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ABSTRACT

In this thesis, mathematical research questions related to recursive
utility and stochastic differential utility (SDU) are explored.

First, a class of backward equations under nonlinear expectations
is investigated: Existence and uniqueness of solutions are established,
and the issues of stability and discrete-time approximation are ad-
dressed. It is then shown that backward equations of this class nat-
urally appear as a continuous-time limit in the context of recursive
utility with nonlinear expectations.

Then, the Epstein-Zin parametrization of SDU is studied. The focus
is on specifications with both relative risk aversion and elasitcity of in-
tertemporal substitution greater that one. A concave utility functional
is constructed and a utility gradient inequality is established.

Finally, consumption-portfolio problems with recursive preferences
and unspanned risk are investigated. The investor’s optimal strate-
gies are characterized by a specific semilinear partial differential equa-
tion. The solution of this equation is constructed by a fixed point argu-
ment, and a corresponding efficient and accurate method to calculate
optimal strategies numerically is given.

ZUSAMMENFASSUNG

Die vorliegende Arbeit beschéaftigt sich mit mathematischen Frage-
stellungen aus dem Themenfeld des rekursiven und stochastischen
differenziellen Nutzens (SDU).

Zunidchst werden Riickwirtsgleichungen unter nichtlinearen Er-
wartungswerten untersucht. Die Fragen nach Existenz und Eindeu-
tigkeit von Losungen sowie nach deren Stabilitdt und Diskretisier-
barkeit werden beantwortet. Diese Riickwirtsgleichungen tauchen —
wie gezeigt wird — in natiirlicher Weise als zeitstetiger Grenzwert des
rekursiven Nutzens mit nichtlinearen Erwartungswerten auf.

Der zweite Teil der Arbeit beschiftigt sich mit SDU in der Epstein-
Zin-Parametrisierung im Fall von relativer Risikoaversion und inter-
temporaler Substitutionselastizitdt grofier als Eins. Das zugehorige
Nutzenfunktional wird konstruiert; Konkavitat und eine Gradiente-
nungleichung werden nachgewiesen.

Die Arbeit schliefst mit der Optimierung von Konsum- und Han-
delsstrategien in unvollstindigen Markten beziiglich rekursiver Pra-
ferenzen. Die Losung ist durch eine semilineare partielle Differenti-
algleichung gegeben, die mit Fixpunktmethoden behandelt wird. Ei-
ne zugehorige schnelle und prézise numerische Methode zur Berech-
nung der optimalen Strategien wird bereitgestellt.
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The idea that the future is unpredictable is undermined every day
by the ease with which the past is explained.

— Kahneman (2011)
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INTRODUCTION

This thesis deals with mathematical research questions within the
context of recursive utility and its continuous-time counterpart stochas-
tic differential utility.

Recursive utility is a powerful concept to mathematically describe
dynamic risk preferences in discrete time. It is an extension of the
concept of intertemporal expected utility in the sense of von Neu-
mann and Morgenstern (1944) and has been developed by Kreps and
Porteus (1978), Epstein and Zin (1989), Weil (1990), and others. By
abandoning the independence axiom, recursive utility allows for a
greater flexibility in the modeling of preferences that have both a risk
and a time dimension. More precisely, in contrast to the standard dis-
counted expected utility paradigm, recursive utility does not impose
a strict relationship between preferences for smoothing across time
and smoothing across states.

Stochastic differential utility has been proposed as a continuous-time
version of recursive utility by Duffie and Epstein (1992b)." Duffie and
Epstein (1992b) provide heuristic arguments that make a very con-
vincing case for stochastic differential utility as the continuous-time
analog of recursive utility; see also Svensson (1989), Skiadas (2008),
and the references therein. Kraft and Seifried (2014) were the first to
prove a convergence result which yields a mathematically rigorous
link between the two concepts: They show that stochastic differen-
tial utility emerges in the continuous-time limit of recursive utility in
combination with static certainty equivalents of Kreps-Porteus type.
One major result of this thesis is the extension of their convergence the-
orem to recursive utility in the context of robust certainty equivalents.

Recursive preferences play an important role in the asset pricing lit-
erature. In the theory of equilibrium asset pricing, the shortcomings
of time-additive (non-recursive) preferences become particularly man-
ifest; indeed, the classical consumption-based asset pricing model is
well-known to produce inconsistencies when confronted with empir-
ical data. One famous instance is the equity premium puzzle of Mehra
and Prescott (1985): The excess return of stocks implied by expected
utility is significantly too high. In response to these challenges, re-
cursive preferences have become an important tool and are by now
ubiquitous in the asset pricing literature; see, among many others,
Weil (1989), Duffie and Epstein (1992a), Obstfeld (1994), Duffie et al.
(1997), Tallarini (2000), Bansal and Yaron (2004), Hansen et al. (2008),

1 And before that by Epstein (1987), in a deterministic setting.
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Guvenen (2009), Kaltenbrunner and Lochstoer (2010), Borovicka et al.
(2011), Gabaix (2012), and Wachter (2013).

In nearly all of the above publications, the Epstein-Zin-Weil param-
etrization of recursive or stochastic differential utility plays an impor-
tant role. Despite its prevalent usage, fundamental questions about
existence, uniqueness and concavity of stochastic differential utility in
the Epstein-Zin parametrization have so far not been entirely solved:
The general result of Duffie and Epstein (1992b) relies on a global
Lipschitz condition which is not satisfied by the Epstein-Zin specifi-
cation. Schroder and Skiadas (1999) prove existence and uniqueness
of continuous-time Epstein-Zin utility under some parameter restric-
tions* in a Brownian framework. The present thesis complements
their findings by establishing existence and uniqueness as well as
monotonicity and concavity of Epstein-Zin stochastic differential util-
ity with relative risk aversion (RRA) and elasticity of intertemporal
substitution (EIS) both exceeding one in a fully general semimartin-
gale setting.

Following the pioneering work of Duffie and Skiadas (1994), util-
ity gradients have proven to be an indispensable tool in the analysis
of optimal portfolio allocations and in equilibrium asset pricing. Ad-
vancing ideas of Harrison and Kreps (1979), the far-reaching insight
of Duffie and Skiadas (1994) is that the first-order optimality condi-
tion in the maximization of a utility functional can be formulated
as a martingale property of prices, after normalization by the rele-
vant utility gradient. This implies on the one hand that portfolio opti-
mization problems can be addressed directly in terms of the implied
tirst-order conditions; see, e.g., Bank and Riedel (2001a), Schroder
and Skiadas (1999, 2003, 2008), Kallsen and Muhle-Karbe (2010), Ski-
adas (2013), Levental et al. (2013), and the references therein. On the
other hand, applying the same line of reasoning to the representative
agent’s portfolio in general equilibrium, it follows that the state-price
deflator in the underlying economy can be represented as a utility
gradient. This makes it possible to investigate asset prices, alloca-
tions, and efficiency issues in equilibrium. For implementations of
this approach, see, among many others, Duffie and Epstein (1992a),
Duffie et al. (1994, 1997), Bank and Riedel (2001b), Chen and Epstein
(2002), Epstein and Ji (2013) as well as Campbell (2003) and the refer-
ences therein. In the literature, utility gradients for continuous-time
recursive utility have been derived by Duffie and Skiadas (1994) and
proven by Schroder and Skiadas (1999) in a Brownian setting (under
the same parameter restrictions as for their existence and uniqueness
result). The present thesis supplements their analysis by providing

These restrictions exclude parameterizations with RRA and EIS both greater than
one. These specifications are frequently used (i.e., in the literature on asset pricing
with long-run risk started by Bansal and Yaron (2004)); however, Schroder and Ski-
adas (1999) remark that those parameter restrictions can be finessed by introducing
a bequest utility.
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the corresponding results for RRA and EIS greater than one within a
general semimartingale framework.

In this thesis, utility gradients are used in the context of optimal
consumption and portfolio selection, to characterize the value func-
tion of an agent with continuous-time Epstein-Zin preferences by a
semilinear partial differential equation (PDE). The incomplete-mar-
ket consumption-portfolio problem under consideration comprises
suitably truncated3 versions of classical frameworks such as Kim and
Omberg (1996), Campbell and Viceira (1999), Barberis (2000), Wachter
(2002), Chacko and Viceira (2005) and Liu (2007), among others.# The
nonlinear PDEs that arise in the context of these consumption-portfo-
lio problems are quite challenging, and it has not been clear whether
they admit unique smooth solutions at all. So far, researchers have
been forced to resort to linearization techniques of unclear precision
and to restrict attention to models with affine dynamics; however,
even in the presence of affine dynamics, solutions in closed form are
available only in the case of unit EIS or similar parameter restrictions,
see, e.g., Kraft et al. (2013).

In the present thesis, existence and uniqueness of a classical solu-
tion of the relevant semilinear PDE are established by a fixed point
argument. Moreover, a numerical method that guarantees a fast and
accurate calculation of both indirect utility and — even more impor-
tantly — optimal strategies is provided. Hereby, this thesis presents a
tractable approach to incomplete-market consumption-portfolio prob-
lems with recursive preferences when closed-form solutions are not
available.

The remainder of this introduction is structured as follows: First,
we briefly review the concepts of recursive utility and stochastic dif-
ferential utility as well as the convergence result which links the two.
Then, we explain the great extent to which this convergence result re-
mains valid in the context of nonlinear expectations. We briefly elab-
orate on nonlinear expectations in general and, in particular, on the
associated backward equations that are the main topic of Chapter 2.
After that, the topics of Chapter 3 and Chapter 4 are sketched out.
Finally, an outline of the thesis is presented.

3 Our analysis in Chapter 4 imposes no structural conditions on the underlying model
coefficients, but requires them to be bounded. This formally rules out some popular
asset price dynamics, including affine models. However, our results do apply to all
such models once they are suitably truncated.

4 With the exception of Chacko and Viceira (2005), these authors assume time-additive
CRRA preferences.



INTRODUCTION

1.1 RECURSIVE UTILITY IN DISCRETE AND CONTINUOUS TIME

The general situation is as follows: Given some set C of ¢-valued con-
sumption plans (c¢), one is interested in valuation mappings

v:—=R, c~v(c)

that induce preferences on € by saying that ¢’ is (weakly) preferred
to c if and only if v(c’) > v(c). A classical example of such a map is
the expected utility functional

v(c) =u N (E[X B uler ) (k1 —t)])  (discrete time) (1.1)

or vic)=u""' (j Biu(ct) dt), (continuous time)

defined in terms of subjective discount factors () and a utility func-
tion u like u(c) =c¢'Y/(1—7).

Recursive utility in discrete time

Recursive utility is a paradigm to construct such valuation mappings/
utility functionals in discrete time. Following Kreps and Porteus
(1978) (in the presentation of Kraft and Seifried (2014)), the two main
objects in the construction are

(i) an intertemporal aggregator W, that is a mapping
W:[0,TIxeExEC =€, (Acv)— W(A,c,vV)
with W(0,¢c,v) =v forall ¢,v € €, and
(ii) a family (m¢) of certainty equivalents, i.e., a family of mappings
me: X — Xy, X=X with mg(X)=X forall X e Xy,

where X is a suitable set of €-valued risky (and hence unknown
future) payments and Xy C X is the subset of payments whose
values are known at time t.

The current value Vi of a consumption of ctA over a time-interval
[t,t + A] and a risky payment of Vi, at the end of that time-period
is calculated as

(A, ct, Viga) = Ve = W(A, e, mg (Viga)).

This aggregation consists of two components: The certainty equiva-
lent (statically) evaluates the risk at time t, while the intertemporal
aggregator W assesses the timing of events. This separation allows
to disentangle risk and time-preferences; for a discussion hereof, we
refer to Skiadas (1998) and the references therein.



1.1 RECURSIVE UTILITY IN DISCRETE AND CONTINUOUS TIME

Now, the recursive utility process V™ on the time-grid m: 0 =ty <
.-+ < tn =T is given by the recursion

V‘Z.,[( = W(tk+1 —tx, Ctyr My (VJZLH ))/
and then the corresponding recursive utility functional is defined via
v™(c) = Vg§. (1.2)

The most widely used certainty equivalents are of the form charac-
terized by Kreps and Porteus (1978) and are given by

me(X) =u" (E¢[u(X)]), (1.3)

where u : ¢ — R is a strictly increasing continuous function and E de-
notes the conditional expectation given information available at time
t. Usually, u will be a von Neumann-Morgenstern utility function. A
corresponding general class of discrete-time aggregators is given in
terms of a strictly increasing function g : € C [0,00) — R, via

W(A,c,v) =g '(8Ag(c) + (1—8A)g(v)). (1.4)

Note that with the choice u = g, the recursive utility functional (1.2)
becomes the expected utility functional in (1.1). The popular Epstein-
Zin-Weil parametrization of recursive utility is obtained by choosing
¢ = (0,00) and the isoelastic utility functions

ule) = 25¢'7Y, gle) =5t v, de(0,0), Vb AT,
u(c) = g(c) =loge, y=6¢=1,
in (1.3) and (1.4). An agent with the corresponding recursive utility

functional has relative risk aversion (RRA) vy and elasticity of intertem-
poral substitution (EIS) ¢ = 1/¢; see Epstein and Zin (1989) and Weil

(1990).
Stochastic differential utility

In the context of stochastic differential utility (SDU), as introduced by
Duffie and Epstein (1992b), the utility functional is defined as

v(c) = Vo,

where V = (V) is given in terms of a continuous-time aggregator func-
tion f: € x R — IR, as the solution of the backward stochastic differ-
ential equation (BSDE)

dVy = —f(cy, Vi)dt +dM,  for a martingale M, Vr =§,

_ - (1.5)
or, equivalently, Ve =E[[, flcs, Vs)ds + E], te[0,T].

In fact, Duffie and Epstein (1992b) were the first to consider BSDEs
in the context of general semimartingales. In a Brownian framework,
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BSDEs had previously been introduced by Pardoux and Peng (1990).
In the Brownian setting, BSDEs take the form

dVy = —f(t, Vi, Zy)dt + Z dW4, Vr =§,

where the aggregator f may also depend on the martingale integrand
Z of the solution.> For an overview of the theory of BSDEs and their
applications in finance, we refer to El Karoui et al. (1997).

The Epstein-Zin parameterization of SDU (for non-unit EIS and
RRA) corresponds to the continuous-time aggregator

A 11—y c a3
f(c,v) = dv : K ; ) — 1], (1.6)
T=5 MO =y

see, e.g., Duffie and Epstein (1992b).

Convergence of recursive utility

Under appropriate continuity, differentiability and growth conditions
on the intertemporal aggregator W and the utility function u inducing
the certainty equivalent via (1.3), Kraft and Seifried (2014) prove that
the recursive utility process V™ converges to the stochastic differential
utility process V in the limit of vanishing grid size, i.e.,

VT 5V as Inlzkglaxn\tk—tk_ﬂﬁo.

More precisely, they show that V" = w(V™) — u(V) =V, where

o V™ is the recursive utility process corresponding to the normal-
ized intertemporal aggregator

W(A,c,7) =uoW(A,c,u ' (9))
and the family of normalized certainty equivalents
me (X) = uw(me(u' (X)) = E¢[X] and
o Vis given by (1.5) with continuous-time aggregator
fc, ) = 3% WI(A, ¢, 9)la—o,
confirming a formula derived by Epstein (1987).

As long as only bounded consumption plans are considered, Kraft
and Seifried (2014) cover all specifications of recursive utility with
certainty equivalents and aggregators as in (1.3) and (1.4) and, in
particular, the Epstein-Zin-Weil parametrization.

This has been exploited (e.g., in Lazrak and Quenez (2003)) to formulate SDU with
source-dependent risk aversion.



1.2 NONLINEAR EXPECTATIONS

1.2 NONLINEAR EXPECTATIONS

In this thesis, we generalize the convergence result of Kraft and Sei-
fried (2014) to normalized certainty equivalents m(X) = £[X], where
(Et)tefo,1) is a (dynamic) nonlinear expectation. Prominent examples of
(static) nonlinear expectations are given by lower expectations,®
&X] = inf EJ[X],
qeQ.
where Q¢ is a family of probability measures. Lower expectations ¢
emerge as normalized versions of (max)min expected utility certainty
equivalents under multiple priors,
me(X) = inf wl (EF(X)]),
as proposed by Gilboa and Schmeidler (1989). This robust approach is
a conservative alternative to classical expected utility certainty equiv-
alents in situations where precise subjective probabilities cannot be
assigned. Epstein and Wang (1994), Epstein and Schneider (2003) and
Chen and Epstein (2002) combine (max)min expected utility certainty
equivalents with recursive utility in discrete time. To consider corre-
sponding recursive utilites in continuous time, the family (E¢)icjo 1
must be dynamically consistent, i.e., it must satisfy the tower property

&s[&eX]] = &X] foralls <t. (TC)

This is a serious restriction on the family (Q¢)ic(o, 1] of probability
measures. In their continuous-time intertemporal version of multiple-
priors utility, Chen and Epstein (2002) guarantee this time-consistency
property by a so-called rectangularity condition. In the version of
stochastic differential utility for ambiguous volatility proposed re-
cently by Epstein and Ji (2014),” time-consistency is guaranteed by
optimal control techniques; see in particular Nutz (2012, 2013) for the
precise constructions and the dynamic programming principle.

In this thesis, we focus on (dynamic) nonlinear expectations which
satisfy the time-consistency condition (TC). Under assumptions on
the intertemporal aggregator paralleling those of Kraft and Seifried
(2014), we prove that the corresponding recursive utility processes V"
converge to a limiting object V (Theorem 2.80), where V is the solution
of a backward nonlinear expectation equation (BNEE) of the form

V=&, [jjf(cs,vs) ds+a}, telo,T],
given in terms of the continuous-time aggregator
f(t,\_)) = %W(AI C/‘_))|A:O-

In particular, we substantiate the results of Chen and Epstein (2002)
and Epstein and Ji (2014) by showing that their models emerge in the
continuous-time limit of recursive utilities under multiple priors.

6 See, e.g., Huber (1981).
7 See Epstein and Ji (2013) for applications of this model.

7
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Backward nonlinear expectation equations

To prove the convergence result advertised above, in Chapter 2,8 we

study general backward nonlinear expectation equations (BNEEs),

X, = & [jjg(s,X) w(ds) + a}, teo,T. (1.7)

In our analysis of (1.7), we build on an abstract framework for dy-
namic nonlinear expectations. This setting comprises g-expectations,
see, e.g., Peng (1997, 2004b), G-expectations as put forward by Peng
(2007, 2008), and random G-expectations as introduced and analyzed
by Nutz (2012, 2013). In particular, the model of Chen and Epstein
(2002) and a version of then one of Epstein and Ji (2014) are included
in our abstract framework.

Equations of the form (1.7) should be looked upon as backward
stochastic differential equations (BSDEs) in the context of nonlin-
ear expectations. In the literature, such equations have previously
been investigated in particular situations: For instance, Peng (2004b,
2005a) considers BSDEs under g-expectations, and Peng (2010) and
Hu et al. (2014a,b) study BSDEs under G-expectations. Moreover,
with so-called second-order BSDEs, Cheridito et al. (2007) and Soner
et al. (2012, 2013) have introduced a related class of equations. In the
economics literature, BNEEs have appeared in the context of dynamic
robust risk preferences; see, e.g., Chen and Epstein (2002), Hayashi
(2005) and Epstein and Ji (2014).

Results

In Chapter 2, we prove existence and uniqueness for solutions of (1.7)
under a Lipschitz condition on the aggregator g (Theorem 2.26), and
we show that solutions are stable under perturbations of the aggre-
gator function (Theorem 2.29). Moreover, we demonstrate that (1.7)
emerges in the continuous-time limit of the discrete aggregations

Xig £ &, [m((tk,tkﬂ]) 9(ti, €, [Xid4]) +Xﬁ+1}r k=N-1,...,0,

where A: 0 =1ty < t; <--- <ty =T (Theorem 2.32). Building on these
results, convergence of recursive utilities (Theorem 2.80) is proven.

1.3 EPSTEIN-ZIN SDU AND UTILITY GRADIENTS

In Chapter 3,9 we return to the classical probabilistic framework and
work on a filtered probability space (Q, A, (F)c[o,1), P) satisfying the
usual conditions. We consider the Epstein-Zin-Weil parameterization
of stochastic differential utility as introduced in (1.6), focusing on the
case where RRA and EIS are greater than one.

8 Chapter 2 is largely based on Belak, Seiferling, and Seifried (2015).
9 Chapter 3 is largely based on Seiferling and Seifried (2015).
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1.4 CONSUMPTION-PORTFOLIO OPTIMIZATION WITH SDU

For every consumption plan ¢ with
E[J"gc{dt—kc-rr] <oco forallTteR,

we show that there exists a unique semimartingale V¢ satsifying (1.5)
(Theorem 3.2). Moreover, we prove that the mapping ¢ — V¢ is in-
creasing and concave (Theorem 3.4). Finally, we establish a utility
gradient inequality (Theorem 3.5) of the form

v(e) < v(&) + (m(e),c—¢&).
1.4 CONSUMPTION-PORTFOLIO OPTIMIZATION WITH SDU

In Chapter 4,'° we consider the consumption and portfolio selection
problem of an investor with continuous-time Epstein-Zin preferences
in an incomplete financial market consisting of a locally risk-free asset
M and a risky asset S with dynamics**

th = T'(Yt)Mtdt, dSt = St [(T + }\(Yt))dt + G(Yt)th] .

The investor consumes at rate ¢ and invests the fraction 7t of his capi-
tal into S, and so his wealth follows the dynamics

dXZ[T'C = XI['C [(r(Ye) + A (Ye))dt + meo(Ye ) dWi] — e dt.
Utility of terminal wealth and consumption is given by
v(c) 2 V§, where V§ £ B, [[[fles, VE)ds + UXT®)| for te 0T

Here, f is the continuous-time Epstein-Zin aggregator as in (1.6). We
study the associated optimal consumption and portfolio optimization
problem, i.e., we aim to

find (n*,c¢*) suchthat v(c*)=supv(c),
(7,c)

where the supremum is taken over all integrable strategies (7, c) the
investor can implement without going bankrupt. We prove a verifica-
tion theorem (Theorem 4.9) which shows that the optimal strategies
(7", c¢*) are given in terms of a semilinear partial differential equation
(PDE) of the form

0 =hy —Fh+&hy + 3B%hyy +25h9, h(T,) =% (1.8)

Note that equations of this form frequently arise in asset pricing, too.
The main result of Chapter 4 is a general existence and uniqueness
theorem (Theorem 4.10) for semilinear PDEs of the form as in (1.8).

Chapter 4 is largely based on Kraft, Seiferling, and Seifried (2015).
We impose standard regularity and boundedness conditions on the coefficients; see
assumptions (A1) and (A2) on p. 110 and assumption (A1") on p. 129.
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INTRODUCTION

The proof of this result is based on fixed point arguments which entail
the following: Set h® = ¢ and iteratively define h™ as the unique
solution g of the linear PDE

- ¥ _ R
0=g¢—Tg+ &gy + %Bzgyy + 15_—(](hTL ha, g(T,.)=¢.

Then the sequence (hn)nen converges to the solution h of (1.8), with
respect to the uniform norm ||h|co1 = ||h|c + [yl (Theorem 4.29).
This convergence result immediately yields a fast numerical method
which enables us to efficiently determine optimal strategies via itera-
tively solving linear PDEs; see the informal users’” guide in Section 4.6,
where we also provide numerical examples to illustrate our approach.

1.5 OUTLINE OF THIS THESIS

This thesis is structured as follows: Chapter 2 deals with backward
nonlinear expectation equations (BNEEs) and convergence of corre-
sponding recursive utilities, as explained in Section 1.2 above. In
Chapter 3, we investigate the Epstein-Zin parametrization of stochas-
tic differential utility with RRA and EIS both greater than one. The
consumption-portfolio problem of an investor with stochastic differ-
ential utility in an incomplete market is studied in Chapter 4. Each
chapter in the main part of this thesis is complemented by a corre-
sponding chapter in the appendix. The bibliography is provided at
the end of the appendix.

Chapter 2 Sections 2.1 and 2.2 set the scene for Chapter 2 by intro-
ducing a general framework for the study of backward nonlinear ex-
pectation equations. These equations are then studied in Section 2.3,
where the issues of existence, uniqueness, stability and discretiza-
tion are addressed. Section 2.4 provides general conditions which
can be used to verify whether a given nonlinear expectation fits into
our framework. Concrete examples of such nonlinear expectations
are presented in Section 2.5. For the case of linear expectations, Sec-
tion 2.6 relates our findings on BNEEs to the theory of BSDEs. The
convergence result for recursive utilities is established in Section 2.7.
Where appropriate, the end of each section provides bibliographical
notes that relate its contents to the literature.

Chapter 3 Section 3.1 formally introduces continuous-time Epstein-
Zin preferences. Our main results are stated in Section 3.2. The follow-
ing two sections prepare for the proofs: In Section 3.3, utility function-
als are constructed for bounded consumption plans, and Section 3.4
provides an excursion on stochastic Gronwall inequalities. Then the
proofs of our main results are given in Section 3.5.

Chapter 4 The consumption and portfolio selection problem is for-
mulated in Section 4.1, and the structure of the optimal strategy is
announced in terms of a semilinear PDE. In Section 4.2, existence



1.5 OUTLINE OF THIS THESIS

and uniqueness of appropriate solutions for this semilinear PDE are
established by fixed point arguments. A verification result which en-
sures that the associated strategies are indeed optimal is proven in
Section 4.3. Section 4.4 briefly comments on the relevance of our PDE
results for asset pricing. Section 4.5 provides the basis for our numer-
ical method. Section 4.6 offers an informal user’s guide on how to
apply our results numerically and illustrates the power of the solu-
tion method by a number of numerical examples.

11






BACKWARD NONLINEAR EXPECTATION
EQUATIONS

In the first chapter of this thesis, we study backward nonlinear expec-
tation equations (BNEEs) of the form

X¢ = & [ffg(s,X) u(ds) + a], teo,T. (2.1)

Here, & is a nonlinear expectation operator, g is a generator function,
i is a suitable integrator, and & is the terminal value.

Our analysis is built on a general framework for dynamic nonlin-
ear expectations that comprises several well-known nonlinear expec-
tations from the literature. In this framework, we establish existence,
uniqueness and stability for solutions of (2.1). Moreover, we show that
(2.1) emerges in the continuous-time limit of the discrete aggregations

Xﬁ £ Etk [m((tk,thr]]) g(tk, Etk [XQJF]]) +X€+]i|/ k=N-— 1/ . 'IOI

where A: 0 =ty < t; <--- < tny =T, and we provide an application
to recursive utility under ambiguity. These parts of the exposition are
largely based on Belak, Seiferling, and Seifried (2015). In addition, we
provide a sufficient criterion for nonlinear expectations to fit in our
general framework, and we apply that criterion to several examples
from the literature. Moreover, we relate BNEEs to classical backward
stochastic differential equations (BSDESs) in the case when & is a linear
expectation.

This chapter is structured as follows: Section 2.1 recalls the defi-
nition of a (time-consistent) nonlinear expectation. Section 2.2 intro-
duces the notion of appropriate domains for sublinear expectations
and provides our general framework for dynamic nonlinear expecta-
tions. Backward nonlinear expectation equations within that frame-
work are studied in Section 2.3, where we prove existence, unique-
ness, and stability results and establish convergence of the associated
discrete-time nonlinear aggregations. Section 2.4 provides a general
result on the existence of appropriate domains for sublinear expecta-
tions satisfying a Fatou property. In Section 2.5, this result is used to
embed several examples of nonlinear expectations into the setting of
Section 2.3. The connection between BNEEs and BSDEs is examined
in Section 2.6. Section 2.7 concludes the chapter with an application
of our results to recursive utility in discrete and continuous time.

13
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2.1 NONLINEAR EXPECTATIONS

We give the definition of a nonlinear expectation. A nonlinear expecta-
tion will always be defined on a domain (for expectations).

DEFINITION 2.1. Let T > 0 and let (H;)c[o,1) be an increasing family
of linear spaces. Suppose that (J(t, <) is an ordered vector space and
that (Ho, <) is order-isomorphic to R.

Then ((H¢)ieo, 13, <) is a domain for expectations. o

DEFINITION 2.2. Let ((H(¢)iejp 1), <) be a domain for expectations and
let (€¢)tepo,1) be a family of operators

E 1 Hy — Iy, te 0, Tl

Then (E¢)tepo,1) is called a (time-consistent) nonlinear expectation on
(Ht)tepo,1, if the following four conditions are satisfied:
For all X,Y € Hy and t € [0, T], the map & is

(M) monotone, i.e., X <Y implies E¢[X] < E¢[Y],
(SI) shift-invariant, i.e., X+ Y] = X+ E¢[Y] if X € Hy,
(TC) time-consistent, i.e., E¢[Es[X]] = E¢[X] for every s € [t,T],
(N) and normalized, i.e., £¢[0] = 0.
A nonlinear expectation (E§%), (o 1) is called sublinear if each €5'° is
(PH) positively homogeneous, i.e., E{PAX] = AESUP[X] for all A > 0,
(SUB) and subadditive, i.e., E$"P[X + Y] < ESUPX] + ESUP[Y].

Finally, a nonlinear expectation (€7 )cfo1 is called superlinear if
(—Eiup [—1)tepo,1) is a sublinear expectation. If (E¢)ic(o,1) is @ nonlin-
ear expectation on (Hy)c(o,1), we shall refer to (H)iejo,1) simply as
the domain of (€)o7 o

From (SI) and (N) it is obvious that a nonlinear expectation also
(PC) preserves constants, i.e. £¢[X] = X for all X € H and t € [0, T].

For subadditive operators the converse is also true, i.e. (PC) implies
(SI) and (N). This is a consequence of the self-domination property of
sublinear expectations:

LEMMA 2.3. Let (Ei“b)te[(),ﬂ be a sublinear expectation on ((H)rejo, 1), <)-
For all t € [0, T], we have

ESUPIX] — eSPIY] < E5PIX — Y] forall X,Y € Hr. (2.2)
Proof. For all X,Y € Ht and t € [0, T, (SUB) implies that
EPPIX] = EFPIX = Y+ V] < €Y X — V] + 3LV,

which rearranges to (2.2). O



2.2 SUBLINEAR EXPECTATIONS AND APPROPRIATE DOMAINS

COROLLARY 2.4. A family of operators & : Ht — H, t € [0,T], on a
domain for expectations is a sublinear expectation if and only if it satisfies
(M), (TC), (PC), (SUB), and (PH).

Proof. Since (PC) implies (N), it remains to check (SI). Thus let X € Hy,
Y € Hr, and note that Lemma 2.3 and (PC) imply

X+E Y= EXF+Y] < X+ E Y= (X+Y)] =X+ E[—X] =0,

ie., X+ E[Y] < E[X+Y]. On the other hand, (PC) and (SUB) yield
EIX+ VY] < E¢IX] + E¢[Y] = X+ &¢1Y], and (SI) is established. ]

A simple example of a nonlinear expectation is given by the classi-
cal conditional expectation, of course. For truly nonlinear examples,
we refer to Section 2.5 below.

EXAMPLE 2.5. Let (Q, A, (Fi)iep0,1), P) be a complete filtered probabil-
ity space and let F, be P-trivial. Then the family of linear operators
(Et)teio,1), given by

E.:L'(Q,97,P) = L'(Q,F,P), X~ EPIX|F,

is both a sub- and superlinear expectation on (L' (Q, ¢, P))ic(o,1), in
the sense of Definition 2.2. Here, L' (Q, ¥4, P) is the Lebesgue space of
all F-measurable, P-integrable random variables and EP[X| 9] is the
conditional expectation of X w.r.t. P, given ;.

2.2 SUBLINEAR EXPECTATIONS AND APPROPRIATE DOMAINS

Domains for expectations (as in Definition 2.1) have — except for the
presence of additive inverses — just the right amount of structure to
write down the general Definition 2.2 of sublinear expectations. Ide-
ally, one would want to work with Banach spaces of “random vari-
ables” as in the case of linear expectations (recall Example 2.5). There,
the family {LP(Q,F,P) : t € [0,T], 1 < p < oo} of classical Lebesgue
spaces enjoys a great deal more of structure: The spaces consist of
equivalence classes of random variables, where two random variables
are considered to be equivalent if their values differ only outside a set
in Np ={N C Q : P(N) =0}, and have a topology which is consistent
with the pointwise order; all the spaces LP(Q,J,,P), p > 1, coincide
and are isometrically order-isomorphic to IR; the spaces are related by
Holder’s inequality, increasing in t and decreasing in p. Finally, the
(sub)linear expectation generates the norms on the spaces on which
it is defined by the expression

1
I llLp : L} = [0,00), X Eg [XIP]?. (2.3)

Essentially, we want the same thing for sublinear expecations: First,
their domain should have the structural Lebesgue space-type features
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as outlined above. This leads to the notion of a Lebesgue family, which
is defined in the following Subsection 2.2.1. Second, we want sublin-
ear expectations to generate their own norms via the LP-type expres-
sion (2.3). In this case, we have an appropriate domain for the sublinear
expectation, as defined in Subsection 2.2.2 below.

2.2.1 Lebesgue families

Let Q be a non-empty set. To axiomatically define the concept of a
Lebesgue family, we begin with the equivalence relation: Let N C 2 be
a non-empty collection of subsets of () which is closed under count-
able unions and does not contain Q; we refer to such an N as a col-
lection of negligible sets. A collection of negligible sets N induces an
equivalence relation ~y on QR by

f~yg < f(w)=g(w) forall we QO\N and some N € N.

The set {f € QR : f ~y 0} forms a subspace of QR; the correspond-
ing quotient space is denoted by ©*/x. By definition, pointwise op-
erations on Q%/n are well-behaved: If ¢ : R — R and f ~x g, then
@ of ~x @ og. Moreover, @%/x inherits the pointwise partial order
from OR i,

X<Yin Of/n «—= f(w) < g(w) forall w € O and some f€ X, g€,
and it is immediate that the canonical injection
i:R—02%N, x—= Q-2 R, wex,

is order-preserving. With these preliminaries, we now give the defini-
tion of a Lebesgue family:

DEFINITION 2.6. Let Q be a non-empty set and let N C 22 be a collec-
tion of negligible sets. Suppose that

{8 - llep) - telo, T, p=1}

is a family of Banach spaces such that the following statements hold
true forallt € [0, Tland p > 1:

(L1) L} < O%/n, ie., L} is a linear subspace of Q%/x,
(L2) LE c Ly forall1<g<pand0<s<t,
(L3) LP ={Xel] : XPell},

121/

(L4) XY e}, ifXeL],Yelandp,qe(1,00) with 3+ ¢

(Ls) L§ =i(R) forallp > 1 and i : R — L] is an isometry,

In the above example of classical Lebesgue spaces, this collection consists precisely
of all P-null sets.
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(Le) LL 2{X e L' : X>0}c L' is closed.

Then {(L}, || - |[Lp) : t €[0,T], p > 1}is said to be a Lebesgue family. For
brevity, we write LP = L2 p > 1. o

Assumption (L1) simply states that we are working with equiva-
lence classes of functions with respect to one fixed, pointwise defined
equivalence relation. Condition (L2) guarantees that the spaces be-
come larger as time passes and “more becomes known” and smaller
as p increases, i.e., “as integrability gets harder.” Assumption (L3) is
certainly expected to hold for anything that claims to be similar to the
classical LP-spaces and implies in particular that all spaces are closed
under taking the absolute value. The desired relationship between
Holder conjugate spaces is ensured by (L4). Condition (L5) entails
that L} is isometrically order-isomorphic to R: “Nothing is known at
time 0.” This allows us to identify L] and R, which we will do in the
following. The last assumption, (L6), guarantees that the ordering is
preserved under taking limits. Intuitively, one should think of L} as
the space of time-t measurable, p-integrable random variables.

IE{(LY, || lLp) : t€[0,T], p=1}is a Lebesgue family, then, for ev-
ery p > 1, ((LY)iepo,1), <) is a domain for expectations and may thus
carry a nonlinear expectation (c.f. Definition 2.2). Sublinear expecta-
tions on Lebesgue families are investigated in the next subsection.

Note: For our results on backward nonlinear expectation equations and the convergence
of recursive utilities in Section 2.3 and Section 2.7 below, the full Lebesgue family is not
needed: One can fix p = 1 and work only on (L’l)te[o,t]- In this case, the conditions in
Definition 2.6 reduce to the requirements

Ll <! <Oo®xn and Xel! = [Xlell forall 0<t<s<T
and the conditions that

i:R — L' is a surjective isometry andthat L! ={XeL':X>0}cLisclosed.

2.2.2  Appropriate domains for sublinear expectations

Suppose we are given a Lebesgue family

(L2 lp) s telo, T, p=1),

and let (£5"?) <o 1) be a sublinear expectation on (L} )c[o,7;- Then, for
each p > 1, the function

op 1 1P 5 [0,00), X EFP[XP]P (2.4)

defines a seminorm on LP: Indeed, p, is well-defined by (L3) and
(M), and homogeneity is obvious from (PH). The triangle inequality
is proven in exactly the same manner as the classical Minkowski in-
equality, making use of Holder’s inequality for p,. For the sake of
completeness, the proofs are provided below.

17
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LEMMA 2.7. Let t € [0,T] and p,q > 1 with %+% =11IfX e L} and
Y € LY, then XY € L] and
1 1
E3IXY] = p1(XY) < pp(X)pq (V) = €3 [IXIP] 7 €3 [IV9] 0.
Proof. We have XY € L! by (L4). For ¢ > 0 we put
X Y

X2 - €Ll?P and Y2 € L4,
(e + ESBOXPY) P (e + E3[Y]a])

al—=

Choose some g € X and some h € Y. Then Young’s inequality implies
lg(w)h(w)] < Flg(w)P + Fh(w)|®  forall w € Q.

Hence |XY| < %I)_(PD + %I\?\q, where both %If(lp and %qu are in L' by
(L3), and thus we obtain

e [IRVI] < &3 | LIRP + 1IVI9] < Jeg® [IXIP] + Ly [IV19]
by (M), (SUB) and (PH). Moreover, (PH) yields
ESP IXP] = ESPIXP1/ (e + EXPIXP]) <1 and  EXP[IV19] <1,

and we get EXP[IXY]] < % + L = 1. Therefore, we have

1
q
1 1
e IXVI) < (e + EFPIXPT) 7 (e+E300VI9)
and letting ¢ — 0 yields the claim. O

From Holder’s inequality, one can prove Minkowski’s inequality
using the classical argument.

LEMMA 2.8. Let p > 1 and X,Y € LP. Then p, (X +Y) < pp(X) + pp (V).

Proof. We first prove the claim for p = 1. The triangle inequality in R
implies that [X+ Y| < [X| + Y|, where [X + Y], [X],[Y] € L by (L3). Now
monotonicity (M) and subadditivity (SUB) yield

e [X+ Y1) < 5 [IX1+ Y]] < £ [IX] + e v,

ie, p1(X+Y) < p1(X) +p1(Y).
Now let p > 1. Making use of (L3), we set

XEX|elP?, Y2|Y|elP, andZ&|X+Y|elP.
The triangle inequality in R implies
1ZP =X+ Y] 1ZP~T <X (ZP 4+ Y-z

Note that |Z|P € L' and |Z|P~!" € L9 by (L3), where q = p% > 1. Since
&+ 4 =1, Lemma 2.7 yields X-|ZP~1, V- ZP~! € L' with

p1(X-1ZP1) < pp(X)pg (1ZP71), o1 (Y-1ZP71) < pp (Vg (1ZP7T).
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Thus with (M) and the already proven inequality for p =1, we get
1 (1ZIP) <p1 (X-1ZP7T Y- 1ZP71) <oy (RA1ZPTT) 401 (V-1ZP7T).
Combining the above, we arrive at

op (X+Y)P =p1 (1ZP) < (pp(X) +pp(Y))pq (1ZIP7).

For pp (X4 Y) =0, there was nothing to show, anyway. Otherwise, we
divide by p, (X + Y1 = Pq (IZIP~") to complete the proof. O

As hinted at above, a Lebesgue family is an appropriate domain for
a sublinear expectation (E§"°) (o 17 if (E5°)(c[0,T) generates its norms
via (2.4).

DEFINITION 2.9. Let

L={LY, | lLp):tel,T, p=1}

be a Lebesgue family and suppose that (£5%°),co1) is a sublinear
expectation on (L{)ico 7). If

e P 5P forallte[0,Tlandp > 1,
and if the seminorms in (2.4) satisfy
pp=|-llLp forallp>1,
then we say that £ is an appropriate domain for (E5°) cro 17- o

Note: If one restricts attention to p = 1 (see the note on p. 17), it suffices to require that
p1 =111

Note: In our article Belak, Seiferling, and Seifried (2015), on which the current section is
partially based, the concept of an appropriate domain was referred to as an appropriate
family of LP-spaces.

Remark. In this thesis, we focus on nonlinear expectations that are
defined on appropriate domains. This restriction is necessary if one
insists that the domain of the nonlinear expectation carry a linear
structure. For instance, Nutz and van Handel (2013) show that it is
not possible to construct G-expectations on a linear space containing
all Borel functions on Wiener space. o

General results on the existence of appropriate domains for sublin-
ear expectations satisfying a Fatou property will be presented in Sub-
section 2.4. Appropriate domains for the concrete examples of g-, G-
and random G-expectations can be found below, in Subsections 2.5.1,
2.5.2 and 2.5.3. For linear expectations, appropriate domains come
without surprises:

EXAMPLE 2.10. Let (Q, A, (Fi)c[0,1), P) be a complete filtered probabil-
ity space and let F be P-trivial. Then the family of classical Lebesgue
spaces {LP(Q,JF,P) : t € [0,T], p > 1} is an appropriate domain for
the linear expectation (E¢)c[o 1) of Example 2.5.
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The definition of an appropriate domain entails in particular that
(€5"P) cj0,7) is a sublinear expectation on (L})c[o 1. Moreover, as a
straightforward consequence of the next lemma (Jensen’s inequality),
the operators &5 : [P — L are continuous. We record this fact ex-
plicitly as Lemma 2.15 in the next subsection.

LEMMA 2.11. Let {(L}Y,| - ||p) : t € [0,T], p > 1} be a Lebesgue family,
and let (8iub)te[0,ﬂ be a sublinear expectation on (L})ic(o 1). Then Jensen’s
inequality holds:

For all t € [0, T] and any convex function ¢ : R — R, we have

@ (EPIX)) < &P [@(X)]  whenever X € L' with o(X) € L.
In particular, for all p > 1 and t € [0, T, it follows that
|ESPIX)|P < ESPIXIP] forall X € LP.
Proof. We first prove that
a$™ X +b < &5"P[aX +b] forall a,b € R. (2.5)
Normalization (N) and self-domination (2.2) give
—&subIX] = E5UP[0] — E5UP[X] < E5UP[0 — X] = &5UP[—X].
Together with positive homogeneity (PH), this implies
a&$PX] = sign(a)e$[|alX] < €5*°[aX] forall a € R.
Now shift-invariance (SI) yields (2.5).

We denote by L, the collection of all (a,b) € Q% with ay+b <
@(y) for all y € R. Then, for all (a,b) € Ly, monotonicity (M) and
inequality (2.5) imply

a€PPIX] + b < EFPlaX +b] < €[ (X)].
Thus, since N is closed under countable unions, we find a negligible

set N € N and representatives f, g € QR of 8?“" [X] and 8?“b[<p(X)] in
L' < @®/x such that

af(w)+b < g(w) forallwe QO\Nandall (a,b) € L.
Taking the pointwise supremum, we obtain

e(flw))= sup af(w)+b<g(w) forallwe O\N
(a,b)eL,
by convexity of ¢, and the first claim follows. The second claim is
an immediate consequence of the first since x — [x|P is convex and
X|P € L' for all X € LP by (L3). O

We stress that the above version of Jensen’s inequality does not
claim that (p(S?fb X)) e L]. It only asserts that the desired inequal-
ity holds in ©%/n. In the following, we will only use the second
part, which may also pass as a consequence of Holder’s inequality.
In that specific case, the membership £*[X] € L} is guaranteed if the
Lebesgue family {(L},| - [lLp) : t € [0,T], p > 1} is an appropriate
domain for (£$'°) (o 1.
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2.2.3 Dominated nonlinear expectations on appropriate domains

Nonlinear expectations (which are not sublinear) do not generate
their own norm via the LP-type expression (2.4) from Subsection 2.2.2
above. To accommodate them, we assume that they come together
with a sublinear expectation that dominates them in the sense of the
following definition:

DEFINITION 2.12. Let (&¢)iec(0,1), (Et)tefo,1) be nonlinear expectations
defined on the same domain ((Hy)eo 1), <). We say that (E¢)ejo 1)
dominates (E¢)ieio,1) if

ExX] —E¢IYI < &iX—=Y] forall X,Y e Htand t e [0,Tl. o

Remark. Lemma 2.3 (on p. 14 above) implies that every sublinear ex-
pectation dominates itself. o

The domination property has useful implications for nonlinear ex-
pectations that are dominated by a sublinear expectation:

DEFINITION 2.13. Let (85“’)te 0,T] be a sublinear expectation on an
appropriate domain £ = {(L}, || - :t€[0,T], p>1}. Suppose that
(Et)tejo, 1) is @ nonlinear expectatlon on (L] )te[O,T such that

(Eiub)te[o,n dominates (E¢)ico) and &¢:LP =LY  (2.6)

forallt € [0,T] and p > 1. Then we call (E¢)¢(o,1) @ dominated nonlinear
expectation carried by (E5%°),c(0,1) on (the appropriate domain) £.

Note: If one restricts to p = 1, it suffices to require that (8§“b]t€[0,ﬂ dominates (Et)epo, 1]
on (L{)iejo,1)-

Dominated nonlinear expectations satisfy a triangle inequality:
LEMMA 2.14. Let (Et)iejor) be a nonlinear expectation that is carried by
(€30 c10,1) on the appropriate domain {(LT,|| - e[0T, p>=1)
Then, for all X,Y € L', the triangle znequalzty

E¢[X] — E¢[Y] < ESPIIX — VI, telo,Tl,
is satisfied. In particular, we have |E¢[X]] < Eiub[IXI] and
€SP IX] — 5P IY]| < ESUPIX — Y] as well as  |ESWPIX]] < ESPIX]].

Proof. First note that [X—Y| € L' by property (L3) of a Lebesgue family.
Now, (Eiub)te[o,ﬂ dominates (€¢)¢e(o,1], and hence monotonicity (M)
of €50 implies

Ex[X] — E¢[Y] < EFPIX — Y] < EP[IX — V).

In the same fashion, it follows that &[Y] — &:[X] < ezubux —Y|], which
proves the first claim. The second is implied by the normalization
property (N) upon setting Y = 0. The remaining statements follow
from self-domination of (Ei‘Jb)te[o,ﬂ, see Lemma 2.3 above. O
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Together with Jensen’s inequality, the triangle inequality shows that
&¢: P — L} is a continuous mapping.
LEMMA 2.15. Let (E¢)iejo,1) be a nonlinear expectation that is carried by
(€590 c10,1) O the appropriate domain {(LY, | ||Lp) = t € [0, T], p > 1}
Then, for all p > 1 and t € [0, T], we have the contraction property

| &eX]— Et[Y]HL,p <X=Y|Lp, X, Y€eLP,
and, in particular,
€3 IX] — 8P|, < IIX=YlLp, X YELP.
Proof. The triangle inequality (Lemma 2.14) implies
€c[X] — &[] < €3 (X =V,

where [E¢[X] — E[Y]| € LP and [X—Y| € LP by (2.6) and (L3). Hence,
Jensen’s inequality (Lemma 2.11) yields

|EcX] — EVI|7 < [E5PIX = VI |7 < &P [IX— Y],

where |€[X] — &[Y][P € L! and &5"°[IX — Y[P] € L'. Now, monotonicity
(M) ensures that

1€X] — VT, = ERP[|EcX] — £:YI["] < €30 [e3° (X —VIP]],

where the last term is precisely £5"°[X — Y[P] = || X — Y||‘E,p by time-
consistency (TC). This proves the first claim. Self-dominance of sub-
linear expectations (Lemma 2.3) immediately yields the second. [J

2.2.4 Processes and integrals

By definition, a stochastic process is a family X = (X¢)¢¢[o 1) of ran-
dom variables. In line with our notion of L} as the space of time-t
measurable, p-integrable random variables, the natural definition of
processes in the context of nonlinear expectations is as follows.

DEFINITION 2.16. An LP-process is a function X : [0, T] — LP, where
LE{LY, | lp) : t €[0T, p>1}is a Lebesgue family. It is mea-
surable if the function X is B([0, T])-B(LP)-measurable, and it is adapted
if X¢ € L} for all t € [0, T]. The space of all measurable and adapted
LP-processes is denoted by XP(£). We will simply write XP if the
Lebesgue family £ is clear from the context. o

Remark. In the above definition (and the remainder of this text), the
symbol B(S) denotes the Borel o-algebra on a topological space S. <

We will consider (Lebesgue-Bochner) integrals of measurable LP-
processes with respect to a finite positive measure u on B([0,T]),
as outlined below. For additional details, we refer to Appendix A.3
(p. 163ff.) and Dunford and Schwartz (1958).
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DEFINITION 2.17. Let u be a positive finite measure on B([0, T]). For
each p > 1, we define the space of p-integrable adapted LP-processes as

PP(L, ) & {X €XP(L) : X1 gy € LT (; L) forall t € [0, T]},

where £'(w; LY) denotes the space of LV-valued p-integrable func-
tions. A seminorm on PP (L, 1) is defined via

|| “IPp - xp(L) — [0, 00], IOT ”Xt Lp u(dt)
Identifying X,Y € PP (L, u) if ||X — Y||p,p = 0, we obtain the associated
quotient space PP (L, u). o

Note: The condition X1(o 4} € £l (w; Lf) is imposed in the definition of PP in order to en-
sure that [, Xdu e LY whenever A C B([0,1t]). In the presence of the integrability con-
dition [[X|[pp = J(o,7)/IXtllLp r(dt) < oo, this is equivalent to X1 ) being p-essentially
separably valued, see Lemma A.39 (p. 163). If LP is a separable Banach space, this con-
dition is automatically satisfied, and then PP consists precisely of all norm-integrable
XeXP(L) ie, PP(L, ) ={X € XP(L) : [IX[|pp < ook

PROPOSITION 2.18. Let w be a positive finite measure on B([0, T]), and let
L be a Lebesgue family. Then (PP, || -||py,) is a Banach space.

Proof. This is a straightforward consequence of Theorem IIL.3.6 in
Dunford and Schwartz (1958), p. 146. See Lemma A.40 (p. 164) in
Appendix A.3 for some particularities of the present situation. ]

For every process X € PP (£, ), the Bochner integral
[aXdpelP, AeB(0T],

of X over A with respect to p is defined. As is the usual convention,
for (a,b] C [0,T], we write jb Xdu £ J(apy Xdp. To emphasize the
integration variable, we shall also write [ , Xt p(dt) £ [, Xdp.

LEMMA 2.19. The integral
fa:PP 1P, X [, Xdn
is a continuous linear operator satisfying

|UAXd“||L,p JallXelle
forall A e B([0,T]).

