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Abstract

This thesis deals with risk measures based on utility functions and time consistency of
dynamic risk measures. It is therefore aimed at readers interested in both, the theory of
static and dynamic �nancial risk measures in the sense of Artzner, Delbaen, Eber and
Heath [7], [8] and the theory of preferences in the tradition of von Neumann and Morgen-
stern [134].

A main contribution of this thesis is the introduction of optimal expected utility (OEU)
risk measures as a new class of utility-based risk measures. We introduce OEU, investigate
its main properties, and its applicability to risk measurement and put it in perspective to
alternative risk measures and notions of certainty equivalents. To the best of our knowledge,
OEU is the only existing utility-based risk measure that is (non-trivial and) coherent if
the utility function u has constant relative risk aversion. We present several di�erent risk
measures that can be derived with special choices of u and illustrate that OEU reacts in
a more sensitive way to slight changes of the probability of a �nancial loss than value at
risk (V@R) and average value at risk.

Further, we propose implied risk aversion as a coherent rating methodology for retail
structured products (RSPs). Implied risk aversion is based on optimal expected utility
risk measures and, in contrast to standard V@R-based ratings, takes into account both
the upside potential and the downside risks of such products. In addition, implied risk
aversion is easily interpreted in terms of an individual investor's risk aversion: A product
is attractive (unattractive) for an investor if its implied risk aversion is higher (lower) than
his individual risk aversion. We illustrate this approach in a case study with more than
15,000 warrants on DAX® and �nd that implied risk aversion is able to identify favorable
products; in particular, implied risk aversion is not necessarily increasing with respect to
the strikes of call warrants.

Another main focus of this thesis is on consistency of dynamic risk measures. To this
end, we study risk measures on the space of distributions, discuss concavity on the level of
distributions and slightly generalize Weber's [137] �ndings on the relation of time consistent
dynamic risk measures to static risk measures to the case of dynamic risk measures with
time-dependent parameters. Finally, this thesis investigates how recursively composed
dynamic risk measures in discrete time, which are time consistent by construction, can be
related to corresponding dynamic risk measures in continuous time. We present di�erent
approaches to establish this link and outline the theoretical basis and the practical bene�ts
of this relation. The thesis concludes with a numerical implementation of this theory.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit nutzenbasierten Risikomaÿen und mit Zeitkonsistenz
dynamischer Risikomaÿe. Folglich richtet sie sich sowohl an Leser mit Interesse an der
Theorie statischer und dynamischer Risikomaÿe im Sinne von Artzner, Delbaen, Eber und
Heath [7], [8] und an der Nutzentheorie nach von Neumann und Morgenstern [134].

Ein wesentlicher Beitrag dieser Arbeit ist die Einführung der optimalen Erwartungsnut-

zen-Risikomaÿe (OEU) als eine neue Klasse nutzenbasierter Risikomaÿe. Wir führen OEU
ein, ermitteln ihre wichtigsten Eigenschaften und ihre Eignung für die Risikobewertung
und vergleichen sie mit anderen Risikomaÿen und Sicherheitsäquivalenten. Nach unserer
Kenntnis sind OEU die einzig existierenden nutzenbasierten Risikomaÿe für Nutzenfunk-
tionen u mit konstanter relativer Risikoaversion, die (nicht trivial und) koheränt sind. Wir
präsentieren verschiedene Risikomaÿe, die sich für eine geeignete Wahl von u ergeben und
veranschaulichen, dass OEU sensibler auf geringfügige Änderungen der Wahrscheinlichkeit
für �nanziellen Verlust reagieren als Value at Risk (V@R) und Average Value at Risk.

Auÿerdem schlagen wir das Konzept der implizierten Risikoaversion als eine koheränte
Bewertungsmethode für Zerti�kate vor. Die implizierte Risikoaversion basiert auf OEU
und berücksichtigt - im Gegensatz zu den V@R-basierten Bewertungen - sowohl die Er-
tragschancen als auch die Verlustrisiken dieser Produkte. Zudem lässt sich implizierte
Risikoaversion gut hinsichtlich der Risikoaversion eines Privatanlegers interpretieren: Ein
Produkt erscheint einem Anleger (un)attraktiv, wenn dessen implizierte Risikoaversion
(kleiner) gröÿer ist als seine persönliche Risikoaversion. Wir veranschaulichen dies mit einer
Fallstudie von mehr als 15,000 DAX®-Optionsscheinen und zeigen auf, dass implizierte
Risikoaversion vorteilhafte Produkte bestimmen kann. Insbesondere steigt die implizierte
Risikoaversion nicht generell in Bezug auf den Ausübungspreis von Call-Optionsscheinen.

Ein weiterer Schwerpunkt der Arbeit liegt auf der Konsistenz von dynamischen Risiko-
maÿen. Hierzu untersuchen wir Risikomaÿe auf dem Raum der Wahrscheinlichkeitsvertei-
lungen, erörtern Konkavität hinsichtlich Verteilungen und verallgemeinern die Erkenntnisse
von Weber [137] über den Zusammenhang von zeitkonsistenten dynamischen Risikomaÿen
und statischen Risikomaÿen geringfügig für den Fall von dynamischen Risikomaÿen mit
zeitabhängigen Parametern. Abschlieÿend untersuchen wir, wie rekursiv zusammenge-
setzte dynamische Risikomaÿe in diskreter Zeit, die per Konstruktion zeitkonsistent sind,
mit entsprechenden dynamischen Risikomaÿen in stetiger Zeit in Verbindung gebracht wer-
den können. Wir stellen verschiedene Ansätze vor, wie eine solche Verbindung hergestellt
werden kann, und stellen das theoretische Fundament und den praktischen Nutzen dieses
Zusammenhangs dar. Die Arbeit endet mit einer numerischen Umsetzung dieser Theorie.
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Preliminaries

Notation

Throughout this thesis we make use of the following notations:

(i) We say that a property holds strictly if it is valid without exception. For example, a
real number x is positive if x ≥ 0 and strictly positive if x > 0.

(ii) Properties involving random variables on a probability space (Ω,F ,P ) are always to
be understood in a P -almost sure (a.s.) sense without explicitly saying so. Saying
that a random variable X is, e.g., positive means that X ≥ 0 P -a.s.

(iii) 1A denotes the indicator function of A, i.e.,

1A(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ A,
0, x ∉ A

.

(iv) We set R+ ∶= (0,∞).

(v) We denote the minimum of two real numbers by x ∧ y ∶= min{x,y}.

For the sake of readability, the masculine form is used throughout this thesis. Wherever
appropriate, use of the feminine form is, of course, implicit.

xiii



CHAPTER 1

Introduction

Financial mathematics aims at modeling the �nancial market and �nancial products in
order to make theoretical calculations possible. This allows, among other things, assessing
�nancial risks and �nding optimal investment under a given theoretical framework. In this
thesis we address questions assigned to utility-based approaches to calculating �nancial
risks and to risk measurement in a dynamic time setting.

Measuring �nancial risks

Financial risk management includes a large number of di�erent types of risks which can
be classi�ed in the following categories:

� Market risk : Risk that the value of an investment will decrease due to unexpected
changes in underlying components such as prices or rates, or risk of changing volatility
of market prices

� Credit risk : Risk of a debtor of not receiving required repayments on outstanding
loans or bonds due to a default of the borrower, or risk of losing market value due to
changes in the credit quality of counterparties

� Interest rate risk : Risk for bond owners from �uctuating interest rates depending on
the sensitivity of the respective bond(s) to interest rate changes

� Liquidity risk : Risk of an unexpected rise in the costs of adjusting investments
(widened bid-ask spreads), or risk of losing access to re�nancing at moments of
�nancial distress

� Model risk : Risk of using a misspeci�ed model for evaluating risk

� Other types of risk such as operational risk, systemic risk or legal risk.

1



CHAPTER 1. INTRODUCTION

In order to identify �nancial risks, that is associating to each element of a set of identi-
�ed risky elements a real number, we must �rst agree on a theoretical framework for the
nature and form of appearance of risk. In most parts of this thesis we consider random
variables to re�ect �nancial risks, but, under a suitable condition of law-invariance, we
also represent risk by probability distributions. Either way, summarizing (risk-)relevant
information about a �nancial position in a single number is a key task for investors, reg-
ulators and �nancial institutions and a necessary prerequisite to take �nancial decisions
under uncertainty; see Delbaen [45].

The essential idea of risk measures is to quantify risk as a capital requirement. More
precisely, risk measures have been developed to determine minimum capital reserves that
have to be deposited by �nancial institutions in order to ensure their �nancial stability.
This is clearly a very delicate matter and has to be done as accurately as possible. Incor-
rect measurements of risk can either lead to opportunity costs if a �nancial institution puts
aside too much safety capital or to threat scenarios if too little safety capital is deposited
for potential risks arising. Therefore the theory of �nancial risk measures is of particular
interest to both, �nancial regulatory authorities that try to maintain the stability of the �-
nancial system, and to �nancial institutions that are interested in having a well functioning
risk controlling system.

In the seminal work of Markowitz [104], the variance of a random variable was proposed
as a measure of its risk. Other approaches to evaluate �nancial risks include the concepts
of expected losses, certainty equivalents, deviation measures, see Rockafellar, Uryasev and
Zabarankin [119], and quantile-based measures, see Dowd and Blake [53]. In this thesis,
however, we exclusively focus on the axiomatic analysis of risk through risk measures as
initiated by Artzner, Delbaen, Eber and Heath [7], [8].

Risk measures on the space of random variables

The most common assumption on risk measures in the literature is to model �nancial
positions as random variables X which have an uncertain outcome. In the fundamental
papers of Artzner, Delbaen, Eber and Heath [7], [8], which initiated an axiomatic analysis
of risk assessment, some desirable properties of risk measures were formulated: A riskier
position requires more reserve capital; a cash reserve reduces the capital required by its
present value; a merger does not imply extra risk; and position size does not in�uence risk.

The evaluation of the riskiness of a �nancial position from today's point of view for
a �xed time horizon is called static risk measurement. Think of, for example, measuring
the risk of a stock position in 10 days. In the light of the usually long-term business en-
vironments where such risk measures are often applied, this methodology raises questions:
How can we consider future incoming information on the market environment and if we
update risks, how are risks measured at di�erent points in time interrelated? Dealing
with available future information on considered �nancial positions and the consideration
of meaningful interconnections between risks measured in di�erent time periods eventually
opens up the theory of dynamic risk measurement.

In Chapter 2 we give an overview of the theory of risk measures on the space of ran-
dom variables in a static and a dynamic framework and review standard examples of risk
measures including value at risk, average value at risk and the entropic risk measure.

2



A common view on risk measures is that they represent the minimal cash amount
that has to be added to X to make it acceptable. Hence, the economic interpretation
of acceptability plays a crucial role in this context. Due to the fact that often �nancial
products bear a higher risk the larger the potential gains of the product, the de�nition
of acceptable �nancial positions can be the result of complex and controversial discussion.
Therefore we decided to consider economic preference theory and eventually come up with
a new class of risk measures that can include an investor's risk attitude.

Risk measures based on utility functions

The economic theory of preferences comprises the concept of utility functions u which
formalize the attitude towards risk of an exemplary investor in the �nancial market. For
instance, an investor is risk averse in the sense that he dislikes all zero-mean risk at all
levels of wealth if and only if his utility function is concave; see, among others, Gollier [81,
Proposition 6]. Risk aversion can then be quanti�ed by the certainty equivalent, de�ned
as Cu[X] ∶= u−1 (E [u(X)]), which can be understood as the sure amount that makes an
investor indi�erent between investing in X and receiving Cu[X].

Risk measures based on utility functions combine the theory of risk measures and
classical topics of economic preference theory. For example, Föllmer and Schied [69,
Example 4.13] and Müller [108] consider the negative of a classical certainty equivalent,
−u−1 (E [u (X)]), as a risk measure. Other constructions of risk measures based on utility
functions have been introduced by Ben-Tal and Teboulle [18], [19], Föllmer and Schied [67]
and Krokhmal [97], among others. We give a more detailed introduction into this subject
in Chapter 3.

In Chapter 4 we introduce, investigate and exemplify the new class of optimal expected
utility (OEU) risk measures that are generated by utility functions via an associated op-
timal investment problem. A signi�cant advantage of OEU over other utility-based risk
measures is that it allows for most commonly used speci�cations of utility functions (in
particular, power, logarithmic and exponential utilities), and that it is (non-trivial and)
coherent if the utility function u has constant relative risk aversion

Evaluating risk and return of retail structured products

As mentioned before, risk measures are also well suited for evaluating future payo�s of
�nancial products which make them of interest in the context of classifying retail structured
products (RSPs) and thereby backing up investment decisions in these products. Since
RSPs can lead to signi�cant losses on the one hand, while alluring with potential gains
on the other hand, we conclude that risk measures which enable practitioners to take into
consideration the whole payo� structure of �nancial positions, are of particular signi�cance
for the aforementioned purpose.

Chapter 5 includes a practical proposal of an alternative rating system for RSPs based
on their respective implied risk aversion. Brie�y, the implied risk aversion of a �nan-
cial payo� X is the parameter γ0(X) such that an investor with risk aversion γ0(X) is
indi�erent between the �nancial position X and a zero investment.
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Risk measures on the space of probability distributions

In Chapter 6 we deal with law-invariant risk measures which only depend on the distribu-
tion of �nancial positions under the given probability measure. These risk measures can
also be interpreted as functionals on the space of distributions which are usually referred
to as lotteries in decision theory. On the basis of Weber and Schmidt [138] and Acciaio
and Svindland [2], we discuss certain properties of risk measures on the space of distribu-
tions. Hereby, the relation of the risk evaluation of mixture distributions, which are convex
combinations of distributions, to the risks of the consisting distributions is of particular
interest. We also consider an extreme event scenario in order to compare between value at
risk, average value at risk and optimal expected utility risk measures with respect to their
sensitivity to potentially large losses.

Weber [137] established a relation between attributes of static risk measures on the
space of distributions and consistency properties of corresponding dynamic risk measures
on the space of random variables. In view of Weber's �ndings, we study consistency
properties of dynamic risk measures with time-dependent parameters.

Dynamic risk measures in a discrete and a continuous time
setting

For the sake of controlling the riskiness of a �nancial position X at di�erent times or even
at all times between today and a given maturity time T , we need dynamic risk measures.
The central idea of dynamic risk measures is to evaluate the riskiness of X at T from the
standpoint of information which is available at time t ≤ T . The natural starting point for
a dynamic risk evaluation is t = T where the payo� of X is �known� in the sense that it is,
for example, the result of a simulation. Then, we can recursively move backwards in time
and measure the risk of X at increasingly early points in time. Thereby we not only get
the initial (t = 0) risk of X, but we also receive intermediate results which may serve as an
indication of the amount of necessary capital reserves at future times t ∈ [0,T ]. Following
this idea, one can construct time consistent risk measures in discrete time by recursively
composing one-period risk measures. In a continuous time setting, however, almost any
coherent/convex dynamic risk measure comes from a conditional g-expectation which is the
solution of a backward stochastic di�erential equation; see Rosazza Gianin [121], among
others.

In Chapter 7 we present examples of composed time consistent dynamic risk measures
in discrete time and show the necessity and a possible way of rescaling the one-period risk
measures. For composed (scaled) versions of popular risk measures such as value at risk,
average value at risk and the entropic risk measure, we work out drivers of corresponding
BSDEs and compare the resulting dynamic risk measures in continuous time to the related
composed discrete-time dynamic risk measures when the size of the discrete time grid goes
to zero. Our results allow for a nice interpretation of dynamic risk measures as, on the one
hand we understand the behavior of discrete-time compositions in any �xed time interval,
and on the other hand [121] provides a nice interpretation of the functionals g which are
crucial for the construction of the continuous-time dynamic risk measures.
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CHAPTER 2

Risk measures on the space of random variables

Risk measures have been developed in order to determine minimum capital reserves that
have to be deposited by �nancial institutions to ensure their �nancial stability. Other
applications of risk measures include the evaluation of future losses, the acceptability of
risk exposures as well as pricing. The landmark articles of Artzner, Delbaen, Eber and
Heath [7, 8] initiated a rigorous, axiomatic analysis of risk assessments, and also intro-
duced the notion of coherent risk measures. Subsequently and independently of each other,
Föllmer and Schied [67], Fritelli and Rosazza Gianin [74], Heath [83] and Heath and Ku [84]
replaced the subadditivity and positive homogeneity properties by a convexity condition
and thus established the more general concept of convex risk measures. Since then, convex
and coherent risk measures have been intensively studied and extended in various direc-
tions; see, for example, Acerbi and Tasche [4], Delbaen [44], Detlefsen and Scandolo [46],
Rockafellar and Uryasev [117, 118], and the references therein. For an overview of the
theory of coherent and convex risk measures, we refer to Delbaen [43] and Föllmer and
Schied [69, Chapter 4].

This chapter includes preliminaries and known results on risk measures on the space of
random variables that are necessary for our further work: In Section 2.1 we introduce the
theoretical setup and some notations. Section 2.2 provides main de�nitions and results of
static risk measures which is then extended to conditional risk measures in Section 2.3 and
�nally to dynamic risk measures in Section 2.4. Section 2.5 concludes with some results
on dynamic risk measures in a continuous time setting.

2.1 The setup and notations

We �x a �ltration (Ft)0≤t≤T , T > 0, on the probability space (Ω,F ,P ) such that F0 = {∅,Ω}
and FT = F . A �nancial position is a random variable X ∶ Ω → R de�ned on (Ω,F , P ).
By a standard convention, see, e.g., [8], X(ω) represents the position's value, net of all
costs including those to set up the position, at the end of the investment period if the
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CHAPTER 2. RISK MEASURES ON THE SPACE OF RANDOM VARIABLES

scenario ω ∈ Ω materializes. We take the space X ∶= L∞(Ω,F ,P ) as the set of all terminal
values of �nancial positions and de�ne the subspace L∞(Ft) ∶= L∞(Ω,Ft,P ) as the set of
all essentially bounded Ft-measurable random variables. In the following we brie�y write

Xmin ∶= ess infX

for the left support of X ∈ X . Finally, we denote by β > 0 the risk-free discount factor

in the �nancial market; thus, if p denotes the market price of a default-free zero-coupon
bond and T is the relevant time horizon, then β = p(0,T ). Note that although β ≤ 1 seems
a realistic assumption on the risk-free discount factor, we formally also allow for β > 1
corresponding to negative interest rates.

2.2 Static risk measures

At this point we recall some of the most important aspects and results of the theory of
static risk measures. We refer to [69, Chapter 4] for a widespread presentation of this
concept.

2.2.1 Basic de�nitions and main properties of static risk measures

The axiomatic approach to risk measures sets a number of desirable characteristics of risk
measures which form the basis for the following de�nition.

2.1 De�nition. A map ρ ∶ X → R is called a risk measure if it satis�es, for all X,Y ∈ X ,

(M) Monotonicity : ρ(X) ≥ ρ(Y ) if X ≤ Y ,

(CI) Cash invariance: ρ(X +m) = ρ(X) − βm for all m ∈ R,

(N) Normalization: ρ(0) = 0.

A risk measure ρ is called convex if it satis�es

(C) Convexity : ρ(λX + (1 − λ)Y ) ≤ λρ(X) + (1 − λ)ρ(Y ) for every λ ∈ [0,1].

A convex risk measure ρ is called coherent if it additionally satis�es

(PH) Positive homogeneity : ρ(λX) = λρ(X) for any λ ≥ 0.

If we adopt the traditional point of view that ρ(X) represents the capital required
to support a risky position X ∈ X , then monotonicity, cash invariance and normalization
are intuitive and natural properties that codify the following properties: The downside
risk of the position Y is smaller than the risk of position X if the values of a position Y
are always better than those of a position X; a cash reserve reduces the capital required
by its present value; and a zero position is riskless. In particular, cash-invariance implies
that ρ(X) is just the amount of money that can be added to the position X in order to
make it acceptable; see Chapter 5 where the concept of implied risk aversion is based on
this interpretation. Convexity implies that the risk measure supports diversi�cation, and
coherence means that the position's risk is proportional to its size. Under the assumption
of positive homogeneity, (C) is equivalent to

6



2.2. STATIC RISK MEASURES

(S) Subadditivity : ρ(X + Y ) ≤ ρ(X) + ρ(Y ),

see Remark A.1, which means that the risk of two positions together cannot be worse than
adding the risks of the positions separately. This property can be seen as the mathematical
counterpart of the idea that diversi�cation reduces risk (diversi�cation principle). However,
there is a controversial debate about the economic sense of (PH), in which critics claim that
positively homogeneous risk measures do not penalize concentration of risk and associated
liquidity problems; see, among others, Daníelsson, Jorgensen, Samorodnitsky, Sarma and
de Vries [41], Dhaene, Goovaerts and Kaas [48], Dhaene, Laeven, Vandu�el, Darkiewicz
and Goovaerts [49] and Kou, Peng and Heyde [95].

2.2 Remark. In our formulation of (CI), we follow Artzner, Delbaen, Eber and Heath [8]
and work with actual, rather than discounted, payo�s. In their notation,

ρ (X + (1 + r)m) = ρ(X) −m for m ∈ R,

where β = 1/(1+ r) and r is the interest rate of a (risk-free) reference instrument. In much
of the relevant literature, one works with discounted payo�s; this relates to our de�nition
via

ρ̄(βX) = ρ(X)

and in that case (CI) reads

ρ̄(X̄ + m̄) = ρ̄(X̄) − m̄ for m̄ ∈ R.

These two formulations are, of course, equivalent; if not otherwise indicated, in all that
follows, we use actual, un-discounted, payo�s and transfer existing de�nitions into that
notation without further mentioning.

The classes of all positions X ∈ X which do (not) require additional risk capital are
de�ned as follows:

2.3 De�nition. The acceptance set of a risk measure ρ includes all positions which are
acceptable in the sense that they have negative risk, i.e., they do not require additional
capital:

Nρ ∶= {X ∈ X ∣ ρ(X) ≤ 0}.

The set of all positions with strictly positive risk

N c
ρ ∶= {X ∈ X ∣ ρ(X) > 0}.

is called the rejection set of ρ.

We now present examples of well-known risk measures which are calculated from a
quantile of potential losses of X.

2.4 Example. (a) The value at risk (V@R) at level λ ∈ (0,1) of a position X ∈ X is
de�ned by

V@Rλ(X) = inf{m ∈ R ∶ P (m + βX < 0) ≤ λ}.

The probability that the loss of X exceeds V@Rλ(X) is less than or equal to λ.

7
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(b) The average value at risk (AV@R) at level λ ∈ (0,1] of a position X ∈ X is de�ned as

AV@Rλ(X) = 1

λ
∫

λ

0
V@Rγ(X)dγ.

Average value at risk is, in simple terms, the expected value of the losses beyond the
V@R point. It is also called conditional value at risk or expected shortfall.

2.5 Remark. (a) V@R is positively homogeneous, see Remark A.2, but in general it is
not subadditive and can therefore discourage diversi�cation; see Remark A.3.

(b) AV@R is subadditive, see Acerbi, Nordio and Sirtori [3, Appendix], and also satis�es
all other axioms of a coherent risk measure.

(c) For continuously distributed X, AV@Rλ(X) coincides with tail conditional expec-
tation,

TCEλ(X) ∶= E[−X ∶ −X ≥ V@Rλ(X)];
see [69, Corollary 4.54]. By means of the de�nition of TCE, we can easily prove that
AV@R dominates V@R: For any X ∈ X ,

AV@Rλ(X) ≥ TCEλ(X)
= E[−X ∶ −X ≥ V@Rλ(X)]
≥ V@Rλ(X).

Average value at risk is even the smallest law-invariant convex risk measure which is
continuous from above that dominates value at risk; see [69, Theorem 4.67].

(d) However, despite their immense popularity, both, value at risk and average value
at risk, have drawn much criticism from academia and industry. V@R does not
generally support portfolio diversi�cation which contrasts to the axiomatic properties
as formulated in De�nition 2.1. Moreover, value at risk does not take potential losses
beyond the chosen level λ into risk assessment. One might, however, argue that
it is far more important to worry about the cases when losses exceed V@R. Thus
extreme loss scenarios might be overseen by V@R and we can think of portfolios
which have an identical V@R and hence appear equally risky to decision-makers, but
have considerably di�erent loss scenarios. Also, as mentioned by Delbaen [45], when
used inside a �nancial institution, value at risk favors the practice �take the money
and run�: It encourages traders to take positions, where in, say 99% of the cases, the
trader gets a gain but there are extreme loss scenarios that may cause bankruptcy of
the institution which occurs with a probability of 1%, i.e., they are hidden beyond
the V@R level λ (in case λ > 1%). Average value at risk on the other hand includes
any possible losses beyond λ, but, since the level is often chosen very low (5% or 1%),
it usually requires a high number of data to ensure an accurate calculation of AV@R.
This drawback is mentioned in Bellinni and Bignozzi [17] and in Daníelsson [40],
among others. Since V@R must always be calculated to get AV@R, we point out
that these risk measures may not be seen as alternative choice to each other but that
average value at risk may rather be understood as an extension to the concept of
value at risk.
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2.2. STATIC RISK MEASURES

Another approach to assessing risk is including utility functions as done in the following
example:

2.6 Example. For X ∈ X , we de�ne the entropic risk measure as

ρent(X) = 1

γ
lnE [exp(−γβX)] ,

where γ ∈ R+ is the risk aversion parameter.

The entropic risk measure is introduced in [67] and [74]; for further information on ρent

we refer to Föllmer and Knispel [65] and the references therein. We refer to Chapter 3 for
a more detailed introduction to utility-based risk measures.

2.2.2 Robust representation of static risk measures

ByM1(P ) ∶= M1(Ω,F ,P ) we denote the set of all probability measures on (Ω,F) that are
absolutely continuous with respect to P . The following theorem characterizes convex risk
measures on X that can be represented by a penalty function concentrated onM1(P ); it
corresponds to [69, Theorem 4.33 and Corollary 4.37].

2.7 Theorem. Suppose ρ ∶ L∞ → R is a convex risk measure. Then the following conditions

are equivalent:

(i) ρ can be represented by some penalty function onM1(P ).

(ii) ρ can be represented by the restriction of the minimal penalty function ϑmin toM1(P )

ρ(X) = sup
Q∈M1(P )

(EQ[−βX] − ϑmin(Q)), X ∈ L∞. (2.1)

(iii) ρ is continuous from above: If Xn ↘X then ρ(Xn) ↗ ρ(X).

(iv) ρ has the following Fatou property: for any bounded sequence (Xn) which converges

to some X,

ρ(X) ≤ lim inf
n↑∞

ρ(Xn).

(v) ρ is lower semi-continuous for the weak* topology σ(L∞,L1).

(vi) The acceptance set Nρ of ρ is weak* closed in L∞, i.e., Nρ is closed with respect to

the topology σ(L∞,L1).

Moreover, under these conditions, ρ is coherent if and only if ϑmin takes only the values 0
and ∞. In this case, (2.1) becomes

ρ(X) = sup
Q∈Qmax

EQ[−βX], X ∈ L∞,

where Qmax ∶= {Q ∈ M1(P ) ∶ ϑmin(Q) = 0}.

9
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In (2.1) we can interpret the elements ofM1(P ) as possible probabilistic models which
are taken more or less seriously depending on the outcome of ϑmin(Q); then one takes
the worst penalized expected loss over the class M1(P ). This interpretation is perfectly
suitable for illustrating model risk; see, for example, Föllmer and Schied [68, page 6].

2.8 Remark. The entropic risk measure as introduced in Example 2.6 is continuous from
above and can therefore be represented as in (2.1) by its minimal penalty function ϑent.
Due to standard duality results, ϑent is given by ϑent(Q) ∶= 1

γH(Q ∣ P ), where

H(Q ∣ P ) ∶= sup
X∈L∞

(EQ[−βX] − lnE[exp(−βX)])

is the relative entropy of Q ≪ P ; see, e.g., [69, Section 3.2, Section 4.9].

2.3 Conditional risk measures

The risk measures mentioned so far are one-period risk measures. However, in practice,
�nancial risks have a dynamic component in two respects: Firstly, in a multi-period frame-
work, there is uncertainty about the time value of money and cash-�ows can occur such
that the �nancial position itself is dynamic. In this respect, stochastic processes are better
suited for modeling �nancial positions than random variables in a dynamic setting. Risk
measures on processes, however, are not considered in this thesis; we refer to the works
of Cheridito, Delbaen and Kupper [32], [33], [34], Cheridito and Kupper [35], Föllmer and
Penner [66], Fritelli and Scandolo [76] and Riedel [116] instead.

Due to a constant information �ow (e.g., on the market) we want to work with risk
measures that are updated in a multi-period framework. In such a dynamic setting, a
conditional risk measure ρt assigns to each terminal payo� X an Ft-measurable random
variable ρt(X) that quanti�es the risk of the position X conditional on Ft, the information
available (e.g., to investors or �nancial institutions) at time t. In this sense it can be seen
as a natural extension to the concept of static risk measurement.

2.3.1 Basic de�nitions and main properties of conditional risk measures

In the following we introduce dynamic risk measures for terminal payo�s.

2.9 De�nition. For 0 ≤ t ≤ T a map ρt ∶ X → L∞(Ft) is called a conditional risk measure
if it satis�es the following properties for all X,Y ∈ X :

(M) Monotonicity ∶ ρt(X) ≥ ρt(Y ) if X ≤ Y.
(CCI) Conditional cash-invariance ∶ ρt(X +m) = ρt(X) − βTt m for all m ∈ L∞(Ft).
(N) Normalization ∶ ρt(0) = 0.

By the Ft-measurable random variable βTt we denote the value of a default-free bond at
time t with face value 1 and maturity time T . A conditional risk measure ρt is called
convex if it additionally satis�es:

(CC) Conditional convexity ∶ ρt(λX + (1 − λ)Y ) ≤ λρt(X) + (1 − λ)ρt(Y ), for λ ∈ L∞(Ft)
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for every λ ∈ [0,1].

A conditional convex risk measure ρt is called coherent if it additionally satis�es

(CPH) Conditional positive homogeneity ∶ ρt(λX) = λρt(X), for λ ∈ L∞(Ft) for any λ ≥ 0.

The economic interpretation of the properties of characterizing conditional risk mea-
sures are the same as in the static case. In particular, due to conditional translation
invariance, a conditional risk measure determines a conditional capital requirement.

2.10 De�nition. The acceptance set of a conditional risk measure ρt is de�ned as:

Nt ∶= {X ∈ L∞ ∶ ρt(X) ≤ 0},

and the rejection set of ρt is

N c
t ∶= {X ∈ L∞ ∶ ρt(X) > 0}.

Note that a conditional risk measure ρt is uniquely determined by its acceptance set
since

ρt(X) = ess inf{Y ∈ L∞(Ft) ∶ X + Y ∈ At}.

2.11 Example. (a) For any λ ∈ (0,1], the conditional value at risk at level λ is de�ned
as

V@Rλtt (X) = ess inf{mt ∈ L∞(Ft) ∶ P (βTt X +mt < 0 ∣ Ft) ≤ λt},

where P (A ∣ Ft) is the conditional expectation E[1A ∣ Ft].

(b) For λt ∈ L∞(Ft),0 < λt ≤ 1 let Qλtt denote the set of all measures Q ∈ Pt ∶= {Q ∈ Qt ∶
Q = P∣Ft}, with

Qt ∶= {Q ∈ M1(P ) ∶ Q = P∣Ft} ,

whose density dQ/dP is P -a.s. bounded by 1/λt. The resulting coherent conditional
risk measure

AV@Rλtt (X) = ess sup
Q∈Qλtt

EQ[−βTt X ∣ Ft]

is called conditional average value at risk at level λt.

(c) For a risk aversion parameter γ ∈ R+,

ρentt,γ (X) = 1

γ
lnE[exp(−γβTt X) ∣ Ft], X ∈ X ,

is called the conditional entropic risk measure.
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2.4 Dynamic risk measures and time consistency

Dynamic risk measures are de�ned as a collection of conditional risk measures adapted to
the underlying �ltration. We denote by I the set of points in time at which we consider
conditional risk measures and distinguish between dynamic risk measures in discrete time,
I = {t0 = 0, t1, ..., tN = T}, and in continuous time, I = [0,T ]. Given such a sequence
(ρt)t∈I it is an obvious question to ask how risk evaluation between di�erent points in time
t and s between today and the maturity time of the �nancial product T are related to each
other. Di�erent de�nitions of consistency of dynamic risk measures are given in order to
answer this question. In this section we give basic de�nitions, remarks and some selected
results on dynamic risk measures which we use in the course of this thesis. For a more
detailed introduction to this topic, we particularly recommend the review article [1] and
the references therein. We refer to Chapter 7 for a further examination of consistency of
dynamic risk measures.

2.12 De�nition. We call a collection of mappings (ρt)t∈I , ρt ∶ X → L∞(Ft) a dynamic

risk measure if every ρt is a conditional risk measure.

We call (ρt)t∈I a dynamic risk measure in continuous time (CDRM) if I = [0,T ]. (ρt)t∈I
is called a dynamic risk measure in discrete time (DDRM) if I = {t0,...,tN}, where 0 = t0 <
t1 < ... < tN = T . Note that T can also be ∞.

For any t ∈ I and for any X ∈ X , ρt(X) is a random variable, therefore for any �xed
t any equality and inequality of ρt should be understood to be valid P -a.s. Note that the
�boundary condition� ρT (X) = −X for all X ∈ X follows directly from the de�nition of the
acceptance set of a conditional risk measure ρt in De�nition 2.10.

2.13 De�nition. A dynamic risk measure (ρt)t∈I is called convex if every ρt satis�es
conditional convexity (CC). A dynamic convex risk measure (ρt)t∈I is called coherent if
every ρt additionally satis�es conditional positive homogeneity (CPH).

We de�ne acceptance (rejection) consistency following Weber [136], [137]. The same
de�nition is also known as weak acceptance (rejection) consistency; see [1] among others.

2.14 De�nition. A dynamic convex risk measure in discrete time is called acceptance

(rejection) consistent if for any X ∈ X the following condition holds:

ρt(X) ≤ (>)0 if ρt+1(X) ≤ (>)0 for all t ∈ {t0 = 0, t1, ..., tN−1}.

A dynamic convex risk measure in discrete time is called weakly time consistent if it is
both, acceptance and rejection consistent.

Acceptance consistency formalizes that any �nancial position which is acceptable at
t + 1 should also be acceptable at the earlier time t. Rejection consistency ensures that
at each period of time one stays on the safe side when updating the risk evaluation - a
property which seems to be particularly suitable for regulatory use; see [1, page 2]. We
refer to [1], Artzner, Delbaen, Eber, Heath and Ku [9], Penner [112], Tutsch [131], [132]
and [136], [137] for further studies on acceptance and rejection consistency of dynamic risk
measures.
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2.15 De�nition. A dynamic convex risk measure is called time consistent if for any
X,Y ∈ X the following condition holds:

ρt(X) ≤ ρt(Y ) if ρt+1(X) ≤ ρt+1(Y ) for all t ∈ I with t ≤ T − 1.

