
Pattern-based Configuring of a
Customized Resource Reservation

Protocol with SDL
Birgit Geppert, Frank Rößler

SFB 501 Report 19/96

Pattern-based Configuring of a Customized Resource
Reservation Protocol with SDL

Birgit Geppert, Frank Rößler

{geppert, roessler}@informatik.uni-kl.de

Report 19/96

Sonderforschungsbereich 501

Computer Networks Group

Computer Science Department

University of Kaiserslautern

P.O. Box 3049

67653 Kaiserslautern

Germany

1

Pattern-based Configuring of a Customized Resource
Reservation Protocol with SDL

Birgit Geppert, Frank Rößler

Computer Science Department, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

{geppert, roessler}@ informatik.uni-kl.de

Abstract
Due to the large variety of modern applications and evolving network technologies, a small number
of general-purpose protocol stacks will no longer be sufficient. Rather, customization of communica-
tion protocols will play a major role. In this paper, we present an approach that has the potential to
substantially reduce the effort for designing customized protocols. Our approach is based on the
concept of design patterns, which is well-established in object oriented software development. We
specialize this concept to communication protocols, and - in addition - use formal description tech-
niques (FDTs) to specify protocol design patterns as well as rules for their instantiation and compo-
sition. The FDTs of our choice are SDL-92 and MSCs, which offer suitable language support. We
propose an SDL pattern description template and relate pattern-based configuring of communica-
tion protocols to existing SDL methodologies. Particular SDL patterns and the configuring of a cus-
tomized resource reservation protocol are presented in detail.

1 Intr oduction

Today’s communication systems are typically structured into several layers, where each layer
realizes a defined set of protocol functionalities. These functionalities have been carefully chosen
such that a wide range of applications can be supported, which has led to the development of a small
number of general-purpose protocol stacks. However, due to increasing communication demands as
found in many modern applications, the communication services provided by these protocol stacks
are not always adequate. In particular, varying demands on throughput and delay as well as on delay
jitter, synchronization and multicasting are not well supported by existing protocol stacks. Also,
classical protocols are not designed to exploit the advantages of advanced transmission technologies
(e.g., fibre optics) and high-speed networks (e.g., ATM), which combine high bandwidth with low
error rates. Rather, they enforce the use of mechanisms that may actually not be needed by a given
application, for instance, the use of error control mechanisms, which leads to reduced performance.

To improve this situation, different communication architectures as well as a new generation of
general-purpose protocols are currently being developed. It is expected that in order to increase flex-
ibility and to support applications in the best possible way, also customization of special-purpose
communication protocols will play a major role. Here, the configuring of protocols from reusable
components (calledprotocol building blocks in this paper) seems to be a promising way to reduce
the additional development effort.

Several approaches to the configuring of protocols have been reported in the literature. Early
research focused on the identification and collection of suitable protocol components by reverse

2

engineering of existing transport and network protocols. A protocol implementation was then auto-
matically configured from a subset of these components. Well-known projects in this area are F-CCS
[30], [34], Da CaPo [15], [16] and ADAPTIVE [23], [24], [25] (see [6] for an overview). These
approaches have in common that protocolimplementations are configured. As a major drawback, the
use of implementation languages prevents the resulting communication system from being verified,
which is further complicated by the configuring of protocols during connection establishment. Also,
the extension of the component pool appears to be difficult in these approaches because the knowl-
edge about composition principles is not explicitly described. Here, the use of formal description
techniques allowing an abstract, unique specification of protocol components and component inter-
actions seems to be mandatory.

The reuse of predesigned solutions for recurring design problems is of major concern in object
oriented software development in general. During the past few years,design patterns have emerged
as an especially fruitful concept from other well-known approaches such asframeworks, or toolkits
(in the sense of object oriented libraries) [5], [3], [17]. Early experience in reuse of protocol specifi-
cations with SDL has been reported in [28], where a protocol building block was designed as a reus-
able library class, however, according to the authors, with limited success.

In this report, we present a new approach for designing customized protocols. Our approach is
based on the concept ofdesign patterns, which we specialize to communication protocols. In addi-
tion, we use SDL-92 [35] and MSCs [36] to formally specify protocol design patterns and rules for
their instantiation and composition. An important advantage of our approach is that the configuring
leads to formal specifications of communication protocols, which may then be used for validation
and implementation purposes. Due to the importance of currently developing SDL methodologies
we discuss how pattern-based configuring relates to existing SDL methodologies, in particular, to
the SDL methodology framework [18].

The remainder of this report is organized as follows: in Section 2, we propose an advanced SDL
pattern description template and discuss the process of pattern employment. Additionally pattern-
based configuring is incorporated into the recently proposed SDL methodology framework [18]. In
Section 3, a customized resource reservation protocol, which is part of the realization of a real-time
communication service based on a conventional token ring network, is configured. Thus particular
SDL patterns will be presented and applied according to the process model of Section 2. We con-
clude with experiences and an outlook in Section 4.

2 Pattern-based protocol configuring

Protocol configuring is a promising way to cope with the enormous number of possible custom-
ized protocols. Actually we suggest to provide a pool of reusable and formally specified protocol
building blocks from which the protocol designer may select components according to the specific
communication requirements. After suitable adaptation, these building blocks are ready for composi-
tion to build part of the customized communication protocol (Figure 1). During further stages of the
development process the resulting design specification will finally be mapped to a conforming
implementation (however, we will not consider implementation issues in this report).

The protocol building blocks are represented by SDL patterns describing a generic design solu-
tion for a communication specific problem. This is similar to the well-known design patterns con-
cept, as introduced by the Gang-of-Four [5]. SDL patterns comprise an SDL-fragment as the
syntactical part of the design solution, which will be embedded into the final protocol specification,
and additional items, that ensure proper pattern application. A detailed presentation of our SDL pat-
tern description template and a comparison to existing design pattern description templates is given
in Section 2.1.

3

The configuration process cursory sketched above is capable to be developed into a detailed proc-
ess model. Therefore we combine existing SDL design methodologies and specialize them to the
domain of communication protocols. This will be explained in Section 2.2.

2.1 SDL patterns
An SDL pattern describes a generic solution for a context-specific design problem from the

domain of communication protocols. It is assumed that the target language for pattern instantiations
is SDL-92. Thus the pattern description comprises syntactical rules for pattern application as well as
semantic properties defining the patterns intent more precisely. This definition of SDL pattern is
similar to those of conventional design patterns used in object oriented software development:

• „Design Patterns are descriptions of communicating objects and classes that are customized to
solve a general design problem in a particular context.“ [5]

• „A pattern for software architecture describes a particular recurring design problem that arises
in specific design contexts, and presents a well-proven generic scheme for its solution. The solu-
tion scheme is specified by describing its constituent components, their responsibilities and rela-
tionships, and the ways in which they collaborate.“ [3]

The differences between design patterns and SDL patterns are that we choose a particular applica-
tion domain (communication protocols), and that we combine the advantages of the formal descrip-
tion technique (FDT) SDL with the patterns‘ concept. Instead of specifying and applying the patterns
rather informally, SDL offers the possibility to specify what the application of a specific pattern pre-
cisely means, under which assumptions this will be allowed, and what the consequences are. Here
we are in line with the advocates of design pattern formalization inside the design patterns commu-
nity, though we are even more rigorous by demanding the use of an FDT for this purpose. As a con-
sequence, the description of SDL patterns differs in some ways from design patterns in[5], [3]. We
propose an SDL pattern description template with the items listed below and relate it to the existing
pattern description templates of[5], [3]. As already mentioned, instantiations of this template are
called SDL patterns which, itself instantiated, form the constituent parts of an SDL protocol specifi-
cation.

Pool of Protocol Building Blocks

Target Service

Basic Service

➟ ➟
Selection Adaptation

Communication Requirements

Network

D
e

ve
lo

p
m

e
n

t
o

f
B

a
si

c
C

o
m

p
o

n
e

n
ts

(C
om

po
ne

nt
 E

ng
in

ee
r)

(Protocol Designer)

➟
Composition

Protocol
Specification

➟
Implementation

Protocol
Implementation

Protocol configuration

Fig. 1: configuring and implementing communication protocols

Protocol implementation

4

Name The name of the pattern, which should intuitively describe its pur-
pose.

Intent A short informal description of the particular design problem and its
solution.

Motivation An example from the area of communication systems, where the
design problem arises. This is appropriate for illustrating the rele-
vance and need of the pattern.

Structur e A graphical representation of the structural aspects of the design solu-
tion using an OMT object model. This defines the involved compo-
nents and their relations.

Message scenario Typical scenarios describing the interactions between the involved
objects are specified by using MSC diagrams.

SDL-fragment The mere syntactical part of the design solution is defined by a
generic SDL-fragment, which is adapted and syntactically embedded
when applying the pattern. If more than one SDLversions of the
design solution are possible (realization as SDL service or procedure,
interaction by message passing or shared variables, etc.), fragments
for the most frequent versions are included. We plan to substitute ver-
sioning by a special kind of pattern parameterization.
For each fragment, correspondingsyntactical embedding rules are
defined:

• Rules forrenamingof the abstract identifiers of the SDL-fragment.

• Rules forspecializationof embedding SDL superclasses in order to
integrate the instantiated pattern. Here, „specialization“ is meant in
the sense of specialization of SDL types as defined in [35]. This
could, for instance, result in

• theaddition of new transitions or SDL services

• theredefinition of existing virtual types or transitions.

Semantic properties Properties of the resulting specification that are introduced by the
embedded pattern. This also includes a description of assumptions
under which the properties hold. The semantic propertiesdefine the
patterns intent more precisely.

Redefinition An embedded pattern instance can be further redefined, e.g. by the
embedding of another SDL-fragment in subsequent development
steps. Redefinitions compatible with the patterns intent and semantic
properties are specified.

Cooperative usage Possible usage with other patterns of the pool is described. This is fea-
sible and especially useful for a specific application domain as in our
case.

5

The description template for SDL patterns and existing templates for design patterns (see Table 1)
have some items in common:name, intent, motivation, structure, andmessage scenario. For SDL
patterns, these items are specialized to the communication systems domain. Thus participating
objects typically include protocol entities, protocol functions, service users or service providers.
Interactions between them can be described by Message Sequence Charts (MSC), with the additional
advantage to perform MSC based validation. Furthermore, several SDL methodologies suggest to
use OMT [21] and/or MSC for analysis (see e.g. [18], [29], [32]). To fit with these methodologies,
we bridge the semantic gap between analysis and design models by employing OMT and MSC for
pattern descriptions as well (see also Section 2.2).

Gamma et al. Buschmann et al.

Pattern Name and
Classification Name Name and short description of intent

Intent

Also Known As Also Known As Other well-known names

Motivation Example
Real-world example illustrating the
design problem

Applicability Context
Situations in which the pattern should/
should not be applied

Problem General description of the design prob-
lem and the offered solution
(detailed intent)Solution

Structure Structure
Graphical representation of participat-
ing objects (OMT) and their interac-
tions.

Participant

DynamicsCollaborations

Implementation
Implementation

Guidelines for implementation, includ-
ing code fragments in C++, Smalltalk,
...Sample Code

Example Resolved Description of other important aspects
of the given example not addressed so
far and other possible variants or spe-
cializations of the pattern

Variants

Known Uses Known Uses
Systems in which the pattern has been
applied

Consequences Consequences
Benefits and results of using the pat-
tern.

Related Patterns See Also List of similar patterns

Table 1:

6

Different from [5] and [3], SDL patterns are part of a dedicated pool of protocol building blocks
and have a formal foundation. Thus an SDL pattern can be related to other pool components by spec-
ifying their cooperative usage. This is strongly supported by restriction to design problems of a cer-
tain domain. The formal foundation results from the use of the standardized FDT SDL, where, for
instance, thesyntactical embedding of the pattern, i.e. its integration into a given SDL specification,
can be specified uniquely in terms of the SDL syntax. Furthermore, the formal semantics of SDL
supports the formalization of a patterns intent bysemantic properties. This includes both desired
properties and necessary assumptions which have to be fulfilled to ensure the intended use of the pat-
tern. This is important for validation of the resulting communication protocol. The possibility to sim-
ulate the design specification between consecutive development steps or before implementation is
another advantage of the SDL based approach. Undetected design errors can therefore be identified
in early stages of the development process.

Items not already incorporated into the SDL pattern template, for instance „Also Known As“,
„Known Uses“ or „Related Patterns“, may be added in future versions. However, it seems more
important to further improve the template as far as pattern interactions or system validation are con-
cerned.

2.2 A process model for pattern-based configuring
In the following, a process model for protocol configuring is proposed, defining different steps to

be followed and intermediate descriptions to be produced. We employed this model for the configu-
ration of a resource reservation protocol (Section 3). As already mentioned, the proposed process
model results from a combination and adaptation of different SDL design methodologies known
from the literature.