Lp k(dt) < |X[lpp, XePP, (27)

Proof. See Lemma A .41, p. 165. O

Since X € PP (L, ) is adapted, X1 (o4 is an L}-valued Bochner inte-
grable function, and we have

JaXdu= [, XIpydpell forall Ae B([0,t]). (2.8)

Thus, the integral process [0,T] — LP, t ~ [;Xdu € LP is adapted.
With Lemma 2.21, we show that it is also right-continuous and, in
particular, measurable.

We conclude this section by introducing subspaces of PP that repre-
sent natural domains for backward nonlinear expectation equations.
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DEFINITION 2.20. Let £ be a Lebesgue family. For 1 < p < co we define

SP(L, ) 2 {X € PP(L, 1) : X

sp <00}, IXllsp = sup [[X¢l
te[0,T]

Lp-

Then (SP, || - ||s,») is a Banach space that contains the closed subspace
DP(L) £ {X e XP(L) : [0,T] = LP, t — X is cadlag}.

If £ and p are clear from the context, we will only write SP and DP. ¢

We note that every cadlag adapted LP-process automatically is a
member of SP (£, u), regardless of u, that is, DP(£) € SP(£, ) for all
finite Borel measures p on [0, T].

Note: The necessary simple function approximation is easily produced: Let X be a cadlag
adapted LP-process; then t — ||X¢||r,, is also cadlag and, in particular, [X]|s, < co. We
set X™ £ XoTjop + X k1 XepTien ep)r e = kt/m, n € N. Then X™ is an L{-valued
measurable simple function with [|X¢ — X ||, — 0 and [ X} — Xl < 2[[X]|sp for all
s € [0,t]. Dominated convergence implies X1(g ) € L1 (w; Lf) for all t € [0,Tl; thus,
X € PP(L,u), and hence X € S(L, w).

For every finite positive measure u, we have

X

Pp < H([OIT])HXHS,})/ Xe Sp/

and thus, we can regard SP(L,u) C PP(L,pu) as a subspace. It is
noteworthy that the integral induces a continuous linear operator
PP — DP.

LEMMA 2.21. Foreach 1 < p < oo, the integral
[:PP - DP, X~ 1IX, where (IX); 2 [;Xsn(ds), t€[0,T],
is a continuous linear operator.

Proof. By (2.8), the integral IX is an adapted LP-process. We have
sup,co 1 I1XtllLp < [IX[lpp by (2.7), and, for t < s, the inequality

1X)s — (D ellLp < fo 1 cts (WXl pr(du)

implies that IX is cadlag; thus, IX € DP. O

2.2.5 Bibliographical notes

Upper expectations, given by E3P[] = sup,,p EP[] (in terms of a set
IP of probability measures), are the most natural examples of (static)
sublinear expectations, and they have a long history in robust statistics,
see, e.g., Huber and Strassen (1973), the book by Huber (1981) and
the references therein. Upper and lower probabilities yield a popular ex-
tension of the classical probabilistic framework and allow the quan-
tification of uncertainty in the presence of inconsistent information,
when the Kolmogorov (1933) axioms reach their limitations. Instead
of associating a single number — a precise probability — with an event,
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a whole interval of plausible probabilities between the upper and the
lower probability is assigned. Hence, upper and lower probabilities
are highly related to upper and lower previsions, as proposed by Walley
(1991) in his book on statistical reasoning with imprecise probabilities.
For a recent survey of the topic, we refer to Miranda (2008). An ex-
tensive account of the history of nonlinear probabilities in statistics
can be found in Hampel (2009). For additional background on impre-
cise probabilities, we refer to Coolen et al. (2011) and the references
therein.

Upper and lower previsions can be interpreted as maximum buy-
ing prices and minimum selling prices for gambles; decisions on
whether a gamble is accepted or rejected are based on these prices
and obey two principles: They are coherent, meaning that a positive
linear combination of acceptable positions is still acceptable, and they
avoid sure loss. Thus, it is apparent that the concept of imprecise prob-
abilities is strongly connected to that of coherent risk measures, as pro-
posed by Artzner et al. (1999); see also Delbaen (2002) and Follmer
and Schied (2004). On the other hand, there is a one-to-one corre-
spondence between coherent risk measures and (static) sublinear ex-
pectations: A mapping p is a coherent risk measure if and only if
v £ p[—] is a (static) sublinear expectation. In that context, v is often
referred to as a valuation.

A dynamically consistent extension of these concepts has been
proposed by Peng (1999, 2004a) and Coquet et al. (2002), under
the name filtration-consistent nonlinear expectation, in the context of
g-expectations. A filtration-consistent valuation or nonlinear expec-
tation &, t € [0,T], maps Fr-measurable random variables to F-
measurable random variables, where (F;)c[o,1] is a filtration, and it
is supposed to satisfy the tower property

This strong notion of time-consistency is the same one we use in our
Definition 2.2 of a nonlinear expectation; however, by directly model-
ing the flow of information by an increasing family of linear spaces
(Hi)te[o,1) we abstract from the filtration. In the context of dynamic
risk measures, there are various weaker concepts of time-consistency
in the literature. For these and further developments of the theory, we
refer to Cheridito et al. (2004, 2006), Artzner et al. (2007), Jobert and
Rogers (2008), Stadje (2010), Acciaio et al. (2012), Pelsser and Stadje
(2014) and the references therein.

Our general framework of Section 2.2 comprises g-expectations, see,
e.g., Peng (1997, 2004b), G-expectations as put forward by Peng (2007,
2008), and random G-expectations as introduced and analyzed by
Nutz (2012, 2013). By construction, the G- and random G-expectation
are defined on appropriate domains in the sense of Definition 2.9. Ap-
propriate domains are an abstraction of these concrete situations which
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has been proposed in Belak, Seiferling, and Seifried (2015) and which
generalizes the constructions of Peng (2005b, 2008, 2010).

All of the observations made in Section 2.2 have been made before,
in similar frameworks for nonlinear expectations; see, for example,
Peng (2008) for Holder’s inequality (Lemma 2.7) and Minkowski’s
inequality (Lemma 2.8), and Cohen et al. (2011) for Jensen’s inequal-
ity (Lemma 2.11). The notion of domination from Definition 2.12 is
also standard in the theory of nonlinear expectations and so are its
implications, as the triangle inequality (Lemma 2.14) and continuity
(Lemma 2.15); see, e.g., Coquet et al. (2002).

2.3 BACKWARD NONLINEAR EXPECTATION EQUATIONS

In Section 2.1 and Section 2.2, we have set up the mathematical frame-
work for our study of backward nonlinear expectation equations:

STANDING ASSUMPTIONS Throughout this section,
(Et)tefo,1) is a nonlinear expectation, carried by a
sublinear expectation (£§"?),c[o 1) on an appropriate domain

L2{IY -

Lp) 1 te0T, p=1}

in the sense of Definition 2.13. Moreover, u is a finite Borel measure on
[0, T]; we consider the corresponding space of (u-equivalence classes
of) p-integrable LP-processes

PP = {[X] : X adapted LP-process with X0 € £'(w; L}) Vt € [0,T]},
as in Definition 2.17. Recall that PP is a Banach space with norm

X

pp = Jo,1 IXellLp 1e(dt), X e PP.

Moreover, as in Definition 2.20, we consider the process spaces

SP ={XePP(L,p): X
DP = {X adapted LP-process : [0, T] — LP, t— X, is cadlag} C SP

sp<oo}  and

equipped with the norm

sp = sup [Xq
tel[0,T]

X

Lps X e SP.

In the following, we are interested in solutions of backward nonlinear
expectation equations (BNEEs) of the form

Xe=&f{gls, X u(ds) +&|, telo,T), (2.9)

where X is an LP-process and (g, &) is a suitable parameter (see Defi-
nition 2.24 below).
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First, we note that it is natural to require a priori that X € SP.
Indeed, for the nonlinear expectation and the integral on the right-
hand side of (2.9) to be well-defined, g(-,X) must be an integrable
LP-process. On the other hand, a solution X of the equation is auto-
matically adapted, so X € XP. Moreover, by the contraction property
(Lemma 2.15) and continuity of the integral (Lemma 2.19), we have

:
sup [[XellLp < Jollg(t, X)]

te(0,T]

Lp H(dt) + €]

Lp < 00,

see also Lemma 2.27 below.

In summary, the BNEE (2.9) only makes sense for X € SP. However,
the measurability condition implied by X € SP is not automatically
satisfied: For a general nonlinear expectation and & € LP, the mapping
t — E¢[&] need not be well-behaved, and so even the simplest BNEE

Xt = Et[a]/ te [O/ T]/

may not admit a solution in SP. It is thus necessary to restrict the class
of nonlinear expectations under consideration:

DEFINITION 2.22. A nonlinear expectation (€¢)¢c(o,1) is said to be mea-
surable if the LP-process

X:[0,Tl = LP, 1t~ E[E]

is a member of SP for each & € LP. If X even is a member of DP, then
(E)tefo,1) is called regular. o

Note: The naming in Definition 2.22 probably warrants some explanations. Note that
Xt = &t[&] is always an adapted LP-process with |X|s, = sup,cjo1)IXellLp =
lElL,p < oo. Thus insisting that X be a member of DP is equivalent to requiring that
the mapping [0,T] — LP, t — ¢&¢[&] be cadlag. Hence the use of the word regular
seems to be justified in this context. The use of the term measurable is somewhat more
arbitrary. However, if the appropriate domain under consideration consists solely of sep-
arable Banach spaces (as is often the case), then asking that X be in SP is the same as
requiring that the map [0, T] — LP, t — &¢[&] be B([0, T])-B(LP)-measurable; so at least
in that case, the wording is meaningful.

By continuity of nonlinear expectations, it suffices to check measur-
ability and regularity on a dense subset of LP:

LEMMA 2.23. For each & € 1P, let X5 : [0,T] — LY, t — &[&l. Then
(E¢)teqo,1) is regular (measurable) if and only if there exists a dense subset
M C LP such that X& is cadlag (X& € SP) for each & € M.

Proof. By the contraction property from Lemma 2.15, the operator
X:LP = Xyepo,r) L, & X satisfies

sup [[X5(t) = X"(t)||Lp < |E—m|lLp forall §,mneLP.
tel0,T]
Hence, the claim follows by a density argument. O

In Section 2.5, we will show that the most widely used specifi-
cations of nonlinear expectations are regular in the sense of Defini-
tion 2.22.
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2.3.1 Existence and uniqueness

For X € XP and t € [0, T], we briefly write X* £ 1, ;X € XP.

DEFINITION 2.24. Let & € LP, and let
g:[0,T] xSP — L?P be such that g(-,X) € PP for every X € SP. (2.10)

Suppose there exists a constant L > 0 such that g satisfies the Lipschitz
condition

lg(t,X)—g(t, Y)|rp < L|X* —Y'sp forall X,YeSP,tel0,T]. (2.11)

Then, the pair (g, &) is called a BNEEP-parameter. o

For future reference, we note that (2.11) implies

lg(, X)llpp < w(l0, THLIX[lsp +MI9(-,0)llpp, X €SP (2.12)

Note: In view of (2.12), the requirement g(-, X) € PP for every X € SP in Definition 2.24
can be relaxed to g(-,0) € PP if LP is separable.

The BNEE associated to a BNEEP-parameter (g, &) is given by
X = & [jtTg(s,X) u(ds) + a}, teo,Tl. (2.13)

Frequently, the aggregator function g depends only on the current
value of the solution process:

DEFINITION 2.25. Let £ € LP and f: [0, T] x LP — LP. Suppose that
f(t, Q) —f(t,n)|lLp <SL|C—m|rp forallmelP, tel0,T], (2.14)

and that f(t,L}) c L} for all t € [0, T].
If (f, &) induces a BNEEP-standard parameter (g, &) via

g:[0,TIxSP = 1P, (t,X)+— f(t,Xy), (2.15)

then (f, &) is called a BNEEP-standard parameter. o

In line with (2.15) and (2.13), the BNEE associated to a BNEEP-
standard parameter (f, &) takes the form

Xe = &[ [ f(s,Xs) n(ds) +&], telo,Tl. (2.16)

The remainder of this subsection addresses the proof of the follow-
ing first main result:
THEOREM 2.26. Suppose that (E¢)icio 1) is measurable and let (g, &) be a
BNEEP-parameter. Then the BNEE (2.9) has a unique solution X € SP. If
(Et)teo,1) 1s regular, then X € DP.

The proof is based on a classical fixed point approach. Before we
show that the corresponding iteration operator is well-defined, we
prove a norm estimate that will be frequently used in the following.
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LEMMA 2.27. Let Y,Y € PP and §,& € 1P, and set
Ac2 e [[Ysnlds)+ & — & |[{ Vs ulds) +E|.
Then, for each t € [0, T], we have

T — -
sup [[Asllp < [ [IYs = Vslup nlds) +[[E=EllLp.  (2.17)
se(t,T]

Proof. Let 0 < t < s < T. Clearly Ug = fSTYr u(dr) +& € LP and
u, £ fST\?T u(dr) + & € LP. Thus As € LY, and the triangle inequal-
ity (Lemma 2.14) implies that

As| = €5 U] — & [T]] < e3P U — W]
Hence, applying the contraction property (Lemma 2.15), we obtain
18l < 1Us = Tsllp = [1f5 (Y = Ve wldr) + (£ =8|,
By continuity of the integral (2.7), this entails
185l = 1= EllLp < S IYe = Vellp w(dr) < [{ Ve = Vollop nldr)
for all t € [t, T]. Thus (2.17) is established. O

LEMMA 2.28. Under the assumptions of Theorem 2.26, the formula
(©X)e 2 &[] gls, X u(ds) +&], teo,T], (2.18)
defines an operator ® : SP — SP. If (E)ejo, 1) 15 regular, then ®(SP) C DP.

Proof. Let X € SP. Then Y 2 g(,X) € PP by (2.10), and, in particular,
fOT Yy u(dt) € LP. Since (Ei)ecpo,1) is measurable, the LP-process M
given by
M =& [ Ysn(ds) +&], telo,T],

is a member of SP (and of DP if (€;)¢[o,1] is regular). By Lemma 2.21,
the process I given by I = f(t) Ys u(ds), t € [0,T], is in DP. Thus ®X =
M —T1¢€ SP (and ®X € DP if (E¢)iejp,1) is regular). By shift invariance
(SI), we have

(OX)y = &[] Vs plds) + &) — [§ Vs u(ds) = E¢[f{ Ys u(ds) +&],
which establishes (2.18) and completes the proof. O

Proof of Theorem 2.26. Let U,V € SP. Lemma 2.27, applied to Y £
g(-,U)and Y £ g(-, V), shows that

T —
Sup ||((DU)S - ((DV)SHL,p < J‘t HYS _YsHL,p H(ds)
selt,T]

for all t € [0, T]. By Lipschitz continuity (2.11) of g, we have

s _YSHL,p =g(s, X) — Q(SIY)”L,p < Ljju® _VS”S,p
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for all s € [0, T] (where U* = 1, r;U). We thus get
[(OU)E — (OV) s p < LT U = V3ls, u(ds) forall t € [0,T].

Iterating this estimate, we see that A™ £ |[[@™U — @"V|lg, can be
bounded above as follows:

AN fL T Ut = Vg p(ditn) - () p(dity)

LTL
< (0, ™M U= Vls p—-

Thus @™ is a contraction for sufficiently large n € IN, and hence @ has
a unique fixed point X € SP that satisfies (2.9). If (E¢)ie(o 1) is regular,
then X = ®X € DP by Lemma 2.28. O

2.3.2 Stability of BNEEs

With Theorem 2.26 above, we have established existence and unique-
ness for solutions of BNEESs. It is now natural to investigate their sta-
bility under perturbations of the aggregator and the terminal value.
We have the following result:

THEOREM 2.29. Let (E¢)¢c(o,1) be measurable, and let (g™, &™), n € N, and
(g, &) be BNEEP-parameters. Suppose there is a constant L > 0 such that

lg™(t,X) — g™(t, V) |lLp < LIX'—=Y'|s, forallX,Y €SP, te0,T],

and all n € IN. Let X", n € IN, and X denote the solutions of the associated
BNEEs and suppose that

Talg™t,X) = g(t, X)||Lp u(dt) =0 and &" — & inLP.
Then X™ — X in SP.

Proof. Lemma 2.27, applied to Y = g(-,X) and Y = g"(-,X™) as well as
& and & = &™, shows that

sup [ Xs — X2 Lp < [{llg(s,X) = g™ (s, XD [Lp ulds) + [|&— E™|1p-
se[t,T]

By assumption, we have
1g™ (s, X) = g™ (s, X")[lLp SLIX* = (X")*[lsp ~ forall's €0, T],
and therefore
lg(s, X) = g™ (s, X")lILp < llg(s, X) = g™ (s, X)|Lp + LIX* = (X*)*[Is,p-
Inserting this into the first inequality, we obtain

T
Xt = (XM lsp = sup [[Xs =XT{lLp <LICIXS = (XM)*lsp plds) + 6
seft,T]

for all t € [0, T], where
5n 2 f5ll9(s,X) = g™ (s, X) || p w(ds) + " = &][p — 0.

We conclude by Gronwall’s inequality. O
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2.3.3 Discretization of BNEEs

Building on the stability result of Theorem 2.29, we now address the
discrete-time approximation of BNEEs.
In the following, we fix a BNEEP-standard parameter (f, ) and let

X; = & [ T (s, Xo) u(ds) + a}, telo,T), (2.19)

denote the unique solution of the corresponding BNEE. To ease no-
tation, we assume without loss that m({0}) = m({T}) = 0. We are in-
terested in a suitable discrete-time approximation of X that converges
in the continuous-time limit of vanishing grid size. More specifically,
given a partition A: 0 =to <t; <--- <ty(a) =T of [0, T], we set

N _
Al = m%m)(u((tk—htk)) + [tk — t—1l).

We consider the A-discretization scheme X4 € XE:%) L} that is de-
fined by a suitable approximation of the terminal value Xg,, = &*
and then iteratively, for k = N(A) —1,...,0, via

XA 2 e, [p((tk, tre1])F2 (1, €4, X2, 1) +x§+1] (2.20)

We are interested in the convergence X2 — X for vanishing grid size
|Al. In (2.20), the mapping f* is a BNEEP-standard parameter that
may depend on the grid A and approximates f as |A| — 0 in the sense
made precise in the following definition.

DEFINITION 2.30. Let (A™), N be a sequence of partitions
A" 0=ty <ty <---<ty, =T, nelN,

and let (f™, &), N be a sequence of BNEEP-standard parameters.
Suppose there is a constant L > 0 such that

£ (t, Q) = (t,n)|lLp < L[[C—mllLp forall (nel?, nelN, (2.21)

and let X denote the unique solution of (2.19).
If IA™ — 0, &™ — & in LP and

ZNH_] 1)||f(S’X5) — 1 Q/XS)HL,p u(ds) =0, (2.22)

k=0 Jrener,
then (A™, ™, &) e is said to be (f, &)-exhausting. o

A natural special case of exhausting sequences is the following:

LEMMA 2.31. Let (A™)neN be a sequence of partitions with |A™| — 0 and
suppose that the mapping [0,T] — LP, t — f(t,n) is left-continuous for
everyn € LP. Then (A™,f, &) nenN is (f, &)-exhausting.

Proof. We have to establish (2.22). Setting g™ (s, Xs) = f(ty, Xs) for s €
[ty, i, 1), we can rewrite (2.22) as

JaII(s, Xs) — g™ (5, Xs) |1 p p(ds) = 0.

31
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Lipschitz continuity (2.14) of f yields
||f(s, Xs) — gn(sl Xs)HL,p < ZLHXSHU’ < ZI—HXHS,p/

and, by dominated convergence, it suffices to show that g™ (s, Xs) —
f(s,Xs) for all s € [0, T]: Choose k,, such that s € [tk ,ti 7). Since
|A™ — 0, we see that t]} converges to s from the left, and hence

9“(5/ Xs) = f(tﬁn/ Xs) — f(sx Xs)
because f is left-continuous. O

For simplicity of notation, we write X™ £ X2" in the sequel. The
main result of this subsection is the following convergence theorem:

THEOREM 2.32. Suppose that (E¢)icio,1) is regular. Let (f, &) be a BNEEP-
standard parameter and let (A™,f™, &™) nen be (f, &)-exhausting. Let X de-
note the solution of (2.19) and let X™ £ X" be given by (2.20). Then

X ||X{<1_Xt{<‘||]-,p — 0.
n

The remainder of this subsection is concerned with the proof of
Theorem 2.32. It will be useful to introduce the following continuous-
time interpolation of X™ (also denoted by X™, with a slight abuse of
notation): For n € IN, we put X} £t and, fork =N, —1,...,0, we
set

Xt £ & [H((tz ) (6 Eq X)) +X1tl{g+1}: te [ty tiy). (2.23)

To prove Theorem 2.32, we first identify X™ as the unique DP-solution
of the BNEE driven by the aggregator g™, where

gM (- Y) & TR M (A EpYen ), YESP.  (2.24)

Then we show [ X™ —X||sp — 0 via the stability result of Theorem 2.29.

LEMMA 2.33. For each n € IN, the pair (g™, &") is a BNEEP-parameter.
Moreover, with the constant L > 0 from (2.21), we have

lg™(t, W) —g™(t, V)||Lp < Lut— Vt||5,]D forall U,V e SP,
all t € [0,T], and each n € IN.

Proof. Let U,V € SP. Then f™(t, Ep [Utgﬂ]) € L]tDE since f is a BNEEP
standard parameter. It thus becomes apparent from (2.24) that g™ (-, U)
is a right-continuous and adapted LP-step process. In particular,
g"(-,U) € PP for all U € SP, as required for a BNEEP-parameter.
It remains to verify the Lipschitz condition.
For an arbitrary t € [t}}, t}, ;), the definition of g™ and the uniform
Lipschitz continuity (2.21) of ("), en imply
g™ (t, W) — g™ (t, V)[[Lp < LHSt" Uep I —Ep Vi ]

k41 HL,p'

Hence the contraction property (Lemma 2.15) yields

lg™(t, W) — g™ (t, V)[lLp < LU

K+l k+1 HLP

Lut—=Vvts,. O



2.3 BACKWARD NONLINEAR EXPECTATION EQUATIONS

LEMMA 2.34. For each n € IN, the LP-process X™ given by (2.23) is a
member of DP and satisfies the BNEE

XD =&, [ﬂg“(s,xn) u(ds) + an], teo,T.
Proof. Letn € N and k € {0,..., N —1}. By (2.24) we have

f (tE/ 81:2 |:>(T-|;1Ll

+]}) fd gn(t, Xn) fOI‘ all t G [t}:, tT]z_._] )/

and hence (2.23) yields
Xt — £, U:m g™ (s, X™) u(ds) +xg§+1} forall t € {141, ;)

and all k € {0, ..., N, — 1}. Plugging the above representation of X
into the one for X, we get

XE = &[T g™ (s, XM ulds) + g, |1 297 (s, XM ulds) + X3 ]|
Now, shift-invariance (SI) implies

XD = &, [etn

k+1

[JE2gn(s,xm uds) + X3 ]],
and time-consistency (TC) yields
XE =& [F2gn(s, XM ulds) + X, |
Iterating this procedure, we obtain
X =&, [jjgn(s,xn) w(ds) + an], teo,Tl.

Finally, Lemma 2.28 shows that X™ € DP since (E)ic(o,1] is regular
and (g™, &) is a BNEEP-parameter by Lemma 2.33. O

We now provide the proof of the convergence result. By Lemma
2.34, the discrete-time approximations X™ solve BNEEs associated
with the BNEEP-parameters (g™, &™). Lemma 2.33 shows that the ag-
gregators g™ have a common Lipschitz constant, as required by the
stability result of Theorem 2.29. We know that &™ — & in LP because
(A™, 7, EM) is (f, £)-exhausting, and hence the stability result will im-
ply that X;, — X in SP, provided that g™ (-, X) — g(-, X) in PP.

Proof of Theorem 2.32. In view of Theorem 2.29, Lemma 2.33, and
Lemma 2.34 (and the above discussion), it remains to prove that

Jollg™(t, X) — f(t, X¢)

|L,p u(dt) — 0.

Let t € [0,T] and k,, € IN such that t € [t} ,t ,;), n € IN. We note
that

g™ (t, X) — f(t, Xe)[[Lp
< g™ (6 X) = ™ (e, X[ p + 17 (e, Xe) = (6, Xe) [Lp- (225)
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By definition, g™ (t, X) = fte 8%1 [thn 1), and hence by (2.21)

+1
DI 2 g™ (t,X) — £ (4, X)L < LllEsy, Keg, 1= XellLp-
We further estimate this by

DY < L(H((‘thn X 1= 8tpn XelllL,p + Hgtgn (X4] _XtHL,p)/

kn+1

and so the contraction property (Lemma 2.15) yields

D{f <L Xgp

kn+1

—Xellup + L€ Xel = XellLp- (2.26)

In particular, we have the uniform bound D} < 4L|X][s,. Coming
back to (2.25), (2.22) implies

Jallg™ (6, X) — £(t, Xo) | p w(dt) — [ DF u(dt)
<IN upap, I X0 = (6 X |1p p(dt) = 0

k=0 JQpap,

since (A™, f",&") is (f, &)-exhausting. To complete the proof, it thus
remains to argue that fg D} u(dt) — 0. By dominated convergence, it
suffices to show that DI* — 0 for p-a.e. t € [0, T], as we shall do in the
following.

Since (€1)t¢[o,7] is regular, for each t € [0, T], the mappings

0,T] = LP, s— X; and [0,T] = LP, s+— & [X{]
are cadlag. Moreover, as (A™, ™, &) heN is (f, &)-exhausting, we have

AT = _max (n((tR_g, t0) + It —th_q]) = 0, (2.27)

and thus te g o > tasn — oo for all t € [0, T]. Hence, we obtain
IXep = Xellp — 0 forall t € [0,T] and [|€¢p [Xe] = Xill,p — O for
all t € [0, T] outside some countable set N C [0, T]. In view of (2.26), it
remains to prove that N is a p-null set.

If u({t}) > 0, we must have t} =t for all but finitely many n €
IN by (2.27). Otherwise, we would have t € (tiepys i, +1) for some
increasing sequence (n¢)een C IN, and thus [A™| > p({t}) > 0, which
is a contradiction. Hence we have

[€en [Xe] =Xel[p =[Ee[Xe] = X¢[[Lp =0

for all but finitely many n € IN whenever p({t}) > 0. This shows that
N contains no atoms of w. Since N is countable, it thus is a p-null set,
and the proof is complete. O

2.3.4 Bibliographical notes

Backward equations of the form (2.9) and, in particular, of the form
(2.16) may be regarded as generalizations of backward stochastic dif-
ferential equations (BSDEs) under nonlinear expectations. In the liter-
ature, equations of that form have previously been studied in specific
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settings: Peng (2004b, 2005a) considers BSDEs under g-expectations,
and G-BSDEs have been investigated in, among others, Peng (2010),
and Hu et al. (2014a,b), the latter building on the G-martingale repre-
sentation results of Soner et al. (2011a).

A related class of equations, known as second-order BSDEs, has
been introduced by Cheridito et al. (2007) and Soner et al. (2012, 2013);
see also Soner et al. (2011b) for related results. In the economics lit-
erature, BNEEs have appeared in the context of dynamic robust risk
preferences; see, e.g., Chen and Epstein (2002), Hayashi (2005) and
Epstein and Ji (2014).

When &, is a linear expectation, backward equations of the form
(2.16) have been studied extensively in the literature; see, e.g., Par-
doux and Peng (1990), Duffie and Epstein (1992b), Antonelli (1993)
and El Karoui et al. (1997). To the best of our knowledge, Chen and
Epstein (2002) and Peng (2004b) are the first to formulate equations
of the form (2.9) under nonlinear (g-)expectations.

In the case of linear expectations, the questions of stability and
discrete-time approximation of BSDEs are very well studied. Stability
results related to the one from Subsection 2.3.2 can be found in An-
tonelli (1996), El Karoui et al. (1997), Barles et al. (1997), as well as
Peng (2004b) and the references therein. Discrete-time approximation
results related to the one from Subsection 2.3.3 can be found in, e.g.,
Zhang (2004), Bouchard and Touzi (2004) and Cheridito and Stadje
(2013); see also Bouchard and Elie (2008) and the references therein.

2.4 EXISTENCE OF APPROPRIATE DOMAINS

This section is concerned with the existence and construction of ap-
propriate domains for sublinear expectations. The idea is the follow-
ing: Suppose that, by some procedure, a sublinear expectation has
been defined on a “small” space of bounded random variables .
This is the case, for instance, for the G-expectation and the random
G-expectation. Then a classical representation result guarantees that
€30 can be represented via

E8PIX] = sup [, X(w)q(dw) forall X € K,
qeqQ

where Q is a family of finitely additive probabilities. This representa-
tion allows us to extend &3 to all positive random variables. If this
extension satisfies the Fatou property
€3 liminf Xy, ] < iminf €3 [Xn],

then completeness of LP-type spaces can be shown along the lines
of a classical argument. Subsequently, an appropriate domain can be
obtained by taking closures of the original domain H in those LP-type
spaces. In concrete examples, the family Q will consist of countably
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additive probabilities, and hence the Fatou property will always be
satisfied (see Example 2.39, p. 38).

STANDING ASSUMPTIONS Throughout this entire section, (Q,A)
is a measurable space and (Fi)c[o, 1) is a filtration with Fy = {0, Q}
and Fr = A. Unless explicitly stated otherwise, all notions requiring
a measurable space are to be understood with respect to (Q,A). If
G C 22 is a o-algebra and (S, 8) is a measurable space, we denote the
space of all measurable functions Q — S by £°(G; S). If S = R, we sim-
ply write £°(G) £ £°(S; R); the subspace of all bounded measurable
functions is denoted by £>(3) c £°(9).

From here on out, H C £>(A) is a | - [P-stable algebra of functions
containing all constants, i.e.,

(H1) H < L>(A),

(H2) ag+pPheXH,ifx,p e R, g, he X,
(H3) fge K, if f,g € I,

(Hg) WP eH forallp >1,if h e K,

(Hs) 1 e H.

Note: If one seeks to construct an appropriate domain (Ll)te[o,ﬂ with p = 1 fixed, con-
dition (H3) can be dropped and condition (H4) simplifies to the requirementh €¢ { —
[h| € H. In other words, it suffices that H < £L>*(A) be a Riesz space.

Remark. A trivial example of such a set H is of course £L>®(A) itself. If
Q is a topological space (e.g., the Wiener space), a frequent choice for
H is the space of bounded (uniformly) continuous functions on Q. <

We associate a domain for expectations ((H)co,1), <) with H as
follows: We take H; = H N LO(F), t € [0,T], as the | - [P-stable subalge-
bra of all Fi-measurable functions in H and < as the pointwise order
on L°(A). Since Fy is trivial, we have Hy = R, and (Hi)eeo,m, <) is
indeed a domain for expectations. In the following, we consider a

sublinear expectation (Siub)te[orﬂ on ((Hi)ieo,1, <)-

We will prove the existence of an appropriate domain for (£5%°),c(o 1},
under the assumption that (£5"?), <o 17 has the Fatou property:

THEOREM 2.35. Suppose that £ has the Fatou property as set forth in
Definition 2.38. Then (€5"°)¢c(o,1) can be extended to an appropriate domain
{(Lf/ || : ||L,p) cte [O/T]/ p 2 ]}

Proof. This will be a consequence of Theorem 2.45 below. O

The following subsections address the proof of Theorem 2.35.
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2.4.1 Static sublinear expectation operators and their representation

As the norms on an appropriate domain are generated by €3, it
is hardly surprising that the central object in the construction of an
appropriate domain for (£5"),c(o 1) is the static sublinear expectation
operator E3°.

DEFINITION 2.36. Let K C LO(A; [—o0, 00]) be a convex cone containing
all constants. A (static) sublinear expectation operator is a function & :
K — [—00, oo] that is

o sublinear, i.e., EX+ Y] < EX] + &[Y] and &[aX] = a&[X] for all
X,YeFH and a > 0,

o monotone, i.e., E[X] < E[Y], for all X,Y € H with X <Y, and

o constant-preserving, i.e., Ela]l = a for all a € R. o
Here, by a convex cone K C LO(A; [—00, 00]) we mean nothing more

than a subset K of £°(A; [—o0, c0]) which satisfies

oX+RY e, whenever X,YeK and 0< o, B < oo.

Note: If & : 3 C L*®(A) is a sublinear expectation operator, then p : H C L*®(A) —
R, X — &[—X] is a coherent risk measure (and vice versa); see Artzner et al. (1999) as
well as Féllmer and Schied (2004), and the references therein.

It is immediate from the definition of sublinear expectations that
€3 is a static sublinear expectation operator on (1. The next step is
to represent £"° by a family of finitely additive probabilities.

Sublinear expectation operators and additive probabilities

Every (non-empty) family M of finitely additive probability measures
on (Q,A) induces a (static) sublinear expectation operator

M:X(M) = (—o0,00], g Mgl = sup ([gtdm— [g-dm)
meM

on the convex cone

K(M) 2 {g € £9(A; (—00,00]) : sup [g~dm < oo} C £O(A; [—00, 00).
meM

We refer to Lemma A.14 (on p. 147) for a detailed proof of this fact.

For spaces of bounded random variables, the converse is also true
by a well-known representation theorem: Every sublinear expectation
operator is given by a family of additive probabilities.

THEOREM 2.37. Let V C L®(A) be a linear space of bounded measurable
functions containing all constants, and let € be a real-valued function on
V. Then € is a sublinear expectation operator if and only if there exists a
(non-empty) family M of finitely additive probability measures such that
& =MLy, ie,

&Ml = sup [hdm  forallheV.
meM
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Proof. See Theorem A.36 in Appendix A.2.6 (p. 160ff.). O

Note: The definition of the operator M relies on an integral jg dm of measurable func-
tions g : Q — [0, oo] with respect to a finitely additive probability measure m. The con-
struction of such integrals is detailed in Appendix A.1, p. 141ff. We shall briefly outline
the construction here: The integral of a simple function g = Z{‘:] aila, is defined in
the usual way, of course, as fgdm = Z{‘:1 aiym(Ay). Clearly, this definition gives rise
to a positive linear operator on the space of all simple functions. As in the construction
of the Lebesgue integral, this operator is extended to all positive measurable functions
by setting Jgdm £ sup{/hdm : his a simple function with h < g}.

Of course, monotone convergence fails for this integral (if m is not countably additive),
and thus some extra work is required to prove additivity of the extension.

2.4.2  The Fatou property and its ramifications

The domain of the sublinear expectation (£§"®),c(o 1] under consider-
ation in this section is contained in £*°(A), and hence Theorem 2.37
shows that there exists a family Q of finitely additive probability mea-
sures such that

esP[X] = Q[X] = sup [X(w) q(dw) forall X € H.  (2.28)
qeQ

We refer to such a set Q as a representation of E3®. In general, (2.28)
does not uniquely determine the representation Q, of course. Any rep-
resentation provides a way to extend E3° to all measurable functions.
For our purposes, it suffices if one of these extensions is well-behaved.

DEFINITION 2.38. A family of finitely additive probability measures Q
has the Fatou property if

. . . . 0 .
Q[lmg.}an] < lﬂlorc}fQ[X”] for all (Xp)nen C £°(A; [0, 00]).

Correspondingly, we say that (€5"°) ¢ (o 1) has the Fatou property if €3
admits a representation Q which has the Fatou property. o
EXAMPLE 2.39. If Q is a family of countably additive probabilities,
then Q has the Fatou property: Indeed, for every countably addi-
tive probability q € Q, Fatou’s lemma implies qlliminf, o Xn] <
lim infy, 00 q[Xn] whenever (Xn)nen € £9(A; [0, 00]), and hence

Q[X] = sup q[X] < sup liminf q[X] < liminf sup q[Xn],

which establishes the Fatou property. o

Banach space of Q-integrable random variables

Let Q be a family of finitely additive probabilities. As a domain for the
associated sublinear expectation operator Q[], it is natural to consider

£P(Q) & {X € £9(A) : |X] e 2 (QIXP])7.

Lp < oo}, where ||X|
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PROPOSITION 2.40. Foreachp > 1, (LP(Q),|| - ||Lp) is a seminormed space.
The spaces are related by Holder’s inequality: If 3 + & =1, then

[IXY

L1 < [ X|lee|lY

Lq forall X,Y e L£°(A),

and thus £P(Q)-£9(Q) c £L'(Q).
If Q has the Fatou property, then LP(Q) is complete and

XllLp =0 <= Q(X#0) = sup q({w e Q1 X(w) #0}) =0.
qe

Proof. The proofs of these results can be found in Appendix A.2 (p.
147ff.). See Lemma A.15 for Holder’s inequality, Corollary A.18 for
the seminorms and Corollary A.27 for the completeness result. The
key steps in the proof of the completeness result are based on the

Fatou property of Q and are thus very close to the classical Riesz-
Fischer theorem; for details see Appendix A.2.3 (p. 152ff.). O

Let us refer to a measurable set N € A as Q-negligible if

Q(N) =sup q(N) =0,
qeqQ

and let us write N for the collection of all Q-negligible sets. Then N
is a collection of negligible sets, as in the context of Lebesgue families
(see Subsection 2.2.1 above, p.16ff.), and thus induces an equivalence
relation ~g on QR via

f~g g < f(w)=g(w) forallwe Q\N andsome N € Ng.
Given f: Q — R, we write [f]g for its ~g-equivalence class and

R R
P(Q) 2 {Iflg : Fe£P(Q} <P A, 2 g

for the set of all equivalence classes containing a member of £LP(Q).

Note: The above procedure is slightly different to simply identifying two functions f, g €
LP(Q) if [[f —gllL,p = O because an equivalence class [flo may contain a function g
which is not measurable. This is due to fact that the notion of a Lebesgue family is, by
design, not a measure theoretic one. Instead, a Lebesgue family specifically asks its
spaces to consist of equivalence classes in QR (rather than, for instance, in £°(A)). This
is a rather technical point that is somewhat similar to the completion of a measure space
and which is — as Lemma 2.41 below shows — of no importance in the following.

The sublinear expectation operator Q[-] can be considered as a map-
ping defined on L' (Q) without any difficulties:

LEMMA 2.41. Forall p > 1, the operator
Q:L'(Q) =R, X~ QIfl, wherefeXnLOA),
is well-defined, and (LP, || - ||1,p) is a normed space.

Proof. This is essentially trivial; see Lemma A.28, p. 155. O
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Combining this result with Proposition 2.40, we get
COROLLARY 2.42. If Q has the Fatou property, then 1P (Q) < Q%/ng is a
Banach space for all p > 1.

We have thus completed the first part of the program. It is now
straightforward to extend €U to the closure of H; in £LP(Q).

2.4.3 Appropriate domains

We now consider the domain (H) (0,71 of (€5"°) (o) as a family of
subspaces of Q%/ng, using the same procedure as for £P(Q) above:
For each t € [0, T], we put

He(Q) £ {[hlg : h e H}.
LEMMA 2.43. Forall t € [0, T] and eachp > 1,
He(Q) C LP(Q) € @%/Ng

is a |- [P-stable algebra containing all constants, that is, it satisfies (Hz2)-(Hs).
Moreover, (Hy)ejo 1) 1S increasing.

Proof. By choice of (Hi)icpo,1), we have 3¢ C £*(F;), and thus
He € LP(Q). This immediately yields H¢(Q) C LP(Q). Since both
H and LO(Fy) satisfy (H2)-(Hs), so does their intersection 3. Since
~qg-equivalence is compatible with pointwise operations, it is imme-
diate that H(Q) also satisfies (H2)-(Hs). O

Every nonlinear expectation (£¢)c[o, 1] dominated by (£5*°)¢[o 1) is
continuous for the seminorm E%Ub[l -|P] %, and this seminorm coincides
with || - ||., by the probabilistic representation (2.28); thus, (Et¢)ie(o,1)
will extend continuously (and hence uniquely) to a family of oper-
ators defined on the LP-closures of H¢(Q), t € [0, T]. We now study
these closures.

THEOREM 2.44. The family {Ht(Q)p 1t €[0T, p=1}of LP(Q)-closures

H(Q)" £ clos(Hi(Q);L7(Q)) € LP(Q)

is a Lebesgue family if Q has the Fatou property.

Proof. By Lemma 2.43, H¢(Q) C LP(Q) is a linear space; thus,
H(Q)” = clos(H¢(Q);LP(Q)) € ©%/ng

is a Banach space by completeness of LP(Q) (Corollary 2.42). Now,
we verify properties (L1)-(L6) from Definition 2.6. We sketch the key
steps here and refer to Theorem A.35 (p. 159) for a detailed proof

(L1) By construction.
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(L2) Since Hs(Q) C H¢(Q) if s < t, and LP(Q)-convergence implies
L9(Q)-convergence if p > q, we have HS(Q)p C Ht(Q)q.

(L3) We obtain LY ={X € L] : [X|P € L]} because K is |- [P-stable.

(Lg) Since X is stable under multiplication, the inclusion Ht(Q)p :

Ht(Q)q C Ht(Q)1 follows from Holder’s inequality.

(Ls) Since Fy is trivial, H¢(Q) = 3 N L°(F)) consists solely of con-
stants and (L5) is obvious.

(L6) The positive cone is norm-closed, because LP(Q)-convergence
implies pointwise convergence for a subsequence (outside of a
Q-negligible set).

O]

. . T .
It is straightforward to extend (EiUb)te{o,T] to Ht(Q) in order to
obtain a sublinear expectation on an appropriate domain:

THEOREM 2.45. Let Q be a representation of E5"° which has the Fatou prop-

erty. Then every nonlinear expectation (E¢)iecpo, 1] 01 (Hi)repo,1) Which is
dominated by (&%) c0 1) admits a unique extension

1

& HI(Q) = H(Q)

that is characterized by the following properties:

(i) |[E0X]— &Y, < IX—Yli1  forall X,Y € Hr(Q)

(i) &[lq ]| =¢&h] forallhe K.

In view of (ii), this extension is denoted by (Et)tefo,1), as well. It is a nonlin-

, 1
ear expectation on (H¢(Q) Jiero,11- If (Et)teio,1) is sublinear or superlinear
on (H)iejo, 1), then so is its extension.

(a) The Lebesgue family {H((Q)" : t € [0,T], p > 1} is an appropriate
domain for the extension of (E5"°) (o 1.

(b) The extension of (E¢)ic(o 1) is @ dominated nonlinear expectation carried
by (€ )te[O,T on {H( ) :te[0,T], p=1}.

Proof. Since (£5%°),c(o,1) dominates (E¢)icro 1) ON (Ht)iepo 1), We get
&ilgl — &[] < &5'P[g—h] for all g, h € H. Moreover, |g—h| € H by (Hy)
and (Hz2), and hence monotonicity (M) of gsub implies E¢[g] — E¢[h] <
8§Ub[lg — hJf]. Reversing the roles of g and h, we obtain

|€lgl — &¢[h]| < &P[lg—h[] forall g,h € K. (2.29)
Thus monotonicity (M) and time-consistency (TC) yield

e3P [|eLgl — €¢[nl|] < E5°[lg —hl].
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Now, 8%“" = Q[-]l9¢, so we have shown that
[€clg] — €Ml ; <llg—NfL1
This implies that the operator
&t tHT(Q) = He(Q), X [E¢[h]] Q’ where h € KN X,

is well-defined and || - ||r,1-continuous; hence, it admits an extension

& HT(Q)1 — Ht(Q)1 which satisfies (i) and (ii) and is thus uniquely
determined.

It is straightforward to extend the properties of nonlinear expecta—

tions from (&¢)icpo 1) t0 (Et)iefo,1): For brevity, we write L] &2H Q
Lett € [0,T] and X,Y € L', and take Xy, Yn € H such that (Xn,Y ) —
(X,Y) in L'(Q).

(M) Suppose that X < Y and set &™ £ X, AYy and n™ £ X, V Y.
Then &™,n™ € K since H is |- |-stable, &™ < n™ and (§™,1™) —
(X,Y)in L'(Q); (M) on (Hi)teo,1) implies Siub[in] < Eiub[n“],
and we conclude &$"P[X] < €5"P[Y] since the positive cone in L
is closed (property (L6) of a Lebesgue family).

(SI) If X € L], we can assume X, € H;. Then (SI) on (Hi)icpo 1)
yields €5P[Xy, + Yl = (Xn + EP[Yy,]), and EWPX+Y] = X+
€$UP[Y] follows upon sending n — oco.

(TC) For every s € [0,T], we have SS;“b[Xn] € H, and 8§Ub[Xn] —
£3ub[X]; therefore, (TC) on (Hi)tejo,m and continuity imply
EXPIESPIXT] = lim EFPIENPXn]] = lim E5*°[Xp] = E3PIX].

n—oo n—oo

(N) Obvious since 0 € K.

We have thus shown that (€i)ic[o 1) is a nonlinear expectation on
(LD tero1)- If (Et)tefo.1) is sublinear, then so is (&) ieo 11

(PH) For A > 0, we have [|[AX;, —AX||r;1 = A|Xn —X||t,1 — 0 and
AXn € 3 thus, E¢[AX] = A& [X] follows by (PH) on (H¢)ejo 11-

(SUB) By (SUB) on (H¢)ie(o,1), we have E¢[Xn + Yn] < E¢[Xn] + E[Yn]
and this inequality is preserved in the limit by (L6).

If (E)teo,1) is superlinear, we apply the previous reasoning to the
sublinear expectation (—&¢[—])ic[o 1), to conclude that (&¢)ic(o,7) is
superlinear.

We have completed the first part of the proof. In particular, we have
seen that (€5'°) (o 1] extends to a sublinear expectation on (L})co T
(again denoted by (£5'®),c(o 17)- By Theorem 2.44, the Banach spaces
LY £ Ht(Q)p form a Lebesgue family. Next, we show that the exten-
sions €; map LP into LY.
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Since the positive cone in L' is closed (L6) and (€t)c(o 1) is contin-
uous, the triangle inequality from (2.29) extends to all of L ie,

[EX] — €Y < EP[IX—Y]] forallX,YelL'
Now, Jensen’s inequality 2.11 implies
ESPIIX — Y|P < &P [IX—YIP] forall X,Y € LP,
and thus we have
[EX] =&Vl , < IX=YlLp. (2.30)

Indeed, Q[]: L'(Q) — R is a continuous operator with Q[h] = 8%‘*’ [h]
for all h € H and thus coincides with the extension E%ub on the closure
L' of H. Hence, applying Q[] to the inequality

|EcX] = EVI|P < EP[IX—VP] in £0(A),
we obtain
Q [[EXI—EM"] < Q e X — Y] | = &g [es X — vP] |,

because £5° : L' — L] and [X—Y[P € L' by property (L3) of a
Lebesgue family. Now, (£5%),co1) is a sublinear expectation on
(L])tefo,1), and thus (2.30) follows by time-consistency (TC); we have
shown that & is | - || p-continuous. Now, it is easy to prove that
&P = LE:

Let X € LP and take X, € H with || X, — X||;, — 0. Then &([X,] €
H¢(Q) c L}, and (2.30) shows that & Xnl converges in LP(Q). Thus
a[X] =limn o0 87t[Xn] S ]—? and

&P 1P and & :LP P,

Moreover, ||X|r,, = E%Ub[IXIP}% for X € LP since Q[] = &3 on L.
Hence {L} : t € [0,T], p > 1}is an appropriate domain for (£§*°)c(o 11,
and (a) is proven. To establish (b), it remains to show that (Eiub)te[(),ﬂ

dominates (€¢)tc(o,1)- This is the case on 71, i.e.,
Eilgl —&¢h] < &°[g—h] forall g,h e K,
and extends readily to L' by (L6) and continuity. O

If Q and M are representations of £§"* which have the Fatou prop-

erty, then the spaces Ht(Q)p and Ht(l\/l)p are isometrically order-
isomorphic, and both of them are concrete representations of the
abstract completion of H; with respect to the seminorm E%Ub[\ . IP]%.
Moreover, the values of the extension of £; are uniquely determined
by their values on H. Hence it is completely justified to refer to the
extension of (€¢)¢c(o,1) provided by Theorem 2.45 as the unique con-
tinuous extension.



44

BACKWARD NONLINEAR EXPECTATION EQUATIONS

2.4.4 Bibliographical notes

The representation result (Theorem 2.37) can be found in Huber
(1981), or, in the context of coherent risk measures, in Artzner et al.
(1999). These authors assume that |Q| < co in order to obtain a repre-
sentation in terms of genuine, “countably additive” probability mea-
sures. A formulation for general measurable spaces can be found in
Follmer and Schied (2004); see their Proposition 4.14.

The completeness result for the spaces LP(Q) (Proposition 2.40) is
probably very well-known; however, we have not been able to locate
a reference in the literature. By the Fatou property, the proof of com-
pleteness is virtually the same as for the classical Lebesgue spaces;
see, e.g., Rudin (1974), Theorem 3.11, p. 69ff. Under some conditions
on (Q,A) and Q, the set function A — Q(A) can be viewed as a Cho-
quet capacity (see, e.g., Choquet (1954, 1959) and Dellacherie (1972)).
This is exploited in Denis and Martini (2006) and Denis et al. (2011).

The general extension result from Theorem 2.45 is based on simple
arguments that appear repeatedly in the context of nonlinear expec-
tations; see, e.g., Peng (2004b, 2005b, 2008, 2010), and Nutz (2012,
2013).

2.5 EXAMPLES OF NONLINEAR EXPECTATIONS

In this section, we illustrate that the general framework of Section 2.2
and Section 2.3 is very well suited for the study of backward nonlin-
ear expectation equations: We investigate several concrete examples
of nonlinear expectations from the literature and show that these are
— in the sense of this thesis — regular nonlinear expectations defined
on appropriate domains.

In Subsection 2.5.1, a class of random G-expectations is consid-
ered. The classical G-expectation is the topic of Subsection 2.5.2. Sub-
section 2.5.3 deals with the g-expectation, and an application to ro-
bust expectations with ambiguity about the drift and the intensity of
jumps is provided in Subsection 2.5.4.

In each subsection, we briefly outline the construction of the nonlin-
ear expectation under consideration and record some of its important
properties. Then we make use of the general results from the previous
Section 2.4 to construct an appropriate domain for the nonlinear expec-
tation. Finally, we prove that the nonlinear expectation is regular. As
pointed out in Section 2.3 above, this regularity property is crucial in
the theory of backward nonlinear expectation equations.

2.5.1 A class of random G-expectations

This subsection is devoted to a class of random G-expectations which
are defined in terms of non-Markovian control problems. These sub-
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linear expectations have been introduced by Nutz (2012) and can be
seen as variants of the Nutz (2013) random G-expectations; see also
Nutz and Soner (2012) for related results. The classical, non-random
G-expectations developed in Peng (2007, 2008), and Denis et al. (2011),
which will be considered separately, in Subsection 2.5.2 below, also
belong to this class of random G-expectations. Moreover, random G-
expectations are also of interest in economics; see, e.g., Epstein and Ji
(2014) and Section 2.7 below.

Following the program outlined above, we give a brief review of
the construction of the relevant random G-expectations and show that
they are sublinear expectations on an appropriate domain. Then, as
the main result of this subsection, we prove that these random G-
expectations are reqular, provided that the coefficients of the dynam-
ics of the state process are bounded.

Preliminaries

Following Nutz (2012), we briefly review the construction of the rel-
evant random G-expectation (£§%),c(o 1. For additional details we
refer to Nutz (2012).

