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Preface

The field of mathematical research in which the content of this thesis is embedded is

the representation theory of finite-dimensional selfinjective algebras. These algebras

are amongst the most studied algebras in representation theory since they include

many classical algebras like group algebras of finite groups.

For a finite-dimensional algebra A over a field k, the main object of study is the

category of finite-dimensional representations of A, that is to say, its objects are

finite-dimensional k-vector spaces V together with a prescribed k-algebra homo-

morphism

Φ : A −→ Endk(V ),

where we assume that Endk(V ) acts on V from the left. The morphisms are the

k-linear homomorphism that commute with the action of A on V induced by Φ.

This category is abelian and constitutes an important invariant of the k-algebra A.

Equivalently, one can also consider the category A−mod of finitely generated left

A-modules. In this case one speaks of finite-dimensional left A-modules.

The overall objective is to classify the finite-dimensional A-modules up to isomor-

phism. Fortunately, every such module decomposes as a sum of modules that cannot

be decomposed any further. These A-modules are called indecomposable. But even

then, in most of the cases, classifying all indecomposable A-modules up to isomor-

phism is an impossible task. Therefore, describing invariants for A − mod whose

computation is achievable and which still give enough information is very desirable.

In the first part of this thesis we are concerned with an invariant that was given

by M. Auslander and I. Reiten in a series of papers adapting a completely new

viewpoint on the subject: Instead of working in the module category itself, they

considered the category Fun(A), whose objects are the covariant additive functors

A−mod −→ k−mod,

and whose morphisms are the natural transformations between them. Then, by

considering the irreducible objects in Fun(A), one gains new insight into the category

A−mod. Here, it is crucial that the finitely generated projective objects in Fun(A)

are given by the representable functors HomA(M,−), where M is in A−mod, and

that each irreducible object of Fun(A) is finitely presented. Assuming that A is not
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Preface

semisimple, a minimal projective resolution of an irreducible object in Fun(A) then

corresponds to a short exact sequence

0 −→ L
f−→M

g−→ N −→ 0

in A−mod, known as an Auslander–Reiten sequence or AR-sequence for short.

These sequences determine a directed graph Γ(A), the Auslander–Reiten quiver

or AR-quiver for short, whose vertices are in one-to-one correspondence with the

isomorphism classes of indecomposable finite-dimensional A-modules, and the ar-

rows between the vertices correspond to certain maps that are determined by the

homomorphisms occurring in AR-sequences.

One objective then is to determine for a given finite-dimensional k-algebra A the

graph structure of its AR-quiver Γ(A). In the case where A is selfinjective, instead

of computing Γ(A), one usually considers the subgraph Γs(A) of Γ(A), the stable

AR-quiver of A, obtained by deleting the projective vertices and all arrows attached

to them. In practice, this graph is easier to describe since, by a general theorem

of C. Riedtmann, the graph structures of the components of Γs(A) are very limited

in shape. Namely, to each connected component C of Γs(A) one can associate a

directed tree T and an admissible group G of automorphisms of the translation

quiver ZT such that ZT/G is isomorphic to C. The undirected tree obtained from

T is then uniquely determined up to isomorphism by C and is called the tree class

of C.

In Part I of the thesis we determine the possible tree classes occurring for com-

ponents of the stable AR-quiver of a Hecke algebra associated with a symmetric

group in characteristic zero. These algebras can be thought of as deformations of

group algebras and are instances of finite-dimensional selfinjective algebras. In the

following we write Hf
n(q) for the Hecke algebra of the symmetric group on n letters

with defining parameter q 6= 1, a primitive eth root of unity in k.

The main motivation for this is the landmark paper of K. Erdmann [33], where

she showed that for a block of a group algebra of a finite group, the tree class of

a stable component is almost always A∞. The main result there states that if the

block under consideration is of wild representation type, then the tree class of every

stable component is A∞.

Since Hf
n(q) is a deformation of a group algebra, it is likely that a similar result also

holds in that case.

In fact, the first main result of the thesis is the following: If the ground field k is

algebraically closed and of characteristic zero, then we show that if B is a block

of Hf
n(q) of wild representation type, then all the connected components of Γs(B)

have tree class A∞.

The roadmap for this is as follows: In Chapter 1 we introduce the notation that

will be valid throughout the first part of this thesis. In Chapter 2 we will collect the

basic definitions and results of the Auslander–Reiten theory of a finite-dimensional

algebra that are needed in the course of this thesis. Moreover, we state important
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results concerning the representation theory of a finite-dimensional selfinjective al-

gebra.

In Chapter 3 we will be concerned with the representation theory of skew group

algebras, an important class of algebras that will play a decisive role throughout

the first part. We give a brief introduction into this subject by stating the crucial

results relating the representation theory of the skew group algebra A?G with that

of the underlying algebra A. Afterwards we will prove a theorem stating that under

some mild conditions on the algebra A and the finite group G all stable components

of Γs(A ? G) have tree class A∞ if this is true for Γs(A).

In Chapter 4 we proceed by studying the shape of the stable AR-quiver of a quan-

tum complete intersection. These selfinjective algebras are deformations of trun-

cated polynomial rings, which form an important class of algebras. The reason for

considering such algebras is that they occur as vertices of the Hecke algebra Hf
n(−1)

in characteristic zero. Note that there is a vertex theory for Hecke algebras of the

symmetric group in characteristic zero similar to that for group algebras in positive

characteristic. The definition of a vertex is given in Chapter 1 of Part I.

In [11] it is shown that for a homogeneous quantum complete intersection of wild

representation type, a connected component of the stable AR-quiver has tree class

A∞. The main theorem of the chapter will be a generalization of this to quantum

complete intersections whose commutation matrix is given by arbitrary roots of

unity. The crucial observation here is that such algebras arise from skew group

algebras over homogeneous quantum complete intersections.

Having determined the shape of the stable AR-quiver of vertices of Hecke algebras

at a primitive second root of unity in characteristic zero, we proceed in Chapter 5

by proving a similar result for Hecke algebras at a primitive eth root of unity, where

e > 2.

In this case a vertex of an indecomposable Hf
n(q)-module is isomorphic to the outer

tensor product Hf
e (q)⊗k, k ≥ 0. The algebra Hf

e (q) has a unique non-semisimple

block B, which is a Brauer tree algebra whose tree is a line with no exceptional

vertex. Thus, every block of Hf
e (q)⊗k is Morita equivalent to an outer tensor product

of some copies of B.

The main theorem of Chapter 5 states that if k > 1, then a connected component

of Γs(B
⊗k) has tree class A∞. Amazingly, a skew group algebra construction over

a truncated polynomial ring will be the main ingredient of the latter proof.

Chapter 6 preludes the main result of Part I. It is intended to explain a theorem for

blocks of Hecke algebras in characteristic zero giving a Morita equivalence between a

Rouquier block of weight w and a wreath product of an outer product of the principal

block B of Hf
e (q) and a symmetric group on w letters. This was first proven by J.

Chuang and R. Kessar in the case of group algebras of symmetric groups, which then

was extended to general linear groups in non-defining characteristic independently

by W. Turner and H. Miyachi. The Hecke algebra case was then established by J.

Chuang and H. Miyachi.
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For the convenience of the reader we briefly review the necessary definitions and

results of the representation theory of finite general linear groups in non-defining

characteristic that are needed to state the theorem. We also describe the construc-

tion of the bimodule inducing the Morita equivalence in detail.

In Chapter 7 we finally obtain our main result on the tree classes of stable compo-

nents of blocks of Hf
n(q). To this end we require the famous theorem of J. Chuang

and R. Rouquier on derived equivalences between blocks of Hecke algebras of the

same weight.

The main theorem then classifies the possible tree classes which may occur for

blocks of Hf
n(q) of weight w. As expected, this classification only depends on the

parameter q ∈ k and the weight w of the block.

In Part II of the thesis we will be concerned with another important invariant of a

finite-dimensional algebra A. Instead of looking at all isomorphism classes of inde-

composable A-modules, one usually imposes additional structure on the latter. An

important class is given by the isomorphism classes of irreducible A-modules, which

are not only indecomposable but also have no non-trivial submodules. As it turns

out, in many important cases, labelling the irreducible modules is an achievable task.

Moreover, since any finite-dimensional A-module has a filtration by irreducibles, one

may also get new information on the indecomposables themselves and, hence, on

A−mod.

In the second part we again focus on the representation theory of Hecke algebras of

type A at a root of unity. We will give a detailed overview of the theory initiated

by A. Lascoux, B. Leclerc, J.-Y. Thibon in [62], S. Ariki in [2] and I. Grojnowski in

[44] concerning the representation theory of cyclotomic Hecke algebras, where we

follow the approach of I. Grojnowski.

In particular, we give a thorough description of the various functors defined on the

module categories of these algebras, based on the ideas given in [44].

We will study the divided power functors in great detail, and this enables us to

deduce results about the vertices of Hecke algebras of the symmetric group.

The vertex theory for Hecke algebras of the symmetric group can be seen as an

analogue of the vertex theory for group algebras. In the context of Hecke algebras,

a vertex of an indecomposable Hf
n(q)-module M is a standard parabolic subgroup

W of the symmetric group on n letters which is minimal with respect to the property

that M is projective relative to the subalgebra of Hf
n(q) determined by W . Since

the standard parabolic subgroups are indexed by compositions of n, it is natural to

ask what the compositions indexing the vertices may look like.

In characteristic zero the answer to this question was given by J. Du in [32], where

he showed that the vertices of indecomposable Hf
n(q)-modules are l-parabolic sub-

groups, with l the order of q in the underlying field.

In [27] a conjecture was given by R. Dipper and J. Du, describing the structure of

the compositions indexing the vertices in general. Namely, the conjecture says that

the vertices are l − p-parabolic subgroups, where p relates to the characteristic of

the underlying field.
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Using properties of the introduced functors, we are able to give an application of

Grojnowski’s approach to the Dipper–Du Conjecture: We show that the vertex of

an indecomposable Hf
n(q)-module lying in a block of finite representation type is

l − p-parabolic.

We make use of various structures that the sum over the Grothendieck groups of

Hf
n(q)-modules

G :=
⊕
n≥0

K(Hf
n(q)−mod)

carries. In [2] S. Ariki made the crucial observation that in the case where the

ground field is the field of complex numbers, the abelian group G can be given the

structure of an irreducible highest weight module over the infinite-dimensional Lie

algebra ŝll.

I. Grojnowski [44] gave similar results in the case where the ground field has arbi-

trary characteristic. There, he uses different techniques originating in the theory

of affine Hecke algebras, giving a new functorial approach to the setting. Namely,

he gives an alternative description of the functors that are used in Ariki’s work,

which enables one to define the divided power functors on the various categories

Hf
n(q) − mod, n ≥ 0. As the notion suggests, they restrict to operators on the

Grothendieck groups, which then coincide with the divided powers coming from the

action of ŝll.

Furthermore, we make use of the theory of crystal bases developed by M. Kashiwara.

He showed that to an irreducible highest weight module of the quantized universal

enveloping algebra over an affine Kac–Moody algebra one can associate a certain

graph, the crystal graph. This graph encodes combinatorial data of the highest

weight module under consideration.

In particular, the ŝll-module G gives rise to a crystal graph whose structure was

determined by K. C. Misra and T. Miwa in [70].

From this one obtains a labelling of the isomorphism classes of irreducible Hf
n(q)-

modules, where n ≥ 0 varies.

A. Kleshchev established in [58] another labelling of the irreducible modules for the

group algebras of the symmetric group by investigating the socles of the restrictions

of the latter. This was later generalized to Hecke algebras of the symmetric group

by J. Brundan [16].

Amazingly, these two labellings coincide, which enables us to reformulate the famous

result obtained by J. Scopes in [80] in the symmetric group case and T. Jost in [52]

in the Hecke algebra case in terms of the functors given by I. Grojnowski. The

theorems of J. Scopes and T. Jost establish Morita equivalences of blocks of group

algebras of symmetric groups of the same weight and the associated Hecke algebras,

respectively.

From this and the properties of the functors inducing the equivalence, we deduce,

for blocks B and B′ of Hecke algebras of the symmetric group forming a Scopes

pair, that two indecomposable modules corresponding under the equivalence have

a common vertex.
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As an application, this gives a proof of the Dipper–Du Conjecture in the case where

the blocks are of finite representation type.

The roadmap for the second part will be: In Chapter 8 we introduce the notation

used in what follows.

In Chapter 9 we recall the notion of an affine Hecke algebra of type A, denoted by

Hn(q), n ≥ 0. We begin with the basic definitions and then turn our attention to

the subalgebra of Laurent polynomials of Hn(q), which will become important in

the further investigations. By computing generalized eigenspaces, we explain why

this subalgebra is important in the representation theory of Hn(q).

Furthermore, we define refinements of the restriction functor

Res : Hn(q)−mod −→ Hn−1(q)−mod,

as well as their iterations. Finally, for each r ≥ 0, we define divided power functors

Hn(q)−mod −→ Hn−r(q)−mod,

and show how these are related to the refinements of the restriction functor.

For the convenience of the reader, we will recall in Chapter 10 the basic notions of

the representation theory of Kac–Moody algebras as they will become important in

later chapters. In particular, we will explain how the representation theory of the

latter and the representation theory of its derived algebra are related since in this

thesis we will mainly work over the derived algebra.

Chapter 11 recalls the definition of various factor algebras of Hn(q), the cyclotomic

Hecke algebras, which will be denoted by HΛ
n (q). In particular, choosing Λ = Λ0, we

obtain the finite-dimensional Hecke algebra Hf
n(q). The main goal of this chapter

is to define the cyclotomic analogues of the functors defined in Chapter 9 as well as

their adjoints.

In Chapter 12 we review the multiplicity-one results given by I. Grojnowski and M.

Vazirani in [45] for the affine Hecke algebras as well as their cyclotomic quotients.

We will derive some combinatorial results of the action of the operators on the

Grothendieck groups induced by the functors defined in Chapter 11.

Chapter 13 explains how the sum of the Grothendieck groups

G(Λ) :=
⊕
n≥0

K(HΛ
n (q)−mod)

can be given a module structure over the derived algebra of ŝll. Moreover, we

state the result that identifies the latter as the irreducible highest weight module of

highest weight Λ of this algebra.

In Chapter 14 we introduce the theory of M. Kashiwara concerning crystal bases

of highest weight modules of quantized enveloping algebras of Kac–Moody algebras

and their associated crystal graphs. The main aim is to explain how a crystal

graph is constructed from G(Λ) and that it is isomorphic to the crystal graph of the

irreducible highest weight module of highest weight Λ of the quantized enveloping

algebra of ŝll.

X



Chapter 15 is a review of the famous theorem by K. C. Misra and T. Miwa giving the

structure of the crystal graph associated to G(Λ0). From this we obtain a labelling

of the irreducible Hf
n(q)-modules, n ≥ 0.

In Chapter 16 we explain another labelling of the irreducible Hf
n(q)-modules, n ≥ 0,

and state the branching rules due to A. Kleshchev and J. Brundan. Furthermore,

we show that this labelling coincides with the labelling given in Chapter 15.

Chapter 17 contains one of the milestones in the proof of the main result. There

we reformulate the Morita equivalence for blocks of Hecke algebras given originally

by J. Scopes in terms of our functors defined in Chapter 11.

Finally, in Chapter 18 we prove that the Dipper–Du Conjecture is true for Hf
n(q)-

modules lying in blocks of finite representation type.

We will also discuss the supposed counterexample to the conjecture given in [48].

As is well known, this does not disprove the conjecture.
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Part I

Stable Auslander–Reiten

components of Hecke algebras of

the symmetric group





Chapter 1

Preliminaries

1.1 Goal

In the first part of this thesis, we will prove that if B is a wild block of a Hecke

algebra of the symmetric group over an algebraically closed field of characteristic

zero, then every connected component of the stable Auslander–Reiten quiver Γs(B)

has tree class A∞.

1.2 Notation

Throughout the first part of this thesis, the symbol k will always denote a field.

Categories and functors. All categories under consideration will be additive k-

categories, that is to say, preadditive categories that have finite direct sums such

that each morphism set carries the structure of a k-vector space, and where the

composition morphism is k-bilinear. Throughout, if C is any category, we denote

by 1C the identity functor of C.
Furthermore, if C and D are k-categories, then, if not stated otherwise, by a functor

F : C → D we shall always mean an additive functor such that the induced ho-

momorphisms HomC(A,B) → HomD(F(A),F(B)) of abelian groups are k-vector

space homomorphisms.

For a finite-dimensional algebra A defined over k, we denote by A − mod (resp.

mod−A) the abelian k-category of finite-dimensional left (resp. right) A-modules.

Moreover, we identify the category mod−A with the category Aop−mod of finite-

dimensional left Aop-modules, where Aop denotes the opposite ring of A.

By A − proj (resp. proj − A) we denote the full subcategory of projective left A-

modules (resp. right A-modules). Again, the category proj−A can also be identified

with the subcategory Aop − proj of Aop −mod of projective left Aop-modules.

By A−mod, we denote the stable module category of A−mod, i.e., the category

whose objects are that of A − mod, and the morphisms are given by equivalence

classes

HomA(A,B) = HomA(A,B)/P(A,B),

3



Chapter 1. Preliminaries

for objects A and B in A−mod. Here, P(A,B) denotes the subspace of morphisms

f of HomA(A,B) such that there is a projective A-module P and morphisms s :

A→ P , t : P → B with f = ts.

Dually, we define A−mod to be the category whose objects are that of A−mod,

and the morphisms are given by equivalence classes of morphisms in A−mod, where

two morphisms are considered to be the same if their difference factors through an

injective A-module.

Moreover, we denote by A − modP the full subcategory of A − mod consisting

of A-modules having no non-zero direct summands isomorphic to some projective

A-module.

If not stated otherwise, in the following, by an A-module we will always mean a left

A-module.

Hecke algebras. We use the definition of [29]. Let n be a non-negative integer and

denote by W (n) the symmetric group on n letters. If n ≥ 2, then W (n) is generated

by the set B = {s1 = (1, 2), . . . , sn−1 = (n− 1, n)} of basic transpositions.

Let q ∈ k be invertible. The Iwahori–Hecke algebra Hf
n(q) of the symmetric group

W (n) with parameter q is the k-algebra generated by the symbols Ti = Tsi , 1 ≤ i ≤
n− 1, subject to the following relations:

(a) (Ti − q)(Ti + 1) = 0.

(b) TiTj = TjTi, for 1 ≤ i < j − 1 ≤ n− 2.

(c) Ti+1TiTi+1 = TiTi+1Ti, for 1 ≤ i ≤ n− 2.

Denote by e the least positive integer i ≥ 2 such that

1 + q + . . .+ qi−1 = 0.

If no such i exists, one sets e = ∞. In the first part of this thesis, we will always

assume that q 6= 1 and e is finite. Then e is the multiplicative order of q in k.

Vertices. Let µ = (µ1, . . . , µk) be a composition of the non-negative integer n. The

standard parabolic Wµ of W (n) is defined as the row stabilizer of the row standard

tableau associated to µ. Note that Wµ is generated by Wµ ∩B.

For a composition µ of n, we denote by Hµ the subalgebra of Hf
n(q) associated

to Wµ generated by the elements Ti, where si ∈ Wµ. The algebra Hµ is called a

standard parabolic subalgebra of Hf
n(q).

Let M be an indecomposable Hf
n(q)-module. We say that M is projective relative

to Hµ if M is isomorphic to a direct summand of Hf
n(q) ⊗Hµ M . In this case one

also says that M is Hµ-projective.

A vertex of M is a standard parabolic subgroup Wµ of W (n) such that M is projec-

tive relative to Hµ and there are no standard parabolic subgroups of W (n) properly

contained in Wµ with that property.

4



Chapter 2

Auslander–Reiten theory

The theory of Auslander–Reiten plays a major role in the representation theory of

non-semisimple finite-dimensional algebras Λ defined over a field k. The philosophy

behind this theory is to describe the structure of the finite-dimensional Λ-modules

via the structure preserving maps between them. This viewpoint leads to a descrip-

tion of important classes of maps, which determine the modules up to isomorphism.

One of the milestones is the definition of almost split sequences, which gives new

insight in the homological structure of the category of Λ-modules.

As a consequence one may define the Auslander–Reiten quiver of Λ, which is a locally

finite graph constructed from the isomorphism classes of the finite-dimensional in-

decomposable Λ-modules and certain maps between them. This gives a homological

invariant of the category of finite-dimensional Λ-modules.

In this section we give a brief introduction to the Auslander–Reiten theory of a

finite-dimensional k-algebra, stating the most important results, which are used

throughout this exposition. We will first give the basic definitions and results, most

of which are true in the more general context of Artin algebras.

Afterwards, we will focus on the representation theory of finite-dimensional selfin-

jective k-algebras as these will be the most important algebras in this thesis.

In the following, Λ will always denote a finite-dimensional algebra over a field k.

2.1 Auslander–Reiten sequences and irreducible

maps

We will first give the basic definitions of almost split maps and Auslander–Reiten

sequences. After that we state the concepts that are needed to construct Auslander–

Reiten sequences. Moreover, we recall the definition of an irreducible map and state

the relationship to Auslander–Reiten sequences. All the results stated here can be

found in [7].

Definition 2.1.1. (a) A homomorphism f : B → C between finite-dimensional

Λ-modules is right almost split if the following conditions hold:

5



Chapter 2. Auslander–Reiten theory

(i) f is not a split epimorphism.

(ii) For every homomorphism h : X → C that is not a split epimorphism,

there exists a homomorphism s : X → B such that h = fs.

(b) A homomorphism g : A → B between finite-dimensional Λ-modules is left

almost split if the following conditions hold:

(i) g is not a split monomorphism.

(ii) For every homomorphism h : A→ X that is not a split monomorphism,

there exists a homomorphism s : B → X such that h = sg.

(c) A short exact sequence

0 −→ A
g−→ B

f−→ C −→ 0 (2.1)

of finite-dimensional Λ-modules is called an Auslander–Reiten sequence (resp.

AR–sequence for short) or almost split sequence if f is right almost split and

g is left almost split.

In the following, recall from [7, I, §2] the definition of a left (right) minimal ho-

momorphism. By [7, V, Proposition 1.14], we have that the modules A and C are

indecomposable, whereas the homomorphism g is left minimal and left almost split

and the homomorphism f is right minimal and right almost split. In this situation

one says that g is a minimal left almost split homomorphism and f is a minimal

right almost split homomorphism.

Auslander–Reiten sequences have remarkable properties, for example, up to isomor-

phism, they are determined by their terms at the beginning and the end:

Theorem 2.1.2. The following are equivalent for two AR-sequences 0 → A →
B → C → 0 and 0→ A′ → B′ → C ′ → 0:

(a) A ∼= A′.

(b) C ∼= C ′.

(c) The sequences are isomorphic, i.e., there is a commutative diagram

0 A B C 0

0 A′ B′ C ′ 0

with the vertical homomorphisms being isomorphisms.

6



2.1. Auslander–Reiten sequences and irreducible maps

Proof. See [7, V, Theorem 1.16]. �

For an arbitrary ring it is far from being clear that for a given Λ-module M there

is an AR-sequence starting (resp. ending) in M . For Artin algebras, this is the

famous theorem of Auslander and Reiten, see [7, V, Theorem 1.15].

Theorem 2.1.3. (a) If C is an indecomposable non-projective Λ-module, then

there is an AR-sequence 0→ A→ B → C → 0 in Λ−mod.

(b) If A is an indecomposable non-injective Λ-module, then there exists an AR-

sequence 0→ A→ B → C → 0 in Λ−mod.

As a direct consequence of this theorem, if Λ is not semisimple, then there exist

AR-sequences in Λ−mod.

We now recall the important constructions from [7, §IV], from which one may con-

struct the AR-sequence ending in a given module. Denote by (−)∗ the contravariant

functor

HomΛ(−,Λ) : Λ−mod −→ Λop −mod. (2.2)

By [7, §II, Proposition 4.3], on restriction to Λ − proj, the functor (−)∗ induces a

duality between Λ− proj and Λop − proj.

Moreover, we denote by D : Λ−mod→ Λop−mod the duality induced by the usual

duality

Homk(−,k) : k−mod −→ k−mod,

see [7, II.3]. By interchanging the roles of Λ and Λop we also get a duality D′ :

Λop −mod→ Λ−mod. Then, we have that

D′D ∼= 1Λ−mod and DD′ ∼= 1Λop−mod

as functors. If there is no danger of confusion, the duality D′ will also be denoted

by D.

Let M be in Λ−mod. If we take a minimal projective resolution

P1
f−→ P0 −→M −→ 0

of M in Λ−mod, then by applying the duality (−)∗ we obtain a minimal projective

resolution

P ∗1
f∗−→ P ∗0 −→ Coker(f ∗) −→ 0

in Λop−mod. One defines Tr(M) = Coker(f ∗), which is the transpose of M . Then,

by [7, IV, Proposition 1.6], the map Tr induces a duality

Λ−mod −→ Λop −mod,

which is also denoted by Tr. From the duality D we obtain a duality

Λop −mod −→ Λ−mod.

7



Chapter 2. Auslander–Reiten theory

If there is no danger of confusion we will denote this duality by the same symbol

D. Then, the composition

DTr : Λ−mod −→ Λ−mod

is an equivalence of k-categories with inverse equivalence the composition

TrD : Λ−mod −→ Λ−mod.

Next, we look at what happens to the objects of Λ − mod under the map DTr :

Λ − mod → Λ − mod. Similarly, we have a map TrD : Λop − mod → Λop − mod.

Then, by [7, IV, Proposition 1.10], these maps afford mutually inverse bijections

between the isomorphism classes of indecomposable non-projective Λ-modules and

the isomorphism classes of indecomposable non-injective Λ-modules.

The map DTr is called the Auslander–Reiten translation (AR-translation for short).

Notation 2.1.4. In the following, the map DTr will be also denoted by τ .

The relation with the AR-sequences is the following.

Proposition 2.1.5. Suppose that 0 → A → B → C → 0 is an AR-sequence in

Λ−mod. Then A ∼= DTr(C) and C ∼= TrD(A).

Proof. This is [7, V, Proposition 1.14]. �

Closely related to the concept of an AR-sequence is the notion of an irreducible

morphism, whose definition we give next.

Definition 2.1.6. A homomorphism g : B → C between finite-dimensional Λ-

modules is called irreducible if it is neither a split monomorphism nor a split epi-

morphism and whenever the homomorphisms s : B → X and t : X → C are such

that f = ts, then s is a split monomorphism or t is a split epimorphism.

We have the following crucial fact about irreducible homomorphisms.

Proposition 2.1.7. Let g : B → C be irreducible in Λ−mod. Then:

(a) g is a monomorphism or an epimorphism, but not an isomorphism.

(b) If g is a monomorphism, then B is isomorphic to a direct summand of each

proper submodule of C containing B.

(c) If g is an epimorphism, then C is isomorphic to a direct summand of each

factor module of B/U with 0 6= U ⊆ Ker(g).

Proof. See [7, V, Lemma 5.1]. �

The next well-known fact is a direct consequence of the last proposition. It charac-

terizes the irreducible maps with target (resp. domain) a projective (resp. injective)

indecomposable module. Recall that if M is in Λ −mod, then the radical rad(M)

is defined to be the intersection of all maximal submodules of M , whereas the socle

soc(M) is defined to be the sum of all irreducible submodules of M .
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Corollary 2.1.8. (a) Suppose that P is an indecomposable projective Λ-module

and g : X → P an irreducible homomorphism. Then X is isomorphic to a

direct summand of rad(P ).

(b) Suppose that I is an indecomposable injective Λ-module and let g : I → Y be

an irreducible homomorphism. Then Y is isomorphic to a direct summand of

I/soc(I).

Proof. By [7, I, Proposition 4.7], rad(P ) is the unique maximal submodule of P . If

g : X → P is irreducible, then X is either a monomorphism or an epimorphism by

Proposition 2.1.7. Since P is projective and g is not a split epimorphism, g must

be a monomorphism. Hence, by part (b) of Proposition 2.1.7, we infer that X is

isomorphic to a direct summand of rad(P ) and part (a) follows.

Since I is injective and indecomposable, the socle soc(I) of I is irreducible by [7,

II, Proposition 4.1]. If g : I → Y is irreducible, then g must be an epimorphism.

It follows that Ker(g) 6= 0, and thus, soc(I) ⊆ Ker(g). The claim now follows from

part (c) of Proposition 2.1.7. �

The next theorem connects irreducible homomorphisms with AR-sequences. It is

the content of [7, V, Theorem 5.3].

Theorem 2.1.9. (a) Let C in Λ − mod be indecomposable. Then a homomor-

phism g : B → C is irreducible if and only if there is a homomorphism

g′ : B′ → C such that the induced homomorphism

(g, g′) : B ⊕B′ → C

is minimal right almost split.

(b) Let A in Λ −mod be indecomposable. Then a homomorphism f : A → B is

irreducible if and only if there is a homomorphism f ′ : A → B′ such that the

induced homomorphism (
f
f ′

)
: A→ B ⊕B′

is minimal left almost split.

In our further investigations it is important to know in which AR-sequences inde-

composable projective injective modules occur. Therefore, we state the following:

Proposition 2.1.10. (a) Let δ : 0→ A→ B → C → 0 be an AR-sequence. If B

has an indecomposable projective injective summand P , then the composition

series of P has length l(P ) ≥ 2 and δ is isomorphic to the sequence

δ : 0 −→ rad(P )

(−i
p

)
−→ P ⊕ rad(P )/soc(P )

(q,j)−→ P/soc(P) −→ 0, (2.3)

where i : rad(P ) → P and j : rad(P )/soc(P ) → P/soc(P ) are the canonical

inclusion homomorphisms and p : rad(P ) → rad(P )/soc(P ) and q : P →
P/soc(P ) are the canonical quotient homomorphisms.

9
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(b) If P is indecomposable projective injective with l(P ) ≥ 2, then there exists

some AR-sequence δ : 0→ A→ B → C → 0 such that P is a summand of B.

Proof. This is [7, V, Proposition 5.5]. �

In other words, if P is a projective injective Λ-module and not irreducible, the only

sequence in which P occurs is the one given in (2.3). This sequence is also called a

standard sequence. We also note the following:

Proposition 2.1.11. Suppose that

δ : 0 −→ A
g−→ B

f−→ C −→ 0

is an exact sequence. Then δ is an AR-sequence if and only if f and g are both

irreducible.

Proof. See [7, V, Proposition 5.9]. �

Next we give the definition of the radical of the module category Λ−mod. By Λ−ind

we denote a full subcategory of Λ −mod whose objects are chosen representatives

from isomorphism classes of indecomposable Λ-modules.

Definition 2.1.12. Let A and B be in Λ − mod. The set radΛ(A,B) := {f ∈
HomΛ(A,B) | hfg is not an isomorphism for any g : X → A and h : B →
X with X in Λ− ind} is called the radical of HomΛ(A,B).

That radΛ(A,B) is actually a subspace of HomΛ(A,B) is part of the proof of [7, V,

Proposition 7.1]. Inductively, one defines the powers radnΛ(A,B) for each positive

integer n ≥ 2 as follows: radnΛ(A,B) = {f ∈ HomΛ(A,B) | there exists X in Λ −
mod, g ∈ radΛ(A,X) and h ∈ radn−1

Λ (X,B) such that f = hg}. Connecting this

with the notion of irreducible morphisms, one gets:

Proposition 2.1.13. Let f : A → B be a homomorphism between indecomposable

modules A and B in Λ−mod. Then f is irreducible if and only if f ∈ radΛ(A,B) \
rad2

Λ(A,B).

Proof. See [7, V, Proposition 7.3]. �

2.2 The Auslander–Reiten quiver

A quiver Γ = (Γ0,Γ1) consists of a set of vertices Γ0 and a set of arrows Γ1 ⊆ Γ0×Γ0

together with maps d0, d1 : Γ1 → Γ0, where d0 maps an arrow of Γ1 to its endpoint

and d1 maps an arrow of Γ1 to its starting point.

A valuation on a quiver Γ = (Γ0,Γ1) is a map

ν : Γ1 → Z>0 × Z>0.
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We denote the image of an arrow α : x→ y in Γ1 under ν by (vα, v
′
α). If a quiver Γ

comes equipped with a valuation ν, then we say that (Γ, ν) is a valued quiver.

A morphism between valued quivers (Γ, ν) and (Γ′, µ) is a morphism f = (f0, f1) :

Γ → Γ′ of quivers such that if α : x → y is an arrow in Γ1 with valuation (να, ν
′
α),

then f1(α) : f0(x)→ f0(y) has valuation (µf1(α), µ
′
f1(α)) = (να, ν

′
α).

As before, Λ denotes a finite-dimensional k-algebra. We associate to Λ a valued

quiver Γ(Λ) as follows. The vertices of Γ(Λ) are in one-to-one correspondence with

the objects of Λ− ind, and are denoted by [M ] for M in Λ− ind.

There is an arrow [M ] → [N ] if and only if there is an irreducible homomorphism

M → N in Λ−mod.

The arrow has valuation (b, a) if there is a minimal right almost split homomorphism

U ⊕ X → N such that U is isomorphic to a direct sum of a copies of M and X

has no direct summand isomorphic to M , and a minimal left almost split morphism

M → V ⊕ Y such that V is isomorphic to a direct sum of b copies of N , where Y

has no direct summand isomorphic to N . The resulting valued quiver is called the

Auslander–Reiten quiver (AR-quiver for short) of Λ.

If we denote by TX the division algebra EndΛ(X)/rad(EndΛ(X)) for each X in

Λ− ind, then for indecomposable modules A and B in Λ−mod, the k-vector space

Irr(A,B) := radΛ(A,B)/rad2
Λ(A,B) can be viewed as a TB − TA-bimodule. In fact,

one can show that a equals the dimension of Irr(A,B) as a T op
A -vector space, and

that b equals the dimension of Irr(A,B) as a TB-vector space, see [7, VII, Proposition

1.3]. It follows that if k is algebraically closed then a = b.

We may impose an equivalence relation on the objects of Λ− ind. Two modules in

Λ − ind are said to be related by an irreducible homomorphism if there exists an

irreducible homomorphism f : A→ B. An equivalence class under the equivalence

relation generated by this relation is called a component of Λ− ind. Then A and B

are in the same component if and only if there exists a positive integer m, indecom-

posable modules Xi, 1 ≤ i ≤ m, and for each i either an irreducible homomorphism

fi : Xi → Xi+1 or an irreducible homomorphism gi : Xi+1 → Xi with X1 = A and

Xm = B.

Moreover, the equivalence relation on Λ − ind induces an equivalence relation on

Γ(Λ). Then, an equivalence class under this equivalence relation is called a com-

ponent of Γ(Λ). Note that we may view a component as a full subquiver of Γ(Λ),

which is connected, when considered as an undirected graph.

In the following we use the notation of [49] and [77]. A representation quiver (Γ, τ)

is a quiver Γ = (Γ0,Γ1) together with a subset P0 ⊆ Γ0 and an injective map

τ : P0 → Γ0 such that

(a) Γ neither contains multiple arrows nor loops.

(b) (τ(x))+ = x− for all x ∈ P0.

For a vertex x ∈ Γ0, we denote by x− the set consisting of all vertices of Γ0 which

are starting points of arrows of Γ1 ending in x and by x+ the set of all vertices of

Γ0 which are end points of arrows of Γ1 starting in x.
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For each arrow α : x → y with y ∈ P0, there is precisely one arrow β : τy → x. If

we denote σα = β, we obtain a bijective map

σ : {α ∈ Γ1 | d0(α) ∈ P0} −→ {β ∈ Γ1 | d1(β) ∈ τ(P0)}.

If P and τP denote the full subquivers of Γ with vertex sets P0, (τP )0 = τ(P0) and

arrow sets P1 = d−1
0 (P0) ∩ d−1

1 (P0), (τP )1 = d−1
0 (τ(P0)) ∩ d−1

1 (τ(P0)), then there is

a unique isomorphism π : P → τP of quivers extending τ by setting π(α) = σ2(α).

A morphism of representation quivers (Γ, τ) and (Γ′, τ ′) is a morphism f : Γ → Γ′

of quivers such that f0(τ(x)) = τ ′(f0(x))) for all x ∈ P0.

A valued representation quiver is a representation quiver (Γ, τ) together with a

valuation ν such that ν(σα) = (v′α, vα) for all α : x → y in Γ1 with y ∈ P0 and

ν(α) = (να, ν
′
α).

A morphism of valued representation quivers is both a morphism of valued quivers

and a morphism of representation quivers.

A representation quiver (Γ, τ) is connected if Γ0 6= ∅ and it cannot be written as

the disjoint union of two representation quivers. Observe that this does not imply

that the underlying quiver is connected.

A representation quiver (Γ, τ) is called stable if P0 = Γ0 (i.e., τ is defined everywhere

on Γ0) and τ is surjective.

A vertex x of a representation quiver (Γ, τ) is called τ -periodic if τn(x) = x for some

positive integer n.

Example 2.2.1. (1) The AR-quiver of a finite-dimensional algebra Λ is a valued

representation quiver in the following way: If we define P0 to be the set of vertices

of Γ(Λ) corresponding to the isomorphism classes of indecomposable Λ-modules

that are not projective, then the AR-translate τ = DTr induces an injective map

τ : P0 → (Γ(Λ))0, [M ] 7→ [DTr(M)].

(2) Another important example of a representation quiver is the following. Given

an valued oriented tree (T, ν) (a valued quiver whose underlying graph is a tree),

denote by ZT the quiver with vertex set (ZT )0 = Z×T0. Whenever there is an arrow

α : x→ y in T1, there are arrows (n, α) : (n, x)→ (n, y) and σ(n, α) : (n + 1, y)→
(n, x) in (ZT )1. Define a valuation µ on ZT by setting µ(n,α) = µ′σ(n,α) = να and

µ′(n,α) = µσ(n,α) = ν ′α. If we set τ((n, x)) = (n + 1, x), then ZT becomes a valued

stable representation quiver.

Let Γ be a (valued) representation quiver. A subgroup G ⊆ Aut(Γ) of Γ is called

admissible if each orbit of G in Γ0 intersects a set of the form x ∪ x+ or x− ∪ x,

x ∈ Γ0, in at most one element.

One has the following structure theorem for stable valued representation quivers,

which is due to C. Riedtmann:

Theorem 2.2.2. (Riedtmann structure theorem) Let T and T ′ be valued oriented

trees. Then ZT and ZT ′ are isomorphic as stable valued representation quivers if

and only if the undirected graphs T̄ and T̄ ′ obtained from T and T ′ are isomorphic.
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Furthermore, if Γ is a connected stable valued representation quiver, there is a valued

oriented tree and an admissible group G of automorphism of ZT such that Γ is

isomorphic to ZT/G as stable valued representation quivers.

Proof. The statement can be found in §2 of [49] and it follows from the main

theorem of [77, Struktursatz], where the result is shown for Γ a connected stable

representation quiver without valuation. �

Remark 2.2.3. Up to conjugation in Aut(ZT ), the group G of the above theorem is

uniquely determined by Γ. Moreover, the undirected tree T̄ is uniquely determined

up to isomorphism by Γ.

Definition 2.2.4. Let Γ be a connected stable valued representation quiver. The

isomorphism type of the undirected tree T̄ of Theorem 2.2.2 is called the tree class

of Γ.

Recall from Example 2.2.1 (1) that the AR-quiver Γ(Λ) of a finite-dimensional k-

algebra Λ is a valued representation quiver, which is not stable since the translation

τ , which is induced from the AR-translation DTr, is not defined on projective ver-

tices.

The full subquiver of Γ(Λ) obtained from Γ(Λ) by deleting the projective and injec-

tive vertices together with all τ -orbits starting and ending in such vertices, yields

a stable valued representation quiver, called the stable part of Γ(Λ) and is denoted

by Γs(Λ). Moreover, if C is a component of Γ(Λ), we may also remove the τ -orbits

of the projective and injective vertices in C. The resulting quiver is denoted by Cs
and is called the stable part of C. The latter is then a stable valued representation

quiver.

Remark 2.2.5. For arbitrary Artin algebras, one loses much information of Γ(Λ)

by only considering its stable part since the latter might even be empty.

By a component C of Γs(Λ) we mean a full subquiver of Γs(Λ), which is a stable

valued representation quiver. In particular, if x ∈ C, then also τ(x) ∈ C.
There is the following important result about the structure of a connected compo-

nent of Γs(Λ) containing τ -periodic modules, see [49, Main theorem].

Theorem 2.2.6. Let C be a connected component of Γs(Λ). Suppose that C contains

a τ -periodic vertex. Then the tree class of C is either a finite Dynkin diagram or

A∞.

Suppose now that Λ is a finite-dimensional selfinjective k-algebra, i.e., the regular

left Λ-module Λ is also an injective Λ-module. Thus, every finite-dimensional pro-

jective indecomposable Λ-module P is also injective, and it follows that the modules

P/rad(P ) and soc(P ) are irreducible. Moreover, it follows that there are no τ -orbits

in the AR-quiver of Λ starting or ending in an indecomposable projective (injective)

module. Therefore, the subset P0 ⊆ (Γ(Λ))0 consists of vertices corresponding to
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the isomorphism classes of indecomposable Λ-modules that are neither projective

nor injective. We may define a map

τ−1 : P0 → P0, [M ] 7→ [TrD(M)].

Then, τ−1(τ([M ])) = [M ] = τ(τ−1([M ])) for [M ] ∈ P0.

Furthermore, to obtain the stable part Γs(Λ) of Γ(Λ) we just have to delete the

vertices corresponding to the isomorphism classes of indecomposable projective (in-

jective) modules and all arrows attached to them. If P is such a module with

l(P ) ≥ 2, that is to say, P does not belong to a semisimple block of Λ, we know

from Proposition 2.1.10 that the only AR-sequence where P occurs is isomorphic

to the sequence

δ : 0 −→ rad(P )

(−i
p

)
−→ P ⊕ rad(P )/soc(P )

(q,j)−→ P/soc(P) −→ 0.

The vertices corresponding to rad(P ) and P/soc(P ) are visible in Γs(Λ) and so one

can attach P there. Hence, we may reconstruct Γ(Λ) from Γs(Λ) in the selfinjective

case. Therefore, in this case the shape of Γ(Λ) can be determined from that of

Γs(Λ).

It will be also useful to know when the middle term of an AR-sequence is projective:

Proposition 2.2.7. Let Λ be an indecomposable selfinjective k-algebra. Then the

following are equivalent:

(a) There is an AR-sequence with projective middle term.

(b) All AR-sequences have projective middle term.

(c) Λ is a Nakayama algebra of Loewy length two.

(d) Λ has Loewy length two.

Proof. This is [7, X, Proposition 1.8]. �

Remark 2.2.8. (1) Note that if Λ is indecomposable selfinjective and one of the

equivalent statements of the last proposition holds, then Λ is of finite representation

type.

(2) It follows that if Λ is indecomposable selfinjective and not of finite representation

type, then every connected component of Γs(Λ) is also connected as a quiver. Thus,

such a component can also be considered as the stable part of a component of Γ(Λ).

2.3 The syzygy functor and stable equivalence

Next, recall that for a finite-dimensional selfinjective k-algebra Λ one has the func-

tors

ΩΛ : Λ−mod→ Λ−mod, (2.4)
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and

Ω−1
Λ : Λ−mod→ Λ−mod, (2.5)

called the syzygy functor and cosyzygy functor. On objects, ΩΛ is defined as follows:

For each M in Λ−mod, we fix a projective cover

P
p−→M −→ 0

in Λ −mod, and define ΩΛ(M) to be the Λ-module Ker(p). Dually, for each M in

Λ−mod, let us fix an injective envelope

0 −→M
j−→ I

in Λ − mod. Then Ω−1
Λ (M) is defined as the module Coker(j). For the definition

of ΩΛ and Ω−1
Λ on homomorphisms, see [7, IV.3]. As the notation suggests, one has

the following:

Proposition 2.3.1. Suppose that Λ is selfinjective. Then the functors ΩΛ : Λ −
mod→ Λ−mod and Ω−1

Λ : Λ−mod→ Λ−mod are inverse equivalences.

Proof. This is [7, IV, Proposition 3.5]. �

Remark 2.3.2. (1) Note that if Λ is selfinjective, the functor

HomΛ(−,Λ) : Λ−mod −→ Λop −mod

is a duality with dual inverse HomΛop(−,Λ) : Λop −mod −→ Λ −mod, see [7, IV,

Proposition 3.4].

(2) One can show that the functor Ω−1
Λ is isomorphic to the functor

HomΛop(−,Λ)ΩΛopHomΛ(−,Λ) : Λ−mod −→ Λ−mod,

see [7, IV.3].

It follows from the remark that the composition of the functors HomΛ(−,Λ) and D

yields an equivalence

N := DHomΛ(−,Λ) : Λ−mod −→ Λ−mod, (2.6)

which is called the Nakayama automorphism on Λ−mod. Then the following holds:

Proposition 2.3.3. Let Λ be a selfinjective k-algebra. Then:

(a) The functors DTr, Ω2
ΛN , NΩ2

Λ : Λ−mod→ Λ−mod are isomorphic.

(b) The functors TrD, Ω−2
Λ N−1, N−1Ω−2

Λ : Λ−mod→ Λ−mod are isomorphic.

Proof. This is the content of [7, IV, Proposition 3.7]. �
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Remark 2.3.4. In the case when Λ is symmetric, i.e., Λ ∼= D(Λ) as two-sided

Λ-modules, we have that N ∼= 1Λ−mod as functors and, thus, DTr ∼= Ω2
Λ and TrD ∼=

Ω−2
Λ as functors from Λ−mod to Λ−mod, see [7, IV, Proposition 3.8].

Next, we describe another crucial concept, which will be important in our consid-

erations later on.

Definition 2.3.5. Two finite-dimensional k-algebras Λ and Λ′ are said to be stably

equivalent if there is an equivalence F : Λ−mod→ Λ′ −mod.

In this case, F is called a stable equivalence. Given a stable equivalence F : Λ −
mod→ Λ′ −mod, one also has an induced correspondence between Λ−modP and

Λ′ −modP , which is also denoted by F .

Example 2.3.6. If Λ is selfinjective, by Proposition 2.3.1, the syzygy functor ΩΛ

defines a stable equivalence Λ−mod→ Λ−mod.

In the following we denote by f the image of a homomorphism f in Λ−mod under

the natural functor Λ − mod → Λ − mod. We then have the following statement,

which is [7, Lemma 1.2, X].

Proposition 2.3.7. Let F : Λ−mod → Λ′ −mod be a stable equivalence between

finite-dimensional k-algebras and A, B in Λ − modP . If A and B are indecom-

posable, then F induces an isomorphism Irr(A,B) ∼= Irr(F (A), F (B)) of k-vector

spaces.

Moreover, one has the following:

Proposition 2.3.8. Let F : Λ−mod → Λ′ −mod be a stable equivalence between

finite-dimensional k-algebras. If f : A→ B is a homomorphism in Λ−modP with

A or B indecomposable, let f ′ : F (A) → F (B) be such that F (f) = f ′. Then the

following hold:

(a) f : A → B is irreducible in Λ − mod if and only if f ′ : F (A) → F (B) is

irreducible in Λ′ −mod.

(b) If B is indecomposable in Λ−mod, then the following are equivalent:

(i) There exists a homomorphism g : P → B with P projective in Λ−mod

such that (f, g) : A⊕ P → B is minimal right almost split.

(ii) There exists a homomorphism h : Q → F (B) with Q projective in Λ′ −
mod such that (f ′, h) : F (A)⊕Q→ F (B) is minimal right almost split.

(c) If A is indecomposable in Λ−mod, then the following are equivalent:

(i) There exists a homomorphism g : A → P with P projective in Λ−mod

such that
(
f
g

)
: A→ B ⊕ P is minimal left almost split.

16
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(ii) There exists a homomorphism h : F (A) → Q with Q projective in Λ′ −
mod such that

(
f ′

h

)
: F (A)→ F (B)⊕Q is minimal left almost split.

Proof. This is [7, X, Proposition 1.3]. �

Remark 2.3.9. Let Λ be selfinjective, and consider the stable equivalence

Ω = ΩΛ : Λ−mod→ Λ−mod.

Let 0 → A → B → C → 0 be an exact sequence. Then there exists an exact

commutative diagram

0 0 0

0 Ω(A) Ω(B)⊕Q Ω(C) 0

0 P (A) P (A)⊕ P (C) P (C) 0

0 A B C 0,

0 0 0

where P (A)→ A and P (C)→ C are projective covers in Λ−mod. If 0→ A→ B →
C → 0 is an AR-sequence, then the modules A and C are indecomposable and thus,

by [7, IV, Proposition 3.6], so are Ω(A) and Ω(C). Moreover, from Proposition 2.3.8,

we infer that the top row of the diagram above is an AR-sequence. In other words,

if C in Λ−mod is indecomposable and not projective, then τ(Ω(C)) ∼= Ω(τ(C)).

The following proposition describes what happens to the stable AR-quiver of a

finite-dimensional selfinjective k-algebra under stable equivalences. This will be

essential in our further investigations.

Proposition 2.3.10. Suppose that Λ and Λ′ are finite-dimensional selfinjective k-

algebras and let F : Λ − mod → Λ′ − mod be an equivalence. Moreover, assume

that Λ and Λ′ have no block of Loewy length 2. Then F induces an isomorphism of

stable valued representation quivers between Γs(Λ) and Γs(Λ
′).

Proof. This is precisely statement (b) of [7, X, Corollary 1.9]. �
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Chapter 3

Stable Auslander–Reiten

components for skew group

algebras

The goal of this chapter is to introduce an important class of algebras, called skew

group algebras. These algebras can be thought of as generalizations of group rings,

and they will become important to us in the investigation of the possible shapes of

the stable AR-components of Hecke algebras of type A in characteristic zero.

First of all, we will give a rough survey of the representation theory of the latter, in

particular, we will explain how the representation theory of the latter and that of

the underlying algebra are intertwined. Afterwards, we will prove a result, giving

a criterion when certain tree classes of stable AR-components are preserved under

the skew group construction. For the definitions and basic results concerning AR-

sequences, we refer to Chapter 2.

Throughout this chapter, Λ denotes a finite-dimensional selfinjective k-algebra over

a fixed field k. Furthermore, G will denote a finite group.

3.1 Skew group algebras

We will state the crucial properties of skew group algebras that are needed for our

purposes. Most of the results stated in this section can be found in [79].

Recall that a k-algebra action of G on Λ is given by a map

φ : G× Λ −→ Λ,

satisfying the following conditions, where we write φ(g, λ) = g(λ), for g ∈ G and

λ ∈ Λ.

(i) The map g : Λ→ Λ is a k-algebra automorphism for all g ∈ G.

(ii) (g1g2)(λ) = g1(g2(λ)), for g1, g2 ∈ G and λ ∈ Λ.
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(iii) e(λ) = λ for all λ ∈ Λ, where e is the identity element in G.

Remark 3.1.1. From this definition, it follows that φ induces a group homomor-

phism G→ AutΛ(Λ).

Definition 3.1.2. Given a k-algebra action φ of G on Λ, the skew group algebra of

G over Λ, which is denoted by Λ ?G, is the free left Λ-module with the elements of

G as a basis. Furthermore, the multiplication on Λ ? G is defined by the rule

(λg ? g)(λh ? h) = (λgg(λh)) ? (gh),

for all λg, λh in Λ and g, h in G.

Remark 3.1.3. From the definition it follows immediately that Λ ? G is a finite-

dimensional unitary k-algebra with unit 1 ? e. If {b1, . . . , br} is a basis of Λ as a

k-vector space, then the elements {bj ? g | 1 ≤ j ≤ r, g ∈ G} form a basis of Λ ? G

as a k-vector space.

Next we want to describe important functors that relate the representation theory

of Λ to that of Λ ? G. First of all there is a natural monomorphism of k-algebras

i : Λ −→ Λ ? G,

given by i(λ) = λ ? e. Throughout we will consider Λ as a unitary k-subalgebra of

Λ ? G with respect to i. With respect to this embedding, we then get a functor

F : Λ−mod −→ Λ ? G−mod, (3.1)

defined on objects by F (M) = Λ?G⊗ΛM , for all M in Λ−mod, called the induction

from Λ to Λ ? G.

If f : M → N is a morphism in Λ−mod, F (f) is defined as the map

idΛ?G ⊗ f : Λ ? G⊗Λ M → Λ ? G⊗Λ N,

which then becomes a morphism in Λ ? G−mod.

Moreover, we define a functor

H : Λ ? G−mod −→ Λ−mod, (3.2)

by setting H(N) = ResΛ?G
Λ (N), for all N in Λ ?G−mod. It is called the restriction

from Λ ? G to Λ.

If f : X → Y is a morphism in Λ ?G−mod, then H(f) is the same as f considered

as k-linear homomorphism, and since we consider Λ as a k-subalgebra of Λ ? G

through i, it then becomes a morphism in Λ−mod.

Assumption. Throughout this chapter, we assume that the order |G| of G is

invertible in k.

Under this additional assumption, the functors defined above have nice properties,

and we are going to record them in the sequel.

20



3.1. Skew group algebras

Proposition 3.1.4. Let F and H be as above. Then the following hold:

(a) (H,F ) is an adjoint pair of functors.

(b) The natural morphism I → HF of functors is a split monomorphism, where

I is the identity functor of Λ−mod.

(c) The natural morphism FH → J of functors is a split epimorphism, where J

is the identity functor of Λ ? G−mod.

(d) rad(Λ)(Λ ? G) = (Λ ? G)rad(Λ) = rad(Λ ? G).

Proof. This is [79, Theorem 1.1]. �

From the last proposition, one gets the following consequences:

Proposition 3.1.5. Under our assumptions on Λ and G, the following hold.

(i) Λ ? G is free as a left and right Λ-module.

(ii) Λ is of finite representation type if and only if Λ ? G is.

(iii) Λ ? G is a selfinjective k-algebra.

Proof. This is [79, Theorem 1.3] and [7, III, Lemma 4.5]. �

With this information, one is now able to transfer properties of Λ−mod to Λ ?G−
mod. In particular, one is interested in what happens to almost split sequences,

almost split maps and irreducible morphisms under the functors F and H.

Through the action of G on Λ we also obtain an action of G on Λ−mod, which we

will describe next. If g is an element of G and X is in Λ − mod, we define gX as

the Λ-module that has the same underlying k-vector space as X together with the

Λ-module structure given by λ � x := g−1(λ)x.

Observe that the subset g⊗X := (1 ? g)⊗X = {(1 ? g)⊗x| x ∈ X} of Λ ?G⊗ΛX

carries a Λ-module structure via

(λ ? e)((1 ? g)⊗ x) = (λ ? g)⊗ x
= [(1 ? g)(g−1(λ) ? e)]⊗ x
= (1 ? g)⊗ g−1(λ)x.

It follows that gX and g⊗X are isomorphic as Λ -modules. If we have a morphism

f : X → Y in Λ − mod, then there is an induced morphism gf : gX → gY in

Λ−mod defined by gf(x) = f(x), for all x ∈ X. Thus, considered as k-vector space

homomorphisms, gf equals f . To prove that it is a Λ-homomorphism, let λ ∈ Λ.

Then

gf(λ � x) = gf(g−1(λ)x) = f(g−1(λ)x)

= g−1(λ)f(x) = g−1(λ)(gf(x))

= λ � (gf(x)).
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With this definition, for a given g ∈ G, we get a k-linear functor G : Λ − mod →
Λ−mod defined by

G(X) = gX and G(f) = gf.

We have the following:

Lemma 3.1.6. For all g ∈ G, the functor G : Λ − mod → Λ − mod induces an

equivalence of k-categories.

Proof. By [7, II, Theorem 1.2], it is enough to show that G is full, faithful and

dense. Since gf and f coincide as k-vector space homomorphisms it follows that G
is faithful. To show that G is full, let h : gX → gY be a morphism in Λ−mod. Now

define f : X → Y to be the same k-vector space homomorphism as h. Then, with

λ in Λ, we have

f(λx) = f(g−1(g(λ))x) = h(g(λ) � x) = g(λ) � h(x) = λf(x).

So f is a morphism in Λ − mod, and it follows that gf = h, i.e., G is full. Since

G(g
−1
X) = g(g

−1
X) ∼= eX ∼= X, the functor G is also dense. Hence, the claim

follows. �

Remark 3.1.7. In particular, we infer that G sends irreducible morphisms to irre-

ducible morphisms, and almost split sequences to almost split sequences.

The following proposition is crucial in our investigations.

Proposition 3.1.8. Let X and Y be indecomposable modules in Λ − mod. With

the notation as above the following holds for the functors H and F :

(a) HF (X) ∼=
⊕

g∈G
gX as Λ-modules.

(b) FX ∼= FY if and only if X ∼= gY , for some g in G.

Proof. This is part of [79, Proposition 1.8]. �

As a consequence, one obtains the following remarkable properties of the functors

F and H.

Proposition 3.1.9. The functors F and H preserve projectivity, projective covers

and semisimple modules.

Proof. Since, by Proposition 3.1.5 (a), Λ?G is free as a right Λ-module, the functor

F preserves projectivity. Now let P in Λ ? G − mod be projective. Then P is

isomorphic to a direct summand of a finite direct sum of copies of the regular Λ?G-

module Λ ? G. Again by Proposition 3.1.5 (a), Λ ? G is free as a left Λ-module,

hence, by the additivity of H, the Λ-module H(P ) is a direct summand of a direct

sum of copies of the regular Λ-module Λ, thus projective.

To show that F preserves projective covers assume that X is an indecomposable

Λ-module and let P → X be a projective cover of X in Λ − mod. Applying F
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yields an epimorphism FP → FX in Λ ? G − mod. Then we choose a projective

cover Y → FX of FX in Λ ? G−mod. It follows that Y is isomorphic to a direct

summand of FP , and applying H affords an epimorphism HY → HFX in Λ−mod,

with HY projective since H preserves projectivity. Now, by Proposition 3.1.8 (a),

the Λ-module HFX is isomorphic to
⊕

g∈G
gX. Since conjugation is an equivalence

of Λ−mod to itself, the projective cover of a conjugate gX is just gP , and, hence,

HFP =
⊕

g∈G
gP is a projective cover of HFX. Since HY is isomorphic to a direct

summand of HFP , it follows that HY ∼= HFP . Now, since Y is a direct summand

of FP it follows by counting dimensions that Y ∼= FP , so FP is a projective cover

of FX, and the claim follows.

The corresponding property for H follows from Proposition 3.1.4 (d) and [7, I,

Proposition 4.3]. �

The next proposition shows how almost split sequence behave under induction and

restriction.

Proposition 3.1.10. With the notation as above we have:

(a) If 0 → X → Y → Z → 0 is an almost split sequence in Λ − mod, then the

exact sequence 0 → FX → FY → FZ → 0 is a direct sum of almost split

sequences in Λ ? G−mod.

(b) If X → Y is a minimal left or minimal right almost split map in Λ − mod,

then the map FX → FY is a direct sum of minimal left or minimal right

almost split maps in Λ ? G−mod.

(c) If 0→ X → Y → Z → 0 is an almost split sequence in Λ ?G−mod, then the

exact sequence 0 → HX → HY → HZ → 0 is a direct sum of almost split

sequences in Λ−mod.

(d) If X → Y is a minimal left or minimal right almost split map in Λ?G−mod,

then the map HX → HY is a direct sum of minimal left or minimal right

almost split maps in Λ−mod.

Proof. This is Theorem 3.8 in [79] in the more general context of dualizing k-

varieties, but we will give the arguments in our case. By Proposition 3.1.8 we

know that HF (M) ∼=
⊕

g∈G
gM , for M ∈ Λ − mod. Moreover, if f : X → Y is a

homomorphism in Λ−mod, from the definition of F (f) it is easy to see that HF (f)

decomposes as

HF (f) = (f, g2f, . . . , gnf) : eX ⊕ g2X ⊕ · · · ⊕ gnX −→ eY ⊕ g2Y ⊕ · · · ⊕ gnY,

where G = {g1 = e, g2, . . . , gn}. It follows from [79, Theorem 3.6] that the induced

functors

F̂ : (Λ−mod)−mod −→ (Λ ? G−mod)−mod,

Ĥ : (Λ ? G−mod)−mod −→ (Λ−mod)−mod,
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defined by

F̂ (HomΛ(−,M)) = HomΛ?G(−, FM),

and

Ĥ(HomΛ?G(−, N)) = HomΛ(−, HN),

for M in Λ−mod and N in Λ?G−mod, preserve semisimple objects and projective

covers. Using the functorial description of AR-sequences and minimal left or right

almost split maps, see for example [8, §4.12], the claim follows. �

Next, let X be an indecomposable Λ-module. We denote by [X] the Λ-modules

in the G-orbit of X, i.e., [X] = {gX | g ∈ G}. For an indecomposable module Z

in Λ ? G −mod we choose an indecomposable module X in Λ −mod such that Z

is a direct summand of Λ ? G ⊗Λ X. This is possible since the natural morphism

FH → J is a split epimorphism, following Proposition 3.1.4 (c). Denote by [Z] the

set of isomorphism classes of non-isomorphic indecomposable direct summands of

Λ ? G⊗Λ X. In this situation we write [X̃] = [Z]. Then we have: [X̃] = [Z] if and

only if Z | FX if and only if gX | HZ, for some g in G. For the last equivalence,

let W be in Λ−mod indecomposable such that Z | FW . Then we have gX | HFW
and since HFW is a direct sum of conjugates of the Λ-module W , we must have

W ∼= hX for some h in G, and so FW ∼= FX, by 3.1.8 (b).

Notation 3.1.11. If there is an irreducible morphism X ′ → Y ′ in Λ − mod, for

objects X ′ in [X] and Y ′ in [Y ], then we say that there is an irreducible morphism

[X]→ [Y ] between [X] and [Y ]. Similarly, we say that there is an irreducible map

[X̃] → [Ỹ ] if there is an irreducible map Z → U in Λ ? G −mod, for Z ∈ [X̃] and

U ∈ [Ỹ ].

With this notation the following holds, see [79, Lemma 4.1].

Lemma 3.1.12. If X and Y are indecomposable objects in Λ − mod, then the

following statements are equivalent:

(a) There is an irreducible map [X]→ [Y ].

(b) Given X ′ in [X], there are some Y ′ in [Y ] and an irreducible map X ′ → Y ′.

(c) Given Y ′ in [Y ], there are some X ′ in [X] and an irreducible map X ′ → Y ′.

(d) There is an irreducible map [X̃]→ [Ỹ ].

(e) Given Z in [X̃], there are some U in [Ỹ ] and an irreducible map Z → U .

(f) Given U in [Ỹ ], there are some Z in [X̃] and an irreducible map Z → U .
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Proof. First, we prove that (a) implies (b). By definition, there is an irreducible

morphism X ′′ → Y ′′ with X ′′ in [X] and Y ′′ in [Y ]. Since there is some g in G with

X ′ = gX ′′ and since conjugation by g affords an equivalence of categories, there

is an irreducible morphism X ′ → gY ′′. The converse is just the definition of an

irreducible morphism between [X] and [Y ]. In the same way, the equivalence of (b)

and (c) follows.

Now let there be an irreducible morphism [X] → [Y ]. Therefore we have an ir-

reducible morphism X ′ → Y ′ with X ′ in [X] and Y ′ in [Y ]. This map can be

completed to a minimal right almost split map X ′⊕W → Y ′, with W in Λ−mod.

By Proposition 3.1.10, the map FX ′ ⊕ FW → FY ′ is a direct sum of minimal

right almost split maps in Λ ? G − mod. Since, by definition, every Z in [X̃ ′] is a

direct summand of FX ′, from Theorem 2.1.9, we infer that there is an irreducible

morphism Z → U with U in [Ỹ ′], i.e., we have an irreducible morphism [X̃]→ [Ỹ ],

hence (a) implies (d).

For the converse, let there be an irreducible morphism [X̃] → [Ỹ ], i.e., there is an

irreducible map Z → U with Z in [X̃] and U in [Ỹ ]. This map can be completed

to a minimal right almost split map Z ⊕ Z ′ → U , and by Proposition 3.1.10, the

map HZ ⊕ HZ ′ → HU is a direct sum of minimal right almost split morphisms.