Similar to [9], we propose a use case driven design. However, to describe the interactions
between the involved objects we prefer Message Sequence Charts (MSC), which is a standardized
description technique and often used in combination with SDL. Additionally, instead of producing
an object-oriented implementation we only aim at an SDL design specification of the communica-
tion protocol, which may be used for automatic code generation, though.

In [29] the SOMT (SDL-oriented Object Modelling Technique) method is presented which will
be supported by the SDT tool set [27]. The idea we are following is to combine the Object Modelling
Technique (OMT) [21] with SDL and MSC for analysis and design. The SDL specification can then
be transformed into executable software by the use of the SDT code generator. The main difference
to our approach is that we focus on reuse of predesigned building blocks.

Another approach combining OMT with SDL is the INSYDE methodology [32]. INSYDE (INte-
grated methods for evolving SYstem DEsign) aims at combining object-orientation and formal
description techniques for developing prototypes of hybrid systems. Therefore the methodology
integrates not only OMT with SDL, but also with VHDL. The development process for an SDL
specification consists of analysis in OMT, system design in OMT* (a restricted, formal variant of
OMT, see [10]), and detailed design in SDL. Translation rules from OMT* to SDL are given in [31].
As indicated in [8], iterative design and reuse of analysis and design models from existing systems is
of major concern for the methodology‘s acceptance in industry. It is planned to integrate these miss-
ing features in the INSYDE methodology.

The methodology presented in [2] is part of the SISU project, a Norwegian technology transfer
program with the intent to improve productivity and quality of companies that develop real-time sys-
tems. The engineering process is partitioned into requirements specification, design, and implemen-
tation. For requirements specification a new notation called SOON (SISU object-oriented notation)
is introduced which is used in combination with natural language and MSC.

In [18] an SDL methodology framework is presented, where the engineering process consists of
five activities, namely documentation, analysis, draft design, formalisation, and implementation.
Each activity is characterized by its process step and its input and output documents. Apart from a

7

combination of MSC and SDL the framework also proposes the use of OMT. A key issue of the
methodology framework is the reuse library, an archive where relevant documents are put in for later
reuse. So far our process model is only a partial instantiation of the methodology framework,
because reuse is only supported for the pool of protocol building blocks. Though other descriptions
are also stored in the reuse library (for documentation purposes only) we actually do not provide
mechanisms for their reuse. Furthermore, we slightly modify the methodology framework by intro-
ducing an additional activity calleddivision into the engineering process that supports incremental

design. Starting with a small initial subset of the communication requirements, system functionality
is stepwise completed with each development step until all communication requirements are met.

Figure 2 illustrates this incremental process, where each development step consists of four main
activities, namely documentation, division, analysis, and design. Thereby the subset of communica-
tion requirements reflects the currently implemented system functionality. Note, that only the devel-
opment of an SDL specification is shown. The integration of further activities such as
implementation and validation is not illustrated. Additionally the development steps in Figure 2 are
ideal in the sense, that all activities are passed through exactly one time per step. If inconsistencies
were found, this would result in a return to one of the previous activities and additional documenta-
tion. In the following, the activities of the process model are further elaborated and related to the
activities of the methodology framework [18].

2.2.1 Documentation activity

This activity is carried out in parallel to the others. The task is to archive and administer all
descriptions evolving from the current engineering process and to offer access to protocol building
blocks from previous developments. This includes not only final documents like communication
requirements and SDL design specification, but also intermediate products and corresponding
change logs. Currently our engineering process involves documents with different levels of formal-
ity: informal natural language descriptions, MSC diagrams, OMT object models, and formal SDL
specifications. Generally speaking, we correspond with the documentation activity of the methodol-
ogy framework. But, as already mentioned, we only support reuse of protocol building blocks.

Requirements

Analysis
Model

Design
Model

Complete Set of

Analysis Model

Division

Analysis /

Design

SDL Specification

D
ocum

entation

Communication
Requirements

Fig. 2: activities that build a development step

Pool of

Draft Design

Protocol
Building Blocks

Design Model

Reuse Library

Subset of
Communication Requirements

Communication Requirements

Communication

8

2.2.2 Division activity

This activity determines the requirements subset, which shall be handled by the ongoing develop-
ment step. The goal is to incrementally reduce the distance between the whole set of communication
requirements and the system functionalities realized so far. For this purpose the set of open require-
ments may be partitioned and/or simplified in order to define a manageable requirements subset. The
respective decisions, however, have to be recorded. The division activity has no direct correspond-
ence with the methodology framework.

2.2.3 Analysis activity

Compared to the methodology framework this activity includes bothanalysis anddraft design.
We decided to combine these two activities because concepts and terminology are well-known for
the domain of communication systems and need not be defined separately. Thus we start with the
identification of the participating objects and their relations in terms of aggregation, specialization,
association, and so forth. For the case of communication systems possible objects include protocol
entities, protocol functionalities, service users or service providers. The result of the analysis activity
is an OMT object model. Communication relations between objects (e.g., message flow between
protocol entities or data exchange between service user and provider) are represented as signal chan-
nels in an SDL overview diagram. Additionally, use cases are defined covering typical scenarios and
important exceptional cases. We will describe them by the means of Message Sequence Charts.

2.2.4 Design activity

The design activity yields an executable SDL specification which is derived from the design specifi-
cation of the previous development step. According to the current subset of communication require-
ments and the current design model the protocol engineer selects predesigned protocol building
blocks represented as SDL patterns. After proper adaptation the protocol building blocks are ready to
be composed with the SDL specification at hand. Based on the information provided by SDL pat-
terns, these design steps can be explained in more detail:

• selection:
we reduce the semantic gap between analysis and design models by employing OMT and MSC
for pattern descriptions as well as analysis models. By comparing OMT and MSC analysis dia-
grams with thestructure andmessage scenario descriptions of the SDL patterns and by further
examination of the patterns‘intent, semantic properties, andmotivation,protocol building blocks
are to be selected.

• adaptation:
as protocol building blocks describe generic design solutions they have to be adapted before com-
position. Depending on the given SDL specification into which the pattern shall be embedded, a
suitableversion of the pattern has to be identified. The chosen version additionally must be
adapted byrenaming the abstract identifiers (e.g. signals, parameters, variables) in order to seam-
lessly fit the SDL specification at hand. This is guided by thesyntactical embeddingrules. The
result is a pattern instance ready for composition with the embedding SDL specification.

• composition:
the pattern instance finally has to be composed with the embedding SDL specification. This is
done according to thespecialization part of thesyntactical embeddingrules. In order to compose
the SDL fragment with an embedding specification, this specification has to be specialized in the
sense of the SDL standard. This results either in the addition of SDL constructs, like transitions or
SDL services, or in the replacement of virtual constructs by redefinition. Thereby, possible redef-
initions are constrained by thesyntactical embedding rules. An example for such a constraint

9

would be that a redefined transition only adds a procedure call to the virtual one and keeps the
same otherwise.

The resulting SDL specification may be further refined in order to get an executable version.
Therefore additionalredefinition steps as far as allowed by the pattern may be necessary. Examples
are the declaration of new signals, sorts or channels. Thesemantic properties of an embedded pattern
may also impose additional assumptions on the environment. They have to be taken into account in
further development steps and must therefore be added to a list of assumptions (checklist).

Compared with the methodology framework the design activity corresponds to the formalisation
activity. As mentioned in [18], most work of later development steps will be done for this activity,
while the work for analysis will be gradually reduced.

3 Configuring a customized resource reservation protocol

In this section, a resource reservation protocol is configured. Roughly speaking, this protocol sup-
ports connection setup in conjunction with the reservation of sufficient network resources to guaran-
tee a specified quality of service during data transfer. Together with adequate mechanisms for traffic
policing, scheduling, connection admission control, and user interfacing, it provides a real-time com-
munication service that we have realized on the basis of a conventional token ring network [1].

3.1 Resource reservation service

The resource reservation service (also calledtarget service) allows to establish and close unidi-
rectional real-time connections between two communicating peers. For establishing a real-time con-
nection, the calling user has to specify the required quality of service, including the expected amount
of traffic load. Only the calling user is allowed to close a connection. More than one connection per
node may be active at the same time. Therefore unique local connection identifiers (CIds) are
employed. The service users are informed of their CIds through the service primitivesConnectConf
and ConnectInd. Additionally, several service users per node may exist, which are distinguished by
local, user provided identifiers (userId) passed at the service interface (ConnectReq, ConnectInd).
The communicating peers can therefore be globally identified by a combination of node address and
userId. The calling user provides both with the connection setup request. The service primitives are
listed in Table 2:. Thereby the flowspec parameter specifies the QoS requirements comprising the
values:minimum packet interarrival time, maximum packet lengthand maximum end-to-end delay.
Figure 3 shows possible interactions at the service interface.

3.2 Basic service

As an additional requirement the target service has to be build on top of a conventional token ring
network. The token ring network consists of 5 Pentium-PCs running under QNX and connected with
the IBM 16/4 Token Ring Network Adapter II. Thus we model our target platform as a basic service
that is connectionless with the service primitives and error model described in Table 3.

3.3 The protocol configuration process
According to the process model of Section 2.2 the protocol implementing the resource reservation

service was configured in an incremental way, where each design step consisted of selecting, adapt-
ing, and composing predesigned protocol building blocks represented as SDL patterns. We started
by configuring a protocol providing a subset of the target service based on a reliable underlying serv-
ice. By incorporating further service requirements and/or relaxing the assumptions w.r.t. the underly-
ing service, we finally obtained a complete solution in four development steps. In the remainder of

10

this section, we describe the configuring of the resource reservation protocol. Apart from declara-
tions and some block structure diagrams the design model of the first development step is given in
Appendix B. 1, for step 2 and 3 selected diagrams are listed in Appendix B. 2, while Appendix B. 3
shows some diagrams that belong to development step 4.

service primitives parameters

ConnectReq flowspec, callerUserId, calleeNodeAddress,
calleeUserId

ConnectInd flowspec, calleeUserId, calleeCId

ConnectResp calleeCId

ConnectConf callerUserId, callerCId

ConRefReq calleeCId

ConRefInd reason, callerUserId

Error reason, callerUserId

DisconReq callerCId

DisconInd reason, calleeCId

DisconConf callerCId

Table 2:

MSC SystemInterface_SetUp

User1 system User2

disconnected disconnected

connectReq

wait
connectInd

connectResp

connectConf

connected connected

MSC SystemInterface_RefusedSetUp

User1 system User2

disconnecteddisconnected

connectReq

connectInd

wait

conRefReq

conRefInd

disconnecteddisconnected

MSC SystemInterface_TearDown

User1 system User2

connected connected

disconReq

wait
disconInd

disconConf

disconnected disconnected

Fig. 3: MSC interface diagrams of the target service

11

3.3.1 Development step 1: dedicated sender and receiver nodes, direct communication

3.3.1.1 Division

The initial subset of the target service supports at most one unidirectional connection between a
dedicated sender node (with a fixed sending user) and a dedicated receiver node (with a fixed receiv-
ing user). The service is provided exactly one time. The protocol instances are assumed to be directly
connected, i.e. there is no underlying communication layer.

3.3.1.2 Analysis

In order to guarantee the requested quality of service, sufficient resources must be reserved during
connection establishment and released when closing the connection. For this purpose a special entity
called resource manager is introduced. Different from other reservation protocols such as RSVP
[33] or ST2+ [4], our solution uses a centralized resource manager. Thus three main objects can be
identified: caller (sending protocol instance), callee (receiving protocol instance) and resource man-
ager. Each of them is located on its own node and can further be divided into two functional entities
responsible for connection establishment and closing, or reserving and releasing resources, respec-
tively. Figure 4 illustrates the involved objects. Their communication relations are illustrated in Fig-

ure 5. It is assumed that the callee communicates with the resource manager for reserving and giving
back resources and therefore no communication path between caller and resource manager is neces-
sary. The objects caller, callee, and resource manager are mapped onto SDL processes with the func-
tional entities represented as separate SDL services. The communication nodes are represented as
SDL blocks. Scenarios for connection establishment are shown in Figure 6, where a two-way hand-

service primitives parameters error model

DataReq nodeaddress, SDU • frames may get lost

• disruption of frames neglectable

• duplication of frames not possible

• ordered delivery of frames

DataInd SDU

Table 3:

ResourceManager_v1

initConSetUp_v1

Caller_v1

initConTearDown_v1 accConTearDown_v1

accConSetUp_v1

Callee_v1

reserve_v1
Establish Connection

Close Connection
giveBack_v1

Fig. 4: object model for development step 1

Reserve Resources

Give Back Resources

12

shake is applied. The same kind of interaction is assumed between the callee and the resource man-
ager.