For 0 <t < s < T consider the canonical Wiener space

Ql 2{w:t,s] - R : wis continuous with w(t) = 0}

equipped with the supremum norm || - || and write Q' £ Qt and
Qs £ Q% Let W w) = ws be the canonical process on Qt, Pt the
Wiener measure on Q' and let ' be the raw filtration generated by
Wt. Moreover, we denote by Q = C([0, T];IR¢) the space of all contin-
uous paths.

Next, let U be a non-empty Borel subset of R™ and fix functions

w:0,TIxQOxU—>RYand 0:[0,T] x Q x U — R4x4

such that (r, w) — u(r, X(w), v+ (w)) and (r, w) — o(r, X(w), v+(w)) are
progressively measurable whenever X is continuous and adapted and
v is progressive. The functions p(r,,u) and o(r,-,u) are assumed to
be Lipschitz continuous, uniformly in (r,u). Forn € Q and t € [0,T],
the conditioned coefficients are defined as

A

Ht’n : [O/ T] X Qt x U — IRd/ Ht’n (T/ w, LL) £ H(T,Tl Rt W, u)/
O—tln (T/ w, LL) = G(r/ﬂ Rt w, u)l

M0, T x QO x U — R4*4,

where (N ®¢ w)r £ 1y 110.4)(T) + (Me + W) 1 1y (r) for r € [0, T].
Let U* denote the set of all F*-progressively measurable, U-valued
processes v such that

JE I, X, vo)l + lo(r, X, v,) 2 dr < oo
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for all Ft-adapted continuous processes (Xi)ic[o,1). Then, for every
v € Ut and under each Pt, the SDE

Xs =ne+ [u(r, X, vo)dr + [0 (1, X, vp)dWE, s e t,T], (2.31)

admits a P*-a.s. unique solution X = X(t,n,v). Below, the sublinear
expectation will be constructed in terms of the measures

P(t/ﬂ/V) = Pt © (X(t/n/ V) _nt)i] . (2'32)

Now, an initial condition x € R? is fixed, and it is assumed that
F C 5%, where FX is the P-augmentation of the filtration generated
by {X(0,%,v):v e U°L

Note: The property F C FX is not automatically satisfied. In fact, one can even give
examples where the filtration FW generated by drift-changed Brownian motion W - al-
though Brownian - is strictly contained in the filtration FW generated by the original
Brownian motion W; see, for instance, Feldman and Smorodinsky (1997). Intuitively,

having ¥ C X means that one is able to distinguish between drift and volatility by
observing paths. For a sufficient condition, see Remark 2.2 in Nutz (2012).

Construction of the random G-expectation for regqular random variables

Let QF = x+ Q¢ be the space of all continuous paths w : [0,t] — R¢
with wo = x and abbreviate O* = Q¥. We write UG,(QF) for the space
of bounded, uniformly continuous functions Qf — RR.

One may view Qf C QX as a closed subspace via the inclusion
w — w.A¢; correspondingly, one may identify UG,(QF) with the closed
subspace H; £ UG,(Q*) N LO(F) of UG(QX).

We note that UG,(Q*) C £*®°(Fr) is a |- [P-stable algebra of func-
tions which contains all constants, as required for the general exis-
tence theory for appropriate domains of Section 2.4 above. In par-
ticular, (H¢)c[o,1) forms a domain for expectations as considered in
Section 2.4.

Following Nutz (2012), for & € UG,(Q*), the random G-expectation
with fixed initial condition x is defined w by w as the value function

VX(E, w) £ sup EPb@Y[gbw] (¢ w) e [0,T] x QF, (233)
veut

where EV® (@) £ £(w @y @) for @ € Qt and t € [0, T]. The measures
P(t,w,Vv) are given in (2.32).

The following result is implicitly contained in Nutz (2012).
PROPOSITION 2.46. The family of operators (V{)ieio1), given by (2.33),
forms a sublinear expectation on (H)iepo 11-

Proof. Lemma 4.3 in Nutz (2012) guarantees that Vi maps Hy =
UG,(Q) to Hy = UG,(QF). It is immediate from the definition of V{ (as
a supremum of normalized positive linear operators) that V{* is mono-
tone (M), normalized (N), positively homogeneous (PH) and subad-
ditive (SUB) for each t € [0, T]. If & € H; = UG,(QY), then 4% = &(w);
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hence V(&) = & and V; preserves constants (PC). Thus V¢ is shift-
invariant (SI) by Corollary 2.4. Time-consistency (TC) is guaranteed
by a deep result of Nutz (2012); see his Theorem 3.2. O

Extension to an appropriate domain

For t = 0, the definition of the random G-expectation (2.33) becomes

V(&) = sup BP0V —supEP[e), & e K,
veuo PelP

where P £ {P(0,x,v) o (W®+x)~1:v € U}. Since it consists solely of
countably additive probabilities, the sublinear expectation operator
P[] has the Fatou property. We are thus precisely in the situation of
Section 2.4 above:

o The collection LP(IP) of (equivalence classes of) Fr-measurable
random variables is a Banach space for the norm |[|&]|, =

SUPpcp EP[IEIP}% by Corollary 2.42.

o The closures L} = clos(H) C LP(IP) form a Lebesgue family by
Theorem 2.44.

o The sublinear expectation (V{)icjo 1 on (Hi)iepo,1) extends con-
tinuously to a sublinear expectation (£5'°),c(o 1) on the appropri-
ate domain {L} : t € [0, T], p > 1}; see Theorem 2.45.

An equivalent extension is also carried out in Nutz (2012); see his
Lemma 4.3. With the above, the random G-expectation (Si‘Jb)te[o’ﬂ is
constructed on an appropriate domain.

Regularity

We now prove that the random G-expectation of Nutz (2012) is a reg-
ular nonlinear expectation in our sense, provided that the coefficients
i and o of the dynamics of the state process (2.31) are bounded. This
boundedness ensures that the set IP is relatively compact, which is
crucial for the proof of the regularity result (see Lemma 2.49 below).

LEMMA 2.47. If wand o are bounded, the family IP is uniformly tight.

Proof. Let 1 and o be bounded by K > 0, and let v € U°. For X =
X(0,x,v) (given by (2.31)) a simple calculation shows that

B [Xs —X¢2] < K?(2dls —tP? +d%2% s —t]), s, telo,Tl.

Thus, the family {X(0,x,v) : v € U'} is uniformly tight on Q° by the
moment criterion for tightness on Wiener space; see, e.g., Corollary
16.9 in Kallenberg (2002), p. 313. Hence the family P is uniformly
tight on Q. O

47
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To establish regularity, by Lemma 2.23, it suffices to show that
0,T] — LP,t — 8?311’[&] = V¥ (&) is cadlag for all & € Hy = UG,(Q¥).
Lemma 4.7 in Nutz (2012) implies that V*() is a (P, F°)-supermartin-
gale for each P € IP; thus, under each P, the event on which limits
along monotone rational sequences exist has full measure. A careful
examination also reveals this event to be a closed subset of Q*.

LEMMA 2.48. Let & € UG,(Q*) and let A be the set of all w € QX such that

lim V4(&, w) and lim V4(& w) exist forall t € [0,T].
qTt,q€Q qlt,qeQ

Then A is closed and its complement is IP-negligible.

Proof. Let w € A® and s < s, be an upcrossing of V(&, w) through
[a, b]. By Proposition 2.5 in Nutz (2012), there exists a modulus of
continuity pg with

Ve(&, w') = Vi(&, w?) < pe(flw' —w?|le) forall w', w? € Q.

Choosing v > 0 such that pz(r) < (b —a)/4, we see that s; < s; is
an upcrossing of V(&, @) through [a+ p(r), b — p(r)], for every @ with
|0 — wloo < T

Since V(§, w) is bounded and w € A€, it follows that V(&, w) has
infinitely many upcrossings through some non-empty interval and
hence so does V(&, @) for every @ in the r-neighborhood of w. This
implies that A€ is open.

Finally, by Lemma 4.7 in Nutz (2012), the process V(&) is a P-
supermartingale for each P € IP, and so P(A€) = 0 for every P € IP by
supermartingale regularity. O

LEMMA 2.49. Suppose that w and o are bounded. For every monotone se-
quence (tn)nen C [0, Tl and every & € UG,(QX), the sequence (Vi (&))neN
is Cauchy in LP, 1 < p < oo.

Proof. 1t suffices to show that (Vi, (£))nen is Cauchy in LP for ev-
ery strictly monotone sequence (tn)neny € QN [0, T]. Since V(&) is
bounded, for this, it is enough to prove that

sup P(|Vi, (&) — Vi, (E) =>m) - 0 foralln >0 asm,n — oo,
pelP
see, e.g., Lemma A.31, p. 156.

Thus let ¢ > 0 and w € A (where A is given in Lemma 2.48). Then
we find N(w) such that [V, (& w) — Vi, (& w)l < 1/2 for all m,n >
N(w). We choose r > 0 such that pg(r) < n/4; for all ® € Q with
|@— wlleo < Tand m,n > N(w), it follows that

Vi, (& @) — Vi, (§, @) <.

By Lemma 2.47, there is some compact set K with sup,, p P(K) < e.
Clearly, the family of r-balls {B;(w) : w € A} is an open covering of
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the compact set AN K, and hence there exist w'!,...,wM € A such that
ANKc UM, B, (wh). Setting N £ maxi—_1,_._m N(w'), we have

Vi, (& w)— Vi, (§ w)l<n forallwe AnKand m,n > N.

Writing A n 2 {[Ve, (&) — Vi, (§)] = n}, we thus have KNANA,, =0
for all m,n > N, and it follows that

supP(Amn) <supP(K®)+supP(A°) <e forallm,n>N
PelP PeP PelP

since supp p P(A€) = 0 by Lemma 2.48. O

THEOREM 2.50. If u and o are bounded, then the random G-expectation
(€50 c(0.1) constructed above is regular.

Proof. In view of Lemma 2.23, it suffices to prove that the func-
tion [0,T] — LP, t — Si“b[i] = V(&) is cadlag for all £ € UG,(QX).
Lemma 2.49 shows that it is ladlag. But now, Theorem 5.1 in Nutz
(2012) implies that limg ¢ qcq Vq(&) and Vi (&) coincide outside a IP-
negligible set and hence in L}. O

We have seen that the random G-expectation (£5"°) (o 1) of Nutz
(2012) is a regular sublinear expectation on an appropriate domain
if the coefficients of the dynamics of the state process are bounded.
Thus the full extent of our theory of backward nonlinear expectation
equations (BNEEs) from Section 2.3 applies to this class of nonlinear
expectations.

As an additional consequence of the fact that IP is relatively com-
pact, we now prove that the appropriate domain of (£5'°)c(o 1) con-
sists solely of separable Banach spaces. This is very convenient, for
then every measurable and adapted LP-process X is p-integrable (and
thus in PP) if and only if

HXHP,p = f HXH]_,p dp < 00.

First, we state a refined version of Tietze’s extension theorem due to
Mandelkern (1990), which will be used to prove separability of LY in
Lemma 2.52 below.

LEMMA 2.51. Let (X,d) be a metric space, A C X a closed subspace and
f: A — R bounded and uniformly continuous. Then g : X — R, given by

. . d(x,a .
i) £1(x) ifxeA and glx) £ inf fla)qRy fx¢A,

is uniformly continuous with sup, . x lg(x)] < SUp A [f(a)].
Proof. We refer to Mandelkern (1990). O

LEMMA 2.52. All of the spaces LY are separable.

49
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Proof. By Lemma 2.47, the family IP is uniformly tight; hence for each
n € IN there is some compact set K, € QO such that

P(Q*\ Kn) = supp pP(Q \ Kn) < 1/n.

For t € [0,T], QF C QX is closed so that K, £ Q¥ NK,, C Q is compact.
Thus the space C(KY) of continuous real functions on KY, is separable;
see, e.g., Lemma 3.99 in Aliprantis and Border (2006), p. 125.

For each n € IN, we pick a countable dense subset F,, C C(KY). By
Lemma 2.51, every f € C(K}') can be extended to some f € UG,(QF)
with the same norm, and we may view F,, C UG,(QF) as a subset. We
set F £ U, on Fn C UG(QY) = K. It is straightforward to check that
F c LY is dense. O

In the (non-random) G-expectation setting, BSDEs are intimately
related to so-called second-order BSDEs (2BSDEs); see Cheridito et al.
(2007); Soner et al. (2012, 2013) for background on 2BSDEs and, e.g.,
Hu et al. (2014a) for BSDEs under G-expectations and their relation to
2BSDEs. Thus we conclude our consideration of the Nutz (2012) ran-
dom G-expectation with a brief remark on the relationship between
BNEEs and second-order BSDEs.

Remark. To link 2BSDEs to the notion of BNEEs with respect to ran-
dom G-expectations, let (f, &) be a BNEEP-standard parameter, where
f is induced path-by-path by a measurable Lipschitz function fy :
0,TI x QO xR — R via

[0, TI x LP = (t,m) = fo(t,-,n(-)) € LP,
and let X € DP be the unique solution of the BNEE
X, = &sub [ [T6(s,Xs)ds + a}, teo,T], (2.34)

where (E5%°) o] denotes the random G-expectation constructed
above. An application of Theorem 5.1 in Nutz (2012) shows that the
process

Mo 2 et [[3(s,X)ds +£], telo,T], (2.35)

admits a P-modification Y which is cadlag and F-adapted; here, I
denotes the minimal right-continuous filtration containing ¥, aug-
mented by the collection of all IP-negligible sets. Moreover, Theorem
6.4 in Nutz (2012) shows that there exists an F-predictable process Z
such that (Y, Z) is the solution of the 2BSDE

Y, — [a+ Ja (s, Xs)ds} — T2, dMWP 4 KE—KP, telo,T], P-as.

for each P € P.

Note: Here, MW-P is the local martingale part in the canonical semimartingale decom-
position of WO(- —x) under P € P and (KP)pcp is a family of increasing processes
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satisfying a minimality condition. For further details, we refer to Section 6 in Nutz (2012).

One can show that X admits a cadlag and F-adapted modification X
which satisfies

X¢ =Yy — §(§ fo(s,Xs)ds P-as.forallPePandte[0,T],
and so (X, Z) solves the 2BSDE

Xi = &£+ §{ fols,Xs)ds — [{ ZdMWP +KP —KP,  te[0,T], P-as.
(2:36)
Here, we write § to emphasize that the pathwise Lebesgue integral for
measurable stochastic processes is used, and not the Bochner intergral
on PP.
Note: One way to obtain such a modification X is as follows: Forn € IN and k < n,
put tf = [T]E AT and set X™ £ Xolgo) + X1 XepTeep |, up)- Recalling that [0, T] —
LP, t — X¢ is cadlag since X € DP, it is obvious that X™ — X in PP and X{* — X; in LP
for all t € [0, T]. Moreover, Fubini’'s theorem yields

P [jsg XD —x;“|ds] < JOP[IXD =X ds < [X™ = X™||py, — 0 as (n,m) = oo,

Hence (X™),eN is @ Cauchy sequence in the complete space PLV(P,dt; Fr @ B([0,T]);
see (A.4) on p. 150 for the definition of this space and Theorem A.26 for the proof
of completeness. Thus, there exists an F1 ® B([0, T])-measurable process X such that
]P[jgg IX? — Xs|ds] — 0. This entails in particular that

fﬁs fo(s, Xg)ds — §(t) fols,Xs)ds inL' forallte[0,Tl.
At the same time, we have
$o fols, XD ds = [ (s, XI)ds — [ f(s,Xs)ds inLP forallte [0,T]

since X™ — X in PP, Setting X & Y7§(t> fo(s,Xs)ds, where Y is the cadlag, F-adapted
IP-modification of the process M from (2.35), it thus follows that

X =My — [5f(s,Xs)ds = Yy — §5 fols,Xs)ds = X¢ inLP forallte[0,T],
and we have constructed a cadlag, F-adapted IP-modification X of X.

The above discussion shows that the unique solution X of the BNEE
(2.34) induces a solution of the 2BSDE (2.36), which is unique in the
sense of Theorem 6.4 in Nutz (2012). Finally, note that the 2BSDE
(2.36) is not included in the class of 2BSDEs studied by Soner et al.
(2012, 2013), as the domain of the conjugate of the nonlinear generator
is possibly path-dependent. o

2.5.2  Classical G-expectations

As pointed out by Nutz (2012), the classical G-expectation of Peng
(2008, 2010) can be considered as the special case of the random G-
expectation presented above where 1 =0, o(r, X, v+) = v; and the SDE
for the state process (2.31) is just a stochastic integral; the stochas-
tic control representation of the G-expectation which implies this is
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studied in great detail by Denis et al. (2011). Thus, the results from
the previous Subsection 2.5.1 directly show that Peng’s G-expectation
is a regular sublinear expectation on an appropriate domain. In this
subsection, we present an alternative, more standard construction of
G-expectations and a more elementary proof of their regularity.

To introduce the G-expectation, we follow Peng (2008, 2010) and
Denis et al. (2011) and work on the canonical Wiener space

Q¢ 2{w:0,t > R : wis continuous with w(0) =0}, te[0,Tl.

As usual, Q is equipped with the topology of uniform convergence.
The canonical process is denoted by Bs(w) = ws; the d-dimensional
Wiener measure is denoted by P. We write ClLip(]RdX“) for the space
of all functions ¢ : R4*™ — R such that

3k C>0: o) — @) < CT+ K +yM)x—yl ¥xyeR>™

The G-expectation is defined first for members of the increasing fam-
ily (H¢)tepo,1) of cylindrical random variables

He £ {@(By,,...,By,) i nEN, t1,...,tn €[0,t], @ € Cpip(RV™)}.
For this, a function G : 54 — R of the form

G(A) = %sup triyy Al A €S89,
ver

is chosen, where I' C R4*4 is bounded, non-empty and closed, and
54 denotes the set of symmetric d x d matrices.

The sublinear expectation (£C)c(o 1) — the G-expectation — is then
defined on (H¢)¢c(o,1) by the condition that, for each ¢ € ClLip(IRdX“)
and all 0 <t7 <--- <ty < T, we have

€8 @By, By, By, =By, )] =¥(By,...,Be, ), (237)
where VX1, xn-1) 2 ECl@(x1,%2, -+, \/tn — ta_1B1)].

Here, B is G-normal, that is, for each ¢ € ClLip(]Rd) one defines
ESTp(x +v1B)] £ u(t,x),

where u is the unique continuous viscosity solution of the so-called
G-heat equation (see Peng (2008))

u—Gu”) =0, u(0,-) =eo. (2.38)

It is straightforward to check that the definition of the G-expectation
on H is independent of the choice of representatives, and thus it
is well-defined as an operator €S : H — H.. From there, time-
consistency (TC) is a consequence of the recursive definition (2.37).
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Theorem 4.3.1 and Theorem 4.4.5 in Pham (2009) characterize the
unique continuous viscosity solution u of (2.38) as the value function

w(T—t,x) =v(t,x) £ supE"* [@(BF)], te0,Tl, xcRY, (239)
xeA

where A is the set of all I'-valued progressive processes and dB{ =
o dBy; see also Theorem 48 in Denis et al. (2011). Here, the connection
to the random G-expectation from Section 2.5.1 and, in particular, to
(2.31) and (2.33) becomes apparent.
Note: The optimal control characterization (2.39) is obtained as follows: Standard SDE
estimates show that the value function sup . 4 Et"‘[(p[B%)} is continuous and locally
bounded; thus, Theorem 4.3.1 in Pham (2009) implies that v is a continuous viscosity
solution of —vy — G(v"") = 0, v(T,-) = . A comparison principle (see, e.g., Theorem
4.4.5 in Pham (2009)) shows that there is at most one such solution. We note that the
definition of a viscosity solution used in Pham (2009) is different from the one used in
Peng (2008) and Denis et al. (2011). In Denis et al. (2011), the function v is a viscosity

solution of vy + G(v"') = 0; see their Theorem 48. This is equivalent to v being a viscosity
solution of —v{ — G(v"’) = 0 in the sense of Pham (2009).

The representation (2.39) directly implies that the G-expectation is
monotone, sublinear, and preserves constants; therefore, (8§)te[o,ﬂ
is a sublinear expectation on (H)icjo 13- To apply the results of Sec-
tion 2.4, consider (€ ).c(o,7) as a sublinear expectation on (H?)c(0,1),
where

HP 2 {@(By,,...,B,) i neN, t1,...tn €[0,t], ¢ € Cprp(R™)},

and where CbLip(]RdX“) is the space of all bounded and uniformly
Lipschitz continuous functions ¢ : R4*™ — R. This is possible by
(2.39), which even yields the probabilistic representation

5§ [E] =sup EP[E], &eHy, where P2 {Po(BY) ' : ac Al (2.40)
PelP

Once again, we are precisely in the situation of Section 2.4. As in
Subsection 2.5.1 above, we obtain the following;:

o The collection LP(IP) of (equivalence classes of) Ft-measurable
random variables is a Banach space for the norm |||

Lp
SUpPpcp EP [IEIP}% by Corollary 2.42.

o The closures L} £ clos(H?) C LP(IPP) form a Lebesgue family
by Theorem 2.44.

o The sublinear expectation (£ )(c(o 1] On (HY)ie(o,1) €xtends con-

tinuously to a sublinear expectation (EF)c(o,1) on the appropri-
ate domain {L} : t € [0, T], p > 1}; see Theorem 2.45.

Moreover, Lemma 2.47 implies that the family IP is uniformly tight.
As a consequence, we get the following lemma; see also Hu and Peng
(2009) and Denis et al. (2011).
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LEMMA 2.53. Forallt € [0, Tlandp > 1, we have L} = clos(H?; LP(P)) =
clos(Hy; LP(P)) and E€|sc, = EE; moreover LY is separable.

Proof. We note that (2.39) and standard SDE techniques show that
v (t,x) £ sup ., E"¥[@™(BY)] — v(t,x) = sup, 4 E"*[e(Bf)] uni-
formly on compacts whenever @™ — ¢ uniformly on compacts. By
the definition (2.37) of the G-expectation and uniform tightness of
the representing set IP (2.40), we obtain the first two assertions. For
the last, note that for every compact set K C Q, the set of restricted
functions {&lx : & € HP} C C(K) is dense by the Stone-Weierstrass
Theorem (see, e.g., Aliprantis and Burkinshaw (1998), Theorem 11.5,
p- 89), and hence the claim follows as in Lemma 2.52 above. ]

In view of Lemma 2.53, we shall denote the continuous extension
(ES)ieiom Of (E€)icio T bY (E€)icio 1), as well. We now give an ele-
mentary argument which shows that the G-expectation () c(o,1) is
a regular sublinear expectation in the sense of Definition 2.22. In fact,
t — £S[&] is even continuous.

LEMMA 2.54. Let & = @(By,,...By,) € HY. Then there exists a constant
K > 0 such that

[E25ea <Kls—t]z foralls,tel0,Tl.

]HL,p

Proof. Let L > 0 denote the Lipschitz constant of ¢ and let 0 < t <

< T. Without loss of generality,> we may assume that t; =s <t =1t
for 1<i< ) n. Iterating (2.37), we see that &E [£] =*(By,,...,By,),
where Y™ £ ¢ and

Il)k(X],...,Xk) £ [ll)kJr] X]/ < Xks V tet1 —tkB1 +xx ]

for k =n—1,...,1, and where each ¥ has the same Lipschitz con-
stant L as ¢. Therefore, we obtain

€8 (&l —&F (&) < LBy, — By, |+ Ly/tk — ti1 EC[B1 1.

By a telescoping sum argument and Jensen’s inequality (Lemma 2.11),
we thus arrive at

€S TE)— e E][” < 2PLPKP (L8 Be. By, P +Is— 1T €SB .

Now, [Buia —BuP € Ht, and hence we have £G[By,a — BuP] =
A5 ES[B4|P] by (2.37). Since |B;|P € H7, it has finite sublinear expecta-
tion ¢ £ €C[|B1|P], and the proof is complete. O

COROLLARY 2.55. The G-expectation is a reqular nonlinear expectation. In
particular, so is its superlinear counterpart —€S[—].

Proof. By Lemma 2.54, the map t — €[] is uniformly continuous for
every & € H2. We conclude by Lemma 2.23. O

2 Every & € H admits a representation (pf;lin with a minimal number of time points.
An arbitrary representation ¢ and (pélin share the same Lipschitz constant.
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2.5.3 The g-expectation

In this subsection, we demonstrate how g-expectations can be sub-
sumed into our general nonlinear expectations framework; g-expec-
tations are defined in terms of backward stochastic differential equa-
tions and were first put forward by Peng (1997). Since then, g-ex-
pectations have been studied extensively in the literature; see, among
others, Briand et al. (2000), Chen and Peng (2000), Coquet et al. (2002),
Chen and Epstein (2002) as well as Peng (2004b) and the references
therein. Royer (2006) studies g-expectations on probability spaces
which, in addition to a Brownian motion, also carry a Poisson ran-
dom measure; see also Delong (2013) for an overview.

Let (Q, A, P) be a complete probability space that supports both a
d-dimensional Brownian motion W and a Poisson random measure

M:QxB([0,T] xE) = Ny U{oo}.

Here E £ R*\ {0}, and B([0, T] x E) denotes the Borel-c-algebra on
[0, T] x E. We assume that the compensator A of T' takes the form
A(dt,de) = y(de)dt, where vy is a o-finite measure on (E, B(E)) such
that [ (1A lel*)y(de) < oo. Finally, we denote by I' £ I' — A the com-
pensated jump measure and by (Fi)c[o,1] the augmented filtration
generated by W and T'; we assume that F1 = A. Since we are now
working in an honestly probabilistic framework, we adopt a usual
convention and identify two random variables if they coincide al-
most surely. Moreover, we will not distinguish between stochastic
processes which coincide P ® dt-almost everywhere.
We consider BSDEs of the form

Xe = &+ [ (s, Vs, Zs)ds — [ YJ AW, — [] [cZs(e)T(ds,de),  (2.41)
where we assume that
f:QOx[0,T xRYxL?(y) =R
satisfies the following conditions:

(D1) The process f(-,Y, Z) is predictable for every R¢ x L?(y)-valued
predictable process (Y, Z).

(D2) For all y1,y2 € RY, z1,z; € L?(y) and some L > 0, we have

1f(-,y1,21) — (-, y2,22)l < L(lyr —y2l+ (21 — z2lli24)-

(D3) We have E[[,f(t,0,0)]2dt] < oc.

Let us refer to such a function f as a driver. The next two lemmas
provide well-known existence, uniqueness and stability results for the
corresponding BSDEs.
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LEMMA 2.56. Let f be a driver and & € 1%(P). Then the BSDE (2.41) has a
unique solution (X,Y, Z) satisfying

E [supte[o/ﬂ|xt|2 + flet|2dt+ ngZt(e)H%zmdt} < oo. (2.42)

Proof. See Lemma 2.4 in Tang and Li (1994). An inspection of their
proof reveals that f need not be measurable: It suffices if f(-,Y,Z)
admits a predictable a.e.-modification for all R% x L?(y)-valued pre-
dictable processes (Y, Z). O

LEMMA 2.57. Let f be a driver, £',&? € 1%(P) and let (X!,Y}, ZY) denote
the unique solutions of the BSDE (2.41) with terminal condition & = &y
i = 1,2. Then there exists a constant ¢ > 0 (depending only on f and T)
such that

2 T 2 T
E [Supte[O,T] ‘Xl - X%‘ +Jo }YQ - Y‘%’ dt+ [y llz" — Zz||%2(y)dt}
< cE[lg' - &7,
Proof. See Proposition 2.2. in Barles et al. (1997). O

To construct a g-expectation, let g and h be two drivers, where h
is sublinear, and suppose that h dominates g, i.e., for all y;,y, € R¢
and z1,z> € L?(y), we have

9(y1,21) —9(-,Y2,22) <h(,y1 —yz,21 — 22). (2.43)
Moreover, suppose that the following two conditions are met:

(g1) For both f = g and f = h, the BSDE (2.41) satisfies the follow-
ing comparison principle: Let & € L2(P), let (X,Y, Z) denote the
unique solution of (2.41), and suppose that (X,Y, Z) satisfies the
integrability condition in (2.42). If £ > = Xy € L?(P) and

dX¢ = —[f(t, Y, Z) + Be] At + Y, W, + [ Z¢(e)F(dt, de)
with B <0, then X < X. Similarly, if £ <1 and B > 0, then X > X.
(g2) The drivers g and h are normalized, i.e., g(-,0,0) =0 = h(-,0,0).

In the Brownian setting, assumption (Dz2) implies a comparison theo-
rem for BSDEs which guarantees (g1); see, e.g., El Karoui et al. (1997).
In jump-diffusion settings, comparison principles for BSDEs are a
more complicated matter. A comparison theorem was first obtained
by Barles et al. (1997) and later improved by Royer (2006) and Quenez
and Sulem (2013). For sufficient conditions for (g1), we refer to these

papers.

Note: In a purely Brownian setting without jumps, one may take any suitably measurable,
normalized function g which satisfies the Lipschitz condition |g(-,y) — g(-,9)| < Ly — gl
and put h(-,y) £ Lly|. Then the conditions (g1)-(g2) are satisfied; see, e.g, Peng (2004b).
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Under the assumptions (g1)-(g2), the operators
e9:1%(P) » L2(Q,7,P), &9E12&X, teloT],

where X is given as the unique solution of (2.41) with f = g, satisfy
the axioms (SI), (TC) and (N) as direct consequences of uniqueness
(Lemma 2.56) and normalization (g2). Monotonicity (M) follows from
the comparison principle (g1). Additionally, if g is positively homo-
geneous or subadditive, then, by (g1), so is &¢; for details, we refer
to Royer (2006). The nonlinear expectation (£F)ic(o,) is called a g-
expectation. The same procedure (taking f = h in (2.41)) yields a
sublinear expectation (£});¢o 1] Since h dominates g (2.43), the com-
parison principle (g1) implies that

edg] —edm] <ef[g—m], telo,T), &nel?(P),

that is, () ic(o 1) dominates (€7)¢c(0,7)-

In the following, we construct an appropriate domain for the g-
expectation. Since €} : L?(P) — R is a sublinear expectation operator,
Theorem 2.37 yields a family IP of finitely additive probability mea-
sures on A such that

exlE] =Plg] = sup,,p EP [E] forall £ € L®(A).  (2.44)

The stability result in Lemma 2.57 shows that £} [£] — €5 [£] if €™ —
£ in L?(P). In particular,

P(An) =sup,pEP[1a, ] =€} [1a,] =0 whenever Ay | 0.

Hence, each p € P is o-continuous from above and thus countably
additive. As it consists solely of genuine probabilities, the family P
has the Fatou property. Moreover, P(A) = }f[1a] = 0 if P(A) =0, i.e,,
P is absolutely continuous with respect to each p € IP.

As in Subsection 2.4, we introduce the Banach space

1 R
() 2 {[g]p : &€ L20A) with [lg]|Lp =P[IEP]7 <00} < A,

If (E™)nen C £°(A) with £ — & in L?P(P), then the stability result in
Lemma 2.57 and the probabilistic representation (2.44) imply

P[lg" —g™P] = EG[IEM—&™P] = 0 as (n,m) — oo.
It follows that &™ — & in LP(IP). In particular,
L?P(P) — LP(P) for all p>Tland P[] = 88[&] for all & € L?(P).
Hence, defining
LP asthe closure of L°P(Q,F,P) inlP(P), tel0,T, p=>1,

we obtain a Lebesgue family £ = {(L}, |- |[p) : t€[0,T], p > 1}
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Since &} = P[]|;2(p), time consistency (TC) implies
P[lede'] — €912 < P[eR[lE! — £2]]] = P[le! — &£2]).

Thus, both &' and €} extend continuously (and hence uniquely) to
operators €, €Y : L1 — L], t € [0,T]. Now, arguing as in the proof
of Theorem 2.45, it is straightforward to verify that (€7)icjo 1) is a
nonlinear expectation, carried by the sublinear expectation ()¢ (0,7
on the appropriate domain £.

THEOREM 2.58. The g-expectation ()¢ (o 1) is a regular nonlinear expec-
tation carried by (&{")¢e(0,1) 01 L.

Proof. It remains to establish regularity. By Lemma 2.23, it suffices
to check that [0,T] — LP, t — &¢[&] is cadlag for every & € L2P(P)
and each p > 1. Thus let p > 1 and & € L??(P), and let (X,Y, Z)
be the unique solution of (2.41) with f = g. Then £7[§] = X, and
Elsup, .o, IX¢]?P] < o0.

If t, T torty | t, then X¢, — n a.s., where n = X¢ or n = X(_, resp.,
since X has a cadlag paths. But then n™ £ [X, —n|P — 0 in L2(P) by
dominated convergence. It remains to show that Pn™] — 0.

Let (X™, Y™, Z™) be the unique solution of (2.41) with f = h and
terminal condition n™. Then X™ — 0 by Lemma 2.57, and hence
Pm™ = EMmm] = XT — 0. O

Remark. Theorem 2.58 shows that it is possible to consider BNEEs
under g-expectations; however, this does not result in new objects:
Indeed, let (X, Y, Z) be the unique solution of the BSDE

Xe = —[f(t, Xe) + g(t, Ye, Zo)]dt + Y AWy + [ Z(e)T(dt, de)  (2.45)

with terminal condition X1 = &. Setting f(t,x) = f(t,x) + g(t, Yt, Z¢),
the semimartingale X is the unique solution of the BSDE associated
with (f, £); hence, X (considered as a mapping t — LP) is in DP by
Lemma 2.70 below.

Now, let (M, N, O) be the unique solution of the BSDE

M = —g(t,Nt, O)dt + N{ dW; + [ O¢(e)T(dt, de)

with terminal condition Mt = & + fgf(s, Xs)ds. By uniqueness, it fol-
lows that M — fgf(s, Xs)ds = X¢, and hence

Xe = &Y[[{ f(s,Xs)ds +&],  telo,Tl (2.46)

Thus the unique solution of the BNEE (2.46) (as in Theorem 2.26) is
given by the solution X of the classical BSDE (2.45): BNEEs under
g-expectations are BSDEs. Nevertheless, the discretization result of
Theorem 2.32 or the convergence result for recursive utilities (Theo-
rem 2.80 below) are of interest in the context of g-expectations. o
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2.5.4 Drift and intensity uncertainty

Robust expectations under drift and intensity uncertainty are an in-
teresting special case of g-expectations, and hence they fit into the
abstract nonlinear expectation framework of this thesis.

The construction of dynamic robust expectations under uncertainty
about the drift is due to Chen and Epstein (2002). In the following, we
briefly sketch out a natural generalization of their construction which
also includes uncertainty about the intensity of jumps.

Let (Q, A, P) be a complete probability space which carries both an
n-dimensional Brownian motion W and an m-dimensional standard
Poisson process N. The associated compensated Poisson process is
denoted by N. Let (F¢)co 1) be the augmented filtration generated
by W and N and assume that A = J.

We fix a set D of predictable E £ R™ x (—1,00)™-valued processes
0 = («, B) for which the stochastic exponential

dz{ = 7§ (afdWi+BldNy), 2§ =1,

is a martingale. Then each 6 = («, ) € D gives rise to an equivalent
probability P® with P-density Z°. Moreover, under P® the process

W® 2 W — [ asds is a standard n-dimensional Brownian motion
and N is a counting process with intensity 1., + §, i.e., the process
N® 2 N— [,(1m+Bs)ds is a local martingale.

Here 1,, denotes (1,1,...,1)T ¢ R™.

We write E°[] £ E[-ZY] for the expectation with respect to P® and
denote by IP the collection of all P?, 8 € D. Following Chen and Ep-
stein (2002), the set P is said to be rectangular if there exists a 2E-
valued process O such that

0D <= 0isa predictable process such that (R)
0:(w) € O(w) fordt®P-ae. (t,w).

We note that this property implies that D is stable under pasting, i.e.,
if 01,02 € Dand t € [0, T, then 0 £ 1y 0" + 1, 116 € D. The process
© is further supposed to satisfy the following conditions:

(a) Weak measurability: For every open set G C R™ x R™ the lower
inverse ®'(G) ={(t, w) : O¢(w)N G # 0} is a predictable set.

(b) Boundedness: There exists a compact set K € R™*™ such that
Oi(w) C K forall (t,w) € [0,T] x Q.

(c) Closedness: For all (t,w) € [0, T] x Q, the set O¢(w) C E is closed.

(d) Normalization: For all (t,w) € [0, T] x Q, we have 0 € O¢(w).
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We note that the boundedness condition (b) ensures that
{z§ : 0 € D} is uniformly bounded in LP(P) forall p > 1. (2.47)

More importantly, the above conditions yield the following measur-
able selection result:

LEMMA 2.59. Let p be an R™*™-valued predictable process. Then there ex-
ists © € D with

p 0 =maxp'0 P ® dt-a.e. (2.48)

0eD

Proof. By the above assumptions, © is a weakly measurable corre-
spondence with non-empty compact values, from the measurable
space Q x [0,T] (endowed with the predictable o-algebra) into the
(separable and metrizable) space E. Since ((w,t),x) — pt(w) " x is pre-
dictable in (w,t) and continuous in x, the argmax-correspondence
(w, 1) = {y € O(w) : p(w) 'y = maxyco,(w) Pt(w)x} admits a pre-
dictable selector 8 by Theorem 18.19 in Aliprantis and Border (2006).
Now, the rectangularity condition (R) implies 6 € D and (2.48). O

Being able to select the maximizer is a convenient feature of the
present situation that simplifies the construction of a time-consistent
nonlinear expectation in the present context. The reason for this is
that all involved measures are mutually absolutely continuous; thus
a process that is well-defined for a single measure is automatically
well-defined for all relevant measures: There is no need to aggregate
a whole family of objects (being defined only under one measure) into
one meaningful (i.e., measurable) single object (being defined for all
measures) (as, e.g., in Soner et al. (2011b)). The following simple mar-
tingale representation result is another manifestation of the comforts
of absolute continuity; it is the second important ingredient in the
construction of the robust expectation.

LEMMA 2.60. Let & € L2(P). For each © = (o, B) € D, there exists a pre-
dictable R™ x R™-valued process (H,K) such that

E{[e) = E°[e] — [§(H] o + K] Bo)ds + [gHT dWs + [5KI NG (2.49)
=EO(g] + [oHy dW? + [(KTdNS  forall t € [0,T] as.

Proof. Note that Z8¢ € L"(P) and & € L"(P9) for r € (1,2) by (2.47).
Now, we set My 2 EJ[¢]. Then X, £ Z?M, = E[[z%¢] is an L"(P)-
martingale. By martingale representation, we obtain

Xt =Xo + ‘r(t)(HS)TdWs +I$(Ks)Tst

for some predictable R™ x R™-valued process (H, K). Now, the asser-
tion follows upon computing the dynamics of My = X¢/Z?. O

Note: A suitable martingale representation result for Lz-martingales can be found in
Tang and Li (1994); see their Lemma 2.3. Making use of the Burkholder-Davis-Gundy
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inequality and Doob’s LP-inequality, the result is easily extended to all p > 1. For a
further discussion of the predictable representation property of Lévy processes, we refer
to Nualart and Schoutens (2000) and Di Tella and Engelbert (2015).

Equation (2.49) shows that the conditional expectation process t —
E?[¢] solves a linear BSDE under P. Using the predictable maximizer
from Lemma 2.59, one can solve the “maximal” BSDE.

PROPOSITION 2.61. For every & € L?(P), there exist a unique adapted cadlag
process X and a unique R™ x R™-valued predictable process (H, K) such that

dX == max (M o+ K] Bo)dt+H] dWi + K[ dNy, Xr = & (250)
x,B)e

Proof. Setting

g(t, w, h, k) £ (;%?é@[h—r“t(w) +k (W)t (w)], (2.51)
we have that g is Lipschitz continuous in (h, k), uniformly in a.e.
(t, w). Moreover, Lemma 2.59 yields predictable a.e.-modifications of
g(-, H,K) for all predictable processes H, K; hence, g satisfies the con-
ditions (D1)-(D3) (on p. 55) and Lemma 2.56 shows that (2.50) has a
unique solution. O

In view of Proposition 2.61 and the results of Subsection 2.5.3, one
can construct a g-expectation corresponding to the BSDE (2.50). In-
deed, choosing h = g as in (2.51), the conditions (D1)-(D3) and the
normalization property (g2) (on p. 56) are satisfied; the comparison
principle (g1) is implied by Lemma 4.1 in Quenez and Sulem (2013).

Following Chen and Epstein (2002), we take a more direct route
here and define the nonlinear expectation under drift and intensity
uncertainty via its explicit robust representation (2.52).

PROPOSITION 2.62. For each & € 1L?(P), there is some © € D such that

E¢lE] = E? [&] = max E%[¢] forall t € [0, T]. (2.52)
Proof. Let & € L2(P) and let (X, H, K) be given as the unique solution
of (2.50). Lemma 2.59 applied to p = (H,K) yields 6 = (&, ) € D with
H'a+K'B= max (H'a+K'p) Pmdtae,
(e, B)ED

and hence X satisfies
dX¢ = —[H{ & + K{ B¢]dt + H{ dW, + K] dN = H{ dW? + R dN?
with terminal value Xt = &. It follows that X; = E? (E].

To show that 0 is in fact a maximizer, let 6 = («, ) € D and put
Y, £ E?[¢]. Lemma 2.60 shows that

dYe = —(I] ox + L] Be)dt + 1] dW, + L/ dNy, Yy =&

Now, HT& +K'p > HTa + K" holds P ® dt-a.e., and hence the com-
parison result from Lemma 4.1 in Quenez and Sulem (2013) implies
that Xy > Y forall t € [0, TI. O
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Proposition 2.62 allows us to define the operator

Et HT - Hy, & rena%Ef [£], where Hy £ L®°(Q,F,P), t [0, Tl
€

Note: As in Chen and Epstein (2002), we could also consider & : LZ(P) — L2(Q, F, P) be-
cause the solution X = maxgep E? [€] of (2.50) is in L%(P). Here, we start from bounded
random variables in order to use the extension machinery from Section 2.4. Classical
stability results for BSDEs (see e.g., Proposition 2.2 in Barles et al. (1997)) show that this
makes no difference.

We have, by now, constructed a dynamic robust expectation.

THEOREM 2.63. The family of operators (Ei)icpo,1) 15 a sublinear expecta-
tion on (H)ieqo,1)-

Proof. The properties (M), (PC), (SUB) and (PH) are satisfied since
¢ is given as a maximum of linear expectations. Time consistency
(TC) follows from (2.52) and stability of D under pasting: Indeed, let
0<s<t<Tand ¢ € Hr. By Proposition 2.62, there are 6, 0 € D such
that &,[¢] = EJ[€] and &[€+[£]] = ES [E{ [€]]. Then

al 8 70
&[] =B [ED(e)] = Bo[ S5 Zhe].
t s
We note that é—?é—g = é—i,f, where p = 1;p )0 + 11160 € D by stabil-

ity under pasting. Therefore, we have &,[¢[&]] = Ef[&] < &s[E]. The
converse inequality is obvious. O

Once more, Theorem 2.45 shows that (E¢)icjo 1) extends to an ap-
propriate domain {L} : p > 1, t € [0,T]}, where L} c L'(Q,J,P) is
defined as the closure of H; = L*(Q, ¥y, P) with respect to the norm
Il = SUPgeqp || - [lLv(poy-

THEOREM 2.64. The nonlinear expectation (E)ic(o 1) is a regular sublinear
expectation on an appropriate domain.

Proof. Let & € L°(P) and note that X; = &[&] = Ef [£] for some 0 € D
by Proposition 2.62. Hence X can be chosen to have cadlag paths and,
for all 6 € D, we have

1 1
E°[Xein — XelP] < E[Xein — Xe[*P] 2 E[|291%]2

by (2.47). Now, bounded convergence shows that the mapping t —
LP, t — X is cadlag, and regularity follows with Lemma 2.23. O

2.6 THE LINEAR CASE

The purpose of this section is to demonstrate that the BNEE theory
from Section 2.3 is an honest extension of the classical theory of back-
ward stochastic differential equations (BSDEs). To make that point,
we show that the solution of a BSDE solves the corresponding BNEE,
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and that a suitable modification of the solution of a BNEE solves the
corresponding BSDE.

Thus let (Q, A, (Ft)teo,1),P) be a filtered probability space that is
both right-continuous and complete. Suppose that F is P-trivial and
that A = F1. Whenever a martingale appears, we work with a cadlag
version. Moreover, we identify random variables that coincide P-a.s.
and stochastic processes that are indistinguishable from one another.
We write L} £ LP(Q,F,P), p > 1, t € [0,T], for the Banach space of
p-integrable, Fi-measurable random variables. Clearly,

{(LY, |- llp) : te[0,T], p>1} isan appropriate domain
(in the sense of Definition 2.9) for the linear (conditional) expectations
E¢:LP —» 1P, X—EY[XIF], telo,T.
LEMMA 2.65. The linear expectation (Ei)c(o,1 is regular.

Proof. Let & € LP. We have to prove that [0,T] — LP, t — E[&] is
cadlag. Define a (cadlag) martingale M by M, £ E[&], t € [0, T]. Then
{IM¢[P : t € [0, T]} is uniformly integrable, and My, converges point-
wisely along all monotone sequences (tn)nen; by Vitali’s theorem
this convergence is in LP. [

In this section, we consider the classical conditional expectations
(Et)teo,1) as a regular nonlinear expectation on its appropriate do-
main {(L{, || - [p) : t € [0, T], p > 1} of classical Lebesgue spaces. We
focus on the case where p(dt) = dt is the Lebesgue measure on [0, T]
and consider the corresponding Banach space of (equivalence classes
of) dt-integrable LP-processes, as in Definition 2.17,

PP = {[X] : the LP-process [0, T] — LP, t — X; is measurable

and adapted with norm ||X Lpdt<oo}.

Pp = J‘[O,T} (Xt

Moreover, as in Definition 2.20, we consider the process space

DP = {X adapted LP-process : [0, T] — LP, t — X is cadlag} — PP,

which is a Banach space with norm [|X||s,, £ sup o7 IXellLp-

Our nonlinear expectation framework relies on the above spaces
of LP-processes and Bochner integrals. In the classical probabilistic
setting of this section, one would, of course, prefer to work with
stochastic processes and pathwise integrals. Fortunately, the transi-
tion between the two frameworks causes now difficulties:

We identify stochastic processes that coincide P ® dt-a.e. and write
PP for the Banach space of all real-valued, progressively measurable
stochastic processes X with finite norm || X||p,, = fg [ X¢lL,p dt.

PROPOSITION 2.66. The mapping
x: PP - PP, X XT(g,0 (EIXP])

is an isometric isomorphism.
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Proof. Clearly, Yy £ X¢1(0 ) (ElIX¢[P]), t € [0, T], defines an adapted LP-
process. Using Tonelli’s theorem, it is straightforward to prove that
the distance function

de : [0, T] > R, t = E[|Yy — Elp]% is B([0, T])-B(IR)-measurable

for every & € LP. Since LP is a separable Banach space, it follows
that Y is B([0, T])-B(LP)-measurable. Moreover, Yy = X; in L} for dt-
a.e. t € [0, T] because E[[X¢[P] < oo for dt-a.e. t € [0, T]. In particular,
IYllpp = IX|lpp < oo and Y € PP. By the above, Y = «(X) € PP is
uniquely characterized by the property

Y; = X¢ in LP for dt-a.e. t € [0, Tl.

Hence, o is well-defined, linear and isometric. An elementary approx-
imation argument shows that « is onto; see Lemma A .44 (p. 167) O

The isometric isomorphism « from Proposition 2.66 is consistent
with integration:

PROPOSITION 2.67. Let X € PP and Y € PP such that Xy = Y in LP for
dt-a.e. t € [0, T]. Then, the pathwise Lebesgue integral

FaXedt £ [w— [, Xs(w)dt], A€ B([0,T]),

defines a member of LP which coincides with the Bochner integral [ , Yy dt.
In particular, we have

$aXedt = [ [x(X)]edt in LP forall X € PP.

Proof. Both integrals coincide for step processes. Approximating X by
predictable step processes (X™),cn with [X™ —X|lp, — 0, the claim
follows by || - ||[pp-continuity of the integral operators. For details, we
refer to Proposition A.46 on p. 168 of the appendix. O

With the above one-to-one correspondences between PP and PP, we
obtain several results of the classical linear theory as consequences of
our theory of backward nonlinear expectation equations.

Note: Proposition 2.66 can also be found in Subsection A.3.2 in the appendix, p. 165ff.
There, a more detailed proof is provided.

The use of the space IPP is non-standard. Usually, one would work with the space of
progressively measurable processes that are p-integrable with respect to the product
measure P ® dt; however, this space is contained in PP so this causes no problems.

2.6.1 Existence and uniqueness for BSDEs via the theory of BNEEs

Now, we consider classical backward stochastic differential equations
(BSDEs) of the form

Xe =B [[{f(s,X)ds +], tel0T, (2.53)

where the aggregator f is a BSDEP-standard parameter in the sense
of the following definition.
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DEFINITION 2.68. Let £ € LP = LP(P), and let
f:Ox[0,TIxR—=R

be § ® B(R)-measurable, where § denotes the o-algebra of progres-
sively measurable sets in (Q, A, (Fi)rejo 1) If

(B1) [f(t,x) —f(t,y)| < Lx—ylforallx,y € R, t€[0,T], and

(B2) jo [[f(t,0)[7] vt < 00,

then (f, &) is called a BSDEP-standard parameter. o

If (f,&) is a BSDEP-standard parameter, then f(-,X) is a progres-
sively measurable process for every progressive X. Moreover, (B1) im-
plies that

£, X) lpp < LIX[lpp + o E [lft0)|f’]r’dt (2.54)

and thus f(-,X) € PP by (B2) whenever X € PP.

DEFINITION 2.69. Let (f,&) be a BSDEP-standard parameter. A semi-
martingale X is called a solution of the BSDE associated with (f,&) if
sup, o1 IIXtllLp < oo and X satisfies (2.53). o

LEMMA 2.70. Let (f,&) be a BSDEY-standard parameter and X a semi-
martingale with sup, o 1) [[XellLp < oco. Then X is a solution of the BSDE
associated with (f, &) if and only if there exists a martingale M such that

dXt = —f(t, Xt)dt + th, XT = E, (255)
In that case, we have
Xo =Eq [[of(s,Xs)ds + X<|  for all stopping times o <,  (2.56)

and sup{E[[X<|] : tisa [0, Tl-valued stopping time} < oo; moreover, if
p > 1, then M is an LP-martingale and E[supte[olﬂlxtlp] < 0.
Finally, X (considered as a mapping [0, T| — LP) is a member of DP.

Proof. Suppose that X is a solution of the BSDE, and define a closed
martingale M by

Mi 2 B [[3 (s, X) ds +E], te 0T

This is possible by (2.54) and Proposition 2.67. We note that M is an
LP-martingale if p > 1. Since X satisfies (2.53), we get

Mt_J‘é f(S,XS)dS :Et |:J.:— f(S,XS)dS+£:| :th te [O/T]/ (2‘57)

which establishes (2.55).

Now, suppose that (2.55) holds for some martingale M. Let 0 < 7
be two stopping times, and integrate (2.55) from time o up to time 1
to obtain

Xe+ [5f(s,Xs)ds = Xo + M — Mg
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Taking Fs-conditional expectations, we get (2.56). In particular, choos-
ing o=t € [0,T] and T = T, we see that X is a solution of the BSDE
associated with (f, £). Moreover, (2.56) implies

X < Er [jg If(s, Xs)|ds + IEI] = N, for all stopping times .