Since gX is a direct summand of HZ, for some g in G, by Theorem 2.1.9, there is

an irreducible morphism gX → Y ′, with Y ′ a direct summand of HU . Since HU is

a direct summand of HFY , we have that Y ′ is isomorphic to a conjugate of Y , and

the claim follows. The remaining equivalences are shown by using dual arguments.

�

Remark 3.1.13. Denote by τ the AR-translation of Λ. For g ∈ G, observe that if

0 −→ τX
f1−→ E

f2−→ X −→ 0

is an almost split sequence in Λ−mod, where X is not projective, then

0 −→ g(τX)
gf1−→ gE

gf2−→ gX −→ 0

is an almost split sequence as well. We conclude that τ(gX) ∼= g(τX).

This yields that if [X] = [X ′], then we have [τX] = [τX ′]. Thus, it is reasonable to

define τ [X] := [τX].

Moreover, one defines

τ [X̃] = {τZ | Z ∈ [X̃]}.

The next lemma is [79, Lemma 4.2], but we will give the arguments here since they

become important in the next section.

Lemma 3.1.14. If X is indecomposable and non-projective in Λ−mod, then τ [X̃] =

[τ̃X].

Proof. Let Z be in [X̃]. Note that Z is not projective. Otherwise, we have that
gX | HZ, for some g ∈ G, and since H preserves projectivity, gX is projective.

25



Chapter 3. Stable Auslander–Reiten components for skew group algebras

Since conjugation by an element g ∈ G induces an equivalence on Λ − mod, it

follows that X is projective.

Next, consider the almost split sequences 0 → τZ → U → Z → 0 and 0 → τX →
E → X → 0. By Proposition 3.1.10, the induced sequence 0 → F (τX) → FE →
FX → 0 is a direct sum of almost split sequences, and so F (τX) ∼= τFX. By

definition, the indecomposable summands of F (τX) are those in [τ̃X] and since Z

is a direct summand of FX, it follows that τZ is in [τ̃X]. �

3.2 Stable AR-components

In the following let D be a component of the AR-quiver Γ(Λ?G) of Λ?G and Ds its

stable part, see Section 2.2 for definitions. Let Z be a non-projective indecomposable

Λ ? G-module belonging to the component D and choose an indecomposable Λ-

module X such that Z is isomorphic to a direct summand of Λ ? G ⊗Λ X. By our

assumptions on Λ and G this is always possible. Now consider the component C of

the AR-quiver that contains X, and observe that since Z is not projective, neither

is X. In the following we will assume that the stable part Cs of C has tree class A∞.

Then we can choose an infinite sectional path

. . .→ Xn → . . .→ X1 → X0 (3.3)

in C, i.e., τXi 6∼= Xi+2 for all i, such that X ∼= Xn for some n ≥ 0. Then, by

assumption, all the modules occurring in (3.3) are not projective. We also may

assume that X0 lies at the end of Cs, i.e., X0 has exactly one predecessor in Cs.
Now, since we have irreducible morphisms, Xn+1 → X and X → Xn−1, by Lemma

3.1.12, there are irreducible morphisms Zn+1 → Z and Z → Zn−1 with Zn+1 ∈
[X̃n+1] and Zn−1 ∈ [X̃n−1]. It follows that we get a path

. . .→ Zn → . . .→ Z1 → Z0 (3.4)

in D with Z ∼= Zn such that Zi ∈ [X̃i] for all i. Again, non of the modules occurring

in (3.4) are projective. Now, we have the following result:

Proposition 3.2.1. The path (3.4) in D is a sectional path.

Proof. If not, then there is an index i ≥ 0 such that τZi ∼= Zi+2. Since Zi is in

[X̃i], it follows, by Lemma 3.1.14, that Zi+2
∼= τZi is in [τ̃Xi]. But then it follows

that Zi+2 is isomorphic to a direct summand of Λ ? G ⊗Λ τXi, and so HZi+2 is

isomorphic to a direct summand of HF (τXi) ∼=
⊕

g∈G
g(τXi). On the other hand,

since Zi+2 is in [X̃i+2], a conjugate hXi+2 of Xi+2, h ∈ G, is isomorphic to a direct

summand of HZi+2 and so hXi+2
∼= p(τXi), for some p ∈ G, by the Krull–Schmidt

Theorem. This implies that lXi+2
∼= τXi, for l = p−1h ∈ G. Since C is connected

and conjugation by l is an equivalence on Λ−mod, it induces a graph automorphism
l(−) : C → C. Furthermore, by restriction, we obtain an isomorphism l(−) : Cs → Cs
of stable translation quivers, which implies that lXi+2 must be located in the same
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row as Xi+2 in Cs. To this end, take a sectional path from the end of Cs to Xi+2.

The length of such a path is uniquely determined by Xi+2 since the tree class of Cs
is A∞, and this determines the row of Xi+2. Since conjugation is an equivalence,

we obtain a sectional path from the end of Cs = l(Cs) to lXi+2 of the same length.

By our assumption, Xi+2 and τXi are in different rows of Cs, and so we have a

contradiction. Therefore, the above path is a sectional path in D. �

Corollary 3.2.2. Under our assumptions, the component D does not belong to a

block of Λ ? G of finite representation type.

Proof. Suppose D belongs to a block of finite representation type. Then, in the

path of (3.4), only finitely many isomorphism classes of indecomposable modules

occur. Since the latter path is infinite, there exists some i such that Zi occurs in

(3.4) infinitely often. In particular, we have a sequence

T → Zi → Zn → . . .→ Zi+1 → Zi

of irreducible maps in D that is sectional. Since the block is of finite representation

type, we may assume that T ∼= Zi+1. We conclude that there is a sectional cycle in

D, contradicting the fact that there cannot exist a sectional cycle in the AR-quiver

of an Artin algebra, see [7, VII, Corollary 2.6]. �

Remark 3.2.3. If we assume C to be non-periodic, that is to say, no module in C
is τ -periodic, then it follows from [79, Theorem 4.3] that no module in the path of

3.4 occurs more than once.

For a given W ∈ Λ−mod define a function d = dW : Λ−mod→ N ∪ {0} by

d(M) = dW (M) = dimkHomΛ(W,M).

Recall from Section 2.3 that for M in Λ−mod, the Λ-module ΩΛ(M) is defined to

be the kernel of a projective cover of M in Λ − mod. Since Λ is selfinjective, by

Proposition 2.3.1, the induced functor

ΩΛ : Λ−mod −→ Λ−mod

is an equivalence of k-categories. The inverse Ω−1
Λ of ΩΛ is defined on objects to be

the cokernel of an injective envelope of M in Λ−mod. We will need the following

lemma.

Remark 3.2.4. For a connected component Θ of Γs(Λ), we call a function d : Θ→
N ∪ {0} additive if it is additive on AR-sequences, i.e., if M is in Θ, then

d(E) = d(M) + d(τM),

where

0 −→ τM −→ E −→M −→ 0

is an AR-sequence.

27



Chapter 3. Stable Auslander–Reiten components for skew group algebras

Lemma 3.2.5. Suppose that Θ is a connected component of Γs(Λ) such that no

indecomposable summand of W belongs to Θ or ΩΛ(Θ). Then d is an additive

function on Θ.

Proof. This is [37, Lemma 3.2]. �

Moreover, if we assume that W is τ -periodic, i.e, τW ∼= W , we have isomorphisms

of k-vector spaces

HomΛ(W, τM) ∼= HomΛ(τW, τM) ∼= HomΛ(W,M), (3.5)

and thus, d is constant on τ -orbits. Note that τ defines an equivalence of k-categories

from Λ−mod to itself, see [7, IV, Proposition 1.9].

Suppose now that we have a non-zero additive function d on Θ that is constant on

τ -orbits. Recall that a connected component Θ of Γs(Λ) is called τ -periodic if each

Λ-module in Θ is τ -periodic. The following is a consequence of [49, §2, Theorem].

Lemma 3.2.6. For a non-τ -periodic connected component Θ of Γs(Λ) we have the

following:

(i) The tree class of Θ is either one of the infinite Dynkin diagrams A∞, A∞∞,

B∞, C∞, D∞, or a Euclidean diagram.

(ii) If Θ has tree class A∞, then d is unbounded.

Proof. Let T be a directed tree and let Π be an admissible group of automorphisms

of ZT such that ZT/Π ∼= Θ as stable translation quivers. By composition with

the above isomorphism, d induces an additive function on ZT which is constant on

τ -orbits. Thus, d induces an additive function on T̄ , the undirected tree obtained

from T . Now the first part follows by [8, Theorem 4.5.8 (iii)].

For the second part, take a sectional path P in Θ and denote by si the value of d

at the ith node of P , where s1 corresponds to the value of d on the node at the

end of Θ. Since d is supposed to be non-zero, we have that s1 6= 0. We proceed by

induction. Since d is additive on the associated tree of Θ, we have 2s1 = s2, which

shows that s1 < s2. For an arbitrary n > 1, we have

2sn = sn−1 + sn+1,

and then

sn+1 − sn = sn − sn−1.

Since, by the inductive hypothesis, sn−sn−1 > 0, we conclude from the last equation

that sn+1 > sn. �

Remark 3.2.7. (1) Suppose that Θ does not belong to a block of Loewy length

two. Then, if d is a non-zero additive function on Θ, that is to say, there is some

M ∈ Λ − mod such that d(M) 6= 0, then it is non-zero everywhere. To this end,
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suppose that d(N) = 0 for some N ∈ Λ −mod. Since d is constant on τ -orbits, d

is zero on the whole τ -orbit of N . This implies that d(E) = 0, with E being the

middle of the almost split sequence ending in N . This implies that d is zero on all

τ -orbits joined to that of N . Inductively, we see that d must be zero on the whole of

Θ since Θ is connected by [7, X, Proposition 1.8]. This shows that d is an additive

function in the sense of [49].

(2) If we assume k to be algebraically closed, then the valuation (a, b) of an edge

in the AR-quiver of Λ satisfies a = b. Therefore, the infinite Dynkin trees B∞ and

C∞ do not occur in this case.

We return to the situation of the beginning of this section. From now on we will

assume that the connected component Cs of Γs(Λ) is not τ -periodic. Moreover, we

assume that there exists a module W ∈ Λ−mod such that τW ∼= W and

HomΛ(W,M) 6= 0,

for some M in Cs. Since Cs is not τ -periodic, no indecomposable direct summand of

W belongs to Cs since direct summands of τ -periodic modules are again τ -periodic

and components containing τ -periodic modules are τ -periodic. By [7, Chapter X,

Corollary 1.9], the functor ΩΛ induces an isomorphism Cs → ΩΛ(Cs) of stable trans-

lation quivers, and thus, by the same argument, also ΩΛ(Cs) cannot contain an

indecomposable direct summand of W . Hence, by Lemma 3.2.5, the function dW is

additive and also constant on τ -orbits by (3.5).

Observe that a conjugate gW of W , g ∈ G, satisfies τ(gW ) ∼= gW , and hence, defines

an additive function dgW on the conjugate component g(Cs), which is constant on

τ -orbits. Then we define V =
⊕

g∈G
gW , and it follows that τV ∼= V . From the

proof of Lemma 3.1.14, we get that

τFV ∼= F (τV ) ∼= FV,

which shows that FV is a τ -periodic Λ ? G-module.

Recall from Lemma 3.2.1 that given a sectional path of the form (3.3) of C we can

construct a sectional path of the form (3.4). Moreover, we may assume that Ds
is not τ -periodic. In fact, using Proposition 3.1.10, it is easy to see that Ds is

τ -periodic if and only if Cs is.

Suppose that we have chosen W , V and FV as above. Then we define a function

dFV : Λ ? G−mod −→ N ∪ {0}, M 7→ dimkHomΛ?G(FV,M). (3.6)

Recall form [6] that for a finite-dimensional selfinjective k-algebra A and finite-

dimensional A-modules X, Y we have an isomorphism

DHomA(X, Y ) ∼= Ext1
A(Y, τX) (3.7)

of k-vector spaces, where D denotes the usual duality on k−mod. We then get the

following result.
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Theorem 3.2.8. The function dFV of (3.6) is a non-zero additive function on Ds.
Moreover, it is unbounded on the tree associated to Ds, and thus, Ds has tree class

A∞.

Proof. Recall that, for every Zi in the sectional path (3.4) of D, the restriction HZi
has, by construction, a direct summand isomorphic to gXi, for some g ∈ G. Now

for such Zi on the path in Ds we have

dFV (Zi) = dimkHomΛ?G(FV, Zi)

= dimkHomΛ(V,HZi)

≥ dimkHomΛ(V, gXi)

≥ dimkHomΛ(gW, gXi)

= dimkHomΛ(W,Xi)

= dW (Xi).

(3.8)

Observe that we have used the identity (3.7), the Eckmann–Shapiro Lemma (see for

example [8, Corollary 2.8.4]) and the fact that H is left and right adjoint to F , see

Proposition 3.1.4. By our assumption, we have that dgW (gX0) 6= 0, for all g ∈ G.

From (3.8) we infer that dFV (Z0) 6= 0, hence dFV is non-zero since, by assumption,

Ds is connected. Also, by our assumption on Ds, we have that no indecomposable

direct summand of FV belongs to Ds or ΩΛ?G(Ds). Therefore, by Lemma 3.2.5, dFV
is a non-zero additive function on Ds. Moreover, since τFV ∼= FV , it is constant

on τ -orbits. By Lemma 3.2.6, we conclude that the tree class of Ds is either an

infinite Dynkin diagram or a Euclidean diagram.

Now, by Lemma 3.2.6 (ii), dV is unbounded on every conjugate component of Cs
since all components of Γs(Λ) conjugate to Cs have tree class A∞. Thus, we can

find, for every r ∈ N, an index u, such that dV (hXu) > r, for all h in G. But then

it follows from the inequality in (3.8) that also dFV (Zu) > r holds, thus, dFV is

unbounded. By [8, Theorem 4.5.8], Ds has tree class A∞. �

We say that Λ has enough τ -periodic modules if for every non-projective M in

Λ−mod there exists W in Λ−mod with τW ∼= W such that dimkHomΛ(W,M) 6= 0.

Then we obtain the following theorem:

Theorem 3.2.9. Suppose that Λ has enough τ -periodic modules and let the order

of G be invertible in k. Then the following holds: If every non-periodic connected

component of Γs(Λ) has tree class A∞, then every non-periodic connected component

of Γs(Λ ? G) has tree class A∞.

Proof. This follows immediately from Theorem 3.2.8. �
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Chapter 4

The stable Auslander–Reiten

quiver of a quantum complete

intersection

The goal of this chapter is to describe the shape of the stable AR-quiver of a quan-

tum complete intersection. These algebras occur naturally in the representation

theory of Hecke algebras of type A with defining parameter −1. In this case, the

algebra Hf
2 (−1) is isomorphic to the truncated polynomial ring k[X]/(X2), a quan-

tum complete intersection with all parameters equal to 1. More generally, the outer

tensor product of n copies of the algebra Hf
2 (−1) will then be isomorphic to the

algebra k[X1, . . . , Xn]/(X2
1 , . . . , X

2
n).

In [11, Theorem 3.6] the stable AR-quiver of these algebras was determined, but

some details in the proof are missing. In this chapter we will give a complete and

detailed proof of this theorem.

Throughout, k denotes a field of characteristic p ≥ 0. Moreover, we will assume

that k is a splitting field for all algebras and groups that occur.

4.1 A skew group algebra construction

In this section we show that a quantum complete intersection whose parameters are

arbitrary roots of unity is a truncation of a skew group algebra over a homogeneous

quantum complete intersection. The construction relies on a construction given in

[9, §4.2].

Let q = (qij) ∈ Matm(k) be a commutation matrix, i.e., qii = 1 and qijqji = 1 for

all i, j. We will assume that qij is a (not necessarily primitive) root of unity in k

for all i, j. For n > 1 and m ≥ 1 we then define

Anq,m := k〈Z1, . . . , Zm〉/(Zn
i , ZiZj − qijZjZi, 1 ≤ i < j ≤ m),
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which is a finite-dimensional selfinjective k-algebra of dimension nm, see for example

[10, §2]. The strategy here is to relate A := Anq,m to the k-algebra

Anm := k〈X1, . . . , Xm〉/(Xn
i , XiXj − ζXjXi, 1 ≤ i < j ≤ m),

with ζ a primitive sth root of unity, where n = pas and (p, s) = 1, i.e., s is the

p′-part of n. If p = 0, we set s = n. Note that Anm is a special instance of a quantum

complete intersection, where we have chosen q to be the commutation matrix with

qij = ζ, for all i < j. The algebra Anm is called a homogeneous quantum complete

intersection.

Remark 4.1.1. Observe that if char(k) = p > 0 and n = pa, then Anm is isomorphic

to the group algebra of a homocyclic group, i.e., Anm
∼= kG, with G ∼= (Z/paZ)m.

From [11, Theorem 3.3 and Theorem 3.5], we know that if m ≥ 3 or n ≥ 3 then all

the connected components of the stable AR-quiver of Anm have tree class A∞.

To see how the two classes of algebras are related, we recall a construction given in

[9, §4]. Let u = (uij) ∈ Matm(k) be a commutation matrix. We then choose r ≥ 1

such that urij = 1, for all 1 ≤ i, j ≤ m and p does not divide r. Since char(k) = p,

this is possible. Define the finite group Eu as follows: Eu is the central extension

given by

1 −→ 〈ν〉 −→ Eu −→ (Z/rZ)m −→ 1, (4.1)

where 〈ν〉 ∼= Z/rZ and with relations as follows. Denote by ei the preimage of

a generator of the ith factor appearing on the right-hand side of (4.1). Then we

require:

(1) νr = 1 and eri = 1 for 1 ≤ i ≤ m,

(2) eiej = νijejei for 1 ≤ i < j ≤ m,

(3) eiν = νei, 1 ≤ i ≤ m,

where we specify the elements νij ∈ 〈ν〉 as follows. We fix a group isomorphism

φ : 〈ν〉 −→ Ur,

with Ur the group of rth roots of unity in k, i.e., we fix a character φ ∈ Irr(〈ν〉).
Then ν is sent to a primitive rth root of unity and we define νij by φ(νij) = uij,

1 ≤ i < j ≤ m.

Directly from the definition we see that |Eu| = rm+1, and since (p, r) = 1, the

associated group algebra kEu is split semisimple.

As a next step we define an appropriate central idempotent e in the group algebra

kEu. To this end, let E0 := Z(E) be the center of E := Eu. We define a form

β : E/E0 × E/E0 −→ k
×,

(aE0, bE0) 7→ φ([a, b]),
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on E/E0. Here, for elements a, b ∈ E, the element [a, b] = a−1b−1ab denotes their

commutator in E. It is easy to see that β is bilinear, β(a, a) = 1 and β(a, b) =

β(b, a)−1 for all a, b ∈ E, that is to say, β is a symplectic form. Then, for a subgroup

B ⊆ E/E0 we set

B⊥ = {a ∈ E | β(a, b) = 1, for all b ∈ B}.

If B ⊆ B⊥, then B is called isotropic.

Since φ is an isomorphism of abelian groups, we see that β is non-singular. By [73,

Corollary 5.7], it follows that E/E0 admits a decomposition E/E0
∼= B×B′, where

B is a maximal isotropic subgroup of E/E0 and B′ denotes the dual group of B.

Since |B| = |B′|, we see that |E/E0| = d2, for some positive integer d.

We will recall some facts about characters of finite groups and their associated

group algebras. Our main reference for all this will be [25, §9 and §10]. For a finite-

dimensional k-algebra C and a finite-dimensional C-module M , the trace function

µ : C → k, µ(a) = trace(a,M)

defines the character afforded by M . The degree of the character µ, denoted by

deg(µ), is defined as µ(1).

Let E1 be the preimage of a maximal isotropic subgroup of E/E0 in E. Note that

E1 can be chosen to be any maximal abelian subgroup of E. We construct an

irreducible character χ of E1 that extends φ. To this end, let S be the irreducible

k〈ν〉-module corresponding to the irreducible character φ. By Mackey’s Theorem,

ReskE1

k〈ν〉(IndkE1

k〈ν〉(S)) has a direct summand isomorphic to S. Therefore, there is

some irreducible kE1-module T whose restriction to k〈ν〉 has a direct summand

isomorphic to S. Since E1 is abelian, and k is a splitting field for E1, we have that

dimk(T ) = 1, and, thus, ReskE1

k〈ν〉(T ) ∼= S. It follows that if χ denotes the irreducible

character of E1 afforded by T , then ResE1

〈ν〉(χ) = φ.

We set χ0 = ResE1
E0

(χ). Let R := {g1, . . . , gs} be a set of left coset representatives

of E1 in E. We claim that the set

{giχ | gi ∈ R} (4.2)

enumerates all the irreducible characters of E1 that restrict to χ0. Note that since

E1 is normal in E the definition of the character giχ makes sense. Suppose that
gχ = χ, for some g ∈ E, i.e., χ(g−1hg) = χ(h), for all h ∈ E1. Since χ is a group

homomorphism, we infer that

φ([h, g]) = χ([h, g]) = χ(h−1g−1hg) = 1,

for all h ∈ E1. But this implies that [h, g] = 1 for all h ∈ E1. Since E1 is the

preimage of a maximal isotropic subgroup of E/E0, we conclude that g ∈ E1.

Therefore, the characters given in (4.2) are pairwise distinct. On the other hand, if

Ti denotes the irreducible kE1-module corresponding to giχ, and T0 the irreducible
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kE0-module corresponding to χ0, then by Frobenius Reciprocity, each Ti occurs

with multiplicity one in the induced module IndkE1
kE0

(T0). Similarly, each irreducible

kE1-module whose restriction to kE0 is isomorphic to T0 occurs with multiplicity

one in the latter. Since

dimk IndkE1
kE0

(T0) = [E1 : E0] = [E : E1],

we infer that the set in (4.2) gives all the irreducible characters of E1 that restrict

to φ.

Note that, by [25, §10A], the character of IndkE1
kE0

(T0) is given by

IndE1
E0

(χ0) :=
1

|E0|
∑
x∈E1

xχ̇0,

where χ̇0 is the extension of χ0 to E1, and is defined as

χ̇0(h) =

{
χ0(h), h ∈ E0,

0, h 6= E0.

We then see that

IndE1
E0

(χ0) =
∑
gi∈R

giχ. (4.3)

Since the giχ, gi ∈ R are pairwise distinct, by [26, Corollary 45.5], the kE-module

IndkE
kE1

(T ) is irreducible. If ψ denotes the corresponding irreducible character of E,

then, by [25, Proposition 9.17], the associated central primitive idempotent e has

the form

e =
ψ(1)

|E|
∑
g∈E

ψ(g)g−1 ∈ kEu. (4.4)

Since e is a block idempotent, we obtain an isomorphism

ρ : ekEu −→ Matd(k),

of k-algebras. Moreover, using (4.3), we get that

e =
1

|E0|
∑
g∈E0

χ0(g)g−1. (4.5)

Remark 4.1.2. Observe that the block algebra ekEu is generated by the elements

eei, 1 ≤ i ≤ m such that

(a) eeieej = uijeejeei, 1 ≤ i < j ≤ m, and

(b) (eei)
r = e, 1 ≤ i ≤ m.
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Relation (a) is due to the fact that eνij = uije for all i, j.

Now we go back to the situation of the beginning of this chapter. For the given

commutation matrix q let us define a new commutation matrix q′ ∈ Matm(k) via

the equations

q′ijqij = ζ, (4.6)

for all 1 ≤ i < j ≤ m. Then the elements q′ij are again roots of unity. Recall that ζ

was chosen to be a primitive sth root of unity in k. We define

r = s
∏
i<j

ord(qij), (4.7)

where ord(qij) the order of qij in k×. Clearly we have that r ≥ s, and p does not

divide r. We then obtain a finite group Eq′ as in (4.1) together with the associated

group algebra kEq′ and central primitive idempotent e as in (4.5).

Next consider the algebra B := A⊗k ekEq′ , the outer tensor product of A and the

split semisimple algebra ekEq′ . Denote by S the unique irreducible ekEq′-module.

Recall that, as k-algebras, ekEq′ is isomorphic to Matd(k), where d is such that

|Eq′/Z(Eq′)| = d2. We then have the following:

Lemma 4.1.3. The algebras A and B are Morita equivalent.

Proof. Consider the (B,A)-bimodule P = A⊗kS. Since B ∼= (P )d, P is a projective

generator in B −mod. By [25, Lemma 10.37] we have that as k-algebras,

EndB(A⊗k S)op ∼= (EndA(A)⊗k EndekEq′
(S))op

∼= (Aop ⊗k k)op

∼= A.

By [25, Theorem 3.54], the k-algebras A and B are Morita equivalent. �

As a next step we consider the k-subalgebra R̃ of B generated by the elements

Zi ⊗ eei, 1 ≤ i ≤ m. We claim that the latter is isomorphic to R := Anm as a

k-algebra. To this end, we will denote by Inm the set of tuples i = (i1, . . . , ic), c ≥ 1,

such that 1 ≤ i1 < i2 < . . . < ic ≤ m. Then, as a k-vector space, R has as basis the

set

{Xni1
i1
· · ·Xnic

ic
| i ∈ Inm, 1 ≤ nij < n, 1 ≤ j ≤ c} ∪ {1}.

We define a k-homomorphism φ : R→ R̃ by

X
ni1
i1
· · ·Xnic

ic
7→ (Z

ni1
i1
· · ·Znic

ic
)⊗ e(eni1i1

· · · enicic ), i ∈ Inm,
1 7→ 1⊗ e,

(4.8)

and extending linearly. Note that since the element e
ni1
i1
· · · enicic , i ∈ Inm, is invertible

in kEq′ , the element e(e
ni1
i1
· · · enicic ) must be invertible in ekEq′ . Thus, all the
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elements on the right-hand side are different from zero. It then follows that these

elements are linearly independent over k, and since they generate R̃, one sees, using

the relations given in Remark 4.1.2 and the defining relations of A, that they form

a basis of R̃ over k. Hence, φ is an isomorphism of k-vector spaces. Furthermore,

for 1 ≤ i < j ≤ m, we have that

φ(Xj)φ(Xi) = (Zj ⊗ eej)(Zi ⊗ eei)
= ZjZi ⊗ eejei
= (q−1

ij ZiZj)⊗ eν−1
ij eiej

= q−1
ij q

′−1
ij (ZiZj ⊗ eeiej)

= φ(ζ−1XiXj)

= φ(XjXi),

using again the defining relations of Remark 4.1.2 and the defining relations of R.

Therefore, the map φ is a k-algebra isomorphism.

Next we want to define a k-algebra action Eq′×R̃→ R̃. To this end, for an element

σ ∈ Eq′ , we first define a map on the elements of the basis of R̃ given in (4.8) by

setting

fσ((Z
ni1
i1
· · ·Znic

ic
)⊗ e(eni1i1

· · · enicic )) = (Z
ni1
i1
· · ·Znic

ic
)⊗ e(σ(e

ni1
i1
· · · enicic )σ−1),

for all i ∈ Inm, and fσ(1 ⊗ e) = 1 ⊗ e. Then, we extend this map linearly to a

map of R̃, which we also denote by fσ. It is easy to see that fσ1σ2(r) = fσ1(fσ2(r))

for all σ1, σ2 ∈ Eq′ , r ∈ R̃, and f1 = 1. Hence, the group Eq′ acts via k-linear

endomorphisms on R̃. Directly from the definition, we have that fτ = 1 for all

τ ∈ Z(Eq′). Moreover, using the relations of Remark 4.1.2 and the defining relations

of A, we get that

fσ(b1b2) = fσ(b1)fσ(b2),

for basis elements b1, b2 of (4.8), and all σ ∈ Eq′ . Thus, the k-endomorphisms are

actually k-algebra endomorphisms of R̃. Moreover, writing σ as a product of the

generators ν, e1, . . . , em of Eq′ , we see that fσ(b) = λb, where b is a basis element of

(4.8), and λ ∈ k is a product of roots of unity in k, i.e., λ 6= 0. It follows that each

fσ is a k-algebra automorphism of R̃, and we obtain a k-algebra action of Eq′ on

R̃. In particular,

ej(Zi ⊗ eei) =

{
q′ji(Zi ⊗ eei), i 6= j,

Zi ⊗ eei, i = j,
(4.9)

for all 1 ≤ i ≤ m.

Through the k-algebra isomorphism φ, we then obtain a k-action of Eq′ on R as

well. In particular, we get that

ej(Xi) =

{
q′jiXi, i 6= j,

Xi, i = j,
(4.10)
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which is a direct consequence of (4.9).

Next we want to give another description of the algebra B. To this end, consider the

skew group algebra R?Eq′ with R = Anm, which, as a k-vector space, is isomorphic

to R ⊗k kEq′ . Following Chapter 3, the multiplication in R ? Eq′ is given by the

rule

(a ? σ)(b ? τ) = (aσ(b)) ? (στ),

where σ(b) := φ−1(σφ(b)) is the action of Eq′ on R according to the action of Eq′

on R̃ defined above.

As mentioned above, every element in the center of Eq′ acts trivially on R. Set

E0 = Z(Eq′) and ẽ = 1
|E0|
∑

g∈E0
χ0(g−1) ? g ∈ kEq′ . Here, kEq′ is considered as a

unitary k-subalgebra of R ? Eq′ via the canonical k-algebra embedding∑
g∈Eq′

λgg 7→
∑
g∈Eq′

λg ? g, λg ∈ k.

Thus, ẽ is the image of our block idempotent e in kEq′ and, therefore, is an idem-

potent in R ? Eq′ .

Lemma 4.1.4. The idempotent ẽ is central in R ? Eq′.

Proof. If s ? h denotes an arbitrary basis element in R ? Eq′ , we then have

ẽ(s ? h) =
1

|E0|
∑
g∈E0

(χ0(g−1) ? g)(s ? h)

=
1

|E0|
∑
g∈E0

(χ0(g−1)s) ? (gh)

=
1

|E0|
∑
g∈E0

(s[h(χ0(g−1))]) ? (hg)

=
1

|E0|
∑
g∈E0

(s ? h)(χ0(g−1) ? g)

= (s ? h)ẽ.

We conclude that ẽ is a central idempotent in R ? Eq′ . �

Next, we will construct an isomorphism of k-algebras between the algebras ẽ(R ?

Eq′)ẽ = ẽ(R ? Eq′) = (R ? Eq′)ẽ and B. To do this, we first choose a k-basis of

ẽ(R ? Eq′). For R choose the canonical basis given by the subset{∏
i∈I

Xvi
i

}
I⊆{1,...,m}

of R, with 1 ≤ vi < n for all i ∈ I. Here, we only consider subsets I = {i1, . . . , ik} ⊆
{1, . . . ,m} such that i1 < . . . < ik. Then we let bvI be the basis element correspond-

ing to the subset I and the exponent vector v = (v1, . . . , vm) ∈ Nm, where we set
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vi = 0 if i 6∈ I. By convention, the empty product corresponds to the identity in R.

We then get a k-basis of R ? Eq′ that is given by the set

{bvI ? σ}I⊆{1,...,m}, v∈Nm, σ∈Eq′
.

From this it follows that ẽ(R ? Eq′) is spanned by the set

{ẽ(bvI ? σ)}I⊆{1,...,m}, v∈Nm, σ∈Eq′
.

Suppose that ẽ(bvI ? γ) is such that γ = τσ, for elements τ ∈ E0 and σ ∈ Eq′ . We

calculate:

ẽ(bvI ? γ) = ẽ(bvI ? 1)ẽ(1 ? τ)ẽ(1 ? σ)

= ẽ(1 ? τ)ẽ(bvI ? σ)

= χ0(τ)ẽ(bvI ? σ),

which shows that it is enough to choose one element from each right (or left) coset

of E0 in Eq′ to obtain a spanning set

B := {ẽ(bvI ? σ)}I⊆{1,...,m}, v∈Nm, σ∈T

for ẽ(R?Eq′), where T denotes a set of coset representatives of E0 in Eq′ . We may

assume that the identity 1 of Eq′ is in T . Expanding the elements in B, we see

that all the occurring basis elements of R?Eq′ are pairwise distinct. Therefore, the

elements of B are linearly independent over k and, thus, form a basis of ẽ(R ? Eq′)

as a k-vector space. Then dimk ẽ(R ? Eq′) = (dimkR)|Eq′/E0|, and so, ẽ(R ? Eq′)

and R⊗k ekEq′ are isomorphic as k-vector spaces.

As a next step we define a map ψ : B → B by setting

ψ(ẽ(bvI ? σ)) =
∏
i∈I

Zvi
i ⊗ e(

∏
i∈I

evii )σ.

Note that if I = ∅, we set
∏

i∈I e
vi
i = 1. Then ψ induces a k-linear map

ẽ(R ? Eq′)→ B,

which also will be denoted by ψ. Directly from the definition it follows that ψ(ẽ) =

1 ⊗ e. To show that ψ is a homomorphism of k-algebras, we choose two basis

elements ẽ(bvI ?σ) and ẽ(bv
′
J ? τ) with subset I, J ⊆ {1, . . . ,m} and exponent vectors

v and v′. Then we have

(ẽ(bvI ? σ))(ẽ(bv
′

J ? τ)) = ẽ(bvIσ(bv
′

J ) ? στ).

Since every element in 〈ν〉 acts trivially on R, we may assume that σ =
∏

u∈U e
cu
u ,

for an ordered subset U ⊆ {1, . . . ,m}, with generators eu of Eq′ and cu ∈ {0, . . . , r−
1}, u ∈ U . By (4.10), we then have:

σ(bv
′

J ) = (
∏
u∈U

ecuu )(bv
′

J ) = (
∏
u∈U

∏
j∈J

(q′uj)
cuv′j)bv

′

J . (4.11)
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In the following let aσ =
∏

u∈U
∏

j∈J(q′uj)
cuv′j . For the product bvIb

v′
J we have:

bvIb
v′

J = (
∏
j∈J

∏
i∈I,i>j

ζ−viv
′
j)bwI∪J , (4.12)

where w is such that wi = vi + v′i for all 1 ≤ i ≤ m. The set I ∪ J ⊆ {1, . . . ,m}
is again ordered. Note that this product equals zero whenever wi ≥ n for some

i ∈ I ∪ J .

In the following, we write awIJ for the exponent of ζ in (4.12). Let στ = zγ, for

z ∈ E0 and γ ∈ T . By definition of ψ, we then get

ψ(ẽ(bvIσ(bv
′

J ) ? στ)) = ψ(ẽ(bvIσ(bv
′

J ) ? zγ))

= ψ(χ0(z)ẽ(bvIσ(bv
′

J ) ? γ))

= χ0(z)ψ(ẽ(bvIσ(bv
′

J ) ? γ))

= χ0(z)aσζ
awIJ (

∏
i∈I∪J

Zwi
i ⊗ e(

∏
i∈I∪J

ewii )γ)

= aσζ
awIJ (

∏
i∈I∪J

Zwi
i ⊗ ez(

∏
i∈I∪J

ewii )γ)

= aσζ
awIJ (

∏
i∈I∪J

Zwi
i ⊗ e(

∏
i∈I∪J

ewii )στ),

which is equal to zero whenever wi ≥ n for some i ∈ I ∪ J .

On the other hand we have

ψ(ẽ(bvI ? σ))ψ(ẽ(bv
′

J ? τ)) = (
∏
i∈I

Zvi
i ⊗ e(

∏
i∈I

evii )σ)(
∏
j∈J

Z
v′j
j ⊗ e(

∏
j∈J

e
v′j
j )τ)

= (
∏
i∈I

Zvi
i )(
∏
j∈J

Z
v′j
j )⊗ e((

∏
i∈I

evii )σ)((
∏
j∈J

e
v′j
j )τ).

We first transform the element σ(
∏

j∈J e
v′j
j ). So let σ =

∏
u∈U e

cu
u as before and take

the last generator et in this product. Then we have

et(
∏
j∈J

e
v′j
j ) = (

∏
j>t

ν
v′j
tj )(
∏
j<t

ν
−v′j
jt )(

∏
j∈J

e
v′j
j )et.

Write νet := (
∏

j>t ν
v′j
tj )(
∏

j<t ν
−v′j
jt ). Next, take the last generator in σe−1

t and repeat

this procedure. Then we get

σ(
∏
j∈J

e
v′j
j ) = (

∏
u∈U

νcueu )(
∏
j∈J

e
v′j
j )σ.

Since νij is central in Eq′ , for all 1 ≤ i < j ≤ m, we have that eνij = q′ije and,

equivalently, eν−1
ij = (qij)

′−1e = q′jie. We get

e((
∏
i∈I

evii )σ)((
∏
j∈J

e
v′j
j )τ) = (

∏
u∈U

∏
j∈J

(q′uj)
cuv′j)e((

∏
i∈I

evii )(
∏
j∈J

e
v′j
j )στ)). (4.13)
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Next we want to analyze the product (
∏

i∈I e
vi
i )(
∏

j∈J e
v′j
j ). But with the relations

eiej = νijejei in Eq′ , for 1 ≤ i < j ≤ m, we calculate:

(
∏
i∈I

evii )(
∏
j∈J

e
v′j
j ) = (

∏
j∈J

∏
i∈I,i>j

ν
−viv′j
ji )

∏
i∈I∪J

ewii . (4.14)

Finally, we obtain

e((
∏
i∈I

evii )(
∏
j∈J

e
v′j
j )) = (

∏
j∈J

∏
i∈I,i>j

(q′ij)
viv
′
j)e

∏
i∈I∪J

ewii . (4.15)

As a last step we transform the product (
∏

i∈I Z
vi
i )(
∏

j∈J Z
v′j
j ) by using the defining

relations in A = Anq′,m:

(
∏
i∈I

Zvi
i )(
∏
j∈J

Z
v′j
j ) = (

∏
j∈J

∏
i∈I,i>j

(qji)
−viv′j)

∏
i∈I∪J

Zwi
i

= (
∏
j∈J

∏
i∈I,i>j

(qij)
viv
′
j)
∏
i∈I∪J

Zwi
i .

(4.16)

Recall from (4.6) that q′uvquv = ζ for all 1 ≤ u < v ≤ m, i.e., q′vuqvu = ζ−1.

Therefore, the product of the scalars in (4.15) and (4.16) equals

∏
j∈J

∏
i∈I,i>j

ζ−viv
′
j . (4.17)

Comparing the coefficients of (4.11) and (4.12) with the ones calculated in (4.13)

and (4.17) we obtain:

ψ((ẽ(bI ? σ))(ẽ(bJ ? τ))) = ψ(ẽ(bI ? σ))ψ(ẽ(bJ ? τ)).

Now that we have that ψ(bb′) = ψ(b)ψ(b′) for basis elements b, b′ ∈ B, it is easy to

show that this holds for arbitrary elements in ẽ(R ? Eq′).

Next we want to show that ψ is surjective. To do this, note that the elements eσ,

σ ∈ T , form a basis of ekEq′ as a k-vector space. By definition of ψ, ψ(ẽ(1 ? σ)) =

1 ⊗ eσ, and thus, the k-subalgebra 1 ⊗ ekEq′ of B is contained in the image of ψ.

Since Zi ⊗ e = (Zi ⊗ eei)(1 ⊗ ee−1
i ), for all 1 ≤ i ≤ m, we see that also all the

elements Zi ⊗ e, 1 ≤ i ≤ m, are in the image of ψ. Since these elements generate

the k-subalgebra A⊗ e of B, the latter algebra must be contained in the image of

ψ. But, as a k-algebra, B is generated by A ⊗ e and 1 ⊗ ekEq′ and hence, ψ is

surjective. Since dimkẽ(R ? Eq′) = dimkB, it must be an isomorphism. Therefore,

we have shown:

Theorem 4.1.5. The k-algebras B and ẽ(R ? Eq′) are isomorphic.
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With Lemma 4.1.3, we obtain the following corollary.

Corollary 4.1.6. The k-algebra ẽ(R ? Eq′) is indecomposable.

Proof. By Lemma 4.1.3, ẽ(R ? Eq′) is Morita equivalent to A, and therefore, by [1,

Proposition 21.10], have isomorphic centers. Since A is a local algebra, the only

idempotents that occur are 0 and 1 and, hence, the claim follows. �

4.2 Stable components of a quantum complete in-

tersection

In this section we finally describe the shape of the stable AR-quiver of a quantum

complete intersection.

Let C be a finite-dimensional k-algebra, and let Ω := ΩC be the syzygy functor

associated to C. Recall from [9] C is said to have enough Ω-periodic modules if for

every non-projective M in C −mod there exists some W ∈ C −mod such that

(a) W ∼= Ωr
C(W )⊕ P , for some r > 0, and some projective C-module P ,

(b) HomC(W,M) 6= 0.

We now have the following:

Corollary 4.2.1. With the notation as in Section 4.1, the algebra ẽ(R ? Eq′) has

enough Ω-periodic modules. Furthermore, A has enough Ω-periodic modules.

Proof. By [9, Lemma 3.2], R ? Eq′ has enough Ω-periodic modules since R has, see

[9, Corollary 2.16]. Thus, ẽ(R ? Eq′) has enough Ω-periodic modules. By Theorem

4.1.5, we infer, using the Morita equivalence given in Lemma 4.1.3, that A has

enough Ω-periodic modules. �

Remark 4.2.2. In [9] a theory of rank varieties for the algebra R = Anm was

developed. To each M in R−mod one can associate a set

V r
R(M) = {0} ∪ {0 6= λ ∈ km|ResRk[uλ](M) is not a projective k[uλ]-module},

where uλ =
∑

i λiXi, and k[uλ] denotes the k-subalgebra generated by uλ. Then,

by [9, Theorem 2.6], M is projective if and only if V r
R(M) = 0. Therefore, by [9,

Lemma 2.15], if M is not projective, then there is some 0 6= λ ∈ km such that the

k-vector spaces

HomR(Ruλ,M) and HomR(Run−1
λ ,M)

are both non-zero. Moreover, by [9, Lemma 2.14], we have that

Ω(Ruλ) = Run−1
λ ,

i.e., the indecomposable R-modules Ruλ and Run−1
λ have Ω-period two and are

syzygies of each other. Then, consider the R-modules τ(Ruλ) and τ(Run−1
λ ), where
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τ denotes the AR-translate of R, see Chapter 2, Section 2.1, for definitions. Since

R is selfinjective, we know from Proposition 2.3.3 that τ ∼= Ω2N as functors from

R − mod to itself, where N denotes the Nakayama automorphism of R. By the

same proposition, we also have that Ω2N ∼= NΩ2. It follows that

τ(Ruλ) ∼= N (Ruλ) and τ(Run−1
λ ) ∼= N (Run−1

λ ).

Set W0 = τ(Ruλ) or W0 = τ(Run−1
λ ). Then, for any integer a 6= 0, we have that

τa(W0) ∼= N a(W0). From [10, Lemma 3.1], we know that N has finite order, which

implies that every Ω-periodic R-module is also τ -periodic. Hence, there exists a

non-zero integer a such that τa(W0) ∼= W0. If we set

W = W0 ⊕ τ(W0)⊕ · · · ⊕ τa−1(W0),

then we see that τ(W ) ∼= W . Therefore, if M is a non-projective R-module, we have

constructed an R-module W such that τ(W ) ∼= W and HomR(W, τ(M)) 6= 0. Note

that if M is non-projective, then neither is τ(M) since R is selfinjective. Therefore,

we have that HomR(W,M) 6= 0.

As a consequence of Theorem 4.1.5, we get the following result.

Theorem 4.2.3. Let k be algebraically closed and suppose that m,n ≥ 2. If m ≥ 3

or n ≥ 3, then every connected component of the stable AR-quiver Γs(A) of the

k-algebra A has tree class A∞.

Proof. We first show that every connected component of the stable AR-quiver of the

skew group algebra R?Eq′ has tree class A∞. Note that all the assumptions needed

in the proof of Theorem 3.2.8 in Chapter 3 are satisfied, i.e., Eq′ is a finite group

such that the order |Eq′| of Eq′ is invertible in k. Moreover, by Remark 4.2.2, R has

enough τ -periodic modules, i.e., for each non-projective M in R−mod there exists

an R-module W such that τ(W ) ∼= W and HomR(W, τ(M)) 6= 0. Furthermore, we

know from [11, Theorem 3.3 and Theorem 3.5] that all the connected components

of the stable AR-quiver of R for m ≥ 3 or n ≥ 3 have tree class A∞. Now we can

proceed as in Section 3.2, and, thus, by Theorem 3.2.9, we get that every connected

component of Γs(R ? Eq′) that is not τ -periodic has tree class A∞. From this it

follows that every non-τ -periodic connected component of the stable AR-quiver of

any block of R ? Eq′ must have tree class A∞.

On the other hand, if a connected component of the stable AR-quiver of R ? Eq′ is

τ -periodic, then it follows from Theorem 2.2.6 that it must have tree class either a

finite Dynkin diagram or A∞. In the first case the corresponding component of the

stable AR-quiver is finite, thus belongs to a block of R?Eq′ of finite representation

type. By Proposition 3.2.1 and Corollary 3.2.2 this cannot be the case. Hence, it

must have tree class A∞.

By Theorem 4.1.5 we have a k-algebra isomorphism between B and ẽ(R?Eq′), and,

by Lemma 4.1.3, a Morita equivalence between A and B. Thus, A and ẽ(R ? Eq′)

are Morita equivalent k-algebras and the claim follows. �
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Recall that a finite-dimensional algebra A over an algebraically closed field is of

finite, tame or wild representation type, and these types are mutually exclusive.

If A is of finite representation type, there are only finitely many isomorphism classes

of indecomposable A-modules, whereas in the tame and wild cases there are in-

finitely many. If A is tame, then one can classify the isomorphism classes of inde-

composable A-modules, whereas in the wild case, in general, no such classification

exists.

The next proposition completes the picture for the quantum complete intersections.

Theorem 4.2.4. Suppose that k is algebraically closed. Then the following hold for

the algebra A = Anq,m.

(a) If m = 1, then A is of finite representation type and the connected component

of the stable AR-quiver has tree class An−1.

(b) If m = n = 2, then A is of tame representation type and there is one connected

component of the stable AR-quiver of tree class Ã12 and infinitely many 1-

tubes, which have tree class A∞.

(c) In all other cases, A is of wild representation type and all the connected com-

ponents of Γs(A) have tree class A∞.

Proof. If m = 1, then, as a k-algebra, A is isomorphic to k[Z]/(Zn), the truncated

commutative polynomial ring. For the latter algebra, the modules k[Z]/(Zi), 1 ≤
i ≤ n, give a complete list of non-isomorphic indecomposable modules, so A is of

finite representation type. For each 1 ≤ i ≤ n − 2 we have the following AR-

sequence:

0 −→ k[Z]/(Zi)
fi−→ k[Z]/(Zi−1)⊕ k[Z]/(Zi+1)

gi−→ k[Z]/(Zi) −→ 0,

where the homomorphism fi is induced by the canonical inclusion k[Z]/(Zi) →
k[Z]/(Zi+1) and the canonical epimorphism k[Z]/(Zi) → k[Z]/(Zi−1), the homo-

morphism gi is induced by the canonical inclusion k[Z]/(Zi−1)→ k[Z]/(Zi) and the

canonical epimorphism k[Z]/(Zi+1)→ k[Z]/(Zi) with switched sign. Note that the

module k[Z]/(Zn) is the unique projective and injective indecomposable A-module.

From this it follows that the stable part of the AR-quiver of A is a 1-tube of tree

class An−1.

Let m = n = 2. In this case, A is a factor algebra of the algebra

k〈Z1, Z2〉/〈Z2
1 , Z

2
2〉,

which is of tame representation type by [78, 1.3]. Using the methods of [8, §4.3],

one can show that A is special biserial and domestic. By [37, Theorem 2.1], Γs(A)

consists of infinitely many tubes that have tree class A∞ and finitely many com-

ponents of the form ZÃp,q for positive integers p, q. For pq ≥ 2, the component

ZÃp,q has tree class A∞∞ and if pq = 1, it has tree class Ã12. Since rad(A)/soc(A) is

indecomposable, it must have tree class Ã12.
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If m ≥ 3, then it follows from [14, Theorem 4.1] that A has wild representation

type. If m = 2 and n ≥ 3, then the algebra k〈X, Y 〉/(X2, XY − qY X, Y 3, Y 2X) is

a factor algebra of A. By [78, 3.4], this factor is wild. It follows that A is wild. The

statement about the components of Γs(A) follows from Theorem 4.2.3.

�

Remark 4.2.5. As mentioned in the beginning of this chapter, the case when A

is a homogeneous quantum complete intersection was already treated in [11]. The

general case, i.e., if all the entries of the commutation matrix are arbitrary roots

of unity, was also stated there but a thorough proof was missing. Theorem 4.2.4 is

filling the gap.

In the following we list the Dynkin and Euclidean diagrams occurring as tree classes

in Theorem 4.2.4, where the diagram of type An consists of n nodes.

An :

A∞ :

Ã12 : • •
(2, 2)
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Chapter 5

The stable Auslander–Reiten

quiver of blocks of e-parabolic

Hecke algebras

In this chapter we will describe the shape of the stable AR-quiver of outer tensor

products of Brauer tree algebras whose Brauer tree is given by a line with no

exceptional vertex. These algebras naturally occur as blocks of Hecke algebras of

type A of finite representation type.

Therefore, as a result, we may describe the stable AR-quivers of blocks of parabolic

Hecke algebras of the form Hf
e (q)⊗k, k ≥ 1, where the defining parameter q is a

primitive eth root of unity, e ≥ 3. The latter algebras are also called e-parabolic

Hecke algebras and if char(k) = 0, they occur as vertices of indecomposable Hf
n(q)-

modules, see [32].

First of all, we will give some important definitions and constructions concerning

finite-dimensional algebras.

Afterwards, we recollect the definition of a Brauer tree algebra. In particular we

will be interested in Brauer tree algebras whose Brauer tree is a star.

After that we will give an alternative description of such an algebra via a skew group

construction. Together with results of J. Rickard this will enable us to describe the

shape of the stable AR-quiver of outer tensor products of Brauer tree algebras.

Throughout, we denote by k a fixed field.

5.1 Preliminaries

In this section we briefly recall some fundamental definitions and constructions in

the theory of finite-dimensional algebras.

To a finite-dimensional k-algebra B one can associate a quiver in the following way:

Definition 5.1.1. Let B be a finite-dimensional k-algebra. Denote by

S0, S1, . . . , Sm
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the irreducible B-modules, corresponding to the projective indecomposable modules

Pi = Bei, 0 ≤ i ≤ m, where e0, . . . , em are pairwise orthogonal primitive idempo-

tents in B. The Ext-quiver Q(B) of B has vertices the set {v0, v1, . . . , vm}, and the

number of edges from vx to vy, 0 ≤ x, y ≤ m, is the same as

dimk Ext1
B(Sx, Sy) = [rad(Px)/rad2(Px) : Sy]. (5.1)

Remark 5.1.2. Note that the non-negative integer dimk Ext1
B(Sx, Sy) also coincides

with the k-dimension of the spaces

HomB(Py, rad(Px))/HomB(Py, rad2(Px)) = eyrad(B)ex/eyrad2(B)ex,

see [8, Proposition 2.4.3].

Recall that a finite-dimensional k-algebra B is called basic if all the irreducible

B-modules are one-dimensional. It is well known that for each finite-dimensional

k-algebra B there exists a basic algebra that is Morita equivalent to B.

There is the following important theorem, which is due to P. Gabriel:

Theorem 5.1.3. (P. Gabriel) Assume k to be algebraically closed. Let B be a

finite-dimensional basic k-algebra, and Q := Q(Λ) be its Ext-quiver. Then there

exists a surjective k-algebra homomorphism ψ : kQ→ B such that the kernel of ψ

is contained in the ideal of kQ generated by paths of length at least two.

Proof. See [41, §4]. �

5.2 Brauer tree algebras

A Brauer tree T is a finite connected undirected tree where around each vertex of

T there is a cyclic ordering of the adjacent edges. Moreover, to each vertex u one

assigns a positive integer m(u), called the multiplicity of u, such that at most one

vertex of T has multiplicity greater than one. A vertex u with m(u) > 1 is called

exceptional.

A finite-dimensional k-algebra A is called a Brauer tree algebra for T if there is a

bijection between the edges 1, . . . , r of T and the irreducible A-modules S1, . . . , Sr
such that the structure of the projective indecomposable A-modules P1, . . . , Pr is

given in the following way: Pi/rad(Pi) ∼= Si ∼= soc(Pi) and rad(Pi)/soc(Pi) is the

sum of two not necessarily non-zero uniserial modules corresponding to the end-

points of the edge i. If i = i0, i1, . . . , is, i0 is the cyclic ordering around one of the

endpoints u of i, then the corresponding uniserial module has composition factors

from top to socle

Si1 , Si2 , . . . , Sis , Si, Si1 , Si2 , . . . , Sis , Si, . . . , . . . , Si1 , Si2 , . . . , Sis ,

where Si appears m(u)− 1 times and Sij for j 6= 0 appears m(u)-times.
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5.3. A skew group construction for B(r, 1)

Every Brauer tree determines a corresponding Brauer tree algebra that is symmetric

and unique up to Morita equivalence.

Next, we want to discuss a very important instance of a Brauer tree algebra: Let T

be the Brauer tree that is a star with r edges and (possibly) exceptional vertex in

the center of T with multiplicity m. Denote by B(r,m) the corresponding Brauer

tree algebra.

· · ·

· · ·

· · ·

Figure 5.1: The Brauer tree B(r,m)

Consider the path algebra kQ of the circular quiver Q with r vertices v0, . . . , vr−1,

and arrows αi : vi → vi+1 for all 0 ≤ i < r − 1, and αr : vr−1 → v0. Recall that

kQ is the k-algebra with basis the set of paths of Q, and multiplication is given by

the composition of paths, see for example [7, III, §1]. For each 1 ≤ i ≤ r we denote

by pi the path αi−1 · · ·αi+1αi, with the convention that αj = αk, whenever j − k is

divisible by r.

The basic algebra of B(r,m) is then isomorphic as a k-algebra to the algebra kQ/J ,

where J is the two-sided ideal of kQ generated by the paths αip
m
i , for all 0 ≤ i ≤

r − 1, see for example [46, §2].

v1

v2

· · ·

Figure 5.2: The circular quiver Q

5.3 A skew group construction for B(r, 1)

In the following let G ∼= Cr be the cyclic group of order r, and we fix a generator g

of G. Moreover, let Λ = k[t]/(tr+1), an r + 1-dimensional local k-algebra, and set

t̄ := t+ (tr+1) ∈ Λ.

Let I = Z/rZ = {0, . . . , r−1} and fix a primitive rth root of unity ζ in k. From now

on we assume that r is invertible in k. Then, by Maschke’s Theorem, the group
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algebra kG is semisimple. Fix a complete set of non-isomorphic irreducible kG-

modules {T0, . . . , Tr−1} such that for each i ∈ I, the irreducible character afforded

by Ti is given by

χi : G→ k, h = ga 7→ ζai.

For each i ∈ I, we define

ei = r−1
∑
h∈G

χi(h
−1)h. (5.2)

Remark 5.3.1. An easy calculation shows that gei = ζ iei. Moreover, the set

{ei | i ∈ I} is a complete set of primitive orthogonal central idempotents in kG.

Define a k-algebra action

ϕ : G× Λ→ Λ (5.3)

of G on Λ, by defining ϕ(gi, t̄j) = ζ ij t̄j, for 0 ≤ j ≤ r, i ∈ I, with the convention

that t̄0 = 1, and extending linearly. It is easy to see that this defines a group

homomorphism

G −→ AutΛ(Λ).

Let A := Λ ?G be the skew group algebra of G over Λ, and consider Λ as a unitary

k-subalgebra of A via the monomorphism Λ → A, given by λ → λ ? 1. By [79,

Theorem 1.3], since Λ is selfinjective, so is A.

As a first step, we want to describe the Loewy structure of the indecomposable

projective A-modules. To this end, for each i ∈ I, define

ẽi = (r−1 ? 1)
∑
h∈G

χi(h
−1) ? h, (5.4)

the image of the idempotent ei under the canonical monomorphism kG→ A given

by bh 7→ b ? h, b ∈ k. Again we see that the elements ẽi, i ∈ I, are mutually

orthogonal idempotents in A. For each i ∈ I define Pi = Aẽi. Then each Pi is a

projective A-module. We have the following:

Lemma 5.3.2. For each i ∈ I, the set

{ẽi, (t̄ ? 1)ẽi, . . . , (t̄
r ? 1)ẽi} ⊆ Pi

is a basis of Pi considered as a k-vector space.

Proof. Let λ ? h, λ ∈ Λ, h ∈ G, be an arbitrary basis element of A. Suppose that

h = gj, j ∈ Z. Then

(λ ? h)ẽi = (ζ ij ? 1)(λ ? 1)ẽi,

by Remark 5.3.1. Therefore, the given set is a spanning set for Pi. Next, assume

that
r∑
j=0

µj(t̄
j ? 1)ẽi = 0,
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for coefficients µj ∈ k. After reordering, we see that this is a sum of pairwise

different basis elements for A, which implies that µj = 0 for all 0 ≤ j ≤ r. Thus,

the set is a k-basis of Pi. �

Lemma 5.3.3. As A-modules we have that

A ∼=
⊕
i∈I

Pi.

Proof. The claim follows immediately with Lemma 5.3.2 since dimkA = r(r + 1).

�

For any i ∈ I, the restriction ResAΛ(Pi) of Pi is isomorphic to Λ as a Λ-module. Since

the latter is indecomposable, ResAΛ(Pi) is indecomposable as a Λ-module, and thus,

Pi is indecomposable as an A-module. Therefore, each Pi is an indecomposable

projective A-module. Then, for each i ∈ I, define Si to be the irreducible A-module

corresponding to Pi, i.e.,

Si ∼= Pi/rad(Pi).

In the sequel let r = rad(Λ) be the Jacobson radical of Λ. Since Λ is a local algebra,

we have that r = (t̄), the unique maximal ideal of Λ. Moreover, since r is invertible

in k, we know from [79, Theorem 1.3] that rA = Ar = rad(A). Then, for each i ∈ I,

we see that

rad(Pi) = rad(A)Pi = rPi. (5.5)

Furthermore, for all j > 0, we define the A-submodule radj(Pi) of Pi inductively as

follows: radj(Pi) = rad(radj−1(Pi)), where we set rad0(Pi) = Pi.

Remark 5.3.4. By (5.5), for i ∈ I, the irreducible A-module Si is generated by

ẽi + rad(Pi) as an A-module. Moreover, (1 ? g)v = ζ iv for all v ∈ Si, by Remark

5.3.1.

Recall that a finite-dimensional k-algebra B is called a Nakayama algebra if the

indecomposable projective B-modules as well as the indecomposable injective B-

modules are uniserial.

Proposition 5.3.5. For each i ∈ I, the indecomposable projective A-module Pi has

radical series

Si, Si+1, Si+2, . . . , Si+r−1, Si. (5.6)

This is already a composition series of Pi and it follows that A is a Nakayama

algebra.

Proof. Let i ∈ I. From (5.5) we infer that rad(Pi) is spanned by the set {(t̄ ?
1)ẽi, . . . , (t̄

r ? 1)ẽi} as a k-vector space. Iterating this procedure, we see that for

all 0 ≤ j ≤ r, radj(Pi) is spanned by {t̄j ? 1)ẽi, . . . , (t̄
r ? 1)ẽi}, and radr+1(Pi) = 0.
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From this we see that for all 0 ≤ j ≤ r, radj(Pi)/radj+1(Pi) is a non-zero A-module,

spanned by ui := (t̄j ? 1)ẽi + radj+1(Pi). Then we have that (1 ? g)ui = ζ i+jui,

and hence, (1 ? g)v = ζ i+jv for all v ∈ radj(Pi)/radj+1(Pi). From Lemma 5.3.3

we know that dimk Pi = r + 1. It follows that the modules radj(Pi)/radj+1(Pi),

0 ≤ j ≤ r, are one-dimensional, and thus, irreducible. By Remark 5.3.4 we have

that radj(Pi)/radj+1(Pi) ∼= Si+j, and so, we conclude that (5.6) is the radical series

of Pi, and also the composition series of Pi.

From [7, IV, Lemma 2.1], we have that Pi is a uniserial A-module, and therefore, A

is a Nakayama algebra. �

As we have the composition series of the projective indecomposable A-modules at

our disposal, we may try to give a presentation of A by a quiver with relations.

To this end note that the algebra homomorphism

ψ : kQ −→ B

given in Theorem 5.1.3 is constructed as follows: Write 1 = e1 + · · · + em as a

sum of pairwise orthogonal primitive idempotents such that ei corresponds to the

indecomposable projective B-module Pi, for all 0 ≤ i ≤ m. Since B is basic, we

may define a map ψ′ : {v0, . . . , vm} → B, vi 7→ ei, for all 0 ≤ i ≤ m. Note that

in kQ, the elements vi, 0 ≤ i ≤ m, are mutually orthogonal idempotents. Next,

choose a complement K to ejrad2(B)ei in ejrad(B)ei as a k-vector space and choose

a k-basis for K. For each (i, j), 0 ≤ i, j ≤ m, choose a bijective map between the

arrows starting in vi and ending in vj and the basis elements of K. Then extend

the map ψ′ to a map Q → B by sending the arrows from vi to vj to their images

under the chosen maps.

Any relation in kQ is given by the non-composability of paths. But these relations

are satisfied by corresponding products in B since eiej = ejei = 0, for i 6= j.

Therefore, we obtain a well-defined k-algebra homomorphism ψ : kQ → B. By

construction, B = Im(ψ) + rad2(B). But then it follows that B = Im(ψ), see for

example [8, Proposition 1.2.8]. Hence, ψ is surjective.

We want to apply this to A. By Proposition 5.3.5, A is a basic k-algebra, and from

the structure of the projective indecomposable modules we see that

dimk Ext1
A(Si, Sj) =

{
1 if j = i+ 1 mod r,

0 if j 6= i+ 1 mod r.

Therefore, we get that the Ext-quiver Q = Q(A) is the circular quiver with r vertices

given at the end of Section 5.2.

By construction, 1 = ẽ0 + · · · + ẽr−1 and ẽiẽj = ẽj ẽi = 0, i 6= j. Fix i ∈ I.

Straightforward calculations show that ẽi+1(t̄ ?1) = (t̄ ?1)ẽi, for all i ∈ I. Therefore,

we get that

(t̄ ? 1)ẽi = (t̄ ? 1)ẽ2
i = ẽi+1(t̄ ? 1)ẽi,

for each i ∈ I. Moreover, one sees that ẽj(t̄ ? 1)ẽi = 0 for all j 6= i+ 1. By the proof

of Proposition 5.3.5, we have that a complement of ẽi+1rad2(A)ẽi in ẽi+1rad(A)ẽi is
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spanned by (t̄?1)ẽi = ẽi+1(t̄?1)ẽi. We now define ψ by sending the vertex vi to ẽi and

the arrow between vi and vi+1 to (t̄?1)ẽi. Then, by Theorem 5.1.3 and the discussion

afterwards, ψ extends to a well-defined surjective k-algebra homomorphism

kQ→ A,

which we also denote by ψ.

Let J = Ker(ψ). We want to give a precise description of J . First, observe that for

i ∈ I, we have

((t̄ ? 1)ẽi)((t̄ ? 1)ẽi+r−1) · · · ((t̄ ? 1)ẽi+1)((t̄ ? 1)ẽi) = (t̄r+1 ? 1)ẽi = 0.

Therefore, for any i ∈ I, ψ(αipi) = 0, i.e., αipi ∈ J . Let J̃ be the two-sided ideal of

kQ generated by the paths αipi, i ∈ I. Then J̃ ⊆ J . Note that

ψ(αi+jαi+j−1 . . . αi) = (t̄j ? 1)ẽi 6= 0,

for all i ∈ I and 0 ≤ j ≤ r − 1, since the elements (t̄j ? 1)ẽi form a basis of Pi.

