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Preface

The field of mathematical research in which the content of this thesis is embedded is
the representation theory of finite-dimensional selfinjective algebras. These algebras
are amongst the most studied algebras in representation theory since they include
many classical algebras like group algebras of finite groups.

For a finite-dimensional algebra A over a field k, the main object of study is the
category of finite-dimensional representations of A, that is to say, its objects are
finite-dimensional k-vector spaces V' together with a prescribed k-algebra homo-
morphism

®: A — Endg(V),

where we assume that Endy (V') acts on V' from the left. The morphisms are the
k-linear homomorphism that commute with the action of A on V' induced by ®.
This category is abelian and constitutes an important invariant of the k-algebra A.
Equivalently, one can also consider the category A — mod of finitely generated left
A-modules. In this case one speaks of finite-dimensional left A-modules.

The overall objective is to classify the finite-dimensional A-modules up to isomor-
phism. Fortunately, every such module decomposes as a sum of modules that cannot
be decomposed any further. These A-modules are called indecomposable. But even
then, in most of the cases, classifying all indecomposable A-modules up to isomor-
phism is an impossible task. Therefore, describing invariants for A — mod whose
computation is achievable and which still give enough information is very desirable.

In the first part of this thesis we are concerned with an invariant that was given
by M. Auslander and I. Reiten in a series of papers adapting a completely new
viewpoint on the subject: Instead of working in the module category itself, they
considered the category Fun(A), whose objects are the covariant additive functors

A —mod — k — mod,

and whose morphisms are the natural transformations between them. Then, by
considering the irreducible objects in Fun(A), one gains new insight into the category
A —mod. Here, it is crucial that the finitely generated projective objects in Fun(A)
are given by the representable functors Homa (M, —), where M is in A — mod, and
that each irreducible object of Fun(A) is finitely presented. Assuming that A is not
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semisimple, a minimal projective resolution of an irreducible object in Fun(A) then
corresponds to a short exact sequence

0—L-1s M2 N—0

in A — mod, known as an Auslander—Reiten sequence or AR-sequence for short.
These sequences determine a directed graph I'(A), the Auslander—Reiten quiver
or AR-quiver for short, whose vertices are in one-to-one correspondence with the
isomorphism classes of indecomposable finite-dimensional A-modules, and the ar-
rows between the vertices correspond to certain maps that are determined by the
homomorphisms occurring in AR-sequences.

One objective then is to determine for a given finite-dimensional k-algebra A the
graph structure of its AR-quiver I'(A). In the case where A is selfinjective, instead
of computing I'(A), one usually considers the subgraph I';(A) of T'(A), the stable
AR-quiver of A, obtained by deleting the projective vertices and all arrows attached
to them. In practice, this graph is easier to describe since, by a general theorem
of C. Riedtmann, the graph structures of the components of I's(A) are very limited
in shape. Namely, to each connected component C of I'y(A) one can associate a
directed tree T and an admissible group G of automorphisms of the translation
quiver ZT such that ZT /G is isomorphic to C. The undirected tree obtained from
T is then uniquely determined up to isomorphism by C and is called the tree class

of C.

In Part I of the thesis we determine the possible tree classes occurring for com-
ponents of the stable AR-quiver of a Hecke algebra associated with a symmetric
group in characteristic zero. These algebras can be thought of as deformations of
group algebras and are instances of finite-dimensional selfinjective algebras. In the
following we write H/(q) for the Hecke algebra of the symmetric group on n letters
with defining parameter ¢ # 1, a primitive eth root of unity in k.

The main motivation for this is the landmark paper of K. Erdmann [33], where
she showed that for a block of a group algebra of a finite group, the tree class of
a stable component is almost always A,,. The main result there states that if the
block under consideration is of wild representation type, then the tree class of every
stable component is A.

Since H/(q) is a deformation of a group algebra, it is likely that a similar result also
holds in that case.

In fact, the first main result of the thesis is the following: If the ground field k is
algebraically closed and of characteristic zero, then we show that if B is a block
of HJ(q) of wild representation type, then all the connected components of I'y(B)
have tree class A.

The roadmap for this is as follows: In Chapter 1 we introduce the notation that
will be valid throughout the first part of this thesis. In Chapter 2 we will collect the
basic definitions and results of the Auslander—Reiten theory of a finite-dimensional
algebra that are needed in the course of this thesis. Moreover, we state important
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results concerning the representation theory of a finite-dimensional selfinjective al-
gebra.

In Chapter 3 we will be concerned with the representation theory of skew group
algebras, an important class of algebras that will play a decisive role throughout
the first part. We give a brief introduction into this subject by stating the crucial
results relating the representation theory of the skew group algebra Ax G with that
of the underlying algebra A. Afterwards we will prove a theorem stating that under
some mild conditions on the algebra A and the finite group G all stable components
of I's(A x G) have tree class Ay, if this is true for I's(A).

In Chapter 4 we proceed by studying the shape of the stable AR-quiver of a quan-
tum complete intersection. These selfinjective algebras are deformations of trun-
cated polynomial rings, which form an important class of algebras. The reason for
considering such algebras is that they occur as vertices of the Hecke algebra H; (—1)
in characteristic zero. Note that there is a vertex theory for Hecke algebras of the
symmetric group in characteristic zero similar to that for group algebras in positive
characteristic. The definition of a vertex is given in Chapter 1 of Part I.

In [11] it is shown that for a homogeneous quantum complete intersection of wild
representation type, a connected component of the stable AR-quiver has tree class
A.. The main theorem of the chapter will be a generalization of this to quantum
complete intersections whose commutation matrix is given by arbitrary roots of
unity. The crucial observation here is that such algebras arise from skew group
algebras over homogeneous quantum complete intersections.

Having determined the shape of the stable AR-quiver of vertices of Hecke algebras
at a primitive second root of unity in characteristic zero, we proceed in Chapter 5
by proving a similar result for Hecke algebras at a primitive eth root of unity, where
e > 2.

In this case a vertex of an indecomposable H/(q)-module is isomorphic to the outer
tensor product HY(q)®*, k > 0. The algebra H/(g) has a unique non-semisimple
block B, which is a Brauer tree algebra whose tree is a line with no exceptional
vertex. Thus, every block of H/(g)®* is Morita equivalent to an outer tensor product
of some copies of B.

The main theorem of Chapter 5 states that if £ > 1, then a connected component
of I'y(B®*) has tree class Ao. Amazingly, a skew group algebra construction over
a truncated polynomial ring will be the main ingredient of the latter proof.

Chapter 6 preludes the main result of Part I. It is intended to explain a theorem for
blocks of Hecke algebras in characteristic zero giving a Morita equivalence between a
Rouquier block of weight w and a wreath product of an outer product of the principal
block B of H/(q) and a symmetric group on w letters. This was first proven by J.
Chuang and R. Kessar in the case of group algebras of symmetric groups, which then
was extended to general linear groups in non-defining characteristic independently
by W. Turner and H. Miyachi. The Hecke algebra case was then established by J.
Chuang and H. Miyachi.
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For the convenience of the reader we briefly review the necessary definitions and
results of the representation theory of finite general linear groups in non-defining
characteristic that are needed to state the theorem. We also describe the construc-
tion of the bimodule inducing the Morita equivalence in detail.

In Chapter 7 we finally obtain our main result on the tree classes of stable compo-
nents of blocks of H/(q). To this end we require the famous theorem of J. Chuang
and R. Rouquier on derived equivalences between blocks of Hecke algebras of the
same weight.

The main theorem then classifies the possible tree classes which may occur for
blocks of HI(q) of weight w. As expected, this classification only depends on the
parameter g € k and the weight w of the block.

In Part II of the thesis we will be concerned with another important invariant of a
finite-dimensional algebra A. Instead of looking at all isomorphism classes of inde-
composable A-modules, one usually imposes additional structure on the latter. An
important class is given by the isomorphism classes of irreducible A-modules, which
are not only indecomposable but also have no non-trivial submodules. As it turns
out, in many important cases, labelling the irreducible modules is an achievable task.
Moreover, since any finite-dimensional A-module has a filtration by irreducibles, one
may also get new information on the indecomposables themselves and, hence, on
A — mod.

In the second part we again focus on the representation theory of Hecke algebras of
type A at a root of unity. We will give a detailed overview of the theory initiated
by A. Lascoux, B. Leclerc, J.-Y. Thibon in [62], S. Ariki in [2] and I. Grojnowski in
[44] concerning the representation theory of cyclotomic Hecke algebras, where we
follow the approach of I. Grojnowski.

In particular, we give a thorough description of the various functors defined on the
module categories of these algebras, based on the ideas given in [44].

We will study the divided power functors in great detail, and this enables us to
deduce results about the vertices of Hecke algebras of the symmetric group.

The vertex theory for Hecke algebras of the symmetric group can be seen as an
analogue of the vertex theory for group algebras. In the context of Hecke algebras,
a vertex of an indecomposable H/(q)-module M is a standard parabolic subgroup
W of the symmetric group on n letters which is minimal with respect to the property
that M is projective relative to the subalgebra of H/(g) determined by W. Since
the standard parabolic subgroups are indexed by compositions of n, it is natural to
ask what the compositions indexing the vertices may look like.

In characteristic zero the answer to this question was given by J. Du in [32], where
he showed that the vertices of indecomposable H/(q)-modules are [-parabolic sub-
groups, with [ the order of ¢ in the underlying field.

In [27] a conjecture was given by R. Dipper and J. Du, describing the structure of
the compositions indexing the vertices in general. Namely, the conjecture says that
the vertices are [ — p-parabolic subgroups, where p relates to the characteristic of
the underlying field.
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Using properties of the introduced functors, we are able to give an application of
Grojnowski’s approach to the Dipper-Du Conjecture: We show that the vertex of
an indecomposable H/(q)-module lying in a block of finite representation type is
[ — p-parabolic.
We make use of various structures that the sum over the Grothendieck groups of
H (q)-modules

G := P K(H](q) — mod)

n>0

carries. In [2] S. Ariki made the crucial observation that in the case where the
ground field is the field of complex numbers, the abelian group G can be given the
structure of an irreducible highest weight module over the infinite-dimensional Lie
algebra g[l.

. Grojnowski [44] gave similar results in the case where the ground field has arbi-
trary characteristic. There, he uses different techniques originating in the theory
of affine Hecke algebras, giving a new functorial approach to the setting. Namely,
he gives an alternative description of the functors that are used in Ariki’s work,
which enables one to define the divided power functors on the various categories
H/(q) — mod, n > 0. As the notion suggests, they restrict to operators on the
Grothendieck groups, which then coincide with the divided powers coming from the
action of ;[l.

Furthermore, we make use of the theory of crystal bases developed by M. Kashiwara.
He showed that to an irreducible highest weight module of the quantized universal
enveloping algebra over an affine Kac—-Moody algebra one can associate a certain
graph, the crystal graph. This graph encodes combinatorial data of the highest
weight module under consideration.

In particular, the E,A[l—module G gives rise to a crystal graph whose structure was
determined by K. C. Misra and T. Miwa in [70].

From this one obtains a labelling of the isomorphism classes of irreducible H7(q)-
modules, where n > 0 varies.

A. Kleshchev established in [58] another labelling of the irreducible modules for the
group algebras of the symmetric group by investigating the socles of the restrictions
of the latter. This was later generalized to Hecke algebras of the symmetric group
by J. Brundan [16].

Amazingly, these two labellings coincide, which enables us to reformulate the famous
result obtained by J. Scopes in [80] in the symmetric group case and T. Jost in [52]
in the Hecke algebra case in terms of the functors given by I. Grojnowski. The
theorems of J. Scopes and T. Jost establish Morita equivalences of blocks of group
algebras of symmetric groups of the same weight and the associated Hecke algebras,
respectively.

From this and the properties of the functors inducing the equivalence, we deduce,
for blocks B and B’ of Hecke algebras of the symmetric group forming a Scopes
pair, that two indecomposable modules corresponding under the equivalence have
a common vertex.
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As an application, this gives a proof of the Dipper—Du Conjecture in the case where
the blocks are of finite representation type.

The roadmap for the second part will be: In Chapter 8 we introduce the notation
used in what follows.

In Chapter 9 we recall the notion of an affine Hecke algebra of type A, denoted by
H,(q), n > 0. We begin with the basic definitions and then turn our attention to
the subalgebra of Laurent polynomials of H,(q), which will become important in
the further investigations. By computing generalized eigenspaces, we explain why
this subalgebra is important in the representation theory of H,(q).

Furthermore, we define refinements of the restriction functor

Res: H,(q) — mod — H,,_1(q) — mod,
as well as their iterations. Finally, for each » > 0, we define divided power functors
H,(q) — mod — H,,_,(q) — mod,

and show how these are related to the refinements of the restriction functor.

For the convenience of the reader, we will recall in Chapter 10 the basic notions of
the representation theory of Kac—-Moody algebras as they will become important in
later chapters. In particular, we will explain how the representation theory of the
latter and the representation theory of its derived algebra are related since in this
thesis we will mainly work over the derived algebra.

Chapter 11 recalls the definition of various factor algebras of H,(q), the cyclotomic
Hecke algebras, which will be denoted by H2(q). In particular, choosing A = Ay, we
obtain the finite-dimensional Hecke algebra H/(q). The main goal of this chapter
is to define the cyclotomic analogues of the functors defined in Chapter 9 as well as
their adjoints.

In Chapter 12 we review the multiplicity-one results given by I. Grojnowski and M.
Vazirani in [45] for the affine Hecke algebras as well as their cyclotomic quotients.
We will derive some combinatorial results of the action of the operators on the
Grothendieck groups induced by the functors defined in Chapter 11.

Chapter 13 explains how the sum of the Grothendieck groups

G(A) :== @ K(H, (q) — mod)

n>0

can be given a module structure over the derived algebra of 5A[l. Moreover, we
state the result that identifies the latter as the irreducible highest weight module of
highest weight A of this algebra.

In Chapter 14 we introduce the theory of M. Kashiwara concerning crystal bases
of highest weight modules of quantized enveloping algebras of Kac—-Moody algebras
and their associated crystal graphs. The main aim is to explain how a crystal
graph is constructed from G(A) and that it is isomorphic to the crystal graph of the
irreducible highest weight module of highest weight A of the quantized enveloping
algebra of ;[l.




Chapter 15 is a review of the famous theorem by K. C. Misra and T. Miwa giving the
structure of the crystal graph associated to G(Ag). From this we obtain a labelling
of the irreducible H7(q)-modules, n > 0.

In Chapter 16 we explain another labelling of the irreducible H/(g)-modules, n > 0,
and state the branching rules due to A. Kleshchev and J. Brundan. Furthermore,
we show that this labelling coincides with the labelling given in Chapter 15.
Chapter 17 contains one of the milestones in the proof of the main result. There
we reformulate the Morita equivalence for blocks of Hecke algebras given originally
by J. Scopes in terms of our functors defined in Chapter 11.

Finally, in Chapter 18 we prove that the Dipper-Du Conjecture is true for H/(q)-
modules lying in blocks of finite representation type.

We will also discuss the supposed counterexample to the conjecture given in [48].
As is well known, this does not disprove the conjecture.
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Part 1

Stable Auslander—Reiten
components of Hecke algebras of
the symmetric group






Chapter 1

Preliminaries

1.1 Goal

In the first part of this thesis, we will prove that if B is a wild block of a Hecke
algebra of the symmetric group over an algebraically closed field of characteristic
zero, then every connected component of the stable Auslander—Reiten quiver I'y(B)
has tree class A.

1.2 Notation

Throughout the first part of this thesis, the symbol k will always denote a field.

Categories and functors. All categories under consideration will be additive k-
categories, that is to say, preadditive categories that have finite direct sums such
that each morphism set carries the structure of a k-vector space, and where the
composition morphism is k-bilinear. Throughout, if C is any category, we denote
by 1¢ the identity functor of C.
Furthermore, if C and D are k-categories, then, if not stated otherwise, by a functor
F : C — D we shall always mean an additive functor such that the induced ho-
momorphisms Home(A, B) — Homp(F(A), F(B)) of abelian groups are k-vector
space homomorphisms.
For a finite-dimensional algebra A defined over k, we denote by A — mod (resp.
mod — A) the abelian k-category of finite-dimensional left (resp. right) A-modules.
Moreover, we identify the category mod — A with the category A°® —mod of finite-
dimensional left A°°-modules, where A°P denotes the opposite ring of A.
By A — proj (resp. proj — A) we denote the full subcategory of projective left A-
modules (resp. right A-modules). Again, the category proj— A can also be identified
with the subcategory A°® — proj of A°® — mod of projective left A°°-modules.
By A — mod, we denote the stable module category of A — mod, i.e., the category
whose objects are that of A — mod, and the morphisms are given by equivalence
classes

Ho_m14(A’ B) = HomA(Av B)/P(Av B),
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for objects A and B in A—mod. Here, P(A, B) denotes the subspace of morphisms
f of Homy4(A, B) such that there is a projective A-module P and morphisms s :
A— P,t: P— B with f =ts.

Dually, we define A — mod to be the category whose objects are that of A — mod,
and the morphisms are given by equivalence classes of morphisms in A —mod, where
two morphisms are considered to be the same if their difference factors through an
injective A-module.

Moreover, we denote by A — modp the full subcategory of A — mod consisting
of A-modules having no non-zero direct summands isomorphic to some projective
A-module.

If not stated otherwise, in the following, by an A-module we will always mean a left
A-module.

Hecke algebras. We use the definition of [29]. Let n be a non-negative integer and
denote by W (n) the symmetric group on n letters. If n > 2, then W (n) is generated
by the set B = {s1 = (1,2),...,8,-1 = (n — 1,n)} of basic transpositions.

Let ¢ € k be invertible. The Twahori—Hecke algebra HJ(q) of the symmetric group
W (n) with parameter ¢ is the k-algebra generated by the symbols T; = T;,, 1 < i <
n — 1, subject to the following relations:

(a) (Ti—g)(Ti +1) =0.
(b) T,T; =T;T;, for 1 <i<j—1<n-—2.
(¢) TenTiTips = Ty T, for 1 < i <n—2.
Denote by e the least positive integer ¢ > 2 such that
l+qg+...+¢'=0.

If no such 7 exists, one sets e = oco. In the first part of this thesis, we will always
assume that ¢ # 1 and e is finite. Then e is the multiplicative order of ¢ in k.

Vertices. Let = (p1, ..., px) be a composition of the non-negative integer n. The
standard parabolic W, of W (n) is defined as the row stabilizer of the row standard
tableau associated to p. Note that W, is generated by W, N ‘B.

For a composition p of n, we denote by H, the subalgebra of H7(q) associated
to W, generated by the elements T;, where s; € W,. The algebra H, is called a
standard parabolic subalgebra of H/(q).

Let M be an indecomposable H/(q)-module. We say that M is projective relative
to H, if M is isomorphic to a direct summand of H/(¢) ®y, M. In this case one
also says that M is H,-projective.

A vertex of M is a standard parabolic subgroup W, of W (n) such that M is projec-
tive relative to H,, and there are no standard parabolic subgroups of W (n) properly
contained in W, with that property.




Chapter 2

Auslander—Reiten theory

The theory of Auslander—Reiten plays a major role in the representation theory of
non-semisimple finite-dimensional algebras A defined over a field k. The philosophy
behind this theory is to describe the structure of the finite-dimensional A-modules
via the structure preserving maps between them. This viewpoint leads to a descrip-
tion of important classes of maps, which determine the modules up to isomorphism.
One of the milestones is the definition of almost split sequences, which gives new
insight in the homological structure of the category of A-modules.

As a consequence one may define the Auslander—Reiten quiver of A, which is a locally
finite graph constructed from the isomorphism classes of the finite-dimensional in-
decomposable A-modules and certain maps between them. This gives a homological
invariant of the category of finite-dimensional A-modules.

In this section we give a brief introduction to the Auslander—Reiten theory of a
finite-dimensional k-algebra, stating the most important results, which are used
throughout this exposition. We will first give the basic definitions and results, most
of which are true in the more general context of Artin algebras.

Afterwards, we will focus on the representation theory of finite-dimensional selfin-
jective k-algebras as these will be the most important algebras in this thesis.

In the following, A will always denote a finite-dimensional algebra over a field k.

2.1 Auslander—Reiten sequences and irreducible
maps

We will first give the basic definitions of almost split maps and Auslander—Reiten
sequences. After that we state the concepts that are needed to construct Auslander—
Reiten sequences. Moreover, we recall the definition of an irreducible map and state
the relationship to Auslander—Reiten sequences. All the results stated here can be
found in [7].

Definition 2.1.1. (a) A homomorphism f : B — C between finite-dimensional
A-modules is right almost split if the following conditions hold:
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(i) f is not a split epimorphism.

(ii) For every homomorphism h : X — C that is not a split epimorphism,
there exists a homomorphism s : X — B such that h = fs.

(b) A homomorphism g : A — B between finite-dimensional A-modules is left
almost split if the following conditions hold:

(i) g is not a split monomorphism.

(ii) For every homomorphism h : A — X that is not a split monomorphism,
there exists a homomorphism s : B — X such that h = sg.

(c) A short exact sequence

0—A-SBL0—0 (2.1)

of finite-dimensional A-modules is called an Auslander—Reiten sequence (resp.
AR-sequence for short) or almost split sequence if f is right almost split and
g is left almost split.

In the following, recall from [7, I, §2] the definition of a left (right) minimal ho-
momorphism. By [7, V, Proposition 1.14], we have that the modules A and C' are
indecomposable, whereas the homomorphism g is left minimal and left almost split
and the homomorphism f is right minimal and right almost split. In this situation
one says that ¢ is a minimal left almost split homomorphism and f is a minimal
right almost split homomorphism.

Auslander—Reiten sequences have remarkable properties, for example, up to isomor-
phism, they are determined by their terms at the beginning and the end:

Theorem 2.1.2. The following are equivalent for two AR-sequences 0 — A —
B—-C—-0ad0—-A—-B —-C —0:

(a) A= A
(b) C=(C".

(¢) The sequences are isomorphic, i.e., there is a commutative diagram

with the vertical homomorphisms being isomorphisms.




2.1. Auslander—Reiten sequences and irreducible maps

Proof. See [7, V, Theorem 1.16]. O

For an arbitrary ring it is far from being clear that for a given A-module M there
is an AR-sequence starting (resp. ending) in M. For Artin algebras, this is the
famous theorem of Auslander and Reiten, see [7, V, Theorem 1.15].

Theorem 2.1.3. (a) If C is an indecomposable non-projective A-module, then
there is an AR-sequence 0 -+ A — B — C' — 0 in A — mod.

(b) If A is an indecomposable non-injective A-module, then there exists an AR-
sequence 0 - A — B — C — 0 in A — mod.

As a direct consequence of this theorem, if A is not semisimple, then there exist
AR-sequences in A — mod.

We now recall the important constructions from [7, §IV], from which one may con-
struct the AR-sequence ending in a given module. Denote by (—)* the contravariant
functor

Homp(—,A) : A — mod — A°? — mod. (2.2)

*

By [7, §II, Proposition 4.3], on restriction to A — proj, the functor (—)* induces a

duality between A — proj and A°? — proj.
Moreover, we denote by D : A—mod — A°®? —mod the duality induced by the usual
duality

Homy (—, k) : k — mod — k — mod,

see [7, 11.3]. By interchanging the roles of A and A°? we also get a duality D’ :
A°® — mod — A — mod. Then, we have that

D'D = 1A mod and DD' = LAop —mod

as functors. If there is no danger of confusion, the duality D’ will also be denoted
by D.
Let M be in A — mod. If we take a minimal projective resolution

PPy —M-—0

of M in A —mod, then by applying the duality (—)* we obtain a minimal projective
resolution )
Py L pr— Coker(f1) — 0

in A°® —mod. One defines Tr(M) = Coker(f*), which is the transpose of M. Then,
by [7, IV, Proposition 1.6], the map Tr induces a duality

A — mod — AP — mod,
which is also denoted by Tr. From the duality D we obtain a duality

A°® — mod — A — mod.
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If there is no danger of confusion we will denote this duality by the same symbol
D. Then, the composition

DTr: A —mod — A — mod
is an equivalence of k-categories with inverse equivalence the composition
TrD : A — mod — A — mod.

Next, we look at what happens to the objects of A — mod under the map DTr :
A —mod — A — mod. Similarly, we have a map TrD : A°®> — mod — A°? — mod.
Then, by [7, IV, Proposition 1.10], these maps afford mutually inverse bijections
between the isomorphism classes of indecomposable non-projective A-modules and
the isomorphism classes of indecomposable non-injective A-modules.

The map DTr is called the Auslander—Reiten translation (AR-translation for short).

Notation 2.1.4. In the following, the map DTr will be also denoted by 7.
The relation with the AR-sequences is the following.

Proposition 2.1.5. Suppose that 0 - A — B — C — 0 is an AR-sequence in
A —mod. Then A= DTr(C) and C = TrD(A).

Proof. This is [7, V, Proposition 1.14]. O
Closely related to the concept of an AR-sequence is the notion of an irreducible
morphism, whose definition we give next.

Definition 2.1.6. A homomorphism g : B — C between finite-dimensional A-
modules is called irreducible if it is neither a split monomorphism nor a split epi-
morphism and whenever the homomorphisms s : B — X and ¢t : X — (' are such
that f =ts, then s is a split monomorphism or ¢ is a split epimorphism.

We have the following crucial fact about irreducible homomorphisms.
Proposition 2.1.7. Let g : B — C be irreducible in A — mod. Then:

(a) g is a monomorphism or an epimorphism, but not an isomorphism.

(b) If g is a monomorphism, then B is isomorphic to a direct summand of each
proper submodule of C' containing B.

(¢) If g is an epimorphism, then C is isomorphic to a direct summand of each

factor module of B/U with 0 # U C Ker(g).
Proof. See [7, V, Lemma 5.1]. O

The next well-known fact is a direct consequence of the last proposition. It charac-
terizes the irreducible maps with target (resp. domain) a projective (resp. injective)
indecomposable module. Recall that if M is in A — mod, then the radical rad(M)
is defined to be the intersection of all maximal submodules of M, whereas the socle
soc(M) is defined to be the sum of all irreducible submodules of M.
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Corollary 2.1.8. (a) Suppose that P is an indecomposable projective A-module
and g : X — P an irreducible homomorphism. Then X 1is isomorphic to a
direct summand of rad(P).

(b) Suppose that I is an indecomposable injective A-module and let g : I —'Y be
an irreducible homomorphism. Then'Y is isomorphic to a direct summand of

I /soc(I).

Proof. By [7, I, Proposition 4.7], rad(P) is the unique maximal submodule of P. If
g : X — P isirreducible, then X is either a monomorphism or an epimorphism by
Proposition 2.1.7. Since P is projective and ¢ is not a split epimorphism, g must
be a monomorphism. Hence, by part (b) of Proposition 2.1.7, we infer that X is
isomorphic to a direct summand of rad(P) and part (a) follows.

Since [ is injective and indecomposable, the socle soc(I) of I is irreducible by [7,
II, Proposition 4.1]. If g : I — Y is irreducible, then g must be an epimorphism.
It follows that Ker(g) # 0, and thus, soc(/) C Ker(g). The claim now follows from
part (c¢) of Proposition 2.1.7. O

The next theorem connects irreducible homomorphisms with AR-sequences. It is
the content of [7, V, Theorem 5.3].

Theorem 2.1.9. (a) Let C in A — mod be indecomposable. Then a homomor-
phism g : B — C s irreducible if and only if there is a homomorphism
g : B" — C such that the induced homomorphism

(9.9): B&B = C
1s manimal right almost split.

(b) Let A in A — mod be indecomposable. Then a homomorphism f : A — B is
irreducible if and only if there is a homomorphism f': A — B’ such that the
induced homomorphism

(/):a>BoB
is minimal left almost split.

In our further investigations it is important to know in which AR-sequences inde-
composable projective injective modules occur. Therefore, we state the following:

Proposition 2.1.10. (a) Let§:0— A — B — C — 0 be an AR-sequence. If B
has an indecomposable projective injective summand P, then the composition
series of P has length l[(P) > 2 and 0 is isomorphic to the sequence

§:0 — rad(P) () p @ rad(P) /soc(P) X P/soc(P) — 0,  (2.3)

where i : rad(P) — P and j : rad(P)/soc(P) — P/soc(P) are the canonical
inclusion homomorphisms and p : rad(P) — rad(P)/soc(P) and q : P —
P/soc(P) are the canonical quotient homomorphisms.
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(b) If P is indecomposable projective injective with [(P) > 2, then there exists
some AR-sequence § : 0 — A — B — C' — 0 such that P is a summand of B.

Proof. This is [7, V, Proposition 5.5]. O

In other words, if P is a projective injective A-module and not irreducible, the only
sequence in which P occurs is the one given in (2.3). This sequence is also called a
standard sequence. We also note the following;:

Proposition 2.1.11. Suppose that

§:0—A-SBLc—0

is an exact sequence. Then O is an AR-sequence if and only if f and g are both
wrreducible.

Proof. See [7, V, Proposition 5.9]. O

Next we give the definition of the radical of the module category A—mod. By A—ind
we denote a full subcategory of A — mod whose objects are chosen representatives
from isomorphism classes of indecomposable A-modules.

Definition 2.1.12. Let A and B be in A — mod. The set rady(A, B) := {f €
Homy (A, B) | hfg is not an isomorphism forany ¢ : X — A and h : B —
X with X in A —ind} is called the radical of Homy (A, B).

That rads (A, B) is actually a subspace of Homy (A, B) is part of the proof of [7, V,
Proposition 7.1]. Inductively, one defines the powers rad) (A, B) for each positive
integer n > 2 as follows: rad)y (A, B) = {f € Homy(A, B) | there exists X in A —
mod, g € rady(A, X) and h € rad}y ' (X, B) such that f = hg}. Connecting this
with the notion of irreducible morphisms, one gets:

Proposition 2.1.13. Let f : A — B be a homomorphism between indecomposable
modules A and B in A —mod. Then f is irreducible if and only if f € rada(A, B)\
rad} (A, B).

Proof. See [7, V, Proposition 7.3]. O

2.2 The Auslander—Reiten quiver

A quiver I' = (I'g, I'1) consists of a set of vertices I'g and a set of arrows I'y C I'g x Ty
together with maps dy, d; : I'y — T'g, where dy maps an arrow of I'; to its endpoint
and d; maps an arrow of 'y to its starting point.

A waluation on a quiver I' = (T'g,T'1) is a map

v = Zsg X Zisy.

10
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We denote the image of an arrow « : * — y in I'y under v by (v,,v),). If a quiver I’
comes equipped with a valuation v, then we say that (I, v) is a valued quiver.

A morphism between valued quivers (I', v) and (I", u) is a morphism f = (fo, f1) :
I' = I of quivers such that if a :  — y is an arrow in I'y with valuation (v,, V),
then fi(a) : fo(z) — fo(y) has valuation (uif,(a), Wy, (0) = (Vas Va)-

As before, A denotes a finite-dimensional k-algebra. We associate to A a valued
quiver I'(A) as follows. The vertices of I'(A) are in one-to-one correspondence with
the objects of A —ind, and are denoted by [M] for M in A — ind.

There is an arrow [M]| — [N] if and only if there is an irreducible homomorphism
M — N in A — mod.

The arrow has valuation (b, a) if there is a minimal right almost split homomorphism
U® X — N such that U is isomorphic to a direct sum of a copies of M and X
has no direct summand isomorphic to M, and a minimal left almost split morphism
M — V @Y such that V is isomorphic to a direct sum of b copies of N, where Y
has no direct summand isomorphic to N. The resulting valued quiver is called the
Auslander—Reiten quiver (AR-quiver for short) of A.

If we denote by Tx the division algebra Enda(X)/rad(Enda(X)) for each X in
A —ind, then for indecomposable modules A and B in A — mod, the k-vector space
Irr(A, B) := rads (A, B)/rad} (A, B) can be viewed as a T — Ty-bimodule. In fact,
one can show that a equals the dimension of Irr(A4, B) as a T'\"-vector space, and
that b equals the dimension of Irr( A, B) as a Tg-vector space, see [7, VII, Proposition
1.3]. Tt follows that if k is algebraically closed then a = b.

We may impose an equivalence relation on the objects of A —ind. Two modules in
A — ind are said to be related by an irreducible homomorphism if there exists an
irreducible homomorphism f : A — B. An equivalence class under the equivalence
relation generated by this relation is called a component of A —ind. Then A and B
are in the same component if and only if there exists a positive integer m, indecom-
posable modules X;, 1 < i < m, and for each 7 either an irreducible homomorphism
fi + X; = X411 or an irreducible homomorphism g; : X;;1 — X; with X; = A and
X, = B.

Moreover, the equivalence relation on A — ind induces an equivalence relation on
['(A). Then, an equivalence class under this equivalence relation is called a com-
ponent of I'(A). Note that we may view a component as a full subquiver of I'(A),
which is connected, when considered as an undirected graph.

In the following we use the notation of [49] and [77]. A representation quiver (I',T)
is a quiver I' = (T'g,I";) together with a subset Py C T'y and an injective map
7 : Py — I'y such that

(a) I neither contains multiple arrows nor loops.
(b) (r(x))t =2~ for all x € F.

For a vertex x € I'y, we denote by x~ the set consisting of all vertices of I'y which
are starting points of arrows of I'y ending in x and by ™ the set of all vertices of
I'y which are end points of arrows of I'; starting in x.

11
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For each arrow a : x — y with y € Py, there is precisely one arrow 8 : 7y — x. If
we denote ca = [, we obtain a bijective map

a:{a€F1 | do(Oé) € P()} — {BEFl | dl(ﬁ) ET(Po)}.

If P and 7P denote the full subquivers of I' with vertex sets Py, (1P)y = 7(P,) and
arrow sets Pp = dy ' (Py) Nd; Y (Ry), (TP)1 = dy* (7(Py)) Nd;* (7(P)), then there is
a unique isomorphism 7 : P — 7P of quivers extending 7 by setting m(a) = 0?(a).
A morphism of representation quivers (I',7) and (I, 7') is a morphism f: ' — I"
of quivers such that fo(7(x)) = 7'(fo(x))) for all x € F.

A walued representation quiver is a representation quiver (I',7) together with a
valuation v such that v(ca) = (v),v,) for all @ : @ — y in ['y with y € Py and
v(a) = (Vs ).

A morphism of valued representation quivers is both a morphism of valued quivers
and a morphism of representation quivers.

A representation quiver (I',7) is connected if I’y # () and it cannot be written as
the disjoint union of two representation quivers. Observe that this does not imply
that the underlying quiver is connected.

A representation quiver (', 7) is called stable if Py = T'g (i.e., T is defined everywhere
on I'g) and 7 is surjective.

A vertex x of a representation quiver (T', 7) is called T-periodic if 7" (x) = x for some
positive integer n.

Example 2.2.1. (1) The AR-quiver of a finite-dimensional algebra A is a valued
representation quiver in the following way: If we define F, to be the set of vertices
of I'(A) corresponding to the isomorphism classes of indecomposable A-modules
that are not projective, then the AR-translate 7 = DTr induces an injective map
7: Py — (T'(A))o, [M] — [DTr(M)].

(2) Another important example of a representation quiver is the following. Given
an valued oriented tree (7,v) (a valued quiver whose underlying graph is a tree),
denote by ZT the quiver with vertex set (Z1")y = ZxTy. Whenever there is an arrow
a:x — yin Ty, there are arrows (n,«a) : (n,z) = (n,y) and o(n,a) : (n+ 1,y) —
(n,2) in (ZT);. Define a valuation p on ZT by setting fna) = Ky, 0 = Va and
Hina) = Holna) = Vo 1f we set 7((n,z)) = (n + 1,z), then ZT' becomes a valued
stable representation quiver.

Let I" be a (valued) representation quiver. A subgroup G C Aut(I') of I is called
admissible if each orbit of G in Iy intersects a set of the form x Uz or 2~ Uz,
x € I'y, in at most one element.
One has the following structure theorem for stable valued representation quivers,
which is due to C. Riedtmann:

Theorem 2.2.2. (Riedtmann structure theorem) Let T and T" be valued oriented
trees. Then ZT and ZT' are isomorphic as stable valued representation quivers if
and only if the undirected graphs T and T' obtained from T and T' are isomorphic.

12
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Furthermore, if I' is a connected stable valued representation quiver, there is a valued
oriented tree and an admissible group G of automorphism of ZT such that T is
isomorphic to ZT /G as stable valued representation quivers.

Proof. The statement can be found in §2 of [49] and it follows from the main
theorem of [77, Struktursatz], where the result is shown for I' a connected stable
representation quiver without valuation. O

Remark 2.2.3. Up to conjugation in Aut(ZT), the group G of the above theorem is
uniquely determined by I'. Moreover, the undirected tree T is uniquely determined
up to isomorphism by I'.

Definition 2.2.4. Let I" be a connected stable valued representation quiver. The
isomorphism type of the undirected tree T' of Theorem 2.2.2 is called the tree class

of I.

Recall from Example 2.2.1 (1) that the AR-quiver I'(A) of a finite-dimensional k-
algebra A is a valued representation quiver, which is not stable since the translation
7, which is induced from the AR-translation DTr, is not defined on projective ver-
tices.

The full subquiver of I'(A) obtained from I'(A) by deleting the projective and injec-
tive vertices together with all 7-orbits starting and ending in such vertices, yields
a stable valued representation quiver, called the stable part of T'(A) and is denoted
by I's(A). Moreover, if C is a component of I'(A), we may also remove the 7-orbits
of the projective and injective vertices in C. The resulting quiver is denoted by C*
and is called the stable part of C. The latter is then a stable valued representation
quiver.

Remark 2.2.5. For arbitrary Artin algebras, one loses much information of I'(A)
by only considering its stable part since the latter might even be empty.

By a component C of I'y(A) we mean a full subquiver of I's(A), which is a stable
valued representation quiver. In particular, if x € C, then also 7(z) € C.

There is the following important result about the structure of a connected compo-
nent of I';(A) containing T-periodic modules, see [49, Main theorem].

Theorem 2.2.6. Let C be a connected component of I's(A). Suppose that C contains
a T-periodic vertex. Then the tree class of C is either a finite Dynkin diagram or
As.

Suppose now that A is a finite-dimensional selfinjective k-algebra, i.e., the regular
left A-module A is also an injective A-module. Thus, every finite-dimensional pro-
jective indecomposable A-module P is also injective, and it follows that the modules
P/rad(P) and soc(P) are irreducible. Moreover, it follows that there are no T-orbits
in the AR-quiver of A starting or ending in an indecomposable projective (injective)
module. Therefore, the subset Py C (I'(A))o consists of vertices corresponding to

13
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the isomorphism classes of indecomposable A-modules that are neither projective
nor injective. We may define a map

1Py — Py, [M]w~— [TrD(M)].

Then, 771(7([M])) = [M] = 7(r7}([M])) for [M] € B.

Furthermore, to obtain the stable part I's(A) of I'(A) we just have to delete the
vertices corresponding to the isomorphism classes of indecomposable projective (in-
jective) modules and all arrows attached to them. If P is such a module with
[(P) > 2, that is to say, P does not belong to a semisimple block of A, we know
from Proposition 2.1.10 that the only AR-sequence where P occurs is isomorphic
to the sequence

§:0— rad(P) @ P @ rad(P)/soc(P) @3} P/soc(P) — 0.

The vertices corresponding to rad(P) and P/soc(P) are visible in I';(A) and so one
can attach P there. Hence, we may reconstruct I'(A) from I's(A) in the selfinjective
case. Therefore, in this case the shape of I'(A) can be determined from that of

[s(A).
It will be also useful to know when the middle term of an AR-sequence is projective:

Proposition 2.2.7. Let A be an indecomposable selfinjective k-algebra. Then the
following are equivalent:

a) There is an AR-sequence with projective middle term.

(
(

)

b) All AR-sequences have projective middle term.

(c) A is a Nakayama algebra of Loewy length two.
)

(d) A has Loewy length two.
Proof. This is [7, X, Proposition 1.8]. O

Remark 2.2.8. (1) Note that if A is indecomposable selfinjective and one of the
equivalent statements of the last proposition holds, then A is of finite representation
type.

(2) It follows that if A is indecomposable selfinjective and not of finite representation
type, then every connected component of I';(A) is also connected as a quiver. Thus,
such a component can also be considered as the stable part of a component of I'(A).

2.3 The syzygy functor and stable equivalence

Next, recall that for a finite-dimensional selfinjective k-algebra A one has the func-
tors

Qp A —mod - A — mod, (2.4)

14
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and
Q' A —mod — A — mod, (2.5)

called the syzygy functor and cosyzygy functor. On objects, €2, is defined as follows:
For each M in A — mod, we fix a projective cover

P2 M0

in A — mod, and define Q5 (M) to be the A-module Ker(p). Dually, for each M in
A — mod, let us fix an injective envelope

0— M -1

in A — mod. Then Q;'(M) is defined as the module Coker(j). For the definition
of 2, and Q3! on homomorphisms, see [7, IV.3]. As the notation suggests, one has
the following:

Proposition 2.3.1. Suppose that A is selfinjective. Then the functors Qp : A —
mod — A —mod and Q' : A — mod — A — mod are inverse equivalences.

Proof. This is [7, IV, Proposition 3.5]. O
Remark 2.3.2. (1) Note that if A is selfinjective, the functor
Homy(—,A) : A — mod — A°? — mod

is a duality with dual inverse Hompop(—, A) : A°® — mod — A — mod, see [7, IV,
Proposition 3.4].
(2) One can show that the functor ;' is isomorphic to the functor

Hompop (—, A)Q2pep Homp (—, A) : A — mod — A — mod,
see [7, IV.3].

It follows from the remark that the composition of the functors Homy (—, A) and D
yields an equivalence

N := DHomy(—,A) : A —mod — A — mod, (2.6)
which is called the Nakayama automorphism on A —mod. Then the following holds:
Proposition 2.3.3. Let A be a selfinjective k-algebra. Then:

(a) The functors DTr, QAN, NQ% : A — mod — A — mod are isomorphic.
(b) The functors TrD, Q N~ N1, : A — mod — A — mod are isomorphic.

Proof. This is the content of [7, IV, Proposition 3.7]. O
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[

Remark 2.3.4. In the case when A is symmetric, i.e., A = D(A) as two-sided
A-modules, we have that ' = 1_p,0q as functors and, thus, DTr = Q% and TrD =
Q,? as functors from A — mod to A — mod, see [7, IV, Proposition 3.8].

Next, we describe another crucial concept, which will be important in our consid-
erations later on.

Definition 2.3.5. Two finite-dimensional k-algebras A and A" are said to be stably
equivalent if there is an equivalence I’ : A — mod — A’ — mod.

In this case, F' is called a stable equivalence. Given a stable equivalence F' : A —
mod — A’ — mod, one also has an induced correspondence between A — modp and
A" — modp, which is also denoted by F'.

Example 2.3.6. If A is selfinjective, by Proposition 2.3.1, the syzygy functor €2,
defines a stable equivalence A — mod — A — mod.

In the following we denote by f the image of a homomorphism f in A —mod under
the natural functor A — mod — A — mod. We then have the following statement,
which is [7, Lemma 1.2, X].

Proposition 2.3.7. Let F': A — mod — A" — mod be a stable equivalence between
finite-dimensional k-algebras and A, B in A — modp. If A and B are indecom-
posable, then F induces an isomorphism Irr(A, B) = Irr(F(A), F(B)) of k-vector

spaces.
Moreover, one has the following:

Proposition 2.3.8. Let F': A — mod — A’ — mod be a stable equivalence between
finite-dimensional k-algebras. If f: A — B is a homomorphism in A — modp with
A or B indecomposable, let f': F(A) — F(B) be such that F(f) = f'. Then the
following hold:

(a) f: A — B is irreducible in A — mod if and only if f' : F(A) — F(B) is

irreducible in A’ — mod.
(b) If B is indecomposable in A — mod, then the following are equivalent:

(i) There exists a homomorphism g : P — B with P projective in A — mod
such that (f,g) : A® P — B is minimal right almost split.

(ii) There exists a homomorphism h : Q — F(B) with Q projective in A’ —
mod such that (f',h) : F(A) & Q — F(B) is minimal right almost split.

(¢) If A is indecomposable in A — mod, then the following are equivalent:

(i) There exists a homomorphism g : A — P with P projective in A — mod
such that (5) A — B® P is minimal left almost split.
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(ii) There exists a homomorphism h : F(A) — Q with Q projective in ' —
mod such that (4) : F(A) — F(B) @ Q is minimal left almost split.

Proof. This is [7, X, Proposition 1.3]. O
Remark 2.3.9. Let A be selfinjective, and consider the stable equivalence
Q=0Qx:A—mod - A —mod.

Let 0 > A = B — C — 0 be an exact sequence. Then there exists an exact
commutative diagram

where P(A) — A and P(C) — C are projective covers in A—mod. If0 - A - B —
C — 01is an AR-sequence, then the modules A and C' are indecomposable and thus,
by [7, IV, Proposition 3.6], so are (A) and Q(C'). Moreover, from Proposition 2.3.8,
we infer that the top row of the diagram above is an AR-sequence. In other words,
if C'in A — mod is indecomposable and not projective, then 7(2(C)) = Q(7(C)).

The following proposition describes what happens to the stable AR-quiver of a
finite-dimensional selfinjective k-algebra under stable equivalences. This will be
essential in our further investigations.

Proposition 2.3.10. Suppose that A and N’ are finite-dimensional selfinjective k-
algebras and let F' : A — mod — A" — mod be an equivalence. Moreover, assume
that A and A" have no block of Loewy length 2. Then F induces an isomorphism of
stable valued representation quivers between I's(A) and T's(A').

Proof. This is precisely statement (b) of [7, X, Corollary 1.9]. O
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Chapter 3

Stable Auslander—Reiten
components for skew group
algebras

The goal of this chapter is to introduce an important class of algebras, called skew
group algebras. These algebras can be thought of as generalizations of group rings,
and they will become important to us in the investigation of the possible shapes of
the stable AR-components of Hecke algebras of type A in characteristic zero.

First of all, we will give a rough survey of the representation theory of the latter, in
particular, we will explain how the representation theory of the latter and that of
the underlying algebra are intertwined. Afterwards, we will prove a result, giving
a criterion when certain tree classes of stable AR-components are preserved under
the skew group construction. For the definitions and basic results concerning AR-
sequences, we refer to Chapter 2.

Throughout this chapter, A denotes a finite-dimensional selfinjective k-algebra over
a fixed field k. Furthermore, G will denote a finite group.

3.1 Skew group algebras

We will state the crucial properties of skew group algebras that are needed for our
purposes. Most of the results stated in this section can be found in [79].

Recall that a k-algebra action of G on A is given by a map
¢:GxA— A,

satisfying the following conditions, where we write ¢(g,\) = g()), for g € G and
A €A

(i) The map g : A — A is a k-algebra automorphism for all g € G.

(i) (g192)(\) = g1(g2(N)), for g1, 92 € G and A € A.
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(iii) e(A) = A for all A € A, where e is the identity element in G.

Remark 3.1.1. From this definition, it follows that ¢ induces a group homomor-
phism G — Auta(A).

Definition 3.1.2. Given a k-algebra action ¢ of G on A, the skew group algebra of
G over A, which is denoted by A x G, is the free left A-module with the elements of
G as a basis. Furthermore, the multiplication on A x G is defined by the rule

(Ag * g) (A h) = (Agg(An)) * (gh),
for all Ay, A\, in A and g, h in G.

Remark 3.1.3. From the definition it follows immediately that A x G is a finite-
dimensional unitary k-algebra with unit 1 xe. If {by,...,b.} is a basis of A as a
k-vector space, then the elements {b; xg |1 < j <r,g € G} form a basis of A x G
as a k-vector space.

Next we want to describe important functors that relate the representation theory
of A to that of A x GG. First of all there is a natural monomorphism of k-algebras

1N — AxG,

given by i(\) = A x e. Throughout we will consider A as a unitary k-subalgebra of
A x G with respect to 7. With respect to this embedding, we then get a functor

F: A —mod — AxG —mod, (3.1)

defined on objects by F(M) = AxG®, M, for all M in A—mod, called the induction
from A to AxG.
If f: M — N is a morphism in A — mod, F(f) is defined as the map

idA*G@)fZA*G@AM—)A*G@AN,

which then becomes a morphism in A x G — mod.
Moreover, we define a functor

H:AxG—mod — A —mod, (3.2)

by setting H(N) = Resy*“(N), for all N in AxG —mod. It is called the restriction
from A x G to A.

If f: X — Y is a morphism in A*G —mod, then H(f) is the same as f considered
as k-linear homomorphism, and since we consider A as a k-subalgebra of A x GG
through ¢, it then becomes a morphism in A — mod.

Assumption. Throughout this chapter, we assume that the order |G| of G is
invertible in k.

Under this additional assumption, the functors defined above have nice properties,
and we are going to record them in the sequel.
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Proposition 3.1.4. Let F and H be as above. Then the following hold:
(a) (H,F) is an adjoint pair of functors.

(b) The natural morphism I — HF of functors is a split monomorphism, where
I is the identity functor of A — mod.

(¢) The natural morphism FH — J of functors is a split epimorphism, where J
is the identity functor of A x G — mod.
(d) rad(A)(A*G) = (A *G)rad(A) = rad(A « G).
Proof. This is [79, Theorem 1.1]. O

From the last proposition, one gets the following consequences:
Proposition 3.1.5. Under our assumptions on A and G, the following hold.
(i) A% G is free as a left and right A-module.
(ii) A is of finite representation type if and only if A x G is.
(iii) AxG is a selfinjective k-algebra.
Proof. This is [79, Theorem 1.3] and [7, III, Lemma 4.5]. O

With this information, one is now able to transfer properties of A —mod to AxG —
mod. In particular, one is interested in what happens to almost split sequences,
almost split maps and irreducible morphisms under the functors F' and H.

Through the action of G on A we also obtain an action of G on A —mod, which we
will describe next. If g is an element of G and X is in A — mod, we define Y.X as
the A-module that has the same underlying k-vector space as X together with the
A-module structure given by A .z := g~ }(\)x.

Observe that the subset g®@ X := (1xg) @ X = {(1xg)®@z|x € X} of AxG®R) X
carries a A-module structure via

Axe)(Ixg)®z) = (Axg)®@u
= [(1xg)(g7' (N *e) @
= (Ixg)®g ' (N
It follows that X and g ® X are isomorphic as A -modules. If we have a morphism
f X — Y in A — mod, then there is an induced morphism 9f : X — 9Y in
A —mod defined by 9f(z) = f(x), for all z € X. Thus, considered as k-vector space

homomorphisms, ¢f equals f. To prove that it is a A-homomorphism, let A € A.
Then

Urx) = flgT (N2) = flgT (V)
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With this definition, for a given g € G, we get a k-linear functor G : A — mod —
A — mod defined by
G(X)=9X and G(f) =7f.

We have the following;:

Lemma 3.1.6. For all g € G, the functor G : A — mod — A — mod induces an
equivalence of k-categories.

Proof. By [7, 11, Theorem 1.2], it is enough to show that G is full, faithful and
dense. Since ¢ f and f coincide as k-vector space homomorphisms it follows that G
is faithful. To show that G is full, let h : X — 9Y be a morphism in A —mod. Now
define f : X — Y to be the same k-vector space homomorphism as h. Then, with
Ain A, we have

FAz) = flg~ (g(N)z) = h(g(N) ) = g(A) « h(z) = Af ().

So f is a morphism in A — mod, and it follows that 9f = h, i.e., G is full. Since

GU X)=9¢ X) =X = X, the functor G is also dense. Hence, the claim
follows. 0

Remark 3.1.7. In particular, we infer that G sends irreducible morphisms to irre-
ducible morphisms, and almost split sequences to almost split sequences.

The following proposition is crucial in our investigations.

Proposition 3.1.8. Let X and Y be indecomposable modules in A — mod. With
the notation as above the following holds for the functors H and F':

(a) HF(X) = @ eq X as A-modules.
(b) FX Z FY if and only if X =2 9Y, for some g in G.
Proof. This is part of [79, Proposition 1.8]. O

As a consequence, one obtains the following remarkable properties of the functors
F and H.

Proposition 3.1.9. The functors F' and H preserve projectivity, projective covers
and semisimple modules.

Proof. Since, by Proposition 3.1.5 (a), AxG is free as a right A-module, the functor
F' preserves projectivity. Now let P in A x G — mod be projective. Then P is
isomorphic to a direct summand of a finite direct sum of copies of the regular A xG-
module A x G. Again by Proposition 3.1.5 (a), A x G is free as a left A-module,
hence, by the additivity of H, the A-module H(P) is a direct summand of a direct
sum of copies of the regular A-module A, thus projective.

To show that F' preserves projective covers assume that X is an indecomposable
A-module and let P — X be a projective cover of X in A — mod. Applying F'
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yields an epimorphism FFP — FX in A x G — mod. Then we choose a projective
cover Y — FX of FX in A x G — mod. It follows that Y is isomorphic to a direct
summand of F'P, and applying H affords an epimorphism HY — HF X in A—mod,
with HY projective since H preserves projectivity. Now, by Proposition 3.1.8 (a),
the A-module HF X is isomorphic to @ gec ' X Since conjugation is an equivalence
of A — mod to itself, the projective cover of a conjugate 9.X is just ¢ P, and, hence,
HFP = ®g€G 9P is a projective cover of HF X. Since HY is isomorphic to a direct
summand of HF' P, it follows that HY = HF P. Now, since Y is a direct summand
of FP it follows by counting dimensions that Y = F'P, so F'P is a projective cover
of F X, and the claim follows.

The corresponding property for H follows from Proposition 3.1.4 (d) and [7, I,
Proposition 4.3]. O

The next proposition shows how almost split sequence behave under induction and
restriction.

Proposition 3.1.10. With the notation as above we have:

(a) If0 = X =Y — Z — 0 is an almost split sequence in A — mod, then the
exact sequence 0 — FX — FY — FZ — 0 is a direct sum of almost split
sequences in A x G — mod.

(b) If X — Y is a minimal left or minimal right almost split map in A — mod,
then the map FX — FY is a direct sum of minimal left or minimal right
almost split maps in A x G — mod.

(¢) If0 > X =Y — Z — 0 is an almost split sequence in AxG —mod, then the
exact sequence 0 - HX — HY — HZ — 0 is a direct sum of almost split
sequences in A — mod.

(d) If X — Y is a minimal left or minimal right almost split map in AxG —mod,
then the map HX — HY is a direct sum of minimal left or minimal right
almost split maps in A — mod.