Once again, Proposition 2.67 and (2.54) show that N is a uniformly in-
tegrable martingale and, provided that p > 1, even an LP-martingale.
Now, E[[X<[] = E[N{] = Ny < oo, proving that sup E[[X+[]] < oo, where
the supremum is taken over all stopping times. Moreover, if p > 1,
then Doob’s LP-inequality yields

E[Supte[O,T}|Xt|p] = E[supte[O,T}|Nt|p] < (EBT)pEUNTm < 0.

For the last assertion, recall the decomposition (2.57). The map
[0,T] — LP,t — M, is cadlag by Lemma 2.65. Moreover, the func-
tion [0, T] — LP,t+~ [ f(s,Xs) ds is continuous by dominated conver-
gence; thus, the mapping t — X = My — fé f(s, Xs) ds is cadlag, and
hence X € DP. O

By Lemma 2.70, we can equivalently say that X is a solution of the
BSDE associated with (f,&) if X satisfies (2.55) for some martingale
M. This definition is of course much more in line with the name
backward stochastic differential equation. Indeed, it will often (but not
always) be convenient to represent the solution of a BSDE by (2.55)
rather than by (2.53). We use both terminologies interchangeably.

We now clarify the relationship between the well-established con-
cept of BSDEs and our notion of BNEEs under (E)ic[o 1;. For every
BSDEP-standard parameter (f, &), we will prove the following :

1. “(f, &) can be translated into the ‘nonlinear” setting:” There ex-
ists a BNEEP-standard parameter (g, &) with

«(f(-,X)) = g(-, x(X)) in PP for every X € PP.

2. Every solution of the BSDE associated with (f, &) is a solution of
the BNEE associated with (g, §).

3. A modification of the solution of the BNEE associated with
(g, &) solves the BSDE associated with (f, §).

The above three points are hardly surprising. For the sake of math-
ematical completeness, we nevertheless provide complete, rigorous
proofs of these three statements. Together, they show in particular
that the BSDE (2.53) has a unique solution (if one only aims at this re-
sult, it is, of course, easier to prove it directly). We start with the first
point in the above list. To obtain the corresponding BNEE-parameter,
we need to modify f in order to ensure that it always maps to LP.



2.6 THE LINEAR CASE

LEMMA 2.71. Let (f,&) be a BSDEP-standard parameter. Then, there exists
a BNEEP-standard parameter g : [0, T] x LP — LP such that

«(f(-,X)) =g(, (X))  forall X € PP. (2.58)

Proof. Property (B2) of a BSDEP-standard parameter guarantees that
[£(t,0)||L,p < oo for all t € N¢ and some dt-null set N € B([0, T]). Now,
it is straightforward to verify that

g(t,m) = f(, t,n)Ine(t) € LP

defines a BNEEP-standard parameter with the desired properties; for
the details, we refer to Lemma A .48, p.169. O

Next, we show that solutions of BSDEs are solutions of BNEEs.
PROPOSITION 2.72. Let (f, &) be a BSDEP-standard parameter, and let (g, &)
be a BNEEP-standard parameter that satisfies (2.58). If X is a solution of the
BSDE associated with (f, &), then X (considered as a mapping t — LP) is the
unique solution of the BNEE associated with (g, &).

Proof. Let X be a solution of the BSDE associated with (f, ). Then the
semimartingale X satisfies

X, = E([§] f(s,Xs)ds+&], tel0,T],

where we write § to emphasize that the pathwise Lebesgue integral
is used. Lemma 2.70 shows that X (considered as a mapping t — LP)
is a member of DP C PP. In particular, X = «(X) € PP, and hence
a(f(-, X)) = g(-, X). Thus, we have

Xe = Ee[§] f(s,Xs)ds +&] =B [[f{ g(s,Xs)ds+&] inLlP, telo,T],

by Proposition 2.67. Consequently, X is the unique solution of the
BNEE associated with (g, £). O

Finally, we show that the solution of a BNEE admits a modification
which solves the corresponding BSDE.
PROPOSITION 2.73. Let (f, &) be a BSDEP-standard parameter. Suppose that
(g,&) is a BNEEP-standard parameter that satisfies (2.58), and let Y € DP
denote the corresponding unique solution given by Theorem 2.26.

There exists a semimartingale X which solves the BSDE associated with
(f, &) and satisfies X¢ = Yy in LP forall t € [0, T).

Proof. Proposition 2.66 shows that Y = «(X) in PP for some X in PP,
and hence «(f(-, X)) = g(-,Y) in PP by (2.58). In particular, f(-,X) € PP
and Proposition 2.67 implies that

I, & EF(t) f(s,Xs)ds = fg g(s,Ys)ds in LP forall t € [0, T].
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Let M be the martingale with terminal value Mt = I1 + & € LP, and
define a semimartingale X by Xy = My —I4, t € [0, T]. Then we have

Xe =M — I = B [It — L + & =B [[] g(s,Ys)ds+ &) =Y; inLP

for all t € [0, T]. In particular, X =Y € DP; hence (X) =Y = «(X) in
PP, and therefore X = X in PP. Thus, I; = 3% f(s,Xs)ds in LP for all
t € [0, T], and we have

X = B[t — L + &) =E([§] f(s,Xs)ds+&], tel0,T. O

Combining the above, we obtain the classical existence and unique-
ness result for BSDEs. In the present semimartingale setting, it was
first proven by Duffie and Epstein (1992b).

THEOREM 2.74. Let (f, &) be a BSDEPY-standard parameter. Then the BSDE
X; = B¢ [J‘ff(s, X,)ds + a} . telo,T, (2.53)

has a unique solution X € DP.

Proof. Lemma 2.71 yields a BNEEP-standard parameter (g, &) with
(f(-, X)) = g(-, «(X)), for all X € PP,

and hence Proposition 2.73 yields a solution X of the BSDE. Propo-
sition 2.72 shows that every solution is a modification of the unique
solution of the BNEE associated with (g, &); thus, any two solutions
are indistinguishable. O

Similarly as in Theorem 2.74, combining Lemma 2.71, Proposi-
tion 2.72 and Proposition 2.73 allows us to translate all of the results
from Section 2.3 into the linear setting. For instance, we have

COROLLARY 2.75. Let (f™*, &™), n € IN, and (f, &) be BSDEP-parameters.
Suppose there is a constant L > 0 such that

[t (t,x) — M (t,y)| < Lx—yl forallx,ye R, te[0,T],

and all n € IN. Let X", n € IN, and X denote the solutions of the associated
BSDEs and suppose that

[TE[I (4, Xo) — £(6, X)IP] 7dt 0 and &M — & in LP.

Then, X™ — X in SP, and E[supte[olﬂ IXP—X¢Pl = 0ifp>1.

The discretization result of Theorem 2.32 also has its analog, of
course; however, it will not be needed in the following, and so we do
not record it.
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2.6.2 A comparison theorem for BSDEs

A nice feature of BSDEs is that their solutions can be expected to
satisfy a comparison principle. This means that solutions of BSDEs
can be compared simply by comparing their aggregators and terminal
values. We conclude our brief discussion of BSDEs by proving such a
comparison result.

THEOREM 2.76. Let (f, &) be a BSDEP-standard parameter and let X denote
the solution of the correpsonding BSDE

dXt - —f(t, Xt)dt + th, XT - E,

Let g: QO x[0,T] x R — R be a §® B(R)-measurable function, and suppose
that Y is a semimartingale that satisfies

dYt :—g(t,Yt)dt+dNt, YT :EE Lp,
for some martingale N. Then X <Y, provided that
£<E  fltY) <gltYy) fordtae telo,T]

and E[[ (Il9(t, YO |Lp + | Yellrp)dt] < oco.

Proofs of comparison theorems usually rely on explicit representa-
tions of solutions of linear BSDEs or closely related stochastic Gron-
wall inequalities (see Section 3.4 below). If the underlying expecta-
tion is truly nonlinear, backward nonlinear expectation equations that
look linear are, in fact, nonlinear, and thus one cannot expect a com-
parison principle as powerful as the one in Theorem 2.76 to hold.
Linear BSDEs under linear expectations can, however, be solved ex-
plicitly:

PROPOSITION 2.77. Let « be a bounded progressively measurable process,
and let 3 € PP, & € LP. Then, the unique solution of the linear BSDE

dX¢ = — [xeX¢ + Bt +dMy, Xt =&, (2.59)
is given by
X = By [[Teliondupg dsyellowdug]  te(0,T.  (2.60)

Proof. Setting f(t,x) = otyx + By, it is immediate that (f, &) is a BSDEP-
standard parameter; thus, (2.59) has a unique solution (X, M).

Now, suppose that p > 1. Then M is an LP-martingale, and integrat-
ing by parts, we get

def(t) OCU-dU'Xt = —eJ‘é (Xuduf)tdt —+ ejé ‘Xuduth. (2.61)

Note that elo awdudp, is also an LP-martingale since « is bounded
and hence (2.61) yields

elo iy, =B [[]elomdup ds+elo udixy], teo,T),
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which is equivalent to (2.60).
For p = 1, we apply the above to the truncated parameters ™ £
(—mVB)AnN, &* £ (—mV &) An, to see that the semimartingales

X =E¢ UtTef: “ud“B?dereftT awdugn] = n e NN,

are the unique solutions of dX}' = —[a X} + p{]dt +dME, X} = &
The assumptions of Corollary 2.75 (stability result) are fulfilled, and
hence X™ — X in SP, where X denotes the unique solution of the lin-
ear BSDE (2.59). On the other hand, dominated convergence implies
Xt — E¢ [jtTeff cwdupg dg 4+ eftT owdug] in L7; thus (2.61) is established
for p =1, as well. O

With Proposition 2.77, we can give the proof of Theorem 2.76.

Proof of Theorem 2.76. We set A £ X —Y and note that

f(t,X¢)—f(t,Y
o = %]{Xﬁé\(t}’ telo,Tl,

is a bounded process by the Lipschitz condition (B1). Now, we have
dAt :*[(XtAt‘Ff)t:Idtﬂ’d(Mt*Nt), AT :E,—ESO, (2.62)

where Bt = f(t,Yt) —g(t,Yt) < 0 and B € IPP. Since A satisfies the
linear BSDE (2.62), Proposition 2.77 implies that

A¢ = E[[elt ondup ds 1 eJi cndu(g _F)] < 0. 0

2.6.3 Bibliographical notes

Backward stochastic differential equations (BSDEs) have first ap-
peared in Bismut (1973). The generalized modern formulation of
BSDEs is due to Pardoux and Peng (1990), who have also settled
the question of existence and uniqueness under a global Lipschitz
condition in a Brownian setting. In the special case of BSDEs driven
by Brownian motion, their result implies our Theorem 2.74. In a gen-
eral semimartingale framework, existence and uniqueness of BSDEs
under a global Lipschitz condition (Theorem 2.74) were first proven
by Duffie and Epstein (1992b), in the context of their seminal contri-
bution of stochastic differential utility. Their results were generalized
by Antonelli (1993), who replaces the integrator dt in the BSDE by
an increasing process dA; and provides an L'-theory. Stability results
for such BSDEs in a semimartingale setting can be found in Antonelli
(1996) and Antonelli and Kohatsu-Higa (2000).

The literature on BSDEs mostly focuses on Brownian filtrations,
where there is a strong connection to quasilinear partial differential
equations, see, e.g., Pardoux and Peng (1992), Ma et al. (1994, 2012)
and the references therein. The theory has undergone several gener-
alizations and is now able to deal with quadratic and convex drivers;
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moreovet, the Lipschitz assumption has been replaced by monotonic-
ity and polynomial growth conditions; see, e.g., Kobylanski (2000),
Briand and Carmona (2000), Delarue (2002), Briand and Hu (2008)
and Delbaen et al. (2011). BSDEs have also been investigated in jump-
diffusion settings, see e.g., Tang and Li (1994), Barles et al. (1997),
Nualart and Schoutens (2001), Becherer (2006), Royer (2006), Quenez
and Sulem (2013), Delong (2013), Kharroubi and Pham (2015) and the
references therein.

2.7 RECURSIVE UTILITY WITH NONLINEAR EXPECTATIONS

In the following, as advertised in the introduction of this thesis, we ap-
ply our theory of backward nonlinear expectation equations to utility
theory; see, in particular, Section 1.1 (p. 4ff.) and Section 1.2 (p. 7£f.).

Throughout this section, let (€¢)c[o,1) denote a regular nonlinear
expectation, carried by a sublinear expectation (£5'°) (o) on an ap-
propriate domain {(L}, |- ||.,p) : t € [0,T], p > 1}. A nonlinear expecta-
tion can be used as a certainty equivalent in the construction of recur-
sive utilities: Given a suitable discrete-time aggregator W : [0, T] x LP —
LP, we can define a recursive utility process (U, Jx—o,...,N Via

utk £ W(tk+1 —tx, Ctys 8tk [utk+1])/ utN = E:/

where 0 = tp < -+ < ty = T are time-periods between which a
consumption of (ti 1 —ti)er, € LY, takes place.

In Section 2.5, we have given several examples of regular nonlinear
expectations, and any one of these may be used here. For instance, we
may choose (€¢)ico,1] as the superlinear counterpart of the expecta-
tion under drift and jump intensity uncertainty from Subsection 2.5 4,

€[g] = minE{[¢],

which corresponds to recursive utility under multiple priors, as in-
vestigated by Epstein and Wang (1994), Chen and Epstein (2002), Ep-
stein and Schneider (2003) and Hayashi (2005). Alternatively, we may
take & = —&"[—] as the superlinear counterpart of the random
G-expectation from Subsection 2.5.1, which corresponds to a discrete-
time analog of the continuous-time utility with drift and volatility
uncertainty as proposed in Epstein and Ji (2013, 2014). Of course,
we may also simply take (E¢)ico,1) as the classical conditional ex-
pectation; this corresponds to recursive utility with expected utility
certainty equivalents, see Kraft and Seifried (2014).

In continuous time, Chen and Epstein (2002) construct stochastic
differential utility under multiple priors. Epstein and Ji (2014) pro-
pose a continuous-time version of stochastic differential utility in the
setting of Nutz (2012); note that Theorems 2.26 and 2.50 guarantee
existence and uniqueness of the associated utility process

U = & [ftTf(cs,us)ds v z,} , telo,Tl. (2.63)
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The main purpose of this section is to prove that — under suitable
conditions on W and in the limit of vanishing grid size — the recur-
sive utility process converges to a solution of the BNEE (2.63), where
the continuous-time aggegrator f is given by the derivative f(c,u) =
%W(A, ¢, u)|a—o. Thus, we substantiate the axiomatic definition of
stochastic differential utility under nonlinear expectations in continu-
ous time, generalizing the results of Kraft and Seifried (2014).

A convergence result

Denote by PP = PP(dt) the space of all dt-integrable adapted LP-
processes as defined in Subsection 2.2.4.
Let (A™), N be a sequence of partitions,

AV 0=ty <th <<ty =T, set AP 2tp -t 4,

and suppose that |[A™| = maxy-1,. N, A} — 0; see also Section 2.3.3.
We consider consumption plans (c, £), where & € LP is a terminal payoff
and ¢ € PP is a consumption rate process. We suppose that there
exists an approximating sequence (c™),ecn C PP as follows:

The consumption plan c¢™ is piecewise constant on A™, i.e., c}' = Cin
for t € [txn, t)}, ;), and we have

¢ —c¢ inP? and cf —c¢ fordt-ae. tel0,T].
Recursive utility is constructed via a discrete-time aggregator
W:0,TIxLP xLP 1P,  W(Ac,u) £ utAf(c,u)
that satisfies the following conditions:
(A1) There exists a modulus of continuity3 h : [0, T] — IR such that

12 (c,w) —fo(c,u)||L,p < h(A)(T+ e

Lp + Hu L,‘p)
for all c,u € LP.
(A2) There exists L > 0 such that f° satisfies the Lipschitz property

1°(c, ur1) — (¢, uz)

Lp < L||u1 —U,zH]_,p for all c,uy,u, € LP.

(A3) °(-,u) is continuous for every u € LP.

(Ag) There exists a constant K > 0 such that

1°(c, 0)lLp < K(1+ e

Lp) foreverycelP.

(As) f°(c,u) € L whenever c,uc L?, t € [0,TI.

3 That is, h is a continuous increasing function with h(0) = 0.
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For brevity, we write f £ ° in the sequel. The mapping f: LP x [P —
LP is called the continuous-time agqregator.

Remark. Writing W(A, ¢, 1) £ u+ Af2(c,u) is without loss of generality,
of course. With that notation, (W(A,c,u) —W(0,c,u))/A = f2(c,u),
and hence (A1) guarantees that %W(A, ¢, uw)|a—o = f(c,u) exists as a
sufficiently uniform limit. o

LEMMA 2.78. Under the preceding assumptions, for each consumption plan
(c, &), the function

fe 1[0, TIxLP = LP,  (t,m) = flce,m),
defines a BNEEP-standard parameter (f.,&).

Proof. The requirement f.(t,L}) C L} for all t € [0, T] and the uniform
Lipschitz condition (2.14) are fulfilled by (A2) and (As). Thus, it re-
mains to show that f.(-,X) € PP for every X € SP. For this, by (A2)
and a closure argument, it suffices to check that f.(-, X) is a B([0, t])-
B(LY)-measurable simple function for every measurable simple func-
tion X : [0,t] — LY. This, in turn, is obvious from (As). O

DEFINITION 2.79. Let (¢, &) be a consumption plan with an associated
approximating sequence (c"),en. The discrete-time recursive utility
process U™ is defined on the time grid A™ via

UR £ W(AR, ey, € [UR,4]),  where U, =¢,

and AM: 0=t <...<tl =T, AP 2t -t k=0,...,Ny—1.
The continuous-time stochastic differential utility process U is given
as the unique solution of the BNEE

Up = & [[{ fles, Ug)ds + &) = & [[{ fels, Ug)ds + &]. o

Note that existence and uniqueness of a solution U € DP are guar-
anteed by Theorem 2.26. The main result of this section demonstrates
that the recursive utility processes U™ converge to the stochastic dif-
ferential utility process U:

THEOREM 2.80. Let U™, n € IN, be the discrete-time recursive utility pro-
cesses, and let U be the stochastic differential utility process from Defini-
tion 2.79. Then,

n
rg1a>,<Nn [Ug —UepllLp — 0.

Remark. Theorem 2.80 implies in particular that the recursive utility

values Uf} € R converge to the stochastic differential utility value
Up € R. o

The proof proceeds in two steps. Introducing the BNEEP-standard
parameters f™ £ fon = 3 N1 ey, ) fletn, ), n € N, we have

LEMMA 2.81. With f™ as above, (A™, ™, &)neN 1S (fe, &)-exhausting.
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Proof. Lemma 2.78 shows that (f™, £) is a BNEEP-standard parameter
for every n € IN. The definition of f* and (Az2) imply

17 (t, ) = (tm)llp = [1fet, O — flet,M)llLp < LIC—7llLp

for all {,n € LP and all n € IN. Thus the Lipschitz condition (2.21),
as required for an exhausting sequence, is satisfied. Since |A™| — 0, it
remains to establish (2.22), i.e., we must prove that

S0 T, et W) = (6 U lup dt = 0. (2.64)

The approximating consumption plan c™ is piecewise constant on A™,
and hence we have

T (t, Up) = f(cf, Uy) = f(c{‘}:,ut) =f"(ty, Uy) fort e [ty, ti ).
Therefore, the sum in (2.64) can be written as
[ollfet, Ug) = F™(t, Ug) | Lp dt. (2.65)
Now, we have c{* — ¢ for dt-a.e. t € [0, T, and thus
Tt Uy) = f(ef, U) — f(ee, Uy) = fe(t, Uy)  for dt-a.e. t € [0, T],

by (A3) — the aggregator function f is continuous in the first compo-
nent. Hence, we have pointwise convergence inside the integral in
(2.65). To establish (2.64), by Vitali’s theorem, it remains to show that
the sequence (||fc(t, Ug) — f(t, Ut)||,p)nen is uniformly integrable.

To do so, we first estimate ||f*(c, u)||r,p for A > 0and c,u € LP. By
(A1), we have

12 (e, w) = (e, wlLp <A (T +leflLp + ullip),

and (A2) implies ||f(c,u) — f°(c,0)|Lp < L|u|p- Finally, (A4) yields
119(c, 0)[lLp < K(1+ |lc|lL,p); hence, we get

||fA(c,u)||L,p < Co(1+lellup + ufl,p) forallc,uelP, (2.66)
where Co £ h(T) + L+ K. In particular, we have
17 (t, Ue) — fe(t, Ue) || < Col2+ fleellLp + et L + 21Ullsp)-

Now, ¢c™ — ¢ in PP, and thus the right-hand side of the above in-
equality converges in L'([0,T],dt); hence, it is uniformly integrable
by Vitali’s theorem, and then, so is the left-hand side. ]

With Lemma 2.81, we have shown that (A™,f™, &)en is (fe, &)-
exhausting. Therefore our convergence result for discrete-time ap-
proximations of Theorem 2.32 applies, and shows that

n
o max X —Ugflup =0,
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where XY = & and
Xp 2 & [AEfn(tk,EtE[XEH]) +x;g+1}, kK=Nn—1,...,0. (2.67)
To conclude the proof of Theorem 2.80, it thus remains to show that

max |[[Up — Xy — 0.
K0, N || k k||L,p

This will be accomplished with Lemma 2.83 below, the proof of which
relies on the following a priori estimate.

LEMMA 2.82. There is a constant Cy > 0 such that for all but finitely many A priori estimate
n € IN we have

max ||[uy
k=0, N U

Lp < C] (1 + ||E,

Lp +llcllpp)-

Proof. We recall that U} = W(A}, C?E,Etg U, ;1), where W(A,c,v) =
v+ Af2(c,v). Hence, for every k =0,...,N;, — 1, we have

F=EplURy ]+ ARFAR (el Ep U 4]). (2.68)
Thus estimate (2.66) from the proof of Lemma 2.81 yields

Ui

Ly <[l EJr]}HL,p +AFCo(1+ letn

L [ €Ul ).
Using the contraction property (Lemma 2.15), we get

U

Lp < (14 CoAp)|[Ui,

Lp +CoAg(1+ethlp) (269)
forall k=0,...,N, — 1. Iterating (2.69), we arrive at

U

No Np—1
Lp S PR IUR i + 2o PrCoAF (1 + [lefy

Lp)
where P £ TT, <o, (14 CoAR). Since T+ x < e, we have

Pt <exp (COZESJ A?) <e“T forallk,m=0,...,Ny—1.
For all k =0, ..., N, we hence obtain

U, < el

Lp + Coe T X ol TAF(1 + ||y

L,p)-

Since Y {5 AP e

Lp — llc|lpp, the proof is complete. O

LEMMA 2.83. The processes X™ from (2.67) satisfy

max UL —X¢ [ = 0.

k=0,...,Ny

Proof. By shift-invariance (SI), equation (2.68) can be rewritten as

T = Ep [ARFAR (e, Eqp [UR 1)) + UR 4]
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The definition of X} from (2.67) reads
X 2 En [AR™ (b, E4p [XT 1 4]) + X4 4]

We set D} £ |UR — X2||rp. The contraction property (Lemma 2.15)
implies

DR < AR (e, Exp [UR4]) — Flefh, Ep X q))

Lp + Dy
By (A1), (A2) and the contraction property, we get

IF245 (eTh, Exp U 4]) = Flefh, Exp X D)
S RARD) (T4 llegh[Lp + UK

Lp
Lp) + LU —Xg

Lp-

Hence, we have

Dy <h(|A™DAL (T +[lefn [l

Lp) + (1 +ALLDE,, (270)

forall k =0,...,Ny — 1. Iterating inequality (2.70), we find

DR < h(IA™) X pn T PLA (T + el I Lp) + PR DY,

where Pi = [Tiqj<e 1(1+A]'L) and D = [Up — X}t
1+x < e* again, we get

Lp = 0. Using

]e< < exp (LZf;]lA;‘) <el'T forallk,¢=0,...,N,—1,

and therefore

D < h(IA™)e™ ol AR (1 + llefs [l + U p)-
For all but finitely many n € N, we have maxx—o,.. N, [[URllLp <
T+ [IE|I ) by Lemma 2.82 as well as Y '™ n] Aflletplley =
fo ||ct Lpdt < 1+ ”C”P,P' Setting K = C1(1+ ||&|l )+ 1+
|cllpp, we thus obtain
U —X2||Lp =D <e""KTh(A™),  k=0,...,Np,
for all but finitely many n € IN, and the claim follows. O

In view of the discussion preceding Lemma 2.82, this also com-
pletes the proof of Theorem 2.80.



STOCHASTIC DIFFERENTIAL UTILITY

In this chapter, we investigate the Epstein-Zin parameterization of
continuous-time recursive utility with relative risk aversion (RRA)
v > 1 and elasticity of intertemporal substitution (EIS) { > 1. The
material of this chapter is largely based on Seiferling and Seifried
(2015).

Specifications of Epstein-Zin utility with RRA y > 1 and EIS{ > 1
are important in a number of both theoretical and empirical applica-
tions. In spite of their widespread usage, the fundamental questions
of existence, uniqueness and concavity of the corresponding utility
functionals, which will be addressed below, have so far remained un-
resolved for these parameters.

In a fully general semimartingale setting, we establish existence
and uniqueness as well as monotonicity and concavity of continuous-
time Epstein-Zin recursive utility with RRA y > 1 and EIS ¢ > 1.
Moreover, we will provide a corresponding utility gradient inequality.

This chapter is organized as follows: Section 3.1 introduces con-
tinuous-time Epstein-Zin utility. Our main results are stated in Sec-
tion 3.2, which also provides links to the literature. We then take
a slight detour: In Section 3.3, Epstein-Zin utility for bounded con-
sumption plans is investigated, and Section 3.4 is concerned with
stochastic Gronwall inequalities. Then we focus on the specification
RRA v > 1 and EIS 1} > 1 again: The proofs of our results are pro-
vided in Section 3.5.

3.1 DYNAMIC RISK PREFERENCES AND EPSTEIN-ZIN UTILITY

Let (Q,F,P) be a probability space, endowed with a right-continu-
ous and complete filtration F = (F¢)(c(o,1). We denote by § the space
of (F,P)-semimartingales and, for B > 1, by 8P the space of all semi-
martingales X with E[sup, o 1 X¢|P] < co. Adopting a standard con-
vention, we identify random variables that coincide almost surely and
stochastic processes that are indistinguishable.

DEFINITION 3.1. A predictable process c that takes values in € £ (0, o)
is called a continuous-time consumption plan if

E[fgcfdt+c$] <oo  forall p e R.

The family of all consumption plans is denoted by €. o
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Here, c; represents the time-t consumption rate and ct models
lump-sum consumption at time T. A partial order on the set C of
consumption plans is defined via

c<xC <= c¢¢<¢ fordt-ae.tel0,T] and ct <¢cT.

Accordingly, two consumption plans ¢ and ¢ are identified if ¢ < ¢
and ¢ < c. We investigate intertemporal risk preferences on the lattice
(€, <) of continuous-time consumption plans.

In general, an agent’s subjective preferences can be described in
terms of a utility index functional v : € — R such that c is weakly
preferred to ¢ if and only if v(c) > v(¢); here, v will typically be
monotone in the sense that ¢ < ¢ implies v(c) < v(¢). Note that v
need not be monotone a priori. In a continuous-time recursive utility
context, the utility index functional v is defined via

v: €= R, vic)EVy(e),

where the (stochastic differential) utility process V = V/(c) satisfies a back-
ward stochastic differential equation (BSDE) of the form

Vi = B¢ [[{ fcs, Vs)ds + Uler)],  telo,T], (3.1)

see Duffie and Epstein (1992b). We investigate the Epstein-Zin parame-
terization of recursive utility with

relative risk aversion (RRA) vy >0, vy #1,
elasticity of intertemporal substitution (EIS) ¢ >0, 1 #1,

see Epstein and Zin (1989) and Weil (1990). Then utility takes values
in 4 £ (1 —7v)¢, the continuous-time Epstein-Zin aggregator is given by

11—y c " %
f: ¢xU—R, (c,v)r—>6]_¢v — —1{,
(1 =y)v) T
and terminal utility satisfies U(x) = 1ly(sx)1_V, x € €. The coeffi-
cients > 0 and ¢ > 0 capture the agent’s rate of time preference and
weight on terminal consumption, respectively. Setting

=1/, eé}%}), and qé%:%,
the aggregator f can be written as
f(c,v) & %c]*q’[ﬂ —y)v]9 —50v. (3.2)
In this chapter, we mostly focus on

vy, >1, sothat ¢<1, 6<0, and q>1. (3-3)

Then (3.2) shows that f is well-defined on € x (UYU{0}) = (0,00) X
(—o0, 0], and the relevant class of utility processes is defined via

va{ves": (1-y)V=0}, wheres"2N, ;8P (34)
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Note: To establish existence and uniqueness for the stochastic differential utility process,
it will be convenient to work with V as defined above, instead of the intuitively more
appealing {V € 8" : (1 —v)V > 0}; however, one can verify ex post that (1—vy)V > 0,
see Proposition 3.1.

A

Remark. For the parameterization as in (3.3), one may set ¢ = +
to produce a zero weight on bequest utility (in this case ¢!~ =
This leads to trivial preferences, because then the utility process V =

V(c) € V of every consumption plan is given by Vi =0,t € [0, T]. ¢

e 8

3.2 THE MAIN RESULTS

In this section, we present our main results on the Epstein-Zin param-
eterization of stochastic differential utility with

RRA v>1 and EIS ¢y >1.

Our first main result establishes existence and uniqueness of utility
processes and, in particular, of utility index functionals for continu-
ous-time Epstein-Zin recursive utility.

THEOREM 3.2. For every consumption plan ¢ € C, there exists a unique  Existence and
semimartingale V = V(c) € V that satisfies (3.1). uniqueness

Since f(Ac, A'=Yv) = A1=Yf(c,v) for all A > 0, the uniqueness part of
Theorem 3.2 yields:

COROLLARY 3.3. The mapping C — V, ¢ — V/(c) is homothetic, i.e., we have ~ Homotheticity
V(Ac) = A=Y V(c) for every consumption plan c € € and every A > 0.

As utility processes are defined implicitly, in terms of the BSDE
(3.1), and the aggregator f fails to be either concave or monotone
with respect to v, it is not clear a priori whether the implied utility
index functional v is concave or monotone.

Our second main result guarantees these crucial properties.

THEOREM 3.4. The mapping Monotonicity and
concavity

C—-V, c— V(i)
is concave and increasing, i.e., for all ¢,¢ € € and A\ € [0, 1], we have
V(Ac+ (1 —2A)E) = AV(c)+ (1—=A)V(E) and c<¢ = V(c) < V(c)

In particular, the utility index functional v : € — R, ¢ — v(c) = Vo(c)
is increasing and concave.

Finally, our third main result provides a general utility gradient
inequality for Epstein-Zin recursive utility in continuous time.

THEOREM 3.5. Suppose that ¢ € C satisfies Utility gradient
inequality

E [[ofe (60, Val@) et + U'(ér)er | < oo,

Then, the following utility gradient inequality holds:
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For every c € Cand all t € [0, T], we have
Vi(e) < Vi(@) + (mh(e),c— @)y,

where (m,y)y = Et[ftT msysds + myyt] and the time-t utility gradient
mt(¢) £ mtis given by

ft £ el MENVENAT (£ (2, Vo (€))T101y(s) + U/ (€1)1my(s)), s € [t T).

A

In particular, with % = WO, the utility index v: € — R, ¢ — v(c) satisfies

v(c) < v(E)+ (M, c—¢&) forallceC.

The above utility gradient will be used in Chapter 4 to prove a ver-
ification theorem for a consumption-portfolio optimization problem
of an agent with Epstein-Zin utility. For a further discussion of utility
gradients and their applications, we refer to the bibliographical notes
below and to Duffie and Skiadas (1994).

Bibliographical notes

Recursive utility has been developed in discrete time in the seminal
contributions of Kreps and Porteus (1978, 1979), Epstein and Zin
(1989) and Weil (1990), as a model of dynamic risk preferences that
permits risk attitudes to be disentangled from the elasticity of in-
tertemporal substitution; its continuous-time version, stochastic dif-
ferential utility, was introduced by Duffie and Epstein (1992b). Kraft
and Seifried (2014) show that discrete-time recursive utility converges
to stochastic differential utility in the continuous-time limit of vanish-
ing grid size and thus provide a solid mathematical link between
the two concepts. The Epstein-Zin parametrization of recursive util-
ity can be regarded as a non-additive generalization of the classical
discounted expected utility paradigm with a power utility function,
where the standard setting is subsumed as the special case vy = 1.

As shown by Skiadas (1998), agents with vy, > 1 exhibit a prefer-
ence for information, i.e., they prefer early resolution of uncertainty
to late resolution. This specification is important in a number of both
theoretical and empirical applications, including the literature on as-
set pricing with long-run risk that was initiated by Bansal and Yaron
(2004). Despite their widespread usage, fundamental questions like
existence, uniqueness and concavity of stochastic differential utility
have so far remained unresolved for these parameters.

General existence and uniqueness results for recursive utility are
provided by Marinacci and Montrucchio (2010) in discrete time, and
by Duffie and Epstein (1992b) and Ma (2000) in continuous time; how-
ever, these continuous-time results rely on global Lipschitz conditions
that are violated for the Epstein-Zin specification. Schroder and Ski-
adas (1999) prove existence and uniqueness of Epstein-Zin utility in



3.3 UTILITY FOR BOUNDED CONSUMPTION PLANS

a Brownian framework for y > 1 and { < 1 and parameterizations
with vy < 1. Xing (2015) also addresses existence of Epstein-Zin utility
in a Brownian framework.

Utility gradients (also known as superdifferentials or supergradient
densities) have become an indispensable tool in the analysis of both
optimal portfolio allocations (see, e.g., Schroder and Skiadas (1999,
2003, 2008), Bank and Riedel (2001a), Kallsen and Muhle-Karbe (2010),
Skiadas (2008, 2013), and the references therein) and equilibrium asset
pricing (see, e.g., Duffie and Epstein (1992a), Dulffie et al. (1994), Bank
and Riedel (2001b), Chen and Epstein (2002), Epstein and Ji (2013)
as well as Campbell (2003) and the references therein). The reason for
this is the far-reaching insight that the first-order optimality condition
in the maximization of a utility functional can be formulated as a mar-
tingale property of prices, after they have been deflated by the associ-
ated utility gradient; see Duffie and Skiadas (1994) and Harrison and
Kreps (1979). From a mathematical perspective, utility gradients are
intimately related to the stochastic maximum principle in intertempo-
ral optimization problems, where the agent’s utility gradient appears
naturally as the minimizer in the associated dual problem; see, e.g.,
Cox and Huang (1989), Karatzas et al. (1991), Kramkov and Schacher-
mayer (1999), El Karoui et al. (2001), and Levental et al. (2013). In the
literature, utility gradients for continuous-time recursive utility have
been derived by Duffie and Skiadas (1994), and proven in a Brownian
framework by Schroder and Skiadas (1999).

3.3 EPSTEIN-ZIN UTILITY FOR BOUNDED CONSUMPTION PLANS

In this section, we focus on bounded consumption plans. Accordingly,
we do not impose the parameter restrictions (3.3) and allow for all non-
unit values of relative risk aversion and elasticity of intertemporal
substitution

v>0,v#1, and V>0, h#1.

We say that a consumption plan c € € is bounded if
ko < c<ky for some constans kg, ki >0,

and we denote the class of all bounded consumption plans by €y,. Cor-
respondingly, we refer to a semimartingale V as {-bounded if it takes
values in a compact subset of I, and we write Vy, for the collection of
all Y-bounded semimartingales. By a bounded utility process associated
with a consumption plan ¢ € €, we mean a -bounded semimartingale
V € Vi, which satisfies

Vi = E; UtTf(cs,Vs)ds n u(cT)] . telo,T. (3.5)

Our first goal is the construction of a well-behaved utility process
functional V : €, — V, mapping bounded consumption plans to
their associated bounded utility process.

81
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3.3.1  Existence of utility for bounded consumption plans

We show that every bounded consumption plan admits one and only
one bounded utility process. To this end, for each n € IN, we consider
the truncated Epstein-Zin aggregator

fi(c,v) & f(c, (uyﬂ/n)\/v)/\uy(n)), (3.6)

where u, (x) £ ﬁx“y, x € ¢; note that wy (¢) = 4.

LEMMA 3.6. The pair (f™(c,-),U(cT)) is a BSDE?-standard parameter for
every bounded consumption plan c € Cyp.

Proof. The Epstein-Zin aggregator is differentiable; hence, it is Lips-
chitz continuous and bounded on any compact subset of its domain,
and thus all conditions imposed by Definition 2.68 are satisfied. ]

COROLLARY 3.7. For every bounded consumption plan ¢ € Cy and each
n € N, there exists a unique V™ £ V™(c) € 82 satisfying

VP =B [[{ (oo, Vs +Uler)|,  telo Tl (3.7)

Proof. In view of Lemma 3.6, this is guaranteed by the existence and
uniqueness result of Theorem 2.74. O

LEMMA 3.8. If V is a bounded utility process associated with c € C, then V
satisfies (3.7) for all but finitely many n € IN. In particular, every c € Cy
admits at most one bounded utility process.

Proof. Let V be a bounded utility process associated with ¢ € €. Then
uy (1/n) <V < uy(n) for all but finitely many n € IN, and hence

f(c, Vi) = f™(ct, Vi) for dt-ae. t€[0,T],

so that (3.5) implies that V satisfies (3.7). If additionally ¢ € Cy, then V
coincides with the unique solution V™ of (3.7) given by Corollary 3.7;
thus if V is another bounded utility process associated with c, then
we have V = V™ = V" for all but finitely many n € IN. O

As a next step, we establish the converse for bounded consumption
plans: If ¢ is a bounded consumption plan, then the unique solution
V™ of (3.7) is, in fact, a solution of (3.5) and thus a utility process
associated with c.

LEMMA 3.9. Let ¢ € Cy be a bounded consumption plan. For each n € N,
denote by V™ the unique solution of (3.7), with f™ given by (3.6). Then
there exist constants ¢, m € $l such that ¢ < V™ < m for all but finitely
many n € N. In particular, V"1 = V™ for all but finitely n € IN, and
V¢ £ limy, 00 V™ is a bounded utility process associated with c.
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Proof. A simple calculation shows that f(k,u,(k)) = 0 for all k > 0,
and hence f*(k,uy(k)) = 0 for all k € [1/n,n] by (3.6). We choose
k1 > ko > 0 such that

ko<c=<ky and ko =<ec=<k

and take ng € IN with 1/n, < ko and ng > k;.

Then, for all n > no, the constant processes { £ u, (ko) and m £
uy(kq) are the unique solutions of the BSDEs associated to the pa-
rameters (f™(ko, ), uy (ko)) and (f™(kq,-),uy(k1)), respectively.

By Lemma B.1 (p. 171), the Epstein-Zin aggregator is increasing in
¢, and hence we have

f(ko, Yt) < f(Ct,Yt) < f(k1,Yt) for dt-a.e. t € [0, T}

and every semimartingale Y. Using the above inequality with Y =
(uy (1/n) VVT) Auy (n), we get

™ (ko, Vi) < (e, ViY) < M (kq, V')  for dt-a.e. t € [0, T]

and all n > ny. Since uy (ko) < uy(ect) = VJ < uy(kq), the compar-
ison theorem for BSDEs (Theorem 2.76) implies ¢ < V™ < m for all
n > no. In particular, we have

(e, Vi) = f(c Vi) = (e, V{*) for dt-a.e. t € [0, T], n > nyo,

and hence V™ = V™ for all n > ng by the uniqueness part of Corol-
lary 3.7; the semimartingale V¢ £ V™ = limy,_,, V" satisfies the
BSDE (3.5) as wellas { <V < m. O

COROLLARY 3.10. Let ¢ € Cy, be a bounded consumption plan. There exists
precisely one bounded utility process V associated with c.

At this point, we have successfully constructed a mapping
V:C, =V, c+— V¢ whereV{=E, sz(cs,vsc)ds + U(cT)]

is the unique bounded utility process associated with c.

3.3.2 Some properties of utility for bounded consumption plans

First, we show that the utility process functional is increasing, which
is a direct consequence of the comparison theorem for BSDEs.

PROPOSITION 3.11. The mapping V : C, — Vy, is monotone, i.e.,

V(c') < V(c?) whenever c' < c?.

Proof. Let c',c? € G, and let V! £ V(c') and V? £ V(c?) denote the
associated bounded utility processes. Lemma 3.9 yields n € IN such
that V! and V2 solve the BSDEs

dv} = —f"(ct, vidt+dMi,  VE=u(ct), i=1,2,
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with the truncated Epstein-Zin aggregator f™ given by (3.6).
Lemma B.1 shows that the Epstein-Zin aggregator is increasing in
c and hence ¢! < ¢? implies

(e, V3) <f(c?,V?) fordt-ae . tel0,T] and U(ch) <U(c?).

Recalling that (f“,u(ciT)), i = 1,2, are BSDE2-standard parameters
by Lemma 3.6, the comparison theorem for BSDEs (Theorem 2.76)

implies that V1 < V2. O
Next, we show how additive CRRA utilities yield natural bounds
for stochastic differential utilities. For 1 # p > 0, let uy(c) = prc]*p

denote the corresponding CRRA utility function. For every consump-
tion plan ¢ € Cp and p € {y, ¢}, we consider the additive utility

Up:Gb—>Sb, CD—}LLYOLLE](YQ(C)),
where YP(c) = Y® is given by
Y? = e B, UtTée*f’Sup(cS)ds + e*‘STup(acT)}. (3-8)

Thus U, (c) represents additive power utility with parameter p, trans-
formed onto a y-power utility scale. Intuitively, we would expect that

Uyvelc) < V(e) <Uynglc). (3-9)

In the following, we confirm that this is indeed the case:
Let ¢ € Cy be a bounded consumption plan and put

Yo £ uf ougy(Ugplc)) aswellas YY £ U,y(c),

i.e, Y® and Y satsify (3.8) with p = ¢ and p =, respectively. The ex-
plicit representation result for linear BSDEs (Proposition 2.59) shows
that the processes Y® and Y satisfy the BSDEs

dYP = —8[uglc) — YP]dt+dMP,  YP =uglecr), and (3.10)
dYy = —=8[uy(c) — Y{]dt+dMY,  YY =uy(ect).

Moreover, let V £ V(c) € Vy and recall that V solves the BSDE
dVi = —f(cg, Vi)dt +dMy, Vr = U(ct) = uy (ecT),

where M = Et[fg f(cs, Vs)ds + U(ct)] is a bounded martingale.
One of the inequalities in (3.9) is a direct consequence of elementary

properties of the Epstein-Zin aggregator and the comparison theorem
for BSDEs.

LEMMA 3.12. Ify > &, then U, (c) <V, and V < U, (c) ify < ¢.
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Proof. With g(t,v) £ 8[uy(ct) — V], the pair (g, uy(ect)) is a BSDE?-
standard parameter. Moreover, by Lemma B.3, the Epstein-Zin aggre-
gator satisfies

[uy (ct) — Vil if

) o, and
dluy (ct) — Vi if ¢

NV

Y

Y

The comparison theorem for BSDEs (Theorem 2.76) yields
YY<V if y>¢ and VY i y<o,

since Vr = U(ct) = uy (ect) = Y7. O

The other inequality requires more work: A calculation using Itd’s
formula shows that the process Y £ ug, o u;, ' (V) has dynamics

dYe = — (8[ug(ce) — Ye|dt +dAy) + (ugouy ') "(Ve_)dMy,

where A is increasing if ¢ > v and decreasing if ¢ <.

(3.11)

A detailed proof is provided in the appendix (Lemma B.4, p. 173ff.).
LEMMA 3.13. If vy > &, then V < Uy (c), and V > Uy (c), if y < .

Proof. The claim is equivalent to Y > Y® if $ > y and Y < Y®
if & < y. The dynamics (3.11) show that Y is (in the terminology
of BSDE-theory, see, e.g., Peng (1999)) a supersolution (subsolution)
of the BSDE (3.10) if ¢ > v (if ¢ < v); indeed, (ug ou;,])’(Vt,)
is bounded since V € Vy, and hence the stochastic integral N e
Jolug ouy M)’ (Ve )dMy is still a martingale. Now, Corollary 3.23 be-
low shows that supersolutions (subsolutions) Y of (3.10) are bigger
(smaller) than the solution Y%, and the proof is complete. O

Combining the above results we obtain

COROLLARY 3.14. For every bounded consumption plan c € Cy, we have Power utility
bounds

Uyve(c) < V(e) <Uypngle). (3-9)

The crucial step in the proof of Lemma 3.13 makes use of a refined
comparison result for BSDEs. Its proof, which will be given at the
end of the next section, is based on a stochastic Gronwall inequality.
Such stochastic Gronwall inequalites will play an important role in
the following: They yield a comparison principle which allows us
to extend the utility process functional V : €, — 8y to a mapping
€ — V defined for all consumption plans. Thus, we interrupt our
investigation of stochastic differential utility to provide an excursion
on stochastic Gronwall inequalities.
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3.4 STOCHASTIC GRONWALL INEQUALITIES

A stochastic Gronwall inequality is a result which guarantees that a
process X, which satisfies a conditional linear integral inequality of
the form

X¢ < By [jf(asxs +Hg)ds + z} for all t € [0, T], G)

is bounded above by the solution of the corresponding linear integral
equation, that is, X satisfies

Xo < By [Jeltmdui ds + el duz]  forall te [0,T).

Stochastic Gronwall inequalities are of great importance in the theory
of backward stochastic differential equations (see Antonelli (1996))
and stochastic differential utility (see Duffie and Epstein (1992b) and
Schroder and Skiadas (1999)), and they will be used frequently in the
remainder of this thesis.

In this section, we provide a general stochastic Gronwall inequal-
ity under weak integrability conditions in a semimartingale frame-
work. Related results can be found in Duffie and Epstein (1992b), An-
tonelli (1996), Schroder and Skiadas (1999) and Kraft and Seifried
(2010). While Dulffie and Epstein (1992b) and Schroder and Skiadas
(1999) assume a continuous filtration, Kraft and Seifried (2010) do
allow for general filtrations, but they only consider homogeneous lin-
ear integral inequalities with a constant coefficient. The most general
result can be found in Antonelli (1996), where integral inequalities
with bounded increasing processes are considered. We restrict our-
selves to processes which are absolutely continuous with respect to
the Lebesgue measure and impose weak integrability conditions on
the density process. Under these integrability conditions, the result is,
to the best of our knowledge, new and not contained in the literature.

3.4.1 A general theorem and some ramifications

As above, (Q,J7,P) is a probability space endowed with a right-
continuous and complete filtration (F¢)¢>o; whenever a martingale
appears, we work with a cadlag version.

For the linear integral inequality

Xe <E [[{ (X +Hy)ds+2]  forall teo,T, )

to yield a meaningful upper bound, we should at least require that the
quantities on the right-hand side are integrable. Moreover, o should
be integrable as the following simple deterministic example shows:
With oy = (T—t)"", Xy =T—t, H=0and Z=0,wehave Xy = T—t =
f,? asXsds, but Xy £ 0. In the following, we thus restrict ourselves to
tuples («, X, H, Z) such that
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o a > 0 is a progressively measurable process with fOT asds < oo,
o Xand H are progressive processes such that «X + H is integrable,
o Zis an integrable random variable.

For brevity, a tuple («, X, H, Z) satisfying the above will be referred to
as a Gronwall parameter. For a fixed Gronwall parameter («, X, H, Z)
and 0 <t <s<Tandn e N, we set

e 1 ([fodu)” and E4" & TR I
and we formulate the following statements: For all t € [0, T],

E |1 (4™ Hal+ T alXo)ds 4 €572 <o forallmeN, (1)

(S}’HZ) is uniformly P-integrable, and
nelN (UI)

((82'“H5 + %asxs) is uniformly P ® dt-integrable.

sE[t,T]) neN

Note: Of course, it suffices to require (I) and the first condition in (Ul) merely for t = 0;
then, the statements for t > 0 hold a fortiori. We have opted for the above formulation
for the sake of transparency.

We will prove the following general Gronwall inequality:

THEOREM 3.15. Let (&, X, H, Z) be a Gronwall parameter such that (1) and
(UI) are satisfied, and suppose that

X; < Eq UI(OLSXS + Hy)ds +z} forall t € [0,T]. (G)
Then X satisfies the inequality
Xo B [f]eltodungds +ele duz] - forallte [0, T

Since I¥™/n! — 0and Y™ — elixudt agn 5 o forall0 <t <s < T,
the abstract integrability condition (UI) implies the L'-convergence

ITEY™ g + 5l o X )ds + £4mZ — [Telt ondupy ds 4 efi enduz (5.12)

Thus we prove Theorem 3.15 by iterating the linear integral inequality
(G) to obtain

X¢ < B¢ UtT (82’“Hs + Ii—’?ocsxs> ds + E}’T‘Z} , neN. (3.13)

Then the claim follows by (3.12), upon sending n — co.

Before we address the proof of Theorem 3.15, we discuss the inte-
grability assumptions (I) and (UI) and provide sufficient conditions.
First, requiring (I) is necessary for (3.13) to be a meaningful upper
bound. Second, with (I) in place, the uniform integrability assump-
tions in (UI) are equivalent to the L'(P)-convergence in (3.12). How-
ever, both (I) and (UI) are abstract conditions that are difficult to verify
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directly. In the following, we give some simple sufficient conditions
and record the corresponding corollaries of Theorem 3.15.
First, we note that

eV H,| < elt v | < efoduy s e t, T

Hence {(SE’“HS)SE[LT]} is uniformly integrable for all t € [0, T], if the
process elo %uduH ig integrable. The same argument applies to £}™(Z]
and shows that {8%“|Z| : n € IN} is uniformly integrable for all t

[0, T] provided that el 0 cwduz g an integrable random variable; thus,
the following conditions (EI) and (UI") imply (I) and (UI):

E [ [T elocuduypy dt + elo “udu|2|} < o0, (EI)
((fo ocsds)“‘%> oy 8 uniformly P ® dt-integrable. (UT)
A sulfficient condition for (EI) is the (exponential) moment condition
E [epfg “udu} <oo and E Ug|HS|qu + IZIq} < oo for %-‘r% =1
(EM)
If additionally E[fg laes Xs|9ds] < oo, then (EM) implies (UI’), since
L (Jaosds)"aeXe < elo®djayX|, te0,T), nelN.

COROLLARY 3.16. Let oo be a non-negative progressive process, and let X
and H be progressive processes such that

eloowdu c [P(P) and  oX,H e L9(Padt)

for p,q € [1,00] with 1/p +1/q = 1; moreover, let Z € L9(P). If X satisfies
the linear integral inequality (G), i.e., if

Xi <Ee [ (X +Ho)ds +2|  forall te[0,T],
then, it follows that
Xy < By [ftTefi cwdup g+ raftT "‘“d“Z} forall t € [0, T].

Proof. Clearly, («, X, H, Z) is a Gronwall parameter. By the discussion
preceding this corollary, the Gronwall parameter («, X, H, Z) satisfies
(I) and (UI), and the result is implied by Theorem 3.15. O

Of course, (EI) is automatically fulfilled if H = 0 and Z = 0, and
only (UI') is needed.

