Pattern-based Configuring of a
Customized Resouce Reservation
Protocol with SDL

Birgit Geppert, Frank RoRler
SFB 501 Report 19/96

Pattern-based Configuring of a Customized Resoue
Reservation Piotocol with SDL

Birgit Geppert, Frank Roller

{geppert, roessler}@informatik.uni-kl.de

Report 19/96

Sonderforschungsbereich 501

Computer Networks Group
Computer Science Department
University of Kaiserslautern
P.O. Box 3049
67653 Kaiserslautern

Germany

Pattern-based Configuring of a Customized Resoue
Reservation Piotocol with SDL

Birgit Geppert, Frank Roller

Computer Science Department, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany
{geppertroessley@ informatik.uni-kl.de

Abstract

Due to the large variety of modern applications and evolving network technologies, a small number
of general-purpose protocol stacks will no longer be sufficient. Rather, customization of communica-
tion protocols will play a major role. In this paper, we present an approach that has the potential to
substantially reduce the effort for designing customized protocols. Our approach is based on the
concept of design patterns, which is well-established in object oriented software development. We
specialize this concept to communication protocols, and - in addition - use formal description tech-
niques (FDTSs) to specify protocol design patterns as well as rules for their instantiation and compo-
sition. The FDTs of our choice are SDL-92 and MSCs, which offer suitable language support. We
propose an SDL pattern description template and relate pattern-based configuring of communica-
tion protocols to existing SDL methodologies. Particular SDL patterns and the configuring of a cus-
tomized resource reservation protocol are presented in detail.

1 Intr oduction

Today’s communication systems are typically structured into several layers, where each layer
realizes a defined set of protocol functionalities. These functionalities have been carefully chosen
such that a wide range of applications can be supported, which has led to the development of a small
number of general-purpose protocol stacks. However, due to increasing communication demands as
found in many modern applications, the communication services provided by these protocol stacks
are not always adequate. In particular, varying demands on throughput and delay as well as on delay
jitter, synchronization and multicasting are not well supported by existing protocol stacks. Also,
classical protocols are not designed to exploit the advantages of advanced transmission technologies
(e.g., fibre optics) and high-speed networks (e.g., ATM), which combine high bandwidth with low
error rates. Rather, they enforce the use of mechanisms that may actually not be needed by a given
application, for instance, the use of error control mechanisms, which leads to reduced performance.

To improve this situation, different communication architectures as well as a new generation of
general-purpose protocols are currently being developed. It is expected that in order to increase flex-
ibility and to support applications in the best possible way, also customization of special-purpose
communication protocols will play a major role. Here, the configuring of protocols from reusable
components (calledrotocol building blocksn this paper) seems to be a promising way to reduce
the additional development effort.

Several approaches to the configuring of protocols have been reported in the literature. Early
research focused on the identification and collection of suitable protocol components by reverse

2

engineering of existing transport and network protocols. A protocol implementation was then auto-
matically configured from a subset of these components. Well-known projects in this area are F-CCS
[30], [34], Da CaPo [15], [16] and ADAPTIVE [23], [24], [25] (see [6] for an overview). These
approaches have in common that protacgllementationare configured. As a major drawback, the

use of implementation languages prevents the resulting communication system from being verified,
which is further complicated by the configuring of protocols during connection establishment. Also,
the extension of the component pool appears to be difficult in these approaches because the knowl-
edge about composition principles is not explicitly described. Here, the use of formal description
techniques allowing an abstract, unique specification of protocol components and component inter-
actions seems to be mandatory.

The reuse of predesigned solutions for recurring design problems is of major concern in object
oriented software development in general. During the past few gesign patternbave emerged
as an especially fruitful concept from other well-known approaches sddmasvorks or toolkits
(in the sense of object oriented libraries) [5], [3], [17]. Early experience in reuse of protocol specifi-
cations with SDL has been reported in [28], where a protocol building block was designed as a reus-
able library class, however, according to the authors, with limited success.

In this report, we present a new approach for designing customized protocols. Our approach is
based on the concept désign patternswhich we specialize to communication protocols. In addi-
tion, we use SDL-92 [35] and MSCs [36] to formally specify protocol design patterns and rules for
their instantiation and composition. An important advantage of our approach is that the configuring
leads to formal specifications of communication protocols, which may then be used for validation
and implementation purposes. Due to the importance of currently developing SDL methodologies
we discuss how pattern-based configuring relates to existing SDL methodologies, in particular, to
the SDL methodology framework [18].

The remainder of this report is organized as follows: in Section 2, we propose an advanced SDL
pattern description template and discuss the process of pattern employment. Additionally pattern-
based configuring is incorporated into the recently proposed SDL methodology framework [18]. In
Section 3, a customized resource reservation protocol, which is part of the realization of a real-time
communication service based on a conventional token ring network, is configured. Thus particular
SDL patterns will be presented and applied according to the process model of Section 2. We con-
clude with experiences and an outlook in Section 4.

2 Pattern-based potocol configuring

Protocol configuring is a promising way to cope with the enormous number of possible custom-
ized protocols. Actually we suggest to provide a pool of reusable and formally specified protocol
building blocks from which the protocol designer may select components according to the specific
communication requirements. After suitable adaptation, these building blocks are ready for composi-
tion to build part of the customized communication protocol (Figure 1). During further stages of the
development process the resulting design specification will finally be mapped to a conforming
implementation (however, we will not consider implementation issues in this report).

The protocol building blocks are represented by SDL patterns describing a generic design solu-
tion for a communication specific problem. This is similar to the well-known design patterns con-
cept, as introduced by the Gang-of-Four [5]. SDL patterns comprise an SDL-fragment as the
syntactical part of the design solution, which will be embedded into the final protocol specification,
and additional items, that ensure proper pattern application. A detailed presentation of our SDL pat-
tern description template and a comparison to existing design pattern description templates is given
in Section 2.1.

\

|/ b

|
Communicatio Requirements Target Service

Protocol o Protocol ?\
(\H/ Specmcaﬁ (I Implementatioh

(Component Engineer)
ﬂ
N—\
é

Selection Adaptation Compostlon

mplementation |
\ (Protocol Designer) c—/

N/
Development of Basic Components

\ BaS|c Service
\
/
Pool of Protocol Building Blocks
\ ----- Protocd configuration = = = = = = === Protocd implementation- = -)

Fig. 1: configuring and implementing communication potocols

The configuration process cursory sketched above is capable to be developed into a detailed proc-
ess model. Therefore we combine existing SDL design methodologies and specialize them to the
domain of communication protocols. This will be explained in Section 2.2.

2.1 SDL patterns

An SDL patterndescribes a generic solution for a context-specific design problem from the
domain of communication protocols. It is assumed that the target language for pattern instantiations
is SDL-92. Thus the pattern description comprises syntactical rules for pattern application as well as
semantic properties defining the patterns intent more precisely. This definition of SDL pattern is
similar to those of conventional design patterns used in object oriented software development:

.Design Patterns ag descriptions of communicating objects and classes teatstomized to
solve a general designgislem in a particular context.” [5]

* A pattern for softwae architectue describes a particularecurring design pblem that arises
in specific design contexts, ancepents a well-mven generic scheme for its solution. The solu-
tion scheme is specified by describing its constituent components ggponsibilities andela-
tionships, and the ways in which they collaborate.” [3]

The differences between design patterns and SDL patterns are that we choose a particular applica-
tion domain (communication protocols), and that we combine the advantages of the formal descrip-
tion technique (FDT) SDL with the patterns‘ concept. Instead of specifying and applying the patterns
rather informally, SDL offers the possibility to specify what the application of a specific pattern pre-
cisely means, under which assumptions this will be allowed, and what the consequences are. Here
we are in line with the advocates of design pattern formalization inside the design patterns commu-
nity, though we are even more rigorous by demanding the use of an FDT for this purpose. As a con-
sequence, the description of SDL patterns differs in some ways from design patfgfn8]jnWe
propose an SDL pattern description template with the items listed below and relate it to the existing
pattern description templates [&f, [3]. As already mentioned, instantiations of this template are
called SDL patterns which, itself instantiated, form the constituent parts of an SDL protocol specifi-
cation.

Name

Intent

Motivation

Structure

Message scenario

SDL-fragment

Semantic properties

Redefinition

Cooperative usage

4

The name of the pattern, which should intuitively describe its pur-
pose.

A short informal description of the particular design problem and its
solution.

An example from the area of communication systems, where the
design problem arises. This is appropriate for illustrating the rele-
vance and need of the pattern.

A graphical representation of the structural aspects of the design solu-
tion using an OMT object model. This defines the involved compo-
nents and their relations.

Typical scenarios describing the interactions between the involved
objects are specified by using MSC diagrams.

The mere syntactical part of the design solution is defined by a
generic SDL-fragment, which is adapted and syntactically embedded
when applying the pattern. If more than one S®rsions of the
design solution are possible (realization as SDL service or procedure,
interaction by message passing or shared variables, etc.), fragments
for the most frequent versions are include@. plan to substitute ver-
sioning by a special kind of pattern parameterization.

For each fragment, correspondisgntactical embeddingrules are
defined:

* Rules forrenamingof the abstract identifiers of the SDL-fragment.

* Rules forspecializatiorof embedding SDL superclasses in order to
integrate the instantiated pattern. Here, ,specialization“ is meant in
the sense of specialization of SDL types as defined in [35]. This
could, for instance, result in

» theadditionof new transitions or SDL services
» theredefinitionof existing virtual types or transitions.

Properties of the resulting specification that are introduced by the
embedded pattern. This also includes a description of assumptions
under which the properties hold. The semantic propettése the
patterns intent more precisely

An embedded pattern instance can be further redefined, e.g. by the
embedding of another SDL-fragment in subsequent development
steps. Redefinitions compatible with the patterns intent and semantic
properties are specified.

Possible usage with other patterns of the pool is described. This is fea-
sible and especially useful for a specific application domain as in our
case.

Gamma et al.

Buschmann et al.

Pattern Name and
Classification

Intent

Name

Name and short description of intent

Also Known As

Also Known As

Other well-known names

Real-world example illustrating the

Motivation Example design problem
- Situations in which the pattern should
Applicability Context should not be applied
Problem General description of the design prob
_ lem and the offered solution
Solution (detailed intent)
Structure Structure _ _ o
Graphical representation of participat-
Participant ing objects (OMT) and their interac-
tions.
Collaborations Dynamics

Implementation

Implementation

Guidelines for implementation, includ-
ing code fragments in C++, Smalltalk,

Sample Code
Example Resolved | Description of other important aspects
of the given example not addressed s
Variants far and other possible variants or spe-
cializations of the pattern
Known Uses Known Uses Syst_ems in which the pattern has bee
applied
Benefits and results of using the pat-
Consequences Consequences tern
Related Patterns See Also List of similar patterns

Table 1:

The description template for SDL patterns and existing templates for design patterns (see Table 1)
have some items in commomame intent motivation structure andmessage scenari¢-or SDL
patterns, these items are specialized to the communication systems domain. Thus participating
objects typically include protocol entities, protocol functions, service users or service providers.
Interactions between them can be described by Message Sequence Charts (MSC), with the additional
advantage to perform MSC based validation. Furthermore, several SDL methodologies suggest to
use OMT [21] and/or MSC for analysis (see e.g. [18], [29], [32]). To fit with these methodologies,
we bridge the semantic gap between analysis and design models by employing OMT and MSC for
pattern descriptions as well (see also Section 2.2).