Proof. This is Theorem 3.8 in [79] in the more general context of dualizing k-
varieties, but we will give the arguments in our case. By Proposition 3.1.8 we

know that HF(M) = @ c; M, for M € A —mod. Moreover, if f: X — YV isa
homomorphism in A —mod, from the definition of F'(f) it is easy to see that HF(f)
decomposes as

HF(f):(f’g2f’...7g"f>:€X®92X€B‘..€Ban_>€Y@Q2Y@,,_€BgnY’

where G = {g1 = €,92,...,n}. It follows from [79, Theorem 3.6] that the induced
functors

F o (A —mod) — mod — (A * G — mod) — mod,

H : (A*G —mod)—mod — (A —mod) — mod,
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defined by

A

F(Homy(—, M)) = Homp,g(—, FM),

and

~

H(Homp,e(—, N)) = Homp(—, HN),

for M in A—mod and N in AxG —mod, preserve semisimple objects and projective
covers. Using the functorial description of AR-sequences and minimal left or right
almost split maps, see for example [8, §4.12], the claim follows. U

Next, let X be an indecomposable A-module. We denote by [X] the A-modules
in the G-orbit of X, i.e., [X] = {X | ¢ € G}. For an indecomposable module Z
in A x G — mod we choose an indecomposable module X in A — mod such that Z
is a direct summand of A x G ®, X. This is possible since the natural morphism
FH — J is a split epimorphism, following Proposition 3.1.4 (¢). Denote by [Z] the
set of isomorphism classes of non-isomorphic indecomposable direct summands of
A% G ®x X. In this situation we write [X] = [Z]. Then we have: [X] = [Z] if and
only if Z | FX if and only if X | HZ, for some g in G. For the last equivalence,
let W be in A —mod indecomposable such that Z | FIW. Then we have ¢X | HFW
and since HF'W is a direct sum of conjugates of the A-module W, we must have

W = "X for some h in G, and so FW = FX, by 3.1.8 (b).

Notation 3.1.11. If there is an irreducible morphism X’ — Y’ in A — mod, for
objects X’ in [X] and Y’ in [Y], then we say that there is an irreducible morphism
[X] — [Y] between [X] and [Y]. Similarly, we say that there is an irreducible map

[X] — [Y] if there is an irreducible map Z — U in A x G — mod, for Z € [X] and

UelYl].
With this notation the following holds, see [79, Lemma 4.1].

Lemma 3.1.12. If X and Y are indecomposable objects in A — mod, then the
following statements are equivalent:

(a) There is an irreducible map [ X] — [Y].
(b) Given X' in [X], there are some Y' in [Y]| and an irreducible map X' — Y.

(¢) Given Y' in [Y], there are some X' in [X] and an irreducible map X' — Y.

(d) There is an irreducible map [X| — [Y].

(e) Given Z in [X], there are some U in [Y] and an irreducible map Z — U.

(f) Given U in [Y], there are some Z in [X] and an irreducible map Z — U.
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Proof. First, we prove that (a) implies (b). By definition, there is an irreducible
morphism X" — Y” with X” in [X] and Y in [Y]. Since there is some g in G with
X' = 9X" and since conjugation by ¢ affords an equivalence of categories, there
is an irreducible morphism X’ — 9Y”. The converse is just the definition of an
irreducible morphism between [X] and [Y]. In the same way, the equivalence of (b)
and (c) follows.

Now let there be an irreducible morphism [X] — [Y]. Therefore we have an ir-
reducible morphism X’ — Y’ with X’ in [X] and Y’ in [Y]. This map can be
completed to a minimal right almost split map X’ @ W — Y’ with W in A — mod.
By Proposition 3.1.10, the map FX' & FW — FY’ is a direct sum of minimal
right almost split maps in A x G — mod. Since, by definition, every Z in [)7’] is a
direct summand of F.X’, from Theorem 2.1.9, we infer that there is an irreducible
morphism Z — U with U in [Y7], i.e., we have an irreducible morphism [X] — [Y],
hence (a) implies (d).

For the converse, let there be an irreducible morphism [X] — [Y], i.e., there is an
irreducible map Z — U with Z in [X] and U in [Y]. This map can be completed
to a minimal right almost split map Z & Z’ — U, and by Proposition 3.1.10, the
map HZ & HZ' — HU is a direct sum of minimal right almost split morphisms.
Since 9X is a direct summand of HZ, for some ¢ in GG, by Theorem 2.1.9, there is
an irreducible morphism 9X — Y’, with Y’ a direct summand of HU. Since HU is
a direct summand of HFY | we have that Y’ is isomorphic to a conjugate of Y, and

the claim follows. The remaining equivalences are shown by using dual arguments.
OJ

Remark 3.1.13. Denote by 7 the AR-translation of A. For g € GG, observe that if

0— XS EPyx 50

is an almost split sequence in A — mod, where X is not projective, then
0—9(rX) Lop ox 0

is an almost split sequence as well. We conclude that 7(9X) = 9(7X).
This yields that if [X] = [X'], then we have [7X] = [7X’]. Thus, it is reasonable to
define 7[X] := [7X].
Moreover, one defines
7X]|={rZ | Z € [X]}.

The next lemma is [79, Lemma 4.2], but we will give the arguments here since they
become important in the next section.

Lemma 3.1.14. If X is indecomposable and non-projective in A—mod, then TIX] =
[TX].

Proof. Let Z be in [X]. Note that Z is not projective. Otherwise, we have that
9X | HZ, for some g € G, and since H preserves projectivity, 9X is projective.
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Since conjugation by an element g € G induces an equivalence on A — mod, it
follows that X is projective.

Next, consider the almost split sequences 0 - 77 - U — Z - 0and 0 - 7X —
E — X — 0. By Proposition 3.1.10, the induced sequence 0 — F(7X) — FE —
FX — 0 is a direct sum of almost split sequences, and so F (TX ) 2 7FX. By
definition, the indecomposable summands of F/(7X) are those in [TX | and since Z
is a direct summand of F X, it follows that 77 is in [7X]. O

3.2 Stable AR-components

In the following let D be a component of the AR-quiver I'(A*G) of AxG and D* its
stable part, see Section 2.2 for definitions. Let Z be a non-projective indecomposable
A x G-module belonging to the component D and choose an indecomposable A-
module X such that Z is isomorphic to a direct summand of A x G ®, X. By our
assumptions on A and G this is always possible. Now consider the component C of
the AR-quiver that contains X, and observe that since Z is not projective, neither
is X. In the following we will assume that the stable part C* of C has tree class A,
Then we can choose an infinite sectional path

=X, = =X =X, (3.3)

in C, ie.,, 7X; 2 X;,o for all 7, such that X = X, for some n > 0. Then, by
assumption, all the modules occurring in (3.3) are not projective. We also may
assume that X lies at the end of C*, i.e., X has exactly one predecessor in C*.
Now, since we have irreducible morphisms, X,, .1 — X and X — X,,_;, by Lemma
3./1.\1/2, there are irre/dllgible morphisms 7,1 — Z and Z — Z,,_; with Z,,; €
[Xpi1] and Z,,—1 € [X,,—1]. It follows that we get a path

e R VAR V) (3.4)

in D with Z = Z,, such that Z; € [Z] for all 7. Again, non of the modules occurring
in (3.4) are projective. Now, we have the following result:

Proposition 3.2.1. The path (3.4) in D is a sectional path.

Proof. If not, then there is an index ¢ > 0 such that 72; = Z; 5. Since Z; is in
[Xi}, it follows, by Lemma 3.1.14, that Z; ;o & 77, is in [TX |. But then it follows
that Z; o is isomorphic to a direct summand of A x G ®, 7X;, and so HZ; 5 is
isomorphic to a direct summand of HF(7X;) = D, ?(7Xi). On the other hand,
since Z; 9 is in [)/(;;], a conjugate "X; 5 of X;,2, h € G, is isomorphic to a direct
summand of HZ;, and so "X, o = P(7X;), for some p € G, by the Krull-Schmidt
Theorem. This implies that ‘X;,» = 7X;, for | = p~'h € G. Since C is connected
and conjugation by [ is an equivalence on A —mod, it induces a graph automorphism
/(=) : C — C. Furthermore, by restriction, we obtain an isomorphism !(—) : C* — C*
of stable translation quivers, which implies that ‘X, must be located in the same
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row as X;yo in C®. To this end, take a sectional path from the end of C® to X;,».
The length of such a path is uniquely determined by X, - since the tree class of C*
is Ao, and this determines the row of X, 5. Since conjugation is an equivalence,
we obtain a sectional path from the end of C* = !(C®) to X, of the same length.
By our assumption, X; o and 7.X; are in different rows of C*, and so we have a
contradiction. Therefore, the above path is a sectional path in D. 0

Corollary 3.2.2. Under our assumptions, the component D does not belong to a
block of A x G of finite representation type.

Proof. Suppose D belongs to a block of finite representation type. Then, in the
path of (3.4), only finitely many isomorphism classes of indecomposable modules
occur. Since the latter path is infinite, there exists some ¢ such that Z; occurs in
(3.4) infinitely often. In particular, we have a sequence

T—Zi—=Zy— ... > Zing — Z;

of irreducible maps in D that is sectional. Since the block is of finite representation
type, we may assume that T'= Z,, 1. We conclude that there is a sectional cycle in
D, contradicting the fact that there cannot exist a sectional cycle in the AR-quiver
of an Artin algebra, see [7, VII, Corollary 2.6]. O

Remark 3.2.3. If we assume C to be non-periodic, that is to say, no module in C
is 7-periodic, then it follows from [79, Theorem 4.3] that no module in the path of
3.4 occurs more than once.

For a given W € A — mod define a function d = dy : A — mod — NU {0} by
d(M) = dw (M) = dimxyHom , (W, M).

Recall from Section 2.3 that for M in A — mod, the A-module Q5 (M) is defined to
be the kernel of a projective cover of M in A — mod. Since A is selfinjective, by
Proposition 2.3.1, the induced functor

Qp A —mod — A — mod

is an equivalence of k-categories. The inverse Q' of Q, is defined on objects to be
the cokernel of an injective envelope of M in A — mod. We will need the following
lemma.

Remark 3.2.4. For a connected component © of I's(A), we call a function d : © —
N U {0} additive if it is additive on AR-sequences, i.e., if M is in O, then

d(E) = d(M) + d(r M),

where
0O— ™M —F—M-—70

is an AR-sequence.
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Lemma 3.2.5. Suppose that © is a connected component of I's(A) such that no
indecomposable summand of W belongs to © or Qx(0). Then d is an additive
function on ©.

Proof. This is [37, Lemma 3.2]. O

Moreover, if we assume that W is 7-periodic, i.e, 7TW = W, we have isomorphisms
of k-vector spaces

Hom, (W, 7M) = Hom, (W, 7M) = Hom, (W, M), (3.5)

and thus, d is constant on 7-orbits. Note that 7 defines an equivalence of k-categories
from A — mod to itself, see [7, IV, Proposition 1.9].

Suppose now that we have a non-zero additive function d on © that is constant on
T-orbits. Recall that a connected component © of I's(A) is called 7-periodic if each
A-module in © is 7-periodic. The following is a consequence of [49, §2, Theorem)].

Lemma 3.2.6. For a non-t-periodic connected component © of I's(A) we have the
following:

(i) The tree class of © is either one of the infinite Dynkin diagrams A, AZ,
By, Cs, Dy, or a Fuclidean diagram.

(ii) If © has tree class A, then d is unbounded.

Proof. Let T be a directed tree and let IT be an admissible group of automorphisms
of ZT such that ZT /I = © as stable translation quivers. By composition with
the above isomorphism, d induces an additive function on ZT which is constant on
r-orbits. Thus, d induces an additive function on 7', the undirected tree obtained
from T'. Now the first part follows by [8, Theorem 4.5.8 (iii)].

For the second part, take a sectional path P in © and denote by s; the value of d
at the ith node of P, where s; corresponds to the value of d on the node at the
end of ©. Since d is supposed to be non-zero, we have that s; # 0. We proceed by
induction. Since d is additive on the associated tree of ©, we have 2s; = so, which
shows that s; < so. For an arbitrary n > 1, we have

2571 = Sp—1 1+ Spt1,

and then

Sn+1 — Sn = Sn — Sp—1-

Since, by the inductive hypothesis, s, —s,_1 > 0, we conclude from the last equation
that s,11 > s,. O

Remark 3.2.7. (1) Suppose that © does not belong to a block of Loewy length
two. Then, if d is a non-zero additive function on ©, that is to say, there is some
M € A — mod such that d(M) # 0, then it is non-zero everywhere. To this end,
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suppose that d(N) = 0 for some N € A — mod. Since d is constant on 7-orbits, d
is zero on the whole 7-orbit of N. This implies that d(E) = 0, with E being the
middle of the almost split sequence ending in N. This implies that d is zero on all
T-orbits joined to that of N. Inductively, we see that d must be zero on the whole of
O since © is connected by [7, X, Proposition 1.8]. This shows that d is an additive
function in the sense of [49].

(2) If we assume k to be algebraically closed, then the valuation (a,b) of an edge
in the AR-quiver of A satisfies @ = b. Therefore, the infinite Dynkin trees B, and
Cs do not occur in this case.

We return to the situation of the beginning of this section. From now on we will
assume that the connected component C* of I's(A) is not 7-periodic. Moreover, we
assume that there exists a module W € A — mod such that 7W = W and

_HOII’IA(M/, M) 7£ O’

for some M in C*®. Since C* is not T-periodic, no indecomposable direct summand of
W belongs to C* since direct summands of 7-periodic modules are again 7-periodic
and components containing 7-periodic modules are T-periodic. By [7, Chapter X,
Corollary 1.9], the functor €2, induces an isomorphism C* — Q,(C®) of stable trans-
lation quivers, and thus, by the same argument, also 2, (C®) cannot contain an
indecomposable direct summand of W. Hence, by Lemma 3.2.5, the function dy is
additive and also constant on 7-orbits by (3.5).

Observe that a conjugate W of W, g € G, satisfies 7(W) = 9, and hence, defines
an additive function dsy on the conjugate component 9(C*), which is constant on
T-orbits. Then we define V' = EBgec 9W, and it follows that 7V = V. From the
proof of Lemma 3.1.14, we get that

TFV = F(rV) 2 FV,

which shows that F'V is a 7-periodic A * G-module.

Recall from Lemma 3.2.1 that given a sectional path of the form (3.3) of C we can
construct a sectional path of the form (3.4). Moreover, we may assume that D*
is not 7-periodic. In fact, using Proposition 3.1.10, it is easy to see that D* is
T-periodic if and only if C* is.

Suppose that we have chosen W, V and FV as above. Then we define a function

dpy : Ax G —mod — NU {0}, M — dimgHom,,.(FV, M). (3.6)

Recall form [6] that for a finite-dimensional selfinjective k-algebra A and finite-
dimensional A-modules X,Y we have an isomorphism

DHom ,(X,Y) = Ext)y (Y, 7X) (3.7)

of k-vector spaces, where D denotes the usual duality on k —mod. We then get the
following result.
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Theorem 3.2.8. The function dpy of (3.6) is a non-zero additive function on D?*.
Moreover, it is unbounded on the tree associated to D?, and thus, D° has tree class

A

Proof. Recall that, for every Z; in the sectional path (3.4) of D, the restriction HZ;
has, by construction, a direct summand isomorphic to 9X;, for some g € G. Now
for such Z; on the path in D° we have

dpv(Z;) = dimgHom,,(FV, Z;)
— dimyHom, (V, HZ)
> dimxHom, (V; 7X;)
> dimy Hom, (1, 7X,)
— dimyHom, (W, X;)
= dw(X;).

(3.8)

Observe that we have used the identity (3.7), the Eckmann—Shapiro Lemma (see for
example [8, Corollary 2.8.4]) and the fact that H is left and right adjoint to F', see
Proposition 3.1.4. By our assumption, we have that doy (9X() # 0, for all g € G.
From (3.8) we infer that dry(Zy) # 0, hence dpy is non-zero since, by assumption,
D# is connected. Also, by our assumption on D*, we have that no indecomposable
direct summand of F'V belongs to D* or Qj,c(D?). Therefore, by Lemma 3.2.5, dpy
is a non-zero additive function on D*. Moreover, since TFV = FV . it is constant
on T-orbits. By Lemma 3.2.6, we conclude that the tree class of D? is either an
infinite Dynkin diagram or a Euclidean diagram.

Now, by Lemma 3.2.6 (ii), dy is unbounded on every conjugate component of C*
since all components of I's(A) conjugate to C® have tree class Ay. Thus, we can
find, for every r € N, an index u, such that dy("X,) > r, for all 4 in G. But then
it follows from the inequality in (3.8) that also dpy(Z,) > r holds, thus, dpy is
unbounded. By [8, Theorem 4.5.8], D* has tree class A. O

We say that A has enough 7-periodic modules if for every non-projective M in
A —mod there exists W in A —mod with 7W = W such that dimyHom (W, M) # 0.
Then we obtain the following theorem:

Theorem 3.2.9. Suppose that A has enough T-periodic modules and let the order
of G be invertible in k. Then the following holds: If every non-periodic connected
component of T's(A\) has tree class A, then every non-periodic connected component
of Ts(A x G) has tree class Aw.

Proof. This follows immediately from Theorem 3.2.8. U
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Chapter 4

The stable Auslander—Reiten
quiver of a quantum complete
intersection

The goal of this chapter is to describe the shape of the stable AR-quiver of a quan-
tum complete intersection. These algebras occur naturally in the representation
theory of Hecke algebras of type A with defining parameter —1. In this case, the
algebra HJ (—1) is isomorphic to the truncated polynomial ring k[X]/(X?), a quan-
tum complete intersection with all parameters equal to 1. More generally, the outer
tensor product of n copies of the algebra HJ(—1) will then be isomorphic to the
algebra k[ X7, ..., X,]/(X?,..., X?2).

In [11, Theorem 3.6] the stable AR-quiver of these algebras was determined, but
some details in the proof are missing. In this chapter we will give a complete and
detailed proof of this theorem.

Throughout, k denotes a field of characteristic p > 0. Moreover, we will assume
that k is a splitting field for all algebras and groups that occur.

4.1 A skew group algebra construction

In this section we show that a quantum complete intersection whose parameters are
arbitrary roots of unity is a truncation of a skew group algebra over a homogeneous
quantum complete intersection. The construction relies on a construction given in

(9, §4.2].
Let q = (gi;) € Mat,,(k) be a commutation matrix, i.e., ¢; = 1 and ¢;;¢;; = 1 for

all 7,j. We will assume that ¢;; is a (not necessarily primitive) root of unity in k
for all 4, 5. For n > 1 and m > 1 we then define

A?Lm = Ik<Zl, .. ,Zm>/(ZZn,ZZZ] — QiijZi7 1 S 7 <j S m),
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which is a finite-dimensional selfinjective k-algebra of dimension n™, see for example
[10, §2]. The strategy here is to relate A := A7 to the k-algebra

AZ,L = ﬂ((Xl, . ,Xm>/(XZn,XZX] — ngXi, 1 S 7 < j S m),

with ¢ a primitive sth root of unity, where n = p%s and (p,s) = 1, i.e., s is the
p/-part of n. If p =0, we set s = n. Note that A7, is a special instance of a quantum
complete intersection, where we have chosen q to be the commutation matrix with
gij = ¢, for all ¢ < j. The algebra A7, is called a homogeneous quantum complete
intersection.

Remark 4.1.1. Observe that if char(k) = p > 0 and n = p®, then A7, is isomorphic
to the group algebra of a homocyclic group, i.e., A? = kG, with G = (Z/p*Z)™.

From [11, Theorem 3.3 and Theorem 3.5], we know that if m > 3 or n > 3 then all
the connected components of the stable AR-quiver of A have tree class A.

To see how the two classes of algebras are related, we recall a construction given in
9, 84]. Let u = (u;;) € Mat,,(k) be a commutation matrix. We then choose r > 1
such that uj; =1, for all 1 <, < m and p does not divide r. Since char(k) = p,
this is possible. Define the finite group E, as follows: FE, is the central extension
given by

1— (V) — Ey — (Z/r2)" — 1, (4.1)

where (v) = Z/rZ and with relations as follows. Denote by e; the preimage of
a generator of the ith factor appearing on the right-hand side of (4.1). Then we
require:

(1) v"=1and e =1 for 1 <i <m,
(2) ee; = v eje; for 1 <i<j<m,
(3) ev=ve;, 1 <i<m,
where we specify the elements v;; € (v) as follows. We fix a group isomorphism
¢:(v) — U,

with U, the group of rth roots of unity in k, i.e., we fix a character ¢ € Irr((v)).
Then v is sent to a primitive rth root of unity and we define v;; by ¢(vi;) = wij,
1<i<ji<m.

Directly from the definition we see that |E,| = r™*!

, and since (p,r) = 1, the
associated group algebra kFE, is split semisimple.

As a next step we define an appropriate central idempotent e in the group algebra
kFE,. To this end, let Ey := Z(FE) be the center of E := E,. We define a form

ﬁ : E/Eo X E/EO — ]kx,
(aEOviU) = gb([a,b]),
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on E/Ey. Here, for elements a,b € E, the element [a,b] = a~'b~1ab denotes their
commutator in E. It is easy to see that f is bilinear, f(a,a) = 1 and 5(a,b) =
B(b,a)! for all a,b € E, that is to say, 3 is a symplectic form. Then, for a subgroup
B C E/Ey we set

Bt ={ac E|pB(a,b)=1, forall b€ B}.

If B C B*, then B is called isotropic.

Since ¢ is an isomorphism of abelian groups, we see that f is non-singular. By [73,
Corollary 5.7], it follows that F/FE, admits a decomposition F/Fy = B x B’, where
B is a maximal isotropic subgroup of E/Ey and B’ denotes the dual group of B.
Since |B| = |B'|, we see that |E/Ey| = d?, for some positive integer d.

We will recall some facts about characters of finite groups and their associated
group algebras. Our main reference for all this will be [25, §9 and §10]. For a finite-
dimensional k-algebra C' and a finite-dimensional C-module M, the trace function

p:C =k, p(a) = trace(a, M)

defines the character afforded by M. The degree of the character u, denoted by
deg(u), is defined as pu(1).

Let E; be the preimage of a maximal isotropic subgroup of E/E, in E. Note that
E; can be chosen to be any maximal abelian subgroup of E. We construct an
irreducible character y of E; that extends ¢. To this end, let S be the irreducible
k(v)-module corresponding to the irreducible character ¢. By Mackey’s Theorem,
Resi%(lnd%‘{%(&')) has a direct summand isomorphic to S. Therefore, there is
some irreducible kFE;-module 7" whose restriction to k(r) has a direct summand
isomorphic to S. Since F; is abelian, and k is a splitting field for F;, we have that
dimy(T") = 1, and, thus, Resﬁf;l) (T') = S. It follows that if x denotes the irreducible
character of F; afforded by T', then Resa(x) = ¢.

We set xo = Resgé (x). Let R := {g1,...,9s} be a set of left coset representatives
of F; in . We claim that the set

{%x | g: € R} (4.2)

enumerates all the irreducible characters of F; that restrict to xo. Note that since
E7 is normal in E the definition of the character %y makes sense. Suppose that
9y = x, for some g € E, i.e., x(¢g7thg) = x(h), for all h € E;. Since x is a group
homomorphism, we infer that

o([h, g]) = x([h, g]) = x(h™'g hg) = 1,

for all h € E;. But this implies that [h,g] = 1 for all h € FE;. Since Fj is the
preimage of a maximal isotropic subgroup of FE/FE,, we conclude that ¢ € Fj.
Therefore, the characters given in (4.2) are pairwise distinct. On the other hand, if
T; denotes the irreducible kE;-module corresponding to %y, and T} the irreducible
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kEy-module corresponding to Yy, then by Frobenius Reciprocity, each T; occurs
with multiplicity one in the induced module Indﬁgé (Tp). Similarly, each irreducible
kFE;-module whose restriction to kEj is isomorphic to Ty occurs with multiplicity
one in the latter. Since

dimy Indi5} (To) = [Ey : Eo] = [E : B,

we infer that the set in (4.2) gives all the irreducible characters of E; that restrict

to ¢.
Note that, by [25, §10A], the character of Ind%‘{% (Tp) is given by

1 .
Iﬂdgé(XO) = @ Z X0,
rEF,

where Yy is the extension of yo to Fi, and is defined as

vty = { ot S

We then see that

Ind%(XO) = Jix. (4.3)
gi€R

Since the %y, g; € R are pairwise distinct, by [26, Corollary 45.5], the kE-module
Indﬁigl (T') is irreducible. If v denotes the corresponding irreducible character of E,
then, by [25, Proposition 9.17], the associated central primitive idempotent e has
the form

e= % > (g)g" € kE,. (4.4)

geE
Since e is a block idempotent, we obtain an isomorphism
p: ekE, — Mat,(k),

of k-algebras. Moreover, using (4.3), we get that

e= ﬁ > xol9)g™" (4.5)

g€Eo

Remark 4.1.2. Observe that the block algebra ek F, is generated by the elements
ee;, 1 < i < m such that

(a) eejee; = ujeejee;, 1 <i < j<m,and

(b) (ee;))" =e,1<i<m.
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Relation (a) is due to the fact that ev;; = u;;e for all ¢, j.

Now we go back to the situation of the beginning of this chapter. For the given
commutation matrix q let us define a new commutation matrix q' € Mat,, (k) via
the equations

;%5 = €, (4.6)

for all 1 <i < j < m. Then the elements ¢;; are again roots of unity. Recall that ¢
was chosen to be a primitive sth root of unity in k. We define

r=s H ord(g; ), (4.7)

i<j

where ord(g;;) the order of ¢;; in k*. Clearly we have that r > s, and p does not
divide 7. We then obtain a finite group Ey as in (4.1) together with the associated
group algebra kE and central primitive idempotent e as in (4.5).

Next consider the algebra B := A ®y ekEy, the outer tensor product of A and the
split semisimple algebra ekEy . Denote by S the unique irreducible ek Eq-module.
Recall that, as k-algebras, ekEy is isomorphic to Maty(k), where d is such that
|Eq/Z(Eqy)| = d*. We then have the following:

Lemma 4.1.3. The algebras A and B are Morita equivalent.

Proof. Consider the (B, A)-bimodule P = A®y S. Since B = (P)?, P is a projective
generator in B — mod. By [25, Lemma 10.37] we have that as k-algebras,

El’ldB(A ®]k S)Op = (El’ldA<A> ®]k Ende]qu, (S))Op

> (A? @ k)P
A.

1%

By [25, Theorem 3.54], the k-algebras A and B are Morita equivalent. O

As a next step we consider the k-subalgebra R of B generated by the elements
Z; ®@ee;; 1 < i < m. We claim that the latter is isomorphic to R := A} as a
k-algebra. To this end, we will denote by I}, the set of tuples i = (i1, ...,1i.), ¢ > 1,
such that 1 <14 <15 < ... <i. < m. Then, as a k-vector space, R has as basis the
set

(X, XM lie I, 1<n; <n,1<j<clu{lh

We define a k-homomorphism ¢ : R — R by

717;1

X; e XM s (200 2 ) ®e(e

i1 ic ’ .eﬁic% Ze IrTrLLa
l—1®e,

i1 e

(4.8)

and extending linearly. Note that since the element ezil e e?jc, i € I, is invertible

in kEy, the element e(e; ' ---e;) must be invertible in ekEy. Thus, all the
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elements on the right-hand side are different from zero. It then follows that these
elements are linearly independent over k, and since they generate R, one sees, using
the relations given in Remark 4.1.2 and the defining relations of A, that they form
a basis of R over k. Hence, ¢ is an isomorphism of k-vector spaces. Furthermore,
for 1 <i < j < m, we have that

o(X;)o(X,) = (Z; ®ee)(Z; ® ee;)
= Z;Z; ® eeje;
(qz-?ZiZj) ® €Vigleiej
;' 0 (Z:Z; @ eeie;)
S XiX;)
= 0(X; X)),

using again the defining relations of Remark 4.1.2 and the defining relations of R.
Therefore, the map ¢ is a k-algebra isomorphism.
Next we want to define a k-algebra action Eq X R — R. To this end, for an element
o € Ey, we first define a map on the elements of the basis of R given in (4.8) by
setting

fo(Zi - Zi ) @eley o)) = (2" - Zie) @ e(o (e - ei)o ™),

71 ic 1c 71 (28 11 ic

for all i € I, and f,(1 ® e) = 1 ® e. Then, we extend this map linearly to a
map of R, which we also denote by f,. It is easy to see that fy, g, (r) = fo, (foy (1))
for all 01,09 € Eq, 1 € R, and fi = 1. Hence, the group Ey acts via k-linear
endomorphisms on R. Directly from the definition, we have that f, = 1 for all
T € Z(Eq). Moreover, using the relations of Remark 4.1.2 and the defining relations
of A, we get that

fo(b1b2) = fo(b1)f5(D2),

for basis elements by, by of (4.8), and all 0 € Ey. Thus, the k-endomorphisms are
actually k-algebra endomorphisms of R. Moreover, writing o as a product of the
generators v, ey, . .., e, of Eqy, we see that f,(b) = Ab, where b is a basis element of
(4.8), and A € k is a product of roots of unity in k, i.e., A # 0. It follows that each
f, is a k-algebra automorphism of R, and we obtain a k-algebra action of Eq on
R. In particular,

0i(Zs @ ee;), i # j,

Zi@ee, =i (4.9)

ej<Zi X 661‘) = {
forall 1 <i<m.
Through the k-algebra isomorphism ¢, we then obtain a k-action of Ey on R as
well. In particular, we get that

q/'iX’h { '7
e;(X;) :{ b Zi; (4.10)
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which is a direct consequence of (4.9).

Next we want to give another description of the algebra B. To this end, consider the
skew group algebra R+ Ey with R = A7, which, as a k-vector space, is isomorphic
to R @k kEy. Following Chapter 3, the multiplication in R x Ey is given by the
rule

(axo)(bxT) = (ac (b)) * (o7),

where o(b) := ¢~ (c¢(b)) is the action of Ey on R according to the action of Ey
on R defined above.

As mentioned above, every element in the center of Eq acts trivially on R. Set
Ey=Z(Ey) and € = ﬁ > g, Xo(g7") x g € kEy. Here, kEy is considered as a
unitary k-subalgebra of R« Ey via the canonical k-algebra embedding

D Xg= Y Axg, A Ek

g€Eq/ gEEq/

Thus, € is the image of our block idempotent e in kEy and, therefore, is an idem-
potent in R F.

Lemma 4.1.4. The idempotent € is central in Rx Eq .

Proof. If s« h denotes an arbitrary basis element in R x E, we then have

é(sxh)=—=Y (xolg ") xg)(s*h)

We conclude that € is a central idempotent in R Ey. (]

Next, we will construct an isomorphism of k-algebras between the algebras é(R x
Ey)ée = é(RxEy) = (R% Ey)é and B. To do this, we first choose a k-basis of
é(R+ Ey). For R choose the canonical basis given by the subset

(1)
iel IC{1,...,m}

of R, with 1 <w; < nforalli € I. Here, we only consider subsets I = {iy,... it} C
{1,...,m} such that i; < ... <. Then we let by be the basis element correspond-
ing to the subset I and the exponent vector v = (vy,...,v,) € N where we set
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v; = 0if ¢ & I. By convention, the empty product corresponds to the identity in R.
We then get a k-basis of R x E that is given by the set

U
{b7 * o} icqu,...m},venm, o, -

From this it follows that é(R * Ey/) is spanned by the set

{e(by « U)}Ig{l ..... m},veN™, o€ Ey -

Suppose that é(b} x v) is such that v = 70, for elements 7 € Ey and 0 € Ey. We
calculate:

e(by xv) =éb]x1)e(lx7)e(1xo)
=e(1xT)e(b] xo)
= xo(7)é(b] * o),

which shows that it is enough to choose one element from each right (or left) coset
of Ey in Ey to obtain a spanning set

B = {é(b?*@')}[g{l ,,,,, m},veEN™ oeT

for (R Ey ), where T denotes a set of coset representatives of £, in Ey. We may
assume that the identity 1 of Ey is in 7. Expanding the elements in B, we see
that all the occurring basis elements of R Ey are pairwise distinct. Therefore, the
elements of B are linearly independent over k and, thus, form a basis of é(R x Ey)
as a k-vector space. Then dimy é(R * Ey) = (dimyR)|Eqy /Ep|, and so, é(R x Ey)
and R ®y ekFEqy are isomorphic as k-vector spaces.

As a next step we define a map ¢ : B — B by setting

w(eyx ) = [[ 2 @ ([ )or
i€l iel
Note that if I = (), we set [[,.; e* = 1. Then 1 induces a k-linear map
&R+ Ey) — B,

which also will be denoted by 1. Directly from the definition it follows that i (€) =
1 ® e. To show that ¢ is a homomorphism of k-algebras, we choose two basis
clements é(bYx o) and é(bY x7) with subset I, J C {1,...,m} and exponent vectors
v and v'. Then we have

(E(bY % 0))(e(bY x 7)) = E(bia (b)) x o).

Since every element in () acts trivially on R, we may assume that o = [[, ., e,
for an ordered subset U C {1,...,m}, with generators e, of Ey and ¢, € {0,...,r—
1},u € U. By (4.10), we then have:

o)) = ([ ec)®5) = (] JJ(a) =)y - (4.11)

uelU uelU jeJ
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In the following let a, = [[,c;; [1;e J(qLJ)C“” For the product bYbYy we have:

oy = (1T 11 ¢ i (4.12)

jEJ i€l i>]

where w is such that w; = v; + v, for all 1 <i < m. Theset TUJ C {1,...,m}
is again ordered. Note that this product equals zero whenever w; > n for some
ielUlJ.

In the following, we write ay; for the exponent of ¢ in (4.12). Let o7 = zv, for
z € Ey and v € T. By definition of ¥, we then get

Y(Eio(by) xor)) = (E(byo(by) * 27))
= Y(xo(2)e(byo(by) 7))
= Xo(2)u(e(bjo(by) %))
= xo(2)a ¢ ([] Z" @e( I e))

i€luJ 1€IUJ

= a, H 7" @ ex( H ¢ ')7)

ielUJ 1€luJ

= aCV (] Z@e( [] er)or),

icluJ 1€luJ

which is equal to zero whenever w; > n for some i € I U J.
On the other hand we have

V(Eby x0))(e®y « 1) = (] 2" @e( ] &) HZ we(]] e "))

i€l el jeJ jeJ
= [Tz 2 @ «([Teo T

We first transform the element o([ ], €, ) So let 0 =[], € as before and take
the last generator e; in this product. Then we have

e [T = TTv AT v )L ef e

JjeJ j>t J<t jedJ

Write v, :== ([ [}, y:jf)(HKt yj_tvj). Next, take the last generator in oe; ' and repeat
this procedure. Then we get

vé
o)) = AT v ML
JjeJ uelU jeJ

Since v;; is central in Ey, for all 1 < i < j < m, we have that ev;; = qgje and,
equivalently, ez/igl = (qij) e = qj;e. We get

((H 6?)0)((1_[ 6;3 H H @oj) )euti He”’ He oT) (4.13)

i€l jedJ uelU jeJ i€l jeJ
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Next we want to analyze the product ([[;c;e;")(I],es e;-}j

eie; = vijeje; in By, for 1 <@ < j < m, we calculate:

TLenTTey = AT IT v T e (4.14)

iel jeJ jeJ i€l i>] i€l

). But with the relations

Finally, we obtain

e([TeryTTery = qT TT @) e T e (4.15)

iel jeJ jeJ i€l i) i€IuJ

As a last step we transform the product ([[,c; Z;")(I ;e Z;-Jj) by using the defining
relations in A = Ay,

T zT02 = q1 I @0 I 2~

icl jes jed iel i ) =y, | (4.16)
= (H H (gij)"7) H Zi"
jeJ ieli> ie10J

Recall from (4.6) that ¢/, qu, = ¢ for all 1 < u < v < m, ie., ¢ qu = ¢
Therefore, the product of the scalars in (4.15) and (4.16) equals

IT I ¢ (4.17)

jeJ i€l i>]

Comparing the coefficients of (4.11) and (4.12) with the ones calculated in (4.13)
and (4.17) we obtain:

D((e(br x o)) (e(bs 7)) = P(e(br x 7)) (e(by x 7)).

Now that we have that 1 (bb') = (b)Y (b') for basis elements b, b’ € B, it is easy to
show that this holds for arbitrary elements in é(R x Ey).

Next we want to show that 1 is surjective. To do this, note that the elements eo,
o € T, form a basis of ekEy as a k-vector space. By definition of ¢, ¢¥(é(1x o)) =
1 ® eo, and thus, the k-subalgebra 1 ® ekFq of B is contained in the image of 9.
Since Z; ® e = (Z; ® ee;)(1 @ ee;t), for all 1 < i < m, we see that also all the
elements Z; ® e, 1 <1 < m, are in the image of 1. Since these elements generate
the k-subalgebra A ® e of B, the latter algebra must be contained in the image of
Y. But, as a k-algebra, B is generated by A ® e and 1 ® ekEy and hence, 9 is
surjective. Since dimyé(R « Ey) = dimy B, it must be an isomorphism. Therefore,
we have shown:

Theorem 4.1.5. The k-algebras B and é(R * Ey) are isomorphic.

40



4.2. Stable components of a quantum complete intersection

With Lemma 4.1.3, we obtain the following corollary.
Corollary 4.1.6. The k-algebra é(R x Ey) is indecomposable.

Proof. By Lemma 4.1.3, é(R x Ey ) is Morita equivalent to A, and therefore, by [1,
Proposition 21.10], have isomorphic centers. Since A is a local algebra, the only
idempotents that occur are 0 and 1 and, hence, the claim follows. O

4.2 Stable components of a quantum complete in-
tersection

In this section we finally describe the shape of the stable AR-quiver of a quantum
complete intersection.

Let C be a finite-dimensional k-algebra, and let €2 := ¢ be the syzygy functor
associated to C. Recall from [9] C is said to have enough Q-periodic modules if for
every non-projective M in C' — mod there exists some W € C' — mod such that

(a) W = Qp(W) @ P, for some r > 0, and some projective C-module P,
(b) Hom, (W, M) # 0.
We now have the following:

Corollary 4.2.1. With the notation as in Section 4.1, the algebra é(R * Ey) has
enough Q-periodic modules. Furthermore, A has enough Q-periodic modules.

Proof. By [9, Lemma 3.2], R x Ey has enough Q-periodic modules since R has, see
[9, Corollary 2.16]. Thus, é(R x Ey) has enough (2-periodic modules. By Theorem
4.1.5, we infer, using the Morita equivalence given in Lemma 4.1.3, that A has
enough 2-periodic modules. 0

Remark 4.2.2. In [9] a theory of rank varieties for the algebra R = A? was
developed. To each M in R — mod one can associate a set

VE(M)={0}U{0# e ]km|ReskR[m(M) is not a projective kluy]-module},

where uy = Y . \X;, and k[u,] denotes the k-subalgebra generated by uy. Then,
by [9, Theorem 2.6], M is projective if and only if Vi(M) = 0. Therefore, by [9,
Lemma 2.15|, if M is not projective, then there is some 0 # A € k™ such that the
k-vector spaces

Homp(Ruy, M) and Hompg(Ru}™', M)

are both non-zero. Moreover, by [9, Lemma 2.14], we have that
Q(Ruy) = Ruy ™,

i.e., the indecomposable R-modules Ru) and Ru’;\_1 have -period two and are
syzygies of each other. Then, consider the R-modules 7(Ru,) and 7(Ru}y ™), where
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7 denotes the AR-translate of R, see Chapter 2, Section 2.1, for definitions. Since
R is selfinjective, we know from Proposition 2.3.3 that 7 = Q2N as functors from
R — mod to itself, where N denotes the Nakayama automorphism of R. By the
same proposition, we also have that Q?N = NQ2. It follows that

7(Ruy) 2 N(Ruy) and T(Rui(*l) gN(Ru;‘”)_

Set Wy = 7(Ruy) or Wy = 7(Ru}™'). Then, for any integer a # 0, we have that
7(Wo) =2 N*(Wp). From [10, Lemma 3.1], we know that A has finite order, which
implies that every (-periodic R-module is also 7-periodic. Hence, there exists a
non-zero integer a such that 7¢(Wy) = Wy. If we set

W=Wodt(Wy) @ ---® 7 (W),

then we see that 7(1W') = W. Therefore, if M is a non-projective R-module, we have
constructed an R-module W such that 7(W) = W and Hom (W, 7(M)) # 0. Note
that if M is non-projective, then neither is 7(M) since R is selfinjective. Therefore,
we have that Hom (W, M) # 0.

As a consequence of Theorem 4.1.5, we get the following result.

Theorem 4.2.3. Let k be algebraically closed and suppose that m,n > 2. If m > 3
or n > 3, then every connected component of the stable AR-quiver I's(A) of the
k-algebra A has tree class As.

Proof. We first show that every connected component of the stable AR-quiver of the
skew group algebra R+ Ey has tree class A. Note that all the assumptions needed
in the proof of Theorem 3.2.8 in Chapter 3 are satisfied, i.e., Ey is a finite group
such that the order |Eq/| of Ey is invertible in k. Moreover, by Remark 4.2.2, R has
enough 7-periodic modules, i.e., for each non-projective M in R — mod there exists
an R-module W such that 7(W) = W and Hom (W, 7(M)) # 0. Furthermore, we
know from [11, Theorem 3.3 and Theorem 3.5] that all the connected components
of the stable AR-quiver of R for m > 3 or n > 3 have tree class A,. Now we can
proceed as in Section 3.2, and, thus, by Theorem 3.2.9, we get that every connected
component of I'y(R x Ey) that is not 7-periodic has tree class A. From this it
follows that every non-7-periodic connected component of the stable AR-quiver of
any block of R Ey must have tree class A.

On the other hand, if a connected component of the stable AR-quiver of R % Ey is
T-periodic, then it follows from Theorem 2.2.6 that it must have tree class either a
finite Dynkin diagram or A.. In the first case the corresponding component of the
stable AR-quiver is finite, thus belongs to a block of R+ Ey of finite representation
type. By Proposition 3.2.1 and Corollary 3.2.2 this cannot be the case. Hence, it
must have tree class A..

By Theorem 4.1.5 we have a k-algebra isomorphism between B and é(R* Ey/), and,
by Lemma 4.1.3, a Morita equivalence between A and B. Thus, A and é(R x Ey)
are Morita equivalent k-algebras and the claim follows. 0
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4.2. Stable components of a quantum complete intersection

Recall that a finite-dimensional algebra A over an algebraically closed field is of
finite, tame or wild representation type, and these types are mutually exclusive.

If A is of finite representation type, there are only finitely many isomorphism classes
of indecomposable A-modules, whereas in the tame and wild cases there are in-
finitely many. If A is tame, then one can classify the isomorphism classes of inde-
composable A-modules, whereas in the wild case, in general, no such classification
exists.

The next proposition completes the picture for the quantum complete intersections.

Theorem 4.2.4. Suppose that k is algebraically closed. Then the following hold for
the algebra A = Ag,,.

(a) If m =1, then A is of finite representation type and the connected component
of the stable AR-quiver has tree class A,_1.

(b) If m =n =2, then A is of tame representation type and there is one connected
component of the stable AR-quiver of tree class Ais and infinitely many 1-
tubes, which have tree class As.

(¢) In all other cases, A is of wild representation type and all the connected com-
ponents of I's(A) have tree class An.

Proof. If m = 1, then, as a k-algebra, A is isomorphic to k[Z]/(Z"), the truncated
commutative polynomial ring. For the latter algebra, the modules k[Z]/(Z%), 1 <
1 < n, give a complete list of non-isomorphic indecomposable modules, so A is of
finite representation type. For each 1 < i < n — 2 we have the following AR-
sequence:

0 — K[Z]/(Z) 25 K[2]/(27") @ K[Z)/(Z+') 25 K[2]/(Z') — 0,

where the homomorphism f; is induced by the canonical inclusion k[Z]/(Z) —
k[Z]/(Z"1) and the canonical epimorphism k[Z]/(Z") — k[Z]/(Z'1), the homo-
morphism g; is induced by the canonical inclusion k[Z]/(Z*') — k[Z]/(Z") and the
canonical epimorphism k([Z]/(Z") — k[Z]/(Z") with switched sign. Note that the
module k[Z]/(Z") is the unique projective and injective indecomposable A-module.
From this it follows that the stable part of the AR-quiver of A is a 1-tube of tree
class A,,_;.

Let m =n = 2. In this case, A is a factor algebra of the algebra

k(Zy, Z2)/ (21, Z3).

which is of tame representation type by [78, 1.3]. Using the methods of [8, §4.3],
one can show that A is special biserial and domestic. By [37, Theorem 2.1], I's(A)
consists of infinitely many tubes that have tree class A, and finitely many com-
ponents of the form ZAM for positive integers p,q. For pg > 2, the component
Z.A,, has tree class A% and if pg = 1, it has tree class A;5. Since rad(A)/soc(A) is
indecomposable, it must have tree class fllg.
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If m > 3, then it follows from [14, Theorem 4.1] that A has wild representation
type. If m = 2 and n > 3, then the algebra k(X,Y)/(X? XY — ¢V X, Y3 Y?X) is
a factor algebra of A. By [78, 3.4], this factor is wild. It follows that A is wild. The
statement about the components of I';(A) follows from Theorem 4.2.3.

O

Remark 4.2.5. As mentioned in the beginning of this chapter, the case when A
is a homogeneous quantum complete intersection was already treated in [11]. The
general case, i.e., if all the entries of the commutation matrix are arbitrary roots
of unity, was also stated there but a thorough proof was missing. Theorem 4.2.4 is
filling the gap.

In the following we list the Dynkin and Euclidean diagrams occurring as tree classes
in Theorem 4.2.4, where the diagram of type A,, consists of n nodes.

A,: e—e—oe o—oeo

A : o—eo—e o—eo
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Chapter 5

The stable Auslander—Reiten
quiver of blocks of e-parabolic
Hecke algebras

In this chapter we will describe the shape of the stable AR-quiver of outer tensor
products of Brauer tree algebras whose Brauer tree is given by a line with no
exceptional vertex. These algebras naturally occur as blocks of Hecke algebras of
type A of finite representation type.

Therefore, as a result, we may describe the stable AR-quivers of blocks of parabolic
Hecke algebras of the form H/(q)®*, k > 1, where the defining parameter ¢ is a
primitive eth root of unity, e > 3. The latter algebras are also called e-parabolic
Hecke algebras and if char(k) = 0, they occur as vertices of indecomposable H/(q)-
modules, see [32].

First of all, we will give some important definitions and constructions concerning
finite-dimensional algebras.

Afterwards, we recollect the definition of a Brauer tree algebra. In particular we
will be interested in Brauer tree algebras whose Brauer tree is a star.

After that we will give an alternative description of such an algebra via a skew group
construction. Together with results of J. Rickard this will enable us to describe the
shape of the stable AR-quiver of outer tensor products of Brauer tree algebras.
Throughout, we denote by k a fixed field.

5.1 Preliminaries

In this section we briefly recall some fundamental definitions and constructions in
the theory of finite-dimensional algebras.

To a finite-dimensional k-algebra B one can associate a quiver in the following way:

Definition 5.1.1. Let B be a finite-dimensional k-algebra. Denote by

507517"'78771

45



Chapter 5. The stable Auslander—Reiten quiver of blocks of e-parabolic Hecke
algebras

the irreducible B-modules, corresponding to the projective indecomposable modules
P, = Be;, 0 < i < m, where ey, ...,e, are pairwise orthogonal primitive idempo-
tents in B. The Ext-quiver Q(B) of B has vertices the set {vg, v1,..., v}, and the
number of edges from v, to vy, 0 < x,y < m, is the same as

dimy Extp(S,, S,) = [rad(P,)/rad*(P,) : S,). (5.1)

Remark 5.1.2. Note that the non-negative integer dimy Extj(S,, S,) also coincides
with the k-dimension of the spaces

Homp(P,,rad(P,))/Homp(P,,rad’(P,)) = e,rad(B)e,/e,rad*(B)e.,
see [8, Proposition 2.4.3].

Recall that a finite-dimensional k-algebra B is called basic if all the irreducible
B-modules are one-dimensional. It is well known that for each finite-dimensional
k-algebra B there exists a basic algebra that is Morita equivalent to B.

There is the following important theorem, which is due to P. Gabriel:

Theorem 5.1.3. (P. Gabriel) Assume k to be algebraically closed. Let B be a
finite-dimensional basic k-algebra, and Q) = Q(A) be its Ext-quiver. Then there
exists a surjective k-algebra homomorphism v : kQQ — B such that the kernel of i
is contained in the ideal of kQ) generated by paths of length at least two.

Proof. See [41, §4]. O

5.2 Brauer tree algebras

A Brauer tree T is a finite connected undirected tree where around each vertex of
T there is a cyclic ordering of the adjacent edges. Moreover, to each vertex u one
assigns a positive integer m(u), called the multiplicity of u, such that at most one
vertex of T has multiplicity greater than one. A vertex u with m(u) > 1 is called
exceptional.

A finite-dimensional k-algebra A is called a Brauer tree algebra for T if there is a
bijection between the edges 1,...,r of T" and the irreducible A-modules Sy, ..., .S,
such that the structure of the projective indecomposable A-modules P, ..., P, is
given in the following way: P;/rad(P;) = S; = soc(P;) and rad(F;)/soc(P;) is the
sum of two not necessarily non-zero uniserial modules corresponding to the end-
points of the edge 7. If i = iy, 41,...,1%s, 70 is the cyclic ordering around one of the
endpoints u of i, then the corresponding uniserial module has composition factors
from top to socle

Si1aSi2>'"7Sis)Si7Si17Si27"‘aSisa‘Si7"'a"'75i175i27"')5’i37

where S; appears m(u) — 1 times and .S, for j # 0 appears m(u)-times.
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Every Brauer tree determines a corresponding Brauer tree algebra that is symmetric
and unique up to Morita equivalence.

Next, we want to discuss a very important instance of a Brauer tree algebra: Let T
be the Brauer tree that is a star with r edges and (possibly) exceptional vertex in
the center of T" with multiplicity m. Denote by B(r,m) the corresponding Brauer
tree algebra.

Figure 5.1: The Brauer tree B(r,m)

Consider the path algebra k@) of the circular quiver ) with r vertices vy, ..., v,_1,
and arrows «; : v; = vy forall 0 < i <r—1, and «, : v,_1 — vy. Recall that
k@ is the k-algebra with basis the set of paths of (), and multiplication is given by
the composition of paths, see for example [7, III, §1]. For each 1 < i < r we denote
by p; the path o;_1 - - - 1104, with the convention that a; = «y, whenever j — k is
divisible by 7.

The basic algebra of B(r,m) is then isomorphic as a k-algebra to the algebra kQ)/J,
where J is the two-sided ideal of k() generated by the paths a;p", for all 0 < i <
r — 1, see for example [46, §2].

U1

U%/.\‘

/N
{

T~

Figure 5.2: The circular quiver )

5.3 A skew group construction for B(r,1)

In the following let G = C, be the cyclic group of order r, and we fix a generator ¢
of G. Moreover, let A = k[t]/(¢"™), an r 4+ 1-dimensional local k-algebra, and set
t:=t+ () eA.

Let I =Z/rZ = {0,...,r—1} and fix a primitive rth root of unity ¢ in k. From now
on we assume that r is invertible in k. Then, by Maschke’s Theorem, the group
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algebra kG is semisimple. Fix a complete set of non-isomorphic irreducible kG-
modules {Ty,...,T,_1} such that for each i € I, the irreducible character afforded
by T; is given by

Yi:G—=k, h=g%— (%

For each i € I, we define

e =r""Y xi(h")h. (5.2)

heG

Remark 5.3.1. An easy calculation shows that ge; = (’e¢;. Moreover, the set
{e; | i € I} is a complete set of primitive orthogonal central idempotents in kG.

Define a k-algebra action
p:Gx A=A (5.3)

of G on A, by defining ¢(¢°,#/) = ¢/, for 0 < j < r, i € I, with the convention
that ©° = 1, and extending linearly. It is easy to see that this defines a group
homomorphism

G — AutA(A)

Let A := A% G be the skew group algebra of GG over A, and consider A as a unitary
k-subalgebra of A via the monomorphism A — A, given by A — A% 1. By [79,
Theorem 1.3], since A is selfinjective, so is A.

As a first step, we want to describe the Loewy structure of the indecomposable
projective A-modules. To this end, for each i € I, define

&=0"%1)) xi(h ") xh, (5.4)
heG

the image of the idempotent e; under the canonical monomorphism kG — A given
by bh — bx h, b € k. Again we see that the elements ¢;, ¢ € I, are mutually
orthogonal idempotents in A. For each ¢ € I define P, = Aé;. Then each P, is a
projective A-module. We have the following:

Lemma 5.3.2. For each t € I, the set
{éia (E* 1)517 SRR (Er * 1)él} - ]Dz
is a basis of P; considered as a k-vector space.

Proof. Let Axh, A € A,h € GG, be an arbitrary basis element of A. Suppose that
h=g’, j€Z. Then

(Axh)é = (C7 % 1)(A* 1)é;,
by Remark 5.3.1. Therefore, the given set is a spanning set for P;. Next, assume
that

Z,uj(fj * 1)éz = 07
j=0
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for coefficients p; € k. After reordering, we see that this is a sum of pairwise
different basis elements for A, which implies that p; = 0 for all 0 < 5 < r. Thus,
the set is a k-basis of P,. O

Lemma 5.3.3. As A-modules we have that

A%’@E.

el

Proof. The claim follows immediately with Lemma 5.3.2 since dimy A = r(r + 1).
O

For any i € I, the restriction Res} (P;) of P is isomorphic to A as a A-module. Since
the latter is indecomposable, Resg‘(Pi) is indecomposable as a A-module, and thus,
P; is indecomposable as an A-module. Therefore, each P; is an indecomposable
projective A-module. Then, for each i € I, define S; to be the irreducible A-module
corresponding to P;, i.e.,
S; = P;/rad(F;).

In the sequel let v = rad(A) be the Jacobson radical of A. Since A is a local algebra,
we have that v = (¢), the unique maximal ideal of A. Moreover, since r is invertible

in k, we know from [79, Theorem 1.3] that tA = Av = rad(A). Then, for each i € I,
we see that

rad(P;) = rad(A)P; = tP,. (5.5)

Furthermore, for all j > 0, we define the A-submodule rad’(P;) of P; inductively as
follows: rad’(P;) = rad(rad’~*(P)), where we set rad’(P)) = P,.

Remark 5.3.4. By (5.5), for i € I, the irreducible A-module S; is generated by
¢; + rad(P;) as an A-module. Moreover, (1% g)v = (v for all v € S;, by Remark
5.3.1.

Recall that a finite-dimensional k-algebra B is called a Nakayama algebra if the
indecomposable projective B-modules as well as the indecomposable injective B-
modules are uniserial.

Proposition 5.3.5. For each i € I, the indecomposable projective A-module P; has
radical series

Siy Sit1, Sigzy - -5 Sigr—1, Si- (5.6)

This is already a composition series of P; and it follows that A is a Nakayama
algebra.