3.3.1.3 Design

As can be seen from the analysis model four pairs of communicating entities can be identified for
connection establishment and closing, respectively: (user1, caller), (caller, callee), (callee, resource
manager), and (callee, user2). Thereby user1 and user2 are part of the environment and not explicitly
modelled. Each interaction corresponds to an SDL pattern calledBlockingRequestReply (Appendix
A) that introduces a two-way interaction between two given automata.The complete interaction
structure can be realized by multiple application of this pattern. In detail, the following design steps
have been performed to realize the interaction structure for connection establishment:

System Communication_System1 1(1)

initConSetUp_v1

initConTearDown_v1

accConSetUp_v1

accConTearDown_v1

Caller_v1 Callee_v1
U

S
E

R
1 U

S
E

R
2

Subsystem1 Subsystem2

reserve_v1

giveBack_v1

ResourceManager_v1

Subsystem3

Fig. 5: SDL overview diagram for development step 1

MSC SetUpWithReservation

caller callee ResourceManager

activeacceptingRequestsacceptingRequests

connectReq

flowspec
connect

flowspec
connectInd

waitForReply

waitForReply

connectResp

waitForReply2

reserve

flowspec

'test and reserve'

reservationAccepted

priority
connected

priority
connectConf

active

➊

➊

➋

➋

➌

➌

➍

➍

Fig. 6: MSC diagrams for development step 1: connection establishment

MSC RefusedSetUpWithReservation

caller callee ResourceManager

activeacceptingRequestsacceptingRequests

connectReq

flowspec
connect

flowspec
connectInd

waitForReply

waitForReply

connectResp

reserve

flowspec

waitForReply2 'test and reserve'

reservationRefused

disconInd

refused

disconInd

active

➊

➊

➋

➋

➌

➌

➍

➍

acceptingDRequestsacceptingDRequests

13

• for the interaction between user 1 and caller:➊
the interaction corresponds to theBlockingRequestReply pattern, where onlyReplyAutomaton_B
is part of the system. Version 1 is selected for this automaton. As the SDL serviceAutomaton_B,
into which the pattern instance has to be embedded, is empty the adaptation and composition is
quite simple: signals and states can be chosen arbitrarily and the added transition of the pattern
instance is the only transition of the resulting automaton. The result is the non-shaded part of
Service Type initConSetUp_v1 shown in Appendix B. 1.

• for the interaction between caller and callee:➋
this interaction can be realized by achained BlockingRequestReply (as indicated undercoopera-
tive usage of theBlockingRequestReply pattern description, Appendix A) with➊. Version 2 must
be selected, where the new parts are shaded in initConSetUp_v1. The corresponding
ReplyAutomaton is realized as an SDL service (non-shadedpart ofServiceTypeaccConSetUp_v1
listed in Appendix B. 1).

• for the interaction between callee and user2:➌
this interaction can be realized by achained BlockingRequestReply (as indicated undercoopera-
tive usage of theBlockingRequestReply pattern description, Appendix A) with➋. Version 2 must
be selected, where the new parts are shaded in accConSetUp_v1. The corresponding
ReplyAutomaton is not part of the specification.

• for the interaction between callee and resource manager:➍
the analysis model suggests to realize this interaction by aknotted BlockingRequestReply (as indi-
cated undercooperative usage of the BlockingRequestReply pattern description, Appendix A)
with ➌. Version 2 must be selected, where the new parts are shaded in acc-
ConSetUp_v1. The correspondingReplyAutomaton is realized as an SDL service (Service Type
reserve_v1 of Appendix B. 1).

The configured chain ofBlockingRequestReply patterns realizes the expected interaction structure
between the involved communicating objects. As a consequence no signals are implicitly consumed,
all (SDL) communication channels are reliable, and eachReplyAutomaton remains in itsstartReply

MSC TearDownWithReservation

caller callee ResourceManager

activeacceptingDRequestsacceptingDRequests

disconReq

disconnect

disconInd
waitForDReply

freeResources

'give Back resources'waitForDReply

resourcesBack

disconnected

disconConf

active

Fig. 7: MSC diagram for development step 1: connection closing

14

state, thus Property A.1 of theBlockingRequestReply pattern holds for every link of the chain. There-
fore service users may rely on finite response times at this stage of the development process.

The interaction structure for closing a connection is realized analogous, except that the reply of
user 2 is empty. Note, that development step 1 already yields an executable SDL specification, how-
ever, providing only a subset of the target service based on a reliable underlying service.

Checklist (assumptions that must be met in further development steps in order to ensure the proper-
ties of the SDL patterns embedded so far):

• the calling user interacts according to theBlockingRequestReply pattern and should behave like a
RequestAutomaton for both connection establishment and closing. (A1)

• the called user interacts according to theBlockingRequestReply pattern and should behave like an
ordinaryReplyAutomaton in case of connection establishment and like aReplyAutomaton with an
empty reply message in case of connection tear down. (A2)

• in order to keep finite response times, further development steps must guarantee that:

• the request and reply signals are not implicitly consumed (A3.1)

• the communication paths between theRequestAutomata andReplyAutomata for trans-
mission of request and reply signals are reliable (A3.2)

• thestartReply states of allReplyAutomata will always eventually be reached (A3.3)

3.3.2 Development step 2: dedicated sender and receiver nodes, reliable basic service with
addressing mechanism

3.3.2.1 Division

The second subset of the target service also allows at most one unidirectional connection per
node, and only supports dedicated sender nodes (with a fixed sending user) and dedicated receiver
nodes (with a fixed receiving user). However, this time the protocol instances operate on top of a
reliable and connectionless basic service (with service primitives as described in Section 3.2). Thus
basic service interfacing and receiver addressing are further issues.

3.3.2.2 Analysis

Because the protocol instances are no longer directly connected, a new objectReliableBasicServ-
ice is introduced. This results in a ternary association between two communicating peers and the
basic service. Additionally each communicating entity has to be specializedin order to integrate
translation from protocol data units (PDUs) to service primitives of the basic service. The resulting
object model is shown in Figure 8. The overview diagram of Figure 9 describes the communication
relations between the involved objects, where the objectReliableBasicService is given as an SDL
block, which is not further refined. Note, that the blockReliableBasicService is not part of the com-
munication subsystem to be configured. Rather, it models the communication service provided by
our target platform. A typical scenario is given in Figure 10.

3.3.2.3 Design

The SDL channels connecting the communication peers of the first version of the reservation pro-
tocol are replaced by an SDL block with channels connecting the protocol entities and the resource
manager. This step can be seen as a structural refinement, as we still assume a reliable underlying
service. The interfacing of the entities with the underlying service represented by this SDL block is
configured by applying theCodex pattern (Appendix A) to the first version of the reservation proto-

15

col (development step 1).Codex allows two or more entities to interact through an underlying serv-
ice represented by an SDL block/process by means of service primitives, i.e.Codex essentially
provides a translation from protocol data units to service primitives.

The lower layer interface control information (ICI) needed for a correct employment ofcodex
only includes the receivers node address. For the caller entity this information is provided with the
upper layer service primitiveConnectReq,while for the callee entity it is provided with the first
incoming messageConnect. As a consequence the followinglocalCommunicatingEntities (codex
notation, see Appendix A) have to be specialized according to the syntactical embedding rules of the
codex pattern description:

• Service Type initConSetUp:
The necessary ICI to be stored consists of the callee‘s node address. Furthermore, the callee has to
be informed of the caller‘s node address. This information is sent along with theConnect PDU.

• Service TypeaccConSetUp:
The caller‘s node address contained in theConnect PDU serves as lower layer ICI to be stored for
theCodex SDL service(codex notation, see Appendix A).

For the preparation of lower layer service primitives and the decoding of incoming primitives a
service lowerLayerInterfacing is added to the surrounding process diagramsCaller, Callee, and
ResourceManager. Finally, the structural changes described with thecodex pattern have to be con-
ducted. The changes are illustrated inAppendix B. 2 and shaded . The ICI (peer node
address) is set with the first signal received, and is left unchanged. Because each protocol entity han-

Caller_v1
Direct Communication

ReliableBasicService

Callee_v2Caller_v2 ResourceManager_v2
Indirect Communication Indirect Communication

Fig. 8: object model for development step 2

Callee_v1 ResourceManager_v1Direct Communication

System Communication_System2 1(1)

Process caller_v2

U
S

E
R

1 U
S

E
R

2

Block Subsystem1

Process ResourceManager

Block Subsystem3

Block ReliableBasicService

Process callee_v2

Block Subsystem2

U
S

E
R

4

Process callee_v2

Block Subsystem4

Process callee_v2

Block Subsystem5

U
S

E
R

5

Fig. 9: SDL overview diagram for development step 2

16

dles at most one connection, the peer node address always matches with the PDU currently proc-
essed bylowerLayerInterfacing. As the basic service in use is reliable and connectionless, thecodex
pattern suffices to replace the previously (see development step 1) used SDL channels (Property B.1
of theCodex pattern). Therefore assumption A3.2 (see checklist of development step 1) is still valid.
Other assumptions from the checklist of development step1 are not affected by theCodex pattern.

Checklist (additional assumptions that must be met in further development steps in order to ensure
the properties of the SDL patterns embedded so far):

• the basic service is reliable (A4.1)

• the basic service is connectionless (A4.2)

MSC SetUpWithReservationOverRelialbleBasicService

caller

acceptingRequests

connectReq

[flowspec]

connectConf

acceptingDRequests

ResourceManager

active

'test and reserve'

active

reliableBasicService

active

callee

acceptingRequests

connectInd

waitForReply

waitForReply2

acceptingDRequests

connectResp

dataReq

[calleeNodeAddress,SDU]

dataInd

[SDU]

dataReq

[RMnodeAddress,SDU]

dataInd

[SDU]

dataReq

[calleeNodeAddress,SDU]dataInd

[SDU]

Fig. 10: MSC diagram for development step 2

waitForReply

dataReq

[callerNodeAddress,SDU]

dataInd

[SDU]

17

• the interface control information retrieved bylowerLayerInterfacing always matches with the
PDU currently processed (A4.3)

Note, that assumptions A4.1 - A4.3 replace assumption A3.2 from development step 1.

3.3.3 Development step 3: dedicated sender and receiver nodes, unreliable basic service

3.3.3.1 Division

In the third step, we relax the assumption that the underlying service be reliable by allowing frame
loss. This corresponds with the error model of the basic service provided by our target platform.

3.3.3.2 Analysis

We replaceReliableBasicService with a new objectUnderlyingService. Due to the changed error
model the communicating objects Caller, Callee, and ResourceManager have to be specialized to
cope with lost messages. The object model is shown in Figure 11. The overview diagram corre-
sponds to the one of Figure 9, except that theBlock ReliableBasicService has to be replaced by the
Block UnderlyingService.

3.3.3.3 Design

To cope with lost frames theTimerControlledRepeat pattern (Appendix A) is applied to the sec-
ond version of the reservation protocol (development step 2). If an expected reply does not arrive
before the expiry of a timer, the message is repeated (Positive Acknowledgement with Retransmis-

Callee_v3Caller_v3 ResourceManager_v3

ErrorControlled Communication ErrorControlledCommunication

UnderlyingService

Caller_v2 Callee_v2

Fig. 11: object model for development step 3

ResourceManager_v2

ReliableBasicService

initConSetUp_v2initConTearDown_v2

LowerLayerInterfacing

accConSetUp_v2accConTearDown_v2

LowerLayerInterfacing

giveBack_v2reserve_v2

LowerLayerInterfacing

18

sion). Since retransmission may lead to duplication of messages (not treated by TimerControlle-
dRepeat), the patternsDuplicateIgnore and DuplicateHandle (Appendix A) are also applied.
Duplicates are detected by an unique message identifier and either discarded or, where necessary,
specifically handled.

Possible message losses of theunderlyingService affect the SDL servicesinitConSetUp, init-
ConTearDown, accConSetUp,and accConTearDown. As the involvedacknowledgeAutomata
(TimerControlledRepeatnotation, see Appendix A) are not capable to cope with duplicate messages
DuplicateIgnore and DuplicateHandle, respectively, are applied toaccConSetUp, accConTear-
Down, reserve,and giveBack before application ofTimerControlledRepeat. Note, that duplicates can
be detected by signal names as each request must only be serviced one time during the lifetime of the
SDL services. While the SDL serviceaccConTearDown ignores duplicates, the SDL services
accConSetUp, reserve, andgiveBack handle duplicates by repeating the corresponding reply. SDL
serviceaccConSetUp is shown in Appendix B. 2, where the changes are shaded .

Checklist (additional assumptions that must be met in further development steps in order to ensure
the properties of the SDL patterns embedded so far):

• the basic service neither disrupts nor creates messages (A5.1)

• the timer intervals for retransmission are greater than the maximal round trip time for the requests
and corresponding replies (A5.2)

Note, that assumptions A5.1 - A5.2 relax assumption A4.1 from development step 2(communication
is no longer reliable, but the sender is informed about a failed transmission after a certain number of
retries). As a consequence, the semantic properties of some embeddedBlockingRequestReply pat-
terns do no longer hold, i.e. we can not guarantee that replies will definitely arrive within finite time.
However, we definitely reach an error state within finite time, if a certain number of retransmissions
fail.

3.3.4 Step 4: mixed nodes, unreliable basic service

3.3.4.1 Division

In the fourth and last step, we consider the full target service supporting nodes with both sender and
receiver functionality (with multiple sending and receiving users per node) as well as several con-
nections per node and user, i.e. the service will be provided multiple times.