This is equivalent to:

For all X ∈ X ∶ ρs(X) = ρs(−ρt(X)) for all s,t ∈ I with s ≤ t (2.2)

which, broadly speaking, means that the same risk is assigned to X regardless of whether
it is calculated over two time periods or in two steps backwards in time. For dynamic risk
measures in discrete time we can give some equivalent characterizations of time consistency:

2.16 Remark. (a) From (2.2) it follows that for time consistent risk measures, for all
t ∈ I, we have ρ0(X) = ρ0(−ρt(X)), i.e., in order to quantify the riskiness of X at the
initial time 0, it is equivalent to either use the static risk measure ρ0 directly, i.e.,
computing ρ0(X), or to �rst evaluate the riskiness ρt(X) of X at time t and then
quantify the risk of −ρt(X) at time 0 through ρ0(−ρt(X)).

(b) The recursive property (2.2) is crucial for relating time consistent DDRMs to CDRMs
in a Brownian setting; see Chapter 7.

2.5 Risk measures via g−expectations

In this section we present the concept of g-expectations and backward stochastic di�erential
equations in the context of risk measures. As pointed out in Peng [111] and Rosazza
Gianin [121], among others, it is possible to obtain a large number of static and dynamic
risk measures by solving a BSDE with driver g.

For this section we assume I = [0,T ], i.e., we only consider the case of CDRMs, and
we assume the �nancial positions to be square-integrable,i.e., X ∈ L2 ∶= L2(Ω,F ,P ). Let
(Wt)t∈I be a standard one-dimensional Brownian motion on (Ω,F , P ). By (FWt )t∈I we
denote the �ltration generated by W and by (Ft)t∈I we denote the augmented �ltration
associated with (FWt )t∈I . For a �xed T > 0 let L2

F(T ;Rn) denote the space of all Rn-valued,
adapted processes (Vt)t∈I such that E [∫ T0 ∥Vt∥2 dt] < ∞, where ∥⋅∥ stands for the Euclidean
norm on Rn.

Consider a functional g ∶ Ω × [0,T ] ×R ×Rd → R, (ω,t,y,z) ↦ R. Further on, we write
g(t,y,z) instead of g(ω,t,y,z) and g is supposed to satisfy the following usual assumptions:

1. g is Lipschitz in (y,z): There exists a constant C > 0 such that for all t ∈ I, for all
(y0,z0), (y1,z1) ∈ R ×Rd:

∣g(t,y0,z0) − g(t,y1,z1)∣ ≤ C (∣y0 − y1∣ + ∥z0 − z1∥) .

2. g(⋅,y,z) ∈ L2
F for all y ∈ R, z ∈ Rd.

3. For all t ∈ I, y ∈ R ∶ g(t,y,0) = 0.
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Under these assumptions on g, for every X ∈ L2 the BSDE

−dYt = g(t,Yt,Zt)dt −ZtdWt, for all t ∈ I
YT =X

(BSDE)

has a unique solution (Yt,Zt)t∈I ∈ L2
F(T ;R) ×L2

F(T ;Rd). We are particularly interested in
the component (Yt)t∈I of the solution.

2.17 De�nition. For any X ∈ L2, let (Y X
t ,ZXt )t∈I ∈ L2

F(T ;R)×L2
F(T ;Rd) be the solution

of (BSDE).

(i) The g-expectation Eg of X is de�ned by

Eg[X] ∶= Y X
0 .

(ii) For any t ∈ I the conditional g-expectation of X under Ft is de�ned by

Eg[X ∣ Ft] ∶= Y X
t .

Let g satisfy the usual assumptions and set ρg ∶ L2 → R as follows:

ρg(X) ∶= Eg[−X], for all X ∈ L2.

We now introduce some additional restrictions on the functional g in order to de�ne when
ρg is a static risk measure.

2.18 De�nition. (i) g is sublinear if it is

� positively homogeneous in (y,z): For all t ∈ I, for all λ ≥ 0, for all (y,z) ∈ R×Rd:

g(t,λy,λz) = λg(t,y,z),

� subadditive in (y,z): For all t ∈ I, for all λ ≥ 0, for all (y0,z0),(y1,z1) ∈ R ×Rd:

g(t,y0 + y1,z0 + z1) ≤ g(t,y0,z0) + g(t,y1,z1).

(ii) g is convex in (y,z) if for all t ∈ I, for all (y0,z0),(y1,z1) ∈ R ×Rd, for all λ ∈ (0,1):

g(t,λy0 + (1 − λ)y1,λz0 + (1 − λ)z1) ≤ λg(t,y0,z0) + (1 − λ)g(t,y1,z1).

2.19 Proposition (Proposition 11 from [121]). (i) If g satis�es sublinearity, then ρg is
a coherent risk measure.

(ii) If g satis�es convexity, then ρg is a convex risk measure.

Let us now set

ρgt (X) ∶= Eg[−X ∣ Ft], for all X ∈ L2 and all t ∈ I,

where g satis�es the usual assumptions. Then the following proposition holds:

14



2.5. RISK MEASURES VIA G−EXPECTATIONS

2.20 Proposition (Proposition 19 from [121]).

(i) If g satis�es sublinearity (for instance, g(z) = µ ∥z∥ with µ > 0), then (ρgt )t∈I is a

coherent and time consistent risk measure.

(ii) If g satis�es convexity, then (ρgt )t∈I is a dynamic convex and time consistent risk

measure.

As the functional g is crucial for the construction of risk measures via g-expectations,
let us recall some remarks from [121] on how g can be interpreted. g may depend on the dy-
namics of a stochastic process whose �nal value is X and g could depend on the preferences
of the investor. In particular, the bigger g, the more conservative is the corresponding risk
measure and if g is convex (sublinear) then also the corresponding risk measure is convex
(coherent). We refer to [121, Section 3] for a more detailed analysis of these relations.
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CHAPTER 3

Utility-based risk measures

This chapter gives an overview of some fundamental aspects of the theory of utility func-
tions and possible connections of this theory with risk measures. It may therefore be
considered as a preliminary chapter providing necessary results for the main contributions
of this thesis in Chapter 4 and Chapter 5.

In the course of this work there are many connections to the classical approach to
individuals' attitudes towards risk and risky payo�s via the notion of utility functions,
which dates back at least to Bernoulli's work in the 18th century. The theory of risk pref-
erences, their numerical representations, and in particular expected utility was advanced
signi�cantly by Arrow [6], Pratt [114] and von Neumann and Morgenstern [134]; see also
the monographs of Fishburn [63, 64], Gollier [81], Mas-Colell, Whinston and Green [105],
among others. We also refer to [69, Chapter 2] and the references therein for a mathemat-
ical perspective on the theory of economic preferences.

In Section 3.1 we review some well-known classes of utility-based risk measures and
point out their respective crucial properties. Section 3.2 includes the basic de�nition of
utility functions for our further work and some associated characteristics of utility.

3.1 Already established utility-based risk measures

For X ∈ X , u ∶ R → R being a strictly increasing, continuous and concave utility function,
the certainty equivalent of X is de�ned as follows:

Cu(X) ∶= u−1 (E [u(βX)]) .

Cu[X] is by de�nition the sure amount that makes an investor indi�erent between investing
in X and receiving Cu[X]. Certainty equivalents are used to determine the amount of
certain wealth which has the same utility as the expected utility of the unknown outcome
of X. This is a particularly meaningful approach for random variables X which can attain
very large (negative) values (but not −∞) with a small probability (say X can attain −1,
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3.1. ALREADY ESTABLISHED UTILITY-BASED RISK MEASURES

−2, −3, −4 or −1,000,000) such that the expectation of X would not be a meaningful choice
for the risk involved in X. Classical risk measures such as value at risk or average value
at risk are not perfectly suited either to emphasize the risk of an extreme loss of such a
position. A more sensible way of measuring the risk of X is to consider the individual
utility of every possible outcome of X and then average these utilities.

The following properties of Cu are immediate consequences of its de�nition. For any
X ∈ X ,

(i) Cu(m) = βm for all m ∈ R.

(ii) Cu(X) is invariant to a�ne transformations in u.

(iii) Cu(X) ≤ E[X]; due to Jensen's inequality.

(iv) Cu(X) ≤ Cu(Y ) if X ≤ Y .

Note that −Cu is monotone in the sense of De�nition 2.1 and even cash-invariant, i.e.,
−Cu(X + m) = −Cu(X) − βm if u is either linear or of exponential form; see also de
Finetti [42], [69, Proposition 2.46] and Nagumo [109]. For u(x) = a − b exp(−γx), a ∈ R,
b,γ ∈ R+, −Cu is the entropic risk measure ρent from Example 2.6. As noted by Föllmer
and Knispel [65], ρent is the only risk measure which is, up to a change of sign, at the same
time a certainty equivalent with respect to some increasing concave utility function u.

We have just outlined a �rst connection between risk measures and certainty equivalents
(and thereby utility functions). Föllmer and Schied [70] point out an early implicit appear-
ance of risk measures in the theory of preferences: Gilboa and Schmeidler [79] showed that
a natural relaxation of the �axioms of rationality� which are formulated in [123] and [134]
implies that the linear expected utility under the probability measure P should be replaced
by a general coherent risk measure ρ:

−ρ(u(X)) = inf
Q∈Qmax

EQ[u(X)].

In an even further relaxed axiomatic setting which is considered in Maccheroni, Marinacci
and Rustichini [100], linear expected utility is generalized by

−ρ(u(X)) = inf
Q∈M1(P )

(EQ[u(X)] + αmin(Q)),

thus ρ is now a convex risk measure; see Theorem 2.7. Here, concavity of u can be
interpreted as aversion of model uncertainty; see Föllmer, Schied and Weber [71] and [100].

However, a basic idea of this thesis is to make use of �utility� functions in the sense
of [134] in the context of risk measurement when the probability measure is a priori known.
In the following we review some existing notions developed in this spirit.

3.1 Example. If u ∶ R → R is an increasing, concave function that is not identically
constant, the utility-based shortfall risk is introduced in [67] as

ρSR(X) ∶= inf {η ∈ R ∶ E[u(βX + η)] ≥ λ} ,

where λ is a �xed value in the interior of the range of u. ρSR ful�lls (M), (CI), (N) and
(C) from De�nition 2.1, i.e., it is a convex risk measure. However, ρSR ful�lls (PH) from
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De�nition 2.1 only if u is piecewise linear with a kink at 0; see Weber [137, Corollary 3.2].
As shown in [137], ρSR(X) are the only law-invariant convex risk measures which are also
invariant under randomization. In Chapter 6 we get more into detail on this property.

3.2 Example. For a strictly increasing, continuous function u ∶ R → R the certainty

equivalent as risk measure is de�ned in [69, Example 4.13] via

ρCE(X) ∶= −u−1 (E [u (βX)]) .

ρCE is monotone and normalized, but ρCE is cash invariant and convex only if u is either
linear or exponential, the latter leading to the entropic risk measure. ρCE(X) preserves
convex stochastic ordering; see [108, Theorem 2.8].

3.3 Example. For a concave, increasing function u ∶ R → R ∪ {−∞} with u(0) = 0 and
u(x) ≤ x for all x ∈ R, the optimized certainty equivalent is introduced in [18, 19] as

COCE(X) ∶= sup
η∈R

{−η +E[u(βX + η)]}.

Its negative counterpart ρOCE(X) ∶= −COCE(X) is a convex risk measure. ρOCE is not
coherent unless u is piecewise linear with a kink at 0.

3.4 Example. For a random variable X that represents costs or losses, Krokhmal [97]
de�nes the functional

ρ(X) ∶= inf
η∈R

{η + φ(βX − η)} ,

which is a lower semi-continuous coherent risk measure provided the abstract functional
φ ∶ X → R ∪ {∞} satis�es monotonicity, convexity, positive homogeneity, lower semi-
continuity and is such that φ(η) > η for all η ∈ R, η ≠ 0. Vinel and Krokhmal [133] specify
φ in terms of an increasing, convex disutility function v ∶ R → R and a penalty parameter
α ∈ (0,1) via

φ(X) = 1
1−αv

−1 (E [v(X)]) .
This leads to certainty equivalent measures of risk

ρCEM(X) = min
η∈R

{η + 1
1−αv

−1 (E [v (βX − η)])} .

3.2 Utility functions

In the course of this thesis we focus on utility functions in the sense of the following
de�nition:

3.5 De�nition. A utility function is a C3 function u ∶ R+ → R such that u′(x) > 0 and
u′′(x) < 0 for all x ∈ R+, and such that the absolute risk tolerance τu is concave. Here
τu ∶ R+ → R is given by

τu(x) ∶= −
u′(x)
u′′(x) , x ∈ R+.

We denote by U the set of all utility functions. For u ∈ U we set u(0) ∶= limx↓0 u(x) ∈
[−∞,∞), u(∞) ∶= limx↑∞ u(x) ∈ (−∞,∞] and regard u as a mapping u ∶ [0,∞] → [−∞,∞]
without further notice.
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3.2. UTILITY FUNCTIONS

As pointed out in Gollier [81, page 114], concave absolute risk tolerance is a natural
assumption for utility functions. For instance, in a classical investment context, it means
that the reduction of risk premia due to an increase in wealth is a decreasing function
of wealth; on the other hand, absolute risk aversion cannot be positive, decreasing and
concave everywhere. In fact, most of the commonly used utility functions, including power,
logarithmic and exponential utilities, exhibit concave absolute risk tolerance. Moreover,
Ben-Tal and Teboulle [19, Corollary 5.1] show that τu is concave if and only if the associated
certainty equivalent functional X ↦ u−1(E[u(X)]) is concave.

3.6 De�nition. For u ∈ U we de�ne the left inverse u−1 ∶ R→ [0,∞] ∪ {−∞} via

u−1(t) ∶= inf{x ∈ R+ ∶ u(x) ≥ t}, u(0) ≤ t < u(∞),

and u−1(t) ∶= −∞ for t < u(0), u−1(t) ∶= ∞ for t ≥ u(∞). Then u−1 is right-continuous and
u−1(u(x)) = x for all x ∈ [0,∞].

3.7 Remark. u being strictly increasing re�ects the common sense assumption that investors
always prefer more to less. The investor is assumed to be risk averse which is captured
by concavity of u. Risk aversion implies that for any random variable X, its expectation
E[X] is preferred to X,

u (E[X]) ≥ E[u(X)],

which in turn is just Jensen's inequality for u, i.e., is equivalent to say that u is concave.
The positive di�erence E[X] −Cu(X) is called the investor's risk premium which may be
interpreted as the amount that an individual is willing to pay in order to avoid a risk.
u′(x) measures the marginal improvement in utility with changes in x. u′′(x) is the rate of
change of the satisfaction: It gets harder and harder to increase satisfaction as x increases.

In general, for any utility function u ∈ U the Arrow-Pratt coe�cient of absolute risk

aversion (ARA) of u at level x is de�ned as

%u(x) = −
u′′(x)
u′(x) ;

see also [6] and [114]. We denote by UIARA the class of utility functions u ∈ U that feature
increasing absolute risk aversion, by UCARA those with constant absolute risk aversion, and
by UDARA those with decreasing absolute risk aversion. The relative risk aversion (RRA)

is de�ned as

x%u(x).

We denote by UIRRA the set of utility functions u ∈ U with increasing relative risk aversion,
and by UCRRA those with constant relative risk aversion.

Standard examples of classes of utility functions are all u ∈ U with

(i) constant absolute risk aversion (CARA): %u(x) = γ for all x ∈Du.

(ii) constant relative risk aversion (CRRA): x%u(x) = γ for all x ∈Du.
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CHAPTER 3. UTILITY-BASED RISK MEASURES

Any CARA utility function u(x) implies the same behavior for all x ∈ R thus, for example,
in a standard portfolio problem with one risk-free asset and one risky asset the optimal
holding of the risky asset is independent of the investor's initial wealth, i.e., it does not
increase even if the investor experiences an increase in wealth. Thus CARA exponential
utility which is convenient for calculation is considered a rarely plausible choice in reality;
see [81] and [114].

The relative risk aversion on the other hand is a well-known characteristic of individu-
als' risk preferences. Recent studies on the risk attitudes of representative investors such
as the works by Chiappori and Paiella [37], Friend and Blume [73], [107] or Szpiro [129]
make a case for constant (or slightly increasing) relative risk aversion. CRRA is implied by
decreasing absolute prudence, i.e., −u′′′(x)/u′′(x) decreasing in x, which is widely consid-
ered a reasonable condition; see, e.g., Kimball [92], [93]. In the standard portfolio problem
with one risk-free asset and one risky asset, if the portfolio manager has constant relative
risk aversion, he will choose to keep the fraction of the portfolio held in the risky asset
unchanged if he experiences an increase in wealth. Note that all CRRA utility functions
exhibit DARA, since

%′u(x) = −
γ

x2
,

where γ ∈ R+ denotes the investor's relative risk aversion. We refer to Chapter 4 and
Chapter 5, where utility functions with constant relative risk aversion are of particular
importance. One can check that, due to the fact that any utility function u ∈ U has
concave absolute risk tolerance, it is impossible for u ∈ U to have decreasing relative risk
aversion. These are the cases that can actually occur:

1. If τu(x) is concave and decreasing, then u ∈ UIRRA.

2. If τu(x) is concave and constantly positive, then u ∈ UIRRA.

3. τu(x) is concave and increasing and u ∈ UIRRA.

Let us now argue why it is impossible that (a) τu(x) is concave and constantly negative
(then u ∈ UDRRA), or that (b) τu(x) is concave and increasing and u ∈ UDRRA, respectively.
For u ∈ U we have u′(x) > 0 and u′′(x) < 0 for all x ∈ R+. Thus τu(x) > 0 holds for any
x ∈ R+ and (a) cannot occur. Now, let us assume that τu(x) is concave and increasing.
Then τ ′u ≥ 0 and τ ′u is decreasing, and due to the mean value theorem, we know that for
any x > 0 there exists ξ ∈ (0,x) such that

τ ′u(ξ) =
τu(x) − τu(0+)

x
.

Since τ ′u is decreasing and τu is positive for any x > 0:

τ ′u(x) ≤
τu(x) − τu(0+)

x
≤ τu(x)

x

which is equivalent to

τu(x) ≥ xτ ′u(x).
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The above implies that if τu(x) is concave and increasing, then:

(x%u(x))′ = ( x

τu(x)
)
′

= τu(x) − xτ
′
u(x)

τu(x)2
≥ 0 for all x > 0.

Therefore τu being concave and increasing always leads to u ∈ UIRRA (case 3.) and (b)
cannot occur.

We conclude this section with a result that allows us to relate the �degree of concav-
ity� of utility functions to their respective coe�cient of absolute risk aversion and their
respective risk premiums:

3.8 Proposition (Proposition 2.44 from [69]). Let u,v ∈ U . The following conditions are

equivalent:

(i) %u(x) ≥ %v(x) for all x ∈ R+.

(ii) u = g ○ v for a strictly increasing concave function g.

(iii) Cv(X) ≥ Cu(X) for all X ∈ X .

We note that a more concave utility function relates to a greater absolute risk aversion
and to a higher risk premium which is intuitively understandable; see also [114, Theorem
1].
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CHAPTER 4

Optimal expected utility risk measures

In this chapter, which is an extended version of Geissel, Sass and Seifried [77] we propose a
construction of risk measures based on certainty equivalents which we call optimal expected
utility (OEU) risk measures. In a nutshell, OEU is based on an asset allocation problem
where the agent decides endogenously how much capital η to set aside as a reserve today
if he is to receive a given stochastic payo� X tomorrow. The �rst-order condition for the
underlying optimization reads

αE [u′ (X + η∗)] = βu′(x),

where x ∶= u−1(E[u(X + η∗)]). Thus the (expected) marginal utility of the risky payo�
including reserves, X + η∗, equals the marginal utility of today's certainty equivalent of
that same quantity.

This chapter is organized as follows: In Section 4.1 we introduce OEU risk measures
and investigate the link between OEU and the underlying utility function. Sections 4.2, 4.3
and 4.4 include various properties of OEU; in particular, Theorem 4.3 establishes OEU as
a convex risk measure, and Theorem 4.16 gives conditions for when it is coherent. In
Section 4.5 we develop a method for recovering the utility function from a given OEU
and in Section 4.6 we give a dual representation of OEU. Finally, Section 4.7 presents
applications of OEU to some simpli�ed problems in risk management.

Our notion of optimal expected utility risk measures as developed below is inspired by
by the previous studies on utility-based risk measures which we recalled in Chapter 3. Its
distinctive feature is that it takes seriously the idea that the �utility� function u captures
the investor's utility in the sense of classical utility theory. In particular, OEU is able
to deal with standard utility functions, including power and exponential utilities, and we
are able to link properties of OEU to corresponding properties of the underlying utility
function. In addition, we provide a decision-theoretic foundation of OEU in terms of a
well-de�ned certainty equivalent optimization problem. In particular, unlike ρOCE, OEU
strictly distinguishes between �cash� (�dollar�) and �utility� quantities.
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4.1 Introducing optimal expected utility risk measures

In this section we introduce optimal expected utility risk measures. We further give speci�c
examples of OEU for some commonly used utility functions, develop the main properties
of OEU, and study its relationship to other risk measures.

4.1 De�nition. The optimal expected utility (OEU) risk measure is de�ned as the map
ρu ∶ X → R,

ρu(X) ∶= − sup
η∈R

{−βη + αu−1 (E [u (X + η)])} , (OEU)

where α > 0 captures the investor's subjective time preference and by convention E[u(Y )] ∶=
−∞ if P (Y < 0) > 0.

To understand the economic rationale underlying OEU, consider an investor that is
able to borrow and invest at the market interest rate, and aims to maximize the sum of
capital available today and the certainty equivalent of his capital in the future (the latter
discounted by his subjective rate of time preference). If the investor holds a �nancial
position with net value X and decides on the amount η that he is to borrow to allocate
capital optimally over time, he formally faces the problem to maximize

H ∶ [−Xmin,∞) → [−∞,∞), H(η) ∶= −βη + αu−1 (E [u (X + η)]) (4.1)

over η, i.e., the quantity inside the supremum in (OEU).1 The risk measure ρu(X) then
represents the amount of capital required to make investment in X appear favorable to
him (equivalently, −ρu(X) is the maximal amount he would be willing to pay in order to
obtain X). Note that at the optimum the investor always puts aside a su�cient amount
to cover all future losses in X, thus guaranteeing to avoid bankruptcy. Of course, this
construction is inspired by a general correspondence between certainty equivalents, risk
measures, and indi�erence prices; see, e.g., Barrieu and El Karoui [13, page 81]: For an
arbitrary risk measure ρ, the quantity ρ(X) can be seen �as the opposite of the `buyer's
indi�erence price' of this position, since when paying the amount −ρ(X), the new exposure
X − (−ρ(X)) does not carry any risk with positive measure, i.e., the agent is somehow
indi�erent using this criterion between doing nothing and having this `hedged' exposure.
The convex risk measures appear therefore as a natural extension of utility functions as
they can be seen directly as an indi�erence pricing rule.�

4.2 Remark. To rule out unbounded leveraging, we assume that

α < β,

unless explicitly stated otherwise. This means that the investor's rate of time preference
exceeds the risk-free interest rate in the �nancial market. If this condition is violated,
the investor's preferences degenerate in the sense that he will, already in the absence of

1For P (X + η < 0) > 0 we have E[u(X + η)] = −∞, hence H(η) = −∞ is not the optimum and it su�ces
to consider η ∈ [−Xmin,∞).
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risk, allocate as much capital as possible to future consumption and thus typically aim to
borrow unlimited amounts: Indeed, for α > β we have for any deterministic payo� m ∈ R

ρu(m) = − sup
η∈R

{−βη + α(m + η)} = −∞.

The limiting case α = β is investigated below; see Proposition 4.9, Proposition 4.14 and
Remark 4.23.

4.2 Main properties and examples of OEU

The following theorem demonstrates that OEU satis�es all the axioms of a (convex) risk
measure.

4.3 Theorem. For any u ∈ U , ρu is a convex risk measure.

Proof. (M) is an obvious conclusion of the de�nition of OEU and the fact that u and u−1

are both increasing functions: Let X,Y ∈ X such that X ≤ Y , then also Xmin ≤ Ymin, thus

ρu(X) = − sup
η>−Xmin

{−βη + αu−1 (E [u (X + η)])}

≥ − sup
η>−Xmin

{−βη + αu−1 (E [u (Y + η)])}

≥ − sup
η>−Ymin

{−βη + αu−1 (E [u (Y + η)])}

= ρu(Y ).

Cash invariance follows directly from the de�nition of OEU: Let m ∈ R, then

ρu(X +m) = − sup
η>−Xmin−m

{−βη + αu−1 (E [u (X +m + η)])}

= −(βm + sup
η>−Xmin−m

{−β(η +m) + αu−1 (E [u (X + (η +m))])})

η′∶=(η+m)= −(βm + sup
η′>−Xmin

{−βη′ + αu−1 (E [u (X + η′)])})

= −βm + ρu(X).

To show (N) note that for all 0 < α < β:

ρu(0) = − sup
η∈R

{−βη + αu−1 (E [u (0 + η)])}

= − sup
η>0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(α − β)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

<0

η

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= 0.
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To establish convexity, let λ ∈ [0,1] and de�ne

g(x0,x1) ∶= u (λu−1(x0) + (1 − λ)u−1(x1)) , (x0,x1) ∈ R ×R.

Further denote:

u′ ∶= u′(λu−1(x0) + (1 − λ)u−1(x1)), u′0 ∶= u′(u−1(x0)), u′1 ∶= u′(u−1(x1)),
u′′ ∶= u′′(λu−1(x0) + (1 − λ)u−1(x1)), u′′0 ∶= u′′(u−1(x0)), u′′1 ∶= u′′(u−1(x1)).

Concavity of τu yields

τu(λu−1(x0) + (1 − λ)u−1(x1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=− u
′

u′′

≥ λτu(u−1(x0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−
u′
0
u′′
0

+(1 − λ) τu(u−1(x1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=−
u′
1
u′′
1

.

By multiplying the above equation by the negative factor −λu′′u′′0 1
(u′0)

3 , we get

−λu′u′′0
1

(u′0)3
≥ −λ2 1

(u′0)2
u′′ + (1 − λ)u

′
1

u′′1
(−λ)u′′u′′0

1

(u′0)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

,

thus

−λu′u′′0
1

(u′0)3
≥ −λ2 1

(u′0)2
u′′

which implies

u′′
λ2

(u′0)2
− u′ λu

′′
0

(u′0)3

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=
∂2g

∂x2
0

≥ 0.

Further q ∶= λ(1 − λ)u′′0u′′1u′u′′(u′0u′1)−3 ≤ 0 and therefore, due to concavity of τu we have

τu(λu−1(x0) + (1 − λ)u−1(x1)) ≥ λτu(u−1(x0)) + (1 − λ)τu(u−1(x1)),

thus, by de�nition of τu,

q
u′

u′′
≥ q(λu

′
0

u′′0
+ (1 − λ)u

′
1

u′′1
).

Inserting q yields

λ(1 − λ)u′′0u′′1(u′)2

(u′0u′1)3
≥ λ

2(1 − λ)u′′1u′u′′
(u′0)2(u′1)3

+ λ(1 − λ)
2u′′0u

′u′′

(u′0)3(u′1)2
,

and, therefore

u′′ ( λ
u′0

)
2

(−u′ (1 − λ)u
′′
1

(u′1)3
) − u′ λu

′′
0

(u′0)3
u′′ (1 − λ

u′1
)

2

+ u′ λu
′′
0

(u′0)3
u′

(1 − λ)u′′1
(u′1)3

≥ 0.
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Hence the determinant of the Hessian matrix H of g is positive:

det(H) ≥ 0.

This implies that g is convex, and Jensen's inequality implies that for Y0,Y1 ∈ X

E[u(λY0 + (1 − λ)Y1)] = E[g(u(Y0),u(Y1))]
≥ g (E[u(Y0)],E[u(Y1)])
= u (λu−1(E[u(Y0)]) + (1 − λ)u−1(E[u(Y1)])) .

It follows that

ρu(λX0 + (1 − λ)X1) = − sup
η∈R

{−βη + αu−1 (E [u (λX0 + (1 − λ)X1 + η)])}

= − sup
η0,η1∈R

{ − λβη0 − (1 − λ)βη1

+ αu−1 (E [u (λ(X0 + η0) + (1 − λ)(X1 + η1))]) }

≤ − sup
η0,η1∈R

{ − λβη0 + αλu−1 (E[u(X0 + η0)])

− (1 − λ)βη1 + α(1 − λ)u−1 (E[u(X1 + η1)]) }

= λρu(X0) + (1 − λ)ρu(X1).

This implies that ρu is convex, and the proof is complete.

4.4 Remark. Theorem 4.3 implies that ρu satis�es (CI) and (N) and hence in particular
preserves cash:

ρu(m) = −βm, m ∈ R.
(CI) is an indispensable property of risk measures, but it is this condition that is in general
not satis�ed by traditional utility-based risk measures such as ρCE(X) = −u−1(E[u(βX)]).
In the context of OEU, (CI) is ensured by the special construction of (OEU) via balancing
the present value βη of the amount borrowed against the discounted certainty equivalent
of the risky payo�, αu−1 (E [u(⋅)]). A related concept in an abstract vector space setting
is the in�mal convolution of two functions f,g ∶ H → R de�ned on a vector space H via

f ◻ g ∶ H → R ∶ x↦ inf
y∈X

{f(y) + g(x − y)} ;

see, e.g., Bauschke and Combettes [16, Chapter 12]. The function f ◻ g inherits mono-
tonicity and convexity from f and g, and is always cash invariant.

In the following we investigate OEU in more detail. In particular, we discuss whether
and where the supremum in (OEU) is attained, show uniqueness, and analyze the asso-
ciated �rst-order condition. For this analysis, we �rst investigate the function H in (4.1)
more closely.

4.5 Lemma. For every u ∈ U and every X ∈ X , the function H de�ned in (4.1) is concave
and of class C1 on (−Xmin,∞). Moreover, H is continuous at η = −Xmin.
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Proof. Concavity on (−Xmin,∞) is an immediate consequence of the proof of Theorem 4.3:
We know that

g(x0,x1) ∶= u (λu−1(x0) + (1 − λ)u−1(x1))
is convex if τu is concave. Therefore, for any 0 ≤ λ ≤ 1, η1,η2 ∈ R:

H(λη1 + (1 − λ)η2) = −β(λη1 + (1 − λ)η2) + αu−1 (E [u (X + λη1 + (1 − λ)η2)])
= −β(λη1 + (1 − λ)η2) + αu−1 (E [u (λ(X + η1) + (1 − λ)(X + η2))])
≥ −λβη1 + λαu−1 (E [u(X + η1)])

− (1 − λ)βη2 + (1 − λ)αu−1 (E [u(X + η2)])
= λH(η1) + (1 − λ)H(η2).

Di�erentiability on (−Xmin,∞) follows from the chain rule and dominated convergence,
using the fact that, for any �xed ε > 0, u′(X + η) is uniformly bounded from above and
from below and E[u(X + η)] ∈ (u(−Xmin + ε),u(∞)) for η ≥ −Xmin + ε. To establish
continuity at η = −Xmin, it su�ces to show that the function

f ∶ [−Xmin,∞) → [−∞,∞), f(η) ∶= u−1 (E [u (X + η)]) (4.2)

is continuous at η = −Xmin. Note that η ↓ −Xmin if and only if X + η ↓ X −Xmin; in this
case, as u′ > 0, we have u(X + η) ↓ u(X −Xmin). Monotone convergence implies

E[u−(X + η)] ↑ E[u−(X −Xmin)] ∈ [0,∞],

and dominated convergence yields

E[u+(X + η)] ↓ E[u+(X −Xmin)] ∈ [0,∞).

Thus we conclude that

E[u(X + η)] ↓ E[u(X −Xmin)] ∈ [−∞,∞).

Since E[u(X+η)] ∈ (u(0),u(∞)) for any η > −Xmin, right-continuity of u−1 yields continuity
at η = −Xmin.

Since H is concave by Lemma 4.5, we can formally de�ne

H(∞) ∶= lim
η↑∞

H(η) ∈ [−∞,∞).

We adopt this convention in all that follows to simplify notation. With this conven-
tion, Lemma 4.5 implies that the supremum in the de�nition (OEU) of ρu is attained in
[−Xmin,∞].

To establish uniqueness, we show that H is strictly concave on an interval that contains
the maximizer.

4.6 Lemma. Suppose that u ∈ U and X ∈ X , let the function H be de�ned as in (4.1), and
set

b ∶= sup{η > −Xmin ∶ H ′(η) > α − β} .
Then H is strictly concave on [−Xmin,b]. In particular, H is strictly concave on {H ′ ≥ 0}.
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Proof. By Lemma 4.5 the function H is concave and of class C1 on (−Xmin,∞). Hence it
su�ces to show that H ′′(η) < 0 whenever η ∈ (−Xmin,b), i.e., whenever η > −Xmin is such
that

H ′(η) = −β + α E[u′(X + η)]
u′(u−1(E[u(X + η)])) > α − β.

Thus in the following we demonstrate that H ′′(η) < 0 for all η > −Xmin with

E[u′(X + η)] > u′(u−1(E[u(X + η)])). (4.3)

Since u exhibits concave absolute risk aversion, the mappingX ↦ u−1(E[u(X)]) is concave.
Therefore, with f de�ned as in (4.2) above and for arbitrary λ ∈ [0,1], we have

f(λη1 + (1 − λ)η2) = u−1 (E [u(X + λη1 + (1 − λ)η2)])
= u−1 (E [u(λ(X + η1) + (1 − λ)(X + η2)])
≥ λu−1 (E [u(X + η1)]) + (1 − λ)u−1 (E [u(X + η2)])
= λf(η1) + (1 − λ)f(η2).

Hence f is concave. On the other hand, it follows as in the proof of Lemma 4.5 by
dominated convergence that f is twice continuously di�erentiable on (−Xmin,∞). Thus it
follows that

f ′′(η) =
E[u′′(X + η)]u′(u−1(E[u(X + η)])) −E[u′(X + η)]2 u

′′(u−1(E[u(X+η)]))
u′(u−1(E[u(X+η)]))

u′(u−1(E[u(X + η)]))2
≤ 0

or equivalently

E[u′′(X+η)]u′(u−1(E[u(X+η)])) ≤ E[u′(X+η)]2u
′′(u−1(E[u(X + η)]))
u′(u−1(E[u(X + η)])) , for all η > −Xmin.

(4.4)
We conclude that for all η ∈ (−Xmin,b) (again using dominated convergence to justify the
interchange of di�erentiation and expectation)

H ′′(η) = α
E[u′′(X + η)]u′(u−1(E[u(X + η)])) −E[u′(X + η)]2 u

′′(u−1(E[u(X+η)]))
u′(u−1(E[u(X+η)]))

u′(u−1(E[u(X + η)]))2

< α
E[u′′(X + η)]E[u′(X + η)] −E[u′(X + η)]2 u

′′(u−1(E[u(X+η)]))
u′(u−1(E[u(X+η)]))

u′(u−1(E[u(X + η)]))2

≤ α E[u′′(X + η)]
u′(u−1(E[u(X + η)]))2

(E[u′(X + η)] − u′ (u−1(E[u(X + η)])))

< 0,

where the strict inequalities are due to (4.3) and we use (4.4) in the third line. This
completes the proof.