Therefore, the subset of paths

P = {pij = αi+jαi+j−1 . . . αi | i ∈ I, 0 ≤ j ≤ r − 1} ∪ {vj | 0 ≤ j ≤ r − 1}

in Q is such that ψ(pij) 6= 0 for pij ∈ P . On the other hand, if p is a path in Q not

contained in P , then from the structure of Q we infer that p = p′αipip
′′, for some

i ∈ I and paths p′, p′′. Then ψ(p) = 0, i.e., p ∈ J . Since kQ has k-basis the set

of paths of Q, we see that a complement K of the k-subspace of kQ generated by

P is spanned by such paths and is contained in J̃ . But also J̃ ⊆ K, and therefore,

K = J̃ . Since |P| = r(r + 1), it follows that

dimk kQ/J̃ = r(r + 1).

Now, A ∼= kQ/J is a factor algebra of kQ/J̃ , and since they have the same dimension

we must have J = J̃ . We have proved the following.

Theorem 5.3.6. Let r be a positive integer that is invertible in the algebraically

closed field k. Let Λ = k[t]/(tr+1), G = Cr be the cyclic group of order r, and ϕ as

in (5.3). Then, as k-algebras, the skew group algebra Λ ? G and the basic Brauer

tree algebra B(r, 1) are isomorphic.

We will also need the following:

Lemma 5.3.7. Let Λ and Γ be two finite-dimensional k-algebras, and G,H be two

finite groups. Suppose that there is a k-algebra action of G on Λ and a k-algebra

action of H on Γ. Let Λ ? G and Γ ? H be the corresponding skew group algebras.

Then, as k-algebras,

(Λ ? G)⊗k (Γ ? H) ∼= (Λ⊗k Γ) ? (G×H),

where G ×H is the direct product of G and H and the k-algebra action of G ×H
on Λ⊗k Γ is defined by

(g, h)(a⊗ b) = ga⊗ hb,
for elements (g, h) ∈ G×H and a⊗ b ∈ Λ⊗k Γ.

51



Chapter 5. The stable Auslander–Reiten quiver of blocks of e-parabolic Hecke
algebras

Proof. Choose a k-basis {λ1, . . . , λn} of Λ and a k-basis {γ1, . . . , γm} of Γ. Moreover,

suppose that G = {g1 = idG, g2, . . . , gr} and H = {h1 = idH , h2, . . . , hs}. Then the

sets {λi ? gj | 1 ≤ i ≤ n, 1 ≤ j ≤ r} and {γi ? hj | 1 ≤ i ≤ m, 1 ≤ j ≤ s} are k-bases

of Λ ? G and Γ ? H, respectively. We define a map

ψ : (Λ ? G)⊗k (Γ ? H) −→ (Λ⊗k Γ) ? (G×H),

by setting (λi ? gj)⊗ (γu ? hv) 7→ (λi ⊗ γu) ? (gj, hv), for admissible indices i, j, u, v,

and extending linearly. It is easy to see that ψ is an isomorphism of k-vector spaces.

Also, straightforward calculations show that ψ is a k-algebra homomorphism. �

5.4 Derived categories, derived and stable equiv-

alences

For the convenience of the reader, in the following, we will recall the basic notions

of derived categories and derived equivalences. After that we will state the crucial

results due to J. Rickard giving a criterion when two rings are derived equivalent.

In the following, we denote by R a unital commutative ring. As before, for an

R-algebra A, we denote by A − Mod the category of all left A-modules, by A −
mod the category of finitely presented left A-modules, by A − Proj the category

of all projective left A-modules, and by A− proj the category of finitely generated

projective left A-modules. Recall that an A-module M is called finitely presented if

there is an exact sequence of A-modules

Am −→ An −→M −→ 0,

for positive integers m,n.

All categories are assumed to be additive R-categories and all functors are R-linear.

Moreover, if A and B are two R-algebras and M is an A − B-bimodule, then we

assume that the two actions of R coincide, i.e., M is a left A⊗R Bop-module.

Let A be an additive category. By Kom(A) we denote the category of differential

complexes

A• = (. . .→ Ar
drA→ Ar+1 dr+1

A→ Ar+2 → . . .),

with objects Ar and morphisms drA in A, r ∈ Z, such that dr+1
A drA = 0, for all r. A

morphism f : A• → B• in Kom(A) is a family {f i}i∈Z of morphisms in A such that

f i+1 ◦ diA = di+1
B ◦ f i, for all i ∈ Z. We will denote by HomKom(A)(A

•, B•) the set of

morphism for objects A•, B• in Kom(A), which is an abelian group with respect to

the componentwise addition.

We may define several subcategories of Kom(A) satisfying certain finiteness condi-

tions. Let Kom+(A) be the full subcategory of Kom(A) consisting of complexes A•

over A such that there exists an integer s = s(A•) with Ai = 0 for all i ≤ s. Simi-

larly define Kom−(A) to be the full subcategory of Kom(A) consisting of complexes
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A• such that there is some integer s = s(A•) with Ai = 0 for i ≥ s. Then we define

Komb(A) = Kom+(A) ∩Kom−(A). Note that these categories are again additive.

A morphism f : A• → B• is called null-homotopic if there exists a family of mor-

phisms hi : Ai → Bi−1 in A such that f i = di−1
B hi + hi+1diA. Two morphisms f and

g are called homotopic if f − g is null-homotopic.

Clearly, the set of null-homotopic morphisms between objects A• and B• forms a

Z-submodule N (A•, B•) of HomKom(A)(A
•, B•). The homotopy category K(A) has

the same objects as Kom(A) and the morphisms from A• to B• are defined to be

the elements of HomKom(A)(A
•, B•)/N (A•, B•).

Note that for each i ∈ Z we have the homology functor

H i : Kom(A) −→ A,

given by H i(A•) = Ker(diA)/Im(di−1
A ). If f : A• → B• is a morphism, the corre-

sponding morphism H i(f) in A is called the homology morphism. The homotopy

category of an additive category has the following structure.

Proposition 5.4.1. Let f : A• → B• in Kom(A) be null-homotopic. Then H i(f) =

0 for all i ∈ Z. In particular, if f is homotopic to g, then H i(f) = H i(g) for all

i ∈ Z.

Proof. See [60, Chapter 1, Lemma 1.3.1]. �

The proposition shows that for every i ∈ Z the homology H i : Kom(A) → A
induces a well-defined functor H̄ i : K(A)→ A.

A quasi-isomorphism in K(A) is a morphism s : A• → B• of K(A) such that the

homology morphisms H i(s) : H i(A•) → H i(B•) are isomorphisms for all i ∈ Z.

Denote by Σ the class of all quasi-isomorphisms in K(A). One has the following

important theorem:

Theorem 5.4.2. Let A be an abelian category, K(A) the homotopy category of A.

Then there exists a category D(A) and a functor Q : K(A) → D(A) such that the

following properties are satisfied:

(i) If s is a quasi-isomorphism in K(A), then Q(s) is an isomorphism in D(A).

(ii) If F : K(A) → B is a functor sending quasi-isomorphisms to isomorphisms,

then there exists a unique functor G : D(A)→ B with F = G ◦Q.

Proof. See [60, Chapter 4, Definition–Theorem 1.3]. �

The category D(A) is called the derived category of the abelian category A. In

what follows we will also denote the latter category by Dub(A). By Theorem 5.4.2,

it can be thought of as the localization of K(A) at the class of quasi-isomorphisms

in K(A). Similarly, localizing at the class of quasi-isomorphisms in Kom+(A)

(resp. Kom−(A), Komb(A)) we obtain the derived categories D+(A) (resp. D−(A),

Db(A)), see [55, §13.1].
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Note that up to this point, it is not clear whether D(A) is additive. Actually, this

is the case, and a proof can be found in [60, Chapter 4, §2.8]. On the other hand,

the category D(A) will almost never be abelian.

Let A• be a complex over A. For an integer r, define a new complex A•[r] by setting

(A[r])i = Ar+i, and diA[r] = (−1)rdiA for all i ∈ Z.

For a morphism f : A• → B• in Kom(A) define f [r] : A•[r]→ B•[r] via f [r]i = f r+i

for all i ∈ Z.

This defines a translation functor

T r : Kom(A)→ Kom(A), T r(A•) = A•[r], T r(f) = f [r]. (5.7)

Clearly, T r is an auto-equivalence on Kom(A). Also it induces an auto-equivalence

of the categories Kom+(A), Kom−(A), Komb(A) and on the corresponding derived

categories D+(A), D−(A), Db(A). If not stated otherwise, by a morphism f of

complexes we mean a morphism in either of the categories introduced above.

Let f : A• → B• be a morphism of complexes. Then the complex C(f) defined as

C(f)i = A[1]i ⊕Bi, diC(f)(a
i+1, bi) = (−di+1

A (ai+1), f i+1(ki+1) + diB(bi)),

for elements ai+1 ∈ A[1]i, bi ∈ Bi, and all i ∈ Z, is called the mapping cone of f .

A diagram in the category Kom(A) (resp. K(A), D(A), D+(A), . . .) of the form

A•
a−→ B•

b−→ C•
c−→ T (A•) (5.8)

is called a triangle. A morphism of triangles is a commutative diagram of the form

A• B• C• A•[1]

A•1 B•1 C•1 A•1[1].

a b c

a1 b1 c1

f g h f [1]

A morphism of triangles is called an isomorphism if the morphisms f, g, h are all

isomorphisms in the corresponding category.

Let f : A• → B• be a morphism of complexes. Then we define the morphisms

α(f) : B• −→ C(f), α(f) = 0⊕ idB• ,

and

β(f) : C(f) −→ T (A•), β(f) = (idT (A•), 0).

We obtain a triangle

A•
f−→ B•

α(f)−→ C(f)
β(f)−→ T (A•), (5.9)

the mapping cone triangle.

54



5.4. Derived categories, derived and stable equivalences

Next we consider the homotopy category K(A) of A. A triangle in K(A) is called

distinguished if it is isomorphic to a mapping cone triangle (5.9). Recall that a

triangulated category D is a category together with a translation functor T giving

an equivalence T : D → D of categories. Furthermore, there is a family of triangles,

called the distinguished triangles, and satisfying certain axioms, see for example [55,

Definition 10.1.6]. For the homotopy category of an additive category we have the

following:

Theorem 5.4.3. The homotopy category K(A) of an additive category A together

with translation (5.7) and the family of distinguished triangles of the form (5.9) is

a triangulated category.

Proof. This is [55, Proposition 11.2.8]. �

Corollary 5.4.4. The derived category D(A) of an abelian category A is a trian-

gulated category.

Proof. This follows from Theorem 5.4.3 and [55, Theorem 10.2.3] �

Let D and D′ be triangulated categories with translations T and T ′. A triangle

functor F : D → D′ is a functor of additive categories such that

(i) There is a functorial isomorphism φX : F (T (X)) ∼= T ′(F (X)), for every object

X of D.

(ii) If X
u→ Y

v→ Z
w→ T (X) is a triangle in D, then the sequence F (X)

F (u)→
F (Y )

F (v)→ F (Z)
φX(F (w))→ T ′(F (X)) is a triangle in D′.

A triangle functor F is said to be a triangle equivalence if F is an equivalence of ad-

ditive categories. In this case the categories D and D′ are equivalent as triangulated

categories.

The following theorem of J. Rickard is the full analogue of Morita’s Theorem in the

situation of derived categories of module categories.

Theorem 5.4.5. (J. Rickard) Let A,B be R-algebras. Then the following are equiv-

alent:

(i) The categories D−(A−Mod) and D−(B−Mod) are equivalent as triangulated

categories.

(ii) The categories Db(A−Mod) and Db(B−Mod) are equivalent as triangulated

categories.

(iii) The categories Kb(A−Proj) and Kb(B−Proj) are equivalent as triangulated

categories.

(iv) The categories Kb(A− proj) and Kb(B − proj) are equivalent as triangulated

categories.
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(v) B is isomorphic to EndDb(A−Mod)(T
•), where T • is a complex of Kb(A− proj)

such that

(a) HomDb(A−Mod)(T
•, T •[r]) = 0, for r 6= 0.

(b) The category add(T •) of direct summands of finite direct sums of T •

generates the category Kb(A− proj) as a triangulated category.

Proof. See [74, Theorem 6.4] and [76, Theorem 1.1]. �

If one of the equivalent conditions of the last theorem are satisfied, then the algebras

A and B are said to be derived equivalent. The complex T • of part (v) is called a

tilting complex.

Remark 5.4.6. (1) If R is a field and A and B are finite-dimensional algebras R-

algebras, then the statements of the theorem are equivalent to the statement that

there is a triangle equivalence Db(A−mod)→ Db(B −mod).

(2) If A and B are Morita equivalent, then they are derived equivalent. The converse

is not true and counterexamples can be found in the case where A and B are blocks

of finite groups.

We will also need the following result, which is [76, Theorem 2.1], where we assume

from now on that all R-algebras are projective when considered as R-modules.

Theorem 5.4.7. Let A1 be an R-algebra, with tilting complex T •A1
such that the en-

domorphism algebra EndDb(A1−Mod)(T •A1
) is isomorphic to an R-algebra B1. More-

over, let A2 be an R-algebra with tilting complex T •A2
such that EndDb(A2−Mod)(T

•
A2

)

is isomorphic to an R-algebra B2. Then T •A1
⊗RT •A2

is a tilting complex for the alge-

bra A1⊗RA2 such that EndDb((A1⊗RA2)−Mod)(T
•
A1
⊗R T •A2

) is isomorphic to B1⊗RB2

as R-algebras, i.e., the algebras A1 ⊗R A2 and B1 ⊗R B2 are derived equivalent.

In our situation we will also need the following crucial results of J. Rickard, see [75,

Corollary 2.2] and [75, Theorem 4.2].

Theorem 5.4.8. Let Λ and Γ be two finite-dimensional selfinjective k-algebras. If

Λ and Γ are derived equivalent, then they are stably equivalent.

Theorem 5.4.9. Let B be a Brauer tree algebra with r edges and let m be the

multiplicity of the exceptional vertex. Then B is derived equivalent to B(r,m).

Next, we apply these theorems in our context. In what follows, let Λ = k[t]/(tr+1)

and G = Cr be the cyclic group of order r. We let G act on Λ as in Section 5.2,

and we will denote the corresponding k-algebra action by ϕ. We then obtain the

skew group algebra Λ ? G. Furthermore, for a k-algebra A and a positive integer

n, we will denote by A⊗n the n-fold outer tensor product of A. Note that Λ⊗n is

canonically isomorphic to k[t1, . . . , tn]/({tr+1
i }1≤i≤n) as k-algebras. In this case, by

Lemma 5.3.7, we see that H := G×· · ·×G (n-times), the direct product of n copies

of G, defines a k-algebra action through ϕ. We then obtain the skew group algebra

Λ⊗n ? H. We have the following:
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Theorem 5.4.10. Let B be a Brauer tree algebra with r edges and multiplicity

m = 1 over an algebraically closed field k. Let n be a positive integer and suppose

that r is invertible in k. Then the algebras B⊗n and Λ⊗n ? H are stably equivalent.

Proof. From Theorem 5.3.6 we have that the basic algebra of B(r, 1) is isomorphic

to Λ?G as a k-algebra. By Theorem 5.4.9, we know that B is derived equivalent to

B(r, 1), and thus, derived equivalent to Λ ?G. Then, by Theorem 5.4.7, the algebra

B⊗n is derived equivalent to the algebra (Λ ? G)⊗n. By Lemma 5.3.7, the latter

algebra is isomorphic to Λ⊗n ? H. From [51, Theorem 2.1] we get that B⊗n and

Λ⊗n ? H are symmetric k-algebras and, thus, selfinjective. The claim now follows

from Theorem 5.4.8. �

5.5 Components of the stable AR-quiver

In this section we assume that k is an algebraically closed field and q is a primitive

eth root of unity in k, e ≥ 3. Moreover, we assume throughout that e−1 is invertible

in k.

For e = 2 we proved in Chapter 4 that a component of the stable Auslander–Reiten

quiver of an e-parabolic subalgebra Hf
e (q)⊗r of the Hecke algebra Hf

n(q) of type A,

n a positive integer, has tree class A∞ when r > 2.

The aim now is to prove a similar result for e-parabolic Hecke algebras, when e > 2.

In this case the algebra Hf
e (q) is of finite representation type with a unique non-

semisimple block B. This block is a Brauer tree algebra with e − 1 irreducible

modules, and whose associate Brauer tree is a line with no exceptional vertex, see

[42, Theorem 11.4] and [72, Theorem 1.4]. Therefore, any block of an e-parabolic

subalgebra of Hf
n(q) is an outer tensor product of copies of B and a number of

semisimple blocks. The latter are split semisimple algebras, hence, such a product

is Morita equivalent to an outer tensor product of Brauer tree algebras. We will

summarize this in a proposition.

Proposition 5.5.1. Suppose that e > 2. Let C be a non-semisimple block of an

e-parabolic Hecke algebra Hf
e (q)⊗r. Then C is Morita equivalent to B⊗u, for some

u > 0.

Since the Brauer tree of B has no exceptional vertex, we know by Theorem 5.4.9

that B is derived equivalent to the Brauer tree algebra B(e − 1, 1) corresponding

to the star with e − 1 edges. By Remark 5.4.6 and Theorem 5.4.10, we get the

following:

Theorem 5.5.2. Keep the assumptions of Proposition 5.5.1. Then C is stably

equivalent to a skew group algebra Λ⊗u ? H, for some u > 0, where Λ = k[t]/(te),

H = Ce−1 × · · · × Ce−1 (u times) and Ce−1 (resp. H) acts in the usual way on Λ

(resp. Λ⊗u).
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By Theorem 2.3.10, we know that if Λ0 and Λ1 are stably equivalent selfinjective

k-algebras such that Λ0 and Λ1 have no block of Loewy length two, then the stable

AR-quivers Γs(Λ0) and Γs(Λ1) are isomorphic as stable translation quivers.

Remark 5.5.3. Assume that Λ0 is an indecomposable selfinjective algebra such that

there exists an indecomposable projective module P of Loewy length one. Then P

is irreducible, and since Λ0 is selfinjective, P is the only projective indecomposable

Λ0-module. Thus, Λ0 is a semisimple algebra.

In the situation where e > 2, we have that the Loewy length of a non-semisimple

block C is different from two, and therefore, by Theorem 5.5.2 we get:

Theorem 5.5.4. Keep the notation of Theorem 5.5.2. The stable AR-quivers Γs(C)

and Γs(Λ
⊗u ? H) are isomorphic as stable translation quivers.

As a next step, we want to determine the structure of the stable AR-quiver Γs(Λ
⊗u?

H), for every u > 0. If u = 1, we know that Λ ?Ce−1 has finite representation type,

and Γs(Λ ? Ce−1) has tree class Ae−1, see [85].

For u > 1, we know from Chapter 4 that every connected component of Γs(Λ
⊗u)

has tree class A∞. We will need the following.

Lemma 5.5.5. Let u > 0. Then the algebra Λ⊗u has enough Ω-periodic modules.

Proof. Recall that there is a canonical k-algebra isomorphism

Λ⊗u ∼= k[t1, . . . , tu]/({tei}1≤i≤u).

In Chapter 4, Theorem 4.1.5, it was shown that Λ⊗u is Morita equivalent to a block

D of a skew group algebra with enough τ -periodic modules. Since D is a symmetric

algebra, we conclude that D has enough Ω-periodic modules. Since Λ⊗u is Morita

equivalent to D, we infer that also Λ⊗u has enough Ω-periodic modules. �

We now get the following result.

Theorem 5.5.6. Let u > 1. Then every connected component of Γs(Λ
⊗u ? H) has

tree class A∞. In particular, if C is a block of an e-parabolic Hecke algebra Hf
e (q)⊗u,

e > 2, that is not of finite representation type, then every connected component of

Γs(C) has tree class A∞.

Proof. By Lemma 5.5.5 we see that we can apply Theorem 3.2.9 of Chapter 3 to

conclude that every component of Γs(Λ
⊗u ? H) has tree class A∞. In particular,

every component of Γs(C) has tree class A∞ since, by Theorem 5.5.2, C and Λ⊗u?H

are stably equivalent. �
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Chapter 6

Finite general linear groups in

non-defining characteristic and

related algebras

The goal of this chapter is to state and explain a theorem of J. Chuang and H.

Miyachi, giving a Morita equivalence between a Rouquier block of a Hecke algebra

of type A and a wreath product constructed over an outer tensor product of Brauer

tree algebras. This theorem will be a key ingredient in determining the tree classes

of stable components of the AR-quiver of blocks of Hecke algebras of type A in

characteristic zero.

To this end, we first recall several definitions and results concerning the representa-

tion theory of the general linear groups in non-defining characteristic. Afterwards,

we explain the link between the representation theory of the finite general linear

groups and the associated Hecke algebras as far as it is needed in the sequel. Then,

we state the above-mentioned theorem, where we focus on the bimodule giving the

Morita equivalence. We also mention that recently, A. Evseev has given another

proof of the theorem using methods of the representation theory of KLR-algebras.

6.1 Blocks and characters

In the following we let q > 1 be a prime power and ` be a prime not dividing q.

Moreover, we let F be an algebraically closed field of characteristic `. By e we

denote the least positive integer such that

1 + q + · · ·+ qe−1 = 0

in F`, and set e = ∞ if no such integer exists. Throughout this chapter, we will

assume that e is finite.

Let V be an Fq-vector space of dimension n > 0, and let us fix a basis of V . Then

the set of Fq-automorphisms GL(V ) on V may be identified with G := GLn(q),
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the group of invertible n × n-matrices with entries in Fq. Moreover, we shall also

consider the following subgroups of G: The subgroup

B = {X ∈ G | xij = 0, i > j}

of upper triangular matrices, a Borel subgroup of G, and the subgroup

T = {X ∈ G | xij = 0, i 6= j}

of diagonal matrices, a maximal torus in G.

For a composition µ = (µ1, . . . , µr) of n, the subgroup

Lµ =




Aµ1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 Aµr


∣∣∣∣∣ Aµi ∈ GLµi(q), 1 ≤ i ≤ r

 (6.1)

is the Levi subgroup of G associated to µ. The parabolic subgroup Pµ of G,

Pµ =




Aµ1 ∗ . . . ∗
0

. . .
...

...
. . . ∗

0 . . . 0 Aµr


∣∣∣∣∣ Aµi ∈ GLµi(q), 1 ≤ i ≤ r

 , (6.2)

contains Lµ as a subgroup, which has complement Uµ, called the Levi complement,

a unipotent subgroup in G, given by

Uµ =




Iµ1 ∗ . . . ∗
0

. . .
...

...
. . . ∗

0 . . . 0 Iµr


 . (6.3)

Here, for a positive integer k, the symbol Ik denotes the k×k-matrix with diagonal

entries 1 and zeros otherwise. Note that for the normalizer NG(Uµ) of Uµ in G one

has that

NG(Uµ) = Pµ (6.4)

such that Pµ = LµUµ = UµLµ. In particular, Lµ normalizes Uµ.

Next, we will give the definition of important functors ubiquitous in the represen-

tation theory of general linear groups.

Definition 6.1.1. Let µ |= n be a composition of n. Since Uµ is normal in Pµ, we

may inflate an FLµ-module M to Pµ with respect to the exact sequence

0 −→ Uµ −→ Pµ −→ Lµ ∼= Pµ/Uµ −→ 0
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of finite groups. If we induce this FPµ-module to FG, we obtain a functor

RG
Lµ = IndGPµ ◦ infl

Pµ
Lµ

: FLµ −mod −→ FG−mod, (6.5)

which is called the Harish-Chandra induction. On the other hand, if M is an FG-

module, we may restrict it to the subalgebra FPµ and then take Uµ-invariants to

obtain a functor

∗RG
Lµ : FG−mod −→ FLµ −mod, (6.6)

called Harish-Chandra restriction.

Remark 6.1.2. Since q and ` are coprime, these functors are exact and left and

right adjoint to each other, see [28, §1].

In the following, we fix an `-modular system (K,O, F ), that is to say, O denotes

a complete discrete valuation ring with residue field F of characteristic `, and K

is its field of fractions of characteristic zero. Also, we assume that K is a splitting

field for all groups that occur.

Next, we recall the parametrization of ordinary characters and blocks of G. For-

tunately, all this is well known due to work of P. Fong and B. Srinivasan [39]. To

explain these various parametrizations, we have to introduce some more notation,

which follows the lines of [17] and [84].

Let σ be an element of the multiplicative group F̄×q of an algebraic closure F̄q of

Fq. Suppose that σ has degree dσ, i.e., the algebra Fq[σ] has dimension dσ as an

Fq-vector space. We denote by (σ) the matrix of GLdσ(q) which describes the left

multiplication of σ on Fq[σ] with respect to the basis {1, σ, . . . , σdσ−1}. For a positive

integer k, we let

(σ)k =


(σ) 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 (σ)

 , (6.7)

a matrix of GLkdσ(q). If the elements σ, τ ∈ F̄×q have the same degree over Fq, we

write σ ∼ τ if σ and τ have the same minimal polynomial over Fq.

Definition 6.1.3. (a) Let C̃ss be the set of tuples

{((σ1)k1 , . . . , (σt)
kt) | σi ∈ F̄×q , σi 6∼ σj, 1 ≤ i, j ≤ t, i 6= j,

t∑
i=1

kidσi = n},

where dσi denotes the degree of σi, for all i. In the following we identify the

elements of C̃ss with block diagonal matrices in GLn(q) in the obvious way.

(b) Define an equivalence relation ∼ on C̃ss as follows: For two elements u =

((σ1)k1 , . . . , (σt)
kt) and v = ((τ1)m1 , . . . , (τr)

mr) ∈ C̃ss we write u ∼ v if
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(i) t = r, and

(ii) there is a permutation w of the set {1, . . . , t} such that kwi = mi and

σwi ∼ τi for all 1 ≤ i ≤ t.

Then we define Css = C̃ss/ ∼. Moreover, we define Css,`′ to be the subset of

Css consisting of elements of order coprime to `.

For an element u = ((σ1)k1 , . . . , (σt)
kt) in Css, define κ(u) = (k1, . . . , kt). If λ =

(λ1, . . . , λt) is a sequence of partitions such that |λi| = ki for all i, then we write

λ ` κ(u).

From the Jordan decomposition of an Fq-endomorphism of V we obtain:

Theorem 6.1.4. The conjugacy classes of G are parametrized by the set

{(u, λ) | u ∈ Css, λ ` κ(u)}.

Proof. See [67, Theorem 2.5]. �

Next, define X(G) to be the character ring of G over Q̄`, an algebraic closure of the

`-adic number field Q`. To describe the parametrization of irreducible characters of

G given in [39], we need to fix an embedding F̄×q → Q̄×` . Then, by using the theory

of Deligne–Lusztig, P. Fong and B. Srinivasan reproved the following result, which

was first stated by J. A. Green in [43].

Theorem 6.1.5. (Green [44], Fong–Srinivasan [39]) The irreducible characters of

X(G) can be parametrized by the set

{(u, λ) | u ∈ Css, λ ` κ(u)}.

Proof. See [39, §1]. �

In the following we will write χu,λ for the character of X(G) labelled by the pair

(u, λ) ∈ Css. The next theorem is very important.

Theorem 6.1.6. (Fong–Srinivasan [39]) The group algebra FG decomposes as

FG ∼=
⊕

u∈Css,`′

FBu

into a direct sum of two-sided ideals. The set of characters in FBu coincides with

the set

{χv,λ | λ ` κ(v), v ∈ Css has `-regular part conjugate to u}.

Proof. This follows from [39, Theorem 7A]. �

Definition 6.1.7. The characters of the form χ1,λ, where λ is a composition of n,

are called the unipotent characters of G. The indecomposable direct summands of

the FG− FG-bimodule FB1 are the unipotent blocks of G.
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Let λ be a partition of a non-negative integer m, and r be a positive integer. By

successively removing r-hooks from the diagram of λ, we obtain a partition of an

integer m′ ≤ m from which no r-hooks can be removed. Suppose that the number

of removed r-hooks is w. Then m′ = m − wr and w is called the weight of λ. A

partition from which no r-hooks can be removed is called an r-core.

For our considerations the following is important.

Proposition 6.1.8. The blocks of FB1 are parametrized by pairs (τ, w), where w

is a non-negative integer and τ is an e-core of size n− ew.

Proof. This is again a corollary of [39, Theorem 7A]. �

6.2 The Hecke algebras associated to G

In this section we will assume that ` - q, q−1. Let B be the standard Borel subgroup

of G, i.e., B is the set of upper triangular matrices in G. It is easy to see that

|B| = q
n(n−1)

2 (q − 1)n−1,

thus, by our assumption on ` and q, we have that |B| is invertible in F . Therefore,

the element

eB =
1

|B|
∑
b∈B

b

is defined and is an idempotent in FG. In fact, it is the central primitive idempotent

of FB corresponding to the trivial FB-module, denoted by 1B. Then,

MB := IndGB(1B) = FGeB ∈ FG

is the permutation representation of G on the left cosets of B in G, i.e., the repre-

sentation of FG obtained by letting G act from the left on the cosets of B in G.

Note that M ∼= RG
T (1T ) as FG-modules, where we view 1T ∼= 1GL1(q) � · · ·� 1GL1(q)

as a cuspidal F (GL1(q)× · · · ×GL1(q))-module. Recall that if L is a standard Levi

subgroup of G, then an FL-module N is called cuspidal if ∗RL
L′(N) = 0, for all

proper standard Levi subgroups L′ of L.

Letting endomorphisms act on the right, it is well known that

EndFG(M) ∼= eBFGeB

as F -algebras, see for example [8, Lemma 1.3.3]. On the other hand, there is a

right action of the Hecke algebra Hf
n(q) defined over F on M , see for example [17,

§2.5]. In fact one gets an embedding of Hf
n(q) into EndFG(M) which is actually an

isomorphism of F -algebras, see [17, 2.5(b)]. Therefore, through the above isomor-

phisms we may identify Hf
n(q) with eBFGeB. Moreover, left multiplication with

the idempotent eB gives a functor

H : FG−mod −→ Hf
n(q)−mod, (6.8)
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defined on objects by H(X) = eBX, and on morphisms by restriction. The functor

H is called Schur functor. Since MB is a projective FG-module, the above functor

coincides with the functor defined in [31, §2]. The functor H has the following

remarkable property:

Proposition 6.2.1. The functor H induces a bijection between the irreducible

Hf
n(q)-modules and the irreducible FG-modules occurring in the head of MB. In

particular, if S is an irreducible FG-module, then H(S) = eBS 6= 0 if and only if

S is a constituent of hd(MB).

Proof. See [17, Corollary 3.2e]. �

Note that we may define H also over O or K. In the following let R ∈ {K,F}.
Recall from [50, §6] that given an element s of the form (6.7) of degree d and a

partition λ ` k, where n = kd, one can construct a certain RG-module MR(s, λ).

The latter module contains a distinguished RG-submodule SR(s, λ) that contains a

unique maximal submodule with factor module an irreducible RG-module, denoted

by DR(s, λ). As it turns out, these modules give a complete list of non-isomorphic

irreducible RG-modules. In the case R = K, the modules SK(s, λ) are already irre-

ducible, and the modules SF (s, λ) are `-modular reductions of the modules SK(s, λ),

see [31, 3.1]. In particular, in the case s = 1, the set

{DR(1, λ) | λ ` n}

is a complete set of non-isomorphic irreducible modules for RB1. Note that for a

partition λ ` n, the module MR(1, λ) can also be viewed as the permutation module

of G on the standard parabolic subgroup associated to λ.

Let A be a block of FG. By multiplication with eB, we obtain an algebra eBAeB,

which can be thought of as a non-unitary subalgebra of Hf
n(q) = eBFGeB. The

next proposition identifies these algebras in Hf
n(q).

Proposition 6.2.2. Let A be a block of FG. If A is not a direct summand of FB1,

then eBAeB = 0. Otherwise, eBAeB is a block of Hf
n(q).

Proof. By [17, Lemma 2.4c], all the composition factors of M = FGeB belong to

FB1. Hence, if A is not a direct summand of FB1, then, by Proposition 6.2.1, we

get that eBAeB = 0.

For λ a partition of n and R ∈ {K,F}, we denote by SλR the Specht module defined

by Dipper and James in [29] for the Hecke algebra RHf
n(q) = R ⊗O Hf

n(q). Then,

from [31, §3.1] we know that H(SK(1, λ)) = SλK . Since SF (1, λ) and SλF are `-

modular reductions of the modules SK(1, λ) and SλK , we conclude that if A is a

unipotent block of FG, then eBAeB is non-zero. By [30, Corollary 4.4], the blocks

of Hf
n(q) are parametrized in the same way as the blocks of FB1. �

Remark 6.2.3. It follows immediately from Proposition 6.2.2 that if A is a unipo-

tent block of FG, which is labelled by (w, τ), then the corresponding block eBAeB
of Hf

n(q) is labelled with (w, τ).
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6.3 A Morita equivalence for Rouquier blocks

Recall from Section 6.1 and Section 6.2 that both, the unipotent blocks of FG and

the blocks of Hf
n(q), can be parametrized by pairs (w, τ), where w is a non-negative

integer and τ is an e-core.

For the next definition we recall the notion of an abacus display of a partition of n,

see also Chapter 17 of Part II.

Let d be a positive integer. Then to a partition λ = (λ1, . . . , λm) of n one associates

a sequence of non-negative integers βi, 1 ≤ i ≤ d, by setting

βi = λi − i+ d,

if 1 ≤ i ≤ m, and

βi = d− i,

if i > m. These integers are displayed on an abacus with e runners, where for each

1 ≤ i ≤ d a bead is inserted on runner a+ 1 and row b+ 1 if βi = eb+ a.

Definition 6.3.1. (Rouquier core, Rouquier block) Let w be a non-negative integer.

An e-core ρ is said to be a Rouquier core with respect to w if there is some positive

integer d such that in the d-abacus representation of ρ, for any pair of adjacent

runners there are at least w− 1 more beads on the right-hand runner. A unipotent

block of G is said to be a Rouquier block if the e-core associated to the latter is

a Rouquier core. Similarly, we define Rouquier blocks for the algebras FSn and

Hf
n(q).

Figure 6.1: Abacus display of the 3-core ρ = (11, 4, 22, 12).

In what follows we assume that char(F ) = ` > w > 0, and q is a prime power such

that ` - q, q − 1. Then e is the multiplicative order of q in F`. Furthermore, we

denote by Lλ the standard Levi subgroup of GL|λ|(q) associated to the partition

λ, see (6.1). The following was proved independently by W. Turner in [83] and H.

Miyachi in [71]. We state the version of [21].

Theorem 6.3.2. Let ρ be a Rouquier e-core with respect to w. Let n = ew + |ρ|.
Let λ = (ew, |ρ|), a composition of n, and let L := Lλ be the corresponding standard

Levi subgroup of G = GLn(q). Also, let P = LU be the standard parabolic subgroup

in G determined by L with complement U . Set I := NG(L) ∼= L o Sw. Thus,
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FI ∼= F [LoSw]. Then there exists an (FG,FI)-bimodule M such that the following

hold:

(a) M is a direct summand of RG
L(FI) as an (FG,FI)-bimodule.

(b) The functor M ⊗A∗ − : A∗ −mod → A −mod induces a Morita equivalence

between the principal block A∗ of FI and the Rouquier unipotent block A of

FG.

Proof. See [21, Theorem 13]. �

By applying Schur functors we may also obtain a Hecke algebra version of the latter

theorem. This is given in [84, Theorem 80], and we will sketch the arguments here.

First of all we need an analogue of the semi-direct product for Hecke algebras. Here,

the appropriate construction is the wreath product of an algebra with the symmetric

group Sw, which we now define.

Let C be an F -algebra. Then the symmetric group Sw acts on the w-fold tensor

product C⊗w of C over F by permuting the factors. More precisely, an element

σ ∈ Sw defines an F -algebra automorphism on C⊗w by setting

σ(c1 ⊗ · · · ⊗ cw) = cσ−11 ⊗ · · · ⊗ cσ−1w,

for homogeneous elements c1 ⊗ · · · ⊗ cw ∈ C⊗w, and extending linearly. Then the

wreath product C oSw is defined to be the skew group algebra of Sw over C⊗w. Note

that C oSw may be identified with the F -algebra whose underlying vector space is

C⊗w ⊗F FSw, and where the multiplication is given by

(c⊗ σ)(d⊗ τ) = cσ(d)⊗ στ, (6.9)

for elements c, d ∈ C⊗w and elements σ, τ ∈ Sw. For more details concerning the

representation theory of wreath products, the reader is referred to [23].

Recall the definition of the idempotent eB of FG from Section 6.2. Let Be and B|ρ|
be the standard Borel subgroups of GLe(q) and GL|ρ|(q), respectively, and denote

by BL the group

Be × · · · ×Be︸ ︷︷ ︸
w times

×B|ρ|,

considered as a subgroup of the Levi subgroup L := Lλ, λ = (ew, |ρ|), defined in

Theorem 6.3.2 in the obvious way. Let P be the parabolic subgroup defined by L

with Levi complement U . Then we define the element

fBL =
1

|Be|w|B|ρ||
∑
x∈BL

x,

an idempotent in FL. If f iBe , 1 ≤ i ≤ w, denotes the idempotent

1

|Be|
∑
y∈Be

y
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in FBe, and fB|ρ| denotes the idempotent

1

|B|ρ||
∑
z∈B|ρ|

z

in FB|ρ|, then we have that fBL = (
∏w

i=1 f
i
Be

)fB|ρ| . Here, we consider Be as the ith

factor and B|ρ| as the (w + 1)th factor embedded in BL. Clearly, f iBef
j
Be

= f jBef
i
Be

and f iBefB|ρ| = fB|ρ|f
i
Be

, for all 1 ≤ i, j ≤ w. Then we get that as F -algebras

fBLFLfBL
∼= (f 1

BeFGLe(q)f
1
Be)⊗F · · ·⊗F (fwBeFGLe(q)f

w
Be)⊗F (fB|ρ|FGL|ρ|(q)fB|ρ|).

In Section 6.2 we have seen that we may identify the algebra f iBeFGLe(q)f
i
Be

with

the algebra Hf
e (q), for all 1 ≤ i ≤ w. Similarly, we can identify the algebra

fB|ρ|FGL|ρ|(q)fB|ρ| with the algebra Hf
|ρ|(q). Therefore, we get an isomorphism of

F -algebras

fBLFLfBL
∼= Hf

e (q)⊗F · · · ⊗F Hf
e (q)⊗F Hf

|ρ|(q), (6.10)

which is isomorphic to Hλ, the parabolic subalgebra of Hf
n(q) associated to λ. We

view this isomorphism as an identification.

Next, let M e = Ind
GLe(q)
Be

(1Be) be the permutation module on the Borel subgroup

Be of GLe(q), see Section 6.2. Similarly, we define M |ρ| := Ind
GL|ρ|(q)

B|ρ|
(1B|ρ|). As in

Section 6.2, the module M e becomes an (FGLe(q), H
f
e (q))-bimodule and M |ρ| is an

(FGL|ρ|(q), H
f
|ρ|(q))-bimodule. If we identify GLe(q) as the ith factor of L, 1 ≤ i ≤

w, and GL|ρ|(q) as the (w+ 1)th factor of L, then we have that M e ∼= FGLe(q)f
i
Be

,

and M |ρ| ∼= FGL|ρ|(q)fB|ρ| . With these identifications, the outer tensor product

Mλ := M e � · · ·�M e︸ ︷︷ ︸
w times

�M |ρ|

is an (FL,Hλ)-bimodule, and as such, isomorphic to FLfBL . It follows that RG
L(Mλ)

is an (FG,Hλ)-bimodule.

Recall the definition of the (FG,Hf
n(q))-bimodule MB = IndGB(1B) = FGeB, given

in Section 6.2. If Hλ is the parabolic subalgebra of Hf
n(q) corresponding to the

partition λ ` n, then MB becomes an (FG,Hλ)-bimodule. One has the following:

Lemma 6.3.3. As (FG,Hλ)-bimodules, we have that MB
∼= RG

L(Mλ).

Proof. This is [17, Lemma 3.2f]. �

Remark 6.3.4. Let U+ = 1
|U |
∑

u∈U u, an idempotent in U . The isomorphism of

the previous lemma is given by the map

FGU+ ⊗FL FLfBL −→ FGeB, a⊗ b 7→ ab.

Note that this is well defined since L normalizes U and U+fBL = eB.
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algebras

Next we want to apply the Schur functors from (6.8):

HB : FG−mod −→ Hf
n(q) and HBL : FL−mod −→ Hλ −mod. (6.11)

Recall the definition of the (FL, FI)-bimodule FI = F [L o Sw] from Theorem

6.3.2. Since FI may be identified with the wreath product FL oSw, we have that

as left FL-modules

FI ∼=
⊕
σ∈Sw

FL⊗ σ ∼=
⊕
σ∈Sw

FLFL.

Since the action of Sw on L leaves the idempotent fBL invariant, we get an isomor-

phism

FIfBL
∼=
⊕
σ∈Sw

FLfBL ⊗ σ (6.12)

of left FL-modules. As Harish-Chandra induction is an exact functor, together with

Lemma 6.3.3 we infer that

RG
L(FIfBL) ∼=

⊕
σ∈Sw

RG
L(FLfBL ⊗ σ) ∼=

⊕
σ∈Sw

MB ⊗ σ (6.13)

as left FG-modules. Observe that by using the isomorphism given in Remark 6.3.4,

we get a natural right eBLFIeBL-module structure on
⊕

σ∈Sw MB ⊗ σ.

On the other hand, let Cw be the skew group algebra of Sw over Hλ, where Sw

acts on the latter algebra by permuting the first w factors. By the discussion after

Theorem 6.3.2, we have that Cw ∼= (Hf
e (q) oSw)⊗F Hf

|ρ|(q) as F -algebras.

Consider now the (Hf
n(q), Cw)-bimodule Hf

n(q)⊗HλCw, where the left Hf
n(q)-module

and the right Cw-module structure is given by left and right multiplication with the

corresponding algebras. Since Cw ∼=
⊕

σ∈Sw Hλ⊗σ as left Hλ-modules, we get that

Hf
n(q)⊗Hλ Cw ∼=

⊕
σ∈Sw

Hf
n(q)⊗Hλ (Hλ ⊗ σ) ∼=

⊕
σ∈Sw

Hf
n(q)⊗ σ

as left Hf
n(q)-modules. Identifying Hf

n(q) with eBFGeB and Hλ with fBLFLfBL ,

by using (6.13), we have that

Hf
n(q)⊗Hλ Cw ∼= eBRG

L(FIfBL) ∼= eBRG
L(FI)fBL

as (Hf
n(q), Cw)-bimodules.

Next, set N = eBMfBL , where M is the (FG,FI)-bimodule of Theorem 6.3.2.

Then N becomes an (Hf
n(q), Cw)-bimodule and, as such, it is a direct summand

of Hf
n(q) ⊗Hλ Cw, see Theorem 6.3.2 (a). Combining this with the arguments of

W. Turner, see [84, Theorem 80], we get:

Theorem 6.3.5. Keep the notation from above. Let ρ be a Rouquier e-core with

respect to w > 0 and n = ew + |ρ|. Then we have the following:
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(a) N is a direct summand of Hf
n(q)⊗Hλ Cw as an (Hf

n(q), Cw)-bimodule.

(b) The functor N ⊗Cw − : Cw−mod→ DF −mod induces a Morita equivalence

between the algebra Cw and the Rouquier block DF of Hf
n(q).

Since Hf
|ρ|(q) is a split semisimple algebra, we get the following corollary:

Corollary 6.3.6. Keep the notation of Theorem 6.3.5. The Rouquier block DF of

Hf
n(q) is Morita equivalent to the algebra B0(Hf

e (q)) oSw.

By a lifting argument due to J. Chuang, see [21, §6], we also get a version of the

last corollary in the characteristic zero case.

Theorem 6.3.7. Let 1 6= ζe ∈ C be a primitive eth root of unity, and ρ, w, n be as

above. Moreover, suppose that k is a field of characteristic 0 containing ζe. Then

the Rouquier block Dk of Hf
n(ζe) and the k-algebra B0(Hf

e (ζe)) o Sw are Morita

equivalent.

Proof. See [21, Theorem 18 and §6]. �

Remark 6.3.8. Recently, in [38], A. Evseev deduced a generalization of Theorem

6.3.7 using methods from the representation theory of KLR-algebras.
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Chapter 7

Stable components for blocks of

Hecke algebras of type A

In this section, we will finally derive the main result of the chapter, which classifies

the tree classes of connected components of the stable AR-quiver of blocks of Hecke

algebras of type A in characteristic zero. To this end we shall need the famous

theorem of J. Chuang and R. Rouquier giving derived equivalences between blocks

of the same weight of Hecke algebras of type A, defined over the same field k with

parameter q that is invertible in k.

In the following let e be the multiplicative order of the defining parameter q in k,

i.e., the smallest positive integer e such that qe = 1. We assume throughout that

2 ≤ e <∞.

Theorem 7.1.9. (Chuang–Rouquier [22]) Let A be a block of Hf
n(q) and B be a

block of Hf
m(q). Then A and B are derived equivalent if and only if A and B have

the same weight.

Proof. This is [22, Theorem 7.12]. �

Remark 7.1.10. The equivalence constructed in the proof of Theorem 7.1.9 is

induced by a complex of exact functors that are direct summands of compositions

of refinements of the restriction and induction functors. Therefore, they induce a

k-linear triangulated equivalence.

Using [75, Corollary 2.2] and [7, X, Corollary 1.9], we can immediately deduce the

following corollary:

Corollary 7.1.11. If A and B have the same weight w, then A and B are stably

equivalent. Furthermore, the stable AR-quivers Γs(A) and Γs(B) are isomorphic as

stable translation quivers.

Remark 7.1.12. If A is a block of weight w = 1, then A is a Brauer tree algebra,

whose Brauer tree is a line with no exceptional vertex, see [42, Theorem 11.4] and

[72, Theorem 1.4].
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Next recall the notions of a Rouquier block and a Rouquier core from Definition

6.3.1. It is easy to see that for a given weight w, it is always possible to find a

Rouquier core ρ and a positive integer r such that r = ew + |ρ|, i.e., there is a

Rouquier block of weight w. This and Theorem 7.1.9 yield:

Lemma 7.1.13. Every block of weight w of some Hecke algebra of type A is derived

equivalent to a Rouquier block of weight w defined over the same field.

In the sequel, we will denote by B the principal block of the Hecke algebra Hf
e (q).

To state our main result, we will need one further result concerning the finite gener-

ation of the Hochschild cohomology ring of outer tensor products of B. Recall that

a k-algebra A is called separable if for every extension field E of k the E-algebra

E⊗k A is semisimple.

Lemma 7.1.14. Suppose that B/rad(B) is a separable k-algebra. Then for any

k ≥ 0, the algebra B⊗k has enough Ω-periodic modules.

Proof. The principal block B of Hf
e (q) is a Brauer tree algebra, hence, by [63,

Proposition 4.9] and the remark after, the Hochschild cohomology ring HH∗(B) is

noetherian and the Ext∗B⊗kBop(B,U) is noetherian as a HH∗(B)-module for every

finitely generated B − B-bimodule U . By [35, Proposition 1.4] the latter is equiv-

alent to the statement that Ext∗B(B/rad(B), B/rad(B)) is finitely generated as an

HH∗(B)-module. Then by [81, Proposition 5.7] we have that B satisfies the finite

generation hypotheses (Fg1) and (Fg2) of [35]. It follows from [13, Corollary 4.8],

by imposing the trivial grading on B, that the algebra B⊗k, k ≥ 1, satisfies the

finite generation hypotheses as well. Then, by [35, Theorem 4.5], B⊗k has enough

Ω-periodic modules. �

We can now state the main theorem of the first part of this thesis:

Theorem 7.1.15. Let k be an algebraically closed field of characteristic zero, and

A be a block of Hf
n(q) of e-weight w. Then we have the following:

(a) If w = 1, then A is of finite representation type. In this case the stable AR-

quiver Γs(A) has just one component which is of tree class Ae−1.

(b) If e = 2 and w = 2, then A is of tame representation type. The stable AR-

quiver of A consists of

(i) infinitely many tubes of rank one,

(ii) two tubes of rank two,

(iii) one component of the form ZÃ2,2.

(c) If e = 2 and w ≥ 3, or e ≥ 3 and w ≥ 2, then A is wild and all components

of the stable AR-quiver Γs(A) of A have tree class A∞.
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Proof. The statement about the representation type is [36, Theorem 3.1] together

with [40, Theorem 3.3], and statement (a) can be found in [85].

For (b) we use the Morita equivalence given in Theorem 6.3.7. In this case, the

principal block B of Hf
e (q) is isomorphic to the algebra k[X]/(X2), and hence,

B ⊗k B ∼= k[X, Y ]/(X2, Y 2). Then we have an isomorphism of k-algebras between

the algebra B⊗2 ?S2 and the skew group algebra of S2 over Λ := k[X, Y ]/(X2, Y 2),

where S2 acts on Λ by sending X to Y and Y to X. Let C := Λ?S2. Note that S2

is cyclic of order two, generated by the basic transposition g = (1, 2). By Corollary

7.1.11, it is enough to show the statement for the Rouquier block of weight two,

which in turn is Morita equivalent to C by Theorem 6.3.7.

First, we will determine a quiver with relations for C. To this end we have to

determine the Loewy structures of the projective indecomposable modules of C.

Let

f :=
1

2
(1 ? 1 + 1 ? g),

an idempotent in C. Then, we get a decomposition

C ∼= Cf ⊕ C(1− f)

of the left regular module C. In the following we set f1 := f , f2 = 1 − f , and

Pi := Cfi, i = 1, 2. For i = 1, 2, the projective module Pi has k-basis the set

{fi, Xfi := (X ? 1)fi, Y fi := (Y ? 1)fi, XY fi := (XY ? 1)fi},

and it follows that ResCΛ(Pi) ∼= Λ as left Λ-modules. Thus, Pi is indecomposable

as a C-module. In the following, we will denote by Si the irreducible C-module

corresponding to the indecomposable projective module Pi, i = 1, 2.

Since |S2| is invertible in k, by [79, Theorem 1.3], we have that rad(C) = rad(Λ)C.

It follows that

rad(Pi) = rad(C)Pi = rad(Λ)Pi,

for i = 1, 2. Note that, as a Λ-module, rad(Λ) is generated by the set {X, Y,XY }.
Therefore,

rad(Pi) = span({Xfi, Y fi, XY fi}),
rad2(Pi) = span({XY fi}),
rad3(Pi) = 0.

(7.1)

Next, consider the subspaces k(Xfi + Y fi) and k(Xfi − Y fi) of rad(Pi). Since

char(k) 6= 2, the latter intersect trivially. By (7.1), the sum of these spaces form a

complement of rad2(Pi) in rad(Pi), hence, the elements (Xfi + Y fi) + rad2(Pi) and

(Xfi−Y fi)+rad2(Pi) form a basis of the vector space rad(Pi)/rad2(Pi). Moreover,

the latter generate two irreducible C-submodules Si1 and Si2 of rad(Pi)/rad2(Pi).

By direct computation, we have that

fi(Xfi + Y fi) = Xfi + Y fi,

fi(Xfi − Y fi) = 0,
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so that S11
∼= S22

∼= S1 and S12
∼= S21

∼= S2. Therefore, for i = 1, 2, the radical

layers of the projective indecomposable C-modules Pi have the following form:

Pi/rad(Pi) ∼= rad2(Pi) ∼= Si,

rad(Pi)/rad2(Pi) ∼= S1 ⊕ S2.
(7.2)

From this information, we may draw the Ext-quiver Q of C, which is given in the

figure below.

• •
α

β
ε γ

Figure 7.1: The Ext-quiver of C.

Denote by x1 (resp. x2) the vertex of Q in which the arrow α (resp. β) starts. We

want to construct a surjective k-algebra homomorphism kQ→ C. To this end, we

use Theorem 5.1.3. By explicit calculations, we get the following:

f1rad(C)f1 = span(f1Xf1, f1XY f1),

f1rad2(C)f1 = span(f1XY f1),

f2rad(C)f1 = span(f2Xf1),

f2rad2(C)f1 = 0,

f2rad(C)f2 = span(f2Y f2, f2XY f2),

f2rad2(C)f2 = span(f2XY f2),

f1rad(C)f2 = span(f1Y f2),

f1rad2(C)f2 = 0.

(7.3)

Therefore, by choosing an appropriate basis of a complement of fjrad2(C)fk in

fjrad(C)fk, j, k = 1, 2, and setting

x1 7→ f1, x2 7→ f2, α 7→ f2Xf1, β 7→ f1Y f2, ε 7→ f1Xf1, γ 7→ f2Y f2,

by Theorem 5.1.3, we get a surjective k-algebra homomorphism ψ : kQ → C.

Set I := Ker(ψ). Then immediately from the above assignment we get that the

two-sided ideal

J := 〈εk, k ≥ 3, γj, j ≥ 3, αε, εβ, γα, βγ, γ2 − αβ, ε2 − βα〉kQ (7.4)

of kQ is contained in I. On the other hand, we see directly from (7.4), that the set

of paths

P := {x1, x2, α, β, ε, ε
2, γ, γ2}

is contained in the set-theoretic complement of I in kQ. Also from (7.3) and the

definition of ψ, we have that ψ(P) is a basis of C. Therefore, the subspace U of

kQ spanned by the elements in P intersects I trivially, thus, is a complement of I
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in kQ. Since all paths in Q are linear combinations of the paths in P and elements

of kQ generated by J , we must have I = J .

In other words, C is given by the quiver Q of Figure 7 together with the relations

αε = 0 = εβ, γα = 0 = βγ, ε2 = βα, γ2 = αβ.

From the structure of Q and the relations, we see that C ∼= kQ/I is special biserial

and, hence, tame, by [24].

To determine the structure of Γs(C), we use [34, Chapter II] as a background

material. Instead of C, one works with the algebra C ′ := C/soc(C), which is a

string algebra. Note that C ′ is given by the same quiver as C but with relations

αε = 0 = εβ, γα = 0 = βγ, βα = 0 = αβ.

Moreover, since C is selfinjective, we have that Γs(C) = Γ(C ′), hence, to determine

Γs(C) we may use techniques to compute AR-sequences over string algebras.

First, note that the word w = εα−1γβ−1 is the only band, and contributes infinitely

many tubes of rank one to Γs(C). Given an arrow in Q, one can construct an

Auslander–Reiten sequence of C ′ with indecomposable middle term. By [34, II.6.2],

these are given in the following list:

0 −→M(γ−1) −→M(γ−1αε−1) −→M(ε−1) −→ 0,

0 −→M(ε−1) −→M(ε−1βγ−1) −→M(γ−1) −→ 0,

0 −→M(β−1) −→M(β−1εα−1) −→M(α−1) −→ 0,

0 −→M(α−1) −→M(α−1γβ−1) −→M(β−1) −→ 0.

Here, M(D) denotes the string module of C ′ associated to the string D. Therefore,

we get that Γs(C) has two components that are tubes of rank two. It now follows

from [37, Theorem 2.1] that Γs(C) also contains a component of the form ZÃ2,2.

This already determines the structure of Γs(C) completely and finishes the proof of

(b).

Again, to prove (c), it is enough to consider Rouquier blocks. Let B be the principal

block of Hf
e (q). We know from Theorem 4.2.4 and Theorem 5.5.6 that in the case

where e = 2 and w ≥ 3, or e ≥ 3 and w ≥ 2, every connected component of the

stable AR-quiver Γs(B
⊗w) of B⊗w has tree class A∞. Since char(k) = 0, we have by

Lemma 7.1.14 that the algebra B⊗w has enough periodic modules. Now, the claim

follows from Theorem 3.2.9. �

Remark 7.1.16. (i) A block A of Hf
n(q) is of weight zero if and only if A is

semisimple.

(ii) Compare part (b) of the theorem with [3, Lemma 6.5], where the stable AR-

quiver of Hf
4 (−1) was computed.

In the following we list the Dynkin diagrams occurring as tree classes in Theorem

7.1.15, where the diagram of type An has n nodes.
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An :

A∞ :

The quiver Ã2,2 is given as follows:

Ã2,2 :
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Chapter 8

Preliminaries

8.1 Goal

In the second part of the thesis we will describe and analyze certain functors first

defined by I. Grojnowski in [44] in the context of cyclotomic Hecke algebras (the

non-degenerate case) and later by A. Kleshchev in [59] in the case of degenerate

cyclotomic Hecke algebras (the degenerate case). These functors were used to de-

scribe the Lie-theoretic structure of the irreducible modules of cyclotomic Hecke

algebras of degree n, where n ranges over all non-negative integers. This was first

discovered by S. Ariki in [2] in the case where the ground field is C. Later, by using

a different approach, this was generalized by I. Grojnowski to cyclotomic Hecke

algebras defined over arbitrary fields.

One goal of the second part of the thesis is to explain and understand the theory

developed by S. Ariki and I. Grojnowski explicitly.

Afterwards, as an application, we will deduce new results on the structure of vertices

of Hecke algebras of the symmetric group. In particular we will verify a conjecture of

R. Dipper and J. Du stated in [27] in the case where the modules under consideration

lie in blocks of finite representation type. The conjecture states that the vertices

of indecomposable modules are l − p-parabolic, with l the order of the defining

parameter and p the characteristic of the ground field.

The following is intended to be self-contained. Most of the time, we will follow

the lines of [59], where a good exposition of the material is given in the case of

degenerate cyclotomic Hecke algebras.

8.2 Notation

Throughout this part, if not stated otherwise, F will denote an algebraically closed

field of characteristic p ≥ 0.

For an F -algebra A we denote by A −Mod (resp. Mod − A) the abelian category

of all left (resp. right) A-modules. By A−mod (resp. mod−A) we will denote the

abelian category of finite-dimensional left (resp. right) A-modules. Moreover, by
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A−proj (resp. proj−A) we mean the full subcategory of A−mod (resp. mod−A)

consisting of projective modules.

For F -algebras A,B we write A⊗B for the tensor product A⊗F B of A and B over

F , which is considered as an F -algebra in the usual way. If M is a left A-module

and N is a left B-module, we denote by M �N the outer tensor product of M and

N , i.e., as vector space M � N ∼= M ⊗F N , and is considered as a left A ⊗ B -

module by defining (a⊗ b)(m�n) = (am)� (bn), for a ∈ A, b ∈ B, m ∈M , n ∈ N .

If A is an F -algebra and B ⊆ A is a subalgebra of A, we denote by

IndAB : B −mod −→ A−mod, IndAB(N) = A⊗B N,

the induction functor,

Înd
A

B : B −mod −→ A−mod, Înd
A

B(N) = HomB(A,N),

the coinduction functor, and by

ResAB : A−mod −→ B −mod

the restriction functor, where ResAB(M) is the left A-module M considered as a B-

module by restriction of scalars. Note that IndAB is a left adjoint of ResAB and Înd
A

B

is a right adjoint.

Let C be an exact category, that is, an additive category together with a class of

distinguished sequences of morphisms

L −→M −→ N,

called exact sequences. Then we write K(C) for the Grothendieck group of C, that

is, the quotient of the free abelian group generated by the objects M ∈ Ob(C) by

the ideal generated by the elements L −M + N for every distinguished sequence

L→M → N .

Throughout, if C is abelian, then we take the usual short exact sequences in C as

the class of distinguished sequences.

Moreover, if C is supposed to be additive, then the class of distinguished sequences

will consist of exact sequences of the form

0 −→ L −→M −→ N −→ 0,

with M ∼= L⊕N .

Remark 8.2.1. If A is a finite-dimensional F -algebra, then the category C of finite-

dimensional left A-modules is abelian. In this case, K(C) is a free abelian group

with basis the set of isomorphism classes of irreducible A-modules.

Let D be the full subcategory of C consisting of projective A-modules. Then D is

an additive category and the class of distinguished sequences is given as above.
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Chapter 9

Affine Hecke algebras of type A

The intention of this chapter is to give the definition of the affine Hecke algebra in

type A and state basic representation-theoretic results on the latter. We will also

focus on the subalgebra of Laurent polynomials since this commutative subalgebra

is essential in understanding the representation theory of affine Hecke algebras.

Later on, we define important functors on the module categories of the latter, which

will play a decisive role in our further investigations.

9.1 Basic definitions

Throughout, we will denote by W (n) the symmetric group acting on {1, . . . , n}
from the left, that is to say, the element (1, 2)(2, 3) equals (1, 2, 3). Also, we denote

by Z+ the set of non-negative integers.

As a group, W (n) is generated by the set B = {s1 = (1, 2), . . . , sn−1 = (n − 1, n)}
of basic transpositions. Moreover, we denote by Hf

n(q) the Iwahori–Hecke algebra

over W (n) with non-zero parameter q ∈ F . Recall from Section 1 in Part I that,

as an F -algebra, the latter is generated by the symbols Ti, 1 ≤ i ≤ n− 1, together

with the following relations:

(H1) (Ti − q)(Ti + 1) = 0.

(H2) TiTj = TjTi, for 1 ≤ i < j − 1 ≤ n− 2.

(H3) Ti+1TiTi+1 = TiTi+1Ti, 1 ≤ i ≤ n− 2.

Remark 9.1.1. From relation (H1) we deduce that T 2
i = (q − 1)Ti + q.

If w = si1 · · · sik , 1 ≤ ij ≤ n − 1, is a reduced expression of w in W (n), we define

Tw := Ti1 · · ·Tik , an element of Hf
n(q). For w = 1 we set Tw to be the unit element

of Hf
n(q). Note that the definition of Tw does not depend on the chosen reduced

expression. Moreover, by l(w) we denote the length of w ∈ W (n), i.e., the minimal

number of basic transpositions in a reduced expression of w.

Then, the following holds for the multiplication in Hf
n(q), see [29, Lemma 2.1]:

81



Chapter 9. Affine Hecke algebras of type A

TsTw =

{
Tsw if l(sw) = l(w) + 1,

qTsw + (q − 1)Tw otherwise.
(9.1)

Recall from [68, Theorem 1.13] that, as an F -vector space, Hf
n(q) has basis the set

{Tw | w ∈ W (n)},

hence, dimF (Hf
n(q)) = |W (n)| = n!.

In the following, let

Pn = F [x±1
1 , . . . , x±1

n ]

be the F -algebra of Laurent polynomials in the indeterminates x1, . . . , xn. If α =

(α1, . . . , αn) ∈ Zn, we write

xα = xαnn . . . xα1
1 .

Note that for Pn we have the relation

xixj = xjxi, (9.2)

for 1 ≤ i ≤ j ≤ n, together with

xix
−1
i = x−1

i xi = 1, (9.3)

for 1 ≤ i ≤ n.

Furthermore, W (n) acts on Pn via

w · xi = xwi,

for all w ∈ W (n) and 1 ≤ i ≤ n.

Definition 9.1.2. Let q 6= 1. The affine Hecke algebra Hn(q) is the associative F -

algebra given by generators x±1
1 , . . . , x±1

n and T1, . . . , Tn−1, subject to the relations

(9.2), (9.3) and (H1)− (H3), together with

Tixj = xjTi, (9.4)

Tixi = xi+1Ti − (q − 1)xi+1, (9.5)

Tixi+1 = xiTi + (q − 1)xi+1, (9.6)

for j 6= i, i+ 1, 1 ≤ i ≤ n− 1. Note that by using relation (H1), (9.5) and (9.6) are

equivalent to

TixiTi = qxi+1. (9.7)
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9.2. The ring of Laurent polynomials

9.2 The ring of Laurent polynomials

In the previous section we defined the affine Hecke algebra Hn(q), n ≥ 0, together

with the subalgebras Hf
n(q) and Pn. Let

Zn := F [x±1
1 , . . . , x±1

n ]W (n) = {f ∈ Pn | w · f = f, for all w ∈ W (n)}, (9.8)

the set of symmetric Laurent polynomials. Moreover, we set

P+
n := F [x1, . . . , xn] and Z+

n := F [x1, . . . , xn]W (n),

which we consider as subalgebras of Hn(q) in the obvious way. The goal of this

section is to describe the structure of Pn considered as a Zn-module. The results

that are proven here will be needed in Chapter 9.8.

The first lemma below can be found in [59, Theorem 1.0.2], and was proved by R.

Steinberg in [82].

Lemma 9.2.1. P+
n is free as a Z+

n -module of rank n!. A Z+
n -basis is given by the

subset

{xa1
1 · · ·xann | 0 ≤ ai < i for all 1 ≤ i ≤ n}

of P+
n .