3.3.4.2 Analysis

Each connection is managed by a separate set of protocol entities, which are created and released
dynamically. We replace Caller andCaller by a new objectReservationProtocol with merged func-
tionality (i.e. an aggregation ofinitConSetUp, initConTearDown, accConSetUp, accConTearDown,
and lowerLayerInterfacing).Each instanceis responsible for handling either the caller part or the
callee part for one connection. The object model is shown in Figure 12.

Figure 10 illustrates the establishment and closing of one connection, where a corresponding pro-
tocol entity is created at the caller node and the callee node. In order to prevent double establishment
of the same connection, incoming createReq messages must be controlled for duplicates, where
duplicates are handled by forwarding them to the corresponding protocol entity.

The set of connections is managed by a new objectProtocolAdministrator responsible for creat-
ing new objects of typeReservationProtocol if additional connections are requested and forwarding
messages to the right connection.

19

3.3.4.3 Design

The pattern dealing with the dynamic creation of entities isDynamicEntitySet (Appendix A). For
the EntityAdministrator (DynamicEntitySetnotation, see Appendix A) a new processProtocolAd-
ministrator is introduced (see Appendix B. 3), where two transitionscreateNewEntity (createReq-
signals areConnectReq andConnect) are inserted and redefined to restrict the number of active con-
nections per time. The communication with the user is assumed to be reliable and therefore the crea-
teReq-signalConnectReq is not controlled for duplicates. For the createReq-signalConnect the
DuplicateHandle pattern (Appendix A) is applied. DuplicateConnect messages do not create a new
protocol instance, they are forwarded to the already existing ReservationProtocol entity. Thereby
incomingConnects are identified by a combination ofcallerNodeAddress andcallerConnectionId
parameters. Each originalConnect signal is logged by storing this pair of parameters (callerNodeAd-
dress, callerConnectionId) in a so-calledPartnerList. The instantiatedDuplicateHandle pattern is
shaded in theProtocolAdministrator process (Appendix B. 3). For other incoming signals
of ProtocolAdministrator correspondingforwardMessage transitions are incorporated.

TheTerminatingEntity automaton (DynamicEntitySetnotation, see Appendix A) is given by proc-
ess typeReservationProtocol. The signal routes toReservationProtocol are redirected to theProto-
colAdministrator, that is connected with the process setProtocolEntity by a create line and signal
routes in order to forward service requests.

The requesting peer is informed about the local connection identifier (CId) by adding a parameter
CId to the reply message. This CId is inserted into the output signals (except ConnectReq and Con-
nect) which are sent to the protocol entity. Therefore the service offered byProtocolAdministrator is
provided several times and each protocol entity will only receive messages which belong to its con-
nection.

Checklist (additional assumptions that must be met in order to ensure the properties of the SDL pat-
terns embedded so far):

• in order to assure that each ReservationProtocol instance is dedicated to one connection and will
receive exactly those messages corresponding to its connection the following has to remain valid
in future development steps:

• the peer is informed about the CId of the protocol entity and always adds this CId to
the output signals (exceptConnectReq andConnect) which are sent to the protocol
entity (A6.1)

ReservationProtocol ResourceManager

LowerLayerInterfacing

UnderlyingService

Fig. 12: object model for development step 4

ReservationProtocol

Callee

accConSetUpaccConTearDowninitConTearDown initConSetUp

Caller

20

It follows that all assumptions (the cumulative checklists of the separate development steps) con-
cerning the communication subsystem are fulfilled. Furthermore, the basic service provided by our
target platform meets the assumptions A4.2 and A5.1. If additionally the service users behave
according to A1, A2 and the retransmission timers are set according to A5.2, the embedded patterns
are applied as intended. Though this does not prove the correctness of the communication protocol in
general, it assures some „design-specific“ properties that increase the confidence in the resulting
specification.

MSC Managing Protocol Entities

ProtocolAdministratorNode1

connectReq

UnderlyingService

ReservationProtocol1a

dataReq

[calleeNodeAddress,connect(id1)]dataInd

[connect(id1)]

dataReq

[callerNodeAddress, accepted(id1, id1‘)]

Fig. 13: MSC diagram for development step 4

id1

connectReq

disconReq[id1]

ProtocolAdministratorNode2

ReservationProtocol1bid‘1

dataInd

[connect(id1)] connectInd(id‘1)

connectRsp(id‘1)

connectRsp(id‘1)

dataInd

[accepted(id1, id1‘)]
dataInd

[accepted(id1,id1‘)]

disconReq[id1]

dataReq

[calleeNodeAddress,disconnect(id‘1)] dataInd

[disconnect(id‘1)]
dataInd

[disconnect(id‘1)] disconnectInd[id‘1]
dataReq

[callerNodeAddress, disconnected(id1]dataInd

[disconnected(id1]
dataInd

[disconnected(id1)]

connectConf[id1]

disconConf[id1]

dataReq
(RMNodeAddress,Reserve(id‘1))

dataInd
(Reserve(id‘1)]

dataReq
[calleeNodeAddress,ResAccepted(id‘1)]

dataInd
(ResAccepted(id‘1)] dataInd

(ResAccepted(id‘1)]

dataReq

[callerNodeAddress, accepted(id1, id1‘)]

dataReq

[calleeNodeAddress,connect(id1)] dataInd

[connect(id1)] dataInd

[connect(id1)]

'frame lost'

21

4 Conclusion and future work

We have presented an approach that has the potential of substantially reducing the effort for
designing customized protocols. The approach is based on the concept of design patterns, which we
have specialized to communication protocols. In addition, we have used SDL-92 and MSCs to for-
mally specify protocol design patterns as well as rules for their instantiation and composition. To
illustrate our approach, we have configured a resource reservation protocol. When applying our
approach, we have observed the following:

• Each of the selected SDL patterns has been applied several times when configuring the reserva-
tion protocol. This provides some evidence that the predesigned patterns have been well chosen.

• A very large portion (almost 100% of the control structure) of the final protocol specification has
resulted from the application of SDL patterns. This gives some evidence for the feasibility of our
approach.

• As compared to an SDL specification of the same protocol that has been developed the usual way,
the specification of the configured protocol is more readable, which is due to the more systemati-
cal design. Among other things, this results in improved maintainability and less design errors,
since the design decisions are well founded and documented.

• It has turned out that the patterns approach can be applied in an incremental way. This, too,
improves maintainability due to a more systematical design. It would be interesting to see to what
degree the application is commutative or reversible.

• Identification, investigation, and description of suitable protocol building blocks is a very time
consuming task. Note that the same experience has been made in other contexts where design pat-
terns are used.

• The SDL patterns applied to the configuring of the resource reservation protocol have been of
rather fine granularity. Coarser patterns may have the advantage of reducing the overall develop-
ment effort, since less patterns need to be applied to configure a protocol. However, this is merely
a question of identifying suitable protocol building blocks and does not affect our approach itself.

From these observations, we infer that our approach has the potential of substantially reducing the
effort for customizing and maintaining communication protocols, which seems to be a prerequisite
for developing protocols that support applications in the best possible way. However, in order to
draw a final conclusion, further experience with this approach will be needed. We are currently
extending the pool of protocol building blocks, and are using our approach for configuring several
other protocols including, for instance, ST2+ [4].

The configuring of protocols classifies as a synthesis approach, meaning that systems are con-
structed from predesigned components such that by following certain rules, required system proper-
ties such as freedom of deadlocks, freedom of unspecified receptions, or conformance to a service
specification can be guaranteed a priori. We see this as a fertile field for future research.

Acknowledgements.Special thanks go to Prof. Dr. R. Gotzhein for valuable comments and discus-
sions on an early version of this report.

22

References
[1] C. Bobek, „Entwurf und Implementierung eines Ressourcen-Verwalters zur Echtzeitkommu-

nikation“ (in german), diploma thesis at the University of Kaiserslautern, 1996

[2] R. Bræk and Ø. Haugen, „Engineering Real Time Systems - An object-oriented methodology
using SDL“, Prentice Hall, 1993

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, „Pattern-Oriented Software
Architecture - A System of Patterns“, John Wiley & Sons, 1996

[4] L. Delgrossi and L. Berger (Ed.), „Internet Stream Protocol Version 2 (ST2), Protocol Specifi-
cation - Version ST2+“, RFC 1819, 1995

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, „Design Patterns - Elements of Reusable
Object-Oriented Software“, Addison-Wesley, 1995

[6] B. Geppert and F. Rößler, „Automatic Configuration of Communication Subsystems -A Sur-
vey “, SFB 501 Report 17/96, University of Kaiserslautern, Germany

[7] R. Gotzhein, B. Geppert, C. Peper, and F. Rößler, „Generic Layout of Communication Subsys-
tems -A Case Study“, SFB 501 Report 14/96, University of Kaiserslautern, Germany

[8] „INSYDE II - Areas of Interest for Future Research - Towards a Continuation of the INSYDE
Consortium“, http://info.vub.ac.be:8080/users/insyde/future_research.html

[9] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, „Object-Oriented Software Engi-
neering - A Use Case Driven Approach“, Addison-Wesley, 1995

[10] V. Jonckers, K. Verschaeve, B. Wydaeghe, L. Cuypers, and J. Heirbaut, „OMT*, Bridging the
Gap between Analysis and Design“, Proceedings of FORTE ‘95, International Conference on
Formal Description Techniques for Distributed Systems and Communications Protocols, 1995

[11] A. Kühlmeyer, „Variantenbildung in SDL-92“, Students Work at the University of Kaiserslau-
tern, 1996

[12] M. Lang, „Spezifikationsvarianten des Alternating-Bit Protokolls in SDL/SDT“, Students Work
at the University of Kaiserslautern, 1996

[13] S. van Lier, „Komponentenbasierte Dekomposition und Spezifikation des Real-Time Trans-
portprotokolls RTP“, Students Work at the University of Kaiserslautern (in work)

[14] A. Olsen, O. Færgemand, B. Møller-Pedersen, R. Reed, and J.R.W. Smith, „Systems Engineer-
ing Using SDL-92“, North-Holland, 1994

[15] T. Plagemann, B. Plattner, M. Vogt, and T. Walter, „Modules as Building Blocks for Protocol
Configuration“, Proceedings of ICNP‘93, International Conference on Network Protocols, San
Francisco, 1993

[16] T. Plagemann, J. Waclawczyk, and B. Plattner, „Management of Configurable Protocols for
Multimedia Applications“, Proceedings of ISMM International Conference on Distributed
Multimedia Systems and Applications, Honolulu, USA, 1994

[17] W. Pree, „Design Patterns for Object-Oriented Software Development“, Addison-Wesley, 1995

[18] R. Reed, „Methodology for real time systems“, Computer Networks and ISDN Systems 28
(1996), 1685-1701

23

[19] E. Rudolph, P. Graubmann, and J. Grabowski, „Tutorial on Message Sequence Charts“, Com-
puter Networks and ISDN Systems 28 (1996), 1629-1641

[20] E. Rudolph, J. Grabowski, and P. Graubmann, „Message Sequence Charts (MSC 96)“, Tutorial
Notes of the 9th International Conference on Formal Description Techniques, Kaiserslautern,
1996

[21] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, „Object-Oriented Modeling
and Design“, Prentice Hall, 1991

[22] Ph. Schaible, „Pattern-basierte Konfigurierung des Reservierungsprotokolls ST2+ und Erstel-
lung eines SDL-Frameworks für Ressourcenreservierungsprotokolle“, Diploma Thesis at the
University of Kaiserslautern (in work)

[23] D.C. Schmidt, „An Object-Oriented Framework for Dynamically Configuring Extensible Dis-
tributed Systems“, IEE Distributed Systems Engineering Journal (Special Issue on Configura-
ble Distributed Systems), Volume 2, No 4, Dec. 1994

[24] D.C. Schmidt, D.F. Box, and T. Suda, „ADAPTIVE: A Dynamically Assembled Protocol
Transformation, Integration, and eValuation Environment“, Concurrency Practice and Experi-
ence, Vol. 5, No. 4, 1993

[25] D.C. Schmidt, B. Stiller, T. Suda, and M. Zitterbart, „Configuring Function-based Communica-
tion Protocols for Multimedia Applications“, Proceedings of the 8th International Working
Conference on Upper Layer Protocols, Architectures, and Applications, Barcelona, Spain, 1994

[26] M. Schwaiger, „Komponentenbasierte Dekomposition und Spezifikation des Multicast Pro-
tokolls IPv6“, Students Work at the University of Kaiserslautern (in work)

[27] SDT 3.0 Reference Manual & User‘s Guide, TeleLogic, 1995

[28] A. Sinton and M. Crowther, „SDL-92 support for re-use in protocol system specifications -
some early experience“, SDL‘95 with MSC in CASE, Proceedings of the 7th SDL Forum,
Oslo, Norway, 1995

[29] „The SOMT Method“, Telelogic AB, http://www.telelogic.se/products/somt.htm

[30] B. Stiller, „Flexible Protokollkonfiguration zur Unterstützung eines diensteintegrierenden
Kommunikationssubsystems“, PhD thesis (in german), VDI-Verlag, Reihe 10, Nr. 306, 1994

[31] K. Verschaeve, B. Wydaeghe, V. Jonckers, and L. Cuypers, „Translating OMT* to SDL, Cou-
pling Object-Oriented Analysis and Design with Formal Description Techniques“, Proceedings
of Methods Engineering ‘96 -- IFIP WG 8.1/8.2 Working Conference on Principles of Method
Construction and Tool Support, 1996

[32] D. Witaszek, E. Holz, M. Wasowski, S. Lau, and J. Fischer, „A Development Method for SDL-
92 Specifications Based on OMT“, SDL‘95 with MSC in CASE, Proceedings of the 7th SDL
Forum, Oslo, Norway, 1995

[33] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, „RSVP: A new Resource ReSer-
Vation Protocol“, IEEE Network, Sep. 1993

[34] M. Zitterbart, „Funktionsbezogene Parallelität in transportorientierten Kommunikationspro-
tokollen“, PhD thesis (in german), VDI-Verlag, Reihe 10, Nr. 183, 1991

[35] Z.100 (1993) CCITT Specification and Description Language (SDL), ITU-T, 1994

[36] Z.120 (1993) Message Sequence Chart (MSC), ITU-T, 1994

24

Appendix A

A set of protocol building blocks for the case study.