Proof. Let i € I. From (5.5) we infer that rad(P;) is spanned by the set {(¢ %
1)é;, ..., (f" x 1)é;} as a k-vector space. Iterating this procedure, we see that for
all 0 < j < r, rad’(P) is spanned by {# x 1)é;,..., (" x1)é&}, and rad" ' (P)) = 0.
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From this we see that for all 0 < j < r, rad’(P;) /rad’ ™ (P) is a non-zero A-module,
spanned by u; := (& % 1)é; + rad’™'(P;,). Then we have that (1 % ¢)u; = (",
and hence, (1% g)v = ("o for all v € rad’(P;)/rad’*'(P;,). From Lemma 5.3.3
we know that dimy P, = r 4+ 1. It follows that the modules rad’(P;)/rad’*!(P),
0 < j < r, are one-dimensional, and thus, irreducible. By Remark 5.3.4 we have
that rad’ (P;)/rad’ ™ (P;) 2 S, and so, we conclude that (5.6) is the radical series
of P;, and also the composition series of P;.

From [7, IV, Lemma 2.1], we have that P; is a uniserial A-module, and therefore, A
is a Nakayama algebra. O

As we have the composition series of the projective indecomposable A-modules at
our disposal, we may try to give a presentation of A by a quiver with relations.
To this end note that the algebra homomorphism

v :kQ — B

given in Theorem 5.1.3 is constructed as follows: Write 1 = e; + -+ + ¢, as a
sum of pairwise orthogonal primitive idempotents such that e; corresponds to the
indecomposable projective B-module P;, for all 0 < ¢ < m. Since B is basic, we
may define a map ¢’ : {vg,...,vm} — B, v; = ¢;, for all 0 < i < m. Note that
in k@, the elements v;, 0 < i < m, are mutually orthogonal idempotents. Next,
choose a complement K to e;jrad®(B)e; in e;rad(B)e; as a k-vector space and choose
a k-basis for K. For each (i,7), 0 < i,j < m, choose a bijective map between the
arrows starting in v; and ending in v; and the basis elements of K. Then extend
the map ¢’ to a map () — B by sending the arrows from v; to v; to their images
under the chosen maps.

Any relation in k@ is given by the non-composability of paths. But these relations
are satisfied by corresponding products in B since e;e; = eje; = 0, for ¢ # 7.
Therefore, we obtain a well-defined k-algebra homomorphism ¢ : k@) — B. By
construction, B = Im(¢) + rad*(B). But then it follows that B = Im(¢), see for
example [8, Proposition 1.2.8]. Hence, 1) is surjective.

We want to apply this to A. By Proposition 5.3.5, A is a basic k-algebra, and from
the structure of the projective indecomposable modules we see that

1 ifj=4+1modr,

dimy, Extz(sm Sj) = { 0 if j #i+1modr.

Therefore, we get that the Ext-quiver Q = Q(A) is the circular quiver with r vertices
given at the end of Section 5.2.

By construction, 1 = éy + --- 4+ €1 and €¢é; = €;¢; = 0, ¢« # j. Fixi € I.
Straightforward calculations show that é;1(t%x1) = (tx1)é;, for all i € I. Therefore,
we get that

(tx1)é; = (Ex1)éF = &1 (f*x 1)é;,

for each 7 € I. Moreover, one sees that é;(tx1)é; = 0 for all j # i+ 1. By the proof
of Proposition 5.3.5, we have that a complement of &;, rad®(A)é; in & rad(A)é; is

50



5.3. A skew group construction for B(r,1)

spanned by (tx1)é; = é;1(t*x1)é;. We now define 1) by sending the vertex v; to é; and
the arrow between v; and v; ;1 to (t%x1)é;. Then, by Theorem 5.1.3 and the discussion
afterwards, 1 extends to a well-defined surjective k-algebra homomorphism

k@ — A,

which we also denote by 1.
Let J = Ker(¢). We want to give a precise description of .J. First, observe that for
1 € I, we have

(Fx )&k Ve ) -+ (Fx D)er) (Ex 1)E) = (T % 1)e; = 0.

Therefore, for any i € I, ¥(a;p;) =0, i.e., ayp; € J. Let J be the two-sided ideal of
k@ generated by the paths «a;p;, i € I. Then J C J. Note that

P(irjinj1 .. i) = (F x1)é; #0,

for all i € I and 0 < j < 7 — 1, since the elements (#/ x 1)é; form a basis of P;.
Therefore, the subset of paths

P:{pij:&iﬂaiﬂ,l...ai]iEI,Ogjgr—l}U{vj]0§j§7’—1}

in @ is such that ¢(p;;) # 0 for p;; € P. On the other hand, if p is a path in @) not
contained in P, then from the structure of () we infer that p = p'a;p;p”, for some
i € I and paths p/,p”. Then ¢(p) = 0, i.e., p € J. Since k@ has k-basis the set
of paths of (), we see that a complement K of the k-subspace of k@) generated by
P is spanned by such paths and is contained in J. But also J C K, and therefore,
K = J. Since |P| = r(r + 1), it follows that

dimy kQ/J = r(r + 1).

Now, A 2 kQ/J is a factor algebra of k@ / J, and since they have the same dimension
we must have J = J. We have proved the following.

Theorem 5.3.6. Let r be a positive integer that is invertible in the algebraically
closed field k. Let A = k[t]/(t™™), G = C, be the cyclic group of order r, and ¢ as
in (5.3). Then, as k-algebras, the skew group algebra A x G and the basic Brauer
tree algebra B(r,1) are isomorphic.

We will also need the following:

Lemma 5.3.7. Let A and ' be two finite-dimensional k-algebras, and G, H be two
finite groups. Suppose that there is a k-algebra action of G on A and a k-algebra
action of H on I'. Let Ax G and I' x H be the corresponding skew group algebras.
Then, as k-algebras,

AxG)@x (I'xH) =2 (A ') x (G x H),

where G x H s the direct product of G and H and the k-algebra action of G x H
on A ®y ' is defined by
(g, h)(a ®b) = ga ® hb,

for elements (g,h) € G x H and a®@ b e A ® T
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Proof. Choose a k-basis {\1, ..., A, } of A and a k-basis {71, ...,vm} of I'. Moreover,
suppose that G = {g; = idg, g2, ..,9,} and H = {hy =idy, ha, ..., hs}. Then the
sets {\ixg; |1 <i<n,1<j<r}and{y*h;|1<i<m,1<j<s} arek-bases
of Ax G and I' x H, respectively. We define a map

V:(AxG) R (I'xH) — (A ') x (G x H),

by setting (A; * gj) @ (yu * hy) — (A @ V) * (g4, hy), for admissible indices ¢, j, u, v,
and extending linearly. It is easy to see that 1) is an isomorphism of k-vector spaces.
Also, straightforward calculations show that 1 is a k-algebra homomorphism. [

5.4 Derived categories, derived and stable equiv-
alences

For the convenience of the reader, in the following, we will recall the basic notions
of derived categories and derived equivalences. After that we will state the crucial
results due to J. Rickard giving a criterion when two rings are derived equivalent.
In the following, we denote by R a unital commutative ring. As before, for an
R-algebra A, we denote by A — Mod the category of all left A-modules, by A —
mod the category of finitely presented left A-modules, by A — Proj the category
of all projective left A-modules, and by A — proj the category of finitely generated
projective left A-modules. Recall that an A-module M is called finitely presented if
there is an exact sequence of A-modules

A" — A" — M — 0,

for positive integers m,n.

All categories are assumed to be additive R-categories and all functors are R-linear.
Moreover, if A and B are two R-algebras and M is an A — B-bimodule, then we
assume that the two actions of R coincide, i.e., M is a left A ®p B°°-module.

Let A be an additive category. By Kom(A) we denote the category of differential
complexes

. rdr r+1dr4+l r+2
A= (.. AT S AT S AT ),

with objects A" and morphisms d’y in A, r € Z, such that d’;\'d’, = 0, for all r. A
morphism f : A* — B® in Kom(A) is a family {f*};cz of morphisms in A such that
fitlody =dF" o f, for all i € Z. We will denote by Homgom(4)(A*, B®) the set of
morphism for objects A®, B®* in Kom(.A), which is an abelian group with respect to
the componentwise addition.

We may define several subcategories of Kom(.A) satisfying certain finiteness condi-
tions. Let Kom™(A) be the full subcategory of Kom(.A) consisting of complexes A*
over A such that there exists an integer s = s(A®) with A* = 0 for all 7 < s. Simi-
larly define Kom™ (A) to be the full subcategory of Kom(.A) consisting of complexes
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A® such that there is some integer s = s(A®) with A* = 0 for i > s. Then we define
Kom"(A) = Kom™(A) N Kom™ (A). Note that these categories are again additive.
A morphism f : A* — B® is called null-homotopic if there exists a family of mor-
phisms h' : A" — B! in A such that f’ = d3'h’ + h""'d’,. Two morphisms f and
g are called homotopic if f — ¢ is null-homotopic.

Clearly, the set of null-homotopic morphisms between objects A®* and B® forms a
Z-submodule N (A®, B*) of Homgom(a)(A®, B*). The homotopy category K(A) has
the same objects as Kom(.A) and the morphisms from A® to B*® are defined to be
the elements of Homgom(a)(A°, B®)/N(A*, B®).

Note that for each i € Z we have the homology functor

H': Kom(A) — A,

given by H'(A*) = Ker(d,)/Im(d’y"). If f : A* — B* is a morphism, the corre-
sponding morphism H'(f) in A is called the homology morphism. The homotopy
category of an additive category has the following structure.

Proposition 5.4.1. Let f : A* — B* in Kom(A) be null-homotopic. Then H'(f) =
0 for all i € Z. In particular, if f is homotopic to g, then H'(f) = H'(g) for all
1€ Z.

Proof. See [60, Chapter 1, Lemma 1.3.1]. O

The proposition shows that for every i € Z the homology H' : Kom(A) — A
induces a well-defined functor H* : K(A) — A.

A quasi-isomorphism in K(A) is a morphism s : A* — B*® of K(A) such that the
homology morphisms H'(s) : H'(A®*) — H'(B®) are isomorphisms for all i € Z.
Denote by ¥ the class of all quasi-isomorphisms in K(A). One has the following
important theorem:

Theorem 5.4.2. Let A be an abelian category, K(A) the homotopy category of A.
Then there exists a category D(A) and a functor Q : K(A) — D(A) such that the
following properties are satisfied:

(1) If s is a quasi-isomorphism in K(A), then Q(s) is an isomorphism in D(A).

(ii) If F : K(A) — B is a functor sending quasi-isomorphisms to isomorphisms,
then there ezists a unique functor G : D(A) — B with F = G o Q.

Proof. See [60, Chapter 4, Definition-Theorem 1.3]. O

The category D(A) is called the derived category of the abelian category A. In
what follows we will also denote the latter category by D"?(A). By Theorem 5.4.2,
it can be thought of as the localization of K(A) at the class of quasi-isomorphisms
in K(A). Similarly, localizing at the class of quasi-isomorphisms in Kom™(A)
(resp. Kom™(A), KomP”(A)) we obtain the derived categories D*(A) (resp. D~ (A),
DP(A)), see [55, §13.1].
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Note that up to this point, it is not clear whether D(A) is additive. Actually, this
is the case, and a proof can be found in [60, Chapter 4, §2.8]. On the other hand,
the category D(A) will almost never be abelian.

Let A® be a complex over A. For an integer r, define a new complex A°®[r] by setting
(Afr])' = A™, and dy,; = (=1)"d}; for all i € Z.

For a morphism f : A* — B*® in Kom(.A) define f[r] : A*[r] — B®[r] via f[r]' = f™*
for all 7 € Z.

This defines a translation functor

T" : Kom(A) — Kom(A), T"(A®) = A®[r|, T"(f) = f]r]. (5.7)

Clearly, T" is an auto-equivalence on Kom(.4). Also it induces an auto-equivalence
of the categories Kom™(A), Kom™(A), Kom"(.A) and on the corresponding derived
categories DT (A), D~(A), D°(A). If not stated otherwise, by a morphism f of
complexes we mean a morphism in either of the categories introduced above.

Let f: A* — B® be a morphism of complexes. Then the complex C'(f) defined as

() = AN @ B, diyp) (') = (=dif @), 1) + (1),

for elements a; 1 € A[1]",b" € B, and all i € Z, is called the mapping cone of f.
A diagram in the category Kom(.A) (resp. K(A), D(A), Dt(A), ...) of the form

A* % Bt Y 00 5 T(AY) (5.8)
is called a triangle. A morphism of triangles is a commutative diagram of the form

a b c

A B ce A1)
f g ‘h ‘f [1]
A pe b cr LA,

A morphism of triangles is called an isomorphism if the morphisms f, g, h are all
isomorphisms in the corresponding category.
Let f: A* — B*® be a morphism of complexes. Then we define the morphisms

alf): B*— C(f), a(f) =0®idps.,

and
B(f): C(f) — T(A%), B(f) = (idras), 0).
We obtain a triangle

A* Ly g Yl ooy Y pas, (5.9)

the mapping cone triangle.
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Next we consider the homotopy category K(A) of A. A triangle in K(.A) is called
distinguished if it is isomorphic to a mapping cone triangle (5.9). Recall that a
triangulated category D is a category together with a translation functor 7' giving
an equivalence T : D — D of categories. Furthermore, there is a family of triangles,
called the distinguished triangles, and satisfying certain axioms, see for example [55,
Definition 10.1.6]. For the homotopy category of an additive category we have the
following:

Theorem 5.4.3. The homotopy category K(A) of an additive category A together
with translation (5.7) and the family of distinguished triangles of the form (5.9) is
a triangulated category.

Proof. This is [55, Proposition 11.2.8]. O

Corollary 5.4.4. The derived category D(A) of an abelian category A is a trian-
gulated category.

Proof. This follows from Theorem 5.4.3 and [55, Theorem 10.2.3] O

Let D and D’ be triangulated categories with translations 7" and 7. A triangle
functor F': D — D' is a functor of additive categories such that

(i) There is a functorial isomorphism ¢y : F(T(X)) =2 T'(F(X)), for every object
X of D.

i) f X 5 Y 5 Z 5 T(X) is a triangle in D, then the sequence F(X) i

F(Y) Fﬁi) F(2) ¢X(F_>(“’)) T'(F(X)) is a triangle in D'.
A triangle functor F' is said to be a triangle equivalence if F' is an equivalence of ad-

ditive categories. In this case the categories D and D’ are equivalent as triangulated
categories.

The following theorem of J. Rickard is the full analogue of Morita’s Theorem in the
situation of derived categories of module categories.

Theorem 5.4.5. (J. Rickard) Let A, B be R-algebras. Then the following are equiv-
alent:

(i) The categories D~ (A—Mod) and D~ (B—Mod) are equivalent as triangulated
categories.

(ii) The categories D*(A —Mod) and D(B —Mod) are equivalent as triangulated
categories.

(iii) The categories K°(A — Proj) and K(B — Proj) are equivalent as triangulated
categories.

(iv) The categories K°(A — proj) and KP(B — proj) are equivalent as triangulated
categories.
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(v) B is isomorphic to Endpya_noq) (1), where T is a complex of K"(A — proj)
such that

(a) Hompba_noa)(T*, T*[r]) =0, for r # 0.

(b) The category add(T*®) of direct summands of finite direct sums of T*
generates the category KP(A — proj) as a triangulated category.

Proof. See [74, Theorem 6.4] and [76, Theorem 1.1]. O

If one of the equivalent conditions of the last theorem are satisfied, then the algebras
A and B are said to be derived equivalent. The complex T of part (v) is called a
tilting complex.

Remark 5.4.6. (1) If R is a field and A and B are finite-dimensional algebras R-
algebras, then the statements of the theorem are equivalent to the statement that
there is a triangle equivalence D”(A — mod) — DP(B — mod).

(2) If A and B are Morita equivalent, then they are derived equivalent. The converse
is not true and counterexamples can be found in the case where A and B are blocks
of finite groups.

We will also need the following result, which is [76, Theorem 2.1], where we assume
from now on that all R-algebras are projective when considered as R-modules.

Theorem 5.4.7. Let Ay be an R-algebra, with tilting complex Ty, such that the en-
domorphism algebra Endps 4, _moa)(T,) is isomorphic to an R-algebra By. More-
over, let Ay be an R-algebra with tilting complex T}, such that Endpba,_woa)(T4,)
is isomorphic to an R-algebra By. Then T’y ®@rT3, is a tilting complex for the alge-
bra Ay ®pg Ay such that Endpb((a,ep,4.)-Moa) (T, ®rT4,) is isomorphic to By ®g By
as R-algebras, i.e., the algebras A1 ®r Ay and By ®g Bs are derived equivalent.

In our situation we will also need the following crucial results of J. Rickard, see [75,
Corollary 2.2] and [75, Theorem 4.2].

Theorem 5.4.8. Let A and I" be two finite-dimensional selfinjective k-algebras. If
A and T are derived equivalent, then they are stably equivalent.

Theorem 5.4.9. Let B be a Brauer tree algebra with r edges and let m be the
multiplicity of the exceptional vertex. Then B is derived equivalent to B(r,m).

Next, we apply these theorems in our context. In what follows, let A = k[¢]/(¢" 1)
and G = C, be the cyclic group of order r. We let G act on A as in Section 5.2,
and we will denote the corresponding k-algebra action by ¢. We then obtain the
skew group algebra A x G. Furthermore, for a k-algebra A and a positive integer
n, we will denote by A®™ the n-fold outer tensor product of A. Note that A®" is
canonically isomorphic to k[t1, ..., t,]/({ti*' }1<i<n) as k-algebras. In this case, by
Lemma 5.3.7, we see that H := G X --- x G (n-times), the direct product of n copies
of GG, defines a k-algebra action through . We then obtain the skew group algebra
A®" x H. We have the following:
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Theorem 5.4.10. Let B be a Brauer tree algebra with r edges and multiplicity
m =1 over an algebraically closed field k. Let n be a positive integer and suppose
that r is invertible in k. Then the algebras B®" and A®" x H are stably equivalent.

Proof. From Theorem 5.3.6 we have that the basic algebra of B(r,1) is isomorphic
to AxG as a k-algebra. By Theorem 5.4.9, we know that B is derived equivalent to
B(r, 1), and thus, derived equivalent to AxG. Then, by Theorem 5.4.7, the algebra
B®" is derived equivalent to the algebra (A x G)®". By Lemma 5.3.7, the latter
algebra is isomorphic to A®™ x H. From [51, Theorem 2.1] we get that B®™ and
A®" x H are symmetric k-algebras and, thus, selfinjective. The claim now follows
from Theorem 5.4.8. U

5.5 Components of the stable AR-quiver

In this section we assume that k is an algebraically closed field and ¢ is a primitive
eth root of unity in k, e > 3. Moreover, we assume throughout that e—1 is invertible
in k.

For e = 2 we proved in Chapter 4 that a component of the stable Auslander—Reiten
quiver of an e-parabolic subalgebra H/(¢)®" of the Hecke algebra H/(q) of type A,
n a positive integer, has tree class A, when r > 2.

The aim now is to prove a similar result for e-parabolic Hecke algebras, when e > 2.
In this case the algebra H7(q) is of finite representation type with a unique non-
semisimple block B. This block is a Brauer tree algebra with e — 1 irreducible
modules, and whose associate Brauer tree is a line with no exceptional vertex, see
[42, Theorem 11.4] and [72, Theorem 1.4]. Therefore, any block of an e-parabolic
subalgebra of H/(q) is an outer tensor product of copies of B and a number of
semisimple blocks. The latter are split semisimple algebras, hence, such a product
is Morita equivalent to an outer tensor product of Brauer tree algebras. We will
summarize this in a proposition.

Proposition 5.5.1. Suppose that e > 2. Let C' be a non-semisimple block of an
e-parabolic Hecke algebra H!(q)®". Then C is Morita equivalent to B®", for some
u > 0.

Since the Brauer tree of B has no exceptional vertex, we know by Theorem 5.4.9
that B is derived equivalent to the Brauer tree algebra B(e — 1,1) corresponding
to the star with e — 1 edges. By Remark 5.4.6 and Theorem 5.4.10, we get the
following:

Theorem 5.5.2. Keep the assumptions of Proposition 5.5.1. Then C' is stably
equivalent to a skew group algebra A®" x H, for some u > 0, where A = Kk[t]/(t°),
H=C.qyx-xCey (utimes) and Co—y (resp. H) acts in the usual way on A
(resp. A®").
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By Theorem 2.3.10, we know that if Ay and A; are stably equivalent selfinjective
k-algebras such that Ag and A; have no block of Loewy length two, then the stable
AR-quivers I'y(Ag) and I';(A;) are isomorphic as stable translation quivers.

Remark 5.5.3. Assume that A is an indecomposable selfinjective algebra such that
there exists an indecomposable projective module P of Loewy length one. Then P
is irreducible, and since Ay is selfinjective, P is the only projective indecomposable
Ag-module. Thus, Ag is a semisimple algebra.

In the situation where e > 2, we have that the Loewy length of a non-semisimple
block C' is different from two, and therefore, by Theorem 5.5.2 we get:

Theorem 5.5.4. Keep the notation of Theorem 5.5.2. The stable AR-quivers I's(C)
and Ts(A®" % H) are isomorphic as stable translation quivers.

As a next step, we want to determine the structure of the stable AR-quiver I'y(A®"%
H), for every u > 0. If u = 1, we know that A x C._; has finite representation type,
and I';(A x C._1) has tree class A._1, see [85].
For u > 1, we know from Chapter 4 that every connected component of T's(A®")
has tree class A,,. We will need the following.

Lemma 5.5.5. Let u > 0. Then the algebra A®* has enough Q-periodic modules.

Proof. Recall that there is a canonical k-algebra isomorphism
AP = K[t ]/ ({8 hizica)-

In Chapter 4, Theorem 4.1.5, it was shown that A®" is Morita equivalent to a block
D of a skew group algebra with enough 7-periodic modules. Since D is a symmetric
algebra, we conclude that D has enough Q-periodic modules. Since A®% is Morita
equivalent to D, we infer that also A®“ has enough Q-periodic modules. O

We now get the following result.

Theorem 5.5.6. Let u > 1. Then every connected component of T's(A®" x H) has
tree class Ao. In particular, if C is a block of an e-parabolic Hecke algebra HY (q)®*,
e > 2, that is not of finite representation type, then every connected component of

[s(C) has tree class Axo.

Proof. By Lemma 5.5.5 we see that we can apply Theorem 3.2.9 of Chapter 3 to
conclude that every component of I';(A®" x H) has tree class A.. In particular,
every component of I',(C') has tree class A, since, by Theorem 5.5.2, C' and A®“x H
are stably equivalent. O
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Chapter 6

Finite general linear groups in
non-defining characteristic and
related algebras

The goal of this chapter is to state and explain a theorem of J. Chuang and H.
Miyachi, giving a Morita equivalence between a Rouquier block of a Hecke algebra
of type A and a wreath product constructed over an outer tensor product of Brauer
tree algebras. This theorem will be a key ingredient in determining the tree classes
of stable components of the AR-quiver of blocks of Hecke algebras of type A in
characteristic zero.

To this end, we first recall several definitions and results concerning the representa-
tion theory of the general linear groups in non-defining characteristic. Afterwards,
we explain the link between the representation theory of the finite general linear
groups and the associated Hecke algebras as far as it is needed in the sequel. Then,
we state the above-mentioned theorem, where we focus on the bimodule giving the
Morita equivalence. We also mention that recently, A. Evseev has given another
proof of the theorem using methods of the representation theory of KLR-algebras.

6.1 Blocks and characters

In the following we let ¢ > 1 be a prime power and ¢ be a prime not dividing q.
Moreover, we let I’ be an algebraically closed field of characteristic £. By e we
denote the least positive integer such that

1_|_q+..._|_qe*1:()

in Fy, and set e = oo if no such integer exists. Throughout this chapter, we will
assume that e is finite.

Let V' be an F,-vector space of dimension n > 0, and let us fix a basis of V. Then
the set of F,-automorphisms GL(V') on V may be identified with G := GL,(q),
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the group of invertible n x n-matrices with entries in F,. Moreover, we shall also
consider the following subgroups of G: The subgroup

B:{X€G|ZE¢]:O,1>]}
of upper triangular matrices, a Borel subgroup of GG, and the subgroup
T={XeG|z;=01#j}

of diagonal matrices, a mazimal torus in G.
For a composition p = (u1, ..., u,.) of n, the subgroup

Ay 0 .0
L, - O | e cn@asisr (6.1)
0 ... 0 A,

is the Levi subgroup of G associated to u. The parabolic subgroup P, of G,

Ay x L0 %

Py = ! Ay, EGLM(q)>1 <i<ro, (6.2)
: .k
O ... 0 A,

contains L, as a subgroup, which has complement U,,, called the Levi complement,
a unipotent subgroup in G, given by

I, = *

U, = 0 ‘ | (6.3)
: L %
0 ... 0 I,

Here, for a positive integer k, the symbol I, denotes the k£ x k-matrix with diagonal
entries 1 and zeros otherwise. Note that for the normalizer N¢(U,) of U, in G one
has that

Ne(Uyu) = Py (6.4)

such that P, = L,U, = U,L,. In particular, L, normalizes U,,.
Next, we will give the definition of important functors ubiquitous in the represen-
tation theory of general linear groups.

Definition 6.1.1. Let x = n be a composition of n. Since U, is normal in P,, we
may inflate an F'L,-module M to P, with respect to the exact sequence

0O—U,—P, —L,=P,/U,—0
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of finite groups. If we induce this F'P,-module to F'G, we obtain a functor
R¢, =Indf oinfl}* : FL, — mod — FG —mod, (6.5)

which is called the Harish-Chandra induction. On the other hand, if M is an F G-
module, we may restrict it to the subalgebra F'P, and then take U,-invariants to
obtain a functor

"Rf, : FG —mod — FL, — mod, (6.6)
called Harish-Chandra restriction.

Remark 6.1.2. Since ¢ and ¢ are coprime, these functors are exact and left and
right adjoint to each other, see [28, §1].

In the following, we fix an f-modular system (K, O, F), that is to say, O denotes
a complete discrete valuation ring with residue field F' of characteristic ¢, and K
is its field of fractions of characteristic zero. Also, we assume that K is a splitting
field for all groups that occur.

Next, we recall the parametrization of ordinary characters and blocks of G. For-
tunately, all this is well known due to work of P. Fong and B. Srinivasan [39]. To
explain these various parametrizations, we have to introduce some more notation,
which follows the lines of [17] and [84].

Let o be an element of the multiplicative group F; of an algebraic closure F, of
F,. Suppose that o has degree d,, i.e., the algebra F [o] has dimension d, as an
[F,-vector space. We denote by (o) the matrix of GLg, (¢) which describes the left
multiplication of & on FF,[o] with respect to the basis {1,0,...,0% 1}, For a positive
integer k, we let

() 0 0

@ =] (6.7)
: -0
0 0 (o)

a matrix of GLygg,(q). If the elements o, 7 € I_FqX have the same degree over F,, we
write 0 ~ 7 if o and 7 have the same minimal polynomial over F,,.

Definition 6.1.3. (a) Let C,, be the set of tuples

t
{((Ul)kl)"'7(0t)kt) | 0; € ]F2<70-7§ 7é0-j71 < Zu] < t,Z #jvzkzdaz :’I'L},

=1

where d,, denotes the degree of o;, for all 7. In the following we identify the
elements of Cys with block diagonal matrices in GL,(g) in the obvious way.

(b) Define an equivalence relation ~ on C,, as follows: For two elements u =
((o)*, ..., (o)®) and v = ((11)™, ..., (1,)™) € Css We write u ~ v if
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(i) t =r, and

(ii) there is a permutation w of the set {1,...,t} such that k,; = m; and
owi ~ T; forall 1 <7 <t.

Then we define Cys = Cis / ~. Moreover, we define Cys ¢ to be the subset of
Css consisting of elements of order coprime to £.

For an element u = ((0)%,..., (0y)*) in Cs, define w(u) = (ki,..., k). If X =
(A1, ..., A) is a sequence of partitions such that |\;| = k; for all 4, then we write
A k(u).

From the Jordan decomposition of an F,-endomorphism of V' we obtain:

Theorem 6.1.4. The conjugacy classes of G are parametrized by the set
{(w, Q) [ u € Cos, AT K(u)}
Proof. See [67, Theorem 2.5]. O

Next, define X (G) to be the character ring of G over Q, an algebraic closure of the
(-adic number field Q,. To describe the parametrization of irreducible characters of
G given in [39], we need to fix an embedding ]qu — Q. Then, by using the theory
of Deligne-Lusztig, P. Fong and B. Srinivasan reproved the following result, which
was first stated by J. A. Green in [43].

Theorem 6.1.5. (Green [/4], Fong-Srinivasan [39]) The irreducible characters of
X(G) can be parametrized by the set

{(u,A) | w € Cos, AT K(u)}.
Proof. See [39, §1]. -

In the following we will write x, ) for the character of X(G) labelled by the pair
(u, A) € Css. The next theorem is very important.

Theorem 6.1.6. (Fong—Srinivasan [39]) The group algebra FG decomposes as

FG = @ FB,

’U,ECSS’E/

into a direct sum of two-sided ideals. The set of characters in F'B, coincides with
the set
{xvr | AF K(v),v € Cs has L-regqular part conjugate to u}.

Proof. This follows from [39, Theorem 7A]. O

Definition 6.1.7. The characters of the form x;, where A is a composition of n,

are called the unipotent characters of G. The indecomposable direct summands of
the F'G — FG-bimodule F' By are the unipotent blocks of G.
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Let A be a partition of a non-negative integer m, and r be a positive integer. By
successively removing r-hooks from the diagram of A\, we obtain a partition of an
integer m’ < m from which no r-hooks can be removed. Suppose that the number
of removed r-hooks is w. Then m’ = m — wr and w is called the weight of X\. A
partition from which no r-hooks can be removed is called an r-core.

For our considerations the following is important.

Proposition 6.1.8. The blocks of F'B; are parametrized by pairs (1,w), where w
is a mon-negative integer and T is an e-core of size n — ew.

Proof. This is again a corollary of [39, Theorem TA]. O

6.2 The Hecke algebras associated to GG

In this section we will assume that £t ¢,q—1. Let B be the standard Borel subgroup
of G, i.e., B is the set of upper triangular matrices in G. It is easy to see that

n(n—1)

Bl=q = (¢—1)"",

thus, by our assumption on £ and ¢, we have that |B] is invertible in F. Therefore,

the element .
€ = =7 b
P>

is defined and is an idempotent in F'G. In fact, it is the central primitive idempotent
of F'B corresponding to the trivial F'B-module, denoted by 15. Then,

Mg :=Ind$%(15) = FGep € FG

is the permutation representation of G' on the left cosets of B in G, i.e., the repre-
sentation of F'G obtained by letting G' act from the left on the cosets of B in G.
Note that M = R%(1r) as FG-modules, where we view 17 = 1gp, ) K- - K 1gr, (o)
as a cuspidal F'(GL;(q) x - -+ x GL1(q))-module. Recall that if L is a standard Levi
subgroup of G, then an FL-module N is called cuspidal if *RE,(N) = 0, for all
proper standard Levi subgroups L’ of L.

Letting endomorphisms act on the right, it is well known that

Endpg(M) = CBFG6B

as F-algebras, see for example [8, Lemma 1.3.3]. On the other hand, there is a
right action of the Hecke algebra H/(q) defined over F on M, see for example [17,
§2.5]. In fact one gets an embedding of H/(q) into Endpq(M) which is actually an
isomorphism of F-algebras, see [17, 2.5(b)]. Therefore, through the above isomor-
phisms we may identify H/(q) with egFGep. Moreover, left multiplication with
the idempotent eg gives a functor

H: FG —mod — H(q) — mod, (6.8)
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defined on objects by H(X) = epX, and on morphisms by restriction. The functor
H is called Schur functor. Since Mp is a projective F'G-module, the above functor
coincides with the functor defined in [31, §2]. The functor H has the following
remarkable property:

Proposition 6.2.1. The functor H induces a bijection between the irreducible
H/(q)-modules and the irreducible FG-modules occurring in the head of Mp. In
particular, if S is an irreducible FG-module, then H(S) = epS # 0 if and only if
S is a constituent of hd(Mp).

Proof. See [17, Corollary 3.2e]. O

Note that we may define H also over O or K. In the following let R € {K, F'}.
Recall from [50, §6] that given an element s of the form (6.7) of degree d and a
partition A F k, where n = kd, one can construct a certain RG-module Mg(s, \).
The latter module contains a distinguished RG-submodule Sg(s, ) that contains a
unique maximal submodule with factor module an irreducible RG-module, denoted
by Dr(s,A). As it turns out, these modules give a complete list of non-isomorphic
irreducible RG-modules. In the case R = K, the modules Sk (s, \) are already irre-
ducible, and the modules Sg(s, \) are ~-modular reductions of the modules Sk (s, A),
see [31, 3.1]. In particular, in the case s = 1, the set

{Dr(1,A) | AFn}

is a complete set of non-isomorphic irreducible modules for RB;. Note that for a
partition A F n, the module Mg(1, \) can also be viewed as the permutation module
of G on the standard parabolic subgroup associated to .

Let A be a block of FG. By multiplication with eg, we obtain an algebra egAep,
which can be thought of as a non-unitary subalgebra of H/(q) = egFGep. The
next proposition identifies these algebras in H7(q).

Proposition 6.2.2. Let A be a block of FG. If A is not a direct summand of F By,
then egAeg = 0. Otherwise, egAep is a block of H/(q).

Proof. By [17, Lemma 2.4c], all the composition factors of M = FGep belong to
F'B;. Hence, if A is not a direct summand of F'By, then, by Proposition 6.2.1, we
get that egAeg = 0.

For \ a partition of n and R € {K, F'}, we denote by S the Specht module defined
by Dipper and James in [29] for the Hecke algebra RH/(q) = R ®o H/(q). Then,
from [31, §3.1] we know that H(Sk(1,)\)) = Sx. Since Sp(1,)\) and Sp are (-
modular reductions of the modules Sk (1,)) and Sy, we conclude that if A is a
unipotent block of F'G, then egAep is non-zero. By [30, Corollary 4.4], the blocks
of H!(q) are parametrized in the same way as the blocks of FB;. U

Remark 6.2.3. It follows immediately from Proposition 6.2.2 that if A is a unipo-
tent block of F'G, which is labelled by (w, ), then the corresponding block egAep
of H/(q) is labelled with (w, 7).
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6.3 A Morita equivalence for Rouquier blocks

Recall from Section 6.1 and Section 6.2 that both, the unipotent blocks of F'G' and
the blocks of H/(q), can be parametrized by pairs (w, 7), where w is a non-negative
integer and 7 is an e-core.

For the next definition we recall the notion of an abacus display of a partition of n,
see also Chapter 17 of Part II.

Let d be a positive integer. Then to a partition A = (Aq, ..., A,,) of n one associates
a sequence of non-negative integers (;, 1 <1 < d, by setting

Bi= XN —t+d,

if 1 <i<m, and
ﬁlzd_?‘a

if « > m. These integers are displayed on an abacus with e runners, where for each
1 <i < d a bead is inserted on runner a + 1 and row b+ 1 if 5; = eb + a.

Definition 6.3.1. (Rouquier core, Rouquier block) Let w be a non-negative integer.
An e-core p is said to be a Rouquier core with respect to w if there is some positive
integer d such that in the d-abacus representation of p, for any pair of adjacent
runners there are at least w — 1 more beads on the right-hand runner. A unipotent
block of GG is said to be a Rouquier block if the e-core associated to the latter is
a Rouquier core. Similarly, we define Rouquier blocks for the algebras F'S,, and
H}(q).

Figure 6.1: Abacus display of the 3-core p = (11,4,2% 1?).

In what follows we assume that char(F) = ¢ > w > 0, and ¢ is a prime power such
that ¢t ¢q,q — 1. Then e is the multiplicative order of ¢ in F,. Furthermore, we
denote by L, the standard Levi subgroup of GLy(¢q) associated to the partition
A, see (6.1). The following was proved independently by W. Turner in [83] and H.
Miyachi in [71]. We state the version of [21].

Theorem 6.3.2. Let p be a Rouquier e-core with respect to w. Let n = ew + |p|.
Let X = (€%, |p|), a composition of n, and let L := Ly be the corresponding standard
Levi subgroup of G = GL,(q). Also, let P = LU be the standard parabolic subgroup
in G determined by L with complement U. Set I := Ng(L) = L x &,. Thus,
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FI = F[Lx6&,)|. Then there exists an (FG, FI)-bimodule M such that the following
hold:

(a) M is a direct summand of R¢(FI) as an (FG, FI)-bimodule.

(b) The functor M ® 4+ — : A* — mod — A — mod induces a Morita equivalence

between the principal block A* of FI and the Rouquier unipotent block A of
FG.

Proof. See [21, Theorem 13]. O

By applying Schur functors we may also obtain a Hecke algebra version of the latter
theorem. This is given in [84, Theorem 80|, and we will sketch the arguments here.
First of all we need an analogue of the semi-direct product for Hecke algebras. Here,
the appropriate construction is the wreath product of an algebra with the symmetric
group &,,, which we now define.

Let C be an F-algebra. Then the symmetric group &,, acts on the w-fold tensor
product C®* of C' over F by permuting the factors. More precisely, an element
o € 6, defines an F-algebra automorphism on C®" by setting

(1@ @) = Co11 @+ ® Cotyy,

for homogeneous elements ¢; ® -+ - ® ¢, € C®¥, and extending linearly. Then the
wreath product C1S,, is defined to be the skew group algebra of &, over C®%. Note
that C'1 &, may be identified with the F-algebra whose underlying vector space is
C®" @p F&,, and where the multiplication is given by

(c®@o)(d®T)=co(d)®orT, (6.9)

for elements ¢,d € C®¥ and elements 0,7 € &,,. For more details concerning the
representation theory of wreath products, the reader is referred to [23].

Recall the definition of the idempotent e of F'G from Section 6.2. Let B, and B,
be the standard Borel subgroups of GL.(¢) and GLj,(q), respectively, and denote
by By, the group

B, x---x B, ><B|p|7

w times
considered as a subgroup of the Levi subgroup L := Ly, A = (e¥,|p|), defined in
Theorem 6.3.2 in the obvious way. Let P be the parabolic subgroup defined by L
with Levi complement U. Then we define the element

1

foy =
g |Be|w|B|p\|

€T,
r€B],

an idempotent in FL. If f; , 1 < i < w, denotes the idempotent

1
B 2

yEBe
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in F'B., and fp,, denotes the idempotent

1
1Bl

z
2€Bp|

in F'B),, then we have that fp, = ([[;Z, f,)fp,- Here, we consider B, as the ith

factor and By, as the (w + 1)th factor embedded in By. Clearly, f§ fée = fée f5.
and fp fp,, = fB, [, for all 1 <i,j <w. Then we get that as F-algebras

[, FLfp, = (f3, FGL(q)fp,) ®F - Qr (f5.FGL(q) f5.) @F (f5,, FGL(q) f5,,)-

In Section 6.2 we have seen that we may identify the algebra fj FGL.(q)f}, with
the algebra H/(q), for all 1 < i < w. Similarly, we can identify the algebra
[, FGL,(q)fp,, with the algebra H‘J;‘(q). Therefore, we get an isomorphism of
F-algebras

fo,FLf5, = Hl(q) ®p - r Hl(q) ®r Hjj (q), (6.10)

d

which is isomorphic to Hy, the parabolic subalgebra of H/(q) associated to A\. We
view this isomorphism as an identification.

Next, let M°¢ = Indgge(q)(l B,) be the permutation module on the Borel subgroup

B, of GL.(q), see Section 6.2. Similarly, we define M = Indgt"”‘(q)(lB‘pl). As in

Section 6.2, the module M® becomes an (FGL,.(q), Hf (q))-bimodule and M'*l is an
(FGLj,(q), H|J;|(q))-bimodule. If we identify GL.(q) as the ith factor of L, 1 <i <
w, and GLj,(¢) as the (w+ 1)th factor of L, then we have that M¢ = FGL.(q)f}.,
and MPl = FGL,(q) fB,,- With these identifications, the outer tensor product

M =M K. XM RMP
w times

is an (F'L, Hy)-bimodule, and as such, isomorphic to F'Lfg, . It follows that R¢(M?)
is an (F'G, Hy)-bimodule.

Recall the definition of the (FG, H/(q))-bimodule Mg = Ind%(15) = FGeg, given
in Section 6.2. If H, is the parabolic subalgebra of HJ(q) corresponding to the
partition A F n, then Mp becomes an (F'G, Hy)-bimodule. One has the following:

Lemma 6.3.3. As (FG, Hy)-bimodules, we have that Mg = RS (M?).
Proof. This is [17, Lemma 3.2f]. O

Remark 6.3.4. Let Ut = ﬁ > uer U, an idempotent in U. The isomorphism of
the previous lemma is given by the map

FGU+®FLFLfBL —)FGBB, a® b ab.

Note that this is well defined since L normalizes U and U™ f5, = ep.
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Next we want to apply the Schur functors from (6.8):
5 FG —mod — H/(q) and Hp, : FL — mod — Hy —mod.  (6.11)

Recall the definition of the (FL, FI)-bimodule FI = F[L x &,] from Theorem
6.3.2. Since F'I may be identified with the wreath product F L &,,, we have that

as left F'L-modules
FI=@ FLeo~ P r.FL.

0EGy, 0€EGy,

Since the action of &,, on L leaves the idempotent fp, invariant, we get an isomor-
phism

Fifp, = €P FLfs, ®0 (6.12)

geEGy

of left F'L-modules. As Harish-Chandra induction is an exact functor, together with
Lemma 6.3.3 we infer that

RY(FIfp,)= P RE(FLfp, ®0)= P Mp@o (6.13)

geGy o€By

as left F'G-modules. Observe that by using the isomorphism given in Remark 6.3.4,
we get a natural right ep, F'lep, -module structure on @, s, Mp ® 0.

On the other hand, let C* be the skew group algebra of &, over H,, where &,
acts on the latter algebra by permuting the first w factors. By the discussion after
Theorem 6.3.2, we have that C* = (H/(¢)1 6,) ®r H|];|(q) as F-algebras.
Consider now the (H/(q), C*)-bimodule H/ (q)®z, C*, where the left H (¢)-module
and the right C""-module structure is given by left and right multiplication with the

corresponding algebras. Since C" = P s Hy® 0 as left Hy-modules, we get that

O'EGw UEGw

as left Hf(q)-modules. Identifying H/(q) with egFGep and H, with fg, FLf5,,
by using (6.13), we have that

Hl(q) ®u, C* = esRY(FIf5,) = esRY(FI) f5,

as (H/(q), C*)-bimodules.

Next, set N = egM fp,, where M is the (FG, FI)-bimodule of Theorem 6.3.2.
Then N becomes an (HZ(q),C*%)-bimodule and, as such, it is a direct summand
of H(q) ®u, C¥, see Theorem 6.3.2 (a). Combining this with the arguments of
W. Turner, see [84, Theorem 80], we get:

Theorem 6.3.5. Keep the notation from above. Let p be a Rouquier e-core with
respect to w > 0 and n = ew + |p|. Then we have the following:
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(a) N is a direct summand of H}(q) ®m, C* as an (HI(q),C")-bimodule.

(b) The functor N @cw — : C —mod — Dp —mod induces a Morita equivalence
between the algebra C* and the Rouquier block Dy of H/(q).

: f
Since H, o

Corollary 6.3.6. Keep the notation of Theorem 6.3.5. The Rouquier block Dp of
H/(q) is Morita equivalent to the algebra Bo(H!(q)) 1 &,

|(q) is a split semisimple algebra, we get the following corollary:

By a lifting argument due to J. Chuang, see [21, §6], we also get a version of the
last corollary in the characteristic zero case.

Theorem 6.3.7. Let 1 # (. € C be a primitive eth root of unity, and p,w,n be as
above. Moreover, suppose that k is a field of characteristic 0 containing (.. Then
the Rouquier block Dy of HI((.) and the k-algebra Bo(H!((.)) 1 &, are Morita
equivalent.

Proof. See [21, Theorem 18 and §6]. O

Remark 6.3.8. Recently, in [38], A. Evseev deduced a generalization of Theorem
6.3.7 using methods from the representation theory of KLR-algebras.
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Chapter 7

Stable components for blocks of
Hecke algebras of type A

In this section, we will finally derive the main result of the chapter, which classifies
the tree classes of connected components of the stable AR-quiver of blocks of Hecke
algebras of type A in characteristic zero. To this end we shall need the famous
theorem of J. Chuang and R. Rouquier giving derived equivalences between blocks
of the same weight of Hecke algebras of type A, defined over the same field k with
parameter ¢ that is invertible in k.

In the following let e be the multiplicative order of the defining parameter ¢ in k,
i.e., the smallest positive integer e such that ¢¢ = 1. We assume throughout that
2<e < o0.

Theorem 7.1.9. (Chuang—Rouquier [22]) Let A be a block of H](q) and B be a
block of H/ (¢). Then A and B are derived equivalent if and only if A and B have
the same weight.

Proof. This is [22, Theorem 7.12]. O

Remark 7.1.10. The equivalence constructed in the proof of Theorem 7.1.9 is
induced by a complex of exact functors that are direct summands of compositions
of refinements of the restriction and induction functors. Therefore, they induce a
k-linear triangulated equivalence.

Using [75, Corollary 2.2] and [7, X, Corollary 1.9], we can immediately deduce the
following corollary:

Corollary 7.1.11. If A and B have the same weight w, then A and B are stably
equivalent. Furthermore, the stable AR-quivers I's(A) and I's(B) are isomorphic as
stable translation quivers.

Remark 7.1.12. If A is a block of weight w = 1, then A is a Brauer tree algebra,
whose Brauer tree is a line with no exceptional vertex, see [42, Theorem 11.4] and
[72, Theorem 1.4].
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Next recall the notions of a Rouquier block and a Rouquier core from Definition
6.3.1. It is easy to see that for a given weight w, it is always possible to find a
Rouquier core p and a positive integer r such that r = ew + |p|, i.e., there is a
Rouquier block of weight w. This and Theorem 7.1.9 yield:

Lemma 7.1.13. Every block of weight w of some Hecke algebra of type A is derived
equivalent to a Rouquier block of weight w defined over the same field.

In the sequel, we will denote by B the principal block of the Hecke algebra H/(q).
To state our main result, we will need one further result concerning the finite gener-
ation of the Hochschild cohomology ring of outer tensor products of B. Recall that
a k-algebra A is called separable if for every extension field £ of k the E-algebra
E ®1 A is semisimple.

Lemma 7.1.14. Suppose that B/rad(B) is a separable k-algebra. Then for any
k > 0, the algebra B®* has enough Q-periodic modules.

Proof. The principal block B of H/(q) is a Brauer tree algebra, hence, by [63,
Proposition 4.9] and the remark after, the Hochschild cohomology ring HH*(B) is
noetherian and the Extpy pop (B, U) is noetherian as a HH*(B)-module for every
finitely generated B — B-bimodule U. By [35, Proposition 1.4] the latter is equiv-
alent to the statement that Exty(B/rad(B), B/rad(B)) is finitely generated as an
HH*(B)-module. Then by [81, Proposition 5.7] we have that B satisfies the finite
generation hypotheses (Fgl) and (Fg2) of [35]. It follows from [13, Corollary 4.8],
by imposing the trivial grading on B, that the algebra B®* k > 1, satisfies the
finite generation hypotheses as well. Then, by [35, Theorem 4.5], B®* has enough
Q-periodic modules. O

We can now state the main theorem of the first part of this thesis:

Theorem 7.1.15. Let k be an algebraically closed field of characteristic zero, and
A be a block of H!(q) of e-weight w. Then we have the following:

(a) If w =1, then A is of finite representation type. In this case the stable AR-
quiver T's(A) has just one component which is of tree class Ae_1.

(b) If e =2 and w = 2, then A is of tame representation type. The stable AR-
quiver of A consists of
(i) infinitely many tubes of rank one,
(ii) two tubes of rank two,
(iii) one component of the form Zflm.

(c) Ife=2andw >3, ore >3 and w > 2, then A is wild and all components
of the stable AR-quiver T's(A) of A have tree class Ax.
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Proof. The statement about the representation type is [36, Theorem 3.1] together
with [40, Theorem 3.3], and statement (a) can be found in [85].

For (b) we use the Morita equivalence given in Theorem 6.3.7. In this case, the
principal block B of H/(g) is isomorphic to the algebra k[X]/(X?), and hence,
B ®y B 2 Kk[X,Y]/(X? Y?). Then we have an isomorphism of k-algebras between
the algebra B®?x &, and the skew group algebra of Gy over A := k[X,Y]/(X?,Y?),
where G5 acts on A by sending X to Y and Y to X. Let C' := AxG&5. Note that S,
is cyclic of order two, generated by the basic transposition g = (1,2). By Corollary
7.1.11, it is enough to show the statement for the Rouquier block of weight two,
which in turn is Morita equivalent to C' by Theorem 6.3.7.

First, we will determine a quiver with relations for C'. To this end we have to
determine the Loewy structures of the projective indecomposable modules of C.
Let

1
fZ: 5(1*1—"1*9),

an idempotent in C. Then, we get a decomposition
C=CfeC(l-f)

of the left regular module C'. In the following we set f; := f, fo = 1 — f, and
P, :=Cf;,1=1,2. For i = 1,2, the projective module P; has k-basis the set

and it follows that Res§(P;) = A as left A-modules. Thus, P; is indecomposable
as a C-module. In the following, we will denote by S; the irreducible C-module
corresponding to the indecomposable projective module P;, i = 1, 2.
Since | S, is invertible in k, by [79, Theorem 1.3], we have that rad(C') = rad(A)C.
It follows that

rad(P;) = rad(C) P, = rad(A) P;

for i = 1,2. Note that, as a A-module, rad(A) is generated by the set {X,Y, XY'}.
Therefore,

rad(R) = Span({Xfl, Yfz, XYfZ}>,
rad®(P;) = span({XY f;}), (7.1)
rad®(P;) = 0.
Next, consider the subspaces k(X f; + Y f;) and k(X f; — Y f;) of rad(F;). Since
char(k) # 2, the latter intersect trivially. By (7.1), the sum of these spaces form a
complement of rad?*(P;) in rad(P;), hence, the elements (X f; + Y f;) 4+ rad*(P;) and
(X fi =Y f;) +rad?(P;) form a basis of the vector space rad(P;)/rad?(P;). Moreover,

the latter generate two irreducible C-submodules S;; and S;y of rad(P;)/rad*(P;).
By direct computation, we have that

i Xfi+Yfi) = Xfi+Y/f,
[i(Xfi=Yfi) = 0,
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so that S11 & So = S7 and Sip = S5 = S5, Therefore, for ¢ = 1,2, the radical
layers of the projective indecomposable C-modules P; have the following form:

P;/rad(P;) = rad®*(P) & S,

rad(P;)/rad?(P,) =2 S; & S,. (7.2)

From this information, we may draw the Ext-quiver () of C', which is given in the
figure below.

£ Co o) Y
Figure 7.1: The Ext-quiver of C.
Denote by z1 (resp. x2) the vertex of @) in which the arrow « (resp. ) starts. We

want to construct a surjective k-algebra homomorphism k@) — C. To this end, we
use Theorem 5.1.3. By explicit calculations, we get the following:

firad(C) fi = span(f1 X f1, XY f1),
flradQ(C)fl = span(fi XY f1),

forad(C) fi = span(foX f1),

forad®*(O) f1 = 0, 73)
forad(C) fo = span(foY fo, foXY f2),
forad®(C) fo = span(f2XY fa),

firad(C) fo = span(lefg)
firad*(C) f, = 0.

Therefore, by choosing an appropriate basis of a complement of fjrad2(C') fr in
firad(C) fi, j, k = 1,2, and setting

T fi, ;o= fo, a X fi1, B [iY fo, e X i, v f2Y fo,

by Theorem 5.1.3, we get a surjective k-algebra homomorphism ¢ : k@ — C.
Set [ := Ker(¢)). Then immediately from the above assignment we get that the
two-sided ideal

Ji=(" k>3, 7, >3 ae B, 1a, By, ¥ —aB, € - fayg (T4

of k@ is contained in /. On the other hand, we see directly from (7.4), that the set
of paths

P = {3317 T2, &, B? &, 827 s 72}
is contained in the set-theoretic complement of / in k@. Also from (7.3) and the

definition of ¢, we have that ¢(P) is a basis of C. Therefore, the subspace U of
k@ spanned by the elements in P intersects I trivially, thus, is a complement of [
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in k@. Since all paths in @) are linear combinations of the paths in P and elements
of k@ generated by J, we must have I = J.
In other words, C' is given by the quiver () of Figure 7 together with the relations

ac=0=¢B, ya=0= B, = Ba, ¥* = ap.

From the structure of @ and the relations, we see that C' = k@/I is special biserial
and, hence, tame, by [24].

To determine the structure of I'y(C'), we use [34, Chapter II] as a background
material. Instead of C, one works with the algebra C’ := C/soc(C), which is a
string algebra. Note that C" is given by the same quiver as C' but with relations

ac=0=¢f, ya=0= v, fa=0=ap.

Moreover, since C'is selfinjective, we have that I's(C') = I'(C”), hence, to determine
['s(C) we may use techniques to compute AR-sequences over string algebras.
First, note that the word w = ot~ ! is the only band, and contributes infinitely
many tubes of rank one to I's(C). Given an arrow in (), one can construct an
Auslander—Reiten sequence of C” with indecomposable middle term. By [34, 11.6.2],
these are given in the following list:

M(e™?

— ) — 0,
—s M(y ') —0

Here, M (D) denotes the string module of C” associated to the string D. Therefore,
we get that I's(C') has two components that are tubes of rank two. It now follows
from [37, Theorem 2.1] that T',(C') also contains a component of the form ZAj,.
This already determines the structure of I';(C') completely and finishes the proof of
(b).

Again, to prove (c), it is enough to consider Rouquier blocks. Let B be the principal
block of H/(q). We know from Theorem 4.2.4 and Theorem 5.5.6 that in the case
where e = 2 and w > 3, or e > 3 and w > 2, every connected component of the
stable AR~quiver I's(B®") of B®" has tree class A.,. Since char(k) = 0, we have by
Lemma 7.1.14 that the algebra B®" has enough periodic modules. Now, the claim
follows from Theorem 3.2.9. 0J

Remark 7.1.16. (i) A block A of H/(q) is of weight zero if and only if A is
semisimple.

(ii) Compare part (b) of the theorem with [3, Lemma 6.5], where the stable AR-
quiver of HJ (—1) was computed.