From the previous lemma we can conclude the following fact about Pn:

Theorem 9.2.2. Pn is free as a Zn-module of rank n!. A Zn-basis is given by the

subset

Bn = {xa1
1 · · ·xann | 0 ≤ ai < i for all 1 ≤ i ≤ n}

of Pn.

Proof. Let z1b1 + · · ·+ zrbr = 0, for some 1 ≤ r ≤ n!, elements zi ∈ Zn, and distinct

elements bi ∈ Bn, 1 ≤ i ≤ r. Let t ∈ N be the highest power of some x−1
i , 1 ≤ i ≤ n,

occurring among z1, . . . , zn. Setting X :=
∏n

j=1 x
t
j, we conclude that Xzi ∈ Z+

n , for

all i. But then (Xz1)b1 + . . . + (Xzn)bn = 0, and it follows by Lemma 9.2.1 that

Xzi = 0, for all i. Since Pn is a domain, and X 6= 0, we conclude that zi = 0, for

all i. Therefore, Bn is linearly independent.

Next, let xα, α ∈ Zn, be a monomial in Pn. Denote by Y + = {i | 1 ≤ i ≤
n and αi ≥ 0}, where αi is the ith component of the vector α. Similarly, we define

Y − = {j | 1 ≤ j ≤ n and αj < 0}. Then we have:

xα =
∏
i∈Y +

xαii
∏
j∈Y −

(
n∏
k=1

x
αj
k )(

n∏
k=1,k 6=j

x
−αj
k )

= (
∏
j∈Y −

n∏
k=1

x
αj
k )(

∏
i∈Y +

xαii )(
∏
j∈Y −

n∏
k=1,k 6=j

x
−αj
k ).

Now,
∏

j∈Y −
∏n

k=1 x
αj
k ∈ Zn, and (

∏
i∈Y + x

αi
i )(
∏

j∈Y −
∏n

k=1,k 6=j x
−αj
k ) ∈ P+

n . Hence,

by Lemma 9.2.1, we can write xα as a sum of elements in Bn with coefficients in

Zn. This finishes the proof. �
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Corollary 9.2.3. Let a ∈ F . The subset

Ban = {(x1 − a)a1 · · · (xn − a)an | 0 ≤ ai < i for all 1 ≤ i ≤ n}

of Pn is a Zn-basis for Pn.

Proof. By Theorem 9.2.2 we know that the set

Bn = {xa1
1 · · ·xann | 0 ≤ ai < i for all 1 ≤ i ≤ n}

is a basis of Pn considered as Zn-module. Let (x1 − a)a1 · · · (xn − a)an ∈ Ban. By

binomial expansion, we see that

(x1 − a)a1 · · · (xn − a)an =
∑
α∈Zn

λαx
α, λα ∈ F, (9.9)

where for α = (α1, . . . , αn), we have that 0 ≤ αi < i, for all 1 ≤ i ≤ n. It is easy

to see that for αmax := (a1, . . . , an), we have λαmax 6= 0. Therefore, if we exchange

xa1
1 · · ·xann by the element w := (x1−a)a1 · · · (xn−a)an , the new set remains linearly

independent over Zn. To this end suppose that

zww +
∑
α∈Zn,
α 6=αmax

zαx
α = 0, zw, zα ∈ Zn,

where for all α = (α1, . . . , αn), we have that 0 ≤ αi < i, 1 ≤ i ≤ n. Then, if we

plug in the expression (9.9) for w, we obtain

(λαmaxzw)xαmax +
∑
α∈Zn,
α 6=αmax

(λαzw + zα)xα = 0.

Since Bn is linearly independent over Zn, we infer that λαmaxzw = 0. Since λαmax 6= 0,

we see that zw = 0. But then it follows that zα = 0, for all α ∈ Zn. Therefore, if we

replace the elements xb11 · · ·xbnn in Bn successively by the elements (x1−a)b1 · · · (xn−
a)bn according to the lexicographic order on Zn+ beginning with the element α =

(0, . . . , 0), we see that Ban is linearly independent over Zn.

On the other hand, via induction on the lexicographic order, it is easy to see that

each element xa1
1 · · ·xann ∈ Bn can be written as an F -linear combination of the

elements in Ban. E.g., if n = 3, we have for α = (0, 1, 1):

x2x3 = (x2 − a)(x3 − a) + a(x2 − a) + a(x3 − a) + a2.

Thus, the elements of Ban span Pn as a Zn-module, i.e., Ban is a Zn-basis of Pn. �

Let a ∈ F×. In what follows, we will denote by Z(an) the subset of Pn consisting of

all symmetric polynomials in the xi − a and x−1
i − a−1 without constant term.

Corollary 9.2.4. As an F -vector space, the F -algebra Pn/PnZ(an) has dimension

n!, and a basis is given by the cosets of the elements in Ban.
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Proof. Denote by φ the F -algebra epimorphism Pn → Pn/PnZ(an). Let c1φ(b1) +

. . . + crφ(br) = 0 in Pn/PnZ(an), for some 1 ≤ r ≤ n!, some distinct elements bi in

Ban, and ci ∈ F . This is equivalent to

c1b1 + . . .+ crbr =
∑
j

pjzj ∈ Pn,

for elements pj ∈ Pn and elements zj ∈ Z(an). Since, by Corollary 9.2.3, Ban is

a Zn-basis of Pn, we can write pj as linear combinations of elements in Ban with

coefficients in Zn, i.e.,∑
j

pjzj =
∑
j

(
∑
k

wk,jbk)zj =
∑
k

(
∑
j

wk,jzj)bk,

for elements wk,j ∈ Zn, and bk ∈ Ban. If the right-hand side of the above equation

is zero, then ci = 0 immediately, for all i. Otherwise, there is some k such that∑
j wk,jzj 6= 0. Note that the ideal PnZ(an) is contained in the kernel of the algebra

homomorphism Pn → F , f 7→ f(a, . . . , a). Hence, each element of PnZ(an) is not

invertible in Pn. In particular, the element
∑

j wk,jzj ∈ PnZ(an) is not invertible.

Since Ban is a basis of Pn, considered as Zn-module, and the linear combinations

have coefficients in Zn, the linear combinations on both sides of the equation must

coincide. But this is impossible since on the left-hand side of the equation only

constant terms occur. This shows that the subset φ(Ban) of Pn/PnZ(an) is linearly

independent over F .

Next, let u ∈ Pn/PnZ(an), and choose an element v ∈ φ−1(u). Then, by Corollary

9.2.3, v =
∑

j zjbj, with zi ∈ Zn, and distinct elements bi ∈ Ban. Now, for each i, we

can write zi as a symmetric polynomial in the xj − a and x−1
k − a−1,1 ≤ j, k ≤ n,

by substituting xj by (xj − a) + a and x−1
k by (x−1

k − a−1) + a−1. Thus, by binomial

expansion, for all i, zi is a sum of an element of Z(an) and some constant term czi .

It follows that u = φ(v) =
∑

j czjφ(bj), and hence, φ(Ban) spans Pn/PnZ(an) as an

F -vector space. �

9.3 A basis for Hn(q)

In order to describe F -subalgebras of Hn(q) in a convenient way, we want to deter-

mine a basis for Hn(q) as an F -vector space. The main result of this section is well

known, but we intend to give a detailed proof here as it is of great importance in

our further investigations. We will follow the lines of [59, Theorem 3.2.2], where a

basis for the degenerate affine Hecke algebra is given. The result is as follows:

Theorem 9.3.1. The set {xαTw | α ∈ Zn, w ∈ W (n)} forms an F -basis of Hn(q).

Proof. The proof will cover all of the rest of this section. A major tool will be

Bergman’s diamond lemma, which is [12, Theorem 1.2]. First, we will recall some

definitions of [12, §1]:
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Let R be a commutative ring with 1, X be a set, and denote by 〈X〉 the free

semigroup with 1 on X. Moreover, let R〈X〉 be the free associative R-algebra on

X, which is the same as the semigroup algebra of X. Let S be a set consisting of

pairs of the form σ = (Wσ, fσ), with Wσ ∈ 〈X〉 and fσ ∈ R〈X〉. Such a set is called

a reduction set. For an element σ = (Wσ, fσ) ∈ S, and elements A,B ∈ 〈X〉, we get

an R-endomorphism rAσB : R〈X〉 → R〈X〉, defined by

rAσB(x) =

{
AfσB if x = AWσB,

x otherwise.

Such an endomorphism is called a reduction. A reduction rAσB is said to act trivially

on a ∈ R〈X〉 if the coefficient of AσB in a is zero. An element a ∈ R〈X〉 is called

irreducible if each reduction acts trivially on a. TheR-submodule ofR〈X〉 consisting

of irreducible elements is denoted by R〈X〉irred.

A 5-tupel (σ, τ, A,B,C), with elements σ, τ ∈ S, A,B,C ∈ 〈X〉 is called an overlap

ambiguity if Wσ = AB, and Wτ = BC. An overlap ambiguity is called resolvable if

there exist compositions of reductions r, r′ such that r(fσC) = r′(Afτ ). Similarly,

such a 5-tupel (σ, τ, A,B,C) will be called an inclusion ambiguity if Wσ = B and

Wτ = ABC. Such an ambiguity will be called resolvable if there are compositions

of reductions r, r′ such that r(AfσC) = r′(fτ ).

A partial order ≤ on 〈X〉 is called a semigroup partial order if B < B′ implies

ABC < AB′C, for elements A,B,B′, C ∈ 〈X〉. A partial order on 〈X〉 is called

compatible with S if for all σ ∈ S, the element fσ is a linear combination of elements

that are strictly smaller than Wσ with respect to the partial order.

Next, let R = F and denote by H̃n(q) the F -algebra given by generators x̃±1
j , T̃i,

1 ≤ j ≤ n, 1 ≤ i ≤ n−1, subject to the relations (H1) and (9.2)-(9.6), i.e., the same

relations as for Hn(q), except the commutation relations for Ti, Tj, |i− j| > 1, and

the braid relations. Set X := {x±1
1 , . . . , x±1

n , T1, . . . , Tn−1}. Consider the following

elements of 〈X〉×F 〈X〉, which will form the reduction system in Bergman’s diamond

lemma:

σxixj = (xixj, xjxi), (9.10)

σx−1
i x−1

j
= (x−1

i x−1
j , x−1

j x−1
i ), (9.11)

where 1 ≤ i < j ≤ n,

σxi = (xix
−1
i , 1), (9.12)

σx−1
i

= (x−1
i xi, 1), (9.13)
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for 1 ≤ i ≤ n,

σxix−1
j

= (xix
−1
j , x−1

j xi), (9.14)

σx−1
i xj

= (x−1
i xj, xjx

−1
i ), (9.15)

where 1 ≤ i < j ≤ n,

σTi = (T 2
i , (q − 1)Ti + q), (9.16)

with 1 ≤ i ≤ n− 1,

σTi,xj = (Tixj, xjTi), (9.17)

σTi,x−1
j

= (Tix
−1
j , x−1

j Ti), (9.18)

for 1 ≤ i, j ≤ n and j 6= i, i+ 1,

σTixi = (Tixi, xi+1Ti − (q − 1)xi+1), (9.19)

σTixi+1
= (Tixi+1, xiTi + (q − 1)xi+1), (9.20)

σTix−1
i

= (Tix
−1
i , x−1

i+1Ti + (q − 1)x−1
i ), (9.21)

σTix−1
i+1

= (Tix
−1
i+1, x

−1
i Ti − (q − 1)x−1

i ), (9.22)

where 1 ≤ i ≤ n− 1.

Denote by S the set of all these elements. Next we define a partial order ≤〈X〉
on 〈X〉 that is compatible with the semigroup operation. If y, y′ ∈ 〈X〉, we set

y ≤〈X〉 y′ if |y| ≤ |y′|, where we denote by |y| the length of a word y ∈ 〈X〉, and ≤
denotes the total order on N. If |y| = |y′|, we set y ≤〈X〉 y′ if y ≤lex y

′, where ≤lex

denotes the lexicographical order on 〈X〉 with respect to

(T1, . . . , Tn−1, x1, x
−1
1 , . . . , xn, x

−1
n ).

We want to show the following:
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Lemma 9.3.2. The relation ≤〈X〉 defines a semigroup partial order on 〈X〉. More-

over, every descending sequence

y1 ≥〈X〉 y2 ≥〈X〉 . . .

in 〈X〉 eventually becomes stationary.

Proof. Let a, b, c ∈ 〈X〉. Then |a| = |a| and a ≤lex a, i.e., a ≤〈X〉 a. Next, let

a ≤〈X〉 b and b ≤〈X〉 a. This implies |a| = |b| immediately. But then we have

a ≤lex b and b ≤lex a. Since ≤lex is a partial order, we have that a = b. If a ≤〈X〉 b
and b ≤〈X〉 c holds in 〈X〉, then we have that |a| ≤ |b| and |b| ≤ |c|. This implies

|a| ≤ |c|. Suppose that |a| = |c|. Then |a| = |b| and |b| = |c|, and we get that

a ≤lex b and b ≤lex c. Since ≤lex is a partial order, we infer that a ≤〈X〉 c.
It is clear from the definition of ≤〈X〉 that a ≤〈X〉 b, for elements a, b ∈ 〈X〉, implies

that XaY ≤〈X〉 XbY , for all X, Y ∈ 〈X〉. Hence ≤〈X〉 is a semigroup partial order.

Note that for any element y ∈ 〈X〉 there are only finitely many y′ ∈ 〈X〉 such that

|y| > |y′|. Since X is finite, for all r ∈ N, there are only finitely many elements

in 〈X〉 of length r that are pairwise different. Therefore, the partial order ≤〈X〉
satisfies the descending chain condition. �

Let σ = (X, Y ) be an element of S. Then we see from the list above that Y <〈X〉 X,

and hence ≤〈X〉 is compatible with S. Therefore, all the conditions in [12, Theorem

1.2] are satisfied. To obtain our desired result, we have to check that all ambiguities

of S are resolvable, and the corresponding calculation, which are given in Appendix

A, show that all the ambiguities are resolvable.

Let I be the two-sided ideal of F 〈X〉 generated by the elements σ(1)−σ(2), σ ∈ S.

Also let Ĩ be the two-sided ideal of F 〈X〉 generated by the relations given in (H1)

and (9.2)–(9.6). Then we have an isomorphism of F -algebras

φ : F 〈X〉/I −→ F 〈X〉/Ĩ = H̃n(q),

given by xi 7→ x̃i, x
−1
i 7→ x̃−1

i , 1 ≤ i ≤ n, and Ti 7→ T̃i, 1 ≤ i ≤ n − 1, which we

view as an identification. To see this, observe that the relations coming from (9.11),

(9.14), (9.15), (9.18), (9.21) and (9.22), can be obtained by applying the relation

(9.3) to (9.10), (9.17), (9.19) and (9.20). In the following we will write x̄ for the

image of an element x ∈ F 〈X〉 under φ.

By [12, Theorem 1.2], a set of representatives of H̃n(q) is given by the images of

the elements in F 〈X〉irred, under φ. In other words, the images of the S-irreducible

monomials span H̃n(q) as an F -vector space. To see that these elements are linearly

independent over F , let p1, . . . , pn be pairwise different S-irreducible monomials in

〈X〉, and denote by p̄1, . . . , p̄n their images in H̃n(q). Suppose that

n∑
i=1

λip̄i = 0 ∈ H̃n(q),
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with elements λi ∈ F , 1 ≤ i ≤ n. This implies, that we have

n∑
i=1

λipi = m ∈ F 〈X〉,

for some m ∈ I. Then, we can write m as a polynomial in F 〈{σ(1) − σ(2)}σ∈S〉.
Since, by assumption, the pi are irreducible, we have r(m) = m, for all reductions

r induced by S. But this implies that m = 0. Since a set of pairwise different

monomials is linearly independent in F 〈X〉, we infer that λi = 0, for all i. Therefore,

the images of the S-irreducible monomials in 〈X〉 are linear independent, thus form

a basis of H̃n(q) as an F -vector space.

Next we want to determine the S-irreducible monomials in 〈X〉. Suppose m is an

S-irreducible monomial in 〈X〉. In what follows, the set√
〈T1, . . . , Tn−1〉

will denote the subset of 〈X〉 consisting of elements T ∈ 〈T1, . . . , Tn−1〉 such that T

does not involve a subword of the form T 2
i , for some 1 ≤ i ≤ n− 1.

Lemma 9.3.3. An element m ∈ 〈X〉 is S-irreducible if and only if m has the form

xαnn · · ·x
α1
1 T, (9.23)

where αi ∈ Z, 1 ≤ i ≤ n, and T ∈
√
〈T1, . . . , Tn−1〉.

Proof. If m has the given form, we see r(m) = m, for all reductions induced by S.

Hence m is S-irreducible.

On the other hand, suppose that m is not of the form given in (9.23). If m has a

factor of the form T 2
i , for some 1 ≤ i ≤ n− 1, we can apply reduction (9.16), hence,

m is not S-irreducible. If there are i, j, 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n such that Ti
and xj (or x−1

j ) are factors of m, and Ti is to the left of xj (or x−1
j ), then we can

apply one of the reduction (9.17)–(9.22). Hence m is not S-irreducible. Suppose m

is of the form XT , with X ∈ 〈x±1
1 , . . . , x±1

n 〉 and T ∈ 〈T1, . . . , Tn−1〉. If there are

1 ≤ i < j ≤ n such that xi (or x−1
i ) and xj (or x−1

j ) are factors of m and xi (or

x−1
i ) is to the left of xj (or x−1

j ), then we can apply one of the reductions (9.10),

(9.11), (9.14) or (9.15). Therefore, m is not irreducible. Otherwise, X is of the form

x±1
n · · ·x±1

n · · ·x±1
1 · · ·x±1

n , where at least one x−1
i , 1 ≤ i ≤ n occurs. But in this case

we can apply (9.12) or (9.13), to see that m is not S-irreducible. This shows that

if m is S-irreducible, then m must be of the form given in (9.23). �

Bergman’s Theorem ([12, Theorem 1.2]) now shows that the set

φ({xαT | α ∈ Zn, T ∈
√
〈T1, . . . , Tn−1〉}) ⊆ H̃n(q)

is a basis of H̃n(q).

The subalgebra P̃n of H̃n(q) generated by the elements x̄±1
j , 1 ≤ j ≤ n, is isomor-

phic to Pn. Moreover, denote by H̃f
n(q) the subalgebra of H̃n(q) generated by the
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elements T̄i, 1 ≤ i ≤ n − 1, which is isomorphic to the algebra on generators Ti,

1 ≤ i ≤ n − 1, subject to the relation T 2
i = (q − 1)Ti + q, for all i. If there is

no danger of confusion, we will also write x±1
j and Ti for the elements x̄±1

j and T̄i,

1 ≤ j ≤ n, 1 ≤ i ≤ n−1. Note that Hn(q) is the quotient of H̃n(q) by the two-sided

ideal J̃ generated by the elements

ai,j = TiTj − TjTi, (9.24)

for 1 ≤ i, j ≤ n− 1, |i− j| > 1, and

bi = Ti+1TiTi+1 − TiTi+1Ti, (9.25)

for 1 ≤ i ≤ n − 2. Denote by J the two-sided ideal of H̃f
n(q) generated by the

same elements. We want to show that J̃ = P̃nJ . Let p be an element in P̃n.

Also, let T ′yT ′′ ∈ J , where y ∈ {ai,j, bk | 1 ≤ i, j ≤ n − 1, 1 ≤ k ≤ n − 2} and

T, T ′ ∈
√
〈T1, . . . , Tn−1〉. Then we see that p(TyT ′) = (pT )yT ′ ∈ J̃ , hence P̃nJ ⊆ J̃ .

On the other hand let xαT and xβT ′ be a basis elements in H̃n(q), where xα, xβ ∈ P̃n,

and T, T ′ ∈
√
〈T1, . . . , Tn−1〉. Moreover, let y ∈ {ai,j, bk | 1 ≤ i, j ≤ n − 1,

1 ≤ k ≤ n − 2}. Then (xαT )y(xβT ′) ∈ P̃nJ if we can show that yxβ ∈ P̃ny,

or equivalently, if yx±1
i ∈ P̃ny, for all 1 ≤ i ≤ n. Note that by the discussion

above, the element Txβ may be written as a linear combinations of elements xγU ,

for γ ∈ Zm and U ∈
√
〈T1, . . . , Tn−1〉. Suppose that 1 ≤ i ≤ n − 2. Setting

y := bi = Ti+1TiTi+1 − TiTi+1Ti, we have:

(Ti+1TiTi+1)xi+2

= Ti+1Ti(xi+1Ti+1 + (q − 1)xi+2)

= Ti+1(Tixi+1)Ti+1 + (q − 1)Ti+1Tixi+2

= Ti+1(xiTi + (q − 1)xi+1)Ti+1 + (q − 1)Ti+1Tixi+2

= xiTi+1TiTi+1 + (q − 1)(Ti+1xi+1Ti+1) + (q − 1)Ti+1(Tixi+2)

= xiTi+1TiTi+1 + (q − 1)qxi+2 + (q − 1)(Ti+1xi+2)Ti

= xiTi+1TiTi+1 + (q − 1)xi+1Ti+1Ti + (q − 1)2xi+2Ti + (q − 1)qxi+2,

using the relations in H̃n(q) induced from (9.20), (9.17), and relation (9.7). On the

other hand, we have

(TiTi+1Ti)xi+2

= Ti(Ti+1xi+2)Ti

= Ti(xi+1Ti+1 + (q − 1)xi+2)Ti

= (Tixi+1)Ti+1Ti + (q − 1)(Tixi+2)Ti

= (xiTi + (q − 1)xi+1)Ti+1Ti + (q − 1)xi+2(T 2
i )

= xiTiTi+1Ti + (q − 1)xi+1Ti+1Ti + (q − 1)xi+2((q − 1)Ti + q)

= xiTiTi+1Ti + (q − 1)xi+1Ti+1Ti + (q − 1)2xi+2Ti + (q − 1)qxi+2,
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by (9.17), (9.20) and (9.16). Now we see that

(Ti+1TiTi+1 − TiTi+1Ti)xi+2 = xi(Ti+1TiTi+1 − TiTi+1Ti).

Next consider the following:

(Ti+1TiTi+1)xi+1

= Ti+1Ti(xi+2Ti+1 − (q − 1)xi+2)

= Ti+1(Tixi+2)Ti+1 − (q − 1)Ti+1Tixi+2

= (Ti+1xi+2)TiTi+1 − (q − 1)Ti+1(Tixi+2)

= (xi+1Ti+1 + (q − 1)xi+2)TiTi+1 − (q − 1)(Ti+1xi+2)Ti

= xi+1Ti+1TiTi+1 + (q − 1)xi+2TiTi+1 − (q − 1)(xi+1Ti+1 + (q − 1)xi+2)Ti

= xi+1Ti+1TiTi+1 + (q − 1)xi+2TiTi+1 − (q − 1)xi+1Ti+1Ti − (q − 1)2xi+2Ti,

using (9.19), (9.17) and (9.20). Also, we get

(TiTi+1Ti)xi+1

= TiTi+1(xiTi + (q − 1)xi+1)

= Ti(Ti+1xi)Ti + (q − 1)Ti(Ti+1xi+1)

= (Tixi)Ti+1Ti + (q − 1)Ti(xi+2Ti+1 − (q − 1)xi+2)

= (xi+1Ti − (q − 1)xi+1)Ti+1Ti + (q − 1)(Tixi+2)Ti+1 − (q − 1)2(Tixi+2)

= xi+1TiTi+1Ti + (q − 1)xi+2TiTi+1 − (q − 1)xi+1Ti+1Ti − (q − 1)2xi+2Ti,

by (9.20), (9.17) and (9.19). Therefore,

(Ti+1TiTi+1 − TiTi+1Ti)xi+1 = xi+1(Ti+1TiTi+1 − TiTi+1Ti).

Next, consider the following calculations:

(Ti+1TiTi+1)xi

= Ti+1(Tixi)Ti+1

= Ti+1(xi+1Ti − (q − 1)xi+1)Ti+1

= (Ti+1xi+1)TiTi+1 − (q − 1)(Ti+1xi+1Ti+1)

= (xi+2Ti+1 − (q − 1)xi+2)TiTi+1 − (q − 1)qxi+2

= xi+2Ti+1TiTi+1 − (q − 1)xi+2TiTi+1 − (q − 1)qxi+2,

using (9.17), (9.19) and (9.7). Also, we have

(TiTi+1Ti)xi

= TiTi+1(xi+1Ti − (q − 1)xi+1)

= Ti(Ti+1xi+1)Ti − (q − 1)Ti(Ti+1xi+1)

= Ti(xi+2Ti+1 − (q − 1)xi+2)Ti − (q − 1)Ti(xi+2Ti+1 − (q − 1)xi+2)

= (Tixi+2)Ti+1Ti − (q − 1)(Tixi+2)Ti − (q − 1)(Tixi+2)Ti+1 + (q − 1)2(Tixi+2)

= xi+2TiTi+1Ti − (q − 1)xi+2(T 2
i )− (q − 1)xi+2TiTi+1 + (q − 1)2xi+2Ti

= xi+2TiTi+1Ti − (q − 1)xi+2((q − 1)Ti + q)− (q − 1)xi+2TiTi+1 + (q − 1)2xi+2Ti

= xi+2TiTi+1Ti − (q − 1)xi+2TiTi+1 − (q − 1)qxi+2,
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using (9.19), (9.17) and (9.16). Therefore, it follows that

(Ti+1TiTi+1 − TiTi+1Ti)xi = xi+2(Ti+1TiTi+1 − TiTi+1Ti).

If j 6= i, i+ 1, i+ 2, then by (9.17) it follows that

(Ti+1TiTi+1 − TiTi+1Ti)xj = xj(Ti+1TiTi+1 − TiTi+1Ti).

Hence the claim holds for the elements bi, 1 ≤ i ≤ n− 2.

Next, we consider the case where y = ai,j = TiTj − TjTi, for some 1 ≤ i, j ≤ n− 1,

|i− j| > 1. We may assume that i < j. Then

(TiTj)xj = Ti(xj+1Tj − (q − 1)xj+1)

= (Tixj+1)Tj − (q − 1)(Tixj+1)

= xj+1TiTj − (q − 1)xj+1Ti,

by (9.19) and (9.17). On the other hand,

(TjTi)xj = (Tjxj)Ti

= (xj+1Tj − (q − 1)xj+1)Ti

= xj+1TjTi − (q − 1)xj+1Ti,

using (9.17) and (9.19). Therefore,

(TiTj − TjTi)xj = xj+1(TiTj − TjTi).

Furthermore, we compute that

(TiTj)xj+1 = Ti(xjTj + (q − 1)xj+1)

= (Tixj)Tj + (q − 1)(Tixj+1)

= xjTiTj + (q − 1)xj+1Ti,

by (9.20) and (9.17). Also, we get that

(TjTi)xj+1 = (Tjxj+1)Ti

= (xjTj + (q − 1)xj+1)Ti

= xjTjTi + (q − 1)xj+1Ti,

using (9.17) and (9.20). Hence,

(TiTj − TjTi)xj+1 = xj(TiTj − TjTi).

Moreover,

(TiTj)xi = (Tixi)Tj

= (xi+1Ti − (q − 1)xi+1)Tj

= xi+1TiTj − (q − 1)xi+1Tj,
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using (9.17) and (9.19). On the other hand:

(TjTi)xi = Tj(xi+1Ti − (q − 1)xi+1)

= (Tjxi+1)Ti − (q − 1)(Tjxi+1)

= xi+1TjTi − (q − 1)xi+1Tj,

by (9.19) and (9.17). Therefore,

(TiTj − TjTi)xi = xi+1(TiTj − TjTi).

Furthermore,

(TiTj)xi+1 = (Tixi+1)Tj

= (xiTi + (q − 1)xi+1)Tj

= xiTiTj + (q − 1)xi+1Tj,

using (9.17) and (9.20). Also, we have that

(TjTi)xi+1 = Tj(xiTi + (q − 1)xi+1)

= (Tjxi)Ti + (q − 1)(Tjxi+1)

= xiTjTi + (q − 1)xi+1Tj,

using (9.20) and (9.17). And hence,

(TiTj − TjTi)xi+1 = xi(TiTj − TjTi).

If 1 ≤ k ≤ n, and k 6∈ {i, i+ 1, j, j + 1}, then, by (9.17):

(TiTj − TjTi)xk = xk(TiTj − TjTi).

The corresponding equations for the elements x−1
i , 1 ≤ i ≤ n, are obtained by using

the relations in H̃n(q) induced from (9.12) and (9.13). For example, the identity

(Ti+1TiTi+1 − TiTi+1Ti)x
−1
i = x−1

i+2(Ti+1TiTi+1 − TiTi+1Ti)

follows from the equation

(Ti+1TiTi+1 − TiTi+1Ti)xi = xi+2(Ti+1TiTi+1 − TiTi+1Ti)

by multiplication of x−1
i from the right, and x−1

i+2 from the left.

Therefore we have proved that yxβ ∈ P̃ny, for all y ∈ {ai,j, bk | 1 ≤ i, j ≤ n − 1,

1 ≤ k ≤ n − 2}, and all β ∈ Zn, using only the relations in H̃n(q). As mentioned

before, it now follows that J̃ = P̃nJ .

Recall that Hn(q) is the quotient of H̃n(q) by the two-sided ideal J̃ . Denote the

corresponding projection homomorphism by p. Since the set {xαT | α ∈ Zn, T ∈√
〈T1, . . . , Tn−1〉} is a basis of H̃n(q), the images in Hn(q) of these elements under
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the surjection p certainly span Hn(q). Let α1, . . . , αm ∈ Zn, and T (1), . . . , T (m) ∈√
〈T1, . . . , Tn−1〉 such that

m∑
i=1

λip(x
αiT (i)) = 0 ∈ Hn(q),

Equivalently,

m∑
i=1

λix
αiT (i) = c ∈ H̃n(q). (9.26)

for some c ∈ J̃ . By the calculations above, we know that J̃ = P̃nJ , thus, we may

write

c =
t∑

s=1

µsqsjs, (9.27)

for qs ∈ P̃n, js ∈ J and µs ∈ F , 1 ≤ s ≤ t. By rewriting the elements js as

sums of products of the Tk, 1 ≤ k ≤ n − 1, and applying relation coming from

(9.16) if necessary, we may assume that the right-hand side of the last equation is

a sum over elements of {xαT | α ∈ Zn, T ∈
√
〈T1, . . . , Tn−1〉}. But the latter set

forms an F -basis of H̃n(q), so the sums of (9.26) and (9.27) must coincide. As for√
T ∈ 〈T1, . . . , Tn−1〉, we have that p(T ) ∈

√
〈T1, . . . , Tn−1〉/J , we conclude that

the set

{p(xβT ) | β ∈ Zn, p(T ) ∈
√
〈T1, . . . , Tn−1〉/J} ⊆ Hn(q)

forms a basis of Hn(q). Note that the subalgebra of Hn(q) generated by the set√
〈T1, . . . , Tn−1〉/J is isomorphic to Hf

n(q). Therefore, we can identify each p(T ) ∈√
〈T1, . . . , Tn−1〉/J with some basis element Tw ∈ Hf

n(q), for some w ∈ W (n).

Therefore, by abuse of notation, if we write also xβ for the element p(xβ) of Hn(q),

β ∈ Zn, then the set

{xβTw | β ∈ Zn, w ∈ W (n)}

is a basis of Hn(q) as an F -vector space. This finishes the proof. �

Corollary 9.3.4. The set {Twxα | α ∈ Zn, w ∈ W (n)} forms a basis of Hn(q) as

an F -vector space.

Proof. Changing the reduction system, and the lexicographical order in the appro-

priate way, the result follows from Theorem 9.3.1. �

9.4 Parabolic subalgebras

In this section, we recall the notion of a parabolic subalgebra of the finite-di-

mensional Hecke algebra Hf
n(q) and state the definition of the corresponding ana-

logues of the algebra Hn(q). These subalgebras play an important role in the follow-

ing as we may consider induced modules from those smaller (affine) Hecke algebras,
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and may study restrictions of modules to smaller ones. Moreover, we deduce an

analogue of Theorem 9.3.1 for parabolic subalgebras.

Let (µ1, . . . , µr) be a composition of n, and let

Wµ
∼= Wµ1 × . . .×Wµr

be the corresponding parabolic subgroup of W (n). The subalgebra of Hf
n(q) gener-

ated by the elements Tj, where sj ∈ Wµ, 1 ≤ j ≤ n− 1, will be denoted by Hf
µ(q).

The algebra Hf
µ(q) is also called the parabolic subalgebra of Hf

n(q) corresponding

to Wµ.

In a similar way, the subalgebraHµ(q) ofHn(q) generated by Pn and the elements Tj,

for sj ∈ Wµ, 1 ≤ j ≤ n− 1 is called a parabolic subalgebra of Hn(q) corresponding

to the parabolic subgroup Wµ. In view of Theorem 9.3.1 one has the following:

Proposition 9.4.1. As an F -vector space, the parabolic subalgebra Hµ(q) of Hn(q)

has basis the set {xαTw | α ∈ Zn, w ∈ Wµ}.

Proof. By Theorem 9.3.1, the elements of B := {xαTw | α ∈ Zn, w ∈ Wµ} ⊆ Hµ(q)

are linearly independent.

By definition of Hµ(q), every element in Hµ(q) can be expressed as an F -polynomial

in the elements of Pn and Hf
µ(q). Looking at the relations given by the pairs in

(9.19)-(9.22), we see that applying a relation to such an expression produces again

a polynomial in the elements Pn and Hf
µ(q). Therefore, by applying such relations,

we can transform an expression given above into a polynomial in the elements of B.

Thus, the elements of B are a spanning set for Hµ(q) over F . �

Remark 9.4.2. (1) For µ a composition of n, it follows from the last proposition

that the parabolic subalgebra Hµ(q) is a free Pn-module of rank |Wµ|, and Hn(q) is

a free Hµ(q)-module of rank [W (n) : Wµ].

(2) The parabolic subalgebra H(1,...,1)(q) is nothing else but the subalgebra Pn.

(3) As F -algebras, Hµ(q) ∼= Hµ1(q)⊗F . . .⊗F Hµr(q).

9.5 The center of affine Hecke algebras and gen-

eralized eigenspaces

Here, we will state the important theorem due to Bernstein, describing the center of

Hn(q). Moreover, we recall some basic statements about the representation theory

of Pn-modules. To this end we consider generalized eigenspaces corresponding to

eigenvalues of the commuting operators x1, . . . , xn of Pn. In particular we recall

the decomposition of a Pn-module into simultaneous generalized eigenspaces with

respect to the latter operators. As we will see later on, this allows one to partition

the category Hn(q)−mod into blocks.

Furthermore, we give the definition of formal character of Hn(q)-modules, and state

several lemmas that are needed later on.
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Also, we will give a proof of the well-known fact that every irreducible Hn(q)-module

is finite dimensional.

From now on, set S := F× = F \ {0}. The following is fundamental in the theory

of affine Hecke algebras:

Theorem 9.5.1. (Bernstein) Let Z(Hn(q)) denote the center of Hn(q). Then

Z(Hn(q)) = F [x±1
1 , . . . , x±1

n ]W (n),

the set of symmetric Laurent polynomials in Pn.

Proof. See [19, Proposition 7.1.14]. �

For a ∈ S, let us denote by L(a) the one-dimensional irreducible P1-module such

that x1 acts with eigenvalue a, i.e., x1v = av, for a basis vector v ∈ L(a). Moreover,

if a = (a1, . . . , an) ∈ Sn, then the Pn-module L(a) := L(a1) � . . . � L(an) is a

one-dimensional, and thus, an irreducible Pn-module. Since F is assumed to be al-

gebraically closed, and since Pn is commutative, every finite-dimensional irreducible

Pn-module is one-dimensional, and arises in this way. Thus, the set

{L(a) | a ∈ Sn}

forms a complete set of representatives of isomorphism classes of irreducible Pn-

modules.

Remark 9.5.2. Let M be a finite-dimensional Pn-module. Then M may be viewed

as a vector space together with invertible linear transformations f1, . . . , fn such that

fifj = fjfi, for all 1 ≤ i, j ≤ n.

Let a ∈ Sn. In what follows, we denote by Ma the largest submodule of M , all of

whose composition factors are isomorphic to L(a). We have the following:

Lemma 9.5.3. Let a ∈ Sn and M ∈ Pn −mod. The subspace Ma of M equals the

simultaneous generalized eigenspace of the commuting operators x1, . . . , xn on M ,

corresponding to the eigenvalues a1, . . . , an, i.e.,

Ma = {m ∈M | (xi − ai)kim = 0, for some ki > 0, 1 ≤ i ≤ n}.

Proof. Denote by H the simultaneous generalized eigenspace of x1, . . . , xn on M

corresponding to the eigenvalues a1, . . . , an. Since the xi commute with each other,

H is a Pn-submodule of M . Let C be a composition factor of H as a Pn-module,

i.e., there exist Pn-submodules V ( U ⊆ H such that U/V ∼= C. Since C is

an irreducible Pn-module, dimF C = 1, hence is isomorphic to L(a′), for some

a′ ∈ Sn. Denote by v a basis vector of L(a′), and let p be the corresponding

surjection p : U → C. Also take w ∈ U such that p(w) = v. Since w ∈ H,

there is some k ∈ N, k 6= 0, such that (xi − ai)
kw = 0, for all i. But then
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(xi − ai)kv = (xi − ai)kp(w) = p((xi − ai)kw) = 0. Since C is one-dimensional, it

follows that xiv = aiv, for all i. We infer that a′ = a and, thus, C ∼= L(a).

On the other hand, let U be the largest submodule of M such that if C is a com-

position factor of U , then C ∼= L(a). Let u ∈ U , and

0 = U0 ( U1 ( . . . ( Ur = U

be a composition series of U such that, for some j > 0, u ∈ Uj and u 6∈ Uj−1.

Denote by p : Uj → Uj/Uj−1 the canonical surjection. We argue by induction on

the composition length r of U to show that U ⊆ H.

If r = 1, then, since U1
∼= L(a), we see that xiu = aiu, for all i, and therefore u ∈ H.

Now, let r > 1. Note that, by assumption, we have that Ur/Ur−1
∼= L(a). Then

0 = (xi − ai)p(u) = p((xi − ai)u), i.e., (xi − ai)u ∈ Uj−1, for all i. By the induction

hypothesis, Ur−1 ⊆ H, and, hence, we have that

(xi − ai)s((xi − ai)u) = (xi − ai)s+1u = 0,

for some s ∈ N, and all i. We conclude that u ∈ H. �

Lemma 9.5.4. Let M ∈ Pn −mod. Then M ∼=
⊕

a∈SnMa as Pn-modules.

Proof. For an F -vector space V , a map f ∈ EndF (V ) and an element λ ∈ F , in the

following, we will denote by Gen(f, λ) the generalized eigenspace of f with respect

to λ.

Then, by basic linear algebra, for each 1 ≤ i ≤ n, we have a decomposition

M ∼=
ri⊕
j=1

Gen(xi, ai,j)

of M into generalized eigenspaces corresponding to the eigenvalues ai,j ∈ S of xi
on M . Let 1 ≤ k ≤ n be such that i 6= k. Furthermore, let v ∈ X := Gen(xi, ai,j),

for some 1 ≤ j ≤ ri. Then there is some r ∈ Z+ such that (xi − ai,j)rv = 0. Since

xi commutes with xk, we get that (xi − ai,j)r(xkv) = xk(xi − ai,j)rv = 0. Hence,

xkv ∈ X. In other words, X is an F [x±1
k ]-module. Again, we get a decomposition

X ∼=
sk⊕
j=1

Gen(xk |X , bk,j)

into generalized eigenspaces corresponding to the eigenvalues bk,j of (xk)|X on the

space Gen(xi, ai,j). Here, (xk)|X denotes the restriction of xk to X. Clearly, the

eigenvalues must be contained in the set of eigenvalues of xk on M . This implies

that Gen((xk)|X , bk,j) ⊆ Gen(xk, bk,j) ∩ X, for all j. On the other hand, if u ∈
Gen(xk, bk,j) ∩X, then

(xk − bk,j)su = ((xk − bk,j)|X)su = ((xk)|X − bk,j)su = 0,
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for some s ∈ Z+, which shows that u ∈ Gen((xk)|X , bk,j). Therefore, we get that

Gen((xk)|X , bk,j) = X ∩Gen(xk, bk,j).

Next, consider the decomposition

M ∼=
r1⊕
j=1

Gen(x1, a1,j),

for 1 ≤ j ≤ r1. If we consider the action of x2 on the generalized eigenspace

Gen(x1, a1,j), 1 ≤ j ≤ r1, we get, by the discussion above, that

M ∼=
r1⊕
j=1

⊕
k∈Kj

Gen(x1, a1,j) ∩Gen(x2, a2,k),

for some Kj ⊆ {1, . . . , r2}, 1 ≤ j ≤ r1. If we continue in the same way with the

operators x3, . . . , xn, we eventually obtain the desired decomposition, using Lemma

9.5.3. �

In view of Lemma 9.5.4, if M ∈ Pn −mod, we can expand M as

[M ] =
∑
a∈Sn

ra[L(a)],

in the Grothendieck group K(Pn−mod) with respect to the basis {[L(a)] | a ∈ Sn}.
Note that ra = dimF Ma, for all a ∈ Sn.

Definition 9.5.5. Let M ∈ Hn(q)−mod. Then we define the formal character of

M as

ch(M) = [Res
Hn(q)
Pn

(M)] ∈ K(Pn −mod).

Since the functor Res
Hn(q)
Pn

is exact, we get a homomorphism

Ψ : K(Hn(q)−mod) −→ K(Pn −mod)

of abelian groups. We obtain the following, which can be found in [45, Lemma 2.4].

Note that W (n) acts on Sn by place permutation, i.e., w · a = (aw−11, . . . , aw−1n),

for a ∈ Sn and w ∈ W (n).

Lemma 9.5.6. For a ∈ Sn we have:

ch(Ind
Hn(q)
Pn

(L(a))) =
∑

w∈W (n)

[L(w · a)].

We will also need the following statement, which describes the character of a module

induced from a parabolic subalgebra. It is also called the Shuffle Lemma.

Lemma 9.5.7. If M ∈ Hn(q)−mod, and N ∈ Hm(q)−mod, then

ch(Ind
Hn+m(q)
H(n,m)(q)

(M �N)) =
∑

s′∈Sn,s′′∈Sm
(dimF Ms′ · dimF Ns′′)[L(s)],

where s = (s1, . . . , sn+m) is such that there are i1, . . . , in ∈ {1, . . . , n + m} with

s′ = (si1 , . . . , sin), and s′′ is obtained from s by deleting the substring s′.
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Proof. This can be found in [44, Lemma 5.5], and follows from the Mackey Formula

for affine Hecke algebras, see [44, Corollary 5.4]. �

Finally, let us state the remarkable result about irreducible Hn(q)-modules, which

says that any irreducible Hn(q)-module is finite dimensional, see also [45, Proposi-

tion 2.2].

Proposition 9.5.8. Let U be an irreducible Hn(q)-module. Then U is finite di-

mensional and dimF U ≤ n!.

Proof. Let T be an irreducible Pn-submodule of the head of Res
Hn(q)
Pn

(U). Then

there exists a surjective map Res
Hn(q)
Pn

(U) → T of Pn-modules. By adjointness of

coinduction and restriction, we have that

HomPn(Res
Hn(q)
Pn

(U), T ) ∼= HomHn(q)(U, Înd
Hn(q)

Pn (T ))

= HomHn(q)(U,HomPn(Hn(q), T )),

where the latter term is non-zero. Since U is irreducible, we infer that there ex-

ists a monomorphism U → HomPn(Hn(q), T ). Since Hn(q) is a free Pn-module of

rank n!, and every irreducible Pn-module is finite dimensional, the F -vector space

HomPn(Hn(q), T ) is finite dimensional. Thus, also U is finite dimensional. �

Remark 9.5.9. Observe that the previous proposition has the following conse-

quence: If M ∈ Hn(q) ⊗ Hm(q) − mod is irreducible and finite dimensional, then

M is isomorphic to V � W , for irreducible V ∈ Hn(q) − mod and irreducible

W ∈ Hm(q) −mod, where the latter are uniquely determined by M up to isomor-

phism.

9.6 Central characters

Using the results of the latter section, we will now give a partition of the finite-

dimensional Hn(q)-modules. To do this, we will label the latter by certain F -valued

functions defined on the center of Hn(q).

Recall that, by Theorem 9.5.1, the center Z(Hn(q)) of Hn(q) coincides with the set

F [x±1
1 , . . . , x±1

n ]W (n) of symmetric Laurent polynomials. For a ∈ Sn, we define the

central character of Hn(q) associated with a as the map

χa : Z(Hn(q)) −→ F, f 7→ f(a),

where by f(a), we mean f(a1, . . . , an), for f = f(x1, . . . , xn) ∈ F [x±1
1 , . . . x±1

n ].

Note that W (n) acts on Sn by place permutation, see the definition before Lemma

9.5.6. Hence, under our assumptions, we easily see that χa = χb if a, b ∈ Sn belong

to the same W (n)-orbit. Denote by ∼ the equivalence relation on Sn induced by

the action of W (n). Then, for a ∈ Sn belonging to the W (n)-orbit γ, we will write

χγ for the central character χa given by a.
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Then, for M ∈ Hn(q)−mod, we denote by

M [γ] := {x ∈M | (z − χγ(z))kx = 0, for all z ∈ Z(Hn(q)), and some k ∈ Z+}

the simultaneous generalized eigenspace of the elements z ∈ Z(Hn(q)) of M . Since

the elements z are central elements, M [γ] is actually an Hn(q)-submodule of M :

Let h ∈ Hn(q), z ∈ Z(Hn(q)) and x ∈M [γ]. Then, for some k ∈ Z+, we have that

(z − χγ(z))k(hx) = h((z − χγ(z))kx) = 0,

thus, hx ∈M [γ].

In view of Lemma 9.5.3, we see that as Pn-modules

M [γ] ∼=
⊕
a∈γ

Ma. (9.28)

One has the following:

Lemma 9.6.1. Let M ∈ Hn(q) − mod. Then M ∼=
⊕

γ∈Sn/∼M [γ] as Hn(q)-

modules.

Proof. By Lemma 9.5.4, we have an isomorphism

M ∼=
⊕
a∈Sn

Ma

of Pn-modules. Reordering the sum, we get that

M ∼=
⊕

γ∈Sn/∼

⊕
a∈γ

Ma

as Pn-modules. On the other hand, by (9.28), we have

M [γ] ∼=
⊕
a∈γ

Ma

as Pn-modules, for γ ∈ Sn/ ∼. Since M [γ] is actually an Hn(q)-submodule of M ,

the claim follows. �

The above decomposition of M ∈ Hn(q) − mod is called the block decomposition

of M . For γ ∈ Sn/ ∼, we denote by Hn(q) − mod[γ] the full subcategory of

Hn(q)−mod, consisting of all modules such that M [γ] = M . The previous lemma

then implies that there is an equivalence of categories

Hn(q)−mod ∼=
⊕

γ∈Sn/∼

Hn(q)−mod[γ]. (9.29)

The category Hn(q) −mod[γ] is called the block of Hn(q) −mod corresponding to

γ. If M ∈ Hn(q) −mod[γ], then one says that M belongs to the block determined

by γ.

The next proposition shows that every finite-dimensional indecomposable Hn(q)-

module has a central character, and thus, belongs to a block, which is uniquely

determined by the latter.
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Proposition 9.6.2. Let M ∈ Hn(q) − mod be indecomposable. If Ma 6= 0 and

Ma′ 6= 0, for a, a′ ∈ Sn, then there exists some w ∈ W (n) such that w · a = a′.

Proof. Note that for some a ∈ Sn, Ma 6= 0 if and only if the simultaneous eigenspace

of the x1, . . . , xn does not vanish. Since F is algebraically closed, the eigenspace

Eig(f, λ) corresponding to the eigenvalue λ ∈ F is non-zero, for some f ∈ Z(Hn(q)).

Since f is a central element in Hn(q), the subspace Eig(f, λ) of M is an Hn(q)-

submodule of M . Since eigenspaces corresponding to different eigenvalues intersect

in zero, by the indecomposability of M , we conclude that M ∼= Eig(f, λ).

Now, if Ma 6= 0 and Ma′ 6= 0, for some a, a′ ∈ Sn, then fv = f(a)v and fv′ = f(a′)v′,

for some non-zero vectors v ∈ Ma and v′ ∈ Ma′ . It follows that λ = f(a) = f(a′),

for all f ∈ F [x±1
1 , . . . , x±1

n ]W (n).

For λ ∈ F , consider the polynomial

n∏
j=1

(Xj + λ) = λn + e1(x1, . . . , xn)λn−1 + . . .+ en(x1, . . . , xn),

where for 1 ≤ i ≤ n, the polynomial ei(x1, . . . , xn) denotes the ith elementary

symmetric polynomial in the variables x1, . . . , xn. Thus, if we set λ = −ak, for

some 1 ≤ k ≤ n, we see that ak is a root of the polynomial

(−1)nλn + (−1)n−1e1(a1, . . . , an)λn−1 + . . .+ en(a1, . . . , an).

On the other hand, since, by the discussion above, ei(a1, . . . , an) = ei(a
′
1, . . . , a

′
n),

also −a′k is a root of the polynomial above, 1 ≤ k ≤ n. Thus, there exists some

w ∈ W (n) such that w · a = a′, and the claim follows. �

Remark 9.6.3. Therefore, in what follows, if M is an indecomposable finite-

dimensional Hn(q)-module such that for some a ∈ Sn, Ma 6= 0, then we say that M

has central character χa.

9.7 The Kato module

In the previous section, we defined the central character of an irreducible Hn(q)-

module. Here, we will be mainly concerned with the central character associated to

(a, . . . , a), a ∈ S, of Hn(q). We will state the remarkable result of Kato that, up to

isomorphism, the block of Hn(q)−mod corresponding to this character contains a

unique irreducible module, the famous Kato module.

Definition 9.7.1. For a ∈ S, the Kato module corresponding to a is defined to be

the Hn(q)-module L(an) := Ind
Hn(q)
Pn

(L(a)).

Remark 9.7.2. Using Lemma 9.5.6, we see that

ch(L(an)) = n![L(a) � · · ·� L(a)],

thus dimF L(an) = n!. Moreover, for all 1 ≤ i ≤ n, the only eigenvalue of xi on

L(an) is a.
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The following theorem, which is [45, Proposition 3.3 (1)], describes the crucial

properties of L(an).

Theorem 9.7.3. (Kato’s Theorem) The Hn(q)-module L(an) is irreducible. It is

the unique irreducible Hn(q)-module with central character χ(a,...,a).

For the rest of this section, we will fix an element a ∈ S. Denote by J (an) the

annihilator of L(an) in Hn(q), which is a two-sided ideal in Hn(q). Then, for each

m ≥ 1, we get a corresponding quotient algebra

Rm(an) := Hn(q)/J (an)m. (9.30)

Proposition 9.7.4. For each m ≥ 1, the algebra Rm(an) is finite dimensional.

Furthermore, up to isomorphism, L(an) is the unique irreducible Rm(an)-module .

Proof. The ideal J (an)m contains the elements (xi − a)n!m and (x−1
i − a−1)n!m, for

all 1 ≤ i ≤ n. Then, Theorem 9.3.1 shows that Rm(an) is finite dimensional. The

second statement follows from Theorem 9.7.3, together with the fact that (xi−a)n!m

acts as zero on Rm(an) for all i. �

For m ≥ 1, we will denote by Lm(an) the projective cover of L(an) inRm(an)−mod.

We have:

Lemma 9.7.5. Let m ≥ 1. Then Rm(an) ∼=
⊕

n! Lm(an) as Rm(an)-modules.

Proof. For a finite-dimensional F -algebra A, and a complete set {S1, . . . , Sk} of

representatives of isomorphism classes of irreducible A-modules, we have that

A ∼=
k⊕
i=1

P
(dimF Si)
i ,

where Pi denotes the projective cover of Si in A−mod, for all i. To see this, write

A ∼=
⊕k

i=1 P
ti
i , for some ti ∈ N. Then A/rad(A) ∼=

⊕k
i=1(Pi/rad(Pi)

ti . Hence,

ti equals the number of times Si occurs as a direct summand of the semisimple

algebra A/rad(A). By the theory of finite-dimensional semisimple algebras, this

number is the same as dimF Si since F is algebraically closed (see, for example,

[25, Theorem 3.22, Theorem 3.28]). Now, since, by Proposition 9.7.4, L(an) is the

unique irreducible Rm(an)-module up to isomorphism, the claim follows from this

and the fact that dimF L(an) = n!. �

Next, we try to describe the annihilator J (an) of L(an) in Hn(q) in more detail.

Thus, we will consider the case m = 1. Note thatR1(an) is a left primitive ring since

L(an) is a faithful R1(an)-module. Furthermore, since R1(an) is finite dimensional

over F , by [61, Proposition 11.7], this is equivalent to R1(an) being a semisimple

ring. Therefore, by Lemma 9.7.5, L1(an) ∼= L(an) and dimF R1(an) = (n!)2.

In the following we will write χ(an) instead of χ(a,...,a). Also, recall the definition of

the subset Z(an) of Pn from Section 2. We note the following:
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Lemma 9.7.6. The kernel of χ(an) coincides with Z(an) ∪ {0}.

Proof. Denote by Ker(χ(an)) the kernel of χ(an). If f ∈ Z(an), then f(a, . . . , a) = 0,

hence Z(an) ⊆ Ker(χ(an)). Conversely, let f ∈ Ker(χ(an)). As in the proof of

Corollary 9.2.4, we may write f as a sum of a symmetric polynomial in the xj − a
and x−1

k − a−1,1 ≤ j, k ≤ n plus a constant term c ∈ F . Since f(a, . . . , a) = 0, we

see that c = 0, thus, the result follows. �

We now can deduce the following. Note that this is stated in [59, §4] in the degen-

erate case.

Theorem 9.7.7. The ideal J (an) is the same as the ideal Hn(q)Z(an).

Proof. By Corollary 9.2.4, we have that dimF Pn/PnZ(an) = n!. Moreover, a basis

of Pn/PnZ(an) is given by the cosets of

Ban = {(x1 − a)a1 · · · (xn − a)an | 0 ≤ ai < i for all 1 ≤ i ≤ n}.

We first show that Hn(q) is a free Zn-module of rank (n!)2. To see this, let

B := {Twxα | α ∈ Zn, w ∈ W (n)},

which, by Corollary 9.2.3, is a basis of Hn(q), considered as an F -vector space. Let

Twx
α ∈ B. Since, by Corollary 9.2.3, Pn is free as Zn-module with basis Ban, we can

write xα =
∑

j zjbj, for elements zj ∈ Zn and bj ∈ Ban. Hence,

Twx
α = Tw(

∑
j

zjbj) =
∑
j

zj(Twbj).

The second equality follows from Theorem 9.5.1, stating that Zn equals the center

of Hn(q). This shows that the set

Cn := {Twb | w ∈ W (n), b ∈ Ban}

spans Hn(q) as a Zn-module.

Suppose that
∑

k zkck = 0, for pairwise different elements ck ∈ Cn, and zk ∈ Zn.

Let ck = Twkbk, for wk ∈ W (n), bk ∈ Ban. Again by Theorem 9.5.1, we can write

zkck = zk(Twkbk) = Twk(zkbk), for all k. Now we reorder the elements in the above

sum to obtain ∑
wk

Twkpwk = 0,

where, by assumption on the elements ck, pwk is a Zn-linear combination of pairwise

different elements b′k ∈ Ban. Since Hn(q) is a free Pn-module with basis {Tw | w ∈
W (n)}, by Corollary 9.2.3, if some of the pwk are different from zero, we get a

contradiction immediately. But if pwk = 0 for all k, we conclude that zk = 0 for all

k since the elements Ban are linearly independent over Zn. Therefore, Cn is a basis

for Hn(q) as Zn-module.

103



Chapter 9. Affine Hecke algebras of type A

Next, let q : Hn(q) → Hn(q)/Hn(q)Z(an) be the quotient of Hn(q) by the ideal

Hn(q)Z(an). Let d1q(c1) + . . . + drq(cr) = 0 ∈ Hn(q)/Hn(q)Z(an), for some 1 ≤ r ≤
(n!)2, distinct elements ci ∈ Cn, and di ∈ F . This is equivalent to

d1c1 + . . .+ drcr =
∑
j

hjzj ∈ Hn(q),

for elements hj ∈ Hn(q), and some zj ∈ Z(an). As Cn is a Zn-basis of Hn(q), we

may write each hj as a sum of the form
∑

k vkjc
′
k, with elements vkj ∈ Zn and

c′k ∈ Cn. Therefore, we can write the right-hand side of the equation as
∑

p spc
′
p,

where sp ∈ ZnZ(an), for all p. Since sp ∈ Hn(q)Z(an), it cannot be invertible. But

all the coefficients on the left-hand side are either zero or invertible, thus, we must

have sp = 0 for all p. This also implies that di = 0 for all i, hence, q(Cn) is linearly

independent over F .

Next, let u ∈ Hn(q)/Hn(q)Z(an), and choose a representative v ∈ q−1(u) ⊆ Hn(q).

Since Cn is a basis for Hn(q) considered as Zn-module, we can write

v =
∑
i

zici,

for elements zi ∈ Zn, and ci ∈ Cn. As in the proof of Corollary 9.2.4, write each zi as

a sum of an element in Z(an) plus a constant term di ∈ F . Since Z(an) ⊆ Z(Hn(q)),

we conclude that

u = q(v) =
∑
i

diq(ci).

Therefore, q(Cn) spans Hn(q)/Hn(q)Z(an). This immediately implies that

dimF Hn(q)/Hn(q)Z(an) = (n!)2.

Let ṽ be a simultaneous eigenvector of the operators x1, . . . , xn on L(an). Since

L(an) is an irreducible Hn(q)-module, it is cyclic. Hence, Hn(q)ṽ = L(an). More-

over, Z(an) ⊆ Z(Hn(q)), and we conclude that

(Hn(q)Z(an))L(an) = (Hn(q)Z(an))(Hn(q)ṽ) = (Hn(q)Z(an))ṽ = 0.

Therefore, Hn(q)Z(an) ⊆ J (an). Following the discussion prior to Lemma 9.7.6, we

infer that R1(an) = Hn(q)/J (an) = (n!)2. By counting dimensions, we conclude

that Hn(q)Z(an) = J (an). �

Remark. (1) Since Z(an) is contained in the center of Hn(q), we have that J (an)m =

Hn(q)m(Z(an))
m = Hn(q)(Z(an))

m, for all m ≥ 1.

(2) The previous theorem was deduced in [59, §4] in the case for degenerate affine

Hecke algebras. In the non-degenerate case, this seems to be new.

104



9.8. Refinements of restriction functors

9.8 Refinements of restriction functors

This section may be viewed as a key section in our further investigations. We will

define various refinements of the restriction functors, and prove several important

properties of these. It should be noted that these functors were originally defined

by I. Grojnowski in [44] in the non-degenerate case, where for the degenerate case,

this was done by A. Kleshchev in [59], using the ideas of the former author. In the

sequel we will follow the lines of Kleshchev, giving an explicit way of defining these

functors in the non-degenerate case. In particular, we give a construction analogous

to that of [59, §4.4].

Note that all the results stated in previous sections will be, at least implicitly,

applied in this section.

In the following, for a composition µ = (µ1, . . . , µk) of n, we will write Resnµ1,...,µk

for the restriction functor Res
Hn(q)
Hµ(q).

Let M ∈ Hn(q)−mod, and a ∈ S. We denote by ∆a(M) the generalized eigenspace

of xn on M , corresponding to the eigenvalue a. In view of Lemma 9.5.3, we have

that

∆a(M) ∼=
⊕

a∈Sn, an=a

Ma. (9.31)

Recall the definition of the parabolic subalgebra H(n−1,1)(q) from Section 9.4. Since

xn is central in H(n−1,1)(q), on restriction, ∆a(M) becomes an H(n−1,1)(q)-submodule

of M . Since a homomorphism M → N in Hn(q)−mod maps ∆a(M) to ∆a(N), we

get a functor

∆a : Hn(q)−mod −→ H(n−1,1)(q)−mod (9.32)

being defined on morphism as restriction. More generally, if m ≥ 1, define ∆am(M)

as the simultaneous generalized eigenspace of the operators xn−m+1, . . . , xn corre-

sponding to the eigenvalue a. In the same way as above, we obtain a functor

∆am : Hn(q)−mod −→ H(n−m,m)(q)−mod. (9.33)

If we consider Hn−1(q) as a subalgebra of H(n−1,1)(q) in the natural way, we obtain

the functor

en,1a := Res
H(n−1,1)(q)

Hn−1(q) ◦∆a : Hn(q)−mod −→ Hn−1(q)−mod. (9.34)

By iterating this procedure, for 1 ≤ r ≤ n, we also get a functor

en,ra : Hn(q)−mod −→ Hn−r(q)−mod. (9.35)

In the following we will write, ea (resp. era) for the functor en,1a (resp. en,ra ) and all

n ≥ 1. With this notation, we have that era = ea ◦ . . . ◦ ea (r times).
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ForM ∈ Hn(q)−mod, by Lemma 9.6.1, we have an isomorphism ofHn−1(q)-modules

Res
Hn(q)(q)
Hn−1(q) (M) ∼=

⊕
a∈S

ea(M). (9.36)

Let J (an) be the annihilator of the Kato module L(an) in Hn(q), see Section 9.7

for definitions. From the chain of ideals

J (an) ⊇ J (an)2 ⊇ . . . ⊇ J (an)m ⊇ . . .

in Hn(q), we obtain surjective F -algebra homomorphisms

. . .
pm−→ Rm(an) −→ . . .

p2−→ R2(an)
p1−→ R1(an), (9.37)

given by pk(h + J (an)k+1) = h + J (an)k, for all h ∈ Hn(q), and all k ≥ 1. Note

that for all m ≥ 1, we consider Rm(an) as an Hn(q)-module via inflation. With

this, the above epimorphisms pk become surjective Hn(q)-homomorphisms. By

Lemma 9.7.5, we have that Rm(an) ∼=
⊕

n! Lm(an), as Rm(an)-modules, and hence

as Hn(q)-modules. Since, for k ≤ m, J (an)k/J (an)m is a nilpotent ideal in Rm(an),

and thus nil, we have that idempotents lift along the above algebra epimorphisms,

see [1, Proposition 27.1]. Let m ≥ 1, and 1 = em1 + . . . + emn! be the decomposition

of 1 in orthogonal primitive idempotents ei, corresponding to the decomposition

Rm(an) ∼=
⊕

n! Lm(an). By lifting, we get a decomposition 1 = em+1
1 + . . . + em+1

n!

in Rm+1(an), see [1, Proposition 27.4].

For m ≥ 1 and 1 ≤ i ≤ n!, denote by rim : Rm(an) → Rm(an)emi and jim :

Rm(an)emi → Rm(an) the retraction and section corresponding to the decomposition

Rm(an) ∼=
⊕
n!

Lm(an) ∼= Rm(an)em1 ⊕ . . .⊕Rm(an)emn!.

Then the ring epimorphism pm : Rm+1(an) → Rm(an) defines a surjective Hn(q)-

module homomorphism

qim = rimpmj
i
m+1 : Lm+1(an) ∼= Rm+1(an)em+1

i −→ Rm(an)emi
∼= Lm(an),

for all 1 ≤ i ≤ n!. Therefore, fixing such an idempotent decomposition for m = 1

yields a chain of Hn(q)-homomorphisms

. . .
qim−→ Rm(an)emi

qim−1−→ . . .
qi2−→ R2(an)e2

i

qi1−→ R1(an)e1
i , (9.38)

for all 1 ≤ i ≤ n!.