BLOCKING REQUESTREPLY

Intent:
The BlockingRequestReply pattern introduces a two-way handshake between two given automata
Automaton_A andAutomaton_B. Being triggered,Automaton_Awill send a request and is blocked
until receiving a reply. After reception of a request,Automaton_B sends a reply. To assure finite
response time and proper connection, certain assumptions about the embedding environment
(including the superclassesAutomaton_A andAutomaton_B) are in place.

Motivation:
After initiating a connection setup, a service user waits for a reply from the service provider
(„accepted“, „refused by callee“, „refused due to lack of resources“,...). In case of refusal, the user
may try again with lower quality of service requirements.

Structur e:

Message scenario:

ReplyAutomaton_BRequestAutomaton_A

Automaton_BAutomaton_A

two-way handshake

MSC two-way_handshake

RequestAutomaton_A ReplyAutomaton_B

startReply

request

waitForReply

endReply

reply

startRequest

endRequest

service service

requester replier

25

SDL-fragment (Version 1):

RequestAutomaton_A

ReplyAutomaton_B

Syntactical Embedding

• Automaton_A:

Specialization: Add transitions sendRequest and receiveReply to the given SDL service
Automaton_A.
Renaming: The signalsrequest, reply1, andreply2 and the statewaitForReply may be renamed but
are required to be locally unique. The statesstartRequest, endRequest1, andendRequest2 may be
identified with each other or any state in the given SDL serviceAutomaton_A.

• Automaton_B:

Specialization: Add transitionsendReply to the given SDL serviceAutomaton_B, which must be dif-
ferent toAutomaton_A.
Renaming: The signalsrequest, reply1, andreply2 may be renamed but are required to be locally
unique and of the same name as the corresponding signals inRequestAutomaton_A. The statesstar-
tReply, endReply1 and endReply2 may be identified with each other or any state in the given SDL
service.

Service Type RequestAutomaton_A inherits Automaton_A 1(1)

'startRequest' waitForReply

'reply1 (C1,...Ck)' 'reply2 (D1 ,... Dl)'

'request (B1,...Bj)'

waitForReply 'endRequest1' 'endRequest2'

sendRequest receiveReply

Service Type ReplyAutomaton_B inherits Automaton_B 1(1)

'startReply'

'request (A1 ,... Aj)'

'decision'

'reply1 (B1 ,... Bk)' 'reply2 (C1 ,... Cl)'

'endReply1' 'endReply2'

sendReply

26

SDL-fragment (Version 2):

RequestAutomaton_A

ReplyAutomaton_B

same as in Version 1

Syntactical Embedding

• Automaton_A:

Specialization: redefine a proper transition by mere supplementation of the procedure callstar-
tRequest.
Renaming: The signalsrequest, reply1, andreply2 and the statewaitForReply may be renamed but
are required to be locally unique.

• Automaton_B:

same as in Version 1

Semantic properties:

Property A.1: If the assumptions stated below hold,RequestAutomaton_A will eventually receive
a reply fromReplyAutomaton_Bafter sending a request. The assumptions are:

• The request and reply signals are not implicitly consumed by the respective super-
class.

• Communication betweenRequestAutomaton_A and ReplyAutomaton_B for trans-
mission of therequest andreply signals is reliable.

• The statestartReply of ReplyAutomaton_B will always eventually be reached.

Redefinition:
Normally, the embedded SDL-fragment will be supplemented by additional statements e.g. to pre-
pare signal parameters. The following property determines the allowed redefinitions of the Blockin-
gRequestReply pattern.

Procedure startRequest

/*startRequst*/

'request(B1,...Bj)'

waitForReply

waitForReply

'reply1(C1,...Ck)'

answer

'reply2(D1,...Dl)'

answer

returns answer;
startRequest

'result:=(call startRequest (A1,...Ai))'

redefined

Service Type RequestAutomaton_A inherits Automaton_A

fpar in A1,...,Ai;

27

Property A.2: Property A.1 still holds, if the BlockingRequestReply pattern is redefined by the
introduction of additional statements, which do not disrupt or bypass the thread of control from pre-
defined input to predefined output statements.

There is one mandatory redefinition, namely the replacement of the comment'decision' in
ReplyAutomaton_B with a real decision according to the protocol designer’s needs.

Cooperative usage:
As a major feature, BlockingRequestReply may be extended to an arbitrary complex interaction
structure by self-embedding. This follows from our redefinition rule, which e.g. allows the SDL-
fragment embedded intoAutomaton_Bto be supplemented by a procedure call initiating a new

request (because of property A.1, this redefinition does not disrupt or bypass the predefined thread of
control). See Figure 14 for this and another simple example. It is worth mentioning that the finite
response time property generalizes to chains of BlockingRequestReply patterns, if the assumptions
are valid for every link of the chain. Chains of BlockingRequestReply patterns are built by succes-
sive embedding of astartRequest procedure call of a new pattern instance into asendReply transition
of a preexisting pattern instance.

Corollary A.3: If the assumptions stated in Property A.1 hold for every link in a chain of Blockin-
gRequestReply instances, the first RequestAutomaton will eventually receive a reply from his corre-
sponding ReplyAutomaton after sending a request.

In order to relax the assumption of reliable communication channels (Property A.1), BlockingRe-
questReply may be used in conjunction with the patterns TimerControlledRepeat and DuplicateCon-
trol.

MSC chained BlockingRequestReply

RequestAutomaton_A Reply/RequestAutomation_B

startReply

request

waitForReply

endReply

reply

startRequest

endRequest

service service

requester replier/requester

ReplyAutomation_C

startReply

endReply

service

replier

startRequest

request

reply

waitForReply

endRequest

MSC knotted BlockingRequestReply

ReplyAutomaton_A Request/RequestAutomation_B

request

endReply endRequest 1

service service

replier1 requester/requester

ReplyAutomation_C

startReply

endReply

service

replier2

request

reply

waitForReply

endRequest 2

startRequest 1

startRequest 2

waitForReply

startReply

reply

Fig. 14: multiple employment of BlockingRequestReply

28

CODEX

Intent:
Codex provides mechanisms to allow two (or more) entitieslocalCommunicatingEntity_A and
localCommunicatingEntity_B, which interact through SDL channels, to cooperate by the means of a
given communication systembasicService. In general the introduction of a basic service involves
many specialities. Among others these are segmentation, reassembly, upgrade of basic service qual-
ity (e.g. in case of loss, disruption or duplication of messages), lower layer connection setup and
routing decisions. The Codex pattern is only concerned about a minimal subset of these functionali-
ties, namely interfacing withbasicService by the means of service primitives.

Motivation:
Conventional LANs like Ethernet or Token-Ring may play the role of a basic service. If a protocol
specification happens to be put on top of such a LAN Codex may be fruitfully employed.

Structur e (only two communicating entities involved):

Message scenario:

Codex

localCommunicatingEntity_A

adaptedEntity_A

remoteCommunicatingEntity_A

Codex

localCommunicatingEntity_B

adaptedEntity_B

remoteCommunicatingEntity_B

localCommunication

remoteCommunication

basicService

MSC real communication

adaptedEntity_A basicService
service block

protocolInstance_A

adaptedEntity_B
service

medium

Codex_B
service

interface_B

Codex_A
service

interface_A

dataReq

dataInd

connect

connectInd

connectReq

connect

protocolInstance_B

29

SDL-Fragment:

AdaptedEntity (not mandatory)

Codex

Service Type adaptedEntity inherits localCommunicatingEntity 1(1)

redefined redefined redefined
'upperLayerService-

'store ICI for lower layer'

Primitive1(ICI, SDU)'
'upperLayerService-
Primitive2(ICI, SDU)'

'upperLayerService-
Primitive3(ICI, SDU)'

'store ICI for lower layer' 'store ICI for lower layer'

redefined
'PDU from peer
protocol instance'

'store ICI for lower layer'

Service Type Codex 1(2)

active

-

'PDU_1' 'PDU_2' 'PDU_3' 'PDU_4'

'retrieve ICI relevant info;
prepare SDU, ICI for

lower layer'

'lowerLayerService-
Primitive1(ICI, SDU)'

Service Type Codex 2(2)

active

'PDU_5'

-

'PDU_5'

'restore PDU'

'PDU_6'

-

'restore PDU'

'PDU_7'

-

'restore PDU'

'PDU_8'

-

'restore PDU'

'PDU_9'

-

'restore PDU'

'PDU_8' 'PDU_9'

'lowerLayerService-
Primitive2(ICI, SDU)'

'SDU.PDU_type'

'PDU_7'
'PDU_6'

30

Syntactical embedding

Specialization: transitions oflocalCommunicatingEntity which receive service primitivesserviceP-
rimitiveX from the upper layer or PDUs from the peer protocol entity are potential candidates for
redefinition in order to derive and store necessary lower layer interface control information (ICI) e.g.
peer protocol instance addresses. The protocol engineer has to decide which ones are relevant or if
the necessary information is provided elsewhere insidelocalCommunicatingEntity. In any case this
information will be used when the lower layer service primitives are prepared.
For this purpose and for decoding of incoming lower layer service primitives a service of typecodex
is added to the surrounding process diagram oflocalCommunicatingEntity.
Renaming:PDU_1 to PDU_4 correspond with those messageslocalCommunicatingEntity sends to
its peer. AccordinglyPDU_5 to PDU_9 identify with those messageslocalCommunicatingEntity
receives from its peer. However, the concrete quantities of course have to be adapted.
LowerLayerServicePrimitive1andlowerLayerServicePrimitive2have to be identified with the serv-
ice primitives for data transfer over the given basic service.
Structural change: the channel betweenlocalCommunicatingEntity_A and
localCommunicatingEntity_B must be deleted and redirected fromadaptedEntity_A respectively
adaptedEntity_B to their localcodex. Additionally thecodex services need a channel tobasicService
to close the gap again.

Semantic properties:

Property B.1: If the assumptions stated below hold, the codex pattern suffices to replace a SDL
channel betweenlocalCommunicatingEntity_A andlocalCommunicatingEntity_B. The assumptions
are:

• The basic service in use must be reliable and connectionless.

• The developer adds mechanisms to handle the preparation of lower layer interface
control information.

• The developer takes care that the interface control information retrieved by the codex
service always matches with the PDU currently processed.

Redefinition:

not allowed

Cooperative usage:

It was already mentioned that the Codex pattern only solves a small subset of the problems one faces
when introducing a special basic service. TimerControlledRepeat is a pattern to additionally cope
with possible message losses by the basic service.

31

TIMER CONTROLLED REPEAT

Intent:

TimerControlledRepeat extends a confirmed message exchange between two automataSendAutom-
aton andAcknowledgeAutomaton for the case of possible message losses during data transfer. If an
expected acknowledgement does not arrive before the expiry of a timer, the message is repeated
(Positive Acknowledgement with Retransmission). This pattern does not deal with the problem of
message disruption or duplication.

Motivation:

For a BlockingRequestReply pattern instance the requester will deadlock, if the reliable transmission
of the request or reply signals is not guaranteed. Therefore replies are observed by TimerControlle-
dRepeat in case of an unreliable basic service.

Structur e:

Message scenario:

AcknowledgeAutomatonSendAutomaton
confirmedSend

PARAutomaton
PAR

MSC positive acknowledgement with retransmission

PARAutomaton AcknowledgeAutomation

sendMessage

waitForAcknowledgement

acknowledgement

service service

sender receiver

sendMessage

waitForAcknowledgement

sendMessage

32

SDL-Fragment:
PARAutomaton

Syntactical embedding
Specialization: redefine a given sending transition ofSendAutomaton by supplementation of timer
and counter initialization. The corresponding receiving transition(s) ofSendAutomaton are supple-
mented by a timer reset. Another transition for timeout handling with retransmission is added.
Renaming: the timertimerName and the variablenoOfRepeats may be renamed but are required to
be locally unique. The stateerror may be identified with any state in the given service.