COROLLARY 3.17. Let 0 < o and X be progressive processes and suppose
that

(% (o ocsds)nocX)neN is uniformly P @ dt-integrable. (Ur)
Iff g asds < oo, and if X satisfies the homogeneous linear integral inequality
X¢ < Eq [J‘focsxsds} . telo,T,

then X¢ < 0 forall t € [0, T].
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As indicated above, the proof of Theorem 3.15 relies on iterating the
linear integral inequality (G). This procedure yields the conclusion of
Lemma 3.18. While the formal calculations are easy, some work is
required to ensure that the involved quantities are sufficiently mea-
surable and integrable.

LEMMA 3.18. Under the assumptions of Theorem 3.15, we have

Xe <Ee[[] (EV"Ho+ EragX,) ds+€7z], tel0,T, neN.

Proof. See Lemma B.14, p. 178ff. O

Once Lemma 3.18 is in place, establishing Theorem 3.15 is a simple
matter of sending n — oco. For completeness, we explicitly record the
proof.

Proof of Theorem 3.15. By Lemma 3.18 we have
Xo <E [[{ (8Y"H, + 1Y oX, ) ds +€72], te 0]
for all n € IN. Since jg asds < oo, forall 0 <t <s < T, we get
P = 1L ([fodu)™ =0 and &Y™ =31 (10 — elidudu (3.1y)

Together with the assumed uniform integrability (UI) of

((ERHs+ 5 asXs)

ni

n
sE[t,T])ne]N and (Et,TZ) neN’

the convergence statement (3.14) implies

s T
T (0™ + 1Mo X, ) ds + &47Z — [Tel ondupy ds 1 efc owduz

in L'(P), and hence we obtain

s T
X, < By [[Teltodupyds 4 efeonduz] forallte 0,7, O

3.4.2 Stopping time extensions

Using stopping arguments, it is possible to drop the positivity as-
sumption on « in the general Gronwall inequality in Theorem 3.15.
The price to pay is that the linear integral inequality (G) must be
required to hold for all stopping times.

We begin with the homogeneous case; closely related arguments
are employed by Schroder and Skiadas (1999).

THEOREM 3.19. Let o be a progressive process with fg o ds < oo, and let
(Xt)teqo,1) be right-continuous and adapted. Suppose that the family

<% (s ocjds)“oc*X) s uniformly P dt-integrable. (UT)
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If X1 < 0 and for all stopping times t with E[X{] < oo we have
1{T>t}Xt < Et [1{T>t}jfochsds + 1{T>t}XT] , te [0, T], (315)

then X¢ < 0 forall t € [0, T] a.s.

Note: For a random variable & with E[£*] < oo, we define the conditional expectation
as the [—oo, 00)-valued random variable E[&|G] = E[&" |G] —sup, . ElE~ An|S]. A
version of the conditional expectation in (3.15) never takes the value —co as X is a real-
valued process.

Proof. Suppose by contradiction that the event A £ {X;, > 0} € Fy, has
positive probability for some to € [0,T], and consider the stopping
time T £ inf{t > to : X¢ < 0} < T. Now, (3.15) yields

1{T>t}Xt < Et [1{T>t}f:ocsxsds + 1{T>t}XT] g Et [1{T>t}‘r:(X:XSdS]

for all t € [0, T], since X > 0 on (t,7] and X; < 0 by right-continuity;
thus, the process Y; £ Tir=1)X; satisfies

Y: < E¢ UtTochsds} forall t € [0, T].

. . . . . T
Since «" is a non-negative progressive process with [, afds < co and

L(foodds) "ol Vel < L ([oodds) ol IXel, te0,T],

1
n! n!

(UIT) implies that the assumptions of Corollary 3.17 are satisfied. But
then

Yi, =1aX¢, <0, where A ={X;, >0} with P(A)>0,
which is a contradiction. O

The above proofs indicate that the method of iterating the inequal-
ity does not take stochastic Gronwall inequalities farther than the
abstract uniform integrability condition (UI"). One way to establish
(UI") is to verify an exponential moment condition; however, under
this condition, the result is known in the literature.

In the remainder of this thesis, we shall only rely on the two
stochastic Gronwall inequalities given below. We derive them from
Theorem 3.19; of course, they could alternatively be proven directly.

PROPOSITION 3.20. Let (&)¢c(o,1] be progressively measurable and bounded
above, and let (X¢)ie(o,1) be a right-continuous and adapted process with

E[lXTI] < oo forall [0, T]-valued stopping times .
If X1 < 0 and, for every stopping time <, we have
1{T>t}Xt < E; [1{T>t}J‘ICxSXSdS + 1{'r>t}X'r] , telo,T],

then X¢ < 0 forall t € [0, T] a.s.
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Proof. This is a simple corollary of Theorem 3.19. O

Note: The condition E[[X{|]] < oo is not a serious requirement; usually, we will have
sup{E[X+[] : Tis a [0, T]-valued stopping time} < oo or even E[supte[O T [X¢|] < oo.

The “stopping time-version” of the stochastic Gronwall inequality is
particularly useful in the context of BSDEs. Let us say that a semi-
martingale Y is a subsolution of the BSDE

dX¢ = —f(t, Xy )dt+dM,, Xt =§, (3-16)

if there exists a martingale MY and a decreasing (right-continuous)
process AY such that

dy, = —f(t, Y)dt +dMY —dAY, Yy <&, (3.17)
and if (Y, MY, AY) satisfies
E[[1f(s, Yo)lds + V7] +|AY — A¥|] < oo. (3.18)

Similarly, we call Y a supersolution of (3.16) if YT > X7 = & and AY
is increasing; these definitions are in line with standard terminology
(see, e.g., Peng (1999)). Here, we do not require that (f, &) is a BSDE-
standard parameter, but f is understood to be measurable, of course.

LEMMA 3.21. If Y is a subsolution of the BSDE (3.16), then,
sup{E[|Y«l] : tisa [0, Tl-valued stopping time} < oo,  (3.19)
and, for all stopping times T, we have
Teat) Yt S B [Teagy JTf(s, Yo)ds + Tiea)Ye], t€[0,Tl. (3.20)

If Y is a supersolution, then (3.20) holds with “>", and if Y is a solution,
then (3.20) holds with “=".

Proof. Let o < T be stopping times. Integrating (3.17) from time o to
time T, we get

Yo+ (MY —=MY) = [Tf(s, Ys)ds + (AY —AY) + Yo (3.21)
Choosing T = T and taking F,-conditional expectations, we obtain
Yo = Eq [jlf(s, Yo)ds + AY — AY +YT} )

and hence (3.19) follows from (3.18). The same argument works for
supersolutions. For the second part, let t € [0, T] and choose 0 =t A .
Then (3.21) yields

Yine + (MY = MUng) < [Tacf(s, Ys)ds + Yy,

since AY is decreasing. Taking time-t conditional expectations, and
then multiplying by the indicator of the set {T > t}, we obtain

]{T>t}Yt < Et [1 {T>t}f:f(s, Ys)ds + 1{T>t}YT} .

For supersolutions AY is increasing, and we get “>" in (3.20). O

91



92

Standard
inhomogeneous
Gronwall
inequality

Subsolutions are
smaller than
solutions

STOCHASTIC DIFFERENTIAL UTILITY

PROPOSITION 3.22. Let o be a bounded progressively measurable process
and & € L'(P). Let B € L'(P®dt) be a progressive process and let
(Xt)tepo,1] be right-continuous and adapted with

E[[X<[] < oo forall [0, Tl-valued stopping times .
If X1 < & and, for every stopping time T, we have
Tes Xt < B¢ [Teon [T (asXs + Bs)ds + 1oy X<]  forall t € [0,T],
then, it follows that
X; < By [ftTefi cwdupy g+ eftT “”d“Z} forall t € [0, T] a.s.

Proof. By Proposition 2.77, the unique solution of the linear BSDE
dYy = —[a Ye + B]dt + dMy, Y7 = ¢, is given by

Y. = E; UtTeﬁ audug qg 4 elt “udué} , te 0, Tl

The above Lemma 3.21 yields

sup{E[|Y«]] : Tis a [0, T]-valued stopping time} < co
and shows that, for all stopping times T, we have

Tty Yo = By [Teo o fr ots Ysds + ooty Yo, te[0,Tl.
Thus A £ X —Y is a right-continuous adapted process with

AT <0, E[|A+]] < o0, and
TragAe S Eq [Teog [T asAsds + 1o yA], € 10,7,

for all stopping times T; Proposition 3.20 implies that A < 0. O

As a corollary of Proposition 3.20, we give a proof of the compar-
ison result which was used to establish the power utility bounds in
Lemma 3.13 at the end of the previous Section 3.3.

COROLLARY 3.23. Let (f,&) be a BSDEP-standard parameter, and let X de-
note the solution of the corresponding BSDE

dXt = —f(t, Xt)dt + th, XT =¢. (3.22)
If Y is a subsolution (supersolution) of (3.22), then Y < X (Y = X).

Proof. We let Y be a subsolution of (3.22), set A £ Y — X and note that
At < 0. Lemma 3.21 yields E[|[A[] < co and

TeayAe < E¢ [T [1 (F(s, Ys) — (s, Xs)ds + TragAc],  t€[0,T],
for all stopping times t. Define a bounded progressive process « by
os 2 [f(s,Ys) — (s, Xs)] /[Ys = Xs] if Vs # X
and o 2 0 if Y5 = X;. Then, for all stoppping times T, we have
TeeyAe S E¢ 1oy [T asAsds + 1o Ac],  t€10,T],

and Proposition 3.20 shows that Y —X = A < 0. If Y is a supersolution,
then the proof is literally the same upon replacing A by X—Y. O
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Note: Of course, Corollary 3.23 can be combined with the comparison result of Theo-
rem 2.76 to obtain a comparison theorem for sub-/supersolutions of BSDEs; see, e.g.,
Peng (1999) for the explicit formulation of such a result.

Having established the stochastic Gronwall inequalites in Proposi-
tion 3.20 and Proposition 3.22 and the comparison result for sub-/
supersolutions of BSDEs, we are now in a position to return to our
investigation of continuous-time Epstein-Zin utility.

3.5 PROOFS OF THE MAIN RESULTS

In this section, we give the proofs of our main results, which have
been formulated in Section 3.2; thus, we restrict our considerations to
the Epstein-Zin parameterization of stochastic differential utility with
relative risk aversion and elasticity of intertemporal substitution

1— _
y,b>1, sothat ¢=3<1, 8=1=F<0, q=$L>1.
Recall that the Epstein-Zin aggregator is given by

f(c,v) & %c“‘b[ﬂ —y)v]9 — 560V, forc,(1—y)jv=0. (3.2)

We fix an arbitrary § > q and select « > 1 such that 1-¢/a+4/p < 1.
Then, by the integrability condition in the definition of the family €
of consumption plans (Definition 3.1), we have

E[fgcf‘dt + C-(r] A" cr] <oo foreveryc € C. (3.23)

Since it is only this condition that is required for the following proofs,
the integrability condition in Definition 3.1 can be relaxed to a re-
quirement of the form (3.23), if §” is replaced by 8P in the definition
(3.4) of V. Finally, we set VP £ {V € 8P : (1—vy)V; > 0 for t € [0, T]}.

LEMMA 3.24. Let V € VP satisfy
Vi =Ee[f fles, Vidds+Uler)],  teloT], (3-1)

for some ¢ € C. Then My = Et[fgf(cs,vs)ds +U(cr)l, t € [0,T], defines a
uniformly integrable martingale, and we have

th = —f(Ct, Vt)dt + th, VT = u(CT). (324)
In particular, for all stopping times <, we have
1{fr>t}vt = Et [1{T>t}J‘If(CS/ Vs)ds + 1{T>t}VT]/ te [O/ T]- (3-25)

Proof. Setting & £ o/(1—¢) > 1and B £ B/q > 1, we get v ' £
&'+ B! < 1. Holder’s inequality yields

(ait(es, vaords) ' < 25 (Slegds) ™ (Ja 0 —ypve] Pais)

+TV/7 50| sup |Vil, (3.26)
te€[0,T]
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and hence the integrability assumption in (3.23) implies that
Jolf(es, Vo)lds + U(er)l € L'(P).

In particular, M is a uniformly integrable martingale, and thus V is a
solution of the BSDE (3.24). The stopping time-representation of V in
(3.25) is now an immediate consequence of Lemma 3.21. O

In Corollary 3.10 in Section 3.3 above, we have shown that for each
bounded consumption plan ¢ € €y, there exists a unique V = V(c) €

Vi = B[] fcs, Vs)ds + U(er)],  telo,T. (3.1)

We recall that ¢ € C, and V € Vy, if ¢ € € is a consumption plan and
V is a semimartingale such that

koscsks and ko <(1—-v)V <k
for some constants 0 < ko < kq; thus, a mapping
V:C, =V, CcVP, ¢ V(c), whereV =V(c)satisfies (3.1)

is already constructed. Our main task is to extend this mapping from
Cyp to € by a suitable limiting argument and to prove that the exten-
sion is monotone, concave and unique.

For this, the following general comparison result is key. A closely
related result can be found in Schroder and Skiadas (1999).

THEOREM 3.25. Let ¢ € Cand let V € VP satisfy (3.1). Suppose that Y € VP
with Y1 < V7 and that for every stopping time ©

1{T>t}Yt < E; [1{T>t}f:f(CS,Y5)dS + 1{T>t}YT] fO?’ allt € [0,T].
Then it follows that Y < V.

Proof. Let T be a stopping time. Using the representation (3.25) from
Lemma 3.24, we obtain

Teay Vi = By [Troq [ fles, Vs)ds + 1wy Vo] forall t € [0, T].

For all ¢ € ¢, the map 4 — R, v — f(c,v) is convex by Lemma B.1,
and hence we have

f(cs, Vs) = fles, Ys) +fulcs, Ys) (Vs —Ys)  for dt-a.e. s € [0, Tl.
Thus we obtain
]{T>t}(Yt - Vt) <E¢ [1{T>t}‘[‘:f\)(CS/ Vs)(Ys - Vs)ds + 1{T>t}(YT - V’T)]

for all t € [0, T], where f,(c,Y) is a progressively measurable process
that is bounded above by —86. Since Y1 — V1 < 0, the stochastic Gron-
wall inequality in Proposition 3.20 implies that Y —V < 0. O
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COROLLARY 3.26. Let ¢! < ¢?in Cand V',V? € VP with
VE=EB[J] (el Vids + Uh)], telo T, =12

Then V' < V2. In particular, for every c € C, there is at most one V(c) =
V € VP that satisfies (3.1)

Proof. The Epstein-Zin aggregator is increasing in ¢ by Lemma B.1;
hence, the representation (3.25) yields

Teog V! < Ei Mooy i f(e3, VOds + 1oy Ve ], te 0TI
By Theorem 3.25 the proof is complete. O

Having established uniqueness of stochastic differential utility, it
now suffices to produce some V € VP that satisfies (3.1). We will
obtain such a process by a monotone convergence argument, as a
pointwise limit of utility processes associated to bounded consump-
tion plans.

3.5.1 Monotone convergence

We say that a sequence (c™)nen C C is increasing if ¢c™ < ¢! for all
n € N, and we write ¢c™ — ¢ in C if and only if

¢ »ciforae te[0,T] and cf —cr with ceC.

If (c")nen C Cis increasing with ¢c™ — ¢ in €, we briefly write ¢™ 1 ¢
in €. The decreasing counterparts are defined analogously.

LEMMA 3.27. Let (¢c™)pen C Cand (VM) nen C VP such that
VI = E, [fjf(cg, VMds + u(c}l)} , tel0T, neN. (327
Ifc™ 1 corc™ | cin C, then there exists V € VP with
Vi = E, [J‘ff(cs,vs)ds +u(cT)} , teloT],
and we have V{* — Vi forall t € [0, T].

Proof. If (¢™)nenN is increasing (decreasing), then Corollary 3.26 shows
that (V"),en is increasing (decreasing). In the increasing case, we
have V! < V™ < 0 for all n € N, that is, (V") ¢cn is bounded in V.
To derive a similar bound in the decreasing case, we note that the
Epstein-Zin aggregator (3.2) satisfies f(c,v) > —56v, and hence, using
the stopping time-representation in (3.25), we obtain

]{T>t}vp > E¢ [] {T>t}J‘: —30V,ds + 1{T>t}v~?] ’ tel0,T],

with VI = U(c}) > U(ct); thus the stochastic Gronwall inequality of
Proposition 3.22 implies V > U, where U; £ Eile2°(T=8Y(ct)] and
U € VP by the integrability assumptions in (3.23).
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Hence in both cases, it follows that U < V™ < 0 for all n € IN and
some U € VP; therefore, we can define the process V as the monotone
pointwise limit Vi £ limp 00 Vi, t € [0, T]. For each n € N and dt-a.e.
s € [0, T], we estimate

(e, VI < 25 led + el [(1 —v)Us] T + 125 (1 = v)Us = Bs.

Now, the integrability assumptions in (3.23) and Holder’s inequality
imply that B € L'(P ® dt); this argument appeared previously in the
proof of Lemma 3.24 (see in particular inequality (3.26)). Moreover,

UM < e [(eH)™ +e Y] e L' (P).

We have thus found an integrable upper bound on the relevant quan-
tities in (3.27); therefore, sending n — oo in (3.27), we obtain

Ve = lim Eq [ f(el, VI)ds + U(el)| = Be [J{ (e, Vo)ds + Uler)]
for all t € [0, T], by dominated convergence. In particular, V is a semi-
martingale, and hence V € VB is a utility process for c as asserted. [

Remark. Using Doob’s maximal inequality, one can show that in the
situation of Lemma 3.27, we also have V™ — V in 8P, This is, however,
not needed in the following. o

Lemma 3.27 can be used to prove the existence of a utility process
for an unbounded consumption plan ¢, by applying it to suitable,
monotonically converging truncations c¢™ of c. Before, we carry this
out, we first show that the map €, — Vy,c — V(c) is concave, which
will then easily carry over to the extension.

3.5.2  Concavity for bounded consumption plans

To establish concavity, it is convenient to consider the ordinally equiv-
alent transformation Y = ug ouy, (V) as in the proof of the power
utility bounds in Lemma 3.13 above.

LEMMA 3.28. Let ¢ € Cy and let V. = V(c) € Vy, be the associated bounded
utility process. Then the process Y =g oy, ! (V) satisfies

dyy = — (5 [ucb(ct) *Yt]dt+ %c]biyd[Yt]‘ + %Yt—AYJ? — AYt)

q ¢ Ve (3.28)
+((1—Y)Vt—) dM,

where M is a bounded martingale.

Proof. The process V has dynamics dV; = —f(c¢, Vi )dt + dM¢, where
M is a bounded martingale. Moreover 0 < ko < (1—v)V < k; for some
constants ko, kj. A calculation using Itd’s formula (see Lemma B.4,
p- 173ff.) shows that Y has dynamics as in (3.28). O
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Next we show that the convex combination of the transformed pro-
cesses Y! and Y? associated with two bounded consumption plans
c!,c? € @y is, in the terminology of BSDE theory (see, e.g., Peng
(1999)), a subsolution of (3.28) with ¢ £ Ac' + (1 —A)c?. This boils
down to showing that the driver of the BSDE is concave; however,
the driver is integrated with respect to the quadratic variation pro-
cess of the solution, which complicates the matter. To deal with these
difficulties, we rely on the following convexity result.

LEMMA 3.29. Let 8¢ = {X € 8§ : X > 0} denote the set of positive semi-
martingales and let t,s € [0, T], t < 's. The mapping

is convex.

8¢ = LY (P), X HJ diXlz
¢ Xee

Proof. Corollary B.g; Section B.2 (p. 174£f.) is devoted to the proof. [

The jumps, on the other hand, are easily accommodated.

LEMMA 3.30. The function
h: (0,002 5 R, h(x,y)=gx'[y®—x°] is concave.

Proof. Differentiating h, we get hyx(x,y) = (0 — 1)y /x%*71, hyy(x,y) =
(1-0)y°1/x% and hyy(x,y) = (6 —1)x'%y%2. Now hyx < 0 and

hxhyy — hiy =0, so the Hessian of h is negative semidefinite. O

LEMMA 3.31. Suppose that ¢t € Cy, 1 = 1,2, let V' = V(c!) € Vy, denote
the associated bounded utility process and let A € [0,1]. Moreover, set Y' £
ugou, (VY and ¢ £ Ac! + (1—A)c? as well as Y £ AY! + (1 —A)Y2. Then

dYy = — [8[ug(ed) = Yi]dt+ 3 S 4 3 (v ) OAMN) - AY
—dA¢+dMy, (3.29)
where the martingale M is specified in (3.30) and A is a decreasing process.

Proof. Using the representation (3.28) of Y', Y? in Lemma 3.28, we get

dYy = — (8lug(cd) — Yidt +dA]) — (34 40" + dA)
— (§Ye—AYY — AY +dAT) +dMy,

dA] = 8[Aug(c) + (1= Nug(cf) —ug(cy)]dt,
o 1=y [,dIY/ diyZle  dly,

dAy = 21—¢ A Y. Y2 Yoo |’

dA? = A (FYI_ANYD®) + (1=A) (FYEA(YD)®) — (§Ye-AYD),

dM¢ =A((T—y)V{) " TdM{ + (1 =N (1 —y)VE) 9dM?  (3.30)

+(1=27)

for some bounded martingales M' and M?. Recalling that V',V € Vy,
take values in a compact subset of 4l = (—o0,0), it follows that M is
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a martingale, as well. To complete the proof, it thus remains to show
that A2 A1 +A,+Azisa decreasing process.
Concavity of power utility functions implies

Mg () + (1 —=A)ug(cf) —ug(ce) <0, telo,Tl,

hence A' is decreasing. Moreover, Lemma 3.29 implies that for all
s,t [0, TI withs <t

t 17c
Qs = A ] E

t 27¢ t ¢
div2jg ‘J dvie

+“_MJ . Yo

s YZ

and thus A% = %‘f_;g Q(0, -) is a decreasing process. Lemma 3.30 yields
MY, YD) +(1=Mh(YZ,Y2) —h(Ye, Ye) < Oforallt € [0,T], i.e., only
jumps of negative height occur in A3, and hence A3 is a decreasing
pure jump process. [

Now, it remains to reverse the transformation and apply the com-
parison result from Proposition 3.25.

PROPOSITION 3.32. The map Cp, — Sy, ¢ — V(c) is concave.

Proof. Let A € [0,1], ¢' € €y, and let V' = V(ct) € Vy, be the associated
utility processes. Moreover define ¢, Y', Y2 and Y as in Lemma 3.31
and let V = V(c) be the utility process corresponding to c. The map
g £ uyou,' is concave, so we have

AV 4+ (1=N V2= (Ag(Y) + (1=A)g(Y?)) < gAY + (1 =A)Y?) = g(Y),

and hence, to prove the assertion, it suffices to show that g(Y) < V.
By (3.29) and Itd’s formula (see, e.g., Theorem 1.4.57 in Jacod and
Shiryaev (2003)), the process X = g(Y) has dynamics

dX¢ = —f(ce, Xe)dt — g'(Ye)dA 4 g'(Ye)JdMy,
where M is given by (3.30); therefore, we obtain
1{*r>’c}X’c = 1{~r>t}XT + ]{T>t}J‘:f(CSI Xs)ds + ]{T>t}J‘:9/(Ys—)dAs
- ]{T>t}(NT - Nt) (331)
for any stopping time T, where
N2 [59/(Ys) [7\((1 —y)V)daml - ( _y)vg_)*qdmg]

is martingale because the integrands are bounded processes and M'
and M? are bounded martingales. Taking time-t conditional expecta-
tions in (3.31), it thus follows that

1{T>t}Xt < Et [1{T>t}f:f(cs,Xs)ds -+ ]{T>t}XT]
since A is decreasing and g’ < 0. Moreover, we have
YT =Aug(ect) + (1= Aug(ect) < up(Aet + (1 —A)ct) = ug(ect),

and hence X1 = u, ou;](YT) < uy(ect) = U(er) = Vi, therefore,
Proposition 3.25 implies that X < V and concavity is established. [
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3.5.3 Extension to unbounded consumption plans

THEOREM 3.33. The map Cy, C C — VP, ¢ s V(c) admits a unique, concave
extension to the class C of all consumption plans. This extension is uniquely
characterized as follows: For every c € € and V € VB we have

V=V(e) <= Vi=E[]flcs,Vs)ds+U(cr)], tel0,Tl. (332)

Proof. Let ¢ € €. Corollary 3.26 implies that there is at most one pro-
cess V = V(c) € VB which satisfies the BSDE in (3.32). To construct
V, we first consider ¢ € € with kg < ¢ for some constant ky > 0 and
define, for each n € IN, an associated bounded consumption plan
ch € Cp by e £¢ An, t € [0,T]. Lemma 3.9 yields a bounded utility
process V™ =V(c") € Vy associated to ¢,.

Since ¢c™ 1 ¢ in €, the monotone convergence result of Lemma 3.27
implies that there exists V € VP with

Vo =B [[{#(e,, Vods +Uer)|, telo,T.

In the general case, we put c™ £ ¢+ L and use the previous argument
to construct V" € VP with

VI = E, [ﬁf(c;}, VMds + u(c}l)} , tel0,T, nel.
Since c™ | ¢ in €, Lemma 3.27 shows that V{* — V;, where V € V¥ and
Vi = E, [J‘ff(cs,vs)ds +u(cT)} , telo,T.

Thus V(c) is well-defined via (3.32) for every c € €. Finally, concavity
follows from Proposition 3.32 by a limiting argument. O

With the previous Theorem 3.33, we have also established Theo-
rem 3.2 and Theorem 3.4.

COROLLARY 3.34. Let (¢™)nen C C and suppose there are c,¢ € C such
that ¢ < c™ < € foralln € N. If c™ — c in C, then Vi(c™) — Vi(c) for all
te [0, Tl

Proof. The assumptions imply that a™ £ infys,c™ € C and b™ £

SUPy sy, ck € €. Clearly a™ 1 ¢ and b™ | c in €, so by monotone
convergence (Lemma 3.27)

Vi(a™), Ve (b™) — Vi(c) forallte [0, T].

On the other hand, monotonicity (Corollary 3.26) yields V(a™) >
V(c™) > V(b") for every n € IN, and hence the proof is complete. [

Using the dominated convergence result of Corollary 3.34, we can
extend the power utility bound (3.9) from Corollary 3.14 to all of C.
Recall that

U,(c) < V(c)<Ug(c) forallceCy, (3.9)

99

Dominated
convergence



100

Power utility
bounds

Utility gradient
inequality

STOCHASTIC DIFFERENTIAL UTILITY

where Uy(c) =u, ou.;1 (YP(c)), and YP(c) = Y? is given by

Y = 8P B[] e S uples)ds +uplect)], pe{d, v (3.33)

PROPOSITION 3.35. Let ¢ € € and suppose that
E Ug(ct‘b el V)dter Y+ c}*‘b} < o0.

Then Uy (c) < V(c) < Ug(c). In particular, (1 —v)V(c) > 0.

Note: The integrability condition in the formulation of Proposition 3.35 is implied by
the integrability condition in the definition of the family of consumption plans C (Defi-
nition 3.1). It has been added here so that the proposition remains valid if C is defined
by the weaker integrability condition (3.23), which is all that is required in this section.
Under the original integrability assumption from Definition 3.1, the above proposition
also shows that E[supte[olﬂ [Vi(c)IP] < oo forall p € R.

Proof. For n € IN, we set c" e (% V ¢) An and note that ¢c™ — ¢ with
c/A\1 < c™ < cV 1. Corollary 3.34 implies that Vi(c™) — Vi(c) for all
t € [0, T]. At the same time, (3.9) shows that

VY =Uy(c™) < V(™) < Uple™) Suyougy' (YD),

where Y and Y{ are given by (3.33), with ¢ replaced by ¢™. By domi-
nated convergence, we have (YY), — Y} = [U, (c¢)ly and (Y®), = Y¥ =
[ug ouy, ' (Ug(c))le for all t € [0,T], and hence the claim follows by
sending n — oo. Note that E[sup, . o (1 —=v)Ug(c))'/°] < oo, s0

E[ sup ((1—v)Ve(c)'/®] <oco and V(c) > 0. O
telo,T]

3.5.4 Proof of Theorem 3.5
This subsection is devoted to the proof of

THEOREM 3.5. Suppose that ¢ € C satisfies
E[fg fe(e Val@)ecdt+ W (erer| < oo. (3-34)

Then, the following utility gradient inequality holds:
For every c € Cand all t € [0, T], we have

Vi(e) < Vi(€) + (m*(€),c — &) (3-35)

where (m,y); = Et[ftT msys ds + mryy] and the time-t utility gradient

mb(&) £ Mt is given by

w2 eft f(EeVel@Ndr (£ (a0 V()11 (s) + W (er)m(s), selt,T.
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The idea of the proof is the following By concavity of ¢ — V(c), w
can establish (3.35) by identifying (m'(¢),c — &) as the derivative of
the utility process at ¢, in the direction of c,

lim 1 (Vi(€+Ale—8) = Vi(@) = lim 1 (Vale}) = Va(@)),

where ¢* £ (1 —A)é + Ac. The scaled difference A £ (V(c?) —V(¢&))/A
of the two utility processes in the above equation is given by

MY = B [[TH(ed, V() = (&, Vs (@) ds + U(e}) — U(er)| . (3.36)

The implicit nature of the above equation complicates the matter of
taking the limit A — 0; thus, the first step is to derive an explicit rep-
resentation. For this, we linearize the equation, using the following
measurable selection from the mean value theorem.

LEMMA 3.36. Let X, Y be real-valued optional processes and g : Q x [0, T] x
R be such that (w,t) — g(w,t,x) is optional for every x € R and x
g(w,t,x) is continuously differentiable for all (w,t) € Q x [0, T]. Then,
there exists an optional process Z with X \Y < Z < X\V'Y such that

Proof. Endow Q x [0, T] with the optional c-algebra and define a
compact-valued correspondence ¢ : Q x [0,T] — 2R by o¢(w,t) =
X (w) AYe(w), Xe(w) V Yi(w)]. Theorem 18.15 in Aliprantis and Bor-
der (2006) implies that ¢ is weakly measurable. Consider the function

£, x) 2 —[gu (- %) (X =Y) = (g(-, X) — g[-, )]

For fixed (w,t), the map x — f(w,t,x) is continuous; moreover, the
process (w,t) — f(w,t,x) is optional for all x € R. Theorem 19.19 in
Aliprantis and Border (2006) shows that the argmax-correspondence

(w,t) — {z € plw,t) : flw,t,z) = max f(w,t,x)}
x€@(w,t)

admits an optional selector Z. Since maxye¢ ¢y (w,t) f(w,t,x) = 0 by the
mean-value theorem, the process Z satisfies (3.37). O

Returning to the proof of Theorem 3.5, we use Lemma 3.36 to ob-
tain an optional process ¢* with ¢c* A ¢ < & < ¢ V¢ such that

f(c?, V(M) = (&, V(M) = fe (", V(M) (ch — @) (3.38)

and U(c}) — U(ér) = W/(&})(c} — é1). Moreover, we get an optional
process VA with V(&) AV(c}) < VA < V(&) V V(c) such that

f(&,V(ch)) = f(&, V() = fu (&, VM)(V(c?) — V(@) (339)
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Recalling ¢ £ (1 —2A)¢ + Ac, we see that (c* —¢&)/A = ¢ —¢; thus insert-
ing (3.38) and (3.39) into (3.36), we arrive at

AY = Be [[{e(@, Va(eM)(es — &) + (25, VI)ANs + U (@) (er —&1)]
(3.40)

that is, A* satisfies a linear BSDE. An explicit formula for the solutions
of linear BSDEs is available; however, f, (¢, V*) is not bounded, nor
can we expect that the other quantities involved are integrable for any
choice of ¢ and c. Hence the standard result (e.g., our Propostion 2.77)
is not applicable, and we have to rely on approximation arguments.

sTEP 1. Ina first step, we prove Theorem 3.5 for consumption plans
¢, c € C that satisfy

(c—¢)/

¢ <K for some K > 0, (B1)
2k et

/2 for some k, { > 0. (B2)
For all A < A £ min(2~',K~"), assumptions (B1) and (B2) imply
k<2< MNegdgcMVex28e<L, (3.41)
i.e., & € Cy is a bounded consumption plan. Recall that
CeC, = ko(C) < V(E) <kq(c) forkp(c), ki(c) <0,

by Corollary 3.10 and Theorem 3.2; hence, by monotonicity of ¢ —
V(c) (Theorem 3.4), we can find constants kg, k1 < 0 such that

ko < V(E/2) S V() AV(cY) < VA < V(@) VV(ed) < V(28) < k.

In summary, (B1) and (B2) guarantee that ¢, and (1—v)V? take values
in a compact subset of (0,00) for all A < A; thus there exists some
M > 0 such that

Ife (@), Vs(c™)] +Ifu(és, VM) <M for dt-ae. t € [0,T], (3.42)

and [U/(€})] < M for all A < A. Moreover, |c —¢&| < K& < K¢/2; hence,
all quantities involved in (3.40) are bounded by a deterministic con-
stant. In particular, Propostion 2.77 is applicable, and it shows that
the unique solution of (3.40) is given by

A} =Eq [fI GiMes —&)ds+ G er—er)|, telo T,  (3.43)
where fort,s € [0,T], t <s,
GiA 2 el f“(éT’VTA)dT(fc(Eﬁ‘, ()T (s) + W (&) 1ry(s)).

Sending A — 0 in (3.43), we can prove the utility gradient inequality
under the assumptions (B1) and (B2).
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LEMMA 3.37. Suppose that (B1) and (B2) hold. Then, for all t € [0, T], we
have the utility gradient inequality

Vi(e) < Vi(8) + (mh(e),c—&)¢. (3-44)
Proof. Let t € [0, T] and recall that m*(¢) is defined as
mi(e) £ el eV (£ (6, V(€)1 10 (8) + U/ (61) Ty (5))

for s € [t, T]. Since ¢c» — ¢ in € as A — 0, our dominated convergence
result (Corollary 3.34) implies that Vi(c*) — Vi(¢) as A — 0, where
the relevant bounds are provided by (3.41). In particular, ¢* — ¢ and
V) — Vi(é) as A — 0, and therefore

GY* - mti(e) fordt-ae sel0, Tl and GY* —mbi(@) asA—0,

establishing pointwise convergence inside the conditional expectation
in (3.43); thus, (3.42) and dominated convergence imply

A} — (mb(¢),c—¢&)y asA—0.

Noting that Vi(c*) > Vi(€) + A[Vi(c) — Vi(&)] by concavity (Theo-
rem 3.4), we get Vi(c) < V() + A}; hence, the utility gradient in-
equality (3.44) obtains in the limit A — 0. O

STEP 2. In a second step, we relax the assumptions on ¢,c € € to

(c—¢)/

for some K > 0, (B1)

I N
~

o>

¢
k for some k > 0, (B2
We set h £ (c —¢&)/¢ and note that h < K by (B1). For n € IN, we put
"2 ¢Anand c™ £ (1+h)e™. Then

¢c"—¢* (1+h)en—-¢n

e en =hs<k

so ¢™ and c™ do satisfy (B1). Moreover, ¢" < n, and hence (B2) is
satisfied, as well. Thus the first step, Lemma 3.37, implies

Vie(e™) < Ve(e™) + (mb(en), e —¢™)y forallte[0,T], (3.45)
where the relevant utility gradient is given as
mt(en) £ el MEVEMT (¢ (@, V(€M) 7y (s) + U (E]) 1 my(s)),

for s € [t, T]. Clearly, ¢™ 1 ¢, and hence ¢c™ 1 ¢, as well. Lemma 3.27
shows that Vi(c™) 1 Vi(c) and Vi (E™) 1 Vi(E), t € [0, T], and therefore

mi(e™) - mi(¢) fordt-ae.sc[t,T] and mi(e") — mi.

To prove the utility gradient inequality, it thus remains to justify that
we can take the limit inside the inner product in (3.45). Since f, <
—d1—% 1= (see e.g.,, Lemma B.1), for all n € N, we have

54=XT

T TmL(E™) < (&1, Vs(€™) < fel(k, Vi(k)) for dt-ae. s € [t, T,

103

Utility gradient
inequality for
bounded plans (I)

Relaxing
assumption (Bz)



104

Utility gradient
inequality for
bounded plans (II)

Dropping
assumption (B2’)

Utility gradient
inequality with
(B1)

STOCHASTIC DIFFERENTIAL UTILITY

where the last inequality is due to f.. < 0, fcy, < 0; see again

Lemma B.1. Since ko < V(k) < kg for some constants kg, k1 < 0,

we see that 0 < m*'(¢™) is bounded by a positive constant. Similarly,
'[7

0 < e 'mt (&™) < U/(eM) < U/(k). Finally, [c™ —én| = [he < K&

therefore, we find M > 0 such that

Imi(E™) (et —¢&3)| < Més  for dt-ae. s € [t, T,

S

and [m% (&™) (et — &%) < Méy. This uniform upper bound is integrable
as ¢ € C, or, more generally, by the integrability condition in (3.23).
Sending n — oo in (3.45), the dominated convergence theorem im-
plies (3.46), thus completing the second step. We have just proven the
following lemma:

LEMMA 3.38. Suppose that (B1) and (B2") hold. Then, for all t € [0, T], we
have the utility gradient inequality

Vi(e) < Vi(€) + <mt(é),c — &)1 (3.46)

STEP 3. In a third step, we relax the assumptions on ¢, c € € to
(c—¢)/e <K for some K > 0, (B1)
E[fo fe (e, Va(@)edt+ U (er)er| < oo. (3-34)

LEMMA 3.39. Suppose that (B1) and (3.34) hold. Then for all t € [0, T], we
have the utility gradient inequality

Vi(e) < Vi(8) 4+ (m'(e),c — &)y

Proof. For each n € IN, we set ¢™ 2 ¢ + L. Then
c—¢n c C
hné ~ :T*]<7*1:h<K
cn cn e =

by (B1), and ¢™ = 1/n; thus, ¢™ and c satisfy (B1) and (B2"). The second
step, Lemma 3.38, yields

Vil(e) < Ve(&) + (m'(e™),c— &™),  where (3-47)

mi(en) £ el EVE DT (£ (@1 V(E™M) 11 (s) + W (@)1 y(s)),

for s € [t, T]. Since ¢™ | ¢, Lemma 3.27 applies to show that V,(¢™) |
Vi(8), t € [0, T]; hence, it remains to show that we can take the limit
inside the inner product in (3.47). Recalling that f,, < —SL%, we have

0< P Tmt(eM) < fe(és, Vs(&s)) for dt-ace. s € [t, T]
since fcc <0, fey < 0. Similarly, because U” < 0, we get
0 < edTo Tmb(e™) < U/ (&r).
In view of

lc —é" =|h™eé < Ké and the integrability assumption in (3.34),

we have found an integrable upper bound for the relevant quantities
in (3.47); the claim follows by dominated convergence. O
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STEP 4. In the final step, we drop all additional assumptions and  Proof of the
only suppose that ¢ € C satisfies general case

B [fo fe (6, Va(@)edt + W (erier| < oo, (3:34)

as in the statement of Theorem 3.5.

Proof of Theorem 3.5. For ¢ € €, we define the predictable [—1,00)-
valued process h by h £ (¢ —¢)/é = c/é—1. For each n € IN, we
put h™m £hAnand ¢™ £ (1+h")é. Then c™ € €, and we have

(c"—¢&)/e=h"<n.

Then ¢ and ¢™ satisfy assumption (B1) and (3.34), and hence the third
step, Lemma 3.39, yields

Va(e™) < Vil@) + By [J{mi (@) (e} — E)ds + mb (@) e} —¢r)] . (3.48)

Clearly, h™ 1 h, and hence ¢c™ 1 ¢ in €, so Lemma 3.27 shows that
Vi(c™) — Vi(c), t € [0,T]. Since m! £ mt(¢) > 0, we have

—les <mb(el — &) <mb(eM! —¢y) for dt-a.e s € [t, T],
—ber <mb (et —ér) < mb (et —ér) for alln € N.

Recalling f, < —0 L;g, for the lower bound, we obtain

E[f{ iteslds + hber]) < e T TB[[]f (e, Va(@)esds + W(ers]

which is integrable by (3.34); thus the assertion follows from mono-
tone convergence upon letting n — oo in (3.48). O

With the proof of Theorem 3.5, we have provided the proofs of all
results formulated in Section 3.2. Our investigation of the Epstein-Zin
parameterization of SDU with y,{ > 1 is completed.






CONSUMPTION-PORTFOLIO OPTIMIZATION WITH
STOCHASTIC DIFFERENTIAL UTILITY

In this chapter, we study the incomplete-market consumption-portfo-
lio problem of an investor with continuous-time Epstein-Zin prefer-
ences. The exposition is largely based on Kraft, Seiferling, and Sei-
fried (2015).

First and foremost, we provide an explicit construction of bounded,
positive C'-2-solutions for a class of semilinear partial differential
equations (PDEs). This construction is based on fixed point argu-
ments for the associated system of forward-backward stochastic dif-
ferential equations. We study the Feynman-Kac representation map-
ping @ that is associated with the semilinear PDE and obtain a fixed
point in the space of continuous functions as a limit of iterations of ®.
We are able to improve uniform convergence to convergence in C%7,
using the probabilistic representation of the solution. This not only
yields a theoretical convergence result, but also leads directly to a
numerical method with superexponential speed of convergence that
allows us to determine optimal strategies efficiently via iteratively
solving linear PDEs. Moreover, we establish a verification theorem
which characterizes the value function of the consumption-portfolio
problem in terms of a bounded, positive C'? solution of such a semi-
linear partial differential equation, which appears as a reduced ver-
sion of the Hamilton-Jacobi-Bellman equation. The proof of this result
is based on a combination of dynamic programming arguments and
utility gradient inequalities for recursive utility.

The above-mentioned results provide a new method to solve incom-
plete-market consumption-portfolio problems and asset pricing mod-
els with unspanned risk and recursive preferences: In both settings
the agent’s value function is characterized by a semilinear partial dif-
ferential equation. In the literature, solutions of this equation have
only been obtained in special cases, and general existence and unique-
ness results have not been available; thus, researchers have resorted
to analytical approximations of unclear precision. Here, we establish
both theoretical existence and uniqueness results and an efficient nu-
merical method for that equation. Our results are neither restricted
to affine asset dynamics nor do we have to impose any constraints on
the agent’s risk aversion or elasticity of intertemporal substitution.

The chapter is structured as follows: In Section 4.1 we formulate the
consumption-portfolio problem and the associated dynamic program-
ming equation, and we derive candidate optimal strategies. Moreover,
we provide links to the literature. Section 4.2 is concerned with exis-
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tence and uniqueness of classical solutions for a class of semilinear
PDEs and contains the proof of our first main result — Theorem 4.10.
Theorem 4.10 guarantees in particular that the dynamic program-
ming equation has a unique solution. A verification result, which
demonstrates that the associated candidate optimal strategies do in-
deed provide the solution of the consumption-portfolio problem, is
then provided in Section 4.3. After that, Section 4.4 briefly relates our
findings to the asset pricing literature. Building on the Feynman-Kac
iteration method from Section 4.2, Section 4.5 sets the basis for our
numerical method which is applied to several examples of consump-
tion-portfolio and asset pricing problems in Section 4.6.

4.1 OPTIMAL CONSUMPTION-PORTFOLIO SELECTION
WITH EPSTEIN-ZIN PREFERENCES

To formulate the consumption-portfolio problem, we first set up the
mathematical framework, recall the definition of continuous-time
Epstein-Zin preferences, and specify the financial market model.

4.1.1  Mathematical model and Epstein-Zin preferences

We fix a probability space (Q,F, P) with a complete right-continuous
filtration (F¢)¢(o,1) that is generated by a Wiener process (W, W). We
denote the consumption space by € £ (0, c0). In the following, we are in-
terested in an agent’s preferences on the set of dynamic consumption
plans.

DEFINITION 4.1. A progressively measurable process ¢ with values in
¢ is a consumption plan, if

ce@é{ceD+ : E{Igc‘t’dt—i—cﬂ < o0 forallpelR}.

Here, we denote the space of square-integrable, progressively mea-
surable processes by

DE {X = (Xt)tefo,1) progressive : E [ngfdt—kXﬂ < oo} ,

and we write DT £{X € D : X; > 0 for dt-a.e. t € [0, T]} for its strictly
positive cone. o

The agent’s preferences on € are described by a utility index v: ¢ — R,
that is,

¢ € Cis weakly preferred to ¢ € ¢ if and only if v(c) > v(c),

see Duffie and Epstein (1992b) and Epstein and Zin (1989). To con-
struct the Epstein-Zin utility index, let

§>0, v>0, >0 withy,p#1
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be given, and put ¢ £ % If y <1, wesetif£(0,00), and if y > 1, we
set 4 £ (—o0,0). Then the continuous-time Epstein-Zin aggregator is
given by f: € x i = R,

1—1
f(c,v) & 69v[<cl> v 1}, where 0 = 1=y eR,0+#0.
(=)™ -9
Here, y represents the agent’s relative risk aversion, 1 is his elasticity
of intertemporal substitution (EIS) and & is his rate of time preference.
One can show that for every consumption plan ¢ € C, there exists a
unique semimartingale V¢ satisfying

Ve = E, [jff(cs,vg)ds n u(cT)} for all t € [0,T], (4.1)

where U: ¢ - R, U(x) £ e!Y ﬁx]_y is a CRRA utility function for
bequest and ¢ € (0,00) is a weight factor; see Schroder and Skiadas
(1999) and Theorem 3.2 in this thesis for the case y > 1, 1 > 1. This
leads to the following definition:

DEFINITION 4.2. The Epstein-Zin utility index v : € — 4 is given by
v(c) £ V§ where V¢ is the unique process satisfying (4.1). o

The classical time-additive utility specification

v(c)=E [ Te=8sy(cq)ds + e_éTU(cT)] ,

where u: ¢ - R, u(x) ﬁx]*y, is subsumed as the special case

of the Epstein-Zin parametrization where y = ¢; hence our analysis
applies in particular to consumption-portfolio optimization with ad-
ditive CRRA preferences and arbitrary risk aversion parameter y # 1.
Remark. The specifications y = 1 or ¢ = 1 correspond to unit relative
risk aversion or unit EIS, respectively; y = ¢ = 1 represents time-addi-
tive logarithmic utility. The case of unit EIS, ¢ = 1, is well-understood
and has been studied extensively in the literature; see, e.g., Schroder
and Skiadas (2003) and Chacko and Viceira (2005). o

4.1.2  Financial market model

Two securities are traded. The first is a locally risk-free asset (e.g., a
money market account) M with dynamics

th = T(Yt)Mtdt,

while the second asset (e.g., a stock or stock index) S is risky and
satisfies
dS¢ =S¢ [(r(Ye) + A(Ye))dt + oY )dW4.

The interest rate r: IR — R and the stock’s excess return and volatil-
ity A,0 : R — R are assumed to be measurable functions of a state
process Y with dynamics

dY, = a(Y)dt + B(Ye) (pclwt V1 — pzd\/_\/t> . Yo=uv.
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Here o, : R — R are measurable functions and p € [—1, 1] denotes
the correlation between stock returns and the state process. Through-
out this chapter, we assume:

(A1) The coefficients 1, A, 0, « are bounded and Lipschitz continuous;
the coefficient  is bounded and has a bounded Lipschitz con-
tinuous derivative.

(A2) Ellipticity condition: infycRr o(y) > 0 and inf,cr B(y) > 0.

The investor’s wealth dynamics are given by
dXTC = X [(r(Ye) + A (Ye))dt 4+ o (Yo )dWi] —cedt, Xo =%, (4.2)

where 7, denotes the fraction of wealth invested in the risky asset at
time t, the constant x > 0 is the investor’s initial wealth, and ¢ his
consumption plan.

DEFINITION 4.3. The pair of strategies (m,c) is admissible for initial
wealth x > 0 if it belongs to the set

Ax) £ {(mc) e Dx€: X >0forall t € [0,T] and et =XF}. ©

The investor’s preferences are described by a recursive utility func-
tional of Epstein-Zin type. Hence an admissible pair of strategies
(7,c) € A(x) yields utility

v(c) 2 V¢, where V€ 2 E, [ftTf(cs,Vsc)ds n u(x?%} for t € [0, T).

4.1.3  Consumption-portfolio optimization problem

DEFINITION 4.4. Given initial wealth x > 0, the investor’s consumption-
portfolio problem is to maximize utility over the class of admissible
strategies A(x), i.e., to

(P) find (m*,c*) e A(x) suchthat v(c*) = sup, v(c). o

Tm,c)EA(X)

Remark. The consumption-porfolio problem (P) has been widely stud-
ied in the literature. Schroder and Skiadas (1999) investigate the case
of complete markets, and Schroder and Skiadas (2003, 2005, 2008)
provide necessary and sufficient optimality conditions for general ho-
mothetic and translation-invariant preferences. Moreover, Schroder
and Skiadas (2003) solve the consumption-portfolio problem for an
investor with unit EIS in closed form. Chacko and Viceira (2005) ob-
tain closed-form solutions for an investor with unit EIS in an inverse
Heston stochastic volatility model, and Kraft et al. (2013) derive ex-
plicit solutions for a non-unit EIS investor whose preference parame-
ters satisfy the condition

2
1|):2—y—i—7(1 YY) pz‘ (H)
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Berdjane and Pergamenshchikov (2013) study the above-described
consumption-portfolio problem in the special case where the investor
has additive preferences with relative risk aversion y € (0,1). Figure
1 depicts the parametrizations for which solutions are known in the
literature. o

= Unit EIS
=== Condition (H) for p = v0.5
= Power utility with y € (0,1)

!
0 0.5 1 1.5 2 25 3
RRA vy

Figure 1: Combinations of RRA vy and EIS 1 for which solutions of consump-
tion-portfolio problems with unspanned risk are known.

The HJB equation

We consider the dynamic programming equation associated with the
consumption-portfolio problem (P),

0= sup { Wi + x(T 4+ TA) Wy — cwy + %xznzazwxx

nER, c€(0,00)

subject to the terminal condition w(T,x,y) =¢' Y1

+oowy + %Bzwyy +XTOBPWxy + f(c,w)}, (4-3)
17yx1 Y

By homotheticity of Epstein-Zin utility, one certainly expects solu-
tions to take the form

wt,x,y) = 25x YRt y)*,  (txy) €0, TIx (0,00) xR, (4.4)

where k is a constant and h € C!2([0, T] x R) is strictly positive with
N ; A Y ; ;

h(T, ) =E=eF Choosing k = e and solving the first-order

conditions leads to the following definition:

DEFINITION 4.5. The candidate optimal strategies are given by

ﬁéyi\rz tﬁf}l‘;’ and ¢ £8VhTTx, (4-5)
where q € R, q # 1 is given by
gaq— B
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and where h is a strictly positive solution of the semilinear partial
differential equation (PDE)

0 =h—Fh+&hy + JB2hyy + 25h9,  R(T,) =8, (4.6)
with coefficients

Fe 1 [T(1fy)+%1%§—66} and &éoﬁr]%y%,p. (4.7)

In the following, we refer to (4.6) as the reduced HJB equation. o

Note: The function h in the separation (4.4) is closely related to the candidate for the
agent’s optimal consumption-wealth ratio as used in, e.g., Campbell et al. (2004), Camp-
bell and Viceira (2002), and Chacko and Viceira (2005). More precisely, by (4.5) we have
¢/x = 5Yh—¥k/8 50 we can represent the candidate for the value function equivalently
as w(t,x,y) =x"7Y89(¢/x) 70/ /(1 —).