6

Different from [5] and [3], SDL patterns are part of a dedicated pool of protocol building blocks
and have a formal foundation. Thus an SDL pattern can be related to other pool components by spec-
ifying their cooperative usagerhis is strongly supported by restriction to design problems of a cer-
tain domain. The formal foundation results from the use of the standardized FDT SDL, where, for
instance, thesyntactical embeddingf the pattern, i.e. its integration into a given SDL specification,
can be specified uniquely in terms of the SDL syntax. Furthermore, the formal semantics of SDL
supports the formalization of a patterns intentsbynantic propertiesThis includes both desired
properties and necessary assumptions which have to be fulfilled to ensure the intended use of the pat-
tern. This is important for validation of the resulting communication protocol. The possibility to sim-
ulate the design specification between consecutive development steps or before implementation is
another advantage of the SDL based approach. Undetected design errors can therefore be identified
in early stages of the development process.

Items not already incorporated into the SDL pattern template, for instance ,Also Known As",
~.Known Uses" or ,Related Patterns”, may be added in future versions. However, it seems more
important to further improve the template as far as pattern interactions or system validation are con-
cerned.

2.2 A process model for pattern-based configuring

In the following, a process model for protocol configuring is proposed, defining different steps to
be followed and intermediate descriptions to be produced. We employed this model for the configu-
ration of a resource reservation protocol (Section 3). As already mentioned, the proposed process
model results from a combination and adaptation of different SDL design methodologies known
from the literature.

Similar to [9], we propose a use case driven design. However, to describe the interactions
between the involved objects we prefer Message Sequence Charts (MSC), which is a standardized
description technique and often used in combination with SDL. Additionally, instead of producing
an object-oriented implementation we only aim at an SDL design specification of the communica-
tion protocol, which may be used for automatic code generation, though.

In [29] the SOMT (SDL-oriented Object Modelling Technique) method is presented which will
be supported by the SDT tool set [27]. The idea we are following is to combine the Object Modelling
Technique (OMT) [21] with SDL and MSC for analysis and design. The SDL specification can then
be transformed into executable software by the use of the SDT code generator. The main difference
to our approach is that we focus on reuse of predesigned building blocks.

Another approach combining OMT with SDL is the INSYDE methodology [32]. INSYDE (INte-
grated methods for evolving SYstem DEsign) aims at combining object-orientation and formal
description techniques for developing prototypes of hybrid systems. Therefore the methodology
integrates not only OMT with SDL, but also with VHDL. The development process for an SDL
specification consists of analysis in OMT, system design in OMT* (a restricted, formal variant of
OMT, see [10]), and detailed design in SDL. Translation rules from OMT* to SDL are given in [31].
As indicated in [8], iterative design and reuse of analysis and design models from existing systems is
of major concern for the methodology‘s acceptance in industry. It is planned to integrate these miss-
ing features in the INSYDE methodology.

The methodology presented in [2] is part of the SISU project, a Norwegian technology transfer
program with the intent to improve productivity and quality of companies that develop real-time sys-
tems. The engineering process is partitioned into requirements specification, design, and implemen-
tation. For requirements specification a new notation called SOON (SISU object-oriented notation)
Is introduced which is used in combination with natural language and MSC.

In [18] an SDL methodology framework is presented, where the engineering process consists of
five activities, namely documentation, analysis, draft design, formalisation, and implementation.
Each activity is characterized by its process step and its input and output documents. Apart from a

7

combination of MSC and SDL the framework also proposes the use of OMT. A key issue of the
methodology framework is the reuse library, an archive where relevant documents are put in for later
reuse. So far our process model is only a partial instantiation of the methodology framework,
because reuse is only supported for the pool of protocol building blocks. Though other descriptions
are also stored in the reuse library (for documentation purposes only) we actually do not provide
mechanisms for their reuse. Furthermore, we slightly modify the methodology framework by intro-
ducing an additional activity calledivisioninto the engineering process that supports incremental

/ Reuse Library \
-5 Communicatio
Requirements

L _» Communicatiol
Requirements
Analysis
Draft Design
- Analysis
Analysis Model| € — — - — — — - — »| Model D

e Building Blocks

- Design
Q Model ﬂ
A

SDL Specification

Complete Set of
Communication Requiremen s - -

v

Subset of
Communication Requiremenis

Pool of Protocol

. 4 -~
Design Model --_

/

Fig. 2: activities that build a development step

design. Starting with a small initial subset of the communication requirements, system functionality
is stepwise completed with each development step until all communication requirements are met.

Figure 2 illustrates this incremental process, where each development step consists of four main
activities, namely documentation, division, analysis, and design. Thereby the subset of communica-
tion requirements reflects the currently implemented system functionality. Note, that only the devel-
opment of an SDL specification is shown. The integration of further activities such as
implementation and validation is not illustrated. Additionally the development steps in Figure 2 are
ideal in the sense, that all activities are passed through exactly one time per step. If inconsistencies
were found, this would result in a return to one of the previous activities and additional documenta-
tion. In the following, the activities of the process model are further elaborated and related to the
activities of the methodology framework [18].

2.2.1 Documentation activity

This activity is carried out in parallel to the others. The task is to archive and administer all
descriptions evolving from the current engineering process and to offer access to protocol building
blocks from previous developments. This includes not only final documents like communication
requirements and SDL design specification, but also intermediate products and corresponding
change logs. Currently our engineering process involves documents with different levels of formal-
ity: informal natural language descriptions, MSC diagrams, OMT object models, and formal SDL
specifications. Generally speaking, we correspond with the documentation activity of the methodol-
ogy framework. But, as already mentioned, we only support reuse of protocol building blocks.

2.2.2 Division activity

This activity determines the requirements subset, which shall be handled by the ongoing develop-
ment step. The goal is to incrementally reduce the distance between the whole set of communication
requirements and the system functionalities realized so far. For this purpose the set of open require-
ments may be partitioned and/or simplified in order to define a manageable requirements subset. The
respective decisions, however, have to be recorded. The division activity has no direct correspond-
ence with the methodology framework.

2.2.3 Analysis activity

Compared to the methodology framework this activity includes ao#tysisanddraft design
We decided to combine these two activities because concepts and terminology are well-known for
the domain of communication systems and need not be defined separately. Thus we start with the
identification of the participating objects and their relations in terms of aggregation, specialization,
association, and so forth. For the case of communication systems possible objects include protocol
entities, protocol functionalities, service users or service providers. The result of the analysis activity
is an OMT object model. Communication relations between objects (e.g., message flow between
protocol entities or data exchange between service user and provider) are represented as signal chan
nels in an SDL overview diagram. Additionally, use cases are defined covering typical scenarios and
important exceptional cases. We will describe them by the means of Message Sequence Charts.

2.2.4 Design activity

The design activity yields an executable SDL specification which is derived from the design specifi-
cation of the previous development step. According to the current subset of communication require-
ments and the current design model the protocol engineer selects predesigned protocol building
blocks represented as SDL patterns. After proper adaptation the protocol building blocks are ready to
be composed with the SDL specification at hand. Based on the information provided by SDL pat-
terns, these design steps can be explained in more detail:

» selection:
we reduce the semantic gap between analysis and design models by employing OMT and MSC
for pattern descriptions as well as analysis models. By comparing OMT and MSC analysis dia-
grams with thestructule andmessage scenaridescriptions of the SDL patterns and by further
examination of the patternsitent semantic poperties,andmotivation,protocol building blocks
are to be selected.

» adaptation:
as protocol building blocks describe generic design solutions they have to be adapted before com-
position. Depending on the given SDL specification into which the pattern shall be embedded, a
suitableversion of the pattern has to be identified. The chosen version additionally must be
adapted byenamingthe abstract identifiers (e.g. signals, parameters, variables) in order to seam-
lessly fit the SDL specification at hand. This is guided bysymtactical embeddingiles. The
result is a pattern instance ready for composition with the embedding SDL specification.

e compositiorn
the pattern instance finally has to be composed with the embedding SDL specification. This is
done according to thepecializationpart of thesyntactical embeddingiles. In order to compose
the SDL fragment with an embedding specification, this specification has to be specialized in the
sense of the SDL standard. This results either in the addition of SDL constructs, like transitions or
SDL services, or in the replacement of virtual constructs by redefinition. Thecssjble redef-
initions are constrained by treyntactical embeddingules. An example for such a constraint

9

would be that a redefined transition only adds a procedure call to the virtual one and keeps the
same otherwise.

The resulting SDL specification may be further refined in order to get an executable version.
Therefore additionaledefinitionsteps as far as allowed by the pattern may be necessary. Examples
are the declaration of new signals, sorts or channelss@rhantic propertiesf an embedded pattern
may also impose additional assumptions on the environment. They have to be taken into account in
further development steps and must therefore be added to a list of assuncptcikbst)

Compared with the methodology framework the design activity corresponds to the formalisation
activity. As mentioned in [18], most work of later development steps will be done for this activity,
while the work for analysis will be gradually reduced.

3 Configuring a customized esource reservation protocol

In this section, a resource reservation protocol is configured. Roughly speaking, this protocol sup-
ports connection setup in conjunction with the reservation of sufficient network resources to guaran-
tee a specified quality of service during data transfer. Together with adequate mechanisms for traffic
policing, scheduling, connection admission control, and user interfacing, it provides a real-time com-
munication service that we have realized on the basis of a conventional token ring network [1].

3.1 Resource reservation service

The resource reservation service (also cakedet servicg allows to establish and close unidi-
rectional real-time connections between two communicating peers. For establishing a real-time con-
nection, the calling user has to specify the required quality of service, including the expected amount
of traffic load. Only the calling user is allowed to close a connection. More than one connection per
node may be active at the same time. Therefore unique local connection identifiers (Clds) are
employed. The service users are informed of their Clds through the service pri@divesctConf
and Connectind Additionally, several service users per node may exist, which are distinguished by
local, user provided identifiers (userld) passed at the service inteGaoc@dctReq, Connectind
The communicating peers can therefore be globally identified by a combination of node address and
userld. The calling user provides both with the connection setup request. The service primitives are
listed in Table 2:. Thereby the flowspec parameter specifies the QoS requirements comprising the
values:minimum packet interarrival time, maximum packet lermgtimaximum end-to-end delay.
Figure 3 shows possible interactions at the service interface.

3.2 Basic service

As an additional requirement the target service has to be build on top of a conventional token ring
network. The token ring network consists of 5 Pentium-PCs running under QNX and connected with
the IBM 16/4 Token Ring Network Adapter Il. Thus we model our target platform as a basic service
that is connectionless with the service primitives and error model described in Table 3.

3.3 The protocol configuration process

According to the process model of Section 2.2 the protocol implementing the resource reservation
service was configured in an incremental way, where each design step consisted of selecting, adapt-
ing, and composing predesigned protocol building blocks represented as SDL patterns. We started
by configuring a protocol providing a subset of the target service based on a reliable underlying serv-
ice. By incorporating further service requirements and/or relaxing the assumptions w.r.t. the underly-
ing service, we finally obtained a complete solution in four development steps. In the remainder of

10

service primitives parameters
ConnectReq flowspec, callerUserld, calleeNodeAddres
calleeUserld
Connectind flowspec, calleeUserld, calleeCld
ConnectResp calleeCld
ConnectConf callerUserld, callerCld
ConRefReq calleeCld
ConRefind reason, callerUserld
Error reason, callerUserld
DisconReq callerCld
Disconind reason, calleeCld
DisconConf callerCld
Table 2:

MSC SystemInterface_SetUp

system User2

MSC SystemInterface_RefusedSetUp

system User2

MSC Systeminterface_TearDown

system User2

4|sconnecteu leconnect§1

connectReq
connectind

©

connectResp

connectConf

:connectei: connecte

dlsconnecteu 4|sconnecteu

connectReq

connectind

©

conRefind

:ISCOHHBC[E: Isconnect

conRefReq

< connecle§>

disconReq

< connecte§>

disconind

 wait

:|sconnecte:

disconConf

Isconnecte)

Fig. 3: MSC interface diagrams of the target service

this section, we describe the configuring of the resource reservation protocol. Apart from declara-
tions and some block structure diagrams the design model of the first development step is given in
Appendix B. 1, for step 2 and 3 selected diagrams are listed in Appendix B. 2, while Appendix B. 3

shows some diagrams that belong to development step 4.