In the following we list the Dynkin diagrams occurring as tree classes in Theorem
7.1.15, where the diagram of type A, has n nodes.
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A,: e—e—e o—o

The quiver 12122 is given as follows:

RN
TN
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Divided power functors for
cyclotomic Hecke algebras with an
application to the Dipper—Du
Conjecture






Chapter 8

Preliminaries

8.1 Goal

In the second part of the thesis we will describe and analyze certain functors first
defined by I. Grojnowski in [44] in the context of cyclotomic Hecke algebras (the
non-degenerate case) and later by A. Kleshchev in [59] in the case of degenerate
cyclotomic Hecke algebras (the degenerate case). These functors were used to de-
scribe the Lie-theoretic structure of the irreducible modules of cyclotomic Hecke
algebras of degree n, where n ranges over all non-negative integers. This was first
discovered by S. Ariki in [2] in the case where the ground field is C. Later, by using
a different approach, this was generalized by I. Grojnowski to cyclotomic Hecke
algebras defined over arbitrary fields.

One goal of the second part of the thesis is to explain and understand the theory
developed by S. Ariki and I. Grojnowski explicitly.

Afterwards, as an application, we will deduce new results on the structure of vertices
of Hecke algebras of the symmetric group. In particular we will verify a conjecture of
R. Dipper and J. Du stated in [27] in the case where the modules under consideration
lie in blocks of finite representation type. The conjecture states that the vertices
of indecomposable modules are [ — p-parabolic, with [ the order of the defining
parameter and p the characteristic of the ground field.

The following is intended to be self-contained. Most of the time, we will follow
the lines of [59], where a good exposition of the material is given in the case of
degenerate cyclotomic Hecke algebras.

8.2 Notation

Throughout this part, if not stated otherwise, F' will denote an algebraically closed
field of characteristic p > 0.

For an F-algebra A we denote by A — Mod (resp. Mod — A) the abelian category
of all left (resp. right) A-modules. By A —mod (resp. mod — A) we will denote the
abelian category of finite-dimensional left (resp. right) A-modules. Moreover, by
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A —proj (resp. proj— A) we mean the full subcategory of A—mod (resp. mod — A)
consisting of projective modules.

For F-algebras A, B we write A® B for the tensor product A®pr B of A and B over
F', which is considered as an F-algebra in the usual way. If M is a left A-module
and N is a left B-module, we denote by M X N the outer tensor product of M and
N, i.e., as vector space M X N = M ®pr N, and is considered as a left A ® B -
module by defining (a ® b)(mXn) = (am)X (bn), fora € A, b€ B,m € M, n € N.
If Ais an F-algebra and B C A is a subalgebra of A, we denote by

Ind4 : B —mod — A —mod, Ind3(N)=A®z N,
the induction functor,
Indg : B—mod — A —mod, Indg(N) = Hompg(A, N),
the coinduction functor, and by
Resp : A —mod — B — mod

the restriction functor, where Resi(M) is the left A-module M considered as a B-

module by restriction of scalars. Note that Inds is a left adjoint of Resf and I;lag
is a right adjoint.

Let C be an exact category, that is, an additive category together with a class of
distinguished sequences of morphisms

L— M — N,

called exact sequences. Then we write K(C) for the Grothendieck group of C, that
is, the quotient of the free abelian group generated by the objects M € Ob(C) by
the ideal generated by the elements L — M + N for every distinguished sequence
L— M — N.

Throughout, if C is abelian, then we take the usual short exact sequences in C as
the class of distinguished sequences.

Moreover, if C is supposed to be additive, then the class of distinguished sequences
will consist of exact sequences of the form

0—L—M— N —Q0,
with M 2 L & N.

Remark 8.2.1. If A is a finite-dimensional F-algebra, then the category C of finite-
dimensional left A-modules is abelian. In this case, K(C) is a free abelian group
with basis the set of isomorphism classes of irreducible A-modules.

Let D be the full subcategory of C consisting of projective A-modules. Then D is
an additive category and the class of distinguished sequences is given as above.
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Chapter 9

Affine Hecke algebras of type A

The intention of this chapter is to give the definition of the affine Hecke algebra in
type A and state basic representation-theoretic results on the latter. We will also
focus on the subalgebra of Laurent polynomials since this commutative subalgebra
is essential in understanding the representation theory of affine Hecke algebras.
Later on, we define important functors on the module categories of the latter, which
will play a decisive role in our further investigations.

9.1 Basic definitions

Throughout, we will denote by W(n) the symmetric group acting on {1,...,n}
from the left, that is to say, the element (1,2)(2,3) equals (1,2,3). Also, we denote
by Z. the set of non-negative integers.

As a group, W(n) is generated by the set B = {s; = (1,2),..., 8,1 = (n—1,n)}
of basic transpositions. Moreover, we denote by H/(q) the Iwahori-Hecke algebra
over W (n) with non-zero parameter ¢ € F. Recall from Section 1 in Part I that,
as an [F-algebra, the latter is generated by the symbols T;, 1 < i < n — 1, together
with the following relations:

(H1) (Ti — ¢)(T; + 1) = 0.

(H2) T;T; =T;T;, for 1 <i< j—1<n-—2.

(H3) T T T =TT T3, 1 <0 <n— 2.

Remark 9.1.1. From relation (H1) we deduce that 77 = (¢ — 1)T; +q.

Ifw=s;---s;,,1 <ij <n-—1,is areduced expression of w in W(n), we define
Ty =T --- T, an element of H,{(q). For w = 1 we set T,, to be the unit element
of H!(q). Note that the definition of T, does not depend on the chosen reduced
expression. Moreover, by I(w) we denote the length of w € W (n), i.e., the minimal
number of basic transpositions in a reduced expression of w.

Then, the following holds for the multiplication in H/(q), see [29, Lemma 2.1]:
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Tow if I(sw) = l(w) + 1,

qTsw + (¢ — )T, otherwise. (9:1)

TsTw = {

Recall from [68, Theorem 1.13] that, as an F-vector space, H/(q) has basis the set
{Tw [ w e W(n)},

hence, dimp(H/(q)) = [W(n)| = n!.
In the following, let

P, = Flzft, ... 2!
be the F-algebra of Laurent polynomials in the indeterminates z1,...,z,. If a =
(c,...,q) € Z", we write
¢ =axom . alt

Note that for P, we have the relation
Tilj = T4, (92)

for 1 <i < j < n, together with

vyt =a; ey =1, (9.3)

forl1 <i<n.
Furthermore, W (n) acts on P, via

W - Ti = Tapis
for all w € W(n) and 1 < i < n.

Definition 9.1.2. Let ¢ # 1. The affine Hecke algebra H,(q) is the associative F-
algebra given by generators 27!, ..., " and T, ...,T,_1, subject to the relations

rn

(9.2), (9.3) and (H1) — (H3), together with

Tixj = l'jTiv (9'4>
Tixi = zipTi — (¢ — Dwiga, (9.5)
Tixisn = T+ (¢ — 1), (9.6)

for j #4,i4+1,1 <7 <n—1. Note that by using relation (H1), (9.5) and (9.6) are
equivalent to

TixiT; = qriyq. (9-7)
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9.2. The ring of Laurent polynomials

9.2 The ring of Laurent polynomials

In the previous section we defined the affine Hecke algebra H,,(q), n > 0, together
with the subalgebras H/(q) and P,. Let

Zy = Flz, . oW = {fe P, |w-f=f foralwe W(n)}, (9.8)
the set of symmetric Laurent polynomials. Moreover, we set
Pr=Flzy,...,x,] and ZF = Flay, ..., 2,]"®,

which we consider as subalgebras of H,(q) in the obvious way. The goal of this
section is to describe the structure of P, considered as a Z,-module. The results
that are proven here will be needed in Chapter 9.8.

The first lemma below can be found in [59, Theorem 1.0.2], and was proved by R.
Steinberg in [82].

Lemma 9.2.1. P} is free as a Z}-module of rank n!. A Z}-basis is given by the
subset
{af - agm |0 < a; <i forall 1 <i <n}

of Pt.
From the previous lemma we can conclude the following fact about P,:

Theorem 9.2.2. P, is free as a Z,-module of rank n!. A Z,-basis is given by the
subset
B, ={«" x| 0<a; <iforalll <i<n}

of P,.

Proof. Let z1b1 4+ -+ -+ z,.b, = 0, for some 1 < r < nl!, elements z; € Z,,, and distinct
elements b; € B,,, 1 <1i <r. Let t € N be the highest power of some x_l 1<i<n,
occurring among 21, . . ., 2,. Setting X := H 1 37 we conclude that Xz; € Z 1, for
all . But then (X21)61 + . 4+ (Xz)b, = O and it follows by Lemma 9.2.1 that
Xz =0, for all 7. Since Pn is a domain, and X # 0, we conclude that z; = 0, for
all 7. Therefore, B,, is linearly independent.

Next, let % « € Z", be a monomial in P,. Denote by YT = {i | 1 < i <
n and a; > 0}, where «; is the ith component of the vector . Similarly, we define
Y= ={j|1<j<nand«a; <0}. Then we have:

¢ = Hx? H(H$ H ")

€Y+ jey— k=1 k=1,k#j
n
= (ML= I T o
JEY ~ k=1 i€yt jEY — k=1,k#j

Now, ngY Hk: 1x ' € Zy, and (Hleyﬂﬂ )(HJEY Hk: 1,k#j xkaj) € P;. Hence,
by Lemma 9.2.1, we can write 2 as a sum of elements in B,, with coefficients in

Zyn. This finishes the proof. 0
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Corollary 9.2.3. Let a € F'. The subset
By ={(x;—a)® - (x, —a)" |0<aqa; < foralll <i<n}
of P, is a Z,-basis for P,.
Proof. By Theorem 9.2.2 we know that the set
B, ={z{"--ap" |0<aq <iforall 1l <i<n}

is a basis of P, considered as Z,-module. Let (z; —a)® ---(z, —a)*™ € B%. By
binomial expansion, we see that

(x1 —a)™ (2, —a)* = Z Aa® Ao € F, (9.9)

aEZm
where for a = (aq,...,a,), we have that 0 < a; < i, for all 1 < i < n. It is easy
to see that for amax := (a1,...,a,), we have A\, .. # 0. Therefore, if we exchange

xit - - a8 by the element w := (x; —a)® - - - (x, —a)®, the new set remains linearly
independent over Z,. To this end suppose that

ZpW + Z Zox® =0, 2y, 2a € Zy,
a€Z™,
(X#arnax
where for all a = (aq,...,a,), we have that 0 < a; < i, 1 < i < n. Then, if we
plug in the expression (9.9) for w, we obtain

(Aagay 20 ) T2 + Z (ANazw + 2a)xz* = 0.

aEeZ™,

aFamax
Since B,, is linearly independent over Z,,, we infer that A, 2, = 0. Since A\, # 0,
we see that z,, = 0. But then it follows that z, = 0, for all & € Z™. Therefore, if we
replace the elements 25" - - - 2 in B, successively by the elements (z; —a)” - - - (x,, —
a)’ according to the lexicographic order on Z'; beginning with the element o =
(0,...,0), we see that B? is linearly independent over Z,.
On the other hand, via induction on the lexicographic order, it is easy to see that
each element 27" ---2%" € B, can be written as an F-linear combination of the
elements in B?. E.g., if n = 3, we have for a = (0,1, 1):

Tox3 = (29 — a)(x3 — a) + a(zy — a) + a(rs — a) + a®.
Thus, the elements of B? span P, as a Z,-module, i.e., B is a Z,-basis of P,. [

Let a € F'*. In what follows, we will denote by Z ) the subset of P, consisting of
all symmetric polynomials in the #; — a and x;* — a~! without constant term.

Corollary 9.2.4. As an F-vector space, the F-algebra Pn/PnZ(an) has dimension
n!, and a basis is given by the cosets of the elements in BS.
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Proof. Denote by ¢ the F-algebra epimorphism P, — P,/P,Zn). Let c1¢(b1) +
oo+ ¢o(by) = 0in P,/ P,Z(4n, for some 1 < r < nl, some distinct elements b; in
B¢, and ¢; € F. This is equivalent to

ciby + ... +¢b = ijzj epb,

J

for elements p; € P, and elements z; € Z(»). Since, by Corollary 9.2.3, B}, is
a Zp-basis of P,, we can write p; as linear combinations of elements in B with
coefficients in Z,, i.e.,

ijzj = Z(Z wk,jbk)zj - Z(Z wk,jzj)bk,

J

for elements wy ; € Z,, and b, € BS. If the right-hand side of the above equation
is zero, then ¢; = 0 immediately, for all 7. Otherwise, there is some k such that
> jwi;z; 7 0. Note that the ideal P, Z(,n) is contained in the kernel of the algebra
homomorphism P, — F, f + f(a,...,a). Hence, each element of P,Z4n) is not
invertible in P,. In particular, the element Zj wy,j2z; € PpZgny is not invertible.
Since B? is a basis of P,, considered as Z,-module, and the linear combinations
have coefficients in Z,,, the linear combinations on both sides of the equation must
coincide. But this is impossible since on the left-hand side of the equation only
constant terms occur. This shows that the subset ¢(B%) of P,/P,Z4n is linearly
independent over F'.

Next, let u € P,/P,Zn), and choose an element v € ¢~ (u). Then, by Corollary
9.2.3,v= Zj z;bj, with z; € Z,,, and distinct elements b; € B. Now, for each 7, we
can write 2; as a symmetric polynomial in the x; — a and x,;l —at1<j4,k<n,
by substituting z; by (z; —a) +a and z;,' by (z;' —a~!)+a~!. Thus, by binomial
expansion, for all 7, 2; is a sum of an element of Z(,») and some constant term c,,.
It follows that u = ¢(v) = >_, ¢;;¢(b;), and hence, ¢(By) spans P, /P, Z,n) as an
F-vector space. 0

9.3 A basis for H,(q)

In order to describe F-subalgebras of H,(gq) in a convenient way, we want to deter-
mine a basis for H,(q) as an F-vector space. The main result of this section is well
known, but we intend to give a detailed proof here as it is of great importance in
our further investigations. We will follow the lines of [59, Theorem 3.2.2], where a
basis for the degenerate affine Hecke algebra is given. The result is as follows:

Theorem 9.3.1. The set {z°T,, | o« € Z™",w € W(n)} forms an F-basis of H,(q).

Proof. The proof will cover all of the rest of this section. A major tool will be
Bergman’s diamond lemma, which is [12, Theorem 1.2]. First, we will recall some
definitions of [12, §1]:
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Let R be a commutative ring with 1, X be a set, and denote by (X) the free
semigroup with 1 on X. Moreover, let R(X) be the free associative R-algebra on
X, which is the same as the semigroup algebra of X. Let S be a set consisting of
pairs of the form o = (W, f,), with W, € (X)) and f, € R(X). Such a set is called
a reduction set. For an element o = (W, f,) € S, and elements A, B € (X)), we get
an R-endomorphism 74,5 : R(X) — R(X), defined by

rap(x) = { Af,B if v = AW,B,

T otherwise.

Such an endomorphism is called a reduction. A reduction r4,p is said to act trivially
on a € R(X) if the coefficient of Ao B in a is zero. An element a € R(X) is called
irreducible if each reduction acts trivially on a. The R-submodule of R(X) consisting
of irreducible elements is denoted by R{X }irreq-

A 5-tupel (0,7, A, B,C), with elements 0,7 € S, A, B,C € (X) is called an overlap
ambiguity if W, = AB, and W, = BC'. An overlap ambiguity is called resolvable if
there exist compositions of reductions r,r’ such that r(f,C) = r'(Af;). Similarly,
such a 5-tupel (0,7, A, B,C) will be called an inclusion ambiguity if W, = B and
W, = ABC'. Such an ambiguity will be called resolvable if there are compositions
of reductions r, 7’ such that r(Af,C) = r'(f).

A partial order < on (X) is called a semigroup partial order if B < B’ implies
ABC < AB'C, for elements A, B, B',C' € (X). A partial order on (X) is called
compatible with S if for all ¢ € S, the element f, is a linear combination of elements
that are strictly smaller than W, with respect to the partial order.

Next, let R = F' and denote by f[n(q) the F-algebra given by generators ijil, T,
1 <j<n,1<i<n—1,subject to the relations (H1) and (9.2)-(9.6), i.e., the same
relations as for H,(q), except the commutation relations for 7;, T}, |i — j| > 1, and

the braid relations. Set X := {2F' ... 2F' Ty,...,T,_,}. Consider the following

) n

elements of (X) x F'(X), which will form the reduction system in Bergman’s diamond
lemma:

Ogiz; = (Qiz‘xj, SUjSUz')7 (9.10)
Oplp? = (:c;lx;l,xjfla:;l), (9.11)
where 1 <i < j <n,
0, = (ziz;' 1), (9.12)
Oy-1 = ('Ii_l'ria 1)7 (913)
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9.3. A basis for H,(q)

for 1 <i <n,

_ -1 ,-1
O—ziz;1 - (xixj 7$J’ .TZ'), (914)
Opty, = (z; 'z, vz ), (9.15)
where 1 <1 < j <n,
or, = (T2, (¢ — DT, + ¢), (9.16)
with 1 <i<n -1,
O'Ti,x,_l = (nx;l7 xj_lj-‘i)a (918)

for 1 <i¢,j<mnandj#i,i+1,

072, = (Tivi, w1 Ty — (¢ — Dwiga), (9.19)
0Tz = (Lixipr, o1+ (@ — 1)@iga), (9.20)
Ofes! = (Tt o T+ (g — D), (9.21)
Tt = (Tt 27T — (g — 1)), (9.22)

i+1
where 1 <i¢<n—1.

Denote by S the set of all these elements. Next we define a partial order < x,
on (X) that is compatible with the semigroup operation. If y,y’ € (X), we set
y <y ¥ if |y| < |y'|, where we denote by |y| the length of a word y € (X)), and <
denotes the total order on N. If |y| = |y/|, we set y <(x) v if ¥ <iex ¥/, Where <jex
denotes the lexicographical order on (X)) with respect to

-1 -1
(Tl,...,Tn,17x1,$1 sy Iy Ly )

We want to show the following:
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Lemma 9.3.2. The relation < xy defines a semigroup partial order on (X). More-
over, every descending sequence

Y1 2(x) Y2 Z(x) - - -
in (X) eventually becomes stationary.

Proof. Let a,b,c € (X). Then |a| = |a| and a <ix @, ie., a <(xy a. Next, let
a <(xy band b <(xy a. This implies |a| = |b| immediately. But then we have
a <jex b and b <jex a. Since <oy is a partial order, we have that a = b. If a </x) b
and b <(x) c¢ holds in (X)), then we have that |a| < |b] and |b| < |c[. This implies
la| < |c|. Suppose that |a| = |¢|. Then |a| = |b| and |b] = |c|, and we get that
a <jex b and b <jex ¢. Since <jey is a partial order, we infer that a <(x) c.

It is clear from the definition of < x that a <(x) b, for elements a,b € (X), implies
that XaY <(xy XY, for all X,Y € (X). Hence <(x, is a semigroup partial order.
Note that for any element y € (X) there are only finitely many 3’ € (X) such that
ly| > |¢/|. Since X is finite, for all r € N, there are only finitely many elements
in (X) of length r that are pairwise different. Therefore, the partial order <x,
satisfies the descending chain condition. O

Let 0 = (X,Y’) be an element of S. Then we see from the list above that Y <xy X,
and hence <(x) is compatible with S. Therefore, all the conditions in [12, Theorem
1.2] are satisfied. To obtain our desired result, we have to check that all ambiguities
of § are resolvable, and the corresponding calculation, which are given in Appendix
A, show that all the ambiguities are resolvable.

Let I be the two-sided ideal of F/(X) generated by the elements o(1) —0(2), 0 € S.
Also let I be the two-sided ideal of F'(X) generated by the relations given in (H1)
and (9.2)-(9.6). Then we have an isomorphism of F-algebras

¢ F(X)/I — F(X)/I = Hu(q),

givenbyxiwii,xflwfgl, 1<i<n,and T, — T}, 1 < i < n — 1, which we
view as an identification. To see this, observe that the relations coming from (9.11),
(9.14), (9.15), (9.18), (9.21) and (9.22), can be obtained by applying the relation
(9.3) to (9.10), (9.17), (9.19) and (9.20). In the following we will write Z for the
image of an element x € F(X) under ¢.

By [12, Theorem 1.2], a set of representatives of H,(q) is given by the images of
the elements in F'(X )i eq, under ¢. In other words, the images of the S-irreducible
monomials span }NIn(q) as an F-vector space. To see that these elements are linearly
independent over F', let py,...,p, be pairwise different S-irreducible monomials in

(X), and denote by 7y, . .., P, their images in H,(q). Suppose that

Z)\iﬁi =0€ Hn(Q)»

=1
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with elements \; € F', 1 < i < n. This implies, that we have

z:)\,pZ m € F(X),

for some m € I. Then, we can write m as a polynomial in F({o(1) — 0(2)}ses)-
Since, by assumption, the p; are irreducible, we have r(m) = m, for all reductions
r induced by §. But this implies that m = 0. Since a set of pairwise different
monomials is linearly independent in F'(X), we infer that \; = 0, for all i. Therefore,
the images of the S-irreducible monomials in (X)) are linear independent, thus form
a basis of H,(q) as an F-vector space.

Next we want to determine the S-irreducible monomials in (X). Suppose m is an
S-irreducible monomial in (X). In what follows, the set

(Ty,...,Th1)

will denote the subset of (X) consisting of elements T € (T}, ...,T,,_1) such that T
does not involve a subword of the form T7?, for some 1 <i <n — 1.

Lemma 9.3.3. An element m € (X) is S-irreducible if and only if m has the form

o T (9.23)

where a; € Z, 1 <i<n, and T € \/{Th,...,T—1).

Proof. If m has the given form, we see r(m) = m, for all reductions induced by S.
Hence m is S-irreducible.

On the other hand, suppose that m is not of the form given in (9.23). If m has a
factor of the form T2, for some 1 < i < n— 1, we can apply reduction (9.16), hence,
m is not S-irreducible. If there are 7,5, 1 <7 < n —1, 1 < j < n such that T;
and z; (or atj_l) are factors of m, and 7; is to the left of z; (or x;l), then we can
apply one of the reduction (9.17)— (9 22). Hence m is not S-irreducible. Suppose m
is of the form X7, with X € (z*,... 25" and T € (Ty,...,T,_1). If there are
1 <i < j < nsuch that ; (or ;') and z; (or z;') are factors of m and z; (or
z;') is to the left of x; (or 2;'), then we can apply one of the reductions (9.10),

(9.11), (9.14) or (9.15). Therefore, m is not irreducible. Otherwise, X is of the form

g g o where at least one x; !, 1 <4 < n occurs. But in this case
we can apply (9.12) or (9.13), to see that m is not S-irreducible. This shows that
if m is S-irreducible, then m must be of the form given in (9.23). O

Bergman’s Theorem ([12, Theorem 1.2]) now shows that the set

o({2°T |« € Z",T € (T1,..., To-1)}) C Halg)

is a basis of H,(q).
The subalgebra P, of H,(q) generated by the elements ijﬂ, 1 < j < n, is isomor-
phic to B,. Moreover, denote by ]:I,J: (q) the subalgebra of H,(q) generated by the
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elements Ti, 1 <4 < n —1, which is isomorphic to the algebra on generators T;,
1 < i < n—1, subject to the relation T? = (¢ — 1)T; + g, for all i. If there is

1
no danger of confusion, we will also write xfl and T; for the elements ffl and T},

1<j<n,1<i<n—1. Note that H,(q) is the quotient of H,(¢) by the two-sided
ideal J generated by the elements

ai; =T;1; — T;T;, (9.24)
for1<i,j<n-—1,|i—j|>1, and
by =TinTiTi — T T T, (9.25)

for 1 < i < n — 2. Denote by J the two-sided ideal of IjITJ;(q) generated by the
same elements. We want to show that J = P,J. Let p be an element in P,.
Also, let T'yT" € J, where y € {a;;,b, |1 <4, <n—-1,1<k <n-—2} and

T,T" € \/(T1,...,Tn_1). Then we see that p(TyT") = (pT)yT" € J, hence P,J C J.
On the other hand let 2T and 2°T” be a basis elements in H,,(q), where 2%, 2° € P,,

and T,7" € /(T1,...,T,—1). Moreover, let y € {a;;, b | 1 < 4,7 < n—1,
1 <k <n-—2}. Then (x°T)y(z°T") € P,J if we can show that ya? € Py,
or equivalently, if y:z:iil € Py, for all 1 < i < n. Note that by the discussion
above, the element T'z® may be written as a linear combinations of elements 27U,

for v € Z™ and U € +/(T1,...,T,1). Suppose that 1 < i < n — 2. Setting
y:=b; = T;11\T;Tipy — T;Ti 1T, we have:

(Ti+1TiTi+1)xi+2

=T Ti(zig Tiva + (¢ — 1)wiga)

= Ti1(Tiwir1)Tin + (¢ — DT Tixigo

= Tip1 (T + (¢ — Vi) Tiga + (¢ = V)i Tiziyo

= 211 LT + (¢ — 1) (Tig1zi1Tisr) + (¢ — 1T (Tiwisa)

= 2T TiTi1 + (¢ — 1)qwigo + (¢ — 1)(Tip17442) T

= 21 TiTi1 + (¢ — Do T Ty + (¢ — 120275 + (g — 1)qTige,

using the relations in H,(g) induced from (9.20), (9.17), and relation (9.7). On the
other hand, we have

(T Ti)wiss

= T;(Tis17i12)Ti

=Ti(zin1 Tigr + (¢ — Vig2)Th

= (Tixit1)Tia Ti + (¢ — 1) (Tiwig2) T

= (2T + (¢ — Dai) T Ty + (g — D)z (T7)

=TT+ (¢ — Vg Tin T + (¢ — Do ((¢ — 1)T5 + q)

=z TiTi Ty + (g — Vi Tin Ty + (¢ — 1)*zi0T; + (¢ — 1)qia,
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by (9.17), (9.20) and (9.16). Now we see that
(Ti+1Tz‘Tz‘+1 - Tz'Tz‘+1Tz‘)$z'+2 = xz‘(Tz‘Jrsz'Tz‘H - Tz‘Tz’HTz‘).
Next consider the following:
(TiHTiTiH)le
= Tin1Ti(wipoTit1 — (¢ — 1)Ti42)
= z‘+1(Ti$i+2)Ti+1 - (q - 1)Tz'+1TiiUz‘+2
= (TiHIEHQ)TiTiH - (q - 1)T¢+1(Ti$i+2)
= (Tit1Tis1 + (¢ = D)ig2) T — (g — 1)(Tiazis2) T
= 2Ty T + (¢ — Do T — (¢ — D)(zi1Tiga + (¢ — 1) aig2) T
= 2ip1 i1 TiTi1 + (¢ — V)22 TiTin — (¢ — Doy Tipa T — (¢ — 1)2$i+2Ti,
using (9.19), (9.17) and (9.20). Also, we get
(13T T5) i1
=TT (2T + (g — 1)xi41)
= T;(Tig12:) T + (¢ — D) Ti(Tis12i41)
= (Tixy)TinT; + (¢ — V)Ti(wig2Ti1 — (¢ — 1)wis2)
= ($i+1Ti - (q - 1)$i+1)Ti+1Tz‘ + (q - 1)(TiIi+2)Tz‘+1 - (q - 1)2(Tz‘$€i+2)
=i LT i + (¢ — Dy Tl — (@ — Vg T T — (g — 1)2xi+2Tz’>
by (9.20), (9.17) and (9.19). Therefore,
(Ti1 Tl — TiTip1 Ty)via = i (T TiTi — Tz’Tz‘+1Ti)-
Next, consider the following calculations:
(Tz‘HTiTiH)xz‘
= Ti1(Tizi) Tia
= Tip1(@iniTi — (¢ — Vi) Tipa
= (Tis12i41) LT — (¢ — D)(Tip1ziga Tiga)
= (Tiy2Tiv1 — (¢ — Do) TiTiv1 — (@ — 1)qTiye
= 22 Ti1 TiTiy1 — (¢ — Vo2 1T — (q — 1)qTiye,
using (9.17), (9.19) and (9.7). Also, we have
(TiTi1T) i
=TiTiy1(viaTi — (¢ — 1)xiyg1)
= Ti(Tiy1zi)Ti — (¢ — DTi(Tipamiga)
= Ti(xiJrQTiJrl - (q - 1)£Ci+2)Ti - (q - 1)Ti($i+2Tz’+1 - (q - 1)$¢+2)
= (Tiziv2) TiaTi — (¢ — V)(Tiwi2)Ti — (¢ — V) (Tiwi2) Tigr + (g — 1)2(Tz’$i+2)
= xi2TiTi1 T — (q - 1)$z‘+2(T¢2) - (q - 1)$z’+2TiTi+1 + (q - 1)2$z‘+2Tz‘
= 22T T Ty — (¢ — Daigo((g — DT + q) — (¢ — Do Ty T + (¢ — 1) %2407,
= i [T Ty — (¢ — V)aioTiTig1 — (g — 1)q40,
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using (9.19), (9.17) and (9.16). Therefore, it follows that

(Tz’+1Tz‘Tz‘+1 - Tz’Tz‘+1Ti)$z‘ = !L‘i+2(Ti+1Tz‘Tz‘+1 - Tz‘Tz‘HTi)-
If j #4,i+ 1,79+ 2, then by (9.17) it follows that

(T T T — LT T)xy = o (Tia T — T4 T5).

Hence the claim holds for the elements b;, 1 <i <n — 2.
Next, we consider the case where y = a; ; = T;1; — T;T;, for some 1 < 4,7 <n — 1,
|i — 7] > 1. We may assume that i < j. Then

(TiTj)xj = Ti(%HTj —(¢— 1)%‘4—1)
= (Txj)Ty — (¢ — D(Tizjen)
= 21T — (¢ — Dajn T,

by (9.19) and (9.17). On the other hand,

(T;T)x; = (Tjxzy)T;
= (%’HTJ —(¢— 1)37j+1)Ti
=z 1T — (¢ — Va1 T,

using (9.17) and (9.19). Therefore,
(T.T; =TT, = 2y (TT; — T/TL).
Furthermore, we compute that

(TiTj)zj0 = Ti(xTj+ (@ — 1)zj41)
= (Tix;)T; + (¢ — 1)(Tizj41)
= z;TiT; + (¢ — Vzjn T,

by (9.20) and (9.17). Also, we get that

(T;T)zjpr = (Tjzje)T;
= (2T + (¢ — Vrj1)To
= o T;Ti+ (¢ — 1)xji T,

using (9.17) and (9.20). Hence,
(T — 1Tz = (1T — T;Th).
Moreover,

(TiT))z: = (Tiw)T;
(i1 T; — (g — 1)$i+1)Tj
= 21 TiT; — (¢ — 1) w1 Tj,
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9.3. A basis for H,(q)

using (9.17) and (9.19). On the other hand:

(T;T)z; = Ti(ximTi — (@ — Dwiyq)
= (Tjwi)Ti — (@ — 1)(Tjriga)
=z 1T — (q — 1)9Uz‘+1ij

by (9.19) and (9.17). Therefore,
(TiT; — 1Tz = 2o (TiTy — T;Th).
Furthermore,

(TiTj)xisn = (Tiwig)T;
= (T + (¢ — V)wip)T;
r Ty + (¢ — 1)wi T},

using (9.17) and (9.20). Also, we have that

(TiT)wiy = Tj(xTi+ (g — 1)wi41)
= (Tjzy)Ti + (¢ — 1)(Tjwis1)
v, 1T + (¢ — V)i 15,

using (9.20) and (9.17). And hence,
(TiT; — TiT) w1 = v(TiTy — T;T;).
If1<k<n,and k & {i,i +1,7,j + 1}, then, by (9.17):
(TT; — TTi)zy, = 2 (T — T5T5).

The corresponding equations for the elements z; ', 1 < i < n, are obtained by using
the relations in H,,(¢) induced from (9.12) and (9.13). For example, the identity

(T T — Tz‘TiHTi)I;l = %fg(ﬂﬂﬂﬂﬂ —T,T,1T;)
follows from the equation
(Tz‘HTiTiH - TiTiHTi)xi = l’i+2(Ti+1TiTi+1 - Tz'TiHTi)

by multiplication of z; ' from the right, and x;rlQ from the left.

Therefore we have proved that yz® € Py, for all y € {a,;,b, | 1 < i,j < n—1,
1 <k <n-—2} and all 8 € Z", using only the relations in H,(q). As mentioned
before, it now follows that J = P,.J.

Recall that H,(q) is the quotient of H,(q) by the two-sided ideal J. Denote the
corresponding projection homomorphism by p. Since the set {z°T | « € Z",T €

VAT, ..., T,_1)} is a basis of H,(q), the images in H,(q) of these elements under
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the surjection p certainly span H,(q). Let ay,...,an, € Z", and TW, ... T ¢
(Ty,...,T,_1) such that

> Ap(T) = 0 € Hy(g).
=1
Equivalently,
> AT = c € Hy(q). (9.26)
=1

for some ¢ € J. By the calculations above, we know that J = P,.J, thus, we may
write

¢
c= Z [sqs]s (9.27)
s=1

for ¢ € P,, j, € Jand ps € F, 1 < s < t. By rewriting the elements j, as
sums of products of the Ty, 1 < k < n — 1, and applying relation coming from
(9.16) if necessary, we may assume that the right-hand side of the last equation is
a sum over elements of {z*T | « € Z",T € /(T1,...,T,_1)}. But the latter set
forms an F-basis of H,(q), so the sums of (9.26) and (9.27) must coincide. As for

VT € (Th,...,T,_1), we have that p(T) € /(T1,...,T,_1)/J, we conclude that
the set
{p(T) | B e 2", p(T) € V(Th,.... To1)/J} C Hu(q)

forms a basis of H,(q). Note that the subalgebra of H,(q) generated by the set

VAT, ..., T,_1)/J is isomorphic to H/(q). Therefore, we can identify each p(T) €

VT, ..., T, 1)/J with some basis element T,, € H/(q), for some w € W(n).
Therefore, by abuse of notation, if we write also 2° for the element p(2”) of H,(q),

B € 7", then the set

(T, | B € Z", we W(n)}
is a basis of H,(q) as an F-vector space. This finishes the proof. ([l

Corollary 9.3.4. The set {T,,z* | « € Z",w € W(n)} forms a basis of H,(q) as
an F'-vector space.

Proof. Changing the reduction system, and the lexicographical order in the appro-
priate way, the result follows from Theorem 9.3.1. 0]

9.4 Parabolic subalgebras

In this section, we recall the notion of a parabolic subalgebra of the finite-di-
mensional Hecke algebra H7(q) and state the definition of the corresponding ana-
logues of the algebra H,(q). These subalgebras play an important role in the follow-
ing as we may consider induced modules from those smaller (affine) Hecke algebras,
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9.5. The center of affine Hecke algebras and generalized eigenspaces

and may study restrictions of modules to smaller ones. Moreover, we deduce an
analogue of Theorem 9.3.1 for parabolic subalgebras.

Let (u1,...,pr) be a composition of n, and let
W, =W, x...xW,

be the corresponding parabolic subgroup of W(n). The subalgebra of H/(q) gener-
ated by the elements T}, where s; € W, 1 < j <n — 1, will be denoted by H,f(q).
The algebra H l{(q) is also called the parabolic subalgebra of H/(q) corresponding
to W,.

In a similar way, the subalgebra H,,(q) of H,(¢q) generated by P, and the elements 77,
for s; € W,, 1 < j <n—1is called a parabolic subalgebra of H,(q) corresponding
to the parabolic subgroup W,. In view of Theorem 9.3.1 one has the following:

Proposition 9.4.1. As an F-vector space, the parabolic subalgebra H,(q) of H,(q)
has basis the set {z*T,, |« € Z",w € W, }.

Proof. By Theorem 9.3.1, the elements of B := {z*T,, | « € Z",w € W,} C H,(q)
are linearly independent.

By definition of H,(q), every element in H,(q) can be expressed as an F-polynomial
in the elements of P, and H /{(q) Looking at the relations given by the pairs in
(9.19)-(9.22), we see that applying a relation to such an expression produces again
a polynomial in the elements P, and H [: (q). Therefore, by applying such relations,
we can transform an expression given above into a polynomial in the elements of B.
Thus, the elements of B are a spanning set for H,(q) over F'. O

Remark 9.4.2. (1) For p a composition of n, it follows from the last proposition
that the parabolic subalgebra H,(q) is a free P,-module of rank |W,|, and H,(q) is
a free H,(q)-module of rank [W(n) : W,].

(2) The parabolic subalgebra H(;, . 1)(¢) is nothing else but the subalgebra P,.

(3) As F-algebras, H,(q) = H,,(q) ®F ... ®r H,, (q).

9.5 The center of affine Hecke algebras and gen-
eralized eigenspaces

Here, we will state the important theorem due to Bernstein, describing the center of
H,(q). Moreover, we recall some basic statements about the representation theory
of P,-modules. To this end we consider generalized eigenspaces corresponding to
eigenvalues of the commuting operators z1,...,x, of P,. In particular we recall
the decomposition of a P,-module into simultaneous generalized eigenspaces with
respect to the latter operators. As we will see later on, this allows one to partition
the category H,(q) — mod into blocks.

Furthermore, we give the definition of formal character of H, (¢)-modules, and state
several lemmas that are needed later on.
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Chapter 9. Affine Hecke algebras of type A

Also, we will give a proof of the well-known fact that every irreducible H,(q)-module
is finite dimensional.

From now on, set S := F* = F'\ {0}. The following is fundamental in the theory
of affine Hecke algebras:

Theorem 9.5.1. (Bernstein) Let Z(H,(q)) denote the center of H,(q). Then

Z(Hy(q)) = Flott, . a1,

the set of symmetric Laurent polynomials in P,.
Proof. See [19, Proposition 7.1.14]. O

For a € S, let us denote by L(a) the one-dimensional irreducible P-module such
that 21 acts with eigenvalue q, i.e., z1v = av, for a basis vector v € L(a). Moreover,
if a = (a,...,a,) € S", then the P,-module L(a) := L(a;) X ... X L(a,) is a
one-dimensional, and thus, an irreducible P,-module. Since F'is assumed to be al-
gebraically closed, and since P, is commutative, every finite-dimensional irreducible
P,-module is one-dimensional, and arises in this way. Thus, the set

{L(a) | a € S"}

forms a complete set of representatives of isomorphism classes of irreducible P,-
modules.

Remark 9.5.2. Let M be a finite-dimensional P,-module. Then M may be viewed
as a vector space together with invertible linear transformations fi, ..., f, such that

fifi=fifi,foral 1l <i,5 <n.

Let a € S™. In what follows, we denote by M, the largest submodule of M, all of
whose composition factors are isomorphic to L(a). We have the following:

Lemma 9.5.3. Let a € S" and M € P, —mod. The subspace M, of M equals the
simultaneous generalized eigenspace of the commuting operators x1,...,x, on M,
corresponding to the eigenvalues ay, ..., ay,, i.e.,

M, ={m & M| (z; — a;)"m =0, for some k; > 0,1 <i<n}.

Proof. Denote by H the simultaneous generalized eigenspace of xy,...,x, on M
corresponding to the eigenvalues aq, ..., a,. Since the x; commute with each other,
H is a P,-submodule of M. Let C be a composition factor of H as a P,-module,
i.e., there exist P,-submodules V' C U C H such that U/V = C. Since C is
an irreducible P,-module, dimp C' = 1, hence is isomorphic to L(a’), for some
a € S™ Denote by v a basis vector of L(da’), and let p be the corresponding
surjection p : U — C. Also take w € U such that p(w) = v. Since w € H,
there is some k € N, k # 0, such that (z; — a;)*w = 0, for all i. But then
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k k k

(x; — a;)"v = (z; — a;)"p(w) = p((z; — a;)"w) = 0. Since C' is one-dimensional, it
follows that x;v = a;v, for all i. We infer that ¢’ = a and, thus, C' = L(a).

On the other hand, let U be the largest submodule of M such that if C' is a com-
position factor of U, then C' = L(a). Let v € U, and

0=Uy CU,C...CU =U

be a composition series of U such that, for some j > 0, v € U; and u &€ U;_;.
Denote by p : U; — U;/U;_; the canonical surjection. We argue by induction on
the composition length r of U to show that U C H.

If r = 1, then, since U; = L(a), we see that x;u = a;u, for all i, and therefore u € H.
Now, let » > 1. Note that, by assumption, we have that U,/U,_; = L(a). Then
0= (x; —a;)p(u) = p((x; — a;)u), ie., (r; — a;)u € Uj_q, for all i. By the induction
hypothesis, U,_; C H, and, hence, we have that

(25 — a;)*((z; — ai)u) = (z; — a;)* T tu = 0,
for some s € N, and all 7. We conclude that v € H. O

Lemma 9.5.4. Let M € P, — mod. Then M = M, as P,-modules.

aesS™

Proof. For an F-vector space V', amap f € Endp(V) and an element A € F, in the
following, we will denote by Gen(f, A) the generalized eigenspace of f with respect
to A.

Then, by basic linear algebra, for each 1 < i < n, we have a decomposition

M= @ Gen(z;, a; ;)
j=1

of M into generalized eigenspaces corresponding to the eigenvalues a;; € S of x;
on M. Let 1 <k <mn be such that i # k. Furthermore, let v € X := Gen(z;,a; ),
for some 1 < j <r;. Then there is some r € Z* such that (z; — a;;)"v = 0. Since
x; commutes with zy, we get that (z; — a;;)"(xxv) = zx(z; — a;;)"v = 0. Hence,
rrv € X. In other words, X is an F' [xfl]—module. Again, we get a decomposition

Sk
X = 6{9(}en(kaX7ka)

j=1

into generalized eigenspaces corresponding to the eigenvalues by ; of (x5)x on the
space Gen(x;,a;;). Here, (v;)x denotes the restriction of x; to X. Clearly, the
eigenvalues must be contained in the set of eigenvalues of x; on M. This implies
that Gen((zr)x,br;) C Gen(xy,br;) N X, for all j. On the other hand, if u €
Gen(zy, by ;) N X, then

(@r = beg)*u = ((2r — brj)ix)"u = ((2r)1x — bry)*u =0,
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for some s € Z*, which shows that u € Gen((zy)(x,bk,;). Therefore, we get that
Gen((a:k)‘x, ka‘) =XnN Gen(xk, bk,j)-
Next, consider the decomposition

T1
M = @ Gen(zy,ay ),
j=1

for 1 < 5 < ri. If we consider the action of x5 on the generalized eigenspace
Gen(zy,a1,;), 1 <j <1y, we get, by the discussion above, that

M= GB @ Gen(x1,ay;) N Gen(za, az),

j=1 kEKj
for some K; C {1,...,r2}, 1 < j < ry. If we continue in the same way with the
operators xs, ..., x,, we eventually obtain the desired decomposition, using Lemma
9.5.3. 0

In view of Lemma 9.5.4, if M € P, — mod, we can expand M as
(M] = ralL(a)],
aesSn
in the Grothendieck group K(P, —mod) with respect to the basis {[L(a)] | a € S™}.
Note that r, = dimg M,, for all a € S™.

Definition 9.5.5. Let M € H,(q) — mod. Then we define the formal character of
M as
ch(M) = [Resp"?(M)] € K(P, — mod).

(@)

Since the functor Resp™™ is exact, we get a homomorphism

U K(H,(q) — mod) — K(P, — mod)

of abelian groups. We obtain the following, which can be found in [45, Lemma 2.4].
Note that W (n) acts on S™ by place permutation, i.e., w - a = (Ay-11,- .-, Qy-1,),
for a € S™ and w € W(n).

Lemma 9.5.6. For a € S™ we have:
ch(Indf P (L(@) = > [L(w-a).
weW (n)

We will also need the following statement, which describes the character of a module
induced from a parabolic subalgebra. It is also called the Shuffle Lemma.

Lemma 9.5.7. If M € H,(q) —mod, and N € H,,(q) — mod, then

Hn m . .
ch(lndH(:mf(q;)(M MN)= Y (dimp My - dimp Ny)[L(s)],
s'eSn . s'"’esSm
where 8 = (81,...,8u10m) 8 such that there are iy,...,i, € {1,...,n + m} with
s =(Siy,---,8i,), and s” is obtained from s by deleting the substring s'.
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Proof. This can be found in [44, Lemma 5.5], and follows from the Mackey Formula
for affine Hecke algebras, see [44, Corollary 5.4]. O

Finally, let us state the remarkable result about irreducible H,(q)-modules, which
says that any irreducible H,(¢)-module is finite dimensional, see also [45, Proposi-
tion 2.2].

Proposition 9.5.8. Let U be an irreducible H,(q)-module. Then U is finite di-
mensional and dimp U < nl.

Proof. Let T be an irreducible P,-submodule of the head of ReSP:(Q)(U ). Then

there exists a surjective map Resg:(Q)(U ) — T of P,-modules. By adjointness of
coinduction and restriction, we have that

/\Hn
Homp, (Res™™ @ (U),T) = Homy, (U, Indpy " (T))

= HOIIlHn(q)<U, HomPn<Hn(Q)7 T))u

where the latter term is non-zero. Since U is irreducible, we infer that there ex-
ists a monomorphism U — Homp, (H,(q),T). Since H,(q) is a free P,-module of
rank n!, and every irreducible P,-module is finite dimensional, the F-vector space
Homp, (H,(q),T) is finite dimensional. Thus, also U is finite dimensional. O

Remark 9.5.9. Observe that the previous proposition has the following conse-
quence: If M € H,(q) ® H,,(q¢) — mod is irreducible and finite dimensional, then
M is isomorphic to V' & W, for irreducible V' € H,(q) — mod and irreducible
W € H,,(q) — mod, where the latter are uniquely determined by M up to isomor-
phism.

9.6 Central characters

Using the results of the latter section, we will now give a partition of the finite-
dimensional H,(¢)-modules. To do this, we will label the latter by certain F-valued
functions defined on the center of H,(q).

Recall that, by Theorem 9.5.1, the center Z(H,(q)) of H,(q) coincides with the set
FlzEt, .. zP )™ of symmetric Laurent polynomials. For a € S, we define the
central character of H,(q) associated with a as the map

Xa: Z(Hn(q) — F, [ f(a),

where by f(a), we mean f(ay,...,ay), for f = f(x1,...,2,) € Flzif', .. ]
Note that W (n) acts on S™ by place permutation, see the definition before Lemma
9.5.6. Hence, under our assumptions, we easily see that x, = x; if a,b € S™ belong
to the same W (n)-orbit. Denote by ~ the equivalence relation on S™ induced by
the action of W(n). Then, for a € S™ belonging to the W (n)-orbit v, we will write
X~ for the central character x, given by a.
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Then, for M € H,(q) — mod, we denote by
My :=={z € M| (z— x,(2))"z =0, for all z € Z(H,(q)), and some k € Z*}

the simultaneous generalized eigenspace of the elements z € Z(H,(q)) of M. Since
the elements z are central elements, M[y] is actually an H,(q)-submodule of M:
Let h € H,(q), z € Z(H,(q)) and = € M[y]. Then, for some k € Z*, we have that

(2 = x+(2))"(h) = h((z = x4(2))"z) = 0,

thus, ha € M[y].
In view of Lemma 9.5.3, we see that as P,-modules
My = P M,. (9.28)
acy

One has the following:

Lemma 9.6.1. Let M € H,(q) — mod. Then M =
modules.

M as Hn(q)-

yeS™ /[~

Proof. By Lemma 9.5.4, we have an isomorphism

M= M,

aesn

of P,-modules. Reordering the sum, we get that

M= H PMm,

yES™ [~ acy

as P,-modules. On the other hand, by (9.28), we have

My = @ M,
acy
as P,-modules, for v € S™/ ~. Since M[y] is actually an H,(q)-submodule of M,
the claim follows. 0

The above decomposition of M € H,(q) — mod is called the block decomposition
of M. For v € 8"/ ~, we denote by H,(q) — mod[y] the full subcategory of
H,(q) — mod, consisting of all modules such that M[y] = M. The previous lemma
then implies that there is an equivalence of categories

H,(q9) —mod = € H,(q) — mod[y]. (9.29)

yEST [~

The category H,(q) — mod[y] is called the block of H,(q) — mod corresponding to
v. If M € H,(q) — mod[7], then one says that M belongs to the block determined
by 7.

The next proposition shows that every finite-dimensional indecomposable H,(q)-
module has a central character, and thus, belongs to a block, which is uniquely
determined by the latter.
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Proposition 9.6.2. Let M € H,(q) — mod be indecomposable. If M, # 0 and
My #0, for a,a’ € S™, then there exists some w € W(n) such that w-a = d'.

Proof. Note that for some a € S", M, # 0 if and only if the simultaneous eigenspace
of the x1,...,x, does not vanish. Since F' is algebraically closed, the eigenspace
Eig(f, A) corresponding to the eigenvalue A € F' is non-zero, for some f € Z(H,(q)).
Since f is a central element in H,(q), the subspace Eig(f,\) of M is an H,(q)-
submodule of M. Since eigenspaces corresponding to different eigenvalues intersect
in zero, by the indecomposability of M, we conclude that M = Eig(f, \).
Now, if M, # 0 and M, # 0, for some a,a’ € S, then fv = f(a)v and fv' = f(a')v,
for some non-zero vectors v € M, and v' € M. It follows that A = f(a) = f(d),
for all f € Flai, ... o W,
For A € F', consider the polynomial

H(Xj +A) =N e (@, )N T e (T, T),

j=1

where for 1 < i < n, the polynomial e;(z1,...,x,) denotes the ith elementary
symmetric polynomial in the variables x1,...,x,. Thus, if we set A\ = —ay, for
some 1 < k < n, we see that a, is a root of the polynomial

(=D)" X" + (=D)" tey(ay, ..., an) "+ . denla, ... an).

On the other hand, since, by the discussion above, e;(a1,...,a,) = e;/(d},...,al),
also —aj, is a root of the polynomial above, 1 < k < n. Thus, there exists some
w € W(n) such that w - a = d/, and the claim follows. O

Remark 9.6.3. Therefore, in what follows, if M is an indecomposable finite-
dimensional H,(q)-module such that for some a € S™, M, # 0, then we say that M
has central character x,.

9.7 The Kato module

In the previous section, we defined the central character of an irreducible H,(q)-
module. Here, we will be mainly concerned with the central character associated to
(a,...,a),a €S, of H,(q). We will state the remarkable result of Kato that, up to
isomorphism, the block of H,(¢) — mod corresponding to this character contains a
unique irreducible module, the famous Kato module.

Definition 9.7.1. For a € S, the Kato module corresponding to a is defined to be
the H,(q)-module L(a") := Indp"? (L(a)).

Remark 9.7.2. Using Lemma 9.5.6, we see that
ch(L(a")) = n![L(a) X --- X L(a)],

thus dimpg L(a™) = n!. Moreover, for all 1 < i < n, the only eigenvalue of z; on
L(a") is a.
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The following theorem, which is [45, Proposition 3.3 (1)], describes the crucial
properties of L(a™).

Theorem 9.7.3. (Kato’s Theorem) The H,(q)-module L(a™) is irreducible. It is

,,,,,

For the rest of this section, we will fix an element a € S. Denote by J(a™) the
annihilator of L(a™) in H,(q), which is a two-sided ideal in H,(q). Then, for each
m > 1, we get a corresponding quotient algebra

Rn(a™) := H,(q)/ T (a™)™. (9.30)

Proposition 9.7.4. For each m > 1, the algebra R,,(a™) is finite dimensional.
Furthermore, up to isomorphism, L(a™) is the unique irreducible R,,(a™)-module .

Proof. The ideal J(a™)™ contains the elements (z; — a)™™ and (z; ' — a~)™™, for
all 1 <i < n. Then, Theorem 9.3.1 shows that R,,(a") is finite dimensional. The
second statement follows from Theorem 9.7.3, together with the fact that (x; —a)™™
acts as zero on R,,(a™) for all 7. O

For m > 1, we will denote by £,,(a") the projective cover of L(a") in R,,(a™) —mod.
We have:

Lemma 9.7.5. Let m > 1. Then R,,(a") = @, Ln(a™) as Ry, (a"™)-modules.

Proof. For a finite-dimensional F-algebra A, and a complete set {S,..., Sk} of
representatives of isomorphism classes of irreducible A-modules, we have that

k
Pi(dimF Si)7
D

where P; denotes the projective cover of S; in A — mod, for all z. To see this, write
A= @F Pl for some t; € N. Then A/rad(A) = @F (P,/rad(P,)%. Hence,
t; equals the number of times S; occurs as a direct summand of the semisimple
algebra A/rad(A). By the theory of finite-dimensional semisimple algebras, this
number is the same as dimpg S; since F is algebraically closed (see, for example,
[25, Theorem 3.22, Theorem 3.28]). Now, since, by Proposition 9.7.4, L(a") is the
unique irreducible R,,(a")-module up to isomorphism, the claim follows from this
and the fact that dimg L(a™) = n!. O

A

2

Next, we try to describe the annihilator J(a") of L(a™) in H,(q) in more detail.
Thus, we will consider the case m = 1. Note that R;(a") is a left primitive ring since
L(a™) is a faithful R;(a")-module. Furthermore, since R;(a") is finite dimensional
over I by [61, Proposition 11.7], this is equivalent to R4(a™) being a semisimple
ring. Therefore, by Lemma 9.7.5, £;(a") = L(a") and dimp R4 (a™) = (n!)2.

-----

the subset Z4ny of P, from Section 2. We note the following:

102



9.7. The Kato module

Lemma 9.7.6. The kernel of x(4n) coincides with Zny U {0}.

Proof. Denote by Ker(x(,n)) the kernel of x(gny. If f € Zgny, then f(a,...,a) =0,
hence Zny C Ker(x(n)). Conversely, let f € Ker(x(ny). As in the proof of
Corollary 9.2.4, we may write f as a sum of a symmetric polynomial in the z; —a
and x;l —a 11 <4,k <n plus a constant term ¢ € F. Since f(a,...,a) =0, we
see that ¢ = 0, thus, the result follows. 0

We now can deduce the following. Note that this is stated in [59, §4] in the degen-
erate case.

Theorem 9.7.7. The ideal J(a™) is the same as the ideal Hy,(q)Z(gny.

Proof. By Corollary 9.2.4, we have that dimg P,/ P, Z 4y = n!. Moreover, a basis
of P,/P,Zny is given by the cosets of

B ={(z1—a)® - (r,—a)" |0<a; <iforall<i<n}
We first show that H,(q) is a free Z,-module of rank (n!)%. To see this, let
B :={T,x" |acZ",weW(n)},

which, by Corollary 9.2.3, is a basis of H,(q), considered as an F-vector space. Let
T,x* € B. Since, by Corollary 9.2.3, P, is free as Z,,-module with basis B?, we can
write 2% = 3. z;b;, for elements 2; € Z,, and b; € By. Hence,

Tz = Tw(z 2ib) = 2i(Tuby).

J

The second equality follows from Theorem 9.5.1, stating that Z, equals the center
of H,(q). This shows that the set

Co ={Twb|weW(n),be B}

spans H,(q) as a Z,-module.

