
A Clock-independent Model for Real-Time

F. Rößler, B. Geppert, R. Gotzhein

SFB 501 Report 18/96

A Clock-independent Model for Real-Time

F. Rößler, B. Geppert, R. Gotzhein

{roessler, geppert, gotzhein}@informatik.uni-kl.de

Report 18/96

Sonderforschungsbereich 501

Computer Networks Group

Computer Science Department

University of Kaiserslautern

P.O. Box 3049

67653 Kaiserslautern

Germany

1

A Clock-independent Model for Real-Time
F. Rößler, B. Geppert, R. Gotzhein

Computer Science Department, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

{roessler, geppert, gotzhein}@informatik.uni-kl.de

Abstract
A new approach for modelling time that does not rely on the concept of a clock is proposed. In order
to establish a notion of time, system behaviour is represented as a joint progression of multiple
threads of control, which satisfies a certain set of axioms. We show that the clock-independent time
model is related to the well-known concept of a global clock and argue that both approaches estab-
lish the same notion of time.

1 Intr oduction

Though there is no accepted definition of the termreal-time, there are at least four characteristics of
real-timesystems commonly agreed on:

• Timeliness: Real-time systems have to perform their functions on time, i.e. have to be predictable
in timing behaviour.

• Reactiveness: Real-time systems normally exhibit ongoing interaction with some environment,
often occurring in an asynchronous and unpredictable manner.

• Concurrency: Real-time systems often require concurrent processing to keep pace with the simul-
taneous activities of the embedding environment.

• Distribution: Real-time systems, as in the case of communication systems, are often inherently
distributed.

Throughout this report we exclusively focus on the timeliness aspect when talking about real-time.
Existing Formal Description Techniques (FDTs) such as Estelle [13] or SDL [19] provide powerful
modelling concepts to support distribution, concurrency, and reactiveness, the timeliness issue, how-
ever, is often neglected. Ideally one would wish for a possibility to track time utilization during sys-
tem specification and design. Beginning with the global timing requirements, the impact of design
decisions on timing behaviour should be understandable.

The broad variety of present techniques to cope with timeliness ranges from queueing [15] and
scheduling theory [14] to simulative techniques. The problem with these approaches lies in the con-
struction of a separate mathematical or computer-executable model. However, it should be possible
to argue within the same formalism also used for system specification. [4], [11], and [10] are exam-
ples of simulative and stochastic approaches already dealing with that problem. The advantage is
obvious, because then we have a better chance to be sure that no assumptions about the considered
system are ignored or smuggled into the argumentation. We take that risk whenever an extra model-
ling of timing behaviour is necessary.

Though FDTs are sometimes extended by the means of tools and methodologies to alleviate the
timeliness problem (e.g., [3], [21], and [20]) this is not achieved in a strictly formal but a pragmatical
way.

As a prerequisite, a sufficient time semantics is needed for any formal treatment of real-time sys-
tems. Therefore several time extensions of existing models of computation (such as finite automata)

2

were proposed in the literature. In [2], a real-time system is modelled as a tuple S = (S, P,µ , T) with

a set S of system states, a set P of observables, a labelling functionµ from S to 2P, and a set T of
timed state sequences. Each possible behaviour of the system is represented by a timed state
sequenceτ∈T, which associates system states with time instants. Timed automata [1] generalize
finite state machines over infinite strings and are additionally restricted by timing constraints. Actu-
ally a timed automaton operates with a finite set of real valued clocks that proceed jointly as time
elapses. A state transition may reset some of the clocks. The point is that each state puts certain con-
straints on the clock values and the automaton is only allowed to reside in a particular state as long as
these constraints are met. As a result, valid state transition sequences are associated with time inter-
val sequences, which determine the allowed duration of stay for individual states. Another definition
of a timed automaton is given in [17]. There a timed automaton generalizes the formalism of an
I/O automaton [18] by restricting the times at which state transitions may occur with lower-bound
and upper-bound requirements. Informally speaking, the requirements assert that a state transition
cannot be taken unless it has been continuously enabled for a number of time units equal to the lower
bound and must have been taken before the upper bound expires. Consequently, state transition
sequences are associated with sequences of time instants, determining when transitions are taken. In
[12] the timed communicating state machine model equally applies these lower-bound and upper-
bound requirements. Other approaches, based, for instance, on petri nets, process algebras, or tempo-
ral logic, are also discussed in the literature [5].