Furthermore, by the definition of the maps qim, m ≥ 1, we have the following

commutative diagram:

. . . Rm(an) . . . R2(an) R1(an)

. . . Rm(an)emi . . . R2(an)e2
i R1(an)e1

i

pm pm−1 p2 p1

qim qim−1 qi2 qi1

rim ri2 ri1
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Similarly, the diagram corresponding to the inclusion homomorphisms jim, m ≥ 1,

1 ≤ i ≤ n!, is commutative. We have the following analogue of [59, Lemma 4.4.2]

in the non-degenerate case:

Lemma 9.8.1. Let M be an Hn(q)-module, and suppose that J (an)kM = 0, for

some k ∈ N. Then for all m ≥ k, there exists an isomorphism of Hn(q)-modules

HomHn(q)(Rm(an),M) ∼= M.

Furthermore, there is an isomorphism of functors

lim−→
m

HomHn(q)(Rm(an),−) ∼= lim−→
m

⊕
n!

HomHn(q)(Lm(an),−)

from the category of Hn(q)-modules annihilated by some power of J (an) to the

category of vector spaces.

Proof. Since J (an)kM = 0, M is the inflation of an Rm(an)-module. Hence,

HomHn(q)(Rm(an),M) ∼= HomRm(an)(Rm(an),M) ∼= M.

The isomorphism can be derived from Lemma 9.7.5, and the discussion prior to this

lemma. �

Next, we try to describe the connection between these various functors. In the

following, we will denote by Hr(q)
′, 1 ≤ r ≤ n the subalgebra of H(n−r,r) ⊆ Hn(q)

generated by the elements

x±1
n−r+1, . . . , x

±1
n , Tn−r+1, . . . , Tn−1.

Note that, as F -algebras, Hr(q)
′ ∼= Hr(q), which we will use as an identification.

Observe that for M ∈ Hn(q) − mod, we may define an Hn−r(q)-module structure

on the F -vector space HomHr(q)′(Rm(ar),M), by setting (hf)(v) = h(f(v)), for

f ∈ HomHr(q)′(Rm(ar),M), h ∈ Hn−r(q), and v ∈ Rm.

Also, if M,N ∈ Hn(q) − mod, and f : M → N is a homomorphism of Hn(q)-

modules, we obtain a map

f ∗ : HomHr(q)′(Rm(ar),M) −→ HomHr(q)′(Rm(ar), N) g 7→ f ◦ g.

Moreover, for h ∈ Hn−r(q), we have that

f ∗(hg)(x) = f((hg)(x)) = f(h(g(x)) = hf(g(x)) = h(f ∗(g))(x)

since f is Hn−r(q)-linear. Therefore, we get a functor

lim−→
m

HomHr(q)(Rm(ar),−) : Hn(q)−mod −→ Hn−r(q)−mod. (9.39)
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Theorem 9.8.2. Let M ∈ Hn(q)−mod, a ∈ S. Then

era(M) ∼= lim−→
m

HomHr(q)′(Rm(ar),M) (9.40)

as Hn−r(q)-modules. Moreover, the above isomorphism is natural, and, thus, induces

an isomorphism of functors from the category Hn(q)−mod to the category Hn−r(q)−
mod.

Proof. First, we show that era(M) = ∆ar(M) as Hn−r(q)-modules. Let r = 1. Then

the statement follows from the definition of ea given in (9.34). Next, let r > 1.

If v ∈ ∆ar(M), then v ∈ ∆ar−1(M), and (xn−r+1 − a)kv = 0, for some k ≥ 0.

Hence ∆ar(M) ⊆ ∆a(∆ar−1(M)). On the other hand, if v ∈ ∆a(∆ar−1(M)), then

(xi− a)kv = 0, for all n− r+ 1 ≤ i ≤ n and some k ≥ 0. Thus, v ∈ ∆ar(M), hence

∆a(∆ar−1(M)) = ∆ar(M).

Now, by definition, era(M) = ea(e
r−1
a (M)). By the induction hypothesis, we may

assume that er−1
a (M) = ∆ar−1(M) as Hn−r+1(q)-modules. As we have seen above,

the statement holds for r = 1, therefore:

era(M) = ea(e
r−1
a (M)) = ea(∆ar−1(M))

= ∆a(∆ar−1(M)) = ∆ar(M),

as Hn−r(q)-modules.

Next, we want to show that

X := ∆ar(M) ∼= lim−→
m

HomHr(q)′(Rm(ar),M)

as Hn−r(q)-modules. To this end, we use the canonical isomorphism H(n−r,r) ∼=
Hn−r⊗F H ′r ∼= Hn−r⊗F Hr, and throughout, we will consider M as an Hn−r⊗F Hr-

module with respect to this isomorphism.

Recall that, for m ≥ 1, Rm(ar) = Hr(q)/J (ar)m, and we will consider it as an

Hr(q)-module via inflation along the canonical F -algebra epimorphism p : Hr(q)→
Hr(q)/J (ar)m. Let Ym(M) := {y ∈ M | J (ar)my = 0}. For y ∈ Ym(M), we get a

homomorphism fy ∈ HomHr(q)(Rm(ar),M), given by the following diagram:

J (ar)m Hr(q) Rm(ar) = Hr(q)/J (ar)m

M

i p

·y
fy

Since J (ar)my = 0, this map exists and is unique by the cokernel property. Hence,

we obtain a well-defined map

ψm : Ym(M) −→ HomHr(q)(Rm(ar),M), y 7→ fy.
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Since the elements of Hn−r(q) commute with the elements of Hr(q), Ym(M) is an

Hn−r(q)-submodule of M . For every t ∈ Rm(ar), it follows from the definition of fy
that if s ∈ p−1(t), then fy(t) = sy. Also, since cokernels are unique, the map ψm is

a homomorphism of F -vector spaces. Moreover, for h ∈ Hn−r(q),

ψm(hy)(t) = fhy(t) = s(hy)

= h(sy) = hψm(y)(t),

for all t ∈ Rm(ar), since h commutes with all elements in Hr(q). This shows that

ψm is even an Hn−r(q)-homomorphism.

On the other hand, let f ∈ HomHr(q)(Rm(ar),M), for some m ≥ 1. Since we view

Rm(ar) as an Hr(q)-module via inflation along p, f is determined by the element

f(1) ∈ M . Here, by 1 we mean the unit in the ring Rm(ar). To see this, take an

element t ∈ Rm(ar), and some s ∈ p−1(t). Hence we can write t = t1 = p(s)1 = s ·1,

where we indicate the action of Hr(q) on Rm(ar) by ” · ”. Then it follows that

f(t) = f(p(s)1) = f(s · 1) = sf(1),

where the third equality comes from the fact that f is an Hr(q)-homomorphism.

Moreover, we have that

J (ar)mf(1) = f(p(J (ar)m)1) = 0,

and hence, f(1) ∈ Ym(M). Therefore, we get a map

φm : HomHr(q)(Rm(ar),M) −→ Ym(M),

given by φm(f) = f(1). It is easy to see that φm is a homomorphism of F -

vector spaces. Furthermore, by the definition of the Hn−r(q)-module structure on

HomHr(q)(Rm(ar),M):

φm(hf) = (hf)(1) = h(f(1))

= hφm(f),

for all h ∈ Hn−r(q), and f ∈ HomHr(q)(Rm(ar),M), showing that φm is an Hn−r(q)-

homomorphism.

On the one hand, since 1Hr(q) ∈ p−1(1), we have for all y ∈ Ym(M):

φm(ψm(y)) = φm(fy) = fy(1) = y.

On the other hand, for all t ∈ Rm(ar):

ψm(φm(f))(t) = ψm(f(1))(t) = sf(1)

= f(s · 1) = f(p(s)1)

= f(t),
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where f ∈ HomHr(q)(Rm(ar),M), t ∈ Rm(ar), and some s ∈ p−1(t). This shows

that ψm and φm are mutually inverse bijections and, hence,

Ym(M) ∼= HomHr(q)(Rm(ar),M)

as Hn−r(q)-modules.

Next, let M,N ∈ Hn(q) −mod. For m ≥ 1, and a homomorphism f : M → N in

Hn(q)−mod, we get a homomorphism

f ∗ : HomHr(q)(Rm(ar),M) −→ HomHr(q)(Rm(ar), N),

of Hn−r(q)-modules, given by f ∗(g) = fg, for g ∈ HomHr(q)(Rm(ar),M). Let

y ∈ Ym(M). Then

J (ar)mf(y) = f(J (ar)my) = 0,

thus, f(y) ∈ Ym(N), and we get a homomorphism

f̃ : Ym(M) −→ Ym(N)

of Hn−r(q)-modules. Moreover,

φm(f ∗(g)) = φm(fg) = (fg)(1)

= f(g(1)) = f(φm(g))

= f̃(φm(g)).

We consider the following diagram:

HomHr(q)(Rm(ar),M) HomHr(q)(Rm+1(ar),M)

Ym Ym+1

jm

φm φm+1

im

Here, im denotes the Hn−r(q)-monomorphism induced by the inclusion of the sets

Ym ⊆ Ym+1. Moreover, jm is induced from the homomorphism pm : Rm+1(ar) →
Rm(ar) of (9.37), and applying the left exact functor HomHr(q)(−,M). More pre-

cisely, if f ∈ HomHr(q)(Rm(ar),M), then jm(f) = fpm. From this one can see that

jm is a homomorphism of Hn−r(q)-modules. Furthermore,

φm+1(jm(f)) = (fpm)(1Rm+1(ar)) = f(pm(1Rm+1(ar)))

= f(1Rm(ar)) = imφm(f),

which shows that the diagram commutes. With this, it follows that

Y := {y ∈M | J (ar)my = 0, for some m ≥ 1}
= lim−→

m

Ym

∼= lim−→
m

HomHr(q)′(Rm(ar),M),
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as Hn−r(q)-modules. The above calculations show that this isomorphism is functo-

rial.

To finish the proof, we show that Y = X. For, let y ∈ Y , i.e., there is some m ≥ 1

such that J (ar)my = 0. Since (xi−a)r! ∈ J (ar), it follows that (xi−a)r!m ∈ J (ar)m.

Thus, (xi − a)r!my = 0, for all n− r + 1 ≤ i ≤ n, thus, y ∈ X.

On the other hand, X can be characterized as the largest submodule of Resnn−r,r(M)

all of whose composition factors are of the formN�L(ar), for an irreducibleHn−r(q)-

module N . Therefore, if we restrict X to Hr(q) ∼= 1 ⊗ Hr(q) ↪→ Hn−r(q) ⊗ Hr(q),

all composition factors are isomorphic to L(ar). This implies that the restriction

must belong to the block of Hr(q) indexed by the central character γ := (a, . . . , a)

(r times). We show by induction on the composition length that all modules in this

block are annihilated by some power of J (ar).

Let W ∈ Hr(q) − mod with central character γ, and composition length 1. By

Theorem 9.7.3, up to isomorphism, L(ar) is the only irreducible module in its block.

Hence, W ∼= L(ar), and so, by definition of J (ar), J (ar)W = 0. Now suppose that

W has composition length greater than 1. Then take some maximal submodule

W ′ ⊂ W which is non-zero by assumption on W . Consider the exact sequence

0→ W ′ → W → W/W ′ → 0

of Hr(q)-modules given by the quotient module W/W ′. Again, by Theorem 9.7.3,

W/W ′ ∼= L(ar), and we get that J (ar)(W/W ′) = 0. By definition of the action of

Hr(q) on W/W ′, it follows that J (ar)W ⊆ W ′. Now by the induction hypothesis,

some power of J (ar) annihilates W ′. We conclude that some power of J (ar) must

annihilate W .

It follows that J (ar)kX = 0, for some k > 0, so X ⊆ Y . Therefore, since X and Y

are both subsets of M , we infer that X = Y as Hn−r(q)-modules.

From the above discussion, we now obtain an isomorphism of functors, given by the

isomorphisms constructed in the proof. �

Next, for a ∈ S, r ≥ 1, and M ∈ Hn(q)−mod, we define

e(r)
a (M) = lim−→

m

HomHr(q)′(Lm(ar),M).

Note that we get anHn−r(q)-module structure on HomHr(q)′(Lm(ar),M), by defining

(hf)(v) = h(f(v)), for f ∈ HomHr(q)′(Lm(ar),M), h ∈ Hn−r(q), and v ∈ Lm(ar).

Also, if M,N ∈ Hn(q) − mod, and f : M → N is a homomorphism of Hn(q)-

modules, we obtain a map

f ∗ : HomHr(q)′(Lm(ar),M) −→ HomHr(q)′(Lm(ar), N), g 7→ f ◦ g.

For h ∈ Hn−r(q) and x ∈ Lm(ar), we have that

f ∗(hg)(x) = f((hg)(x)) = f(h(g(x)) = hf(g(x)) = h(f ∗(g))(x)

since f is Hn−r(q)-linear. Thus, we obtain a functor

e(r)
a : Hn(q)−mod −→ Hn−r(q)−mod. (9.41)
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We have the following:

Theorem 9.8.3. There is an isomorphism

era
∼=
⊕
r!

e(r)
a

of functors from the category Hn(q)−mod to the category Hn−r(q)−mod.

Proof. By Theorem 9.8.2, for M ∈ Hn(q)−mod, we have an isomorphism

era(M) ∼= lim−→
t

HomHr(q)(Rt(a
r),M)

of Hn−r(q)-modules that is natural in M . Since M is finite-dimensional, the direct

limit above stabilizes after finitely many steps. Therefore, we may assume that for

m large enough:

lim−→
t

HomHr(q)(Rt(a
r),M) = HomHr(q)(Rm(ar),M).

By Lemma 9.8.1, we have that

HomHr(q)(Rm(ar),M) ∼=
⊕
r!

HomHr(q)(Lm(ar),M),

where the isomorphism ψM is defined by

f 7→ (f ◦ i1, . . . , f ◦ ir!),

for f ∈ HomHr(q)(Rm(ar),M) and ik, 1 ≤ k ≤ r!, denotes the split monomorphism

given by the direct sum decomposition ofRm(ar), see the discussion prior to Lemma

9.8.1. Moreover, for h ∈ Hn−r(q), we have that

ψM(hf)(x) = ((hf) ◦ i1(x), . . . , (hf) ◦ ir!(x))

= ((hf(i1(x)), . . . , hf(ir!(x))

= (h(f(i1(x))), . . . , h(f(ir!(x))),

thus, by the definition of the Hn−r(q)-module structure on HomHr(q)(Lm(ar),M), we

see that ψM is an isomorphism of Hn−r(q)-modules. Next, let M,N ∈ Hn(q)−mod

and f : M → N be an Hn(q)-homomorphism. Choose m large enough such that

lim−→
t

HomHr(q)(Rt(a
r),M) = HomHr(q)(Rm(ar),M), and

lim−→
t

HomHr(q)(Rt(a
r), N) = HomHr(q)(Rm(ar), N).

We obtain a diagram
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HomHr(q)(Rm(ar),M)
⊕

r! HomHr(q)(Lm(ar),M)

HomHr(q)(Rm(ar), N)
⊕

r! HomHr(q)(Lm(ar), N)

ψM

ηM,N νM,N

ψN

where ηM,N(h) = f ◦ h, and νM,N(k1, . . . , kr!) = (f ◦ k1, . . . , f ◦ kr!). For h ∈
HomHr(q)(Rm(ar),M), we get that

νM,N(ψM(h)) = νM,N(h ◦ i1, . . . , h ◦ ir!)
= (f ◦ (h ◦ i1), . . . , f ◦ (h ◦ ir!))
= ((f ◦ h) ◦ i1, . . . , (f ◦ h) ◦ ir!))
= ψN(ηM,N(h)).

Hence, the diagram commutes, i.e., ψ determines a natural transformation between

the functors

HomHr(q)(Rm(ar),−) and
⊕
r!

HomHr(q)(Lm(ar),−)

from the category Hn(q) − mod to the category Hn−r(q) − mod. The claim now

follows since, for M ∈ Hn(q)−mod, ψM is an isomorphism of Hn−r(q)-modules. �

Next, we want to give another description of the Hn(q)-modules Lm(an), m ≥ 1.

Consider the finite-dimensional Hecke algebra Hf
n(q), i.e., the subalgebra of Hn(q)

generated by T1, . . . , Tn−1. Let λ be a composition of n. Then the element

xλ =
∑
w∈Wλ

Tw ∈ Hf
n(q)

affords the permutation module Mλ := Hf
n(q)xλ of Hf

n(q) corresponding to the

composition λ. For example, if λ = (n), we obtain the trivial module for Hf
n(q),

denoted by 1. Note that for all w ∈ W (n), we have that

Twx(n) = ql(w)x(n),

see [68, Lemma 3.2].

Set P (n) := Ind
Hn(q)

Hf
n(q)

(1). For the next proposition, recall that by Theorem 9.3.1,

Hn(q) is a free Pn-module with basis {Tw | w ∈ W (n)}. It follows that

L(an) = Ind
Hn(q)
Pn

L(a) � . . .� L(a) =
⊕

w∈W (n)

F (Tw ⊗Pn b), (9.42)

where b is a fixed basis vector of the one-dimensional Pn-module L(a)� . . .�L(a).

Thus we see that, considered as Hf
n(q)-module, L(an) is isomorphic to the left

regular module Hf
n(q). Then we have an analogue of [59, Lemma 4.4.3] in the

non-degenerate case:
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Proposition 9.8.4. We have that Lm(an) ∼= P (n)/J (an)mP (n) as Hn(q)-modules.

Proof. Let pm : P (n)→ P (n)/J (an)mP (n) denote the epimorphism corresponding

to the quotient. Then we have an exact sequence

0 −→ HomHn(q)(P (n)/J (an)mP (n), L(an)) −→ HomHn(q)(P (n), L(an))

−→ HomHn(q)(J (an)mP (n), L(an)).

Since J (an) annihilates L(an), the last term of the sequence above equals zero, thus,

we have an isomorphism of F -vector spaces

HomHn(q)(P (n)/J (an)mP (n), L(an)) ∼= HomHn(q)(P (n), L(an)).

Using Frobenius Reciprocity, we get that

HomHn(q)(P (n)/J (an)mP (n), L(an)) ∼= HomHn(q)(P (n), L(an))

∼= HomHf
n(q)(1,Res

Hn(q)

Hf
n(q)

(L(an))).

From (9.42) it is easy to see that Res
Hn(q)

Hf
n(q)

(L(an)) ∼= Hf
n(q). Since the trivial module

occurs precisely once in the socle of Hf
n(q), we conclude that

HomHn(q)(P (n)/J (an)mP (n), L(an)) ∼= F.

Therefore, the Rm(an)-module P (n)/J (an)mP (n) has irreducible head L(an), and

hence is a quotient of Lm(an).

Consider the projective cover π : Lm(an) → L(an) in Rm(an) − mod. If we con-

sider this epimorphism as a homomorphism in Hn(q) − mod and restrict it to

Hf
n(q) − mod, we see that it must be split since Res

Hn(q)

Hf
n(q)

(L(an)) ∼= Hf
n(q). More-

over, Res
Hn(q)

Hf
n(q)

(L(an)) contains a non-zero vector x such that Twx = ql(w)x, for all

w ∈ W (n). Let v ∈ Res
Hn(q)

Hf
n(q)

(Lm(an)) be such that Res
Hn(q)

Hf
n(q)

(π)(v) = x. It follows

that we have a non-zero Hf
n(q)-homomorphism

f : 1→ Res
Hn(q)

Hf
n(q)

(Lm(an)).

Again, by Frobenius Reciprocity, we get a non-zero homomorphism f̃ : P (n) →
Lm(an) in Hn(q) − mod such that v is contained in the image of f̃ . This in-

duces a non-zeroRm(an)-homomorphism g : P (n)/J (an)mP (n)→ Lm(an), because

J (an)mLm(an) = 0. Since Lm(an) is a projective cover of L(an) as Rm(an)-module,

it is cyclic, generated by v. It follows that g must be surjective. The result now

follows. �

Since, by Theorem 9.3.1, Hn(q) is a free right Hf
n(q)-module with basis {xα | α ∈

Zn}, we have

P (n) =
⊕
α∈Zn

F (xα ⊗ x(n)),
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with 1 = Fx(n). From this we can see that P (n) is a cyclic left Hn(q)-module,

generated by 1⊗ x(n). Moreover, we get that

Tw(1⊗ x(n)) = Tw ⊗ x(n) = 1⊗ Twx(n) = ql(w)(1⊗ x(n)),

for all w ∈ W (n).

Let h ∈ Hn(q). By Theorem 9.3.1, we may write h =
∑k

i=1 λix
αiTwi , for some

αi ∈ Zn, λi ∈ F , and wi ∈ W (n). Given the element 1⊗ x(n) ∈ P (n), we see that h

acts as

h(1⊗ x(n)) = h⊗ x(n) = (
k∑
i=1

λix
αiTwi)⊗ x(n)

=
k∑
i=1

λix
αi ⊗ Twix(n) =

k∑
i=1

λiq
l(wi)xαi ⊗ x(n)

= (
k∑
i=1

λiq
l(wi)xαi)⊗ x(n).

(9.43)

Let M ∈ Hn(q)−mod, and U be a subgroup of W (n), generated by basic transposi-

tions of W (n). Then, denote by MU := {v ∈M | Twv = ql(w)v for all w ∈ U} ⊆M ,

which is a subspace of M . Note that U acts via the Tw on MU . To this end, let

w ∈ U , s ∈ B ∩ U and m ∈MU . If l(ws) = l(w) + 1, then

(TwTs)m = Twsm = ql(w)+1m = ql(w)(qm) = Tw(Tsm).

On the other hand, if l(ws) < l(w), we have by the multiplication rule for Hf
n(q),

see (9.1), that

(TwTs)m = (qTws + (q − 1)Tw)m

= ql(w)m+ (q − 1)ql(w)m

= ql(w)+1m

= Tw(Tsm).

Recall the definition of the subalgebra Hr(q)
′ of Hn(q) from the discussion after

Lemma 9.8.1. In the following, we will denote by W (r)′, for r > 0, the subgroup of

W (n) generated by the elements

sn−r+1, sn−r+2, . . . , sn−1 ∈ W (n).

Clearly W (r)′ ∼= W (r). We get the following:

Theorem 9.8.5. Let M ∈ Hn(q)−mod. Then we have a functorial isomorphism

e(r)
a (M) ∼= (∆ar(M))W (r)′

of Hn−r(q)-modules.
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Proof. First note that the subspace (∆ar(M))W (r)′ is indeed an Hn−r(q)-submodule

of M since Hn−r(q) commutes with all the elements of Hr(q)
′.

By Proposition 9.8.4, we have an isomorphism

e(r)
a (M) = lim−→

m

HomHr(q)′(Lm(ar),M) ∼= lim−→
m

HomHr(q)′(P (r)/J (ar)mP (r),M),

which is clearly functorial. Since P (r) is generated by 1 ⊗ x(r) as Hr(q)
′-module,

P (r)/J (ar)mP (r) is generated by u := π(1⊗ x(r)) as a Hr(q)
′-module, where

π : P (r)→ P (r)/J (ar)mP (r)

denotes the natural epimorphism.

Let f ∈ HomHr(q)(P (r)/J (ar)mP (r),M). Set v = f(u). Then we get that

J (ar)mv = J (ar)mf(u)

= f(J (ar)mu)

= 0.

Therefore, v ∈ ∆ar(M). Moreover, for w ∈ W (r)′, we have

Twv = Twf(u) = f(Twu)

= f(π(Tw(1⊗ x(r)))) = ql(w)v,

thus v ∈ (∆ar(M))W (r)′ .

On the other hand, let v ∈ (∆ar(M))W (r)′ . Then, J (ar)mv = 0, for some m ≥ 1.

We now define a homomorphism fv ∈ HomHr(q)′(P (r)/J (ar)mP (r),M). For x ∈
P (r)/J (ar)mP (r), we know from the discussion prior to this theorem that x = hu,

for some h ∈ Hr(q)
′. We define a map

fv : P (r)/J (ar)mP (r)→M

by setting fv(x) = hv. We must show that this is well defined. To do this, let

h ∈ Hr(q)
′ be such that hu = 0 ∈ P (r)/J (ar)mP (r). In other words, h(1⊗ x(r)) ∈

J (ar)mP (r) in P (r).

Suppose first that h(1⊗ x(r)) = 0. By (9.43), if h =
∑k

i=1 λix
αiTwi , then

h(1⊗ x(r)) = (
k∑
i=1

λiq
l(wi)xαi)⊗ x(r).

Since the elements xα ⊗ x(r), α ∈ Zr, form a basis of P (r) as an F -vector space, we

must have that λk = 0, whenever xαk 6= 0. This shows that h =
∑k

i=1 λkTwk , i.e.,

h ∈ Hf
r (q)′, the subalgebra of Hr(q)

′ generated by Tn−r+1, . . . , Tn−1. But considered

as an Hf
r (q)′-module, the subspace F (1 ⊗ x(r)) of P (r) is isomorphic to the trivial

representation of Hf
r (q)′. It is easy to see that the two-sided ideal⊕

w∈W (r)′,w 6=1

F (Tw − ql(w))
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is the kernel of the F -algebra homomorphism Hf
r (q)′ → EndF (F (1⊗ x(r)) given by

the trivial representation. Therefore, we have that h =
∑
µj(Twj − ql(wj)), for some

µj ∈ F .

Now, let h(1⊗ x(r)) ∈ J (ar)mP (r) in P (r), then, by the alternative description of

the ideal J (ar) in Theorem 9.7.7 and the action of Hr(q)
′ on 1⊗x(r), we may write

h(1⊗ x(r)) = Q(1⊗ x(r)),

with some element Q ∈ P ′r(Z(ar))
m. But then (h − Q)(1 ⊗ x(r)) = 0, which shows

that h has the form

h = (
∑

µj(Twj − ql(wj))) +Q,

for elements wj ∈ W (r)′, and µj ∈ F . Since, by assumption, v ∈ (∆ar(M))W (r)′ , it

is now easy to see that hv = 0, and therefore, fv is well defined. Also, it is not hard

to show that fv is a homomorphism of F -vector spaces: If x, y ∈ P (r)/J (ar)mP (r),

and µ ∈ F , then there are h, h′ ∈ Hr(q)
′ such that

µx+ y = µ(hu) + h′u = (µh+ h′)u.

It follows that

fv(µx+ y) = (µh+ h′)v = µ(hv) + h′v = µfv(x) + fv(y).

Let h′′ ∈ Hr(q)
′, x ∈ P (r)/J (ar)mP (r), and choose h ∈ Hr(q)

′ such that x = hu.

Then

fv(h
′′x) = fv((h

′′h)u) = (h′′h)v = h′′(hv) = h′′fv(x),

and so, fv ∈ HomHr(q)′(P (r)/J (ar)mP (r),M).

Therefore, we have constructed two maps:

ψ : (∆ar(M))W (r)′ −→ lim−→
m

HomHr(q)′(P (r)/J (ar)mP (r),M),

given by ψ(v) = fv, and

φ : lim−→
m

HomHr(q)′(P (r)/J (ar)mP (r),M) −→ (∆ar(M))W (r)′ ,

given by φ(f) = f(u).

We now show that the latter are inverse to each other. On the one hand,

φ(ψ(v)) = φ(fv) = fv(u) = v,

and on the other hand,

ψ(φ(f))(t) = ψ(f(u))(t) = ff(u)(t)

= hf(u) = f(hu)

= f(t),
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where t = hu ∈ P (r)/J (ar)mP (r), for some h ∈ Hr(q)
′. Therefore, ψ and φ are

mutually inverse bijections.

Next, fix an element h ∈ Hn−r(q). Then, for t = h′u ∈ P (r)/J (ar)mP (r), h′ ∈
Hr(q)

′, we have that

ψ(hv)(t) = fhv(t) = h′(hv)

= h(h′v) = hfv(t)

= hψ(v)

since the elements of Hn−r(q) commute with those of Hr(q)
′.

Moreover, for an element f ∈ HomHr(q)′(P (r)/J (ar)mP (r),M), we compute:

φ(hf) = (hf)(u) = h(f(u))

= hφ(f).

Thus, we obtain an isomorphism

(∆ar(M))W (r)′ ∼= lim−→
m

HomHr(q)(P (r)/J (ar)mP (r),M)

of Hn−r(q)-modules. The above construction shows that this isomorphism is func-

torial. �

Remark 9.8.6. The definition of the functors e
(r)
i , r ≥ 1, are based on ideas of I.

Grojnowski, see [44, §8]. The explicit description of these in the degenerate case,

as well as the alternative description, is due to A. Kleshchev, see [59, §8]. The

alternative description of Theorem 9.8.5 of the functors in the non-degenerate case

seems to be new to us.
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Chapter 10

Kac–Moody algebras

In this chapter, we will briefly describe the theory of Kac–Moody algebras and their

representation theory.

First we state the basic definitions of these algebras, some of them are needed in the

definition of the cyclotomic Hecke algebras, given in Chapter 11. Afterwards, we

will discuss the basic notions of the representation theory of a Kac–Moody algebra,

which will be necessary in Chapter 13. There, we will mainly work with the derived

algebra g′(A) of the Kac–Moody algebra g(A) of a generalized Cartan matrix of

type A. Therefore, we will explain how the representation theory of g′(A) is related

to that of g(A). This is done in the last section.

All the results stated here are well known and can mostly be found in [53].

10.1 Basic definitions

If not otherwise stated, in the following, K will denote a field of characteristic 0.

Let I be a finite set, say I = {0, . . . , n}, for some n ∈ N, n > 0.

A generalized Cartan matrix is given by a matrix A ∈ Mat(n × n,Z), n ≥ 1, such

that

(1) aii = 2, for all 0 ≤ i ≤ n,

(2) aij = 0 if and only if aji = 0, for all 0 ≤ i, j ≤ n,

(3) aij ≤ 0, for all 0 ≤ i, j ≤ n and i 6= j.
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Chapter 10. Kac–Moody algebras

Example 10.1.1. Let n ≥ 1. Then the generalized Cartan matrix of type A
(1)
n is

the matrix (aij)0≤i,j≤n, of the form

2 −1 0 · · · 0 0 −1

−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
. . .

0 0 0 · · · 2 −1 0

0 0 0 · · · −1 2 −1

−1 0 0 · · · 0 −1 2


,

if n > 1, and (
2 −2

−2 2

)
,

if n = 1.

Recall that an n × n matrix A is called symmetrizable if there exists an invertible

diagonal n× n matrix D and a symmetric n× n matrix B such that A = DB.

To a generalized Cartan matrix A one associates a Lie algebra as follows: Let l

denote the rank of the matrix A, and let h be a K-vector space with dimK h =

2n− l. Moreover, choose linearly independent subsets Π = {α0, . . . , αn} ⊆ h∗, and

Π∗ = {h0, . . . , hn} ⊆ h, such that αj(hi) = aji. The 3-tuple (h,Π,Π∗) is called a

realization of the matrix A. Then, the Kac–Moody algebra g(A) associated to A is

defined to be the Lie algebra on generators ei, fi, i ∈ I, and h ∈ h subject to the

following relations:

(L1) [ei, fj] = δijhi,

(L2) [h, ei] = αi(h)ei,

(L3) [h, fi] = −αi(h)fi,

(L4) [h, h′] = 0, for all h, h′ ∈ h,

(L5) (ad ei)
1−aijej = 0, for i 6= j,

(L6) (ad fi)
1−aijfj = 0, for i 6= j.

Moreover, we will also work with the derived Lie algebra g′(A) = [g(A), g(A)] of

g(A). Then, by [53, §9.11], g′(A) is generated by the elements ei, fi, hi, i ∈ I,

together with the Chevalley relations

(D1) [ei, fj] = δijhi,

(D2) [hj, ei] = αi(hj)ei,

(D3) [hj, fi] = −αi(hj)fi,
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10.1. Basic definitions

(D4) [hi, hj] = 0, for all i, j ∈ I,

(D5) (ad ei)
1−aijej = 0, for i 6= j,

(D6) (ad fi)
1−aijfj = 0, for i 6= j.

The relations (L1)–(L4) (resp. (D1)–(D4)) are called the Weyl relations and the

relations (L5)–(L6) (resp. (D5)–(D6)) are the Serre relations. Note that, by [53,

§1.3], we have g(A) = g′(A) + h. If we set h′ =
∑n

i=0Khi, then g′(A) ∩ h = h′.

Remark 10.1.2. The elements of the set Π = {α0, . . . , αn} are the simple roots

and the elements of the set Π∗ = {h0, . . . , hn} are the simple coroots of g(A). One

may define a bilinear form ⊕
i∈I

Zαi ×
⊕
i∈I

Zhi −→ Z

by setting 〈αi, hj〉 = αi(hj) = aij, for 0 ≤ i, j ≤ n.

Let L be a Lie algebra. Suppose that U is an associative unitary K-algebra and

ι : L→ U is a K-linear map with

ι([x, y]) = ι(x)ι(y)− ι(y)ι(x),

for all x, y ∈ L. The pair (U, ι) is called a universal enveloping algebra if it has

the following universal property: For any associative unitary K-algebra A, and any

linear map j : L→ A such that

j([x, y]) = j(x)j(y)− j(y)j(x),

for all x, y ∈ L, there exists a unique homomorphism of associative algebras ϕ :

U → A such that j = ϕ ◦ ι. Hence, if U exists, then it is unique up to isomorphism

of associative algebras, and is called the universal enveloping algebra of L denoted

by U(L).

For the existence, consider the tensor algebra T (L) :=
⊕∞

k=0 L
⊗k, together with the

factor algebra

T (L)/I, (10.1)

where I is the two-sided ideal of T (L) generated by the elements of the form

x ⊗ y − y ⊗ x − [x, y]. If ι : L → T (L)/I denotes the natural map, one can

show that the pair (T (L)/I, ι) satisfies the universal property above.

Theorem 10.1.3. (Poincaré–Birkhoff–Witt) Let L be a Lie algebra, and (U(L), ι)

its universal enveloping algebra. Then:

(i) The map ι : L→ U(L) is injective.
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Chapter 10. Kac–Moody algebras

(ii) Let {xα | α ∈ Ω} be a basis of L, where Ω is a partially ordered set. Then, all

the elements of the form xα1 · · ·xαn such that α1 ≤ . . . ≤ αn together with 1

form a basis of U(L).

Proof. See [47, Theorem 1.2.4]. �

Next, let V be an L-module for the Lie algebra L. From the corresponding repre-

sentation over K, we obtain, by the universal property of U(L), an U(L)-module

structure on V . Conversely, via the map ι of Theorem 10.1.3, we can give a U(L)-

module W an L-module structure. This viewpoint will become important later

on.

In the sequel denote by U(g(A)) the universal enveloping algebra associated to the

Lie algebra g(A). By the construction of the universal enveloping algebra given in

(10.1), U(g(A)) has a presentation given by generators ei, fi, i ∈ I, and h ∈ h,

subject to the following relations:

(U1) eifj − fjei = δijhi,

(U2) hei − eih = αi(h)ei,

(U3) hfi − fih = −αi(h)fi,

(U4) hh′ = h′h, for all h, h′ ∈ h,

(U5)
∑1−aij

k=0 (−1)k
(

1−aij
k

)
e

1−aij−k
i eje

k
i = 0, for i 6= j,

(U6)
∑1−aij

k=0 (−1)k
(

1−aij
k

)
f

1−aij−k
i fjf

k
i = 0, for i 6= j.

Furthermore, we denote by U(g′(A)) the universal enveloping algebra of the Lie

algebra g′(A). It is generated by elements ei, fi, hi, i ∈ I, subject to the relations

(UD1) eifj − fjei = δijhi,

(UD2) hjei − eihj = αi(hj)ei,

(UD3) hjfi − fihj = −αi(hj)fi,

(UD4) [hi, hj] = 0, for all i, j = 1, . . . , n,

(UD5)
∑1−aij

k=0 (−1)k
(

1−aij
k

)
e

1−aij−k
i eje

k
i = 0, for i 6= j,

(UD6)
∑1−aij

k=0 (−1)k
(

1−aij
k

)
f

1−aij−k
i fjf

k
i = 0, for i 6= j.

To compare the Lie algebras g(A) and g′(A), we describe g(A) in more detail.

Proposition 10.1.4. (i) The center of g(A) is given by

Z(g(A)) = {h ∈ h | αi(h) = 0 for all i ∈ I}.

Therefore, dimK Z(g(A)) = dimK h− |I| = corank(A).
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10.1. Basic definitions

(ii) Suppose that A is indecomposable. Then every ideal of g(A) either contains

g′(A) or is contained in Z(g(A)).

Proof. This is [53, Proposition 1.6 and Proposition 1.7 (b)]. �

From now on, we assume that the matrix A is of affine type, i.e., det(A) = 0. Then

it follows from Proposition 10.1.4 that the dimension of the center of g(A) equals

one, and is spanned by the vector

C :=
n∑
i=0

ãihi,

where the ãi, i ∈ I, are the labels of the Dynkin diagram obtained from the Dynkin

diagram associated to A by reversing the arrows and keeping the same enumeration

of the vertices, see [53, §6.2]. For example, if A is of type A
(1)
n , then ãi = 1, for all i.

Since we are considering the affine case, by [53, Theorem 5.6], the imaginary roots

of g(A) are given by the set

{kδ | k ∈ Z},

where δ =
∑n

i=0 aiαi, and the ai, i ∈ I, are the labels of the Dynkin diagram

associated to A. Observe that δ(hi) = 0, for all i ∈ I. Fix an element d ∈ h such

that αi(d) = 0, for all i ∈ I, i 6= 0, and α0(d) = 1. Then the elements h0, . . . , hn, d

form a basis of h. Moreover, we have that

g(A) = g′(A) +Kd.

In h∗, we define elements Λi by Λi(hj) = δij, and Λi(d) = 0, for i, j ∈ I. Note that

the set {Λ0, . . . ,Λn, δ} forms a basis of h∗ dual to the basis {h0, . . . , hn, d} of h.

In particular, if A is of type A
(1)
n , then we have that

αi =

{
2Λ0 − Λn − Λ1 + δ if i = 0,

2Λi − Λi−1 − Λi+1 if i > 0.

Note that, if we restrict a weight λ ∈ h∗ to g′(A), we obtain a weight λ|h′ ∈ (h′)∗ of

g′(A). In particular, (α0)|h′ = (Λ0)|h′ − (Λn)|h′ − (Λ1)|h′ since δ|h′ = 0. On the other

hand, given a weight µ ∈ (h′)∗, we can extend it to a weight µh
u of g(A), by setting

µh
u(hi) = µ(hi), for i ∈ I, µh

u(d) = u, for u ∈ K, and extending linearly.

Remark 10.1.5. Note that the set {(α0)|h′ , . . . , (αn)|h′} is in general not linearly

independent. For example, in type A
(1)
n , we have that

∑n
i=0(αi)|h′ = 0. This is one

of the reasons why it is easier to work with the Lie algebra g(A) instead of g′(A),

although the Lie algebra g′(A) is the algebra originally investigated by V. Kac and

R.V. Moody. It mimics the situation of a finite-dimensional Lie algebra, where

the simple roots are linearly independent. On the other hand, the presentation by

generators and relations of g′(A) is more natural compared to that of g(A), having in

mind the definition of a finite-dimensional Lie algebra by the Chevalley generators.
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Chapter 10. Kac–Moody algebras

For each i ∈ I, we define the fundamental reflection ri of the space h∗ by setting

ri(λ) = λ− λ(hi)αi, λ ∈ h∗.

The subgroup W of GLn+2(h∗) generated by all fundamental reflections is called the

Weyl group of g(A).

10.2 Representation theory of Kac–Moody alge-

bras

Keep the notation of the last section. In this section we will describe the funda-

mental notions of the representation theory of g(A). From now on we assume that

all the generalized Cartan matrices are symmetrizable.

For n ≥ 1, let I = {0, . . . , n}. The free abelian group Q :=
⊕

i∈I Zαi is called the

root lattice of g, and Q+ :=
∑

i∈I Z≥0αi is called the positive root lattice. We have

a partial ordering on h∗ as follows: For λ, µ ∈ h∗, we set λ ≥ µ if λ− µ ∈ Q+.

Furthermore, let

P = {Λ ∈ h∗ | Λ(hi) ∈ Z for all i ∈ I},

and denote by P+ the subset

{Λ ∈ P | Λ(hi) ≥ 0 for all i ∈ I}

of P . The set P is called the weight lattice of g(A), the elements from P (resp. P+)

are called integral weights (resp. dominant integral weights).

For α ∈ Q, let

gα = {x ∈ g(A) | [h, x] = α(h)x, for all h ∈ h}.

By [53, Theorem 1.2], we have the following:

Proposition 10.2.1. (i) The Lie algebra g(A) admits the triangular decomposi-

tion

g(A) ∼= g− ⊕ h⊕ g+,

where the subalgebra g+ (resp. g−) is the subalgebra of g(A) generated by

the elements ei, (i ∈ I) (resp. fi (i ∈ I)), with the defining relations

(ad ei)
1−aijej = 0 (i, j ∈ I; i 6= j) (resp. (ad fi)

1−aijfj = 0, (i, j ∈ I;

i 6= j)).

(ii) We have the root space decomposition

g(A) ∼=
⊕
α∈Q

gα,

with dimK gα <∞, for all α ∈ Q.
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10.2. Representation theory of Kac–Moody algebras

(iii) There exists an involution w : g(A)→ g(A), the Chevalley involution, defined

by ei 7→ −fi, fi 7→ −ei, and h 7→ −h, i ∈ I, h ∈ h.

Remark 10.2.2. (i) Note that Proposition 10.2.1 is still true if we replace g(A)

by g′(A), and h by h′. Then we have a decomposition

g′(A) ∼=
⊕
α∈Q

g′α,

where g′α = g′(A) ∩ gα.

(ii) Sometimes it is also useful to consider the anti-involution w∗ : g(A) → g(A)

defined by ei 7→ fi, fi 7→ ei, and h 7→ h, i ∈ I, h ∈ h. It is called the Chevalley

anti-involution.

For the universal enveloping algebra U := U(g(A)) of g(A), we define U+ (resp. U0,

U−) as the subalgebra of U generated by the elements ei (resp. the elements of h,

fi), i ∈ I. Moreover, we define the root spaces to be

Uβ = {u ∈ U | [h, u] = hu− uh = β(h)u for all h ∈ h}, β ∈ h∗.

By Theorem 10.1.3 we get the following:

Proposition 10.2.3. For the universal enveloping algebra U = U(g(A)) of g(A)

the following hold.

(i) U ∼= U− ⊗ U0 ⊗ U+.

(ii) U =
⊕

β∈h∗ Uβ.

Remark 10.2.4. For the derived algebra g′(A) of g(A), we set for its universal

enveloping algebra U ′ = U(g′(A)), U ′β = U ′ ∩ Uβ, β ∈ Q. Thus, from Proposition

10.2.3 we have that

U(g′(A)) =
⊕
β∈Q

U ′β.

Moreover, if we denote by (U
′
)+ (resp. (U

′
)0, (U

′
)−) the subalgebra of U(g′(A))

generated by the elements ei (resp. the elements of h′, fi), i ∈ I, we get the

triangular decomposition

U ′ ∼= (U
′
)− ⊗ (U

′
)0 ⊗ (U

′
)+

of U ′.

A g(A)-module V is called a weight module if it has a weight space decomposition

V ∼=
⊕
µ∈h∗

Vµ,

where Vµ = {v ∈ V | hv = µ(h)v for all h ∈ h}. If Vµ 6= 0, then µ is called a

weight of V and Vµ is the weight space corresponding to µ. The dimension of Vµ as
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Chapter 10. Kac–Moody algebras

a K-vector space is called the weight multiplicity of µ. We denote by wt(V ) the set

consisting of elements λ ∈ h∗, such that Vλ 6= 0.

An element v ∈ Vµ is called a weight vector of weight µ. If eiv = 0 for all i ∈ I,

then v is called a maximal vector of weight µ. An element v ∈ Vµ is called primitive

if there exists a g(A)-submodule U of V such that v 6∈ U , and g+(v) ⊆ U . In this

case, µ is called a primitive weight.

The category O is defined in the following way. Its objects are the weight modules

V over g(A) with finite-dimensional weight spaces such that there exists a finite

number of weights λ1, . . . , λs ∈ h∗, with

wt(V ) ⊆ D(λ1) ∪ . . . ∪D(λs),

where D(λj) = {µ ∈ h∗ | µ ≤ λj}, for j = 1, . . . , s. The morphisms are g(A)-module

homomorphisms.

A weight module V is called a highest-weight module with highest weight Λ ∈ h∗ if

there exists a non-zero vector vΛ ∈ V , called a highest-weight vector, if the following

is true:

(i) eivΛ = 0, for all i ∈ I.

(ii) hvΛ = Λ(h)vΛ, for all h ∈ h.

(iii) V = U(g(A))vΛ.

It follows from condition (i) and (iii) that V = U−vΛ. Since, for i ∈ I, and v ∈ Vµ,

µ ∈ h∗, we have that fiv ∈ Vµ−αi . It follows that V has a weight space decomposition

of the form

V ∼=
⊕
Λ≥µ

Vµ, (10.2)

and, thus, V ∈ O.

Let Λ ∈ h∗. Then a g(A)-module M(Λ) with highest weight Λ is called a Verma

module if every g(A)-module with highest weight Λ is a quotient of M(Λ).

Define J(Λ) to be the left ideal of U(g(A)) generated by the elements ei, i ∈ I, and

h − Λ(h)1, h ∈ h. By [53, Proposition 9.2], for every Λ ∈ h∗ there exists a Verma

module, which is unique up to isomorphism. Moreover, there is an isomorphism of

g(A)-modules

M(Λ) ∼= U(g(A))/J(Λ).

Furthermore, M(Λ) has a unique maximal submodule N(Λ). Therefore, the g(A)-

module L(Λ) := M(Λ)/N(Λ) is irreducible, and is called the irreducible highest-

weight module of highest weight Λ.

There is the following crucial fact:

Theorem 10.2.5. Every irreducible g(A)-module in the category O is isomorphic

to L(Λ), for some Λ ∈ h∗.
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Proof. This is [53, Proposition 9.3]. �

A weight module V is called integrable if ei and fi, i ∈ I, are locally nilpotent on V ,

i.e., for all v ∈ V there exists a positive integer k such that eki v = 0 and fki v = 0,

for all i ∈ I.

The full subcategory of the category O consisting of integrable g(A)-modules is

denoted by Oint.

Proposition 10.2.6. Let L(Λ) be the irreducible highest-weight g(A)-module of

highest weight Λ ∈ h∗. Then the following hold:

(i) L(Λ) ∈ Oint if and only if Λ ∈ P+.

(ii) Let vΛ be a highest-weight vector of L(Λ). Then for all i ∈ I, we have that

f
Λ(hi)+1
i vΛ = 0.

Proof. See [53, Lemma 10.1]. �

We also note the following analogue of 10.2.5 in Oint:

Proposition 10.2.7. Every irreducible highest-weight g(A)-module in the category

Oint is isomorphic to some L(Λ), with Λ ∈ P+.

Proof. This can be found in [53, Theorem 10.7]. �

Remark 10.2.8. Note that in [53] the field K is the field of complex numbers.

However, all the results stated here are also true over arbitrary fields of characteristic

zero, see [47].

10.3 Relating the representation theory of g′(A)

to that of g(A)

For the derived algebra g′(A) = [g(A), g(A)], we may define weight modules and

integrable modules in the same fashion as for g(A), see [53, §9.10]: A g′(A)-module

V is called a highest-weight module with highest weight Λ ∈ (h′)∗ if it admits a

Q+-grading V =
⊕

α∈Q+
VΛ−α such that the following conditions are satisfied:

(i) g′β(VΛ−α) ⊆ VΛ−α+β, for all β ∈ Q.

(ii) dimK VΛ = 1.

(iii) hv = Λ(h)v, for h ∈ h′, v ∈ VΛ.

(iv) V = U(g′(A))VΛ.
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In the same way as in the preceding section, for Λ ∈ (h′)∗, we define the Verma

module M(Λ) over g′(A) as the g′(A)-module with highest weight Λ such that

every highest-weight g′(A)-module with highest weight Λ is a quotient of M(Λ).

Then M(Λ) has a unique maximal graded g′(A)-submodule, and we set L(Λ) =

M(Λ)/N(Λ). We have the following:

Proposition 10.3.1. The g′(A)-module L(Λ) is irreducible.

Proof. See [53, Lemma 9.10]. �

Note that we can consider a highest-weight g′(A)-module V with highest weight

Λ ∈ (h′)∗ as a restriction of a highest-weight module over g(A). For the sake of

simplicity, in the following we assume that corank(A) = 1.

Let V =
⊕

α∈Q+
VΛ−α be a Q+-grading of V as above. Since {h0, . . . , hn, d} is a

basis of h, we can define a weight Λ̃a ∈ h∗, by setting Λ̃a(hi) = Λ(hi), for all i ∈ I,

and Λ̃a(d) = a, for some a ∈ K, and extending linearly. Clearly we have that

(Λ̃a)|h′ = Λ. Also, we define a g(A)-module Ṽa, by setting Ṽa = V as a K-vector

space, letting ei, fi, hi act on Ṽa as on V , for all i ∈ I. For α ∈ Q+ and x ∈ VΛ−α,

we define dx = (Λ̃a − α)(d)x. It is easy to verify that this defines a g(A)-module

structure on V . For example, if x ∈ VΛ−α, then

(dei)x = (eid+ αi(d)ei)x = (Λ̃a − α)(d)(eix) + αi(d)(eix)

= (Λ̃a − α + αi)(d)(eix) = d(eix)

since eix ∈ VΛ−α+αi .

Then we have that (Ṽa)Λ̃a−α = VΛ−α, and hence Ṽa =
⊕

α∈Q+
(Ṽa)Λ̃a−α. From

condition (i), we infer that eiVΛ = 0, for all i ∈ I. Together with (iii) and (iv), we

conclude that Ṽa is a highest-weight g(A)-module with highest weight Λ̃a. Moreover,

it is easy to see that the restriction of Ṽa to g′(A) equals V .

If Λ ∈ h∗, we may describe it by the labels Λ(hi), i ∈ I. Then, if Λ,Φ ∈ h∗ have the

same labels, they differ only off h′. In this case, if L(Λ) and L(Φ) are irreducible

g(A)-modules, then on restriction to g′(A), they are isomorphic as irreducible g′(A)-

modules.

Example 10.3.2. Let Λi, i ∈ I, denote the fundamental weights in (h′)∗. Then

we consider (̃Λi)0 ∈ h∗. From our definitions of (̃Λi)0 we see that (̃Λi)0 = Λi, a

fundamental weight in h∗. If L(Λi) denotes the irreducible highest-weight module of

highest weight Λi ∈ h∗ over g(A), then its restriction to g′(A) equals the irreducible

highest-weight module of highest weight Λi over g′(A).

The next proposition gives a characterization of the module L(Λ), Λ ∈ P+.

Proposition 10.3.3. Let Λ ∈ (h′)∗ be such that Λ(hi) ∈ Z+, for all i ∈ I. Then

the g′(A)-module L(Λ) is characterized by the property that it is irreducible and that

there exists a non-zero vector v ∈ L(λ) with hiv = Λ(hi)v and eiv = 0, for all i ∈ I.
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Proof. This is [53, Proposition 10.4]. �

As for g(A), we define the category O for g′(A)-modules. We have the following:

Proposition 10.3.4. Let V be a non-zero module from the category O. Then:

(i) V contains a non-zero weight vector such that g+(v) = 0.

(ii) The following conditions are equivalent:

(a) V is irreducible.

(b) V is a highest-weight module and any primitive vector of V is a highest-

weight vector.

(c) V ∼= L(Λ) for some Λ ∈ h′.

(iii) V is generated by its primitive vectors as a g′(A)-module.

Proof. The proof of [53, Proposition 9.3] for g(A)-modules carries over. �

Therefore, Proposition 10.3.4 gives a bijection between isomorphism classes of irre-

ducible modules in O and elements Λ ∈ (h′)∗.

By Oint we denote the category of all integrable g′(A)-modules V with the property

that for every v ∈ V there is some m ∈ N such that ei1 · · · eisv = 0, for ij ∈ I,

whenever s ≥ m. Of course, the category Oint is a full subcategory of the category

O.

Remark 10.3.5. Note that if V is a highest-weight module of highest weight Λ,

such that Λ(hi) ≥ 0, for all i ∈ I, then it follows from (10.2) that V has the latter

property.

The next theorem states that every module in the category Oint is semisimple.

Theorem 10.3.6. Every g′(A)-module in Oint decomposes into a direct sum of

irreducible g′(A)-modules L(Λ) such that Λ(hi) ∈ Z+, for all i ∈ I.

Proof. See [53, Theorem 10.7]. �

Next, let L(Λ) denote an irreducible g′(A)-module in Oint, and let

L(Λ)∗ =
∏
λ≤Λ

(L(Λ)λ)
∗

be the g′(A)-module contragredient to L(Λ). The subspace L∗(Λ) :=
⊕

λ≤Λ(L(Λ)λ)
∗

of the latter is then a g′(A)-submodule of L(Λ)∗. The module L∗(Λ) is again irre-

ducible, and for v ∈ (L(Λ)Λ)∗, we have that

(1) g−(v) = 0,

(2) hv = −Λ(h)v, for h ∈ h′.
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We shall refer to such a module as an irreducible module with lowest weight −Λ.

Then, Proposition 10.3.4 gives a bijection between the elements of (h′)∗ and the

irreducible lowest weight modules of g′(A).

Recall the definition of the Chevalley involution w and the Chevalley anti-involution

w∗ of g′(A) from Proposition 10.2.1 and Remark 10.2.2. Denote by πΛ the action of

g′(A) on L(Λ). We introduce a new action π∗Λ on the vector space L(Λ), by defining

π∗Λ(u)v = πΛ(w(u))v,

for u ∈ g′(A) and v ∈ L(Λ). This new action affords an irreducible g′(A)-module

with lowest weight −Λ. By Proposition 10.3.4, this module must be isomorphic

to L(Λ)∗. Under this identification, the duality pairing between L(Λ)∗ and L(Λ)

induces a non-degenerate bilinear form B on L(Λ) with the property

B(ux, y) = −B(x,w(u)y), u ∈ g′(A), x, y ∈ L(Λ). (10.3)

A bilinear form on L(Λ) satisfying (10.3), is called a contravariant form. One has

the following:

Proposition 10.3.7. On every irreducible highest-weight g′(A)-module L(Λ) one

may define a non-degenerate contravariant bilinear form that is unique up to a

constant factor. It is symmetric and L(Λ) decomposes into an orthogonal direct

sum of weight spaces with respect to this form.

Proof. This is [53, Proposition 9.4]. �

One can construct such a contravariant form explicitly. Let V be a highest-weight

g′(A)-module with highest-weight vector vΛ. For v ∈ V , we define an element

〈v〉 ∈ K via the expression

v = 〈v〉vΛ +
∑

α∈Q+\{0}

vΛ−α,

where vΛ−α ∈ VΛ−α. Using the triangular decomposition of g′(A), one sees that

〈w∗(a)vΛ〉 = 〈avΛ〉,

for all a ∈ g′(A). Hence, for a, a′ ∈ g′(A), we get that

〈w∗(a)a′vΛ〉 = 〈w∗(a)w∗(w∗(a′))vΛ〉
= 〈w∗(w∗(a′)a)vΛ〉
= 〈w∗(a′)avΛ〉.

Therefore, if we set

B(avΛ, a
′vΛ) = 〈w∗(a)a′vΛ〉, (10.4)

we obtain a well-defined symmetric bilinear form on V , which is contravariant and

normalized, that is to say,

B(vΛ, vΛ) = 1.
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Cyclotomic quotients, cyclotomic

functors and their adjoints

In this chapter we will discuss important factor algebras of Hn(q), called cyclo-

tomic Hecke algebras, and define the cyclotomic analogues of the functors defined

in Chapter 9. Furthermore, we will define their adjoints as well, and give crucial

properties of these, which will become important in later sections. The definitions

of the functors are based on the ideas of I. Grojnowski [44].

11.1 Cyclotomic quotients

In the following we use the notation given in Chapter 10. Let l > 1 be the order of

the parameter q ∈ F×, where we assume that l is finite. Denote by g(A) the affine

Kac–Moody algebra associated to the generalized Cartan matrix A of type A
(1)
l−1 over

Q. We label the Dynkin diagram of A
(1)
l−1 by the index set I := Z/lZ = {0, . . . , l−1}.

Let {αi | i ∈ I} be the set of simple roots, and {hi | i ∈ I} the set of simple coroots

of g. Also, recall from Remark 10.1.2 the definition of the bilinear form

〈., .〉 :
⊕
i∈I

Zαi ×
⊕
i∈I

Zhi −→ Z,

given by 〈αi, hj〉 = aij, for 0 ≤ i, j ≤ l − 1. Moreover, recall from Chapter 10

the definition of the root lattice Q =
⊕

i∈I Zαi, the positive root lattice Q+ =⊕
i∈I Z≥0αi, the weight lattice P = {h ∈ h∗ | 〈h, hi〉 ∈ Z, i ∈ I}, the fundamental

weights {Λi | i ∈ I} ⊆ P , and the set of dominant integral weights P+ = {h ∈ P |
〈h, hi〉 ≥ 0, i ∈ I} ⊆ P . Note that if h ∈ P+, then we may also identify h with a

function λh : I → Z≥0. As in Chapter 10, we set

c =
l−1∑
i=0

hi, δ =
l−1∑
i=0

αi.

The element δ is the basic imaginary root of g(A). Then Λ0, . . . ,Λl−1, δ form a

Z-basis of P , and 〈αi, c〉 = 〈δ, hi〉 = 0. Observe that αi =
∑l−1

j=0 ajiΛj. This equals
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2Λi − Λi−1 − Λi+1 if 0 < i < l − 1, 2Λ0 − Λ1 − Λl−1 if i = 0, and 2Λl−1 − Λl−2 − Λ0

if i = l − 1.

Let Λ ∈ P+, and denote by JΛ the two-sided ideal in Hn(q) generated by the element∏
i∈I(x1 − qi)〈Λ,hi〉. Then the quotient

HΛ
n (q) = Hn(q)/JΛ (11.1)

is an F -algebra, called the cyclotomic Hecke algebra corresponding to Λ ∈ P+. If d

is the degree of the monic polynomial
∏

i∈I(x1 − qi)〈Λ,hi〉, then by [44, Proposition

4.5] we have that the images of the elements

xαTw ∈ Hn(q),

where w ∈ W (n), and α = (α1, . . . , αn) ∈ Zn with 0 ≤ αi < d, 1 ≤ i ≤ n, form

a basis of HΛ
n (q) as an F -vector space. Note that, for Λ = Λ0, this is just the

finite-dimensional Hecke algebra Hf
n(q). Henceforth, we will write Ti for the images

of the elements Ti ∈ Hn(q), 1 ≤ i ≤ n − 1, under this quotient. Also write T0 for

the image of x1.

We can also follow the lead of Ariki and Koike, see [4], who defined HΛ
n (q) by

generators and relations: As an F -algebra, HΛ
n (q) is generated by T0, T1, . . . , Tn−1

together with the relations

(1)
∏

i∈I(T0 − qi)〈Λ,hi〉 = 0.

(2) T0T1T0T1 = T1T0T1T0.

(3) T 2
i = (q − 1)Ti + q.

(4) TiTi+1Ti = Ti+1TiTi+1, and TiTj = TjTi if |i− j| > 1.

Throughout, we denote by evΛ the algebra homomorphism corresponding to the

quotient of (11.1). Then one can show the following important fact.

Proposition 11.1.1. For all 2 ≤ i ≤ n, the image of the element xi under evΛ

equals

Li := q1−iTi−1 · · ·T1T0T1 · · ·Ti−1.

Proof. This can be proven by induction using the defining relation TixiTi = qxi+1

of Hn(q), for 1 ≤ i ≤ n− 1. �

The elements Li, 1 ≤ i ≤ n, are the cyclotomic analogues of the Jucys–Murphy

elements in the case of a finite-dimensional Hecke algebra of type A, see [68, Chapter

3, §3]. With this we get the following:

Theorem 11.1.2. Let Λ ∈ P+, and write r =
∑

i∈I〈Λ, hi〉. The algebra HΛ
n (q) is

free as an F -vector space with basis

{La1
1 · · ·Lann Tw | w ∈ W (n), 0 ≤ ai < r, 1 ≤ i ≤ n}. (11.2)

In particular, dimF H
Λ
n (q) = rnn!.
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Proof. See [4, Theorem 3.10]. �

In the special case when r = 1, we obtain the well-known fact that the set

{Tw | w ∈ W (n)}

forms an F -basis of Hf
n(q).

Next, we want to define some important subcategories of the category Hn(q)−mod.

Let Hn(q)−modq be the full subcategory of Hn(q)−mod consisting of modules M

such that x1 has eigenvalue a power of q. Note that for an exact sequence

0 −→M1 −→M2 −→M3 −→ 0

in Hn(q)−mod the following holds: If two modules occurring in the sequence are in

Hn(q)−modq, then so is the third. Thus, Hn(q)−modq is closed under submodules,

quotients and extensions. Moreover, one has the following amazing property:

Proposition 11.1.3. If M ∈ Hn(q) − mod, and if there is some 1 ≤ i ≤ n such

that the only eigenvalues of xi on M are powers of q, then for all 1 ≤ j ≤ n, the

only eigenvalues of xj on M are powers of q.

Proof. See [44, Lemma 4.7]. �

In the following, we will denote by

ev∗Λ : HΛ
n (q)−mod −→ Hn(q)−mod

the inflation along the surjective ring homomorphism evΛ. Since, by definition of

HΛ
n (q),

∏
i∈I(T0 − qi)〈Λ,hi〉 = 0, we have that if M ∈ HΛ

n (q)−mod, then ev∗Λ(M) ∈
Hn(q)−modq.

Next, denote by Hn(q)−modΛ
q the full subcategory of Hn(q)−mod whose objects are

the modules M such that the Jordan blocks of the operator x1 corresponding to the

eigenvalue qi have size ≤ (Λ, αi), for all i ∈ I, and there are no other eigenvalues. In

other words, Hn(q)−modΛ
q consists of modules that are annihilated by the element∏

i∈I(x1 − qi)〈Λ,hi〉. We have the following:

Proposition 11.1.4. For all Λ ∈ P+, the functor ev∗Λ induces an equivalence

ev∗Λ : HΛ
n (q)−mod −→ Hn(q)−modΛ

q (11.3)

of categories.

Proof. By [5, Lemma 1.2], we see that the elements Li, i ∈ I, act with eigenvalues a

power of q on each M ∈ HΛ
n (q)−mod. Hence, via restriction, ev∗Λ is a well-defined

functor. On the other hand, let M ∈ Hn(q) −modΛ
q . We want to define an action

of HΛ
n (q) on M . Let hΛ ∈ HΛ

n (q). Then, for some representative h ∈ ev−1
Λ (hΛ),

we define hΛm = hm. If h′ is another representative in ev−1
Λ (hΛ), then h − h′ ∈

Ker(evΛ). Since
∏

i∈I(x1 − qi)〈Λ,hi〉 annihilates M , we see that h and h′ act in the
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same way on M . It is clear that this gives mutually inverse equivalences between

HΛ
n (q)−mod and Hn(q)−modΛ

q . �

If N ∈ Hn(q) −mod, then N/JΛN is an Hn(q)-module on which JΛ acts trivially,

i.e., N/JΛN is an HΛ
n (q)-module. If M ∈ HΛ

n (q)−mod, then we have isomorphisms

of F -vector spaces

HomHΛ
n (q)(N/JΛN,M) ∼= HomHn(q)(N/JΛN, ev∗Λ(M)) ∼= HomHn(q)(N, ev∗Λ(M)),

where we have used the fact that, by assumption, JΛ annihilates ev∗Λ(M). Therefore,

if we define the functor

prΛ : Hn(q)−mod −→ HΛ
n (q)−mod (11.4)

by prΛ(N) = N/JΛN , then the exact functor ev∗Λ is right adjoint to prΛ. Similarly,

if we define the functor

p̂rΛ : Hn(q)−mod −→ HΛ
n (q)−mod, (11.5)

via p̂rΛ(N) = NJΛ , where NJΛ denotes the largest submodule of N such that JΛN =

0, then ev∗Λ is a left adjoint of p̂rΛ.