Suppose that Y, zxc, = 0, for pairwise different elements ¢, € C,, and 2, € Z,.
Let ¢ = Ty, by, for wy, € W(n), by, € B2 Again by Theorem 9.5.1, we can write
2kCp = 25 (T, b) = T, (26bx), for all k. Now we reorder the elements in the above

sum to obtain
Z kapwk = 07
Wi,

where, by assumption on the elements ¢y, p,, is a Z,-linear combination of pairwise
different elements b, € B%. Since H,(q) is a free P,-module with basis {7}, | w €
W(n)}, by Corollary 9.2.3, if some of the p,, are different from zero, we get a
contradiction immediately. But if p,, = 0 for all k, we conclude that 2z, = 0 for all
k since the elements B¢ are linearly independent over Z,,. Therefore, C, is a basis
for H,(q) as Z,-module.
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Next, let ¢ : H,(q) — H,(q)/Hn(q)Z(n) be the quotient of H,(q) by the ideal
H,(q)Zany. Let dig(cy) + ... +drg(c,) =0 € Hy(q)/Hn(q)Z(any, for some 1 <1 <
(n!)?, distinct elements ¢; € C,, and d; € F. This is equivalent to

d161 + ...+ drcr = Z hij € Hn(q>7
J

for elements h; € H,(q), and some 2z; € Zn). As C, is a Z,-basis of H,(q), we
may write each h; as a sum of the form ), vkj.c;, with elements vy, € Z, and
¢, € Cy. Therefore, we can write the right-hand side of the equation as }_ s,c),
where s, € Z,Zny, for all p. Since s, € H,(q)Z(4n), it cannot be invertible. But
all the coefficients on the left-hand side are either zero or invertible, thus, we must
have s, = 0 for all p. This also implies that d; = 0 for all 4, hence, ¢(C,) is linearly
independent over F'.

Next, let u € H,(q)/Hn(q)Z(an), and choose a representative v € ¢~ '(u) C H,(q).
Since C,, is a basis for H,(q) considered as Z,-module, we can write

U= E ZiCq,
i

for elements z; € Z,,, and ¢; € C,,. As in the proof of Corollary 9.2.4, write each z; as
a sum of an element in Z4n) plus a constant term d; € F. Since Zny C Z(Hy(q)),
we conclude that

u=q) = Z diq(c;).
Therefore, ¢(C,) spans H,(q)/H,(q)Z(an). This immediately implies that
dimp H,(q)/Hn(q) Zany) = (n})*.
Let © be a simultaneous eigenvector of the operators x1,...,z, on L(a™). Since

L(a™) is an irreducible H,(q)-module, it is cyclic. Hence, H,(q)0 = L(a™). More-
over, Zny € Z(H,(q)), and we conclude that

(Hn(q)Z(amy) L(a™) = (Hn(q) Z(any) (Hn(q)0) = (Hn(q) Z(an))0 = 0.

Therefore, H,,(q)Zn) € J(a"). Following the discussion prior to Lemma 9.7.6, we
infer that Ry(a") = H,(q)/J(a™) = (n!)?>. By counting dimensions, we conclude
that Hn<q)Z(an) = j(a ) O

S 3

Remark. (1) Since Z(4n) is contained in the center of H,(¢), we have that J (a™)™ =
Hy ()™ (Zan))™ = Hn(q)(Z(qmy)™, for all m > 1.

(2) The previous theorem was deduced in [59, §4] in the case for degenerate affine
Hecke algebras. In the non-degenerate case, this seems to be new.
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9.8 Refinements of restriction functors

This section may be viewed as a key section in our further investigations. We will
define various refinements of the restriction functors, and prove several important
properties of these. It should be noted that these functors were originally defined
by I. Grojnowski in [44] in the non-degenerate case, where for the degenerate case,
this was done by A. Kleshchev in [59], using the ideas of the former author. In the
sequel we will follow the lines of Kleshchev, giving an explicit way of defining these
functors in the non-degenerate case. In particular, we give a construction analogous
to that of [59, §4.4].

Note that all the results stated in previous sections will be, at least implicitly,
applied in this section.

In the following, for a composition p = (1, ..., k) of n, we will write Resj;,

for the restriction functor Resgnggg.

Let M € H,(q) —mod, and a € 'S. We denote by A, (M) the generalized eigenspace
of x,, on M, corresponding to the eigenvalue a. In view of Lemma 9.5.3, we have
that

oMk

A= B M, (9.31)

a€eS™, an=a

Recall the definition of the parabolic subalgebra H,_11)(¢) from Section 9.4. Since
,, is central in H(,_1 1y(q), on restriction, A, (M) becomes an H,_1 1y(¢q)-submodule
of M. Since a homomorphism M — N in H,(q) — mod maps A, (M) to A (N), we
get a functor

A, : Hy(q) — mod — H(,_1,1y(q) — mod (9.32)

being defined on morphism as restriction. More generally, if m > 1, define A m (M)
as the simultaneous generalized eigenspace of the operators x,_,,11,...,x, corre-
sponding to the eigenvalue a. In the same way as above, we obtain a functor

Agm : Hy(q) — mod — Hp—mm)(q) — mod. (9.33)

If we consider H,,_1(q) as a subalgebra of H(,_11)(¢) in the natural way, we obtain
the functor

el = Resg:”__ll(’;))(q) oA, : H,(q) — mod — H,_1(q) — mod. (9.34)

By iterating this procedure, for 1 <r <n, we also get a functor
el : Hy(q) —mod — H,_,(q) — mod. (9.35)

In the following we will write, e, (resp. e’) for the functor e™! (resp. €®") and all

n > 1. With this notation, we have that e}, = e, o0...0e, (r times).
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For M € H,(q)—mod, by Lemma 9.6.1, we have an isomorphism of H,,_(¢)-modules

Resy" 0 (M) = (P e, (M). (9.36)
acs
Let J(a™) be the annihilator of the Kato module L(a™) in H,(q), see Section 9.7

for definitions. From the chain of ideals
J@)2J@)?2...2J@)">...
in H,(q), we obtain surjective F-algebra homomorphisms
LB R (@) — B Ry(a™) B Ry(ah), (9.37)

given by pip(h + J(a™)* 1) = h + J(a™)¥, for all h € H,(q), and all k > 1. Note
that for all m > 1, we consider R,,(a") as an H,(q)-module via inflation. With
this, the above epimorphisms p, become surjective H,(q)-homomorphisms. By
Lemma 9.7.5, we have that R,,(a") = €D, Ln(a"), as R,,(a™)-modules, and hence
as H,(q)-modules. Since, for k < m, J(a™)*/J (a™)™ is a nilpotent ideal in R,,(a"),
and thus nil, we have that idempotents lift along the above algebra epimorphisms,
see [1, Proposition 27.1]. Let m > 1, and 1 = €* 4 ... 4 ¢!} be the decomposition
of 1 in orthogonal primitive idempotents e;, corresponding to the decomposition
Rum(a") = @,, L(a™). By lifting, we get a decomposition 1 = e"™' + ... 4 !
in Ry41(a™), see [1, Proposition 27.4].

For m > 1 and 1 < i < n!l, denote by r’, : R(a") — R, (a™)e and j! :
Rm(a™)el — R,,(a™) the retraction and section corresponding to the decomposition

Rn(a") = @ L, (a") = Rpu(a")el" & ... 8 Ry(a")en.

Then the ring epimorphism p,, : Rp11(a”) — Rp(a™) defines a surjective H,(q)-
module homomorphism

Gy = ToPmImi1 * L1 (") = Rppga(a)e]™ — Ryp(a™)ef” =2 L, (a"),
for all 1 < i < n!. Therefore, fixing such an idempotent decomposition for m = 1
yields a chain of H,(q)-homomorphisms

A R (@M T Ry(am)e? s Ry (a"e]

7 7

(9.38)

forall1 <¢<nl
Furthermore, by the definition of the maps ¢:,, m > 1, we have the following
commutative diagram:

Pm, Pm—1 b2 P1
. — Rp(a") — ... — Ra(a") — Ry(a™)
ri r%h rih
G Gn1 G5 ¢
R (a)en TS Ro(a™)e? = Ri(aM)el

(2
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Similarly, the diagram corresponding to the inclusion homomorphisms j¢ , m > 1,
1 <i < nl, is commutative. We have the following analogue of [59, Lemma 4.4.2]
in the non-degenerate case:

Lemma 9.8.1. Let M be an H,(q)-module, and suppose that J(a™)*M = 0, for
some k € N. Then for all m > k, there exists an isomorphism of H,(q)-modules

HOHlHn(q)<Rm(an), M) = M.
Furthermore, there is an isomorphism of functors

lim Homy, () (Rom (), =) = lim €5 Homp, () (L (@), =)

from the category of H,(q)-modules annihilated by some power of J(a™) to the
category of vector spaces.

Proof. Since J(a™)*M = 0, M is the inflation of an R,,(a")-module. Hence,
Homyp,, () (Rm(a"), M) = Hompg,, (@) (Rm(a™), M) = M.

The isomorphism can be derived from Lemma 9.7.5, and the discussion prior to this
lemma. [

Next, we try to describe the connection between these various functors. In the
following, we will denote by H,(q)’, 1 < r < n the subalgebra of H, .,y C H,(q)
generated by the elements

+1 +1
Ty pgtr-- Ty 7Tn—7"+17 s aTn—l-

Note that, as F-algebras, H,.(q) = H,.(q), which we will use as an identification.
Observe that for M € H,(q) — mod, we may define an H,,_,.(q)-module structure
on the F-vector space Homy, 4y (R (a”), M), by setting (hf)(v) = h(f(v)), for
f € Homy, gy (Rm(a"), M), h € H,_,(q), and v € R,,.

Also, if M|N € H,(q) — mod, and f : M — N is a homomorphism of H,(q)-
modules, we obtain a map

[ Hompy, (g (Rm(a”), M) — Hompy, gy (Rm(a"),N) g+— fog.
Moreover, for h € H,_,(q), we have that

[ (hg)(x) = f((hg)(x)) = f(h(g(x)) = hf(g(x)) = h(f*(9))()
since f is H,_,(q)-linear. Therefore, we get a functor

lim Homp, () (Rm(a"), =) : Hu(q) — mod — H,—.(q) — mod. (9.39)
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Theorem 9.8.2. Let M € H,(q) —mod, a € S. Then

e1(M) 2 lim oy, (Ron(a), M) (9.40)
as H,_,(q)-modules. Moreover, the above isomorphism is natural, and, thus, induces
an isomorphism of functors from the category H, (q)—mod to the category H, _,.(q)—
mod.

Proof. First, we show that e (M) = A, (M) as H,,—,(g)-modules. Let r = 1. Then
the statement follows from the definition of e, given in (9.34). Next, let r > 1.
If v € Ay (M), then v € Agr—1(M), and (2,41 — a)*v = 0, for some k > 0.
Hence Ayr(M) C Ay(Agr-1(M)). On the other hand, if v € Ay(Ag—1(M)), then
(r; —a)fv =0, for alln —r +1 < i <n and some k > 0. Thus, v € A, (M), hence
Ag(Agr-1(M)) = Agr (M).

Now, by definition, e"(M) = e,(e"~1(M)). By the induction hypothesis, we may
assume that e’ 1(M) = Agr—1 (M) as H,_,,1(q)-modules. As we have seen above,
the statement holds for r = 1, therefore:

(M) = euel (M) = ol Agrr (M)

a a

= Aa(Aaf*1 (M)) = AaT(M)7

as H,_,(q)-modules.
Next, we want to show that

X =Apr(M)= @HomH7,(q)/(7€m(aT), M)

as H,_,(q)-modules. To this end, we use the canonical isomorphism H,_,,) =
H, ,®pH = H, ., H,, and throughout, we will consider M as an H,,_, ®p H,-
module with respect to this isomorphism.

Recall that, for m > 1, R,,(a") = H,(q)/J(a")™, and we will consider it as an
H,(q)-module via inflation along the canonical F-algebra epimorphism p : H,.(q) —
H.(q)/J (@)™ Let Y, (M) :={ye M| J(a")"y = 0}. For y € Y;,,(M), we get a
homomorphism f, € Hompy, (o) (Rm(a"), M), given by the following diagram:

Ty —— Hi(q) —— Rou(a") = Hy(a) [T (@)
I

Since J(a")™y = 0, this map exists and is unique by the cokernel property. Hence,
we obtain a well-defined map

Yy 2 Yo (M) — Homp, () (R (a”), M), y— fy.
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Since the elements of H,_,.(q) commute with the elements of H,(q), Y,,(M) is an
H,_,(q)-submodule of M. For every t € R,,(a"), it follows from the definition of f,
that if s € p~(¢), then f,(t) = sy. Also, since cokernels are unique, the map t,, is
a homomorphism of F-vector spaces. Moreover, for h € H,_,(q),

U (hy) () = fuy(t) = s(hy)
= h(sy) = Mpu(y) (1),

for all t € R,,(a"), since h commutes with all elements in H,.(g). This shows that
Y is even an H,,_,(q)-homomorphism.

On the other hand, let f € Hompy, g (Rm(a”), M), for some m > 1. Since we view
R.(a") as an H,.(q)-module via inflation along p, f is determined by the element
f(1) € M. Here, by 1 we mean the unit in the ring R,,(a"). To see this, take an
element t € R,,(a”), and some s € p~!(t). Hence we can write t = t1 = p(s)1 = s-1,
where we indicate the action of H,(q) on R,,(a") by ” -”. Then it follows that

f@) = f(p(s)1) = f(s-1) = sf(1),

where the third equality comes from the fact that f is an H,.(¢q)-homomorphism.
Moreover, we have that

J(a")"f(1) = f(p(T (a")™)1) = 0O,
and hence, f(1) € Y,,(M). Therefore, we get a map
Om : Homp, () (Rm(a”), M) — Y (M),

given by ¢, (f) = f(1). It is easy to see that ¢,, is a homomorphism of F-
vector spaces. Furthermore, by the definition of the H,,_,.(g)-module structure on
Homp, () (R (a”), M):

Om(hf) = (hf)(1)=h(f(1))
= h¢m(f)a

for all h € H,_,(q), and f € Hompy, ()(Rm(a"), M), showing that ¢,, is an H,_,(q)-
homomorphism.
On the one hand, since 1y, € p~*(1), we have for all y € V,,(M):

¢m(wm(y)) = ¢m(fy) = fy(l) =Y.

On the other hand, for all t € R,,(a"):

Um(Pm (/) = Pm(f(1)(E) = s (1)
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where f € Hompy,g)(Rm(a"), M), t € Riy(a”), and some s € p~'(¢). This shows
that 1, and ¢,, are mutually inverse bijections and, hence,

Y, (M) = Homp, () (Rin(a"), M)

as H,_,(¢q)-modules.
Next, let M, N € H,(q) — mod. For m > 1, and a homomorphism f : M — N in
H,(q) — mod, we get a homomorphism

f* : HOHIHT(Q) (Rm(ar), M) — Hoer(q) (Rm(ar>7 N)7

of H,_.(q)-modules, given by f*(g9) = fg, for g € Hompy,(g)(Rn(a"),M). Let
y € Y, (M). Then

T(a")"f(y) = f(T(a")"y) =0,
thus, f(y) € Y (N), and we get a homomorphism

f:Y(M) — Y, (N)
of H,_.(q)-modules. Moreover,

om(f(9) = om(fg) = (fg)(1)
f(g(1)) = f(Pm(g))
= floml9)).

We consider the following diagram:

Jm
HOIHHT(Q) (Rm(ar), M) s HomHT(q) ('Rm+1 (a“), M)
¢m ¢m+1 h
im
Ym S Ym+1

Here, i,, denotes the H,_,(q)-monomorphism induced by the inclusion of the sets
Y., € Y,u1. Moreover, j,, is induced from the homomorphism p,, : R,41(a”) —
Ry(a”) of (9.37), and applying the left exact functor Homp, 4 (—, M). More pre-
cisely, if f € Hompy, (q)(Rm(a"), M), then ju,(f) = fpm. From this one can see that
Jm is @ homomorphism of H,,_,.(gq)-modules. Furthermore,

Om1 (]m(f>> = (fpm)(lRmﬂ(aT)) = f(pm(]‘Ranl(ar)))
= f(lRm(ar)) = imgbm(f)a

which shows that the diagram commutes. With this, it follows that
Y:={yeM|J(@ )"y =0, for some m > 1}
= lig Y,
= hg'l Homp, gy (Rm(a”), M),
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as H,_,(q)-modules. The above calculations show that this isomorphism is functo-
rial.

To finish the proof, we show that Y = X. For, let y € Y, i.e., there is some m > 1
such that J (a")™y = 0. Since (z;—a)™ € J(a"), it follows that (z;—a)™™ € J(a")™.
Thus, (7; —a)™™y =0, for all n —r +1 <1 < n, thus, y € X.

On the other hand, X can be characterized as the largest submodule of Res, . .(M)
all of whose composition factors are of the form NXL(a"), for an irreducible H,,_,.(q)-
module N. Therefore, if we restrict X to H.(q) 2 1® H.(q) — H,_(q) ® H,(q),
all composition factors are isomorphic to L(a”). This implies that the restriction
must belong to the block of H,.(q) indexed by the central character v := (a,...,a)
(r times). We show by induction on the composition length that all modules in this
block are annihilated by some power of J(a").

Let W € H,.(q¢) — mod with central character v, and composition length 1. By
Theorem 9.7.3, up to isomorphism, L(a") is the only irreducible module in its block.
Hence, W = L(a"), and so, by definition of J(a"), J(a")W = 0. Now suppose that
W has composition length greater than 1. Then take some maximal submodule
W' C W which is non-zero by assumption on W. Consider the exact sequence

0—=W W —>W/W -0

of H,(q)-modules given by the quotient module W/W’. Again, by Theorem 9.7.3,
W/W’" = L(a"), and we get that J(a")(W/W') = 0. By definition of the action of
H,(q) on W/W', it follows that J(a")W C W’. Now by the induction hypothesis,
some power of J(a”") annihilates W’. We conclude that some power of J(a") must
annihilate W.

It follows that J(a")*X = 0, for some k > 0, so X C Y. Therefore, since X and Y
are both subsets of M, we infer that X =Y as H,_,(¢)-modules.

From the above discussion, we now obtain an isomorphism of functors, given by the
isomorphisms constructed in the proof. O

Next, fora € S, r > 1, and M € H,(q) — mod, we define
el(M) = lingomHT(q)/(Em(ar), M).

a

Note that we get an H,,_,(¢)-module structure on Homy, (4 (£ (a”), M), by defining
(hf)(v) = h(f(v)), for f € Hompy, gy (Lm(a"),M), h € H,_,(q), and v € Ly, (a").
Also, ift M;N € H,(q) — mod, and f : M — N is a homomorphism of H,(q)-
modules, we obtain a map

[ Homy, (g (Lin(a”), M) — Homp, (g (Lm(a”),N), g+ fog.
For h € H,_,(¢q) and = € L,,(a"), we have that

[ (hg)(x) = f((hg)(x)) = f(h(g(x)) = hf(g(z)) = h(f*(g))(z)
since f is H,_,(¢)-linear. Thus, we obtain a functor

el . H,(q) — mod — H,_,(q) — mod. (9.41)
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We have the following:

Theorem 9.8.3. There is an isomorphism
=@
r!

of functors from the category H,(q) — mod to the category H,_,(q) — mod.

Proof. By Theorem 9.8.2, for M € H,(q) — mod, we have an isomorphism

ep(M) = i Homg (R, (a'), M)

of H,_.(q)-modules that is natural in M. Since M is finite-dimensional, the direct
limit above stabilizes after finitely many steps. Therefore, we may assume that for
m large enough:

@Homm y(Ri(a”™), M) = Hompy, () (Rm(a”), M).

By Lemma 9.8.1, we have that

Hom, () (Rom EB Homy, a’), M),

where the isomorphism ¢, is defined by

f|_>(foi1,...,foir!)7

for f € Hompy, ) (Rm(a"), M) and ix, 1 <k < r!, denotes the split monomorphism
given by the direct sum decomposition of R,,(a"), see the discussion prior to Lemma
9.8.1. Moreover, for h € H,,_,(q), we have that

m(hf)(@) = ((hf)oir(x), ..., (hf)oin(z))
= ((hf(ia(x )),-- ,hf (i ()
= (h(f(ir(2))), - -, h(f (in(2))),

thus, by the definition of the H,_,(¢)-module structure on Homy, (4) (L. (a”), M), we
see that ¢y, is an isomorphism of H,,_,.(¢)-modules. Next, let M, N € H,(q) — mod
and f: M — N be an H,(q)-homomorphism. Choose m large enough such that

@Hoer(q)(Rt(aT),M) = Hompy, g (Rn(a"), M), and
¢

li&Hoer(q)(Rt(a’"),N) = Homgpg, ) (Rm(a"),N).
t

We obtain a diagram
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(0
Homy, (g) (R (a7), M) ——

D, Homp, o) (L (a”), M)

v, N VM,N

(N
Homp, (g (R(a™),N)

@D, Hompy, () (L (a”), N)

where ny n(h) = foh, and vy n(ki,...,kn) = (foky,...,foky). For h €
Homy, () (Rin(a”), M), we get that

vmun(Um(h)) = vmun(hoiy,...,hoiy)
(fo(hoiy),...,fo(hoiy))
= ((foh)oir,...,(foh)oin))
= Un(mun(h)).

Hence, the diagram commutes, i.e., ¥ determines a natural transformation between
the functors

Hoer(q) (Rm(ar)a _) and @ Hoer(fI) (‘Cm(ar)a _>

r!

from the category H,(q) — mod to the category H,_.(q¢) — mod. The claim now
follows since, for M € H,(q) — mod, 1), is an isomorphism of H,_,.(q)-modules. O

Next, we want to give another description of the H,(¢)-modules L,,(a™), m > 1.
Consider the finite-dimensional Hecke algebra H/(q), i.e., the subalgebra of H,(q)
generated by T1,...,7T,_1. Let A be a composition of n. Then the element

w= Y T, € Hl(q)

weWy

affords the permutation module M* := HJ(q)zy of HJ(q) corresponding to the
composition \. For example, if A\ = (n), we obtain the trivial module for H/(q),
denoted by 1. Note that for all w € W(n), we have that

Twaj(n) = ql(w)x(n) )

see [68, Lemma 3.2].
Set P(n) := IndZ’}EZ;(l). For the next proposition, recall that by Theorem 9.3.1,

H,(q) is a free P,-module with basis {7}, | w € W(n)}. It follows that

L(a") =Indp" " L(a)¥...R L(a) = ) F(T, @p, b), (9.42)
weW (n)

where b is a fixed basis vector of the one-dimensional P,-module L(a) X ... X L(a).
Thus we see that, considered as H/(q)-module, L(a") is isomorphic to the left
regular module H(q). Then we have an analogue of [59, Lemma 4.4.3] in the
non-degenerate case:
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Proposition 9.8.4. We have that L,,(a") = P(n)/J(a™)"P(n) as H,(q)-modules.

Proof. Let p,, : P(n) — P(n)/J(a™)™P(n) denote the epimorphism corresponding
to the quotient. Then we have an exact sequence

0 — Homy,(g)(P(n)/J(a")"P(n), L(a")) — Homp, 4 (P(n), L(a"))
— Hompy, (T (a")"P(n), L(a™)).

Since J (a™) annihilates L(a™), the last term of the sequence above equals zero, thus,
we have an isomorphism of F-vector spaces

Homy, ) (P(n)/J (a")™P(n), L(a")) = Hompy, g (P(n), L(a")).
Using Frobenius Reciprocity, we get that

Homyp, g (P(n)/J (a")"P(n),L(a")) = Homp,)(P(n), L(a"))
Homyyy (1, Res ;}E)(L(a ).

~

From (9.42) it is easy to see that Res'; w Z;(L( ")) = H/(q). Since the trivial module

occurs precisely once in the socle of H I/ 7(q), we conclude that
Homy, (g (P(n)/J (a")" P(n), L(a")) = F.

Therefore, the R,,(a™)-module P(n)/J(a")™P(n) has irreducible head L(a™), and
hence is a quotient of L,,(a").

Consider the projective cover 7 : L,,,(a") — L(a™) in R,,(a™) — mod. If we con-
sider this epimorphism as a homomorphism in H,(q) — mod and restrict it to
H/(q) — mod, we see that it must be split since Res "(q)(L(a”)) >~ HI(q). More-

Hi(q)
n(q)

over, Res'™" it (L(a™)) contains a non-zero vector x such that T,z = ¢z, for all

Hi(q)
w e W(n). Let v € Res™ )(Em( ™)) be such that Res' )<7T)(’U> = x. It follows

HY(q) i} (q)
that we have a non-zero HJ (q)-homomorphism
n\q n
f:1— Rest( )([,m(a ).
Again, by Frobenius Reciprocity, we get a non-zero homomorphism ]f : P(n) —
L,,(a") in H,(q) — mod such that v is contained in the image of f. This in-
duces a non-zero R, (a™)-homomorphism g : P(n)/J(a™)™P(n) — L,,(a™), because
J (@)L (a™) = 0. Since L,,(a") is a projective cover of L(a") as R, (a")-module,
it is cyclic, generated by v. It follows that g must be surjective. The result now
follows. U

Since, by Theorem 9.3.1, H,(q) is a free right H/(q)-module with basis {z® | a €

7™}, we have
= D P @)

aeZn
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9.8. Refinements of restriction functors

with 1 = Fx(,. From this we can see that P(n) is a cyclic left H,(q)-module,
generated by 1 ® z(,). Moreover, we get that

Tw(l X :L‘(n)) =T, T(n) = 1® Twl‘(n) = ql(w)<1 X :L‘(n)),

for all w € W (n).

Let h € H,(q). By Theorem 9.3.1, we may write h = Zle Xixz®T,,, for some
a; €Z" N\ € F, and w; € W(n). Given the element 1 ® z(,y € P(n), we see that h
acts as

k
W1 @am) =h@rm = M Ty,) ® 2w

i=1

k k
=Y X" @ Tz = > g% @ 2, (9.43)

=1 i=1
k
= (Z )\iql(wi)xai) ® T(n)-
=1

Let M € H,(q) —mod, and U be a subgroup of W (n), generated by basic transposi-
tions of W (n). Then, denote by MY :={v € M | T,,v = ¢"™v for allw € U} C M,
which is a subspace of M. Note that U acts via the T, on MY. To this end, let
weU,seBNU and m € MY. If I(ws) = l(w) + 1, then

(TwTs)m = Twsm = ql(w)+1m = ql(w) (qm) = Tw(Tsm)

On the other hand, if I(ws) < I(w), we have by the multiplication rule for H/(q),
see (9.1), that

(TWTo)m = (qTws + (¢ — 1)Tw)m
= ¢“m+(¢-1)¢"'m
— ql(w)+1

= Tu(Tsm).

m

Recall the definition of the subalgebra H,(q)" of H,(q) from the discussion after
Lemma 9.8.1. In the following, we will denote by W (r)’, for r > 0, the subgroup of
W (n) generated by the elements

Sn—r41; Sn—r+42; -+ -5 5p—1 € W(TL)
Clearly W (r)" = W (r). We get the following:
Theorem 9.8.5. Let M € H,(q) — mod. Then we have a functorial isomorphism

el (M) = (g (M)

a

of H,,_.(q)-modules.
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Chapter 9. Affine Hecke algebras of type A

Proof. First note that the subspace (A, (M))V") is indeed an H,,_,(q)-submodule
of M since H,,_.(q) commutes with all the elements of H,.(q)’.
By Proposition 9.8.4, we have an isomorphism

e (M) = ling Homms g (£ (a), M) = ling Homms o (P(r)/ T @) " P(r), M),

which is clearly functorial. Since P(r) is generated by 1 ® x() as H,(¢)"-module,
P(r)/J (a")™P(r) is generated by u := (1 ® x(y) as a H,(¢q)"-module, where

w: P(r)— P(r)/J(a")"P(r)

denotes the natural epimorphism.

Let f € Hompy, ) (P(r)/J(a")"P(r),M). Set v = f(u). Then we get that

J(a)™ = J(a")"f(u)
= [(T(a")"u)
= 0.

Therefore, v € A, (M). Moreover, for w € W(r)’, we have

Twv = wa(“) = f(Twu)
= fr(T(1® ) = ¢,

thus v € (Agr (M)W,

On the other hand, let v € (A (M)W ). Then, J(a")™v = 0, for some m > 1.

We now define a homomorphism f, € Hompy, (o (P(r)/J(a")"P(r), M). For & €
P(r)/J(a")™P(r), we know from the discussion prior to this theorem that = = hu,

for some h € H,.(q)’. We define a map

P(r)/J (@ )"P(r) — M

by setting f,(x) = hv. We must show that this is well defined. To do this, let
h € H,(q)" be such that hu =0 € P(r)/J(a")"™P(r). In other words, h(1 ® x(,) €
J(a")™P(r) in P(r).

Suppose first that (1 ® x(y) = 0. By (9.43), if h = Zle Aix®T,,, then

1®xr) Z)\lqwz on ®.T)

Since the elements 2% ® x(,), e € Z", form a basis of P(r) as an F-vector space, we
must have that A\ = 0, whenever x® = 0. This shows that h = Zle MLy, s 1€
h € H/(q)', the subalgebra of H,(q)" generated by T}, _,11,...,T,_1. But considered
as an H/(¢q)-module, the subspace F(1 ® z(,)) of P(r) is isomorphic to the trivial
representation of H7(q)’. It is easy to see that the two-sided ideal

@ F(Tw - ql(w))

weW (r)  w#1
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9.8. Refinements of restriction functors

is the kernel of the F-algebra homomorphism H;(q)’ = Endp(F (1 ® z()) given by
the trivial representation. Therefore, we have that h = ju;(T,,, — q'3)), for some
p; € F.

Now, let A(1 ® z(y) € J(a")™P(r) in P(r), then, by the alternative description of
the ideal J(a") in Theorem 9.7.7 and the action of H,(q)" on 1 ® x(,), we may write

h(1® ) =Q(1® ),

with some element @ € P/(Z)™. But then (h — Q)(1 ® x(y) = 0, which shows
that h has the form

h= (Y n(Tu, —d ™)) + Q.

for elements w; € W(r)', and pu; € F. Since, by assumption, v € (A, (M))V®' it
is now easy to see that hv = 0, and therefore, f, is well defined. Also, it is not hard
to show that f, is a homomorphism of F-vector spaces: If z,y € P(r)/J (a")™P(r),
and p € F, then there are h, h' € H,(q)" such that

ey = () + W = b+ ).
It follows that
Folp +y) = (ph + W) = p(hw) + 1'v = pfy(2) + fo(y).

Let b € H,.(q)', x € P(r)/J(a")™P(r), and choose h € H,(q) such that x = hu.
Then
fo(h"z) = fo((W"h)u) = (K"h)v = B"(hv) = h" f,(2),

and so, f, € Homy, gy (P(r)/J (a")™P(r), M).
Therefore, we have constructed two maps:

Wt (ADar (M)W — lim Homp, g (P(r) /T (") P(r), M),

given by ¢(v) = f,, and

& + iy Hotgg gy (P(r) [T ()" P(r), M) — (Br (M)

given by ¢(f) = f(u).

We now show that the latter are inverse to each other. On the one hand,

(¥ (v)) = o(fo) = folu) = v,

and on the other hand,

P@UNE) = D(f(W)®) = frwt)
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Chapter 9. Affine Hecke algebras of type A

where t = hu € P(r)/J(a")"P(r), for some h € H,.(q)'. Therefore, 1) and ¢ are
mutually inverse bijections.

Next, fix an element h € H,_,.(¢). Then, for t = h'u € P(r)/J(a")"P(r), ' €
H,(q)’, we have that

P(ho)(t) = fuo(t) = B (hv)
— h(W'v) = hf.(t)
= hip(v)
since the elements of H,,_,(q) commute with those of H,(q)".
Moreover, for an element f € Homy, gy (P(r)/J(a")™P(r), M), we compute:

o(hf) = (hf)(u) = h(f(u))
= ho(f).

Thus, we obtain an isomorphism

(Aar(M))W(r)’ o ligHoer(q)(P(T)/j(a’")mp(r), M)

of H,_.(q)-modules. The above construction shows that this isomorphism is func-
torial. ]

Remark 9.8.6. The definition of the functors eﬁ’“), r > 1, are based on ideas of L.
Grojnowski, see [44, §8]. The explicit description of these in the degenerate case,
as well as the alternative description, is due to A. Kleshchev, see [59, §8]. The
alternative description of Theorem 9.8.5 of the functors in the non-degenerate case
seems to be new to us.
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Chapter 10

Kac—Moody algebras

In this chapter, we will briefly describe the theory of Kac—-Moody algebras and their
representation theory.

First we state the basic definitions of these algebras, some of them are needed in the
definition of the cyclotomic Hecke algebras, given in Chapter 11. Afterwards, we
will discuss the basic notions of the representation theory of a Kac—Moody algebra,
which will be necessary in Chapter 13. There, we will mainly work with the derived
algebra g'(A) of the Kac-Moody algebra g(A) of a generalized Cartan matrix of
type A. Therefore, we will explain how the representation theory of g’'(A) is related
to that of g(A). This is done in the last section.

All the results stated here are well known and can mostly be found in [53].

10.1 Basic definitions

If not otherwise stated, in the following, K will denote a field of characteristic 0.
Let I be a finite set, say [ = {0,...,n}, for some n € N, n > 0.

A generalized Cartan matriz is given by a matrix A € Mat(n x n,Z), n > 1, such
that

(1) a; =2, for all 0 <i <mn,
(2) a;; =01if and only if a;; =0, for all 0 <, < n,

(3) a;; <0, forall 0 <i,j <nandi#j.
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Chapter 10. Kac—Moody algebras

Example 10.1.1. Let n > 1. Then the generalized Cartan matrix of type AV s
the matrix (a;;)o<i j<n, of the form

2 -1 0 -~ 0 0 -1
-1 2 -1 -~ 0 0 0
0o -1 2 0 0 O
0 0 O 2 -1 0
0 0 O -1 2 -1
-1 0 0 0o -1 2
if n > 1, and
2 =2
-2 2 )7
if n=1.

Recall that an n x n matrix A is called symmetrizable if there exists an invertible
diagonal n x n matrix D and a symmetric n X n matrix B such that A = DB.

To a generalized Cartan matrix A one associates a Lie algebra as follows: Let [
denote the rank of the matrix A, and let h be a K-vector space with dimgh =
2n — . Moreover, choose linearly independent subsets IT = {ay, ..., a,} C bh*, and
ITI* = {hg,...,h,} C b, such that o;(h;) = aj;. The 3-tuple (h,II,II*) is called a
realization of the matrix A. Then, the Kac—Moody algebra g(A) associated to A is
defined to be the Lie algebra on generators e;, f;, ¢ € I, and h € h subject to the
following relations:

(L1) [es, f5] = dizhi,
(L2) [h,e;)] = a;(h)e;,
(L3) [h, fil = —au(R) i,
(L4) [h, 1] = 0, for all b, ' € b,
(L5) (ad e;)'"*e; =0, for i # j,
(L6) (ad fi)'~af; =0, for i # j.

Moreover, we will also work with the derived Lie algebra g'(A) = [g(A),g(A)] of
g(A). Then, by [53, §9.11], g/(A) is generated by the elements e;, f;, h;, @ € I,
together with the Chewvalley relations

(D1) [es, fj] = dijha,
(D2) [hy, ;] = ai(hy)es,

(D3) [hy, fi] = —au(hy) fi,
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10.1. Basic definitions

(D4) [hi,h;] =0, for all i,j € I,
(D5) (ad €;)'%ie; = 0, for i # j,

(D6) (ad f)1=05 f; = 0, for i # j.

The relations (L1)—(L4) (resp. (D1)—(D4)) are called the Weyl relations and the
relations (L5)—(L6) (resp. (D5)—(D6)) are the Serre relations. Note that, by [53,
§1.3], we have g(A) = g'(A) +b. If weset h' ="  Kh;, then g'(A)Nh =1

Remark 10.1.2. The elements of the set IT = {ay,...,q,} are the simple roots
and the elements of the set II* = {hy,..., h,} are the simple coroots of g(A). One
may define a bilinear form

iel iel
by setting (o, h;) = a;(h;) = a;;, for 0 <, <n.

Let L be a Lie algebra. Suppose that U is an associative unitary K-algebra and
t: L — U is a K-linear map with

[z, y]) = c(@)uly) = y)ul=),

for all z,y € L. The pair (U,¢) is called a universal enveloping algebra if it has
the following universal property: For any associative unitary K-algebra A, and any
linear map j : L — A such that

i@, v]) = j(@)i(y) — j(y)j(w),

for all z,y € L, there exists a unique homomorphism of associative algebras ¢ :
U — A such that j = po. Hence, if U exists, then it is unique up to isomorphism
of associative algebras, and is called the universal enveloping algebra of L denoted
by U(L).

For the existence, consider the tensor algebra T(L) := D, L®* together with the
factor algebra

T(L)/T, (10.1)

where 7 is the two-sided ideal of 7 (L) generated by the elements of the form
r®y—yax—|r,yl. Ife: L — T(L)/Z denotes the natural map, one can
show that the pair (7 (L)/Z, ) satisfies the universal property above.

Theorem 10.1.3. (Poincaré-Birkhoff-Witt) Let L be a Lie algebra, and (U(L),t)

its universal enveloping algebra. Then:

(i) The map ¢ : L — U(L) is injective.
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Chapter 10. Kac—Moody algebras

(i) Let {xq | a € Q} be a basis of L, where § is a partially ordered set. Then, all
the elements of the form x,, - --x,, Such that aq < ... < «, together with 1
form a basis of U(L).

n

Proof. See [47, Theorem 1.2.4]. O

Next, let V' be an L-module for the Lie algebra L. From the corresponding repre-
sentation over K, we obtain, by the universal property of U(L), an U(L)-module
structure on V. Conversely, via the map ¢ of Theorem 10.1.3, we can give a U(L)-
module W an L-module structure. This viewpoint will become important later
on.

In the sequel denote by U(g(A)) the universal enveloping algebra associated to the
Lie algebra g(A). By the construction of the universal enveloping algebra given in
(10.1), U(g(A)) has a presentation given by generators e;, f;, i € I, and h € b,
subject to the following relations:

(U1) eifj — fiei = dizhi,
(U2) he; — e;h = a;(h)e;,

(U3) hfi — fih = —ai(h) fi,
(U4) hh/ = h'h, for all h,h' € b,
(U5)

Us 1— a”( 1)k(1faij)6}—aij—kejef =0, for i 7é Js

k

)

(U6) Yo (=D () £ i = 0, for i # .

Furthermore, we denote by U(g'(A)) the universal enveloping algebra of the Lie
algebra g'(A). It is generated by elements e;, f;, h;, i € I, subject to the relations

UD1) e;f; — fiei = 0ijhi,
UD2) hje; — eih; = ay(hj)e;,
) hifi — fihj = —ai(hy) fi,
)

[hi,hj] :O, for all Z,] = 1,...,71,

(
(
(UD3
(UD4
(

UDS) ST (~ 1) (el gk =0, for i £
(UD6) Spo? (—1)F (M) f 7 i = 0, for i # 5.

To compare the Lie algebras g(A) and g'(A), we describe g(A) in more detail.
Proposition 10.1.4. (i) The center of g(A) is given by
Z(g(A)={heb|ai(h) =0 foralliecI}.

Therefore, dimy Z(g(A)) = dimg b — |I| = corank(A).
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10.1. Basic definitions

(ii) Suppose that A is indecomposable. Then every ideal of g(A) either contains
g'(A) or is contained in Z(g(A)).

Proof. This is [53, Proposition 1.6 and Proposition 1.7 (b)]. O

From now on, we assume that the matrix A is of affine type, i.e., det(A) = 0. Then
it follows from Proposition 10.1.4 that the dimension of the center of g(A) equals
one, and is spanned by the vector

C .= i Eilhl,
1=0

where the a;, i € I, are the labels of the Dynkin diagram obtained from the Dynkin
diagram associated to A by reversing the arrows and keeping the same enumeration
of the vertices, see [53, §6.2]. For example, if A is of type A,(ll), then a; = 1, for all 1.
Since we are considering the affine case, by [53, Theorem 5.6], the imaginary roots
of g(A) are given by the set

{kd | k e Z},

where 6 = >  a;a;, and the q;, ¢ € I, are the labels of the Dynkin diagram
associated to A. Observe that §(h;) = 0, for all i € I. Fix an element d € b such
that a;(d) =0, for all i € I, i # 0, and ap(d) = 1. Then the elements hy, ..., h,,d
form a basis of h. Moreover, we have that

g(A) =g (A) + Kd.

In b*, we define elements A; by A;(h;) = 6;;, and A;(d) = 0, for 4,5 € I. Note that
the set {Ao,...,A,,d} forms a basis of h* dual to the basis {hq, ..., h,,d} of b.
In particular, if A is of type Ag), then we have that

YT 20— A — Ay ifd > 0.

Note that, if we restrict a weight A € b* to g'(A), we obtain a weight Ay € (h’)* of
g'(A). In particular, (ao);y = (Ao)jy — (An)jy — (A1) since oy = 0. On the other
hand, given a weight 1 € (§')*, we can extend it to a weight uf) of g(A), by setting
w (hi) = p(hy), for i € I, ub(d) = u, for u € K, and extending linearly.

Remark 10.1.5. Note that the set {(a)jy, ..., (0n)} is in general not linearly
independent. For example, in type A,(ll), we have that )" () = 0. This is one
of the reasons why it is easier to work with the Lie algebra g(A) instead of g’'(A),
although the Lie algebra g'(A) is the algebra originally investigated by V. Kac and
R.V. Moody. It mimics the situation of a finite-dimensional Lie algebra, where
the simple roots are linearly independent. On the other hand, the presentation by
generators and relations of g’(A) is more natural compared to that of g(A), having in
mind the definition of a finite-dimensional Lie algebra by the Chevalley generators.
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Chapter 10. Kac—Moody algebras

For each i € I, we define the fundamental reflection r; of the space h* by setting
7"1()\) =\— )\(hl)Oél, A E h*

The subgroup W of GL,12(h*) generated by all fundamental reflections is called the
Weyl group of g(A).

10.2 Representation theory of Kac—-Moody alge-
bras

Keep the notation of the last section. In this section we will describe the funda-
mental notions of the representation theory of g(A). From now on we assume that
all the generalized Cartan matrices are symmetrizable.
For n > 1, let I = {0,...,n}. The free abelian group Q := €p,.; Za; is called the
root lattice of g, and Q4 := ) .., Z>o«y is called the positive root lattice. We have
a partial ordering on h* as follows: For A\, u € h*, weset A > pif A —p e Q..
Furthermore, let

P={Aeb"|A(h;) € Zforalliecl},

and denote by P, the subset
{Ae P|A(h;) >0foralliel}

of P. The set P is called the weight lattice of g(A), the elements from P (resp. Py)
are called integral weights (resp. dominant integral weights).
For a € Q, let

o = {z € 9g(A) | [h,z] = a(h)z, for all h € b}.
By [53, Theorem 1.2], we have the following:

Proposition 10.2.1. (i) The Lie algebra g(A) admits the triangular decomposi-
tion
g(A) =g-®bagy,
where the subalgebra g, (resp. g_) is the subalgebra of g(A) generated by
the elements e;, (i € 1) (resp. fi (i € 1)), with the defining relations

(ad e;)'"%ie; = 0 (i,5 € I; i # j) (resp. (ad f)'"%if; =0, (i,j € I;
i#7))
(ii) We have the root space decomposition
8(4) = P ga,
acq@

with dimg g, < 00, for all o € Q.
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10.2. Representation theory of Kac—Moody algebras

(iii) There exists an involution w : g(A) — g(A), the Chevalley involution, defined
bye, — —fi, fi— —e;, and h— —h,i €1, heb.

Remark 10.2.2. (i) Note that Proposition 10.2.1 is still true if we replace g(A)
by ¢’ (A), and h by h'. Then we have a decomposition

d(A) =P,
ac®
where g, = ¢'(A4) N ga.
(ii) Sometimes it is also useful to consider the anti-involution w* : g(A) — g(A)

defined by e; — f;, fi—> e;, and h— h,i € I, h € h. It is called the Chevalley
anti-involution.

For the universal enveloping algebra U := U(g(A)) of g(A), we define U™ (resp. U°,
U~) as the subalgebra of U generated by the elements e; (resp. the elements of b,
fi), i € I. Moreover, we define the root spaces to be

Us={u€U]|Ihu] =hu—uh=pF(h)uforall h € h}, 5€bh"
By Theorem 10.1.3 we get the following;:

Proposition 10.2.3. For the universal enveloping algebra U = U(g(A)) of g(A)
the following hold.

) UxU- U°@UT.

Remark 10.2.4. For the derived algebra g'(A) of g(A), we set for its universal
enveloping algebra U' = U(g'(A4)), Uy = U' N U, 8 € Q. Thus, from Proposition

10.2.3 we have that
U(g'(4) =P U
BeQ

Moreover, if we denote by (U')* (resp. (U')°, (U')7) the subalgebra of U(g'(A))
generated by the elements e; (resp. the elements of §', f;), i € I, we get the
triangular decomposition

of U'.
A g(A)-module V is called a weight module if it has a weight space decomposition
v
neb*

where V,, = {v € V | hv = p(h)v for all h € h}. If V, # 0, then p is called a
weight of V' and V), is the weight space corresponding to p. The dimension of V), as
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Chapter 10. Kac—Moody algebras

a K-vector space is called the weight multiplicity of . We denote by wt(V') the set
consisting of elements A € h*, such that V) # 0.

An element v € V), is called a weight vector of weight p. If e;v = 0 for all 7 € I,
then v is called a mazimal vector of weight p1. An element v € V), is called primitive
if there exists a g(A)-submodule U of V such that v € U, and g, (v) C U. In this
case, p is called a primitive weight.

The category O is defined in the following way. Its objects are the weight modules
V over g(A) with finite-dimensional weight spaces such that there exists a finite
number of weights A1, ..., A\ € h*, with

wt(V) € D(M)U...UD(A),

where D(\;) = {p e b* | p < \;}, forj=1,...,s. The morphisms are g(A)-module
homomorphisms.
A weight module V' is called a highest-weight module with highest weight A € h* if

there exists a non-zero vector vy € V, called a highest-weight vector, if the following
is true:

(i) ejup =0, for all ¢ € 1.
(ii) hvy = A(h)wvy, for all h € b.
(i) V = U(a(A))on.

It follows from condition (i) and (iii) that V' = U~ wv,. Since, for i € I, and v € V,,
1 € b*, we have that fiv € V,,_,,. It follows that V" has a weight space decomposition
of the form

V=V, (10.2)

A>p
and, thus, V € O.

Let A € b*. Then a g(A)-module M(A) with highest weight A is called a Verma
module if every g(A)-module with highest weight A is a quotient of M (A).
Define J(A) to be the left ideal of U(g(A)) generated by the elements ¢;, i € I, and
h — A(h)1, h € h. By [53, Proposition 9.2|, for every A € h* there exists a Verma
module, which is unique up to isomorphism. Moreover, there is an isomorphism of
g(A)-modules

M(A) 2 U(g(A))/(A).

Furthermore, M (A) has a unique maximal submodule N(A). Therefore, the g(A)-
module L(A) := M(A)/N(A) is irreducible, and is called the irreducible highest-
weight module of highest weight A.

There is the following crucial fact:

Theorem 10.2.5. Every irreducible g(A)-module in the category O is isomorphic
to L(A), for some A € h*.
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Proof. This is [53, Proposition 9.3]. O

A weight module V is called integrable if e; and f;, i € I, are locally nilpotent on V|
i.e., for all v € V there exists a positive integer k such that efv = 0 and fFv = 0,
for all i € I.

The full subcategory of the category O consisting of integrable g(A)-modules is
denoted by Ojy.

Proposition 10.2.6. Let L(A) be the irreducible highest-weight g(A)-module of
highest weight A € b*. Then the following hold:

(i) L(A) € Opy if and only if A € P,

(ii) Let vy be a highest-weight vector of L(A). Then for all i € I, we have that
fA(hi)+1UA = 0.

Proof. See [53, Lemma 10.1]. O

We also note the following analogue of 10.2.5 in Ojy:

Proposition 10.2.7. Every irreducible highest-weight g(A)-module in the category
Oing 18 isomorphic to some L(A), with A € P,

Proof. This can be found in [53, Theorem 10.7]. O]

Remark 10.2.8. Note that in [53] the field K is the field of complex numbers.
However, all the results stated here are also true over arbitrary fields of characteristic
zero, see [47].

10.3 Relating the representation theory of g'(A)
to that of g(A)

For the derived algebra g'(A) = [g(A), g(A)], we may define weight modules and
integrable modules in the same fashion as for g(A), see [53, §9.10]: A g'(A)-module
V is called a highest-weight module with highest weight A € (§')* if it admits a
@+-grading V = ®QEQ+ Va_q such that the following conditions are satisfied:

(i) g%(VA_a) - VA_a+g, for all 8 € Q.
(i) dimg V) = 1.
(iii) hv = A(h)v, for h € b, v € Vj.

(iv) V = U(g/(A)Va.

127



Chapter 10. Kac—Moody algebras

In the same way as in the preceding section, for A € (§’)*, we define the Verma
module M (A) over g'(A) as the g/(A)-module with highest weight A such that
every highest-weight g'(A)-module with highest weight A is a quotient of M(A).
Then M(A) has a unique maximal graded g'(A)-submodule, and we set L(A) =
M(A)/N(A). We have the following:

Proposition 10.3.1. The g’ (A)-module L(A) is irreducible.
Proof. See [53, Lemma 9.10]. O

Note that we can consider a highest-weight g'(A)-module V' with highest weight
A € (B')* as a restriction of a highest-weight module over g(A). For the sake of
simplicity, in the following we assume that corank(A) = 1.

Let V = @aeQ+ Vi—a be a Qi-grading of V' as above. Since {hy,...,h,,d} is a
basis of b, we can define a weight A, € b*, by setting Ay(h;) = A(h,), for all i € I,
and A,(d) = a, for some a € K, and extending linearly. Clearly we have that
(]\a)lh’ — A. Also, we define a g(A)-module V,, by setting V, = V as a K-vector
space, letting e;, fi, h; act on V, ason V, for alli € I. For a € Q4 and 2 € Vi_a,
we define dr = (A, — a)(d)x. It is easy to verify that this defines a g(A)-module
structure on V. For example, if x € V_,, then

(des)w = (ed + ai(d)es)w = (Ao — @)(d)(esx) + ai(d) (es)
= (A —a+a;)(d)(e;x) = d(e;x)

since €, € VA_qta,-
Then we have that (Vi);,_, = Va-a, and hence V, = @,co, (Va)i,_o- From

condition (i), we infer that e;Vy = 0, for all i € I. Together with (iii) and (iv), we
conclude that V, is a highest-weight g(A)-module with highest weight A,. Moreover,
it is easy to see that the restriction of V, to g’(A) equals V.

If A € b*, we may describe it by the labels A(h;), i € I. Then, if A, ® € h* have the
same labels, they differ only off §’. In this case, if L(A) and L(®P) are irreducible
g(A)-modules, then on restriction to g’'(A), they are isomorphic as irreducible g'(A)-

modules.

Example 10.3.2. Let A;, ¢ € I, denote the fundamental weights in (h')*. Then
we consider (AAZ)O € h*. From our definitions of (,AVZ-)O we see that (A/T)O =A;, a
fundamental weight in h*. If L(A;) denotes the irreducible highest-weight module of
highest weight A; € h* over g(A), then its restriction to g’(A) equals the irreducible
highest-weight module of highest weight A; over g'(A).

The next proposition gives a characterization of the module L(A), A € P,.

Proposition 10.3.3. Let A € (§)* be such that A(h;) € Zy, for alli € I. Then
the g'(A)-module L(A) is characterized by the property that it is irreducible and that
there exists a non-zero vector v € L(X) with h;uv = A(h;)v and e;v =0, for alli € 1.
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Proof. This is [53, Proposition 10.4]. O
As for g(A), we define the category O for g’(A)-modules. We have the following:
Proposition 10.3.4. Let V' be a non-zero module from the category O. Then:

(i) V' contains a non-zero weight vector such that g, (v) = 0.

(ii) The following conditions are equivalent:

(a) V' is irreducible.

(b) V is a highest-weight module and any primitive vector of V' is a highest-
weight vector.

(c) V= L(A) for some A € b.
(iii) V is generated by its primitive vectors as a g'(A)-module.
Proof. The proof of [53, Proposition 9.3| for g(A)-modules carries over. O

Therefore, Proposition 10.3.4 gives a bijection between isomorphism classes of irre-
ducible modules in O and elements A € (h')*.

By Ojs we denote the category of all integrable g'(A)-modules V' with the property
that for every v € V there is some m € N such that ¢; ---¢;,v = 0, for ¢; € I,
whenever s > m. Of course, the category Oy is a full subcategory of the category

0.

Remark 10.3.5. Note that if V' is a highest-weight module of highest weight A,
such that A(h;) > 0, for all i € I, then it follows from (10.2) that V has the latter

property.
The next theorem states that every module in the category Oy, is semisimple.

Theorem 10.3.6. Every g'(A)-module in Oy decomposes into a direct sum of
irreducible g'(A)-modules L(A) such that A(h;) € Z.., for all i € I.

Proof. See [53, Theorem 10.7]. O

Next, let L(A) denote an irreducible g’'(A)-module in Oy, and let

A<A

be the g'(A)-module contragredient to L(A). The subspace L*(A) 1= @y (L(A)2)*
of the latter is then a g'(A)-submodule of L(A)*. The module L*(A) is again irre-
ducible, and for v € (L(A),)*, we have that

(1) g-(v) =0,
(2) hv = —A(h)v, for h € §'.
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Chapter 10. Kac—Moody algebras

We shall refer to such a module as an irreducible module with lowest weight —A.
Then, Proposition 10.3.4 gives a bijection between the elements of (h')* and the
irreducible lowest weight modules of g'(A).

Recall the definition of the Chevalley involution w and the Chevalley anti-involution
w* of g'(A) from Proposition 10.2.1 and Remark 10.2.2. Denote by m, the action of
g'(A) on L(A). We introduce a new action 7y on the vector space L(A), by defining

mx(w)v = mp(w(u))o,

for u € g'(A) and v € L(A). This new action affords an irreducible g'(A)-module
with lowest weight —A. By Proposition 10.3.4, this module must be isomorphic
to L(A)*. Under this identification, the duality pairing between L(A)* and L(A)
induces a non-degenerate bilinear form B on L(A) with the property

B(uz,y) = —B(z,w(u)y), ue€ g'(A), z,ye L(A). (10.3)

A bilinear form on L(A) satisfying (10.3), is called a contravariant form. One has
the following;:

Proposition 10.3.7. On every irreducible highest-weight g'(A)-module L(A) one
may define a non-degenerate contravariant bilinear form that is unique up to a
constant factor. It is symmetric and L(A) decomposes into an orthogonal direct
sum of weight spaces with respect to this form.