Using Lemmas 4.5 and 4.6, we are in a position to give a precise characterization of the
maximizer η∗ in the de�nition (OEU). The �rst-order condition for an interior optimizer
η∗ in (OEU) is given by

αE [u′ (X + η∗)] = βu′(x), where x ∶= u−1 (E [u (X + η∗)]) . (4.5)
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Thus the (expected) marginal utility of X + η∗ equals the marginal utility of today's cer-
tainty equivalent of X + η∗. The following result provides a precise mathematical formula-
tion.

4.7 Proposition. Suppose that u ∈ U and X ∈ X , and let H(∞) ∶= limη↑∞H(η).

(i) The supremum in (OEU) is uniquely attained at η∗ ∈ [−Xmin,∞] where

η∗ ∶= sup{η ∈ (−Xmin,∞) ∶ αE [u′ (X + η)] ≥ βu′(x) with x ∶= u−1 (E [u (X + η)])} .

If η∗ ∈ (−Xmin,∞), then η∗ is the unique solution of the �rst-order condition (4.5).

(ii) If u satis�es

lim sup
η↑∞

u′(η + a)
u′(η + b) ≤ 1 for all a,b ∈ R,

then η∗ ∈ [−Xmin,∞).

(iii) If u(0) = −∞ and P (X =Xmin) > 0, then η∗ ∈ (Xmin,∞].

In particular, if the conditions in (ii) and (iii) hold, then the maximizer η∗ in (OEU) is
the unique solution of the �rst-order condition (4.5).

Proof. (i) If H is strictly increasing on (−Xmin,∞), then b = ∞ and the supremum
of H is attained at η∗ = ∞. Otherwise, if we de�ne b as in Lemma 4.6, then by
continuity and concavity, see Lemma 4.5, H attains its maximum in [−Xmin,b), and
strict concavity implies uniqueness of the maximizer.

(ii) Jensen's inequality implies that for η > −Xmin

H ′(η) = −β + α E [u′(X + η)]
u′ (u−1 (E [u(X + η)]))

≤ −β + αE [u′(X + η)]
u′ (E [X] + η)

≤ −β + α u′(Xmin + η)
u′ (E [X] + η) .

Hence the assumption on u implies that

lim sup
η↑∞

H ′(η) ≤ α − β < 0,

i.e., H is strictly decreasing for su�ciently large η > 0. In view of (i) this proves (ii).

(iii) If u(0) = −∞ and P (X = Xmin) > 0 then H(−Xmin) = −∞, so η∗ > −Xmin. This
completes the proof.

Before we address concrete speci�cations of OEU risk measures in Example 4.10 below,
we brie�y investigate the dependence of η∗ on the subjective time preference parameter
α. It is straightforward to check that, ceteris paribus, η∗ is an increasing function of the
investor's time preference α; see also Vinel and Krokhmal [133, Proposition 6]:
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4.8 Lemma. If α1 < α2, then η
∗(α1) ≤ η∗(α2)

Proof. Clearly,

−βη∗(α2) + α1u
−1 (E [u (X + η∗(α2))]) ≤ −βη∗(α1) + α1u

−1 (E [u (X + η∗(α1))]) . (4.6)

We deny the conclusion and suppose that η∗(α1) > η∗(α2). Then, due to (4.6) and to the
assumption that α1 < α2, we get

0 < β(η∗(α1) − η∗(α2)) < α2 (u−1 (E [u (X + η∗(α1))]) − u−1 (E [u (X + η∗(α2))])) ,

which implies

−βη∗(α2) + α2u
−1 (E [u (X + η∗(α2))]) < −βη∗(α1) + α2u

−1 (E [u (X + η∗(α1))]) .

The above equation, however, contradicts the de�nition of η∗(α2) which completes the
proof.

We note that the bigger α, the more capital η∗(α) the investor decides to borrow at
present to hedge against the risk of X. This behavior is intuitively understandable since
bigger values of α give the investor a greater reward from the investment in X + η∗(α). In
other words, if the investor attributes less value to the current possession of cash, then he
is consequently more aimed at borrowing risk capital at present and investing in the future
payo� X + η∗(α).

The extreme cases are covered by the following result:

4.9 Proposition. Suppose that u ∈ UDARA. Then,

(i) η∗ = −Xmin if α = 0, and

(ii) ρu(X) = −H(∞) = − limη↑∞H(η) if α = β.

Proof. For η >Xmin we have

H ′(η) = −β + α E [u′(X + η)]
u′ (u−1 (E [u(X + η)])) .

If α = 0 it follows that H ′(η) = −β, and hence η∗ = −Xmin. If α = β we obtain

H ′(η) = −β + β E [u′(X + η)]
g (E [u(X + η)]) ,

where
g(x) ∶= u′(u−1(x)).

Note that, if u ∈ UDARA, then

g′(x) = u
′′(u−1(x))
u′(u−1(x)) = −%u(u−1(x)) is increasing,

so g is convex. By Jensen's inequality, we conclude

H ′(η) ≥ −β + β = 0

for any η > −Xmin and consequently ρu(X) = − limη↑∞H(η).
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We now present examples of convex optimal expected utility risk measures.

4.10 Example. (a) For the logarithmic utility function u(x) = ln(x) with constant rel-
ative risk aversion x%u(x) = 1, Proposition 4.7 (ii) implies that η∗ is attained in
[−Xmin,∞) and

ρu(X) = − max
η>−Xmin

{−βη + α exp (E [ln (X + η)])} .

(b) For a CRRA utility function u(x) = 1
1−γ

(x1−γ − 1) with γ > 0, γ ≠ 1, Proposition 4.7
(ii) applies to show that η∗ is attained in [−Xmin,∞) and

ρu(X) = − max
η>−Xmin

{−βη + αE [(X + η)1−γ]
1

1−γ } .

(c) For u(x) = x, a direct computation of (OEU) yields:

ρu(X) = − sup
η>−Xmin

{−βη + αE[X + η]}

= − sup
η>−Xmin

{(α − β)η + αE[X]}

= (α − β)Xmin − αE[X].

Thus (OEU) reduces to a combination of the payo�'s worst-case value and its ex-
pected value; for α = β the discounted expected loss obtains.2

(d) For u(x) = 0, OEU equals the negative discounted worst-case value of X:

ρu(X) = − sup
η>−Xmin

{−βη} = −βXmin.

This characterizes extremely risk averse investors that refuse to accept any risk and
consequently set aside the maximum potential loss.3

(e) For a CARA utility u(x) = 1
γ (1 − exp(−γx)) with γ > 0, we have

ρu(X) = − sup
η∈R

{−βη + α(− 1
γ ) ln (1 − γE [ 1

γ (1 − exp(−γ(X + η)))])}

= − sup
η∈R

{−βη + α(− 1
γ ) ln (E [exp(−γ(X + η))])}

= − sup
η∈R

{−βη + α(− 1
γ ) ln (exp(−γη)E [exp(−γX)])}

= − sup
η∈R

{−βη + αη − α
γ ln (E [exp(−γX)])}

η∗=−Xmin= (α − β)Xmin + α 1
γ ln(E[exp(−γX)]).

In particular, in the limit α ↑ β we obtain the classical entropic risk measure. At the
end of this section, we return to this in a more general context.

2The functions in (c) and (d) are not strictly concave and therefore not in U . We consider these merely
formally here and interpret them as the limits of the utility functions u(x) = 1

1−γ
(x1−γ − 1) for γ ↓ 0 and

γ ↑ ∞, respectively.
3See Footnote 2.
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(f) Let us consider piecewise linear functions of the form u(x) = −γ1x
− + γ2x

+, γ1 ≥
1 > γ2 > 0, x− ∶= max{−x,0}, x+ ∶= max{x,0}. Obviously, these functions do not
ful�ll the conditions of De�nition 3.5. Nevertheless, they provide a convenient way
of representing utilities. Proceeding formally, we have for all X ∈ X :

ρu(X) = − sup
η∈R

⎧⎪⎪⎨⎪⎪⎩
− βη + α

⎛
⎝
− 1

γ1
(E [−γ1(X + η)− + γ2(X + η)+])−

+ 1

γ2
(E [−γ1(X + η)− + γ2(X + η)+])+

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

with the optimal solution

η∗ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−βF−1 (
1
α
−
γ2
γ1

1
β

1−
γ2
γ1

) , if γ1E [(X + η)−] − γ2E [(X + η)+] > 0,

−βF−1 (
1
α
− 1
β

γ1
γ2
−1

) , otherwise
, (4.7)

where F is the distribution function of the random variable X. If we drop the
assumption that γ2 needs to be positive and set γ1 = 1, γ2 = 0, i.e., u(x) = −(−x)+,
α = 1

λ , β = 1, we get

ρu(X) = inf
η∈R

{η + 1

λ
E [(−X − η)+]} =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∞, for λ > 1,

E[−X], for λ = 1,

AV@Rλ(X), for λ < 1,

where the identity for λ < 1 is due to [117, Theorem 1]. In this case, (4.7) simpli�es
to

η∗ = −F−1 (λ)

which is another way to derive AV@R for λ < 1:

ρu(X) = −F−1(λ) + 1

λ
∫

F−1(λ)

−∞
xdF (x)

= 1

λ
∫

λ

0
F−1(κ)dκ

= 1

λ
∫

λ

0
V@Rκ(X)dκ

= AV@Rλ(X).

For 0 < λ < 1, F−1(λ) is the λ-quantile of X.

It follows that we can formally regard AV@R as a special case of OEU with a
(piecewise) linear utility function and α > β. From an OEU perspective, this is a
degenerate case; in the more natural case α < β, it follows that ρu(X) = −∞ which is
reasonable since u induces the investor to spend ∞ dollars today knowing that less
money needs to be payed back.
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Note that the utility functions of (a) and (b) can be written as one single function:

u(x) =
⎧⎪⎪⎨⎪⎪⎩

1
1−γ

(x1−γ − 1) , γ > 0, γ ≠ 1

ln(x), γ = 1
,

since, by virtue of l'Hôpital's rule, logarithmic utility is the limiting case of power utility
for γ → 1:

lim
γ→1

x1−γ − 1

1 − γ = lim
γ→1

−x1−γ ln(x)
−1

= ln(x).

4.3 Further properties and comparative statistics

Given two utility functions u,v ∈ U and a �nancial position X ∈ X , it is natural to ask how
ρu(X) relates to ρv(X). The following result provides an answer to this question in terms
of the �degree of concavity� of u and v.

4.11 Proposition. Let u,v ∈ U . If u is more concave than v, i.e., if there exists a strictly

increasing concave function g such that u = g ○ v, then

ρu(X) ≥ ρv(X).

Proof. Proposition 3.8 implies that u is more concave than v if and only if

u−1 (E [u(X)]) ≤ v−1 (E [v(X)])

for all X ∈ X . It follows that

−βη + αu−1 (E [u(X + η)]) ≤ −βη + αv−1 (E [v(X + η)]) for all η ∈ R,

and taking the supremum on both sides yields ρu(X) ≥ ρv(X).

Proposition 4.11 is intuitively obvious: An investor with a more concave utility function
is more risk averse, hence requires more reserve capital than an investor with a less concave
utility function. Combining Example 4.10 (c), (d) with the argument in the proof of
Proposition 4.11, we obtain the following general upper and lower bounds for OEU:

4.12 Corollary. Suppose that u ∈ U . Then for all X ∈ X we have

−βXmin − α(E[X] −Xmin) ≤ ρu(X) ≤ −βXmin.

For positive payo�s, we obtain an alternative upper bound for OEU in terms of the
certainty equivalent:

4.13 Proposition. If X ∈ X is such that Xmin ≥ 0, then

ρu(X) ≤ −αu−1 (E [u (X)]) .
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Proof. If Xmin ≥ 0 then η ∈ (−Xmin,∞) for all η > 0, and thus

ρu(X) ≤ − lim
η↓0

H(η) = −H(0) = −αu−1 (E [u (X)])

using the continuity established in Lemma 4.5.

We wish to emphasize that Proposition 4.13 applies only to positive payo�s as in the
typical asset management applications; the other important case of positions that may lead
to negative payo�s is not covered by this result, so it is not true that ρu is less conservative
than ρCE.

Next, we return to the case α = β and identify the limit in Proposition 4.9 (ii) in terms
of the utility function's asymptotic absolute risk aversion. More precisely, if %u(x) → γ as
x ↑ ∞ and α = β, then OEU reduces to the trivial risk measures in Examples 4.10 (c) and
(e).

4.14 Proposition. Let α = β and u ∈ UDARA and set γ ∶= limx↑∞ %u(x). Then

ρu(X) =
⎧⎪⎪⎨⎪⎪⎩

β 1
γ ln (E [exp(−γX)]) , γ > 0

βE [−X] , γ = 0
.

Proof. De�ne

uγ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
γ (1 − exp(−γx)) , γ > 0

x, γ = 0
.

Proposition 4.9 implies that

ρu(X) = − lim
η↑∞

H(η).

Since u has decreasing absolute risk aversion and limx↑∞ %u(x) = γ, whereas uγ has constant
absolute risk aversion γ, it follows that for all η ∈ R we have

%u(X + η) ≥ %uγ(X + η) = γ.

On the other hand, for all γ0 > γ there exists some η0 ∈ R such that for all η > η0

%u(X + η) ≤ %uγ0 (X + η) = γ0.

Thus, following [114, Theorem 1], we have for all γ0 > γ

lim
η↑∞

{u−1
γ0 (E [uγ0(X + η)])} ≤ lim

η↑∞
{u−1 (E [u(X + η)])} ≤ lim

η↑∞
{u−1

γ (E [uγ(X + η)])} .

It follows that

lim
η↑∞

H(η) = lim
η↑∞

{−βη + αu−1
γ (E [uγ(X + η)])} Ex. 4.10 (c), (e)=

⎧⎪⎪⎨⎪⎪⎩

−β 1
γ ln (E [exp(−γX)]) , γ > 0

−βE [−X] , γ = 0
.
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The risk measure that appears in Proposition 4.14 is a variant of the well-known
entropic risk measure. It is obtained as a special case of OEU if we set α = β and
u(x) = 1

γ (1 − exp(−γx)) for some γ > 0:

ρu(βX) = β 1
γ ln (E [exp(−γβX)]) = βρent(X).

The entropic risk measure is introduced in [67] and [74]; for further information on ρent we
refer to Föllmer and Knispel [65] and the references therein.

Finally, we address the ranking of payo�s by OEU. If X ∈ X �rst-order stochastically
dominates Y ∈ X , then

E [v (X)] ≥ E [v (Y )] for every increasing function v

and thus ρu(X) ≤ ρu(Y ). More generally, X second-order stochastically dominates Y if

E [v (X)] ≥ E [v (Y )] for every concave increasing function v.

The following result shows that OEU also preserves second-order stochastic dominance.

4.15 Proposition. Suppose X,Y ∈ X are such that

E [v (X)] ≥ E [v (Y )]

for all increasing, concave functions v ∶ R → [−∞,∞). Then we have ρu(X) ≤ ρu(Y ) for

all u ∈ U .

Proof. Let u ∈ U and set

H(η,X) ∶= −βη + αu−1 (E [u (X + η)]) .

For any η ∈ R, de�ne vη(x) ∶= u(x + η), x ∈ R+. Then, by assumption, we have

αu−1 (E [vη(X)]) ≥ αu−1 (E [vη(Y )])

and it follows that

H(η,X) ≥H(η,Y ).

This applies for every η ∈ R; consequently

ρu(X) = − sup
η∈R

H(η,X) ≤ − sup
η∈R

H(η,X) = ρu(Y )

and the proof is complete.
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4.4 Homogeneity of OEU

The following theorem shows how homogeneity of ρu depends on the relative risk aversion
of u ∈ U . The theorem particularly speci�es when ρu is a coherent risk measure. Recall
that it is impossible for u ∈ U to have decreasing relative risk aversion.

4.16 Theorem. Suppose that u ∈ UIRRA and X ∈ X . Then,

(i) ρu(λX) ≤ λρu(X) for all λ ∈ [0,1], and

(ii) ρu(λX) ≥ λρu(X) for λ ∈ [1,∞).

If u ∈ UCRRA, then
ρu(λX) = λρu(X) for all λ ≥ 0.

Proof. ρu is a convex risk measure by Theorem 4.3. In particular, for λ = 0 we have
ρu(λX) = λρu(X) by (N). Since by [114, Theorem 6] for u ∈ UIRRA it follows that
1
λu

−1 (E [u(λX)]) is a decreasing function of λ > 0, we conclude that

1
λ
(−βη + αu−1 (E [u(λX + η)]))

is decreasing in λ for all η ∈ R. This implies that

− 1
λ sup
η∈R

{−βη + αu−1 (E [u (λX + η)])}

is increasing in λ, and therefore

ρu(λX) ≤ λρu(X), 0 ≤ λ < 1,

ρu(λX) = λρu(X), λ = 1,

ρu(λX) ≥ λρu(X), λ > 1.

By [114, Theorem 6] the same equivalence holds if �increasing� is replaced by �decreasing�.
Hence ρu is positively homogeneous for u ∈ UCRRA.

Recall that, as pointed out in Section 3.2, constant (or slightly increasing) relative risk
aversion is a reasonable assumption for real-world investors.

4.17 Corollary. ρu is a coherent risk measure for logarithmic and power utility, and for

the linear utility functions in Examples 4.10 (c) and (d).

To the best of our knowledge OEU is the only existing utility-based risk measure that
is coherent for power utility functions (ρCE is not even convex, ρOCE is not coherent, and
ρSR reduces to a worst-case risk measure for CRRA utility functions).
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4.5 Recoverability

This section deals with the problem of recovering the utility function u from a given risk
measure ρu. For �xed x1,x2 ∈ R with x2 < x1 we introduce the random variable

X̂p ∶=
⎧⎪⎪⎨⎪⎪⎩

x1, with probability 1 − p,
x2, with probability p,

and the related function

H(η,p) ∶= −βη + αu−1 ((1 − p)u (x1 + η) + pu (x2 + η)) for p ∈ [0,1].

The following lemma shows that H(η,p) converges uniformly to H(η,1) if p goes to 1.
This result will become particularly useful since it also provides a limit of OEU if p tends
to the boundary value 1 for random variables X̂p.

4.18 Lemma. For any u ∈ U

H(η,p) p↑1ÐÐ→
unif.

H(η,1) = −βη + α(x2 + η).

Proof. Since u is assumed to be concave, by Jensen's inequality

u−1 (E [u (X̂p + η)]) ≤ E [X̂p + η]

for all η ∈ R and consequently

u−1 (E [u (X̂p + η)])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥η+x2

−(η + x2) ≤ (1 − p)(x1 − x2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

for all η ≥ −x2. Thus,

sup
η>−x2

∣H(η,p) −H(η,1)∣ = α sup
η>−x2

∣u−1 (E [u (X̂p + η)]) − (η + x2)∣

≤ α sup
η>−x2

∣(1 − p)(x1 − x2)∣

p↑1ÐÐ→ 0.

The following result shows how to regain the utility function from a given optimal
expected utility risk measure.

4.19 Proposition. If u ∈ U is such that u(0) = 0, u′(0) ∶= limx↓0 u
′(x) = 1, then

u(x) = 1

α
lim
p↑1

( ∂
∂p
ρu(X̂0

p)) , with X̂0
p ∶=

⎧⎪⎪⎨⎪⎪⎩

x, with probability 1 − p, x > 0,

0, with probability p
.
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Proof. Firstly, let us consider

ρu(X̂0
p) = − sup

η≥0
H(η,p) = −H(η∗,p),

where, due to Proposition 4.7, η∗ = η∗(p) is the value which optimizes (OEU). With
Lemma 4.18 it holds that

H(η, p) p↑1ÐÐ→
unif.

H(η,1) = (α − β)η < 0 for all η > 0,

which implies that there exists some pf < 1 such that

H(η,p) < 0 for all η > 0 for all pf ≤ p ≤ 1.

This means that η∗ = 0 for all pf ≤ p ≤ 1 since H(0,p) = αu−1 ((1 − p)u(x)) > 0 if u(0) = 0.
The partial derivative of ρu(X̂0

p) with respect to p for pf ≤ p ≤ 1 is

∂

∂p
ρu(X̂0

p) =
∂

∂p
(−αu−1 ((1 − p)u(x) + pu(0)))

= −α −u(x) + u(0)
u′ (u−1((1 − p)u(x) + pu(0)))

and, due to u(0) = 0, u−1(0) = 0, u′(0) = 1, we have

1

α
lim
p↑1

( ∂
∂p
ρu(X̂0

p)) =
u(x) − u(0)

u′(0) = u(x),

which concludes the proof.

If u ∈ U such that u(0) ≠ 0 or u′(0) ≠ 1, and u satis�es the condition from Proposition 4.7
(ii), then, for any x > 0 and the related X̂0

p , (OEU) is optimized by some η∗x ∈ [0,∞). Thus,
we can apply Proposition 4.19 for the normalized utility function ũ which is related to u
through

ũ(x) = u(x + η
∗
x) − u(η∗x)

u′(η∗x)
.

Obviously, ũ ∈ U if u ∈ U and therefore, given any u ∈ U , Proposition 4.19 holds true for
the normalized counterpart ũ. We see that the normalized utility function ũ evaluated at
x is the compounded ( 1

α) in�nitesimal change of the risk of X̂0
p attaining x. In particular,

the utility function is, up to a�ne transformations, uniquely determined by ρu.
We now make use of Proposition 4.19 to recover u from OEU of Example 4.10 (e).

4.20 Example. Let ρu(X) = (α − β)Xmin + α 1
γ ln (E [exp(−γX)]). Then,

∂

∂p
ρu(X̂0

p) =
∂

∂p
(α1

γ
ln ((1 − p) exp(−γx) + p)) = α1

γ

− exp(−γx) + 1

(1 − p) exp(−γx) + p

which leads to the utility function

u(x) = 1

α
lim
p↑1

( ∂
∂p
ρu(X̂0

p)) =
1

γ
(1 − exp(−γx)) .
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4.6 Dual representation of OEU

This section includes the dual representation of OEU, where we mainly follow the textbook
of Föllmer and Schied [69] for the theory of robust representation of convex risk measures.
Our aim is to point out how the penalty function of the dual representation of OEU can
be understood as a supremal convolution of a (generalized) relative entropy. Note that in
this section we consider sequences of random variables {X(n)} and write

X
(n)
min ∶= ess infX(n)

for the left support of any X(n) ∈ X .
4.21 Remark. Throughout this section we make the technical assumptions that (Ω,F ,P )
does not have atoms and that L2(Ω,F ,P ) is separable. Under these assumptions, Jouini,
Schachermayer and Touzi [88, Theorem 2.1] have shown that law-invariance of a convex
risk measure on L∞(Ω,F ,P ) implies continuity from above. Thus optimal expected utility
risk measures are continuous from above, i.e., for any u ∈ U and any sequence {X(n)} ⊂ X
with X(n) ↓X for some X ∈ X , we have

ρu(X(n)) ↑ ρu(X).

If, however, {X(n)} is a sequence that increases pointwise to X ∈ X , but

lim
n→∞

X
(n)
min <Xmin,

i.e., there is a positive probability that limn→∞X
(n) has a another worst-case scenario

than X, then OEU typically captures this additional risk. This is the reason why ρu is in
general not continuous from below which is illustrated by the following example: Consider
any X ∈ X and the sequence {X(n)} ⊂ X given by

X(n) ∶=X − 1[0, 1
n
],

where we choose the probability space ([0,1],B([0,1]),λ) consisting of the real interval
[0,1] as the sample space, the Borel σ-algebra on [0,1] (characterized as the minimal σ-
�eld generated by the open intervals (a,b) on [0,1]) and, for any B ∈ B([0,1]), the Lebesgue
measure λ(⋅) de�ned as the sum of the lengths of the intervals contained in B. Note that
X(n) ↑X. Due to monotonicity of ρu,

inf
n∈R

ρu (X(n)) = inf
η∈R

inf
n∈R

{βη − αu−1 (E [u (X(n) + η)])}

≥ inf
η∈R

{βη − αu−1 (E [u (X + η)])}

= ρu(X),

where the inequality is due to the fact that for η ∈ [−Xmin, −Xmin + 1), X(n) + η attains
strictly negative values for all n ∈ R, while X + η is positive. Now, if we choose u ∈ U such
that the in�mum in

ρu(X) = inf
η∈R

{βη − αu−1 (E [u (X + η)])}

is attained uniquely at η∗ ∈ [−Xmin,−Xmin + 1), the above inequality is strict and we have
an example for OEU not being continuous from below.
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Since ρu is continuous from above, for X = L∞(Ω,F ,P ) it admits the dual representation

ρ(X) = sup
Q∈M1(P )

(EQ[−βX] − ϑmin(Q)),

due to Theorem 2.7, where ϑmin is the minimal penalty function. A formula for ϑmin is
given by [69, Remark 4.17 (a)]

ϑmin(Q) = sup
X∈X

{EQ[−βX] − ρ(X)} , (4.8)

i.e., for any probabilistic model Q ∈ M1(P ) we compute ϑmin as the worst case of the
expected value of −βX under Q, but reduced by ρ(X). Note that if ρ is a utility-based risk
measure, it is computed under the given probability measure P , �the one which is taken
most seriously� ([69, page 201]). From Remark 2.8 we know that the relative entropy of
any probability measure Q with respect to P is

H(Q ∣ P ) = sup
X∈X

{EQ[−βX] − ln (E [exp(−βX)])}

which justi�es the conclusion that the minimal penalty function (4.8) for the robust rep-
resentation of OEU for

u(x) = 1

γ
(1 − exp(−γx)) , γ > 0,

is just the relative entropy (up to an additive constant). Consequently, the (discounted)
negative certainty equivalent

ρCEα (X) = −αu−1 (E [u(X)])

generalizes the relative entropy since it has the minimal penalty function

ϑCEmin(Q) ∶= sup
X∈X

{EQ[−βX] + αu−1 (E [u(X)])} .

The optimal expected utility risk measure ρu includes the supremal convolution to this
generalization of the relative entropy:

ϑumin(Q) ∶= sup
X∈X

{EQ[−βX] + sup
η∈R

{−βη + αu−1 (E [u (X + η)])}}

= sup
X∈X

sup
η∈R

{EQ[−βX] − βη + αu−1 (E [u (X + η)])}

= sup
X∈X

sup
η∈R

{EQ[−β(X + η)] + αu−1 (E [u (X + η)])}

= sup
η∈R

{ sup
Xη∈X

{EQ[−βXη] + αu−1 (E [u (Xη)])}} ,

with Xη ∶=X + η.

4.7 Applications of OEU

In this section we illustrate and compare OEU, V@R and AV@R using simpli�ed real-
world examples of risk assessment. Further, we consider a one-period optimal investment
problem for OEU.
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4.7.1 Comparison of OEU with other risk measures

4.22 Example. An investor wants to put 10,000 in a corporate bond with maturity 4 years
and an annual interest rate of 2%. The estimated probability of default of the corporate
within the next 4 years is p. In the event of solvency the estimated loss given default is
70%. Thus the investor faces an investment opportunity with two scenarios: He either
makes a pro�t of 10,000 ⋅ (1.024 − 1) = 824 or he loses 7,000. The corresponding �nancial
position is

X =
⎧⎪⎪⎨⎪⎪⎩

824 with 1 − p,
−7,000 with p.

The investor has to decide how to evaluate this investment opportunity. V@R does not
turn out to be a good choice in this setting: Depending on p, V@R is either −β ⋅ 824 or
β ⋅ 7,000, but never attains strictly intermediate values. AV@R is β ⋅ 7,000 for p > λ and
tends to −β ⋅824 for p ↓ 0. However, AV@R is mostly close to −β ⋅824 or β ⋅7,000. Here, we
choose β = 0.95, λ = 0.05. On the other hand, ρu is a risk measure that is easy to interpret
and attains reasonable values for any choice of p: Consider an investor with a power utility
function u(x) = 1

1−γ
(x1−γ − 1) with γ = 10 and subjective rate of time preference α = 0.9.

Figure 4.1 illustrates these three risk measures as functions of the corporate's probability
of default p.

Figure 4.1: OEU, V@R, AV@R for a corporate bond.
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The corresponding function H(η) for p = 0.1 is illustrated in Figure 4.2. Note that the
supremum in (OEU) for p = 0.1 is attained at η∗ = 37,718 and ρu(X,0.1) = 3,067.

4.23 Remark. Note that for

X̂p =
⎧⎪⎪⎨⎪⎪⎩

x1, with 1 − p,
x2, with p,

x1,x2 ∈ R, x2 < x1,
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Figure 4.2: H(η) for p=0.1.

0.2 0.4 0.6 0.8 1 1.2 1.4

⋅105

−7,000

−6,000

−5,000

−4,000

−3,000

η

as we can see in Figure 4.1,

ρu(X̂p)
p↓0ÐÐ→ (α − β)(x2 − x1) − βx1,

whereas V@Rλ(X̂p), AV@Rλ(X̂p)
p↓0ÐÐ→ −βx1. The di�erence −(β − α)(x2 − x1) can be

interpreted as follows: As long as X can attain x2 with some positive probability p > 0,
OEU takes into account this �worst-case scenario�, and the investor sets aside a suitable
amount of risk capital. Note that in the special case α = β, OEU also yields

ρu(X̂p)
p↓0ÐÐ→ −βx1.

On the other hand, if p = 0, i.e., the �nancial position Xp only consists of the certain
payout x1, then due to Remark 4.4 we get

ρu(X̂p) = −βx1.

This highlights that, while OEU in general depends on the entire distribution of the payo�,
it is sensitive to rare, yet bad scenarios.

4.24 Example. Following Giesecke, Schmidt and Weber [78, Example 3.3], we modify the
payo� of the previous example by adding another possible payout x3 to X̂p. Formally, we
consider the �nancial position

X3
p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1, with 1 − p,
x2, with p

2 ,

x3, with p
2 ,

x1,x2,x3 ∈ R, x3 < x2 < x1.

Then we have
V@Rp(X3

p) = −βx1
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for any choice of x2 and x3 as well as

AV@Rp(X3
p) = −β

x2 + x3

2
.

Thus V@R is not suitable to measure the potential downside risk of X3
p , and even AV@R

is insensitive to changes of X3
p as long as x2 + x3 remains constant. OEU, on the other

hand, is non-constant on any hyperplane in the space (x1,x2,x3).

4.25 Example. Let −X be the portfolio loss of a �nancial institution which we assume
to be �oored log-normally distributed:

X = −(Z ∧ 3,000), where Z ∼ lnN(0,σ), σ ∈ (0,4).

We wish to compare the sensitivities of V@R, AV@R and ρu with respect to changes in
the volatility parameter σ. We choose the level λ = 0.05, ρu is evaluated with u(x) =

1
1−γ

(x1−γ − 1) for α = 0.9, β = 0.95, and γ = 5,10,20. Figure 4.3 illustrates the associated
risk measures as functions of σ.

Figure 4.3: Portfolio risk depending on standard deviation.
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OEU, V@R and AV@R all appear suitable for detecting risks due to heavy tails in the
portfolio distribution.

4.7.2 One-period investment in one safe asset and in one stock

This section deals with an application of the functional

Su(X) ∶= −ρu(X) = sup
η∈R

{−βη + αu−1 (E [u (X + η)])}

to a model of investment in a risky/safe pair of assets in a single period.
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To this end, we consider an investor with utility function u ∈ U and initial wealthW0 > 0
and assume that there is a riskless security that pays a rate of return equal to Rf ≥ 1 and
one stock to invest in that has the initial price x0 > 0 and at the end of the period has the
uncertain price

X̂p =
⎧⎪⎪⎨⎪⎪⎩

x1, with 1 − p,
x2, with p

, x1 > x0 > x2 ≥ 0

such that the return of the risky asset is

R =
⎧⎪⎪⎨⎪⎪⎩

R1 = x1
x0
, with 1 − p,

R2 = x2
x0
, with p

, R1 > Rf > R2 ≥ 0.

The dollar amount that the investor puts in the stock at the beginning of the period is
w, thus W0 − w is the initial investment in the riskless security. We consider here the
existence of short-sale constraints, i.e., w is restricted to lie in between 0 and W0. Hence,
the investor's wealth at the end of the considered period is

W1 = Rf(W0 −w) +Rw, 0 ≤ w ≤W0.

A similar model can be found, amongst others, in Arrow [6, Chapter 3] and in [81, Chapter
5]. Such a model is usually analyzed via the maximal expected utility principle where the
optimal investment w∗ is the solution of

sup
0≤w≤W0

E [u (W1)] . (EU-OP)

u−1 is increasing for any u ∈ U , thus an equivalent problem to (EU-OP) is given by

sup
0≤w≤W0

u−1 (E [u (W1)]) . (CE-OP)

Now, we rather want to analyze this one-period optimal investment model using a criterion
based on OEU, namely

sup
0≤w≤W0

Su (W1) (OEU-OP)

which, due to cash-invariance of OEU, is equivalent to

sup
0≤w≤W0

sup
η∈R

F (w,η) + βRfW0,

with
F (w,η) = −β(Rfw + η) + αu−1 (E [u (Rw + η)]) .

When we compare the solution of (OEU-OP) to the solutions of (CE-OP) and of (EU-OP),
respectively, we get:

4.26 Proposition. For any u ∈ U we have

sup
0≤w≤W0

Su(W1) ≥ α sup
0≤w≤W0

u−1 (E [u (W1)]) .
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Proof. In the present setting it is assured that W1 ≥ 0 for any possible choice of w. There-
fore we can follow from Proposition 4.13 that

Su(W1) ≥ αu−1 (E [u(W1)])
for all 0 ≤ w ≤W0. Hence we conclude that

sup
0≤w≤W0

Su(W1) ≥ α sup
0≤w≤W0

u−1 (E [u (W1)]) .

The comparison of the solutions of (OEU-OP) and (EU-OP) is a direct consequence of
the previous proposition:

4.27 Corollary. For any u ∈ U such that u(x) ≤ x for all x ∈ R+ we have

sup
0≤w≤W0

Su(W1) ≥ α sup
0≤w≤W0

E [u (W1)] .

The following corollary addresses the impact of risk aversion on the solution of (OEU-OP).
It is an immediate result of Proposition 4.11.

4.28 Corollary. If u,v ∈ U are such that u is more concave than v then

sup
0≤w≤W0

Su(W1) ≤ sup
0≤w≤W0

Sv(W1).

Thus the solution of (OEU-OP) is reduced if the investor switches from a utility func-
tion v to a more concave utility function u. Moreover, due to Theorem 4.3, we know that
Su ful�lls monotonicity. Consequently, if the safe return Rf increases (which leads to an
increase in W1), then also sup0≤w≤W0

Su(W1) increases.
The partial derivatives of F (w,η) are (using dominated convergence to justify the

interchange of di�erentiation and expectation):

∂F

∂w
= −βRf + α

E [ru′ (Rw + η)]
g(w,η) ,

∂F

∂η
= −β + αE [u′ (Rw + η)]

g(w,η) ,

with
g(w,η) = u′ (u−1 (E [u (Rw + η)])) .

An implicit solution to (OEU-OP) is given by

w̄OEU = 1

R1 −R2
((u′)−1 (β

α

g(w̄OEU,η̄OEU)(Rf −R2)
(1 − p)(R1 −R2)

) − (u′)−1 (β
α

g(w̄OEU,η̄OEU)(R1 −Rf)
p(R1 −R2)

)) ,

η̄OEU = −R1w̄OEU + (u′)−1 (β
α

g(w̄OEU,η̄OEU)(Rf −R2)
(1 − p)(R1 −R2)

) ,

thus the optimal amount of money invested in the risky asset can be regarded as

w∗
OEU =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, if w̄OEU ≤ 0,

w̄OEU, if 0 < w̄OEU <W0,

W0, if w̄OEU ≥W0

.