Semantic properties:
Property C.1: If the assumptions stated below hold,PARAutomaton will eventually receive an
acknowledgement fromAcknowledgeAutomaton after sending asendMessage, or PARAutomaton
will enter the error state aftermaxNoOfRepeats unsuccessful retransmissions. The assumptions are:

• The communication channel betweenPARAutomaton and AcknowledgeAutomaton
for transmission ofsendMessageand corresponding acknowledgement signals nei-
ther disrupts norcreates messages.

• The communication channel may lose messages buttimerInterval is greater than the
maximal round trip time ofsendMessage and corresponding acknowledgement.

• AcknowledgeAutomatonmerely discards duplicatesendMessages or reacts on dupli-
catesthe same way (from the perspective ofPARAutomaton) as on the originalsend-
Message.

Redefinition:
The embedded SDL-fragment may be redefined e.g. for the purpose of message loss reporting or
logging. The following property determines what kind of redefinition will be allowed.

Property C.2: Property • still holds, if the TimerControlledRepeat pattern is redefined by the
introduction of additional statements, which do not disrupt or bypass the thread of control from the
predefined timeout input to the predefined repetitive output statement as well as theerror state. Fur-
thermore the timertimerName and the counternoOfRepeats must not be manipulated.

Service Type PARAutomaton inherits SendAutomaton

'timerName'

RESET('timerName')

'sendMessage'

noOfRepeats:=noOfRepeats+1

SET(NOW+'timerInterval', 'timerName')

'error' -

falsetrue

1(1)

SET(NOW+'timerInterval', 'timerName')

noOfRepeats:=0

'waitForAcknowledgement'

redefined

'sendMessage'

redefined

noOfRepeats =
'maxNoOfRepeats'

'waitForAcknowledgement'

33

Cooperative usage:
TimerControlledRepeat can cause duplicates of messages and may therefore be used in conjunction
with DuplicateIgnore/Handle in order to ensure proper duplicate processing ofAcknowledgeAutoma-
ton.

DUPLICA TEIGNORE

Intent:

DuplicateIgnore upgrades a message exchange between two automataSendAutomaton and
ReceiveAutomaton for the case of possible message duplication. Duplicate messages are detected by
a message identifier, that is unique during the lifetime ofDIReceiveAutomaton. Furthermore, dupli-
cate messages are simply discarded, i.e. the reaction to the original message is not repeated.

Motivation:

Retransmissions due to certain error control mechanisms may lead to duplication of messages. If no
reaction to duplicate messages is expected, DuplicateIgnore can be applied to filter them out.

Structur e:

Message scenario:

ReceiveAutomatonSendAutomaton

DIReceiveAutomatonignoreDuplicates

duplicateSensitive

adaptedSendAutomaton

MSC immediate abort

adaptedSendAutomaton DIReceiveAutomaton

Disconnect(i)

service service

protocol entity A protocol entity B

Disconnect(i)

Disconnect(j)

‘close connection i‘

‘close connection j‘

‘ignore message‘

34

SDL-Fragment:

DIReceiveAutomaton

Syntactical embedding

Specialization: redefine the start transition ofReceiveAutomaton by resetting all logged signals of
typemsg. Furthermore, redefine all transitions with input signalmsg by supplementing a test if the
message has already been received (msgAlreadyLogged?) and a transition branchignoreDuplicate,
that merely discards the signal. The corresponding branch that normally processes the message is
supplemented by a logging mechanism for the signalmsg.

Semantic properties:
Property D.1: If the developer adds mechanisms for identification and logging of signals of type
msg, duplicates of typemsg are filtered out by DIReceiveAutomaton.

Redefinition:

not allowed

Cooperative usage:

DuplicateIgnore may be used in conjunction with TimerControlledRepeat in order to upgrade unreli-
able communication channels.

Service Type DIReceiveAutomaton inherits ReceiveAutomaton

'msgAlreadyLogged?'

-

false true

1(1)

redefined
msg

receiveMessage

processMessage

ignoreDuplicate
'log msg'

'unlog signals
of type msg'

35

DUPLICA TEHANDLE

Intent:

DuplicateHandle upgrades a message exchange between two automataSendAutomaton and
ReceiveAutomaton for the case of possible message duplication. Duplicate messages are detected by
a message identifier, that is unique during the lifetime ofDHReceiveAutomaton. However, duplicate
messages rely on a certain reaction ofDHReceiveAutomaton, i.e. duplicates must not be discarded.

Motivation:

Retransmissions due to certain error control mechanisms may lead to duplication of messages. If a
certain reaction to duplicate messages is expected (e.g., retransmission of acknowledgements),
DuplicateHandle can be applied.

Structur e:

Message scenario:

ReceiveAutomatonSendAutomaton

DHReceiveAutomatonhandleDuplicates

duplicateSensitive

adaptedSendAutomaton

MSC data transfer

adaptedSendAutomaton DHReceiveAutomaton

data(i)

service service

protocol entity A protocol entity B

data(i)

data(j)

‘deliver data‘

ack(i)
‘deliver data‘

‘ignore data‘

ack(i)

ack(j)

36

SDL-Fragment:

DHReceiveAutomaton

Syntactical embedding

Specialization: redefine the start transition ofReceiveAutomaton by resetting all logged signals of
typemsg. Furthermore, redefine all transitions with input signalmsg by supplementing a test if the
message has already been received (msgAlreadyLogged?) and a transition branchignoreDuplicate,
that properly handles the duplicate. The corresponding branch that normally processes the message
is supplemented by a logging mechanism for the signalmsg and statements to prepare proper han-
dling of duplicates. Additionally the transitionhandleUnspecifiedReceipt is added to the given SDL
serviceReceiveAutomaton.

Semantic properties:
Property E.1: If the developer adds mechanisms for identification, logging and handling of signals
of typemsg, duplicates of typemsg are always handled by DHReceiveAutomaton.

Redefinition:

not allowed

Cooperative usage:

DuplicateHandle may be used in conjunction with TimerControlledRepeat in order to upgrade unre-
liable communication channels.

Service Type DHReceiveAutomaton inherits ReceiveAutomaton

'msgAlreadyLogged?'

-

false true

1(1)

redefined
msg

handleUnspecifiedReceipt

processMessage

handleDuplicate

'log msg'

'unlog signals
of type msg'

'handle duplicate'

'prepare handling
of duplicates'

*

msg

'msgAlreadyLogged?'

-

'handle duplicate'

37

DYNAMIC ENTITY SET

Intent:

The automatonTerminatingServer is capable to provide its service exactly one time and terminates
afterwards. In order to offer the service several times (e.g., to more than oneClient) the DynamicEn-
titySet pattern is introduced. For each client a server entityTerminatingEntity is dynamically created
by EntityAdministrator. ThusEntityAdministrator acts as a proxy from the perspective of the clients
which forwards service requests to the corresponding server entity.

Motivation:

If a communication subsystem administers several connections at the same time, each connection
can be managed by a separate protocol entity, which is created and released dynamically. Each
incoming message must be forwarded to the protocol entity to which it belongs.

Structur e:

Message scenario:

EntityAdministrator create entity and forward requests

EntityTable

AdaptedClient

TerminatingServerClient

multiple service requests

EId

TerminatingEntity

single service

single service reply

MSC create terminating entity and forward requests

EntityAdministrator

TerminatingEntity
EId

process

process

administrator

entity

message1[EId]

createReq

message1[EId]

message2[EId]

message2[EId]

createReq

38

SDL-Fragment:

EntityAdministrator

Syntactical embedding

Specialization: transitions ofTerminatingServer which send a signal back to theclient are potential
candidates for redefinition in order to inform theclient about the local EId. The protocol engineer
has to decide which ones are relevant or if the client is informed otherwise. In any case theEId will
be used by theAdaptedClient when sending signals to theTerminatingEntity. Therefore all transi-
tions which send a signal (exceptcreateReq) to TerminatingEntity are redefined by adding theEId as
signal parameter.
A process of typeEntityAdministrator is added to the surrounding block diagram ofTerminating-
Server.
Renaming:createReq, message1, andmessage2 correspond with those messages theclient sends to
its TerminatingServer, wherecreateReq is the first message received. However, the concrete quanti-
ties of course have to be adapted.
Structural change: signal routes toTerminatingServermust be deleted and redirected toEntityAd-
ministrator. The reference symbol forTerminatingServermust be replaced by a process set refer-
ence Entity with corresponding process type TerminatingEntity in the embedding block.
EntityAdministrator must be connected with the process setEntity by a create line and additional sig-
nal routes for forwarding the messages.

Semantic properties:

Property F.1: If the assumptions stated below hold, the same service as provided byTerminating-
Server will be offered several times by the server entities of typeTerminatingEntity, and each server
entity will only receive messages belonging to it. The assumptions are:

Process Type EntityAdministrator 1(1)

administerEntity

‚createReq‘

EId:= 'uniqueEntityId'

Entity(EId)

'insert Id and offspring in EntityTable'

'message1(EId)'

EntPId := 'getPIdOutOfEntityTable(EId)'

falsetrue

'message1(EId)' TO EntPId

'EId in EntityTable?'

createReq TO offspring

administerEntity

administerEntity

administerEntity administerEntity

'message2(EId)'

EntPId := 'getPIdOutOfEntityTable(EId)'

falsetrue

'message2(EId)' TO EntPId

'EId in EntityTable?'

administerEntity

administerEntity administerEntity

createNewEntity forwardMessage

39

• The developer takes care that the AdaptedClients are informed about the EId of their
corresponding server entity and always add this EId to the output signals which are
sent to the server entity (except createReq)

Redefinition:

EntityAdministrator may be redefined in order to limit the number of server entities active at the
same time or inform the sender of a message if no corresponding server entity could be found in the
EntityTable. The following property determines what kind of redefinition will be allowed.

Property F.2: Property F.1 still holds, if the DynamicEntitySet pattern is redefined by the intro-
duction of additional statements, which do not manipulate the EId and PId entries of theEntityTa-
ble.

40

Appendix B

SDL specification1

B. 1 Development step 1

1. To get a better overview of the SDL diagrams we have omitted the names of signal routes and channels.

P
ro

ce
ss

 T
yp

e
C

al
le

r_
v1

2(
2)

D
C

L
flo

w
sp

ec
 Q

O
S

P
ar

am
et

er
;

D
C

L
pr

io
rit

y
in

te
ge

r;
D

C
L

ow
nN

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

D
C

L
R

M
N

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

in
itC

on
S

et
U

p:
in

itC
on

S
et

U
p_

v1

in
itC

on
T

ea
rD

ow
n:

in
itC

on
T

ea
rD

ow
n_

v1

(S
P_

fro
m

Cal
le

r_
se

tU
p)

(S
P_

to
Cal

le
r_

se
tU

p)

(S
P_

fro
m

C
al

le
r_

te
ar

D
ow

n)

(S
P_

to
Cal

le
r_

te
ar

Dow
n)

(P
D

U
_f

ro
m

C
al

le
e_

se
tU

p)

(P
D

U
_t

oC
al

le
r_

se
tU

p)

(P
DU_f

ro
m

Cal
le

e_
te

ar
Dow

n)

(P
DU_t

oC
al

le
r_

te
ar

Dow
n)

1(
1)

D
C

L
re

as
on

 r
ea

so
nT

yp
e;

N
ew

ty
pe

 c
al

le
eA

ns
w

er
T

yp
e

S
tr

uc
t

 o
k

B
oo

le
an

;
 p

rio
rit

y
In

te
ge

r;
 r

ea
so

n
re

as
on

T
yp

e;
E

nd
ne

w
ty

pe
;

D
C

L
ca

lle
eA

ns
w

er
 c

al
le

eA
ns

w
er

T
yp

e;

vi
rt

ua
l a

sk
C

al
le

e_
v1

ac
ce

pt
R

eq
ue

st

vi
rt

ua
l

C
on

ne
ct

R
eq

(f
ls

p)

flo
w

sp
ec

:=
fls

p

ca
lle

eA
ns

w
er

:=
(c

al
l a

sk
C

al
le

e_
v1

)

pr
io

rit
y:

=

'in
fo

rm
 tr

af
fic

 c
on

tr
ol

an
d

sc
he

du
le

r
(f

lo
w

sp
ec

.in
te

ra
rr

tim
e,

 p
rio

rit
y)

'
re

as
on

:=
ca

lle
eA

ns
w

er
.r

ea
so

n

C
on

ne
ct

C
on

f
C

on
R

ef
In

d(
re

as
on

)

tr
ue

fa
ls

e
ca

lle
eA

ns
w

er
.o

k

ca
lle

eA
ns

w
er

.p
rio

rit
y

V
irt

ua
l S

er
vi

ce
 T

yp
e

in
itC

on
S

et
U

p_
v1

41

;r
et

ur
ns

 a
ns

w
er

 A
ns

w
er

ty
pe

;