Proof. This is [53, Proposition 9.4]. O

One can construct such a contravariant form explicitly. Let V' be a highest-weight
g'(A)-module with highest-weight vector vy. For v € V| we define an element

(v) € K via the expression
=@va+ Y. Vi

acQ4\{0}

where vy, € Vi_,. Using the triangular decomposition of g’'(A), one sees that

(w*(a)oa) = (ava),

for all a € g’(A). Hence, for a,da’ € g'(A), we get that
(w*(a)a'vy) = (w(a)w(w*(a’))vs)
(w*(w*(a")a)va)
= (w*(a')avy).
Therefore, if we set
B(avy, a'vy) = (w*(a)a'vy), (10.4)

we obtain a well-defined symmetric bilinear form on V', which is contravariant and
normalized, that is to say,
B (UA, UA) =1.
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Chapter 11

Cyclotomic quotients, cyclotomic
functors and their adjoints

In this chapter we will discuss important factor algebras of H,(q), called cyclo-
tomic Hecke algebras, and define the cyclotomic analogues of the functors defined
in Chapter 9. Furthermore, we will define their adjoints as well, and give crucial
properties of these, which will become important in later sections. The definitions
of the functors are based on the ideas of I. Grojnowski [44].

11.1 Cyclotomic quotients

In the following we use the notation given in Chapter 10. Let [ > 1 be the order of
the parameter ¢ € F'*, where we assume that [ is finite. Denote by g(A) the affine
Kac—Moody algebra associated to the generalized Cartan matrix A of type Az(i)1 over
Q. We label the Dynkin diagram of Al(i)l by the index set [ := Z/IZ = {0,...,l—1}.
Let {a | i € I} be the set of simple roots, and {h; | i € I} the set of simple coroots
of g. Also, recall from Remark 10.1.2 the definition of the bilinear form

() PZa; x Pzh; — Z,

el i€l

given by (a;,hj) = a;j, for 0 < 4,5 < [ — 1. Moreover, recall from Chapter 10
the definition of the root lattice @ = €B,.; Za;, the positive root lattice Q. =
D,c; Z>o0;, the weight lattice P = {h € b* | (h,h;) € Z,i € I}, the fundamental
weights {A; | i € I} C P, and the set of dominant integral weights P, = {h € P |
(h,h;) > 0,i € I} C P. Note that if h € P, then we may also identify h with a
function Ay : I — Z>o. As in Chapter 10, we set

-1 -1
c= h;, 0= g Q.
i=0 =0

The element ¢ is the basic imaginary root of g(A). Then Ag,...,A;_1,d form a

Z-basis of P, and (a;,c) = (0, h;) = 0. Observe that a; = Zé;t a;;\;. This equals
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Chapter 11. Cyclotomic quotients, cyclotomic functors and their adjoints

2A,L — Ai,1 — A/L'Jrl fo<i<l|-— 1, 2A0 - Al - Al*l if i = 0, and 2Al71 - Al*Z - AO
ife=1-—1.

Let A € P, and denote by J, the two-sided ideal in H,(q) generated by the element
[Tic;(z1 — ¢")™"). Then the quotient

H,)(q) = Ha(q)/ I (11.1)

is an F-algebra, called the cyclotomic Hecke algebra corresponding to A € P,. If d
is the degree of the monic polynomial [],_,(z; — ¢')*", then by [44, Proposition
4.5] we have that the images of the elements

x*T, € Hy(q),

where w € W(n), and a = (avq,..., ) € Z" with 0 < o; < d,1 < i < n, form
a basis of HX(q) as an F-vector space. Note that, for A = Ag, this is just the
finite-dimensional Hecke algebra H7(q). Henceforth, we will write T for the images
of the elements T; € H,(q), 1 < i < n — 1, under this quotient. Also write Tj for
the image of z;.

We can also follow the lead of Ariki and Koike, see [4], who defined H2(q) by
generators and relations: As an F-algebra, H>(q) is generated by Ty, 11, ..., T,
together with the relations

(1) Ties(To — )M = 0.
2) Ty Ty T) = Ty Ty 1 Ty,
(3) T} = (¢ — V)Ti +q.

(4)

Throughout, we denote by ev, the algebra homomorphism corresponding to the

LT Ti = Tipi T Ty, and T,T; = Ty T if |i — j| > 1.

quotient of (11.1). Then one can show the following important fact.

Proposition 11.1.1. For all 2 < ¢ < n, the image of the element x; under evy
equals
Li=q¢" Ty - TVToTy - Tyy.

Proof. This can be proven by induction using the defining relation T;z;T; = qx;11
of H,(q), for 1 <i<n—1. O

The elements L;, 1 < ¢ < n, are the cyclotomic analogues of the Jucys—Murphy
elements in the case of a finite-dimensional Hecke algebra of type A, see [68, Chapter
3, §3]. With this we get the following;:

Theorem 11.1.2. Let A € Py, and write r = Y., (A, h;). The algebra H2(q) is
free as an F-vector space with basis

{L§ - LTy |w € W(n),0 < a; <71 < <n). (11.2)

In particular, dimp H2(q) = r™n.
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Proof. See [4, Theorem 3.10]. O
In the special case when r = 1, we obtain the well-known fact that the set
{Tw | we W(n)}

forms an F-basis of H/(q).

Next, we want to define some important subcategories of the category H,(q) —mod.
Let H,(¢) —mod, be the full subcategory of H,(q) — mod consisting of modules M
such that x; has eigenvalue a power of q. Note that for an exact sequence

00— M, — My, — M; —0

in H,(q) —mod the following holds: If two modules occurring in the sequence are in
H,(q) —mod,, then so is the third. Thus, H,(¢)—mod, is closed under submodules,
quotients and extensions. Moreover, one has the following amazing property:

Proposition 11.1.3. If M € H,(q) — mod, and if there is some 1 < i < n such
that the only eigenvalues of x; on M are powers of q, then for all 1 < j < n, the
only eigenvalues of x; on M are powers of q.

Proof. See [44, Lemma 4.7]. O
In the following, we will denote by
evi 1 HA(¢) — mod — H,(q) — mod

the inflation along the surjective ring homomorphism ev,. Since, by definition of
HXq), TLic,(To — ¢ )™ = 0, we have that if M € H2(q) — mod, then ev} (M) €
H,(q) — mod,.

Next, denote by H,,(q) —modé\ the full subcategory of H,,(q) —mod whose objects are
the modules M such that the Jordan blocks of the operator x; corresponding to the
eigenvalue ¢* have size < (A, «;), for all i € I, and there are no other eigenvalues. In

other words, H,(q) — modé\ consists of modules that are annihilated by the element
[Le(z1 — ¢")™"). We have the following:

Proposition 11.1.4. For all A € Py, the functor ev} induces an equivalence
evi : H(¢) — mod — H,(q) — modf; (11.3)
of categories.

Proof. By [5, Lemma 1.2], we see that the elements L;, i € I, act with eigenvalues a
power of ¢ on each M € H2(q) — mod. Hence, via restriction, ev} is a well-defined
functor. On the other hand, let M € H,(q) — modf]\. We want to define an action
of HX(q) on M. Let h™ € H2(g). Then, for some representative h € ev,'(h%),
we define hm = hm. If ' is another representative in ev,'(h"), then h — h' €
Ker(evy). Since [[;;(z1 — ¢')™") annihilates M, we see that i and ' act in the
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same way on M. It is clear that this gives mutually inverse equivalences between
H2(q) — mod and H,(q) — mod). O

If N € H,(q) — mod, then N/Jy\N is an H,(q)-module on which J, acts trivially,
i.e., N/JyN is an H2(g)-module. If M € H*(q) — mod, then we have isomorphisms
of F-vector spaces

Hom g (g (N/JaN, M) 22 Homp, gy (N/ AN, evy (M) 22 Homp, ) (N, evi (M)),

where we have used the fact that, by assumption, J, annihilates ev} (M ). Therefore,
if we define the functor

pra : H,(q) — mod — H2(q) — mod (11.4)

by pra(N) = N/JpN, then the exact functor evy is right adjoint to pry. Similarly,
if we define the functor

pty : H,(q) — mod — H>(q) — mod, (11.5)
via pry(N) = N’/a, where N74 denotes the largest submodule of N such that JyN =
0, then ev} is a left adjoint of pr,.

Remark 11.1.5. By Proposition 11.1.4, we know that
evh : H(¢) — mod — H,(q) — modf]\
is an equivalence of categories. If we denote by

evi ™' Hylq) — modf]X — H*(¢) — mod

a quasi inverse of evy, then it is left adjoint to ev}. On the other hand, on restriction
to H,(q) —modé,x we see that also pry is left adjoint to evy. By uniqueness of adjoints,
it follows that both functors must be isomorphic.

11.2 Cyclotomic functors

Here, we want to define the cyclotomic analogues of the functors given in Section
9.8 as well as their adjoints. For ¢ € I, define the functors

e; : Hy(q) — mod, — H,_1(q) — mod,,
N ! ! (11.6)

el : H(¢) — mod — H® |(q) — mod

)

as follows. If M € H,(q) — mod, then e;(M) is the generalized eigenspace of x,
with respect to the eigenvalue ¢*. Since z,, commutes with H, (g), considered
as subalgebra of H,(q) in the natural way, e;(M) is easily seen to be an H,,_1(q)-
module. In other words, this is just the restriction of the functor e; from Section
9.8 to the category H,(¢) — mod,.
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Since x; acts in the same way on e;(M) as on M, e;(eva(M)) € H,1(q) — modé\ if
M € H2(q) — mod. Thus, for M € H2(q) — mod, if we define e (M) = pry oe; o
evi (M), we get a functor

el : H(¢) — mod — H® |(q) — mod. (11.7)

Remark 11.2.1. In other words, for i € I, the functor e? can be identified with
the restriction of e; from H,(q) — mod to the subcategory H,(q) — modf;.

The next lemma, which is taken form [44], says that these functors are exact.

Lemma 11.2.2. The functors e; : H,(q) — mod, — H, 1(¢) — mod,, and e :
H2(q) —mod — H2 ,(q) —mod are ezact.

Proof. See [44, Lemma 8.1]. O
Next, we consider the F-algebra F[zF!]. This is a principal ideal domain, where
each element x, — a, a € F*, is a prime element. The quotient F[zX!]/{x, — a) is
isomorphic to F', hence an integral domain. For m > 1 and a € F'*, the F-algebras
Rn(a) = FlzE']/{(x, — a)™) are all finite dimensional of dimension m. Moreover,
for any m > 2 we denote by

Pt Rim(a) — R—1(a)

the natural algebra epimorphism with kernel ((x,, —a)™ ') /{(z, —a)™), see Section
9.8. From these epimorphisms, we then get an inverse system

oo — Rp(a) — Rp-1(a) — ... — Ry(a) — 0. (11.8)

Remark 11.2.3. Note that as an F-vector space, R,,(a) has as basis the image of
the set {1,7, —a,...,(z, —a)™ '} under p,,. If we consider R,,(a) as an F[xF]-
module in the natural way, we see that, with respect to this basis, x,, acts on R,,(a)

as the matrix
a 1

a 1

a 1
a 1

Therefore, as an F[z:!]-module, R,,(a) is isomorphic to the Jordan block L,,(a) of
size m corresponding to the eigenvalue a.

Next we recall the definition of the functors f2 and f given in [44, §8].
Definition 11.2.4. Let n > 1. For ¢ € I, define the functor
A HDY () — mod — HA(q) — Mod (11.9)
. . Hn * 'L
by setting f(M) = lim pr,(Indy ﬁ)m (VA (M) B R, (q)), for M € HY ,(q) -

mod, where the inverse limit is taken over the inverse system in (11.8).
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From the remark above, we see that, as F-spaces, R,;(a) can be naturally embed-
ded into R, (a), for all m > 1, and 1 < j < m. If we denote by i; the embedding
Rj(a) — Rj+1(a), which then is even an F[zE!']-homomorphism, we obtain a di-
rected system

Rila) -5 Ro(a) -2 ... "3 Roa) 2= ... (11.10)
Therefore, for © € I, we may also define a functor
A HA () — mod — H™(¢q) — Mod (11.11)
. N . o~ g H’Vl(q) * Z’
given by fAM) =lim Pty (Tndy . 1 (evi (M) B R (), M € HA, () — mod,
with respect to the above direct system.

Up to now, we do not know whether f* and fiA send finite-dimensional modules to
finite-dimensional ones. The next proposition clarifies the situation.

Proposition 11.2.5. Let M € H,_1(q) — mod. Then:
(i) The inverse system prA(Inng”ﬁ)m)(q)(M X R..(q")) stabilizes after finitely

many steps.
—~ H, 4
(ii) The direct system ﬁrA(IndH(ﬁ)l,l)(M X R.n(q"))) stabilizes after finitely many
steps.

In particular, for anyi € I, the functors f* and fZ-A send finite-dimensional modules
to finite-dimensional ones, hence, give well-defined functors f*, f» : H> [(q) —
mod — H*(g) — mod.

Proof. We show (i), the argumentation for (ii) being similar. To this end we
show that the dimension of prA(Indg?ﬁ)l 1)(q)(M X R.n(q"))) as an F-vector space
is bounded by a natural number, which is independent of m. To this end, let v
be a vector which generates the Jordan block R,,(¢") as an Flx!-module. Let
V = Fv be the one-dimensional subspace of R,,(¢") spanned by v. It follows that

Indg:ﬁ)lyl)(q)(MﬁRm(qi)) is generated as an H,,(q)-module by the F-subspace W =

1®(M®V), and this has F-dimension independent of m. But prA(IndZ? (3)1 1)(q)(M&

L,,(¢")) is a quotient of the vector space H(q) @ W, whose dimension is again
independent of m. Thus, (i) follows. O

The next theorem, which is [44, Proposition 8.4] and is a consequence of the previous
proposition, is fundamental in our further considerations. By [44, §8, Remark 3],
the functor e; can be alternatively described as

for M € H,(q) — mod,, where the direct limit is taken over the inverse system
in (11.8). This is just another way of expressing the generalized eigenspace of
the operator x, on M corresponding to the eigenvalue ¢°. Moreover, we need the
following;:
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Lemma 11.2.6. Let A and B be F-algebras, L an A-module, M a B-module, and
N an A ® B-module. Then there is an isomorphism

Homgp(L X M, N) = Homy (L, Homg(M, N))
of F-vector spaces, which is natural in L and N .

Proof. 1t is straightforward to check that the map
¥ : Homagp(L® M, N) — Hom (L, Homg(M, N)),

defined by f — f: 1+ (m — f(IXm)) gives an isomorphism of F-vector spaces.
0

Theorem 11.2.7. Let i € I. The functor f»: H* |(q) — mod — H(q) — mod is
left adjoint to the functor e® : H(q) — mod — HA | (q) — mod. Similarly, f2 is
right adjoint to el

Proof. Let M € H*(q) —mod, and N € H* |(q) — mod. Then
Hompya (N, e} (M))
= Hompya (4(IN,pry oe; oevy(M)))
= Homp,_, (g (eVA(N), ei(evi (M))) |
= Hom, g (v} (), g Homy 21 (Ron ('), v (M)

~ lig Homyy, ) (evi (V), Hom pgin) (R (4, ovi (M)

= lim Homp,_, () (evA (V) B R (q), evi(M)),

by Lemma 11.2.6, and since the first direct system stabilizes after finitely many

terms. Also, since IndgzL(q) ) is left adjoint to Res!n@

(@ Hen-1.1)(q)" 25 well as pr is left

adjoint to ev}), we have:
Hompya (N, e} (M))
o li_n}HomH(nfl’l)(q)(eng(N) X R, (q"),evi(M))
= lim Homyy, (o (Indgy” ¥ | (evi(N) B R,u(q')), evi (M)
= lim Homygy ) (pra (Indyy"™ 0 (eva(N) B Ron(d))), M)
= Homygy o (Jim pry (Indy"® | (eva(N) B Lin()))), M)
= Homyp () (fA(N), M),

where we have used that, by Proposition 11.2.5, the inverse limit stabilizes after
finitely many terms. Note that all the isomorphisms above are natural. It follows
that f2 is left adjoint to e?. The proof for f is similar. O
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Remark 11.2.8. From (11.12) we also obtain an alternative description of the
functor e

7

, namely:

eN(M) = lim pryHom o, 51y (Ryu (), evi (M),

for M € H(q) — mod.

Recall from Lemma 9.6.1 that we have a decomposition

H,(q) —mod = @5 H,(q)— mod]]

yeES™ [/~

of categories. By Proposition 9.6.2 and the Krull-Schmidt Theorem, the full sub-
category H,(q)—mod[y] can be characterized as the full subcategory of H,(q) —mod
consisting of all finite-dimensional H,(q)-modules whose central character is 7.
Moreover, these subcategories are precisely the blocks of H,(q). For A € P.,
we infer from Theorem 9.5.1 and Proposition 11.1.1 that the image of the center
of H,(q) under ev, is contained in the center of H(q). Therefore, we also may
decompose H”(q) — mod as

H}g)—mod = @5 H)(g) — mod[y]. (11.13)

yES™ [~

The fact that the categories H2(q) —mod[y] are actually the blocks of H2(q) —mod
is non-trivial and a proof of this is given in [64].

In the following, let v := (y1,...,7,) € S™/ ~, see Section 9.6, and suppose that
¢ € {7, .., 7} We may assume that v, = ¢*. We will write v \ ¢’ to denote the
unique W(n — 1)-orbit obtained by deleting ¢* from ~. Moreover, write v + ¢* for
the W(n + 1)-orbit of (y1,...,7m,q") in S"*/ ~. We then obtain a refinement of
the functors e and f7, see also [44, Lemma 8.6].

Proposition 11.2.9. Let n > 1, and let i € I. The functors e; and e} descend to
functors

H,(q) —mod[y] — H,-1(g) —mod[y\¢'] and
HMq) —mod[y] — Hp (q) —mod[y\ ¢'],

where for M € H,(q) —mod (resp. M € H2(q) —mod), e;(M) =0 (resp. eX(M) =
0), whenever ¢ & {v1,...,vn}. Similarly, the functors f* and f* restrict to functors

H(q) — mod[y] — H}\,(q) — mod[y + ¢'].

Proof. Since on objects, e;(M) is just the generalized eigenspace of the operator x,,
with respect to the eigenvalue ¢', we see that e;(M) = 0 if ¢* & 7.
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11.2. Cyclotomic functors

For the functor f, we may assume that M is indecomposable. Then M = M,
for some s € S™. Thus, by Lemma 9.5.7, we see that the possible central char-

acters for Indﬁ?*i)(gq)) (evpa(M) X L,,(q")) are obtained by shuffling s and ¢‘. Thus

Indg?;l)(a)(evj\(]\/[) X L,.(¢") € Huy1(q) — mod[y + ¢']. But if a module N is in

H,(q) — mod[y + ¢], then pry(N) € H2, (q) — mod[y + ¢']. Therefore, f}(M) €
HA

A (q) — mod[y + ¢]. The proof for fA is similar. O
We also get a refinement of Theorem 11.2.7, see [44, Proposition 8.7].
Proposition 11.2.10. Let i € I. The functor

s Hy_y (@) — mody] — Hy(q) — mod[y +¢']
is left adjoint to the functor

el : H(g) —mod[y + ¢'] — H_(q) — mod[y].
Stmilarly, fl-A is a right adjoint of el

Proof. This follows from Proposition 11.2.9 since, by Theorem 11.2.7, f2 is left
adjoint to e on the whole of H® |(g) — mod. O

We also have the following, which is [44, Lemma 8.8]:
Proposition 11.2.11. Let M € H(q) — mod, then:

(i) Res'’7(@ (M) =@, ., eMM) as H: ,(q)-modules.

Hé\71(q) i€l Vi

bl H’I{L\ ~Y Y r
(i) Indgion” (M) = @iy (M) = @iy SHM) as Hy(q)-modules.

Proof. Part (i) follows from the theory developed in Section 9.6. Part (ii) follows
from Propositions 11.2.9 and 11.2.10. 0

From this we obtain the following corollary, see [44, Corollary 8.9]:

Corollary 11.2.12. The following hold for the functors f, fiA : H (¢) —mod —
H,(q) — mod:

(i) As functors, fA = fA
(ii) f* and fA are exact.

Proof. The first part follows from Proposition 11.2.11 (ii) and Proposition 11.2.9.
The second part follows from (i), because from the latter we infer that f is both
a left and a right adjoint, and as such an exact functor. 0

As a consequence of the preceding results, one gets:

Proposition 11.2.13. If M € H2(q) — mod is projective, then so are e} (M) and
fH(M).
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Chapter 11. Cyclotomic quotients, cyclotomic functors and their adjoints

Proof. Since restriction and induction take free modules to free modules, the result
follows from Proposition 11.2.11. O

Recall the definition of the functor ez(»r) : H,(q) — mod — H,_,(q) —mod, for i € I,
and 1 <r <n, from Section 9.8. As egr) takes finite-dimensional H,(¢)-modules to
finite-dimensional H,,_,.(¢q)-modules, we have a functor

e o evy : HM(q) — mod — H,_,(q) — mod.

Moreover, from the definition of egr), we see that, for M € H2(gq)—mod, the element
[Tic/ (@1 — ¢)™" must annihilate e!" (M) since it annihilates M. This shows that
we get a well-defined functor

(eM™ = pr, o egr)

oevy : H(q) — mod — H® (q) — mod. (11.14)
With Theorem 9.8.3, we obtain:

Theorem 11.2.14. Let i € I. There is an isomorphism of functors

from H2(q) — mod to H* (q) — mod.

Proof. Recall from the beginning of this section that on restriction to the category
H, .(q) — modfl\, the functor pr, gives an inverse equivalence to the equivalence

evi : H* (¢) — mod — H,_,(q) — modé‘.

Thus, if M € H2(q) — mod, we obtain the desired result by using Theorem 9.8.3.
O

Recall the H,(q)" denotes the subalgebra of H,,.(q) generated by

+1 +1
xn+17 e ,$n+T,Tn+1, e 7Tn+r—1‘

Furthermore, in Section 9.8 we considered the H,(q)-modules £L,,((¢")"), for m > 1,
and the inverse system associated with them. Then, for » > 1 and M € H*(q) —
mod, we define a functor

(S Hy(q) — mod — Hy\,(q) — mod
by setting

(SO0 (M) = Jim pry (Indg @) (eva (M) B L,u((0)))). (11.15)

Observe that £,,((¢")") is a cyclic H,(q)’-module. Therefore, with the same argu-
mentation as in Proposition 11.2.5, we see that the inverse limit above stabilizes
after finitely many terms, and thus, (f*)) (M) is indeed finite dimensional.
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11.2. Cyclotomic functors

Theorem 11.2.15. For alli € I, and r > 1, the functor (M) is left adjoint to
the functor (e)).

Proof. Let M € H)(q) — mod, and N € H2, (q) — mod. Then
Homzy () (M, (¢) ") (V)
= Homy, (g (ev} (M), ling Homp, (g (L1 ((¢')"), evi (V)
= limy Hom, (q) (evi (M), Homp, gy (L1 ((¢')"), evi(NV))
= lim Homyy,, ) (evi (M) B Lyu((')"), evi (V)
= lig Homp, ,, (o (Ind ;" @ (v (M) ® Lin((')7)), evi (V)
= lig Homyg_ () (praTndy; @ (evi (M) R Lyn(('))), N)
~ Hompa () (lim pryInd; @ (evi (M) B Lin((4'))), N)
(DT (M), N),

where we have used that the direct and inverse limit stabilizes after finitely many
steps and Lemma 11.2.6. Furthermore, all the above isomorphisms are natural in
M and N, thus the claim follows. O

= Hom
Hrjz\-ﬁ—r

Let M € H2(q) —mod[y], for a central character v = (v1,...,7,) of H,(q). In view
of Proposition 11.2.9 and Proposition 11.2.11, for ¢« € I, we a have that

7

Hip(q) i i
0 lfng{’}/l,...,’)/n},

on the one hand, and
Hp o (9) i
FHM) = (Ind o™ (M) [y + 4]

on the other. From Propositions 11.2.10 and 11.2.11 we already know that the

functors Indgﬁ(@(q) and Resg’ﬁ(q)(q) are left and right adjoint to one another. From
n—1 n—1

the above description of e and f*, we get another proof of this fact.

This has also consequences for the functors ()™ and (f*)®), for i € I, and r > 0.
Recall that by Theorem 9.8.5, we have a functorial isomorphism
(e}) (M) = (Ao (M), (11.17)

q

for M € H2(q) — mod. From the definition of eX(M), we have that

()" (M) = Aoy (M)

)

as H® (q)-modules. Hence, with our new description of the functor e?* we get that

(e}) (M) 2 (Respi®(M))[y \ rg) " (11.18)

n—r
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Chapter 11. Cyclotomic quotients, cyclotomic functors and their adjoints

For notational reasons, in the following, we will also write M Hl(@) for the subset
MY® of an H,(q)-module M.

Next, we will recall some facts about the finite-dimensional Hecke-algebra H/(q),
n > 0. Recall that H/(q) becomes an augmented algebra via the surjective F-
algebra homomorphism

e:Hi(q) = F (11.19)

defined by €(>>r,T,) = > ¢"™r,. Considering F' as a left H(q)-module via €, we
obtain the trivial left module for H/(q). We could also view F as a right H/(q)-
module via €, and obtain the trivial right H/(q)-module. Moreover, if M is an
H(q)-module such that T,,m = ¢"®m, for all w € W (n) and m € M, we say that
H/(q) acts trivially on M.

In the following we will denote by Aug the kernel of €. It is easy to see that the
elements of HY(q) of the form T,, — ¢!™), w € W(n), w # 1, are contained in Aug.
Since the set {T,, | w € W(n)} forms a basis of HJ(q) as an F-vector space, we see
that these elements are linearly independent over F'. Considering dimensions, we
have that dimp Aug = n! — 1. Therefore, the two-sided ideal Aug is spanned by the
set {T,, — ¢'™ | w € W(n),w # 1}.

Next, consider the exact sequence

0 — Aug % 1l (q) <= F —0 (11.20)

of right H7(q)-modules afforded by e. Tensoring with a finite-dimensional left H/(q)-
module M gives an exact sequence

ker(e)®1
e

Aug @1 M HI(q) @y M <5 F @y M — 0 (11.21)

of left HY(q)-modules, where 1 = id,;. Of course, H,{(q)@Hg(q)M >~ M as left HI(q)-
modules, where the isomorphism is given by the map determined by h ® m — hm.
Under this isomorphism, the image of ker(e) ® 1 equals

Aug- M = {Zaimi | a; € Aug,m; € M}.
Then, by the exactness of the sequence in (11.21), we get an isomorphism
F®H£(q)M%M/Aug~M (11.22)

of left H7(g)-modules. Note that M/Aug-M can also be characterized as the largest
factor module of M on which H/(q) acts trivially. For a left H7(q)-module M, let
us write My, for the factor M/Aug - M.

We will need the following:

Lemma 11.2.16. Let A be an F-algebra, n > 0, and C be the full subcategory of
A® HJ(q) —mod that consists of modules whose restrictions to 1 ® Hf(q) are free.

Then the functors (—)Hr{(q) and (—) ) from C to A —mod are isomorphic.

Hi(q
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11.2. Cyclotomic functors

Proof. In the following we will identify the subalgebras A ® 1 and 1 ® HZ(q) of
A ® HI(q) with A and H/(q), respectively. We set z := > wew(m) Lw € H/(q).
Then it is not hard to show that T,z = 2T, = ¢™x for all w € W(n), see for
example [68, Lemma 3.2]. Let M € C. Then, by assumption on M, considered as
H/(q)-module, M = (H/(q))?, for some b > 0. Suppose first that b = 1. We also
may assume that M = H/(q). Since the trivial module occurs precisely once in the
socle of the left regular module H/(q), we conclude that dimy(M H’{(‘l)) = 1. Since
x # 0, and M C M"@_ we must have that #M = MH2(@ . From this it follows
that MH4@ = 2 M for arbitrary b. Now define a map

(Y MH,{(q) — MH’{(‘J), m + Aug - M — xm.

We have to show that this is well defined. Suppose that m+Aug-M = m/+ Aug- M,
for m,m' € M. Then m —m' € Aug- M. Since xAug = 0, we see that 1), is well
defined.

Moreover, from the discussion above, we know that ¢, is surjective. As A commutes
with H/(q), MH{(q) and M@ are A-modules and the map s is a homomorphism
of A-modules. Since the trivial module occurs precisely once in the head of the left
regular module H/(q), we have that dimp (M) = dimF(MHg(‘I)). We conclude
that 1), is an isomorphism of A-modules.

If f: M — N is a homomorphism in C, then f induces a map

FlL@ . il _y NHI@)

which is just the restriction of f to MH4(@. This is because of fH*)i(q)(xm) =
fo’fL(Q)(m), for all m € M. Furthermore, since f(Aug- M) C Aug- N, the homo-
morphism f induces a well-defined map

in(a) : MHﬁ(Q) - NHﬁ(q)'

Clearly, both maps are homomorphisms of A-modules. Then it is easy to see that
(UINge fo(q) = nyf(q) o1y, thus, the constructed isomorphism is functorial in M. [J

Next, let A € P;. Then we define a functor H2(q) — mod — H2,_ (g¢) — mod as
follows: For M € H2(q) with central character v and i € I, we set
— ()
)

(/M) " (M) = (Ind

n(q)®Hf(q)<MX' D)y +rg], r =1, (11.23)

where 1 stands for the trivial H/(g)-module. Then, we extend this additively to a
functor on H*(q) — mod. Here we identify H;(q) with the subalgebra of H2, (g)
generated by Ty41,...,Ther—1. We have the following:

Proposition 11.2.17. Let A € P, M € H*(q) — mod and r > 1. There is a

functorial isomorphism
— ()
(f) (M) = (fH)0 ()

of HX,,(q)-modules.
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Chapter 11. Cyclotomic quotients, cyclotomic functors and their adjoints

Proof. We show that ( fiA)( " is a left adjoint of (e)™). To this end, we use the
alternative description of ()™ given in (11.17). Let M € H*(g) — mod and
N € H2, (¢) —mod. Without loss of generality, we may assume that M has central
character 7, and N has central character v+ r¢. Then

Hompy () (M),N) = Hompgs (nd™@ (A& 1)y + 1], N)

HA q)®Hf (q)

12

n+r )
Hompy, (g (Ind, 30", (MR 1), N)

n+r(Q)
HA @) (q >(M X1, Res )@Hf<q>(N )

n r(Q)
Hompa ) (M, Homyr (1, ResHA+( \or! (q )(N)))

1%

Hom

I

1%

n(q)

I

= Hompy )

= Hompyy

where all the above isomorphisms are natural. Hence, by uniqueness of adjoints, we

get an isomorphism ( fA) = (fM™ of functors. O

Finally, we are in the position to deduce crucial properties of the functors introduced
so far:

Proposition 11.2.18. Leti € I, and r > 1. Then the following hold:
(i) As functors, (f2) = @, (f})
(ii) (fM") s right adjoint to (e})).

(iii) (fM™) is evact.

Proof. Note that, by Theorem 11.2.7, f2 is left adjoint to e}. Since (e})" =
@D,,(eM) as functors, we can construct, with the help of Theorem 11.2.15, an
adjunction between @,,(f*)" and (el)" such that the functor €D, ( M@ s left
adjoint to (¢)". By uniqueness of adjoints, we must have that (f*)" = @, ,(f*)®
as functors, thus, (i) holds.

Next we show (ii). To this end, we use the alternative descriptions of the functors
(eM) and (fM)") given in (11.17) and (11.23). We let M € H*(g) — mod and
N € H2. (¢) —mod, and assume that M has central character v and N has central
character v + rq¢'. We have:

n+r )
Hoer[z\-ﬁ—r(q)(N (I dHA( (q)(

~ H;L\Jrr(‘ﬁ
= Homyu (o () (Res . (N)], MK 1),
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11.2. Cyclotomic functors

where we take the block component with respect to the subalgebra H2(q) ® 1.
Note that if X € H(¢) ® H!(q) — mod, and f € HomH{g(q)@HZ(q)(XvM X 1), then
(1®Aug)-f(x) =0, forall x € X. Since H2(q) and H/(q), considered as subalgebras
of H(q) ® H/(q) in the natural way, commute with each other, and Aug is a two-
sided ideal in H/(q), we have that (1® Aug)- X is an H>(¢q) ® H!(g)-submodule of
X. Then, from the exact sequence

0— (1®Aug) - X — X — X/(1® Aug) - X —» 0,

we get that Hom, yor! () (X, MK 1) = Hom iy (o nf (g) (X/(1®Aug)- X, M X1).
Considered as H/ ( )-module, we have seen in the dlscusswn before Lemma 11.2.16
that H/(q) acts trivially on X/(1 ® Aug) - X. Then there is an isomorphism

Hom (X/(1® Aug) - X, M X 1) = Hompa(X/(1® Aug) - X, M),

HA( )®Hf

which is functorial in both variables. Next, suppose that on restriction to H/(q),
X is free. Then, by Lemma 11.2.16, we have a functorial isomorphism

Homa (o) (X/(1® Aug) - X, M) = Hompa ) (X @ M),

In particular, if we set
Hn+r(q)
X = (ReSHA( )®Hf(q)(N))[’Y]’

then, on restriction to H/(q), X is free. Note that the restriction of the Kato module
L((¢")") from H,(q) to HZ(q) is isomorphic to the left regular H;(q)-module, see
the paragraph before Proposition 9.8.4. Thus, together with the discussion at the
beginning of the proof, we get a functorial isomorphism

ntr (@) i
(@) (N, (Iﬂd +q);H( (MX1))[y+rq)

= Hom gy ) (((Res o (V) [7) @, Ar),

Hom
H7/L\+7‘

showing that (f)™ is right adjoint to (el)™.

Since, () is a left and a right adjoint, it must be exact. Thus, (iii) follows from
(ii). O

Remark 11.2.19. As in Section 9.8, we note that the ideas for the definition of
the various functors given in this section are based on the ideas of I. Grojnowski,
where we have tried to be as explicit as possible. In the degenerate case this is due
to A. Kleshchev, and the definition of our divided power functors is similar to that
given in [59, §8.3].

The proof of part (ii) of Proposition 11.2.18 is based on ideas of A. Kleshchev, see
[59, Lemma 8.3.1], and seems to be new in the non-degenerate case.
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Chapter 11. Cyclotomic quotients, cyclotomic functors and their adjoints

11.3 Block parametrization for cyclotomic Hecke
algebras

Recall from Lemma 9.6.1 that by considering central characters, we can decompose
the category H,(q) — mod into blocks, i.e., every M € H,(q) — mod can be written

M = @ M)

yES™/~

as

As mentioned in the previous section, for all A € P, , we also obtain a decomposition

Hp(g) —mod = P H(q) — mod[y].

yEST [~

Then [64, Theorem A] asserts that this is already the block decomposition of H2(q)—
mod.
Note that, by [30, Theorem 2.14], for A = Ay the homomorphism

Z(Hu(q)) — Z(H,(q))

induced by ev, is actually onto, giving another proof of this fact in the case when
A=Ay

Next, we state a convenient way of parametrizing the blocks of H,(q). Here, we are
interested in blocks, where the central character v only contains powers of ¢. In the
language developed so far, we consider the block decomposition of H,(q) — mod,.
Then, the central characters are labelled by the W (n)-orbits on ™. If i € I", define
its content cont(i) € P by

cont(i) = Z Vi, (11.24)

icl

where ;= [{j | j =1,...,n,i; = i}|, for all i € I. Also, by definition, .., v = n.
Denote by I',, the set of all non-negative integral linear combinations v = >, Vi
of the simple roots ay, i € I, such that >, , v = n.

The W (n)-orbit of some i € I" is uniquely determined by the content of i. Hence
we may label these orbits by elements of I',,.
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Multiplicity-one results

In this chapter we will recall a famous result of I. Grojnowski and M. Vazirani given
in [45], which states that the socle of the restriction of an irreducible H,(¢q)-module
to the subalgebra H,,_1(q) is multiplicity free.

Also, we recall the definition of an antiautomorphism of H,(¢q), which gives a duality
on H,(q) —mod. We give a proof of the well-known fact that the irreducible H, (q)-
modules are self-dual.

Moreover, we define important operators on the Grothendieck groups of H,(q)-
modules and H2(q)-modules, A € P,, respectively, and state crucial properties of
these.

In what follows, we will present here the viewpoint of [59] in the non-degenerate
case.

12.1 Multiplicity-free socles

Recall from Section 9.5 that for M € H,(q¢) — mod and some a € S := F* we
denote by M, the simultaneous generalized eigenspace of the commuting operators
x1,...,%, corresponding to the eigenvalues a = (ay,...,a,). Moreover, we denote
by A,(M) the generalized eigenspace of z,, on M corresponding to the eigenvalue
a € S. Recall the definition of the F-subalgebra H,_11)(¢q) of H,(q) from Section
9.4, and observe that it is generated by the elements x1,...,2x,_1,11,...,T,,_o of
H,(q). Then, the space A,(M) can be considered as an H(,_11)(q)-module in the
natural way, hence affording a functor

A, : Hy(q) — mod — H,—11)(q) — mod,

see (9.32). Recall that for a composition 1 = (p1, . . ., i) of n we write Res);, for

the restriction functor Resg"zggg(q). Then, via the natural embedding of H,,_1(q) C
H,—11)(q), we also have the functor

eq :=Res' 1" o A, : Hy(¢) — mod — H,_1(q) — mod.

n—1

More generally, define A,m(M) to be the simultaneous generalized eigenspace of
the operators =, p11,...,%,. We view M as an H,,(q)-module via the canonical
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Chapter 12. Multiplicity-one results

embedding H,,(q) = 1 ® Hyn(q) € Hyom(q) ® Hyn(q) = Hp—mm)(q). Then M
decomposes as

where M[y] = @,c, M, is actually an H,,(g)-submodule of M. Note that if
v = (a,...,a), we have that M[y] = M, 4, and this equals Aym(M). We will

consider A,m (M) as an H,,(q)-module in this way. Moreover, we set Ao (M) := M.
Therefore, we again have a functor

Agm : Hy(q) — mod — Hp,—pym(q) — mod,
as well as a functor
eqm = H,(q) — mod — H,_,,(q¢) — mod,

if we consider the natural embedding H,—,(¢) € Hn—m,m)(q). Note that egm (M) =
e"(M)=ezo...0e,(M) (m times).

Applying Kato’s Theorem, see Theorem 9.7.3, we infer that A m (M) is the largest
H (—m,m)(q)-submodule of M all of whose composition factors are isomorphic to a
module N X L(a™), for some irreducible H,,_,,(¢)-module N. Also by adjointness

of induction and restriction, we have that

Homp, . @ (NX L(a™), Agm(M))

(12.1)
= Homp, ) (Ind;, _,,, ,, (N & L(a™)), M),
n I Hn(CI) _
where we set Ind}; (=) = IndH( B )(q)( ).

The proof of the following lemmas are analogous to those of [59, §5.1].

Lemma 12.1.1. Let M € H,(q) — mod. If

ch(M) =" Aa[L(ar) B... K L(ay)],

aesS™

then we have that

ch(Agm (M) = > N[L(by) K. K L(b,)],
besn

where b € S™ is such that b, i1 = ... = b, = a.

Proof. Note that Agm (M) is the direct sum of those subspaces M, of M for which
Gp—mi1 = ... = a, = a. The claim now follows. O

Definition 12.1.2. For a € S, and M € H,(q) — mod, we define

eo(M) = max{m > 0 | Agn (M) # 0}. (12.2)
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Lemma 12.1.3. Let M € H,(q) —mod be irreducible, ¢ := e,(M). Let NX L(a™)
be an irreducible H,—p m)(q)-submodule of Agm(M). Then e,(N) =€ —m.

Proof. By Lemma 12.1.1, ¢ is the longest a-tail occurring in the expansion of ch(M).
Therefore, we must have £,(N) +m < e. Since M is irreducible, by (12.1), we see
that M is a quotient of Ind;;_, (N X L(a™)). By exactness of the functor A,

we obtain an epimorphism A, (Ind” (N L(a™))) = Ag=(M) of Hiy—pmm)(q)-

n—m,m

modules. Since Ag(M) # 0, it follows that A (Ind;; (N X L(a™))) # 0. By

Lemma 12.1.1 and the Shuffle Lemma, see Lemma 9.5.7, we infer £,(N) +m > «.
0

Lemma 12.1.4. Let N € H,(q) — mod be irreducible, a € S, and ¢,(N) = 0. Set
M :=Ind; " (N & L(a™)). Then:

(1) Aam<M) =NK L(Clm)
(ii) hd(M) is irreducible, and e,(hd(M)) = m.
(iii) For all other composition factors L of M, we get that ,(L) < m.

Proof. By (12.1), N X L(a™) is certainly a submodule of A,=(M). By the Shuffle
Lemma, Lemma 12.1.1, and our hypothesis on N we have that

dimp(Agm(M)) = dimp(N X L(a™)).
Thus, (i) follows. The remaining parts follow from [45, Lemma 3.5]. O

Lemma 12.1.5. Let M € H,(q) — mod be irreducible, a € S, and set € := ,(M).
Then Age(M) is isomorphic to N X L(a®) as an H,—c ) (q)-module, for some irre-
ducible H,_.(q)-module N with €,(N) = 0.

Proof. Pick some irreducible H,_. . (¢g)-module in the socle of Ay (M), which, by
Kato’s Theorem, has the form N X L(a®), for some irreducible H,,_.(q)-module N.
By Lemma 12.1.3, we have that ¢,(/NV) = 0. Then, by (12.1), and the irreducibility
of M we have that M is a quotient of Ind;;__ (N X L(a%)). By exactness of A, and

the first part of Lemma 12.1.4, we see that A,:(M) is irreducible, and the claim
follows. 0

Lemma 12.1.6. Let m > 0, a € S, and N € H,(q) — mod be irreducible. Set
M :=Ind} " (NRL(a™)). Thenhd(M) is irreducible with e,(hd(M)) = e4(N)+m,
and for all other composition factors L of M we have £,(L) < €,(N).

Proof. This is [45, Lemma 3.5, (3)]. O

Theorem 12.1.7. Let M € H,(q) — mod be irreducible, a € S. Then for 0 < m <
€ 1= g4(M), the socle of Agm (M) is an irreducible H,_y m)(q)-module of the form
LX L(a™) such that ,(L) = ,(M) — m.
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Proof. Note that Ay-(M) C Aym(M) for all 0 < m < e. As before, we consider
Agm (M) as an H,_p, my(q)-module. If we consider Aym (M) as an H,,_,,(q)-module
in the usual way, we see that

AaE(M) = Aaf—m (Aam(M))a

considered as H(;,—z c—m,m)(q)-modules.

Suppose that L X L(a™) is an irreducible constituent of soc(A,m(M)). By Lemma
12.1.3, £4(L) = € —m. Thus, via restriction, L determines a non-trivial submodule
of Res, 22, m(Aee(M)). By Lemma 12.1.5, Ay (M) is an irreducible H,—. ) (q)-
module of the form N X L(a®). Let T' be an irreducible H(,. - —m,m)(q)-submodule
of Res;, 2%, (N X L(a®)). Then T'= X XY K Z, with an irreducible H,_.(q)-
module X, an irreducible H._,,(¢)-module Y, and an irreducible H,,(¢)-module Z.
Since Res; 2, (N X L(a®)) = N X Res;_,,,,(L(a%)), it follows that X = N
as H,_.-modules. Moreover, if we apply [45, Lemma 3.4], we see that the socle
of Res;_,,,,(L(a%)) is isomorphic to L(a®*~™) X L(a™), hence Y = L(a*~™), and

Z = L(a™). We infer that the socle of Res, 2",  (A.(M)) is isomorphic to

N X L(a®=™) K L(a™). By exactness of restriction, it follows that the socle of
Agm (M) must equal L X L(a™), and therefore is irreducible as claimed. O

The next theorem is the famous ”Multiplicity one result” given in [45]. We include
a proof here, which is analogous to that of [59, Corollary 5.1.7].

Theorem 12.1.8. Let M € H,(q) — mod be irreducible, a € S, and e,(M) > 0.
Then soc(eq(M)) is irreducible.

Proof. Let L be an irreducible constituent of the socle of e,(M). Since g,(M) > 0,
such an L exists. By Schur’s Lemma, the central element z := z1+...+x, € H,(q)
acts as a scalar on the whole of M. With the same argument, the element 2’ :=
r14...+x,-1 € Z(H,—1(q)) acts via some scalar on L. Hence z,, = z — 2’ acts as a
scalar on L. Since eq(M) = Res!'~}" (A, (M)), this scalar must equal a. Therefore,

n—1
L contributes an H(,_1 1y(q)-submodule of the form LX L(a) to the socle of A,(M).
But the latter is irreducible by Theorem 12.1.7. Thus, the claim follows. 0J

Corollary 12.1.9. For M € H,(q) — mod irreducible, the socle of Res): (M) is
multiplicity-free.

Proof. From (9.36) we know that Res; (M) = @,.g¢€a(M). By Theorem 12.1.8,
for all @ € S, the socle of e,(M) is either zero or irreducible. For a # b, the
H,_1(g)-modules e, (M) and e,(M) are in different blocks, thus their socles are not
isomorphic. The claim now follows. O

Definition 12.1.10. For M € H,(q) — mod, denote by &,(M) := soc(e,(M)), and
fa(M) :=hd(Ind)} " (M X L(a))).

Remark 12.1.11. (1) If we set m = 1 in Lemma 12.1.6, then it follows that
5a(fa(M)) = 5a(M) + L.
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12.1. Multiplicity-free socles

(2) In view of Theorem 12.1.8, for an irreducible M € H,(q) — mod, we could also
write €,(M) = max{m > 0 | el"(M) # 0}.

For the next lemma we need the following, which can be found in [25, Lemma 10.17].
For F-algebras A, B together with F-subalgebras A’ C A, B’ C, B, we have that

Ind422, (M ® N) = Ind (M) K Ind, (N), (12.3)
for an A’-module M and a B’-module N.
The next lemma is an analogue of [59, Lemma 5.2.1] in the non-degenerate case.

Lemma 12.1.12. Let M € H,(q) — mod be irreducible, a € S, and m > 0. Then
the following hold:

(i) soc(Agn(M)) = e™(M) K L(a™).
(i) hd(Ind; " (M & L(a™))) 2 f'(M).

Proof. By Theorem 12.1.7, we have that soc(A,(M)) = N K L(a), for some irre-
ducible N € H,,_1(q) — mod. By Theorem 12.1.8, N = ¢,(M). By applying this m
times, we see that é;’(M) X L(a)®™ is a submodule of Res; /" | (Agm(M)). By
Frobenius Reciprocity and Kato’s Theorem, 7*(M )X L(a™) is an H(;,—m m)(q)- sub-
module of Agm(M). But the socle of Agm (M) is an irreducible H,—, m)(¢)-module
by Theorem 12.1.7. This finishes the proof of (i).

If m = 1, the statement in (ii) is just the definition of f,(M). By definition, we
have an H,,1(g)-epimorphism

Ind} ' (M R L(a)) — fo(M).
From this we get an H,,,2(q)-epimorphism
Ind; 3 (Ind 1 (M K L(a))) ¥ L(a)) = f2(M),

by exactness of induction and right exactness of taking tensor products. By (12.3),
and transitivity of induction, we have

12

Indy; 733 ((Ind (M X L(a)) K L(a) = Indii ((Ind) 3 (M X L(a)) K L(a))

=~ Indp % (M R L(a)™)

as H,2(q)-modules. Inductively, we conclude that for m > 1, fgl(M ) is a quotient
of Ind!{™ (M X L(a)®™). Since

n,1,...,

Ind ™ ((M R L(a)®") = Indy™(Indyy (M R L(a)®™))
= Ind,"(M X L(a™)),
we infer that f7(M) is a quotient of Ind] 7™ (MR L(a™)), where the last equivalence

is again due to (3) and Kato’s Theorem. By Lemma 12.1.6, we know that the head
of Indy (M X L(a™)) is irreducible, hence the result. O
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Theorem 12.1.13. Let M € H,(q) — mod be irreducible, a € S, and m > 0. Then
the socle of €' is isomorphic to @, ér(M).

Proof. Denote by Z,, the center of H,,(q). We know that P,, is a free Z,,-module of
rank m!. Moreover, H,,(q) is a free P,,-module of rank m!. Hence, H,,(q) is free of
rank (m!)? considered as a Z,,-module. In the following denote by x the character
of Z,, obtained from the action on the Kato module L(a™). Recall that, by Schur’s
Lemma, each z € Z, acts by a scalar on the irreducible H,,(g)-module L(a™). We
may view x as an irreducible Z,,-module.

Consider U := Indgg(q)(x). By Frobenius Reciprocity we see that
dimp Homy,, () (U, L(a™)) = m!.

Thus, U is a non-zero H,,(¢q)-module. Furthermore, dimp U = (m!)?, by the dis-
cussion at the beginning of the proof, and the fact that x is a one-dimensional
Zm-module. It follows that U = &, | L(a™).

Next, let L be an irreducible submodule of €*(M). By Schur’s Lemma, every

symmetric polynomial in the variables 23, ..., z*! acts as a scalar on the whole of

’n
M. By the same argument, any symmetric polynomial in the z3, ... 2! actsasa

) n—m

scalar on L. It follows that any symmetric function in the variables z! PR o

acts on L with scalars. To this end, one shows that any symmetric polynomial in
the variables x,_,,11,..., %, can be expressed in terms of symmetric polynomials
in the x1,...,z, and of symmetric polynomials in the zq,...,2,_,,. Then use the
fact that, for & € N, Z, is generated by the elements t¢q, ... ,tk,l,tfl, where t;
denotes the ith elementary symmetric polynomial in the variables xy,. .., z;. This
is easy to see since for every Laurent polynomial g in the x1,. .., z), we can find an
m € Z such that ¢]'¢ is a symmetric polynomial in the zi,..., 2z, and every such
polynomial can be written as a polynomial expression in the elementary symmetric
polynomials tq, ..., .

Now we get that the center Z,, of the subalgebra H,,(q) =2 1® H,,(q) C H,_m(q) ®
H,.(q) acts on L with scalars. Since L C e"(M) C Am(M), and the central
character of A m(M) is x, the central character (over Z,,) of L must equal y as
well. This affords a non-zero H,_,,(q¢) ® Z,,-homomorphism from L X x to M,
whose image is L. Frobenius Reciprocity gives us a non-zero homomorphism ¢ :
LXU = Indg::zggggg:(q)@@x) — M, whose image contains L. As observed at the
beginning, U = @, L(a™), which implies that the H,,_,,(¢) ® H,,(¢)-module LK U
is a direct sum of copies of the irreducible H,,_,,(¢) ® H,,(q)-module L X L(a™).
Therefore, all the composition factors of the image of ¢ are isomorphic to LXK L(a™).
Since L is contained in the image of ¢, an H,_,,(¢) ® H,,(q)-submodule of M, the
smallest H,,_,,(q) ® H,,(q)-submodule of M that contains L is also contained in the
image of ¢. It follows that the H, _,,(q) ® H,,(q)-submodule of M generated by L
is isomorphic to L X L(a™). By Lemma 12.1.12, we conclude that L = é*(M).
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12.2. Self-duality of irreducible modules

Note that we consider H,_,,(q) as a subalgebra of H,_,,(q) ® H,,(q) via the em-
bedding H, _,(q) = Hp-m(q) ® 1 € H,_n(q) ® Hy,(q). Therefore, if we restrict
em(M)X L(a™) to H,_(q) we get that
Hn—m Hm ~MmM m
Resy," (@%@ (& (M) B L(a™))

= (Res;" ™9 (em(M))) B (Resp™ Y (L(a™)))

Hn—m(Q) a

= (MREPF
=~ Per(M).

Hence, by exactness of restriction, €, €' (M) is contained in the socle of e*(M).
On the other hand the above argument shows that if L’ is contained in the socle of

e™ (M), then it is contained in

ResZ:::Egggfrm(q) (soc(Agm(M)) C soc(ey' (M)).

Therefore, soc(el'(M)) = @, e (M). O

Remark 12.1.14. All the results of this section except possibly Theorem 12.1.13
can be found in [45]. Note that most of the proofs are different from [45], following
the lines of [59, §5]. Theorem 12.1.13 seems to be new in the non-degenerate case.

12.2 Self-duality of irreducible modules

In this section we will state several useful properties of irreducible modules of affine
Hecke algebras and their cyclotomic quotients. We recall the definition of an im-
portant antiautomorphism of H,(q). This gives a duality on H,(¢) — mod, which
reduces to a duality for its cyclotomic quotients. In particular we give a proof of
the well-known fact that the irreducible modules of H,(q), as well as those of its
quotients, are self-dual with respect to this duality.

One defines an antiautomorphism 7 on H,(q) as follows. On the generators of
H,(q), we set:
7—;; = E? €Ty = Ty,

for1 <1 <n-—1,and 1 < j < n. Using Theorem 9.3.1, it is easy to check that
this defines an antiautomorphism of H,(q). Note that for w € W(n) and f € P,
we have that 7(T,,) = T,-1 and 7(f) = f.

Let M € H,(q)—mod. Then we can make the dual M* := Homp(M, F') € H,(q)°°—
mod into an H,(q)-module by defining (hf)(m) = f(r(h)m), for all f € M* and
all h € H,(q). We will denote this module by M7 and call it the dual of M. In this
way we obtain a duality

7" : H,(q) — mod — H,(q) —mod, M — MT, (12.4)
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such that 7" o 7" = 1y, (4)—mod-

The following is a key observation, and can be found in [86, Section 5.5].
Theorem 12.2.1. The map
ch : K(H,(q) — mod) — K(P, — mod),
defined by [M] > > cgnTa[L(ar) B ... W L(a,)|, is injective.
This already gives the following:
Corollary 12.2.2. [f M € H,(q) — mod is irreducible, then M™ = M.

Proof. Since 7(z;) = x;, 1 <i < n, it leaves characters invariant. Since, by Theorem
12.2.1, the irreducible modules of H,,(q) are determined up to isomorphism by their
characters, it leaves irreducible modules invariant. O

From now on we will assume that all eigenvalues of the operators zy,...,x, are in
the set {¢' | i € I}, where [ = {0,...,l — 1} and | € Z, denotes the order of ¢. If
a = ¢', for some i € I, we will refer to it just as 1.

For i € I, recall the definition of the functors e and f* from Chapter 11. There
it was shown that for A € P*, the functors e and f are left and right adjoint to
each other.

Next, we want to state another important property of these functors. As we have
defined them, the parameters of the cyclotomic Hecke algebras H2(q) are all dif-
ferent from zero. It is shown in [66, Corollary 5.5] that in this case, H2(q) is a
symmetric algebra.

As defined in Chapter 11, we denote by ev, : H,(q) — H2(q) the corresponding
quotient map. Furthermore, for M € H2(q) — mod, we will denote by evi (M)
the inflation of M along ev,. For the next proposition, observe that the anti-
automorphism 7 leaves the kernel ker(evy) of ev, invariant.