Let us compare the optimal investment in the risky asset for (OEU-OP) and (EU-OP)
for the exponential utility function.
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4.29 Example. For u(x) = 1
γ (1 − exp(−γx)), γ > 0, w̄OEU can be explicitly solved:

w̄OEU = 1

R1 −R2
(−1

γ
ln(β

α

g(w̄OEU,η̄OEU)(Rf −R2)
(1 − p)(R1 −R2)

) + 1

γ
ln(β

α

g(w̄OEU,η̄OEU)(R1 −Rf)
p(R1 −R2)

))

= −1

γ

1

R1 −R2
ln

⎛
⎜
⎝

β
α

g(w̄OEU,η̄OEU)(Rf−R2)

(1−p)(R1−R2)

β
α

g(w̄OEU,η̄OEU)(R1−Rf )

p(R1−R2)

⎞
⎟
⎠

= −1

γ

1

R1 −R2
ln( p

1 − p
Rf −R2

R1 −Rf
) .

(EU-OP), on the other hand, takes the form

sup
0≤w≤W0

E [u (W1)] = sup
0≤w≤W0

E [1

γ
(1 − exp(−γW1))]

= sup
0≤w≤W0

E [1

γ
(1 − exp(−γ(Rf(W0 −w) +Rw))]

= sup
0≤w≤W0

G(w),

where we denote

G(w) ∶= 1

γ
(1 − exp(−γRf(W0 −w))E [exp(−γRw)]) .

Thus
G′(w) = exp(−γRf(W0 −w))E [(R −Rf) exp(−γRw)]

and the �rst-order condition for an interior optimizer w̄EU is given by

(1 − p)(R1 −Rf) exp(−γR1w̄EU) + p(R2 −Rf) exp(−γR2w̄EU) = 0.

which is equivalent to

exp(−γ(R1 −R2)w̄EU) =
p(Rf −R2)

(1 − p)(R1 −Rf)
,

and consequently

w̄EU = −1

γ

1

R1 −R2
ln( p

1 − p
Rf −R2

R1 −Rf
) .

Thus the optimal solutions to (OEU-OP) and (EU-OP) coincide for expected utility in-
vestors.

We conclude that the functional Su suits for setting up an optimal investment problem
that is similar to a classical expected utility principle while Su additionally satis�es eco-
nomically meaningful properties such as monotonicity, shift additivity and preservation of
cash amounts.
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CHAPTER 5

Implied risk aversion: An alternative rating system for retail
structured products

Structured products for retail clients, or retail structured products (RSPs), are an important
asset class for retail investors. Such products, by securitizing the associated risks, open
up the possibility to invest in a large variety of national and international markets. The
universe of available RSPs is large, and RSPs with widely varying risk pro�les, payo�
structures and underlying risks are abundant. Therefore, particularly for less sophisticated
retail clients, it is important to provide a simple, easily understandable �rating� of RSPs
that indicate whether such a product is attractive, by taking into account both the upside
potential and the downside risk of the RSP's cash �ows. This is highlighted by the �ndings
of Wallmeier [135], who shows that many retail clients are not fully aware of the risks
involved in such contracts, and those of Cao and Rieger [27], who demonstrate that simple
rules based on expected payo�s and downside risk measures such as value at risk (V@R)
may be misleading. This is particularly important since the ratings of Deutscher Derivate
Verband (DDV), which is the leading provider of rating information in the German RSP
market, are based on V@R. In addition, retail investors may be subject to behavioral
biases including, for instance, probability misestimation; see Rieger [120]. Moreover, due
to, e.g., information asymmetries, issuers may be able to charge margins or fees that can
render some products unattractive; see Henderson and Pearson [85]. However, retails
clients are not necessarily able to realize this due to potentially incorrect beliefs, see Hens
and Rieger [86], or low informational e�ciency, see Schro�, Meyer and Burghof [125].
This overpricing, which is addressed in detail in Section 5.1, is increasing with product
complexity, see Celerier and Vallee [29], and might become problematic particularly for
retail investors, as individuals with lower competence levels are drawn to such payo�s;
see Breuer and Perst [25] for a case study with reverse convertible bonds. However, retail
investors are also at a disadvantage for simpler payo�s such as vanilla or barrier options;
see Rosetto and van Bommel [122] or Wilkens and Stoimenov [141].

Therefore the objective of this chapter is to provide a comprehensive, integrated risk
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measure for (net payo�s of) RSPs as an alternative to existing rating methodologies. Build-
ing on the notion of optimal expected utility risk measures as introduced in Chapter 4,
we introduce implied risk aversion as a coherent RSP rating methodology. In contrast to
purely downside risk measures such as V@R or AV@R, implied risk aversion takes into
account both the upside potential and the downside risks of such products. In addition,
implied risk aversion is easily interpreted in terms of an individual investor's risk aversion:
A product is attractive (unattractive) for an investor if its implied risk aversion is higher
(lower) than his individual risk aversion. We illustrate our approach in a case study with
more than 15,000 warrants on DAX® and �nd that implied risk aversion is able to iden-
tify favorable products; in particular, we show that implied risk aversion is not necessarily
increasing with respect to the strikes of call warrants, and that it con�rms the intuitively
obvious fact that put warrants are generally not attractive instruments for retail investors
that assume positive expected returns.

The chapter is structured as follows: In Section 5.1 we provide a brief overview of
the German market for RSPs. Section 5.2 is the core theoretical part of this chapter:
We �rst discuss some generalities on ratings and risk measures and introduce the novel
notion of fully supported risk measures in Section 5.2.1. In Section 5.2.2 we point out
some weaknesses of V@R-based evaluations of RSPs. In Section 5.2.3 we propose implied
risk aversion as an alternative rating of RSPs that overcomes many of the drawbacks
of existing approaches. We introduce a rating system for RSPs based on implied risk
aversion in Section 5.2.4 and relate this system to real-world risk aversion in Section 5.2.5.
Section 5.3 presents several models for asset dynamics that we use for our simulations and
illustrations in Section 5.4, where we investigate in detail a total of 15,377 warrants on the
German blue-chip index DAX®.

This chapter is an extended version of Fink, Geissel, Sass and Seifried [61] which has
been submitted to Journal of Banking and Finance.

5.1 Structured retail warrants: The German market

Before we address the measurement and quanti�cation of risks in RSPs, we brie�y re-
view the institutional background and structure of the German market for RSPs. In this
context, a structured product is a package of derivatives in the format of a bearer bond
(i.e., with counterparty risk) issued by a bank or an investment house. The contract
details are usually �xed in a prospectus that forms the legal basis of the corresponding
RSP. The �rst products issued were classical warrants, which are basically cash-settled
options with the respective issuer's credit risk on top. Over time, more complex types
of products have evolved. This development peaked around the Lehman crisis, which
can be viewed as a structural break: dwindling demand by retail investors due to fallen
con�dence in the credit worthiness of banks, combined with ambitious e�orts by Euro-
pean and German regulating authorities (ESMA and BaFin) have led to a consolida-
tion of the RSP market. With a total outstanding amount of around EUR 75.2 billion
(April 2015, see http://www.derivateverband.de/ENG/Statistics/MarketVolume), the
market for structured products remains a signi�cant part of Germany's �nancial market
for retail investors. Simpler product types such as classical warrants account for 16.1
percent of the EUR 5 billion total monthly trading volume at RSP exchanges (April
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Figure 5.1: Sketch of the German RSP market (client-client trading on exchanges is neg-
ligible).
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2015, see http://www.derivateverband.de/ENG/Statistics/StockExchangeTurnover),
and it appears safe to assume an even bigger share in the direct trading/OTC domain.

The issuer of a RSP is typically the sole provider of liquidity in its products; see
Figure 5.1. Clients have two ways of buying: either they trade directly/OTC via their
respective brokers, or they place an order at an exchange � Frankfurt (Börse Frankfurt)
and Stuttgart (EUWAX) are the most important ones. Here, in theory, clients can also
trade with each other directly, but the amount of this type of trading is negligible; most
of the liquidity is provided by the relevant issuer. Trading hours for direct trade are
usually from 08:00 � 22:00 local time, with possible di�erences for speci�c product types
or underlyings. Exchanges, on the other hand, open at 09:00 and close at 20:00 local time,
and issuers have themselves committed to providing a certain amount of liquidity if their
products are listed in the premium segments (this is usually the case, especially for DAX®

warrants). When a client's order is executed, the issuer will hedge, for instance, via a
larger listed-option exchange; for the DAX® investigated in this chapter, this would most
likely be EUREX.

The market for RSPs has some unique features and is in itself of special interest for
researchers � an excellent overview of the recent literature can be found in Entrop, Schober
and Wilkens [58]. As noted above, although there exists some client-to-client trading, the
large majority of trades is carried out directly between a client and the issuing investment
bank; trading an RSP with a �nancial institution other than the issuing party is not
possible. This opens a potentially huge pro�t opportunity for these institutions � which is
mostly only restricted due to the fact that falling trading volume in recent years have made
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the market highly competitive; see Döhrer, Johanning, Steiner and Völkle [51] for a current
and detailed analysis of priced margin (PnL) with respect to available product types. In
particular, it is di�cult to set up arbitrage positions using RSPs. This implies that RSPs
are typically held for the medium or long term, often until maturity, and highlights the
importance of RSP ratings for buyers of these products.

There exists a growing literature on RSPs for retail clients. Early contributions focused
on the overpricing mentioned above (i.e., priced-in PnL to be earned by the selling banks),
starting with Chen and Kensinger [30] and Chen and Sears [31] for the US market and
Wilkens, Erner and Röder [140] for Germany. Later on, Stoimenov and Wilkens [127] put
forth a lifecycle hypothesis, i.e., the notion that overpricing diminishes over time when the
issuer amortizes his pro�ts by selling the products around their issuance time. A related
literature investigates inter- and intraday pricing e�ects for 'turbos' (basically, barrier
options), see [58], as well as classical warrants; see, e.g., ter Horst and Veld [130] for a price
comparison between warrants and classical exchange-listed options (in the Netherlands),
Schmitz and Weber [124] on retail investor behavior or Baule and Blonski [15] on issuer
pricing strategies based on clients' demand.

5.2 Risk classi�cations of retail structured products

In this section we provide the theoretical framework and background for ratings of RSPs.
The main tool is the well-known notion of risk measures as presented in Chapter 2. We
use an optimal expected utility risk measure as introduced in Chapter 4, and introduce
the associated implied risk aversion as an alternative rating system for RSPs.

5.2.1 Risk measures for retail structured products

We refer to Chapter 2 for the formal de�nitions of a �nancial position and the risk-free

discount factor β. In particular, in the context of RSP investments, X(ω) > 0 means the
investor has made a pro�t X.

To assess the risk-return pro�le of a given RSP, we are interested in a map

ρ ∶ X → R

that represents the �riskiness� of its payo� less its costs, X. We consider ρ to be a risk
measure, hence the natural conditions for ρ are given in De�nition 2.1. Note that positive
homogeneity is a crucial property for our purposes: The rating of an RSP should not
depend on the amount invested, which means that the risk measure scales linearly in the
net payo�.

In the following we recall some features of V@R and AV@R as de�ned in Example 2.4.
While average value at risk is a coherent measure, value at risk fails to be convex. Both
share the property that they focus exclusively on the downside of the payo� distribution,
which obviously limits their scope for investors that wish to evaluate the risk-return pro�les
of RSPs. Formally, neither value at risk nor average value at risk are fully supported in
the sense of De�nition 5.1 below. Therefore we rather turn to risk measures that take into
account the entire distribution of the �nancial position; these are typically utility-based;
see Chapter 3 for some well-known examples of utility-based risk measures.
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The optimal expected utility risk measure (OEU) as introduced in Chapter 4 constitutes
another class of utility-based risk measures. OEU is a convex risk measure for any u ∈ U ;
see Theorem 4.3. Moreover, if u has constant relative risk aversion (CRRA), i.e.,

u(x) = 1
1−γ

(x1−γ − 1) ,

for some γ > 0, γ ≠ 1, then ρu is a coherent risk measure; see Theorem 4.16. In this
case, the supremum in (OEU) is attained uniquely at η∗X ∈ [−Xmin,∞) by Proposition 4.7
(ii). Recall that to the best of our knowledge, OEU is the only existing utility-based risk
measure that is (non-trivial and) coherent if u has constant relative risk aversion, which is
a reasonable assumption; see Section 3.2.

Investments in RSPs can lead to signi�cant losses on the one hand, and to potentially
large gains on the other. In particular, the investor may be willing to tolerate a signi�cant
downside risk if the product also o�ers a su�ciently high expected return, see Armbruster
and Delage [5]. A fair assessment of a RSP's risk-return pro�le should therefore take into
account both the up- and the downside of the payo� distribution. More generally, we
formalize this idea in the following de�nition.

5.1 De�nition. A risk measure ρ is called fully supported if

ρ(X) > ρ(Y ) for all X,Y ∈ X such that X ≤ Y,X ≠ Y.

In contrast to purely downside risk measures, such as value at risk or average value at
risk, a fully supported risk measure is able to distinguish between �nancial positions with
identical downsides, but di�erent upsides. This is not necessarily the case for standard risk
measures: For instance, the value at risk and average value at risk of a vanilla call and a
capped call with the same maturities, strikes and underlying are identical if they are not
too deep in the money. We next demonstrate that OEU is fully supported.

5.2 Theorem. If u is a CRRA utility function, the optimal expected utility risk measure

ρu is fully supported.

Proof. For X,Y ∈ X with X ≤ Y , X ≠ Y we have

ρu(Y ) = − sup
η>−Ymin

{−βη + αu−1 (E [u (Y + η)])}

≤ − sup
η>−Xmin

{−βη + αu−1 (E [u (Y + η)])}

≤ βη∗X − αu−1 (E [u (Y + η∗X)])
< βη∗X − αu−1 (E [u (X + η∗X)]) ≤ ρu(X),

where the strict inequality is due to the fact that E[u(X + η∗X)] < E[u(Y + η∗X)].

In summary, we have demonstrated that OEU is a fully supported, coherent risk mea-
sure for every CRRA utility function, and hence satis�es all conditions required for an
integrated valuation of RSPs.
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5.2.2 Weaknesses of rating RSPs with V@R

V@R is a well-established methodology in regulatory risk management. In the context of
structured products, the European Union approved new V@R-based regulation on mutual
funds called UCITS IV (Undertakings for Collective Investment in Transferable Securities,
fourth edition) in 2009, see European Union [59] and a regulation on prudential require-
ments for credit institutions and investment �rms in 2013, see European Union [60]. Since
2005, DDV also provides a V@R-based rating of structured products on the German mar-
ket, based on a �xed level of λ = 0.01 and a 10-day holding period; see Döhrer, Johanning,
Steiner and Völkle [50].

DDV implements their method in six steps:

1. Simulation of the price of the underlying based on a two-year price history and
simulation of market parameters and risk factors (such as price of the underlying,
dividends, implied volatility, risk-free interest rates, issuer's interest rate and currency
risks)

2. Structuring, i.e., decomposition of products into their speci�c (option) components

3. Evaluation of the product at the initial date (P0)

4. Evaluation of the product at the end of the holding period (PT ) based on the simu-
lation in (1.)

5. Calculation of the product's return distribution

6. Derivation of the 1% V@R at the end of the holding period to obtain the price risk
of the RSP

In addition, DDV separately computes further risk contributions (currency risk, volatility
risk, interest rate risk, counterparty risk) and aggregates these into their V@R assessments;
see http://www.derivateverband.de/ENG/Transparency/ValueAtRisk. In the following
we illustrate some potential drawbacks of such V@R-based rating systems. We consider
structured products

(i) where for a given V@R based rating, the largest achievable return is not bounded.

(ii) which have the same V@R but have entirely di�erent payo�s.

(iii) where the V@R leads to a product which is not obviously the better choice.

5.3 Example. (i) Cao and Rieger [27] construct RSPs from four call options that satisfy
a given V@R constraint, while their expected returns can reach any size. Thus an
investor that naively selects the RSP with the the largest expected return in a given
risk class might opt for a product that is not truly appropriate for his risk preferences,
overlooking potentially high risks.
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(ii) This scenario is ful�lled by (almost) any investment of, say EUR 10,000, in short-
term, at-the-money call warrants with payo� Xcall

i on the same underlying. Obvi-
ously, if we consider V@R at maturity, we get

V@R0.01(Xcall
i ) = 10,000 for all i.

For example, consider the following calls on DAX®:

Table 5.1: 5-day call warrants on DAX® rated equally.
WKN Issuer Strike Ask Underlying V@R

XM2HA5 Deutsche Bank 11,300 5.40 11,830.66 10,000
XM2HAK Deutsche Bank 12,000 0.32 11,831.29 10,000

Clearly, the payo�s of these calls are qualitatively di�erent. For instance, the like-
lihood of total loss is higher the higher the strike. On the other hand, warrants
with higher strikes o�er more leverage and may therefore be attractive for investors
that value the RSP's upside potential. In summary, it is quite clear that in such a
situation rating RSPs with V@R does not give investors helpful information for their
investment decisions.

(iii) Consider short-term call warrants that are deep in the money. Since value at risk,
by de�nition, only takes account of the worst 1 percent of the simulated outcomes
of the underlying, we obtain a smaller V@R the smaller the strike of the call option.
However, one might argue that the payout pro�les of these products are nearly iden-
tical, and that the worst-case scenario of a total loss only applies in case of a severe
market crash, which will a�ect all warrants equally. In additional, higher strike prices
lead to increased leverage, which might make these products more attractive to some
investors. The following pair of call warrants on DAX® illustrates this point:

Table 5.2: 5-day call warrants on DAX® with potentially misleading V@Rs.
WKN Issuer Strike Ask Underlying V@R

XM2H9D Deutsche Bank 10,000 18.32 11,830.38 3,339
XM2H9V Deutsche Bank 10,800 14.32 11,830.46 5,927

The above examples illustrate that rating systems may mislead unsophisticated investors
who are not able to take into account the exact payo� pro�le or the complete return
distribution. However, it is exactly for such investors that RSPs are designed. Thus there
appears to be a need for an alternative rating system that is suitable for unsophisticated
retail clients.

Finally we give an example of a simple Bernoulli-type payo� in order to illustrate that,
in contrast to V@R and AV@R, OEU is sensitive with respect to changes in the amount
of both, potential losses and gains of X.
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5.4 Example. We consider the �nancial position

X =
⎧⎪⎪⎨⎪⎪⎩

−l with p = 0.5,

g with p = 0.5,

where l ≥ 0 is the potential loss and g ≥ 0 is the potential gain of the position. For this
example we choose α = 0.9, β = 0.95, λ = 0.05 and calculate OEU for a CRRA utility
function with risk aversion parameter γ = 3. Figures 5.2, 5.3 and 5.4 illustrate OEU, V@R
and AV@R as functions of l and g.

Figure 5.2: V@R as a function of l and g.

0
20

40
60

80
100

0
20

40
60

80
100
−40

−20
0

20

40

60

80

100

lossgain

V
@
R

Figure 5.3: AV@R as a function of l and g.
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Figure 5.4: OEU as a function of l and g for γ = 3.
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Figures 5.2 and 5.3 illustrate that V@R and AV@R do not o�er any qualitative infor-
mation to an investor as they just equal the potential loss of X. By contrast, we note that
OEU increases for decreasing amounts of potential gains as well as for ever larger poten-
tial losses; see Figure 5.4. In particular, ρu is negative if the investor values the upside
potential more than possible losses; a negative risk assessment seems obviously reasonable
if, for example, l = 0.

5.2.3 Implied risk aversion

In the following we develop a utility-based rating system for RSPs. As demonstrated in
Section 5.2.1, OEU is a fully supported and coherent risk measure for a CRRA utility
function with relative risk aversion γ > 0. Thus we base our rating system on OEU of the
form

ρu(X,γ) = ρu(X) = − max
η>−Xmin

{−βη + αE [(X + η)1−γ]
1

1−γ } , X ∈ X .

As explained in a short note below Example 4.10, we set u(x) = ln(x) for γ = 1, so

ρu(X,1) = − max
η>−Xmin

{−βη + α exp (E [ln(X + η)])} , X ∈ X .

By Jensen's inequality, ρu(X,γ) is strictly increasing in γ unless X is deterministic; for
deterministic X, ρu(X,γ) is obviously constant. Hence we can rate the product X by the
largest value γ > 0 such that an investor with relative risk aversion γ considersX attractive:

5.5 De�nition. For any X ∈ X we de�ne the implied risk aversion γ0(X) via

γ0(X) ∶= inf{γ > 0 ∶ ρu(X,γ) ≥ 0}

where by convention inf ∅ ∶= ∞.
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Note that, if ρu(X,γ) = 0 for some γ > 0, then that value is unique and γ0(X) = γ. On
the other hand, we have γ0(X) = ∞ if ρu(X,γ) < 0 for all γ > 0, and γ0(X) = 0 if ρu(X,γ) ≥
0 for all γ > 0. Intuitively, an investor with risk aversion γ0(X) is indi�erent between the
�nancial position X and a zero investment; the position X is favorable (unfavorable) for
any investor with γ < γ0(X) (respectively, γ > γ0(X)). In particular, note that the smaller
γ0(X), the riskier (i.e., less attractive) the product. Here and in all that follows, we �x
the remaining parameters

α = 1

1 + 0.2 ⋅ T /365
and β = 1

1 + 0.005 ⋅ T /365
.

This corresponds to a risk-free rate of 0.5% p.a. and a subjective rate of time preference
of 20% p.a.,1 where T denotes the investor's time horizon in days (typically, T = 90 days).

5.6 Remark. Alternatively, one might analogously construct a rating based on utility func-
tions with constant absolute, rather than relative, risk aversion or, in fact, any parametric
family of utility functions. However, as shown in Section 5.2.1, implied risk aversion as
de�ned above is the only choice that leads to a coherent risk measure, and thus makes the
implied rating independent of the amount invested.2

We illustrate implied risk aversion with a simple RSP example.

5.7 Example. Consider a hypothetical investment of EUR 10,000 into a call warrant on
DAX®:

Table 5.3: 5-day call warrant.
WKN Issuer Strike Ask Underlying

XM2HA9 Deutsche Bank 11,500 3.50 11,829.89

The price of the underlying is simulated as a geometric Brownian motion with drift and
volatility parameters estimated on the basis of historical data; see Section 5.3 for details.
The cumulative distribution of the product's net return looks as follows:

1We show in Section 5.4.1 below that our results are robust with respect to alternative speci�cations of
α.

2Even more generally, the approach here can also be used for parametric families of downside risk
measures; e.g., one may de�ne λV@R0 (X) ∶= P (X ≥ 0) as the probability of not making a loss from an
investment X, or λAV@R0 as the level such that the mean V@R for all λ ≥ λAV@R0 equals zero. Such
constructions su�er from the fact that downside risk measures are not fully supported.
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Figure 5.5: Cumulative distribution function of X.
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Clearly, an evaluation of the product with V@R yields the trivial result

V@R0.01(X) = 10,000.

By contrast, let us consider implied risk aversion: Figure 5.6 displays ρu(X,γ) as a function
of the investor's relative risk aversion γ:

Figure 5.6: OEU depending on γ.
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In particular, in this example the implied risk aversion of X is given by

γ0(X) = 3.1703.
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The following result summarizes the main properties of implied risk aversion and pro-
vides some justi�cation to use implied risk aversion for the classi�cation of RSPs.

5.8 Theorem. For all X,Y ∈ X the following properties hold:

(i) γ0 ful�lls monotonicity: γ0(X) ≤ γ0(Y ) whenever X ≤ Y .

(ii) γ0 supports diversi�cation: γ0(λX +(1−λ)Y ) ≥ min{γ0(X),γ0(Y )} for every 0 ≤ λ ≤
1.

(iii) γ0 is invariant with respect to the amount invested: γ0(λX) = γ0(X) for all λ ≥ 0.

(iv) γ0 preserves second-order stochastic dominance: γ0(X) ≤ γ0(Y ) if E[v(X)] ≤ E[v(Y )]
for all increasing, concave functions v ∶ R→ [−∞,∞).

Proof. The stated properties follow from the de�nition of implied risk aversion and some
results on OEU from Chapter 4:

(i) Let X,Y ∈ X such that X ≤ Y . Due to Theorem 4.3, for any γ > 0, we have

ρu(X,γ) ≥ ρu(Y,γ). (5.1)

Monotonicity of γ0 can easily be checked for X,Y ∈ X such that γ0(X),γ0(Y ) ∈ {0,∞}
by De�nition 5.5. In order to prove monotonicity for 0 < γ0(X),γ0(Y ) < ∞, note
that (5.1) particularly implies

ρu(X,γ0(Y )) ≥ ρu(Y,γ0(Y )) ≥ 0,

where the last inequality follows from De�nition 5.5. Consequently,

γ0(Y ) ∈ {γ > 0 ∶ ρu(X,γ) ≥ 0}

and thus γ0(X) ≤ γ0(Y ) due to De�nition 5.5.

(ii) Without loss of generality we assume that γ0(X) = min{γ0(X),γ0(Y )}. If γ0(X) = 0
the conclusion follows easily. We therefore only consider the case 0 < γ0(X) and deny
the conclusion and suppose that γ0(λX+(1−λ)Y ) < γ0(X). Then, by De�nition 5.5:

ρu(X,γ0(λX + (1 − λ)Y )) < 0 and ρu(Y,γ0(λX + (1 − λ)Y )) < 0,

thus, due to Theorem 4.3:

ρu(λX + (1 − λ)Y,γ0(λX + (1 − λ)Y )) ≤ λρu(X,γ0(λX + (1 − λ)Y ))
+ (1 − λ)ρu(Y,γ0(λX + (1 − λ)Y ))

< 0

which contradicts the de�nition of γ0(λX+(1−λ)Y ) and thereby concludes the proof.

(iii) From Theorem 4.16 we know that for any γ > 0

ρu(λX,γ) = λρu(X,γ) for all λ ≥ 0.

Therefore

inf{γ > 0 ∶ ρu(X,γ) ≥ 0} = inf{γ > 0 ∶ ρu(λX,γ) ≥ 0} for all λ ≥ 0.
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(iv) Theorem 4.15 implies that for any γ > 0 we have ρu(X,γ) ≥ ρu(Y,γ) if E[v(X)] ≤
E[v(Y )] for all increasing, concave functions v ∶ R→ [−∞,∞). Thus, analogously to
the proof of monotonicity, we conclude that

γ0(X) ≤ γ0(Y ).

Properties (i) and (iv) ensure that implied risk aversion is consistent with �obvious�
rankings by monotonicity, while (ii) shows that implied risk aversion encourages diversi�-
cation to reduce total risk. Importantly, property (iii) guarantees that a product's implied
risk aversion is independent of the amount invested into that product; equivalently, the
rating of a given product X is the same as that of a positive multiple λX. Thus implied
risk aversion assesses only the risk-return tradeo�, while the decision how much capital to
invest is left to the investor.

5.2.4 Implied risk aversion as a rating system

DDV categorizes RSPs into one of �ve risk classes. These are distinguished by their simu-
lated V@R for a hypothetical investment of EUR 10,000 in the relevant RSP; see Table 5.4.

Table 5.4: DDV classi�cation from [50, Figure 5].
risk class thresholds in % investor type

1 0 < V@R0.01 ≤ 2.5 risk averse
2 2.5 < V@R0.01 ≤ 7.5 limited willingness to take risks
3 7.5 < V@R0.01 ≤ 12.5 willing to take risks
4 12.5 < V@R0.01 ≤ 17.5 increased willingness to take risks
5 17.5 < V@R0.01 ≤ 100 speculative

We now convert these risk classes into a system based on implied risk aversion. For
this purpose, we consider an investment of EUR 10,000 for 90 days in a �nancial product
with a log-normal distribution. The associated drift parameter µ is taken from a maximum
likelihood estimation based on a 2-year DAX® price history; the associated volatility σ
is computed in such a way that the payo� attains the threshold V@R in Table 5.4. Then
we use this log-normal product to determine the implied threshold risk aversion γ0. The
resulting rating scheme is presented in Table 5.5.

Table 5.5: Rating system based on implied risk aversion.
classi�cation threshold risk aversion investor type

1 29.5 < γ0 risk averse
2 11.9 < γ0 ≤ 29.5 limited willingness to take risks
3 6.4 < γ0 ≤ 11.9 willing to take risks
4 4.1 < γ0 ≤ 6.4 increased willingness to take risks
5 γ0 ≤ 4.1 speculative

A survey among retail investors in Germany carried out by DDV [47] shows that typical
investors' risk preferences cover all �ve rating classes; see Table 5.6.
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Table 5.6: Risk classes among private investors due to [47].
risk class 1 2 3 4 5

share 10.3% 21.9% 24.1% 15.0% 28.7%

We end this section with a brief and incomplete review of the empirical literature on
individuals' risk aversion. A large part of the literature, including, among many others,
Barsky, Kimball, Juster and Shapiro [14] and Kimball, Sahm and Shapiro [94] is based
on laboratory experiments or hypothetical survey questions; �eld research in this area has
been carried out by, for instance, Binswanger [20]. Meyer and Meyer [107], to whom we
also refer for an overview, perform a meta-analysis of past studies on the real-world risk
aversion and point out that risk aversion for consumption may be up to �ve times higher
than risk aversion for wealth. They therefore adjust previously reported estimates and �nd
relative risk aversion parameters for wealth between 1 and 7, with 3 as a viable �typical�
value; see [107, Table 2]. This is in line with other recent studies such as Paravisini,
Rappoport and Ravina [110], who �nd an average relative risk aversion of 2.85 or [94] in
data from person-to-person lending platforms, who obtain a value of RRA of 1.64 (when
multiplied by the factor 0.2 in the sense of [107]). More extreme values of risk aversion
have also been found by, among others, [110], see Table 5.7, and by Janecek [87], who
discusses that professional gamblers' risk aversions are in excess of 20, with even higher
values for less experienced individuals.

Table 5.7: Distribution of RRA from [110].
fractiles 1 10 25 50 75 90 99

risk aversion -0.16 0.28 0.56 1.62 3.66 7.29 17.18

5.2.5 Real-world risk aversion

Assume that an investor in RSPs only uses personal wealth which is (given a certain
investment horizon) not necessary for his daily spending in any other area of life, but
is exclusively intended to be used for investments. We shall call this amount of money
investment wealth and denote it by W . All of the investment decisions for W are assumed
to be made under the individual constant relative risk aversion γ. Thus it is of great
importance for the investor to know and follow his personal relative risk aversion in order
to make reasonable decisions on o�ered investment opportunities.

We suggest a self-test for the personal relative risk aversion: Assume that your invest-
ment wealth W is EUR 10,000 and that your investment horizon is 90 days, then answer
the following question:

What is the maximum amount you are willing to pay for a �nancial position X with the

following payo�:

X =
⎧⎪⎪⎨⎪⎪⎩

10,000, with p1 = 0.8,

0, with p2 = 0.2
?
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Obviously, if you are willing to risk x for the chance of winning 10,000 then x is your
indi�erence value of this gamble. We can map x against the degree of relative risk aversion
γ by means of the OEU of X with a CRRA utility function with relative risk aversion γ
as in Section 5.2.3:

ρu(X,γ) = x.

We have given justi�cation for the choice of CRRA utility function in Section 3.2. This
assumption can also be understood in the following sense: While an investor may not
possess exactly a risk behavior as modeled by the power utility function, we are trying to
�nd the constant relative risk aversion parameter which would best approximate it. Note
that coherency of ρu is a crucial feature when considering investment decisions within the
range of one's investment wealth: The answer to o�ered gambles of the above type should
always be the same proportion of the potential win. To �nd your personal relative risk
aversion, some exemplary conversions and a graphical representation of the relation of x
and γ are illustrated in Table 5.8 and Figure 5.7.

Table 5.8: RRA self-test.
x γ x γ x γ x γ

7,624 0 3,775 9 1,994 18 747 27
6,987 0.5 3,656 9.5 1,913 18.5 690 27.5
6,606 1 3,539 10 1,834 19 634 28
6,304 1.5 3,426 10.5 1,756 19.5 580 28.5
6,045 2 3,315 11 1,679 20 527 29
5,813 2.5 3,207 11.5 1,604 20.5 475 29.5
5,602 3 3,101 12 1,530 21 425 30
5,406 3.5 2,998 12.5 1,458 21.5 376 30.5
5,222 4 2,897 13 1,387 22 328 31
5,048 4.5 2,799 13.5 1,317 22.5 282 31.5
4,884 5 2,702 14 1,249 23 238 32
4,726 5.5 2,607 14.5 1,182 23.5 195 32.5
4,575 6 2,514 15 1,116 24 154 33
4,431 6.5 2,423 15.5 1,051 24.5 115 33.5
4,291 7 2,334 16 988 25 79 34
4,156 7.5 2,247 16.5 926 25.5 45 34.5
4,025 8 2,161 17 865 26 15 35
3,898 8.5 2,077 17.5 805 26.5 0 35.5
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Figure 5.7: RRA self-test.
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5.3 A simulation for warrants on DAX®

In this section we set up a simulation framework to compute the implied risk aversions
for a speci�c class of RSPs based on the German blue-chip index DAX®. We implement
5 alternative dynamic models for the evolution of this underlying and calibrate each to
real-world market data. In Section 5.4 below we apply these models to provide ratings of
more than 15,000 RSPs based on DAX® to illustrate our implied risk aversion approach.
Before we address RSPs, however, we discuss in detail the models and our estimation and
calibration methodologies in this section.

To demonstrate the applicability and robustness of our implied risk aversion approach,
we have selected 5 distinct models for the dynamics of DAX®. In addition to a standard
Gaussian model, which is also used by DDV in their ratings, we also use more sophisticated
models that re�ect the so-called �stylized facts� of �nancial returns time series such as heavy
tails, skewness and stochastic volatility; see Cont [39] or Rachev [115] for an overview.
Speci�cally, we use a variance gamma, a normal tempered, an ARMA-GARCH and a
historical simulation approach.

� Model 1: Black-Scholes

In the well-known Black-Scholes model, see Black and Scholes [21] and Merton [106],
the asset price process is a geometric Brownian motion, i.e., satis�es the stochastic
di�erential equation

dS(t) = µ∗S(t)dt + σ∗S(t)dW (t), S(0) ≥ 0, t ≥ 0,

with W a Brownian motion, µ∗ ∈ R and σ∗ ≥ 0. This implies that logarithmic
returns follow a normal distribution with expectation µ∗ and variance (σ∗)2, so
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parameter estimation via maximum likelihood (MLE) and simulation of asset paths
is straightforward.

� Model 2: Pure jump variance gamma

The variance gamma (VG) process is among the most commonly used pure jump
processes in �nance and was introduced in various versions by Madan, Carr and
Chang [101], Madan and Seneta [103], and Madan and Milne [102]. We follow [101]
and de�ne a variance gamma process by

V G(t) = θ∗Γν∗(t) + σ∗W (Γν∗(t)), t ≥ 0,

where θ∗ ∈ R and Γν∗ is a gamma process with mean 1 and variance ν∗. The stock
price dynamics are given by

S(t) = S(0) exp(µ∗t + V G(t) + ω∗t), S(0) ≥ 0, t ≥ 0,

where µ∗ ∈ R and ω∗ = ν∗−1 ln(1 − θ∗ν∗ − 0.5(σ∗)2ν∗). Since the characteristic
function of the variance gamma distribution is known in closed form, the return
density required for the parameter estimation via MLE can be obtained by classical
Fourier inversion (alternatively, with the closed-form formula of Madan, Carr and
Chang [101]). For simulation purposes, a classical Euler-Maruyama scheme can be
applied using gamma and normal random variables.