Remark 11.1.5. By Proposition 11.1.4, we know that

ev∗Λ : HΛ
n (q)−mod −→ Hn(q)−modΛ

q

is an equivalence of categories. If we denote by

ev∗Λ
−1 : Hn(q)−modΛ

q −→ HΛ
n (q)−mod

a quasi inverse of ev∗Λ, then it is left adjoint to ev∗Λ. On the other hand, on restriction

to Hn(q)−modΛ
q we see that also prΛ is left adjoint to ev∗Λ. By uniqueness of adjoints,

it follows that both functors must be isomorphic.

11.2 Cyclotomic functors

Here, we want to define the cyclotomic analogues of the functors given in Section

9.8 as well as their adjoints. For i ∈ I, define the functors

ei : Hn(q)−modq −→ Hn−1(q)−modq,

eΛ
i : HΛ

n (q)−mod −→ HΛ
n−1(q)−mod

(11.6)

as follows. If M ∈ Hn(q) − mod, then ei(M) is the generalized eigenspace of xn
with respect to the eigenvalue qi. Since xn commutes with Hn−1(q), considered

as subalgebra of Hn(q) in the natural way, ei(M) is easily seen to be an Hn−1(q)-

module. In other words, this is just the restriction of the functor ei from Section

9.8 to the category Hn(q)−modq.
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Since x1 acts in the same way on ei(M) as on M , ei(evΛ(M)) ∈ Hn−1(q)−modΛ
q if

M ∈ HΛ
n (q) −mod. Thus, for M ∈ HΛ

n (q) −mod, if we define eΛ
i (M) = prΛ ◦ ei ◦

ev∗Λ(M), we get a functor

eΛ
i : HΛ

n (q)−mod −→ HΛ
n−1(q)−mod. (11.7)

Remark 11.2.1. In other words, for i ∈ I, the functor eΛ
i can be identified with

the restriction of ei from Hn(q)−mod to the subcategory Hn(q)−modΛ
q .

The next lemma, which is taken form [44], says that these functors are exact.

Lemma 11.2.2. The functors ei : Hn(q) − modq → Hn−1(q) − modq, and eΛ
i :

HΛ
n (q)−mod→ HΛ

n−1(q)−mod are exact.

Proof. See [44, Lemma 8.1]. �

Next, we consider the F -algebra F [x±1
n ]. This is a principal ideal domain, where

each element xn − a, a ∈ F×, is a prime element. The quotient F [x±1
n ]/〈xn − a〉 is

isomorphic to F , hence an integral domain. For m ≥ 1 and a ∈ F×, the F -algebras

Rm(a) = F [x±1
n ]/〈(xn − a)m〉 are all finite dimensional of dimension m. Moreover,

for any m ≥ 2 we denote by

pm : Rm(a) −→ Rm−1(a)

the natural algebra epimorphism with kernel 〈(xn−a)m−1〉/〈(xn−a)m〉, see Section

9.8. From these epimorphisms, we then get an inverse system

. . . −→ Rm(a) −→ Rm−1(a) −→ . . . −→ R1(a) −→ 0. (11.8)

Remark 11.2.3. Note that as an F -vector space, Rm(a) has as basis the image of

the set {1, xn − a, . . . , (xn − a)m−1} under pm. If we consider Rm(a) as an F [x±1
n ]-

module in the natural way, we see that, with respect to this basis, xn acts on Rm(a)

as the matrix 
a 1

a 1
. . .

a 1

a 1

 .

Therefore, as an F [x±1
n ]-module, Rm(a) is isomorphic to the Jordan block Lm(a) of

size m corresponding to the eigenvalue a.

Next we recall the definition of the functors fΛ
i and f̂Λ

i given in [44, §8].

Definition 11.2.4. Let n ≥ 1. For i ∈ I, define the functor

fΛ
i : HΛ

n−1(q)−mod −→ HΛ
n (q)−Mod (11.9)

by setting fΛ
i (M) = lim←−m prΛ(Ind

Hn(q)
H(n−1,1)(q)

(ev∗Λ(M) �Rm(qi))), for M ∈ HΛ
n−1(q)−

mod, where the inverse limit is taken over the inverse system in (11.8).
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From the remark above, we see that, as F -spaces, Rj(a) can be naturally embed-

ded into Rm(a), for all m ≥ 1, and 1 ≤ j ≤ m. If we denote by ij the embedding

Rj(a) → Rj+1(a), which then is even an F [x±1
n ]-homomorphism, we obtain a di-

rected system

R1(a)
i1−→ R2(a)

i2−→ . . .
im−1−→ Rm(a)

im−→ . . . . (11.10)

Therefore, for i ∈ I, we may also define a functor

f̂Λ
i : HΛ

n−1(q)−mod −→ HΛ
n (q)−Mod (11.11)

given by f̂Λ
i (M) = lim−→m

p̂rΛ(Înd
Hn(q)

H(n−1,1)(q)(ev∗Λ(M)�Rm(qi))), M ∈ HΛ
n−1(q)−mod,

with respect to the above direct system.

Up to now, we do not know whether fΛ
i and f̂Λ

i send finite-dimensional modules to

finite-dimensional ones. The next proposition clarifies the situation.

Proposition 11.2.5. Let M ∈ Hn−1(q)−mod. Then:

(i) The inverse system prΛ(Ind
Hn(q)
H(n−1,1)(q)

(M � Rm(qi))) stabilizes after finitely

many steps.

(ii) The direct system p̂rΛ(Înd
Hn(q)

H(n−1,1)(M �Rm(qi))) stabilizes after finitely many

steps.

In particular, for any i ∈ I, the functors fΛ
i and f̂Λ

i send finite-dimensional modules

to finite-dimensional ones, hence, give well-defined functors fΛ
i , f̂

Λ
i : HΛ

n−1(q) −
mod→ HΛ

n (q)−mod.

Proof. We show (i), the argumentation for (ii) being similar. To this end we

show that the dimension of prΛ(Ind
Hn(q)
H(n−1,1)(q)

(M � Rm(qi))) as an F -vector space

is bounded by a natural number, which is independent of m. To this end, let v

be a vector which generates the Jordan block Rm(qi) as an F [x±1
n ]-module. Let

V = Fv be the one-dimensional subspace of Rm(qi) spanned by v. It follows that

Ind
Hn(q)
H(n−1,1)(q)

(M�Rm(qi)) is generated as an Hn(q)-module by the F -subspace W =

1⊗(M⊗V ), and this has F -dimension independent of m. But prΛ(Ind
Hn(q)
H(n−1,1)(q)

(M�

Lm(qi))) is a quotient of the vector space HΛ
n (q) ⊗F W , whose dimension is again

independent of m. Thus, (i) follows. �

The next theorem, which is [44, Proposition 8.4] and is a consequence of the previous

proposition, is fundamental in our further considerations. By [44, §8, Remark 3],

the functor ei can be alternatively described as

ei(M) = lim−→
m

HomF [x±1
n ](Rm(qi),M), (11.12)

for M ∈ Hn(q) − modq, where the direct limit is taken over the inverse system

in (11.8). This is just another way of expressing the generalized eigenspace of

the operator xn on M corresponding to the eigenvalue qi. Moreover, we need the

following:
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Lemma 11.2.6. Let A and B be F -algebras, L an A-module, M a B-module, and

N an A⊗B-module. Then there is an isomorphism

HomA⊗B(L�M,N) ∼= HomA(L,HomB(M,N))

of F -vector spaces, which is natural in L and N .

Proof. It is straightforward to check that the map

ψ : HomA⊗B(L�M,N) −→ HomA(L,HomB(M,N)),

defined by f 7→ f̃ : l 7→ (m 7→ f(l �m)) gives an isomorphism of F -vector spaces.

�

Theorem 11.2.7. Let i ∈ I. The functor fΛ
i : HΛ

n−1(q)−mod → HΛ
n (q)−mod is

left adjoint to the functor eΛ
i : HΛ

n (q) − mod → HΛ
n−1(q) − mod. Similarly, f̂Λ

i is

right adjoint to eΛ
i .

Proof. Let M ∈ HΛ
n (q)−mod, and N ∈ HΛ

n−1(q)−mod. Then

HomHΛ
n−1(q)(N, e

Λ
i (M))

= HomHΛ
n−1(q)(N, prΛ ◦ ei ◦ ev∗Λ(M)))

∼= HomHn−1(q)(ev∗Λ(N), ei(ev∗Λ(M)))

= HomHn−1(q)(ev∗Λ(N), lim−→
m

HomF [x±1
n ](Rm(qi), ev∗Λ(M)))

∼= lim−→
m

HomHn−1(q)(ev∗Λ(N),HomF [x±1
n ](Rm(qi), ev∗Λ(M)))

∼= lim−→
m

HomH(n−1,1)(q)(ev∗Λ(N) �Rm(qi), ev∗Λ(M)),

by Lemma 11.2.6, and since the first direct system stabilizes after finitely many

terms. Also, since Ind
Hn(q)
H(n−1,1)(q)

is left adjoint to Res
Hn(q)
H(n−1,1)(q)

, as well as prΛ is left

adjoint to ev∗Λ, we have:

HomHΛ
n−1(q)(N, e

Λ
i (M))

∼= lim−→
m

HomH(n−1,1)(q)(ev∗Λ(N) �Rm(qi), ev∗Λ(M))

∼= lim−→
m

HomHn(q)(Ind
Hn(q)
H(n−1,1)(q)

(ev∗Λ(N) �Rm(qi)), ev∗Λ(M))

∼= lim−→
m

HomHΛ
n (q)(prΛ(Ind

Hn(q)
H(n−1,1)(q)

(evΛ(N) �Rm(qi))),M)

∼= HomHΛ
n (q)(lim←−

m

prΛ(Ind
Hn(q)
H(n−1,1)(q)

(evΛ(N) � Lm(qi))),M)

= HomHΛ
n (q)(f

Λ
i (N),M),

where we have used that, by Proposition 11.2.5, the inverse limit stabilizes after

finitely many terms. Note that all the isomorphisms above are natural. It follows

that fΛ
i is left adjoint to eΛ

i . The proof for f̂Λ
i is similar. �
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Remark 11.2.8. From (11.12) we also obtain an alternative description of the

functor eΛ
i , namely:

eΛ
i (M) = lim−→

m

prΛHomF [x±1
n ](Rm(qi), ev∗Λ(M)),

for M ∈ HΛ
n (q)−mod.

Recall from Lemma 9.6.1 that we have a decomposition

Hn(q)−mod ∼=
⊕

γ∈Sn/∼

Hn(q)−mod[γ]

of categories. By Proposition 9.6.2 and the Krull–Schmidt Theorem, the full sub-

category Hn(q)−mod[γ] can be characterized as the full subcategory of Hn(q)−mod

consisting of all finite-dimensional Hn(q)-modules whose central character is γ.

Moreover, these subcategories are precisely the blocks of Hn(q). For Λ ∈ P+,

we infer from Theorem 9.5.1 and Proposition 11.1.1 that the image of the center

of Hn(q) under evΛ is contained in the center of HΛ
n (q). Therefore, we also may

decompose HΛ
n (q)−mod as

HΛ
n (q)−mod ∼=

⊕
γ∈Sn/∼

HΛ
n (q)−mod[γ]. (11.13)

The fact that the categories HΛ
n (q)−mod[γ] are actually the blocks of HΛ

n (q)−mod

is non-trivial and a proof of this is given in [64].

In the following, let γ := (γ1, . . . , γn) ∈ Sn/ ∼, see Section 9.6, and suppose that

qi ∈ {γ1, . . . , γn}. We may assume that γn = qi. We will write γ \ qi to denote the

unique W (n − 1)-orbit obtained by deleting qi from γ. Moreover, write γ + qi for

the W (n + 1)-orbit of (γ1, . . . , γn, q
i) in Sn+1/ ∼. We then obtain a refinement of

the functors eΛ
i and fΛ

i , see also [44, Lemma 8.6].

Proposition 11.2.9. Let n ≥ 1, and let i ∈ I. The functors ei and eΛ
i descend to

functors

Hn(q)−mod[γ] −→ Hn−1(q)−mod[γ \ qi] and

HΛ
n (q)−mod[γ] −→ HΛ

n−1(q)−mod[γ \ qi],

where for M ∈ Hn(q)−mod (resp. M ∈ HΛ
n (q)−mod), ei(M) = 0 (resp. eΛ

i (M) =

0), whenever qi 6∈ {γ1, . . . , γn}. Similarly, the functors fΛ
i and f̂Λ

i restrict to functors

HΛ
n (q)−mod[γ]→ HΛ

n+1(q)−mod[γ + qi].

Proof. Since on objects, ei(M) is just the generalized eigenspace of the operator xn
with respect to the eigenvalue qi, we see that ei(M) = 0 if qi 6∈ γ.
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For the functor fΛ
i , we may assume that M is indecomposable. Then M = Ms,

for some s ∈ Sn. Thus, by Lemma 9.5.7, we see that the possible central char-

acters for Ind
Hn+1(q)
H(n,1)(q)

(evΛ(M) � Lm(qi)) are obtained by shuffling s and qi. Thus

Ind
Hn+1(q)
H(n,1)(q)

(evΛ(M) � Lm(qi)) ∈ Hn+1(q) − mod[γ + qi]. But if a module N is in

Hn(q) − mod[γ + qi], then prΛ(N) ∈ HΛ
n+1(q) − mod[γ + qi]. Therefore, fΛ

i (M) ∈
HΛ
n+1(q)−mod[γ + qi]. The proof for f̂Λ

i is similar. �

We also get a refinement of Theorem 11.2.7, see [44, Proposition 8.7].

Proposition 11.2.10. Let i ∈ I. The functor

fΛ
i : HΛ

n−1(q)−mod[γ]→ HΛ
n (q)−mod[γ + qi]

is left adjoint to the functor

eΛ
i : HΛ

n (q)−mod[γ + qi]→ HΛ
n−1(q)−mod[γ].

Similarly, f̂Λ
i is a right adjoint of eΛ

i .

Proof. This follows from Proposition 11.2.9 since, by Theorem 11.2.7, fΛ
i is left

adjoint to eΛ
i on the whole of HΛ

n−1(q)−mod. �

We also have the following, which is [44, Lemma 8.8]:

Proposition 11.2.11. Let M ∈ HΛ
n (q)−mod, then:

(i) Res
HΛ
n (q)

HΛ
n−1(q)

(M) ∼=
⊕

i∈I e
Λ
i (M) as HΛ

n−1(q)-modules.

(ii) Ind
HΛ
n+1(q)

HΛ
n (q)

(M) ∼=
⊕

i∈I f
Λ
i (M) ∼=

⊕
i∈I f̂

Λ
i (M) as HΛ

n+1(q)-modules.

Proof. Part (i) follows from the theory developed in Section 9.6. Part (ii) follows

from Propositions 11.2.9 and 11.2.10. �

From this we obtain the following corollary, see [44, Corollary 8.9]:

Corollary 11.2.12. The following hold for the functors fΛ
i , f̂

Λ
i : HΛ

n−1(q)−mod→
Hn(q)−mod:

(i) As functors, fΛ
i
∼= f̂Λ

i .

(ii) fΛ
i and f̂Λ

i are exact.

Proof. The first part follows from Proposition 11.2.11 (ii) and Proposition 11.2.9.

The second part follows from (i), because from the latter we infer that fΛ
i is both

a left and a right adjoint, and as such an exact functor. �

As a consequence of the preceding results, one gets:

Proposition 11.2.13. If M ∈ HΛ
n (q)−mod is projective, then so are eΛ

i (M) and

fΛ
i (M).
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Proof. Since restriction and induction take free modules to free modules, the result

follows from Proposition 11.2.11. �

Recall the definition of the functor e
(r)
i : Hn(q)−mod→ Hn−r(q)−mod, for i ∈ I,

and 1 ≤ r ≤ n, from Section 9.8. As e
(r)
i takes finite-dimensional Hn(q)-modules to

finite-dimensional Hn−r(q)-modules, we have a functor

e
(r)
i ◦ evΛ : HΛ

n (q)−mod −→ Hn−r(q)−mod.

Moreover, from the definition of e
(r)
i , we see that, for M ∈ HΛ

n (q)−mod, the element∏
i∈I(x1 − qi)〈Λ,hi〉 must annihilate e

(r)
i (M) since it annihilates M . This shows that

we get a well-defined functor

(eΛ
i )(r) := prΛ ◦ e

(r)
i ◦ ev∗Λ : HΛ

n (q)−mod −→ HΛ
n−r(q)−mod. (11.14)

With Theorem 9.8.3, we obtain:

Theorem 11.2.14. Let i ∈ I. There is an isomorphism of functors

(eΛ
i )r ∼=

⊕
r!

(eΛ
i )(r)

from HΛ
n (q)−mod to HΛ

n−r(q)−mod.

Proof. Recall from the beginning of this section that on restriction to the category

Hn−r(q)−modΛ
q , the functor prΛ gives an inverse equivalence to the equivalence

ev∗Λ : HΛ
n−r(q)−mod −→ Hn−r(q)−modΛ

q .

Thus, if M ∈ HΛ
n (q) − mod, we obtain the desired result by using Theorem 9.8.3.

�

Recall the Hr(q)
′ denotes the subalgebra of Hn+r(q) generated by

x±1
n+1, . . . , x

±1
n+r, Tn+1, . . . , Tn+r−1.

Furthermore, in Section 9.8 we considered the Hr(q)
′-modules Lm((qi)r), for m ≥ 1,

and the inverse system associated with them. Then, for r ≥ 1 and M ∈ HΛ
n (q) −

mod, we define a functor

(fΛ
i )(r) : HΛ

n (q)−mod −→ HΛ
n+r(q)−mod

by setting

(fΛ
i )(r)(M) = lim←−

m

prΛ(Ind
Hn+r(q)
H(n,r)(q)

(evΛ(M) � Lm((qi)r))). (11.15)

Observe that Lm((qi)r) is a cyclic Hr(q)
′-module. Therefore, with the same argu-

mentation as in Proposition 11.2.5, we see that the inverse limit above stabilizes

after finitely many terms, and thus, (fΛ
i )(r)(M) is indeed finite dimensional.
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Theorem 11.2.15. For all i ∈ I, and r ≥ 1, the functor (fΛ
i )(r) is left adjoint to

the functor (eΛ
i )(r).

Proof. Let M ∈ HΛ
n (q)−mod, and N ∈ HΛ

n+r(q)−mod. Then

HomHΛ
n (q)(M, (eΛ

i )(r)(N))
∼= HomHn(q)(ev∗Λ(M), lim−→

m

HomHr(q)′(Lm((qi)r), ev∗Λ(N))

∼= lim−→
m

HomHn(q)(ev∗Λ(M),HomHr(q)′(Lm((qi)r), ev∗Λ(N))

∼= lim−→
m

HomH(n,r)(q)(ev∗Λ(M) � Lm((qi)r), ev∗Λ(N))

∼= lim−→
m

HomHn+r(q)(Ind
Hn+r(q)
H(n,r)(q)

(ev∗Λ(M) � Lm((qi)r)), ev∗Λ(N))

∼= lim−→
m

HomHΛ
n+r(q)

(prΛInd
Hn+r(q)
H(n,r)(q)

(ev∗Λ(M) � Lm((qi)r)), N)

∼= HomHΛ
n+r(q)

(lim←−
m

prΛInd
Hn+r(q)
H(n,r)(q)

(ev∗Λ(M) � Lm((qi)r)), N)

= HomHΛ
n+r(q)

((fΛ
i )(r)(M), N),

where we have used that the direct and inverse limit stabilizes after finitely many

steps and Lemma 11.2.6. Furthermore, all the above isomorphisms are natural in

M and N , thus the claim follows. �

Let M ∈ HΛ
n (q)−mod[γ], for a central character γ = (γ1, . . . , γn) of Hn(q). In view

of Proposition 11.2.9 and Proposition 11.2.11, for i ∈ I, we a have that

eΛ
i (M) =

{
(Res

HΛ
n (q)

HΛ
n−1(q)

(M))[γ \ qi] if qi ∈ {γ1, . . . , γn},
0 if qi 6∈ {γ1, . . . , γn},

(11.16)

on the one hand, and

fΛ
i (M) = (Ind

HΛ
n+1(q)

HΛ
n (q)

(M))[γ + qi]

on the other. From Propositions 11.2.10 and 11.2.11 we already know that the

functors Ind
HΛ
n (q)

HΛ
n−1(q)

and Res
HΛ
n (q)

HΛ
n−1(q)

are left and right adjoint to one another. From

the above description of eΛ
i and fΛ

i , we get another proof of this fact.

This has also consequences for the functors (eΛ
i )(r) and (fΛ

i )(r), for i ∈ I, and r > 0.

Recall that by Theorem 9.8.5, we have a functorial isomorphism

(eΛ
i )(r)(M) ∼= (∆(qi)r(M))W (r)′ , (11.17)

for M ∈ HΛ
n (q)−mod. From the definition of eΛ

i (M), we have that

(eΛ
i )r(M) = ∆(qi)r(M)

as HΛ
n−r(q)-modules. Hence, with our new description of the functor eΛ

i we get that

(eΛ
i )(r)(M) ∼= ((Res

HΛ
n (q)

HΛ
n−r(q)

(M))[γ \ rqi])W (r)′ . (11.18)
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For notational reasons, in the following, we will also write MHf
n(q) for the subset

MW (n) of an Hn(q)-module M .

Next, we will recall some facts about the finite-dimensional Hecke-algebra Hf
n(q),

n ≥ 0. Recall that Hf
n(q) becomes an augmented algebra via the surjective F -

algebra homomorphism

ε : Hf
n(q)→ F (11.19)

defined by ε(
∑
rwTw) =

∑
ql(w)rw. Considering F as a left Hf

n(q)-module via ε, we

obtain the trivial left module for Hf
n(q). We could also view F as a right Hf

n(q)-

module via ε, and obtain the trivial right Hf
n(q)-module. Moreover, if M is an

Hf
n(q)-module such that Twm = ql(w)m, for all w ∈ W (n) and m ∈M , we say that

Hf
n(q) acts trivially on M .

In the following we will denote by Aug the kernel of ε. It is easy to see that the

elements of Hf
n(q) of the form Tw − ql(w), w ∈ W (n), w 6= 1, are contained in Aug.

Since the set {Tw | w ∈ W (n)} forms a basis of Hf
n(q) as an F -vector space, we see

that these elements are linearly independent over F . Considering dimensions, we

have that dimF Aug = n!− 1. Therefore, the two-sided ideal Aug is spanned by the

set {Tw − ql(w) | w ∈ W (n), w 6= 1}.
Next, consider the exact sequence

0 −→ Aug
ker(ε)−−−→ Hf

n(q)
ε−→ F −→ 0 (11.20)

of rightHf
n(q)-modules afforded by ε. Tensoring with a finite-dimensional leftHf

n(q)-

module M gives an exact sequence

Aug ⊗Hf
n(q) M

ker(ε)⊗1−−−−−→ Hf
n(q)⊗Hf

n(q) M
ε⊗1−−→ F ⊗Hf

n(q) M −→ 0 (11.21)

of leftHf
n(q)-modules, where 1 = idM . Of course, Hf

n(q)⊗Hf
n(q)M

∼= M as leftHf
n(q)-

modules, where the isomorphism is given by the map determined by h⊗m 7→ hm.

Under this isomorphism, the image of ker(ε)⊗ 1 equals

Aug ·M = {
∑

aimi | ai ∈ Aug,mi ∈M}.

Then, by the exactness of the sequence in (11.21), we get an isomorphism

F ⊗Hf
n(q) M

∼= M/Aug ·M (11.22)

of left Hf
n(q)-modules. Note that M/Aug·M can also be characterized as the largest

factor module of M on which Hf
n(q) acts trivially. For a left Hf

n(q)-module M , let

us write MHf
n(q) for the factor M/Aug ·M .

We will need the following:

Lemma 11.2.16. Let A be an F -algebra, n ≥ 0, and C be the full subcategory of

A⊗Hf
n(q)−mod that consists of modules whose restrictions to 1⊗Hf

n(q) are free.

Then the functors (−)H
f
n(q) and (−)Hf

n(q) from C to A−mod are isomorphic.
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Proof. In the following we will identify the subalgebras A ⊗ 1 and 1 ⊗ Hf
n(q) of

A ⊗ Hf
n(q) with A and Hf

n(q), respectively. We set x :=
∑

w∈W (n) Tw ∈ Hf
n(q).

Then it is not hard to show that Twx = xTw = ql(w)x for all w ∈ W (n), see for

example [68, Lemma 3.2]. Let M ∈ C. Then, by assumption on M , considered as

Hf
n(q)-module, M ∼= (Hf

n(q))b, for some b > 0. Suppose first that b = 1. We also

may assume that M = Hf
n(q). Since the trivial module occurs precisely once in the

socle of the left regular module Hf
n(q), we conclude that dimF (MHf

n(q)) = 1. Since

x 6= 0, and xM ⊆ MHf
n(q), we must have that xM = MHf

n(q). From this it follows

that MHf
n(q) = xM for arbitrary b. Now define a map

ψM : MHf
n(q) −→MHf

n(q), m+ Aug ·M 7→ xm.

We have to show that this is well defined. Suppose that m+Aug ·M = m′+Aug ·M ,

for m,m′ ∈ M . Then m −m′ ∈ Aug ·M . Since xAug = 0, we see that ψM is well

defined.

Moreover, from the discussion above, we know that ψM is surjective. As A commutes

with Hf
n(q), MHf

n(q) and MHf
n(q) are A-modules and the map ψM is a homomorphism

of A-modules. Since the trivial module occurs precisely once in the head of the left

regular module Hf
n(q), we have that dimF (MHf

n(q)) = dimF (MHf
n(q)). We conclude

that ψM is an isomorphism of A-modules.

If f : M → N is a homomorphism in C, then f induces a map

fH
f
n(q) : MHf

n(q) → NHf
n(q),

which is just the restriction of f to MHf
n(q). This is because of fH

f
n(q)(xm) =

xfH
f
n(q)(m), for all m ∈ M . Furthermore, since f(Aug ·M) ⊆ Aug · N , the homo-

morphism f induces a well-defined map

fHf
n(q) : MHf

n(q) → NHf
n(q).

Clearly, both maps are homomorphisms of A-modules. Then it is easy to see that

ψN ◦ fHf
n(q) = fH

f
n(q) ◦ψM , thus, the constructed isomorphism is functorial in M . �

Next, let Λ ∈ P+. Then we define a functor HΛ
n (q) − mod → HΛ

n+r(q) − mod as

follows: For M ∈ HΛ
n (q) with central character γ and i ∈ I, we set

(̃fΛ
i )

(r)

(M) = (Ind
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(M � 1))[γ + rqi], r ≥ 1, (11.23)

where 1 stands for the trivial Hf
r (q)-module. Then, we extend this additively to a

functor on HΛ
n (q) − mod. Here we identify Hf

r (q) with the subalgebra of HΛ
n+r(q)

generated by Tn+1, . . . , Tn+r−1. We have the following:

Proposition 11.2.17. Let Λ ∈ P+, M ∈ HΛ
n (q) − mod and r ≥ 1. There is a

functorial isomorphism

(̃fΛ
i )

(r)

(M) ∼= (fΛ
i )(r)(M)

of HΛ
n+r(q)-modules.
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Proof. We show that (̃fΛ
i )

(r)

is a left adjoint of (eΛ
i )(r). To this end, we use the

alternative description of (eΛ
i )(r) given in (11.17). Let M ∈ HΛ

n (q) − mod and

N ∈ HΛ
n+r(q)−mod. Without loss of generality, we may assume that M has central

character γ, and N has central character γ + rqi. Then

HomHΛ
n+r(q)

((̃fΛ
i )

(r)

(M), N) ∼= HomHΛ
n+r(q)

((Ind
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(M � 1))[γ + rqi], N)

∼= HomHΛ
n+r(q)

(Ind
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(M � 1), N)

∼= HomHΛ
n (q)⊗Hf

r (q)(M � 1,Res
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(N))

∼= HomHΛ
n (q)(M,HomHf

r (q)(1,Res
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(N)))

∼= HomHΛ
n (q)(M, (Res

HΛ
n+r(q)

HΛ
n (q)

(N))H
f
r (q))

∼= HomHΛ
n (q)(M, ((Res

HΛ
n+r(q)

HΛ
n (q)

(N))H
f
r (q))[γ])

∼= HomHΛ
n (q)(M, ((Res

HΛ
n+r(q)

HΛ
n (q)

(N))[γ])H
f
r (q))

∼= HomHΛ
n (q)(M, (eΛ

i )(r)(N)),

where all the above isomorphisms are natural. Hence, by uniqueness of adjoints, we

get an isomorphism (̃fΛ
i )

(r) ∼= (fΛ
i )(r) of functors. �

Finally, we are in the position to deduce crucial properties of the functors introduced

so far:

Proposition 11.2.18. Let i ∈ I, and r ≥ 1. Then the following hold:

(i) As functors, (fΛ
i )r ∼=

⊕
r!(f

Λ
i )(r).

(ii) (fΛ
i )(r) is right adjoint to (eΛ

i )(r).

(iii) (fΛ
i )(r) is exact.

Proof. Note that, by Theorem 11.2.7, fΛ
i is left adjoint to eΛ

i . Since (eΛ
i )r ∼=⊕

r!(e
Λ
i )(r) as functors, we can construct, with the help of Theorem 11.2.15, an

adjunction between
⊕

r!(f
Λ
i )(r) and (eΛ

i )r such that the functor
⊕

r!(f
Λ
i )(r) is left

adjoint to (eΛ
i )r. By uniqueness of adjoints, we must have that (fΛ

i )r ∼=
⊕

r!(f
Λ
i )(r)

as functors, thus, (i) holds.

Next we show (ii). To this end, we use the alternative descriptions of the functors

(eΛ
i )(r) and (fΛ

i )(r) given in (11.17) and (11.23). We let M ∈ HΛ
n (q) − mod and

N ∈ HΛ
n+r(q)−mod, and assume that M has central character γ and N has central

character γ + rqi. We have:

HomHΛ
n+r(q)

(N, (Ind
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(M � 1))[γ + rqi])

∼= HomHΛ
n (q)⊗Hf

r (q)((Res
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(N))[γ],M � 1),
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where we take the block component with respect to the subalgebra HΛ
n (q) ⊗ 1.

Note that if X ∈ HΛ
n (q)⊗Hf

r (q)−mod, and f ∈ HomHΛ
n (q)⊗Hf

r (q)(X,M � 1), then

(1⊗Aug)·f(x) = 0, for all x ∈ X. Since HΛ
n (q) and Hf

r (q), considered as subalgebras

of HΛ
n (q)⊗Hf

r (q) in the natural way, commute with each other, and Aug is a two-

sided ideal in Hf
r (q), we have that (1⊗Aug) ·X is an HΛ

n (q)⊗Hf
r (q)-submodule of

X. Then, from the exact sequence

0 −→ (1⊗ Aug) ·X −→ X −→ X/(1⊗ Aug) ·X −→ 0,

we get that HomHΛ
n (q)⊗Hf

r (q)(X,M � 1) ∼= HomHΛ
n (q)⊗Hf

r (q)(X/(1⊗Aug) ·X,M � 1).

Considered as Hf
r (q)-module, we have seen in the discussion before Lemma 11.2.16

that Hf
r (q) acts trivially on X/(1⊗ Aug) ·X. Then there is an isomorphism

HomHΛ
n (q)⊗Hf

r (q)(X/(1⊗ Aug) ·X,M � 1) ∼= HomHΛ
n (q)(X/(1⊗ Aug) ·X,M),

which is functorial in both variables. Next, suppose that on restriction to Hf
r (q),

X is free. Then, by Lemma 11.2.16, we have a functorial isomorphism

HomHΛ
n (q)(X/(1⊗ Aug) ·X,M) ∼= HomHΛ

n (q)(X
Hf
r (q),M).

In particular, if we set

X := (Res
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(N))[γ],

then, on restriction to Hf
r (q), X is free. Note that the restriction of the Kato module

L((qi)r) from Hr(q) to Hf
r (q) is isomorphic to the left regular Hf

r (q)-module, see

the paragraph before Proposition 9.8.4. Thus, together with the discussion at the

beginning of the proof, we get a functorial isomorphism

HomHΛ
n+r(q)

(N, (Ind
HΛ
n+r(q)

HΛ
n (q)⊗Hf

r (q)
(M � 1))[γ + rqi])

∼= HomHΛ
n (q)(((Res

HΛ
n+r(q)

HΛ
n (q)

(N))[γ])H
f
r (q),M),

showing that (fΛ
i )(r) is right adjoint to (eΛ

i )(r).

Since, (fΛ
i )(r) is a left and a right adjoint, it must be exact. Thus, (iii) follows from

(ii). �

Remark 11.2.19. As in Section 9.8, we note that the ideas for the definition of

the various functors given in this section are based on the ideas of I. Grojnowski,

where we have tried to be as explicit as possible. In the degenerate case this is due

to A. Kleshchev, and the definition of our divided power functors is similar to that

given in [59, §8.3].

The proof of part (ii) of Proposition 11.2.18 is based on ideas of A. Kleshchev, see

[59, Lemma 8.3.1], and seems to be new in the non-degenerate case.
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11.3 Block parametrization for cyclotomic Hecke

algebras

Recall from Lemma 9.6.1 that by considering central characters, we can decompose

the category Hn(q)−mod into blocks, i.e., every M ∈ Hn(q)−mod can be written

as

M ∼=
⊕

γ∈Sn/∼

M [γ].

As mentioned in the previous section, for all Λ ∈ P+, we also obtain a decomposition

HΛ
n (q)−mod ∼=

⊕
γ∈Sn/∼

HΛ
n (q)−mod[γ].

Then [64, Theorem A] asserts that this is already the block decomposition ofHΛ
n (q)−

mod.

Note that, by [30, Theorem 2.14], for Λ = Λ0 the homomorphism

Z(Hn(q)) −→ Z(HΛ
n (q))

induced by evΛ is actually onto, giving another proof of this fact in the case when

Λ = Λ0.

Next, we state a convenient way of parametrizing the blocks of Hn(q). Here, we are

interested in blocks, where the central character γ only contains powers of q. In the

language developed so far, we consider the block decomposition of Hn(q) − modq.

Then, the central characters are labelled by the W (n)-orbits on In. If i ∈ In, define

its content cont(i) ∈ P by

cont(i) =
∑
i∈I

γiαi, (11.24)

where γi = |{j | j = 1, . . . , n, ij = i}|, for all i ∈ I. Also, by definition,
∑

i∈I γi = n.

Denote by Γn the set of all non-negative integral linear combinations γ =
∑

i∈I γiαi
of the simple roots αi, i ∈ I, such that

∑
i∈I γi = n.

The W (n)-orbit of some i ∈ In is uniquely determined by the content of i. Hence

we may label these orbits by elements of Γn.
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Multiplicity-one results

In this chapter we will recall a famous result of I. Grojnowski and M. Vazirani given

in [45], which states that the socle of the restriction of an irreducible Hn(q)-module

to the subalgebra Hn−1(q) is multiplicity free.

Also, we recall the definition of an antiautomorphism of Hn(q), which gives a duality

on Hn(q)−mod. We give a proof of the well-known fact that the irreducible Hn(q)-

modules are self-dual.

Moreover, we define important operators on the Grothendieck groups of Hn(q)-

modules and HΛ
n (q)-modules, Λ ∈ P+, respectively, and state crucial properties of

these.

In what follows, we will present here the viewpoint of [59] in the non-degenerate

case.

12.1 Multiplicity-free socles

Recall from Section 9.5 that for M ∈ Hn(q) − mod and some a ∈ S := F×, we

denote by Ma the simultaneous generalized eigenspace of the commuting operators

x1, . . . , xn corresponding to the eigenvalues a = (a1, . . . , an). Moreover, we denote

by ∆a(M) the generalized eigenspace of xn on M corresponding to the eigenvalue

a ∈ S. Recall the definition of the F -subalgebra H(n−1,1)(q) of Hn(q) from Section

9.4, and observe that it is generated by the elements x1, . . . , xn−1, T1, . . . , Tn−2 of

Hn(q). Then, the space ∆a(M) can be considered as an H(n−1,1)(q)-module in the

natural way, hence affording a functor

∆a : Hn(q)−mod −→ H(n−1,1)(q)−mod,

see (9.32). Recall that for a composition µ = (µ1, . . . , µk) of n we write Resnµ1,...,µk
for

the restriction functor Res
Hn(q)(q)
Hµ(q) . Then, via the natural embedding of Hn−1(q) ⊆

H(n−1,1)(q), we also have the functor

ea := Resn−1,1
n−1 ◦∆a : Hn(q)−mod −→ Hn−1(q)−mod.

More generally, define ∆am(M) to be the simultaneous generalized eigenspace of

the operators xn−m+1, . . . , xn. We view M as an Hm(q)-module via the canonical
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embedding Hm(q) ∼= 1 ⊗ Hm(q) ⊆ Hn−m(q) ⊗ Hm(q) ∼= H(n−m,m)(q). Then M

decomposes as

M ∼=
⊕
γ∈Sm

M [γ],

where M [γ] =
⊕

a∈γMa is actually an Hm(q)-submodule of M . Note that if

γ = (a, . . . , a), we have that M [γ] = M(a,...,a), and this equals ∆am(M). We will

consider ∆am(M) as an Hm(q)-module in this way. Moreover, we set ∆a0(M) := M .

Therefore, we again have a functor

∆am : Hn(q)−mod −→ Hn−m,m(q)−mod,

as well as a functor

eam : Hn(q)−mod −→ Hn−m(q)−mod,

if we consider the natural embedding Hn−m(q) ⊆ H(n−m,m)(q). Note that eam(M) =

ema (M) = ea ◦ . . . ◦ ea(M) (m times).

Applying Kato’s Theorem, see Theorem 9.7.3, we infer that ∆am(M) is the largest

H(n−m,m)(q)-submodule of M all of whose composition factors are isomorphic to a

module N � L(am), for some irreducible Hn−m(q)-module N . Also by adjointness

of induction and restriction, we have that

HomH(n−m,m)(q)(N � L(am),∆am(M))

∼= HomHn(q)(Indnn−m,m(N � L(am)),M),
(12.1)

where we set Indnn−m,m(−) := Ind
Hn(q)
H(n−m,m)(q)

(−).

The proof of the following lemmas are analogous to those of [59, §5.1].

Lemma 12.1.1. Let M ∈ Hn(q)−mod. If

ch(M) =
∑
a∈Sn

λa[L(a1) � . . .� L(an)],

then we have that

ch(∆am(M)) =
∑
b∈Sn

λb[L(b1) � . . .� L(bn)],

where b ∈ Sn is such that bn−m+1 = . . . = bn = a.

Proof. Note that ∆am(M) is the direct sum of those subspaces Ma of M for which

an−m+1 = . . . = an = a. The claim now follows. �

Definition 12.1.2. For a ∈ S, and M ∈ Hn(q)−mod, we define

εa(M) = max{m ≥ 0 | ∆am(M) 6= 0}. (12.2)
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12.1. Multiplicity-free socles

Lemma 12.1.3. Let M ∈ Hn(q)−mod be irreducible, ε := εa(M). Let N �L(am)

be an irreducible H(n−m,m)(q)-submodule of ∆am(M). Then εa(N) = ε−m.

Proof. By Lemma 12.1.1, ε is the longest a-tail occurring in the expansion of ch(M).

Therefore, we must have εa(N) + m ≤ ε. Since M is irreducible, by (12.1), we see

that M is a quotient of Indnn−m,m(N � L(am)). By exactness of the functor ∆aε ,

we obtain an epimorphism ∆aε(Indnn−m,m(N � L(am))) → ∆aε(M) of H(n−m,m)(q)-

modules. Since ∆aε(M) 6= 0, it follows that ∆aε(Indnn−m,m(N � L(am))) 6= 0. By

Lemma 12.1.1 and the Shuffle Lemma, see Lemma 9.5.7, we infer εa(N) + m ≥ ε.

�

Lemma 12.1.4. Let N ∈ Hn(q) −mod be irreducible, a ∈ S, and εa(N) = 0. Set

M := Indn+m
n,m (N � L(am)). Then:

(i) ∆am(M) ∼= N � L(am).

(ii) hd(M) is irreducible, and εa(hd(M)) = m.

(iii) For all other composition factors L of M , we get that εa(L) < m.

Proof. By (12.1), N � L(am) is certainly a submodule of ∆am(M). By the Shuffle

Lemma, Lemma 12.1.1, and our hypothesis on N we have that

dimF (∆am(M)) = dimF (N � L(am)).

Thus, (i) follows. The remaining parts follow from [45, Lemma 3.5]. �

Lemma 12.1.5. Let M ∈ Hn(q)−mod be irreducible, a ∈ S, and set ε := εa(M).

Then ∆aε(M) is isomorphic to N � L(aε) as an H(n−ε,ε)(q)-module, for some irre-

ducible Hn−ε(q)-module N with εa(N) = 0.

Proof. Pick some irreducible H(n−ε,ε)(q)-module in the socle of ∆aε(M), which, by

Kato’s Theorem, has the form N � L(aε), for some irreducible Hn−ε(q)-module N .

By Lemma 12.1.3, we have that εa(N) = 0. Then, by (12.1), and the irreducibility

of M we have that M is a quotient of Indnn−ε,ε(N �L(aε)). By exactness of ∆aε and

the first part of Lemma 12.1.4, we see that ∆aε(M) is irreducible, and the claim

follows. �

Lemma 12.1.6. Let m ≥ 0, a ∈ S, and N ∈ Hn(q) − mod be irreducible. Set

M := Indn+m
n,m (N�L(am)). Then hd(M) is irreducible with εa(hd(M)) = εa(N)+m,

and for all other composition factors L of M we have εa(L) < εa(N).

Proof. This is [45, Lemma 3.5, (3)]. �

Theorem 12.1.7. Let M ∈ Hn(q)−mod be irreducible, a ∈ S. Then for 0 ≤ m ≤
ε := εa(M), the socle of ∆am(M) is an irreducible H(n−m,m)(q)-module of the form

L� L(am) such that εa(L) = εa(M)−m.
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Proof. Note that ∆aε(M) ⊆ ∆am(M) for all 0 ≤ m ≤ ε. As before, we consider

∆am(M) as an H(n−m,m)(q)-module. If we consider ∆am(M) as an Hn−m(q)-module

in the usual way, we see that

∆aε(M) = ∆aε−m(∆am(M)),

considered as H(n−ε,ε−m,m)(q)-modules.

Suppose that L� L(am) is an irreducible constituent of soc(∆am(M)). By Lemma

12.1.3, εa(L) = ε−m. Thus, via restriction, L determines a non-trivial submodule

of Resn−ε,εn−ε,ε−m,m(∆aε(M)). By Lemma 12.1.5, ∆aε(M) is an irreducible H(n−ε,ε)(q)-

module of the form N � L(aε). Let T be an irreducible H(n−ε,ε−m,m)(q)-submodule

of Resn−ε,εn−ε,ε−m,m(N � L(aε)). Then T ∼= X � Y � Z, with an irreducible Hn−ε(q)-

module X, an irreducible Hε−m(q)-module Y , and an irreducible Hm(q)-module Z.

Since Resn−ε,εn−ε,ε−m,m(N � L(aε)) = N � Resεε−m,m(L(aε)), it follows that X ∼= N

as Hn−ε-modules. Moreover, if we apply [45, Lemma 3.4], we see that the socle

of Resεε−m,m(L(aε)) is isomorphic to L(aε−m) � L(am), hence Y ∼= L(aε−m), and

Z ∼= L(am). We infer that the socle of Resn−m,mn−ε,ε−m,m(∆aε(M)) is isomorphic to

N � L(aε−m) � L(am). By exactness of restriction, it follows that the socle of

∆am(M) must equal L� L(am), and therefore is irreducible as claimed. �

The next theorem is the famous ”Multiplicity one result” given in [45]. We include

a proof here, which is analogous to that of [59, Corollary 5.1.7].

Theorem 12.1.8. Let M ∈ Hn(q) − mod be irreducible, a ∈ S, and εa(M) > 0.

Then soc(ea(M)) is irreducible.

Proof. Let L be an irreducible constituent of the socle of ea(M). Since εa(M) > 0,

such an L exists. By Schur’s Lemma, the central element z := x1 + . . .+xn ∈ Hn(q)

acts as a scalar on the whole of M . With the same argument, the element z′ :=

x1 + . . .+xn−1 ∈ Z(Hn−1(q)) acts via some scalar on L. Hence xn = z− z′ acts as a

scalar on L. Since ea(M) = Resn−1,1
n−1 (∆a(M)), this scalar must equal a. Therefore,

L contributes an H(n−1,1)(q)-submodule of the form L�L(a) to the socle of ∆a(M).

But the latter is irreducible by Theorem 12.1.7. Thus, the claim follows. �

Corollary 12.1.9. For M ∈ Hn(q) − mod irreducible, the socle of Resnn−1(M) is

multiplicity-free.

Proof. From (9.36) we know that Resnn−1(M) =
⊕

a∈S ea(M). By Theorem 12.1.8,

for all a ∈ S, the socle of ea(M) is either zero or irreducible. For a 6= b, the

Hn−1(q)-modules ea(M) and eb(M) are in different blocks, thus their socles are not

isomorphic. The claim now follows. �

Definition 12.1.10. For M ∈ Hn(q)−mod, denote by ẽa(M) := soc(ea(M)), and

f̃a(M) := hd(Indn+1
n,1 (M � L(a))).

Remark 12.1.11. (1) If we set m = 1 in Lemma 12.1.6, then it follows that

εa(f̃a(M)) = εa(M) + 1.
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12.1. Multiplicity-free socles

(2) In view of Theorem 12.1.8, for an irreducible M ∈ Hn(q)−mod, we could also

write εa(M) = max{m ≥ 0 | ẽma (M) 6= 0}.

For the next lemma we need the following, which can be found in [25, Lemma 10.17].

For F -algebras A, B together with F -subalgebras A′ ⊆ A, B′ ⊆, B, we have that

IndA⊗BA′⊗B′(M �N) ∼= IndAA′(M) � IndBB′(N), (12.3)

for an A′-module M and a B′-module N .

The next lemma is an analogue of [59, Lemma 5.2.1] in the non-degenerate case.

Lemma 12.1.12. Let M ∈ Hn(q) −mod be irreducible, a ∈ S, and m ≥ 0. Then

the following hold:

(i) soc(∆am(M)) ∼= ẽma (M) � L(am).

(ii) hd(Indn+m
n,m (M � L(am))) ∼= f̃ma (M).

Proof. By Theorem 12.1.7, we have that soc(∆a(M)) ∼= N � L(a), for some irre-

ducible N ∈ Hn−1(q)−mod. By Theorem 12.1.8, N ∼= ẽa(M). By applying this m

times, we see that ẽma (M) � L(a)�m is a submodule of Resn−m,mn−m,1,...,1(∆am(M)). By

Frobenius Reciprocity and Kato’s Theorem, ẽma (M)�L(am) is an H(n−m,m)(q)- sub-

module of ∆am(M). But the socle of ∆am(M) is an irreducible H(n−m,m)(q)-module

by Theorem 12.1.7. This finishes the proof of (i).

If m = 1, the statement in (ii) is just the definition of f̃a(M). By definition, we

have an Hn+1(q)-epimorphism

Indn+1
n,1 (M � L(a))→ f̃a(M).

From this we get an Hn+2(q)-epimorphism

Indn+2
n+1,1((Indn+1

n,1 (M � L(a))) � L(a))→ f̃ 2
a (M),

by exactness of induction and right exactness of taking tensor products. By (12.3),

and transitivity of induction, we have

Indn+2
n+1,1((Indn+1

n,1 (M � L(a))) � L(a)) ∼= Indn+2
n+1,1((Indn+1,1

n,1,1 ((M � L(a))) � L(a))
∼= Indn+2

n,1,1(M � L(a)�2)

as Hn+2(q)-modules. Inductively, we conclude that for m ≥ 1, f̃ma (M) is a quotient

of Indn+m
n,1,...,1(M � L(a)�m). Since

Indn+m
n,1,...,1(M � L(a)�m) ∼= Indn+m

n,m (Indn,mn,1...,1(M � L(a)�m))
∼= Indn+m

n,m (M � L(am)),

we infer that f̃ma (M) is a quotient of Indn+m
n,m (M�L(am)), where the last equivalence

is again due to (3) and Kato’s Theorem. By Lemma 12.1.6, we know that the head

of Indn+m
n,m (M � L(am)) is irreducible, hence the result. �
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Theorem 12.1.13. Let M ∈ Hn(q)−mod be irreducible, a ∈ S, and m ≥ 0. Then

the socle of ema is isomorphic to
⊕

m! ẽ
m
a (M).

Proof. Denote by Zm the center of Hm(q). We know that Pm is a free Zm-module of

rank m!. Moreover, Hm(q) is a free Pm-module of rank m!. Hence, Hm(q) is free of

rank (m!)2 considered as a Zm-module. In the following denote by χ the character

of Zm obtained from the action on the Kato module L(am). Recall that, by Schur’s

Lemma, each z ∈ Zm acts by a scalar on the irreducible Hm(q)-module L(am). We

may view χ as an irreducible Zm-module.

Consider U := Ind
Hm(q)
Zm

(χ). By Frobenius Reciprocity we see that

dimF HomHm(q)(U,L(am)) = m!.

Thus, U is a non-zero Hm(q)-module. Furthermore, dimF U = (m!)2, by the dis-

cussion at the beginning of the proof, and the fact that χ is a one-dimensional

Zm-module. It follows that U ∼=
⊕

m! L(am).

Next, let L be an irreducible submodule of ema (M). By Schur’s Lemma, every

symmetric polynomial in the variables x±1
1 , . . . , x±1

n acts as a scalar on the whole of

M . By the same argument, any symmetric polynomial in the x±1
1 , . . . , x±1

n−m acts as a

scalar on L. It follows that any symmetric function in the variables x±1
n−m+1, . . . , x

±1
n

acts on L with scalars. To this end, one shows that any symmetric polynomial in

the variables xn−m+1, . . . , xn can be expressed in terms of symmetric polynomials

in the x1, . . . , xn and of symmetric polynomials in the x1, . . . , xn−m. Then use the

fact that, for k ∈ N, Zk is generated by the elements t1, . . . , tk−1, t
±1
k , where ti

denotes the ith elementary symmetric polynomial in the variables x1, . . . , xk. This

is easy to see since for every Laurent polynomial g in the x1, . . . , xk, we can find an

m ∈ Z such that tmk g is a symmetric polynomial in the x1, . . . , xk, and every such

polynomial can be written as a polynomial expression in the elementary symmetric

polynomials t1, . . . , tk.

Now we get that the center Zm of the subalgebra Hm(q) ∼= 1⊗Hm(q) ⊂ Hn−m(q)⊗
Hm(q) acts on L with scalars. Since L ⊆ ema (M) ⊆ ∆am(M), and the central

character of ∆am(M) is χ, the central character (over Zm) of L must equal χ as

well. This affords a non-zero Hn−m(q) ⊗ Zm-homomorphism from L � χ to M ,

whose image is L. Frobenius Reciprocity gives us a non-zero homomorphism ϕ :

L�U ∼= Ind
Hn−m(q)⊗Hm(q)
Hn−m(q)⊗Zm (L�χ)→M , whose image contains L. As observed at the

beginning, U ∼=
⊕

m! L(am), which implies that the Hn−m(q)⊗Hm(q)-module L�U
is a direct sum of copies of the irreducible Hn−m(q) ⊗ Hm(q)-module L � L(am).

Therefore, all the composition factors of the image of ϕ are isomorphic to L�L(am).

Since L is contained in the image of ϕ, an Hn−m(q)⊗Hm(q)-submodule of M , the

smallest Hn−m(q)⊗Hm(q)-submodule of M that contains L is also contained in the

image of ϕ. It follows that the Hn−m(q)⊗Hm(q)-submodule of M generated by L

is isomorphic to L� L(am). By Lemma 12.1.12, we conclude that L ∼= ẽma (M).
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Note that we consider Hn−m(q) as a subalgebra of Hn−m(q) ⊗ Hm(q) via the em-

bedding Hn−m(q) ∼= Hn−m(q) ⊗ 1 ⊆ Hn−m(q) ⊗ Hm(q). Therefore, if we restrict

ẽma (M) � L(am) to Hn−m(q) we get that

Res
Hn−m(q)⊗Hm(q)
Hn−m(q)⊗1 (ẽma (M) � L(am))

= (Res
Hn−m(q)
Hn−m(q)(ẽ

m
a (M))) � (Res

Hm(q)
F (L(am)))

= ẽma (M) �
⊕
m!

F

∼=
⊕
m!

ẽma (M).

Hence, by exactness of restriction,
⊕

m! ẽ
m
a (M) is contained in the socle of ema (M).

On the other hand the above argument shows that if L′ is contained in the socle of

ema (M), then it is contained in

Res
Hn−m(q)⊗Hm(q)
Hn−m(q)⊗1 (soc(∆am(M)) ⊆ soc(ema (M)).

Therefore, soc(ema (M)) ∼=
⊕

m! ẽ
m
a (M). �

Remark 12.1.14. All the results of this section except possibly Theorem 12.1.13

can be found in [45]. Note that most of the proofs are different from [45], following

the lines of [59, §5]. Theorem 12.1.13 seems to be new in the non-degenerate case.

12.2 Self-duality of irreducible modules

In this section we will state several useful properties of irreducible modules of affine

Hecke algebras and their cyclotomic quotients. We recall the definition of an im-

portant antiautomorphism of Hn(q). This gives a duality on Hn(q) − mod, which

reduces to a duality for its cyclotomic quotients. In particular we give a proof of

the well-known fact that the irreducible modules of Hn(q), as well as those of its

quotients, are self-dual with respect to this duality.

One defines an antiautomorphism τ on Hn(q) as follows. On the generators of

Hn(q), we set:

Ti 7→ Ti, xj 7→ xj,

for 1 ≤ i ≤ n − 1, and 1 ≤ j ≤ n. Using Theorem 9.3.1, it is easy to check that

this defines an antiautomorphism of Hn(q). Note that for w ∈ W (n) and f ∈ Pn
we have that τ(Tw) = Tw−1 and τ(f) = f .

Let M ∈ Hn(q)−mod. Then we can make the dual M∗ := HomF (M,F ) ∈ Hn(q)op−
mod into an Hn(q)-module by defining (hf)(m) = f(τ(h)m), for all f ∈ M∗ and

all h ∈ Hn(q). We will denote this module by M τ and call it the dual of M . In this

way we obtain a duality

τ ∗ : Hn(q)−mod −→ Hn(q)−mod, M 7→M τ , (12.4)
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such that τ ∗ ◦ τ ∗ = 1Hn(q)−mod.

The following is a key observation, and can be found in [86, Section 5.5].

Theorem 12.2.1. The map

ch : K(Hn(q)−mod) −→ K(Pn −mod),

defined by [M ] 7→
∑

a∈Sn ra[L(a1) � . . .� L(an)], is injective.

This already gives the following:

Corollary 12.2.2. If M ∈ Hn(q)−mod is irreducible, then M τ ∼= M .

Proof. Since τ(xi) = xi, 1 ≤ i ≤ n, it leaves characters invariant. Since, by Theorem

12.2.1, the irreducible modules of Hn(q) are determined up to isomorphism by their

characters, it leaves irreducible modules invariant. �

From now on we will assume that all eigenvalues of the operators x1, . . . , xn are in

the set {qi | i ∈ I}, where I = {0, . . . , l − 1} and l ∈ Z+ denotes the order of q. If

a = qi, for some i ∈ I, we will refer to it just as i.

For i ∈ I, recall the definition of the functors eΛ
i and fΛ

i from Chapter 11. There

it was shown that for Λ ∈ P+, the functors eΛ
i and fΛ

i are left and right adjoint to

each other.

Next, we want to state another important property of these functors. As we have

defined them, the parameters of the cyclotomic Hecke algebras HΛ
n (q) are all dif-

ferent from zero. It is shown in [66, Corollary 5.5] that in this case, HΛ
n (q) is a

symmetric algebra.

As defined in Chapter 11, we denote by evΛ : Hn(q) → HΛ
n (q) the corresponding

quotient map. Furthermore, for M ∈ HΛ
n (q) − mod, we will denote by ev∗Λ(M)

the inflation of M along evΛ. For the next proposition, observe that the anti-

automorphism τ leaves the kernel ker(evΛ) of evΛ invariant.

Proposition 12.2.3. The functors ei, e
Λ
i and fΛ

i commute with the duality given

by τ .

Proof. Note that from the duality τ ∗, we obtain a duality prΛ ◦ τ ∗ ◦ ev∗Λ : HΛ
n (q)−

mod → HΛ
n (q) −mod, for each Λ ∈ P+. We will also denote the latter duality by

τ ∗, and refer to it as the cyclotomic duality. From the usual embedding of Hn−1(q)

into Hn(q), it follows that the following diagram commutes:

Hn(q)−mod Hn(q)−mod

Hn−1(q)−mod Hn−1(q)−mod.

τ ∗

τ ∗
Res Res
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Hence, the functors Res
Hn(q)
Hn−1(q) and Res

HΛ
n (q)

HΛ
n−1(q)

commute with duality. Moreover, if

we replace Hn(q) by HΛ
n (q), and Hn−1(q) by HΛ

n−1(q), and use the cyclotomic duality

in the above diagram, then this new diagram remains commutative.

By (9.36), ei(M) is a direct summand of Res
Hn(q)
Hn−1(q)(M). Moreover, the duality

τ ∗ leaves central characters invariant. Therefore, by the Krull–Schmidt Theorem,

we get an isomorphism ei(M
τ ) ∼= (ei(M))τ . The same argument holds for the

cyclotomic functors.

Note that Res
HΛ
n (q)

HΛ
n−1(q)

is right adjoint to Ind
HΛ
n (q)

HΛ
n−1(q)

and left adjoint to the functor

HomHΛ
n−1(q)(H

Λ
n (q),−). From Chapter 11 we know that as functors

Ind
HΛ
n (q)

HΛ
n−1(q)

(−) ∼= HomHΛ
n−1(q)(H

Λ
n (q),−).

Using the fact that τ ∗ is a duality, we see that

HomHΛ
n (q)((τ

∗ ◦ Ind
HΛ
n (q)

HΛ
n−1(q)

◦ τ ∗)(X), Y ) ∼= HomHΛ
n (q)(τ

∗(Y ), Ind
HΛ
n (q)

HΛ
n−1(q)

(τ ∗(X)))

∼= HomHΛ
n−1(q)(Res

HΛ
n (q)

HΛ
n−1(q)

(τ ∗(Y )), τ ∗(X))

∼= HomHΛ
n−1(q)(X, τ

∗(Res
HΛ
n (q)

HΛ
n−1(q)

(τ ∗(Y ))))

∼= HomHΛ
n−1(q)(X,Res

HΛ
n (q)

HΛ
n−1(q)

(Y )),

using again the commutativity of the above diagram. Hence, the functor τ ∗ ◦
Ind

HΛ
n (q)

HΛ
n−1(q)

◦ τ ∗ is also a left adjoint of Res
HΛ
n (q)

HΛ
n−1(q)

, and so, by uniqueness of adjoints,

there is a natural equivalence of functors Ind
HΛ
n (q)

HΛ
n−1(q)

∼= τ ∗◦Ind
HΛ
n (q)

HΛ
n−1(q)

◦τ ∗. The result

now follows since τ ∗ preserves central characters. �

Corollary 12.2.4. The functors (eΛ
i )r and (fΛ

i )r are left and right adjoint to one

another, and commute with duality.

Proof. For r = 1, the statement is precisely Theorem 11.2.7. For an integer r > 1,

M ∈ HΛ
n (q)−mod, and N ∈ HΛ

n+r(q)−mod, it follows from this that

HomHΛ
n+r(q)

((fΛ
i )r(M), N) = HomHΛ

n+r(q)
(fΛ
i ((fΛ

i )r−1(M)), N)

∼= HomHΛ
n+r−1(q)((f

Λ
i )r−1(M), (eΛ

i )(N)).

Inductively, we get that

HomHΛ
n+r(q)

((fΛ
i )r(M), N) ∼= HomHΛ

n (q)(M, (eΛ
i )r(N)).

This proves that (fΛ
i )r is left adjoint to (eΛ

i )r. Right adjointness is proven similarly.

For the second part, observe that for r = 1, this is the content of the previous

proposition. Let r > 1, and suppose that the statement is true for all t < r. Then

for some M ∈ HΛ
n (q)−mod, we get

(eΛ
i )r(M τ ) = eΛ

i ((eΛ
i )r−1(M τ ))

∼= eΛ
i (((eΛ

i )r−1(M))τ )
∼= (eΛ

i ((eΛ
i )r−1(M)))τ

= ((eΛ
i )r(M))τ
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by Proposition 12.2.3. The corresponding result for (fΛ
i )r is proven analogously. �

12.3 Operators on the Grothendieck groups

The goal of this section is to investigate the behaviour of the operators on the

Grothendieck groups coming from the functors ei, e
Λ
i and fΛ

i , which will give im-

portant numerical information. As a consequence we also obtain new information

on the operators on the Grothendieck groups induced by the functors (eΛ
i )(r) and

(fΛ
i )(r), r ≥ 1.

We will also give several interpretations of the integer εa(M), for an irreducible

M ∈ Hn(q)−mod, defined in Chapter 12.1. We keep the notation of the previous

sections.

Recall the definitions of the full subcategories Hn(q) − modq and Hn(q) − modΛ
q

of Hn(q) − mod given in Chapter 11, and note that the functor ev∗Λ induces an

equivalence of categories between HΛ
n (q)−mod and Hn(q)−modΛ

q , see Proposition

11.1.4. Then, for M ∈ HΛ
n (q)−mod irreducible, we define

ẽΛ
i (M) = (prΛ ◦ ẽi ◦ ev∗Λ)(M) ∈ HΛ

n−1(q)−mod, (12.5)

f̃Λ
i (M) = (prΛ ◦ f̃i ◦ ev∗Λ)(M) ∈ HΛ

n+1(q)−mod, (12.6)

where we assume that n ≥ 1 in the first case.

Henceforth, we will denote by B(∞) (resp. B(Λ)) the set of isomorphism classes of

irreducible modules in Hn(q) −modq (resp. HΛ
n (q) −mod). Observe that we may

view the set B(Λ) as a subset of B(∞) via the functor ev∗Λ. Furthermore, for all

i ∈ I, we obtain maps

ẽi : B(∞) −→ B(∞) ∪ {0}, [M ] 7→ [ẽi(M)],

f̃i : B(∞) −→ B(∞), [M ] 7→ [f̃i(M)],

ẽΛ
i : B(Λ) −→ B(Λ) ∪ {0}, [M ] 7→ [ẽΛ

i (M)],

f̃Λ
i : B(Λ) −→ B(Λ) ∪ {0}, [M ] 7→ [f̃Λ

i (M)].

By [44, Lemma 9.3], ẽΛ
i is the restriction of ẽi from B(∞) to B(Λ), i.e.,

(prΛ ◦ ẽi ◦ ev∗Λ)(M) = (ẽi ◦ ev∗Λ)(M)

for an irreducible M ∈ HΛ
n (q) − mod. Unfortunately, this is not the case for f̃Λ

i .

The problem here is that f̃i does not leave B(Λ) invariant: For an irreducible

M ∈ HΛ
n (q) − mod, it can happen that f̃Λ

i (M) = 0, whereas f̃i(M) is never zero.

However, there is the following result due to I. Grojnowski complementing Chapter

12.1:

Theorem 12.3.1. Let M be irreducible in Hn(q)−modq. Then ẽi(M) and f̃i(M)

are either zero or irreducible. Moreover, if N 6= 0, then ẽi(M) ∼= N if and only if

f̃i(N) ∼= M . The same holds for the maps ẽΛ
i and f̃Λ

i .
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Proof. This is [44, Theorem 9.4]. �

Note that for M in HΛ
n (q)−mod, it follows from Theorem 12.1.8 that soc(eΛ

i (M))

is either zero or isomorphic to ẽΛ
i (M). Moreover, by [44, Lemma 9.2, Theorem 9.9],

also hd(fΛ
i (M)) is either zero or isomorphic to f̃Λ

i (M). Then we have:

Corollary 12.3.2. For M ∈ HΛ
n (q) − mod irreducible, we have that eΛ

i (M) and

fΛ
i (M) are indecomposable or zero.

