protocol, which is then integrated in thex-kernel protocol graph.

ADAPTIVE  (A Dynamically Assembled Protocol Transformation, Integration, and eValuation
Environment) has been developed by D.C. Schmidt and a team of researches at the University of
Irvine, California [18], [19]. The approach is very similar to F-CCS. It is based on the same protocol
architecture (see [20], [21]), but differs in the implementation of the mechanisms (modules), which
are written in C++ using object-oriented design and implementation techniques to reduce the effort
for developing flexible and extensible communication system software. Furthermore, the major goal
is not to support configuration at run-time, but to offer an environment for developing and experi-
menting with different protocol designs. ADAPTIVE offers a framework for experimenting with dif-
ferent mechanisms and process architectures of the protocol implementation. The platform-
dependent part of its protocol manager creates implementations for different platforms (not only for
Transputers as F-CCS does). The instantiated protocols are optimized for the different target plat-
forms depending on available interprocess communication mechanisms (shared memory, message
passing), memory and bus architectures, and network adapters.

DyCAT  (Dynamically Configurable & Adaptive Transport System) was developed at the University
of Aachen (Germany) and is another approach mainly influenced by F-CCS. The long goal is to real-
ize a function-based architecture with dynamic configuration, where the protocol functions and con-
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virtual protocol

micro protocol (mechanism)

ke
rn

el

Fig. 12: function-based protocol architecture of AVOCA
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figured protocols are modelled and simulated using Product Nets (see [5]). A first realization of
DyCAT, presented in [6] and [7], deals with protocol-based architectures, where preconfigured pro-
tocol stacks with specific QoS characteristics are provided (static configuration). Example protocol
stacks are TCP/ IP or XTP on top of Ethernet, ISDN, B-ISDN or FDDI.

4 Summary

Due to evolving network technologies as well as increasing demands of modern applications gen-
eral-purpose protocol stacks are not always adequate. To improve this situation flexible communica-
tion architectures have been developed with protocols and finer-grained protocol functions as
constituent building blocks. These architectures enable the automatic configuration of customized
communication subsystems with respect to specific communication requirements and offered net-
work services. Given a pool of predesigned building blocks a subsystem is generally configured by
selecting, composing, and instantiating a suitable subset. We discussed the major approaches to
automatic configuration of communication subsystems (the main characteristics are summarized in
Table 4). As could be seen the protocol functions identified by the function-based approaches are
basically the same, which indicates that the proposed pool of protocol-functions is well-founded.
Because of finer-grained building blocks, function-based architectures are more flexible and better
suited for dynamic configuration than protocol-based architectures. The approaches considered in
this report have in common that protocolimplementations are configured. As a major drawback, the
use of implementation languages prevents the resulting communication subsystem from being veri-
fied, which is further complicated by the configuration of protocols during connection establishment.
Also, the extension of the component pool appears to be difficult in these approaches, because the
knowledge about composition principles is not explicitly described. Here, the use of formal descrip-
tion techniques allowing an abstract, unique specification of protocol components and component
interactions seems to be mandatory.

Acknowledgements.Special thanks go to Prof. Dr. R. Gotzhein for his valuable comments and dis-
cussions on an early version of this report.

Architectural
Model

Service Requi-
rements Mo-
del

static/dyna-
mic Configu-
ration

Target
Platform

F-CCS function-based yes both Transputer

Table 4: comparision of configuration approaches

Da CaPo function-based yes both Sparc/SUN

x-kernel protocol-based no static -

AVOCA function-based no static -

SCCP hybrid no static Mach

ADAPTIVE function-based yes both several

DyCAT
protocol-based
(function-based)

yes (both) -
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