11

service primitives parameters error model
DataReq nodeaddress, SDU » frames may get lost
Datalnd SDU « disruption of frames neglectable

» duplication of frames not possible
» ordered delivery of frames

Table 3:

3.3.1 Development step 1: dedicated sender an@ceiver nodes, diect communication

3.3.1.1 Division

The initial subset of the target service supports at most one unidirectional connection between a
dedicated sender node (with a fixed sending user) and a dedicated receiver node (with a fixed receiv-
ing user). The service is provided exactly one time. The protocol instances are assumed to be directly
connected, i.e. there is no underlying communication layer.

3.3.1.2 Analysis

In order to guarantee the requested quality of service, sufficient resources must be reserved during
connection establishment and released when closing the connection. For this purpose a special entity
calledresource manageis introduced. Different from other reservation protocols such as RSVP
[33] or ST2+ [4], our solution uses a centralized resource manager. Thus three main objects can be
identified: caller (sending protocol instance), callee (receiving protocol instance) and resource man-
ager. Each of them is located on its own node and can further be divided into two functional entities
responsible for connection establishment and closing, or reserving and releasing resources, respec-
tively. Figure 4 illustrates the involved objects. Their communication relations are illustrated in Fig-

Caller_v1 Callee_v1 ResourceManager_v}

Y Q

Establish Connection
|initConSetUp7v1| I_accCon_I'SetUp_v Reserve Resources reserve_v

..] Close Connection E— Give Back Resources ——
initConTearDown_v1 |accConTearDown_v { giveBack_v1

Fig. 4: object model for development step 1

ure 5. It is assumed that the callee communicates with the resource manager for reserving and giving
back resources and therefore no communication path between caller and resource manager is neces
sary. The objects caller, callee, and resource manager are mapped onto SDL processes with the func-
tional entities represented as separate SDL services. The communication nodes are represented a:
SDL blocks. Scenarios for connection establishment are shown in Figure 6, where a two-way hand-

12

System Communication_System1 1(1)
Subsystem1 Subsystem2
Caller_v1 Callee_v1

initConSetUp_v1 accConSetUp_vl
fnitConTearDown_vD

USER1
cd3sn

Subsystem3
ResourceManager_v

giveBack_v1

Fig. 5: SDL overview diagram for development step 1

shake is applied. The same kind of interaction is assumed between the callee and the resource man-
ager.

MSC SetUpWithReservation MSC RefusedSetUpWithReservation
F————- F————-
1 1
. H' caller callee ResourceManager . q' caller callee ResourceManager
T e ' ' — Tt T] l] l]
accgptingRequpsts - acogptingReqgpsts active ace€ptingReqests aca€ptingRequpsts < active >
connectReq connectReq
flowspec
0 connect [ﬂOWSPeC] connect
[flowspec] |:|

flowspec] D
connectind [
QaitFoEe) D <ait:F03rRep connectind D

(aitFo@/ (ailForRepy

|:| connectResp |:| connectResp

reserve D reserve D

[flowspec] [flowspec]

it FE>2 faitForRepl ‘tgst and reserye'
v@ orRepl
'1{51 and reselve- reservationRefused

reservationAccepted disconind D

|:| [priority]

0 4

+

|:| connected| D refused

[priorit)?]

D connectConf |:| disconind

a:ceptingDR:quesls a:ceptingDR:quests: active: : ac[ive:

Fig. 6: MSC diagrams for development step 1: connection establishment

3.3.1.3 Design

As can be seen from the analysis model four pairs of communicating entities can be identified for
connection establishment and closing, respectively: (userl, caller), (caller, callee), (callee, resource
manager), and (callee, user2). Thereby userl and user2 are part of the environment and not explicitly
modelled. Each interaction corresponds to an SDL pattern @&lbetingRequestRepAppendix
A) that introduces a two-way interaction between two given autori@.complete interaction
structure can be realized by multiple application of this pattern. In detail, the following design steps
have been performed to realize the interaction structure for connection establishment:

13

MSC TearDownWithReservation

——————

caller callee ResourceManager

CeptingDRYquests @uesls active

disconnect

disconind
aitForDRYyply

freeResources

<waitF£l>ply ‘g Ee Back resiurces'

resourcesBagk

disconReq

disconnected

disconCon

(—

X X 2

Fig. 7: MSC diagram for development step 1: connection closing

« for the interaction between user 1 and caller:
the interaction corresponds to tBlckingRequestReppattern, where onliReplyAutomaton_B
is part of the system.evsion 1 is selected for this automaton. As the SDL seAutematon_B
into which the pattern instance has to be embedded, is empty the adaptation and composition is
quite simple: signals and states can be chosen arbitrarily and the added transition of the pattern
instance is the only transition of the resulting automaton. The result is thehaded part of
Service Ype initConSetUp_v4dhown in Appendix B. 1.

« for the interaction between caller and callge:
this interaction can be realized bglained BlockingRequestRegas indicated underoopera-
tive usageof theBlockingRequestReppattern description, Appendix A) with. Version 2 must
be selected, where the new parts are sha”™ ~ in initConSetUp_v1The corresponding
ReplyAutomators realized as an SDL service (hon-shaplad of Servie Type accConSetUp_v1
listed in Appendix B. 1).

 for the interaction between callee and usér2:
this interaction can be realized bglained BlockingRequestRegas indicated underoopera-
tive usageof theBlockingRequestReppattern description, Appendix A) with. Version 2 must
be selected, where the new parts are sha™ ~ in accConSetUp_v1The corresponding
ReplyAutomators not part of the specification.

« for the interaction between callee and resource manager:
the analysis model suggests to realize this interactiorkhgtéed BlockingRequestReés indi-
cated undecooperative usagef the BlockingRequestReplyattern description, Appendix A)
with . Version 2 must be selected, where the new parts are shmmwn in acc-
ConSetUp_v1The correspondin®eplyAutomatoms realized as an SDL servicBefvice ype
reserve_vDbf Appendix B. 1).

The configured chain dBlockingRequestReplyatterns realizes the expected interaction structure
between the involved communicating objects. As a consequence no signals are implicitly consumed,
all (SDL) communication channels are reliable, and €sgplyAutomatomemains in itstartReply

14

state, thus Property A.1 of tBdockingRequestReppattern holds for every link of the chain. There-
fore service users may rely on finite response times at this stage of the development process.

The interaction structure for closing a connection is realized analogous, except that the reply of
user 2 is empty. Note, that development step 1 already yields an executable SDL specification, how-
ever, providing only a subset of the target service based on a reliable underlying service.

Checklist (assumptions that must be met in further development steps in order to ensure the proper-
ties of the SDL patterns embedded so far):

 the calling user interacts according to BieckingRequestReppattern and should behave like a
RequestAutomatdior both connection establishment and closing. (A1)

» the called user interacts according to BheckingRequestReppattern and should behave like an
ordinaryReplyAutomatoim case of connection establishment and likeplyAutomatomith an
empty reply message in case of connection tear down. (A2)

* in order to keep finite response times, further development steps must guarantee that:
» the request and reply signals are not implicitly consumed (A3.1)

» the communication paths between ReguestAutomat@ndReplyAutomat#or trans-
mission of request and reply signals are reliable (A3.2)

» thestartReplystates of alReplyAutomatavill always eventually be reached (A3.3)

3.3.2 Development step 2: dedicated sender an@ceiver nodes, éliable basic service with
addressing mechanism

3.3.2.1 Division

The second subset of the target service also allows at most one unidirectional connection per
node, and only supports dedicated sender nodes (with a fixed sending user) and dedicated receiver
nodes (with a fixed receiving user). However, this time the protocol instances operate on top of a
reliable and connectionless basic service (with service primitives as described in Section 3.2). Thus
basic service interfacing and receiver addressing are further issues.

3.3.2.2 Analysis

Because the protocol instances are no longer directly connected, a neviRebgaeBasicServ-
ice is introduced. This results in a ternary association between two communicating peers and the
basic service. Additionally each communicating entity has to be specializader to integrate
translation from protocol data units (PDUSs) to service primitives of the basic service. The resulting
object model is shown in Figure 8. The overview diagram of Figure 9 describes the communication
relations between the involved objects, where the objetibleBasicServices given as an SDL
block, which is not further refined. Note, that the bl&HiableBasicServices not part of the com-
munication subsystem to be configured. Rather, it models the communication service provided by
our target platform. A typical scenario is given in Figure 10.

3.3.2.3 Design

The SDL channels connecting the communication peers of the first version of the reservation pro-
tocol are replaced by an SDL block with channels connecting the protocol entities and the resource
manager. This step can be seen as a structural refinement, as we still assume a reliable underlying
service. The interfacing of the entities with the underlying service represented by this SDL block is
configured by applying th€odexpattern (Appendix A) to the first version of the reservation proto-

15

r ReliableBasicServics

t ResourceManager_v2

Caller_v2 Callee_v2
Indirect Communication Indirect Communication

Direct Communication Direct Communication
Caller_v1 Callee_v1 ect Communicatio ResourceManager_yl

Fig. 8: object model for development step 2

System Communication_System2 1(1)
. c
&J Process caller_v2 Process callee_v2 %
5 8
Block Subsystem1 Block Subsystem2
Block ReliableBasicService
A \
Block Subsystem5 Block Subsystem3 Block Subsystem4

Te}

5 | Process callee_v2 Process ResourceManager Process callee_v2 %
0 D
o] N

Fig. 9: SDL overview diagram for development step 2

col (development step 1g.odexallows two or more entities to interact through an underlying serv-
ice represented by an SDL block/process by means of service primitiveSpdex essentially
provides a translation from protocol data units to service primitives.

The lower layer interface control information (ICI) needed for a correct employmeoidek
only includes the receivers node address. For the caller entity this information is provided with the
upper layer service primitiv€onnectReqwhile for the callee entity it is provided with the first
incoming messag€onnect As a consequence the followitgcalCommunicatingEntitiegcodex
notation, see Appendix A) have to be specialized according to the syntactical embedding rules of the
codexpattern description:

» Service YpeinitConSetUp
The necessary ICI to be stored consists of the callee‘s node address. Furthermore, the callee has tc
be informed of the caller's node address. This information is sent along wiflotimectPDU.