Proof. This is clear since by Theorem 12.3.1, the modules ẽΛ
i (M) and f̃Λ

i (M) are

either irreducible or zero, hence, eΛ
i (M) and fΛ

i (M) are indecomposable. �

Corollary 12.3.3. Suppose that M ∈ HΛ
n (q) −mod is irreducible. Then the head

of Ind
HΛ
n+1(q)

HΛ
n (q)

(M) and the socle of Res
HΛ
n+1(q)

HΛ
n (q)

(M) are multiplicity free.

Proof. See [44, Corollary 9.10]. For eΛ
i this follows from Corollary 12.1.9. �

One also has the following remarkable fact:

Proposition 12.3.4. Let M ∈ Hn(q)−modq, and N ∈ HΛ
n (q)−mod be irreducible.

Then:

(i) soc(ei(M)) ∼= hd(ei(M)).

(ii) soc(fΛ
i (M)) ∼= hd(fΛ

i (M)).

Proof. This is [44, Proposition 9.12]. �

For an irreducible M ∈ HΛ
n (q)−mod, we define:

εΛ
i (M) = max{m ≥ 0 | (ẽΛ

i )m(M) 6= 0}, (12.7)

ϕΛ
i (M) = max{m ≥ 0 | (f̃Λ

i )m(M) 6= 0}. (12.8)

Next, we recall from Chapter 11 that, for a positive integer r, and i ∈ I,

eri
∼=
⊕
r!

e
(r)
i (12.9)

as functors from the category of finite-dimensional Hn(q)-modules to the category

of finite-dimensional Hn−r(q)-modules. Moreover, if we descend to some quotient

HΛ
n (q), Λ ∈ P+, the same statement for the functors (eΛ

i )r and (eΛ
i )(r) holds true.

By adjointness, for a positive integer r, we also get that

(fΛ
i )r ∼=

⊕
r!

(fΛ
i )(r) (12.10)

as functors from the category of finite dimensional HΛ
n (q)-modules to the category

of finite dimensional HΛ
n+r(q)-modules, see Chapter 11.
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One defines the abelian groups

K(∞) :=
⊕
n≥0

K(Hn(q)−modq),

and

K(Λ) :=
⊕
n≥0

K(HΛ
n (q)−mod).

Then the exact functors ei, e
(r)
i , eΛ

i , fΛ
i , (eΛ

i )(r), (fΛ
i )(r), i ∈ I, r > 0, induce linear

operators on these groups in the obvious way and one has the following:

Lemma 12.3.5. Let i ∈ I. As operators on K(∞) and K(Λ), we have that eri =

(r!)e
(r)
i , (eΛ

i )r = (r!)(eΛ
i )(r) and (fΛ

i )r = (r!)(fΛ
i )(r), for all positive integers r.

We now focus on the behaviour of the functors eΛ
i and fΛ

i on the Grothendieck

group. The first result to mention is the following, which is due to I. Grojnowski

and M. Vazirani:

Theorem 12.3.6. Let M ∈ Hn(q)−modq be irreducible and i ∈ I. Then:

(i) [ei(M)] = εi(M)[ẽi(M)]+
∑
uk[Nk], where Nk ∈ Hn−1(q)−mod are irreducible

such that εi(Nk) < εi(ẽi(M)) = εi(M)− 1, for all k.

(ii) εi(M) is the maximal size of a Jordan block of xn on M with eigenvalue i.

(iii) The algebra EndHn−1(q)(ei(M)) is isomorphic to the algebra F [x]/(xεi(M)), and

thus,

εi(M) = dimF EndHn−1(q)(ei(M)).

Proof. This is [44, Theorem 9.13], together with Claim 6.5 in [86]. �

We have the following corollary:

Corollary 12.3.7. Let M,N ∈ Hn(q)−mod be irreducible and M 6∼= N . Then, for

every i ∈ I, we have HomHn−1(q)(ei(M), ei(N)) = 0.

Proof. Suppose there is some non-zero element in HomHn−1(q)(ei(M), ei(N)). By

Theorem 12.1.8 combined with Proposition 12.3.4, we see that the head of ei(M)

is irreducible. Thus, ẽi(M) is a composition factor of ei(N). By part (i) of the

previous theorem, εi(N) ≥ εi(M). On the other hand, again by Theorem 12.1.8,

the socle of ei(N) is irreducible, hence a composition factor of ei(M). Again, by the

previous theorem, we conclude that εi(M) ≥ εi(N), and so εi(M) = εi(N) which

implies ẽi(M) ∼= ẽi(N). From Theorem 12.3.1 it follows that ẽi(M) ∼= ẽi(N) if and

only if M ∼= N . This gives the result. �

Remark 12.3.8. Since, on finite-dimensional HΛ
n (q)-modules, eΛ

i is just the restric-

tion of ei, Proposition 12.3.4, Theorem 12.3.6 and Corollary 12.3.7 are still true if

one replaces ei, ẽi, εi by eΛ
i , ẽ

Λ
i , ε

Λ
i in the corresponding statements.
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Also, from (12.9) we obtain more information about the Hn−r(q)-module e
(r)
i (M)

in the case where M is an irreducible HΛ
n (q)-module.

Proposition 12.3.9. Let M ∈ Hn(q)−mod, N ∈ HΛ
n (q)−modq be irreducible and

i ∈ I. Then:

(i) e
(r)
i (M) 6= 0 if and only if ẽri (M) 6= 0. In that case, e

(r)
i (M) is an indecom-

posable self-dual HΛ
n−r(q)-module with irreducible head and socle isomorphic

to ẽri (M).

(ii) (fΛ
i )(r)(N) 6= 0 if and only if (f̃Λ

i )r(N) 6= 0. In that case, (fΛ
i )(r)(N) is

an indecomposable self-dual HΛ
n−r(q)-module with irreducible head and socle

isomorphic to (f̃Λ
i )r(N).

Proof. From (12.9), we see that eri (M) 6= 0 if and only if e
(r)
i (M) 6= 0. Further-

more, by Theorem 12.1.13, the socle of eri (M) is isomorphic to
⊕

r! ẽ
r
i (M). Thus,

soc(e
(r)
i (M)) ∼= ẽri (M), and e

(r)
i (M) is indecomposable. Moreover, by Corollary

12.2.2, M is a self-dual Hn(q)-module. Then, by Corollary 12.2.4, we have that

eri (M) is a self-dualHn−r(q)-module. By the Krull–Schmidt Theorem, it follows that

e
(r)
i (M) is a self-dual module. This immediately implies that hd(e

(r)
i (M)) ∼= ẽri (M),

and (i) follows.

For (ii), the first part is proven similarly as the first part of (i). By adjointness of

(fΛ
i )r and (eΛ

i )r, see Corollary 12.2.4, we have for an irreducible HΛ
n+r(q)-module N

that

HomHΛ
n+r(q)

((fΛ
i )r(M), N) ∼= HomHΛ

n (q)(M, (eΛ
i )r(N)).

By Theorem 12.1.13 the latter is non-zero if and only if M ∼= (ẽΛ
i )r(N), which is

equivalent to N ∼= (f̃Λ
i )r(M), by Theorem 12.3.1. Therefore,

hd((fΛ
i )r(M)) ∼=

⊕
r!

(f̃Λ
i )r(M),

and then hd((fΛ
i )(r)(M)) ∼= (f̃Λ

i )r(M). By the self-duality of (fΛ
i )(r)(M), we also

see that the socle of (fΛ
i )(r)(M) is isomorphic to (f̃Λ

i )r(M). �

The next result is a direct consequence of Theorem 12.3.6.

Proposition 12.3.10. Let M,N ∈ Hn(q) − modq, such that M 6∼= N , i ∈ I, and

set ε := εi(M). Then for a positive integer r ≤ ε the following hold:

(i) [(ei)
(r)(M)] =

(
ε
r

)
[ẽri (M)] +

∑
ur[Nr], where the Nr are irreducible Hn−r(q)-

modules with εi(Nr) < εi(ẽ
r
i (M)) = ε− r.

(ii) HomHn−r(q)(e
(r)
i (M), e

(r)
i (N)) = 0.

Proof. To show (i), we proceed by induction. For r = 1, this is Theorem 12.3.6

(i) since (ei)
(1) ∼= ei. Suppose the statement is true for all 1 ≤ t < r. To avoid
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confusion, in the following we will write êi for the operator on K(∞) induced by ei.

Then, using Lemma 12.3.5, we have:

(r!)[e
(r)
i (M)] = [eri (M)] = [ei(e

r−1
i (M))] = êi([e

r−1
i (M)]).

Again, by Lemma 12.3.5 and the inductive hypothesis, we see that

êi([e
r−1
i (M)]) = êi((r − 1)!

(
ε

r − 1

)
[ẽr−1
i (M)] +

∑
ur−1[Nr−1])

= (r − 1)!

(
ε

r − 1

)
[ei(ẽ

r−1
i (M))] +

∑
ur−1[ei(Nr−1)],

where the Nr−1 ∈ Hn−r+1(q)−modq are irreducible with εi(Nr−1) < εi(ẽ
r−1
i (M)) =

ε−r+1. By part (i) of Theorem 12.3.6, the second summand in the equation above

ranges over summands [N ′k] ∈ K(Hn−r(q) − mod) with εi(N
′
k) < ε − r. Moreover,

ẽr−1
i (M) is an irreducible Hn−r+1(q)-module, and hence, we see that

(r − 1)!

(
ε

r − 1

)
[ei(ẽ

r−1
i (M))] = (r − 1)!

(
ε

r − 1

)
εi(ẽ

r−1
i (M))[ẽri (M)] +

∑
vk[Lk],

where the Lk are irreducible Hn−r(q)-modules such that εi(Lk) < εi(ẽ
r
i (M)) = ε−r.

Now εi(ẽ
r−1
i (M)) = ε− r + 1, and therefore

(r − 1)!

(
ε

r − 1

)
εi(ẽ

r−1
i (M)) = r!

(
ε

r

)
.

From this, part (i) follows.

The proof of (ii) is similar to Corollary 12.3.7, using (i) and the fact that, by

Proposition 12.3.9 (i), the socle of e
(r)
i (M) (resp. e

(r)
i (N)) is isomorphic to ẽri (M)

(resp. ẽri (N)). �

In the rest of this section, we want to establish analogues of Proposition 12.3.6 and

12.3.10 for the functors fΛ
a and (fΛ

a )(r), for all integers r > 0. We will need the

following, which is the statement of [44, Theorem 9.15].

Theorem 12.3.11. Let M ∈ HΛ
n (q)−mod be irreducible, i ∈ I. Then the following

hold:

(i) [fΛ
i (M)] = ϕΛ

i (M)[f̃Λ
i (M)] +

∑
urNr, where the HΛ

n+1(q)-modules Nr are ir-

reducible such that εΛ
i (Nr) < εΛ

i (f̃Λ
i (M)) = εΛ

i (M) + 1.

(ii) ϕΛ
i (M) is the smallest integer m such that fΛ

i (M) = prΛ(Indn+1
n,1 (M�Lm(i))).

(iii) ϕΛ
i (M) = dimF HomHΛ

n+1(q)(f
Λ
i (M), fΛ

i (M)).

Proof. See [44, Theorem 9.15]. �

In order to obtain a full analogue of Theorem 12.3.6 for the operator fΛ
i , we have

to show that in (i) we may write ϕΛ
i instead of εΛ

i . For this, we use the following
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lemma, which is [44, Theorem 12.6]. To state it, we need some new notation. For

an irreducible HΛ
n (q)-module M , we define

wti(M) := ϕΛ
i (M)− εΛ

i (M), (12.11)

wt(M) :=
∑
i∈I

wti(M)Λi ∈ P, (12.12)

see Chapter 11 for definitions. In particular we identify a central character γ with

the element γ =
∑

i∈I γiαi ∈ Γn.

Lemma 12.3.12. Let M ∈ HΛ
n (q) − mod be irreducible with central character γ,

and let i ∈ I. Then:

(i) If fΛ
i (M) 6= 0, then wt(f̃Λ

i (M)) = wt(M)− αi.

(ii) wti(1Λ) = 〈Λ, hi〉, for the simple coroot hi. Here, 1Λ denotes the unique

irreducible HΛ
0 (q)-module.

(iii) wti(M) = ϕΛ
i (M)− εΛ

i (M) = 〈Λ− γ, hi〉.

Proof. This is [44, Theorem 12.6]. �

As a consequence, we can complete our argument. Suppose that we are in the situ-

ation of Theorem 12.3.11. The module f̃Λ
i (M), and all the irreducible modules Nr

are composition factors of fΛ
i (M), thus, by Theorem 12.3.1 and the indecompos-

ability of fΛ
i (M), we see that they have the same central character. Therefore, by

Lemma 12.3.12 (iii),

ϕΛ
i (Nr) = 〈Λ− γ, hi〉+ εΛ

i (Nr),

ϕΛ
i (f̃Λ

i (M)) = 〈Λ− γ, hi〉+ εΛ
i (f̃Λ

i (M)).

Therefore,

ϕΛ
i (f̃Λ

i (M))− ϕΛ
i (Nr) = εΛ

i (f̃Λ
i (M))− εΛ

i (Nr) > 0,

by part (i) of Theorem 12.3.11. Furthermore, by the proof of [44, Theorem 12.6],

we have that

wti(f̃
Λ
i (N)) = wti(N)− 2,

for all irreducible HΛ
n (q)-modules N . Thus,

ϕΛ
i (f̃Λ

i (M))− εΛ
i (f̃Λ

i (M)) = ϕΛ
i (M)− εΛ

i (M)− 2,

and, hence,

ϕΛ
i (f̃Λ

i (M)) = ϕΛ
i (M)− 1

since εΛ
i (f̃Λ

i (M)) = εΛ
i (M) + 1, by Theorem 12.3.11. Then, as a consequence, we

can restate Theorem 12.3.11:
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Theorem 12.3.13. Let M ∈ HΛ
n (q)−mod be irreducible. Then the following hold:

(i) [fΛ
i (M)] = ϕΛ

i (M)[f̃Λ
i (M)]+

∑
urNr, for irreducible HΛ

n+1(q)-modules Nr sat-

isfying ϕΛ
i (Nr) < ϕΛ

i (f̃Λ
i (M)) = ϕΛ

i (M)− 1.

(ii) ϕΛ
i (M) is the smallest integer m such that fΛ

i (M) = prΛ(Indn+1
n,1 (M�Lm(i))).

(iii) ϕΛ
i (M) = dimF HomHΛ

n+1(q)(f
Λ
i (M), fΛ

i (M)).

Finally, we can give the full analogue of Proposition 12.3.10:

Proposition 12.3.14. Let M,N ∈ HΛ
n (q) − mod, such that M 6∼= N , and set

ϕ := ϕΛ
i (M). Then for a positive integer r ≤ ϕ the following hold:

(i) [(fΛ
i )(r)(M)] =

(
ϕ
r

)
[(f̃Λ

i )r(M)] +
∑
ur[Nr], where the HΛ

n+r(q)-modules Nr are

irreducible with ϕΛ
i (Nr) < ϕΛ

i ((f̃Λ
i )r(M)) = ϕ− r.

(ii) HomHΛ
n+r(q)

((fΛ
i )(r)(M), (fΛ

i )(r)(N)) = 0.

Proof. For r = 1, this is the content of Theorem 12.3.13 (i) since (fΛ
i )(1) ∼= fΛ

i . Let

1 < r ≤ ϕ, and suppose that the statement is true for all 1 ≤ t < r. Denote by f̂Λ
i

the operator on K(Λ) induced by fΛ
i . With Lemma 12.3.5, we get that

r![(fΛ
i )(r)(M)] = [(fΛ

i )r(M)] = [fΛ
i ((fΛ

i )r−1(M))] = f̂Λ
i ([(fΛ

i )r−1(M)]).

Then, by the inductive hypothesis, we have that

f̂Λ
i ([(fΛ

i )r−1(M)]) = f̂Λ
i ((r − 1)!

(
ϕ

r − 1

)
[(f̃Λ

i )r−1(M)] +
∑

ur−1[Nr−1])

= (r − 1)!

(
ϕ

r − 1

)
[fΛ
i ((f̃Λ

i )r−1(M))] +
∑

ur−1[fΛ
i (Nr−1)],

with irreducible HΛ
n+r−1(q)-modules Nr−1 such that ϕΛ

i (Nr−1) < ϕΛ
i ((f̃Λ

i )r−1(M)) =

ϕ− r + 1. By part (i) of Theorem 12.3.13, the last summand ranges over elements

[N ′k] ∈ K(HΛ
n+r(q)−mod) with ϕΛ

i (N ′k) < ϕ− r. Moreover, by Theorem 12.3.1, we

have that (f̃Λ
i )r−1(M) is irreducible since, by assumption, (f̃Λ

i )r−1(M) 6= 0. Using

Theorem 12.3.13 again, we have that the first term of the last sum equals

(r − 1)!

(
ϕ

r − 1

)
ϕΛ
i ((f̃Λ

i )r−1(M))[(f̃Λ
i )r(M)] +

∑
vk[Lk],

where all irreducible HΛ
n+r(q)-modules Lk satisfy ϕΛ

i (Lk) < ϕ− r. Since

(r − 1)!

(
ϕ

r − 1

)
(ϕ− r + 1) = r!

(
ϕ

r

)
,

part (i) follows.

For (ii), suppose that f ∈ HomHΛ
n+r(q)

((fΛ
i )(r)(M), (fΛ

i )(r)(N)). By Proposition

12.3.9 (ii), we know that (fΛ
i )(r)(M) and (fΛ

i )(r)(N) are self-dual modules with
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12.3. Operators on the Grothendieck groups

irreducible head and socle isomorphic to (f̃Λ
i )r(M) and (f̃Λ

i )r(N). If f is non-zero,

(f̃Λ
i )r(M) is a composition factor of (fΛ

i )(r)(N), and thus, by part (i),

ϕΛ
i ((f̃Λ

i )r(M)) ≤ ϕΛ
i ((f̃Λ

i )r(N)).

Similarly, (f̃Λ
i )r(N) must be a composition factor of (f̃Λ

i )(r)(M), hence, we may

conclude that

ϕΛ
i ((f̃Λ

i )r(N)) ≤ ϕΛ
i ((f̃Λ

i )r(M)),

which implies

ϕΛ
i ((f̃Λ

i )r(M)) = ϕΛ
i ((f̃Λ

i )r(N)).

Again by (i), this is only possible if (f̃Λ
i )r(M) ∼= (f̃Λ

i )r(N). Then, Theorem 12.3.1

implies M ∼= N . �

Remark 12.3.15. Note that Proposition 12.3.10 and Proposition 12.3.14 are ana-

logues of the results given in [59, Proposition 8.5.10].
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Chapter 13

Action of g′(A) on the

Grothendieck group

The aim of this chapter is to explain how the sum over the Grothendieck groups

of finite-dimensional HΛ
n (q)-modules, n ≥ 0, can be given the structure of a g′(A)-

module, where A denotes the generalized Cartan matrix of type A
(1)
l−1, l ≥ 2. More-

over, we explain the main result given in [44], which states that this module is

precisely the irreducible highest-weight module over g′(A) associated to the highest

weight Λ.

We will follow the lines of [59, §9], where the result was established in the degenerate

case.

As in previous chapters, Hn(q) denotes the affine Hecke algebra over the field F ,

where the defining parameter q is invertible in F . Moreover, we assume that ql = 1

for some positive integer l ≥ 2, where l is minimal with this property. We set

I := {0, . . . , l − 1}.
Furthermore, we denote by A the generalized Cartan matrix of type A

(1)
l−1, and let

g′(A) be the derived algebra of the Kac–Moody algebra defined as in Chapter 10

over the field K = Q of rational numbers. Moreover, we denote by U ′ the universal

enveloping algebra U(g′(A)) of g′(A). Also we denote by U ′Z the subalgebra of U ′

generated by the divided powers e
(r)
i :=

eri
r!

and f
(r)
i :=

fri
r!

, i ∈ I.

13.1 Shapovalov form

For Λ ∈ P+, recall from (11.1) of Chapter 11 that HΛ
n (q) is the factor algebra of

Hn(q) by the two-sided ideal of Hn(q) generated by the element
∏

i∈I(x1− qi)〈Λ,hi〉.
Moreover, recall from Section 12.3 the definition of the abelian groups K(∞) and

K(Λ), as well as the sets B(Λ) and B(∞), the union of the sets of isomorphism

classes of irreducible HΛ
n (q)-modules and irreducible Hn(q)-modules in Hn(q) −

modq, respectively, n ≥ 0.
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In this section, we recall the definition of the Shapovalov form, an important bilinear

form on K(Λ), Λ ∈ P+. Denote by HΛ
n (q)−proj the full subcategory of HΛ

n (q)−mod

consisting of projective left HΛ
n (q)-modules.

If P ∈ HΛ
n (q)− proj, then the functor

HomHΛ
n (q)(P,−) : HΛ

n (q)−mod −→ F −mod

is exact. Therefore, we obtain a well-defined bilinear mapping

(−,−) : K(HΛ
n (q)− proj)×K(HΛ

n (q)−mod) −→ Z (13.1)

by setting ([P ], [M ]) = dimF HomHΛ
n (q)(P,M). If N ∈ HΛ

n (q) −mod is irreducible,

and PN denotes its projective cover, then ([PN ], [M ]) can also be interpreted as the

multiplicity of N in a composition series of M . If N runs through the isomorphism

classes of irreducible HΛ
n (q)-modules, then the Z-linear maps

δN := (PN ,−) : K(HΛ
n (q)−mod)→ Z

give a basis of K(HΛ
n (q)−mod)∗ that is dual to the basis of K(HΛ

n (q)−mod) con-

sisting of the elements [N ], N ∈ HΛ
n (q)−mod irreducible, one for each isomorphism

class. We infer that the bilinear form (−,−) then gives an isomorphism of abelian

groups

K(HΛ
n (q)− proj) −→ K(HΛ

n (q)−mod)∗, (13.2)

which is determined by PN 7→ δN , for N ∈ HΛ
n (q)−mod irreducible.

Next consider the map

ωn : K(HΛ
n (q)− proj)→ K(HΛ

n (q)−mod), [P ] 7→
∑

[P : N ][N ], (13.3)

where the sum on the right-hand side is taken over all isomorphism classes of irre-

ducible HΛ
n (q)-modules. Note that this map is injective if and only if it becomes an

isomorphism of Q-vector spaces after extending scalars. And this happens precisely

when the bilinear form given in (13.1) is non-degenerate when restricted to

K(HΛ
n (q)− proj)×K(HΛ

n (q)− proj).

The last statement holds as the following theorem shows.

Theorem 13.1.1. The pairing

(P,Q) 7→ dimF HomHΛ
n (q)(P,Q),

where P,Q ∈ HΛ
n (q)− proj, induces a non-degenerate symmetric bilinear form

(−,−)∗ : K(HΛ
n (q)−mod)∗ ×K(HΛ

n (q)−mod)∗ −→ Z.
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Proof. This is precisely [44, Theorem 11.1]. �

Denote by K∗(Λ) the restricted dual of K(Λ), i.e., the set of the Z-linear maps

f : K(Λ)→ Z

such that f is zero on all but finitely many classes [N ], where N ∈ HΛ
n (q) − mod

is irreducible and n ≥ 0. Note that this set can be identified with the subset⊕
n≥0K(HΛ

n (q) − mod)∗ of the dual of K(Λ). Then, under the isomorphism given

in (13.2), we also have an identification

K∗(Λ) =
⊕
n≥0

K(HΛ
n (q)− proj)

in such a way that for each irreducible HΛ
n (q)-module N , n ≥ 0, the basis element δN

corresponds to the isomorphism class [PN ]. Moreover from the map given in (13.3),

we obtain a homogeneous map ω : K∗(Λ) → K(Λ) with respect to the natural

grading of K∗(Λ) and K(Λ). Then one has:

Corollary 13.1.2. The map ω : K∗(Λ)→ K(Λ) is injective.

Proof. This follows from Theorem 13.1.1 and the previous discussion. �

Therefore, we can identify K∗(Λ) with its image under ω, and thus we may view

K∗(Λ) ⊆ K(Λ) as Z-sublattices in K(Λ)Q := Q ⊗Z K(Λ). By extension of scalars,

we obtain an isomorphism

ω̂ := idQ ⊗ ω : (K∗(Λ))Q −→ K(Λ)Q

of Q-vector spaces. Furthermore, the form given in Theorem 13.1.1 induces a bilin-

ear form

(−,−) : K(HΛ
n (q)−mod)Q ×K(HΛ

n (q)−mod)Q −→ Q. (13.4)

It is non-degenerate and symmetric. The form (−,−), or the form (−,−)∗ is called

the Shapovalov form. Moreover, these forms induce symmetric non-degenerate bi-

linear forms on (K∗(Λ))Q and K(Λ)Q, respectively, which we will also refer to as the

Shapovalov form.

13.2 Action of g′(A)

For i ∈ I and r ≥ 1, recall from Chapter 9 and Chapter 11 the definitions of the

various functors ei, e
Λ
i , f

Λ
i , e

(r)
i , (eΛ

i )(r), and (fΛ
i )(r). They are exact, and therefore ad-

ditive. Thus, on the level of Grothendieck groups, they descend to homomorphisms

of abelian groups, and define actions on K(∞) and K(Λ), respectively.

Furthermore, by Proposition 11.2.13, for i ∈ I, the functors eΛ
i and fΛ

i take projec-

tive modules to projective modules, their action on K∗(Λ) is defined. More precisely,
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Chapter 13. Action of g′(A) on the Grothendieck group

if φ ∈ K(HΛ
n (q) − mod)∗ is given by the map (P,−) with P ∈ HΛ

n (q) − proj,

then we define eΛ
i (φ) (resp. fΛ

i (φ)) as the map in K(HΛ
n−1(q) − mod)∗ (resp.

K(HΛ
n+1(q) − mod)∗) given by the map (eΛ

i ([P ]),−) (resp. (fΛ
i ([P ]),−)), where

eΛ
i ([P ]) ∈ K(HΛ

n−1(q)− proj) (resp. fΛ
i ([P ]) ∈ K(HΛ

n+1(q)− proj)). By adjointness

of eΛ
i and fΛ

i , i ∈ I, we have that

φ ◦ fΛ
i ([M ]) = ([P ], fΛ

i (M)) = (eΛ
i ([P ]), [M ]),

for [M ] ∈ K(HΛ
n−1(q) − mod). Therefore, the action of eΛ

i (resp. fΛ
i ) on K∗(Λ) is

just the transpose of the action of fΛ
i (resp. eΛ

i ) on K(Λ).

In the sequel we state crucial relations among these various operators. The first of

these is the following:

Lemma 13.2.1. The operators ei : K(∞)→ K(∞), and eΛ
i : K(Λ)→ K(Λ), i ∈ I,

satisfy the Serre relations:

(i) If qi−j 6= q±1, then eiej = ejei.

(ii) If qi−j 6= q±1 and q 6= q−1, then e2
i ej + eje

2
i = 2eiejei.

(iii) If qi−j 6= q±1 and q = q−1, i.e., q = −1, then e3
i ej + 3eieje

2
i = 3e2

i ejei + eje
3
i .

Proof. This is [44, Proposition 12.1]. �

From the fact that the functors eΛ
i and fΛ

i are both left and right adjoint to one

another, and (−,−) is non-degenerate, we also obtain an analogue of the previous

lemma for the operators fΛ
i .

Lemma 13.2.2. The operators fΛ
i : K(Λ) → K(Λ), i ∈ I, satisfy the Serre rela-

tions.

By Theorem 11.2.14 and Proposition 11.2.18, also the functors (eΛ
i )(r) and (fΛ

i )(r),

i ∈ I, r ≥ 1, take projective HΛ
n (q)-modules to projective HΛ

n−r(q)-modules (resp.

HΛ
n+r(q)-modules), and so, their action on K∗(Λ) is defined as well. Moreover, as

shown in Chapter 11, the functors (eΛ
i )(r) and (fΛ

i )(r) are adjoint to one another

and, thus, we get:

Lemma 13.2.3. For all i ∈ I, the operators (eΛ
i )(r) and (fΛ

i )(r) on K∗(Λ) and K(Λ)

satisfy

((eΛ
i )(r)([P ]), [N ]) = ([P ], (fΛ

i )(r)([N ])), ((fΛ
i )(r)([P ]), [N ]) = ([P ], (eΛ

i )(r)([N ])),

for all [P ] ∈ K∗(Λ) and [N ] ∈ K(Λ).

Proof. This follows from (13.1) and the adjointness of the functors (eΛ
i )(r) and

(fΛ
i )(r). �

From this we immediately obtain the following corollary.
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Corollary 13.2.4. Assume that, for r ≥ 1,

(eΛ
i )(r)([M ]) =

∑
tM,N [N ], (fΛ

i )(r)([M ]) =
∑

sM,N [N ],

where the first sum is taken over the classes [N ] ∈ K(Λ), with N ∈ HΛ
n−r(q)−mod

irreducible, n ≥ r, and the second is taken over the classes [N ] ∈ K(Λ), with

N ∈ HΛ
n+r(q)−mod irreducible, n ≥ 0. Then

(eΛ
i )(r)([PN ]) =

∑
sM,N [PM ], (fΛ

i )(r)([PN ]) =
∑

tM,N [PM ],

where both sums are taken over the classes [PM ] ∈ K∗(Λ) such that PM is the

projective cover of M ∈ HΛ
n (q)−mod, M irreducible.

Proof. This follows from the previous lemma and the fact that for M irreducible

one has that ([PN ], [M ]) = δ[N ],[M ]. �

Let i ∈ I, and let M ∈ HΛ
n (q) − mod be irreducible. Recall the definitions of the

functions εΛ
i and ϕΛ

i from (12.7). Then we define a linear operator hΛ
i on K(Λ) by

setting

hΛ
i ([M ]) = (ϕΛ

i (M)− εΛ
i (M))[M ]. (13.5)

Equivalently, by Lemma 12.3.12, we have that

hΛ
i ([M ]) = (Λ− γ)(hi)[M ], (13.6)

where M has central character χγ. More generally, one defines(
hΛ
i

r

)
: K(Λ)→ K(Λ), [M ] 7→

(
ϕΛ
i (M)− εΛ

i (M)

r

)
([M ]).

From (13.6), we immediately obtain the following relations:

Lemma 13.2.5. As operators on K(Λ),

[hΛ
i , e

Λ
j ] = αj(hi)e

Λ
j , (13.7)

and

[hΛ
i , f

Λ
j ] = −αj(hi)fΛ

j , (13.8)

for all i, j ∈ I.

Proof. This follows from (13.6): If M ∈ HΛ
n (q) − mod is irreducible with central

character χγ, γ = (γ0, . . . , γl−1), we get that

[hΛ
i , e

Λ
j ]([M ]) = (hΛ

i e
Λ
j − eΛ

j h
Λ
i )([M ]) = hΛ

i e
Λ
j ([M ])− eΛ

j h
Λ
i ([M ])

= (Λ− γ′)(hi)eΛ
j ([M ])− (Λ− γ)(hi)e

Λ
j ([M ])

= ((Λ− γ′)− (Λ− γ))(hi)e
Λ
j ([M ])

= (γ − γ′)(hi)eΛ
j ([M ])

= αj(hi)e
Λ
j ([M ])
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since all the composition factors of eΛ
j ([M ]) have central character χγ′ , with γ′ =

(γ0, . . . , γj−1, γj − 1, γj+1, . . . , γl−1). Since hΛ
i is linear, the result follows. �

Moreover, the following holds true.

Lemma 13.2.6. As operators on K(Λ),

[eΛ
i , f

Λ
j ] = δi,jh

Λ
i , (13.9)

for all i, j ∈ I.

Proof. See [44, Theorem 12.4]. �

In the following, we set (eΛ
i )(0) = (fΛ

i )(0) = (eΛ
i )(0) = (fΛ

i )(0) = idK(Λ) as operators

on K(Λ). Then, for Λ ∈ P+, Lemma 13.2.1, 13.2.2, 13.2.5 and 13.2.6 show that the

abelian group K(Λ) carries the structure of a U ′-module:

Theorem 13.2.7. The action of the operators eΛ
i , fΛ

i and hΛ
i on K(Λ), for all

i ∈ I, satisfy the Chevalley relations (D1)–(D6) of Section 10.1. Furthermore, the

operators (eΛ
i )(r), (fΛ

i )(r) and
(
hΛ
i
r

)
, i ∈ I, and r ≥ 1, define a U ′-module structure

on K(Λ)Q such that K∗(Λ) and K(Λ) are U ′Z-submodules.

Proof. This follows from Lemma 13.2.1, 13.2.2, 13.2.5 and 13.2.6 together with the

definitions in Section 10.1. �

Now that we have a U ′-module structure on K(Λ)Q, it is natural to ask whether

K(Λ)Q possesses even more structure. By definition, the elements hΛ
i , i ∈ I, are

semisimple operators. Moreover, from (13.6) we see that

K(Λ)Q =
⊕
γ∈Q+

(K(Λ)Q)Λ−γ,

and, hence, K(Λ)Q is a weight module over g′(A), see Chapter 10 for definitions. In

the following, we will denote by [1Λ] the class of the irreducible HΛ
0 (q)-module in

K(HΛ
0 (q)−mod). For the next theorem we will need the following lemma, which is

an analogue of [59, Lemma 9.3.3] in the non-degenerate case.

Lemma 13.2.8. Suppose that M ∈ HΛ
n (q)−mod is irreducible. Let i ∈ I, and set

ε := εΛ
i (M), and ϕ := ϕΛ

i (M). For m ≥ 0, we get that

(eΛ
i )(m)([PM ]) =

∑
[N ], εΛi (N)≥m

aN [P(ẽΛi )m(N)],

for non-negative integers aN . Furthermore, if m = ε, then

(eΛ
i )(ε)([PM ]) =

(
ε+ ϕ

ε

)
[P(ẽΛi )ε(M)] +

∑
[N ], εΛi (N)>m

aN [P(ẽΛi )m(N)].
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Proof. From Corollary 13.2.4 we infer that

(eΛ
i )(m)([PM ]) =

∑
[L]∈B(Λ)

[(fΛ
i )(m)(L) : M ][PL].

By Proposition 12.3.9 and the definition of ϕΛ
i , the condition [(fΛ

i )(m)(L) : M ] > 0

implies that ϕΛ
i (L) ≥ m. Otherwise, we must have that (fΛ

i )(m)(L) = 0. In the

first case, we denote by N the non-zero module (f̃Λ
i )m(L). Together with Theorem

12.3.1 we have:

(eΛ
i )(m)([PM ]) =

∑
[N ]∈B(Λ), εΛi (N)≥m

[(fΛ
i )(m)((ẽΛ

i )m(N)) : M ]([P(ẽΛi )m(N)].

This gives the first part of the lemma.

Next, let m = ε. By the definition of εΛ
i , if εΛ

i (N) = ε, then εΛ
i ((ẽΛ

i )ε(N)) = 0. By

Theorem 12.3.11, the only composition factor L of (fΛ
i )(m)((ẽΛ

i )m(N)) with εΛ
i (L) =

ε is (f̃Λ
i )m((ẽΛ

i )m(N) = N . This implies that N ∼= M , and, by Proposition 12.3.14

(i), we see that

[(fΛ
i )(ε)((ẽΛ

i )ε(M)) : M ] =

(
ε+ ϕ

ε

)
.

�

We are now ready to state the following:

Theorem 13.2.9. Let M ∈ HΛ
n (q)−mod be irreducible. Then every element [PM ] ∈

K(HΛ
n (q)−proj) can be written as an integral linear combination of monomial words

of the form

(fΛ
i1

)(r1) . . . (fΛ
ik

)(rk)([1Λ]),

with rj ≥ 0, and ij ∈ I, for all j.

Proof. This is [44, Lemma 11.4], but we will give the arguments here, following

the lines of [59, Theorem 9.3.4]. We argue by induction on n. For n = 0 the

statement is obviously true. Thus, let n > 0, and suppose that the statement holds

for all smaller non-negative integers. Assume for a contradiction that there is an

irreducible HΛ
n (q)-module M for which the statement is false. Let i ∈ I such that

ε := εΛ
i (M) > 0. Choose M so that the claim holds for all irreducible HΛ

n (q)-

modules L with εΛ
i (L) > ε. This is always possible since there are only finitely

many isomorphism classes of irreducible HΛ
n (q)-modules. Then we may write

(fΛ
i )(ε)([P(ẽΛi )ε(M)] =

∑
[N ]∈B(Λ)

aN [PN ],

for non-negative integers aN . By Corollary 13.2.4, we have that

aN = [(eΛ
i )(ε)(N) : (ẽΛ

i )ε(M)].
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Suppose that aN > 0, where N is such that εΛ
i (N) = ε. Then

(eΛ
i )(ε)(N) ∼= (ẽΛ

i )ε(N) ∼= (ẽΛ
i )ε(M),

by Proposition 12.3.10. From Theorem 12.3.1 we conclude that N ∼= M and aM = 1.

This yields

[PM ] = (fΛ
i )(ε)([P(ẽΛi )ε(M)]−

∑
[N ]∈B(Λ), εΛi (N)>ε

aN [PN ],

with non-negative integers aN . By the inductive hypothesis, the first term of the

right-hand side can be written in the desired form. Furthermore, by our choice of

M , we may assume that the same holds for the second term. This contradicts our

assumption on M .

�

Corollary 13.2.10. For all n ≥ 0, every element y ∈ K(HΛ
n (q) − mod)Q can

be written as a Q-linear combination of elements of the form fΛ
i (x), for elements

x ∈ K(HΛ
n−1(q)−mod)Q.

Proof. Let P be a projective HΛ
n−r(q)-module, r ≥ 0, n − r ≥ 0. Then, as stated

prior to Lemma 13.2.3, (fΛ
i )(r)(P ) is a projective HΛ

n (q)-module. Suppose that

[P ] =
∑

[P : Mj][Mj] ∈ K(HΛ
n−r(q)−mod),

for irreducible HΛ
n−r(q)-modules Mj. Then

[(fΛ
i )(r)(P )] =

∑
[P : Mj][(f

Λ
i )(r)(Mi)] ∈ K(HΛ

n (q)−mod)

since (fΛ
i )(r) is an exact functor. The statement now follows from the injectivity of

the map ω, Theorem 13.2.9 and the fact that, as operators on K(Λ), (fΛ
i )(r) =

(fΛ
i )r

r!
,

see Lemma 12.3.5. �

We are now in a position to describe the structure of K(Λ) as a U ′-module com-

pletely. Observe that the next theorem was first stated in [44]. We give another

proof here, following the lines of [59, Theorem 9.5.1]. The necessary definitions and

results concerning the representation theory of Kac–Moody algebras used here can

be found in Section 10.2 and Section 10.3.

Theorem 13.2.11. For Λ ∈ P+ the following hold:

(i) As a U ′-module, K(Λ)Q is isomorphic to the irreducible integral highest-weight

U ′-module L(Λ) of highest weight Λ and highest-weight vector [1Λ].

(ii) The bilinear form (−,−) of (13.4) on K(Λ)Q, coincides with the contravari-

ant form provided by the irreducible highest-weight U ′-module L(Λ), satisfying

([1Λ], [1Λ]) = 1.
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(iii) K∗(Λ) ⊆ K(Λ) are integral forms of K(Λ)Q containing the highest-weight vec-

tor [1Λ]. Moreover, K∗(Λ) is the minimal lattice (U ′Z)−[1Λ] ⊆ K(Λ)Q with

K(Λ) being its dual under the contravariant form.

(iv) The classes of the irreducible HΛ
n (q)-modules with central character γ form a

basis of the (Λ− γ)-weight spaces (K(Λ)Q)Λ−γ. The same statement holds for

the classes [PM ] of projective indecomposable modules in HΛ
n (q) − mod with

central character γ.

Proof. By Theorem 13.2.7, we have already seen that K(Λ)Q is a U ′-module. By

Theorem 12.3.6 and Theorem 12.3.13, we see that the elements ei, fi ∈ U ′, i ∈ I,

act locally nilpotently on K(Λ)Q. The action of the elements hi ∈ U ′, i ∈ I, on

K(Λ)Q is diagonal by definition, see (13.6). It follows that K(Λ)Q is an integrable

U ′-module. Moreover, again by (13.6), we see that [1Λ] is a highest-weight vector of

highest weight Λ. From Corollary 13.2.10, we infer that K(Λ)Q = (U ′)−[1Λ]. This

finishes the proof of (i).

From Lemma 13.2.3 we know that (−,−) is non-degenerate and contravariant.

By Proposition 10.3.7 we have that the bilinear form associated to an irreducible

highest-weight U ′-module is unique up to a constant factor. Since ([1Λ], [1Λ]) = 1,

we see that this form must coincide with (−,−). Thus, (ii) follows.

By the discussion prior to Lemma 13.2.3, we know that U ′Z leaves the lattices K∗(Λ)

and K(Λ) invariant. Moreover, the duality pairing given in (13.1) shows that they

are dual to each other under the contravariant form. Also, Theorem 13.2.9 states

that (U ′Z)−[1Λ] = K∗(Λ). Hence, (iii) follows.

Finally, part (iv) is just a reformulation of (13.6). �
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Crystal structure

In this chapter we briefly recall the concept of crystals associated to highest-weight

modules over enveloping algebras of Kac–Moody algebras.

Moreover, we recall work of I. Grojnowski [44], where he gave the sets B(∞) and

B(Λ), Λ ∈ P+, the structure of crystals in the sense of M. Kashiwara. The crystal

structure will become important in later chapters.

The aim of this chapter is to understand the proof of the following, which is one of

the main results of [44]:

Theorem 14.0.12. Let A be the generalized Cartan matrix of type A
(1)
l−1, l ≥ 2.

Then, for all Λ ∈ P+, the crystal B(Λ) is isomorphic to the crystal B(Λ)Kas of the

irreducible highest-weight module L(Λ) of highest weight Λ defined over the quantized

enveloping algebra Uv(g(A)) over Q(v).

For the proof of this theorem we will follow the lines of [59, §10], where the theorem

was established in the degenerate case.

14.1 Crystals

The theory of crystals was mainly developed by M. Kashiwara in the context of

integrable highest-weight modules for quantized enveloping algebras Uv(g(A)) of a

Kac–Moody algebra g(A), see for example [54]. Due to this work, for a generalized

Cartan matrix A, each irreducible highest-weight module L(Λ) of highest weight

Λ over the Q(v)-algebra Uv(g(A)) admits a certain basis, called the crystal basis,

which is determined uniquely by L(Λ). To each crystal bases one can associate a

graph B(Λ)Kas, which is called the crystal graph of L(Λ). Moreover, via the latter

crystal bases one also can associate a crystal basis to the subalgebra Uv(g(A))− of

Uv(g(A)) with crystal graph denoted by BKas.

Recall the definition of the set P from Chapter 11. We now state the necessary

definitions, which can be found in [54].
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Chapter 14. Crystal structure

Definition 14.1.1. Let A be a generalized Cartan matrix. A crystal of type A is

a set B together with maps

ϕi, εi : B −→ Z ∪ {−∞} (i ∈ I),

ẽi, f̃i : B −→ B ∪ {0} (i ∈ I),

wt : B −→ P,

such that:

(C1) ϕi(b) = εi(b) + wt(b)(hi), for all i ∈ I, b ∈ B.

(C2) If b ∈ B satisfies ẽi(b) 6= 0, then εi(ẽi(b)) = εi(b) − 1, ϕi(ẽi(b)) = ϕi(b) + 1,

and wt(ẽi(b)) = wt(b) + αi, i ∈ I.

(C3) If b ∈ B satisfies f̃i(b) 6= 0, then εi(f̃i(b)) = εi(b) + 1, ϕi(f̃i(b)) = ϕi(b) − 1,

and wt(f̃i(b)) = wt(b)− αi, i ∈ I.

(C4) For elements b1, b2 ∈ B, b2 = f̃i(b1) holds if and only if b1 = ẽi(b2), i ∈ I.

(C5) If ϕi(b) = −∞, then ẽi(b) = f̃i(b) = 0, i ∈ I.

Example 14.1.2. (i) For every i ∈ I one can define a crystal Bi as follows. As a

set,

Bi = {bi(n) | n ∈ Z},

with symbols bi(n), together with the maps

εj(bi(n)) =

{
−n if j = i,

−∞ if j 6= i,

ϕj(bi(n)) =

{
n if j = i,

−∞ if j 6= i,

ẽj(bi(n)) =

{
bi(n+ 1) if j = i,

0 if j 6= i,

f̃j(bi(n)) =

{
bi(n− 1) if j = i,

0 if j 6= i.

Finally, we set wt(bi(n)) = nαi, for all n ∈ Z.

(ii) For Λ ∈ P , we define the crystal TΛ as the set {tΛ}, together with εi(tΛ) =

ϕi(tΛ) = −∞, ẽi(tΛ) = f̃i(tΛ) = 0, and wt(tΛ) = Λ.

A morphism ψ : B → B′ of crystals B and B′ is a map ψ : B ∪ {0} → B′ ∪ {0}
such that:

(M1) ψ(0) = 0.

(M2) Let b ∈ B. If ψ(b) 6= 0, then wt(ψ(b)) = wt(b), εi(ψ(b)) = εi(b), and

ϕi(ψ(b)) = ϕi(b).
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14.2. Crystals associated to cyclotomic Hecke algebras

(M3) For all b ∈ B with ψ(b) 6= 0 and ψ(ẽi(b)) 6= 0, we have that ψ(ẽi(b)) = ẽiψ(b).

(M4) For all b ∈ B with ψ(b) 6= 0 and ψ(f̃i(b)) 6= 0, we have that ψ(f̃i(b)) = f̃iψ(b).

A morphism ψ of crystals is called an embedding if ψ is injective. It is called strict

if ψ commutes with the maps ẽi, f̃i, for all i ∈ I.

Given two crystals B and B′, we may define their tensor product as follows. As a

set, B ⊗ B′ is defined as B × B′, where we denote an element (b, b′) ∈ B × B′ by

b⊗ b′. This set can be given the structure of a crystal, by setting

εi(b⊗ b′) = max(εi(b), εi(b
′)− wt(b)(hi)),

ϕi(b⊗ b′) = max(ϕi(b) + wt(b′)(hi), ϕi(b
′)),

ẽi(b⊗ b′) =

{
ẽi(b)⊗ b′ if ϕi(b) ≥ εi(b

′),

b⊗ ẽi(b′) if ϕi(b) < εi(b
′),

f̃i(b⊗ b′) =

{
f̃i(b)⊗ b′ if ϕi(b) > εi(b

′),

b⊗ f̃i(b′) if ϕi(b) ≤ εi(b
′),

wt(b⊗ b′) = wt(b) + wt(b′),

for all i ∈ I, and b⊗ b′ ∈ B ⊗B′. Also, we set b⊗ 0 = 0 = 0⊗ b.

14.2 Crystals associated to cyclotomic Hecke al-

gebras

Next, recall the definitions B(∞) and B(Λ), for Λ ∈ P+, as well as the maps

ẽi, f̃i : B(∞)→ B(∞) ∪ {0}

and

ẽΛ
i , f̃

Λ
i : B(Λ)→ B(Λ) ∪ {0},

for i ∈ I. We want to give the sets B(∞) and B(Λ) the structures of crystals. The

main source of reference for this will be Section 12.3. From now on, A will denote

the generalized Cartan matrix of type A
(1)
l−1, l ≥ 2. Furthermore, by σ we will denote

the diagram automorphism of Hn(q), which is defined by

xi 7→ xn+1−i, Ti 7→ −(Tn−i + 1− q).

If M ∈ Hn(q) −mod, via σ, we get another Hn(q)-action on M and obtain a new

Hn(q)-module that we will denote by Mσ. For i ∈ I, we define

ε∗i (M) = εi(M
σ), (14.1)

ẽ∗i (M) = (ẽi(M
σ))σ, (14.2)

f̃ ∗i (M) = (f̃i(M
σ))σ, (14.3)

for an irreducible M ∈ Hn(q)−modq.
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Remark 14.2.1. From the action, we can interpret the integer ε∗i (M) as the maxi-

mal t ∈ Z+ such that [L(i)�t� . . .] appears in the character ch(M) of M . Moreover,

in view of Theorem 12.3.6, the integer ε∗i (M) is the maximal size of a Jordan block

of x1 with eigenvalue qi.

As a direct consequence, we obtain the next lemma. Recall the definition of the

functor

prΛ : Hn(q)−mod −→ HΛ
n (q)−mod,

and the algebra homomorphism

evΛ : Hn(q)→ HΛ
n (q),

defined in Chapter 11.

Lemma 14.2.2. Let Λ ∈ P+, and let M ∈ Hn(q) − modq be irreducible. Then

prΛ(M) = M if and only if ε∗i (M) ≤ Λ(hi), for all i ∈ I.

Proof. Let IΛ = ker(evΛ). Since M is irreducible, prΛ(M) = M/IΛM is either zero

or IΛM = 0. By the definition of IΛ, IΛM = 0 if and only if the largest size of a

Jordan block of x1 on M corresponding to the eigenvalue qi is less than or equal

Λ(hi). By Remark 14.2.1, ε∗i (M) is the maximal size of a Jordan block of x1 with

eigenvalue qi. Hence, the result follows. �

In the following, we will state some rather technical results. These will be necessary

for giving the sets B(∞) and B(Λ), Λ ∈ P+, the structure of a crystal. The proof

of the following lemma is similar to that of [59, Lemma 10.1.1].

Lemma 14.2.3. Let M ∈ Hn(q)−modq be irreducible. Then the following hold:

(i) For all i ∈ I, either ε∗i (f̃i(M)) = ε∗i (M) or ε∗i (f̃i(M)) = ε∗i (M) + 1.

(ii) For all i, j ∈ I with i 6= j, we have that ε∗i (f̃j(M)) = ε∗i (M).

Proof. By definition, f̃i(M) = hd(Ind
Hn+1(q)
H(n,1)(q)

(M � L(i))), hence, by the Shuffle

Lemma and Remark 14.2.1, we infer that ε∗i (f̃i(M)) ≤ ε∗i (M) + 1. Moreover, let

N := f̃i(M). Then clearly, ε∗i (ẽi(N)) ≤ ε∗i (N). Therefore, ε∗i (M) = ε∗i (ẽi(N)) ≤
ε∗i (f̃i(M)), by Theorem 12.3.1. This proves the first statement.

For the second statement, suppose that i 6= j, and write

f̃j(M) = hd(Indn+1
n,1 (M � L(j))).

Then, by the Shuffle Lemma, we directly see that ε∗i (f̃j(M)) = ε∗i (M). �

Proposition 14.2.4. Let M ∈ Hn(q)−modq be irreducible, and let i, j ∈ I. More-

over, write a = ε∗i (M). Then:

(i) If ε∗i (f̃j(M)) = a, then (ẽ∗i )
a(f̃j(M)) ∼= f̃j((ẽ

∗
i )
a(M)).
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(ii) If ε∗i (f̃i(M)) = a+ 1, then ẽ∗i (f̃i(M)) ∼= M .

Proof. This is [44, Proposition 13.1], where the proof of statement (i) is given only

in the case i = j. But also for i 6= j the same argument applies. �

If we replace in Lemma 14.2.3 and Proposition 14.2.4 M by Mσ, then we obtain

the following:

Lemma 14.2.5. Let M ∈ Hn(q)−modq be irreducible. Then the following hold:

(i) For all i ∈ I, either εi(f̃
∗
i (M)) = εi(M) or εi(f̃

∗
i (M)) = εi(M) + 1.

(ii) For all i, j ∈ I with i 6= j, we have that εi(f̃
∗
j (M)) = εi(M).

Proposition 14.2.6. Let M ∈ Hn(q)−modq be irreducible, and let i, j ∈ I. More-

over, write a = εi(M). Then:

(i) If εi(f̃
∗
j (M)) = a, then ẽai (f̃

∗
j (M)) ∼= f̃ ∗j (ẽai (M)).

(ii) If εi(f̃
∗
i (M)) = a+ 1, then ẽi(f̃

∗
i (M)) ∼= M .

As stated earlier, for Λ ∈ P+ , we want to make the sets B(∞) and B(Λ) into

crystals. For B(Λ), we use the operators ẽΛ
i , f̃

Λ
i together with the functions εΛ

i , ϕ
Λ
i

defined in Section 12.3 to define the maps ẽi, f̃i, εi, ϕi, for all i ∈ I.

For B(∞), we use the maps ẽi, f̃i, and the function εi from the same section. The

function ϕi is defined below.

On B(∞) and B(Λ), we define the weight functions as

wt([M ]) = −γ, (14.4)

for an irreducible M ∈ Hn(q)−modq with central character γ, and

wtΛ([N ]) = Λ− γ, (14.5)

for an irreducible N ∈ HΛ
n (q) − mod with central character γ. Finally, for [M ] ∈

B(∞), we set

ϕi([M ]) = εi([M ]) + wt([M ])(hi). (14.6)

We can now state the following:

Theorem 14.2.7. The set B(∞) together with the maps εi, ϕi, ẽi, f̃i,wt, as well as

the set B(Λ), Λ ∈ P+, together with the maps εΛ
i , ϕ

Λ
i , ẽ

Λ
i , f̃

Λ
i ,wtΛ, are crystals.

Proof. Property (C1) for B(Λ) is Lemma 12.3.12 (iii), and equation (14.6) for B(∞).

The property (C4) is Theorem 12.3.1, for both B(∞) and B(Λ).

By Lemma 12.1.3, we see that for M ∈ Hn(q) − modq irreducible, εi(ẽi([M ])) =

εi([M ]) − 1, for i ∈ I. Moreover, by Theorem 12.3.13, we have that ϕi(f̃i([M ])) =

ϕi([M ])− 1, for M ∈ HΛ
n (q)−mod irreducible. Using Theorem 12.3.1, we see that
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ϕi(ẽi([M ]) = ϕi([M ]) + 1. For M ∈ Hn(q) − modq, by definition, ϕi(ẽi([M ]) =

εi(ẽi([M ])) + wt(ẽi([M ]))(hi). Moreover, since ẽi([M ]) has central character γ −αi,
for M ∈ HΛ

n (q)−mod irreducible, we infer that

wtΛ(ẽi([M ])) = Λ− (γ − αi)
= Λ− γ + αi

= wtΛ([M ]) + αi.

By (14.4), we have that wt(ẽi([M ])) = −γ + αi. It follows by Theorem 12.3.1 and

Remark 12.1.11 that

ϕi(ẽi([M ]) = εi([M ])− 1 + wt(ẽi([M ]))(hi).

Since αi(hi) = 2, we infer that

ϕi(ẽi([M ]) = εi([M ]) + wt([M ])(hi) + 1

= ϕi([M ]) + 1.

Now we see that B(∞) and B(Λ) satisfy property (C2).

By Remark 12.1.11, we immediately have that εi(f̃i([M ])) = εi([M ]) + 1, for irre-

ducible M ∈ HΛ
n (q) − mod (resp. Hn(q) − modq). Furthermore, Theorem 12.3.13

shows that ϕi(f̃
Λ
i (M)) = ϕi(M)− 1, and hence, ϕi(f̃i([M ]) = ϕi([M ])− 1 holds for

B(Λ). Let M ∈ Hn(q) −modq be irreducible with central character γ. By (14.4),

together with Remark 12.1.11, we see that

ϕi(f̃i([M ])) = εi([M ]) + 1 + wt(f̃i([M ]))(hi).

Since wt(f̃i([M ]))(hi) = −γ − αi, we have that

ϕi(f̃i([M ])) = εi([M ]) + wt([M ])(hi)− 1,

and thus, ϕi(f̃i([M ])) = ϕi([M ]) − 1. From the definition of wt and wtΛ we easily

see that wt(f̃i([M ])) = wt([M ]) − αi (resp. wtΛ(f̃i([M ])) = wtΛ([M ]) − αi), for

irreducible M ∈ Hn(q) −modq (resp. HΛ
n (q) −mod). This shows that (C3) holds

for B(∞) and B(Λ).

Suppose that ẽi(b) 6= 0. Then, for M ∈ HΛ
n (q)−mod irreducible, ϕi([M ]) is finite,

by Theorem 12.3.13 (iii). For M ∈ Hn(q) −modq this follows form (14.4) and the

fact that εi([M ]) is finite. Moreover, the same argument shows that if f̃i([M ]) 6= 0,

then ϕi([M ]) is finite for irreducible M ∈ Hn(q)−modq (resp. HΛ
n (q)−mod). This

finishes the proof. �

Via inflation we obtain an embedding inflΛ : B(Λ) ∪ {0} → B(∞) ∪ {0}. We have

the following.
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Lemma 14.2.8. The map ψΛ : B(Λ)→ B(∞)⊗TΛ, given by [M ] 7→ inflΛ([M ])⊗tΛ,

is an embedding of crystals. Its image equals the subset

{[M ]⊗ tΛ ∈ B(∞)⊗ TΛ | ε∗i (M) ≤ Λ(hi) for all i ∈ I}

of B(∞)⊗ TΛ.

Proof. Clearly, ψΛ(0) = 0. Let [M ] ∈ B(Λ) with ψΛ([M ]) 6= 0, M ∈ HΛ
n (q) −mod

irreducible. Suppose that inflΛ(M) has central character γ. Then

wt(ψΛ([M ])) = wt(inflΛ([M ])⊗ tΛ)

= wt(inflΛ([M ])) + wt(tΛ)

= Λ− γ,

see Example 14.1.2 (ii). Thus, wt(ψΛ([M ])) = wt([M ]). Next, let i ∈ I. Then:

εi(ψ
Λ([M ])) = max(εi(inflΛ([M ])), εi(tΛ)− wt(inflΛ([M ]))(hi)).

Since, by definition, εi(tΛ) = −∞, we have that εi(ψ
Λ([M ])) = εi([M ]). Similarly,

since ϕi(tΛ) = −∞, we have that ϕ(ψΛ([M ])) = ϕi([M ]). This shows that ψΛ

satisfies (M2).

Next, suppose that ψΛ([M ]) 6= 0 and ψΛ(ẽi([M ])) 6= 0. Recall from [44, Lemma 9.3]

that inflΛ(ẽΛ
i ([M ])) = ẽi(inflΛ([M ])). Therefore,

ψΛ(ẽi([M ])) = inflΛ(ẽi([M ]))⊗ tΛ = (ẽi(inflΛ([M ])))⊗ tΛ.

Since ϕi(inflΛ([M ])) ≥ εi(tΛ), we see that ψΛ(ẽi([M ])) = ẽi(ψ
Λ([M ])). Hence, ψΛ

satisfies (M3).

Assume ψΛ([M ]) 6= 0 and ψΛ(f̃i([M ])) 6= 0. Property (M1) implies that f̃i([M ]) 6=
0. Then, by [44, Lemma 9.3], we have that inflΛ(f̃i([M ])) = f̃i(inflΛ([M ])), and

the same argumentation as above shows that ψΛ(f̃i([M ])) = f̃i(ψ
Λ([M ])), hence

property (M4).

The second statement follows from Lemma 14.2.2. This finishes the proof. �

The proof of the next lemma is analogous to that of [59, Lemma 10.3.1].

Lemma 14.2.9. Let M ∈ Hn(q)−modq be irreducible, and i, j ∈ I such that i 6= j.

We set c = ε∗i (M). Then the following hold:

(i) εj(M) = εj((ẽ
∗
i )
c(M)).

(ii) Suppose that εj(M) > 0. Then ε∗i (ẽj(M)) = ε∗i (M) and (ẽ∗i )
c(ẽj(M)) =

ẽj((ẽ
∗
i )
c(M)).

Proof. For (i), we apply Lemma 14.2.5 (ii) c times:

εj((ẽ
∗
i )
c(M)) = εj(f̃

∗
i ((ẽ∗i )

c(M))) = · · · = εj((f̃
∗
i )c((ẽ∗i )

c(M))) = εj(M).
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By Lemma 14.2.3 (ii) we have that ε∗i (f̃j(N)) = ε∗i (N), for irreducible N ∈ Hn(q)−
modq. If we set N = ẽj(M), we get the first part of (ii). Moreover, by Proposition

14.2.4 (i), we have that (ẽ∗i )
c(f̃j(M

′)) = f̃j((ẽ
∗
i )
c(M ′)), for irreducible M ′ ∈ Hn(q)−

modq with ε∗i (f̃j(M
′)) = ε∗i (M

′). If we set M ′ = ẽj(M), then the last property holds

by the first part, thus

(ẽ∗i )
c(M) = (ẽ∗i )

c(f̃j(ẽj(M))) = f̃j((ẽ
∗
i )
c(ẽj(M))).

If we apply ẽj on both sides, the claim follows. �

The following, which is taken form [44], will be crucial in the proof of the next

proposition.

Lemma 14.2.10. Let M ∈ Hn(q) − modq be irreducible and i ∈ I. We set c =

ε∗i (M), and let L = (ẽ∗i )
c(M). Then:

(i) εi(M) = max(εi(L), c− wt(L)(hi)).

(ii) If εi(M) > 0, then

ε∗i (ẽi(M)) =

{
c if εi(L) ≥ c− wt(L)(hi),

c− 1 if εi(L) < c− wt(L)(hi).

(iii) Suppose that εi(M) > 0. Then

(ẽ∗i )
b(ẽi(M)) ∼=

{
ẽi(L) if εi(L) ≥ c− wt(L)(hi),

L if εi(L) < c− wt(L)(hi),

where b = ε∗i (ẽi(M)).

Proof. This is [44, Proposition 13.2]. �

Next, recall the definition of the crystal Bi, i ∈ I from Example 14.1.2. In what

follows we denote by bi the element bi(0) in Bi. Then we define a map

Ψi : B(∞) −→ B(∞)⊗Bi, (14.7)

given by [M ] 7→ [(ẽ∗i )
c(M)]⊗ f̃ ci (bi), where c = ε∗i (M).

In the sequel, we will write [1] for the isomorphism class of the irreducible H0(q)-

module in B(∞). The following is [59, Lemma 10.3.3] in the non-degenerate case:

Proposition 14.2.11. We have the following:

(i) For all [M ] ∈ B(∞), wt(M) is a negative sum of simple roots.

(ii) [1] is the unique element of B(∞) with weight 0.

(iii) εi([1]) = 0, for every i ∈ I.

(iv) εi([M ]) ∈ Z, for all [M ] ∈ B(∞) and every i ∈ I.
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(v) For all i ∈ I, the above defined map Ψi is a strict embedding of crystals.

(vi) Ψi(B(∞)) ⊆ B(∞)× {f̃ni (bi) | n ≥ 0}.

(vii) For any [M ] ∈ B(∞) different from [1], there is some i ∈ I such that

Ψi([M ]) = [N ]⊗ f̃ni (bi) for some [N ] ∈ B(∞) and n > 0.

Proof. Properties (i)-(iv) follow directly from the construction of the crystal B(∞).

Property (v) follows from Lemma 14.2.9 and Lemma 14.2.10. Moreover, (vi) follows

from the definition of the map Ψi, and property (vii) holds since for [M ] ∈ B(∞)

different from [1], we have that ε∗i (M) > 0 for at least one i ∈ I. �

Henceforth, we denote by Uv(g(A))− the subalgebra of Uv(g(A)) generated by the

symbols fi, i ∈ I.

By [56, Proposition 3.2.3] the conditions of Proposition 14.2.11 determine the crystal

BKas of the Q(v)-algebra Uv(g(A))− uniquely up to isomorphism:

Theorem 14.2.12. The crystal B(∞) is isomorphic to the crystal BKas associated

to the crystal basis of the Q(v)-algebra Uv(g(A)).

From [54, Theorem 8.2] we know the following. Note that in the notation of [54],

the element u∞ ∈ BKas corresponds to 1 ∈ Uv(g(A))−.

Proposition 14.2.13. For all i ∈ I there exists a unique strict embedding of crys-

tals

Θi : BKas −→ BKas ⊗Bi

such that Θi(u∞) = u∞ ⊗ bi.

Now Theorem 14.2.12 gives us an isomorphism f : BKas → B(∞) of crystals.