There is one point all these approaches have in common: they describe the system state as a func-
tion of time and therefore employ the concept of a clock. We call this kind of time modellingclock-
dependent.This report investigates the question whether clock-dependence is the only possibility for
time modelling, and actually proposes a time model, that does not rely on a clock.

This report is organized as follows. After a general motivation, Section 2 introduces a clock-inde-
pendent model of time in three steps. As a starting point, a computational model is presented, which
reflects the minimum set of requirements necessary to establish a notion of time. Afterwards we
introduceimplicit coupling as a general means for modelling time. Finally, we define a set of axi-
oms, which specialize implicit coupling to a sound time model. Section 3 relates the clock-independ-
ent time model to the well-know concept of a global clock, and we argue that both approaches
establish the same notion of time.

2 Clock-independent modelling of time

The timing concepts referenced in Section 1 describe the system state as a function of time. In case
of concurrent systems with multiple threads of control, it is generally possible to eliminate the time
variable as the following analogy from mechanics illustrates. Imagine two physical processes, a pen-

dulum and the free fall of a mass (Figure 1). From physics, we may derive formulas to describe their

x

y

Fig. 1: two physical processes

3

state variables (x-, y-coordinates and velocity) as functions of time. This is analogous to the timing
concepts referenced in Section 1. Alternatively, we may express the state (set of state variables) of
the pendulum as a function of the state of the falling mass and vice versa, if we only know the initial
or another arbitrary pair of coinciding states of the two physical processes. Though this transforma-
tion eliminates the time variable, the system description (the set of functions mentioned above) itself
is certainly not timeless. The description only makes no use of an auxiliary measuring process, for
instance, an oscillating crystal, which plays the role of a clock. While the clock-dependent descrip-
tion relates the progression of an imaginary clock with the progression of each physical process (e.g.,
after t1 ticks of the clock, the falling mass will reach point (x1, y1)), the clock-independent descrip-
tion relates the progression of the two physical processes directly (e.g., when the pendulum reaches
(x1, y1) the first time, this will coincide with the falling mass located at (x2, y2)).

In the following, we apply this analogy to yield a new semantic model for the specification of
concurrent real-time systems.

2.1 Model of computation and implicit coupling

This report does not propose a time extension of an existing model of computation (e.g., communi-
cating automata or petri nets). Rather, we investigate clock-independent modelling of time in gen-
eral. Therefore we employ a very simple model of computation, which reflects the minimum set of
requirements necessary to establish a notion of time. Note, that this model is certainly not suited or
intended forfunctional aspects of concurrent systems.

Essentially the computational model provides an abstraction (calledexecution in this report) for
the multiple threads of control executed by the processes of a concurrent system. Strictly speaking,
executions only represent sections between possible waiting points of a thread of control, where the
thread of control may be delayed because of causal dependencies on external events such as message
arrival. Formally, anexecution is defined as a totally ordered and dense set (continuum) ofstates.
Apart from being uniquely named, states are not further characterized. Note, that in this context exe-
cutions are threads of control with not onlydiscrete observable states, as normally considered.

Though irrelevant for the specification of the functional behaviour of computing systems1, we need
this concept for the foundation of asynchronous processing and dense time. It is worth mentioning,
that the total order of an execution models the causal dependency relation between states.

A concurrent system comprises multiple processes, where each possible run of a process yields an
element of a set of possible threads of control. Therefore we model a concurrent system as a set of
executions, representing those sections of the possible threads of control, which are not delayed.