LEMMA 4.6. If h € C'2([0,T] x R) is a strictly positive solution of (4.6),
then the function given by w(t,x,y) = ﬁx“yh(t,y)k solves the HJB
equation (4.3).

Proof. This follows by a direct calculation, see Section C.1, p. 181. [
LEMMA 4.7. The functions ¥ and & are bounded and Lipschitz continuous.
Proof. A very simple calculation, see Section C.1, p. 181. O
Remark. Note that for all p € [-1, 1] we have

_1_1-¢ A by
q= < where C= S ot io? > 0.

Thus q < 1 if and only if % >0, and q > 1 if and only if rffy’ <0
see Table 1 and Figure 2. o

q<1 |q=1] gq>1

oo |p=1]12<o

Table 1: Range of the exponent q in (4.6) depending on the risk aversion y
and the reciprocal of the elasticity of intertemporal substitution ¢.

To solve the consumption-portfolio problem (P), we proceed as fol-
lows: First, we prove the following general existence and uniqueness
result for the reduced HJB equation (4.6).

THEOREM 4.8. For all v,\,6 > 0 with vy, # 1, there exists a unique
solution h € C'2([0,T] x R) to the reduced HJB equation (4.6) such that

h<h<h forpositive constants 0 < h <h and |hyle < oco.

Proof. Lemma 4.7 shows that Theorem 4.8 is a consequence of Theo-
rem 4.10 below. Theorem 4.10 is the first main result of this chapter,
and Section 4.2 is dedicated to its proof. O
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Cg<1
g >1
4 —— Power utility
5 —— Unit EIS
9 — Condition (H) from KSS
5]
2F p= V0.5
0 ¥| 1 [ —
0 1 2 3 4 5 6

RRA y

Figure 2: Range of the exponent q in (4.6) depending on the RRA y and the
EIS ¥. Condition (H) is calculated for p = v/0.5.

Once existence and uniqueness for the reduced HJB equation (4.6)
are established, we show that the associated candidate strategies are
indeed optimal. This second main result is contained in Section 4.3.

THEOREM 4.9. Let h be a solution of the reduced HJB equation (4.6) as given
by Theorem 4.8. Then the corresponding candidate strategies (7, ¢),

A A(Yy) k B(Ye)p hy(t,Ye)
= Jovo? Ty oive) Rty tE0T) 8)
¢e =8%h(t, Y )9 TXTS, telo,T),

are optimal for the consumption-portfolio problem (P).

By a slight abuse of notation, we write 7y = 7(t,Y:) and & £
&(t, X{",Yy) for t € [0,T). This will not give rise to confusion in the
following.

4.1.4 Links to the literature

The current chapter on optimal consumption-portfolio selection with
stochastic differential utility is related to several strands of literature.

First, we contribute to the literature on dynamic incomplete-market
portfolio theory. Liu (2007) considers portfolio problems with un-
spanned risk and time-additive utility. His framework already nests
a number of popular models, including those of Kim and Omberg
(1996), Campbell and Viceira (1999), Barberis (2000), and Wachter
(2002), as special cases. Given the boundedness conditions (A1) and
(A2), our approach can be used to generalize several of his solu-
tions to settings where asset price dynamics are non-affine or non-
quadratic and the agent has recursive utility. Recursive utility has
been developed by Kreps and Porteus (1978, 1979), Epstein and Zin
(1989) and Duffie and Epstein (1992b). Chacko and Viceira (2005)
study a consumption-portfolio problem with affine stochastic volatil-
ity and recursive preferences. They find an explicit solution for unit
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EIS and approximate the solution for non-unit EIS using the Campbell-
Shiller technique. Our approach makes it possible to extend their anal-
ysis to problems with non-affine specifications of stochastic volatility,
without having to rely on approximations.

Finally, our results are also related to Schroder and Skiadas (1999),
who focus on complete markets, and to Schroder and Skiadas (2003),
who provide necessary and sufficient optimality conditions in a gen-
eral homothetic setting by duality methods and obtain explicit solu-
tions for unit EIS.

Second, we add to the asset pricing literature by establishing a
novel solution method for the agent’s value function and the con-
sumption-wealth ratio. In particular, this includes research on long-
run risk and disasters (see, e.g., Bansal and Yaron (2004), Barro (2006),
Benzoni et al. (2011), Gabaix (2012), Rietz (1988), Wachter (2013)).

Our mathematical approach has various ties to the literature: The
verification argument used to solve the consumption-portfolio prob-
lem builds on the so-called utility gradient approach that has been
developed in a series of papers by Duffie, Schroder, and Skiadas, in-
cluding Duffie and Skiadas (1994) and Schroder and Skiadas (1999,
2003, 2008). We generalize the verification results in Duffie and Ep-
stein (1992b), who derive a verification result for aggregators satis-
tying a Lipschitz condition, and of Kraft et al. (2013), who consider
Epstein-Zin preferences under parameter restrictions. Our results are
also related to the findings of Duffie and Lions (1992), who study the
existence of stochastic differential utility using PDE methods, and
to Marinacci and Montrucchio (2010), who establish existence and
uniqueness of recursive utility in discrete time. The analysis of Berd-
jane and Pergamenshchikov (2013) is based on a fixed point argument
related to the one we use, but is focused on the special case where the
agent has time-additive utility with risk aversion below unity and the
state process has constant volatility. In a recent paper that appeared
after our article, Kraft, Seiferling, and Seifried (2015), had been fin-
ished, Xing (2015) addresses a closely related class of portfolio op-
timization problems using BSDE techniques and thus complements
our analysis: He requires weaker boundedness (rsp., integrability)
conditions, but does not provide information on how to determine
optimal strategies. In addition, his analysis is restricted to the case of
RRA and EIS both being greater than one.

Finally, our analysis also contributes to the literature on quasilin-
ear partial differential equations (PDEs) and backward and forward-
backward stochastic differential equations (BSDEs and FBSDEs, re-
spectively). We demonstrate that the FBSDE associated with the semi-
linear PDE which is relevant for our applications in consumption-
portfolio choice and asset pricing, admits a unique bounded solution.
Importantly, the driver of this FBSDE is not Lipschitz, so standard
results do not apply. We thus contribute to the growing literature on
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non-Lipschitz BSDEs and FBSDEs, including, among others, Koby-
lanski (2000), Briand and Carmona (2000), Briand and Hu (2008), and
Delbaen et al. (2011). In addition, by deriving an associated Feynman-
Kac representation, this paper adds to the literature that connects
FBSDEs to semilinear Cauchy problems; see, e.g., Pardoux and Peng
(1992), Delarue (2002) and Ma et al. (2012) and the references therein.

4.2 FEYNMAN-KAC FIXED POINT APPROACH

The goal of this section is to establish existence and uniqueness for
the reduced HJB equation (4.6). Abstracting away from the financial
market of Subsection 4.1.2, we present a constructive method to ob-
tain a classical solution of the semilinear PDE

0 =hy+ahyy +bhy +ch+ 909, h(T,)=§ (4.9)
where the coefficients
(C1) a,b,c: R — R are bounded and Lipschitz continuous,

(C2) the function a has a bounded Lipschitz continuous derivative
and satisfies inf,cR a(y) > 0,

(C3) d and ¢ are positive constants.

By assumptions (A1) and (A2) and Lemma 4.7, the reduced HJB equa-
tion (4.6) is the special instance of (4.9) where

a=p%?/2, b=& and c=-F
are given by (4.7), in terms of the coefficients of the financial market
of Subsection 4.1.2. In particular, Theorem 4.8 is a special case of
THEOREM 4.10. Under the above assumptions, the semilinear Cauchy prob-
lem (4.9) has a unique solution in the class

{hE C]’Z([O,T] xIR): 3¢y, >0 s.t. ¢ <h<cyand ||hyHOO < OO}

To prove Theorem 4.10, we study the associated system of forward-
backward stochastic differential equations (FBSDEs)

dntoo = b(nto¥)dt +1/2a(nO¥)dW,,  (4.10)

XY = — [ 745 (X{Y0) + elniove )Xo | de+ Ziovedws,  (411)

where ty € [0,T], yo € R, and ntg’yo = yo and XtTO’yO = & We will
demonstrate that there exists a unique family (X*Y )}L;ee[]l;,ﬂ of bounded
positive solutions of this FBSDE system, and that this family yields a
solution of the reduced HJB equation via the generalized Feynman-

Kac formula

s , T s
h(ty) = XY =E, [ [{efiemdr d(xtu)dds + gelt C(ﬂi”df} .
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Remark. In this context, a natural way to think of the function h is
as the fixed point of the Feynman-Kac operator ® : Cp([0,T] x R) —
Co (10, TI X R),

(@h)(t,y) = E¢ [I elten<?)dr d p(s, ty)ads 4 gelt ¢ dT]_

In Section 4.5, we elaborate on this perspective in detail. o

The connection between semilinear PDEs and (F)BSDEs is well-
established in the mathematical literature. While classical results, in-
cluding Pardoux and Peng (1992) and Ma et al. (1994, 2012), impose
a Lipschitz condition on the generator, recent research has focused
on relaxing that assumption. Starting from Kobylanski (2000), exis-
tence and uniqueness results for BSDEs with quadratic and convex
drivers have been obtained: Briand and Carmona (2000), Delarue
(2002), Briand and Hu (2008) and Delbaen et al. (2011) replace the Lip-
schitz assumption by a so-called monotonicity condition, while retain-
ing a polynomial growth condition. In general, however, the driver in
the FBSDE system (4.10), (4.11) is neither Lipschitz, nor does it satisfy
monotonicity or polynomial growth conditions; hence, results from
this literature cannot be applied to that equation. By establishing suit-
able a priori estimates for (4.10), (4.11) and (4.9), we prove the relevant
existence, uniqueness and representation results in the following.

4.2.1 Solving the FBSDE system: A fixed point approach

Until further notice, we fix to € [0, T] and yo € R. Assumptions (C1)
and (C2) guarantee that the forward equation (4.10) has a unique
strong solution n £ ntoYo; see, e.g., Karatzas and Shreve (1991).

For a progressively measurable process (X)¢c(¢, 1), we write

[Xlloo = esssup gz p IXtl

and denote by D, the space of all progressively measurable processes
(Xt)teqty, 1 With [[X[|e < 0. Clearly, (Do, || - [|o) forms a Banach space
upon identifying processes that coincide dt ® P-a.e. In the following,
we construct a fixed point of the operator

Y:A9C Dy = Do, XWX
defined on its domain, the closed subset
Ad 2 {x €D® : (1—q)X > (1— q)eesignta—TTlel dt@P-a.e.},
via the formula
(WX) £ By [f eltc) dT -4 (O\/X )qu—i-seft (e dT} )

LEMMA 4.11. The operator ¥ : A9 — A9 is well-defined.
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Proof. For X € A9 and q < 0, we have X > ge Tlelle and hence
(0VvX)9 < gdeaTllele  whereas (0VX)9 < |X||9, if g > 0.
Thus (0V X)9 € D> and
M; £ E; fT Jig el “T)dT 4 40V Xs)9ds + 8 Lo ) (4.12)
defines a bounded martingale. Therefore the process
(WX), = e Jio ST\ — [E Tl AT d o\ x,)9ds]
has a continuous modification. In particular, ¥X € D>. Finally,
(1= Q)(WX) = B¢ |[{ el (0 X)9dts + (1 - q)aeﬂcmﬂdT]
> (1—q)E, [ et cne dT} > (1— q)eesien(a—"Tlele

and hence ¥X € A4, O

Fixed points of the operator ¥ yield solutions of the forward-back-
ward system.

LEMMA 4.12. Let X € A9. Then WX = X if and only if X solves the BSDE
dX, = — [%(ovxt)q +c(nt)xt} dt+dNy, Xr=¢  (413)

with some Lz—martingale N. In particular, if YX = X is positive, then X
solves the backward equation (4.11).

Proof. Let X € A9 with ¥X =X, and let M be the bounded martingale

from (4.12). Then Y; £ elio €Ty satisfies

Yo =M, — [} el ST a0y x)9ds.
Integrating by parts, it follows that X solves (4.13) with
dNt =e ‘J‘tlo C(nT)deMt,

where N is an L?-martingale by Burkholder’s inequality. If X is posi-
tive, then X = 0V X and thus X also solves (4.11).

Conversely, if X € A9 solves (4.13), then Y £ elip clnod

X satisfies
d, = —efo €M A0 X )9dt + el SN,

t
where e/t ©M9TdN, is an [2-martingale; thus, integrating from t to

t
T and taking conditional expectations, we get Y; = el cmadT yyy,
and hence X =V¥X. O

Our construction of a fixed point of ¥ is based on the following
ramification of the classical Banach fixed point argument.
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PROPOSITION 4.13. Let S : A — A be an operator on a closed, non-empty
subset A of Do, and assume that there are constants ¢ > 0, p > 0 such that,
forall X,Y € A, we have a Lipschitz condition of the form

(SX)e = (SY)l < cf{ Be [e VP Xs =Yl ds  forall t € [to, TI.

Then S has a unique fixed point X € A. Moreover, the iterative sequence
) = SX(no1) (n=1,2,...) with an arbitrarily chosen X(0) € A satisfies
X(n) = Xlloo < €™ (X0l + [Xlloo) (457)"  forall n > cT.

Proof. The proof is provided in Appendix C.1. O

We come to the main result of Section 4.2.

THEOREM 4.14. Forall to € [0, T] and yo € R, there exists
o a unique progressive process Xto¥e e D, which solves (4.11).
Moreover, there are

o positive constants 0 < h < h such that

h< X% <h forall (to,yo) € 0, TI xR, and  (4.14)

o positive constants K,k > 0 such that
HXE’SJO —Xtovo | <K (XY™ foralln> ¥ (4.15)
and all (to,yo) € [0, T] x R, where

X 2e, and XY 2WXEYY, nelN.

(0) 1)’

The constants K,k > 0 are explicitly given by K £ eTl¢l~(g + h) and

k£ eT}T‘]_iq](éeTHCHw)q_] for q > 1and

(4.16)
A 1—
k& eT}%](seTHCH‘”) T forq<1,
and the constants h > h > 0 are given explicitly by
h2texp(—X —Tlic)lw) and h = eexp(T|cllo) ifq>1
h = 2exp(=Tlle]|eo) and  h£eexp(s+Tlcle) #q<.

With Lemma 4.11, we have already seen that ¥ : A9 — A9 is defined
on a closed non-empty subset of D*°. To apply Proposition 4.13 and
obtain a unique fixed point and the convergence statement, we thus
need to verify the uniform Lipschitz condition.

LEMMA 4.15. With k given by (4.16), for all X,Y € A9, we have

[(WX)e — (WY)| < X[ E [ S t”‘C”°°IXS—YSI] ds, telto,Tl. (4.17)
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Proof. For X,Y € A9, we immediately get

(WX)e — (WY)e| < Eq [LT eltllel=dr d|(0\/ X)9 — (ovvs)q|ds]. (4.18)
By definition of A9, the processes 0V X and 0V Y take values in I; =
[0,eTllclle] if g > 1 and values in I, £ [ge~Tlcll> o0) if q < 1. In the
first case, the function ¢@(x) = (0V x)9 is Lipschitz continuous on I
with constant L; £ g(ge'll¢l~)a=1 In the second case, it is Lipschitz
continuous on I, with constant L, £ [q|(¢eTl¢ll=)'=4. Now, by (4.16),

K/(eT) = |%}(§6T||C”oo)q*1 = 74l if ¢ >1,and
k/(eT) = 4| (eeTllell=) =9 = 2dp, if g <1.

Thus we have

[(0VX)T—(0V Y < X1 dx Y|, selto, T, (4.19)

and (4.18) implies (4.17). O

Now, Proposition 4.13 applies to ¥ and yields nearly all of Theo-
rem 4.14. Only the uniform lower bound for q > 1 and the uniform
upper bound for q < 1 require an additional argument.

LEMMA 4.16. Let X € A9 with WX = X. Then
X>h ifq>1, and X<h ifqg<l.
Proof. It X € A9 with ¥X = X, then, by Lemma 4.12, X solves the BSDE
dXe = = [145(0V X)) +emX | dt+dNy,  Xr =%,

where N is an L?-martingale. Thus for every stopping time T and all
t € [to, T], we have

T Xe = B [Treg [T (725500 V Xo) T+ eMe)X ) ds + 1 X
Recalling inequality (4.19) from the proof of Lemma 4.15, we see that

T OVX)T < Flix=0Xs, s € [to, TI. (4.20)

Consequently, if ¢ > 1, we have

A

T4 0V X) 9 +e(Ms)Xs > asXs, where as & —F11x o) +c(ns)
is a bounded progressively measurable process, and therefore we get
TeayXe 2 B 1oy [T asXeds + 1oy X<],  t € to, T),

for all stopping times t. The stochastic Gronwall inequality from
Proposition 3.22 (p. 92) yields

A Kk

X¢ > Eq [eﬂ ““duﬂ > ge e Telle = h for all t € [to, T].
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On the other hand, if q < 1, then (4.20) yields

L

7450V Xs)9 +cMs)Xs < asXs,  where as £ J +c(ns),
and hence
1{T>t}Xt < Et [1 {T>t}J‘:O(5XSdS + 1{T>t}x’t] , te [to, T],

for all stopping times and a bounded progressive process «. Once
again the stochastic Gronwall inequality from Proposition 3.22 ap-
plies. This time, it shows that

X¢ < Eq |:eftT (Xudug} < ge%“rT”C“oo :H’ for all t € [to, T. 0

Now, we collect the above results and give the

Proof of Theorem 4.14. Tt is clear that h < ¢ = X(®) < h and thus X(©) ¢
A9; hence, Lemma 4.11 implies that XM e A9 for each member of
the sequence X" = YX("=1)_ In particular,

XM <h ifgq>1 and XM > h ifgq<1, nelN. (4.21)

By Lemma 4.15, Proposition 4.13 applies to the operator ¥ : A9 — A9,
It follows that

X (n) = Xlloo < eMMel=([X o)l + [ X[lo0) (¥)" foralln > ¥, (4.22)

where WX = X € A9 is the unique fixed point of V. Together with
Lemma 4.12, this proves the first claim. Moreover, inequality (4.21)
and Lemma 4.16 show that h < X < h and thus establish (4.14). Fi-
nally, since X (o) = & and [ X||s < h, estimate (4.22) yields (4.15). O

4.2.2  Differentiability of the fixed point

In this subsection, we demonstrate that the solutions X'Yo of (4.11)
provided by Theorem 4.14 yield a solution h to the semilinear Cauchy
problem (4.9)

0 =h¢ + ahyy +bhy +ch+ 19409, R(T,) =&

For that purpose, we cut off the nonlinearity using the a priori esti-
mates provided by Theorem 4.14; this leads to a PDE that is known
to have a classical solution g € CL’Z([O, T] x R). We then conclude by
proving that g = h. Here and in the following, C{/*([0, T] x R) denotes
the Banach space of all functions u: [0, T] x R, (t,y) — u(t,y) which
are once continuously differentiable with respect to t and twice con-
tinuously differentiable with respect to y, and which have finite norm

hllerz = ulloo + Ielloo + 1ty lloo + [ty lloo-
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THEOREM 4.17. Let X'o¥o denote the solutions to the FBSDEs (4.11) given
by Theorem 4.14 and define

h(to,yo) = th"” for (to,yo) € [0, TI x R.

Then h € CL’Z([O, T] x R), and h satisfies the semilinear PDE (4.9). More-
over, h is the unique solution of (4.9) in the class

{hE C1’2([O,T] xR):3¢c1,c2>0 s.t. ¢ <h<cyand ||hyHoo < OO}

In addition, h admits the probabilistic representation
h _E T ty h ty Lh tyyq d e
(ty) =E¢ |[{ (cg¥)h(s,ngY) + +55h(s,ng¥)9 ) ds + €| . (4.23)
Proof. We take h and h as in Theorem 4.14 and choose a smooth cut-
off function ¢ € C] (R) with
%h forvg%h, @(Vv)=h+1 forv>h+1,and
@(v) =vforv e [hh].

We set f(v) £ ﬁ(p(v)q and consider the semilinear Cauchy problem

E. (4-24)

0=g¢+agyy +bgy +cg+ %f(g), g(T,")

The function f is clearly continuously differentiable and bounded
with a bounded derivative; hence, by a classical result on semilin-
ear PDEs there exists a (not necessarily unique) classical solution
g € CL2([0,T] x R) of equation (4.24); see, e.g., Corollary C.4 (p. 180)
in this thesis, or Theorem 8.1 in Ladyzenskaja et al. (1968) (p. 495).

To demonstrate that g = h, we fix (to,yo) € [0,T] x R and set
X{o¥0 2 X £ g(t,my), t € [to, T], where 1 £ nto¥o is given by (4.10). By
[t6’s formula and (4.24) we have

dX¢ = —[f(X¢) + cme)Xe]dt + ZedWy, Xy =, (4-25)

where Z; £ gy(t,n¢)\/2a(n) is bounded. On the other hand, Theorem
4.14 yields a unique solution X £ Xto¥o of (4.11), i.e.,

dXe = —[195 X +emo)Xe]dt + ZedWy, X7 =&
Since h < X < h, we have f(X{) = ﬁxﬁ and therefore X also satisfies
dXt = — [f(Xt) + c(nt)Xt] dt + thWt, XT =E. (426)

Thus we conclude that X solves (4.25), too. Since (4.25) is a BSDE with
a Lipschitz driver, the standard uniqueness result for BSDEs implies
that X = X; see, e.g., Theorem 2.74 (p. 68). In particular, we have
h(to, yo) = X2¥° = X{I¥° = g(to, yo)-

To show uniqueness, let u € C'*? be another solution of (4.9) in the
class under consideration, i.e., |[uy|/« < oo and there exist positive
constants u, i such that 0 < u < u < .
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Replacing h and h by hAu and h V1 in the first part of the proof,
It6’s formula and (4.24) show that Y £ u(t,n) satisfies the BSDE
dYe = —[f(Ys) + cne)Ye]dt + ZedWe, Y7 =§,

where Z; & uy (t,M¢)y/2a(m¢) is bounded. Recall from (4.26) that X
also solves that BSDE; hence, X = X = Y by uniqueness for BSDEs,
and thus g =h =u. O

In particular, we have completed the

Proof of Theorem 4.10. Combine Theorem 4.14 and Theorem 4.17. [

4.3 VERIFICATION

Let h be the unique solution of the reduced HJB equation (4.6), as in
Theorem 4.8, and consider the associated candidate optimal strategies

LAYk B(YOp hy (YY)
= Jorvo? Ty ovy minv s t€0T) (48)
¢ =8%h(t, Y )9 XS, te[0,T).

In this section, we verify that these candidate optimal strategies are
indeed optimal for the consumption-portfolio problem (P), i.e, we
prove Theorem 4.9 relying on the utility gradient approach.

4.3.1 Abstract utility gradient approach

Let (71, ¢) € A(x) be a given fixed consumption-portfolio strategy (be-
low we take the candidate solution in (4.8), but the abstract argument
here does not rely on that specific choice). We put

i@ 2 {fc(ét,VE) ift<T,
u’(cr) ift=T
and define the corresponding utility gradient by
() 2e (jo (s, V. ) A} (4.27)
If ¢ satisfies the integrability condition
Uo ¢)Pds +exp (pf0 (€5, V§)ds)] <oo forallp >0,
then we have the utility gradient inequality
VS < V§+(m(E),c—c) forallceC, (UGI)
where the inner product on D is given by

(X,Y) = E[[3 Xt Yedt + X7Y7].
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For vy > 1 and ¢} > 1, the utility gradient inequality (UGI) is a conse-
quence of Theorem 3.5 (on p. 79 above). For the remaining parame-
terizations, we refer to Lemma 2 in Schroder and Skiadas (1999) and
its ramifications in Section 7 therein.

For every strategy (m, c) € A(x), we now introduce the deflated wealth
processes

— t _ — —
Z7° £ m X + [ymscsds,  where m £ m(c).

With this, we can state the following general verification theorem:

THEOREM 4.18. Suppose that the deflated wealth process 2™ is a local mar-
tingale for every admissible strategy (m,c) € A(x), and that 2% is a true
martingale. Moreover, assume that

E [fgfc(és,vsé)pds +exp (pfgf\,(és,vsé)ds)} <oo forallp>D0.

Then (7, €) is optimal.

Proof. The utility gradient inequality (UGI) evaluated at ¢ implies
V§ < V§+(m,c—¢)=V{+E U()Tﬁls(cs —&)ds + my(XFC — X?’C)} )
where
Io ms(cs — €s)ds + ﬁ1T(X¥’C _ X?ﬁ) _ Z?’C . Zz’[‘_(,(’;.

Here the process Z™¢ is a positive local martingale, hence a super-
martingale, while Z™¢ is a martingale by assumption. Since XJ© =
X{'© = x, we obtain

E(Z27¢ — ZT°] < E[Z5° — Z[°] = fe(Co, V§)(XTC —XT¢) =0. O
4.3.2  Admissibility of the candidate solution

In the proof of Theorem 4.9 below, we apply the abstract verification
result in Theorem 4.18 to the candidate (#,¢) given by (4.8). In the
following, we thus verify that the conditions of Theorem 4.18 are sat-
isfied for that strategy.

We first establish admissibility of (#,¢). Suppose that h is the
unique solution of the reduced HJB equation (4.6), as provided by
Theorem 4.8, and let (7, ¢) be given by (4.8). For simplicity of notation
we write

VaVE,  XEXM, mim(e),

for the utility process, the wealth process and the utility gradient asso-
ciated with (7, ¢). The proofs of the following two results are provided
in Appendix C.1.
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LEMMA 4.19. The candidate optimal wealth process has all moments, i.e.,
E[sup .o XP] <00 forallp e R.

In particular, X, > 0 for all t € [0, T] a.s

As a consequence, we can show that ¢ € € and Ve = w(t, X, Ye),
where the function w(t,x,y) = ﬁx“yh(t,y)k solves the HJB equa-
tion (4.3) by Lemma 4.6:

LEMMA 4.20. Let Vi £ w(t, Xy, Yy), t € [0, T]. Then
V=V and wy(t,Xe,Ye) =Tc(Ce, Vo).
Moreover, we have
E [supte[olﬂ\ét\p + supte[olT]\\A/t\p} <oco forallp € R,

and, in particular, ¢ € C.

COROLLARY 4.21. The candidate (#t,¢) € A(x) is admissible.

Proof. Combine Lemmas 4.19 and 4.20. O

4.3.3 Optimality of the candidate solution

Next we show that the deflated wealth process Z™¢ is a local martin-
gale for every admissible consumption-portfolio strategy (m,c) € A(x).
The proofs can again be found in Appendix C.1.

LEMMA 4.22. For all (m,c) € A(x), the deflated wealth process Z™¢ is a
local martingale with dymzmics

de’c = T?ltXZ[T'C |:(7TtO—(Yt)

)th+k\/1—p [3 Yt

For the candidate optimal process (#,¢), this implies

dwt}

Az = ek, [ (T M) 4 kp(v,)ph )dwt

+k\/1 —p2B(Yy) ) dwt}

To prove Theorem 4.9, it remains to verify that Z*¢ is in fact a true
martingale, and that the utility gradient inequality holds at ¢. This is
guaranteed by the following result:

LEMMA 4.23. For any p > 0 we have

[fo Vs)Pds +exp (pjo ,\A/S)ds)} ,E [supte[olﬂ\ﬁulp} < 0.

Moreover, the process Z™¢ is a martingale.

Combining the preceding results, we can complete the

Proof of Theorem 4.9. By Lemmas 4.22 and 4.23, the conditions of Theo-
rem 4.18 are fulfilled; thus, Theorem 4.18 implies that (7, ¢) is optimal
for the consumption-portfolio problem (P). O
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The purpose of this section is to demonstrate the significance of our
PDE results from Section 4.2 for asset pricing applications. For that
purpose, we introduce a model that nests a continuous-time version
of the disaster model of Barro (2006) as well as (a suitably truncated
version of) the model by Wachter (2013) as special cases.

Endowment process

We assume an endowment economy, populated by a representative
agent. His endowment (aggregate consumption) satisfies

dCi = Ce—[p(Ye)dt + o(Ye)dW + (e“t — 1)dNy],

where dYy = «Yy)dt + B(Ye) (pdWe + /1 —p2dWy), Yo = y. Here
N is a counting process with intensity Ay = A(Yy). We assume
that all coefficients satisfy conditions (A1) and (A2) from Section
4.1.3. The random variables Z; are taken to be independent of W,
W, and N with time-invariant distribution v. We also assume that
EY[e('=Y)%] < 0o, where EY[] denotes the expectation with respect to
v (ie., [e'"™Y)Zv(dz) < o0).

Value function and state-price deflator

The representative agent’s utility functional is given by
V€ = E, UtTf(CS,VSC)ds +u(cT)} forall t € [0,T],

where f is the continuous-time Epstein-Zin aggregator and U(c) £
%& ~Y. Similarly as in Section 4.1.3, the agent’s value function V& =
w(t, Cy,Yy) satisfies a PDE of the form
2 102

Wee + awy + 5B Wyy + coBpwey

+f(c,w) + AEY[Aw], w(T,cy) =e' Ve

0 = wy + pewe + 1o

Here,
EY[Aw](t, c,y) = BV [w(t, ce?t,y)l —w(t,c,y)

is the expected change of the value function upon a jump of the en-
dowment process.

Note: Here, we use a finite time horizon. By choosing a large T and a suitable weight
on bequest, this can be used to approximate the infinite horizon case; see Algorithm 4.2
and Section 4.6.

As in Subsection 4.1.3, the solution takes the form

wit,c,y) = t15¢ hity), (tey) € 0,T]x (0,00) x R.
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This leads to the following semilinear PDE for h:
0=hy +Fh+&hy + 3B hyy + 12509, NI, ) =2=¢""7, (428
where q21-1/0, &= o+ (1 —7v)opp, and
P2 (1—y)u—3v(1 —v)o? =80 + A(EY [ V)2 —1).

Since E¥[e(T=Y)%] is a time-independent constant, the PDE (4.28) is
of the form (4.9); hence, it can be solved with the methods from Sec-
tion 4.2. Given the solution h of (4.28), the state-price deflator m in
this economy (i.e., the representative agent’s utility gradient) can be
expressed in closed form via

m, = 5exp (5?’%@1(3, Y,) ods — 5et) COVR(L YY) (4.29)

see, e.g., Duffie and Epstein (1992a,b), Duffie and Skiadas (1994), and
the utility gradient in (4.27).

Using the state-price deflator (4.29), equilibrium asset prices can be
calculated in a straightforward manner. For instance, the value of the
claim to aggregate consumption, i.e., the present value of all future
consumption, is given by

PC = [ Be[®:Cylds + E¢[ICrl.

me

In particular, see, e.g., Benzoni et al. (2011), we obtain the consump-
tion-wealth ratio as

4.5 PDE ITERATION APPROACH

In this section, we develop an explicit constructive method to ob-
tain the solution of the semilinear PDE (4.9) and, in particular, the
reduced HJB equation. Existence and uniqueness of the solution are

guaranteed by Theorem 4.10 above. More precisely, we will show that

hn 2 @™ "% hin C%', where the operator @ is given by

®:D(®) C CLA([0,TI x R) = CI2([0, TI xR), frs OF
and @f £ g is the unique classical solution of the linear PDE
0 =gt +agyy +bgy +cg+ ﬁ(O\/f)q with ¢(T,:) =¢&.

Thus h can be determined by iteratively solving linear PDEs.
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4.5.1 PDE iteration

Our first step is to show that the iteration of PDEs as above is feasible.
Thus we verify that the operator @ is well-defined on its domain
D(®), where

D(®) 2 {fe CA(0,TI xR) :

h} forq<1, and
D(®) 2 {fe CA(0,TIxR) : f<h

f=
f<h} forq>1,

and h, h are the constants specified in Theorem 4.14.

LEMMA 4.24. If u € D(®), then there exists a unique g € CL’Z([O, T] x R)
that satisfies

A

0=gt+agyy +bgy+cg+ 154 (0\/u) g(T,)=%¢. (4.30)

Proof. If ¢ < 1 and u > h > 0, then f £ T (0\/u)q € C1 2(0,T] x R).
If ¢ > 1 with u < h < oo, then f is L1psch1tz continuous since

—q—1
f(t,y) — f(t),y") < I+ Iqh T ult,y) —ult’,y')l.
q

In either case, by classical results, there exists a unique g € C,L’Z ([0, T] x
R) satisfying (4.30); see, e.g., Corollary C.2 (p. 188) in this thesis, or
Theorem 5.1 in LadyZenskaja et al. (1968), p. 320. O

To establish the link between the iterated solutions h, of the
Cauchy problem and the stochastic processes X}‘f{?o of Section 4.2,
we first record a simple uniqueness result:

LEMMA 4.25. For every n € IN, the process X™) £ X{9° defined in Theo-
rem 4.14 is the unique solution of the linear BSDE

XM = =[5 VX" ctnpevex(M ] de+ zMdw, (4.31)

N

with terminal condition X(Tn) =&.

Proof. With ¢ = (0 Vv X(m=1))a, by definition of X(™), we have

toyo
T

.
dtpds + gelecl

s t By
—E, [J‘tTeLc(n °J°>d1.

Since ¢ and c(n*¥?) are bounded processes, Propostion 2.77 shows
that X(™) is the unique solution of the linear backward equation
dX{™ = —[@¢ + cmiovo)x™Mde + (M dw,. 0

The connection between h,, and XJ(‘%’;-"’ is now given as follows:

THEOREM 4.26. For each n € IN, we have h,, = ®"¢ € D(®) and

o (t,m7%0) = (X(07°),  forall t € [to, T], (to,yo) € [0, TI x R.
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Proof. The assertion is clearly true for n = 0, since hy = ®% = ¢ and

ng’f’" = &. Assume by induction that h,_; = O™ ¢ € D(®) with

hno1(t,N;oY) = (XE’L’E"”),c for all t € [to, T] (4.32)
and all (to,yo) € [0, Tl x R. By Lemma 4.24, the function g £ h, =
Oh,_q € CL’Z([O, T] x IR) is well-defined and satisfies

0= gt +agyy +bgy +cg+ 14 (0Vha 1), g(T,-) =& (433)
A

Let (to,yo) € [0,T] x R, let n £ ntovo be given by (4.10), and set Xy =
g(t,m¢). By (4.32), (4.33) and Itd6’s formula we have

dXe = — 45 (0v (Xi5)),) " +eoxe] de+zeaws,

where Zy £ gy(t,n¢)y/2a(m) is bounded. Consequently, X is a solu-
tion of (4.31), so, by Lemma 4.25, we must have X = XE‘T)L’I)JO. Thus

hn (t,M0Y0) = (Xffl’?o)t for all t € [to, T, (to,yo) € [0, T x R.

Theorem 4.14 implies h < Xffl’?o for g < 1 and Xffl’?o < hforq>1.
Hence h,, € D(®), and the induction is complete. O

The convergence h, — h is now a corollary of the analysis in Sec-
tion 4.2.
COROLLARY 4.27. Let h € Cl/*([0,T] x R) be the unique solution of the
semilinear Cauchy problem equation (4.9) as given by Theorem 4.10. More-
over, let hy, & O™¢ € CL’Z([O, T] x R) be defined recursively as the unique
bounded solution of the Cauchy problem

0=(hn)t+ a(hn)yy +b(hn)y +chn + ﬁ(o\/hn71 )9, hn(T,:) =&
Then, with the constants K,k > 0 given in (4.16), we have
[hn —hlle <K ()Y foralln > k.

Proof. By Theorem 4.26, we have hy (t,n;>Y°) = (Xfﬁl?o)  forallt e

[to, T] and all (to,yo) € [0, T] x R. Thus Theorem 4.14 yields

[hn(to,yo) —h(to,yo)l = |(Xff{?°)t —X©Ye|

0
to, , n
< IXE =X <K (%)

for all n > ¥ uniformly in (to,yo) € [0, T] x R. O
4.5.2  Convergence rate of the PDE iteration in C%!
In this section, we use the probabilistic representation (4.23) of h to

demonstrate that both h, and (hy)y converge uniformly to h and hy.
We also identify the relevant convergence rate.



4.5 PDE ITERATION APPROACH

For this, we require slightly stronger regularity conditions on the
coefficients in

0= h¢+ ahyy +bhy +ch+ 19409, R(T,) =& (4-9)

In addition, we shall assume that b has a bounded Lipschitz contin-
uous derivative. For easy reference, we explicitly list all assumptions
on the coefficients:

(C1) a,b,c: R — R are bounded and Lipschitz continuous.

(C2") a and b have bounded Lipschitz continuous derivatives and
satisfy inf,cR a(y) > 0.

(C3) d and ¢ are positive constants.

For the reduced HJB equation (4.6), these conditions are met if we
replace (A1) by the following slightly stronger regularity condition:

(A1) The coefficients r, A, o, «, f are bounded with bounded and Lip-
schitz continuous derivatives.

Similarly as in Lemma 4.7, this assumption guarantees that
b=& and a=p%/2

have a bounded Lipschitz continuous derivative.
Our assumptions on a and b imply the following estimate for the
derivative of the semigroup (Ps)c(o 1) generated by n%:

PROPOSITION 4.28. Assume that (C1) and (C2’) are satisfied, and let
(Ps)sejo,1) be the semigroup associated with the process n° which is given
by (4.10). Then, there exists a constant M > 0 such that

ID(Pef)|loo < Mt~ 2||f]l0e forall t € [0,T] and all £ € Cy(R).

Proof. See Theorem 1.5.2 in Cerrai (2001) or Theorem 3.3 in Bertoldi
and Lorenzi (2005). O

Remark. We refer to Elworthy and Li (1994) and Cerrai (1996) for re-
lated results. For Holder-continuous f € Cy(IR), results like Proposi-
tion 4.28 are well-known in the literature on parabolic PDEs; see, e.g.,
LadyZenskaja et al. (1968). o

We are now in a position to establish the convergence of our fixed
point iteration in C%1 ([0,T] x R), endowed with the norm ||h||co1 =
IIhoo + H%h”oo. This provides the rigorous basis for the numerical
method in Section 4.6 below.

THEOREM 4.29. The functions hy, (n =1,2,...) are uniformly bounded in
C%l ([0, T] x R), and we have

Ihn = hllcor < 2kMVT (lceo® + ) (K1) foralln>X+1,

n—1

where K, k > 0 are given by (4.16) and M > 0 is given in Proposition 4.28.
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Proof. Lemma 4.25 shows that
(X8 =B [J1 (5 0V (XE25.),) "+ elne) (XE3), s+ ]

for all t € [to, T] and all n € IN. Moreover, Theorem 4.26 implies that
hn(t,M;%Y°) = (Xfi’l’)y")t for each n € IN. With f,, 2 ﬁ(O\/hn)q, we
can thus represent h,, via

T—to
0

hn(to,yo) = (Pshn(to, s, ) (yo)ds + &,

where (Ps)sc(o1) denotes the semigroup corresponding to n°, and
where hin(t,s,y) £ fno1(s +ty) + c(y)hn(s +t,y). Analogously, by
Theorem 4.17, we obtain

h(to,yo) =[5 “(Pshlto,s,-))(y)ds + &,

where h(t,s, ) £ %h(s +1,-)9 +ch(s +1t,-). Setting v, £ hn —h, we
thus have
hn(to, ) —h(to,") =[5 ©Psvnl(to, s, )ds.

With K,k > 0 given by (4.16), inequality (4.19) from the proof of
Lemma 4.15 (p. 118) yields

1—
v llso < llellclltn = Rloo + e % 159 Ry = Rlog
—1
< llelloeK ()™ + 25 (75)™
where the last inequality follows from Corollary 4.27.
Now, Proposition 4.28 implies

Tf
|25 (o, ) — 5(to, Voo < Mvalco gy~ Jeds < 2VTM v,

and the proof is complete. O

4.6 NUMERICAL RESULTS
4.6.1  User’s guide

Before we study specific applications, we provide a general out-
line that explains how to apply our theoretical results to concrete
consumption-portfolio problems and asset pricing models. By The-
orem 4.9, the solution to the consumption-portfolio problem (P) is
given by the optimal policies (#,¢) in (4.8). These depend on the
solution of the reduced HJB equation

0 =hy—Fh+&hy + JB%hyy + 2509, R(T,) =8, (4.6)

see also Definition 4.5. Analogously, in the asset pricing framework
of Section 4.4, the state-price deflator is given by

my = dexp (6%]5}1(3, YS)*%ds — 66t) Ci "h(t, Yy) ! *%, (4.29)
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where h satisfies the semilinear partial differential equation
0 =he +Fht &hy + 3B hyy + 725509, T, ) =&=¢'"". (4.28)
Both equation (4.6) and equation (4.28) are of the form

0 =hy+ahyy +bhy +ch+ 909, (T, ) =§ (4.9)

and hence Theorem 4.10 implies that both PDEs have a unique
bounded classical solution.

Algorithm 4.1 below provides a step-by-step method for the con-
struction of solutions to PDEs of the form (4.9). This algorithm is
easy to implement and relies solely on an efficient method for solv-
ing linear PDEs as a prerequisite. Consistency of this approach is
guaranteed by Theorem 4.29, which demonstrates that the sequence
of solutions provided by Algorithm 4.1 converges to the solution of
(4.9). Theorem 4.29 also implies that the same is true for the associ-
ated derivatives. Additionally, Theorem 4.29 ensures a superexponen-
tial speed of convergence.

ALGORITHM 4.1.
(1) Sethp 2 ¢andn = 1.
(2) Compute h, as the solution g of the linear inhomogeneous PDE

O:gt+agw+bgy+cg+ﬁ(0\/hn,1)q, g(T,")=¢. (*)

(3) If hy is not sufficiently close to h,,_j, increase n by 1 and return
to step (2).

To solve the linear PDE () in Step (2), we use a semi-implicit Crank-
Nicolson scheme. Notice that the relevant finite-difference matrices
depend on the linear part of the PDE () only. Therefore, the con-
struction and LU decomposition of these matrices need to be carried
out only once, in a precomputation step. This is one important fea-
ture that contributes to the excellent numerical performance of our
method.

Remark. Our results require the coefficients of the state process to sat-
isfy assumptions (A1) and (A2). These are standard regularity con-
ditions, but they may not be satisfied for specific models such as the
Heston (1993) model below. In this case, we implicitly understand that
the relevant model has been suitably truncated (say at stochastic volatil-
ity levels 0.0001% and 10000%), so that these conditions are satisfied.
Notice that truncations of this kind are implicit in any numerical im-
plementation of a possibly unbounded model on a finite grid. o

In some applications (e.g., asset pricing), the solution to an infinite-
horizon problem is needed. In this case, the following extension of
Algorithm 4.1 can be used:
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ALGORITHM 4.2.
(1) Fix ¢ > 0 and a moderate time horizon T and set h® £ ¢ and n £ 1.

(2) Use Algorithm 4.1 to compute h™ as the solution h of the finite-
horizon semilinear PDE

0 =Ny + ahyy +bhy +ch+ 4:hd, R(T,)) =h""1(0,-).
(3) If h™(0, ) is not sufficiently close to h™~1(0, ), increase n by 1 and
return to (2); otherwise return h £ h™(0, -).

In Step (1) one may take, e.g., ¢ =1 and T = 1. By construction, it is
clear that g™ : [0,nT] x R — R with g™(t,y) £ h" ¥t —kT,y) fort €
kT, (k + 1)T] solves

0=g¢+agyy +bgy +cg+ %gq, g(nT, ) =¢.
Under a suitable transversality condition, the limit

h2 lim g™0,")

n—oo

is a solution of the infinite-horizon equation
d hq.
0 = ahyy + bhy +ch+ 79-h;

see Duffie and Lions (1992) or Appendix C of Duffie and Epstein
(1992b) with C. Skiadas. The specific choice of ¢ and T becomes irrel-
evant in the limit n — oco.

4.6.2  Consumption-portfolio optimization with stochastic volatility

Generalized square-root and GARCH diffusions

We first illustrate our approach for the model specification
dS¢ = Sel(r+AYy)dt + ﬁth] (4-34)

with constant interest rate r and constant A, i.e., we consider a stochas-
tic volatility model with stochastic excess return. The state process
satisfies

dYe = (0 —kYy)dt + BY] (pdWy + /1 — p2dWy) (4.35)

with mean reversion level 9/, mean reversion speed k, and p €
[0.5,1]. For p = 0.5 we obtain the Heston (1993) model and for p =
1 a GARCH diffusion model. Note that closed-form solutions for
consumption-portfolio problems with such dynamics are only avail-
able in the special case p = 0.5, but solely with specific parameter
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choices. Further note that for p > 0.5 the model is not affine, and ex-
plicit solutions cannot be expected. The model coefficients are chosen
as follows:

r=0.02, k=5 2=0.15%, A=3.11, p=—05, and f =0.25, (4.36)

so that for p = 0.5 the calibration is similar to that of Liu and Pan
(2003). Furthermore, we assume that the agent’s rate of time prefer-
ence is & = 0.05 and that his bequest motive is ¢ = 1. The time horizon
is set to T = 10 years. We begin with numerical examples for the
Heston model (i.e., p = 0.5 in (4.35)); unless explicitly stated other-
wise, all of the following figures are based on a Heston model with
parameters (4.36).

COMPUTATIONAL EFFICIENCY The theoretical convergence rate
identified in Theorem 4.29 materializes quickly in practice. Typical
running times for the solutions reported below are well under 5 sec-
onds.” To quantify the convergence speed, Figure 3 depicts the loga-
rithmic relative deviations

0 0
hn_hn—lnoo Haﬁhﬂ_aihnf1”oo
lo (') and lo Y Y (4-37)

810 th—lHoo 810 1+H%hn—1||oo 4.37

as a function of the number of iterations n. Figure 3 clearly illustrates
the superlinear convergence of our method. Figure 4 shows the con-
vergence of Algorithm 4.1. We plot the intermediate solutions after
n=12..,510,15 steps of the iteration. It is apparent that the al-
gorithm converges quickly: After n = 5 steps the solution is visually
indiscernible from subsequent iterations; the solutions for n > 15 are
even numerically indistinguishable.

OPTIMAL STRATEGIES Figure 5 illustrates the optimal consump-
tion-wealth ratio (c/x)* at time t = 0, as a function of initial volatility

1 Machine: Intel® Core™ i3-540 Processor (4M Cache, 3.06 GHz), 4 GB RAM.
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Figure 3: Logarithmic deviation from previous solution. This figure depicts the
convergence speed (4.37) of the value function.
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—hy —Mh hy, ——h3
20 —h; ——hs—nhjo----h=h;s

hn(0,y)
/

Figure 4: Approximation after n iteration steps. The functions h,, described in
Algorithm 4.1 converge to the solution h of (4.6).
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Figure 5: Optimal consumption-wealth ratio (c/x)* at time t = 0 as a function
of initial volatility o, for a risk aversion of y = 5.

oo for a risk aversion of vy = 5 and an EIS of { € {0.5,1, 1.5}. For rea-
sonable risk aversions, the optimal stock allocations as a function of
0o are almost flat. For instance, for v € {3,4,5,6,10} and 1} = 0.5 the
demands vary between about 110% and 30%.

COMPARISON WITH KNOWN SOLUTIONS Figure 6 shows a range
of solutions of (4.6) as the EIS 1 varies. Here we have chosen y =
2 so that for = 0.125 (the lowest graph in Figure 6) an explicit
solution is available (see Kraft et al. (2013)). For ¢ = 1, we use the
finite-horizon analog of the explicit solution in Chacko and Viceira
(2005). The solutions for the other values of EIS are computed by
applying Algorithm 4.1. Note that Figure 6 depicts g = hT so that
the value function can be represented as

1

W(t,X/U) = ﬁ’d_yh(t/y)k ~ 1 (Q(t;U)X)

1—vy

In this context, g can be interpreted as a cash multiplier.

Finally, we present comparative statics for the model (4.34) where
we vary the power p. Figure 7 shows the value of the stock demand
7" at time t = 0 as a function of the initial volatility oo and the power
p; here, y =5 and ¢ = 1.5.
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14
—$=0.125 —p=025—1p=05
121 V=09 —yp=1 V=11

—P=15 —yp=2 ]

06 /
04

0.2

Figure 6: Value function for different EIS. This figure compares the function
hTV at time t — 0 for a RRA of y=2.

0.643

0.642 |

Optimal portfolio

Power

Volatility

Figure 7: Optimal stock demand and power. This figure depicts the optimal
stock demand 7* at time t = 0 as a function of initial volatility
oo and the power p. The model is (4.34) so p = 0.5 corresponds
to the Heston model. The calibration is given by parameters (4.36),
the agent’s RRA is y = 5 and his EIS is ¢ = 1.5.

vy

Exponential Vasicek model

As another application, we consider a stochastic volatility model
where the volatility is lognormally distributed. The asset price dy-
namics are

dSi = Sel(r+Ae?Ye)dt + e¥rdW,]
with interest rate r = 0.05 and A = 3.11. The state process
dY; = (O — kYo )dt + B(pdWi + /1 — p2dW,)

is an Ornstein-Uhlenbeck process with mean reversion speed k = 5
and mean reversion level ¥/k = —1.933. The correlation is set to p =
—0.5 and we put B = 0.57. These parameters are chosen in such a
way that the long-term mean and variance of the squared-volatility
process ot = e2Yt coincide with those of the squared volatility process
in the Heston model (4.35) calibrated according to (4.36). We continue
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to use the time preference rate 6 = 0.05 and bequest weight ¢ = 1.
Unless stated otherwise, from now on, all figures are based on the

NP4

above exponential Vasicek model with parameters

k=5 9/k=-1933, p=-05 and p =0.57.

OPTIMAL STRATEGIES Figure 8 depicts the optimal consumption-
wealth ratio at time t = 0 as a function of initial volatility for a risk
aversion of y =5 and an EIS of y €{0.5,1,1.5}.
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Figure 8: Optimal consumption-wealth ratio (c/x)* at time t = 0 as a function
of initial volatility o for y = 5.

Figure 9 shows optimal stock allocations as a function of initial
volatility for y € {3,4,5,6,10} and { = 0.5.
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Figure 9: Optimal stock demand and risk aversion. The optimal stock allocation
m* at time t = 0 is shown as a function of initial volatility o for
different values of the RRA y and an EIS of ¢ = 0.5.

4.6.3 Asset pricing in disaster models

Generalized square-root and GARCH diffusions

In this subsection, we illustrate our general approach for disaster
models, which play an important role in asset pricing (see, e.g., Barro
(2006)). The endowment process is given by

dCy = Cy— [udt + odW, + (e“t — 1)dNy], (4-38)
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where N is a counting process with intensity Ay = Y. For p € [0.5,1]
the state process Y satisfies

dY = k(A =Y )dt + BYP (pdW; + /1 — p2dW4) (4.39)

with mean reversion speed « = 0.080 and mean reversion level A =
0.0355. Moreover, we set u = 0.0252, o = 0.02 and B = 0.067. The time
preference rate is & = 0.012. The random variables Z; that model the
sizes of disaster events are independent of W, W and N and satisfy
EY[e(1=Y)%] = ¢(1=Y)015 The parameters are calibrated such that for
p = 0.5 the model of Wachter (2013) obtains. Until stated otherwise,
all figures that follow are based on (4.38), (4.39) with the above pa-
rameterization. Moreover, we fix p = 0.5 unless stated otherwise.