� Model 3: Normal tempered stable

Similarly as in the variance gamma approach, the normal tempered stable (NTS)

model is based on a time-changed Brownian motion. Instead of a gamma process, a
tempered stable subordinator (which is basically special case of an CGMY process,
see Carr, Geman, Madan and Yor [28]) is used, which allows for increased �exibility in
modeling tails and skewness. NTS processes were proposed by Barndor�-Nielsen and
Levendorskii [11] and have been used successfully in various �nancial applications;
see Barndor�-Nielsen and Shephard [12], Kim, Giacometti, Rachev, Fabozzi and
Mignacca [90] and Kim and Volkmann [91] among others. In the context of RSPs,
NTS processes have been employed by Fink and Mittnik [62] to price quanto warrants
and barrier options on the Nikkei 225. Our NTS setup can be described as follows:
Let T = {T (t)}t≥0 be a tempered stable subordinator, i.e., an a.s. increasing Lévy
process with characteristic function

E[ exp(ivT (t))] = exp(−2t(θ∗)1−α∗/2

α∗
[(θ∗ − iv)α∗/2 − (θ∗)α∗/2]) , v ∈ R, t ≥ 0,

where α∗ ∈ (0,2) is the tail parameter and θ∗ > 0 controls the tempering. Then the
NTS process is de�ned via

X(t) = µ∗t + β∗(T (t) − t) + σ∗W (T (t)), t ≥ 0,

with µ∗,β∗ ∈ R and σ∗ ≥ 0. The parameter β∗ then controls the skewness. The asset
price is given by

S(t) = S(0) exp(X(t)), S(0) ≥ 0, t ≥ 0.
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As in the variance gamma framework, the characteristic function of X is known in
closed form, so MLE can be carried out via Fourier inversion. To simulate paths, we
follow the approach of Baeumer and Meerschaert [10] and Kawai and Masuda [89];
also see Fink and Mittnik [62]. To obtain realistic stock price paths, we restrict
ourselves to α∗ ∈ [1,2] as in [62].

� Model 4: ARMA-GARCH

From the variety of stochastic volatility extensions of the classical Black-Scholes or
Lévy setups, we select a classical discrete-time ARMA-GARCH process; see Boller-
slev [22], Box, Jenkins and Reinsel [24], Engle [57] and Whittle [139]. This is ar-
guably the most well-known and most widely used time series model for �nancial
returns. To stay in line with the Lévy-based models above, we restrict ourselves to
an ARMA(1,1)-GARCH(1,1) setup. This implies a total of 6 parameters in addition
to those of the error distribution, and log returns r(t) are given by

r(t) = a∗0 + a∗1r(t − 1) + η(t) + b∗1η(t − 1),
η(t) = σ∗(t)ε(t),
σ2(t) = α∗0 + α∗1r(t − 1)2 + β∗1σ(t − 1)2, t ∈ Z,

with α∗0 > 0, α∗1 + β∗1 < 1, ∣a∗1 ∣ < 1 and a∗0 ,β
∗
1 ∈ R. The (ε(t))t∈Z are i.i.d. and follow

a normal, t− or Hansen's skewed-t distribution; see Hansen [82]. Estimations and
simulations are carried out using Kevin Sheppard's MFE Toolbox for MATLAB.

� Model 5: Empirical distribution

As a �nal benchmark, we use a classical historical simulation approach, i.e., we use
actual, historical daily returns on DAX®.

To calibrate the underlying parameters of these models, we follow DDV's approach and
use daily DAX® returns from the past two years. Our parameter estimates are reported
in Tables 5.9 and 5.10.3 Estimated densities and the QQ-plot for Model 4 are presented
in Figures 5.8, 5.9 and 5.10.

Table 5.9: Parameter estimates for Models 1-3.
Parameters Model 1 Model 2 Model 3

µ∗ 0.0007 0.0007 0.0007
σ∗ 0.0105 0.0107 0.0106
ν∗ - 0.7322 -
θ∗ - -0.0010 0.6500
α∗ - - 1.0000
β∗ - - -0.0018

3We indicate these parameters with a '∗' to avoid confusion with α and β from Section 5.2.3. For Model
4, Hansen's skewed-t distribution (with skew parameter 7.0809 and tail parameter -0.0962) turned out to
be the best for the error terms based on an evaluation of AIC, BIC, log likelihood and a QQ-plot.
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Table 5.10: Parameter estimates for Model 4.
a∗0 a∗1 b∗1 α∗0 α∗1 β∗1

0.0005 0.2075 -0.2494 3.0229e-06 0.1211 0.8620

Figure 5.8: Empirical density of daily DAX® returns vs. densities of Models 1-3.
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Figure 5.9: Associated densities in the left tails.
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Figure 5.10: QQ-Plot for Model 4 using Hansen's skewed-t distribution with skew param-
eter 7.0809 and tail parameter -0.0962.
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5.4 Case study: Ratings of DAX® warrants

In this section we conduct a case study of our rating system for a speci�c class of RSPs. We
focus on warrants with maturities up to 3 months on DAX® on a given spot date, which
form a universe of 15,377 products; an overview of the various issuers/market makers can
be found in Table 5.11. In this setting, we illustrate the implied risk aversion rating as
proposed in this chapter, and contrast it with the existing V@R approach as used by, e.g.,
DDV, see Section 5.2.2. To avoid nested simulations and questions of pricing, we focus
on holding periods that coincide with the maturity of the respective warrant.4 All risk
measures and ratings are based on the framework outlined in Section 5.2 and are evaluated
using simulations with 20,000 paths,5 with an initial investment of EUR 10,000.

Market prices of RSPs are taken from OnVista. Ask prices and time stamps are ex-
tracted from its warrant selection tool on 22 May 2015, a typical trading day, between
16:45 and 17:20 Frankfurt time, resulting in 9,033 call and 9,511 put warrants. After
removing errors and outdated quotations, we were left with a total of 15,377 warrants
(7,777 calls and 7,600 puts). Based on the individual time stamp of each RSP, we selected
the corresponding DAX® prints using tick data from Börse Frankfurt; the spot price is
approximately 11,830. In addition, to reduce complexity, maturities were rounded to full
days, and we do not distinguish between products that expire on the mid-day or end-of-
day auction. In Figure 5.11 we display the strikes and maturities of all warrants in our

4This implies in particular that, in DDV's approach, risk factors other than the underlying's market
risk are not relevant.

5For numerical stability, γ0-values below 0.0001 are set to zero.
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Table 5.11: Overview: RSPs per issuer.
Issuer Call warrants Put warrants Total

BNP Paribas 452 450 902
Citigroup 651 749 1,400

Commerzbank 1,105 1,062 2,167
Deutsche Bank 1,183 985 2,168

DZ Bank 622 456 1,078
Goldman Sachs 447 445 892

HSBC 290 316 606
HypoVereinsbank 930 985 1,915
Interactive Broker 344 356 700
Lang & Schwarz 10 19 29
Société Générale 65 81 146

UBS 942 925 1,867
Vontobel 736 771 1,507

study. It is apparent that the largest share is made up of at-the-money warrants with short
maturities. As discussed below, it is exactly for these warrants that implied risk aversion
provides a more sensible rating than V@R.

The analysis of this section consists of two parts: First, we investigate the big picture
and discuss the resulting ratings and risk classi�cations of all warrants in our sample.
Second, we focus on some hand-picked products to exemplify the potential bene�ts of
using implied risk aversion for RSP ratings.

5.4.1 The bigger picture: Implied risk aversion vs. V@R

In the following we consider call and put warrants separately. Beginning with the analysis
of calls, Figure 5.12 displays, for each �nancial market model from Section 5.3, the dis-
tributions of the implied risk aversion parameters (blue, line plot) and the V@Rs (green,
bar plot) of all warrants in our sample. To improve visualization, we display a smoothed
density for implied risk aversion; the red line represents the threshold between risk classes
4 and 5. Both implied risk aversion and V@R classify the majority of products into the
highest risk class. While V@R assigns the maximum value EUR 10,000 to more than 70%
of products and groups virtually all into risk class 5, implied risk aversion displays a more
nuanced picture: The distribution peaks around the threshold at relative risk aversion
between 3 and 4 and exhibits only a small hump at 0. The results are reasonably robust
across �nancial market models; a slight exception is the ARMA-GARCH setup, where we
observe a more positive skew in the distribution of γ0, and a greater number of prod-
ucts with V@R equal to 10,000. We trace these e�ects to the fact that Hansen's skewed
t-distribution is used as an error distribution.

While both rating approaches group the majority of products into the highest risk class,
implied relative risk aversion clearly assesses RSP risk in a di�erent way than V@R, and
is less granular in doing so. To illustrate, we display the associated risk classi�cations in
Table 5.12. In particular, while there are no products in V@R classes 1, 2 or 3, implied
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Figure 5.11: Strikes and maturities of all warrants under consideration.
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risk aversion identi�es several products in classes 2 and 3. We zoom in on some of these
apparently rather attractive products in Section 5.4.3 below.

Table 5.12: Calls: Classi�cations for di�erent model setups.
BS VG NTS AG ED

classi�cation V@R γ0 V@R γ0 V@R γ0 V@R γ0 V@R γ0

1 0 0 0 0 0 0 0 0 0 0
2 0 9 0 6 0 6 0 1 0 6
3 0 76 0 79 0 93 0 65 0 62
4 39 1,569 31 1,897 28 2,462 0 2,928 39 1,930
5 7,738 6,123 7,746 5,795 7,749 5,216 7,777 4,783 7,738 5,779

As a further robustness check, we illustrate how our results depend on the choice of
the subjective discount factor α in Tables 5.13 and 5.14 for subjective annual discount
rates of 10% and 5%, respectively. For each table the thresholds are determined with the
same method as before, via calibrating to log-normally distributed payo�s with 90 days
maturity.
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Table 5.13: Calls: Classi�cations for subjective discount rate 10% p.a.
classi�cation limits BS VG NTS AG ED

1 59.9 < γ0 0 0 0 0 0
2 24.0 < γ0 ≤ 59.9 0 0 0 0 0
3 13.0 < γ0 ≤ 24.0 46 48 58 23 31
4 8.2 < γ0 ≤ 13.0 1,834 2,047 2,484 3,135 2,083
5 γ0 ≤ 8.2 5,897 5,682 5,235 4,619 5,663

Table 5.14: Calls: Classi�cations for subjective discount rate 5% p.a.
classi�cation limits BS VG NTS AG ED

1 68.8 < γ0 0 0 0 0 0
2 50.4 < γ0 ≤ 68.8 0 0 0 0 0
3 27.2 < γ0 ≤ 50.4 0 0 4 5 0
4 17.2 < γ0 ≤ 27.2 1,697 1,754 2,101 2,977 1,934
5 γ0 ≤ 17.2 6,080 6,023 5,672 4,795 5,843

We see that, as α increases (i.e., as the investor's impatience diminishes), the threshold
values of γ0 are shifted upward. This is due to the fact that a larger value of α implies
a larger weight on the future payo� X + η in (OEU), leading to a lower individual value
of ρu for each product; this implies that the thresholds are shifted upward. The risk
classi�cations, by contrast, are quite robust.

We next address put warrants. Here the overall picture, illustrated in Figure 5.13, looks
rather di�erent: The V@R and relative risk aversion ratings coincide, grouping all products
into the highest risk class. With the ARMA-GARCH setup the only exception, relative
risk aversion also indicates the highest possible risk throughout our sample. Accordingly,
the risk classi�cation in Table 5.15 is trivial.

Table 5.15: Puts: Classi�cations for di�erent model setups.
BS VG NTS AG ED

classi�cation V@R γ0 V@R γ0 V@R γ0 V@R γ0 V@R γ0

1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 7,600 7,600 7,600 7,600 7,600 7,600 7,600 7,600 7,600 7,600

We wish to emphasize that this phenomenon should not be attributed to a shortcoming
of either V@R or γ0. The simple explanation is that our results are based on a two-year
daily DAX® history with a positive drift rate. This implies that a put option, if it is priced
fairly or subfairly, has a negative expected net payo� and should therefore be grouped into
the highest risk class by any reasonable rating system. Concerning implied risk aversion,
this can be seen formally as follows: By Corollary 4.12 we have for any net investment X

69



CHAPTER 5. IMPLIED RISK AVERSION: AN ALTERNATIVE RATING SYSTEM

FOR RETAIL STRUCTURED PRODUCTS

with Xmin ≤ 0

ρu(X,γ) ≥ −αE[X] for all γ ≥ 0.

Therefore, whenever E[X] ≤ 0, it follows that ρu(X,γ) ≥ 0 for all γ ≥ 0 and consequently
γ0(X) = 0. Nevertheless, put options that are �too cheap� may exhibit a positive expected
return, and we demonstrate below that implied risk aversion is in fact able to identify such
products.

5.4.2 Ranking call warrants with implied risk aversion and V@R

So far we have focused on the overall distribution of warrants into alternative risk classes.
In the following we illustrate the qualitative advantages of implied risk aversion by analyz-
ing in detail some typical scenarios with speci�c products. First, consider the subsample
consisting of 5-day call options issued by Deutsche Bank with strikes ranging from 10,000
to 12,300 (the underlying traded around 11,830). Table 5.16 summarizes the implied risk
aversion and V@R ratings of these products. V@R is increasing in the strike, and assigns
maximum risk even to products that are in the money. From the retail client's perspec-
tive, this means that V@R does not o�er any qualitative information for his investment
decision beyond the products' obvious properties. Implied risk aversion, by contrast, is
not monotone with respect to the strike: Calls deep in the money share roughly the same
implied risk aversion. As the strike is increased, implied risk aversion falls slightly and
then increases steeply and attains its maximum around the money, indicating the most
attractive products. Implied risk aversion then falls again as the call moves out of the
money.

To understand this behavior, note �rst that the net payo�s of the calls deep in the
money are nearly identical and resemble a forward that knocks out only in a severe market
crash. As the strike approaches the spot, the scenario of a total loss becomes more and
more imminent, leading to a decrease in the product's rating; see, e.g., the call with strike
11,300 and Figure 5.14. If the strike is increased further, leverage makes the product more
and more attractive, overcompensating the risk of a total loss and leading to a peak in
implied risk aversion in the �at section of the bell curve in Figure 5.14.

The e�ect described above is ampli�ed by the volatility skew, which for illustration is
depicted in Figure 5.15. We wish to stress, however, that the same behavior persists in
the absence of a volatility skew: In the last column of Table 5.16 we display the implied
risk aversion of the call warrants under consideration under the assumption that they are
priced in a Black-Scholes constant volatility setting.6

On a general note, short term at-the-money call warrants have the highest implied risk
aversion which is, for example, re�ected in the fact that strikes are in the range of 11,750
to 12,250 and time to maturity is at maximum 7 days among the 60 products with highest
γ0; see Table A.1.

5.4.3 Comparing products using implied risk aversion

Table 5.17 shows 4 far-out-of-the-money calls close to expiry, with the same maturities
and strikes. Although their payo�s are identical, these products exhibit di�erent prices. In

6Here, volatility is �xed at the implied volatility of XM2HAG.
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Table 5.16: Implied risk aversion in the Black-Scholes model for 5-day call warrants issued
by Deutsche Bank.

WKN Strike Ask Ask-Vol Underlying V@R γ0 γATM−IV
0

XM2H9D 10,000 18.32 0.5469 11,830.38 3,339 3.8707 3.9388
XM2H9M 10,400 14.32 0.4617 11,829.58 4,272 3.7237 3.9388
XM2H9V 10,800 10.32 0.3106 11,830.46 5,927 3.8966 3.9397
XM2H9Z 11,000 8.32 0.2884 11,829.11 7,352 3.6497 3.9493
XM2HA1 11,100 7.32 0.2762 11,827.80 8,356 3.4458 3.9826
XM2HA3 11,200 6.37 0.2589 11,831.40 9,681 3.3066 4.0635
XM2HA5 11,300 5.40 0.2509 11,830.66 10,000 2.9429 4.2255
XM2HA7 11,400 4.43 0.2242 11,831.50 10,000 3.2336 4.5354
XM2HA9 11,500 3.50 0.2158 11,829.89 10,000 3.1703 5.0840
XM2HAB 11,600 2.62 0.1974 11,831.96 10,000 4.2601 5.8402
XM2HAD 11,700 1.82 0.1875 11,830.93 10,000 5.5943 6.8032
XM2HAF 11,800 1.16 0.1820 11,829.02 10,000 7.1652 7.7712
XM2HAG 11,850 0.88 0.1783 11,827.33 10,000 8.4603 8.1599
XM2HAH 11,900 0.65 0.1713 11,831.82 10,000 11.0532 8.3605
XM2HAK 12,000 0.32 0.1667 11,831.29 10,000 12.2658 8.3810
XM2HAM 12,100 0.15 0.1686 11,830.42 10,000 9.6278 7.2299
XM2HAP 12,200 0.075 0.1769 11,829.15 10,000 5.6930 5.3404
XM2HAR 12,300 0.035 0.1829 11,829.13 10,000 3.2332 3.5792

this context, we wish to point out that not only is implied risk aversion γ0 able to identify
the most attractive (i.e., cheapest) product (AP6RRY), but γ0 also provides an indication
which type of investor may be interested in such a warrant (within, say, the Black-Scholes
model): Featuring an implied risk aversion of 0.1451, it is only for the least risk-averse
investors. Furthermore, if AP6RRY were not in the sample, implied risk aversion would
clearly indicate that none of the remaining products, which all exhibit zero implied risk
aversion, is attractive for a risk-averse retail investor.

Table 5.17: Implied risk aversion of 7-day call warrants with strike 12,600.
WKN Issuer Ask Underlying γBS0 γVG0 γNTS0 γAG0 γED0

CC8Z2S Citigroup 0.031 11,830.85 0 0 0 1.6735 0
CN0R7V Commerzbank 0.025 11,829.26 0 0.0551 0.0139 1.9035 0
GL15K9 Goldman Sachs 0.031 11,830.40 0 0 0 1.6670 0
AP6RRY Int. Brokers 0.018 11,830.32 0.1451 0.3780 0.2778 2.2155 0.1100

In a similar vein, Table 5.18 displays implied risk aversion parameters for 5-day at-the-
money call warrants. Implied risk aversion clearly identi�es products issued by UBS as
the most attractive ones. Comparing with prices of identical warrants issued by Deutsche
Bank (DB) or Goldman Sachs (GS), it becomes clear that the former are indeed up to 10%
cheaper than the latter.
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Table 5.18: Implied risk aversion of 5-day at-the-money call warrants.
WKN Issuer Strike Ask Underlying γBS0 γVG0 γNTS0 γAG0 γED0

XM2HAG DB 11,850 0.88 11,827.33 8.4603 7.9492 9.2904 7.0981 7.3603
UZ698B UBS 11,850 0.81 11,829.76 13.2928 12.7038 14.4364 11.2965 12.0095
XM2HAH DB 11,900 0.65 11,831.82 11.0532 10.2653 11.4942 8.6166 9.5661
GL15JU GS 11,900 0.67 11,829.52 9.1773 8.4441 9.5349 7.0891 7.7896
UZ7M77 UBS 11,900 0.59 11,820.62 15.0835 14.2694 15.6127 11.9888 13.5410
XM2HAJ DB 11,950 0.47 11,830.66 11.5091 10.5665 11.3985 8.5966 9.8672
UZ68WB UBS 11,950 0.41 11,828.86 15.4231 14.5386 15.3694 11.8845 13.9345
XM2HAK DB 12,000 0.32 11,831.29 12.2658 11.3418 11.8613 9.2192 10.8105
GL15JW GS 12,000 0.327 11,831.26 11.7561 10.8253 11.3453 8.8088 10.2802
UZ62LW UBS 12,000 0.28 11,829.15 14.6950 13.8157 14.3215 11.2509 13.3469
XM2HAL DB 12,050 0.22 11,829.58 10.9613 10.0404 10.3126 8.3815 9.5545
UZ7LV7 UBS 12,050 0.18 11,828.89 13.6851 12.8125 13.0584 10.5945 12.3940
XM2HAM DB 12,100 0.15 11,830.42 9.6278 8.7600 8.8946 7.6674 8.3252
GL15JY GS 12,100 0.145 11,831.93 10.1782 9.3134 9.4372 8.0739 8.8888
UZ6U6M UBS 12,100 0.11 11,829.38 12.3819 11.5603 11.6264 9.8478 11.1888

This picture is con�rmed if we consider put options, see Table 5.19. While, as discussed
above, none of the put warrants looks particularly attractive, some of those issued by UBS
may be attractive to some investors, and are clearly (within this sample, in this dataset)
the most attractive products.

Table 5.19: Implied risk aversion of 5-day at-the-money put warrants.
WKN Issuer Strike Ask Underlying γBS0 γVG0 γNTS0 γAG0 γED0

XM2HUV DB 11,400 0.11 11,829.52 0 0 0 0.3770 0
GL15LV GS 11,400 0.134 11,829.08 0 0 0 0.0508 0
UZ66RH UBS 11,400 0.074 11,818.24 0 0.0002 0.0368 1.7827 0
XM2HUZ DB 11,600 0.31 11,831.63 0 0 0 0.0290 0
GL15LZ GS 11,600 0.341 11,831.02 0 0 0 0 0
UZ68VB UBS 11,600 0.26 11,823.39 0 0.0381 0.0666 0.7609 0
XM2HV3 DB 11,800 0.86 11,827.6 0 0 0 0 0
GL15M3 GS 11,800 0.91 11,828.79 0 0 0 0 0
UZ697A UBS 11,800 0.82 11,820.37 0.0297 0.0296 0.0023 0.0310 0.0049
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Figure 5.12: Calls: Distribution of V@R vs. distribution of γ0 for the considered models.
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Figure 5.13: Puts: Distribution of V@R vs. distribution of γ0 for the considered models.
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Figure 5.14: Estimated distribution of the 5-day-DAX®. As one can see, only from strikes
around 11,000 the density function starts to rise signi�cantly.
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line marks approximate at-the-money volatility.
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CHAPTER 6

Risk measures on the space of distributions and time
consistency of risk measures

The previous chapters deal with the standard case of risk measures on the space of random
variables. If, however, the outcome of risk measures only depends on the distribution of
the considered random variables, these risk measures can also be interpreted as functionals
on the space of distributions. In this chapter we consider risk measures on distributions
and point out some fundamental attributes of these functionals with a particular focus
on optimal expected utility risk measures. Risk measures on the space of probability
distributions have been studied by Acciaio and Svindland [2], Drapeau and Kupper [54],
Föllmer and Weber [72], Fritelli, Maggis and Peri [75] and Weber [136], [137], among others.

The interrelation of conditional risk measures at di�erent time steps is a crucial property
of dynamic risk measures; see Section 2.3 and Section 2.4. In this chapter we point out
which properties static risk measures should ful�ll so that it is reasonable to build up
conditional risk measures on them. We introduce optimal expected utility risk measures
for distributions and show that these are concave on the space of distributions - a property
which is further discussed in [2].

In Section 6.1 we set up the de�nition of risk measures on the space of distributions,
study how OEU and other risk measures react on extreme event scenarios and give some
exemplary results on the convexity of acceptance and rejection sets. In Section 6.2 we recall
some of the results from [137] on connections between risk measures on distributions in
static time and properties of related dynamic risk measures. Based on this, in Section 6.3
we consider time consistency properties of dynamic risk measures with time-dependent
parameters and thereby slightly generalize the results given in [137].
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6.1. CONCAVE RISK MEASURES ON THE SPACE OF DISTRIBUTIONS

6.1 Concave risk measures on the space of distributions

Following [137], from now on we �x a probability measure P on (Ω,F) and assume that
(Ω,F ,P ) is an atomless standard Borel probability space such that any probability distri-
bution µ on R can be represented as the distribution of a random variable X on (Ω,F ,P ).
For this chapter we assume I = {t0 = 0, t1, ..., tN = T}, i.e., we only consider the case of
DDRMs.

6.1 De�nition. The distribution µ of a random variable X ∈ X is the image of P under
X. For a given distribution µ ∈ M1,c we write

X ∼ µ if µ = P ○X−1.

ByM1,c we denote the space of probability measures on R with compact support:

M1,c = {µ ∶ X ∼ µ, X ∈ X}.

The elements ofM1,c are also called lotteries.

6.2 De�nition. A risk measure ρ is called law-invariant if ρ(X1) = ρ(X2) whenever X1

and X2 have the same distribution under P .

Law-invariant risk measures of random variables X on some probability space (Ω,F ,P )
only depend on the distribution µ of X under P and can therefore also be understood as
functionals on the space of distributions. Clearly, value at risk, average value at risk and
utility-based shortfall risk are law-invariant; see [72, page 18]. We show that also OEU is
law-invariant.

6.3 Lemma. ρu is a law-invariant risk measure.

Proof. Let X,Y ∈ X such that X and Y have the same distribution, i.e.,

P (X > t) = P (Y > t) for all t ∈ R.

Then, we have that for all u ∈ U

E [u(X)] = ∫ u(ξ)P (X ∈ dξ) = ∫ u(ξ)P (Y ∈ dξ) = E [u(Y )] .

It clearly follows that if X and Y have the same distribution, then also X + η and Y + η
have the same distribution for any η ∈ R, thus we get

−βη + αu−1 (E [u(X + η)]) = −βη + αu−1 (E [u(Y + η)]) for all η ∈ R, 0 < α < β ∈ R,

and hence
ρu(X) = ρu(Y ).

The interpretation of law-invariant risk measures becomes particularly helpful in the
context of mixture distributions which means the following: Suppose X1,X2 ∈ X are �-
nancial positions with known distributions µ1, µ2. If we add random weights 0 ≤ λ ≤ 1
to choose µ1 and 1 − λ to choose µ2 (think of an independent Bernoulli random variable
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Y which takes the value 0 with probability λ and the value 1 with probability 1 − λ) and
consider the compound position X with

X(ω) =
⎧⎪⎪⎨⎪⎪⎩

X1(ω), if Y (ω) = 0,

X2(ω), if Y (ω) = 1
for all ω ∈ Ω,

then µ is the mixture distribution of µ1 and µ2 with

X ∼ µ, µ = λµ1 + (1 − λ)µ2.

The question arises how the risks of X1 and X2 are related to the risk of X. For this
purpose, we introduce a partial order on M1,c by �rst-order stochastic dominance, i.e.,
µ1 ≤ µ2 if

∫ fdµ1 ≤ ∫ fdµ2 for all increasing functions f ∶ R→ R.

Remark that there is a general di�erence between µ on the one hand and the law of the
state-wise convex combination λX1 +(1−λ)X2 on the other hand which is the reason why
we need to be careful, when translating features of risk measures on the space of random
variables to risk measures on the space of distributions. Risk measures on the space of
distributions are de�ned as follows:

6.4 De�nition. A function ψ ∶ M1,c → R is called a risk measure on the space of distri-

butions if it satis�es the following conditions for all µ,µ1, µ2 ∈ M1,c:

(M) Monotonicity : ψ(µ1) ≥ ψ(µ2) if µ1 ≤ µ2.

(CI) Cash-invariance: ψ(T̃mµ) = ψ(µ) − βm for m ∈ R, 0 < β,

where the translation operator T̃m is given by

(T̃mµ)(⋅) = µ(⋅ −m).

We introduce optimal expected utility risk measures onM1,c:

6.5 De�nition. For any u ∈ U and any distribution µ ∈ M1,c, the optimal expected utility

risk measure of µ is de�ned by the map ψu(µ) ∶ M1,c → R,

ψu(µ) ∶= ρu(X) = − sup
η∈R

{−βη + αu−1 (Eµ [u (X + η)])} ,

where X ∈ X is such that X ∼ µ.

From [137, page 421] we know that, since ρu is a law-invariant risk measure on X ,
ψu(µ) ∶= ρu(X) for someX ∼ µ de�nes a risk measure onM1,c in the sense of De�nition 6.4.
However, for the sake of completeness, we explicitely show that ψu ful�lls (M) and (CI)
for any µ ∈ M1,c.

6.6 Theorem. ψu(µ) is a risk measure on the space of distributions.
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Proof. (M) If X1 ∼ µ1 and X2 ∼ µ2 with µ1 ≤ µ2, we know that for u ∈ U :

E[u(X1 + η)] ≤ E[u(X2 + η)],

for all η ∈ R, and since u−1 is an increasing function consequently

ψu(µ1) ≥ ψu(µ2).

(CI) For m ∈ R, if X ∼ T̃mµ, then X −m ∼ µ. Thus,

ψu(T̃mµ) = − sup
η∈R

{−βη + αu−1 (E [u (X + η)])}

= − sup
(η−m)∈R

{−β(η −m) + αu−1 (E [u (X + η −m)])}

= − sup
η∈R

{−βη + αu−1 (E [u ((X −m) + η)])} − βm

= ψu(µ) − βm.

Following [78, Section 5], the objective of Example 6.7 is to compare the sensitivity of
value at risk, average value at risk and OEU with respect to extreme events.

6.7 Example. Consider an extreme event scenario where the normal case is a �oored
lognormal distribution

X1 = −(Z1 ∧ 11), where Z1 ∼ µ1 = lnN(0,0.1),

and the extreme case is modeled by a �oored normal distribution

X2 = −(Z2 ∧ 11), where Z2 ∼ µ2 = N(m,0.1), m ∈ [0,10]

and we consider the mixture distribution

X(ω) =
⎧⎪⎪⎨⎪⎪⎩

X1(ω), if Y (ω) = 0,

X2(ω), if Y (ω) = 1
for all ω ∈ Ω,

where Y is an independent Bernoulli random variable which takes the value 0 with proba-
bility 0.98 and the value 1 with probability 0.02. The distribution of −X looks as follows:
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Figure 6.1: Distribution of -X.
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We want to compare how sensitively V@R, AV@R and OEU react to changes in the
mean of the extreme event scenario m. We choose the level λ = 0.05, ρu is evaluated with
u(x) = 1

1−γ
(x1−γ − 1) for γ = 5,10,20 and we choose α = 0.9, β = 0.95.

Figure 6.2: Sensitivity to extreme risks.
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We notice that V@R does only re�ect the riskiness of extreme losses for small choices
of m since the probability of extreme losses is smaller than the chosen level λ. OEU and
AV@R, however, do not have this drawback but indicate potential extreme risks. This
example clearly demonstrates that OEU recognizes extreme downside risks although it is
not a pure downside risk measure as AV@R; see also Section 5.2.1. In particular, we note
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that OEU attains greater values than AV@R for m being smaller than 2 which is due to
the fact that OEU always refers to the possible worst case scenario which in this setting is
set to Xmin = −11; see Remark 4.23.

Next we consider convexity and concavity of risk measures on distributions. As shown
in [136, Lemma 2.3.8], the notion of convexity of risk measures on M1,c is well de�ned.
Whereas convexity of risk measures on random variables is a widely demanded and recog-
nized property, see De�nition 2.1 and the subsequent remarks on the diversi�cation e�ect,
this is no more obvious on the level of distributions; see [54, Remark 2]. An alternative no-
tion of diversi�cation on the space of distributions must rather be reconsidered. A convex
combination of distributions µ = λµ1+(1−λ)µ2 corresponds to an additional randomization
which can be interpreted as an additional factor of risk coming from an independent toss
with probabilities λ and (1−λ) deciding which lottery is chosen: Acciaio and Svindland [2]
show that given a law-invariant convex risk measure on the space of random variables, for
the respective risk measure on the space of distributions �if, at all, concavity holds true�, [2,
page 54]. Weber and Schmidt [138] argue that, from a descriptive perspective, a mixture
distribution µ might be rejected by investors even if both, µ1 and µ2, are considered ac-
ceptable which relates to concavity on the space of distributions. The following theorem
shows that OEU is concave onM1,c.

6.8 Theorem. ψu(µ) is concave onM1,c.

Proof. Let µ1,µ2 ∈ M1,c and, for some 0 ≤ λ ≤ 1, consider X,X1,X2 ∈ X such that
X ∼ λµ1 + (1 − λ)µ2, X1 ∼ µ1, X2 ∼ µ2. Note that, for any η ∈ R

E[u(X + η)] = ∫ u(ξ)P (X + η ∈ dξ)

= λ∫ u(ξ)P (X1 + η ∈ dξ) + (1 − λ)∫ u(ξ)P (X2 + η ∈ dξ)

= λE[u(X1 + η)] + (1 − λ)E[u(X2 + η)].

Thus,

ψu (λµ1 + (1 − λ)µ2) = − sup
η∈R

{−βη + αu−1 (E [u (X + η)])}

= − sup
η∈R

{−βη + αu−1 (λE [u (X1 + η)] + (1 − λ)E [u (X2 + η)])}

≥ − sup
η∈R

{−βη + λαu−1 (E [u (X1 + η)]) + (1 − λ)αu−1 (E [u (X2 + η)])}

= − sup
η∈R

{λ (−βη + αu−1 (E [u (X1 + η)]))

+ (1 − λ) (−βη + αu−1 (E [u (X2 + η)])) }

≥ λ(− sup
η∈R

{−βη + αu−1 (E [u (X1 + η)])})

+ (1 − λ)(− sup
η∈R

{−βη + αu−1 (E [u (X2 + η)])})

= λψu (µ1) + (1 − λ)ψu (µ2) ,
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where we have used in the third step that u−1 is convex on the domain of u; it can be
easily veri�ed that the second derivative of u−1 is positive at all points of the domain of u
for any u ∈ U .

Due to [2, Example 7 (2.)], AV@R is a concave risk measure on distributions. Value at
risk is quasi-convex on distributions, as shown in [54, Example 10], but since it is not quasi-
convex on the space of random variables, Acciaio and Svindland follow from [2, Lemma 3]
that �there are payo� pro�les X,Y such that every expected utility agent prefers X to Y,
but under V@R the pro�le Y is strictly less risky than X�; [2, page 58], we also refer to
Section 5.2.2.

Similarly to De�nition 2.3, we introduce acceptance and rejection sets of risk measures
on distributions:

6.9 De�nition. Let ψ ∶ M1,c → R be any risk measure on distributions. We call the set
of all distributions with negative risk

Nψ = {µ ∈ M1,c ∶ ψ(µ) ≤ 0}

the acceptance set of ψ and interpret any µ ∈ Nψ as acceptable. Analogously, we call the
set of all distributions with strictly positive risk

N c
ψ = {µ ∈ M1,c ∶ ψ(µ) > 0}

the rejection set of ψ and interpret any µ ∈ N c
ψ as rejectable.

As shown in [72], due to cash-invariance, any risk measure ψ is quasi-convex onM1,c

if and only if the acceptance set Nψ is convex. Similarly, ψ is quasi-concave on M1,c

if and only if the rejection set N c
ψ is convex; see also [15, Lemma 2.2]. Thus it follows

from Theorem 6.8 that for ψu, whenever two distributions µ1, µ2 ∈ M1,c are rejectable and
λ ∈ [0,1] is some probability, then the compound probability measure λµ1+(1−λ)µ2 is also
rejectable for OEU. We continue with an example of two �nancial positions X1,X2 ∈ X
which are acceptable for AV@R, but whose compound position may not be accepted when
evaluated with AV@R.