Definition 2.1 A concurrent system C is given by a set of executions Ei, where an execution Ei is
defined by a totally ordered and dense set of states with a start state sinit = min{Ei}. Additionally
states are unique, i.e. the following holds:∀ i, j, t, u. i ≠ j ∧ t ∈ Ei ∧ u ∈ Ej ⇒ t ≠ u .

For later usage we introduce some additional notations. We assume a functione, which yields the
corresponding execution for any state, i.e.e(t) = Ei iff t ∈ Ei (as states are uniquee is well-defined).
Additionally <e(s) denotes the total order of the executione(s)∈ C.

As already mentioned the definition of a concurrent system (our model of computation) is quite
simple, because we stripped off all the details of a real system, that are not necessary to establish a
notion of time. The concurrent mechanical system of the pendulum and the falling mass, for
instance, may be modelled by two executions representing the two trajectories through the state
space of x- and y-coordinates. According to our analogy, a notion of time can be established if we
introduce functions from the states of one execution to the states of the other, and vice versa. We call

1. adequate observable parts of the universe abstract from physical continuity

4

two executions with those functions definedimplicitly coupled and generalize implicit coupling to
arbitrary concurrent systems (as defined in Definition 2.1).

Definition 2.2 An implicitly coupled concurrent system is given by a pair (C, M), where C denotes
a concurrent system according to Definition 2.1, and M denotes a set of coupling functions
ms, t : e(s) → e(t), ∃ Ei, Ej ∈ C . s∈ Ei ∧ t ∈ Ej ∧ i ≠ j.

The reader may wonder whether the functionsms, t should better be indexed by executions instead of
states. We employ the latter version, because we need to identify more than one function for each
pair (Ei , Ej) of executions in C. As Definition 2.2 even allows an arbitrary set of functions for each
pair of executions, implicit coupling of a concurrent system is not sufficient for establishing a sound
notion of time. In addition, the setM of functionsms, t has to be constrained (Section 2.2).

2.2 Axiomatic description of a real-time system

Roughly speaking, implicit coupling must enforce ajoint progression of a set of executions as illus-
trated in Figure 2, where executions are vertical lines with the minimum state located at the top.

Nonterminating executions (i.e. executions where no maximum state exists) are indicated by an
arrowhead. Therefore Figure 2 shows one terminating and two nonterminating executions on the left
side. In the middle the same executions are shown together with some selected argument-value pairs
of certain coupling functions. These coupling functions make the three executions tojointly progress
in the following way:

• The executions start together.

• Eventually E1, E2, and E3 will jointly reach the states s1, t1, and u1, respectively.

• Afterwards E1, E2, and E3 will jointly reach s2, t2, and u2 , and so on.

• Finally E3 will finish at u4 , just when E1 and E2 coincide with s4 and t4 .

• It is not shown how E1 and E2 will continue.

E E1 2

3

Fig. 2: joint progression of three executions

concurrent executions implicitly coupled executions
which establish a notion of time

E1 E2

E 3E

s3

s2

s4

t1

t2

t3

t4

u4

u1u2s1 u3

implicitly coupled executions
which fail to establish a
notion of time

E1 E2

3E

s3

s2

s4

t1

t2

t3

t4

u4

u1u2s1 u3

s5

5

This kind of joint progression is suitable to establish a notion of time, while the behaviour shown on
the right side of Figure 2 is counterintuitive: on the one hand does the coincidence of the statess2, t3,
and u3 in conjunction with the coincidence of the statess3, t2, and u2 violate causal dependency. On
the other hand does the coincidence of the statess4, t4, u4, and s5 imply that E1 proceeds without time
consumption from s5 to s4. In the following, we present a necessary and sufficient set of axioms con-
straining the possible sets of coupling functions of an implicitly coupled concurrent system, thus
leading to a sound notion of time.Note, that we use the following conventions: any variables that
appear with no quantifiers are assumed to be universal variables with global scope, and undefined
predicates evaluate to false.