Proposition 12.2.3. The functors e;, et

A and fA commute with the duality given

by 7.

Proof. Note that from the duality 7*, we obtain a duality pry o 7* o evy} : HX(q) —
mod — H2(g) — mod, for each A € P*. We will also denote the latter duality by
7*, and refer to it as the cyclotomic duality. From the usual embedding of H,,_1(q)
into H,(q), it follows that the following diagram commutes:

*

H,(q) — mod H,(q) — mod

Res Res

*

H, 1(q) — mod SN H, 1(q) — mod.
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12.2. Self-duality of irreducible modules

n(q) 2aq)

1(q H) 1 (q)
we replace H,(q) by H2(q), and H,,_(q) by H* (q), and use the cyclotomic duality
in the above diagram, then this new diagram remains commutative.

By (9.36), e;(M) is a direct summand of Resgiql)(q)(M ). Moreover, the duality
7* leaves central characters invariant. Therefore, by the Krull-Schmidt Theorem,

~

we get an isomorphism e;(M7) = (e;(M))". The same argument holds for the

Hence, the functors Res’! Ho () and Res” commute with duality. Moreover, if

cyclotomic functors
Note that Res
H_ 1(‘1) Hy_ 1(‘1)

HomHﬁ_l(q)(Hn (q), —). From Chapter 11 we know that as functors

is right adjoint to Ind and left adjoint to the functor

H ~
In dHA(‘i@(—) = Hompa () (Ha(9), -)-

Using the fact that 7* is a duality, we see that

* HA * ~ *
Hom g ) (7 0 Ind[3 ), 0 7)(X),Y) 2 Hompy () (r*(Y), Indji¥) (7(X))

I

Homys <Rest<3(q)<T*<Y>>,r*(X))

> Hompa (X, 7" (Res 2@, (V)

@ W),

using again the commutativity of the above diagram. Hence, the functor 7* o
a(a)

= Hompa (4(X, Res

n 1

nd2@ o1 is also a left adjoint of Res and so, by uniqueness of adjoints,

H_y(a) ( )’
there is a natural equivalence of functors Ind (q) oInd (q) o7*. The result
'n 1 n 1
now follows since 7" preserves central characters. 0

Corollary 12.2.4. The functors (eM)" and (f*)" are left and right adjoint to one
another, and commute with duality.

Proof. For r = 1, the statement is precisely Theorem 11.2.7. For an integer r > 1,
M € H(q) — mod, and N € H2, (q) — mod, it follows from this that

Hompa, (o ((f)"(M),N) = Hompa_ ) (fM((f) (M), N)
Hompa, o ((f) 7 (M), () (N)).

I

Inductively, we get that
Homya (o ((f)" (M), N) 2 Hompa ) (M, (¢]')"(N)).

7

This proves that (f*)" is left adjoint to (e)". Right adjointness is proven similarly.
For the second part, observe that for » = 1, this is the content of the previous
proposition. Let » > 1, and suppose that the statement is true for all ¢ < r. Then
for some M € H2(q) — mod, we get

() (M7) = e

I

12

—~

D

S T

—~
~— —~

[

=
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Chapter 12. Multiplicity-one results

by Proposition 12.2.3. The corresponding result for (f)" is proven analogously. [J

12.3 Operators on the Grothendieck groups

The goal of this section is to investigate the behaviour of the operators on the
Grothendieck groups coming from the functors e;, e and f, which will give im-
portant numerical information. As a consequence we also obtain new information
on the operators on the Grothendieck groups induced by the functors (e2)™) and
(fHD, r>1.

We will also give several interpretations of the integer ¢,(M), for an irreducible
M € H,(q) — mod, defined in Chapter 12.1. We keep the notation of the previous
sections.

Recall the definitions of the full subcategories H,(q) — mod, and H,(q) — mod;\
of H,(q) — mod given in Chapter 11, and note that the functor ev} induces an
equivalence of categories between H2(q) —mod and H,(q) — modé\, see Proposition
11.1.4. Then, for M € H2(g) — mod irreducible, we define

eEMNM) = (pryoéoevy)(M) e HY (¢g) — mod, (12.5)

(2

FAM) = (pryo fioevi)(M) € HY,, (q) — mod, (12.6)

]

where we assume that n > 1 in the first case.

Henceforth, we will denote by B(oco) (resp. B(A)) the set of isomorphism classes of
irreducible modules in H,,(q) — mod, (resp. H2(q) — mod). Observe that we may
view the set B(A) as a subset of B(co) via the functor evy. Furthermore, for all
1 € I, we obtain maps

¢ : B(oo) — B(oo)U{0}, [M]w [&:(M)],
fi © B(oo) — B(c0), [M]H[Q(M%
¢+ B(A)— BA)U{0}, [M]r

(A) — [M] =

ft o B(A B(A) U A0},

By [44, Lemma 9.3], & is the restriction of &; from B(oo) to B(A), i.e.,

M| —

(2

(bry 0 ;0 evi) (M) = (& 0 evy)(M)

for an irreducible M € H™(q) — mod. Unfortunately, this is not the case for fA.
The problem here is that f; does not leave B(A) invariant: For an irreducible
M € H*(g) — mod, it can happen that f)(M) = 0, whereas f;(M) is never zero.
However, there is the following result due to I. Grojnowski complementing Chapter
12.1:

Theorem 12.3.1. Let M be irreducible in H,(q) — mod,. Then & (M) and f;(M)
are either zero or irreducible. Moreover, if N # 0, then eZ(M) = N if and only if
fi(N) = M. The same holds for the maps e and fA
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12.3. Operators on the Grothendieck groups

Proof. This is [44, Theorem 9.4]. O

Note that for M in H?(g) — mod, it follows from Theorem 12.1.8 that soc(e(M))

is either zero or isomorphic to é(M). Moreover, by [44, Lemma 9.2, Theorem 9.9],
also hd(f7(M)) is either zero or isomorphic to f(M). Then we have:

Corollary 12.3.2. For M € H»(q) — mod irreducible, we have that eX(M) and
fMM) are indecomposable or zero.

Proof. This is clear since by Theorem 12.3.1, the modules (M) and fA(M) are
either irreducible or zero, hence, e?(M) and f(M) are indecomposable. O

Corollary 12.3.3. Suppose that M € H*(q) — mod is irreducible. Then the head

A A
of IndH”“)(q)(M ) and the socle of Res'n1@

HA(q HA ) (M) are multiplicity free.

Proof. See [44, Corollary 9.10]. For e this follows from Corollary 12.1.9. O
One also has the following remarkable fact:

Proposition 12.3.4. Let M € H,(q) —mod,, and N € H?(q) —mod be irreducible.
Then:

(i) soc(e;(M)) = hd(e;(M)).

(i) soc(f(M)) = hd(f{(M)).
Proof. This is [44, Proposition 9.12]. O

For an irreducible M € H*(q) — mod, we define:

eMM) = max{m > 0] (M)™(M) # 0}, (12.7)

)

PM(M) = max{m > 0| (FA)"(M) £ 0}. (12.8)

(2

Next, we recall from Chapter 11 that, for a positive integer r, and i € I,

el = (Pel (12.9)

i
r!

as functors from the category of finite-dimensional H,,(¢q)-modules to the category
of finite-dimensional H,,_,.(¢)-modules. Moreover, if we descend to some quotient
H2(q), A € P*, the same statement for the functors (e})” and (e)™) holds true.

By adjointness, for a positive integer r, we also get that

M= PuhH (12.10)

r!

as functors from the category of finite dimensional H”(g)-modules to the category
of finite dimensional H7,, (g)-modules, see Chapter 11.
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One defines the abelian groups

K(o0) := @D K(H,(g) — mod,),

n>0

and

K(A) == P K(H (g) — mod).

n>0

Then the exact functors e;, e\, e, fA (eMW (MDD i eI, r>0,induce linear

7 0 Yo Jio
operators on these groups in the obvious way and one has the following:

Lemma 12.3.5. Let i € I. As operators on K(oco) and K(A), we have that e} =
(rDel™, (M) = (P (eM)® and (f2) = (r)(f2)®), for all positive integers r.

(2

We now focus on the behaviour of the functors e and f* on the Grothendieck
group. The first result to mention is the following, which is due to I. Grojnowski
and M. Vazirani:

Theorem 12.3.6. Let M € H,(q) — mod, be irreducible and i € I. Then:

(i) [ei(M)] = g;(M)[é;(M)]+> ur[Ng|, where Ny € H,_1(q)—mod are irreducible
such that ;(Ny) < ;(6;(M)) = &;(M) — 1, for all k.

(ii) &;(M) is the mazimal size of a Jordan block of x,, on M with eigenvalue i.

iii) The algebra Endy, (g (ei(M)) is isomorphic to the algebra F[z]/(z=™)), and
n—1(q)
thus,
61-(1\4 ) = diIIlF EndHn,l(q) (QZ(M))

Proof. This is [44, Theorem 9.13], together with Claim 6.5 in [86]. O

We have the following corollary:

Corollary 12.3.7. Let M, N € H,(q) —mod be irreducible and M 2 N. Then, for
every i € I, we have Hompy, (g (e;(M),e;(N)) = 0.

Proof. Suppose there is some non-zero element in Homp, () (e;(M),e;(N)). By
Theorem 12.1.8 combined with Proposition 12.3.4, we see that the head of e;(M)
is irreducible. Thus, €&;(M) is a composition factor of e;(N). By part (i) of the
previous theorem, ¢;(N) > &;(M). On the other hand, again by Theorem 12.1.8,
the socle of e;(IV) is irreducible, hence a composition factor of e;(M). Again, by the
previous theorem, we conclude that ;(M) > ¢;(N), and so ;(M) = ¢;(N) which
implies €;(M) = é;(N). From Theorem 12.3.1 it follows that é;(M) = é;(N) if and
only if M = N. This gives the result. U

Remark 12.3.8. Since, on finite-dimensional H(¢q)-modules, e’ is just the restric-

tion of e;, Proposition 12.3.4, Theorem 12.3.6 and Corollary 12.3.7 are still true if

one replaces ¢;, &;,&; by e}, é} e} in the corresponding statements.

R A g ]
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Also, from (12.9) we obtain more information about the H, _,(¢)-module egr)(M)
in the case where M is an irreducible H(g)-module.

Proposition 12.3.9. Let M € H,(q) —mod, N € H2(q) —mod, be irreducible and
1€ 1. Then:

(i) e(M) # 0 if and only if &(M) # 0. In that case, e\ (M) is an indecom-
posable self-dual H> (q)-module with irreducible head and socle isomorphic
to e (M).

(i) (FM(N) # 0 if and only if (FM)(N) # 0. In that case, (fM)7(N) is
an indecomposable self-dual H2 (q)-module with irreducible head and socle
isomorphic to (f*)"(N).

Proof. From (12.9), we see that e[ (M) # 0 if and only if el(-r)(M) # 0. Further-
more, by Theorem 12.1.13, the socle of e} (M) is isomorphic to &, €;(M). Thus,
soc(el(»r)(M )) = él(M), and egr)(M ) is indecomposable. Moreover, by Corollary
12.2.2, M is a self-dual H,(¢g)-module. Then, by Corollary 12.2.4, we have that
el (M) is a self-dual H,,_,(¢q)-module. By the Krull-Schmidt Theorem, it follows that
egr)(M) is a self-dual module. This immediately implies that hd(egr)(M)) =el(M),
and (i) follows.

For (ii), the first part is proven similarly as the first part of (i). By adjointness of
(f2)" and (e)", see Corollary 12.2.4, we have for an irreducible H2 , (¢)-module N
that

Homypa, (o ((f) (M), N) = Hompyp () (M, (') (N)).

K3 K3

By Theorem 12.1.13 the latter is non-zero if and only if M = (é})"(N), which is
equivalent to N = (f2)"(M), by Theorem 12.3.1. Therefore,

hd((f)" (M) = PN (M),

r!

and then hd((f2)"(M)) = (fM)"(M). By the self-duality of (fMT(M), we also
see that the socle of (f*)(") (M) is isomorphic to (f)"(M). O

The next result is a direct consequence of Theorem 12.3.6.

Proposition 12.3.10. Let M,N € H,(q) — mod,, such that M % N, i € I, and
set € :=¢g;(M). Then for a positive integer r < € the following hold:

(i) [(e)(M)] = (O)[er(M)] + 3 ur[N,], where the N, are irreducible H,_,(q)-
modules with €;(N,) < g;(éf(M)) =¢e —r.
(i) Hompy, g (ei” (M), e (N)) = 0.

)

Proof. To show (i), we proceed by induction. For r = 1, this is Theorem 12.3.6
€;.

(i) since (e;)M) = Suppose the statement is true for all 1 < ¢ < r. To avoid
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confusion, in the following we will write é; for the operator on K(o0) induced by e;.
Then, using Lemma 12.3.5, we have:

(r)[el” (M)] = [ef (M)] = [es(e; 7 (M))] = éi([ef " (M))).

i %

Again, by Lemma 12.3.5 and the inductive hypothesis, we see that

r—1

SR G [FCRIUT T Sr S|

G 0n) = =01, e an+ X enalvo)

where the N,y € H,,_,+1(¢) —mod, are irreducible with ¢;(N,_;) < gi(&7HM)) =
e—r+1. By part (i) of Theorem 12.3.6, the second summand in the equation above
ranges over summands [N/] € K(H,_,(¢) — mod) with £;(N]) < € —r. Moreover,

¢i~1(M) is an irreducible H,,_,,1(¢)-module, and hence, we see that

€ ~r—1 . € ~r—1 ~r
-0, ° @ onm = -, e onEn + X ol
where the Ly are irreducible H,,_,(g)-modules such that ¢;(Ly) < ¢;(€}(M)) =e—r.
Now &;(€;'(M)) = ¢ —r + 1, and therefore

(r —1)! (r - l)gi(é;—l(M)) =7l @

From this, part (i) follows.
The proof of (ii) is similar to Corollary 12.3.7, using (i) and the fact that, by
Proposition 12.3.9 (i), the socle of ¢! (M) (resp. €!”(N)) is isomorphic to & (M)

(resp. € (N)). O

In the rest of this section, we want to establish analogues of Proposition 12.3.6 and
12.3.10 for the functors fA and (f2)), for all integers » > 0. We will need the
following, which is the statement of [44, Theorem 9.15].

Theorem 12.3.11. Let M € H2(q) —mod be irreducible, i € I. Then the following
hold:

1) [fANM)] = oMM [fA (M) + > uyN,, where the H2. | (q)-modules N, are ir-

(2

reducible such that e(N,) < e}(fMM)) =eM(M) + 1.
(ii) pM(M) is the smallest integer m such that fM(M) = prA(IndZﬁl(MﬁLm(i))).
(i) (M) = ditmg Homgs_ o (f2OM), FA(M)).
Proof. See [44, Theorem 9.15]. O

In order to obtain a full analogue of Theorem 12.3.6 for the operator f*, we have
to show that in (i) we may write ¢ instead of 2. For this, we use the following
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12.3. Operators on the Grothendieck groups

lemma, which is [44, Theorem 12.6]. To state it, we need some new notation. For
an irreducible H(q)-module M, we define

wt (M) = (M) — e} (M), (12.11)
wt(M) = Y wt(M)A; € P, (12.12)

see Chapter 11 for definitions. In particular we identify a central character v with
the element v = >, vioy € [,

Lemma 12.3.12. Let M € H>(q) — mod be irreducible with central character 7,
and let i € I. Then:

(1) If fAM) # 0, then wt(fA(M)) = wt(M) — o.

(ii) wt;(1a) = (A, hy), for the simple coroot h;. Here, 15 denotes the unique
irreducible H{(q)-module.

(i) wbi(M) = (M) — 2 (M) = (A 7, ).
Proof. This is [44, Theorem 12.6]. O

As a consequence, we can complete our argument. Suppose that we are in the situ-
ation of Theorem 12.3.11. The module f*(M), and all the irreducible modules N,
are composition factors of f(M), thus, by Theorem 12.3.1 and the indecompos-
ability of f(M), we see that they have the same central character. Therefore, by
Lemma 12.3.12 (iii),

AN = (A= ki) +eD(V,)
P (fA M) = (A=, h) + e (FH M),
Therefore,
P M)) = 9} (Ny) = e (fAH (M) — e (N) > 0,

by part (i) of Theorem 12.3.11. Furthermore, by the proof of [44, Theorem 12.6],
we have that )
wti(fH(N)) = wty(N) — 2,

for all irreducible H*(g)-modules N. Thus,

o (FH(M)) = e} (FH(M)) = (M) — e (M) — 2,

3 7

and, hence,
P FNM)) = M) -1

since eM(fM(M)) = eMM) + 1, by Theorem 12.3.11. Then, as a consequence, we
can restate Theorem 12.3.11:
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Theorem 12.3.13. Let M € H2(q) —mod be irreducible. Then the following hold:

(i) [FAM)] = oMM)[FMM)]+ 3 u, Ny, for irreducible H, | (q)-modules N, sat-
isfying p}(N;) < o (fMM) = (M) — 1.

(ii) @M(M) is the smallest integer m such that f*(M) = pry(Ind) 1" (M R L, (i))).
() (M) = dim - Hompy o (FA(M). £(01).
Finally, we can give the full analogue of Proposition 12.3.10:

Proposition 12.3.14. Let M, N € H»(q) — mod, such that M % N, and set
@ := pMNM). Then for a positive integer r < ¢ the following hold:

(i) (M) = (2 )[( TN (M)] + S, [N,], where the H2,,(q)-modules N, are
irreducible with @*(N,) < @M((fM"(M)) = ¢ —r.

(it) Hompa o ((F)"(M), (fH)7(N)) = 0.

Proof. For r = 1, this is the content of Theorem 12.3.13 (i) since (f*) = fA. Let
1 <r < ¢, and suppose that the statement is true for all 1 < ¢ < r. Denote by fA
the operator on K(A) induced by f*. With Lemma 12.3.5, we get that

AIUMOAD] = [ 0] = O )] = FAEHH ().

Then, by the inductive hypothesis, we have that
A ony = fe-m(, 2 )G 00) + X i)
= =, 7 UG O0] + X w0

with irreducible H2  _(g)-modules N,_; such that ¢} (N, 1) < M(fA) 1 (M)) =

()

¢ —r+ 1. By part (i) of Theorem 12.3.13, the last summand ranges over elements
[N]] € K(H2,,(q) — mod) with ¢*(N}) < ¢ — r. Moreover, by Theorem 12.3.1, we
have that (f2)"~*(M) is irreducible since, by assumption, (f2)"~*(M) # 0. Using
Theorem 12.3.13 again, we have that the first term of the last sum equals

=i, 2 )G N 0]+ E ol

where all irreducible H2, (g)-modules Ly, satisfy ¢(Lg) < ¢ — 7. Since

(r — 1)!(Tf1>(go—r+1) :r!(f>,
part (i) follows.

For (ii), suppose that f € HomHQM(q)((fiA)(T)(M),(flA)(r)(N)). By Proposition
12.3.9 (i), we know that (f)™(M) and (f*))(N) are self-dual modules with
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12.3. Operators on the Grothendieck groups

irreducible head and socle isomorphic to ( A (M) and (fM)7(N). If f is non-zero,
(fM7(M) is a composition factor of (fA)™(N), and thus, by part (i),

PP (M) < oMM (V).

Similarly, (f*)"(N) must be a composition factor of (fA))(M), hence, we may
conclude that

M(MT(N) < M(fM)T (M),
which implies ) N
P () (M) = () (V).

Again by (i), this is only possible if (f2)"(M) = (f})"(N). Then, Theorem 12.3.1
implies M = N. O

Remark 12.3.15. Note that Proposition 12.3.10 and Proposition 12.3.14 are ana-
logues of the results given in [59, Proposition 8.5.10].
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Chapter 13

Action of g'(A) on the
Grothendieck group

The aim of this chapter is to explain how the sum over the Grothendieck groups
of finite-dimensional H(g)-modules, n > 0, can be given the structure of a g'(A)-
module, where A denotes the generalized Cartan matrix of type Al(i)l, [ > 2. More-
over, we explain the main result given in [44], which states that this module is
precisely the irreducible highest-weight module over g’'(A) associated to the highest
weight A.

We will follow the lines of [59, §9], where the result was established in the degenerate
case.

As in previous chapters, H,(q) denotes the affine Hecke algebra over the field F,
where the defining parameter ¢ is invertible in F'. Moreover, we assume that ¢’ = 1
for some positive integer [ > 2, where [ is minimal with this property. We set
I:=H{0,...,01—1}.

Furthermore, we denote by A the generalized Cartan matrix of type Al(i)l, and let
g'(A) be the derived algebra of the Kac-Moody algebra defined as in Chapter 10
over the field K = Q of rational numbers. Moreover, we denote by U’ the universal
enveloping algebra U(g/(A)) of g/(A). Also we denote by U/, the subalgebra of U’
generated by the divided powers egr) = i—: and fi(r) = f—:, 1€ 1.

T

13.1 Shapovalov form

For A € Py, recall from (11.1) of Chapter 11 that H2(q) is the factor algebra of
H,(q) by the two-sided ideal of H,(q) generated by the element [[.. (21 — q') i,
Moreover, recall from Section 12.3 the definition of the abelian groups K(co) and
K(A), as well as the sets B(A) and B(oo), the union of the sets of isomorphism
classes of irreducible H*(g)-modules and irreducible H, (g)-modules in H,(q) —
mod,, respectively, n > 0.
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Chapter 13. Action of g/(A) on the Grothendieck group

In this section, we recall the definition of the Shapovalov form, an important bilinear
form on KC(A), A € P,. Denote by H2(q) —proj the full subcategory of H2(q) —mod
consisting of projective left H”(q)-modules.

If P € H)(q) — proj, then the functor

Hom a () (P, —) : H>(¢) — mod — F — mod
is exact. Therefore, we obtain a well-defined bilinear mapping
(=, =) : K(H}(q) — proj) x K(H,(g) — mod) — Z (13.1)

by setting ([P], [M]) = dimp Homa,) (P, M). If N € H}(q) — mod is irreducible,
and Py denotes its projective cover, then ([Py], [M]) can also be interpreted as the
multiplicity of N in a composition series of M. If N runs through the isomorphism
classes of irreducible H2(g)-modules, then the Z-linear maps

on = (Py, =) : K(H2(q) — mod) — Z

give a basis of K(H2(q) — mod)* that is dual to the basis of X(H2(¢) — mod) con-
sisting of the elements [N], N € H”(g) —mod irreducible, one for each isomorphism
class. We infer that the bilinear form (—, —) then gives an isomorphism of abelian
groups

K(H(q) — proj) — K(H}(g) — mod)*, (13.2)

which is determined by Py + 6y, for N € H2(q) — mod irreducible.
Next consider the map

wn : K(H)(q) = proj) = K(H(g) —mod), [P]= Y [P:N][N],  (13.3)

where the sum on the right-hand side is taken over all isomorphism classes of irre-
ducible H2(g)-modules. Note that this map is injective if and only if it becomes an
isomorphism of Q-vector spaces after extending scalars. And this happens precisely
when the bilinear form given in (13.1) is non-degenerate when restricted to

K(H(g) — proj) x K(H,(q) — proj).
The last statement holds as the following theorem shows.
Theorem 13.1.1. The pairing
(P, Q) + dimp Hompa,) (P, Q),
where P,Q € H*(q) — proj, induces a non-degenerate symmetric bilinear form

(—, =) : K(H2(g) — mod)* x K(H2(q) — mod)* — Z.
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13.2. Action of g'(A)

Proof. This is precisely [44, Theorem 11.1]. O
Denote by K*(A) the restricted dual of K(A), i.e., the set of the Z-linear maps
f:KA) —=Z

such that f is zero on all but finitely many classes [N], where N € H2(q) — mod
is irreducible and n > 0. Note that this set can be identified with the subset
@D,.50 L(H}(g) — mod)* of the dual of K(A). Then, under the isomorphism given

in (13.2), we also have an identification

K*(A) = @ K(H}) (q) — proj)

n>0

in such a way that for each irreducible H>(g)-module N, n > 0, the basis element
corresponds to the isomorphism class [Py]. Moreover from the map given in (13.3),
we obtain a homogeneous map w : K*(A) — K(A) with respect to the natural
grading of £*(A) and IC(A). Then one has:

Corollary 13.1.2. The map w : K*(A) — KC(A) is injective.
Proof. This follows from Theorem 13.1.1 and the previous discussion. 0

Therefore, we can identify K*(A) with its image under w, and thus we may view
K*(A) € K(A) as Z-sublattices in K(A)g := Q ®z K(A). By extension of scalars,

we obtain an isomorphism
0= ldQ Rw : (K*(A))Q — ]C(A)Q

of @Q-vector spaces. Furthermore, the form given in Theorem 13.1.1 induces a bilin-
ear form

(—,—): K(Hﬁ(q) —mod)g X /C(Hfl\(q) —mod)g — Q. (13.4)

It is non-degenerate and symmetric. The form (—, —), or the form (—, —)* is called
the Shapovalov form. Moreover, these forms induce symmetric non-degenerate bi-
linear forms on (K*(A))g and K(A)g, respectively, which we will also refer to as the
Shapovalov form.

13.2 Action of g/(A)

For ¢ € I and r > 1, recall from Chapter 9 and Chapter 11 the definitions of the
various functors e;, e, fA, el(»r), (M@ and (f*)"). They are exact, and therefore ad-
ditive. Thus, on the level of Grothendieck groups, they descend to homomorphisms
of abelian groups, and define actions on K(o0) and K(A), respectively.

Furthermore, by Proposition 11.2.13, for i € I, the functors e} and f take projec-

tive modules to projective modules, their action on *(A) is defined. More precisely,
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Chapter 13. Action of g/(A) on the Grothendieck group

if € K(H2(q) — mod)* is given by the map (P,—) with P € H2(q) — proj,
then we define el(¢) (resp. fA(¢)) as the map in K(H2 (¢) — mod)* (resp.
K(H.1(q) — mod)*) given by the map (e}([P]), =) (resp. (f([P]),~)), where
eM([P) € K(HA(g) — proj) (resp. fA([P]) € K(H2(q) — prof)). By adjointuess
of e} and f, i € I, we have that

¢ o fM([M]) = ([P], f1(M)) = (e} (IP]), [M]),

for [M] € K(H” ,(q) — mod). Therefore, the action of e} (resp. f*) on K*(A) is
just the transpose of the action of fA (resp. e) on K(A).

In the sequel we state crucial relations among these various operators. The first of
these is the following:

Lemma 13.2.1. The operators e; : K(0o) — K(00), and e : IK(A) — K(A), i € I,
satisfy the Serre relations:

(i) If ¢ # ¢*, then eiej; = eje;.

(ii) If ¢"7 # ¢*' and q # q71, then ele; + eje? = 2e;e e;.

(iii) If "7 # ¢ and q = ¢, ie., ¢ = —1, then ele; + 3e;eje? = 3eeje; + ejel.
Proof. This is [44, Proposition 12.1]. O

From the fact that the functors e and f* are both left and right adjoint to one
another, and (—, —) is non-degenerate, we also obtain an analogue of the previous
lemma for the operators f3.

Lemma 13.2.2. The operators f* : K(A) — K(A), i € I, satisfy the Serre rela-
tions.

By Theorem 11.2.14 and Proposition 11.2.18, also the functors (e})™) and ()™,
i €I, r > 1, take projective H2(g)-modules to projective H2  (q)-modules (resp.
H2, (q)-modules), and so, their action on K*(A) is defined as well. Moreover, as

shown in Chapter 11, the functors ()™ and (f*)) are adjoint to one another

and, thus, we get:

Lemma 13.2.3. For alli € I, the operators (M) and ()™ on K*(A) and K(A)
satisfy

(e ([P, [N]) = ([P], (FH O AND), - ((FHT AP, IN]) = ([P, (1) ([ND)),
for all [P] € K*(A) and [N] € K(A).

Proof. This follows from (13.1) and the adjointness of the functors (e)™ and

2

(fH. 0

From this we immediately obtain the following corollary.
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Corollary 13.2.4. Assume that, forr > 1,

M) = tunINL (VM) =) sunlN

where the first sum is taken over the classes [N] € K(A), with N € HY (q) — mod
irreducible, n > r, and the second is taken over the classes [N] € K(A), with
N € H2, (q) — mod irreducible, n > 0. Then

(NP = D sunlPul, (FHT( = tan[Pul,

where both sums are taken over the classes [Py| € K*(A) such that Py is the
projective cover of M € H2(q) — mod, M irreducible.

Proof. This follows from the previous lemma and the fact that for M irreducible
one has that ([Py], [M]) = dn,(m1- O

Let i € I, and let M € H2(q) — mod be irreducible. Recall the definitions of the
functions e and ¢ from (12.7). Then we define a linear operator A on KC(A) by
setting

R ([M]) = (g7} (M) — £} (M))[M]. (13.5)
Equivalently, by Lemma 12.3.12, we have that
R ([M]) = (A = ) (h)[M], (13.6)
where M has central character x,. More generally, one defines

P (M) — (M)

r T

(") s - . pr ) .

From (13.6), we immediately obtain the following relations:

Lemma 13.2.5. As operators on KC(A),

[0, ef] = aj(hi)es, (13.7)
and
B, 1) = = (ha) £}, (13.8)

foralli,jel.

Proof. This follows from (13.6): If M € H”(gq) — mod is irreducible with central
character x-, v = (70,...,%-1), we get that

[h e 1(M]) = (hief — efhi)([M]) = hitej ([M]) — e it ([M])
)

Z’]
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since all the composition factors of e}([M]) have central character x.,, with v/ =
(Yos - -+ Yj=1,% — L, Yjs1s - -, Yi—1). Since AL is linear, the result follows. O

Moreover, the following holds true.

Lemma 13.2.6. As operators on KC(A),

e, 1] = 0ihi, (13.9)

i1Jj
foralli,jel.
Proof. See [44, Theorem 12.4]. O

In the following, we set (e)© = (fM)© = ()@ = (fM)© = idx(,) as operators
on K(A). Then, for A € P, Lemma 13.2.1, 13.2.2, 13.2.5 and 13.2.6 show that the
abelian group K(A) carries the structure of a U’-module:

Theorem 13.2.7. The action of the operators e, f and hd on K(A), for all
i € 1, satisfy the Chevalley relations (D1)-(D6) of Section 10.1. Furthermore, the
operators (e, (fMT) and (h;'A), i €1, andr > 1, define a U'-module structure
on K(A)g such that I*(A) and KC(A) are Uj,-submodules.

Proof. This follows from Lemma 13.2.1, 13.2.2, 13.2.5 and 13.2.6 together with the
definitions in Section 10.1. O

Now that we have a U’-module structure on K(A)g, it is natural to ask whether
K(A)g possesses even more structure. By definition, the elements h,
semisimple operators. Moreover, from (13.6) we see that

K(M)g = P (K(A)g)a—,

7EQ+

1 € I, are

and, hence, IC(A)g is a weight module over g'(A), see Chapter 10 for definitions. In
the following, we will denote by [14] the class of the irreducible H{(g)-module in
K(H&(q) —mod). For the next theorem we will need the following lemma, which is
an analogue of [59, Lemma 9.3.3] in the non-degenerate case.

Lemma 13.2.8. Suppose that M € H>(q) — mod is irreducible. Let i € I, and set
g =M (M), and p = pMM). For m >0, we get that

(™ ([Pul) = D an[Penyn(N)],

[N]v E?(N)Zm
for non-negative integers ay. Furthermore, if m = ¢, then

e+
€

(DO ([Py]) = ( )[P(é¢>e<M>J " ax [Py (V).
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Proof. From Corollary 13.2.4 we infer that

()™ (Pl) = Y [(FH™(L) - M][Pe].

[L]eB(A)

By Proposition 12.3.9 and the definition of 2, the condition [(f*)™ (L) : M] > 0
implies that (L) > m. Otherwise, we must have that (f*)™ (L) = 0. In the
first case, we denote by N the non-zero module (f)™(L). Together with Theorem
12.3.1 we have:

()™ ([Pu]) = > [N ™(N)) = MI([Peaymay].

[NJEB(A), e (N)=>m

This gives the first part of the lemma.

Next, let m = e. By the definition of e, if e}(N) = ¢, then e((é})*(N)) = 0. By
Theorem 12.3.11, the only composition factor L of (f)™ ((e2)™(N)) with eM(L) =
e is (fM)™((eM)™(N) = N. This implies that N = M, and, by Proposition 12.3.14
(i), we see that

(PO (M) : M] = ( * *D).

3

We are now ready to state the following:

Theorem 13.2.9. Let M € H2(q)—mod be irreducible. Then every element [Py] €
K(H2(q) —proj) can be written as an integral linear combination of monomial words
of the form

(£ (D ([La]),
with r; >0, and i; € I, for all j.

Proof. This is [44, Lemma 11.4], but we will give the arguments here, following
the lines of [59, Theorem 9.3.4]. We argue by induction on n. For n = 0 the
statement is obviously true. Thus, let n > 0, and suppose that the statement holds
for all smaller non-negative integers. Assume for a contradiction that there is an
irreducible H2(q)-module M for which the statement is false. Let i € I such that
e == (M) > 0. Choose M so that the claim holds for all irreducible H>(q)-
modules L with e}(L) > e. This is always possible since there are only finitely
many isomorphism classes of irreducible H(g)-modules. Then we may write

(MO Pesyeon] = Y. an[Pyl.

Z [N]eB(A)
for non-negative integers ay. By Corollary 13.2.4, we have that

ay = [()O(N) : (&) (M)].
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Suppose that ay > 0, where N is such that e}(N) = e. Then

(e (N) 22 (€1)°(N) = (&) (M),
by Proposition 12.3.10. From Theorem 12.3.1 we conclude that N = M and a,; = 1.
This yields
[Pu] = (fz’A)(s)([P(éf)E(M)] - Z an[Px],
[N]eB(A), 5?(N)>a
with non-negative integers ay. By the inductive hypothesis, the first term of the
right-hand side can be written in the desired form. Furthermore, by our choice of
M, we may assume that the same holds for the second term. This contradicts our

assumption on M.
O

Corollary 13.2.10. For all n > 0, every element y € K(H2(q) — mod)g can
be written as a Q-linear combination of elements of the form fM(x), for elements

v € K(H2,(q) - mod).

Proof. Let P be a projective H® (g)-module, r > 0, n —r > 0. Then, as stated
prior to Lemma 13.2.3, (f*)")(P) is a projective H(¢)-module. Suppose that

[P] =) _[P: Mj][M;] € K(H}_,(g) — mod),
for irreducible H2 (q)-modules M;. Then
[(FHDP)] =D [P MJ[(FH (M) € K(H, (g) — mod)

since (f)™ is an exact functor. The statement now follows from the injectivity of

the map w, Theorem 13.2.9 and the fact that, as operators on IC(A), (fA)™) = %,
see Lemma 12.3.5. [

We are now in a position to describe the structure of IC(A) as a U’-module com-
pletely. Observe that the next theorem was first stated in [44]. We give another
proof here, following the lines of [59, Theorem 9.5.1]. The necessary definitions and
results concerning the representation theory of Kac-Moody algebras used here can
be found in Section 10.2 and Section 10.3.

Theorem 13.2.11. For A € P, the following hold:

(i) As a U -module, IC(A\)q is isomorphic to the irreducible integral highest-weight
U'-module L(A) of highest weight A and highest-weight vector [14].

(ii) The bilinear form (—,—) of (13.4) on K(A)q, coincides with the contravari-
ant form provided by the irreducible highest-weight U'-module L(A\), satisfying

([1a],[1a]) = 1.
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13.2. Action of g'(A)

(iii) K£*(A) C K(A) are integral forms of K(A)g containing the highest-weight vec-
tor [1p].  Moreover, KC*(A) is the minimal lattice (U)"[1x] C K(A)g with
KC(A) being its dual under the contravariant form.

(iv) The classes of the irreducible H>(q)-modules with central character v form a
basis of the (A — v)-weight spaces (JC(A)g)a—~. The same statement holds for
the classes [Py] of projective indecomposable modules in H*(q) — mod with
central character .

Proof. By Theorem 13.2.7, we have already seen that IC(A)g is a U’-module. By
Theorem 12.3.6 and Theorem 12.3.13, we see that the elements e;, f; € U’, i € I,
act locally nilpotently on K(A)g. The action of the elements h; € U’, i € I, on
KC(A)g is diagonal by definition, see (13.6). It follows that IC(A)g is an integrable
U’-module. Moreover, again by (13.6), we see that [1,] is a highest-weight vector of
highest weight A. From Corollary 13.2.10, we infer that IC(A)g = (U’)"[1a]. This
finishes the proof of (i).

From Lemma 13.2.3 we know that (—,—) is non-degenerate and contravariant.
By Proposition 10.3.7 we have that the bilinear form associated to an irreducible
highest-weight U’-module is unique up to a constant factor. Since ([14],[1a]) = 1,
we see that this form must coincide with (—, —). Thus, (ii) follows.

By the discussion prior to Lemma 13.2.3, we know that U}, leaves the lattices I*(A)
and IC(A) invariant. Moreover, the duality pairing given in (13.1) shows that they
are dual to each other under the contravariant form. Also, Theorem 13.2.9 states
that (U})~[1a] = K£*(A). Hence, (iii) follows.

Finally, part (iv) is just a reformulation of (13.6). O
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Chapter 14

Crystal structure

In this chapter we briefly recall the concept of crystals associated to highest-weight
modules over enveloping algebras of Kac—-Moody algebras.

Moreover, we recall work of I. Grojnowski [44], where he gave the sets B(oco) and
B(A), A € Py, the structure of crystals in the sense of M. Kashiwara. The crystal
structure will become important in later chapters.

The aim of this chapter is to understand the proof of the following, which is one of
the main results of [44]:

Theorem 14.0.12. Let A be the generalized Cartan matriz of type Al(i)l, [ > 2.
Then, for all A € Py, the crystal B(A) is isomorphic to the crystal B(A)kas of the
irreducible highest-weight module L(A) of highest weight A defined over the quantized
enveloping algebra U,(g(A)) over Q(v).

For the proof of this theorem we will follow the lines of [59, §10], where the theorem
was established in the degenerate case.

14.1 Crystals

The theory of crystals was mainly developed by M. Kashiwara in the context of
integrable highest-weight modules for quantized enveloping algebras U,(g(A)) of a
Kac-Moody algebra g(A), see for example [54]. Due to this work, for a generalized
Cartan matrix A, each irreducible highest-weight module L(A) of highest weight
A over the Q(v)-algebra U,(g(A)) admits a certain basis, called the crystal basis,
which is determined uniquely by L(A). To each crystal bases one can associate a
graph B(A)kas, which is called the crystal graph of L(A). Moreover, via the latter
crystal bases one also can associate a crystal basis to the subalgebra U,(g(A))~ of
U,(g(A)) with crystal graph denoted by Bgas.

Recall the definition of the set P from Chapter 11. We now state the necessary
definitions, which can be found in [54].
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Chapter 14. Crystal structure

Definition 14.1.1. Let A be a generalized Cartan matrix. A crystal of type A is
a set B together with maps

vi,&i + B—ZU{-o0} (i € 1),
&, fi + B— BU{0} (iel),
wt : B— P,
such that:
(C1) ¢;(b) =&i(b) + wt(b)(h;), for all i € I, b € B.
(

(h
(C2) If b € B satisfies €;(b) # 0, then €;(&;(b)) = e;(b) — 1, vi(&(b)) = ¢;(b) + 1,
and wt(é;(b)) = wt(b) + o, i € I.

(C3) If b € B satisfies f;(b) # 0, then &;(f;(b)) = €:(b) + 1, @;(fi(b)) = wi(b) — 1,
and wt(f;(b)) = wt(b) — a, i € I.

(C4) For elements by, by € B, by = f;(by) holds if and only if by = &(by), i € I.
(C5) If p;(b) = —oo0, then &(b) = fi(b) =0, i € I.

Example 14.1.2. (i) For every i € I one can define a crystal B; as follows. As a
set,

with symbols b;(n), together with the maps
n if =14,

—oo if j #1,

e ={ _ 2 0

- {40 81
i) = { M

Finally, we set wt(b;(n)) = naoy, for all n € Z.
(ii) For A € P, we define the crystal Ty as the set {t5}, together with g;(ty) =

@i(ta) = —o0, &i(ty) = fi(ta) =0, and wt(ty) = A.

A morphism ¢ : B — B’ of crystals B and B’ is a map ¢ : BU {0} — B’ U{0}
such that:

(M1) 6(0) = 0.
(M2) Let b € B. If ¥(b) # 0, then wt(e(b)) = wt(b), :((b)) = €:i(b), and
pi(1 (b)) = #i(b)-
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14.2. Crystals associated to cyclotomic Hecke algebras

(M3) For all b € B with ¢(b) # 0 and 1(€;(b)) # 0, we have that ¢(é;(b)) = é;1(b).
(M4) For all b € B with 1(b) # 0 and ¢(f;(b)) # 0, we have that ¢(f;(b)) = f(b).

A morphism ¢ of crystals is called an embedding if 1 is injective. It is called strict
if 1 commutes with the maps é;, fi, for all i € I.

Given two crystals B and B’, we may define their tensor product as follows. As a
set, B ® B’ is defined as B x B’, where we denote an element (b,0') € B x B’ by
b®b'. This set can be given the structure of a crystal, by setting

g(b®V) = max(e;i(b), &) —wt(b)(hy)),
pi(b@b) = max(pi(b) + wt(b') (i), pi(b)),

~ no_ éz(b) X b/ if (,Dl(b) 2 51'([?,),
cb@b) = { b &) if pi(b) < &:(b),
r A fZ(b) @b if Spl(b) > 52-([)’)7
fib®b) = { b (M) if ¢i(b) < (b)),

wt(b® V') = wt(b) + wt (),
forallie I, and bV € B B'. Also, weset b@ 0=0=0® b.

14.2 Crystals associated to cyclotomic Hecke al-
gebras

Next, recall the definitions B(oc) and B(A), for A € Py, as well as the maps
&, fi : B(co) — B(co) U {0}

and .
&', fi  B(A) — B(A)U{0},

for i € I. We want to give the sets B(oo) and B(A) the structures of crystals. The
main source of reference for this will be Section 12.3. From now on, A will denote
the generalized Cartan matrix of type Al(i)l, [ > 2. Furthermore, by ¢ we will denote
the diagram automorphism of H,(q), which is defined by

i Tpgrg, Ly —(They +1—q).

If M € H,(q) — mod, via o, we get another H,(q)-action on M and obtain a new
H,(q)-module that we will denote by M?. For i € I, we define

g (M) = (M), (14.1)
&M) = (&(M7)”, (14.2)
fi(M) = (fi(M?)), (14.3)

for an irreducible M € H,(¢) — mod,.
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Chapter 14. Crystal structure

Remark 14.2.1. From the action, we can interpret the integer (M) as the maxi-
mal ¢ € Z, such that [L(:)**X...] appears in the character ch(M) of M. Moreover,
in view of Theorem 12.3.6, the integer (M) is the maximal size of a Jordan block
of z; with eigenvalue ¢'.

As a direct consequence, we obtain the next lemma. Recall the definition of the
functor
pry : H,(q) — mod — H2(q) — mod,

and the algebra homomorphism
eva : Halg) = Hy(q),
defined in Chapter 11.

Lemma 14.2.2. Let A € Py, and let M € H,(q) — mod, be irreducible. Then
pry(M) = M if and only if (M) < A(h;), for alli € I.

Proof. Let Iy = ker(evy). Since M is irreducible, pry (M) = M/I\M is either zero
or I\M = 0. By the definition of I, IyM = 0 if and only if the largest size of a
Jordan block of z; on M corresponding to the eigenvalue ¢' is less than or equal
A(h;). By Remark 14.2.1, (M) is the maximal size of a Jordan block of z; with
eigenvalue ¢'. Hence, the result follows. 0

In the following, we will state some rather technical results. These will be necessary
for giving the sets B(oo) and B(A), A € P,, the structure of a crystal. The proof
of the following lemma is similar to that of [59, Lemma 10.1.1].

Lemma 14.2.3. Let M € H,(q) —mod, be irreducible. Then the following hold:
(1) For alli € I, either eX(f;(M)) = (M) or eX(fi(M)) = e*(M) + 1.
(ii) For alli,j € I withi # j, we have that e¥(f;(M)) = ef(M).

Proof. By definition, f;(M) = hd(Indgzi;(gq))(M X L(i))), hence, by the Shuffle
Lemma and Remark 14.2.1, we infer that e*(f;(M)) < e*(M) + 1. Moreover, let
N := fi(M). Then clearly, £*(¢;(N)) < *(N). Therefore, eX(M) = (&;(N)) <
*(fi(M)), by Theorem 12.3.1. This proves the first statement.

For the second statement, suppose that ¢ # j, and write

£5(M) = hd(Ind;; ' (M ® L(7)))-

Then, by the Shuffle Lemma, we directly see that e*(f;(M)) = e (M). O

)

Proposition 14.2.4. Let M € H,(q) —mod, be irreducible, and leti,j € 1. More-
over, write a = £ (M). Then:

(1) If &1 (f;(M)) = a, then (&;)*(f;(M)) = f;((&})*(M)).
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14.2. Crystals associated to cyclotomic Hecke algebras

(il) If eX(fi(M)) = a+ 1, then & (fi(M)) = M.

Proof. This is [44, Proposition 13.1], where the proof of statement (i) is given only
in the case ¢ = j. But also for i # j the same argument applies. 0

If we replace in Lemma 14.2.3 and Proposition 14.2.4 M by M?, then we obtain
the following:

Lemma 14.2.5. Let M € H,(q) —mod, be irreducible. Then the following hold:

(i) For alli € I, either e;(ff(M)) =¢e;(M) ore;(f(M)) =e;(M) + 1.

(ii) For alli,j € I with i # j, we have that ¢;(f;(M)) = &;(M).

Proposition 14.2.6. Let M € H,(q) —mod, be irreducible, and leti,j € I. More-
over, write a = £;,(M). Then:

(i) If &i(f; (M) = a, then &(f;(M)) = fr(&}(M)).

(i) If e;(fF(M)) = a+ 1, then &(fF(M))

12

M.

As stated earlier, for A € P, , we want to make the sets B(oco) and B(A) into
crystals. For B(A), we use the operators é2, fiA together with the functions &, o
defined in Section 12.3 to define the maps &, f;, e;, ¢;, for all i € 1.

For B(c0), we use the maps é;, fi, and the function g; from the same section. The
function ; is defined below.

On B(oo) and B(A), we define the weight functions as
wt([M]) = —, (14.4)
for an irreducible M € H,(¢q) — mod, with central character v, and
wt*([N]) = A — 7, (14.5)

for an irreducible N € H2(q) — mod with central character . Finally, for [M] €
B(o0), we set

i([M]) = ei([M]) + wt([M])(hs). (14.6)
We can now state the following:

Theorem 14.2.7. The set B(oo) together with the maps €;, i, €;, fi,wt, as well as
the set B(N), A € Py, together with the maps €, o™, e}, fA wth, are crystals.

)

Proof. Property (C1) for B(A) is Lemma 12.3.12 (iii), and equation (14.6) for B(c0).
The property (C4) is Theorem 12.3.1, for both B(co) and B(A).

By Lemma 12.1.3, we see that for M € H,(q) — mod, irreducible, ¢;(&;([M])) =
ei([M]) — 1, for i € I. Moreover, by Theorem 12.3.13, we have that o;(f;([M])) =
@i([M]) — 1, for M € H*(q) — mod irreducible. Using Theorem 12.3.1, we see that
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Chapter 14. Crystal structure

= ¢i([M]) + 1. For M € H,(q) — mod,, by definition, ¢;(&;,([M]) =
ei(€;([M])) +wt(é;([M]))(h;). Moreover, since é;([M]) has central character v — «,
for M € H”(q) — mod irreducible, we infer that

wth(&([M])) = A—(y—a)
A=+
= wt'([M]) + .

By (14.4), we have that wt(é;([M])) = —y + «;. It follows by Theorem 12.3.1 and
Remark 12.1.11 that

pi(@i([M]) = e([M]) = 1+ wt(e([M])) (hi).

Since «;(h;) = 2, we infer that

ei(ei([M]) = e([M]) + wt([M])(hi) + 1
= @i([M]) + 1.

Now we see that B(oo) and B(A) satisfy property (C2).

By Remark 12.1.11, we immediately have that &;(f;([M])) = &;([M]) + 1, for irre-
ducible M € H2(q) — mod (resp. H,(q) — mod,). Furthermore, Theorem 12.3.13
shows that ¢;(fA(M)) = ¢;(M) — 1, and hence, o;(f;([M]) = ¢;([M]) — 1 holds for
B(A). Let M € H,(q) — mod, be irreducible with central character v. By (14.4),
together with Remark 12.1.11, we see that

pifi([M])) = &i([M]) + 1+ wt(fi([M]))(hs).

Since wt(f;([M]))(h;) = —y — a;, we have that

pi(fi(IM])) = ei([M]) + wt([M])(hs) — 1,

and thus, ¢;(f;([M])) = @:([M]) — 1. From the definition of wt and wt* we easily
see that wt(f;([M])) = wt([M]) — a; (resp. wt(f;([M])) = wt([M]) — ), for
irreducible M € H,(q) — mod, (resp. H2(q) — mod). This shows that (C3) holds
for B(oo) and B(A).

Suppose that &;(b) # 0. Then, for M € H2(q) — mod irreducible, ¢;([M]) is finite,
by Theorem 12.3.13 (iii). For M € H,(q) — mod, this follows form (14.4) and the
fact that e;([M]) is finite. Moreover, the same argument shows that if f;([M]) # 0,
then ¢;([M]) is finite for irreducible M € H,(q) —mod, (resp. H2(q) —mod). This
finishes the proof. O

Via inflation we obtain an embedding infl* : B(A) U {0} — B(oco) U {0}. We have
the following.
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14.2. Crystals associated to cyclotomic Hecke algebras

Lemma 14.2.8. The map 1* : B(A) — B(co)®Ty, given by [M] — infi* ([M])®t4,
is an embedding of crystals. Its image equals the subset

{IM]®t5 € B(oo) @ Ty | €3 (M) < A(h;) for alli € I}

Proof. Clearly, ¢*(0) = 0. Let [M] € B(A) with v*([M]) # 0, M € H2(¢q) — mod
irreducible. Suppose that infl*(M) has central character . Then

wt(*([M])) = wt(infi*([M]) @ )
= wt(infl* ([M])) + wt(t,)
= A_P%

see Example 14.1.2 (ii). Thus, wt(¢*([M])) = wt([M]). Next, let i € I. Then:
g™ ([M])) = max(e; (infi* ([M])), ei(ta) — wt(infl* ([M])) (hy)).

Since, by definition, g;(ty) = —oo, we have that ;(¢v*([M])) = &;([M]). Similarly,
since ;(ty) = —oo, we have that o(¢¥*([M])) = ¢;([M]). This shows that "
satisfies (M2).

Next, suppose that 1*([M]) # 0 and ¥*(¢&;([M])) # 0. Recall from [44, Lemma 9.3]
that infl*(e2([M])) = & (infl*([M])). Therefore,

VA& (M) = inft (& ([M])) ® ta = (& (mfl*([M]))) @ ta.

Since i(infl* ([M])) > &i(ta), we see that ¢*(&([M])) = &(y*([M])). Hence,
satisfies (M3).

Assume 2 ([M]) # 0 and ¥ (f;([M])) # 0. Property (M1) implies that f;([M]) #
0. Then, by [44, Lemma 9.3], we have that infi*(f;([M])) = f;(infl*([M])), and
the same argumentation as above shows that ¢(f;([M])) = fi(*([M])), hence
property (M4).

The second statement follows from Lemma 14.2.2. This finishes the proof. O

The proof of the next lemma is analogous to that of [59, Lemma 10.3.1].

Lemma 14.2.9. Let M € H,(q) —mod, be irreducible, and i,j € I such thati # j.
We set ¢ = ef(M). Then the following hold:

(i) ;(M) = ;((&7)*(M)).

(i) Suppose that e;(M) > 0. Then €f(é;(M)) = (M) and (€)°(&;(M)) =
&;((e7)°(M)).

Proof. For (i), we apply Lemma 14.2.5 (ii) ¢ times:

e;((€)°(M)) = ;(fF((€)°(M))) = - = ;((F))°((€))°(M))) = &5 (M).
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By Lemma 14.2.3 (i) we have that £3(f;(N)) = eX(N), for irreducible N € H,,(q) —
mod,. If we set N = &;(M), we get the first part of (ii). Moreover, by Proposition
14.2.4 (i), we have that (&;)°(f;(M")) = f;((&;)°(M')), for irreducible M" € H,(q) —
mod, with ef(f;(M')) = ef(M’). If we set M' = €;(M), then the last property holds
by the first part, thus

(€)°(M) = (&)°(f;(&;(M))) = f;((&7)(&;(M))).
If we apply €; on both sides, the claim follows. O

The following, which is taken form [44], will be crucial in the proof of the next
proposition.

Lemma 14.2.10. Let M € H,(q) — mod, be irreducible and i € I. We set ¢ =
ef(M), and let L = (&7)°(M). Then:

(i) (M) = max(e;(L),c— wt(L)(h;)).
(i) Ife;(M) > 0, then
.~ e if e;(L) > ¢ — wt(L)(h;),
=i (&(M)) = { c—1 ife,(L) < c—wt(L)(h).
(iii) Suppose that e;,(M) > 0. Then

e\ 5 ~ | &(L) ifei(L) > c—wt(L)(hs),
(&)(&:(M) = { L ifelL) < c—wt(L)(hi),

where b= el (&;(M)).
Proof. This is [44, Proposition 13.2]. O

Next, recall the definition of the crystal B;, ¢ € I from Example 14.1.2. In what
follows we denote by b; the element b;(0) in B;. Then we define a map

U, : B(oco) — B(0) ® B;, (14.7)

given by [M] — [(e5)¢(M)] ® fe(b;), where ¢ = £*(M).

In the sequel, we will write [1] for the isomorphism class of the irreducible Hy(q)-

module in B(oco). The following is [59, Lemma 10.3.3] in the non-degenerate case:
Proposition 14.2.11. We have the following:
(i) For all [M] € B(0), wt(M) is a negative sum of simple roots.
(i) [1] is the unique element of B(oco) with weight 0.
(iii) &;([1]) = 0, for every i € I.
)

(iv) &i([M]) € Z, for all [M] € B(c0) and every i € 1.
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14.2. Crystals associated to cyclotomic Hecke algebras

(v) For alli € I, the above defined map V; is a strict embedding of crystals.
(vi) Wi(B(00)) € B(oo) x {f"(bi) [ n > 0}.

(vii) For any [M] € B(oco) different from [1], there is some i € I such that
U,([M]) = [N] ® f*(b;) for some [N] € B(co) and n > 0.