6.10 Example. Let X1,X2 ∈ X with the following payout pro�les:

X1 =
⎧⎪⎪⎨⎪⎪⎩

−10, with p = 0.01,

3, with p = 0.99
, X2 =

⎧⎪⎪⎨⎪⎪⎩

−1, with p = 0.02,

1, with p = 0.98
.

The average value at risk for level λ = 0.05 of X1 and X2 is

AV@R0.05(X1) = −
1

0.05
(−10 ⋅ 0.01 + 3 ⋅ 0.04) = −0.4,

AV@R0.05(X2) = −
1

0.05
(−1 ⋅ 0.02 + 1 ⋅ 0.03) = −0.2.

We now assume Y to be an independent random variable which takes the values 0 and 1
with probability 1

2 and the compound position X of X1 and X2 to be de�ned as

X(ω) =
⎧⎪⎪⎨⎪⎪⎩

X1(ω), if Y (ω) = 0,

X2(ω), if Y (ω) = 1
for all ω ∈ Ω.
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The payo� of X is:

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−10, with p = 0.005,

−1, with p = 0.01,

1, with p = 0.49,

3, with p = 0.495

and the average value at risk is

AV@R0.05(X) = − 1

0.05
(−10 ⋅ 0.005 − 1 ⋅ 0.01 + 1 ⋅ 0.035) = 0.5.

For an economic interpretation of the previous example think of X1 as an investment in
a speculative �nancial product with high possible losses and gains and X2 as an investment
in a more conservative product with relatively small potential pro�ts and losses. The
compound position of X1 and X2 shifts the payout in a way that the (still achievable) high
pro�t of 3 is not a�ecting the risk calculation of the investment anymore which is due to
the fact that AV@R only considers the downside risk of a position below the level λ. We
conclude that AV@R is concave but not quasi-convex onM1,c.

Even though we cited Weber and Schmidt [138] in the context of concavity of risk
measures on distributions, they also point out that, from a normative perspective, they �nd
it more reasonable to assume that if any two distributions µ1 and µ2 are both acceptable
(rejectable) then also the convex combination of these distributions should be acceptable
(rejectable) and call this property invariance under randomization. Weber [136], [137]
showed that under some mild regularity conditions, a law-invariant risk measure ψ on the
space of distributions must be a utility-based shortfall risk measure for some increasing
loss function l if both, the acceptance set and the rejection set of ψ are convex.

6.2 (Weak) time consistency of dynamic risk measures with
time-independent risk aversion parameters

As explained in Section 2.4, a crucial property of dynamic risk measures is the relation of
consecutive conditional risk measures to each other. In this section we recall some of the
notable results from [137] which relate the convexity of acceptance and rejection sets of
static risk measures on distributions to consistency properties of the respective dynamic
risk measures. Let us �rst give a de�nition of law-invariance of dynamic risk measures.

6.11 De�nition (De�nition 4.3 from [137]). A dynamic risk measure (ρt)t∈I is called
law-invariant, if there exists a measurable mapping Ht ∶ M1,c → {0,1} such that for all
X ∈ X ,

1{ρt(X)≤0} =Ht(L(X ∣ Ft)).
Next we establish the de�nition of local measure convexity which becomes relevant in

the upcoming theorems.

6.12 De�nition (De�nition 4.5 from [137]). Let C be a measurable subset of M1,c. We
say that C is locally measure convex if for all a ∈ R and any probability measure ι on
C∩M1 ([−a,a]) the mixture ∫C νι(dν) is again an element of C, whereM1 ([−a,a]) denotes
the set of probability measures supported on the interval [−a,a].
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Note that ∫ νι(dν) is a generalization of the mixture of two distributions as introduced
at the beginning of Section 6.1.

6.13 Theorem (Theorem 4.2 from [137]). Let ψ be a static risk measure, N ⊆M1,c be its

acceptance set, and (ρt)t∈I be the law-invariant dynamic risk measure de�ned by

ρt(X) = βTt ⋅ ψ (L(X ∣ Ft)) P -a.s. (DynRM)

If N is locally measure convex, then (ρt)t∈I is acceptance consistent. If N c is locally

measure convex, then (ρt)t∈I is rejection consistent.

Remember that βTt denotes the value of a default-free bond at time t with face value 1
and maturity time T . Acceptance (rejection) consistency of dynamic risk measures means
that acceptable (rejectable) �nancial positions at any time t + 1 should also be accepted
(rejected) at the earlier time t; see De�nition 2.14.

If the underlying probability space is rich enough, the result from Theorem 6.13 can
be strengthened.

6.14 De�nition (De�nition 4.6 from [137]). The �ltered probability space is called se-

quentially rich if there exist both a unif(0,1)-distributed random variable independent of
FT−1, and a unif(0,1)-distributed, FT−1-measurable random variable independent of FT−2.

6.15 Theorem (Theorem 4.3 from [137]). Let the underlying probability space be sequen-

tially rich, and assume that the dynamic risk measure (ρt)t∈I is represented as in (DynRM).
Then (ρt)t∈I is acceptance consistent if and only if N is locally measure convex. Analo-

gously, (ρt)t∈I is rejection consistent if and only if N c is locally measure convex.

Weber showed that if (ρt)t∈I is weakly time consistent, i.e., it is both acceptance and
rejection consistent, then it can be represented by (DynRM) for a unique static risk measure
ψ. In particular, if (ρt)t∈I is weakly time consistent, its characteristics over time can only
change slightly by the multiplicative discount factor βTt but no shift or change of risk
parametrization can happen.

6.16 Remark. Kupper and Schachermayer [98] show that the only dynamic risk measure
which is law-invariant (in the sense that ρ0(X) = ρ0(Y ) whenever X and Y have the
same distribution), time consistent and relevant (that is ρ0(−ε1A) > 0 for all A ∈ F and
all ε > 0) is the entropic risk measure with time-independent parameters. Clearly, any
risk measure which is fully supported in the sense of De�nition 5.1 is also relevant. Thus
dynamic optimal expected utility risk measures can be considered as a natural expansion
of the entropic risk measure in this respect: OEU are law-invariant and relevant, and even
though they are not generally time consistent, in the special case of u(x) = 1

γ (1−exp(−γx))
we obtain (a variant of) the time consistent entropic risk measure; see Example 4.10 (e).

6.3 (Weak) time consistency of dynamic risk measures with
time-dependent risk aversion parameters

In this section we particularly study consistency properties of dynamic risk measures with
time-dependent parameters. This is an important generalization of Section 6.2 since, as

84



6.3. (WEAK) TIME CONSISTENCY OF DYNAMIC RISK MEASURES WITH

TIME-DEPENDENT RISK AVERSION PARAMETERS

shown by Pollak [113] and Strotz [128], among others, preferences of an economic agent can
change over time which then implies time-dependent risk aversion parameters of dynamic
risk measures. We start this section with the example of dynamic average value at risk
with time-dependent levels (λt)t∈I .

6.17 Example. As shown in [1, Example 1.38 (2.)], (AV@Rλtt )t∈I is acceptance consistent
if

λt+1 ≤ λt ess inf
Q∈Rt

E [dQ
dP

∣Ft+1] for all t ∈ I,

where Rt is some convex subset of Qt = {Q ∈ M1,c ∶ Q = P ∣Ft}.

This �nding is in contrast to the case of time-independent levels, where AV@R is in
general not acceptance consistent. Another well-known example of a risk measure with
time-dependent risk aversion parameters, where dynamic consistency has been fully inves-
tigated, is the dynamic entropic risk measure (ρentt )t∈I . It is de�ned by

ρentt (X) = 1

γt
ln (E [exp(−γtX) ∣ Ft]) , t ∈ I, X ∈ X ,

with random risk aversion parameters γt > 0, γt,
1
γt
∈ L∞(Ft) for all t ∈ I. As shown in [1,

Proposition 1.43], the process (γt)t∈I determines time consistency properties of (ρentt )t∈I as
follows:

6.18 Proposition. For (ρentt )t∈I the following assertions hold:

(i) (ρentt )t∈I is rejection consistent if γt ≥ γt+1 for all t ∈ I, t < T ,

(ii) (ρentt )t∈I is acceptance consistent if γt ≤ γt+1 for all t ∈ I, t < T ,

(iii) (ρentt )t∈I is time consistent if γt = γ0 for all t ∈ I.

6.19 Remark. Although [1, Proposition 1.43] was proven for a slightly di�erent de�nition
of rejection sets and for a stronger version of rejection consistency, the result can also be
applied to our theoretical framework.

While Theorems 6.13 and 6.15 are formulated for dynamic risk measures with con-
stant risk aversion parameters, they do not cover the case of dynamic risk measures with
time-dependent risk aversion parameters. For example, due to Theorem 6.13, the dynamic
entropic risk measure with constant risk aversion parameters is both acceptance and rejec-
tion consistent; see [136, Example 2.4.8]. In order to add the case of time-dependent risk
aversion parameters to Weber's results, we alter the de�nition of locally measure convexity.

6.20 De�nition. For any t ∈ I let Nt (N c
t ) be the acceptance (rejection) set of the static

risk measures ψ(t), where subindex (t) only labels the time-dependence of the parametriza-
tion of ψ(t) over time, i.e.,

Nt = {µ ∈ M1,c ∶ ψ(t)(µ) ≤ 0}, N c
t = {µ ∈ M1,c ∶ ψ(t)(µ) > 0}.

We say that the sequence (Nt)t∈I of acceptance sets is locally recursively measure convex

if for all a ∈ R and any ι on Nt∩M1 ([−a,a]), the mixture ∫Nt νι(dν) is an element of Nt−1

for all t ∈ I. Analogously, (N c
t )t∈I is locally recursively measure convex if for all a ∈ R and

any ι on N c
t ∩M1 ([−a,a]), the mixture ∫Nt νι(dν) is an element of Nt−1 for all t ∈ I.
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We then get the following result:

6.21 Theorem. Let (ψ(t))t∈I be a sequence of static risk measures, Nt ⊆ M1,c be its

acceptance sets, N c
t ⊆M1,c its rejection sets, and (ρt)t∈I be the law-invariant dynamic risk

measure on random variables de�ned by

ρt(X) = βTt ⋅ ψ(t) (L(X ∣ Ft)) P -a.s. (DynRM(t))

If (Nt)t∈I is locally recursively measure convex, then (ρt)t∈I is acceptance consistent, if

(N c
t )t∈I is locally recursively measure convex, then (ρt)t∈I is rejection consistent.

Proof. This proof is essentially identical to the proof of [137, Theorem 4.2]. We only prove
the case that (ρt)t∈I is acceptance consistent if Nt is locally recursively measure convex for
any t ∈ I. Rejection consistency for locally recursively measure convex N c

t can be proven
similarly.

Let t ∈ {1,2,...,T − 1}, X ∈ X and a ∈ R such that X ∈ [−a,a]. We de�ne

Qt ∶ (Ω,Ft) → (Ω,F), Qt(ω,A) = P (A ∣ Ft)(ω) for A ⊆ Ω.

We set
µs ∶= L(X ∣ Fs) for s = t or s = t + 1.

Then, we obtain by disintegration for P -almost any ω ∈ Ω that

µt(ω,⋅) = ∫ µt+1(ω̄,⋅)Qt(ω,dω̄).

Suppose that ρt+1(X) ≤ 0. Then, by de�nition, ψ(t+1)(µt+1) ≤ 0, thus

µt+1(ω̄,⋅) ∈ Nt+1 ∩M1 ([−a,a]) for P -almost all ω̄ ∈ Ω.

Hence, since Nt is locally recursively measure convex for any t ∈ I, for P -almost all ω ∈ Ω

∫ µt+1(ω̄,⋅)P (dω̄ ∣ Ft)(ω) ∈ Nt,

thus
µt ∈ Nt for P -almost all ω ∈ Ω.

This implies ρt(X) ≤ 0. Therefore (ρt)t∈I is acceptance consistent.

Thus, if (Nt)t∈I is locally recursively measure convex, which in simple terms means that
Nt is getting �smaller� or that the parametrization of (ψ(t))t re�ects risk aversion that is
increasing in time, then (ρt)t∈I as de�ned by (DynRM(t)) is acceptance consistent.

In order to apply the previous theorem to utility-based shortfall risk measures, we
consider the �conditionally robust version�:

ψrob SR
(t) (µ) = inf{η ∈ R ∶ E[ut(X + η)] ≥ ut(0)}, for X ∼ µ,

as used in [1] and [132]; note that here and in the remainder of this section we consider
increasing, concave functions ut ∶ R → R that are not identically constant. Consistency of
conditionally robust utility-based shortfall risk measures is una�ected by shifts in ut since
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then also the respective level λt = ut(0), see Example 3.1 is shifted. Yet, for this reason
ψrob SR is restrictive in the sense that the level λ cannot be chosen independently of ut.

Another way to prevent inconsistency is to assume that all functions assume the same
value in at least one point, that is ut(x0) = us(x0) for some x0 ∈ R for any ut, us under
consideration. We denote utility-based shortfall risk measures as de�ned in Example 3.1,
which satisfy this property, by ψnor SR.

6.22 Proposition. If ut is more concave than us, i.e., if there exists a strictly increasing

concave function g such that ut = g ○ us, then

ψnor SR(t) (µ) ≥ ψnor SRs (µ) for all µ ∈ M1,c.

Proof. Since ut and us are concave, increasing and ut(x0) = us(x0) for some x0 ∈ R, from
ut being more concave than us it follows that ut(x) ≤ us(x) for all x ∈ R. Consequently,
we have that E[ut(X)] ≤ E[us(X)] for all X ∈ X and therefore

inf{η ∈ R ∶ E[ut(X + η)] ≥ λ} ≥ inf{η ∈ R ∶ E[us(X + η)] ≥ λ}

for any λ ∈ R which concludes the proof.

A similar result for optimal expected utility risk measures can be found in Proposi-
tion 4.11. We denote by ρrob SR

t and ρnor SRt the dynamic risk measures which are de�ned
by (DynRM(t)) and ψrob SR

(t) or ψnor SR
(t) , respectively.

6.23 Corollary. For u ∈ U it holds that

(i) (ρrob/nor SRt )t∈I is acceptance consistent if %ut(x) ≤ %ut+1(x) for all t ∈ I and all x ∈ R.

(ii) (ρrob/nor SRt )t∈I is rejection consistent if %ut(x) ≥ %ut+1(x) for all t ∈ I and all x ∈ R.

Proof. The proof for ρrob SR
t follows from [132, Corollary 5.4].

We show that %ut(x) ≤ %ut+1(x) implies acceptance consistency for ρnor SRt . The case of
rejection consistency works analogously.

From Proposition 3.8 we know that if %ut(x) ≤ %ut+1(x) for all x ∈ R, then ut = g ○ ut+1

for a strictly increasing concave function g. Thus it follows from Proposition 6.22 that

ψnor SR(t) (µ) ≤ ψnor SR(t+1) (µ) for all µ ∈ M1,c.

As this applies to all t ∈ I, we conclude that (ρnor SRt )t∈I is acceptance consistent.

We exemplarily illustrate the results from this section for the consistency properties of
the dynamic entropic risk measure as outlined in Proposition 6.18. To this end note that
(ρentt )t∈I is a special case of the utility-based shortfall risk measure for

ut(x) =
1

γt
(1 − exp(−γtx)).

If we assume that
γt ≥ γt+1 for all t ∈ I, t < T,
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then, due to Proposition 6.22, the sequence of the rejection sets

N c
t = {µ ∈ M1,c ∶ ψnor SR(t) (µ) > 0}

is locally recursively measure convex, thus (ρentt )t∈I is rejection consistent due to Theo-
rem 6.21. Moreover, for exponential utility we know that

γt = %ut for all t ∈ I, t < T,

thus rejection consistency of (ρentt )t∈I follows immediately from Corollary 6.23. The case
of acceptance consistency can be derived similarly.
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CHAPTER 7

Recursively composed risk measures

In accordance with the literature and for the sake of a simpler notation, we consider
discounted �nancial payo�s X ∈ L2(Ω,F ,P ) and a �nite time horizon T > 0 in this chapter.
On the one hand we then choose a discrete-time approach to measure risk by recursively
recalculating conditional risk on a small time grid [tk,tk+1) in order to �nally assign a
value to the overall recursive risk of a �nancial position X at �nitely many time steps
t ∈ I = {t0 = 0, t1, ..., tN = T}. On the other hand we follow a continuous-time approach
where we take the solution of a backward stochastic di�erential equation (BSDE) as the
recursive risk of X at any time t ∈ I = [0,T ]. Our goal is to bring these approaches together,
and to study convergence from the discrete-time approach to the continuous-time approach.

Rosazza Gianian has shown in [121, Proposition 20] that a dynamic risk measure
(ρt)t∈[0,T ] can be identi�ed as a conditional g-expectation and thus is the solution of a
BSDE if (ρt)t∈[0,T ] is a strictly monotone time consistent dynamic convex risk measure in
a Brownian setting and if ρ0 satis�es a certain boundedness condition. We have seen in
Chapter 6 that dynamic risk measures such as V@R, AV@R and OEU are not time consis-
tent in general. One can, however, construct time consistent dynamic risk measures in dis-
crete time (DDRMs) by composing rescaled one-period risk measures by (ComRM). This
relation allows us to compare composed risk measures with corresponding g-expectations
which represents a major advantage for interpreting dynamic risk measures: The char-
acteristics of g are related to properties of the respective dynamic risk measure and the
functional g which could also depend on preferences of the investor and on parameters
linked to the evaluated �nancial position, is easy to interpret, see [121]; the risk evaluation
by composed DDRMs, on the other hand, is well understood in any single time interval.

The main contribution of this chapter is the implementation of composed scaled risk
measures as proposed by Stadje [126] and the distinction between this approach and the
concept of Romanovski [120]. We provide a theoretical explanation for our new numerical
results on the convergence behavior of the di�erent approaches and point out that our
results indicate that risk measures can be divided into two groups: Whereas risk measures
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of the form
ρλ(X) = E[−X] + b(λ)σ(X),

need additional scaling when recursively composed, risk measures of the form

ρλ(X) = E[−X] + b(λ)σ2(X),

are perfectly suited for convergence from a discrete time setting to a continuous time
setting without further scaling; where σ(X) is the standard deviation of X and b ∶ R+ → R
includes the predetermined parameter λ ∈ R. We start this chapter with an exemplary
presentation of the convergence behavior of certainty equivalents in Section 7.1 where we
encounter the exact same two groups of functionals with respect to convergence in time.
Furthermore, this chapter contains the following sections: In 7.2 we present a �rst naive
approach of composed risk measures, an alternative scaled composition of risk measures is
shown in 7.3 and we illustrate the convergence properties of both approaches in 7.4.

7.1 Two classes of Arrow-Pratt approximation for certainty
equivalents

The common de�nition of the Arrow-Pratt approximation (APA) is inseparably linked to
the concept of certainty equivalents. Following [81, Section 3.4], we now consider a random
variable Y = k(µ +X), with E[X] = 0 (thus X is called pure risk) and let g(k) denote
its associated certainty equivalent Cu(k(µ +X)), that is the sure amount that makes an
investor indi�erent between investing in Y , or receiving the sure gain Cu(Y ), i.e., it veri�es:

E [u(k(µ +X))] = u(g(k))

for any utility function u. APA helps us to understand the characteristics of certainty
equivalents for small risks. We make use of this concept when it comes to examining the
behavior of utility on time grids of decreasing length; here, that is k → 0. Clearly, we
observe g(0) = 0, and we get

E [(µ +X)u′ (k(µ +X))] = g′(k)u′ (g(k))

so that g′(0) = µ, and

E [(µ +X)2u′′ (k(µ +X))] = (g′(k))2
u′′ (g(k)) + g′′(k)u′ (g(k)) ,

which implies

g′′(0) = u
′′(0)
u′(0) E[X2].

Using a Taylor expansion of g around k = 0, we obtain that

Cu(k(µ +X)) ≃ kµ − 1

2
k2%(0)E[X2],

where %(z) is the absolute risk aversion as de�ned in Section 3.2. This is the APA for
certainty equivalents. It states that the certainty equivalent for a small pure risk is ap-
proximately proportional to its variance. As the size k of this risk tends to zero, its certainty
equivalent tends to zero by k2.
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7.1 Example. Let us consider certainty equivalents of a �nancial position (Xt) and let
us restrict our view on a time step t→ t + h, i.e., we de�ne Cu on [t,t + h] as follows:

Cu,t ∶ L2(Ft+h) → L2(Ft) ∶ Cu,t(Xt+h) ∶= u−1 (Et [u(Xt+h)]) , where Et[X] ∶= E[X ∣ Ft].

The Arrow-Pratt approximation is then:

Cu,t(Xt+h) = u−1 (Et [u(Xt+h)])

= u−1⎛
⎝
Et

⎡⎢⎢⎢⎢⎣
u(Et[Xt+h]) + u′(Et[Xt+h])(Xt+h −Et[Xt+h])

+ 1

2
u′′(Et[Xt+h])(Xt+h −Et[Xt+h])2

⎤⎥⎥⎥⎥⎦

⎞
⎠

= u−1⎛
⎝
u(Et[Xt+h]) + u′(Et[Xt+h])Et[Xt+h −Et[Xt+h]]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ 1

2
u′′(Et[Xt+h])Et [(Xt+h −Et[Xt+h])2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=V art[Xt+h]

⎞
⎠

= Et[Xt+h] +
1

u′(Et[Xt+h])
(1

2
u′′(Et[Xt+h])V art[Xt+h])

− 1

2

u′′(Et[Xt+h])
(u′(Et[Xt+h]))3

(1

2
u′′(Et[Xt+h])V art[Xt+h])

2

.

If we take X as a geometric Brownian motion

dXt = µdt + σdWt,

this approximation takes the form:

Cu,t(Xt+h) = µh +
1

2
(u

′′

u′
)(µh)σ2h + o(h2).

Thus, for exponential utility u(x) = 1
γ (1 − exp(−γx)), the APA of the certainty equivalent

on [t,t + h] is:
Cu,t(Xt+h) = µh −

1

2
γσ2h + o(h2).

We notice that in the previous example Cu,t(Xt+h) converges to Cu,t(Xt) by the factor
h. But there is another class of certainty equivalents for which speed of convergence for
h→ 0 is

√
h:

7.2 Example. We consider the λ-quantile CE, which is a certainty equivalent in the sense
of Kreps and Porteus [96], on a small time step [t,t + h] de�ned as:

m
(λ)
t ∶ L2(Ft+h) → L2(Ft) ∶ mt(Xt+h) ∶= ess sup{mt ∈ L2(Ft) ∶ P (−Xt+h+mt < 0 ∣ Ft) ≤ λ}.
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If we assume the �nancial position (Xt) to be a geometric Brownian motion dXt = µdt +
σdWt, i.e., Xt+h ∼ N(µh, σ2h), then, as shown in Remark A.5, the λ-quantile CE takes
the form

m
(λ)
t (Xt+h) = µh + σ

√
hΦ−1(1 − λ).

Comparing Cu,t(Xt+h) from Example 7.1 to m
(λ)
t (Xt+h) from Example 7.2, we observe

di�erent convergence behavior for h→ 0. This may surprise readers who are familiar with
convergence results for recursive utility. In the upcoming sections we point out how this
�nding strongly relates to the results from [126] for dynamic risk measures.

7.2 Composed risk measures and g−expectations

We consider the following stochastic di�erential equations for the continuous time setting
of risk evaluation: Take the backward stochastic di�erential equation

−dYt = g(t,Yt,Zt)dt −ZtdWt,

YT =X,
(BSDE)

for all t ∈ [0,T ], where we refer to Section 2.5 for technical assumptions on g that ensure
a unique solution (Yt,Zt)t∈I , and the forward stochastic di�erential equation

dSt = µStdt + σStdWt,

S0 = s,
(FSDE)

for all t ∈ [0,T ], that is a Black-Scholes model which implies that logarithmic returns follow
a normal distribution with expectation µ and variance σ2. Together we call this a forward
backward stochastic di�erential equation:

S0 = s,
dSt = µStdt + σStdWt,

YT = Φ(ST ),
−dYt = g(t,Yt,Zt)dt −ZtdWt,

(FBSDE)

for all t ∈ [0,T ].

7.2.1 Discrete-time approximation of BSDEs

In the followingW is a standard Brownian motion and µ, σ, g are valued respectively in Rn
and R. We know from Section 2.5 that we can construct time consistent risk measures by
choosing a suitable driver g for (BSDE). In order to solve (FBSDE), we have to numerically
approximate the solution. For this concern, given a discrete time grid I = {tk ∈ [0,T ] ∶ tk =
kh = k TN , 0 ≤ k ≤ N}, we consider a discretization of (BSDE) as presented in Bouchard
and Touzi [23]:

Y N
tk+1

− Y N
tk

= −g(tk, Y N
tk
, ZNtk )h +Z

N
tk

∆Wk+1, (7.1)
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where we use the notation ∆Wk+1 ∶= WN
tk+1

−WN
tk
. (FSDE) leads to the �nal data ỸT =

Φ(ST ), and, in order to approximate the forward component, we use a standard Euler
scheme

SNtk+1 − S
N
tk
= µ(tk,SNtk )h + σ(tk,S

N
tk
)∆Wk+1.

This leads to Y N
tN

= Φ(SNtN ) which is needed in addition to (7.1) for the discretization
of (BSDE). Since, given (Ytk+1 , Ztk+1), there are no Ftk -measurable random variables
(Ytk , Ztk) which satisfy (7.1), we refer to the following backward procedure for the de�nition
of the discrete-time approximation (Y N

t ,ZNt )t∈I which was given in [23]:

Y N
tN

= Φ(ST ),
ZNtN = 0,

ZNtk =
1

h
E [Y N

tk+1
∆Wk+1 ∣ Ftk] ,

Y N
tk

= E [Y N
tk+1

∣ Ftk] + hg(tk,Y N
tk
,ZNtk ).

(7.2)

The equality for ZNtk was acquired by multiplying (7.1) by ∆Wk+1 and taking conditional
expectation with respect to Ftk . The representation of Y N

tk
follows from (7.1) by taking

expectation with respect to Ftk .
Briand, Delyon and Mémin [26, Theorem 2.1] show that under certain assumptions

(Y N
tk
,ZNtk ) from (7.1), which is based on M -dimensional random walks WN converging

to the M -dimensional Brownian motion W underlying (BSDE), converge to the solution
(Y,Z) of (BSDE). This result is the foundation of the numerical implementation in Sec-
tion 7.4.

7.2.2 A recursive construction of time consistent risk measures

At this point we want to introduce a construction of a time consistent DDRM (ρComt )t∈I
from an arbitrary DDRM (ρt)t∈I . The recursive construction of the composed risk measure
(ComRM) is de�ned as

ρComtN
(X) ∶= ρtN (X) = −X

ρComtk
(X) ∶= ρtk,tk+1(−ρComtk+1

(X)), tk ≤ tkN−1
,

(ComRM)

where ρtk,tk+1 is the restriction of ρtk to L
2(Ftk+1).

7.2.3 Composed value at risk

Generally, for time-independent levels λt ∶= λ, (V@Rλt )t∈I is not time consistent as shown
in Cheridito and Stadje [36, Example 3.1] and in [69, Example 11.13]. However, (V@Rλt )t∈I
is acceptance and rejection consistent; see [136, Example 2.4.7]. In this section we consider
the time consistent composed value at risk in the sense of (ComRM):

ComV@RλtN (X) ∶= V@RλtN (X) = −X
ComV@Rλtk(X) ∶= V@Rλtk,tk+1(−ComV@Rλtk+1(X)), tk ≤ tkN−1

.
(ComV@R)
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Suppose we wish for (7.1) to represent ComV@R. Under this numerical approximation Y N
tk+1

conditional on Ftk is normally distributed with mean Y N
tk
− g(tk, Y N

tk
, ZNtk )h and standard

deviation
√
h ∣ZNtk ∣. This fact implicates some nice properties of ComV@R as shown in the

following remarks.

7.3 Remark. (i) V@R corresponding to a normally distributed �nancial position X with
variance σ2(X) is

V@Rλ(X) = E[−X] + σ(X)Φ−1(1 − λ),

where Φ−1 is the inverse cumulative distribution function of the standard normal
distribution; see Remark A.5.

(ii) V@R is subadditive for normally distributed �nancial positions if λ ≤ 0.5; see Em-
brechts, McNeil and Straumann [56, Theorem 1], and Remark A.6.

(iii) Typically, return rates of well diversi�ed portfolios of pro�t and loss distributions of
large companies are not very di�erent from normal, as pointed out in the analysis of
the S&P 500 in [55, pages 11-12 and page 29].

The following remark is to justify why ComV@R is assumed to be nearly coherent if
we consider a large number N of time steps.

7.4 Remark. 1. The price dynamics of the underlying asset are given by a geometric
Brownian motion with drift:

dSt = µStdt + σStdWt,

S0 = s,

where Wt is a P -Brownian motion.

2. St is log-normally distributed with parameters

E[St] = s exp(µt),

and
V ar[St] = s2 exp(2µt) (exp(σ2t) − 1) .

Therefore, in small time steps h, S changes by an amount that is �nearly normally�
distributed with mean µ̃Sh, µ̃ ∶= µ− 1

2σ
2 and standard deviation σS

√
h. Thus the loss

involved in the asset is locally �nearly normal� on a small time grid; see Remark A.7.

3. V@R is subadditive for normally distributed random variables, see Remark 7.3 (ii),
and therefore V@R of the loss involved in the asset is locally �nearly coherent�.

4. (ComRM) inherits subadditivity of V@R, thus also ComV@R is �nearly coherent� if
we consider a large number of time steps.

We set Y N
tN

= −X. By discretization (7.1), we then get

ComV@RNtN (Y N
tN

) = Y N
tN
,
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and

ComV@RNtN−1
(Y N

tN
) = V@RNtN−1,tN

(−ComV@RNtN (Y N
tN

))
= E [Y N

tN
∣ FtN−1

] +Φ−1(1 − λ) ∣ZNtN−1
∣
√
h. (7.3)

Comparing (7.3) and (7.2), we conclude that by choosing the driver

gV@R(t,y,z) = Φ−1(1 − λ)√
h

∣z∣

we should get a dynamic risk measure in continuous time (CDRM) corresponding to
ComV@R. But, due to [126, Proposition 5.1], ComV@R with given constant level λ does
not generally converge to a BSDE solution for N → ∞ if it is not properly rescaled. This
is intuitively obvious because of the form of gV@R(t,y,z): If we insert gV@R in (7.2), it can
easily be seen that:

gV@R(t,y,z) → ∞ as N →∞.

We follow up on this in Section 7.3 where we consider composed scaled risk measures as a
robust alternative to (ComRM).

7.2.4 Composed average value at risk

Due to [69, Example 11.13], (AV@Rλtt )t∈I is not time consistent for time-independent
levels λt = λ and we therefore rather consider the composed average value at risk in the
sense of (ComRM) which inherits the coherency property from all the AV@Rs used for the
composition. Note again that discretization (7.1) leads to normally distributed Y N

tk
. As

shown in Remark A.8, for normally distributed �nancial position X with variance σ2(X)
we have:

AV@Rλ(X) = E[−X] + σ(X)
λ
√

2π
exp(−Φ−1(1 − λ)2

2
) ,

which means that we get

ComAV@RNtN−1
(Y N

tN
) = E [Y N

tN
∣ FtN−1

] + ∣ZNtN−1
∣
√
h

1

λ
√

2π
exp(−Φ−1(1 − λ)2

2
) . (7.4)

Comparing (7.4) and (7.2), we conclude that by choosing the driver

gAV@R(t,y,z) = 1

λ
√

2πh
exp(−Φ−1(1 − λ)2

2
) ∣z∣

we get a CDRM corresponding to ComAV@R. However, also ComAV@R with given con-
stant level λ does not generally converge to a BSDE solution for N →∞ if it is not rescaled,
and

gAV@R(t,y,z) → ∞ as N →∞.

Instead, we suggest to choose ComScaAV@R as introduced in Section 7.3.
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7.2.5 Composed entropic risk measure

The entropic risk measure for normally distributed X with variance σ2(X) is

ρent(X) = −E[X] + 1

2
γσ2(X).

Note that this coincides with the APA of the certainty equivalent from Example 7.1 for
the exponential utility function u(x) = 1

γ (1− exp(−γx)) with time-independent parameter
γt = γ > 0. If we wish for (7.1) to represent ComENT, we get:

ComENTNtN−1
(Y N

tN
) = E[Y N

tN
∣ FtN−1

] + 1

2
γV ar[Y N

tN
∣ FtN−1

] (7.5)

and the comparison of (7.5) and (7.2) leads to the driver

gENT(t,y,z) = 1

2
γz2.

This is in line with Barrieu and El Karoui [13, Proposition 6.4] which, for the sake of
completeness, we state again at this point.

7.5 Proposition (Proposition 6.4 from [13]). The dynamic entropic risk measure (ρentt )t∈I
with time-independent parameter γt = γ > 0 is solution of the following BSDE with the

quadratic coe�cient gENT(t,z) = 1
2γz

2 and terminal bounded condition:

−dρentt (X) = 1

2
γZ2

t dt −ZtdWt,

ρentT (X) = −X.

We note that the entropic risk measure for normally distributed random variables is of
the form

ρλ(X) = E[−X] + b(λ)σ2(X),
and that no constraint on g or additional scaling of the composed risk measure is necessary
to ensure that (ComENTNt )t∈I converges to a continuous-time risk measure (ρent,gt )t∈[0,T ].
We further note that the known fact that ρent is a more conservative risk measure the
bigger the parameter γ can also be seen from the form of g: The bigger γ, the bigger g
and thus the more conservative ρent,g; see Section 2.5.

For a �xed risk aversion parameter γ > 0, the dynamic entropic risk measure is time
consistent; see Remark A.4.

7.3 Composed scaled risk measures and g−expectations

Stadje [126, Proposition 5.1] shows that under certain conditions all one-period coherent
risk measures explode in the limit of the number of time steps N if they are not properly
rescaled. This happens for the following reason: First, note that the standard deviation
of the increments of the Brownian motion which is used to model X is of order

√
h. Since

V@R and AV@R are risk measures of the form

ρλ(X) = E[−X] + b(λ)σ(X),
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7.3. COMPOSED SCALED RISK MEASURES AND G−EXPECTATIONS

as the size of the time steps goes to zero by the factor h, the involved risk X in the
according time interval goes to zero by the factor

√
h. Intuitively, one could say that in

our framework the risk of, say a loan default happens in [tk,tk+1] decreases by a factor√
h which is smaller than the decrease of time when we consider increasingly small time

intervals. Consequently, BSDE-drivers g of order 1√
h
do not converge to corresponding

composed risk measures for N →∞, where N is the number of time steps; see Section 7.4
for numerical evidence of this. It is therefore necessary to introduce another construction
of time consistent risk measures.