Definition 2.3 A real-time system T is an implicitly coupled concurrent system (C, M), where M
meets the following axioms:

1.1: ms, t∈ M ⇒ ∃ u. (ms, t(u) = min{e(t)} ∨ ms, t(min{e(s)}) = u)

1.2: ms, t∈ M ∧ (max{e(s)}↓ 1 ∨ max{e(t)}↓) ⇒ ∃ u. (ms, t(u) = max{e(t)}∨ ms, t(max{e(s)}) = u)

1.3: u <e(s) v <e(s) w ∧ ms, t(u)↓ 2 ∧ ms, t(w)↓ ⇒ ms, t(v)↓

1.4: ¬ max{e(s)}↓ ∧ ¬ max{e(t)}↓ ∧ ∃ u. (ms, t(u)↓ ∧ u <e(s) v) ⇒ ms, t(v)↓

2.1: ms, t∈ M ⇒ ms, t(s) = t

2.2: e(s)≠ e(t) ⇒ ms, t∈ M

2.3: ms, t(u) = v ⇒ ms, t = mu, v

3: u <e(s) v ∧ ms, t(u)↓ ∧ ms, t(v)↓ ⇒ ms, t(u) <e(t) ms, t(v)

4: ms, t(u) = v ⇒ mt, s(v) = u

5: ms, t(u) = v ∧ mt, r(v) = w ⇒ ms, r(u) = w

Note, that coupling functions between executions neither need to be total nor surjective, as Figure 3
illustrates. But Axioms 1.1 - 1.4 assert certain other properties concerning the domain and the range

of coupling functions. In particular, at least one of the two start states has to be mapped (Axiom 1.1).

1. Means: fore(s) a maximum state is defined. In other words, the executione(s) terminates.
2. Means:ms,t (u) is defined.

Fig. 3: legal coupling functions

E1

E2

E3

E4
E5

E6

not mapped

6

The same applies to the final states, if existent (Axiom 1.2). Because of Axiom 1.3, domains have to
be dense, where Axiom 1.4 asserts that domains are unbounded in the case of nonterminating execu-
tions. Together with Axioms 3 and 4, domains and ranges have to be left-closed intervals in the case
of nonterminating executions and closed intervals otherwise. The end-points of an interval are given
by the argument-value pairs containing the mapped start and final states (see Figure 3 for the case of
terminating executions).

Axioms 2.1 - 2.2 allow an infinite number of different coupling functions between any pair of
executionsEi andEj , where each pair of states must be mapped by at least one of these coupling
functions. Each pair of states will even be mapped by at most one coupling function, as Axiom 2.3
identifies two functions, if they share at least one mapped pair of states. If the start states do not coin-
cide (i.e. they are not mapped) for a certain coupling function, we call the corresponding executions
to be out of phasefor that coupling function. As a consequence, each coupling function between the
same pair of executions represents another phase displacement in the joint progression of the two
executions. Different phase displacements for the three executions of Figure 2 are shown in Figure 4.

It is important that implicit coupling preserves causal dependency, which is guaranteed by
Axiom 3. Additionally this axiom implies injective functions such that the inverse function exists,
where Axiom 4 even states that the inverse coupling function must be contained inM. That is, func-
tions between the same executions (no matter, which execution is domain or range) are equal (mod-
ulo inversion), if they share at least one coincident pair of states. Therefore coincident pairs may be
illustrated by bidirectional arrows in Figure 3.

This kind of equivalence is generalized for the case of more than two executions by the Transitiv-
ity-axiom 5. Figure 5 gives an example. Part (a) shows a selection of mapped states for a sample set
of executions. The domain and range end-points are mapped by solid lines. The dashed lines are
additional coincident pairs, consistent with the above mentioned axioms. The application of the tran-
sitivity-axiom demands the existence of other mapped states partly shown in Figure 5(b). As a result
we have the following joint progression of the executionsE1 - E4:

• E3 starts first.

• WhenE3 reaches u1, E2 begins processing witht1.

• E2 andE3 jointly reach t2 andu2 respectively, whenE1 starts work withs1.