» Service YpeaccConSetUp
The caller's node address contained inGloanectPDU serves as lower layer ICI to be stored for
the CodexSDL servicgcodexnotation, see Appendix A)

For the preparation of lower layer service primitives and the decoding of incoming primitives a
servicelowerLayerInterfacingis added to the surrounding process diagr@aker, Callee and
ResourceManageliFinally, the structural changes described withabgexpattern have to be con-
ducted. The changes are illustratedAippendix B. 2and shaded . The ICI (peer node
address) is set with the first signal received, and is left unchanged. Because each protocol entity han-

16

MSC SetUpWithReservationOverRelialbleBasicService

! ©, caller reliableBasicService

[
acc:;tingRequzsts E active 3

connectReq

[flowspec]

callee

dataReq
I — N
[calleeNodeAddress,SDU] K
acgeptingReqdests

datalnd

[SDU]

connectind

(aitForRep)4
@rRep »

connectResp

ResourceManager

dataReq
[RMnodeAddress,SDU]
active

datalnd

[SDU]

'te{st and rese}e'

dataReq

datalnd [calleeNodeAddress,SDU]

< active »

[SDU]

dataReq

[callerNodeAddress,SDU]
datalnd

[SDU]

accegtingDRequpsts
connectConf
acogptingDRegkests

Fig. 10: MSC diagram for development step 2

dles at most one connection, the peer node address always matches with the PDU currently proc-
essed byowerLayerInterfacingAs the basic service in use is reliable and connectionless)dles

pattern suffices to replace the previously (see development step 1) used SDL channels (Property B.1
of theCodexpattern). Therefore assumption A3.2 (see checklist of development step 1) is still valid.
Other assumptions from the checklist of development stepl are not affectedCogéxpattern.

Checklist (additional assumptions that must be met in further development steps in order to ensure
the properties of the SDL patterns embedded so far):

 the basic service is reliable (A4.1)
 the basic service is connectionless (A4.2)

17

» the interface control information retrieved lwerLayerinterfacingalways matches with the
PDU currently processed (A4.3)

Note, that assumptions A4.1 - A4.3 replace assumption A3.2 from development step 1.

3.3.3 Development step 3: dedicated sender ané@ceiver nodes, ureliable basic service

3.3.3.1 Division

In the third step, we relax the assumption that the underlying service be reliable by allowing frame
loss. This corresponds with the error model of the basic service provided by our target platform.

3.3.3.2 Analysis

We replaceReliableBasicServicaith a new objectUnderlyingServiceDue to the changed error
model the communicating objects Caller, Callee, and ResourceManager have to be specialized to
cope with lost messages. The object model is shown in Figure 11. The overview diagram corre-
sponds to the one of Figure 9, except thatBloek ReliableBasicServideas to be replaced by the

Block UnderlyingService

UnderlyingService

Caller_v3 Callee_v3 ResourceManager_v3
J\ ErrorControlled Communication ErrorControlledCommunication J\
Caller_v2 Callee_v2 ResourceManager_v2,
LowerLayerInterfacing LowerLayerInterfacing LowerLayerInterfacing

initConTearDown_le |initConSetUp_v2| |accConTearDown_v2| |accC0nSetUp_v% |reserve_v2| |giveBack_v2|

ReliableBasicService

Fig. 11: object model for development step 3

3.3.3.3 Design

To cope with lost frames thEmerControlledRepegtattern (Appendix A) is applied to the sec-
ond version of the reservation protocol (development step 2). If an expected reply does not arrive
before the expiry of a timer, the message is repeated (Positive Acknowledgement with Retransmis-

18

sion). Since retransmission may lead to duplication of messages (not treated by TimerControlle-
dRepeat), the patternBuplicatelgnore and DuplicateHandle (Appendix A) are also applied.
Duplicates are detected by an unique message identifier and either discarded or, where necessary,
specifically handled.

Possible message losses of thalerlyingServiceaffect the SDL servicemitConSetUp, init-
ConTearDown, accConSetU@and accConTearDown As the involvedacknowledgeAutomata
(TimerControlledRepeatotation, see Appendix A) are not capable to cope with duplicate messages
Duplicatelgnore and DuplicateHandle respectively, are applied taccConSetUp, accConTear-

Down, reserveandgiveBackbefore application ofimerControlledRepealNote, that duplicates can

be detected by signal names as each request must only be serviced one time during the lifetime of the
SDL services. While the SDL serviaccConTearDownignores duplicates, the SDL services
accConSetUp, reseryvandgiveBackhandle duplicates by repeating the corresponding reply. SDL
serviceaccConSetUjs shown in Appendix B. 2, where the changes are shi =

Checklist (additional assumptions that must be met in further development steps in order to ensure
the properties of the SDL patterns embedded so far):

» the basic service neither disrupts nor creates messages (A5.1)

» the timer intervals for retransmission are greater than the maximal round trip time for the requests
and corresponding replies (A5.2)

Note, that assumptions A5.1 - A5.2 relax assumption A4.1 from development(steprdunication

Is no longer reliable, but the sender is informed about a failed transmission after a certain number of
retries) As a consequence, the semantic properties of some emiRldd&thgRequestReplyat-

terns do no longer hold, i.e. we can not guarantee that replies will definitely arrive within finite time.
However, we definitely reach an error state within finite time, if a certain number of retransmissions
fail.

3.3.4 Step 4: mixed nodes, ureliable basic service

3.3.4.1 Division

In the fourth and last step, we consider the full target service supporting nodes with both sender and
receiver functionality (with multiple sending and receiving users per node) as well as several con-
nections per node and user, i.e. the service will be provided multiple times.

3.3.4.2 Analysis

Each connection is managed by a separate set of protocol entities, which are created and releasec
dynamically. We replac€aller andCaller by a new objedReservationProtodavith merged func-
tionality (i.e. an aggregation afitConSetUp, initConTearDown, accConSetUp, accConTearDown,
and lowerLayerInterfacing)Each instances responsible for handling either the caller part or the
callee part for one connection. The object model is shown in Figure 12.

Figure 10 illustrates the establishment and closing of one connection, where a corresponding pro-
tocol entity is created at the caller node and the callee node. In order to prevent double establishment
of the same connection, incoming createReq messages must be controlled for duplicates, where
duplicates are handled by forwarding them to the corresponding protocol entity.

The set of connections is managed by a new oBjatbcolAdministratoresponsible for creat-
ing new objects of typReservationProtocaf additional connections are requested and forwarding
messages to the right connection.

19

UnderlyingService

ReservationProtoco] ReservationProtocol ResourceManager

Q

initConTearDownl|init(;on5etup| LowerLayerInterfacing |accConTearDown| |accConSetUri

Caller Callee

Fig. 12: object model for development step 4

3.3.4.3 Design

The pattern dealing with the dynamic creation of entiti€&yisamicEntitySefAppendix A). For
the EntityAdministrator(DynamicEntitySehotation, see Appendix A) a new procésstocolAd-
ministrator is introduced (see Appendix B. 3), where two transitimesateNewEntitycreateReq-
signals areConnectRe@ndConnec} are inserted and redefined to restrict the number of active con-
nections per time. The communication with the user is assumed to be reliable and therefore the crea-
teReq-signalConnectReqs not controlled for duplicates. For the createReq-si@Quainectthe
DuplicateHandlepattern (Appendix A) is applied. Duplica®nnectmessages do not create a new
protocol instance, they are forwarded to the already existing ReservationProtocol entity. Thereby
incoming Connectsare identified by a combination o&llerNodeAddressindcallerConnectionld
parameters. Each origin@bnnectsignal is logged by storing this pair of parameteatiérNodeAd-
dress, callerConnection)dn a so-calledPartnerList The instantiated®uplicateHandlepattern is
shaded in the ProtocolAdministratomprocess (Appendix B. 3). For other incoming signals
of ProtocolAdministratorcorrespondingorwardMessagéransitions are incorporated.

TheTerminatingEntityautomaton@ynamicEntitySehotation, see Appendix A) is given by proc-
ess typeReservationProtocolThe signal routes tReservationProtocahre redirected to thieroto-
colAdministrator that is connected with the process ReitocolEntityby a create line and signal
routes in order to forward service requests.

The requesting peer is informed about the local connection identifier (Cld) by adding a parameter
Cld to the reply message. This CId is inserted into the output signals (except ConnectReq and Con-
nect) which are sent to the protocol entity. Therefore the service offeretocolAdministratons
provided several times and each protocol entity will only receive messages which belong to its con-
nection.

Checklist (additional assumptions that must be met in order to ensure the properties of the SDL pat-
terns embedded so far):

* in order to assure that each ReservationProtocol instance is dedicated to one connection and will
receive exactly those messages corresponding to its connection the following has to remain valid
in future development steps:

» the peer is informed about the CId of the protocol entity and always adds this Cld to
the output signals (exceftonnectRe@ndConnec) which are sent to the protocol
entity (A6.1)

20

MSC Managing Protocol Entities
F————n
: " ProtocolAdministratorNode1 UnderlyingService ProtocolAdministratorNode2
R /3 — ——1
connectReq
id1 ReservationProtocolla
connectReq
H dataReq
0 aataind
calleeNodeAddress,connect(id1) a1 ReservationProtocollb
[connect(idl)] === =-=-*"
datalnd
[connect(id1)] connectind(id‘1)
connectRsp(id‘1)
connectRsp(id‘1)
dataReq
(RMNodeAddress,Reserve(id‘1)
datalnd
(Reserve(id‘1)]
dataReq
dataind FalleeNodeAddress,ResAccepted(id'1)]
ResAccepted(id‘1)] datalnd
(ResAccepted(id‘1)]
dataReq
[callerNodeAdd[ess, accepted(idl, id1)]
‘frame lost'
5| dataReq
>
calleeNodeAddress,connect(id1)] datalnd
[connect(id1)] "[dataind
[connect(id1)]
dataReq
datalnd [callerNodeAddfess, accepted(id1, id1’),
accepted(idl, id1’
datalnd . pted()
[accepted(id1,id1")]
connectConf[id1]
disconReq[id1] X §
disconReq[id1]
dataReq
[calleeNodeAddress,disconnect(id‘1) dataind
| dataind
[disconnect(id‘1)] . .
[disconnect(id‘1)] disconnectind]id‘1]
dataReq
dataind [callerNodeAddress, disconnected(id1.
dataind [disconnected(id1
[disconnected(id1)] <
disconConf[id1]

Fig. 13: MSC diagram for development step 4

It follows that all assumptions (the cumulative checklists of the separate development steps) con-

cerning the communication subsystem are fulfilled. Furthermore, the basic service provided by our

target platform meets the assumptions A4.2 and A5.1. If additionally the service users behave

according to A1, A2 and the retransmission timers are set according to A5.2, the embedded patterns
are applied as intended. Though this does not prove the correctness of the communication protocol in
general, it assures some ,design-specific’ properties that increase the confidence in the resulting
specification.

21
4 Conclusion and future work

We have presented an approach that has the potential of substantially reducing the effort for
designing customized protocols. The approach is based on the concept of design patterns, which we
have specialized to communication protocols. In addition, we have used SDL-92 and MSCs to for-
mally specify protocol design patterns as well as rules for their instantiation and composition. To
illustrate our approach, we have configured a resource reservation protocol. When applying our
approach, we have observed the following:

» Each of the selected SDL patterns has been applied several times when configuring the reserva-
tion protocol. This provides some evidence that the predesigned patterns have been well chosen.

* A very lamge portion (almost 100% of the control structure) of the final protocol specification has
resulted from the application of SDL patterns. This gives some evidence for the feasibility of our
approach.

» As compared to an SDL specification of the same protocol that has been developed the usual way
the specification of the configured protocol is more readable, which is due to the more systemati-
cal design. Among other things, this results in improved maintainability and less design errors,
since the design decisions are well founded and documented.