Proof. Properties (i)-(iv) follow directly from the construction of the crystal B(oo).
Property (v) follows from Lemma 14.2.9 and Lemma 14.2.10. Moreover, (vi) follows
from the definition of the map W;, and property (vii) holds since for [M] € B(o0)
different from [1], we have that (M) > 0 for at least one i € I. O

Henceforth, we denote by U,(g(A))~ the subalgebra of U,(g(A)) generated by the
symbols f;, i € I.

By [56, Proposition 3.2.3] the conditions of Proposition 14.2.11 determine the crystal
Bkas of the Q(v)-algebra U, (g(A))~ uniquely up to isomorphism:

Theorem 14.2.12. The crystal B(oo) is isomorphic to the crystal Bgas associated
to the crystal basis of the Q(v)-algebra U,(g(A)).

From [54, Theorem 8.2] we know the following. Note that in the notation of [54],
the element u,, € Bgas corresponds to 1 € U,(g(A)).

Proposition 14.2.13. For all i € I there exists a unique strict embedding of crys-
tals
@i : BKas — BKas ® Bz

such that ©;(te) = Use @ b;.

Now Theorem 14.2.12 gives us an isomorphism f : Bk.s — B(co) of crystals.
Therefore, for all ¢ € I, we have the following commutative diagram:

7

B(o0) B(o0) ® B;
1]0 f® idBi
BKas BKas X Bz

By Proposition 14.2.11, for ¢ € I, the map ¥, is a strict embedding of crystals and
U;([1]) = [1] ® b;. Since f(us) = [1], we see that we may identify W; with the map
O;, for all i € I.

In [54, §8.3], an anti-automorphism x is defined on U,(g(A)), satisfying v* = v,
el =e;, fi = f;, for all i € I, and (v")* = v for all h € h. Moreover, functions

(eKasyx (fKasyx (gKasyx (cpf{as) are defined giving another crystal structure on Bgas.
The result of [54, Proposition 8.1] describes this structure via the maps ©;:

PI‘OpNOSitiOI’l 14.2.14. Let i € I. Suppose that for b € Bgas we have 0;(b) =
bV @ fI'(b;), b € Bias, m > 0. Then the following hold:
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(i) = 0.

(ii)

(iil) ©;((FF=)* (b)) = b' @ f"* (by).
)

(iv

™

() )
(

K (b) = m.

(2

() (1)) :{ g ;”ZiS

It follows from the previous proposition that

Im(0;) = {b® f"(b;) € Bxas ® Bi | m € Z, (££*)"(b) = 0}.
Comparing this with the definition of the map V¥;, and taking into account that we
have identified the maps ¥, and ©;, we see that we also may identify the maps &}
with the maps (e5*)* for all i € 1.

Following the discussion after [54, Theorem 8.1], for all A € P, , we have an embed-
ding
LA B(A>Kas — Bgas ® TA, b—b®ty

of crystals, where B(A)kas denotes the crystal associated to the irreducible highest-
weight module of highest weight A over U,(g(A)). In [54, Proposition 8.2] a de-
Kas)*:

scription of the image of the this map is given in terms of the maps (¢,

Proposition 14.2.15. For any A € P, the image of tn equals the set

{b®@t) € Bias ® Ty | (€5%)*(b) < A(h;) for all i € I}.

(2

Therefore, in view of Lemma 14.2.8 and our identifications made above, we can
conclude that for A € P, we have an isomorphism of crystals between B(A) and
B(A)kas. This establishes Theorem 14.0.12 of the beginning of this chapter.
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Chapter 15

The theorem of Misra—Miwa

A major problem in the representation theory of quantum groups U,(g(A)) is to
describe explicitly the structure of the crystal graph associated with an irreducible
highest-weight module L(A) of highest weight A € P;. In the case when A is a
generalized Cartan matrix of type Ag), n > 1, this problem was solved in [70],
where it is shown that the crystal graph B(Ag) of the basic representation L(Ag)
can be described in terms of Young diagrams. In this chapter we explain this
parametrization of the latter crystal and deduce branching rules for the finite Hecke
algebra H/(q), n > 0. The notation used in this chapter can be found in [68].

Let u = (p1,- .., 1r) be a composition of the positive integer n, and [ be a positive
integer. Then p is called [-restricted if |pu; — pjy1| < 1 for all j € Z., where we set
pj = 0 for j > k. For a composition p, we denote by [u] its associated diagram.
For each node x of the diagram of u, we shall define its [-residue as the coset
(7 —4) mod [, where x is located in the ¢th row and jth column of the diagram [u].
In what follows we will write I = {0,...,l — 1} for the elements in Z/IZ. Also,
define cont(u) = (74)ier, where v; = [{x € [p] | = has | — content i}, for all i.

Now suppose that A is a partition of n. A node z of [A] with [-content i is called
i-removable if the diagram [A]\ {x} is a diagram of a partition of n — 1. In this case
we write A, for the partition A \ . On the other hand a node z is called i-addable
if there is a partition v of n + 1 such that [v] = [\]U {z}, and z has [-content i. In
this case, we will also write A for the partition v. It is clear that if a node x of [)]
is i-removable (resp. i-addable), then it lies on the rim of [A] (resp. [A"]).

If we read the i-addable and i-removable nodes in [A] from the bottom up, and write
the symbol A (resp. R) each time we have an i-addable (resp. i-removable) node, we
get a sequence consisting of the symbols A and R, the i-signature of . If we delete
all of the substrings of the form AR, we obtain the reduced i-signature of . The
reduced i-signature looks like a sequence of Rs followed by As. A node corresponding
to an R in the reduced i-signature are called 2-normal, a node corresponding to an
A in the reduced i-signature is called i-conormal.

The rightmost i-normal node in [A] is called i-good, the leftmost i-conormal node in
[A] is called i-cogood.
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A node of [\ is called normal (resp. conormal, good, cogood) if it is i-normal (resp.
i-conormal, i-good, i-cogood) for some i € I. Note that a good (resp. cogood) node
is, if it exists, unique.

For A a partition of n and p a partition of n 4 1 we write A == 4 if [i] is obtained
from [\] by adding a normal node. Similarly write A good p if [p] is obtained from
[A] by adding a good node.

Let A\ be a partition of some n € Z,. For any ¢ € I we shall define

ei(A\) = [{i —normal nodes in [A]}|, (15.1)
vi(A\) = |{i — conormal nodes in [A]}|. (15.2)

Moreover, we set

. Ay if g;(A) > 0 and z is ¢ — good,
&) = { A ifeg)\g o (15.3)
5 A*if ;(A) > 0 and x is @ — cogood,

In the following, for a non-negative integer n, we will write P;(n) for the set of all
[-restricted partitions of n. Also, set P, = (J,5oPi(n). Note that we write @ for
the empty partition, which is obviously [-restricted. We have the following lemma:

Lemma 15.1.16. For any i € I, é()\) and fi(\) are l-restricted (or zero) if X is
[-restricted.

Proof. Suppose that A = (Aq,..., \g) is [-restricted with an i-good node z = (r, s),
i€ 1. If A\, is not [-restricted, then \,_; — A\, = [—1. Since the node (r—1,s+1—1)
on the rim of [A] has the same [-content as the node (r, s), we see that this node is
also an i-removable node. But this is a contradiction to the definition of an i-good
node. Thus, if A is [-restricted, then é€;(\) is [-restricted or zero. Similarly one shows
that f;(\) is l-restricted (or zero) if \ is. O

If A is a partition of n with cont(\) = (7;);es, define

i€l

With these data, we have the following theorem, which is due to K. C. Misra and
T. Miwa:

Theorem 15.1.17. The datum (Pl,si,api,éi,ﬁ-,wt) determines a crystal. As a
crystal it is isomorphic to B(Ao)kas, the crystal graph of the irreducible highest-
weight module L(Ao) of highest weight Ay over Uv(g(Aﬁ)l)).
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Proof. This is [70, Theorem 4.7]. O

Remark 15.1.18. For A € P(n), by the previous theorem, we may write A =
fin e fil(®), for some sequence (iy,...,1,) of elements of I. In view of Theorem
14.0.12, we may identify the crystal B(Ag) with the crystal P, and the operators
& and & as well as f; and f, for all i € I. Thus, to such X as above, there
corresponds an irreducible H/(q)-module, denoted by C, which is given by

Cy= fln T fil(ll\o)' (156)

Conversely, if C' is an irreducible H/(q)-module, we can use the identification of P
and B(Ay) to label C' by a partition in P;(n). In this way, we obtain a labelling for
the irreducible H/(q)-modules, n > 0.

Taking into account the results from the former chapters, we obtain a branching rule
for irreducible modules for the finite-dimensional Hecke algebras H/ (q) = H*?(q).
In what follows we write e;, f; for the cyclotomic functors ef\o, Z-AO, for all i € I.
Theorem 15.1.19. Let n >0 and X\ € Pi(n). Then

Res;, 1 (Cy) Zeo(Cr) @ -+ D e-1(Ch),

where for every i € I, e;(Cy) # 0 if and only if X has an i-good node x. In this
case, e;(Cy) is an indecomposable self-dual H,{fl(q)—module with irreducible head
and socle isomorphic to Cy,. Moreover, one has:

(i) The multiplicity of C, in e;(C)) equals £;(X\), €;(\y) = €;(X\) —1, and all other
composition factors C,, of e;(Cy) satisfy €;(p) < ;(X) — 1.

(i) The algebra End ;-
Hence,

1(q)(ei(C',\)) is isomorphic to the F-algebra Flz]/(z5W).

5z<)\> = dlmF EndHLl(q)(ei(CA)).
(i) If \,v € Pi(n) are such that A # v, then Homeil(q)(ei(C’)\), ei(C,)) = 0.

(iv) e;(Cy) is irreducible if and only if £;,(\) = 1. In particular, Res,_,(C\) is
completely reducible if and only if ;,(\) < 1 for all i € I, and is irreducible if
and only if Y, ei(N) = 1.

Proof. The first statement follows from Proposition 11.2.11 together with the la-
belling given in Remark 15.1.18. The fact that e;(C)) is indecomposable follows
from Theorem 12.1.8.

By Proposition 12.2.3, it follows that e;(Cy) is a self-dual H! | (¢)-module. From
Proposition 12.3.4 (ii) it follows that soc(e;(Cy)) = hd(e;(Cy)). Since soc(e;(C))) =
é;(Cy) by definition of &;(C,) and é;(Cy) = C,, by our identification, we see that
soc(e;(Cy)) = hd(e;(Ch)) = C,,.

The statement in (i) is Theorem 12.3.6 (i) together with our identification of P,
and B(Ag). Similarly, (ii) is Theorem 12.3.6 (ii). Statement (iii) is Corollary 12.3.7
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again combined with the identification of P, and B(Ay). Since e;(C)) has irreducible
socle and head, the statement in (iv) follows from (i). O

Also the following is true.

Theorem 15.1.20. Let n > 0 and X € Pi(n). Then
IndZJrl(C/\) = fO(C/\) ©--- b flfl(C)\),

where for every i € I, f;(C\) # 0 if and only z'f A has an i-cogood node x. In this
case, f;(Cy) is an indecomposable self-dual Hn+1( )-module with irreducible head
and socle isomorphic to Cy=. Moreover, one has:

(1) The multiplicity of Cx= in fi(Cy) equals p;(N), ©i(A*) = wi(A) — 1, and all
other composition factors C, of fi(Cy) satisfy ¢i(1) < pi(A) — 1.

(ii) The algebra EndHfH(q)(fi(C’)\)) is isomorphic to the F-algebra F[z]/(x#™),
which implies that
¢i(A) = dimp End s (fi(Ch))-

n+1

(iii) We have that HomeH(q)(fi(C',\),fi(C'l,)) = 0 for all \,v € Py(n) such that
A# v,

(iv) fi(Cy) is drreducible if and only if ©;(\) = In particular, Ind"*(Cy) is
completely reducible if and only if ;(\) <1 for alli € I, and s irreducible if
and only if Y .., pi(N) = 1.

Proof. 'This is proven similarly as Theorem 15.1.19, using Theorem 12.3.13 for part
(i). Part (ii) can be deduced from the proof of [44, Theorem 9.15]. Part (iii) is
proven similarly as Corollary 12.3.7, and part (iv) is a consequence of (i). O

We also can state results about the functors (ero)) (fAo)") € I. For convenience,

we will write e, £ instead of (¢2)®), (fZAO)(’”).

7

Theorem 15.1.21. Let n > 0 and A € Py(n). Moreover, leti € I, and r > 1.
Then
) = De (),
r!

where egr)(C,\) # 0 if and only if X has at least r i-normal nodes. In this case,
egr)(CA) 15 a self-dual indecomposable Hg,r(q)—module with irreducible head and socle
isomorphic to C,, where p is obtained from X by removing r top i-normal nodes.
Furthermore,

(i) The multiplicity of C,, in e (C’A) (EZT ), i ) =¢g(A) =71, and g,(v) <
gi(X) — r for all other composition factors C, ofe ( \)-

(ii) Homys (,(ei”(Ch),e”(C)) = 0, for all v € Pun) with v # .

n—r

188



(iii) el(-r)(C',\) is irreducible if and only if r = €;(\).

Proof. The first part follows from Proposition 12.3.9, and the labelling of Remark
15.1.18. Statement (i) is Proposition 12.3.10 (i).

Part (ii) is the statement of Proposition 12.3.10 (ii) together with our labelling.
Finally, (iii) follows from (i). O

Theorem 15.1.22. Let n > 0 and A € Py(n). Moreover, leti € I, and r > 1.
Then

e =P ey,

where fi(r)(C,\) # 0 if and only if X\ has at least r i-conormal nodes. In this case,
fi(r)(C,\) is a self-dual indecomposable H! . (q)-module with irreducible head and
socle isomorphic to C,,, where i is obtained from X by adding r bottom i-conormal
nodes. Moreover:

(i) The multiplicity of C,, in f(Cy) is (PN, @i(k) = i(\) — 7, and @;(v) <

r

©i(A\) — 1 for all other composition factors C, of fi(r)(C)\).

(£7(Ch), £7(C)) = 0, for all v € Pi(n) with v # A,

(ii) HomH£+T(q)

(iii) fi(r)(C,\) is irreducible if and only if r = @;(\).

Proof. As in the proof of Theorem 15.1.21, the first part follows from Proposition
12.3.9, and the labelling of Remark 15.1.18. Statement (i) is Proposition 12.3.14
(i).

Part (ii) is the statement of Proposition 12.3.14 (ii) together with our labelling.
Also, (iii) can be deduced from (i). O

Remark 15.1.23. The corresponding branching rules in the degenerate case can
be found in [59, §11].
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Chapter 16

The Brundan—Kleshchev
branching rules

In this chapter we recall the modular branching rules for Hecke algebras of type A,
obtained by J. Brundan in [16], generalizing the results of [58] for the symmetric
groups. We will also explain how this is related to the labelling obtained in the last
chapter.

Recall that for a non-negative integer n, we denote the finite Hecke algebra of the
symmetric group on n letters with parameter ¢ € F by H/(q). We assume that
q # 1 has finite order [ in F.

In what follows, for a partition A\ of n € Z,, we will denote by S* the g-Specht
module defined by Dipper and James in [29, §4]. Following [16], in our context
here, we will use a different parametrization as follows: Denote by S, the ¢-Specht
module S* of Dipper and James, where by 1/ we mean the partition conjugate to s,
ie, if = (..., k), then p' = (py, ..., py,) is such that pf = [{s € {1,...,k} |
ts > j}|, which again is a partition of n. In [29] it was shown that if A is an [-regular
partition of n, then S* has an irreducible head denoted by D*. Thus, if p is an
l-restricted partition of n, then S, has an irreducible head denoted by D,,. It is easy
to see that pu is [-restricted if and only if i’ is [-regular. Hence, if u is [-restricted,
it follows that D, equals D+

The following are the main results of [16].

Theorem 16.1.24. Let pu be an l-restricted partition of n € Z, and X be an [-
restricted partition of n+ 1. Then:

F oifu i g
H "t1D,)) ’ 16.1
OmH}Z(q)(S“’ReS” (Dx)) { 0 otherwise . (16.1)
Proof. This is [16, Theorem 2.5]. O

Theorem 16.1.25. Let p be an l-restricted partition of n € Zy and \ be an -
restricted partition of n+ 1. Then:

ood
. ~ ) Foifp B
Ho D, Res"1(Dy)) = ’ 16.2
mHT{(q)< 1 n (D) { 0 otherwise . ( )
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Chapter 16. The Brundan—Kleshchev branching rules

In particular we have that

soc(Res;; (D)) = @) D (163
£°0)
Proof. This is [16, Theorem 2.6]. O

Remark 16.1.26. By Frobenius Reciprocity, we see that

| Foif 25\
n+ ~ ,
HomeLH(q)(Indn (D). Da) = 0 otherwise . (16.4)
Hence,
hd(Ind;*(D,)) = €D Da. (16.5)
2o\

In particular, from these theorems, we obtain a branching rule for the irreducible
H/(q)-modules, n > 0. It is natural to ask whether it coincides with the branching
rule given by Theorem 15.1.17. We have the following:

Proposition 16.1.27. The labelling of Chapter 15 of the irreducible HJ (q)-modules,
n > 0, coincides with that induced by Theorem 16.1.25.

Proof. We argue by induction. For n = 0, there is only one irreducible Hg (q)-
module, hence D, = C,. Let n > 0, and choose a partition A € P;(n). Suppose
that Dy = C),, for some [-restricted partition p of n. By Theorem 16.1.25, we know
that

soc(Res;_{(D,)) = @ D,. (16.6)

ood
V220N

On the other hand, by the first part of Theorem 15.1.19, we have that

soc(Res_,(Dy)) = @D &(Dy). (16.7)

iel

Suppose that é;(D,) # 0, for some ¢ € I. By Theorem 15.1.19, we have that

é;(Dy) = C,, for some i-good node x of p1. Moreover, by the inductive hypothesis,

Cy, &£ D,,. Then, again by Theorem 16.1.25, we get that that u, 890 \. The

structure of the crystal graph P; ensures that for each ¢ € I there exists at most
one partition of n that is obtained from u, by adding an ¢-cogood node. Since p is
such a partition, it follows that A = pu. 0
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Chapter 17

Scopes equivalence

In the sequel we will recall the fundamental result concerning Morita equivalent
blocks of symmetric groups and their associated Hecke algebras, respectively. This
was done in [80] and [52].

First, we give the necessary definitions of the combinatorics which are needed to
obtain these results. After that we may restate the latter equivalence in terms of
the functors which we defined in the previous chapters. As a consequence we may
drop the restrictions on F' and ¢ of [52].

We shall assume throughout that ¢ # 1 has finite order in F'.

17.1 Combinatorics

We will turn our attention to the finite-dimensional Hecke algebra H/(q), for some
n > 0. In [52] it was shown that the blocks B and B of Hf(q) and H’_,(q) of
weight w are Morita equivalent if they form a [w : k]-pair, where k > w. There, a
bijection is given between the [-regular partitions of n lying in B and those [-regular
partitions of n — k lying in B.
In view of Chapter 15, we want to translate this bijection to the [-restricted par-
titions of n resp. n — k. Recall that if A is a partition of n, we denote by S the
g-Specht module defined by R. Dipper and G. James in [29], which they indexed by
X', the partition conjugate to A. Therefore, if A is [-restricted, by D) we mean the
irreducible H/(g)-module defined by Dipper—James and indexed by \. Note that
A is [-restricted if and only if X is [-regular.
First of all we want to explain the combinatorics used in [80] and [52]: Let A =
(A1, ..., As) be a partition of n. A sequence of S-numbers for X\ is given by non-
negative integers 51 > By > ... > [, t > s, satisfying
b _{ —i+t  ifi>s. (17.1)
Such a sequence is usually displayed on an abacus with a bead at each position f;
on the latter. The number of runners [ > 0 relates to the order of ¢ in F. If we use
a display with [ runners, we will say that the numbers i, + ¢,2[ + 7, ... belong to
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the (i 4 1)st column, for ¢ = 0,...1 — 1, and that m — 1 is one place to the left of m
for m > 1.

We need the following two operations on the abacus of a S-set: First, if possible, we
may slide a bead up along its runner. This corresponds to removing a rim [-hook
from [A]. When all the beads are as high as possible, we have the f-set for the
corresponding [-core of \.

Second, we consider the operation of sliding a bead one place to the left, from
position m to m — 1. This corresponds to removing a node from [\].

Next, let B denote a block of H/(q) with [-weight w and [-core b = (by,...,b,),
which is a partition of n —lw. Let I' = {~1,..., V1w } be the r + lw-element [-set
for b. Denote by I';, 1 < j < [, the number of beads in the jth column of the
associated abacus with [ runners. Note that if A is a partition of n such that S
belongs to the block B, we always can represent A by an r + lw-element [-set.
Suppose that for some i > 2, I'; = I';_; + k, where k > w. Let B be the block of
Hj:_k(q) of weight w and core b, where b has an r + lw-element SB-set that can be
obtained from that of b by sliding the bottom k beads of column ¢ to column ¢ — 1.
Let T' be the S-set of b, and ['; the number of beads in the jth column of T'. Then
we have that

L, = Ty, j#4,i—1,
fi - Fi—17
fi,1 = Fz

In this situation we say that the blocks B and B form a [w : k]-pair.

We note the modular branching theorem for ¢g-Specht modules.

Theorem 17.1.1. Let n > 1, X be a partition of n. There exists a filtration of
Res”_,(Sy) by q-Specht modules of H._,(q). The factors occurring in the latter are
of the form S,,, where p is a partition of n — 1, and [u] can be obtained from [A] by
removing a node. Moreover, each factor appears with multiplicity 1.

Similarly, Ind”(Sy) has a filtration of q-Specht modules for Hj;H(q), where each
factor is isomorphic to some S,, v a partition of n+ 1, where [v] is obtained from
[A] by adding a node. Each factor occurs precisely once.

Proof. This is [52, Theorem 3.4]. O

Now, if two blocks B and B form a [w : k]-pair, it was shown in [80, Lemma 2.1] for
blocks of symmetric groups and [52, Lemma 5.1] for blocks of Hecke algebras of type
A that there is a natural correspondence between partitions of n whose ¢-Specht
modules belong to B and those of n — k whose g-Specht modules belong to B. To
be more precise:

Proposition 17.1.2. Let A be a partition of n and suppose that Sy belongs to B.
Then there exists a partition X of n—k such that Sy belongs to B and egRes!_,(Sy)
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has a filtration such that each subquotient is isomorphic to S5, which occurs k! times.
Here e denotes the block idempotent of Hg_k(q) corresponding to B.

Similarly, if ep denotes the block idempotent of HJ(q) corresponding to B, then
egInd; _,(S5) has a filtration such that each subquotient is isomorphic to Sy, ap-
pearing k! times in the latter.

Proof. The first part is similar to [80, Lemma 2.1]. For the statement about the
induced module, one can use [69, Theorem A]. O

Remark 17.1.3. Note that Proposition 17.1.2 gives a bijective map © between the
set of partitions of n for which the corresponding ¢-Specht modules belong to B and
the set of partitions of n — k for which the corresponding ¢-Specht modules belong
to B. Moreover, if X is a partition of n belonging to B, then the abacus of ©O(\) is
obtained from that of A by sliding k£ beads from runner ¢ to runner ¢ — 1, that is to
say, by interchanging runner ¢ and runner ¢ — 1.

The crucial fact here is that whenever there is a bead in row j in the (i — 1)st
column of the abacus of A, there is a bead in the same row in the ith column, see
the proof of [80, Lemma 2.1]. This determines which beads can be moved. Let r
be the number of parts of the [-core parametrizing the block B. In the language of
Chapter 15, this means that if we set a = (i —r — 1) mod [, then the number of
a-removable nodes of [A] is k, whereas [A\] has no a-addable nodes. It follows that
all the a-removable nodes of [A] are a-normal.

The following two lemmas are important.
Lemma 17.1.4. The map © preserves the lexicographic order of partitions.

Proof. The argument of [80, Lemma 2.2] also applies in our context as the proof of
this result is purely combinatorial. O

Lemma 17.1.5. If X is a an [-restricted partition lying in B, then O(X) is also
[-restricted.

Proof. This follows from [80, Lemma 2.3], again the proof of the latter is purely
combinatorial. O

As a consequence, © induces a bijective map between the [-restricted partitions of
B and the [-restricted partitions of B.

17.2 The equivalence

By combining Proposition 17.1.2, Lemma 17.1.5, together with Theorems 15.1.21,
15.1.22, we obtain the following reformulation of equivalence given by J. Scopes and
T. Jost:

Theorem 17.2.1. Let B a block of Hl(q) and B be a block of H_,(q) so that B
and B form a [w : k|-pair, with k > w. Assume that the nodes of a partition \ of
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n that are removed to obtain O(\) have l-content i. Then the functors el(-k) and fi(k)
induce mutually inverse equivalences between the category B —mod and the category
B —mod.

Proof. Proposition 17.1.2, 16.1.27, Lemma 17.1.5, and Theorems 15.1.21, 15.1.22,
show that the functors egk) and fi(k) induce mutually inverse bijections between the
irreducible H/(q)-modules lying in B and those irreducible H/ _, (¢)-modules lying
in B. Recall from Theorem 11.2.15 that the functor S := fi(k) is left adjoint to
the functor 17" := egk). For M € B —mod and N € B — mod, let nyn be the

isomorphism of F-vector spaces

HomHV{(q)(S(M),N) — Hom (q)(M, T(N))

af

n—r

given by the adjunction. Recall that an adjunction comes with natural transforma-
tions

& ST — ing(q) and ( : idH£7 — TS

k(Q)
given by {y = UE(IN),N(idT(N)) : ST(N) — N, and (v = nasouy(idsan) : M —
TS(M), where idyr ) and idg; @ denote the identity functors on H/(q) — mod

and Hf:_k(q) — mod, respectively.
Suppose first that M is irreducible. By choosing N = S(M), we get the non-zero
map

M S5 TS(M).
Since egk)(fi(k)(M)) =~ M, we see that this map must be an isomorphism of H!_ (¢)-
modules. Now assume that A in B —mod has composition length greater than one.
Then we may consider an exact sequence of B-modules

0— My — M — My — 0,

such that M; and M, have composition length less than M. By the naturality of ¢,
we get a commutative diagram

0 M, M M, 0

o ke

TS(M,) TS(M) TS(Ms) — 0

0

Arguing by induction on the composition length, we may assume that (ys, and (y,
are isomorphisms of B-modules. By the five lemma, see for example [65, VIII.4,
Lemma 4], it follows that (j; must be an isomorphism of B-modules too. This
provides a natural isomorphism between TS and the identity functor on B — mod.
On the other hand, via the natural transformation &, we obtain a non-zero map

ST(N) =% N.
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If we assume N in B —mod to be irreducible, this map is an isomorphism of H/(q)-
modules as ST (N) = N. If N has composition length greater than one, there is an
exact sequence of B-modules

0— Ny — N — Ny — 0,

where the composition length of Ny and Ny is less than N. The naturality of &
affords a commutative diagram

0 TS(N,) TS(N) TS(Ny) ——— 0
B&W ‘SN h&\b
0 Ny N Ny 0

As above, we may assume that £y, and &y, are isomorphisms of B-modules. Then,
by the five lemma again, we infer that &y is an isomorphism of B-modules. This
shows that we get a natural isomorphism between T'S and the identity functor on
B — mod, showing that B — mod and B — mod are equivalent categories. 0

Remark 17.2.2. (i) Actually, we have shown in the Chapter 11 that the functors
egk) and fi(k) are both left and right adjoint to one another, whereas for the proof of
the previous theorem we only need the adjunction on one side.

(ii) Note that the restatement of the Scopes equivalence in the case of blocks of
symmetric groups is [59, Theorem 11.2.28].

Note that we can partition the set of blocks of Hecke algebras H(q), n > 0, into
families. Two blocks B and B’ belong to the same family if and only if there exists
a sequence B = By, By,...,B. = B’, e > 1, of blocks of weight w such that for
all 1 < j < e, the blocks B;_; and B; or B; and B;_; form a [w : k;]-pair for
some k; > w. Note that, by Theorem 17.2.1, all blocks in one family are Morita
equivalent. The next theorem is a consequence of this fact.

Theorem 17.2.3. The blocks of Hecke algebras of type A with parameter q € F of a
given weight w can be collected into families as described above. Each family consists
of Morita equivalent blocks. The number of such families is at most Hg.:l[(j -

1)(w—1)+1], and each family contains a block of some HL (q), where N is at most
P —1)2%(w—1)%/4+wl.

Proof. The statement of the number of such families and the least element contained
in such a family can be found in [80, Section 5] as the proof is purely combinatorial.

O

Remark 17.2.4. Compare the previous theorem with [52, Theorem 8.2]. Note
that in [52] there is a restriction on the parameter ¢ if the ground field F' has
characteristic p > 0. Our statement is valid over an arbitrary field of characteristic
p. Note that F' need not to be algebraically closed since every field is a splitting
field for H/(g), n > 0, and all the eigenvalues lie in F.
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As a consequence of the last theorem we get the following corollary, see also [80,
Example 1].

Corollary 17.2.5. There is only one family of Morita equivalent blocks of weight

w = 1. Moreover, all these blocks are Scopes equivalent to the principal block of
Hzf(@’
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Chapter 18

The application

In this chapter we will prove the main results of the second part of the thesis.
Namely we show that two indecomposable modules of Hecke algebras of type A
that correspond under the Scopes equivalence of Chapter 17 have common vertex.
As a consequence, this gives a proof of a conjecture stated by R. Dipper and J. Du
in [27] in the case where the modules lie in blocks of finite representation type.
For the convenience of the reader, we will recall the statement of the conjecture and
summarize the necessary tools developed in previous chapters.

In the sequel, we refer to the characteristic of the ground field F of H/(q) as p, and
assume that p > 0. Moreover, we keep the assumptions on ¢ of Chapter 17.

Recall that a vertex of an indecomposable finite-dimensional H/(q)-module M is a
minimal element of the set

V(M) :={Wy | A composition of n, W\ C W(n), M is Hy(q) — projective}.

Next, we recall the conjecture of [27], see [27, Conjecture 1.9]. To this end, we need
some more notation. Consider the set

N, ={(n_1,n0,...,n¢) | n=n_1 +nel +npl + ... +np'l}. (18.1)

To each 77 = (n_1,ny,...,n;) we can associate a standard parabolic subgroup W)
of W(n) with
A= (1,...,0,0,....0....¢p",....p'),

where each p/l occurs precisely n; times for any 0 < j < ¢, and 1 is repeated n_,
times.

Definition 18.1.6. Suppose that W is a standard parabolic subgroup of W (n).
Then W is called [-p-parabolic if it is conjugate to some W), where A is defined by
an element 77 € N,,.

In the case when p = 0, it is shown in [32] that the vertices of indecomposable mod-
ules are [-parabolic. As a natural extension of this result, the following conjecture
was stated in [27]:
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Chapter 18. The application

Conjecture 18.1.7. Let F' be a field of characteristic p > 0, and let ¢ € F be a
primitive lth root of unity with | > 1. Then the vertices of indecomposable HJ(q)-
modules are | — p-parabolic.

Next, we will use the theory developed in the former chapters to derive results of
the structure of vertices for modules lying in Scopes equivalent blocks. First of all,
we will recall the needed results obtained in the last chapters.

In the following we denote the functors

eho, fho (gho)(r) (fhoy(r)

v g 7 7

by ei,fi,eﬁ”,f.(”, fori e I and r > 1.

)

Lemma 18.1.8. Leti € I, and r > 1. For an H(q)-module M we have:
(i) ef(M) = Byye” (M),
(i) f7 (M) =@, f"(M).

Lemma 18.1.9. Leti € I and M € H!(q) — mod. Then:

- Hj, o
() Restlf (M) = @, (M),

(it) nd™ D (A1) = @, f,(M)
i} (q) o el '

For the rest of this section we will fix a block B of H/(q) and a block B of H!_, (¢)
forming a [w : k]-pair such that k > w, that is to say, B and B are Scopes equivalent.
In this situation, there is some ¢ € [ such that the functors egk) and fi(k) induce
mutually inverse equivalences of categories between B — mod and B — mod as seen
in Theorem 17.2.1. Then Lemma 18.1.8 has the following consequence:

Proposition 18.1.10. Let M € B —mod, and N € B — mod. Then the following
hold:

(1) fzk<€f<M)) = ®(k!)2 M.

Proof. We prove (i), then part (ii) is proven similarly. As egk) and fi(k) induce
mutually inverse equivalences between B — mod and B — mod, we have by Lemma
18.1.8 that

k) = @@ e® o))
P sEe ()
= DD

k' k!

~ P,
(k1)?

1%
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where in the second equivalence we have used that the functor f;, and thus fF, is

an exact functor. O

In the following, for finite-dimensional H7(q)-modules L and K, we write L | K if
there is an H/(q)-module L’ such that

K=Laol.
From Lemma 18.1.9 we obtain the next result.

Lemma 18.1.11. Keep the notation of Proposition 18.1.10. Then we have that

FEN )|IndH 2(q)

N
nfk(q)( ),

and

Proof. Consider N € B —mod as an Hf:fk(q)—module. Then it is clear from Lemma
18.1.9 (ii) that

£V | Ind 1@ ),

H)_4(@)
Inductively we see that fX(N) | Ind ( )(N ).
—k
Similarly, we have that ef(M) | ResH’} q( )(M), for M € B — mod. O
k

In the following we will identify the subalgebra H,’:_l(q) with the parabolic subalge-
bra H,-11)(¢q) of H}(q), corresponding to the partition (n — 1,1) of n. Moreover,
if 4 = (p1,..., ) is a composition of n — 1 and H,(q) the parabolic subalge-
bra of H!_,(q), we identify H,(q) with the parabolic subalgebra H,, . we)(@) €
Hg,—11y(q) € HI(g). We will use the same identification on the level of parabolic
subgroups of W(n — k) and W (n).

Next, we state one of the main statements of Part II, which is the key to verify the
conjecture in the representation-finite case.

Theorem 18.1.12. Let B be a block of HI(q), B be a block of H!_,(q) forming a

[w : k]-pair such that k > w. Let M € B — mod indecomposable, and N = egk)(M).
Then vx(M) =w @) vx(N).

Proof. Fix an indecomposable M € B—mod, and let N := e(k)(M) € B—mod. Let

p be a composition of n — k and W, C W(n — k) be a vertex of N. Furthermore,
we choose a source S of N, i.e., an indecomposable H,(¢q)-module S such that

H]_,(q)
N | Ind" 5(S).
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Chapter 18. The application

By Lemma 18.1.11 and transitivity of induction, it follows that f¥(N) is a direct

summand of Indgfég)) (S). From Proposition 18.1.10 it follows that fF(N) = @,, M
and thus,

H,(q)
M | IndHH(q)(S).
From Higman’s criterion, see for example [27, Theorem 1.4], we infer that M is
H,(q)-projective, and therefore, a vertex of M is contained in W,,.

Next, we choose a vertex Wy C W(n) of M, for a composition A of n. Moreover,
denote by T a source of M, i.e., an indecomposable Hy-module such that

M | Tnd™* @ (7).

H(q)

Together with Lemma 18.1.11, we conclude that

eE(M) | Res @ (Ind @) (7)),

('n k 1k)( q)
where we identify H’_, (¢) with the subalgebra H,—1,10(q) of Hf(¢). From Propo-
sition 18.1.10 it follows that

H( HY(q)
N | Res (nqkl @ o (Indy" (7).

Set N = (n — k,1%). If we apply the Mackey Decomposition Theorem, see [29,
Theorem 2.7], we see that

N | D [Hr(q) @m0 (Ta ©maio) T

de€Dyry

where v(d) is defined by W4 = W\ N Wy, for all d € Dy,.
Since N is supposed to be indecomposable, it follows by the Krull-Schmidt Theorem
that

N | Hy (Q) ®Hy(d)(Q) (Td QH,(q) T)7

for some d € Dy,. By Higman’s Criterion, it follows that N is H,q)(q)-projective.
But W, ) Cwny W, and therefore, a vertex of N is contained in W).

By [27, Prop051t10n 1.7], a vertex is uniquely determined up to conjugacy in W(n).
It follows that Wy =y () W,,. O

Finally, we obtain our main result, which now is a consequence of Theorem 18.1.12.

Theorem 18.1.13. Let B be a block of H}(q) of finite representation type, and
M € B —mod. Then the vertex of M is | — p-parabolic.

Proof. By Corollary 17.2.5 and Theorem 18.1.12, we can reduce this question to
H/(q). If M € H] (q) —mod is non-projective it must have vertex W, since all other
parabolic subalgebras of H lf (q) are semisimple. Hence, the claim follows. O

202



Remark 18.1.14. In [48] a supposed counterexample is given in the case where
the ground field is of characteristic 2, n = 3, and ¢ is a primitive 3th root of unity.
There, a certain indecomposable H?{ (¢)-module S is constructed as a restriction of
a Specht module over HJ(q). Then it is claimed that S is H,(q)-projective, with
= (2,1), whereas S itself is not a projective H{(q)—module. But this cannot be
the case as H,(q) is a semisimple algebra, and, thus, every module over H,(q) is
projective, and so is S.

203






Part 111

Appendix






Appendix A

Resolving ambiguities

In this chapter, we try to resolve the ambiguities in the reduction system of Theorem
9.3.1 in Chapter 9 of Part II.

A closer look at the pairs (9.10)-(9.22) given in Section 9.3 shows that there are no
inclusion ambiguities, but overlap ambiguities. In the following we try to resolve
these, where by =g we will denote a reduction step.

1. Let ¢ < j, and consider the pair in (9.10). If j < k, then we see that we have an
overlap ambiguity with the pair (z;xy, zxz;). We try to resolve:

(wiz))z, =s xj(vizg) =s (Tj08)0; =5 TRT;T;.
If we reduce the other way, we get
zi(xjrg) =s (viwg)r; =5 op(22)) =5 TR,

using only the reduction given in (9.10). Hence, we have obtained the same element.
Next we look at the overlap ambiguity with the pair in (9.12). We have that

zi(zje; ") =g @il
On the other hand
(zizj)a; ! =s wj(wa; ) =s (v5a7 )1 =s 1,

using the reductions in (9.10) and (9.14). Hence the calculation shows that we
obtain the same element. Similar calculations using the reductions in (9.10) and
(9.15) show that the overlap ambiguity between z; 'z; and z;z; is resolvable.

We try to resolve the ambiguity with the pair in (9.14). To this end, let 1 < i <
J < k <n. We compute:

(mixj)xlzl =5 xj(a:ixlzl) =5 (xjarlzl)xi =5 x,;lxjxi,

and
xi(xjxlzl) =3 (xixlzl)xj =3 x,;l(xixj) =3 x,;lxjxi,
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Appendix A. Resolving ambiguities

using the reductions in (9.10) and (9.14). Therefore, the ambiguity is resolved. The
same calculations using the reductions given in (9.10) and (9.15) show that the
ambiguity between x; 1xj and z;x;, can be resolved.

Next, let 1 < 4,5,k < n, j # 4,i+ 1, and 7 < k. Then we have an ambiguity
between T;x; and z;x. By using reduction (9.10), we get that

Ti(zxk) =s (Tixk)x;.
Now there are several cases. First, assume that k& # 4,7 4+ 1. Then we have:
(Tizy)zy =s we(Tizy) =s zer; Ty,
using reduction (9.17). If k£ = ¢, then:

(Tixr)z; =s (xipTi — (@ — Daig)zy = 21 (Tivy) — (¢ — Daiaz;
=s Tip1Til; — (q— 1)-73i+133j,

using reductions (9.19) and (9.17). If k =i + 1, we compute

(Tar)z; =s (@Ti+ (¢ — Do)z = vi(Tizg) + (¢ — Doz
=s zw; T+ (¢ — Dz,

using reductions (9.20) and (9.17).
If we try to resolve the other way, we get:

(Tizj)zr =s xj(Tizy),

using reduction (9.17). Again we have to distinguish different cases. If k # 7,7 + 1,
then

zj(Tizg) =5 (vjor)T; =s ez T,
using reductions (9.17) and (9.10). If k£ = i, we have that

zj(Tizy) =s (@i — (¢ — Vi) = (@zie)Ti — (¢ — 1) (252i11)
=s Tl — (@ — Dxiy,
by applying the reductions (9.19) and (9.10). If £ =i + 1, we compute that
zj(Tiwy) =s (@1 + (¢ — D)) = (zjz) T + (g — 1)(2;2441)
=s w1+ (¢ — Daipazy,
using (9.20) and (9.10). Now we see that in both reductions we obtain the same
element, i.e., the ambiguity is resolvable.

Next we investigate the ambiguity between T;x; and z;z;, where 1 <¢ <n —1 and
1 <1< 7 <n. We have:

Tz(ffz%) =S (Ti%‘)%,
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using (9.10). Now we have to distinguish several cases. If j # i + 1, we get
(Tizj)zi =s vj(Tiv)) =s vj(xip T — (¢ — Vipa) = i Ty — (@ — Dz,
by applying (9.17) and (9.19). If j =i + 1, we have:
(Tixzj)e; =s (T + (¢ — D)z = 2(Tixs) + (¢ — D)z,
=s (@il — (¢ — Dzis1) + (¢ — Dziva
= (@i )i — (¢ — Dagwig + (¢ — 1)z

=s T2l — (@ — D)z + (¢ — 1wz

= T,
using (9.20), (9.19), and (9.10). Reducing the other way, we obtain
(Tizi)z; =s (@i Ti — (¢ — Dain)z; = v Tizy — (¢ — Dz,

applying reduction (9.19). Again we have to consider two cases. First, assume that
j # i+ 1. Then we get

v (Tizg) — (@ = Dvir; =s (via2)Ti — (@ — 1) (@4175)
=S $j$i+1Tz‘ - (q - 1)$j$i+1a

using (9.17) and (9.10). If j = ¢ + 1, we have

i1 (Tizy) — (¢ — Daipir; =s v (@ + (¢ — Daig) — (¢ — 1)@
izl + (¢ — Dty — (g — Dz,

= $i+1$z‘Tz”

applying (9.19). Now we see that the reduced elements coincide, hence the ambi-
guity is resolved.

Now we look at the overlap ambiguity between T;z;41 and x;112;, where 1 <4 <
n—land1<i+4+1<j<n. We have

Ti(zip1z;) =s (Tiwj)rip =s v (Tiwig)
=s (@il + (¢ — Dxiv1) = 22T + (¢ — 1)wj2i40,
by applying the reductions (9.10), (9.17) and (9.20). On the other hand we get that
(Tiziv)z; =s (21 + (¢ — D)z = zi(Tizy) + (@ — Dz
=s ()T + (¢ — V) (wip175) =s w275 + (@ — Dz,

using (9.20) and (9.10). Now we see that the ambiguity is resolvable.

2. For the pair in (9.11) one proceeds in a similar manner as for the pair in (9.10),
using the appropriate reductions.
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3. Here we consider the element given in (9.12). We see that we have an overlap
ambiguity with the element in (9.13). We compute

(ziz; D, =5 1oy,
using only reduction (9.12). Reducing the other way, we get
xi(xfla:i) =5 11,

applying reduction given in (9.13). Hence, the ambiguity is resolved. A similar
calculation shows that the ambiguity between (9.13) and (9.12) is resolvable.

Next we investigate the ambiguity between (9.12) and (9.15). Suppose that 1 <i <
7 <n. Then we get

xi(z; x]) =5 (zx;)z; Loy xj(xiz; ) =5 1,
using (9.15) and (9.12). On the other hand
(xjx; ):1:] =5 lzj,

using only (9.12). Now we see that the ambiguity is resolvable.
Looking at the ambiguity between (9.15) and (9.12), we compute for 1 < i < j <n:

(27 "wj)ay ! =s aj(ay 27 h) =s (w5 ayt =g a7,
applying the reductions (9.15), (9.11) and (9.12). Moreover, we get
z; (et =s ',

using (9.12), and showing that the ambiguity is resolvable.
Next, we investigate the ambiguity between (9.12) and (9.17). Let 1 <i <n—1
and j # i,7+ 1. We get that

(Tiay)a;" =s 2(Tiay ') =s (v527)T; =5 1T,
using (9.17), (9.18) and (9.12). The other way is easy, using (9.12):
T; ({L‘] ) =g T;1.

Therefore, the ambiguity is resolved.
Now, consider the pairs (9.12) and (9.19). We have for 1 <i <n — 1:

E(xlxl_l) :>S 7—1117
applying (9.12), and

(Tixi)z; "t =s (wip T — (¢ — Do)zt =z (Tie ') — (¢ — Dy
=s T (@n T+ (¢ = D) = (¢ = Dagpa;
= (@inr )T+ (¢ = Dapart = (@ = Doy
=s 1T+ (¢ = Daipay ' = (¢ = Dagpay ' = 1T,
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using (9.19), (9.21) and (9.12). Again we see that the ambiguity is resolvable.
Next we look at the ambiguity of (9.12) and (9.20). Let 1 < ¢ < n — 1. Then we
get that

Ti(%ﬂxﬁrll) =s 1;1,
applying (9.12), and
(T, =s (@li+ (¢ — Dagp)ag)y = wi(Tiagh) + (¢ — D(@inazs))
=s wie; Ti— (¢ —Da7') + (¢ — 1)1
= (za; )T — (¢ — V() + (¢ — 1)1
=s 11, = (¢— 11+ (¢ — 1)1 =1T;,
using (9.20), (9.22) and (9.12). Hence the ambiguity is resolved.

4. The calculations for the pair in (9.13) are similar to that in (3.), using the ap-
propriate reductions.

5. Next we consider the pair given in (9.14). We see that we have an overlap
ambiguity with the pair in (9.15). Let 1 <i < j < k < n. Trying to resolve gives:

(:vza:j_l)xk =5 :E]_1<£E,$k) =5 (ZL‘J_liL'k)iL', =5 xkxj_lxi,
and

xl(a:j_lxk) =5 (:E,a:k)a:j_l =5 xk(:p,x;l) =g xkxj_lxi,

using (9.14) and (9.10). Hence, the ambiguity is resolved.
Next, we consider the ambiguity between (9.14) and (9.17). Assume that 1 < i <
n—1,7#4i+1and 1 <j <k <n. We get

Ti(zjay, ') =s (T ')y,

by reduction (9.14). We have to distinguish several cases. First, let k # 7,7 + 1.
Then

(Tixy )ay =s 7 (Tig) =s @y, ;T
using (9.18). If £ =i, we get

(T Ve =s (7T + (¢ — DayYay = 27 () + (¢ — Dy lay
=s x b T+ (¢ — ;!

7 x]"

applying (9.21) and (9.17). If £ =i + 1, we have that

(T Ny =s (37T — (¢ — Da; Dy = o7 (Tay) — (¢ — D)y 'ay
-1

=3 x;liji —(¢— 1)z, =z,
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using (9.22) and (9.17). On the other hand, we get:
(Tiwj)ay =s j(Tiy ),
by (9.17). Again we have to distinguish. If k # 7,7 + 1, then
vj(Tixy') =s (vjop ) Ti =s o i,
using (9.18) and (9.14). If k£ = i, we have

zi(Tiwy') =s xj(a hTi+ (g — Da; ') = (w52 ) T + (g — 1) (z3;7)

=g x;rlliji + (q — 1)xi_1xj,

by (9.21) and (9.14). If k =i+ 1, we get
vj(Tay') =s (e ' T — (g — Vg t) = (vja; )T — (g — D) (a7 )
=3 x;liji —(qg— 1)3:;1:@,

using (9.22) and (9.14). Now we see that the ambiguity is resolved.
Next, consider the ambiguity between (9.14) and (9.19). Let 1 < i < n — 1 and
1 <1< 7 <n. Then we have

Ti(xix; ") =s (Tiwy )i,
by (9.14). We have two cases. First, let j # ¢ + 1. Then
(Ta; Ny =s oy (Tixy)
=s xj_l(l’z'HTi —(¢—VDzip) = $;19€i+1Ti —(q— 1)95]-_11’i+h
using (9.18) and (9.19). If j =i + 1, then
(Tx; i =s (x7 Ti— (g — D Dai = a7 (Tiws) — (g — 1)(a7 ' 2:)
=s a; (i Ty — (g — Daip) — (¢ — 1)1
= (7 'wi)Ty = (g — D2y @) — (g — 11
=s iz, T — (¢ — Dz — (g —1)1,

by (9.22), (9.19), (9.13) and (9.15). On the other hand, we get
(Tw)z; =s (@ T — (¢ = Daap)z;t =z (T ') — (¢ — Dagpag
using (9.19). If j # i+ 1, we have
i (T ') — (g — Daima;' =s (@ipz; )T — (¢ — D(@i2; ")
=s @ win T — (¢ — Vaj wig,
by (9.18) and (9.14). If j =i+ 1, we get

1’¢+1(Ti$;1) —(q— 1)($i+133;1) =s i(r; T —(g—Da;') — (¢ — 1)1
= ipa; T — (= Dy — (¢ — 1)1

212



using (9.22) and (9.12), showing that the ambiguity is resolvable.
Next, lets consider the pairs (9.14) and (9.20). To this end, let 1 <i <n — 1 and
1<i+1<j<n. Then
ﬂ(iﬁiﬂl';l) =s (ﬂiﬂ;l)iﬁiﬂ =s x;l(nxi+1>
=s o (@ + (g — VDr) = 2 ' a1 + (g — 1)y i,
using (9.14), (9.18) and (9.20). Also, we have
(E%Jrl)iU;l =s (71 + (¢ — 1)$i+1)$;1

= mZ(T,x]_l) + (¢ — ].).Ti_i_lxj_l

s (@ )T+ (g = Dizeay)

=s oy T+ (g — )ag e,

by (9.20), (9.18) and (9.14). Therefore, the ambiguity is resolved.

6. If we consider the pair given in (9.15), we see that we get similar calculations as
in (5.), using the appropriate reductions.

7. Next let us consider the pair given in (9.16). Let 1 <i <mn — 1. We see that we
have an ambiguity with the pair in (9.17). For 1 < j <n and j #i,i + 1, we get
Ti(Tizy) =s (Tizy)Ti =s v;(TiTh)
=s v;((¢ = 1)Ti+q) = (¢ — 1)x;T; + qxy,
by (9.17) and (9.16). Also, we have that
(TT)z; =s (= DT+ q)z; = (¢ — D)Tix; + qu;
=s (¢ —1)x;T; + qz;,

using reductions (9.16) and (9.17). Therefore, the ambiguity is resolvable.
Using (9.16) and (9.18), a similar calculation shows that the ambiguity coming from

(9.16) and (9.18) is resolvable.
Next, consider the ambiguity (9.16) and (9.19). We compute
Ti(Tixy) =s Ti(xinTi — (¢ — Dain) = (Lzin)Ti — (¢ — 1) (Tizin)

=s (@1 + (¢ — Dain)Ts — (¢ — 1)(@T3 + (¢ — Daiga)
= (7)) + (¢ — Dain T — (¢ — DaiTi — (g — 1)z
=s (@ =1Ti+q) + (=D T — (¢ = DTy — (g — 1) i
= (¢— DT+ qri+ (¢ = Vi T, — (¢ — DT — (¢ — 1)
= (¢—DainTi — (¢ — 1)1 + g,

using (9.19), (9.20) and (9.16). On the other hand, we have that

(IiT)z: =s ((¢— 1T+ @z, = (¢ — 1)(Tix;) + qu;
=s (¢—1)(xiTi — (¢ — Dwigr) + qu;
= (¢—DzinT; — (g — 1)*wip1 + qui,
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by (9.16) and (9.19). Hence, the ambiguity is resolvable.
Now we look at the pairs (9.16) and (9.20). We get
Ti(Tiwit)
=s Ti(xiTi + (¢ = Daiga) = (Tiwi) Ti + (¢ — 1)(Tizisa)
=s (i1 Ti — (¢ — Vi) Ty + (¢ — V(2T + (¢ — Dxiga)
= 21 (L) — (¢ = D Ty + (¢ — DT+ (¢ — 1)°zi4q
=s tin1((q = DT +q) = (¢ — Daim T+ (¢ = VT + (¢ — 1)z
= (¢ = Daip T+ qrizs — (¢ = Vi T+ (¢ — DaiTi + (¢ — 1)z
= (¢ — DTy + (¢ — 1)1 + qrip,
using (9.20), (9.19) and (9.16). Moreover, we have

(TiT)zin =s ((¢— DT+ @i = (¢ — D)(Tiwisa) + quina
=s (¢ — D)(@Ti+ (¢ — Dig1) + qrin
= (¢—V)xT+ (¢ — 1)’z + g,
by (9.16) and (9.20). Now we see that the ambiguity is resolved.
Next consider the ambiguity given by (9.16) and (9.21). We have
Ty(T;)
=s Ti(aih T+ (= D) = (Tiaiy) T + (¢ — 1)(Tixi ')
=s (7'Ti = (¢ = D DT+ (¢ = (@i T+ (g = Dag )
=2, (LT) — (¢ — Day T+ (¢ — Dagy T + (g — 1)y
=s 2 ((@=DTi+q) — (¢ =D ' Ti+ (¢ - Dy T+ (g — 1)
= (¢ —Va; ' Ty + gz — (¢ — Va7 ' T + (¢ — Da L\ Ti + (g — 1)z
= (¢ — Dain T+ (¢ — ) +qay,
by (9.21), (9.22) and (9.16). On the other hand we get
(TT)x" =s ((a= DT+ = (¢—D(Ta ") + gz
=s (a= DT+ (g Do) +gxi!
= (¢=DrhTi+ (g — )% + g
using (9.16) and (9.21). Hence, the ambiguity is resolvable.
Now we look at the ambiguity coming from (9.16) and (9.22).
T,(Tiwiys)
=s T(2;'T; — (¢ = Dy ') = (T )T - (q - (T )
=s (@a T+ (¢ — Va )T — (¢ — D(zn T+ (g — Day )
= Iiﬂ(TiTi) +(¢— D' T — (g - ]‘)'Iz+1T (¢ — 1)
=s v = DTi+q) + (¢ — Dy ' T — (¢ — Dy T — (g — 1)
= (g — 1)951‘111Ti + q$i+1 +(g—Da;'Ti = (¢ — 1)z z—i—lT (q— 1%
= (¢ Va7 ' T+ qry — (¢ — 1)%7,
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using (9.22), (9.21) and (9.16). Also, we see that

(LT)ey =s ((¢= DT+ @ai) = (¢ = DTiag)y + qri)y
=s (¢— (@ Ti— (g —D;') + gz
= (=D T+ quy — (¢ — 1),
by (9.16) and (9.22), showing that the ambiguity is resolvable.

Since there are no more ambiguities in &, we have proved that all ambiguities
occurring in & are resolvable.
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[-p-parabolic subgroup, 194
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conormal node, 182 morphism of crystals, 172
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crystal, 172
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normal node, 182
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Shuffle Lemma, 96
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skew group algebra, 19
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stable equivalence, 16
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universal enveloping algebra, 119
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