• Similarly E4 is set in motion at statev1, just whenE1, E2 andE3 coincide withs2, t3, andu3,
respectively, and so on.

Fig. 4: different phase displacements between the executions of Figure 2

E1
3E

E2
E1

3E
E2

7

The point is, that given one coincident tuple of states (e.g. (s2, t3, u3, v1)) together with the validity
of Axiom 5,M enforces a unique joint progression of the executionsE1 - E4.

As mentioned above, for every pair of executionsM contains several functions. However, those
functions only differ in phase displacement, while the joint progression of the executions was care-
fully constrained to establish a sound notion of time. The joint progression is dependent, for
instance, on the chosen implementation or hardware platform. Any change of these conditions
results in a new set of coupling functions.

With a given set of coupling functions any possible behaviour of the real-time system is given by
a joint progression of the executions with a fixed phase displacement.

3 Relation to the concept of a global clock

In the following, we construct a global clock from a real-time system (as defined in Definition 2.3).
Therefore we introduce an operatorseq(E1, E2), which yields a new execution by connectingE1 and
E2 in series. The point is, that iterative application of this operator yields a cyclic execution, that can
be used for „time measuring“.

Definition 3.1 Let E1 and E2 denote executions, where E1 has a final state. The sequence operator
seq(E1, E2) yields a new execution E3, where:

• E3 = E1
‘ ⁄ { max{E1

‘} } ∪ E2
‘ 1

• ∀s‘ , t‘ ∈ Ε3 . s‘ <E3 t‘ ⇔ (s ∈ E1 ⁄ { max{E1} } ∧ t ∈ E2) ∨ s <E1 t ∨ s <E2 t

According to Definition 3.1 the states ofE3 are given by joining the states ofE1, E2 , and identifying

max{E1} with min{E2}. Furthermore the total order<E3 preserves the orders<E1, <E2 ands‘ <E3 t‘

1. In order to preserve uniqueness of states, naming conflicts must be resolved. Throughout this report we will use primed
identifiers for this purpose. Therefore Ei

‘ denotes the set of primed states in Ei .

Fig. 5: illustration of Axiom 5

s

t

v1

1

1

s2

s3

s4

s5

t2

t3

t4

t5

t6

u1

u2
u3

u4

u5

v2

E1

E2

E3

E4
s1

s2

s3

s4

E1

u2
u3

u4

u5

E3

s2

s3

E1

v1

v2

E4

(a) (b)

8

holds for all statess‘ , t‘ corresponding toE1 ⁄ { max{E1} } and E2, respectively. In our computational
model a state is just a conceptual entity, and each pair of executions may be sequenced. When apply-
ing the model, the states are more specifically characterized, and only executionsEi and Ej , where
the final state ofEi and the start state ofEj are „semantically identical“, are suited to be sequenced.

With Definition 3.1 we may extend a given real-time systemT= (C, M) by adding sequences of
executions. Thereby the coupling functions concerning a sequenced executionE3 = seq(E1, E2) are
already determined by the coupling functions betweenE1 and E2, respectively and the other execu-
tions inC.

Lemma 3.2 Given a real-time systemT = (C, M) and an execution E3= seq(E1, E2), where
E1, E2 ∈ C, it follows that T‘ = (C∪ {E3}, M ∪ Y) is a real-time system iff the following holds:

y ∈ Y iff

• y implicitly couplesE3 with some execution in C
and

• if themapped interval of E3 consists of states all corresponding to either E1 or E2, y is iden-
tical (modulo renaming) with a coupling functionmr,s of the execution, which is exclusively
contained in the mapped interval of E3

and
• if the mapped interval of E3 consists of states corresponding to bothE1 and E2, y is the

union (modulo renaming) of a coupling functionmt,u of E1 and a coupling functionmv,w of
E2 , wheremt,u(max{E1}) equalsmv,w(min{E2}) .