» It has turned out that the patterns approach can be applied in an incrementahiwayoo,
improves maintainability due to a more systematical design. It would be interesting to see to what
degree the application is commutative or reversible.

* Identification, investigation, and description of suitable protocol building blocks is a very time
consuming task. Note that the same experience has been made in other contexts where design pat
terns are used.

* The SDL patterns applied to the configuring of the resource reservation protocol have been of
rather fine granularityCoarser patterns may have the advantage of reducing the overall develop-
ment efort, since less patterns need to be applied to configure a protocol. Hothes/er merely
a question of identifying suitable protocol building blocks and does featt @iur approach itself.

From these observations, we infer that our approach has the potential of substantially reducing the
effort for customizing and maintaining communication protocols, which seems to be a prerequisite
for developing protocols that support applications in the best possible way. However, in order to
draw a final conclusion, further experience with this approach will be needed. We are currently
extending the pool of protocol building blocks, and are using our approach for configuring several
other protocols including, for instance, ST2+ [4].

The configuring of protocols classifies as a synthesis approach, meaning that systems are con-
structed from predesigned components such that by following certain rules, required system proper-
ties such as freedom of deadlocks, freedom of unspecified receptions, or conformance to a service
specification can be guaranteed a priori. We see this as a fertile field for future research.

Acknowledgements Special thanks go to Prof. Dr. R. Gotzhein for valuable comments and discus-
sions on an early version of this report.

22

References

[1] C. Bobek, ,Entwurf und Implementierung eines Ressourcamwalters zur Echtzeitkommu-
nikation“ (in german), diploma thesis at the University of Kaiserslautern, 1996

[2] R. Breek and @. Haugen, ,Engineering Reahd Systems - An object-oriented methodology
using SDL", Prentice Hall, 1993

[3] F Buschmann, R. Meunidgf. Rohnert, PSommerlad, and M. Stal, ,Pattern-Oriented Software
Architecture - A System of Patterns®, Johiléy & Sons, 1996

[4] L. Delgrossi and L. Bger (Ed.), ,Internet Stream Protocatigion 2 (ST2), Protocol Specifi-
cation - \érsion ST2+", RFC 1819, 1995

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, ,Design Patterns - Elements of Reusable
Object-Oriented Software”, Addisonésley 1995

[6] B. Geppert and.FRo6Rler ,Automatic Configuration of Communication Subsystem& Sur-
vey “, SFB 501 Report 17/96, University of Kaiserslautern, Germany

[7] R. Gotzhein, B. Geppert, C. Pepand F RORler ,Generic Layout of Communication Subsys-
tems -A Case Study SFB 501 Report 14/96, University of Kaiserslautern, Germany

[8] .INSYDE Il - Areas of Interest for Future Researchowhrds a Continuation of the INSYDE
Consortium®, http://info.vub.ac.be:8080/users/insyde/future_research.html

[9] I. Jacobson, M. Christerson, Jonsson, and G. Owgrard, ,Object-Oriented Software Engi-
neering - A Use Case Driven Approach*, Addisoesléy 1995

[10] V. Jonckers, K. ¥rschaeve, B. Wlaeghe, L. Cuypers, and J. Heirbaut, ,OMT*, Bridging the
Gap between Analysis and Design“, Proceedings of EOR5, International Conference on
Formal Description &chniques for Distributed Systems and Communications Protocols, 1995

[11] A. Kidhimeyer ,Variantenbildung in SDL-92“, Studentsovk at the University of Kaiserslau-
tern, 1996

[12] M. Lang, ,Spezifikationsvarianten des Alternating-Bit Protokolls in SDL/SDT“, Studeatk W
at the University of Kaiserslautern, 1996

[13] S. van Liey ,Komponentenbasierte Dekomposition und Spezifikation des Re&-Trans-
portprotokolls R P*, Students Wtk at the University of Kaiserslautern (in work)

[14] A. Olsen, O. Fegiemand, B. MgllePedersen, R. Reed, and J.R$thith, ,.Systems Engineer-
ing Using SDL-92%, North-Holland, 1994

[15] T. Plagemann, B. Plattndvl. Vogt, and T Walter, ,Modules as Building Blocks for Protocol
Configuration®, Proceedings of ICNP‘93, International Conference on Network Protocols, San
Francisco, 1993

[16] T. Plagemann, J. &¢lawczyk, and B. PlattnefManagement of Configurable Protocols for
Multimedia Applications”, Proceedings of ISMM International Conference on Distributed
Multimedia Systems and Applications, Honolulu, USA, 1994

[17] W. Pree, ,Design Patterns for Object-Oriented Software Development*, Addisseley\1995

[18] R. Reed, ,Methodology for real time systems”, Computer Networks and ISDN Systems 28
(1996), 1685-1701

23

[19] E. Rudolph, PGraubmann, and J. Grabowskiut®rial on Message Sequence Charts®, Com-
puter Networks and ISDN Systems 28 (1996), 1629-1641

[20] E. Rudolph, J. Grabowski, and®aubmann, ,Message Sequence Charts (MSC 96joyrial
Notes of the 9th International Conference on Formal Descripgechnigues, Kaiserslautern,
1996

[21] J. Rumbaugh, M. Blaha, Wremerlani, FEddy and W Lorensen, ,,Object-Oriented Modeling
and Design“, Prentice Hall, 1991

[22] Ph. Schaible, ,Pattern-basierte Konfigurierung des Reservierungsprotokolls ST2+ und Erstel-
lung eines SDL-Frameworks fur Ressourcenreservierungsprotokolle®, Diploma Thesis at the
University of Kaiserslautern (in work)

[23] D.C. Schmidt, ,An Object-Oriented Framework for Dynamically Configuring Extensible Dis-
tributed Systems*, IEE Distributed Systems Engineering Journal (Special Issue on Configura-
ble Distributed Systems)olume 2, No 4, Dec. 1994

[24] D.C. Schmidt, D.FBox, and T Suda, ,ADAPTIVE: A Dynamically Assembled Protocol
Transformation, Integration, and &uation Environment®, Concurrency Practice and Experi-
ence, Vl. 5, No. 4, 1993

[25] D.C. Schmidt, B. StillerT. Suda, and M. Zitterbart, ,,Configuring Function-based Communica-
tion Protocols for Multimedia Applications”, Proceedings of the 8th Internatiormakivg
Conference on Upper Layer Protocols, Architectures, and Applications, Barcelona, Spain, 1994

[26] M. Schwaiger ,Komponentenbasierte Dekomposition und Spezifikation des Multicast Pro-
tokolls IPv6*, Students Wtk at the University of Kaiserslautern (in work)

[27] SDT 3.0 Reference Manual & User's GuideleLogic, 1995

[28] A. Sinton and M. Crowther,SDL-92 support for re-use in protocol system specifications -
some early experience”, SDL'95 with MSC in CASE, Proceedings of the 7th SDL Forum,
Oslo, Norway 1995

[29] , The SOMT Method", Elelogic AB, http://wwwtelelogic.se/products/somt.htm

[30] B. Stiller, ,Flexible Protokollkonfiguration zur Unterstlitzung eines diensteintegrierenden
Kommunikationssubsystems®, PhD thesis (in german), V&lag, Reihe 10, NB06, 1994

[31] K. Verschaeve, B. Wlaeghe, VVJonckers, and L. Cuypers,rahslating OMT* to SDL, Cou-
pling Object-Oriented Analysis and Design with Formal Descripteehmiques”, Proceedings
of Methods Engineering ‘96 -- IFIP WG 8.1/8.2¥ing Conference on Principles of Method
Construction anddol Support, 1996

[32] D. Witaszek, E. Holz, M. \&sowski, S. Lau, and J. Fischgk Development Method for SDL-
92 Specifications Based on OMT*, SDL'95 with MSC in CASE, Proceedings of the 7th SDL
Forum, Oslo, Norwayl1995

[33] L. Zhang, S. Deering, D. Estrin, S. Shenlkerd D. Zappala, ,RSVP: A new Resource ReSer-
Vation Protocol”, IEEE Network, Sep. 1993

[34] M. Zitterbart, ,Funktionsbezogene Parallelitdt in transportorientierten Kommunikationspro-
tokollen®, PhD thesis (in german), VDlevlag, Reihe 10, NA83, 1991

[35] Z.100 (1993) CCITT Specification and Description Language (SDL), IT1894
[36] Z.120 (1993) Message Sequence Chart (MSC), ITWL994

24

Appendix A

A set of protocol building blocks for the case study

BLOCKING REQUESTREPLY

Intent:

The BlockingRequestReply pattern introduces a two-way handshake between two given automata
Automaton_AandAutomaton_BBeing triggeredAutomaton_Awill send a request and is blocked

until receiving a reply. After reception of a requestifomaton_Bsends a reply. To assure finite
response time and proper connection, certain assumptions about the embedding environment
(including the superclass@sitomaton_AandAutomaton_[Bare in place.

Motivation:

After initiating a connection setup, a service user waits for a reply from the service provider
(,accepted, ,refused by callee”, ,refused due to lack of resources®,...). In case of refusal, the user
may try again with lower quality of service requirements.

Structure:

Automaton_A Automaton_B

A A

two-way handshake
RequestAutomaton_+ y ReplyAutomaton_B

Message scenario:

MSC two-way_handshake

| H requester replier

q _A
startRequesty startReply)

request

{waitForReply»
reply
< endRequest endReply

Oy

()
N

25

SDL-fragment (Version 1)

RequestAutomaton_A

Service Type RequestAutomaton_A inherits Automaton_A 1(1)

‘ 'startRequest’ ' waitForReply

[|

replyl (Cy,...Cy)' < 'reply2 (D ,... D))’ <
‘ ‘endRequest1’ ' "endRequestZ' ’

sendRequest receiveReply

‘request (By,...B))’

waitForReply

ReplyAutomaton_B
Service Type ReplyAutomaton_B inherits Automaton_B 1(1)

‘request (Ag ... Aj)‘<

‘replyl (By,... By)'

‘endReplyl’

‘endReply2'

sendReply

Syntactical Embedding
e Automaton_A:

Specialization: Add transitions sendRequestand receiveReplyto the given SDL service
Automaton_A

RenamingThe signalsequest, replylandreply2 and the statevaitForReplymay be renamed but
are required to be locally unique. The statestRequest, endRequeséhdendRequesttnay be
identified with each other or any state in the given SDL seAitematon_A

e Automaton_B:

SpecializationAdd transitionsendReplyo the given SDL servicRutomaton_Bwhich must be dif-
ferent toAutomaton_A

Renaming:The signalgequest, replylandreply2 may be renamed but are required to be locally
unique and of the same name as the corresponding sigieguestAutomaton. Ahe statestar-
tReply, endReplyl and endRepiyay be identified with each other or any state in the given SDL
service.

26

SDL-fragment (Version 2)

RequestAutomaton_A

Service Type RequestAutomaton_A inherits Automaton_A
Procedure startRequest

r— ="

| | startRequest fparin Ag,...A;
- —|— el returns answer;
r = =

Iredeflned <

L_I__\

‘result:=(call startRequest (A4,...A))’ 'waitForReply'

1

'reply2(Dy,...D))' <

QE=D

r == ‘request(By,...B;)’
I >
L -
/i
; 'reply1(Cy,...Cy)"
~_~—v— waitForReply 1
|

|
| W ——
answer answer

ReplyAutomaton_B
same as in Version 1

Syntactical Embedding
e Automaton_A:

Specialization:redefine a proper transition by mere supplementation of the procedustacall
tRequest

Renaming:The signalsequest, replylandreply2 and the statevaitForReplymay be renamed but
are required to be locally unique.

e Automaton_B:

same as in Version 1

Semantic properties:

Property A.1: If the assumptions stated below hdRiquestAutomaton_Avill eventually receive
a reply fromReplyAutomaton_EBafter sending a request. The assumptions are:

» Therequestandreply signals ae not implicitly consumed by thespective super-
class.