In the following, we present results for an infinite-horizon economy
by applying Algorithm 4.2. Depending on the choice of the model pa-
rameters, typical computation times until a steady state is reached
vary between 30 and 9o seconds.> To demonstrate the efficiency of
the algorithm, we first study the convergence to the steady state for
bequest motives ¢ € {0.1,1,10}. Figure 10 shows the maximal distance
of the corresponding finite time-horizon PDE solution to the infinite-
horizon stationary solution if y = 3, = 1.5, and p = 0. As expected,
the steady-state solutions are independent of the weight on the be-
quest motive.

Figure 11 depicts the consumption-wealth ratio as a function of the
agent’s risk aversion for an initial intensity of Ao = A, a correlation of
p =0, and an EIS of ¢ € {0.5,1,1.5}.

Figure 12 shows the consumption-wealth ratio as a function of p
and Ag. Here the representative agent’s EIS is set to { = 0.5 and his
risk aversion is y = 3.

Finally, we analyze the influence of the power p in (4.39). Figure 13
shows the consumption-wealth ratio as a function of the power p and
the initial intensity Ao. Here we set y = 3, = 1.5 and p = 0. Note that
for p > 0.5 the model fails to be affine, and closed-form solutions are
not available even for unit EIS.

2 Machine: Intel® Core™ i3-540 Processor (4M Cache, 3.06 GHz), 4 GB RAM
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Figure 10: Maximal distance to the stationary solution. This figure shows the
convergence speed for alternative values of the bequest motive e.
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Figure 11: Consumption-wealth ratio in Wachter’s model as a function of the
RRA v for alternative levels of EIS 1\ and correlation p = 0.
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Figure 12: Consumption-wealth ratio in Wachter’s model as a function of corre-
lation p and initial intensity Ay. The representative agent’s RRA
is vy = 3 and his EIS is ¢ = 0.5.
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Figure 13: Consumption-wealth ratio in the generalized square-root and GARCH
models as a function of the power p and the initial intensity Ao.
Correlation, RRA and EISare p =0,y =3 and { = 1.5.
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Exponential Vasicek model

As our last application, we consider a variant of Wachter’s model
where the intensity process follows an exponential Vasi¢ek process.
Aggregate consumption follows the dynamics (4.38) where the count-
ing process N has intensity Ay = e'* and the state process Y satisfies
dY = (8 — «Yy)dt + B(pdW; + /1 — p2dW;). The mean reversion speed
is k = 0.080 and the mean reversion level §j £ 9/k = —0.058. More-
over, we set u = 0.0252, 0 = 0.02 and p = 0.305. These parameters
are chosen such that the long-term mean and variance of the inten-
sity process A match those of the previous disaster model (4.39) for
p = 0.5. The time preference rate is set to 5 = 0.012 and we assume
EY[e(1—Y)%] = (1=Y)015 Figure 14 depicts the consumption-wealth
ratio as a function of y for { € {0.5,1,1.5}, A\ = €Y, and p = 0.

m\
2
T 0.041 — =05
2 — b=
0 0ozl —_=15
0 T I | | | | |
2 3 4 5 6 7 8 9 10
RRA vy

Figure 14: Consumption-wealth ratio in exponential Vasicek model as a function
of the RRA v for different values \ of the EIS and p = 0.
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APPENDIX: SUBLINEAR EXPECTATIONS

This chapter complements Chapter 2. While it provides proofs for
some of the results given in Section 2.4, it aims at being essentially
self-contained.

In Section A.1, an integral for measurable functions with respect
to finitely additive measures is constructed. Section A.2 is concerned
with sublinear expectation operators: First, sublinear expectation op-
erators given by families of finitely additive probability measures are
studied. Then, attention is restricted to sublinear expectation opera-
tors satisfying a Fatou property; completeness of associated function
and process spaces is proven. Finally, we show that every sublinear
expectation operator on a space of bounded random variables is given
by finitely additive probabilities.

In all of Appendix A, we fix a measurable space (Q, A). Unless ex-
plicitly stated otherwise, all notions requiring a measurable space are
to be understood with respect to (Q, A). For instance, an A-measurable
function g : QO — R will simply be referred to as a real-valued mea-
surable function, and the term finitely additive probability will signify a
finitely additive probability measure on (Q,A). If S is a topological
space, B(S) denotes the Borel o-algebra on S. We write LO(A;S) for
the collection of all measurable functions (Q, A) — (S, B(S)). The lin-
ear space L°(A;R) of all real-valued measurable functions is simply
designated £°(A). Moreover, £L*(A) C £°(A) denotes the subspace
of all bounded measurable functions and || - | the corresponding
uniform norm.

A.1 INTEGRATION WITH RESPECT TO FINITELY ADDITIVE
MEASURES

Let p be a finite, finitely additive measure on A. The purpose of this
section is to define an integral with respect to p for all positive mea-
surable functions. We adapt the usual development of the Lebesgue
integral (in the presentation of Rudin (1974)) to the finitely additive
situation. The starting point is the unambiguously defined integral
for simple functions.

Integration of simple functions

A measurable function s is called simple if it takes only finitely many

141

Notation

Simple function



142

Integral of simple
function

Additivity of
integral for simple
functions

Integral of
non-negative
functions

APPENDIX: SUBLINEAR EXPECTATIONS

different values o, ... € [0,00). In that case, the canonical represen-
tation of s is

s=2 1 1ala,, where A;i£{s=ai}, i=1,...,n,

and the integral of s (with respect to p) is defined as

uisl £ [sdp = 3 aqp(Ad) € R
The integral of s over a subset A € A is denoted by

Jasdu = ullas] =Y 1 aqu(AiNA).
LEMMA A.1. Let s be a simple function. Then
s-u:A—1[0,00), A [sdu

is a finite, finitely additive measure on A.

Proof. Suppose that s has the canonical representation s = Y i* ; ;14
and let A, B € A be disjoint. Since p is additive, we get

Javesdr =2 (AN (AUB))
=Y (A NA)+ Y (A NB) = [ysdp+ [5sdp,

which shows that s - u is also additive. O

LEMMA A.2. Let s, t be simple functions and « € [0, 00). Then
uls +t] = pls] +plt] and  plos] = oepls).

Proof. Let s and t have canonical representations s = ) ;' ; a;14, and
t=3 " Bjlg.Fori=1,...,nandj=1,...,m, we put Cy £ A; N B;
and note that Q is the disjoint union of the sets C;;. We have

(s + 1) u(Cy) = [ (s +t)dp = eiu(Cij) + Bju(Cy5)
as well as
s-u(Cyj) = xiu(Cy5) and  t-p(Cyj) = Bju(Cyj).

Now, Lemma A.1 implies that p[s + t] = p[s] + p[t]. Moreover, since «s

has the canonical representation os = ) " ; (ax;)14,, we immediately

get pnlas] = apfs]. O
Integration of non-negative functions

DEFINITION A.3. The integral of a measurable function f: QO — [0, oc]
(with respect to u) is given by

ulf] £ [fdp £ sup plgl,
geS(f)

where S(f) denotes the collection of all simple functions g < f. o



A.1 INTEGRATION WITH FINITELY ADDITIVE MEASURES

Some immediate consequences of the above definition are collected
in the following lemma:

LEMMA A.4. For all measurable functions f, g : QO — [0,00] and A,B € A,
the following statements hold:

(i) If u({f = oo}) > 0, then ulf] = co
(ii) If w({f + 0)) = 0, then wlf] = 0.
(iii) If w(A) =0, then [, fdu=0.
(iv) If f < g, then ulf] < plgl.
(v) IfACB, then [, fdu < [z fdu
(vi) For all constants 0 < ¢ < oo, we have plcf] = culf].

Proof. If 8 £ u({f = oo}) > 0, we have h,, £ 1y_n € S(f) for all
n € N and thus ulf] > plh,] = on for all n € IN, establishing (i).
If u({f > 0})) = 0 and h € S(f), then pu({h > 0}) = 0, and we see that
ulh] = 0. This yields (ii), which immediately implies (iii). If f < g, then
S(f) C S(g) and (iv) follows; (v) is immediate from (iv).

To prove (vi), we note that cS(f) = S(cf). Hence linearity of u[-] on
step functions (Lemma A.2) implies

ulefl = sup plef]l = sup cplf] = cplf],
hes(f) hes(f)

and positive homogeneity is established. O

Remark. The monotone convergence theorem is valid for the integral
from Definition A.3 if and only if u is countably additive: Clearly,
validity of the monotone convergence theorem implies that u is o-
continuous from below, which in turn implies countable additivity.
On the other hand, if p is countably additive, then monotone conver-
gence is in force (see, e.g., Theorem 1.26 in Rudin (1974)) and Defini-
tion A.3 yields the classical Lebesgue integral; in particular, Fatou’s
Lemma holds, i.e.,

fhmmffndu hmmfffndu for all mbl. fcts. fi, : Q — [0,00]. (®)

Conversely, if (®) holds and A, € A for eachn € N with A, | A, then

lim p(A )—11m1nfj1A du < fhmmfh\ du = pu(A).

n—o0

Thus p is continuous from above; since p is finite, this implies that p
is o-additive. o

Additivity of the integral can be extended from simple functions to
arbitrary measurable functions without appealing to the monotone
convergence theorem. We will make use of the following elementary
approximation result for bounded measurable functions:
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LEMMA A.5. For every 0 < f € L®(A), there exists an increasing sequence
(frn)nen C S(f) converging uniformly to f. Moreover, for any such sequence,
we have p[f] = limy oo wfnl.

Proof. To obtain such a sequence, simply choose f* = 2™ |2"f|. Since
(frn)nen C S(f) is increasing, monotonicity (Lemma A.4 (iv)) and the
definition of p[f] immediately yield

lim plfn] = sup plfn] < sup ulhl = plf].
noreo nelN hes(f)

On the other hand, for every h € S(f) and every ¢ > 0, we have
h < fn + ¢ for all but finitely many n € IN, because f,, — f uniformly;
thus, Lemma A .4 (iv) and Lemma A.2 imply

ulh] < plfn + el = ulfnl + & < sup plfnl +e. O
nelN

LEMMA A.6. Let f,g: Q — [0, 00] be measurable functions. Then

ulf + gl = plf] + plgl.
Proof. Let r € S(f) and s € S(g). Then r+s € S(f+ g) and Lemma A.2
implies

ull +ulsl =ulr+s] < sup  plhl =ulf+4l,
heS(f+g)

so that p[f] + plgl < plf + gl.

To prove the converse inequality, let h € S(f + g) and consider the
bounded functions f £ fA|hlw and § £ g |h|w. We note that
h < f+ §. Lemma A.5 yields a sequence (fn)nen C S(f) with

fn — f uniformly, plf,] — plfl and f, <f,
and a sequence (gn)nen C S(§) such that
gn — § uniformly, plgn] — p[gl and gn < g.
Hence, for every k € IN, we find some k < ny € IN such that
h<F+§ <y +gny + 1
Now, Lemma A .4 (iv) and Lemma A.2 imply
uihl < plfn, + gn, + 1] = Blfn + plogn + ¢ — ulfl + plgl.

Since f < f and § < g, another application of Lemma A 4 (iv) gives
ulh] < ulfl + plg) < wifl +ulgl forall h e S(f+g).
Therefore plf + gl = SUPhLes(f4g) ulh] < uplf] + ulgl, and the proof is
complete. 0O

Combining Lemma A.4 with Lemma A.6, we obtain two corollaries.

COROLLARY A.7. The integral operator
is increasing, positively homogeneous and additive.

COROLLARY A.8. Let f,g: Q — [0, 00] be measurable functions and suppose
that w(f # g) = 0. Then ulf] = wulgl.



A.1 INTEGRATION WITH FINITELY ADDITIVE MEASURES

Integrable functions

A measurable function f : QO — R is p-integrable if [|fldp < oco; the
collection of all p-integrable functions is denoted by £'(n) C £°(A).
For all f,g € £'(n) and «, B € R, Corollary A.7 implies

Jlof+Bgldu < [(llfl 4 Bllgl) dp = || fIf] A+ Bl flgl dp < oo

so that £1(p) C £LO(A) forms a linear space. For f € £'(u), both [f+dp
and [ f~dp exist as real numbers.

DEFINITION A.g. The integral of a p-integrable function f is given by
wifl £ [fdp 2 [fidu—[fdueR, fell(w. o
LEMMA A.10. The integral
w: L' (W) = R, fo plfl = [fdu
is a positive linear operator.

Proof. Positivity is a consequence of Lemma A.4, and it remains to
prove linearity. Note that (—f)™ =f~ and (—f)~ = f* so that

ul—f] = ulf 7] — pulf ] = —plfl. (A1)
For o > 0, Corollary A.7 yields
wlof] = au[ft] — ap[f ] = aplf], (A.2)

since (af)” = af™ and («f)” = af . Combining (A.2) and (A.1), we
get (A.2) for & < 0; hence, it only remains to prove [(f+g)dp =
Jfdp+ [gdu. Write h = f + g and note that

hf—h =h=f4+g=0Ff"—f)+(¢g"—g7),

so that

ht+f +g =f"+g"+h".
Integrating both sides with respect to p, the claim follows from addi-
tivity for non-negative functions (Lemma A.6) upon rearranging. [

Sometimes it will be convenient to regard the integral as an opera-
tor on the convex cone

K(w) ={f € £L(—o0, 00] : p[f~] < co}.

Note: As in the main text, a convex cone K C £%—o0, ] is, by definition, a set of
functions K ¢ £°[—o00, 0] such that «f + fg € K whenever 0 < o, p < oo and f, g € K.

LEMMA A.11. The integral
ull 1 K1) = (—oo,00],  f = ulf] 2 plf*]—ulf ],

is an increasing, additive and positively homogeneous operator.
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Proof. Let f,g € K(p) and « > 0. If f < g, then f* < g and f~ > g~
so that p[f] = p[f™] —p[f~] < ulg™] —plg~] = ulg] by Corollary A.7.
Corollary A.7 also yields

wlof] = ploft] — plaf ] = au[f ] — op[f ] = aplf] € (—o0, 00).

If ulf™]+ plg*] < oo, then p({f = oo}) = u({g = oo}) = 0 by Lemma A 4;
thus, T £ fljroo), § £ gligecoy € £'(1), and Corollary A.8 and
Lemma A.10 imply

u[f] + plgl = plfl + plgl = ulf + gl = plf + gl.

It remains to prove additivity if p[f*] = oo; but then, u[(f+ g)*] = oo,
as well, and we have p[f + g] = oo = p[f] + plgl. O

On the space of bounded functions, the integral is particularly well-
behaved.

LEMMA A.12. The restriction of the integral to bounded functions,
uil: L2(A) = R, > ulf]
is a positive continuous linear operator with operator norm ||ul-]|| = n(Q).

Proof. Clearly £*(A) ¢ L£'(p), and hence p[] is positive linear op-
erator by Lemma A.10. Moreover, for every f € L£>(A), we have
f+|/fllooc = 0, and hence 0 < p[f + ||f|loo] = plf] + 1(Q)||f||c. There-
fore —u(Q)|/f|c < lf]. The same reasoning applies to ||f|jcc —f > 0
and shows that p[f] < p(Q)|[f|je. Thus |u[f]] < w(Q)[/f|| and u[] is
continuous with ||ul]]| < p(Q) and p[1] = p(Q). O

We stress one important point: The integral defined in this section,
has the advantage of being defined for all non-negative measurable
functions; however, it does not coincide with the Dunford (1935) in-
tegral more commonly used in functional analysis; see, e.g., Dunford
and Schwartz (1958), Bhaskara Rao and Bhaskara Rao (1983), Luxem-
burg (1991). There, one also starts with the usual integral for simple
functions

Prfdu 2 [fdu= 31" aqun(Ay),
but this integral is then extended to functions f which can be approx-
imated by simple functions f, in p-measure in such a fashion that
there exists a unique limit

Udu S Jim P di = Jim [fudn,

see, e.g., Dunford and Schwartz (1958), p. 101ff. Since uniform con-
vergence implies convergence in p-measure, Lemmas A.5 and A.12
show that Dunford’s integral coincides with p[-] on £*(A), where it
is just the unique continuous extension of the integral for simple func-
tions. This modest version of Dunford’s integral is all that is needed
to represent continuous linear functionals on £*(A):
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LEMMA A.13. Let T: L®(A) — R be a positive continuous linear operator.
Then there exists a unique finitely additive measure m with m(Q) = T([1]
such that T is the restriction of m[-] to L®(A), i.e.,

Tg=mlgl = [gdm forall g€ L®(A). ()

Proof. By (%), the only way to define m : A — R is via the formula
m(A) = T[1al. Since T is linear, this gives rise to an additive set func-
tion. Positivity of T implies

0<mMA)<mM(B) <m(Q)=T[], ACB, A,BeA,
and hence m is in fact a finitely additive measure on A. Lemma A.12

guarantees that m[] is a positive continuous linear operator on £>°(A).
Hence, for f =Y ' ; ai1a, € span{la : A € A} C L*®(A), we have

mlfl = 3 oam(A) = XL oqT ] = TIF.

Since span{lap : A € A} is dense in £L*(A) and both m[-] and T are
continuous operators on £>°(A), representation (x) is established. [J

A.2 SUBLINEAR EXPECTATION OPERATORS

According to Definition 2.36, a (static) sublinear expectation operator € is
an extended real-valued function which is defined on a convex cone
K C LO(A; [~oo, o0]) containing all real constants and which is

o sublinear, i.e., EX+Y] < EX] + &[Y] and &[aX] = «€[X] for all
X,YeXKand o >0,

o monotone, i.e., E[X] < E[Y], for all X,Y € X with X <Y, and

o constant-preserving, i.e., E[a] = « for all & € R.

A.2.1  Sublinear expectation operators via additive probabilities

We associate a set X(M) and an operator M[-] : X(M) — (—oo, 0]
with every (non-empty) family of finitely additive probabilities M as
follows: The set X(M) is given by

K(M) & {g € LO(A; (—o00, 00]) : sup [g-dm < oo} C LO(A; (—o0, 00]),
meM
and the operator M[] is given by

M[]: K(M) = (—o0,00], i+ M[f] £ sup mlf].
meM

In the following, when we refer to a family of finitely additive proba-
bilities, we always mean a non-empty family.

LEMMA A.14. Let M be a family of finitely additive probabilities. Then M[]
is a sublinear expectation operator on the convex cone X(M).
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Proof. Let f,g € K(M) C L°(A; (—o0,00]) and o, p > 0. Then of + Bg €
LO(A; (—00, 00]). Since (af +Bg)~ < af ~ + pg~, we have

Jlaf +Bg)~dg < o sup [f"dm+p sup [g-dm < o
meM meM
for all ¢ € M so that af + g € X(M); hence, X(M) is a convex cone.
Evidently, every constant function is contained in X(M) and M[] :
K(M) — (—o0, o0].
It remains to prove that M[-] is a sublinear expectation operator.
Note that, for each m € M, we have X(M) C X(m), so that

m:K(M) = (—oo,00], s mlf]

is an increasing, additive and positively homogeneous operator by
Lemma A.11. Moreover, m[x] = « for all « € IR. Therefore, the upper

envelope M[-] = sup, ., m[] also preserves constants and is increas-
ing, positively homogeneous and subadditive; hence, M is a sublinear
expectation operator. O

Associated function spaces

Let M be a (non-empty) family of finitely additive probability mea-
sures. We consider the corresponding function spaces

LP(M) 2 {f e LO°%A) : M[IfIP] < 0o} C £LO(A), 1<p<oo.

If f,g € £LP(M), then f + g € £L°(A), and monotonicity and sublinearity
of M[-] imply

M llaf + gIP] < 2P (lo«[P M [If[P]+ M [IgIP]) < o0

so that LP (M) C L°(A) is a linear space contained in K(M).
For each p > 1, we consider the function

o=

I lIv,p = £2(A; [—00,00]) = [0,00], = MIfP]P.

By definition, || - [|m,p is finite on £P(M). Below, we establish that it
is a seminorm. As in Subsection 2.2.2 at the beginning of the present
thesis, this is achieved via Holder’s inequality. The proof is a simpler
version of the one of Lemma 2.7.

LEMMA A.15. Let p,q > 1 with %+% = 1. For all X,Y € £°(A;[0,c0]),
we have
IXYlIm,1 < IX[ImpllYIIM,q-

In particular, LP (M) - £L94(M) C £ (M).
Proof. Clearly XY € LO(A; [0, 0c]). For & > 0 we put

R SE I Y

(e + MIXIP]) 7 (e +M[Y]a])®

4
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(where co/0co £ 0) and note that [XY| < %I)_(Ip + %IYIq by Young’s in-
equality; thus, by monotonicity and sublinearity of M[-], we obtain

MIIXYI] < M[GIXIP + 4IVI9] < SMXP] + FM[IV]9].
Either X = 0 or M[|X|P] < 0o, and hence we have
M[IXIP] = MIX[Pl/(e + M[IXIP]) <1 and MJYP] <1

by positive homogeneity. Therefore M[IXY] < L +1 =1, and

MIIXY]] < (& +MIXIP])® (& +MIY|9]) .
Letting ¢ — 0 yields the claim. O

COROLLARY A.16. Let 1 < p < q. For all X € £°(A; [—o0, 00]), we have
IX||L,p < [X||L,q and, in particular, L9(M) C LP(M).

With Holder’s inequality, using a classical argument, one can prove
that || - [|m,p is a seminorm on £P(M). We prove a slightly more gen-
eral statement which will be useful later on.

LEMMA A.17. Let X be a convex cone® and suppose that p : X — L°(A; [0, co])
is sublinear. Then, the function

||p||M,p X — [O; OO]/ X = ”p(X)HM,p

is sublinear. If X is a linear space, and if p is homogeneous and maps into
LP (M), then ||p||m,p is a seminorm on X.

Proof. Positive homogeneity is obvious. To prove subadditivity of
llellm,p, let X, Y € X and set X = p(X), Y = p(Y) and Z = p(X+Y). Then
X,Y,Z € £LO(A;[0,00]) and

ZP =Z-1ZP7 ' <X 1ZP T+ Y- 2P,
since p : X — LO(A; [0, 00]) is subadditive. Monotonicity and sublinear-
ity of M[-] imply
M[IZP] <M [X-1ZP T+ M [V |ZP71].

For p = 1, this gives ||Z|lm,1 < |X|[Im,1 + [[Y]Im,1, thus establishing
subadditivity. To prove the claim for p > 1, we set q £ ;%5 and note
that
5p—1||9 5p—11d > 5
127 I g =M [1ZP71|7] = M [1ZP] = 1ZI%y .

Consistent with the meaning of convex cone above, here, a convex cone (K, +,:)
means any commutative cancellative monoid (K, +) together with a scalar multipli-
cation - : [0,00) x K — K such that, for all o, 3 € [0,00) and x,y € K, we have

Ix=x, apx)=(af)x, ax+y)=ox+ay, (ax+B)x=o0x+Py, o P €l0,00).

Note that any such convex cone can be embedded into a vector space in which it is
a convex cone in the usual sense.
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Since % + % =1, Lemma A.15 yields

r
o s _ o _ -
IXAZP7 ey < IXlImp 2P~ v, = IXIIMp 12114
as well as
P
oo _ o _ _
IV 1ZP " s < IV 1IZP " g = IVlIap 2] s
and we arrive at
S|P _ _ _ %
1Z][} < UIXlInp + V) 12118,
If |Z||m,p = 0, there is nothing to prove; otherwise, rearrange to obtain
- P2 _ _
12l =121 < IXlIMp + [ VlIMp-

Thus, the function ||p||m,p is subadditive.
Finally, if p is homogeneous and maps to £P(M), and if X is a linear
space, then we have ||p[|m,p : X — [0, 00) as well as

1
lo(aX)|mp =M [|ladp(X)[P]” =ladlo(X)|mp, XE X, ax€R,

by sublinearity of M[]; thus, ||p|/m,p is @ seminorm on X. O
COROLLARY A.18. For each p > 1, the map | - ||m,p is a seminorm on
LP(M).

Proof. Apply Lemma A.17 to X = LP(M) and the homogeneous and
subadditive map p : LP(M) — LP(M) N LO(A; [0,00]), X = [X]. O

Associated process spaces

Let (T,T,u) be a finite measure space and § € A® T a oc-algebra.
We write P°(G) = £°2(G; R) for the linear space of all §-measurable
processes

X:OxT—R, (w,t)—= X¢(w).

For all numbers p, q > 1, we consider the p-q-seminorm

IXlip.q 2 [IXlalivp =M [(JIXclF(d0) <] (A.3)

Here, [flq = ([If(t)[9 u(dt))% denotes the seminorm of the Lebesgue
space £9(u). Lemma A.17 shows that | - ||, 4 is a sublinear map on
the convex cone £°(A ® T; (—oo, 00]). Thus, for all p,q > 1,

PPAM,;G) £ {X e PG) : [X]lp,q < oo} (A.4)

is a linear spaces of G-measurable real-valued processes, and || - ||;,q
is a seminorm on PP9(M, u; §).

To guarantee completeness of these process spaces and, in particu-
lar, of (LP (M), || - [ m,p), we need an additional assumption — the Fatou
property. The following subsections are devoted to the Fatou property
and its ramifications.
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A.2.2  The Fatou property and upper probabilities

DEFINITION A.19. A family Q of finitely additive probabilities has the
Fatou property if

Q[linrrl)infgn] <liminfQlgn] for all (gn)nen C L£O(A; [0, 00]).

In that case, the associated sublinear expectation operator Q[ is
called an upper expectation, and the corresponding set function

Q():A—=1[0,1, A~ Q(A)£Qlal=supq(A)
qeqQ

is said to be an upper probability. An event A € A has upper probability
u e [0,1] (wrt. Q) if Q(A) = u. An event A € A is said to be Q-
negligible (or simply negligible if Q is clear from the context) if it has
upper probability zero. If S[w] is a statement depending on w and
the event {w € O : S[w] is false} is negligible, then we say that S holds
Q-essentially. o

It is easy to show that upper envelopes of countably additive prob-
ability measures have the Fatou property, see Example 2.39 (p. 38)
in the main part of this thesis. Indeed, most prominent examples of
upper probabilities are of that form.

Upper probabilities are countably subadditive:

LEMMA A.20. All upper probabilities Q are countably subadditive; i.e., for
all A, € A, n € N, we have

Q (Uf:]An) < Zf:l Q(An)-
In particular, countable unions of negligible events are negligible.

Proof. We set By £ Aj and B, £ A\ By 1. Then B,, € A, n € N,
are pairwise disjoint with A 2 (J%_; B, = UX_; An. Now, we put
fn=Y ¢ ;1. Then 0 < fy 1 f = 14 and, by the Fatou property of
the upper expectation Q, it follows that

Q(A) = QIf] < liminfQIfa] < liminf 1, Qll5,],

n—o0

as Q] is sublinear. Since By C Ay, monotonicity of Q[-] implies that
Q] < Q[1A,], and thus

Q(A) < lﬂlolngl?:] Q[1 Ak} = Z:f:] Q(An)- t

LEMMA A.21. Let Q be an upper expectation and X : Q — [—oo, co] mea-
surable. If Q[IX]] = 0, then X vanishes Q-essentially.

Proof. By monotonicity and positive homogeneity of Q[-], we have

Q1x> 1)) <nQTx= 1y XI] < Q[IX]] =0.

Since Q has the Fatou property, we get

QX #0) = Q [Tx>0y] < lmiorng[l{\Xb%}] —0. 0
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LEMMA A.22. Let Q be an upper expectation and X : Q — [0, co] measur-
able. If Q[X] < oo, then X is Q-essentially everywhere finite.

Proof. Assume by contradiction that {X = oo} has positive upper prob-
ability; then q({X = oo}) > 0 for some q € Q, and hence q[X] = oo by
Lemma A.4. This implies that Q[X] = oo, a contradiction. O

LEMMA A.23. Let Q be an upper expectation and X,Y € £1(Q). If X and Y
coincide Q-essentially, then Q[X] = QI[Y].

Proof. By assumption, the sets AT £ {X™ £ Y }and A~ £ (X~ £ Y}
are Q-negligible. In particular, q[X*] = q[Y*] and q[X~] = q[Y~] for
every q € Q by Corollary A.8. Therefore

QIX] = sup(q[XT]—qg[X"]) =sup(qlY]—qly7]) =QlY. O
qeqQ q€Q

A.2.3  Completeness results

This section is concerned with proving completeness of the process
spaces PP9(Q, 1; §), as introduced at the end of Subsection A.2.1 on

page 150.
STANDING ASSUMPTIONS In the following,
o Q is an upper probability,
o (T,T,u) is a finite measure space, and
o §C A®7Tis a o-algebra.

The proof of completeness hinges on the Fatou property of Q and
is very close to that of the classical Riesz-Fischer completeness theo-
rem for LP-spaces (see, e.g., Rudin (1974), Theorem 3.11, p. 69ff.). The
Fatou property of Q yields a Fatou property for the p-q-seminorms.

LEMMA A.24. Forall p,q > 1, the p-q-seminorm || - ||, q (as given in (A.3)
on p. 150 with M = Q) satisfies the following Fatou property:
If (X™)nen is a sequence in LO(A® T; [0, 00]), then

| linnLior.}an Ip,q < linrrLi()rgf 1X™[lp,q-

Proof. First, we note that the section X™(w) is T-measurable for all
w € Q and every n € N, since § C A® 7. Setting X £ liminf,, o X™,
Fatou’s lemma implies

[ Xe()9 p(dt) < liminf [ X} (@)% u(dt) for all w € O.

By monotonicity of Q[-], we get

r
q

| lim inf X" |5 o < Q[lmiogf(j X7 p(dt))

]
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Now, the Fatou property of Q[-] implies
a
IXI13,q < liminf Q[ (JIXP19 w(dt)) "] = liminf X" g O

As a first consequence of the Fatou property, we see that Cauchy
sequences have subsequences which converge pointwise:

LEMMA A.25. Every | - ||p,q-Cauchy sequence (X™)nen C PP 9(Q, w; 9)
has a subsequence (X™)yen depending only on (|| X™ — X™|lp,q)n,meN
such that the following holds: There exists a Q-negligible set N € A and
a G-measurable real-valued process such that

lim X{*(w) = X¢(w) for p-ae. t € Tandall w € N°.  (A.5)

k—o0

Proof. We choose a subsequence (again denoted by (X"),cn) such
that
XM —X™M|p,q <27 foralln e N. (A.6)

Clearly, this subsequence depends only on (||X™ —X™||; 4)n,meN-
Now, for each n € IN, we define a §-measurable process Y™ via

yr Ay X XK > 0. (A7)

Clearly, Y{*(w) T Y¢(w) for all t € [0,T] and w € Q, where (t,w) —
Yi(w) is a non-negative §-measurable process. Lemma A.24 implies

ey |
I¥lp,q < Hminf [[Y™p,q, (A8)
where we can estimate

Y™ lp,q < Zio XM= X5, < 2270 =1, (A.9)

by definition of Y™ (A.7), subadditivity of | - ||,,q and (A.6). In con-
junction with (A.8), estimate (A.9) shows that

Q [([1vel ude) v ] = [VIIp 4 < 1.

Hence, by Lemma A.22, the set N € A of all w with [[Y¢(w)[9u(dt) =
oo is a Q-negligible event. Therefore, for all w € N€, there is a p-null
set Ay, € T such that

S0 XN (W) = XF(w)| = Yi(w) < oo forallte AS,. (A.10)

From (A.10), we see that for every ¢ > 0, each w € N¢ and every
t € A, there is some n.(w, t) such that

Zio:ns(w,t)lxlwr] (w)—le((,U” < E. (A.II)
By a telescoping sum argument, (A.11) implies that

(XF(w))nen is Cauchy in R for each w € N® and all t € AS,. (A.12)
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Now, for all (w,t) € Q x [0, T], we set

Xi(w) £ 1{limsupn_m|X{‘\<oo}(w) ‘limsupx?(w)-
n—oo

The process X : QO x [0,T] - R, (w,t) — X¢(w) thus defined is 9-
measurable and, by (A.12), we have

X¢(w) = lim X{(w) forallt € AL, and every w € N€.

n—oo

This establishes (A.5) and concludes the proof. O

Completeness of the process spaces is a consequence of pointwise
convergence and the Fatou property from Lemma A.24:

THEOREM A.26. The spaces PP-9(Q, w; ) are complete.

Proof. Let (X™)en be a Cauchy sequence in PP-9(Q, p; §). For brevity,
we write || - || £ || - ||p,q- Lemma A.25 yields a §-measurable real-valued
process X such that

lim X{"* =X, forp-ae teT, Q-essentially.

k—o0

Therefore
IX|| = | iminf X™ || and [X™* —X]|| = || iminf(X™ — X™)]|,
k—o00 {—o0
and hence Lemma A.24 implies
I1X]| < hmmf X" < 00 and [|[X™ —X]| < hmmf X — XM "— k2w g,
Thus X € PP9 and X™ — X in PP/9, O
We now apply Theorem A.26 to the seminormed spaces
A O(A 1
£P(Q) 2 {fe L) : flLp 2 M[IfF]” <00},  T1<p<oo,
which have been introduced in Subsection A.2.1, p. 148. Clearly,
(LP(Q), |l - lLp) can be identified with  (PPP(Q,w; ), |- [lp,p)
upon using the trivial specifications
T={0}, 7=27, G=AT={Ax{0}: AcA}

and p as the measure assigning mass 1 to {0}. Thus by Theorem A.26
and Lemma A.25 we obtain

COROLLARY A.27. The spaces LP(Q), p > 1, are complete. Every sequence
Xn — X in LP(Q) has a subsequence (Xn, )xen depending only on the
seminorms (|| Xn — Xm||Lp)n,meN such that

klim Xn, (W) =X(w) for Q-essentially every w € Q.
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A.2.4 The Banach space LP(Q)

We write Ng for the collection of all Q-negligible sets and consider
the equivalence relation ~q on QR, induced by Q via

f~o g < f(w)=g(w) forallwe O\N and some N € Ng.

The ~q-equivalence class of a function f € QR will be denoted by [f]q,
and we define

LP(Q) £ {[flg : f€ LP(Q)} C OF/ng £ OF/~g

as the collection of all such equivalence classes containing a member
of LP(Q). We have the following (trivial) result:

LEMMA A.28. For all p > 1, the operator
Q:LP(Q) =R, Xw— Qlfl, wherefeXnLOA),
is well-defined, and (LP, || - ||v,p) is a normed space.

Proof. Let X € LP(Q). By definition of LP(Q), there is some f € LP(Q)
such that X = [f]q. In particular, f € XN L°(A). Let g € XN LO(A) be
arbitrary. Then f and g coincide Q-essentially, and hence Q[f] = Q[g]
(see Lemma A.23). Thus Q[] is well-defined.

By definition, LP(Q) is contained in the linear space Q%/ng. Let
X, Y e P(Q) and « € R, and choose f € XN LP(Q) and g € YN LP(Q).
Then «f + g € LP(Q), since LP(Q) is a linear space, and thus

aX+Y =«lflg +[glg = [af + glg € LP(Q).

Since || - ||Lp is a seminorm on £P(Q) (Corollary A.18) and Q[] is
well-defined on LP(Q), we obtain

IX+YllLp = If+ gl <fllee + gl = IXlLp +YLp
and, similarly, [|aX||r,p = |edl||X]|Lp- It remains to check that
f~Q 0 = ||ﬂ|L,p =0

for all f € OR. Since Q[] is well-defined on LP(Q), the validity of
“ = ” is obvious. For the other direction, we note that ||f||., = 0
means that Q[lg[’] = 0 for some g € £P(Q) with f ~g g. But then g

vanishes Q-essentially by Lemma A.21, and hence f ~g g ~q 0. O

COROLLARY A.29. If Q has the Fatou property, then LP(Q) C O%/ng is a
Banach space for all p > 1. If X, — X in LP(Q), then there exists a subse-
quence (Xn, JxeN C LP(Q) such that X, — X converges Q-essentially.

Proof. In view of Lemma 2.41, completeness of LP(Q) and the conver-
gence statement are guaranteed by Corollary A.27. O
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We continue this subsection with a brief investigation of conver-
gence in upper probability.
DEFINITION A.30. We say that a sequence (Xn)nen C LO(A) converges
to X in upper probability (in symbols: Xy, 9Q, X) if

Ty_r)rgoQ(IXn—X\ >¢) =0 foralle>0.

We have the following simple relations between convergence in up-
per probability and LP-convergence:

LEMMA A.31. Let (Xn)nen C £O(A).

(i) If Xn 25 X, then, Q-essentially, Xy, — X for a subsequence.

(ii) If Xn — X in LP(Q), then Xn 2 X.

(iii) If (Xn)nenN is uniformly bounded by a constant and Xy, 2, X, then
Xn — Xin LP.

(iv) Let g : R — R be continuous and suppose that Xy, 2 X If g is
uniformly continuous, or if X € L' (Q), then g(Xy) L, g(X).

Proof. (i) If Xy L, X, we can choose a subsequence such that
Q(Xn, —XI>27%) <27k,

Upper probabilities are countably subadditive by Lemma A.20; hence,
the event Ay £ Uy {Xn, —X| > 27%} satisfies Q(A¢) < 27¢"1. The
event on which X,,, fails to converge to X is contained in A, for all
¢ € N, and is thus Q-negligible.

(i) By the properties of sublinear expection operators, we have

Q(IXn —XI > ¢€) < e PQ[Igx, x> Xn = XP] < e P|Xn =X ,

and hence X,, &> X whenever X,, — X in LP(Q).

(iii)  Suppose that [X,| < K for all n € IN and some K > 0. Then [X| <
K as well, by (i). If Xy L, X, then sublinearity and monotonicity of
Q[] imply

Q[Xn —XIP] < €P +2PKPQ(IXn —X| > €) — €P

for all € > 0; thus, X, — X in LP(Q).

(iv) If g is uniformly continuous, then for each ¢ > 0, there is some
5 > 0 such that |g(x) — g(y)| < ¢ whenever |x —y| < 8. Therefore

QIg(Xn) —g(X)I > ¢) < Q(Xn —X| >8) =0,

that is, g(Xn) 2 g(X).
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If g is merely continuous, we apply the previous step to the uni-
formly continuous function g™(x) £ g((—mV x) Am), and obtain

Q(lgXn) —g(X)I > €) < Q(lg™(Xn) — g™ (X)| > ) + Q(Xn —X| > 1)

n—o0

+Q(XI>m—1) —= Q(X]>m—1).

If X € L'(Q), then we have Q(]X| > m) < Q[X[[/m — 0, and thus
9(Xn) 25 g(X). O

In the next subsection, the following complete subspace of LP(Q)
and its properties will be a useful tool. We define

LP(Q) as the closure of {[flq € LP(Q) : f€ L¥(A)} inLP(Q).

Similar to Denis et al. (2011), we have

LEMMA A.32. For X € £°(A), we have
X €1P(Q) < Q[1{xj=nXIP] = 0.
In this case, (—m.V X) An — X in LP(Q). In particular, we have
IX—=Y|, XAY, XVY€eLP(Q) whenever X,Y € LL(Q).

Proof. “=" Let X € LY(Q) and ¢ > 0. Choose Y € £®(A) with ||X —
Y||Lp < ¢, and note that

1 Yoo ||X
M= Xllp < IX= YLy + VeQ(XI > )P < ¢ 4 Mol Xl

“<=" We set Xn, £ (—nVX)An € L®(A), and note that |X, — X| <
Txj=nylXl = 0 in LP(Q); thus, X € LY(Q). This proves the charac-
terization and the LP(Q)-convergence statement. The characterization
of L} (Q) immediately implies that |Z| € L} (Q) whenever Z € L} (Q),
which immediately yields the “in particular”-statement. O

We note that Lemma A.32 shows in particular that X € L} (Q) when-
ever |X| < |Y| for some Y € L} (Q).

COROLLARY A.33. For X € L°(A), we have
XP € L4(Q) = X e L}(Q).
Proof. If X[P € L} (Q), then
Q [Tx=myXIP] < Q [1xp=myXIP] = 0,

by Lemma A.32; thus, X € L} (Q). On the other hand, if X € LY (Q), we
put £&™ £ (IX| An)P € £2(A) and note that

[€" = XIP[[y < Q[Tgxi=myIXIP] — 0

by Lemma A.32; hence, [X|P € L] (Q). O
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On LY (Q), we have a dominated convergence theorem:

LEMMA A.34. Let Xy, L, Xand suppose that |Xn| <Y for alln € N and
some Y € LY (Q). Then X, — X in LP(Q).

Proof. First note that |[X| < Y by Lemma A.31 (i). We let ¢ > 0 and set
Xk £ (—kVXp)Akand X* £ (—kV X) Ak. Since [X,,| < Y foralln € N,
we have

IXE —XnlPr < Q[Txy =1 XnlP] < Q[1gy=1[YIP] = 0

by Lemma A.32. Hence, we find k € IN such that || XX — Xy [|1» < ¢/2
for all n € IN. The same argument shows that || X* —X||.» < ¢/2, as
well. Therefore

Xn —X[lLp < &+ [IXE =X |1p.

Lemma A .31 (iv) implies that XX Q. Xk asn — oo. But (XK)nen is

uniformly bounded by k, and thus Lemma A.31 (iii) yields the LP(Q)-
convergence [|XX —X*||, — 0. O

A.2.5 Lebesgue families

Throughout this section, Q is an upper probability. We use our results
on the spaces LP(Q) to build Lebesgue families (as in Definition 2.6).
To this end, let (F;)c(o,1) be a filtration with I+ = A and suppose
that ¥, is Q-trivial, i.e.,

AeTFy = Q(A)=0.

Defining
L7(Q) £ {XeP(Q) : XNLO(Fy) # 0}

as the collection of all equivalence classes X € LP(Q) which have an
Fi-measurable representative, it is straightforward to see that

{7 QL1 lp) s telo, T, p=1}
is a Lebesgue family, that is, for all t € [0, T], we have
(L1) LP(Q) < O%/ng forallp>1,
(L2) LE(Q) cL{(Q) forallp>q>Tand0<s<t,
(L3) LP(Q) ={XeL}(Q) : XPeL!(Q)}forall 1 <p < oo,
(L4) XY €L{(Q), ifXelP(Q),YeL{(Qand+3=1,

(Ls) LE(Q) =i(R) for all p > 1, where i : R — L}(Q), x — [w — x]q is
an order-preserving isometric isomorphism,

(L6) LE(Q) £{X € LP(Q) : X = 0} C LP is closed.
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Here, (L1) is satisfied by construction and (L2)-(Lg) follow from
Holder’s inequality (see Lemma A.15 and Corollary A.16). Since F is
Q-trivial, every Fp-measurable function is Q-essentially constant, and
we get (L5). Pointwise convergence for subsequences (Corollary A.29)
yields (L6).

To serve as an appropriate domain for a sublinear expectation, the
above family is usually to large. Instead, one works with a smaller
family that is obtained by taking LP(Q)-closures of a | - [P-stable alge-
bra of (regular) functions which contains all constants:

From here on out, X C £*(A) is a |- [P-stable function algebra
containing all constants, i.e.,

(H1) 3 c £L=(A),

(H2) ag+pheHif o, B € R, g, h € K,
(H3) fge Hiff,g e K,

(Hg) P e H forallp >1if h € I,
(Hs) 1€ H.

We note that |- [P-stability (Hg) entails in particular that H is stable
under taking the maximum and minimum of finitely many elements.
We have the following result:

THEOREM A.35. Let H C L*°(A) be a |- [P-stable algebra of functions which
contains all constants, and set

LP éclos{[h}Q € O%/ng : he ﬂ{ﬂLO(’ft)} CLP(Q), teloT], p>1.

Then {(LY, || - lp) : t €[0,T], p = 1} is a Lebesgue family.
We note that L} C L} forall t € [0,T] and p > 1 since H C L>(A).

Proof. Let t € [0,T]. Since L} (Q) is a Banach space, the closure L} of
its subspace of Q-equivalence classes of functions from 3 N £°(F)
is itself a Banach space. We now verify the properties (L1)-(L6) of a
Lebesgue family one by one:

(L1) By definition, L} < LY (Q) < LP(Q) < 2%/Ng.

(L2) Let 1 < qg<pand 0 < s <t<T. Since HNLO(TFs) € HNLO(Ty),
the same is true for their L9(Q)-closures Ld and L. If X,, — X
in LP(Q), then also X, — X in L9(Q), as [|X|Lp < |[X]|r,q for all
X € L'(Q) by Corollary A.16. Thus the L9(Q)-closure is bigger
and LY C L{. All in all, we have LY c Ld c L{.

(L3) We have to show that L} = {X e L] : X]P e L{}.

“c” Let X € L} and take h,, € HNL%(Fy) such that [[hn —X]1,p —
0. By Corollary A.16, this implies |hn —X]||1,1 — 0, and we get
X € L,l. Moreover, we have X ¢ LE(Q) since H C L£*°(A). Hence
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IX|P € L] (Q) by Corollary A.33, and &, = [X[P Am — [X|P in
L'(Q) by Lemma A.32. To prove that [X|P € L}, it thus suffices to
check that &,,, € L] for all m € IN. For this, setn,, 2 [hn|P Amand
note that n, € H since X is |- |P-stable and contains all real con-
stants. Now, we have n, Q, &m asn — oo by Lemma A.31 (iv).
But then, Lemma A.31 (iii) immediately yields n, — &, in
LP(Q); hence &, € 1].

“>” Now, let X € L] with [X[P € L], and take h, € H N L°(F})
such that h,, — Xin L'(Q). In particular, [XP € L{,(Q), and thus
X € LE(Q) by Corollary A.33. Lemma A.32 shows that &, =
(—mVX)Am — Xin LP(Q). To prove that X € L}, it thus suffices
to check that &;,, € L} for all m € IN. This is again a consequence

of Lemma A.31, since n, £ (—mVhpy) Am e HNLO(F,).

(L4) Let S +¢ =1,XeLf,and Y € L. We take Xn, Yn € H N LO(Fy)
such that |Xn — X|[p + [[Yn —Y|lL,q — 0. Then P, £ X, Y, €
H N LO(Fy) by (Hg), and we have

IPr = XYL < [Xn(Yn =YL + V(X = X)[L1-
Now, Holder’s inequality (Lemma A.15) implies
IPn=XY[[L1 < [XnllupllYn =Yg + IVl q[Xn = XLy — 0,
and we have shown that XY € L].

(Ls) Since J is Q-trivial, the intersection 3N £°(F,) consists solely of
Q-essentially constant functions. Hence L = clos(ig (R)), where
ig : R — O%/ng maps a constant x € R to the ~g-equivalence
class of the constant function w — x. Since iq is isometric, ig (R)
is complete, and thus L = clos(ig (R)) = iq(R).

L6) Let 0 < X, € LP and suppose that X,, — X in LP(Q). By Corol-
t pp y

lary A.29, X, — X outside a Q-negligible set for some subse-

quence, and thus X > 0 in LP. O

A.2.6 Sublinear expectation operators on L>°(A)

In Subsection A.2.1, we have seen how a family Q of finitely additive
probability measures gives rise to a sublinear expectation operator

Q[X] = sup q[X].
qeQ

In this subsection, we give a partial converse: We show that every sub-
linear expectation operator on £*(A) is given by a family of finitely
additive probability measures. This representation result is by now
classic, see, e.g., Follmer and Schied (2004). Our presentation is close
to the one in Peng (2010).
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THEOREM A.36. Let H < L®(A) be a linear space of bounded measurable
functions containing all constants and let € be a real-valued function on
H. Then & is a sublinear expectation operator if and only if there exists
a (non-empty) family Q of finitely additive probability measures such that
€ =Qllg, e,

&Ml =sup [hdq  forallh e H. (A.13)
qeqQ

Since every family Q of finitely additive probability measures in-
duces a sublinear expectation operator Q[-] on X(Q) (and hence on
L*®(A)) via (A.13), it remains to show that every sublinear expecta-
tion operator admits a representation of the form (A.13). The basic
idea is simple: We prove that € can be represented as a supremum
of continuous linear functionals on £*(A). Then (A.13) follows, since
every continuous linear functional on £*(A) is given by a finitely
additive measure. We begin by extending € to all of £>(A).

LEMMA A.37. Let € be a sublinear expectation operator defined on some
subspace 3 < L°(A) which contains all constants. Then the envelope

Elgl £ inf{€[h] : h € H with h > g}, ge L7(A),
defines a sublinear expectation operator € on L>°(A) with &|sc = €.

Proof. Given g € £L*(A), we write U(g) C H for the collection of all
h € H with h > g. Note that ||g||c € U(g) and that inf,cq g(w) < h
for every h € U(g); hence,

~Jlgllee < inf g(w) < Elgl < gl for every g € £2(A).
we

In particular, & maps £>(A) onto IR. Moreover, since &[g] < E[h] for all
g,h € H with h > g, it is clear that E[g] = &[g] for all g € K. Notably,
€ preserves constants. It remains to check that & is monotone and
sublinear. To prove monotonicity, let f,g € £>(A) with f < g. Then
U(g) c U(f), and hence

Efl= inf Eh] < inf E[h] = &gl
heu(f) hel(g)
To establish subadditivity, let f, g € £L>°(A) and choose (fn)nen C U(f)
and (gn)nenw C U(g) such that E[f,] — E[f] as well as E[gn] — Elgl.
Then, we have , + g € U(f + g), and we obtain

Elf + gl < Elfn + gnl < Elfn] + Elgnl — E[fl + Elg].

Positive homogeneity follows upon observing that U(xg) = «l(g) for
all x > 0and g € L*(A). O

Now, we show that £ can be written as a supremum of continuous
linear functionals on £*®(A).
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LEMMA A.38. Under the assumptions of Theorem A.36, there exists a family
M of positive linear contractions T : H — R with T1 =1 such that

E] = sup Th forall h € H. (A.14)
TeM

Proof. In view of Lemma A.37, we may suppose without loss of gen-
erality that € is defined on all of £L*(A).

We say that a linear functional T:Y C £*(A) — R is dominated by
€ if Th < E[h] for all h € Y, and we denote by M the set of all linear
functionals on £*°(A) which are dominated by €. We proceed to show
that for each h € £*(A), there is some T, € M with Ty h = &[h]. Then
M is non-empty and it immediately follows that £[h] = sup,, Th.

Thus let h € £>*(A) and consider the linear functional tp[x-h] £
«-&[h] on Y = span{h} C K.

For all « > 0, sublinearity of € implies Ty [« - h] = E[x - h] as well as

0=E[0] = E[oc-h+(—a) - hl <o E[R] + E[(—a) - hl,

which rearranges to Th[(—«)-h] = —a - E[h] < E[(—«) - h]. Thus T, is
dominated by &, and the Hahn-Banach Theorem (see, e.g., Theorem
5.53 in Aliprantis and Border (2006), p. 195) yields a linear functional
Th : 3 — R which is dominated by & and whose restriction to Y
coincides with ty,. Hence Ty, € M with T, h = £[h] and

Eh] = sup Th forall h € 7,
TeM
which proves (A.14). It remains to show that M consists solely of
positive linear contractions with T1 = 1:
If TeMand 0 < h e £L*(A), then T[-h] < &[-h] < 0 by monotonic-
ity of €, and hence Th = —T[-h] > 0. Moreover, if T € M and « € R,
then

Ta< €= and —Ta=T[—o < E[~a]=—x«, ie, Ta=«,

because &€ dominates T and preserves constants. For the same reasons,
and because &[] is monotone, for T € M and h € £L>°(A), we have

Th < €] < €l|[h]|o] = Mo and
—(Th) =T(=h) < €[-h] < E[~[|hlec] = —[[|o0,
and hence |Th| < ||h||«; thus, T is a contraction. O

We now give the proof of the probabilistic representation result.