Following [126, page 14], we present a scaled construction of time consistent risk mea-
sures from arbitrary risk measures ρtk . To this end we introduce scaled one-period risk
measures ρtk,tk+1 by:

ρ̃tk,tk+1(X) ∶= E[−X ∣ Ftk] + h ρtk,tk+1 (
1√
h
(X −E[X ∣ Ftk]))

for any Ftk+1-measurable X. Broadly speaking, ρ̃tk,tk+1 is the sum of the conditional ex-
pected value of −X and the original risk measure ρtk,tk+1 which is taken of the (variance-
independent) value 1√

h
(X − E[X ∣ Ftk]) and is additionally multiplied by h to ensure

convergence for N →∞. Note that, if ρtk is positively homgeneous, ρtk,tk+1 takes the form:

ρ̃tk,tk+1(X) = E[−X ∣ Ftk] +
√
h ρtk,tk+1 (X −E[X ∣ Ftk]) ,

and, if −X ∼ N(µ,σ2), then −(X −E[X]) ∼ N(0,σ2). In this form ρ̃tk,tk+1(X) is the esti-
mated value of the risk X at the end of the considered time interval given the information
at the beginning of the interval plus the scaled risk of a deviation of the risk from its
expected value.

Then, the recursive construction of the composed scaled risk measure (ComScaRM) is

ρComSca
tN

(X) ∶= ρtN (X) = −X
ρComSca
tk

(X) ∶= ρ̃tk,tk+1(−ρComSca
tk+1

(X)), tk ≤ tkN−1
.

(ComScaRM)

7.6 Example. (a) If we want the discretized BSDE (7.1) to represent a composed ver-
sion of V@R in the sense of (ComScaRM), we get:

ComScaV@RNtN−1
(Y N

tN
) = E[Y N

tN
∣ FtN−1

] (7.6)

+ h(V@RtN−1,tN ( 1√
h
(−Y N

tN
−E[−Y N

tN
∣ FtN−1

])))

= E[Y N
tN

∣ FtN−1
] + h( 1√

h
(Φ−1(1 − λ) ∣ZNtN−1

∣
√
h))

= E[Y N
tN

∣ FtN−1
] +Φ−1(1 − λ) ∣ZNtN−1

∣h, (7.7)

where we assumed (nearly) coherency of ComScaV@R as justi�ed for ComV@R and
we made use of the fact that −Y N

tN
−E[−Y N

tN
∣ FtN−1

] conditional on FtN−1
is normally

distributed with mean 0 and standard deviation
√
h ∣ZNtN−1

∣. The comparison of (7.6)
and (7.2) leads to the driver

gV@RStadje(t,y,z) = Φ−1(1 − λ) ∣z∣ .
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This is exactly what we hoped to get: A driver gV@RStadje which is independent of the

size of the time step h and therefore can't �explode� as h → 0. gV@RStadje can be viewed
as the continuous-time analog of the discrete �driver� characterizing the one-period
risk. It is actually a driver of the form g(t,y,z) = a ∣z∣ , where a is some constant.
This is in line with the theory of discrete BSDEs: Any time consistent nonlinear
expectation corresponds to a driver of this form; see Cohen and Elliott [38].

(b) Equivalently, if we want the discretized BSDE (7.1) to represent a composed version
of AV@R in the sense of (ComScaRM), we get:

ComScaAV@RNtN−1
(Y N

tN
) = E[Y N

tN
∣ FtN−1

]
+
√
hAV@RtN−1,tN (−Y N

tN
−E[−Y N

tN
∣ FtN−1

])

= E[Y N
tN

∣ FtN−1
] + 1

λ
√

2π
exp(−Φ−1(1 − λ)2

2
) ∣ZNtN−1

∣h.

(7.8)

The comparison of (7.8) and (7.2) then leads to the driver

gAV@RStadje (t,y,z) =
1

λ
√

2π
exp(−Φ−1(1 − λ)2

2
) ∣z∣ ,

which again is independent of h.

(c) We remark that scaling is not necessary for the dynamic entropic risk measure since
the composition (ComRM) already converges to a continuous-time version of ρent. At
this point note that [126, Proposition 5.1] only includes coherent risk measures. We
therefore assume that there exist two classes of risk measures in terms of convergence
from a discrete-time composition to a continuous-time dynamic risk measure just like
we see in Section 7.1 for certainty equivalents on small time grids.

Note that in the previous sections we have not found a �dynamic (A)V@R in continuous
time�, but rather �gured out CDRMs which correspond to time consistent DDRMs which
are composed by the initial static risk measures. Thus the initial risk measures and the
obtained CDRMs are related, but since the construction of the time consistent risk mea-
sures is a backwards composition of one-period risk measures, the resulting risk measures
are not directly comparable to the initial risk measures.

7.4 Numerical analysis of the convergence of composed (scaled)
risk measures and g−expectations

The numerical approximation of the solutions to BSDEs in this section is based on [23]
and [80]. In this context, we also refer to Douglas, Ma and Protter [52] and Ma, Protter and
Yong [99]. Hereby, the simulation of the backward component Y is possible due to the fol-
lowing result: Under standard Lipschitz conditions, the pair (Y,Z), which solves the BSDE,
can be expressed as a function of the forward process S, i.e., (Yt,Zt) = (u(t,St),v(t,St)),
t ≤ 1, for some deterministic functions u and v. This is the general idea of the algorithm
we use, see also Listings A.1, A.2, A.3:
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1. Using a standard Euler approximation scheme, we generate M Monte Carlo paths of
the forward process SNtk which are used in the further steps of the algorithm:

SNtk+1 − S
N
tk
= µSNtkh + σS

N
tk

∆Wk+1,

SNt0 = s.

2. From [23, Remark 3.1] we know that

E[Y N
tk+1

∆Wk+1 ∣ Ftk] = E[Y N
tk+1

∆Wk+1 ∣ SNtk ]

and
E[Y N

tk+1
∣ Ftk] = E[Y N

tk+1
∣ SNtk ].

Therefore we can represent (Y N
tk
,ZNtk ) by a projection on a �nite basis of functions:

Y N
tk

= αkpk, ZNtk = βkpk,

where pk = pk(SNtk ).

3. (BSDE) solver:
Following [80], for every backwards step tk+1 → tk we solve a least squares problem
(3 Picard iterations) to attain αk, βk. This leads to an approximation of Y N

tk
and

ZNtk which yields an approximate solution of the discretized (BSDE):

Y N
tk+1

− Y N
tk

= −g(tk,Y N
tk
,ZNtk )h +Z

N
tk

∆Wk+1.

4. (ComRM), (ComScaRM) solver:
For every backwards step we use a projection on the same �nite basis αk as in our
(BSDE) solver to get an approximation of Y N

tk
. Having the expected value of Y N

tk
the

calculation is given by (ComRM) or (ComScaRM), respectively, e.g.,

ComScaV@RNtN−1
(Y N

tN
) = E[Y N

tN
∣ FtN−1

] +
√
hV@RtN−1,tN (−Y N

tN
−E[−Y N

tN
∣ FtN−1

]) .

We refer to [80] for a more comprehensive description of the BSDE approximation and for
results on error estimations due to the approximation. In the upcoming examples, which
are inspired by Romanovski [120], we consider portfolios with the following payo�s:

1. Smooth payo�: X ∶= − ln(ST + 1),

2. Call: X ∶= −(ST − 100)+,

3. Barrier payo�: X ∶= −70 ⋅ 1{ST >135}.

The barrier payo� is either 0 or -70 in contrast to the other payo�s which react �more
smoothly� on changes in ST . We set S0 = 100, µ = 0.06, σ = 0.2, T = 0.5 and the level of
(average) value at risk at λ = 0.05. To make optimal use of our computational resources and
to minimize numerically caused �uctuations in the results, we take the following number
of paths of the underlying:

99



CHAPTER 7. RECURSIVELY COMPOSED RISK MEASURES

Table 7.1: Number of paths.

number of time steps N paths of underlying M

2 - 256 100,000

512 50,000

We use a Hermite polynomial base of degree 9 in order to get results that are best
comparable to [120, Section 3.2]. In order to ensure repeatability of our results, we initialize
MATLAB's random number generator using the seed 1. We then calculate CDRMs via
g-expectations at t = 0 as:

ρg(X) ∶= Eg[−X] = Y −X
0 ,

and also present composed scaled DDRMs at t = 0:

ρComRM
0 (X) or ρComScaRM

0 (X).

Following the theoretical insights from the previous sections for value at risk and average
value at risk, we consider how composed risk measures converge to risk measures from
g-expectations for di�erent portfolios.

As a �rst result, we consider the 1 − λ = 0.95-quantiles of the M simulations for ST
for N time steps together with the (average) value at risks of the respective payo�s in
Table 7.2.

Table 7.2: Quantiles and risk measures.

ST Call Barrier payo� Smooth payo�

N 0.95-quantile V@R AV@R V@R AV@R V@R AV@R

2 121.89 21.89 27.43 0.00 5.60 4.81 4.85

4 124.60 24.60 31.24 0.00 14.70 4.83 4.88

8 126.73 26.73 34.11 0.00 22.40 4.85 4.90

16 127.70 27.70 35.67 0.00 28.00 4.86 4.92

32 128.12 28.12 36.78 0.00 31.50 4.86 4.92

64 128.45 28.45 37.16 0.00 32.20 4.86 4.93

128 128.49 28.49 36.74 0.00 32.20 4.86 4.92

256 128.74 28.74 37.14 0.00 33.60 4.86 4.93

512 128.81 28.81 37.13 0.00 32.90 4.87 4.93
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Table 7.2 shows that both, V@R and AV@R, converge to rather constant values for
increasing N . Note that generally V@R<AV@R and that for the barrier payo� we have
that V@R=0 whereas AV@R>0 which is intuitively obvious due to the de�nition of AV@R;
see Example 2.4 (b).

7.4.1 Approximation results for composed risk measures and unscaled

g−expectations

In this section we consider composed risk measures and g-expectations as presented in
Section 7.2. The results give numerical evidence for the theoretical insight that the naively
obtained BSDE drivers for value at risk

gV@R(t,y,z) = Φ−1(1 − λ)√
h

∣z∣

and average value at risk

gAV@R(t,y,z) = 1

λ
√

2πh
exp(−Φ−1(1 − λ)2

2
) ∣z∣

do not imply CDRMs that converge to composed risk measures as N →∞; see Table 7.3.
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Table 7.3: Composed risk measures and risk measures from g-expectations.

Call Barrier payo� Smooth payo�

N ρComV@R0 ρg
V@R

ρComV@R0 ρg
V@R

ρComV@R0 ρg
V@R

2 27.83 35.71 4.54 7.00 4.86 4.95

4 28.83 62.38 9.52 67.11 4.87 5.09

8 29.53 87.97 12.10 249.49 4.87 5.29

16 29.87 256.06 12.07 3.97 ⋅ 103 4.87 5.57

32 30.20 1.20 ⋅ 105 13.61 9.15 ⋅ 105 4.87 5.88

64 30.32 4.75 ⋅ 108 12.59 2.16 ⋅ 109 4.87 15.06

128 29.88 5.39 ⋅ 1013 11.01 3.35 ⋅ 1013 4.87 4.43 ⋅ 106

256 29.83 1.42 ⋅ 1022 11.17 1.82 ⋅ 1023 4.87 4.04 ⋅ 1013

512 29.80 9.72 ⋅ 1033 10.51 6.37 ⋅ 1034 4.87 7.00 ⋅ 1026

Call Barrier payo� Smooth payo�

N ρComAV@R
0 ρg

AV@R

ρComAV@R
0 ρg

AV@R

ρComAV@R
0 ρg

AV@R

2 36.05 46.74 13.48 10.07 4.91 5.04

4 36.26 82.96 25.05 120.30 4.92 5.21

8 37.03 253.11 31.71 446.67 4.92 5.45

16 36.83 852.84 34.78 2.41 ⋅ 104 4.92 5.89

32 37.45 2.88 ⋅ 106 37.46 3.15 ⋅ 106 4.92 9.64

64 37.52 5.46 ⋅ 1010 39.73 1.96 ⋅ 1011 4.92 5.33 ⋅ 103

128 36.57 6.87 ⋅ 1017 40.09 3.49 ⋅ 1017 4.92 9.48 ⋅ 1010

256 36.88 2.34 ⋅ 1027 44.44 4.32 ⋅ 1028 4.92 7.61 ⋅ 1019

512 37.79 8.16 ⋅ 1044 43.23 2.05 ⋅ 1044 4.91 6.48 ⋅ 1037

7.4.2 Approximation results for composed risk measures and scaled g−ex-
pectations

In this section we pick up an idea from Romanovski who proposes to replace the size of
the discrete time steps h = T

N by the constant T in gV@R and gAV@R from Section 7.2 in
order to make the drivers �constant regardless of time scaling� ([120, pages 14, 16]). The
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resulting driver for value at risk is

gV@RRomanovski(t,y,z) =
Φ−1(1 − λ)√

T
∣z∣

and for average value at risk we get

gAV@RRomanovski(t,y,z) =
1

λ
√

2πT
exp(−Φ−1(1 − λ)2

2
) ∣z∣ .

Table 7.4: Composed risk measures and risk measures from g-expectations - Romanovski.

Call Barrier payo� Smooth payo�

N ρComV@R0 ρg
V@R
Romanovski ρComV@R0 ρg

V@R
Romanovski ρComV@R0 ρg

V@R
Romanovski

2 27.83 24.71 4.54 4.14 4.86 4.86

4 28.83 27.91 9.52 14.44 4.87 4.86

8 29.53 29.03 12.10 21.93 4.87 4.86

16 29.87 29.62 12.07 25.97 4.87 4.86

32 30.20 29.90 13.61 27.01 4.87 4.86

64 30.32 30.17 12.59 27.22 4.87 4.87

128 29.88 30.21 11.01 28.69 4.87 4.87

256 29.83 30.37 11.17 30.57 4.87 4.87

512 29.80 30.94 10.51 32.93 4.87 4.87

Call Barrier payo� Smooth payo�

N ρComAV@R
0 ρg

AV@R
Romanovski ρComAV@R

0 ρg
AV@R
Romanovski ρComAV@R

0 ρg
AV@R
Romanovski

2 36.05 31.24 13.48 5.81 4.91 4.92

4 36.26 35.62 25.05 22.81 4.92 4.92

8 37.03 36.65 31.71 35.78 4.92 4.92

16 36.83 37.32 34.78 41.84 4.92 4.92

32 37.45 37.64 37.46 41.69 4.92 4.92

64 37.52 38.27 39.73 41.63 4.92 4.92

128 36.57 38.21 40.09 47.34 4.92 4.92

256 36.88 38.80 44.44 53.71 4.92 4.92

512 37.79 41.23 43.23 64.38 4.91 4.92
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Figure 7.1: Composed risk measures and risk measures from g-expectations - Romanovski.
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Table 7.4 displays ρComV@R0 (ρComAV@R
0 ) and ρg

V@R
Romanovski (ρg

AV@R
Romanovski) for N = 2 to

N = 512 time steps. Figure 7.1 graphically displays the results from Table 7.4. We plot
g-expectations with solid lines and composed risk measures with dotted lines. The results
for the call are shown in blue, the results for the barrier payo� in red and the smooth
payo� is displayed in green. Figure 7.1 indicates that the way of subsequently scaling
the respective drivers g as proposed by Romanovski [120] only works for payo�s that are
�smooth enough�; see the results for call and smooth payo� which con�rm the results
from [120, Section 3.2]. For the barrier payo�, however, ρComV@R0 and ρg

V@R
Romanovski do not

approach, but rather diverge for greater N . This weakness is also discussed in Figure 7.3
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below.

7.4.3 Approximation results for composed scaled risk measures and g−ex-
pectations

Let us now consider how the composed scaled dynamic risk measures from Section 7.3
converge to CDRMs solving the corresponding BSDEs. In more speci�c terms, we calculate
composed risk measures in the sense of Stadje [126] and the corresponding solutions to
BSDEs with respective drivers, i.e., we compare

ρComScaV@R
0 (X)

to ρg
V@R
Stadje(X) with

gV@RStadje(t,y,z) = Φ−1(1 − λ) ∣z∣ ,

and we compare

ρComScaAV@R
0 (X)

to ρg
AV@R
Stadje (X) with driver

gAV@RStadje (t,y,z) =
1

λ
√

2π
exp(−Φ−1(1 − λ)2

2
) ∣z∣ ,

for the smooth payo�, the call and the barrier payo�.
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Table 7.5: Composed scaled risk measures and risk measures from g-expectations - Stadje.

Call Barrier payo� Smooth payo�

N ρComScaV@R
0 ρg

V@R
Stadje ρComScaV@R

0 ρg
V@R
Stadje ρComScaV@R

0 ρg
V@R
Stadje

2 21.68 18.04 16.46 2.57 4.79 4.79

4 21.97 20.11 16.49 7.80 4.79 4.79

8 22.16 21.06 16.46 11.37 4.79 4.80

16 22.19 21.56 16.26 13.48 4.79 4.80

32 22.23 21.81 16.17 14.49 4.80 4.80

64 22.15 21.96 16.14 14.82 4.80 4.80

128 22.17 22.02 16.50 15.09 4.80 4.80

256 22.16 22.07 17.06 15.62 4.80 4.80

512 22.27 22.17 16.36 15.82 4.80 4.80

Call Barrier payo� Smooth payo�

N ρComScaAV@R
0 ρg

AV@R
Stadje ρComScaAV@R

0 ρg
AV@R
Stadje ρComScaAV@R

0 ρg
AV@R
Stadje

2 27.92 22.03 42.58 3.49 4.82 4.83

4 26.29 24.75 24.39 11.53 4.82 4.84

8 26.63 25.83 22.21 17.24 4.83 4.84

16 26.79 26.39 22.80 20.44 4.83 4.84

32 26.81 26.66 22.76 21.58 4.83 4.84

64 26.63 26.86 24.82 21.87 4.83 4.84

128 26.73 26.92 25.03 22.66 4.83 4.84

256 26.79 27.01 27.49 23.78 4.83 4.84

512 27.23 27.31 25.11 24.86 4.83 4.84

106



7.4. NUMERICAL ANALYSIS OF THE CONVERGENCE OF COMPOSED

(SCALED) RISK MEASURES AND G−EXPECTATIONS

Figure 7.2: Composed scaled risk measures and risk measures from g-expectations - Stadje.
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Table 7.5 and Figure 7.2 show ρComScaV@R
0 (ρComScaAV@R

0 ) and ρg
V@R
Stadje (ρg

AV@R
Stadje ) forN = 2

to N = 512 time steps. Again, we plot g-expectations with solid lines and composed scaled
risk measures with dotted lines, and the results for the call are shown in blue, the results
for the barrier payo� in red and the smooth payo� is displayed in green. We observe
a much improved convergence for an increasing number of time steps N from discrete-
time composed risk measures to their corresponding continuous-time g-expectations in any
tested payo� if we compare Figure 7.2 to Figure 7.1.

In Figure 7.3 we zoom in on the V@R-based risk measures for the barrier payo�.
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Figure 7.3: V@R-based risk measures for the barrier payo�.
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Firstly, note that the solid blue line displays the g-expectation at t = 0 for the naive
approach when we do not consider scaling ComV@R or gV@R, respectively. Obviously,
the corresponding CDRM ρg

AV@R

�explodes� for bigger N which gives numerical evidence
for [126, Proposition 5.1] as V@R is a coherent risk measure for Gaussian random variables.
Further, note the clear di�erence in the convergence behavior for an increasing number of
time steps N of Romanovski's approach to the scaling as proposed by Stadje.

7.7 Remark. We have seen the necessity of scaling composed risk measures or the corre-
sponding BSDE-drivers g in order to ensure convergence of ρComRM

0 to ρg for an increasing
number of time steps. We, however, strongly recommend to scale composed risk measures
as proposed by Stadje [126] as subsequently scaling g as proposed by Romanovski [120]
does not imply convergence for non-smooth payo�s; see Figure 7.3. The decisive e�ect of
scaling dynamic risk measures, however, is getting the factor

√
h in the representation of

ComRM to h. With this insight, one might study alternative ways of scaling ComRM, for
example, consider

ρComSqua
tN

(X) ∶= ρtN (X) = −X
ρComSqua
tk

(X) ∶= ρ̃tk,tk+1(−ρ
ComSqua
tk+1

(X)), tk ≤ tkN−1
,

(ComSquaRM)

with
ρ̃tk,tk+1(X) ∶= E[−X ∣ Ftk] + h (ρtk,tk+1 (X −E[X ∣ Ftk]))

2 .

For risk measures of the form

ρλ(X) ∶= E[−X] + b(λ)σ(X),

we get

ρComSqua
tN−1

(Y N
tN

) = E[Y N
tN

∣ FtN−1
] + h (ρtN−1,tN (Y N

tN
−E[Y N

tN
∣ FtN−1

]))2
,
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and the corresponding BSDE-driver is

gbSquared(t,y,z) = b(λ)2hz2.

For the same parameter setting as before, composed squared risk measures and the corre-
sponding g-expectations at t = 0 are displayed in Table 7.6.

Table 7.6: Composed risk measures and risk measures from g-expectations - squared.

Call Barrier payo� Smooth payo�

N ρComSquaV@R
0 ρg

V@R
Squared ρComSquaV@R

0 ρg
V@R
Squared ρComSquaV@R

0 ρg
V@R
Squared

2 8.24 6.28 2.48 0.32 4.65 4.64

4 7.79 6.72 2.00 0.87 4.64 4.64

8 7.58 7.01 1.81 1.20 4.64 4.64

16 7.47 7.19 1.71 1.43 4.64 4.64

32 7.42 7.28 1.69 1.56 4.64 4.64

64 7.39 7.32 1.67 1.61 4.64 4.64

128 7.39 7.35 1.65 1.61 4.64 4.64

256 7.38 7.36 1.67 1.67 4.64 4.64

512 7.38 7.37 1.63 1.62 4.64 4.64

Call Barrier payo� Smooth payo�

N ρComSquaAV@R
0 ρg

AV@R
Squared ρComSquaAV@R

0 ρg
AV@R
Squared ρComSquaAV@R

0 ρg
AV@R
Squared

2 8.84 6.63 3.20 0.35 4.65 4.65

4 8.07 6.91 2.34 0.94 4.64 4.64

8 7.70 7.11 1.95 1.26 4.64 4.64

16 7.53 7.24 1.77 1.47 4.64 4.64

32 7.45 7.30 1.71 1.58 4.64 4.64

64 7.40 7.34 1.68 1.62 4.64 4.64

128 7.40 7.36 1.65 1.61 4.64 4.64

256 7.38 7.37 1.68 1.67 4.64 4.64

512 7.38 7.37 1.63 1.62 4.64 4.64

Note that the absolute values of the displayed risk measures for the call and the barrier
payo� in Table 7.6 appear to be too low for practical reasons; see Table 7.2. We, however,
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emphasize that, from a theoretical point of view, (ComSquaRM) represents a suitable
alternative to (ComScaRM) as it provides composed risk measures that converge to the
respective robust g-expectations; in particular, the g-expectations do not diverge for an
increasing number of time steps N as in Table 7.3.
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Conclusion

In the �rst part of this thesis we considered utility-based risk measures. Since this concept
brings together two initially separate �elds of research, namely risk measures and preference
theory, we provided su�cient theoretical foundations and the basic literature on both topics
in Chapters 2 and 3.

The introduction of optimal expected utility (OEU) risk measures in Chapter 4 is a
main contribution of this thesis. We pointed out that OEU perfectly implements our plan
to translate the idea of investors' utility captured by u to risk evaluations of �nancial po-
sitions as it is a convex risk measure for most commonly used utility functions, such as
power, logarithmic and exponential utilities and because we were able to relate properties
of u to properties of ρu. The fact that OEU strictly distinguishes between �cash� and
�utility� quantities also facilitates interpretation of OEU. We showed that, to the best of
our knowledge, OEU is the only existing utility-based risk measure that is non-trivial and
coherent if the utility function features constant relative risk aversion. We also developed
a method to recover the utility function from a given OEU and provided a dual repre-
sentation of optimal expected utility risk measures. Some exemplary applications of OEU
demonstrating that (a) it attains reasonable values for any characteristics of Bernoulli-type
payo�s, (b) it is sensitive with respect to extreme events, and (c) it also suits for detecting
risks associated with heavy tailed distributions concluded this chapter.

Furthermore, we introduced implied risk aversion as a rating system for retail struc-
tured products based on OEU in Chapter 5. The good suitability of implied risk aversion
for classifying RSPs rests above all on the fact that OEU takes into account the entire
distribution (we say that it is fully supported) of a �nancial position; by contrast, V@R
and AV@R are not fully supported. Whereas standard V@R-based ratings have some sig-
ni�cant weaknesses with respect to classifying RSPs, implied risk aversion suits for a more
sophisticated view on the risk and return potential of RSPS and is able to aid retail clients
(a) to select the most attractive products from a given universe, and (b) to assess whether a
given product is attractive per se. Moreover, implied risk aversion can easily be interpreted
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in terms of an individual investor's risk aversion. For comparability reasons, we simulated
payo� pro�les of short and mid term warrants on the German blue-chip index DAX® at
their respective maturity date. Due to our theoretical and empirical �ndings, we suggest
to providers of rating information to implement an alternative rating system for RSPs on
the basis of implied risk aversion. To our knowledge there is no other publication which
proposes to consider the risk parameter of any well-known risk measure to get a neutral
(indi�erent) risk evaluation. Another application for this approach might be the calcu-
lation of the permitted proportions of call and put options for a portfolio consisting of a
delta one product and additional options on the same underlying for given RSP-based risk
classes. In this way, investors with a clearly de�ned risk appetite can, for example, de�ne
portfolio strategies that are aimed at outperforming or protecting a given underlying.

The third part of this thesis focused on time consistency of dynamic risk measures. In
Chapter 6 we set up risk measures on the space of distributions. We showed that OEU
is concave on the space of distributions, and pointed out that, in the literature, this is a
controversial, but also justi�able characteristic of this type of functionals. Following [137],
we presented the theory of acceptance and rejection consistency of dynamic risk measures,
and we slightly generalized Weber's �ndings by considering dynamic risk measures with
time-dependent parameters.

Finally, in Chapter 7 we brought together several di�erent studies on convergence
behavior of recursively composed dynamic risk measures in discrete time settings to corre-
sponding g-expectations which can be interpreted as dynamic risk measures in continuous
time. Our main outcome was that we have to distinguish between two classes of dynamic
risk measures with respect to their convergence behavior from discrete to continuous time:
While risk measures of the �rst class, such as the entropic risk measure, are well suited
for convergence in the above sense, risk measures of the second class must be additionally
scaled in the recursive construction. We proposed an approach for scaling recursively com-
posed risk measures in the sense of [126] and explained why it is preferable to the approach
in [120]. We implemented both, unscaled and scaled recursively composed risk measures
and derived drivers of BSDEs leading to corresponding continuous-time risk measures for
various example cases. Our work on this topic concludes with an illustration of the con-
vergence behavior of V@R- and AV@R-based composed risk measures for di�erent payo�s.
Remark 7.7 provides a starting point for further research on recursively composed risk
measures.
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Appendix

A.1 Proofs

A.1 Remark (Under (PH), (C) is equivalent to (S)). We assume that a risk measure ρ is
positively homogeneous.

1. Convexity implies that:

ρ(X + Y ) = ρ(1

2
2X + 1

2
2Y ) ≤ 1

2
ρ(2X) + 1

2
ρ(2Y ) = ρ(X) + ρ(Y ).

2. Subadditivity implies that for any 0 ≤ λ ≤ 1:

ρ(λX + (1 − λ)Y ) ≤ ρ(λX) + ρ((1 − λ)Y ) = λρ(X) + (1 − λ)ρ(Y ).

Thus we conclude that, under the assumption of positive homogeneity, (C) is equivalent
to (S).
A.2 Remark (V@R is positively homogeneous). For γ > 0:

V@Rλ(γX) = inf{m ∈ R ∶ P (m + γX < 0) ≤ λ}

= γ inf {m
γ
∈ R ∶ P (m

γ
+X < 0)) ≤ λ}

= γV@Rλ(X)

A.3 Remark (V@R is not subadditive). Consider the example of an investor selling two
options on the same underlying S with the same maturity, namely:

- a call with strike Kcall at pcall and

- a put with strike Kput at pput,

123



APPENDIX

such that
P (S <Kput − pput) = P (S >Kcall + pcall) = 0.0075

and
P (S <Kput − (pcall + pput)) = P (S >Kcall + (pcall + pput)) = 0.006.

Set X1 ∶= − ((Kput − S)+ − pput), X2 ∶= − ((S −Kcall)+ − pcall). Then V@R0.01(X1) ≤ 0,
V@R0.01(X2) ≤ 0, but V@R0.01(X1 +X2) > 0

A.4 Remark ((ρentt,γ )t∈{0,...,T} is time consistent).

1. (ρentt,γ )t∈{0,...,T} is recursive:

ρentt,γ (−ρentt+1,γ(X)) = 1

γ
E [exp(−γ (−1

γ
lnE[exp(−γX) ∣ Ft+1]))]

= 1

γ
lnE [E[exp(−γX) ∣ Ft+1] ∣ Ft]

= ρentt,γ (X)

2. Recursiveness implies time consistency: Since ρt is monotone,

ρt(−ρt+1(X)) ≤ ρt(−ρt+1(Y )) if ρt+1(X) ≤ ρt+1(Y )

which, due to recursiveness, leads to

ρt(X) ≤ ρt(Y ).

It is easy to proof that time consistency is even equivalent to recursiveness.

A.5 Remark (V@R for normally distributedX). IfX is (continuously) normally distributed
with variance σ2(X), V@R equals the quantile function of −X for 1 − λ:

V@Rλ(X) = E[−X] + σ(X)Φ−1(1 − λ).

A.6 Remark (V@R is subadditive for normally distributed positions). Let X ∼ N(µX ,σ2
X)

and Y ∼ N(µY ,σ2
Y ) with corr(X,Y ) = ρ ∈ [0,1]. Then

V@Rλ(X + Y ) = µX + µY +
√
σ2
X + σ2

Y + 2ρσXσY Φ−1(1 − λ)

≤ µX + µY +
√
σ2
X + σ2

Y + 2σXσY Φ−1(1 − λ)

= µX + µY +
√

(σX + σY )2Φ−1(1 − λ)
= V@Rλ(X) + V@Rλ(Y )

A.7 Remark (Increments of a geometric Brownian motion are nearly Gaussian). Let (St)t∈[0,T ]

be a geometric Brownian motion

dSt = µStdt + σStdWt,

i.e., for all t, St is log-normally distributed with

E[St] = s exp(µt) =∶m, V ar[St] = s2 exp(2µt) (exp(σ2t) − 1) =∶ v.

124



A.2. DATA

Then, ln(St) is normally distributed with parameters

σ̂2
t = ln(1 + v

m2
) = σ2t

and

µ̂t = ln( m2

√
v +m2

) ,

= ln
⎛
⎝

s2 exp(2µt)√
s2 exp(2µt) exp(σ2t)

⎞
⎠

= ln(S0 exp(t(µ − 1

2
σ2)))

= ln(S0) + t(µ −
1

2
σ2)

and with Itô's formula

d ln(St) = µ̃dt + σdWt, µ̃ ∶= µ − 1

2
σ2.

Thus
ln(St+h) − ln(St) ∼ N (µ̂t+h − µ̂t, ˆσ2

t+h − σ̂2
t ) = N (µ̃h,σ2h) ,

since ln(St+h), ln(St) are increments of a standard Brownian motion and therefore sta-
tionary independent. It follows that

St+h − St = St (
St+h
St

− 1) h very small≈ St ln(St+h
St

) ∼ N (Stµ̃h,S2
t σ

2h) .

A.8 Remark (AV@Rλ(X) = µ+σ 1
λ
√

2π
exp (−Φ−1(1−λ)2

2 ) for L = −X ∼ N(µ,σ2)). Let −X ∼
N(µ,σ2), Z ∼ N(0,1). From Remark 2.5(c) we know the representation of AV@Rλ(X)
for continuously distributed X. Then:

AV@Rλ(X) = E[−X ∶ −X ≥ V@Rλ(X)]
= E[(µ + σZ) ∶ (µ + σZ) ≥ µ + σΦ−1(1 − λ)]
= µ + σE[Z ∶ Z ≥ Φ−1(1 − λ)]

= µ + σ 1

α
√

2π
exp(−Φ−1(1 − λ)2

2
)

A.2 Data

In this section we present additional data to the RSP ratings from Chapter 5.
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Table A.1: Products with largest implied risk aversion in the
Black-Scholes model.

WKN Issuer Strike Ask Underlying Maturity V@R γ0

UZ68WB UBS 11950 0.41 11828.86 5 10000 15.4231
UZ7M77 UBS 11900 0.59 11830.62 5 10000 15.0835
UZ62LW UBS 12000 0.28 11829.15 5 10000 14.6950
HY7UPK Hypo Vereinsbank 11900 0.53 11831.82 4 10000 14.3529
UZ7LV7 UBS 12050 0.18 11828.89 5 10000 13.6851
UZ698B UBS 11850 0.81 11829.76 5 10000 13.2928
HY7243 Hypo Vereinsbank 12000 0.24 11828.16 4 10000 12.5903
UZ6U6M UBS 12100 0.11 11829.38 5 10000 12.3819
XM2HAK Deutsche Bank 12000 0.32 11831.29 5 10000 12.2658
GL15JW Goldman Sachs 12000 0.327 11831.26 5 10000 11.7561
XM2HAJ Deutsche Bank 11950 0.47 11830.66 5 10000 11.5091
XM2HAH Deutsche Bank 11900 0.65 11831.82 5 10000 11.0532
XM2HAL Deutsche Bank 12050 0.22 11829.58 5 10000 10.9613
HY7244 Hypo Vereinsbank 12050 0.16 11828.96 4 10000 10.7327
HY7UPL Hypo Vereinsbank 11950 0.4 11828.59 4 10000 10.4227
UZ68WE UBS 12150 0.068 11828.16 5 10000 10.2577
UZ7CNC UBS 11800 1.09 11828.09 5 10000 10.2328
PS2SLG BNP Paribas 12100 0.24 11832.04 7 10000 10.2182
GL15JY Goldman Sachs 12100 0.145 11831.93 5 10000 10.1782
XM2HAM Deutsche Bank 12100 0.15 11830.42 5 10000 9.6278
GL15JZ Goldman Sachs 12100 0.247 11828.59 7 10000 9.3890
CC67N7 Citi 12100 0.25 11829.59 7 10000 9.3238
GL15JU Goldman Sachs 11900 0.67 11829.52 5 10000 9.1773
GL15JX Goldman Sachs 12000 0.47 11827.23 7 10000 9.1561
UZ670C UBS 12200 0.03 11827.14 5 10000 9.0899
PS2SLF BNP Paribas 12000 0.48 11829.9 7 10000 9.0124
VZ91QW Vontobel 12125 0.21 11828.96 7 10000 9.0041
VZ91QV Vontobel 12075 0.31 11831.96 7 10000 8.9334
VZ9CZ2 Vontobel 12050 0.36 11830.44 7 10000 8.9283
CN263Q Commerzbank 12075 0.31 11831.82 7 10000 8.9151
VZ8ZUT Vontobel 12100 0.26 11830.14 7 10000 8.7757
PS2SLH BNP Paribas 12200 0.11 11830.58 7 10000 8.7722
VZ9CZ3 Vontobel 12150 0.18 11832.04 7 10000 8.7207
HY7245 Hypo Vereinsbank 12100 0.1 11825.44 4 10000 8.6373
XM2HAG Deutsche Bank 11850 0.88 11827.33 5 10000 8.4603
CC8Z2M Citi 12150 0.18 11828.98 7 10000 8.4280
VZ91QX Vontobel 12175 0.15 11831.75 7 10000 8.3502
VZ8ZUS Vontobel 12000 0.5 11832.1 7 10000 8.2765
CN0R7K Commerzbank 12100 0.27 11831.13 7 10000 8.2757
CN263P Commerzbank 12025 0.43 11830.44 7 10000 8.2651
CC67N8 Citi 12200 0.12 11832.04 7 10000 8.2642
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CN0R7J Commerzbank 12050 0.37 11829.59 7 10000 8.1950
AP6MBP Interactive Brokers 12100 0.27 11829.59 7 10000 8.0900
VZ8ZUR Vontobel 12200 0.12 11829.42 7 10000 8.0597
HY7UPJ Hypo Vereinsbank 11850 0.79 11825.86 4 10000 7.9905
CN0R7L Commerzbank 12150 0.19 11829.9 7 10000 7.8940
CN0R7H Commerzbank 12000 0.5 11829.26 7 10000 7.8620
CN263R Commerzbank 12125 0.23 11829.28 7 10000 7.8004
VZ91QU Vontobel 12025 0.43 11827.12 7 10000 7.7977
AP6MBQ Interactive Brokers 12200 0.13 11833.37 7 10000 7.7402
PS2SLE BNP Paribas 11950 0.66 11830.66 7 10000 7.7262
GL15K1 Goldman Sachs 12200 0.122 11826.48 7 10000 7.7042
VZ91QT Vontobel 11975 0.58 11830.46 7 10000 7.6936
CN263S Commerzbank 12175 0.16 11831.17 7 10000 7.6734
UZ7LUV UBS 11750 1.42 11827.42 5 10000 7.6701
VZ91QY Vontobel 12225 0.1 11831.07 7 10000 7.6400
CC8Z2L Citi 12050 0.38 11829.59 7 10000 7.6101
XM2HAN Deutsche Bank 12150 0.11 11833.11 5 10000 7.5726
CN263N Commerzbank 11975 0.58 11829.5 7 10000 7.5534
VZ9CZ1 Vontobel 11950 0.67 11831.82 7 10000 7.4668

A.3 Source codes

In this section we present the source codes used to generate the plots in Chapter 7. Main
parts of the source codes are modi�ed versions of the code which is given in [120]. Firstly,
we calculate M paths of the forward process SNtk with initial value S0 = 100 for a �xed
seed:

Listing A.1: Forward process.