« Communication betweeRequestAutomaton_And ReplyAutomaton_Bfor trans-
mission of theequestandreply signals is reliable.

* The statestartReplyof ReplyAutomaton_Bwill always eventually beeached.

Redefinition:

Normally, the embedded SDL-fragment will be supplemented by additional statements e.g. to pre-
pare signal parameters. The following property determines the allowed redefinitions of the Blockin-
gRequestReply pattern.

27

Property A.2: Property A.1 still holds, if the BlockingRequestReply pattern is redefined by the
introduction of additional statements, which do not disrupt or bypass the thread of control from pre-
defined input to predefined output statements.

There is one mandatory redefinition, namely the replacement of the conteergion in
ReplyAutomaton_Riith a real decision according to the protocol designer’s needs.

Cooperative usage:

As a major feature, BlockingRequestReply may be extended to an arbitrary complex interaction
structure by self-embedding. This follows from our redefinition rule, which e.g. allows the SDL-
fragment embedded intAutomaton_Bto be supplemented by a procedure call initiating a new

MSC chained BlockingRequestReply

——————

replier/requester

replier

eeeeeee

eeeeeee

startRequest

MSC knotted BlockingRequestReply

——————

requester/requester

replier2

eeeeeee

eeeeeee

ReplyAutomaton_A I I

tartRequest

Uy

CstartReply >

StartRequest

{waitForReply> WwaitForReply

request

f
\/

tartRequest

CstartReply > CstartReply >

%)
\

request request

WwaitForReply,

Q)
/

0O
K)

reply reply

startReply >

>
o
Py
@
Rl
k;)

est
endRequest

)
%

request

WwaitForReply’
 endReply >

reply

:endReply : endRequest :endReply :
Fig. 14: multiple employment of BlockingRequestReply

request (because of property A.1, this redefinition does not disrupt or bypass the predefined thread of
control). See Figure 14 for this and another simple example. It is worth mentioning that the finite
response time property generalizes to chains of BlockingRequestReply patterns, if the assumptions
are valid for every link of the chain. Chains of BlockingRequestReply patterns are built by succes-
sive embedding of startRequesprocedure call of a new pattern instance inter@Replyransition

of a preexisting pattern instance.

reply

Q)
\

<endRequest>

(3
WV,

endReply

Q)
\

Corollary A.3: If the assumptions stated in Property A.1 hold for every link in a chain of Blockin-
gRequestReply instances, the first RequestAutomaton will eventually receive a reply from his corre-
sponding ReplyAutomaton after sending a request.

In order to relax the assumption of reliable communication channels (Property A.1), BlockingRe-
guestReply may be used in conjunction with the patterns TimerControlledRepeat and DuplicateCon-
trol.

CODEX

Intent:

Codex provides mechanisms to allow two (or more) entibealCommunicatingEntity _Aand
localCommunicatingEntity Bwvhich interact through SDL channels, to cooperate by the means of a
given communication systetvasicServiceln general the introduction of a basic service involves
many specialities. Among others these are segmentation, reassembly, upgrade of basic service qual-
ity (e.g. in case of loss, disruption or duplication of messages), lower layer connection setup and
routing decisions. The Codex pattern is only concerned about a minimal subset of these functionali-

ties, namely interfacing withasicServicdy the means of service primitives.

Motivation:

Conventional LANs like Ethernet or Token-Ring may play the role of a basic service. If a protocol
specification happens to be put on top of such a LAN Codex may be fruitfully employed.

Structur e (only two communicating entities involved):

basicService

&5

remoteCommunicatingEntity_A

Q

adaptedEntity_A Codex

[

localCommunicatingEntity A

N

remoteCommunication

localCommunication

remoteCommunicatingEntity B

Q

Codex

adaptedEntity B

[

Message scenario:

localCommunicatingEntity B

MSC real communication
——————

protocolinstance_A interface_A

medium

interface_B

protocolinstance_B

service | [service bock | [sewiee | [service
adaptedEntity A Codex_A basicService Codex_B adaptedEntity_B
connect
dataind
connect

SDL-Fragment:
AdaptedEntity (not mandatory)

Service Type adaptedEntity inherits localCommunicatingEntity 1(1)
r — — " = T ™ r~ T T "\ r = — "
| | | | | | | |
__I__/ | S - =
1 —_ e = — e — | —
Fedefined g Medefined P Mredefined Z I Tredefined z
lupperLayerService< lupperLayerService< lupperLayerService: | 'PDU from peé&t ,
Primitive1(ICI, SDUY > Primitive2(ICl, SDUY > | Primitive3(ICI, SDU)™ | protocol instance' |
'store ICI for lower layer' 'store ICI for lower layer' ‘store ICI for lower layer' | | 'store ICI for lower layer'
r _] Y r —I = r —] =~ r _] =
| > | > | > | >
L _ - L —_ L —_ L —_ <
== == == ==
| | | | | | | |
- — — o - - — o - — — - — —
Codex
Service Type Codex - 1(2)
'PDU_1 'PDU_2 'PDU_3 'PDU_4
|
'retrieve ICI relevant info;
prepare SDU, ICI for
lower layer'
'lowerLayerService-
Primitive1(ICI, SDUY
Service Type Codex - 2(2)
'lowerLayerService-
Primitive2(ICI, SDU)
'PDU_5' 'PDU_8' 'PDU_9'

‘restore PDU 'restore PDU 'restore PDU ‘restore PDU

l [l l l

'PDU_T 'PDU_8'> 'PDU_9‘>
| |

29

30

Syntactical embedding

Specializationtransitions oflocalCommunicatingEntityvhich receive service primitiveserviceP-
rimitiveX from the upper layer or PDUs from the peer protocol entity are potential candidates for
redefinition in order to derive and store necessary lower layer interface control information (ICI) e.g.
peer protocol instance addresses. The protocol engineer has to decide which ones are relevant or if
the necessary information is provided elsewhere irlsiciCommunicatingEntityin any case this
information will be used when the lower layer service primitives are prepared

For this purpose and for decoding of incoming lower layer service primitives a service obdgpe

is added to the surrounding process diagratfoaaiCommunicatingEntity

RenamingPDU_1to PDU_4 correspond with those messagmsalCommunicatingEntitgends to

its peer. AccordinglyPDU_5 to PDU_9 identify with those messagéscalCommunicatingEntity
receives from its peer. However, the concrete quantities of course have to be adapted.
LowerLayerServicePrimitivedndlowerLayerServicePrimitiveBave to be identified with the serv-

ice primitives for data transfer over the given basic service.

Structural changeahe channel betwedacalCommunicatingEntityA and

localCommunicatingEntityB must be deleted and redirected framlaptedEntity Arespectively
adaptedEntity _Ro their localcodex Additionally thecodexservices need a channektasicService

to close the gap again

Semantic properties:

Property B.1: If the assumptions stated below hold, the codex pattern suffices to replace a SDL
channel betweelmcalCommunicatingEntity _AandlocalCommunicatingEntity BThe assumptions
are:

* The basic service in use must b&able and connectionless.

» The developer adds mechanisms to handle tbpapation of lower layer interface
control information.

» The developer takes @that the interface corttinformation etrieved by the codex
service always matches with the PDU ety poocessed.

Redefinition:

not allowed

Cooperative usage:

It was already mentioned that the Codex pattern only solves a small subset of the problems one faces
when introducing a special basic service. TimerControlledRepeat is a pattern to additionally cope
with possible message losses by the basic service.

31

TIMER CONTROLLED REPEAT

Intent:

TimerControlledRepeat extends a confirmed message exchange between two dbeoahatdaom-

aton andAcknowledgeAutomatdor the case of possible message losses during data transfer. If an
expected acknowledgement does not arrive before the expiry of a timer, the message is repeated
(Positive Acknowledgement with Retransmission). This pattern does not deal with the problem of

message disruption or duplication.

Motivation:

For a BlockingRequestReply pattern instance the requester will deadlock, if the reliable transmission
of the request or reply signals is not guaranteed. Therefore replies are observed by TimerControlle-
dRepeat in case of an unreliable basic service.

Structure:

SendAutomaton

f.
confirmedSend AcknowledgeAutomaton

A

PARAutomaton

PAR

Message scenario:

—————

MSC positive acknowledgement with retransmission

sender receiver

sendMessage

waitFQrAckn@gement

sendMessage

]

WaithrAckn@gemem

sendMessage

acknowledgement

32

SDL-Fragment:

PARAutomaton
Service Type PARAutomaton inherits SendAutomaton 1(1)
T T M - - - - - = \
|] | 'waitForAcknowledgement' |
— ol B - | S — _—— =
r=l= > [__l'__7__
redefined redefined .
< < ‘timerName"
L e N L —_ = >
| 1
r— - }) ~100fRepeats
'sendMessage’» RESET(timerName') axNoOfRepeats
L —— - i true Taise
r —— =
L |] noOfRepeats:=noOfRepeats+1
SET(NOW+'timerInterval’, timerName’) | _ _ _,]
SET(NOW-+'timerInterval', ‘timerName")
noOfRepeats:=0
—_—— AL - — 'sendMessage
| 'waitForAcknowledgement' |
v o — — — — 7
‘error’

Syntactical embedding

Specializationredefine a given sending transition ®ndAutomatoby supplementation of timer
and counter initialization. The corresponding receiving transition(SeatlAutomatoare supple-
mented by a timer reset. Another transition for timeout handling with retransmission is added.
Renamingthe timertimerNameand the variableoOfRepeatsnay be renamed but are required to
be locally unique. The stagror may be identified with any state in the given service.

Semantic properties:

Property C.1: If the assumptions stated below hdRARAutomatonwill eventually receive an
acknowledgement fromcknowledgeAutomatomfter sending aendMessageor PARAutomaton
will enter the error state aftanaxNoOfRepeatansuccessful retransmissions. The assumptions are:

* The communication channel betwd@ARAutomatonand AcknowledgeAutomaton
for transmission osendMessagand corresponding acknowledgement signals nei-
ther disrupts nocreates messages.

* The communication channel may lose messagetsnherintervalis greater than the
maximal pund trip time osendMessagand coresponding acknowledgement.

* AcknowledgeAutomatomerely discards duplicateendMessages reacts on dupli-
catesthe same way (from the perspectiv® ARAutomatoi as on the originasend-
Message.

Redefinition:

The embedded SDL-fragment may be redefined e.g. for the purpose of message loss reporting or
logging. The following property determines what kind of redefinition will be allowed.

Property C.2: Property e still holds, if the TimerControlledRepeat pattern is redefined by the
introduction of additional statements, which do not disrupt or bypass the thread of control from the
predefined timeout input to the predefined repetitive output statement as weleastiséate. Fur-
thermore the timetimerNameand the countenoOfRepeatsnust not be manipulated.

33

Cooperative usage:

TimerControlledRepeat can cause duplicates of messages and may therefore be used in conjunction
with Duplicatelgnore/Handle in order to ensure proper duplicate procesghaggradwledgeAutoma-

ton.