Proof of Theorem A.36. Suppose that € : H C L>(A) is a sublinear
expectation operator. By Lemma A.38, there exists a family M of
positive linear contractions T : £L*°(A) — R with T1 = 1 such that
€] = sup; .\ Th for all h € H. By Lemma A.13, each T € M corre-
spond to a unique finitely additive probability mt with Tg = [ gdmr
for all g € £°(A). Setting Q £ {mr : T € M}, we have

&Ml =sup [hdq forall h e K. O
q€Q
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A.3 INTEGRATION OF VECTOR-VALUED FUNCTIONS

Let (S, 8, 1) be a finite measure space and (X, |- x) a Banach space. We
briefly review the theory of integration for functions f : S — X with
respect to . We focus on the aspects relevant for Chapter 2 of this
thesis, complementing the short outline of Subsection 2.2.4, and con-
fine ourself to presenting vector-valued integration as a consequence
of the real-valued theory. For additional background, we refer to Dun-
ford and Schwartz (1958) and Diestel and Uhl (1977), which are the
sources of the following exposition.

The (Lebesgue-Bochner) integration theory is developed starting
from simple functions. A measurable simple function f : S — X takes
finitely many values x1,...,xn € X and satisfies A; 2 f~1({x;}) € 8,
i=1,...,m; hence, f = Y ' ;1a,xi. The collection of all measurable
simple functions forms a vector space and is denoted by E(y; X).

The integral of a simple function f € E(u; X) with respect to p is

Jafdu s Y WA NAX €X, AES. (A.15)
Clearly, we have

[[afduly < ZRuAinA)kilx = [Alf()Ixdy,  (A.16)

where the integral on the right-hand side is the classical Lebesgue
integral of the measurable function |f(-)|x : S — [0, 00). The expression

Iflp 2 [ |, = (FFORA™, =1,

makes sense for all measurable functions f : S — X. On the space
ILP(w; X) of all measurable functions f : S — X for which it is finite,
the mapping || - ||, is clearly a seminorm.

In particular, || - ||, is a seminorm on the space of simple functions
E(w; X), and hence (A.16) shows that the integral [, : E(1;X) — X
is a continuous linear operator with respect to that seminorm. If
(fr)nen C E(w;X) is a | - |[p-Cauchy sequence, then (fn, (s))ken is
a Cauchy sequence in X for p-a.e. s € S and a suitable subsequence
(nk)xen- Thus f,,, converges p almost everywhere to some measur-
able f € ILP(u; X), and we have ||f, —f||, — 0.

The completion £P(u;X) of E(w;X) in LP(u;X) is a space of mea-
surable functions S — X on which the (Lebesgue-Bochner) integral [ ,
is uniquely defined by continuous extension. Identifying functions
that coincide p-a.e., we obtain a Banach space, which we denote by
LP (w; X). The following characterization of LP (y; X) is very useful:

LEMMA A.39. For an X-valued measurable function f on S, the following
statements imply each other:

(a) fe LP(wX).

(b) fis p-a.e. separably valued (i.e., {f(t) : t € N¢} C X is separable for
some p-null set N) and ||f||, < oo.
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In particular, LP (w; X) = ILP (u; X) if X is a separable Banach space.

Proof. Every a.e. limit of a sequence of simple functions is clearly a.e.
separably valued. On the other hand, if f is a.e. separably valued it
is straightforward to produce a sequence of simple functions with
fn — f ae. and [fo()lx < If(-)lx +1 a.e. Then f,, — f € LP(w;X)
by dominated convergence, and hence f € LP(u; X); see also Lemma
[II.6.7.9 in Dunford and Schwartz (1958), p. 147. O

A.3.1 Integration on Lebesgue families

Let £ ={(L},| - llLp) : t€[0,T], p > 1} be a Lebesgue family (see Defini-
tion 2.6, p. 16) and let u be a flrute Borel measure on [0, T]. Every one
of the spaces L} is a Banach space; the space £'(;LF) of LP-valued
(Bochner) integrable functions was introduced above. Recall that the
(Bochner) integral is defined on £'(w;L}) as the unique continuous
linear operator

Ja: LT (wLP) — 1P with [ afdull, < JalfO)lLp du

that satisfies (A.15) for all measurable simple functions [0, T| — L}.
Recall Definition 2.16 (p. 22): An LP-process is function X : [0, T] —
LP, X — X¢. If X¢ € LY forall t € [0, T], then X is adapted; if X is B([0, T)-
B(LP)-measurable, then X is measurable. The space of all measurable
and adapted LP-processes is denoted by XP(£).
The space of adapted y-integrable LP-processes is defined by

PPEPP(L, ) 2 {X €XP(L) : XTjoy € LT (wLY) forall t € [0,T]}
and is equipped with the seminorm
IXllop 2 [ lXelp n(dt), X € PPL, ).
Remark. If LY is separable, then Lemma A.39 above shows that
PP(L, ) ={X €XP(L) : [X|lpp < o0} o
LEMMA A.40. The seminormed space (PP, || - ||pp) is complete.

Proof. Since XP(£) and £'(;L}) are linear spaces for all t € [0,T],
it is clear that PP = PP(L, ) is a linear space as well. It is immedi-
ate that || - ||p,, is a homogeneous and subadditive function on X?(£);
moreover || - ||py, is finite on L1 LP) D PPUIf (X™), e is a Cauchy se-
quence in PP, then (X™), ¢ is a Cauchy sequence in L1 (u; LP). Hence
there is some X € £'(y;LP) with [X™ —X|lp, — 0, and there is a
subsequence (ny)xen and some p-null set N € B([0,T]) such that
limy 0 X{™* = X¢ in L} for all t € N¢. Hence the process Y £ X1Ine
is both measurable and adapted. Moreover, Y = XlIne € L1 (g LP)
and ||X™ —Y|p, — 0. In particular, (X™1(o))nen is a Cauchy se-
quence in £'(n,L}) and I1X™ 10,01 — YTio,ullpp — 0. This shows that
Yl € L'(; 1P); hence, Y € PP and PP is complete. O
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By Lemma A.40, we obtain a Banach space PP as the quotient space
PP £ PP/nv, where NP £ {X € PP : || X]||p;,, =0},

that is, by identifying X,Y € PP if X; = Y for p-a.e. t € [0, T]. We
have already seen that the integral is a continuous linear operator on
L1 (w; LP), and hence we have

LEMMA A.41. The integral
Ja:PP=1P, X [, Xdu
is a continuous linear operator satisfying

IfaXdull, ) < FalXelpu(dt) <Xy, X € PP,
forall A € B([0,T]).

A.3.2  Integration and classical probabilities

We now consider the special case where the Lebesgue family
L2 p) - telo, T, p>1)

consists of the classical Lebesgue spaces
LY =LP(Q,%,P), telo,T,p=1,

on a complete filtered probability space (Q, Fr, (Fit)co,1), P)- Since all
of the spaces L} are separable, the space

PP =DPP(L,dt) of adapted dt-integrable LP-processes

consists precisely of all measurable functions f : ([0, T], B([0,T])) —
(LP, B(LP)) with f(t) € L} for all t € [0, T] and

IX[lpp = [ o, IX(B)[ILp dt < co.

In the present setting, one is more used to working with (progres-
sively) measurable stochastic processes X : Q x [0,T] — RR. Let us
consider the space

pr £ {X progressive : [, E[lthp]% dt < oo}.

Here, t — EP [IXIP}% = [|Xt||L,p is measurable by Tonelli’s theorem;
for t — SUP,cq Ed [IXIP]% this does not need to be the case if Q is
uncountable. Clearly, the expression [|, 1 [[Xt|[1,pdt defines a semi-
norm on IPP; since it is given by the same formula as the the semi-
norm || - [[p, on PP, it will be denoted by || - |[p,, as well, with a slight
abuse of notation. For the weakest norm |X||p;, the space P! is the
well-known complete seminormed space of product-integrable pro-
gressive processes.

Identifying processes in IPP that coincide P  dt-a.e., we obtain the
corresponding normed space, which we denote by IPP.
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LEMMA A.42. Foreachp > 1, (PP, || - |lp,) is a Banach space.

Proof. Let G denote the progressive o-algebra on (Q, I, (Ft)teio, 1, P)-
Then P' =L'(Q x [0,T],§,P ®dt) is a Banach space. If X™ — X in P!,
then X™x — X converges P ® dt-a.e. for a subsequence.

Now, let (X™),,en be a Cauchy sequence in IPP. Then

IX™ =X™p1 = Jio nlIX(®) L1 dt < o nlIX(B)lep dt = X" = X™[|py,

by Holder’s inequality. Thus X™* — X converges P ® dt-a.e. for a sub-
sequence and some X € P'. Fatou’s lemma implies

[Xellt,p = [ Hminf X{™ || ,p < sup ||X™||,p < oo for dt-a.ete [0,T].
k—o00 neN

Similarly, we obtain || X{"™ — X¢||rp < liminfe_, o [|[X{™* — X{||1,p for dt-
a.e. t € [0,T]. Integrating these inequalities from 0 to T and using
Fatou’s lemma again, we get

[X|[pp < oo and [[X™* —X]p, < lim inf | X{* —X?‘pr k2
! ! {—00 !

Thus X € PP and X™ — X in IPP. O

In the following, we prove that PP and IPP are isometrically isomor-
phic via the mapping

o (PP ]+ lpp) = (PP, [+ llpp), X > at(X) £ XT0,00) (EIXIP]).

Since | X|pp = ng[\thp]%dt < oo, we have E[X¢|P] < oo for dt-a.e.
t € [0, T], and hence
X¢ = Xt1 [0,00) (EHXHPD = [O((X)]t in Lf for dt-a.e. t € [O, TI.

Thus «(X) is an adapted LP-process which is a.e. equal to X; hence, if
« is well-defined, it clearly is an isometric homomorphism. To show
that o is well-defined, it remains to prove that «(X) is B([0, T])-B(LP)-
measurable. This, in turn, is a consequence of the following lemma:

LEMMA A.43. Let X : Q x [0,T] = R be A ® B([0, T])-measurable. Then
x(X) = X1(0,00) (ElIX[P]) is B([0, T]) ® B(LP)-measurable.

Proof. Since LP is a separable Banach space, it suffices to show that
the distance function

de : [0, TI > R, tre|a(X¢)—E|r is B([0, T])-measurable

for every & € LP. For every & € LP(P) C LO(A), the process 0 < Dg £
IX—E&JP is A ® B([0, T])-measurable. Hence, by Tonelli’s theorem,

the map dg :[0,T] — [0,00], t — E[D{ =E[Xy — §[P] is measurable
for every & € LP. Noting that

~ 1 ~ ~
deg = (de)® - 1(0,00)(do) + IElILp - Tgoo}(do),

it follows that d; is measurable for every ¢ € LP. O
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To prove that « is onto, for each f € PP, we need to produce an a.e.-
modification X € IPP. This is achieved by an approximation argument.

LEMMA A.44. For every f € PP, there exists some X € IPP such that
X¢ =f(t) inLP fordt-ae tel0,T].

Proof. For each n € N and k € {0,...,n}, we put t £ [T]k/n AT and
choose a simple function

¢ EE(WLYy) with [[fiTo,q) —Fflioqllpp < /n2.
Now, for each n € IN, we set
(1) = £(0) 1o (t) + v 1 e T (ep,en) (1) € E(w; LP), tel0,T],
and note that
I = fllpp = i ek IFE(0) — 1)Ly p(dt) < Vn. (Aay)

Fixing some representation & € LP(P) for each one of the values
m,...MN, € LP of f*, n € IN, we obtain a stochastic process

X":Qx[0,TI-R with X{=f(t)inLP forallte[0,T]. (A.18)
By construction, for each t € [0, T], the restriction
X":Qx[0,tl =R is Fyii/, @ B([0,t])-measurable, (A.19)

where F; = F1 for s > T. In particular, X™ is F1 ® B([0, T])-measurable.
For n,m € N, by Holder’s inequality and (A.18), we have

1
Jo EP[IXE =X dt < fo EP[IXP — XPP]7 dt = [ — ™,

and hence (A.17) implies that (X"),cn is a Cauchy sequence in
L'(Q x[0,T],FT @ B([0, T]), P @ dt). Passing to a subsequence, we may
thus assume that

X{ converges in R, P-as. for dt-a.e. t € [0, T]. (A.20)

Selecting a further subsequence if necessary, we may additionally as-
sume that

f*(t) —» f(t) in LP fordt-a.e. tel0,Tl. (A.21)
We now define X : Q x [0, T] — R as the measurable limit

Xt £ 1{hmsupnﬁm X1 <oo} lim sup X?, te [O, T]
n—oo

Then (A.18), (A.20) and (A.21) show that Xy = f(t) in L} for dt-a.e.
t € [0, T]. Moreover, it follows from (A.19) that the restriction

X:Qx[0,t] >R is Fiqe ® B([0, t])-measurable

for all ¢ > 0. Thus X is a progressively measurable a.e.-modification
of f. In particular, |[X|[p, = |/f|lpp < 0o, and X € PP is as desired. [
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Note: Every f € PP is a limit of measurable simple functions [0, T] — LP and hence it has
some 1 ® B([0, T])-measurable and adapted a.e.-modification X. Now, we can take the
optional projection °X (see e.g., Dellacherie and Meyer (1982), Theorem 43, p. 103) as
the optional (and, in particular, progressive) modification of f in Lemma A.44. As much
more is known about the structure of f, we prefer the direct and elementary argument
of Lemma A.44.

In view of Lemma A.43 and Lemma A.44, we have proven the follow-
ing proposition.

PROPOSITION A.45. The mapping

o: (PP, |- [pp) =

(PP, llpp), X = alX) £ XT0,00) (EIXIPT).

is an isometric isomorphism. In particular, for every X € PP, the image
f = a(X) € PP is uniquely characterized by the property

f(t) =X¢ inLP for dt-a.e. t € [0, T].

On (IPP, || - |lpp), the pathwise Lebesgue integral
§1:PP =L, X §,Xedt 2 [ [, Xe(w)dt]
is well-defined: Indeed, § A Xt dt is measurable, and we have
C$aXedt]] <EV[falXel dt] = [o BV [X:l] dt < [X|ey

by Fubini’s theorem. Thus, §, : PP — L' is a continuous linear op-
erator. Clearly, §, is the canonical way to define an integral on PPP.
It is now natural to ask about the relationship between this pathwise
Lebesgue integral on PP and the Bochner integral [, Xdt on PP. An
answer is readily given:

PROPOSITION A.46. Let X € PP and Y € PP such that X¢ = Yy in LP for
dt-a.e. t € [0, T]. Then, the pathwise Lebesgue integral

FaXedt £ [w— [ Xs(w)dt], A e B(0,T]),

defines a member of LP which coincides with the Bochner integral [ , Yy dt.
In particular, we have

$aXedt = [ [«x(X)]edt forall X € PP.

Proof. Let X be an elementary predictable process, i.e.,

Xe(w) = &o(w) oy (t) + 2 g &k() Tt (8), (W, 1) € Q x[0,T],

where 0 < t1 < --- <ty < Tand & € £°(F, ). Then X € PP and
X induces a simple function f € S(dt;LP) via t — f(t) = Xy € LP. In
particular, x(X) = f € PP. For each w € Q, the Lebesgue integral I(w)
of X(w) is given by

I(w) £ [orXelw)dt = 31 (b —ti)ék(w), weq,
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and hence
FromXedt = X0 (tip 1 — )&k = 2 g Flte 1) (bt —t)
= [lomfdt=[,onaX)dt inLP.
Thus the pathwise Lebesgue integral satisfies
faXedt = a(X)dt inLP (A.22)

for all elementary predictable processes X. In particular, by continuity
of the Bochner integral (Lemma A.41), we have

[$aXedt] , = [[[axX)dt][ , < TaX)lpp = [X]pp- (A.23)

By Lemma A.47 below, the collection of all elementary predictable
processes is dense in IPP; hence, we obtain

$aXedt= [, a(X)dt inLP for all X € IPP,

from (A.22), by continuity of the integrals (A.23) and since « is an
isometric isomorphism. O

LEMMA A.47. Let X € PP. Then there exists a sequence (X™)neN of ele-
mentary predictable process such that || X™ —X|[p,, — 0.

Proof. We follow the standard argument, see, e.g., Ethier and Kurtz
(1986), Lemma 2.2 (p. 281).

By dominated convergence, we may assume that X is bounded and
it suffices to construct approximations that converge P ® dt-a.e. It is
straightforward, to approximate continuous progressive processes by
elementary predictable processes, and hence we only need to show
that X can be approximated by continuous processes. We define a
bounded, progressively measurable and continuous processes I by
I & jéXsds. Forn € N and t € [0, T], we set

Xt =n(lt = Ie—1/myvo)-

Then the X™ are uniformly bounded, progressively measurable and
continuous. Moreover, for all t > 0 and n > 1/t, we have

XP =n(f§Xsds — [§/" Xsds) — X P-as.

by Lebesgue’s differentiation theorem, see e.g., Rudin (1974), Theo-
rem 8.17, p. 176. The approximation is constructed. ]

BNEE parameter via BSDE parameter

LEMMA A .48. Let (f,&) be a BSDEP-standard parameter. Then, there exists
a BNEEP-standard parameter g : [0, T] x LP — LP such that

«(f(-, X)) =g(, (X))  forall X € PP.

169
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Proof. By (B2), |[f(t,0)||Lp < oo for all t € N¢ and some dt-null set
N € B([0,T]). We put f £ flne and note that (f,&) is still a BSDEP-
standard parameter. For each n € LP, it is possible to define

Q(t/ﬂ) £ ¥(/t/n) € Lp'

We claim that g maps [0, t] x L} into L}:
For each s € [0,t] and all n € L}, the function w — f(w,s,n(w)) is
easily seen to be Fi-measurable. Moreover, by (B2), we have

lg(s,llp = IIf(,s,m)llLp < Linflep + Tne (BIF(s, 0)[|Lp < 0o. (A.24)

This shows that g(s,m) is in L} whenever n € L} and s € [0,t]. In
particular, g maps [0, T] x LP into LP.
For all 1, ¢ € LP, (B2) implies

1
lg(t,n) —g(t, Dllr <E[LPM—CP]? =Lin—CllLp,

which establishes the Lipschitz property (2.14) of a BNEEP-standard
parameter. To prove that g is a BNEEP-standard parameter, it thus
remains to show that g(-, X) € PP whenever X € SP.

Let Y € PP. Proposition 2.66 yields X € PP with «(X) = Y in PP.
Replacing X by X1(o o) ([|X||Lp) if necessary, we may assume that

[XillLp <oco and Xy¢=Y; inlP foralltel[0,T].

Now, X £ f(-,X) € PP by (2.54) above, and | X¢|1, < oo for all t €
[0, T] by (A.24). Therefore, as a consequence of the definition of « in
Proposition 2.66, the LP-process Y £ «(X) € PP satisfies

Yt :Xt :¥(t/Xt) :?(t/Yt) = g(t,Yt) in Lp for all te [O,T].

Thus g(,Y) =Y € PP for all X € PP > SP. Finally, by the definitions of
g and «, for any X € PP, we have

[oc(F(-, X)) ] = F(t, Xe) = f(t, X)Ine (t) = g(t, [(X)]¢) in LP

for dt-a.e. t € [0, T], that is, «(f(-, X)) = g(-, 2(X)) in PP. O
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This appendix supplements Chapter 3. In Section B.1, we collect ele-
mentary properties of the Epstein-Zin aggregator and provide some
proofs that have been omitted from the main text. Section B.2 is con-
cerned with showing that

o [ 400

t T—

is a convex mapping on the set of all positive semimartingales. This
fact is used in Section 3.5 to prove concavity of stochastic differential
utility. In Section B.3, we give several results required in the proof of
the general stochastic Gronwall inequality in Section 3.4.

Throughout this appendix, we adhere to the notation of Chapter 3,
and consequently

€(0,00), Y1, We(0,00), V£1, and >0
are fixed constants. Moreover,
C2(0,00) and U= (1—7vy)¢
as well as

bL1/p, 02 1=, and q2 %5l =9¢

By f: ¢ x 4 — IR, we denote the Epstein-Zin aggregator

f(c,v) £ 1 25¢" P11 —y)v)9 —86v.

B.1 PROPERTIES OF THE EPSTEIN-ZIN AGGREGATOR

In the following, we collect elementary properties of the Epstein-Zin
aggregator. The next lemma lists its derivatives.

LEMMA B.1. Forall c € &€, v € Y, we have

b=y

fele,v) =8¢~ P[(1 —y)v] T
fecle,v) = —ge™ (1 =y T

fev(c,v) =8(d _V)Cid)[ﬂ -yl

— _ o1 —
fule,v) = 89=Fe! P11y —87=%

b1

fovle,v) =8y —)e! [T =y,
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and, in particular,

fe >0, fee <0, Sign(fcv) = Sign(d) -v), Sign(fvv) = Signhf— b).

Thus f is always increasing and concave in c. Moreover, f is convex in v if
v > ¢ and concave in v if y < ¢. Finally, f : € x 4 — R is concave if and

only if y < ¢.

Proof. To prove the statement concerning concavity of f (jointly in
¢, v), we note that

(fee - fuv)(c,v) = —d(y — §)62c24[(1 —y? T, and
fev(e,v)? = (b —v)26%c 21 —yW* T

so that
(fee - fun) (€, 9) — feu(e,v)2 = (y( — 7)) 8224 [(1 —y )2 1.

Since f¢c < 0, this shows that the Hessian of f is negative definite if
and only if ¢ >y and otherwise indefinite. O

COROLLARY B.2. The derivative f, of the Epstein-Zin aggregator enjoys the
following boundedness properties:

fy b <1 b >1
v > ¢ || bounded above | bounded below

v < ¢ || bounded below | bounded above

Table 2: Boundedness of f,

In the following, given p € (0,00) \ {1}, we write u,(c) = c'=°/(1—p)
for the corresponding p-power utility function.

LEMMA B.3. For all c € €, we have
flc,uy(c)) =0 and fy(c,uy(c)) =—d.
Moreover, we have

o, and

f(c,v) = 8luy(c) —v] if v
<5 b.

[uy(c)—vl  if v

NV

Proof. The first claim follows immediately by direct calculation. For
the second, recall that v — f(c,v) is convex for y > ¢ by Lemma B.1.
Therefore, we have

f(c,v) = flc,uy(c)) +fulc, uy () [v—uy(c)] =8y (c) — V.

If y < ¢, then v — f(c,v) is concave for y > ¢ by Lemma B.1 and
all of the above inequalities are reversed. Finally, if y = ¢ then the
Epstein-Zin aggregator degenerates to f(c,v) = dluy(c) —V]. ]
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LEMMA B.4. Let V be a semimartingale with dynamics
dVy = —f(ce, Vi)dt +dMy,
where M is a local martingale, and suppose that
(1—y)V>0 and (1—vy)V_>0. (B.1)
Then, the process Y = ug oy, ! (V) satisfies
dY; = — (8[ug(ce) — Ye]dt+dAy) + (1—v)Vio) YdMy, (B.2)

where the process A is increasing if ¢ > vy and decreasing if & < vy; the
process A is given by

_[fe—vy  dIV B B
Ay _JO 7 O§<t] (1= )Yer, (1 $)Ys),
where J(x,y) =x'"9(y® —x%) —0(y —x).
Proof. We set g(v) £ ugou,'(v) = ﬂ(( v)v)'79, and note that
g'(v) =((1=vy)v)~9and g”(v ) (Y =)((1T—=y)v)~9~". Now, Y = g(V)

and, by (B.1), we have
(1—¢p)Y>0 and (1—¢)Y_ >0. (B.3)

A direct calculation using Itd’s formula (see e.g., Theorem I.4.57 in
Jacod and Shiryaev (2003)) yields
dYt =95 [ud) (Ct) — Yt] dt + g’(Vt,)th —+ %g”(Vt,)d[Mc}t — th,

(B.4)
where R is of finite variation and satisfies

dRy = g'(Ve JAVe =AY, = 71 (1= )Y, ) °

A((1=d)Y)° —AY,.
In particular, we have
dYf = g’(Vy_)dM¢, and hence d[YI¢ = g’(V,_)?d[M];.

For the continuous quadratic variation part in (B.4), we thus obtain

9" (V) divi§
"(Vi—)d[MF] 7d[Y] — ).
g" (Vi) t = g’ (Ve )2 (v Cb)( — )Y
Inserting this into (B.4), we arrive at
¢—vy dVl§ ) /
dYy =— (5 — Y |dt+ +dR¢ | +g'(Vi—)dMy,
t < [uq)(ct) t] 2 0 —d))th t g' (Vi) t
which establishes (B.2) with dA; = 2 2 - diy ¢ + dR¢.
If v > ¢, then % (152()}§(t, is decreasing by (B.3). Moreover, g is

convex, and hence we have
g(Ve) = g(Vi )+ g' (Ve ) (Ve — Vi ).

Therefore only jumps of non-positive height occur in R and thus R is
decreasing. Consequently,

dlY]§
dA, = 23¥ L9 4 dR,

is a decreasing process. If v < ¢, then g is concave and (1?4?)le, >0,
and hence A is increasing. O
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B.2 A CONVEXITY RESULT

We now prove that

s d[XI$
X L - (B.5)

is a convex mapping on the set of all positive semimartingales. We
start with an auxiliary result.

LEMMA B.5. Consider the convex subset E £ {(x,y) € R? : x+y > 0} C

RZ and let
(x —x)?

h:EX(O/OO)%(OIOO)r ((X/U)/’_‘)'—) x+y

Then h is convex.

Proof. The Hessian H of h is given by

2 (x+y) _2(®+y)  2(R%4y) (x—x)

(x+y)° (x+y)? (x+y)*

o) _2(x+y) 2 2x—2%

H(boy) %) = (x+y)? x+y (x+y)?

2 (2+y) (R—x) 2x—2% 2 (x—x)?

(x+y)® (x+y)? (x+y)’

. 2 (x4y)? .. L

Since x +y > 0, we get ﬁ > 0. The remaining two principal
minors vanish. Hence H is positive semidefinite on E x (0,00) by

Sylvester’s criterion, and h is convex. O

COROLLARY B.6. For each n € IN the function F* : E™ x (0,00) — R,

](x —xx)?
xX0,Y0), (X1,Y1), .-+, (Xn—1,Yn—_1),% Hgi

is convex.
Proof. Clearly F* = Y 1) hi* with
h{: ((XOIyO)I (X] Y1 )/ ey (Xn—1 rYn—1 )/XTL) £ h((xk/yk)/xk—o—] )/
and so F™ is convex by Lemma B.5. O

To exploit the convexity result of Corollary B.6, we rely on a Rie-
mann sum approximation of the integral in (B.5).
LEMMA B.7. Let X and Y be semimartingales such that X+ is bounded
away from zero and let t,s € [0,T], t <s. Foreachn € N, let t = t{} <
th < - <t} = s be a partition of [t, s] and set

T X, V] 2 Fn (th,vtg, .. .,xtgil,vtgfl,xtg) .

If maxx—1,. [ty —tp_ ;1 = 0as n — oo, we have
s dX]. . .
) by P .
tsX, Yl = L Xty " probability
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Proof. With QR[X] £ 3 1) (Xepar —Xen  Ax)?, T € [0, T], Theorem 4.47
in Jacod and Shiryaev (2003) implies that SUP.¢(0,T] IQRX]— Xl — 0
in probability. The Riemann sums

JEsX, Y S (Xep_, + Yip )~ (Xep — X _,)

k—1

satisfy JP[X, Y] — [} Xi[i]\;v as n — oo. Taking ¢ > 0 with X+Y > ¢
we obtain

e YT = JEs DX Y1 < % sup |QY[X]—[Xl<] — 0 in probability,
T€el0,T]

and hence the claim follows. O

Recall that 8 denotes the space of all semimartingales. Combining
Lemma B.7 with Corollary B.6, we get the essence of our convexity
result.

LEMMA B.8. Let D £ {(X,Y) € §x8 : X+Y > 0} For t,s € [0, T] with
t <'s, we define
. 0 a (b dXI.
Ii,s : D=L (P), (X Y)—=IsX Y= L Xe 1Yo
Then 1 s is convex.

Proof. Let (X', YY) € D fori=1,2and A € (0,1). For each ¢ > 0 we put
Y¥e £Yt ¢, i=1,2. Then, by Lemma B.7, we have

. . s i
ITtl,s [XIIY’L,E} N J d[X ]Ti -
e XL 4 YRE
With (X,Y%) & (AX" 4+ (1 = A)XZ, A€ + (1 —A)YZE), the same result
yields

=TIs[X", Y**] in probability, i=1,2.

[T X Y] — J _ AN I,s[X,Y®] in probability.

¢ Xoo + Y5
Now, Corollary B.6 implies that

IE X, YE S ALEG[XT, Ve + (1= N)IE [X2, Y2€],
so letting n — oo, we obtain

s dX s dx! s d[x?
{ HTE g}\J [ ]THH]_MJ 2[ ]Tza.
¢ Xe— + Yo e X4+ v® t X2 +YZE

Sending ¢ | 0, we conclude by monotone convergence. ]

COROLLARY B.g. Let 84 = {X € 8 : X > 0} denote the set of positive
semimartingales, and let t,s € [0, T], t < s. The mapping

S C
8¢ = L9(P), X HJ diXlz
¢ Xeo

Proof. For every semimartingale X there exists a unique continuous
local martingale X¢ such that [X‘] = [X]%; see, e.g., Proposition 1.4.27
and Theorem I.4.52 in Jacod and Shiryaev (2003). Uniqueness implies
in particular that the mapping D : 8§ — 8 x §, X — (X, X —X¢) is linear.
Since D(8,) C D, Lemma B.8 implies that I s o D is convex. O

1S convex.
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B.3 PROOF OF THE STOCHASTIC GRONWALL INEQUALITY

This section supplements Section 3.4 on Gronwall inequalities. After
giving several preliminaries, we shall prove that iterating the linear
integral inequality

Xe <E[[{ (asXs +Bs)d+2], tel,T, ©

is feasible under the assumptions of Theorem 3.15 (p. 87). More pre-
cisely, we will show that

)i

Xe <Eu[[) (EV"Ho+ BragX,)ds+€7z], tel0T, neN.

n!

To carry out the proof, we first recall some well-known results on the
measure of the n-dimensional simplex.

Measure of the simplex

Let 0 < s <t <T. For each n € N, we let 5& 0 denote the n-
dimensional simplex within the open cube (s,t)™, i.e.,

SFs,t) = {(51,...,sn) e(s,t)"t<sy <82 < ~o<sn<s}, n € IN.

Given a finite atomless Borel measure u on [0, T], we denote its n-fold
product measure by u®". In the following, we are interested in the
volume p®™(8f | ); we will use the convention “®0(8?s,t)) =1.

LEMMA B.10. For all n € N, we have
WO (8T ) = S5, IST ) Inldsn)
Proof. Fubini’s theorem implies
REMST ) = [ sy h® ST lsn I mldsn),

where the s,-section of S& t)

Sl olsn ={(t1, - tn 1) € (6,8)™ 1 (t1,. tn1,tn) € SV, ta = sa),

is simply 8&*51“). Thus
(ST ) = [ DS uldsn),
establishing the claimed identity. O

LEMMA B.11. For all n € IN, we have
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Proof. To compute the volume, let o € 5,, be a permutation and put

no A

(ot) ={(s1,...,5n) €(s, )" 1 t<sSg, <S¢, <--- < Sg, <SJ.

Then p®“(8&"z)) = u®“(8{‘s 1)) since product measures are unaffected
by coordinate permutations. Moreover, we have

, t
UO'ESHST(IS,Ci) = (S/ t)n \ Uln,]:] N‘f,] nl

where Nfl’jt’“ £ {(s1,...,5n) € (s,t)™ : sy = sj}. Since p is atomless, it
follows that p®™(N is"].t'") =0 foralli,j,=1,...,n. Hence, we obtain

KON (ST)) = ¥ pes, 1O STSS)) = BRI s))™ 0

COROLLARY B.12. Let « be a non-negative progressively measurable process
and define the random measure w via u((a, bl) = fcblocsds. Then

u®“(8?s’t)) = iu®(“f1)(8’(‘slu))audu, nelN, (B.6)

where ”®0(8(()t,s)) = 1; in particular, (uW&™(87, ;)))sep,1) is progressively
measurable for all n € N and each t € (0, T]. Moreover,

u®“(8?tls)) = %(ﬁ' ocudu)n, n e NN.

Proof. Apply Lemmas B.10 and B.11 path-by-path. Since n®°(8?, ;|) =
1 is trivially progressive, progressiveness of (uW*™(8f, (\))sep, 1) fol-
lows from (B.6) by induction. O

Conditional Fubini theorem

To iterate the inequality, we need to interchange conditional expecta-
tions and integrals with respect to time. The following Fubini type
theorem for conditional expectations shows that this is possible.

PROPOSITION B.13. Let § C A be a sub-o-field and Y = (Ys)se(t,1) 4 mea-

surable process with J"tT E[lYsllds < oco. There exists a measurable process
H = (Hs)sep,m) with

Hs =E[Ys| Gl forall s e[t Tl (B.7)
Moreover, any such process satisfies
E U,qudul 9] = ﬁHudu forall s € [t,T]. (B.8)

Proof. By Proposition 4.6 in Ethier and Kurtz (1986) (p. 74), there ex-
ists a measurable process H which satisfies (B.7) and (B.8). Suppose
now that K is a measurable process with Ky = E[Y|§] for all s € [t, T].
Then

E[|[{Hudu— [{Kydul] <E[[{[Hy —Kuldu] = [} E[[Hy —KyJdu=0
by Fubini’s theorem, and hence

[iKudu= [{Hydu=E[[{Yydu|§] as.forallscel[tTI. O

177

Conditional
Fubini



178

Iterating the
inequality

APPENDIX: STOCHASTIC DIFFERENTIAL UTILITY

Proof of the stochastic Gronwall inequality
We are now in a position to iterate the linear integral inequality
Xe <E¢[[{ (aXs +Bo)ds+2|, telo,T), G)

where 0 < «, X and H are progressive processes and Z is a random
variable. Recall that the assumptions of Theorem 3.15 include the fol-
lowing integrability conditions: For all t € [0, T], we have

B[ £V Hl+ 1 o X)ds + €572)| <00 forallneN, (1)
where
I:'n = ni(_ftocudu) and 8§’n 2 ZE OIt k' Ostss<T

LEMMA B.14. Under the assumptions of Theorem 3.15, we have

Xe <Ei[[] (EV"Ho+ BragX,)ds+€17z], te0,T, neN.

Proof. With Corollary B.12, we have established the identity

%IE'“* M8V = [iu ®(n—1) I8t N, du, nelN, (B.9g)

where u denotes the random measure with w((a,b]) = jz o du. Thus,
we have to show that

Xo < Be [} (EX™Ho+ o (8Y™MoXs) ds + €7°Z|, te 0T, ne .
(B.10)

We proceed by induction; since p®°(8§’0) =1, for n = 0, inequality
(B.10) is just the linear integral inequality (G),

X < Eq [jj(ocuxu+Hu)du+z} —X,, selo,T, (B.11)

which X satisfies by assumption. Assume by induction that (B.10)
holds for n € IN. To perform the induction step, we note that

= Eq [J3 (onX + Hu)du + 2] — 3 (X + Hu)du,

and so we can choose a progressive modification of X. Since o > 0, by
(B.11), we thus obtain

EVMH + u®M (8™ o X < EVMHg + @™ (S as X = JV™  (B.12)

for all s € [t, T], where J'" is a progressively measurable process.
Hence, the induction hypothesis (B.10) implies

X <E[[{Jtmds+eynz],  selT) (B.13)
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To proceed, we have to interchange the order of integration. By Propo-
sition B.13, this is possible if J*™ is integrable.
To establish the necessary integrability, we first note that

E [ I (ag'““msl + u®(“+”(s§f““)ocs|xs|) ds + e;“%z@ < 00, (B.14)
by the integrability assumptions (I). Recalling (B.9), we have
Tu® (D (g1 Xds = ft ([Tu®™(SE™) oy du) s X ds.
By (B.14), the use of Fubini’s theorem is justified, and we get
tTu®(“+”(8§'“+] Jas Xsds = ftTu®“(8§'“)ocs (fsTocuXu du) ds. (B.15)

Since E™M =Y 11 k(8Y%) n € IN, we obtain the identity
JLet™ T H ds = [[ eV Hods + [{ p@ M+ (st H ds.  (B.16)
Moreover, we see that

IS H < M HTHL, p®MI(SEIZ < ez,
(B.17)

Again, by (B.14), Fubini’s theorem applies and shows that

CREMED Y ds = [T (S e ([THu du)ds.  (Ba8)
Additionally, we have
pEmF(gtnthyz — Tuen(gtn g 7 ds. (B.19)
We now establish integrability of J*™. From (B.12), we obtain
0 < I < By [E5™HG|+ 1P (85 oty ([ X+ HuJdu+2])] -
Hence, Tonelli’s theorem yields
E[J{ 5™ ds] < B [J{n®™(8E™ ) (J7 |ocXu + Hu|du+ 12) ds]
—i—EU,L &M Hslds].  (B.20)

Now, (B.15), (B.18) and (B.19) imply

B[ 5™ ds] < B [} by (aslXsl 4+ [Hel)ds + 11712, (B21)

where 1Y /(n 4+ 1)1 = p@0+1) (841 Thus the simple estimate
(B.17) and the integrability statement (B.14) show that

E[[{Jt™ds] < oo. (B.22)
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Therefore, we are now in a position to interchange integrals in in-
equality (B.13): By Proposition B.13, the process s — E{[J¢"] has a
measurable modification K with [| Kds = E([[; J*"ds] and we get

Xe B [[{Jtmds + €47z = [[Kds + B [€772], selt Tl (B.23)

For all s € [t, T], the tower property of conditional expectations yields
Ks = E¢[J¢™] = E¢[Ys™], where

Y;c,n 2 82’”H5 + H®n(5§'n)“s (I:(ocuxu + Hu)du+ Z)

is a measurable process. Clearly, the bound (B.20) is also valid for Y*™.
Thus, as in (B.21) and (B.22), we obtain E[ftT IY&™|ds] < oo. The Fubini
identities (B.15), (B.18), (B.19) and the identity (B.16) show that the
integral of Y™ is given by

IIYz’ndS :ItTg’;,n+1H8+u®(n+1)(5’;,n+1)(xsxsds+u@(n+1)(5}l_,n+1)z‘

Since Y'™ is integrable, Proposition B.13 yields a measurable modifi-
cation K of s — E¢[Y¥™] such that ftT K.ds = E¢ [ftT Yi™ds]. But then, K
is also a measurable modification of s — E([J¢""], and the second part
of Proposition B.13 implies

E[[{Jimds] = [{ Reds = E,[f{ Yi"ds].
We insert this into (B.23) and obtain
X< B[l vimds| + B [e4nZ]
= Be [JUE™ T H, + u® D (U X ds + €771 2

since p®(“+”(8%n+] VZ + E}’RZ = 8%’““2. We have thus established
(B.10) for n +1, and the proof if complete. O



APPENDIX: CONSUMPTION-PORTFOLIO
OPTIMIZATION

C.1 PROOFS OMITTED FROM THE MAIN TEXT
PROOFS FOR SECTION 4.1.3

LEMMA 4.6. Ifh e C12([0, T] x R) is a strictly positive solution of

0 =hy —Fh+ &hy + 3B%hyy + 2509, (T, ) =4, (4.6)

then w(t,x,y) = Lx‘ ~Yh(t,y)* solves the H]B equation
0= sup { Wi +x(T 4+ A )Wy — cwy + 1 xzrrzcrzwXX
neR, c€(0,00) (43)

+oowy + %Bzwyy +xmoBpwyy + flc, w) .
Proof of Lemma 4.6. We set
A 1,22 2
H(z, 7, ¢) = wi +x(T + AWy — cwy + X710 Wy + awy
+ 2(3 Wyy + XTIOB Wy + f(c, W),
where z £ (t, X, Y, Wx, Wy, Wx, Wxx, Wyy ). Separating

H(z, @, ¢) = u(z, ) +s(z,c) + q(z),

it is easy to see that the candidate solutions 7t and ¢ defined in (4.5)
are the unique solutions of the associated first-order conditions

0= Sc (Z/ C) =—Wx+ fc(clw)l (CI)

0 =uxr(z,m) = xAwy + X% 02 Wy + XOPPWyy.
Hence, concavity of u and s implies that
H(z,#,¢) = supT[e]Rlce(oloo)H(z, T, ).

A direct computation shows that H(z,7,¢) = 0 since h solves the re-
duced HJB equation (4.6). Thus w solves the HJB equation (4.3). O

LEMMA 4.7. The functions ¥ and & are bounded and Lipschitz continuous.

Proof of Lemma 4.7. By (A1) and (A2), & and T are bounded. Moreover

&(y) — &) < 510 (I18(W) - BO) + 12 HIMy) - A@))

HB NG S + laly) — ()]
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so & is Lipschitz continuous. Finally,

KlF(y) = F(@) < 11 =VIr(y) = (@) + XA oo (inf o(x) 2A(y) — AG)]
x€R
1— 2 . —4 _
HFHAG N olloo(Inf a(x))0(G) — oly)l. O

PROOFS FOR SECTION 4.2

PROPOSITION 4.13. Let S: A — A be an operator on a closed, non-empty
subset A of Do, and assume that there are constants ¢ > 0, p > 0 such that
forall X,Y € A we have a Lipschitz condition of the form

(SX)e — (YNl < cf{ By [e7P X = Yl| ds forall t € [to, T, (C.2)

Then S has a unique fixed point X € A. Moreover, the iterative sequence
) 2 SX(no1) (n=1,2,...) with an arbitrarily chosen X o) € A satisfies
X (n) = Xlloo < €™ (X0l + [X[loo) (457)"  forall n > cT.

n

Proof of Proposition 4.13. For any fixed k > ¢+ p, define a metric d
equivalent to |- [« by d(X,Y) £ ess SUP4ep e *(T-Y) X, — Y,|. Then
(A, d) is a complete metric space. By definition of d, we have

Xs = Yol <e*T79d(X,Y)  for dt-ae. s € [to,T],
and hence (C.2) implies
e XT=1|(SX) — (SY)el < e X TV [lels=tPex(T=s)q(X, Y)ds.
Calculating the integral, we obtain

e T Y|(SX)y — (SY)el < &

5 d(X,Y) fordt-a.e.te [ty, T,

and we conclude that d(SX,SY) < & 5 d(X,Y), wher
S is a contraction on (A, d). Banach’s fixed point theorem yields a
unique X € A with SX = X; for all n € IN, we have d(X(,),X) <

(+55)™d(X(0), X). Hence it follows that

e*Td(X(n), X) < (£55)" e Td(X(0), X)

<
< e ([1X(0)lloo + [X[loo) (z55)™,

and thus [|X() — X[l < e<T([|1X(0)lo0 + [IX[[0)(
and every choice of k > ¢ + p. Setting k = “*TT" for n > cT, we obtain
the asserted error bound. O

;)" for every n € N
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PROOFS FOR SECTION 4.3

LEMMA 4.19. The candidate optimal wealth process has all moments, i.e.,
E[sup,c(oX}] < oo forallpeR.

Proof Lemma 4.19. According to (4.2), the candidate optimal wealth
process X = X™¢ has dynamics

A

dXt Xt [atdt + btth} Xo =

Where at £ Tt 'Y 2 —|— k}\tﬁtp hy 61bhq 1 and b ey ':/i)\': + k[s p

are bounded by (A1) (Az) and Theorem 4.8. By Itd’s formula
XP =xP exp <pfé (as+ 2(p—1)b2) ds) &t (pfobsdWs)

where £¢(-) denotes the stochastic exponential. Choose M > 0 such
that [pa¢| + [p(p — 1)b2],Ipbe] < M for all t € [0,T]. By Novikov’s

condition & (p [, bsdWs) is an L?-martingale, so using Doob’s L?-

inequality we get

1
2

{supte 0T } < 2xPeMTE [ST (pfobsdWs) } < oo. O

LEMMA 4.20. Let Vi £ w(t, X¢,Yy), t € [0,T]. Then
dVy = —f(&, Vi)dt +dM,,
AN = V; [1YV Ay okp,hy } AW, + Viky/T— p2B 22 dW,.
In particular, V = V and wy (t, Xy, Yi) = fe (81, Vi ). Moreover, we have
E [suptem,ﬂléﬁp + supte[olﬂl\A/tlp} < oo forallpelR.
Proof of Lemma 4.20. By Itd’s formula we have

5 . A 19242 2 412
dVi = [we + Xe(Te + A wy — Egwx + S X{AT Ot Wrx + Wy + 5 BEWyy

+>2tﬁt0-t Bt pry] dt + dmt

where M is a local martingale. Hence, dV; = —f(¢&, V¢)dt + dM; by
Lemma 4.6. Moreover, exploiting the special form of w we get

dmtzv |:] —Y A +pk[.))t hi|th+Vth]_p Bt th

Y Ot

Here Vi can be rewritten as V; = w(t, X, Y¢) = 1 X “Yh(t, Yy)k. By

Theorem 4.8, the function h is bounded and bounded away from zero.

Thus E[supte[O,T]Ithp] < oo for all p € R by Lemma 4.19. As hy, A,
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and o~ ! are bounded and h is bounded away from zero, the local
martingale part in the It decomposition of V is an L?>-martingale. By
uniqueness of stochastic differential utility, V is the unique utility pro-
cess V = V¢ associated with ¢. The first-order condition (C.1) for opti-
mal consumption implies wy(t, Xe, Ye) = fe(t, wit, Xe, Ye)) = fe(Ee, Ve).
Finally, Lemma 4.19 and the boundedness of §¥h(t,Y;)9~! imply that
E[supte[orﬂlétlp] < oo for all p € R. In particular, ¢ € C. O

LEMMA 4.22. Forall (m,c) € A(x), the deflated wealth process Z™€ is a
local martingale with dynamics

dzZ7¢ = X [(nta(m )dwt F kT = p2B(Y)R dwt}
For the candidate optimal process (#t, ¢) this implies
dz* =X, | (13 A3+ LB (Ve st Jaws ...
kT — p2B(Yy) Jt—y‘dwt} (C.3)

For the proof of Lemma 4.22, recall the candidate optimal strategies

A Ak B(Yp hy(t YY)
= orvar Ty ove miewy s LE0T) (48)
&y = SWh(t, Y )9 TXTE, telo,T),

Proof of Lemma 4.22. For simplicity of notation, we set
e 21(Ye), MEAY:) and of £ o(Yy).
By the product rule, we have
dzZ{¢ = yeedt + e dXTC + X driy + dlim, X7,
Inserting the dynamics of X™¢ from (4.2), we get

dZZ:'C = ﬁLtXf'C [(T’t + T[t)\t)dt + TT¢ O'tth] + Xg’cdﬁlt + d[ﬁl, Xﬂ’c}t.

(C.q)
By Lemma 4.20, we have

Vt = W(t, Xt, Yt) and mt = eIO fu(és,Vs)d SWX(t, Xt, Yt) (CS)

From here on, we abbreviate f, = f\,(¢¢, Vi), wx = wy(t, X, Ye) etc.
From (C.5), we see that

driy =i [fydt + 9], (C.6)

G

Note that f,(c,v) = é%c“d’[ﬂ — W] T — 86. Plugging in the can-
didate ¢ from (4.8) and Vi = w(t, X, Y;), we obtain

fy = $=L5%ha" —s0. (C.7)
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Moreover, Itd’s formula yields

dwy = Wy [Rtdit 4+ W dR, o+ 20dY, + J R d(R ]
+ 3l + 2 d R, Y

Substituting for w, we find
hy 1y(O+y) 1+v) d[Xd
dYi + 5 X2

+% (( 1)%1 P divy - &SI, Vil
Plugging in the candidate 7 from (4.8) and the dynamics of X and Y
we get
dwe — Aldt+AZdt— L 2:dWy + /1 p2B2dW,, where (C.8)
Al 2 % —Yre+ %%‘%é + %%‘tphy + V&‘l’hq 1 +k x 1+v{32 zﬁy
AT (o = P) + 1 (48T - kBle?) + B
For the sum of the E—é—terms, we have
EEBINE 1 (5B BT)
Bth2< 21+Y+k1 k>:0

by our choice of k. Combining (C.6), (C.7) and (C.8), and recalling
—1 [rﬂ—y)—l—%]%v%—é@} and &:oﬂ—%%, (4.7)

F=
we thus obtain
ﬁﬁi = —p(Ttth + Mﬁtfydwt (C9)
o+ [%Jrl —yre+ 27%—66) +&th—}f+%%h—}$‘+%h—]f]dt.
Moreover, (C.9) yields
dlthy, XT¢] = —Agmei X dt.

Coming back to (C.4), we thus get
dZZET'C = ﬁltXﬂ’C [(Tt + T[t}\t)dt + Tt O'tth} + XT['C dﬁlt + d[
ki Xk R = Feho+ Gy + 3BTy, + g hd] de+ dM,

where dM; £ M X[ [(mteo — —)dW +ky/1— pZBtJth] defines a

local martingale M. Since h solves (4.6), we get
dZ?’C = dmt = ﬁltXf'C [(T[th — %)th + k\/ 1— pzﬁt thudv_Vt]/

Plugging in the definition of # immediately yields (C.3)

T’]\'l XT[,C]
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LEMMA 4.23. Foranyp >0, we have

E[fo feles, V)Pds +exp (pJgfu(s, Vo)ds) |, B [sup,eo p il < oo.
Moreover, the process Z™¢ is a martingale.

Proof of Lemma 4.23. Recalling h < h < h and (C.7), we have

A

fu(&s, Vs) = $=L8%h(s, Y5)97 " — 50
<140 (R 4R+ jo0l £ m,

and we get 0 < exp(pfgfv(és,vs)ds) < e"™™1 . On the other hand,
from Lemma 4.20, it follows that E[supte[olﬂfc(ét,\A/t)p] < oo for all
p € R. This proves the first part of the claim and implies that 1w, =
exp(jéfv(és,vs)ds)fc(és,VS) has all moments, as well. To show that
Z™%¢ isa martingale, note that 1% % + gﬁtph—h&‘ is uniformly bounded
by some ¢ > 0. By Lemma 4.23 and Lemma 4.19, we have

[OB [MIRAIS2 2 4 5 pyphe)?] dt < e2f] /] EIR{Idt < oo,

Analogously, we obtain [j E[mZX2(ky/T— p2B2)2]dt < oco. From
this and Lemma 4.22, we conclude that Z*¢ is an Lz—martmgale. O

C.2 SOME FACTS ON PARABOLIC PARTIAL DIFFERENTIAL EQUA-
TIONS

This appendix collects the relevant results on linear and semilinear
parabolic partial differential equations that are used in this article.
Followin