Figure 6 gives an example for a derived coupling function between an executionEi and a sequenced
executionE3 = seq(E1, E2). We illustrate the two cases, where the mapped interval ofE3 only con-
sists of states corresponding toE1 (Figure 6(a)) and where the mapped interval ofE3 contains states
corresponding to bothE1 andE2 (Figure 6(b)).

With Lemma 3.2 we can incorporate a global clock into a given real-time system T = (C, M). As
a starting point, we select an arbitrary execution inC as a reference which we calltick. Furthermore,
we inductively define an executionclockn for every natural numbern, which we add toT (according
to Lemma 3.2 we yield a new real-time system).

Definition 3.3 Given an execution tick of a real-time system, clockn (n ∈ N) is defined as follows:

Actually, an executionclockn of the real-time system plays the role of a global clock with a lifetime
of n ticks. For „time measuring“ we determine a certaintime functiontimeEi(n): N → Ei for each exe-
cutionEi ∈C . A time functiontimeEi(n) yields the reached state ofEi „after n ticks“ of someclockm
(m ≥ n), assumedEi and clockm start together. Figure 7(a) shows the details for determining
timeE1(1) - timeE1(6), timeE2(1) - timeE2(5), and timeE3(1) - timeE3(4) for the concurrent system of
Figure 2. In order to determinetimeE1(i) andtimeE2(i) for i > 6 someclockm with m > 6 is needed.

The point is, that the time functionstimeEi even are aclock-dependent substitute for the clock-
independent coupling functionsM of a real-time system (at least to some extent). That is, if we are
only interested in argument-value pairs and phase displacements lying apart an integer multiple of a
tick, we have the full information at hand. For the case of the concurrent system of Figure 2 coupling
functions can be derived from time functions as illustrated in Figure 7(b). It follows, that coupling

{clockn =
tick, n = 1
seq(tick, clockn-1), n > 1

9

functions must only map pairs of states that lie an equal number ofticks apart. For instance, in

Figure7 timeE1(3) andtimeE2(1) as well astimeE1(6) andtimeE2(4) are mapped, because the number
of ticks betweentimeE1(3) and timeE1(6) equals the number ofticks betweentimeE2(1) and
timeE2(4). For a valid coupling function this must hold for each pair of argument-value pairs.

As a result we conclude that implicit coupling and the concept of a global clock establish the
same notion of time. Note, that we only constructed a discrete clock. However, one can extend this
concept to a continuous clock, where a refinement of atick is achieved by „iterative bisection“. As a
result we get analogous functions totimeEi , however, with the real numbers as domain. Additionally

Fig. 6: implicit coupling betweenEi and a sequenced executionE3 = seq(E1, E2)

s1
s2

s3

t2

t3

t4

E1

E2

E3

(a) (b)

Ei

= max{E1}

t1= min{E2 }

s1
s2

t1s3 =:

s1
s2

s3

E1

E2

E3
Ei

= max{E1}

t1= min{E2 }

s1
s2

t1s3 =:

t2

t3

t4

mr, s mt, u

mv,w

� � � �

� � � � � �

� � 	
 � �
 � �
� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �
� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �� � 	
 � �
 � �� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �� � 	
 � �
 � �� � 	
 � �
 � �

E1
3E

E2
E1

3E

E2

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �� � 	
 � �
 � �� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �

� � 	
 � �
 � �
� � 	
 � �
 � �

� � 	
 � �
 � �

Fig. 7: incorporation of a discrete clock for the executions of Figure 2

(a) (b)

10

the continuous time functions build an equivalent substitution for the coupling functionsM of a real-
time system.

4 Summary

We proposed implicit coupling as a general means to establish a notion of time. Thereby a system is
viewed as a set of executions with the ability to jointly progress, following certain laws. These laws
are represented by a set of coupling functions between each pair of executions. It is a crucial point,
that those coupling functions only differ in phase displacement and keep consistent otherwise. Any
change in mutual progression speed, possibly caused by varying hardware platforms or faster algo-
rithms, has to be modelled with a different set of mappings. We have shown that the clock-independ-
ent time model is related to the well-known concept of a global clock, and argued that both
approaches establish the same notion of time.