DUPLICATEI GNORE

Intent:

Duplicatelgnore upgrades a message exchange between two autSeratAutomatonand
ReceiveAutomatofor the case of possible message duplication. Duplicate messages are detected by
a message identifier, that is unique during the lifetimbl&eceiveAutomatoriFurthermore, dupli-

cate messages are simply discarded, i.e. the reaction to the original message is not repeated.

Motivation:

Retransmissions due to certain error control mechanisms may lead to duplication of messages. If no
reaction to duplicate messages is expected, Duplicatelgnore can be applied to filter them out.

Structure:

SendAutomaton

duplicateSensitive

A

adaptedSendAutomaton

ReceiveAutomaton

A

ignoreDuplicates

Message scenario:

DIReceiveAutomaton

MSC immediate abort

protocol entity A

protocol entity B

eeeeeee
adaptedSendAutomaton

eeeeeee
DIReceiveAutomaton

Disconnect(i)

Disconnect(i)

‘close connection i

Disconnect(j)

34

SDL-Fragment:

DIReceiveAutomaton

Service Type DIReceiveAutomaton inherits ReceiveAutomaton 1(1)
r — T N
[I
- - -
- - R
() Fredefined , 7
I msg <
—Tr L —_ = a
|
'unlog signals
of type msg' ‘'msgllreadyLogged?’
T false true
r —V— Y = - - -
|]]
- —_ 'log msg' _
— ignoreDuplicate

| I —
- processMessage

r —V— =
| I

| S ———

receiveMessage

Syntactical embedding

Specializationredefine the start transition &eceiveAutomatohy resetting all logged signals of

type msg Furthermore, redefine all transitions with input sigmabby supplementing a test if the
message has already been receivesig@lreadyLogged) and a transition branegnoreDuplicate

that merely discards the signal. The corresponding branch that normally processes the message is
supplemented by a logging mechanism for the signsa

Semantic properties:

Property D.1: If the developer adds mechanisms for identification and logging of signals of type
msg,duplicates of typensgare filtered out by DIReceiveAutomaton.

Redefinition:
not allowed
Cooperative usage:

Duplicatelgnore may be used in conjunction with TimerControlledRepeat in order to upgrade unreli-
able communication channels.

35

DUPLICATEHANDLE

Intent:

DuplicateHandle upgrades a message exchange between two au®ematAutomatorand
ReceiveAutomatoior the case of possible message duplication. Duplicate messages are detected by
a message identifier, that is unique during the lifetimBldReceiveAutomatoidowever, duplicate
messages rely on a certain reactiobbliReceiveAutomatome. duplicates must not be discarded.

Motivation:

Retransmissions due to certain error control mechanisms may lead to duplication of messages. If a
certain reaction to duplicate messages is expected (e.g., retransmission of acknowledgements),
DuplicateHandle can be applied.

Structure:
SendAutomaton duplicateSensitive ReceiveAutomaton
adaptedSendAutomato i
p handleDuplicates DHReceiveAutomaton

Message scenario:

MSC data transfer
r===sn
| (1Y .
1 1 protocol entity A protocol entity B
_____________ service
adaptedSendAutomaton| DHReceiveAutomaton
data(i)
. ‘deliver data’
ack(i)
data(i)
‘ignore data’
ack(i)
data(j)
“deliver data’
ack(j)

SDL-Fragment:

DHReceiveAutomaton

36

Service Type DHReceiveAutomaton inherits ReceiveAutomaton

1(1)

_ - T/ "M
(| |
) — —_— v *
i —
] rredefined
'unlog signals msg
of type msg' L —_ = msg
T
- =YY=
| | <msgAIreadyLogged?>
| S

‘handle duplicate'

-

handleUnspecifiedReceipt

‘handle duplicate'

‘prepare handling
of duplicates'

l— processMessage _
| -

I—{ handleDuplicate

Syntactical embedding

Specializationredefine the start transition &eceiveAutomatohy resetting all logged signals of

type msg Furthermore, redefine all transitions with input signmabby supplementing a test if the
message has already been receivesg@lreadyLogged) and a transition branegnoreDuplicate

that properly handles the duplicate. The corresponding branch that normally processes the message
is supplemented by a logging mechanism for the sigrsgland statements to prepare proper han-

dling of duplicates. Additionally the transitidrandleUnspecifiedReceif® added to the given SDL
serviceReceiveAutomaton

Semantic properties:

Property E.1: If the developer adds mechanisms for identification, logging and handling of signals
of typemsg,duplicates of typensgare always handled by DHReceiveAutomaton.

Redefinition:
not allowed
Cooperative usage:

DuplicateHandle may be used in conjunction with TimerControlledRepeat in order to upgrade unre-
liable communication channels.

37

DYNAMIC ENTITY SET

Intent:

The automatofferminatingServeis capable to provide its service exactly one time and terminates
afterwards. In order to offer the service several times (e.g., to more th@temg¢the DynamicEn-
titySet pattern is introduced. For each client a server ergityninatingEntityis dynamically created

by EntityAdministrator ThusEntityAdministratoracts as a proxy from the perspective of the clients
which forwards service requests to the corresponding server entity.

Motivation:

If a communication subsystem administers several connections at the same time, each connection
can be managed by a separate protocol entity, which is created and released dynamically. Each
incoming message must be forwarded to the protocol entity to which it belongs.

Structure:

. single service o
Client TerminatingServer

A

AdaptedClient

single service eply

Imultiple service requests

\

EntityAdministrator | create entity and forward requests J TerminatingEntity

EntityT able | Eld

Message scenario:

MSC create terminating entity and forward requests

—————

administrator

createReq entity

P!
TerminatingEntity

createReq

messagel[Eld]

messagel[Eld]

message2[Eld]

message2[Eld]

38

SDL-Fragment:
EntityAdministrator

Process Type EntityAdministrator 1(1)

ddministerEntit),

,createReq, 'message2(EM)’

Eld:= 'uniqueEntityld"

Entity(Eld)

I EntPId := 'getPIdOutOfEntity Table(Eld)' EntPId := 'getPIdOutOfEntity Table(EIld)'

e{dministerEntit}/

insert Id and offspring in EntityTable' [L
messagel(Eld)' TO ExtPId

message2(Eld)' TO BE»
N
.‘ E{dministerEnti>/ .,
createNewEntity forwardMessage

T

createReq TO offspring>

administerEntit

Syntactical embedding

Specializationtransitions ofTerminatingServewhich send a signal back to tbkent are potential
candidates for redefinition in order to inform ttleent about the locaEld. The protocol engineer
has to decide which ones are relevant or if the client is informed otherwise. In any dalskvitile

be used by thé&daptedClientwhen sending signals to tAerminatingEntity Therefore all transi-
tions which send a signal (excepeateRejjto TerminatingEntityare redefined by adding tk#d as
signal parameter.

A process of typdntityAdministratoris added to the surrounding block diagranTefminating-
Server.

RenamingcreateReq, messagedndmessage2orrespond with those messagesdient sends to

its TerminatingServewherecreateReds the first message received. However, the concrete quanti-
ties of course have to be adapted.

Structural changesignal routes td@erminatingServemust be deleted and redirectedBwotityAd-
ministrator. The reference symbol farerminatingServemust be replaced by a process set refer-
ence Entity with corresponding process typ&erminatingEntity in the embedding block
EntityAdministratormust be connected with the proces<s#ity by a create line and additional sig-
nal routes for forwarding the messages.

Semantic properties:

Property F.1: If the assumptions stated below hold, the same service as providednipating-
Serverwill be offered several times by the server entities of TgpminatingEntity and each server
entity will only receive messages belonging to it. The assumptions are:

39

* The developer takes @that the AdaptedClientseamformed about the Eld of their
corresponding server entity and always add this EId to the output signals which ar
sent to the server entity (exceptateReq)

Redefinition:

EntityAdministratormay be redefined in order to limit the number of server entities active at the
same time or inform the sender of a message if no corresponding server entity could be found in the
EntityTable The following property determines what kind of redefinition will be allowed.

Property F.2: Property F.1 still holds, if the DynamicEntitySet pattern is redefined by the intro-
duction of additional statements, which do not manipulate the Eld and Pld entrieskoftityd a-
ble.

40

Appendix B

SDL specificatioh

B. 1 Development step 1

(uoseas)pupayuo)d

X
Loommuws

uoSeal IaMsUyYa3|[ed

(Awoud ‘swnuelsiuroadsmoyy)
19|npayds pue

=-uoseal]03U09 Djel) Wioul,
Auoud 1amsuyasled
=:Aoud
as[e}
(TA 99[eDSe ||ed) —] =:1amsuya9)|[ed|

adA | Jlamsuyas|ed Jamsuyas|ed 10d

‘adAimaupug
‘adA | uoseal uosea)
19bayu| Ayioud
‘ueajoog Yo
NS adA L 1amsuyaa|ed adAimaN

ﬂ”ma\ﬁcowmm: uoseal 10d

[

dspy=:0adsmoy}

dsjy)bayioauuo)
[enuIn

1sbnbay1daooy

TA 99||eDMSe [enuIA

(M1 TA dmiasuoduul adA] 821IA8S [enUIA

TA umogJea] uoduul
:umoJea]uodiiui

TA dniasuodnul
:dn1asuodiiui

'SS8IppYapON SSaJppyapONINY 10d
{SS2IPPYOPON SS2IPPYSPONUMO 1A
‘19baul Auoud 154

‘1a1eweredsod dadsmoy 104

@z

TA J9|eD adA ssad0.d

1. To get a better overview of the SDL diagrams we have omitted the names of signal routes and channels.

41

(uoseas)pasnjay

(uoseal)pujuoasiq (Awond)parosuuod

,S32IN0SaY}I0MISNOU,

Auoud iamsuyiabeuepsay
= uoseal

=:Aoud

(uoseal)pasnjoy <S[O'J1amsuyiabeuenNsay

[(umoqree wuor nad)]

_He;on_aﬁl_\,_meo_ﬁ:n_n_v

[(dresTsaire00r ds)

A UMOQJesuoDooe
:umoJiealuodooe

(des eaireowou"ds))

IA dMmesuo)ooe
:dMmesuo)aoe

‘SS2IPPYSPON SSaIpPYapo
pasnjsyisniadal, (TA 1obeue\SaxpiSE)|[ea—] =1amsuyiabeur\SaY Mwwm:uuuﬁ%o%ww&%ﬁ%o_/__/_:gw H__wm
=: uoseal T NSSEISE)I| = ‘“abaul Auoud 1530
191eweredso0 9adsmoy 10d
Crionoos @)z TA 99|[eD adA) sse201d
as|ey : ani
(TA 18NnIB29YYSe)|[ed [—] =:IaMSsuyIanIaday
IPEINEREY NS 2] I
[enuin
dspy=:0adsmoy} lamsue Jlamsue
TA 18beue\saydse
[eNUIA ‘uoseal‘Q‘asfey ‘0‘Auoudtany 4
(e A 2 (o ik ") doxo-rem
‘zadA L1amsue JamsuyisbeueNsay 104 _ _
‘adfimaupug sisanbaybundase Joseas)pasnjey Jliold)parosuuod
‘1aBayu| b__o_wa b [enuin [enuin
‘1adA] Jamsue 3o T T
10n1S zadA]lamsue adAimaN
dayioquem fenu.
‘TodA L1amsue JomsuylaAiaday 104 E
‘lamsuy adAimaupu
‘pajre} ou Yo sjesa)] TadA | 1emsue adAimaN
‘adAllamsuy Jamsue suinial:
01 TA dMiasuodooe adA] 92IAI8S [enlIA (Mt TA 93|[eD»Se aInpadoid