P
ro

ce
du

re
 a

sk
C

al
le

e_
v1

1(
1)

vi
rt

ua
l

w
ai

tF
or

R
ep

ly

C
on

ne
ct

(f
lo

w
sp

ec
)

vi
rt

ua
l

C
on

ne
ct

ed
(p

rio
rit

y)
vi

rt
ua

l
R

ef
us

ed
(r

ea
so

n)

w
ai

tF
or

R
ep

ly
an

sw
er

:=
(.

tr
ue

,p
rio

rit
y,

0.
)

an
sw

er
:=

(.
fa

ls
e,

0,
re

as
on

.)

an
sw

er
an

sw
er

P
ro

ce
ss

 T
yp

e
C

al
le

e_
v1

2(
2)

D
C

L
flo

w
sp

ec
 Q

O
S

P
ar

am
et

er
;

D
C

L
pr

io
rit

y
in

te
ge

r;
D

C
L

ow
nN

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

D
C

L
R

M
N

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

ac
cC

on
S

et
U

p:
ac

cC
on

S
et

U
p_

v1

ac
cC

on
T

ea
rD

ow
n:

ac
cC

on
T

ea
rD

ow
n_

v1

(S
P

_f
ro

m
C

al
le

e_
se

tU
p)

(S
P

_t
oC

al
le

e_
se

tU
p)

(P
D

U
_t

oC
al

le
r_

se
tU

p)

(P
D

U
_t

oC
al

le
e_

se
tU

p)

(P
DU_t

oR
M

_s
et

Up)

(P
DU_f

ro
m

RM
_s

et
Up)

(P
D

U
_t

oC
al

le
r_

te
ar

D
ow

n)

(P
D

U
_t

oC
al

le
e_

te
ar

D
ow

n)

(S
P_f

ro
m

Cal
le

e_
te

ar
Dow

n)

(P
D

U
_t

oR
M

_t
ea

rD
ow

n)

(P
D

U
_f

ro
m

R
M

_t
ea

rD
ow

n)

V
irt

ua
l S

er
vi

ce
 T

yp
e

ac
cC

on
S

et
U

p_
v1

1(
1)

N
ew

ty
pe

 a
ns

w
er

T
yp

e1
 L

ite
ra

ls
 o

k,
 n

ok
, f

ai
le

d;
E

nd
ne

w
ty

pe
 A

ns
w

er
;

D
C

L
R

ec
ei

ve
rA

ns
w

er
 a

ns
w

er
T

yp
e1

;

N
ew

ty
pe

 a
ns

w
er

T
yp

e2
 S

tr
uc

t

ok
 a

ns
w

er
T

yp
e1

;

pr
io

rit
y

In
te

ge
r;

E
nd

ne
w

ty
pe

;

D
C

L
R

es
M

an
ag

er
A

ns
w

er
 a

ns
w

er
T

yp
e2

;

vi
rt

ua
l

as
kR

ec
ei

ve
r_

v1

vi
rt

ua
l

C
on

ne
ct

(f
ls

p)

flo
w

sp
ec

:=
fls

p

vi
rt

ua
l

as
kR

es
M

an
ag

er
_v

1

R
ec

ei
ve

rA
ns

w
er

:=
 c

al
l(a

sk
R

ec
ei

ve
r_

v1
)

R
es

M
an

ag
er

A
ns

w
er

:=
ca

ll(
as

kR
es

M
an

ag
er

_v
1)

re
as

on
 :=

're
ce

iv
er

R
ef

us
ed

'

R
ef

us
ed

(r
ea

so
n)

pr
io

rit
y:

=
R

es
M

an
ag

er
A

ns
w

er
.p

rio
rit

y
re

as
on

 :=

C
on

ne
ct

ed
(p

rio
rit

y)
D

is
co

nI
nd

(r
ea

so
n)

R
ef

us
ed

(r
ea

so
n)

tr
ue

fa
ls

e

tr
ue

fa
ls

e

ac
ce

pt
in

gR
eq

ue
st

s

R
ec

ei
ve

rA
ns

w
er

=
 o

k

=
 o

k
R

es
M

an
ag

er
A

ns
w

er
.O

K

 'n
oN

et
w

or
kR

es
ou

rc
es

'

42

; re
tu

rn
s

an
sw

er
 R

ec
ei

ve
rA

ns
w

er
;

vi
rt

ua
l P

ro
ce

du
re

 a
sk

R
ec

ei
ve

r_
v1

1(
1)

vi
rt

ua
l

C
on

ne
ct

In
d(

flo
w

sp
ec

)
vi

rt
ua

l
C

on
ne

ct
R

es
p

vi
rt

ua
l

C
on

ne
ct

R
ef

us
ed

R
eq

an
sw

er
:=

ok
an

sw
er

=
no

k

an
sw

er
an

sw
er

; re
tu

rn
s

an
sw

er
 a

ns
w

er
T

yp
e2

;

vi
rt

ua
l P

ro
ce

du
re

 a
sk

R
es

M
an

ag
er

_v
1

1(
1)

vi
rt

ua
l

R
es

er
ve

(o
w

nN
od

eA
dd

re
ss

,fl
ow

sp
ec

)
vi

rt
ua

l
R

es
A

cc
ep

te
d(

pr
io

rit
y)

vi
rt

ua
l

R
es

R
ef

us
ed

an
sw

er
.O

K
:=

ok
,

an
sw

er
.p

rio
rit

y:
=

pr
io

rit
y

an
sw

er
.O

K
:=

no
k

an
sw

er
an

sw
er

P
ro

ce
ss

 T
yp

e
R

es
ou

rc
eM

an
ag

er
_v

1
2(

2)

re
se

rv
e:

re
se

rv
e_

v1

gi
ve

B
ac

k:
gi

ve
B

ac
k_

v1

(P
D

U
_f

ro
m

R
M

_s
et

U
p)

(P
D

U
_t

oR
M

_s
et

U
p)

(P
D

U
_f

ro
m

R
M

_t
ea

rD
ow

n)

(P
D

U
_t

oR
M

_t
ea

rD
ow

n)

V
irt

ua
l S

er
vi

ce
 T

yp
e

re
se

rv
e_

v1
1(

1)

ad
m

C
tr

l
ac

ce
pt

in
gR

eq
ue

st
s

vi
rt

ua
l

R
es

er
ve

(n
od

eA
dr

,fl
ow

sp
ec

)

pr
io

rit
y:

=
te

st
, r

es
er

ve
, s

av
e

R
es

A
cc

ep
te

d(
pr

io
rit

y)
R

es
R

ef
us

ed

-
-

tr
ue

fa
ls

e

(c
al

l a
dm

C
tr

l(f
lo

w
sp

ec
))

pr
io

rit
y

>
=

 0

w
ai

tF
or

R
ep

ly

w
ai

tF
or

R
ep

ly

w
ai

tF
or

R
ep

ly

w
ai

tF
or

R
ep

ly

43

B. 2 Development step 2 and step 3

P
ro

ce
ss

 T
yp

e
C

al
le

r_
v3

2(
2)

D
C

L
flo

w
sp

ec
 Q

O
S

P
ar

am
et

er
;

D
C

L
pr

io
rit

y
in

te
ge

r;
D

C
L

ow
nN

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

D
C

L
R

M
N

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

D
C

L
ca

lle
eN

od
eA

dd
re

ss
 N

od
eA

dd
re

ss
;

in
itC

on
S

et
U

p:
in

itC
on

S
et

U
p_

v3

lo
w

er
La

ye
rI

nt
er

fa
ci

ng
:

Lo
w

La
yI

nt
er

f_
ca

lle
r_

v3

in
itC

on
T

ea
rD

ow
n:

in
itC

on
T

ea
rD

ow
n_

v3

da
ta

R
eq

da
ta

In
d

(SP_fromCaller_setUp)

(SP_toCaller_setUp) (SP_fromCaller_tearDown)

(SP_toCaller_tearDown)

(PDU_toCallee_setUp)

(PDU_toCaller_setUp)

(PDU_toCallee_tearDown)

(PDU_toCaller_tearDown)

U
S

E
 S

te
p3

C
la

ss
es

;

S
ys

te
m

 T
R

R
es

P
ro

t_
S

te
p3

1(
1)

N
od

e1
:

C
al

le
rN

od
e_

v3

U
nd

er
ly

in
gS

er
vi

ce

N
od

e3
:

R
M

N
od

e_
v2

N
od

e2
:

C
al

le
eN

od
e_

v3

N
od

e5
:

C
al

le
eN

od
e_

v2
N

od
e4

:
C

al
le

eN
od

e_
v2

D
at

aR
eq

D
at

aI
nd

D
at

aI
nd

D
at

aR
eq

D
at

aR
eq

D
at

aI
nd

D
at

aR
eq

D
at

aI
nd

D
at

aR
eq

D
at

aI
nd

(S
P

_f
ro

m
C

al
le

e)

(S
P

_t
oC

al
le

e)
(S

P
_t

oC
al

le
r)

(S
P

_t
oC

al
le

e)
(S

P
_t

oC
al

le
e)

(S
P

_f
ro

m
C

al
le

r)

(S
P

_f
ro

m
C

al
le

e)
(S

P
_f

ro
m

C
al

le
e)

S
A

P
1

B
S

A
P

B
S

A
P

B
S

A
P

B
S

A
P

B
S

A
P

S
A

P
2

S
A

P
2

S
A

P
2

44

in
he

rit
s

in
itC

on
S

et
U

p_
v2

R
ed

ef
in

ed
 S

er
vi

ce
 T

yp
e

in
itC

on
S

et
U

p_
v3

1(
1)

re
de

fin
ed

 a
sk

C
al

le
e_

v3

ac
ce

pt
R

eq
ue

st

re
de

fin
ed

C
on

ne
ct

R
eq

_v
2(

fls
p,

cl
eN

A
dr

)

flo
w

sp
ec

:=
fls

p

ca
lle

eN
od

eA
dd

re
ss

:=
cl

eN
A

dr

ca
lle

eA
ns

w
er

:=
(c

al
l a

sk
C

al
le

e_
v3

)

pr
io

rit
y:

=
ca

lle
eA

ns
w

er
.p

rio
rit

y

'in
fo

rm
 tr

af
fic

 c
on

tr
ol

an
d

sc
he

du
le

r
(f

lo
w

sp
ec

.in
te

ra
rr

tim
e,

 p
rio

rit
y)

'
re

as
on

:=
ca

lle
eA

ns
w

er
.r

ea
so

n

C
on

ne
ct

C
on

f
C

on
R

ef
In

d(
re

as
on

)

tr
ue

fa
ls

e
ca

lle
eA

ns
w

er
.o

k

in
he

rit
s

as
kC

al
le

e_
v2

;r
et

ur
ns

 a
ns

w
er

 A
ns

w
er

ty
pe

;

P
ro

ce
du

re
 a

sk
C

al
le

e_
v3

1(
1)

D
C

L
no

O
fR

ep
ea

ts
 In

te
ge

r;
D

C
L

tim
er

In
te

rv
al

l D
ur

at
io

n
=

 2
0;

D
C

L
m

ax
N

oO
fR

eq
ue

st
s

In
te

ge
r

=
 8

;

re
de

fin
ed

C
on

ne
ct

_v
2

(f
lo

w
sp

ec
,o

w
nN

od
eA

dd
re

ss
)

se
t(

N
ow

+
tim

er
In

te
rv

al
l,

C
T

im
eO

ut
)

no
O

fR
ep

ea
ts

:=
0

w
ai

tF
or

R
ep

ly

w
ai

tF
or

R
ep

ly

re
de

fin
ed

C
on

ne
ct

ed
(p

rio
rit

y)

R
es

et
(C

T
im

eO
ut

)

an
sw

er
:=

(.
tr

ue
,p

rio
rit

y,
0.