Therefore, for all i ∈ I, we have the following commutative diagram:

B(∞) B(∞)⊗Bi

BKas BKas ⊗Bi

Ψi

Θi

f f ⊗ idBi

By Proposition 14.2.11, for i ∈ I, the map Ψi is a strict embedding of crystals and

Ψi([1]) = [1]⊗ bi. Since f(u∞) = [1], we see that we may identify Ψi with the map

Θi, for all i ∈ I.

In [54, §8.3], an anti-automorphism ∗ is defined on Uv(g(A)), satisfying v∗ = v,

e∗i = ei, f
∗
i = fi, for all i ∈ I, and (vh)∗ = v−h, for all h ∈ h. Moreover, functions

(ẽKas
i )∗, (f̃Kas

i )∗, (εKas
i )∗, (ϕKas

i )∗ are defined giving another crystal structure on BKas.

The result of [54, Proposition 8.1] describes this structure via the maps Θi:

Proposition 14.2.14. Let i ∈ I. Suppose that for b ∈ BKas we have Θi(b) =

b′ ⊗ f̃mi (bi), b′ ∈ BKas, m ≥ 0. Then the following hold:
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(i) (εKas
i )∗(b′) = 0.

(ii) (εKas
i )∗(b) = m.

(iii) Θi((f̃
Kas
i )∗(b)) = b′ ⊗ f̃m+1

i (bi).

(iv)

Θi((ẽ
Kas
i )∗(b)) =

{
b′ ⊗ f̃m−1

i (bi) if m ≥ 0,

0 if m = 0.

It follows from the previous proposition that

Im(Θi) = {b⊗ f̃mi (bi) ∈ BKas ⊗Bi | m ∈ Z+, (ε
Kas
i )∗(b) = 0}.

Comparing this with the definition of the map Ψi, and taking into account that we

have identified the maps Ψi and Θi, we see that we also may identify the maps ε∗i
with the maps (εKas

i )∗, for all i ∈ I.

Following the discussion after [54, Theorem 8.1], for all Λ ∈ P+, we have an embed-

ding

ιΛ : B(Λ)Kas → BKas ⊗ TΛ, b 7→ b⊗ tΛ
of crystals, where B(Λ)Kas denotes the crystal associated to the irreducible highest-

weight module of highest weight Λ over Uv(g(A)). In [54, Proposition 8.2] a de-

scription of the image of the this map is given in terms of the maps (εKas
i )∗:

Proposition 14.2.15. For any Λ ∈ P+, the image of ιΛ equals the set

{b⊗ tΛ ∈ BKas ⊗ TΛ | (εKas
i )∗(b) ≤ Λ(hi) for all i ∈ I}.

Therefore, in view of Lemma 14.2.8 and our identifications made above, we can

conclude that for Λ ∈ P+ we have an isomorphism of crystals between B(Λ) and

B(Λ)Kas. This establishes Theorem 14.0.12 of the beginning of this chapter.
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Chapter 15

The theorem of Misra–Miwa

A major problem in the representation theory of quantum groups Uv(g(A)) is to

describe explicitly the structure of the crystal graph associated with an irreducible

highest-weight module L(Λ) of highest weight Λ ∈ P+. In the case when A is a

generalized Cartan matrix of type A
(1)
n , n ≥ 1, this problem was solved in [70],

where it is shown that the crystal graph B(Λ0) of the basic representation L(Λ0)

can be described in terms of Young diagrams. In this chapter we explain this

parametrization of the latter crystal and deduce branching rules for the finite Hecke

algebra Hf
n(q), n ≥ 0. The notation used in this chapter can be found in [68].

Let µ = (µ1, . . . , µr) be a composition of the positive integer n, and l be a positive

integer. Then µ is called l-restricted if |µj − µj+1| < l for all j ∈ Z+, where we set

µj = 0 for j > k. For a composition µ, we denote by [µ] its associated diagram.

For each node x of the diagram of µ, we shall define its l-residue as the coset

(j − i) mod l, where x is located in the ith row and jth column of the diagram [µ].

In what follows we will write I = {0, . . . , l − 1} for the elements in Z/lZ. Also,

define cont(µ) = (γi)i∈I , where γi = |{x ∈ [µ] | x has l − content i}|, for all i.

Now suppose that λ is a partition of n. A node x of [λ] with l-content i is called

i-removable if the diagram [λ] \ {x} is a diagram of a partition of n− 1. In this case

we write λx for the partition λ \ x. On the other hand a node x is called i-addable

if there is a partition ν of n+ 1 such that [ν] = [λ] ∪ {x}, and x has l-content i. In

this case, we will also write λx for the partition ν. It is clear that if a node x of [λ]

is i-removable (resp. i-addable), then it lies on the rim of [λ] (resp. [λx]).

If we read the i-addable and i-removable nodes in [λ] from the bottom up, and write

the symbol A (resp. R) each time we have an i-addable (resp. i-removable) node, we

get a sequence consisting of the symbols A and R, the i-signature of λ. If we delete

all of the substrings of the form AR, we obtain the reduced i-signature of λ. The

reduced i-signature looks like a sequence ofRs followed by As. A node corresponding

to an R in the reduced i-signature are called i-normal, a node corresponding to an

A in the reduced i-signature is called i-conormal.

The rightmost i-normal node in [λ] is called i-good, the leftmost i-conormal node in

[λ] is called i-cogood.
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A node of [λ] is called normal (resp. conormal, good, cogood) if it is i-normal (resp.

i-conormal, i-good, i-cogood) for some i ∈ I. Note that a good (resp. cogood) node

is, if it exists, unique.

For λ a partition of n and µ a partition of n+ 1 we write λ
norm−→ µ if [µ] is obtained

from [λ] by adding a normal node. Similarly write λ
good−→ µ if [µ] is obtained from

[λ] by adding a good node.

Let λ be a partition of some n ∈ Z+. For any i ∈ I we shall define

εi(λ) = |{i− normal nodes in [λ]}|, (15.1)

ϕi(λ) = |{i− conormal nodes in [λ]}|. (15.2)

Moreover, we set

ẽi(λ) =

{
λx if εi(λ) > 0 and x is i− good,

0 if εi(λ) = 0,
(15.3)

f̃i(λ) =

{
λx if ϕi(λ) > 0 and x is i− cogood,

0 if ϕi(λ) = 0.
(15.4)

In the following, for a non-negative integer n, we will write Pl(n) for the set of all

l-restricted partitions of n. Also, set Pl =
⋃
n≥0Pl(n). Note that we write � for

the empty partition, which is obviously l-restricted. We have the following lemma:

Lemma 15.1.16. For any i ∈ I, ẽi(λ) and f̃i(λ) are l-restricted (or zero) if λ is

l-restricted.

Proof. Suppose that λ = (λ1, . . . , λk) is l-restricted with an i-good node x = (r, s),

i ∈ I. If λx is not l-restricted, then λr−1−λr = l−1. Since the node (r−1, s+ l−1)

on the rim of [λ] has the same l-content as the node (r, s), we see that this node is

also an i-removable node. But this is a contradiction to the definition of an i-good

node. Thus, if λ is l-restricted, then ẽi(λ) is l-restricted or zero. Similarly one shows

that f̃i(λ) is l-restricted (or zero) if λ is. �

If λ is a partition of n with cont(λ) = (γi)i∈I , define

wt(λ) = Λ0 −
∑
i∈I

γiαi. (15.5)

With these data, we have the following theorem, which is due to K. C. Misra and

T. Miwa:

Theorem 15.1.17. The datum (Pl, εi, ϕi, ẽi, f̃i,wt) determines a crystal. As a

crystal it is isomorphic to B(Λ0)Kas, the crystal graph of the irreducible highest-

weight module L(Λ0) of highest weight Λ0 over Uv(g(A
(1)
l−1)).
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Proof. This is [70, Theorem 4.7]. �

Remark 15.1.18. For λ ∈ Pl(n), by the previous theorem, we may write λ =

f̃in · · · f̃i1(�), for some sequence (i1, . . . , in) of elements of I. In view of Theorem

14.0.12, we may identify the crystal B(Λ0) with the crystal Pl, and the operators

ẽi and ẽΛ0
i as well as f̃i and f̃Λ0

i , for all i ∈ I. Thus, to such λ as above, there

corresponds an irreducible Hf
n(q)-module, denoted by Cλ, which is given by

Cλ = f̃in · · · f̃i1(1Λ0). (15.6)

Conversely, if C is an irreducible Hf
n(q)-module, we can use the identification of Pl

and B(Λ0) to label C by a partition in Pl(n). In this way, we obtain a labelling for

the irreducible Hf
n(q)-modules, n ≥ 0.

Taking into account the results from the former chapters, we obtain a branching rule

for irreducible modules for the finite-dimensional Hecke algebras Hf
n(q) = HΛ0

n (q).

In what follows we write ei, fi for the cyclotomic functors eΛ0
i , f

Λ0
i , for all i ∈ I.

Theorem 15.1.19. Let n ≥ 0 and λ ∈ Pl(n). Then

Resnn−1(Cλ) ∼= e0(Cλ)⊕ · · · ⊕ el−1(Cλ),

where for every i ∈ I, ei(Cλ) 6= 0 if and only if λ has an i-good node x. In this

case, ei(Cλ) is an indecomposable self-dual Hf
n−1(q)-module with irreducible head

and socle isomorphic to Cλx. Moreover, one has:

(i) The multiplicity of Cλx in ei(Cλ) equals εi(λ), εi(λx) = εi(λ)−1, and all other

composition factors Cµ of ei(Cλ) satisfy εi(µ) < εi(λ)− 1.

(ii) The algebra EndHf
n−1(q)(ei(Cλ)) is isomorphic to the F -algebra F [x]/(xεi(λ)).

Hence,

εi(λ) = dimF EndHf
n−1(q)(ei(Cλ)).

(iii) If λ, ν ∈ Pl(n) are such that λ 6= ν, then HomHf
n−1(q)(ei(Cλ), ei(Cν)) = 0.

(iv) ei(Cλ) is irreducible if and only if εi(λ) = 1. In particular, Resnn−1(Cλ) is

completely reducible if and only if εi(λ) ≤ 1 for all i ∈ I, and is irreducible if

and only if
∑

i∈I εi(λ) = 1.

Proof. The first statement follows from Proposition 11.2.11 together with the la-

belling given in Remark 15.1.18. The fact that ei(Cλ) is indecomposable follows

from Theorem 12.1.8.

By Proposition 12.2.3, it follows that ei(Cλ) is a self-dual Hf
n−1(q)-module. From

Proposition 12.3.4 (ii) it follows that soc(ei(Cλ)) ∼= hd(ei(Cλ)). Since soc(ei(Cλ)) =

ẽi(Cλ) by definition of ẽi(Cλ) and ẽi(Cλ) = Cλx by our identification, we see that

soc(ei(Cλ)) ∼= hd(ei(Cλ)) ∼= Cλx .

The statement in (i) is Theorem 12.3.6 (i) together with our identification of Pl
and B(Λ0). Similarly, (ii) is Theorem 12.3.6 (ii). Statement (iii) is Corollary 12.3.7
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again combined with the identification of Pl and B(Λ0). Since ei(Cλ) has irreducible

socle and head, the statement in (iv) follows from (i). �

Also the following is true.

Theorem 15.1.20. Let n ≥ 0 and λ ∈ Pl(n). Then

Indn+1
n (Cλ) ∼= f0(Cλ)⊕ · · · ⊕ fl−1(Cλ),

where for every i ∈ I, fi(Cλ) 6= 0 if and only if λ has an i-cogood node x. In this

case, fi(Cλ) is an indecomposable self-dual Hf
n+1(q)-module with irreducible head

and socle isomorphic to Cλx. Moreover, one has:

(i) The multiplicity of Cλx in fi(Cλ) equals ϕi(λ), ϕi(λ
x) = ϕi(λ) − 1, and all

other composition factors Cµ of fi(Cλ) satisfy ϕi(µ) < ϕi(λ)− 1.

(ii) The algebra EndHf
n+1(q)(fi(Cλ)) is isomorphic to the F -algebra F [x]/(xϕi(λ)),

which implies that

ϕi(λ) = dimF EndHf
n+1(q)(fi(Cλ)).

(iii) We have that HomHf
n+1(q)(fi(Cλ), fi(Cν)) = 0 for all λ, ν ∈ Pl(n) such that

λ 6= ν.

(iv) fi(Cλ) is irreducible if and only if ϕi(λ) = 1. In particular, Indn+1
n (Cλ) is

completely reducible if and only if ϕi(λ) ≤ 1 for all i ∈ I, and is irreducible if

and only if
∑

i∈I ϕi(λ) = 1.

Proof. This is proven similarly as Theorem 15.1.19, using Theorem 12.3.13 for part

(i). Part (ii) can be deduced from the proof of [44, Theorem 9.15]. Part (iii) is

proven similarly as Corollary 12.3.7, and part (iv) is a consequence of (i). �

We also can state results about the functors (eΛ0
i )(r), (fΛ0

i )(r). i ∈ I. For convenience,

we will write e
(r)
i , f

(r)
i instead of (eΛ0

i )(r), (fΛ0
i )(r).

Theorem 15.1.21. Let n ≥ 0 and λ ∈ Pl(n). Moreover, let i ∈ I, and r ≥ 1.

Then

eri (Cλ)
∼=
⊕
r!

e
(r)
i (Cλ),

where e
(r)
i (Cλ) 6= 0 if and only if λ has at least r i-normal nodes. In this case,

e
(r)
i (Cλ) is a self-dual indecomposable Hf

n−r(q)-module with irreducible head and socle

isomorphic to Cµ, where µ is obtained from λ by removing r top i-normal nodes.

Furthermore,

(i) The multiplicity of Cµ in e
(r)
i (Cλ) is

(
εi(λ)
r

)
, εi(µ) = εi(λ) − r, and εi(ν) <

εi(λ)− r for all other composition factors Cν of e
(r)
i (Cλ).

(ii) HomHf
n−r(q)

(e
(r)
i (Cλ), e

(r)
i (Cν)) = 0, for all ν ∈ Pl(n) with ν 6= λ.
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(iii) e
(r)
i (Cλ) is irreducible if and only if r = εi(λ).

Proof. The first part follows from Proposition 12.3.9, and the labelling of Remark

15.1.18. Statement (i) is Proposition 12.3.10 (i).

Part (ii) is the statement of Proposition 12.3.10 (ii) together with our labelling.

Finally, (iii) follows from (i). �

Theorem 15.1.22. Let n ≥ 0 and λ ∈ Pl(n). Moreover, let i ∈ I, and r ≥ 1.

Then

f ri (Cλ) ∼=
⊕
r!

f
(r)
i (Cλ),

where f
(r)
i (Cλ) 6= 0 if and only if λ has at least r i-conormal nodes. In this case,

f
(r)
i (Cλ) is a self-dual indecomposable Hf

n+r(q)-module with irreducible head and

socle isomorphic to Cµ, where µ is obtained from λ by adding r bottom i-conormal

nodes. Moreover:

(i) The multiplicity of Cµ in f
(r)
i (Cλ) is

(
ϕi(λ)
r

)
, ϕi(µ) = ϕi(λ) − r, and ϕi(ν) <

ϕi(λ)− r for all other composition factors Cν of f
(r)
i (Cλ).

(ii) HomHf
n+r(q)

(f
(r)
i (Cλ), f

(r)
i (Cν)) = 0, for all ν ∈ Pl(n) with ν 6= λ.

(iii) f
(r)
i (Cλ) is irreducible if and only if r = ϕi(λ).

Proof. As in the proof of Theorem 15.1.21, the first part follows from Proposition

12.3.9, and the labelling of Remark 15.1.18. Statement (i) is Proposition 12.3.14

(i).

Part (ii) is the statement of Proposition 12.3.14 (ii) together with our labelling.

Also, (iii) can be deduced from (i). �

Remark 15.1.23. The corresponding branching rules in the degenerate case can

be found in [59, §11].
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Chapter 16

The Brundan–Kleshchev

branching rules

In this chapter we recall the modular branching rules for Hecke algebras of type A,

obtained by J. Brundan in [16], generalizing the results of [58] for the symmetric

groups. We will also explain how this is related to the labelling obtained in the last

chapter.

Recall that for a non-negative integer n, we denote the finite Hecke algebra of the

symmetric group on n letters with parameter q ∈ F by Hf
n(q). We assume that

q 6= 1 has finite order l in F .

In what follows, for a partition λ of n ∈ Z+, we will denote by Sλ the q-Specht

module defined by Dipper and James in [29, §4]. Following [16], in our context

here, we will use a different parametrization as follows: Denote by Sµ the q-Specht

module Sµ
′
of Dipper and James, where by µ′ we mean the partition conjugate to µ,

i.e., if µ = (µ1, . . . , µk), then µ′ = (µ′1, . . . , µ
′
k′) is such that µ′j = |{s ∈ {1, . . . , k} |

µs ≥ j}|, which again is a partition of n. In [29] it was shown that if λ is an l-regular

partition of n, then Sλ has an irreducible head denoted by Dλ. Thus, if µ is an

l-restricted partition of n, then Sµ has an irreducible head denoted by Dµ. It is easy

to see that µ is l-restricted if and only if µ′ is l-regular. Hence, if µ is l-restricted,

it follows that Dµ equals Dµ′ .

The following are the main results of [16].

Theorem 16.1.24. Let µ be an l-restricted partition of n ∈ Z+ and λ be an l-

restricted partition of n+ 1. Then:

HomHf
n(q)(Sµ,Resn+1

n (Dλ)) ∼=
{
F if µ

norm−→ λ,

0 otherwise .
(16.1)

Proof. This is [16, Theorem 2.5]. �

Theorem 16.1.25. Let µ be an l-restricted partition of n ∈ Z+ and λ be an l-

restricted partition of n+ 1. Then:

HomHf
n(q)(Dµ,Resn+1

n (Dλ)) ∼=

{
F if µ

good−→ λ,

0 otherwise .
(16.2)
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In particular we have that

soc(Resn+1
n (Dλ)) ∼=

⊕
µ

good−→λ

Dµ. (16.3)

Proof. This is [16, Theorem 2.6]. �

Remark 16.1.26. By Frobenius Reciprocity, we see that

HomHf
n+1(q)(Indn+1

n (Dµ), Dλ) ∼=

{
F if µ

good−→ λ,

0 otherwise .
(16.4)

Hence,

hd(Indn+1
n (Dµ)) ∼=

⊕
µ

good−→λ

Dλ. (16.5)

In particular, from these theorems, we obtain a branching rule for the irreducible

Hf
n(q)-modules, n ≥ 0. It is natural to ask whether it coincides with the branching

rule given by Theorem 15.1.17. We have the following:

Proposition 16.1.27. The labelling of Chapter 15 of the irreducible Hf
n(q)-modules,

n ≥ 0, coincides with that induced by Theorem 16.1.25.

Proof. We argue by induction. For n = 0, there is only one irreducible Hf
0 (q)-

module, hence D� ∼= C�. Let n > 0, and choose a partition λ ∈ Pl(n). Suppose

that Dλ
∼= Cµ, for some l-restricted partition µ of n. By Theorem 16.1.25, we know

that

soc(Resnn−1(Dλ)) ∼=
⊕
ν

good−→λ

Dν . (16.6)

On the other hand, by the first part of Theorem 15.1.19, we have that

soc(Resnn−1(Dλ)) ∼=
⊕
i∈I

ẽi(Dλ). (16.7)

Suppose that ẽi(Dλ) 6= 0, for some i ∈ I. By Theorem 15.1.19, we have that

ẽi(Dλ) ∼= Cµx for some i-good node x of µ. Moreover, by the inductive hypothesis,

Cµx
∼= Dµx . Then, again by Theorem 16.1.25, we get that that µx

good−→ λ. The

structure of the crystal graph Pl ensures that for each i ∈ I there exists at most

one partition of n that is obtained from µx by adding an i-cogood node. Since µ is

such a partition, it follows that λ = µ. �

192



Chapter 17

Scopes equivalence

In the sequel we will recall the fundamental result concerning Morita equivalent

blocks of symmetric groups and their associated Hecke algebras, respectively. This

was done in [80] and [52].

First, we give the necessary definitions of the combinatorics which are needed to

obtain these results. After that we may restate the latter equivalence in terms of

the functors which we defined in the previous chapters. As a consequence we may

drop the restrictions on F and q of [52].

We shall assume throughout that q 6= 1 has finite order in F .

17.1 Combinatorics

We will turn our attention to the finite-dimensional Hecke algebra Hf
n(q), for some

n ≥ 0. In [52] it was shown that the blocks B and B̄ of Hf
n(q) and Hf

n−k(q) of

weight w are Morita equivalent if they form a [w : k]-pair, where k ≥ w. There, a

bijection is given between the l-regular partitions of n lying in B and those l-regular

partitions of n− k lying in B̄.

In view of Chapter 15, we want to translate this bijection to the l-restricted par-

titions of n resp. n − k. Recall that if λ is a partition of n, we denote by Sλ the

q-Specht module defined by R. Dipper and G. James in [29], which they indexed by

λ′, the partition conjugate to λ. Therefore, if λ is l-restricted, by Dλ we mean the

irreducible Hf
n(q)-module defined by Dipper–James and indexed by λ′. Note that

λ is l-restricted if and only if λ′ is l-regular.

First of all we want to explain the combinatorics used in [80] and [52]: Let λ =

(λ1, . . . , λs) be a partition of n. A sequence of β-numbers for λ is given by non-

negative integers β1 > β2 > . . . > βt, t ≥ s, satisfying

βi =

{
λi − i+ t if i ≤ s,

−i+ t if i > s.
(17.1)

Such a sequence is usually displayed on an abacus with a bead at each position βi
on the latter. The number of runners l > 0 relates to the order of q in F . If we use

a display with l runners, we will say that the numbers i, l + i, 2l + i, . . . belong to
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the (i+ 1)st column, for i = 0, . . . l− 1, and that m− 1 is one place to the left of m

for m ≥ 1.

We need the following two operations on the abacus of a β-set: First, if possible, we

may slide a bead up along its runner. This corresponds to removing a rim l-hook

from [λ]. When all the beads are as high as possible, we have the β-set for the

corresponding l-core of λ.

Second, we consider the operation of sliding a bead one place to the left, from

position m to m− 1. This corresponds to removing a node from [λ].

Next, let B denote a block of Hf
n(q) with l-weight w and l-core b = (b1, . . . , br),

which is a partition of n− lw. Let Γ = {γ1, . . . , γr+lw} be the r + lw-element β-set

for b. Denote by Γj, 1 ≤ j ≤ l, the number of beads in the jth column of the

associated abacus with l runners. Note that if λ is a partition of n such that Sλ
belongs to the block B, we always can represent λ by an r + lw-element β-set.

Suppose that for some i ≥ 2, Γi = Γi−1 + k, where k ≥ w. Let B̄ be the block of

Hf
n−k(q) of weight w and core b̄, where b̄ has an r + lw-element β-set that can be

obtained from that of b by sliding the bottom k beads of column i to column i− 1.

Let Γ̄ be the β-set of b̄, and Γ̄j the number of beads in the jth column of Γ̄. Then

we have that

Γ̄j = Γj, j 6= i, i− 1,

Γ̄i = Γi−1,

Γ̄i−1 = Γi.

In this situation we say that the blocks B and B̄ form a [w : k]-pair.

We note the modular branching theorem for q-Specht modules.

Theorem 17.1.1. Let n ≥ 1, λ be a partition of n. There exists a filtration of

Resnn−1(Sλ) by q-Specht modules of Hf
n−1(q). The factors occurring in the latter are

of the form Sµ, where µ is a partition of n− 1, and [µ] can be obtained from [λ] by

removing a node. Moreover, each factor appears with multiplicity 1.

Similarly, Indn+1
n (Sλ) has a filtration of q-Specht modules for Hf

n+1(q), where each

factor is isomorphic to some Sν, ν a partition of n + 1, where [ν] is obtained from

[λ] by adding a node. Each factor occurs precisely once.

Proof. This is [52, Theorem 3.4]. �

Now, if two blocks B and B̄ form a [w : k]-pair, it was shown in [80, Lemma 2.1] for

blocks of symmetric groups and [52, Lemma 5.1] for blocks of Hecke algebras of type

A that there is a natural correspondence between partitions of n whose q-Specht

modules belong to B and those of n− k whose q-Specht modules belong to B̄. To

be more precise:

Proposition 17.1.2. Let λ be a partition of n and suppose that Sλ belongs to B.

Then there exists a partition λ̄ of n−k such that Sλ̄ belongs to B̄ and eB̄Resnn−k(Sλ)
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has a filtration such that each subquotient is isomorphic to Sλ̄, which occurs k! times.

Here eB̄ denotes the block idempotent of Hf
n−k(q) corresponding to B̄.

Similarly, if eB denotes the block idempotent of Hf
n(q) corresponding to B, then

eBIndnn−k(Sλ̄) has a filtration such that each subquotient is isomorphic to Sλ, ap-

pearing k! times in the latter.

Proof. The first part is similar to [80, Lemma 2.1]. For the statement about the

induced module, one can use [69, Theorem A]. �

Remark 17.1.3. Note that Proposition 17.1.2 gives a bijective map Θ between the

set of partitions of n for which the corresponding q-Specht modules belong to B and

the set of partitions of n− k for which the corresponding q-Specht modules belong

to B̄. Moreover, if λ is a partition of n belonging to B, then the abacus of Θ(λ) is

obtained from that of λ by sliding k beads from runner i to runner i− 1, that is to

say, by interchanging runner i and runner i− 1.

The crucial fact here is that whenever there is a bead in row j in the (i − 1)st

column of the abacus of λ, there is a bead in the same row in the ith column, see

the proof of [80, Lemma 2.1]. This determines which beads can be moved. Let r

be the number of parts of the l-core parametrizing the block B. In the language of

Chapter 15, this means that if we set a = (i − r − 1) mod l, then the number of

a-removable nodes of [λ] is k, whereas [λ] has no a-addable nodes. It follows that

all the a-removable nodes of [λ] are a-normal.

The following two lemmas are important.

Lemma 17.1.4. The map Θ preserves the lexicographic order of partitions.

Proof. The argument of [80, Lemma 2.2] also applies in our context as the proof of

this result is purely combinatorial. �

Lemma 17.1.5. If λ is a an l-restricted partition lying in B, then Θ(λ) is also

l-restricted.

Proof. This follows from [80, Lemma 2.3], again the proof of the latter is purely

combinatorial. �

As a consequence, Θ induces a bijective map between the l-restricted partitions of

B and the l-restricted partitions of B̄.

17.2 The equivalence

By combining Proposition 17.1.2, Lemma 17.1.5, together with Theorems 15.1.21,

15.1.22, we obtain the following reformulation of equivalence given by J. Scopes and

T. Jost:

Theorem 17.2.1. Let B a block of Hf
n(q) and B̄ be a block of Hf

n−k(q) so that B

and B̄ form a [w : k]-pair, with k ≥ w. Assume that the nodes of a partition λ of
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n that are removed to obtain Θ(λ) have l-content i. Then the functors e
(k)
i and f

(k)
i

induce mutually inverse equivalences between the category B−mod and the category

B̄ −mod.

Proof. Proposition 17.1.2, 16.1.27, Lemma 17.1.5, and Theorems 15.1.21, 15.1.22,

show that the functors e
(k)
i and f

(k)
i induce mutually inverse bijections between the

irreducible Hf
n(q)-modules lying in B and those irreducible Hf

n−k(q)-modules lying

in B̄. Recall from Theorem 11.2.15 that the functor S := f
(k)
i is left adjoint to

the functor T := e
(k)
i . For M ∈ B̄ − mod and N ∈ B − mod, let ηM,N be the

isomorphism of F -vector spaces

HomHf
n(q)(S(M), N) −→ HomHf

n−r(q)
(M,T (N))

given by the adjunction. Recall that an adjunction comes with natural transforma-

tions

ξ : ST → idHf
n(q) and ζ : idHf

n−k(q) → TS

given by ξN = η−1
T (N),N(idT (N)) : ST (N) → N , and ζM = ηM,S(M)(idS(M)) : M →

TS(M), where idHf
n(q) and idHf

n−k(q) denote the identity functors on Hf
n(q) − mod

and Hf
n−k(q)−mod, respectively.

Suppose first that M is irreducible. By choosing N = S(M), we get the non-zero

map

M
ζM−−→ TS(M).

Since e
(k)
i (f

(k)
i (M)) ∼= M , we see that this map must be an isomorphism of Hf

n−k(q)-

modules. Now assume that M in B̄−mod has composition length greater than one.

Then we may consider an exact sequence of B̄-modules

0 −→M1 −→M −→M2 −→ 0,

such that M1 and M2 have composition length less than M . By the naturality of ζ,

we get a commutative diagram

0 M1 M M2 0

0 TS(M1) TS(M) TS(M2) 0

ζM1 ζM ζM2

Arguing by induction on the composition length, we may assume that ζM1 and ζM2

are isomorphisms of B̄-modules. By the five lemma, see for example [65, VIII.4,

Lemma 4], it follows that ζM must be an isomorphism of B̄-modules too. This

provides a natural isomorphism between TS and the identity functor on B̄ −mod.

On the other hand, via the natural transformation ξ, we obtain a non-zero map

ST (N)
ξN−−→ N.
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If we assume N in B−mod to be irreducible, this map is an isomorphism of Hf
n(q)-

modules as ST (N) ∼= N . If N has composition length greater than one, there is an

exact sequence of B-modules

0 −→ N1 −→ N −→ N2 −→ 0,

where the composition length of N1 and N2 is less than N . The naturality of ξ

affords a commutative diagram

0 TS(N1) TS(N) TS(N2) 0

0 N1 N N2 0

ξN1 ξN ξN2

As above, we may assume that ξN1 and ξN2 are isomorphisms of B-modules. Then,

by the five lemma again, we infer that ξN is an isomorphism of B-modules. This

shows that we get a natural isomorphism between TS and the identity functor on

B −mod, showing that B −mod and B̄ −mod are equivalent categories. �

Remark 17.2.2. (i) Actually, we have shown in the Chapter 11 that the functors

e
(k)
i and f

(k)
i are both left and right adjoint to one another, whereas for the proof of

the previous theorem we only need the adjunction on one side.

(ii) Note that the restatement of the Scopes equivalence in the case of blocks of

symmetric groups is [59, Theorem 11.2.28].

Note that we can partition the set of blocks of Hecke algebras Hf
n(q), n ≥ 0, into

families. Two blocks B and B′ belong to the same family if and only if there exists

a sequence B = B0, B1, . . . , Be = B′, e ≥ 1, of blocks of weight w such that for

all 1 ≤ j ≤ e, the blocks Bj−1 and Bj or Bj and Bj−1 form a [w : kj]-pair for

some kj ≥ w. Note that, by Theorem 17.2.1, all blocks in one family are Morita

equivalent. The next theorem is a consequence of this fact.

Theorem 17.2.3. The blocks of Hecke algebras of type A with parameter q ∈ F of a

given weight w can be collected into families as described above. Each family consists

of Morita equivalent blocks. The number of such families is at most
∏l

j=1[(j −
1)(w− 1) + 1], and each family contains a block of some Hf

N(q), where N is at most

l2(l − 1)2(w − 1)2/4 + wl.

Proof. The statement of the number of such families and the least element contained

in such a family can be found in [80, Section 5] as the proof is purely combinatorial.

�

Remark 17.2.4. Compare the previous theorem with [52, Theorem 8.2]. Note

that in [52] there is a restriction on the parameter q if the ground field F has

characteristic p > 0. Our statement is valid over an arbitrary field of characteristic

p. Note that F need not to be algebraically closed since every field is a splitting

field for Hf
n(q), n ≥ 0, and all the eigenvalues lie in F .
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Chapter 17. Scopes equivalence

As a consequence of the last theorem we get the following corollary, see also [80,

Example 1].

Corollary 17.2.5. There is only one family of Morita equivalent blocks of weight

w = 1. Moreover, all these blocks are Scopes equivalent to the principal block of

Hf
l (q).
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Chapter 18

The application

In this chapter we will prove the main results of the second part of the thesis.

Namely we show that two indecomposable modules of Hecke algebras of type A

that correspond under the Scopes equivalence of Chapter 17 have common vertex.

As a consequence, this gives a proof of a conjecture stated by R. Dipper and J. Du

in [27] in the case where the modules lie in blocks of finite representation type.

For the convenience of the reader, we will recall the statement of the conjecture and

summarize the necessary tools developed in previous chapters.

In the sequel, we refer to the characteristic of the ground field F of Hf
n(q) as p, and

assume that p ≥ 0. Moreover, we keep the assumptions on q of Chapter 17.

Recall that a vertex of an indecomposable finite-dimensional Hf
n(q)-module M is a

minimal element of the set

V(M) := {Wλ | λ composition of n,Wλ ⊆ W (n),M is Hλ(q)− projective}.

Next, we recall the conjecture of [27], see [27, Conjecture 1.9]. To this end, we need

some more notation. Consider the set

Nn = {(n−1, n0, . . . , nt) | n = n−1 + n0l + n1pl + . . .+ ntp
tl}. (18.1)

To each ~n = (n−1, n0, . . . , nt) we can associate a standard parabolic subgroup Wλ

of W (n) with

λ = (1, . . . , 1, l, . . . , l, . . . , ptl, . . . , ptl),

where each pjl occurs precisely nj times for any 0 ≤ j ≤ t, and 1 is repeated n−1

times.

Definition 18.1.6. Suppose that W is a standard parabolic subgroup of W (n).

Then W is called l-p-parabolic if it is conjugate to some Wλ, where λ is defined by

an element ~n ∈ Nn.

In the case when p = 0, it is shown in [32] that the vertices of indecomposable mod-

ules are l-parabolic. As a natural extension of this result, the following conjecture

was stated in [27]:
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Conjecture 18.1.7. Let F be a field of characteristic p > 0, and let q ∈ F be a

primitive lth root of unity with l > 1. Then the vertices of indecomposable Hf
n(q)-

modules are l − p-parabolic.

Next, we will use the theory developed in the former chapters to derive results of

the structure of vertices for modules lying in Scopes equivalent blocks. First of all,

we will recall the needed results obtained in the last chapters.

In the following we denote the functors

eΛ0
i , f

Λ0
i , (eΛ0

i )(r), (fΛ0
i )(r)

by ei, fi, e
(r)
i , f

(r)
i , for i ∈ I and r ≥ 1.

Lemma 18.1.8. Let i ∈ I, and r ≥ 1. For an Hf
n(q)-module M we have:

(i) eri (M) ∼=
⊕

r! e
(r)
i (M).

(ii) f ri (M) ∼=
⊕

r! f
(r)
i (M).

Lemma 18.1.9. Let i ∈ I and M ∈ Hf
n(q)−mod. Then:

(i) Res
Hf
n(q)

Hf
n−1(q)

(M) ∼=
⊕

i∈I ei(M).

(ii) Ind
Hf
n+1(q)

Hf
n(q)

(M) ∼=
⊕

i∈I fi(M).

For the rest of this section we will fix a block B of Hf
n(q) and a block B̄ of Hf

n−k(q)

forming a [w : k]-pair such that k ≥ w, that is to say, B and B̄ are Scopes equivalent.

In this situation, there is some i ∈ I such that the functors e
(k)
i and f

(k)
i induce

mutually inverse equivalences of categories between B −mod and B̄ −mod as seen

in Theorem 17.2.1. Then Lemma 18.1.8 has the following consequence:

Proposition 18.1.10. Let M ∈ B −mod, and N ∈ B̄ −mod. Then the following

hold:

(i) fki (eki (M)) ∼=
⊕

(k!)2 M .

(ii) eki (f
k
i (N)) ∼=

⊕
(k!)2 N .

Proof. We prove (i), then part (ii) is proven similarly. As e
(k)
i and f

(k)
i induce

mutually inverse equivalences between B −mod and B̄ −mod, we have by Lemma

18.1.8 that

fki (eki (M)) ∼= fki (
⊕
k!

e
(k)
i (M))

∼=
⊕
k!

fki (e
(k)
i (M))

∼=
⊕
k!

⊕
k!

f
(k)
i (e

(k)
i (M))

∼=
⊕
(k!)2

M,
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where in the second equivalence we have used that the functor fi, and thus fki , is

an exact functor. �

In the following, for finite-dimensional Hf
n(q)-modules L and K, we write L | K if

there is an Hf
n(q)-module L′ such that

K ∼= L⊕ L′.

From Lemma 18.1.9 we obtain the next result.

Lemma 18.1.11. Keep the notation of Proposition 18.1.10. Then we have that

fki (N) | Ind
Hf
n(q)

Hf
n−k(q)

(N),

and

eki (M) | Res
Hf
n(q)

Hf
n−k(q)

(M).

Proof. Consider N ∈ B̄−mod as an Hf
n−k(q)-module. Then it is clear from Lemma

18.1.9 (ii) that

fi(N) | Ind
Hf
n−k+1(q)

Hf
n−k(q)

(N).

Inductively we see that fki (N) | Ind
Hf
n(q)

Hf
n−k(q)

(N).

Similarly, we have that eki (M) | Res
Hf
n(q)

Hf
n−k(q)

(M), for M ∈ B −mod. �

In the following we will identify the subalgebra Hf
n−1(q) with the parabolic subalge-

bra H(n−1,1)(q) of Hf
n(q), corresponding to the partition (n − 1, 1) of n. Moreover,

if µ = (µ1, . . . , µt) is a composition of n − 1 and Hµ(q) the parabolic subalge-

bra of Hf
n−1(q), we identify Hµ(q) with the parabolic subalgebra H(µ1,...,µt,1)(q) ⊆

H(n−1,1)(q) ⊆ Hf
n(q). We will use the same identification on the level of parabolic

subgroups of W (n− k) and W (n).

Next, we state one of the main statements of Part II, which is the key to verify the

conjecture in the representation-finite case.

Theorem 18.1.12. Let B be a block of Hf
n(q), B̄ be a block of Hf

n−k(q) forming a

[w : k]-pair such that k ≥ w. Let M ∈ B −mod indecomposable, and N = e
(k)
i (M).

Then vx(M) =W (n) vx(N).

Proof. Fix an indecomposable M ∈ B−mod, and let N := e
(k)
i (M) ∈ B̄−mod. Let

µ be a composition of n − k and Wµ ⊆ W (n − k) be a vertex of N . Furthermore,

we choose a source S of N , i.e., an indecomposable Hµ(q)-module S such that

N | Ind
Hf
n−k(q)

Hµ(q) (S).
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By Lemma 18.1.11 and transitivity of induction, it follows that fki (N) is a direct

summand of Ind
Hf
n(q)

Hµ(q)(S). From Proposition 18.1.10 it follows that fki (N) ∼=
⊕

k! M ,

and thus,

M | Ind
Hf
n(q)

Hµ(q)(S).

From Higman’s criterion, see for example [27, Theorem 1.4], we infer that M is

Hµ(q)-projective, and therefore, a vertex of M is contained in Wµ.

Next, we choose a vertex Wλ ⊆ W (n) of M , for a composition λ of n. Moreover,

denote by T a source of M , i.e., an indecomposable Hλ-module such that

M | Ind
Hf
n(q)

Hλ(q)(T ).

Together with Lemma 18.1.11, we conclude that

eki (M) | Res
Hf
n(q)

H
(n−k,1k)

(q)(Ind
Hf
n(q)

Hλ
(T )),

where we identify Hf
n−k(q) with the subalgebra H(n−k,1k)(q) of Hf

n(q). From Propo-

sition 18.1.10 it follows that

N | Res
Hf
n(q)

H
(n−k,1k)

(q)(Ind
Hf
n(q)

Hλ(q)(T )).

Set λ′ = (n − k, 1k). If we apply the Mackey Decomposition Theorem, see [29,

Theorem 2.7], we see that

N |
⊕
d∈Dλ′λ

[Hλ′(q)⊗Hν(d)(q) (Td ⊗Hλ(q) T )],

where ν(d) is defined by Wν(d) = dWλ ∩Wλ′ , for all d ∈ Dλ′λ.
Since N is supposed to be indecomposable, it follows by the Krull–Schmidt Theorem

that

N | Hλ′(q)⊗Hν(d)(q) (Td ⊗Hλ(q) T ),

for some d ∈ Dλ′λ. By Higman’s Criterion, it follows that N is Hν(d)(q)-projective.

But Wν(d) ⊆W (n) Wλ, and therefore, a vertex of N is contained in Wλ.

By [27, Proposition 1.7], a vertex is uniquely determined up to conjugacy in W (n).

It follows that Wλ =W (n) Wµ. �

Finally, we obtain our main result, which now is a consequence of Theorem 18.1.12.

Theorem 18.1.13. Let B be a block of Hf
n(q) of finite representation type, and

M ∈ B −mod. Then the vertex of M is l − p-parabolic.

Proof. By Corollary 17.2.5 and Theorem 18.1.12, we can reduce this question to

Hf
l (q). If M ∈ Hf

l (q)−mod is non-projective it must have vertex Wl since all other

parabolic subalgebras of Hf
l (q) are semisimple. Hence, the claim follows. �
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Remark 18.1.14. In [48] a supposed counterexample is given in the case where

the ground field is of characteristic 2, n = 3, and q is a primitive 3th root of unity.

There, a certain indecomposable Hf
3 (q)-module S is constructed as a restriction of

a Specht module over Hf
4 (q). Then it is claimed that S is Hµ(q)-projective, with

µ = (2, 1), whereas S itself is not a projective Hf
4 (q)-module. But this cannot be

the case as Hµ(q) is a semisimple algebra, and, thus, every module over Hµ(q) is

projective, and so is S.
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Part III

Appendix





Appendix A

Resolving ambiguities

In this chapter, we try to resolve the ambiguities in the reduction system of Theorem

9.3.1 in Chapter 9 of Part II.

A closer look at the pairs (9.10)-(9.22) given in Section 9.3 shows that there are no

inclusion ambiguities, but overlap ambiguities. In the following we try to resolve

these, where by ⇒S we will denote a reduction step.

1. Let i < j, and consider the pair in (9.10). If j < k, then we see that we have an

overlap ambiguity with the pair (xjxk, xkxj). We try to resolve:

(xixj)xk ⇒S xj(xixk)⇒S (xjxk)xi ⇒S xkxjxi.

If we reduce the other way, we get

xi(xjxk)⇒S (xixk)xj ⇒S xk(xixj)⇒S xkxjxi,

using only the reduction given in (9.10). Hence, we have obtained the same element.

Next we look at the overlap ambiguity with the pair in (9.12). We have that

xi(xjx
−1
j )⇒S xi1.

On the other hand

(xixj)x
−1
j ⇒S xj(xix−1

j )⇒S (xjx
−1
j )xi ⇒S 1xi,

using the reductions in (9.10) and (9.14). Hence the calculation shows that we

obtain the same element. Similar calculations using the reductions in (9.10) and

(9.15) show that the overlap ambiguity between x−1
i xi and xixj is resolvable.

We try to resolve the ambiguity with the pair in (9.14). To this end, let 1 ≤ i <

j < k ≤ n. We compute:

(xixj)x
−1
k ⇒S xj(xix

−1
k )⇒S (xjx

−1
k )xi ⇒S x−1

k xjxi,

and

xi(xjx
−1
k )⇒S (xix

−1
k )xj ⇒S x−1

k (xixj)⇒S x−1
k xjxi,
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using the reductions in (9.10) and (9.14). Therefore, the ambiguity is resolved. The

same calculations using the reductions given in (9.10) and (9.15) show that the

ambiguity between x−1
i xj and xjxk can be resolved.

Next, let 1 ≤ i, j, k ≤ n, j 6= i, i + 1, and j < k. Then we have an ambiguity

between Tixj and xjxk. By using reduction (9.10), we get that

Ti(xjxk)⇒S (Tixk)xj.

Now there are several cases. First, assume that k 6= i, i+ 1. Then we have:

(Tixk)xj ⇒S xk(Tixj)⇒S xkxjTi,

using reduction (9.17). If k = i, then:

(Tixk)xj ⇒S (xi+1Ti − (q − 1)xi+1)xj = xi+1(Tixj)− (q − 1)xi+1xj

⇒S xi+1xjTi − (q − 1)xi+1xj,

using reductions (9.19) and (9.17). If k = i+ 1, we compute

(Tixk)xj ⇒S (xiTi + (q − 1)xi+1)xj = xi(Tixj) + (q − 1)xi+1xj

⇒S xixjTi + (q − 1)xi+1xj,

using reductions (9.20) and (9.17).

If we try to resolve the other way, we get:

(Tixj)xk ⇒S xj(Tixk),

using reduction (9.17). Again we have to distinguish different cases. If k 6= i, i+ 1,

then

xj(Tixk)⇒S (xjxk)Ti ⇒S xkxjTi,

using reductions (9.17) and (9.10). If k = i, we have that

xj(Tixk) ⇒S xj(xi+1Ti − (q − 1)xi+1) = (xjxi+1)Ti − (q − 1)(xjxi+1)

⇒S xi+1xjTi − (q − 1)xi+1xj,

by applying the reductions (9.19) and (9.10). If k = i+ 1, we compute that

xj(Tixk) ⇒S xj(xiTi + (q − 1)xi+1) = (xjxi)Ti + (q − 1)(xjxi+1)

⇒S xixjTi + (q − 1)xi+1xj,

using (9.20) and (9.10). Now we see that in both reductions we obtain the same

element, i.e., the ambiguity is resolvable.

Next we investigate the ambiguity between Tixi and xixj, where 1 ≤ i ≤ n− 1 and

1 ≤ i < j ≤ n. We have:

Ti(xixj)⇒S (Tixj)xi,
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using (9.10). Now we have to distinguish several cases. If j 6= i+ 1, we get

(Tixj)xi ⇒S xj(Tixi)⇒S xj(xi+1Ti − (q − 1)xi+1) = xjxi+1Ti − (q − 1)xjxi+1,

by applying (9.17) and (9.19). If j = i+ 1, we have:

(Tixj)xi ⇒S (xiTi + (q − 1)xi+1)xi = xi(Tixi) + (q − 1)xi+1xi

⇒S xi(xi+1Ti − (q − 1)xi+1) + (q − 1)xi+1xi

= (xixi+1)Ti − (q − 1)xixi+1 + (q − 1)xi+1xi

⇒S xi+1xiTi − (q − 1)xi+1xi + (q − 1)xi+1xi

= xi+1xiTi,

using (9.20), (9.19), and (9.10). Reducing the other way, we obtain

(Tixi)xj ⇒S (xi+1Ti − (q − 1)xi+1)xj = xi+1Tixj − (q − 1)xi+1xj,

applying reduction (9.19). Again we have to consider two cases. First, assume that

j 6= i+ 1. Then we get

xi+1(Tixj)− (q − 1)xi+1xj ⇒S (xi+1xj)Ti − (q − 1)(xi+1xj)

⇒S xjxi+1Ti − (q − 1)xjxi+1,

using (9.17) and (9.10). If j = i+ 1, we have

xi+1(Tixj)− (q − 1)xi+1xj ⇒S xi+1(xiTi + (q − 1)xi+1)− (q − 1)xi+1xj

= xi+1xiTi + (q − 1)x2
i+1 − (q − 1)xi+1xj

= xi+1xiTi,

applying (9.19). Now we see that the reduced elements coincide, hence the ambi-

guity is resolved.

Now we look at the overlap ambiguity between Tixi+1 and xi+1xj, where 1 ≤ i ≤
n− 1 and 1 < i+ 1 < j ≤ n. We have

Ti(xi+1xj) ⇒S (Tixj)xi+1 ⇒S xj(Tixi+1)

⇒S xj(xiTi + (q − 1)xi+1) = xjxiTi + (q − 1)xjxi+1,

by applying the reductions (9.10), (9.17) and (9.20). On the other hand we get that

(Tixi+1)xj ⇒S (xiTi + (q − 1)xi+1)xj = xi(Tixj) + (q − 1)xi+1xj

⇒S (xixj)Ti + (q − 1)(xi+1xj)⇒S xjxiTi + (q − 1)xjxi+1,

using (9.20) and (9.10). Now we see that the ambiguity is resolvable.

2. For the pair in (9.11) one proceeds in a similar manner as for the pair in (9.10),

using the appropriate reductions.
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3. Here we consider the element given in (9.12). We see that we have an overlap

ambiguity with the element in (9.13). We compute

(xix
−1
i )xi ⇒S 1xi,

using only reduction (9.12). Reducing the other way, we get

xi(x
−1
i xi)⇒S xi1,

applying reduction given in (9.13). Hence, the ambiguity is resolved. A similar

calculation shows that the ambiguity between (9.13) and (9.12) is resolvable.

Next we investigate the ambiguity between (9.12) and (9.15). Suppose that 1 ≤ i <

j ≤ n. Then we get

xi(x
−1
i xj)⇒S (xixj)x

−1
i ⇒S xj(xix−1

i )⇒S xj1,

using (9.15) and (9.12). On the other hand

(xix
−1
i )xj ⇒S 1xj,

using only (9.12). Now we see that the ambiguity is resolvable.

Looking at the ambiguity between (9.15) and (9.12), we compute for 1 ≤ i < j ≤ n:

(x−1
i xj)x

−1
j ⇒S xj(x−1

i x−1
j )⇒S (xjx

−1
j )x−1

i ⇒S 1x−1
i ,

applying the reductions (9.15), (9.11) and (9.12). Moreover, we get

x−1
i (xjx

−1
j )⇒S x−1

i 1,

using (9.12), and showing that the ambiguity is resolvable.

Next, we investigate the ambiguity between (9.12) and (9.17). Let 1 ≤ i ≤ n − 1

and j 6= i, i+ 1. We get that

(Tixj)x
−1
j ⇒S xj(Tix−1

j )⇒S (xjx
−1
j )Ti ⇒S 1Ti,

using (9.17), (9.18) and (9.12). The other way is easy, using (9.12):

Ti(xjx
−1
j )⇒S Ti1.

Therefore, the ambiguity is resolved.

Now, consider the pairs (9.12) and (9.19). We have for 1 ≤ i ≤ n− 1:

Ti(xix
−1
i )⇒S Ti1,

applying (9.12), and

(Tixi)x
−1
i ⇒S (xi+1Ti − (q − 1)xi+1)x−1

i = xi+1(Tix
−1
i )− (q − 1)xi+1x

−1
i

⇒S xi+1(x−1
i+1Ti + (q − 1)x−1

i )− (q − 1)xi+1x
−1
i

= (xi+1x
−1
i+1)Ti + (q − 1)xi+1x

−1
i − (q − 1)xi+1x

−1
i

⇒S 1Ti + (q − 1)xi+1x
−1
i − (q − 1)xi+1x

−1
i = 1Ti,
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using (9.19), (9.21) and (9.12). Again we see that the ambiguity is resolvable.

Next we look at the ambiguity of (9.12) and (9.20). Let 1 ≤ i ≤ n − 1. Then we

get that

Ti(xi+1x
−1
i+1)⇒S Ti1,

applying (9.12), and

(Tixi+1)x−1
i+1 ⇒S (xiTi + (q − 1)xi+1)x−1

i+1 = xi(Tix
−1
i+1) + (q − 1)(xi+1x

−1
i+1)

⇒S xi(x
−1
i Ti − (q − 1)x−1

i ) + (q − 1)1

= (xix
−1
i )Ti − (q − 1)(xix

−1
i ) + (q − 1)1

⇒S 1Ti − (q − 1)1 + (q − 1)1 = 1Ti,

using (9.20), (9.22) and (9.12). Hence the ambiguity is resolved.

4. The calculations for the pair in (9.13) are similar to that in (3.), using the ap-

propriate reductions.

5. Next we consider the pair given in (9.14). We see that we have an overlap

ambiguity with the pair in (9.15). Let 1 ≤ i < j < k ≤ n. Trying to resolve gives:

(xix
−1
j )xk ⇒S x−1

j (xixk)⇒S (x−1
j xk)xi ⇒S xkx−1

j xi,

and

xi(x
−1
j xk)⇒S (xixk)x

−1
j ⇒S xk(xix−1

j )⇒S xkx−1
j xi,

using (9.14) and (9.10). Hence, the ambiguity is resolved.

Next, we consider the ambiguity between (9.14) and (9.17). Assume that 1 ≤ i ≤
n− 1, j 6= i, i+ 1 and 1 ≤ j < k ≤ n. We get

Ti(xjx
−1
k )⇒S (Tix

−1
k )xj,

by reduction (9.14). We have to distinguish several cases. First, let k 6= i, i + 1.

Then

(Tix
−1
k )xj ⇒S x−1

k (Tixj)⇒S x−1
k xjTi,

using (9.18). If k = i, we get

(Tix
−1
k )xj ⇒S (x−1

i+1Ti + (q − 1)x−1
i )xj = x−1

i+1(Tixj) + (q − 1)x−1
i xj

⇒S x−1
i+1xjTi + (q − 1)x−1

i xj,

applying (9.21) and (9.17). If k = i+ 1, we have that

(Tix
−1
k )xj ⇒S (x−1

i Ti − (q − 1)x−1
i )xj = x−1

i (Tixj)− (q − 1)x−1
i xj

⇒S x−1
i xjTi − (q − 1)x−1

i xj,
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using (9.22) and (9.17). On the other hand, we get:

(Tixj)x
−1
k ⇒S xj(Tix

−1
k ),

by (9.17). Again we have to distinguish. If k 6= i, i+ 1, then

xj(Tix
−1
k )⇒S (xjx

−1
k )Ti ⇒S x−1

k xjTi,

using (9.18) and (9.14). If k = i, we have

xj(Tix
−1
k ) ⇒S xj(x

−1
i+1Ti + (q − 1)x−1

i ) = (xjx
−1
i+1)Ti + (q − 1)(xjx

−1
i )

⇒S x−1
i+1xjTi + (q − 1)x−1

i xj,

by (9.21) and (9.14). If k = i+ 1, we get

xj(Tix
−1
k ) ⇒S xj(x

−1
i Ti − (q − 1)x−1

i ) = (xjx
−1
i )Ti − (q − 1)(xjx

−1
i )

⇒S x−1
i xjTi − (q − 1)x−1

i xj,

using (9.22) and (9.14). Now we see that the ambiguity is resolved.

Next, consider the ambiguity between (9.14) and (9.19). Let 1 ≤ i ≤ n − 1 and

1 ≤ i < j ≤ n. Then we have

Ti(xix
−1
j )⇒S (Tix

−1
j )xi,

by (9.14). We have two cases. First, let j 6= i+ 1. Then

(Tix
−1
j )xi ⇒S x−1

j (Tixi)

⇒S x−1
j (xi+1Ti − (q − 1)xi+1) = x−1

j xi+1Ti − (q − 1)x−1
j xi+1,

using (9.18) and (9.19). If j = i+ 1, then

(Tix
−1
j )xi ⇒S (x−1

i Ti − (q − 1)x−1
i )xi = x−1

i (Tixi)− (q − 1)(x−1
i xi)

⇒S x−1
i (xi+1Ti − (q − 1)xi+1)− (q − 1)1

= (x−1
i xi+1)Ti − (q − 1)(x−1

i xi+1)− (q − 1)1

⇒S xi+1x
−1
i Ti − (q − 1)xi+1x

−1
i − (q − 1)1,

by (9.22), (9.19), (9.13) and (9.15). On the other hand, we get

(Tixi)x
−1
j ⇒S (xi+1Ti − (q − 1)xi+1)x−1

j = xi+1(Tix
−1
j )− (q − 1)xi+1x

−1
j ,

using (9.19). If j 6= i+ 1, we have

xi+1(Tix
−1
j )− (q − 1)xi+1x

−1
j ⇒S (xi+1x

−1
j )Ti − (q − 1)(xi+1x

−1
j )

⇒S x−1
j xi+1Ti − (q − 1)x−1

j xi+1,

by (9.18) and (9.14). If j = i+ 1, we get

xi+1(Tix
−1
j )− (q − 1)(xi+1x

−1
j ) ⇒S xi+1(x−1

i Ti − (q − 1)x−1
i )− (q − 1)1

= xi+1x
−1
i Ti − (q − 1)xi+1x

−1
i − (q − 1)1
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using (9.22) and (9.12), showing that the ambiguity is resolvable.

Next, lets consider the pairs (9.14) and (9.20). To this end, let 1 ≤ i ≤ n − 1 and

1 < i+ 1 < j ≤ n. Then

Ti(xi+1x
−1
j ) ⇒S (Tix

−1
j )xi+1 ⇒S x−1

j (Tixi+1)

⇒S x−1
j (xiTi + (q − 1)xi+1) = x−1

j xiTi + (q − 1)x−1
j xi+1,

using (9.14), (9.18) and (9.20). Also, we have

(Tixi+1)x−1
j ⇒S (xiTi + (q − 1)xi+1)x−1

j

= xi(Tix
−1
j ) + (q − 1)xi+1x

−1
j

⇒S (xix
−1
j )Ti + (q − 1)(xi+1x

−1
j )

⇒S x−1
j xiTi + (q − 1)x−1

j xi+1,

by (9.20), (9.18) and (9.14). Therefore, the ambiguity is resolved.

6. If we consider the pair given in (9.15), we see that we get similar calculations as

in (5.), using the appropriate reductions.

7. Next let us consider the pair given in (9.16). Let 1 ≤ i ≤ n− 1. We see that we

have an ambiguity with the pair in (9.17). For 1 ≤ j ≤ n and j 6= i, i+ 1, we get

Ti(Tixj) ⇒S (Tixj)Ti ⇒S xj(TiTi)
⇒S xj((q − 1)Ti + q) = (q − 1)xjTi + qxj,

by (9.17) and (9.16). Also, we have that

(TiTi)xj ⇒S ((q − 1)Ti + q)xj = (q − 1)Tixj + qxj

⇒S (q − 1)xjTi + qxj,

using reductions (9.16) and (9.17). Therefore, the ambiguity is resolvable.

Using (9.16) and (9.18), a similar calculation shows that the ambiguity coming from

(9.16) and (9.18) is resolvable.

Next, consider the ambiguity (9.16) and (9.19). We compute

Ti(Tixi) ⇒S Ti(xi+1Ti − (q − 1)xi+1) = (Tixi+1)Ti − (q − 1)(Tixi+1)

⇒S (xiTi + (q − 1)xi+1)Ti − (q − 1)(xiTi + (q − 1)xi+1)

= xi(TiTi) + (q − 1)xi+1Ti − (q − 1)xiTi − (q − 1)2xi+1

⇒S xi((q − 1)Ti + q) + (q − 1)xi+1Ti − (q − 1)xiTi − (q − 1)2xi+1

= (q − 1)xiTi + qxi + (q − 1)xi+1Ti − (q − 1)xiTi − (q − 1)2xi+1

= (q − 1)xi+1Ti − (q − 1)2xi+1 + qxi,

using (9.19), (9.20) and (9.16). On the other hand, we have that

(TiTi)xi ⇒S ((q − 1)Ti + q)xi = (q − 1)(Tixi) + qxi

⇒S (q − 1)(xi+1Ti − (q − 1)xi+1) + qxi

= (q − 1)xi+1Ti − (q − 1)2xi+1 + qxi,
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by (9.16) and (9.19). Hence, the ambiguity is resolvable.

Now we look at the pairs (9.16) and (9.20). We get

Ti(Tixi+1)

⇒S Ti(xiTi + (q − 1)xi+1) = (Tixi)Ti + (q − 1)(Tixi+1)

⇒S (xi+1Ti − (q − 1)xi+1)Ti + (q − 1)(xiTi + (q − 1)xi+1)

= xi+1(TiTi)− (q − 1)xi+1Ti + (q − 1)xiTi + (q − 1)2xi+1

⇒S xi+1((q − 1)Ti + q)− (q − 1)xi+1Ti + (q − 1)xiTi + (q − 1)2xi+1

= (q − 1)xi+1Ti + qxi+1 − (q − 1)xi+1Ti + (q − 1)xiTi + (q − 1)2xi+1

= (q − 1)xiTi + (q − 1)2xi+1 + qxi+1,

using (9.20), (9.19) and (9.16). Moreover, we have

(TiTi)xi+1 ⇒S ((q − 1)Ti + q)xi+1 = (q − 1)(Tixi+1) + qxi+1

⇒S (q − 1)(xiTi + (q − 1)xi+1) + qxi+1

= (q − 1)xiTi + (q − 1)2xi+1 + qxi+1,

by (9.16) and (9.20). Now we see that the ambiguity is resolved.

Next consider the ambiguity given by (9.16) and (9.21). We have

Ti(Tix
−1
i )

⇒S Ti(x−1
i+1Ti + (q − 1)x−1

i ) = (Tix
−1
i+1)Ti + (q − 1)(Tix

−1
i )

⇒S (x−1
i Ti − (q − 1)x−1

i )Ti + (q − 1)(x−1
i+1Ti + (q − 1)x−1

i )

= x−1
i (TiTi)− (q − 1)x−1

i Ti + (q − 1)x−1
i+1Ti + (q − 1)2x−1

i

⇒S x−1
i ((q − 1)Ti + q)− (q − 1)x−1

i Ti + (q − 1)x−1
i+1Ti + (q − 1)2x−1

i

= (q − 1)x−1
i Ti + qx−1

i − (q − 1)x−1
i Ti + (q − 1)x−1

i+1Ti + (q − 1)2x−1
i

= (q − 1)x−1
i+1Ti + (q − 1)2x−1

i + qx−1
i ,

by (9.21), (9.22) and (9.16). On the other hand we get

(TiTi)x
−1
i ⇒S ((q − 1)Ti + q)x−1

i = (q − 1)(Tix
−1
i ) + qx−1

i

⇒S (q − 1)(x−1
i+1Ti + (q − 1)x−1

i ) + qx−1
i

= (q − 1)x−1
i+1Ti + (q − 1)2x−1

i + qx−1
i ,

using (9.16) and (9.21). Hence, the ambiguity is resolvable.

Now we look at the ambiguity coming from (9.16) and (9.22).

Ti(Tix
−1
i+1)

⇒S Ti(x−1
i Ti − (q − 1)x−1

i ) = (Tix
−1
i )Ti − (q − 1)(Tix

−1
i )

⇒S (x−1
i+1Ti + (q − 1)x−1

i )Ti − (q − 1)(x−1
i+1Ti + (q − 1)x−1

i )

= x−1
i+1(TiTi) + (q − 1)x−1

i Ti − (q − 1)x−1
i+1Ti − (q − 1)2x−1

i

⇒S x−1
i+1((q − 1)Ti + q) + (q − 1)x−1

i Ti − (q − 1)x−1
i+1Ti − (q − 1)2x−1

i

= (q − 1)x−1
i+1Ti + qx−1

i+1 + (q − 1)x−1
i Ti − (q − 1)x−1

i+1Ti − (q − 1)2x−1
i

= (q − 1)x−1
i Ti + qx−1

i+1 − (q − 1)2x−1
i ,
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using (9.22), (9.21) and (9.16). Also, we see that

(TiTi)x
−1
i+1 ⇒S ((q − 1)Ti + q)x−1

i+1 = (q − 1)Tix
−1
i+1 + qx−1

i+1

⇒S (q − 1)(x−1
i Ti − (q − 1)x−1

i ) + qx−1
i+1

= (q − 1)x−1
i Ti + qx−1

i+1 − (q − 1)2x−1
i ,

by (9.16) and (9.22), showing that the ambiguity is resolvable.

Since there are no more ambiguities in S, we have proved that all ambiguities

occurring in S are resolvable.
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Commun. Math. Phys. 134 (1990), 79–88.

[71] H. Miyachi, Unipotent Blocks of Finite General Groups in Non-defining Char-

acteristic. PhD thesis, Chiba univ., March 2001.

[72] H. Miyachi, Uno’s conjecture for the exceptional Iwahori-Hecke algebras,

New trends in combinatorial representation theory, 155–177, RIMS Kkyroku

Bessatsu, B11, Res. Inst. Math. Sci. (RIMS), Kyoto, 2009.

[73] A. Prasad, I. Shapiro, M.K. Vermuri, Locally compact abelian groups with

symplectic self-duality, Adv. Math. 225 (2010), no. 5, 2429–2454.

[74] J. Rickard, Morita theory for derived categories, J. London. Math. Soc (2) 39

(1989), 436–456.

[75] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Alg. 61

(1989), 303–317.

221



Bibliography

[76] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2)

43 (1991), 37–48.

[77] C. Riedtmann, Algebren, Darstellungsköcher, Überlagerungen und zurück,
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