42

pasnjoysay (Auoud)pardasoysay

ESEN ann

|||||||||||| ((0adsmoyy)nowpe |ed)
=:Aoud

2dsmoyj‘Ipyepou)aniasay
fenuin

aAes ‘anlasal ‘1Sa)

sisanbaybundadsoe

[nouwpe

M1 TA 9AIasal adA] 92IAIBS [enUIA

Jamsuel

loMsue

Mou=:)O'lamsue

Auond=:Aioud-Jemsue
No=:MO'lemsue

[

[

|dexyio4e

vawEmmmmw_
[enuIA

(huond)paideooysay 2dsMO|}‘SSIPPYIPONUMO)
[enuiA anIasaY

[

J

|daylodie

[

enlIA

‘zadALIamsue Jamsue suinas

_” esoo_mgl_\,_mrco_ﬁ:on_m_

” a:&m|>_meoc|:on_m_

” A:;ooamﬂ\,_melzn_n_m_ TA joeganb

oeganib

TA 9AI9SDl

_” EDBwIS_w_EIDDn_VH_ .9N\I9Sal

@)z TN 1abeuepadinosay adA] ssadold

(M1 TA JabeuensaySe 81Npad0id [enuIA
JOMSUE| Jamsue
Jou=Jamsue Jo=llamsue E
9YHPasn}ay10auuo)d
v [enuIA vamw_Smwmxm_n\u, (0adsmoyy)puioauuo
|day04ie enuIn

r_m>>mc<‘_m>_momw_ Jamsue wc:.zm‘._
M1 TA 19AI2294Sk aINpadold [enliA

43

and step 3

B. 2 Development step 2

[purerep]

_”cmw_ﬁmuu_

€N 19|[ed JajujAemo
Buioepsiujiahe1iamo

SSa1ppYopPON SSaIppPYepoNaa|ed 10d
,”mmmk_b_o/.\mvoz SSaIpPVYSPONINY 10d
‘SSaIpPPYaPON SSaIPRYSPONUMO 1A

“9bayil Auoud 104
‘191oweredso0 dadsmoy 193

(@2

A_umo@Jesuoduul
S -Umodlealuodiiui

m>IQDHmWCOOH_C_
:dn1asuoiiui

eA I9|[eD adA] ssad0id

[(eeireowoyds [(eaireowioyds]]
[(eare001ds) [(eaie00ids)
— 2avs — — zdvs
ZN 9pONd3|ed || ZA epoNINY | [eA epoNaajeD
“7OpON :£9PON :GOPON
dvsg dvss dvsg
[purereq] [purereq] [purereq)
1
_”Umw_m%n_”—, _”wa_mumn_H\ _” Umw_EmoH
aoInasbulAiapun
[boxereq) [bayereq)
[purereq [purereql|
[(eareowosas] ‘ 55 [Gaireowoyas)]
zdvs 4VSE 1dvs

(as)| - "
[(ssire001diS)] L \—opONGBIED AT BPONIBIED [wairen0i~as)]

:Z9PON -T9PON

() cda)s 101dSay YL WalSAS

‘sasse|pgdals Isn

44

X X

) (InodwiLD LomsuE
|leAIIUIBWI+MON)ISS| {uoseal)puyayuod Ag
T+SyeadayjOou (‘uoseas‘p'asfey) LOSEa. JIOMSU (Aoud ‘swirelssuroadsmoyy)
=:syeadayjOou - " V99][ed 19Npayds pue
; _ g0 SHEISLE =:uoseal _o:co_o _w_%mb m&oE__
S21ppyYapONUMO‘dadsmoly) sreadayjOONXeNpayeay Aoud lamsuyes|eds=:Aioud
2N 108UU0D =DUOoSea],
as[ey os[e}
ann *JOMSUY93|[E
(eno9|[eDse ||ed)—F:1amsuya3|[ed
lamsue Jamsue Aidaxioqem _
IPYN®|J=:SSaIppyYopONS8||ed
‘uoseal‘o*‘asfey ("0*Auond*aniy) .
(n:m%m:m_ ¥ =:lamsue 0=:s1eadayjoou _
_ _ _ ds|y=:00dsmo|}
GnoswiLonesay | | noswiiohesey . (noswiLS [
IrRAIBIULIBUIN+MON)ISS JpYNB3[2‘ds)y)zn bayioauuo)
_ _ _ paulapal
noauwi osea1)pasnjaY {gudjpaioauud S91ppYopPONUMO‘Dadsmoly)
NO3WILD pauyapal paulspal ZA 193UU0D
| I _
Al dayloqirem fgounapas m>|m®__MOv_mm paulepal
INO3WILD YIWIL ‘adAiamsuy Jamsue suinal’
'8 = Jabau| s1senbayjOONXeW 100 2N 99|[edySe Ssiuayul ZN dniasuoDuul syusyul
!0z = uoneinq |leAlupBWI 10Q R ut spisyul
‘19bayu| syeadayjoou 104 _
eA @a|leDyse ainpadold || (DT eA dniasuoDiul 8dA] 891nI8S pauljopay

(M1

45

Z=:be|4A|dal
‘1=: Be|4bsw

1=:6e|4A|dals
‘1=: Be|4bsw

(uoseas)pasnjay

(Aoud)paroauuo)d

(uoseas)pujuoasiq

Auoud lamsuyiabeueNsay
=:Auoud

z=:6Bej4A|dai
‘1=: Bej4bsw

,S92IN0S9YY}IOMIBNOU,
=: uoseal

(noauwiLy lamsue
[[eAJSIULIBWIN+MON)ISS (uoseai)pasnjoy = <3O JamsuyJabeueNsay
T+Sleadayioou A _
=:steadaygioou PaItej=-XO IamsLe PISMUSHISNCI3, (en"19BeURNSAYSE) RO =11amsuyIabeueNSaY
SMOJ‘SSaIPPYIPONUMO)| |syeadeayj0oNXepaydeay A0 =
2N 9NIaSaY =:uoseal, p— JOMSUVISNIS08 ang

anj (TA 1onI209YSE)|[eD [— =:1aMmSUYIaAI80aY

asrey

IPYNB|0=:SS8IpPYSPONa3|[ed

Jlamsue Jamsue Al daylo4irem _
I
Aowmmcuwm&mm AEo:&umGw:coo
- Auoud=:Auoud jemsu syead dsjy=:08dsmoy
Mou=:3 Q' Iamsue 50130 Jamsue 0=:Sleadayjoou A g T
<G any
_ _ _ ESEN =6e|4bBsw
noauwi
((noswiLY)esey (InoswILY)esay ,__mz%c_mume_ﬁm\,ozzmm
(IpPYNI‘ds|)gA 108uuoy
_ _ _ paulspsal
(faoud) SO}’ SS81PPYY3PONUMO) ‘1abeju Bei4Aidariog
INOdWILY pasnjsussy 21da00ysay ZA aniBsay ‘1abeju BegBsi 10
[| _ T _ sisenbaybundadoe
Alday.io4em pauyappl m”>|‘_®@.mcm_\/_m®mv_w.® paulapal 0=: bej4bsw
INOodWILY YINIL .
‘g = Jabaju| s)sanbayjOoNXew 10d .N.w&._._miwcm Jamsue suinal
S o i iR
en dniasuo)ooe adA] ad1n8S paulyapay

) en”IeBeuesayise 8inpadoid || (z)z

46

B. 3 Development step 4

[purereq

_Hcmmﬁm_o

H__”cmmm uu_

_”UC _MHMUH_

(M1

|[0201014UoNeAISSDY
:(uopoNxew‘p)Au3|o0o0101d

[purerep]

7N
1
1
1
1
1
1
1
1
1
1
1
1
.

He\sovdwm

J10)e.SIuIWpPY[020104d

-Jolelisiuiupy

woras)]

apoNwio) adA] xo0|9

_He;ocm_mm_

_w%ln_wv”_
K—>

dvs

[(es1re0WOL"ds)]

[(eaire001as)

[(es1re0woyds))

[(eaire001gs)

[(esireowoyas))

[(eaire001ds)]

dvs dvs dvs
9pONWOD ||apoNwoDNY 9PONWOD
‘9pPON :£9pON :GOpoN
dvsg dvsg dvsd
[purereq] [purereq] [purereq]
¥
_”Umw_ﬁmo”—, _”cwmmwmn_H\ _” cmmﬁmou—,
aoInesbulAuapun
_” _umw_ﬁmou_ _” cmw_ﬁmo”_
[purerea [purerea)
[(eireowoy~ds) —a E [Ueireowoy~ds)]
_wmm__muOﬂn_mM_ SPONWOS SPONWOD _”cm__mooﬂn_mm_
:Z9PON -TSPON

()

Pda1S 101dSayy L WalsAS

‘sasse|opdals Isn

a7

e

pIdD OL (nas)purerep

(PI0*81qe1LO)Ald¥eb=pIdD

_

Bundsyo 0L

(R@s3)bayerep (nas)purerep
(PHIP'NAS‘VYNIR'NAS

JJeuBis 10113 1oy HESpage
pID‘ISId)
NQasJ3 asedaud, Jaupeguasul
9|qIssodioNdN1aSu09, Buudsyo'pio‘sigeLd)
=: uoseal Anuzs|qeL

(PHIP'NAS VYNII2'NAS 1SI1d) P11
=:pIo

ann

asfe}

ani

(PID)Amuz|000101d

19SpID)pIUONIBULODMAU
=pID

T0°'NAS VNP NASIST
aAIoR

Aumc:ooqum:.Dn_wv

nas)purerep

JojessiuIwpy|02010.d adA| ssadold

(21

Bunudsyo 0L
(PIN3I9'YNI'PINJIO'SIY)
bay108uu0)

|

3|01SS0410NdNI8S U0,
=: uoseal

Bundsyo'pio‘algeLd)
Au3s|qel

(P10)Amuzj000101d

19SPID)pPIUORIBULODMBU
=1pID

I

(PIN3P'YNI'PINIID'SY)
bayiosuuo)

‘adA uoseal uoseal 10Q

) ‘pId PIdD 104
-Jalypuspjuondsuuo) pIo 104

'9|qe Luondsuuo) a|qe1D 10d
S191J3USP|UONO8UL0DI01SS 18SPID 10d
Jsigaumed 1si1d 104

JojessIuIWpY|02010.d adA1 ssadoid

48

ase}

(v

PIdO OL
(PID)bayu0dsia

(PID*B10R LD)AIdI8h
=:pIdO

(P1D)bayuoosia

pIdO OL
(PID)bayquU0D

(PID°'NAs‘8IqeLD)Aldeh
=:pIdD

ase}

vﬂu_ovcm%mcou

I

wpe

JoJeJISIUIWpPY|020]01d @dA | Ssad01d

ase}

(e

pIdO OL
(P10)dsy1o8uu0D

(p10'81qe LD)Aldeb
=:pIdO

1D)dsy108uu0d

asre}

=pIdo

AOum::ooqum:.Dn_wzoW

(nas)purerep

Jojessiulwpy|02010.d adA1 ssadold

49

@z

yA dMiesuonooe
:dn1esuo)ooe

yA dn1asuoDaoe
:dn1asuoHaoe

FA UMOJJea | uoDul
:umoJealuodiiui

A dniasuoduul
:dn1asuodiiui

<p|uondauUU0) P! 1DA> |00010iduonenlasay adA] Ssaa0id