The suggested time model is intended to be applied to the development of real-time communica-
tion systems with formal methods. Though there are enormous research activities in the field of
Quality of Service (QoS) architectures, QoS provision, QoS control, and QoS management (e.g., [6],
[9], [8], [7], [16]) description techniques lack an adequate support to employ these concepts. The
proposed time model has to demonstrate its value when integrating these concepts.

References
[1] R. Alur and D. Dill,Automata for Modeling Real-Time Systems, LNCS 443, Springer, 1990

[2] R. Alur and T.A. Henzinger, Logics and Models of Real Time: A Survey, LNCS 600,
Springer, 1992

[3] R. Bræk and Ø.Haugen,Engineering Real Time Systems, Prentice Hall, 1993

[4] G. v. Bochmann and J. Vaucher, Adding Performance Aspects to Specification Languages,
International Conference on Protocol Specification, Testing, and Verification, Atlantic City,
1988

[5] G. Bucci, M. Campanai, and P. Nesi,Tools for Specifying Real-Time Systems, Real-Time
Systems, 8: 117--172, 1995

[6] A. Campbell, C. Aurrecoechea, and L. Hauw, A Review of QoS Architectures, Proceedings
of the 4th International IFIP Workshop on Quality of Service, Paris, 1996

[7] David D. Clark et al.,Supporting Real-Time Applications in an Integrated Services Packet
Network: Ar chitecture and Mechanism, Proceedings of ACM SIGCOMM‘92, Baltimore,
Maryland, pp 14--26, August 1992

[8] Luca Delgrossi, Ralf Guido Herrtwich, Carsten Vogt, and Lars C. Wolf, Reservation Proto-
cols for Internetworks: A Comparison of ST-II and RSVP (Extended Abstract), 4th Inter-
national Workshop on Network and Operating System Support for Digital Audio and Video,
United Kingdom, 1993

[9] Domenico Ferrari,Client Requirements for Real-Time Communication Services, IEEE
Communications Magazine, 28(11): 65--72, 1990

[10] N. Goetz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach,Stochastic Process
Algebras - Constructive Specification Techniques Integrating Functional, Performance

11

and Dependability Aspects, Chapter 1 of: Baccelli and Mitrani (ed.), Quantitative Modelling
in Parallel Systems, Springer, 1995

[11] M. Hendaz, S. Budkowski,A New Approach for Protocols Performance Evaluation Using
Annotated Estelle Specifications, Proceedings of the 8th International Conference on Formal
Description Techniques, Canada, 1995

[12] C.-M. Huang and S.-W. Lee,Timed Protocol Verification for Estelle-Specified Protocols,
Computer Communication Review, 25(3), 1995

[13] ISO, Estelle: A Formal Description Technique Based on an Extended State Transition
Model, International Standard ISO/IS 9074, 1989

[14] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M. G. Harbour, A Practitioner‘s Handbook for
Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems, Kluwer
Academic Publishers, 1993

[15] L. Kleinrock,Queueing Systems; Volume 2: Computer Applications, Wiley, 1976

[16] E.W. Knightly and P. Rossaro,Impr oving QoS through Traffic Smoothing, Proceedings of
the 4th International IFIP Workshop on Quality of Service, Paris, 1996

[17] V. Luchangco, E. Soeylemez, S. Garland, and N. Lynch, Verifying T iming Properties of
Concurrent Algorithms, Proceedings of the 7th International Conference on Formal Descrip-
tion Techniques, Berne, 1994

[18] N. Lynch and M. Tuttle, An intr oduction to input/output automata, CWI-Quarterly, 2(3),
1989

[19] A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W. Smith,Systems Engineer-
ing Using SDL-92, North-Holland, 1994

[20] B. Selic, G. Gullekson, and P.T. Ward,Real-Time Object-Oriented Modeling, Wiley, 1994

[21] SDT 3.0 Reference Manual & User‘s Guide, TeleLogic, 1995