1 % f i x seed
2 rng ( seed ) ;
3
4 [X,W] = ForwardProcess (n+1,M,T, 1 0 0 ) ;
5
6 % Forward proce s s :
7 %
8 % This func t i on s imu la t e s M paths o f the forward proce s s X^N_tk
9 % us ing Euler scheme s t a r t i n g at i n i t i a l va lue X0 with constant
10 % d r i f t mu and standard dev i a t i on sigma .
11
12 func t i on [X,dW] = ForwardProcess (N,M,T,X0 ,mu, sigma )
13
14 h = T/N;
15 X = ze ro s (N,M) ;
16
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17 NormInc = randn (N,M) ;
18 NormInc ( 1 , : ) = ze ro s (1 ,M) ;
19 dW = sqr t (h)*NormInc ;
20
21 X( 1 , : ) = X0 ;
22
23 f o r m = 2 :N
24 X(m, : ) = X(m−1 , : ) + mu*X(m−1 , : )*h
25 + sigma*X(m− 1 , : ) . *dW(m, : ) ;
26 end % f o r
27
28 end % func t i on

The results in Section 7.4.2 have been computed with the following source codes:

Listing A.2: Source codes for Romanovski's approach.

1 % Composed RM:
2 %
3 % The f o l l ow i ng code approximates composed V@R and AV@R along the
4 % simulated under ly ing a s s e t paths .
5 %
6 % Input arguments are R ( polynomial degree ) , M (number o f Monte
7 % Carlo paths o f forward proce s s ) , K (number o f one time step long
8 % Monte Carlo s imu la t i on s ; s e e func t i on ForwardStepMat ) , N
9 % (number o f time s t ep s ) , T ( te rmina l time ) , aT ( l e v e l o f (A)V@R)
10 % and the opt ions polBase ( ' lag ' ( l a gu e r r e polynomial base ) or
11 % ' her ' ( hermite polynomial base ) ) and opt ( ' var ' (V@R) or
12 % ' avar ' (AV@R) ) . We a l s o pass the r e s u l t X from the forward
13 % proce s s .
14 %
15 % The algor i thm re tu rn s an es t imate o f the r i s k measure at the
16 % i n i t i a l time .
17
18 func t i on e s t = ComMeasure (R,M,K,N,T, aT , polBase , opt ,X)
19
20 e s t = ze ro s ( 3 , 1 ) ;
21
22 YT( : , : , 1 ) = Phi (X(N+1 , : ) , ' c a l l ' ) ;
23 YT( : , : , 2 ) = Phi (X(N+1 , : ) , ' ba r r i e r ' ) ;
24 YT( : , : , 3 ) = Phi (X(N+1 , : ) , ' smooth ' ) ;
25
26
27 h = T/N;
28 Y = ze ro s (N+1,M, 3 ) ;
29 Alpha = ze ro s (N,R+1 ,3) ;
30 Y(N+1 , : ,1) = YT( : , : , 1 ) ;
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31 Y(N+1 , : ,1) = YT( : , : , 2 ) ;
32 Y(N+1 , : ,1) = YT( : , : , 3 ) ;
33
34 switch opt
35
36 case ' var '
37 alpha = 1−normcdf ( norminv(1−aT, 0 , 1 )* s q r t (h/T) ) ;
38
39 case ' avar '
40 no = 14 ; % accuracy o f the c a l c u l a t i o n o f alpha_h
41
42 alpha = alp (N,T, aT , no ) ;
43
44 end % switch
45
46 l = 2 ;
47 r = 0 . 5 ;
48
49 f o r m = N: −1 :1
50
51 Paths=ForwardStepMat (K, h ,X(m, : ) ) ;
52 Values ( : , : , 1 ) = Paths . * 0 ;
53 Values ( : , : , 2 ) = Paths . * 0 ;
54 Values ( : , : , 3 ) = Paths . * 0 ;
55
56 switch opt
57
58 case ' var '
59 i f m == N
60 Values ( : , : , 1 ) = Phi ( Paths , ' c a l l ' ) ;
61 Values ( : , : , 2 ) = Phi ( Paths , ' ba r r i e r ' ) ;
62 Values ( : , : , 3 ) = Phi ( Paths , ' smooth ' ) ;
63
64 e l s e
65 f o r i = 1 :M
66 pComRM = base (R, Paths ( : , i ) ' , l * ( (m+2)/T)^ r
67 , polBase ) ' ;
68 Values ( : , i , 1 ) = (Alpha (m+1 , : ,1)*pComRM' ) ' ;
69 Values ( : , i , 2 ) = (Alpha (m+1 , : ,2)*pComRM' ) ' ;
70 Values ( : , i , 3 ) = (Alpha (m+1 , : ,3)*pComRM' ) ' ;
71 end % f o r
72 end % i f
73 Y(m, : , 1 ) = quan t i l e ( Values ( : , : , 1 ) , 1 − alpha ) ;
74 Y(m, : , 2 ) = quan t i l e ( Values ( : , : , 2 ) , 1 − alpha ) ;
75 Y(m, : , 3 ) = quan t i l e ( Values ( : , : , 3 ) , 1 − alpha ) ;
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76
77 case ' avar '
78 i f m == N
79 Values ( : , : , 1 ) = Phi ( Paths , ' c a l l ' ) ;
80 Values ( : , : , 2 ) = Phi ( Paths , ' ba r r i e r ' ) ;
81 Values ( : , : , 3 ) = Phi ( Paths , ' smooth ' ) ;
82
83 quan t i l e s ( : , 1 ) = quan t i l e ( Values ( : , : , 1 ) , 1 − alpha ) ;
84 quan t i l e s ( : , 2 ) = quan t i l e ( Values ( : , : , 2 ) , 1 − alpha ) ;
85 quan t i l e s ( : , 3 ) = quan t i l e ( Values ( : , : , 3 ) , 1 − alpha ) ;
86
87 es = ze ro s (M, 3 ) ;
88 f o r i = 1 :M
89 tmp = Values ( Values ( : , i ,1)>= quan t i l e s ( i , 1 )
90 , i , 1 ) ;
91 es ( i , 1 ) = sum(tmp)/ l ength (tmp ) ;
92 tmp = Values ( Values ( : , i ,2)>= quan t i l e s ( i , 2 )
93 , i , 2 ) ;
94 es ( i , 2 ) = sum(tmp)/ l ength (tmp ) ;
95 tmp = Values ( Values ( : , i ,3)>= quan t i l e s ( i , 3 )
96 , i , 3 ) ;
97 es ( i , 3 ) = sum(tmp)/ l ength (tmp ) ;
98 end % par f o r
99 e l s e
100 a = Alpha (m+1 , : , : ) ;
101 es = ze ro s (M, 3 ) ;
102 f o r i = 1 :M
103 pComRM = base (R, Paths ( : , i ) ' , l * ( (m+2)/T)^ r
104 , polBase ) ' ;
105 va l s ( : , : , 1 ) = ( a ( : , : , 1 ) *pComRM' ) ' ;
106 VaR( : , 1 ) = quan t i l e ( va l s ( : , : , 1 ) , 1 − alpha ) ;
107 tmp = va l s ( va l s ( : , : , 1 ) >=VaR( : , 1 ) , : , 1 ) ;
108 es ( i , 1 ) = sum(tmp)/ l ength (tmp ) ;
109
110 va l s ( : , : , 2 ) = ( a ( : , : , 2 ) *pComRM' ) ' ;
111 VaR( : , 2 ) = quan t i l e ( va l s ( : , : , 2 ) , 1 − alpha ) ;
112 tmp = va l s ( va l s ( : , : , 2 ) >=VaR( : , 2 ) , : , 2 ) ;
113 es ( i , 2 ) = sum(tmp)/ l ength (tmp ) ;
114
115 va l s ( : , : , 3 ) = ( a ( : , : , 3 ) *pComRM' ) ' ;
116 VaR( : , 3 ) = quan t i l e ( va l s ( : , : , 3 ) , 1 − alpha ) ;
117 tmp = va l s ( va l s ( : , : , 3 ) >=VaR( : , 3 ) , : , 3 ) ;
118 es ( i , 3 ) = sum(tmp)/ l ength (tmp ) ;
119 end % f o r
120 end % i f
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121 Y(m, : , 1 ) = es ( : , 1 ) ;
122 Y(m, : , 2 ) = es ( : , 2 ) ;
123 Y(m, : , 3 ) = es ( : , 3 ) ;
124 end % switch
125
126 A = base (R,X(m, : ) , l * ( (m+1)/T)^r , polBase ) ' ;
127 Alpha (m, : , 1 ) = (A\Y(m, : , 1 ) ' ) ' ;
128 Y(m, : , 1 ) = (Alpha (m, : , 1 ) *A' ) ;
129 Alpha (m, : , 2 ) = (A\Y(m, : , 2 ) ' ) ' ;
130 Y(m, : , 2 ) = (Alpha (m, : , 2 ) *A' ) ;
131 Alpha (m, : , 3 ) = (A\Y(m, : , 3 ) ' ) ' ;
132 Y(m, : , 3 ) = (Alpha (m, : , 3 ) *A' ) ;
133
134 end % f o r
135
136 e s t (1 ) = Y(1 , 1 , 1 ) ;
137 e s t (2 ) = Y(1 , 1 , 2 ) ;
138 e s t (3 ) = Y(1 , 1 , 3 ) ;
139
140 end % func t i on
141
142
143 % BSDE so l v e r :
144 %
145 % The f o l l ow i ng code approximates the BSDE so l u t i o n us ing the
146 % r e g r e s s i o n based MC method
147 %
148 % Input arguments are R ( polynomial degree ) , M (number o f Monte
149 % Carlo paths o f forward proce s s ) , N (number o f time s t ep s ) ,
150 % T ( te rmina l time ) , the opt ions polBase ( ' lag ' ( l a gu e r r e
151 % polynomial base ) or ' her ' ( hermite polynomial base ) ) and opt
152 % ( ' var ' (V@R) or ' avar ' (AV@R)) and aT ( l e v e l o f (A)V@R) .
153 % We a l s o pass the r e s u l t s X and W from the forward proce s s .
154 %
155 % The algor i thm re tu rn s the es t imate o f Y^N_0.
156
157 func t i on e s t = BSDESolver (R,M,N,T, polBase , opt ,X,W, aT)
158
159 e s t = ze ro s ( 3 , 1 ) ;
160 Y = ze ro s (N+1,M, 3 ) ;
161 Z = ze ro s (N,M, 3 ) ;
162 Beta = ze ro s (N,R+1 ,3) ;
163 Alpha = ze ro s (N,R+1 ,3) ;
164
165 YT( : , : , 1 ) = Phi (X(N+1 , : ) , ' c a l l ' ) ;
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166 YT( : , : , 2 ) = Phi (X(N+1 , : ) , ' ba r r i e r ' ) ;
167 YT( : , : , 3 ) = Phi (X(N+1 , : ) , ' smooth ' ) ;
168
169 h = T/N;
170 l = 2 ;
171 r = 0 . 5 ;
172 I = 3 ;
173
174 Y(N+1 , : ,1) = YT( : , : , 1 ) ;
175 Y(N+1 , : ,2) = YT( : , : , 2 ) ;
176 Y(N+1 , : ,3) = YT( : , : , 3 ) ;
177
178 f o r m = N: −1 :1
179
180 pBSDE = base (R,X(m, : ) , l * ( (m+1)/T)^r , polBase ) ' ;
181
182 f o r o = 1 :3
183
184 f o r i = 1 : I ;
185 b ( 1 , : , o ) = Y(m+1 , : , o)+h*F(Beta (m, : , o )*pBSDE' , opt
186 ,h , aT ) ;
187 A = [pBSDE, repmat (W(m+1 , : ) ' , 1 ,R+1).*pBSDE ] ;
188 c o e f f ( : , o ) = A\(b ( 1 , : , o ) ) ' ;
189 Alpha (m, : , o ) = c o e f f ( 1 :R+1,o ) ;
190 Beta (m, : , o ) = c o e f f (R+2:end , o ) ;
191 end % f o r
192
193 Y(m, : , o ) = (Alpha (m, : , o )*pBSDE' ) ;
194 Z(m, : , o ) = (Beta (m, : , o )*pBSDE' ) ;
195
196 end
197
198 end % f o r
199
200 e s t (1 ) = Y(1 , 1 , 1 ) ;
201 e s t (2 ) = Y(1 , 1 , 2 ) ;
202 e s t (3 ) = Y(1 , 1 , 3 ) ;
203
204 end % func t i on
205
206
207
208
209 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
210 % Addit iona l Functions :
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211 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
212
213
214 % Simulat ing paths from each po int :
215 %
216 % This f unc t i on s per forms K one time step long Monte Carlo
217 % s imu la t i on s o f forward proce s s X s t a r t i n g at X0 , where X0 can
218 % be a vector , in which case func t i on ForwardStepMat performs
219 % K s imu la t i on s from each po int in X0 .
220 %
221 % A matrix o f s imulated va lue s i s returned with each column
222 % rep r e s en t i ng paths from one o f those po in t s in X0 . Other
223 % requ i r ed input data i s the s i z e o f the time step h .
224
225 func t i on X = ForwardStepMat (K, h ,X0 ,mu, sigma )
226
227 X = repmat (X0 ,K, 1 ) ;
228
229 NormInc = randn (K, l ength (X0 ) ) ;
230 dW = sqr t (h)*NormInc ;
231 muVal = repmat (mu*X0 ,K, 1 ) ;
232 sigmaVal = repmat ( sigma*X0 ,K, 1 ) ;
233
234 X = X + muVal*h + sigmaVal .*dW;
235
236 end % func t i on
237
238
239 % BSDE termina l func t i on :
240
241 func t i on [ outphi ] = Phi (XT, payo f f )
242 [ a , b ] = s i z e (XT) ;
243 outphi = ze ro s ( a , b ) ;
244 f o r i = 1 : a
245 f o r j = 1 : b
246
247 switch payo f f
248 case ' c a l l ' % ca l l −opt ion
249 outphi ( i , j ) = max(XT( i , j ) −100 ,0) ;
250 case ' ba r r i e r '% ba r r i e r −payo f f
251 i f XT( i , j ) > =135
252 outphi ( i , j ) = 70 ;
253 end % i f
254 case ' smooth '% smooth payo f f
255 outphi ( i , j ) = log (XT( i , j )+1);
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256 end % switch
257
258 end % f o r
259 end % f o r
260
261 end % func t i on
262
263
264 % Evaluat ing polynomial b a s i s :
265 %
266 % The f o l l ow i ng code r e tu rn s a k + 1 by length (x ) matrix with the
267 % f i r s t k base polynomia l s eva luated at x/d , mu l t i p l i e d by
268 % exponent i a l we ight ing . I t supports two d i f f e r e n t polynomial
269 % bases , Laguerre and Hermite polynomial bases , through the
270 % cho i c e o f parameter opt , accept ing arguments l ag ( Laguerre
271 % polynomial base ) or her ( Hermite polynomial base ) .
272
273 func t i on [ L ] = base (k , x , d , opt )
274
275 x = x/d ;
276 L = ze ro s ( [ k+1, l ength (x ) ] ) ;
277 L ( 1 , : ) = 1 ;
278 w = exp ( −0.5* abs (x ) ) ;
279
280 switch opt
281
282 case ' lag '
283 i f k >= 2
284 L ( 2 , : ) = (1−x ) ;
285 end % i f
286
287 f o r j = 3 : ( k+1)
288 L( j , : )=w. * ( ( 2 * ( j −2)+1−x ) . *L( j −1 , : ) −( j −2)*L( j −2 , : ) )
289 /( j −1) ;
290 end % f o r
291
292 case ' her '
293 i f k >= 2
294 L ( 2 , : ) = x ;
295 end % i f
296
297 f o r j = 3 : ( k+1)
298 L( j , : ) = w. * ( x .*L( j −1 , : ) −( j −1)*L( j − 2 , : ) ) ;
299 end % f o r
300
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301 end % switch
302
303 end % func t i on
304
305 % BSDE dr i v e r :
306 %
307 % Given a s p e c i f i c va lue o f parameter opt a d r i v e r f o r the BSDE
308 % i s returned , s o l u t i o n o f which i s the d r i v e r f o r cont inuous
309 % V@R, or the d r i v e r f o r cont inuous AV@R.
310
311 func t i on [ outF ] = F( z , opt ,T, aT)
312
313 switch opt
314
315 case ' var '
316 outF = norminv(1−aT , 0 , 1 )* abs ( z )/ sq r t (T) ;
317
318 case ' avar '
319 outF = exp(−norminv(1−aT,0 , 1 )^2/2)/ ( sq r t (2* pi *T)* (aT) )
320 *abs ( z ) ;
321
322 end % switch
323
324 end % func t i on
325
326 % Function that computes alpha f o r AV@R
327
328 func t i on erg = alp (N,T, aT , n)
329
330 i f mod(n , 2 ) == 0
331 n=n+1;
332 end
333
334 eta = 10^−n ;
335 h = T/N;
336 syms z ;
337 nmlinv ( z ) = − s q r t (2)* e r f c i n v (2* z ) ; % Equiva lent to `norminv '
338
339 k=(1− eta ) ;
340 e rg ebn i s = vpa (1/ ( ( k )* s q r t (2* pi *h ) )* exp(−nmlinv (1−k )^2/2)
341 −1/((aT)* s q r t (2* pi *T))* exp(−nmlinv (1−aT)^2/2 ) ) ;
342
343 f o r i = n : −1 :1
344
345 i f mod( i , 2 ) == 1
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346
347 whi le ( e r g ebn i s < 0)
348 k = k−eta *10^( i −1) ;
349 e rg ebn i s=vpa (1/ ( ( k )* s q r t (2* pi *h ) )* exp(−nmlinv (1−k )^2/2)
350 −1/((aT)* s q r t (2* pi *T))* exp(−nmlinv (1−aT)^2/2 ) ) ;
351 end
352
353 e l s e
354
355 whi le ( e r g ebn i s > 0)
356 k = k+eta *10^( i −1) ;
357 e rg ebn i s=vpa (1/ ( ( k )* s q r t (2* pi *h ) )* exp(−nmlinv (1−k )^2/2)
358 −1/((aT)* s q r t (2* pi *T))* exp(−nmlinv (1−aT)^2/2 ) ) ;
359 end
360
361 end
362
363 end
364
365 erg = k ;
366
367 end

To compute the results in Section 7.4.2 we have used the following source codes:

Listing A.3: Source codes for Stadje's approach.

1 % Composed s ca l ed RM:
2 %
3 % The f o l l ow i ng code approximates composed V@R or AV@R along the
4 % simulated under ly ing a s s e t paths f o l l ow i ng Stad j e s approach .
5 %
6 % Input arguments are R ( polynomial degree ) , M (number o f Monte
7 % Carlo paths o f forward proce s s ) , K (number o f one time step
8 % long Monte Carlo s imu la t i on s ; s e e func t i on ForwardStepMat ) , N
9 % (number o f time s t ep s ) , T ( te rmina l time ) , aT ( l e v e l o f (A)V@R)
10 % and the opt ions polBase ( ' lag ' ( l a gu e r r e polynomial base ) or
11 % ' her ' ( hermite polynomial base ) ) and opt ( ' var ' (V@R) or ' avar '
12 % (AV@R) ) . We a l s o pass the r e s u l t X from the forward proce s s .
13 %
14 % The algor i thm re tu rn s an es t imate o f the r i s k measure at the
15 % i n i t i a l time .
16
17 func t i on e s t = ComMeasure (R,M,K,N,T, aT , polBase , opt ,X)
18
19 e s t=ze ro s ( 3 , 1 ) ;
20
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21 YT( : , : , 1 ) = Phi (X(N+1 , : ) , ' c a l l ' ) ;
22 YT( : , : , 2 ) = Phi (X(N+1 , : ) , ' ba r r i e r ' ) ;
23 YT( : , : , 3 ) = Phi (X(N+1 , : ) , ' smooth ' ) ;
24
25
26 h = T/N;
27 Y = ze ro s (N+1,M, 3 ) ;
28 Alpha = ze ro s (N,R+1 ,3) ;
29 Y(N+1 , : ,1) = YT( : , : , 1 ) ;
30 Y(N+1 , : ,1) = YT( : , : , 2 ) ;
31 Y(N+1 , : ,1) = YT( : , : , 3 ) ;
32
33 switch opt
34
35 case ' var '
36 alpha = aT ;
37
38 case ' avar '
39 alpha = aT ;
40
41 end % switch
42
43 l = 2 ;
44 r = 0 . 5 ;
45
46 f o r m = N: −1 :1
47
48 Paths = ForwardStepMat (K, h ,X(m, : ) ) ;
49 Values ( : , : , 1 ) = Paths . * 0 ;
50 Values ( : , : , 2 ) = Paths . * 0 ;
51 Values ( : , : , 3 ) = Paths . * 0 ;
52
53 switch opt
54
55 case ' var '
56 i f m == N
57 Values ( : , : , 1 ) = Phi ( Paths , ' c a l l ' ) ;
58 Values ( : , : , 2 ) = Phi ( Paths , ' ba r r i e r ' ) ;
59 Values ( : , : , 3 ) = Phi ( Paths , ' smooth ' ) ;
60
61 e l s e
62 f o r i =1:M
63 pComRM = base (R, Paths ( : , i ) ' , l * ( (m+2)/T)^ r
64 , polBase ) ' ;
65 Values ( : , i , 1 ) = (Alpha (m+1 , : ,1)*pComRM' ) ' ;
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66 Values ( : , i , 2 ) = (Alpha (m+1 , : ,2)*pComRM' ) ' ;
67 Values ( : , i , 3 ) = (Alpha (m+1 , : ,3)*pComRM' ) ' ;
68 end % f o r
69 end % i f
70 f o r i =1:M
71 Y(m, i , 1 ) = (1/K)*sum( Values ( : , i ,1))+ sq r t (h)
72 * quan t i l e ( Values ( : , i ,1) −(1/K)*sum( Values ( : , i , 1 ) ) , 1 − alpha ) ;
73 Y(m, i , 2 ) = (1/K)*sum( Values ( : , i ,2))+ sq r t (h)
74 * quan t i l e ( Values ( : , i ,2) −(1/K)*sum( Values ( : , i , 2 ) ) , 1 − alpha ) ;
75 Y(m, i , 3 ) = (1/K)*sum( Values ( : , i ,3))+ sq r t (h)
76 * quan t i l e ( Values ( : , i ,3) −(1/K)*sum( Values ( : , i , 3 ) ) , 1 − alpha ) ;
77 end % f o r
78
79 case ' avar '
80 i f m == N
81 Values ( : , : , 1 ) = Phi ( Paths , ' c a l l ' ) ;
82 Values ( : , : , 2 ) = Phi ( Paths , ' ba r r i e r ' ) ;
83 Values ( : , : , 3 ) = Phi ( Paths , ' smooth ' ) ;
84
85 f o r i =1:M
86 quan t i l e s ( i , 1 ) = quan t i l e ( Values ( : , i , 1 )
87 −(1/K)*sum( Values ( : , i , 1 ) ) , 1 − alpha ) ;
88 quan t i l e s ( i , 2 ) = quan t i l e ( Values ( : , i , 2 )
89 −(1/K)*sum( Values ( : , i , 2 ) ) , 1 − alpha ) ;
90 quan t i l e s ( i , 3 ) = quan t i l e ( Values ( : , i , 3 )
91 −(1/K)*sum( Values ( : , i , 3 ) ) , 1 − alpha ) ;
92 end % f o r
93
94 es = ze ro s (M, 3 ) ;
95 f o r i = 1 :M
96 tmp=Values ( Values ( : , i , 1 )
97 −(1/K)*sum( Values ( : , i ,1))>= quan t i l e s ( i , 1 ) , i , 1 ) ;
98 es ( i , 1 ) = sum(tmp−(1/K)*sum( Values ( : , i , 1 ) ) )
99 / l ength (tmp ) ;
100 comes ( i , 1 ) = (1/K)*sum( Values ( : , i ,1))+ sq r t (h)
101 * es ( i , 1 ) ;
102
103 tmp=Values ( Values ( : , i , 2 )
104 −(1/K)*sum( Values ( : , i ,2))>= quan t i l e s ( i , 2 ) , i , 2 ) ;
105 es ( i , 2 ) = sum(tmp−(1/K)*sum( Values ( : , i , 2 ) ) )
106 / l ength (tmp ) ;
107 comes ( i , 2 ) = (1/K)*sum( Values ( : , i ,2))+ sq r t (h)
108 * es ( i , 2 ) ;
109
110 tmp=Values ( Values ( : , i , 3 )
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111 −(1/K)*sum( Values ( : , i ,3))>= quan t i l e s ( i , 3 ) , i , 3 ) ;
112 es ( i , 3 ) = sum(tmp−(1/K)*sum( Values ( : , i , 3 ) ) )
113 / l ength (tmp ) ;
114 comes ( i , 3 ) = (1/K)*sum( Values ( : , i ,3))+ sq r t (h)
115 * es ( i , 3 ) ;
116 end % f o r
117 e l s e
118 a = Alpha (m+1 , : , : ) ;
119 es = ze ro s (M, 3 ) ;
120 f o r i = 1 :M
121 pComRM = base (R, Paths ( : , i ) ' , l * ( (m+2)/T)^ r
122 , polBase ) ' ;
123 va l s ( : , : , 1 ) = ( a ( : , : , 1 ) *pComRM' ) ' ;
124 VaR( : , 1 ) = quan t i l e ( va l s ( : , : , 1 )
125 −(1/K)*sum( va l s ( : , : , 1 ) ) , 1 − alpha ) ;
126 tmp = va l s ( va l s ( : , : , 1 ) − ( 1 /K)*sum( va l s ( : , : , 1 ) )
127 >=VaR( : , 1 ) , : , 1 ) ;
128 es ( i , 1 ) = sum(tmp−(1/K)*sum( va l s ( : , : , 1 ) ) )
129 / l ength (tmp ) ;
130 comes ( i ,1)=(1/K)*sum( va l s ( : , : , 1 ) )+ sq r t (h)
131 * es ( i , 1 ) ;
132
133 va l s ( : , : , 2 ) = ( a ( : , : , 2 ) *pComRM' ) ' ;
134 VaR( : , 2 ) = quan t i l e ( va l s ( : , : , 2 )
135 −(1/K)*sum( va l s ( : , : , 2 ) ) , 1 − alpha ) ;
136 tmp = va l s ( va l s ( : , : , 2 ) − ( 1 /K)*sum( va l s ( : , : , 2 ) )
137 >=VaR( : , 2 ) , : , 2 ) ;
138 es ( i , 2 ) = sum(tmp−(1/K)*sum( va l s ( : , : , 2 ) ) )
139 / l ength (tmp ) ;
140 comes ( i ,2)=(1/K)*sum( va l s ( : , : , 2 ) )+ sq r t (h)
141 * es ( i , 2 ) ;
142
143 va l s ( : , : , 3 ) = ( a ( : , : , 3 ) *pComRM' ) ' ;
144 VaR( : , 3 ) = quan t i l e ( va l s ( : , : , 3 )
145 −(1/K)*sum( va l s ( : , : , 3 ) ) , 1 − alpha ) ;
146 tmp = va l s ( va l s ( : , : , 3 ) − ( 1 /K)*sum( va l s ( : , : , 3 ) )
147 >=VaR( : , 3 ) , : , 3 ) ;
148 es ( i , 3 ) = sum(tmp−(1/K)*sum( va l s ( : , : , 3 ) ) )
149 / l ength (tmp ) ;
150 comes ( i ,3)=(1/K)*sum( va l s ( : , : , 3 ) )+ sq r t (h)
151 * es ( i , 3 ) ;
152 end % f o r
153 end % i f
154 Y(m, : , 1 ) = comes ( : , 1 ) ;
155 Y(m, : , 2 ) = comes ( : , 2 ) ;

139



APPENDIX

156 Y(m, : , 3 ) = comes ( : , 3 ) ;
157 end % switch
158
159 A = base (R,X(m, : ) , l * ( (m+1)/T)^r , polBase ) ' ;
160
161 Alpha (m, : , 1 )=(A\Y(m, : , 1 ) ' ) ' ;
162 Y(m, : , 1 )=( Alpha (m, : , 1 ) *A' ) ;
163 Alpha (m, : , 2 )=(A\Y(m, : , 2 ) ' ) ' ;
164 Y(m, : , 2 )=( Alpha (m, : , 2 ) *A' ) ;
165 Alpha (m, : , 3 )=(A\Y(m, : , 3 ) ' ) ' ;
166 Y(m, : , 3 )=( Alpha (m, : , 3 ) *A' ) ;
167
168 end % f o r
169
170 e s t (1 ) = Y(1 , 1 , 1 ) ;
171 e s t (2 ) = Y(1 , 1 , 2 ) ;
172 e s t (3 ) = Y(1 , 1 , 3 ) ;
173
174 end % func t i on
175
176
177 % BSDE so l v e r :
178 %
179 % The f o l l ow i ng code approximates the BSDE so l u t i o n us ing the
180 % r e g r e s s i o n based MC method
181 %
182 % Input arguments are R ( polynomial degree ) , M (number o f Monte
183 % Carlo paths o f forward proce s s ) , N (number o f time s t ep s ) ,
184 % T ( te rmina l time ) , the opt ions polBase ( ' lag ' ( l a gu e r r e
185 % polynomial base ) or ' her ' ( hermite polynomial base ) ) and opt
186 % ( ' var ' (V@R) or ' avar ' (AV@R)) and aT ( l e v e l o f (A)V@R) .
187 % We a l s o pass the r e s u l t s X and W from the forward proce s s .
188 %
189 % The algor i thm re tu rn s the es t imate o f Y^N_0.
190
191 func t i on e s t = BSDESolver (R,M,N,T, polBase , opt ,X,W, aT)
192
193 e s t = ze ro s ( 3 , 1 ) ;
194 Y = ze ro s (N+1,M, 3 ) ;
195 Z = ze ro s (N,M, 3 ) ;
196 Beta = ze ro s (N,R+1 ,3) ;
197 Alpha = ze ro s (N,R+1 ,3) ;
198
199 YT( : , : , 1 ) = Phi (X(N+1 , : ) , ' c a l l ' ) ;
200 YT( : , : , 2 ) = Phi (X(N+1 , : ) , ' ba r r i e r ' ) ;
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201 YT( : , : , 3 ) = Phi (X(N+1 , : ) , ' smooth ' ) ;
202
203 h = T/N;
204 l = 2 ;
205 r = 0 . 5 ;
206 I = 3 ;
207
208 Y(N+1 , : ,1) = YT( : , : , 1 ) ;
209 Y(N+1 , : ,2) = YT( : , : , 2 ) ;
210 Y(N+1 , : ,3) = YT( : , : , 3 ) ;
211
212 f o r m = N: −1 :1
213
214 pBSDE = base (R,X(m, : ) , l * ( (m+1)/T)^r , polBase ) ' ;
215
216 f o r o = 1 :3
217
218 f o r i = 1 : I ;
219 b ( 1 , : , o ) = Y(m+1 , : , o ) + h*F(Beta (m, : , o )*pBSDE' , opt
220 ,aT ) ;
221 A = [pBSDE, repmat (W(m+1 , : ) ' , 1 ,R+1).*pBSDE ] ;
222 c o e f f ( : , o ) = A\(b ( 1 , : , o ) ) ' ;
223 Alpha (m, : , o ) = c o e f f ( 1 :R+1,o ) ;
224 Beta (m, : , o ) = c o e f f (R+2:end , o ) ;
225 end % f o r
226
227 Y(m, : , o ) = (Alpha (m, : , o )*pBSDE' ) ;
228 Z(m, : , o ) = (Beta (m, : , o )*pBSDE' ) ;
229
230 end
231
232 end % f o r
233
234 e s t (1 ) = Y(1 , 1 , 1 ) ;
235 e s t (2 ) = Y(1 , 1 , 2 ) ;
236 e s t (3 ) = Y(1 , 1 , 3 ) ;
237
238 end % func t i on
239
240
241
242
243 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244 % Addit iona l Functions :
245 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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246
247
248 % BSDE dr i v e r :
249 %
250 % Given a s p e c i f i c va lue o f parameter opt a d r i v e r f o r the BSDE
251 % i s returned , s o l u t i o n o f which i s the d r i v e r f o r cont inuous V@R,
252 % or the d r i v e r f o r cont inuous AV@R.
253 %
254 % In con t ra s t to the BSDE dr i v e r func t i on used in the approach o f
255 % Romanovski , t h i s f unc t i on i s independent o f T.
256
257 func t i on [ outF ] = F( z , opt , aT)
258
259 switch opt
260
261 case ' var '
262 outF = norminv(1−aT , 0 , 1 )* abs ( z ) ;
263
264 case ' avar '
265 outF = exp(−norminv(1−aT,0 , 1 )^2/2)/ ( sq r t (2* pi )*aT)
266 *abs ( z ) ;
267
268 end % switch
269
270 end % func t i on
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