)

an
sw

er

re
de

fin
ed

R
ef

us
ed

(r
ea

so
n)

R
es

et
(C

T
im

eO
ut

)

an
sw

er
:=

(.
fa

ls
e,

,0
,r

ea
so

n.
)

an
sw

er

C
T

im
eO

ut

no
O

fR
ep

ea
ts

:=
no

O
fR

ep
ea

ts
+

1

se
t(

N
ow

+
tim

er
In

te
rv

al
l,

C
T

im
eO

ut
)

-

're
as

on
C

:=
R

ea
ch

ed
M

ax
N

oO
fR

ep
ea

ts
'

an
sw

er
:=

(.
fa

ls
e,

0,
re

as
on

.)

an
sw

er

fa
ls

e
tr

ue
no

O
fR

ep
ea

ts
=

m
ax

N
oO

fR
ep

ea
ts

C
on

ne
ct

_v
2

(f
lo

w
sp

ec
,o

w
nN

od
eA

dd
re

ss
)

T
IM

E
R

 C
T

im
eO

ut
;

45

-
-

in
he

rit
s

as
kR

es
M

an
ag

er
_v

2;
re

tu
rn

s
an

sw
er

 a
ns

w
er

T
yp

e2
;

P
ro

ce
du

re
 a

sk
R

es
M

an
ag

er
_v

3
1(

1)
D

C
L

no
O

fR
ep

ea
ts

 In
te

ge
r;

D
C

L
tim

er
In

te
rv

al
l D

ur
at

io
n

=
 2

0;
D

C
L

m
ax

N
oO

fR
eq

ue
st

s
In

te
ge

r
=

 8
;

re
de

fin
ed

w
ai

tF
or

R
ep

ly

R
es

er
ve

_v
2

(o
w

nN
od

eA
dd

re
ss

,fl
ow

sp
ec

)
R

es
A

cc
ep

te
d

(p
rio

rit
y)

R
es

R
ef

us
ed

R
T

im
eO

ut

se
t(

N
ow

+
tim

er
In

te
rv

al
l,

R
T

im
eO

ut
)

R
es

et
(R

T
im

eO
ut

)
R

es
et

(R
T

im
eO

ut
)

no
O

fR
ep

ea
ts

:=
0

're
as

on
:=

R
ea

ch
ed

M
ax

N
oO

fR
ep

ea
ts

'

w
ai

tF
or

R
ep

ly

an
sw

er
.O

K
:=

ok
,

an
sw

er
.p

rio
rit

y:
=

pr
io

rit
y

an
sw

er
.O

K
:=

no
k

an
sw

er
.O

K
:=

fa
ile

d
no

O
fR

ep
ea

ts
:=

no
O

fR
ep

ea
ts

+
1

an
sw

er
an

sw
er

an
sw

er
se

t(
N

ow
+

tim
er

In
te

rv
al

l,
R

T
im

eO
ut

)

-

tr
ue

fa
ls

e

T
IM

E
R

 R
T

im
eO

ut
;

no
O

fR
ep

ea
ts

=
m

ax
N

oO
fR

ep
ea

ts

R
es

er
ve

_v
2

(o
w

nN
od

eA
dd

re
ss

,fl
ow

sp
ec

)

R
ed

ef
in

ed
 S

er
vi

ce
 T

yp
e

ac
cC

on
S

et
U

p_
v3

2(
2)

re
de

fin
ed

C
on

ne
ct

_v
2(

fls
p,

cl
rN

A
dr

)

flo
w

sp
ec

:=
fls

p

R
ec

ei
ve

rA
ns

w
er

:=
 c

al
l(a

sk
R

ec
ei

ve
r_

v1
)

R
es

M
an

ag
er

A
ns

w
er

:=
ca

ll(
as

kR
es

M
an

ag
er

_v
3)

re
as

on
 :=

're
ce

iv
er

R
ef

us
ed

'

R
ef

us
ed

(r
ea

so
n)

pr
io

rit
y:

=
R

es
M

an
ag

er
A

ns
w

er
.p

rio
rit

y

re
as

on
 :=

C
on

ne
ct

ed
(p

rio
rit

y)

D
is

co
nI

nd
(r

ea
so

n)

R
ef

us
ed

(r
ea

so
n)

tr
ue

fa
ls

e

tr
ue

fa
ls

e

-

-
-

R
ec

ei
ve

rA
ns

w
er

=
 o

k

=
 o

k
R

es
M

an
ag

er
A

ns
w

er
.O

K

 'n
oN

et
w

or
kR

es
ou

rc
es

'

in
he

rit
s

ac
cC

on
S

et
U

p_
v2

ac
ce

pt
in

gR
eq

ue
st

s

ca
lle

eN
od

eA
dd

re
ss

:=
cl

eN
A

dr

re
de

fin
ed

 a
sk

R
es

M
an

ag
er

_v
3

R
ef

us
ed

(r
ea

so
n)

C
on

ne
ct

ed
(p

rio
rit

y)

'1
'

'2
'

tr
ue

m
sg

F
la

g
:=

1;
m

sg
F

la
g

:=
1;

m
sg

F
la

g
:=

1;

D
C

L
m

sg
F

la
g

In
te

ge
r;

m
sg

F
la

g=
0

re
pl

yF
la

g

fa
ls

e

D
C

Lr
ep

ly
F

la
g

In
te

ge
r;

re
pl

yF
la

g:
=

2

re
pl

yF
la

g:
=

2
re

pl
yF

la
g:

=
1

m
sg

F
la

g
:=

0

46

B. 3 Development step 4
U

S
E

 S
te

p4
C

la
ss

es
;

S
ys

te
m

 T
R

R
es

P
ro

t_
S

te
p4

1(
1)

N
od

e1
:

C
om

N
od

e

U
nd

er
ly

in
gS

er
vi

ce

N
od

e3
:

R
M

C
om

N
od

e

N
od

e2
:

C
om

N
od

e

N
od

e5
:

C
om

N
od

e
N

od
e4

:
C

om
N

od
e

D
at

aR
eq

D
at

aI
nd

D
at

aI
nd

D
at

aR
eq

D
at

aR
eq

D
at

aI
nd

D
at

aR
eq

D
at

aI
nd

D
at

aR
eq

D
at

aI
nd

(S
P

_f
ro

m
C

al
le

e)

(S
P

_t
oC

al
le

e)
(S

P
_t

oC
al

le
r)

(S
P

_t
oC

al
le

e)
(S

P
_t

oC
al

le
e)

(S
P

_f
ro

m
C

al
le

r)

(S
P

_f
ro

m
C

al
le

e)
(S

P
_f

ro
m

C
al

le
e)

S
A

P
B

S
A

P
B

S
A

P

B
S

A
P

B
S

A
P

B
S

A
P

S
A

P
S

A
P

S
A

P

(S
P

_t
oC

al
le

e)

(S
P

_f
ro

m
C

al
le

e)

S
A

P

B
lo

ck
 T

yp
e

C
om

N
od

e
1(

1)

A
dm

in
is

tr
at

or
:

P
ro

to
co

lA
dm

in
is

tr
at

or

P
ro

to
co

lE
nt

ity
(0

,m
ax

N
oC

on
):

R
es

er
va

tio
nP

ro
to

co
l

E
rr

or

(S
P

_d
ow

n) (S
P

_d
ow

n)
da

ta
In

d

S
A

P

(S
P

_u
p)

(S
P

_d
ow

n)

da
ta

In
d

B
S

da
ta

R
eq

da
ta

In
d

(S
P

_u
p)

da
ta

R
eq

da
ta

R
eq

47

P
ro

ce
ss

 T
yp

e
P

ro
to

co
lA

dm
in

is
tr

at
or

1(
4)

ad
m

C
on

ne
ct

R
eq

P
ro

to
co

lE
nt

ity
(C

Id
)

of
fs

pr
in

g=
N

ul
l

T
ab

le
E

nt
ry

(C
T

ab
le

,C
Id

,o
ffs

pr
in

g)

C
on

ne
ct

R
eq

(f
ls

,c
lrU

Id
,c

N
A

,c
le

U
Id

)
E

rr
or

(r
ea

so
n)

-
-

tr
ue

fa
ls

e

(f
ls

,c
lrU

Id
,c

N
A

,c
le

U
Id

)

 T
O

 o
ffs

pr
in

g

D
C

L
C

Id
S

et
 S

et
of

C
on

ne
ct

io
nI

de
nt

ifi
er

s;
D

C
L

C
T

ab
le

 C
on

ne
ct

io
nT

ab
le

;
D

C
L

C
Id

 C
on

ne
ct

io
nI

de
nt

ifi
er

;
D

C
L

C
P

Id
 P

Id
;

D
C

L
P

Li
st

 P
ar

tn
er

lis
t;

C
Id

:=
ne

w
C

on
ne

ct
io

nI
d(

C
Id

S
et

)

D
C

L
re

as
on

 r
ea

so
nT

yp
e;

re
as

on
 :=

'c
on

S
et

U
pN

ot
P

os
si

bl
e'

P
ro

ce
ss

 T
yp

e
P

ro
to

co
lA

dm
in

is
tr

at
or

2(
4)

ad
m

da
ta

In
d(

S
D

U
)

S
D

U
.n

am
e=

C
on

ne
ct

C
Id

:= P
ro

to
co

lE
nt

ity
(C

Id
)

of
fs

pr
in

g=
N

ul
l

da
ta

In
d(

S
D

U
)

da
ta

R
eq

(E
rS

D
U

)

-
-

tr
ue

fa
ls

e

ne
w

C
on

ne
ct

io
nI

d(
C

Id
S

et
)

T
ab

le
E

nt
ry

(C
T

ab
le

,C
Id

,o
ffs

pr
in

g)

 T
O

 o
ffs

pr
in

g

C
Id

:=

in
se

rt
P

ar
tn

er

ac
tiv

e
tr

ue

fa
ls

e

ge
tC

Id
(P

Li
st

,S
D

U
.c

lrN
A

,S
D

U
.c

lrI
d)

(P
Li

st
,S

D
U

.c
lrN

A
,S

D
U

.c
lrI

d)

(P
Li

st
,C

Id
,

S
D

U
.c

lrN
A

,S
D

U
.c

lrI
d)

C
P

Id
:=

ge
tP

ID
(C

T
ab

le
,C

Id
)

da
ta

In
d(

S
D

U
)

T
O

 C
P

Id

-
re

as
on

 :=
'c

on
S

et
U

pN
ot

P
os

si
bl

e'

‘p
re

pa
re

 E
rS

D
U

fo
r

E
rr

or
 s

ig
na

l‘

48

P
ro

ce
ss

 T
yp

e
P

ro
to

co
lA

dm
in

is
tr

at
or

3(
4)

ad
m

da
ta

In
d(

S
D

U
)

C
on

ne
ct

R
sp

(C
Id

)

no
t(

S
D

U
.n

am
e=

C
on

ne
ct

)

in
T

ab
le

(C
T

ab
le

,S
D

U
.C

Id
)

in
T

ab
le

C
P

Id
:=

ge
tP

ID
(C

T
ab

le
,S

D
U

.C
Id

)
C

P
Id

:=

da
ta

In
d(

S
D

U
)

C
on

ne
ct

R
sp

(C
Id

)

-
-

-
-

tr
ue

fa
ls

e
tr

ue
fa

ls
e

 T
O

 C
P

Id

(C
T

ab
le

,C
Id

)

ge
tP

ID
(C

T
ab

le
,C

Id
)

 T
O

 C
P

Id

P
ro

ce
ss

 T
yp

e
P

ro
to

co
lA

dm
in

is
tr

at
or

4(
4)

ad
m

C
on

R
ef

R
eq

(C
Id

)
D

is
co

nR
eq

(C
Id

)

in
T

ab
le

(C
T

ab
le

,S
D

U
.C

Id
)

in
T

ab
le

C
P

Id
:=

ge
tP

ID
(C

T
ab

le
,S

D
U

.C
Id

)
C

P
Id

:=

C
on

R
ef

R
eq

(C
Id

)
D

is
co

nR
eq

(C
Id

)

-
-

-
-

tr
ue

fa
ls

e
tr

ue
fa

ls
e

 T
O

 C
P

Id

(C
T

ab
le

,C
Id

)

ge
tP

ID
(C

T
ab

le
,C

Id
)

 T
O

 C
P

Id

49

P
ro

ce
ss

 T
yp

e
R

es
er

va
tio

nP
ro

to
co

l <
D

C
L

id
 C

on
ne

ct
io

nI
d>

2(
2)

in
itC

on
S

et
U

p:
in

itC
on

S
et

U
p_

v4

lo
w

er
La

ye
rI

nt
er

fa
ci

ng
:

Lo
w

La
yI

nt
er

fa
ci

ng

in
itC

on
T

ea
rD

ow
n:

in
itC

on
T

ea
rD

ow
n_

v4

ac
cC

on
S

et
U

p:
ac

cC
on

S
et

U
p_

v4

ac
cC

on
S

et
U

p:
ac

cC
on

S
et

U
p_

v4

[(P
D

U
_t

oC
al

le
r_

se
tU

p)
]

[(P
DU_toCalle

r_tearD
own)]

[(P
DU_toCalle

e_se
tU

p)]

[(P
D

U
_t

oC
al

le
e_

te
ar

D
ow

n)
]

[(SP_toCaller_setUp)] [(S
P_

to
C

al
le

r_
te

ar
D

ow
n)

]

[(S
P_t

oC
al

le
e_

se
tU

p)
]

[(SP_toCallee_tearDown)]

[d
at

aR
eq

]

[(SP_fromCaller_setUp)]

[(S
P_

fro
m

C
al

le
r_

te
ar

D
ow

n)
]

[(S
P_f

ro
m

Cal
le

e_
se

tU
p)

]

[(SP_fromCallee_tearDown)]

[d
at

aI
nd

]

[(P
DU_to

Call
er

_s
etU

p)
]

[(P
D

U
_t

oC
al

le
r_

te
ar

D
ow

n)
]

[(P
D

U
_t

oC
al

le
e_

se
tU

p)
]

[(P
DU_toCalle

e_tearD
own)]

