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Abstract

A tailored real time temporal logic for specifying requirements of building au-
tomation systems is introduced and analyzed. The logic features several new real
time operators, which are chosen with regard to the application area. The new
operators improve the conciseness and readability of requirements as compared
to a general-purpose real time temporal logic. In addition, some of the operators
also enhance the expressiveness of the logic. A number of properties of the new
operators are presented and proven.

1 Introduction

This paper presents the formal background developed and used during a case study
performed in the context of the Sonderforschungsbereich (SFB) 501 at the University
of Kaiserslautern. A central goal of the SFB 501 is to devise methods and techniques
for the generic development of large software systems [SFB94]. As an initial appli-
cation domain, the area of building automation has been chosen as an experimental
environment. Therefore our case study also took place within this domain.

One objective of this case study was the formalization of a given set of requirements
written in natural language. Thereby we wanted to make some experiences concern-
ing this activity in order to be able to make suggestions how the formalization can
be performed more efficiently when doing it again. The formalized requirements are
described in [PeGoKr96]. [GoKrPe96] investigates one requirement in detail. In this
report we concentrate on the formal background we developed and used during the
formalization process. Suggestions how our experiences can be exploited to improve

*This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the
Sonderforschungsbereich (SFB) 501 Development of Large Systems with Generic Methods.



the formalization task will be sketched in the conclusion and discussed in more detail
in a separate report.

The informal requirements are part of a document called problem description. This
document was the only input in our case study. The overall task mentioned in the
problem description is “the delivery of a new control system that satisfies user needs
of one standard room.” This standard room is represented by a room of our university
building which is equipped with several sensors, actuators, and other devices. Among
the needs that have to be fulfilled by the control system are requirements referring to
the control of temperature, humidity, light, ventilation, security, and safety.

At the beginning of our case study we were free to select any formal language appro-
priate for formalizing the informal problem description. Therefore, the first step we did
was an analysis of the informal requirements in order to find out the used concepts.
We made the following two main observations:

e The informal requirements are stated in a property oriented way.

o Real time, i.e. metric aspects of time, plays a major role in the informal require-
ments.

Since we wanted the formalization to be as close as possible to the informal version,
we decided to use a real time temporal logic. We employed a logic because such lan-
guages typically are property oriented (unlike, for instance, statecharts [Ha87] or SDL
[BrHa93], which are operational). A real time temporal logic was chosen due to the
second concept we detected.

During our case study, we have made the following observations:

o It is feasible to formalize typical requirements on building automation systems
using real time temporal logic.

e Many of these requirements follow a small set of patterns.

By introducing tailored operators for the found typical patterns, we achieved two im-
provements. Firstly, the resulting specification became more concise leading to better
readability. Secondly, the expressiveness of our logic was increased, allowing us to state
more informal requirements formally.

The technique of adding temporal operators to enhance the expressiveness and intel-
ligibility of traditional temporal logic has been employed before. In the case of linear
non-metric temporal logic, additional operators can be found in [Bo82], [Go93], [Kr87],
[La77], [La83], [Pn77], and [ScMe82]. In the case of branching non—-metric temporal
logic see for example [CIEmSi86], where the Computation Tree Logic (CTL) has been
introduced. More complex extensions are the interval logic [ScMeVo83], [Me88], and in
the case of linear metric temporal logic the Duration Calculus [ChHoRa91],[HaCh92]
and MTL-[ [LaHo95].

In this paper, we formally introduce the typical patterns we have detected, define the
tailored temporal operators we used, and discuss several of their properties (Section



3). In Section 2, we describe the underlying general purpose temporal logic. In Section
4, we discuss some positive consequences of the fact that in order to formalize the
requirements it is sufficient to use only a small set of typical patterns. Based on this,
we point out future work. The appendix contains the proofs of the properties of the
patterns presented in Sections 2 and 3.

2 Basic Real Time Temporal Logic

Before we introduce the (domain specific) requirement—patterns and the resulting new
temporal operators, we will define the syntax and the semantics of the proposed basic
real time temporal logic (bRTTL). In 2.1 we will list the main properties of bRTTL
according to the criteria mentioned in [AlHe91]. Sections 2.2 and 2.3 deal with the
syntax and the semantics of bRTTL, respectively.

2.1 Main Properties

bRTTL is based on the temporal logics described in [MaPn92],[MaPn93], and [AlHe90].
The following list contains the main properties of bRTTL as a temporal logic:

1. bRTTL is a propositional temporal logic.
This means that the underlying logic used to express the time independent parts
is the propositional calculus.

2. bRTTL is a linear—time logic.
This means that bRTTL is interpreted over linear structures of states.

3. bRTTL employs the temporal operators 0, O, W, . §.

4. In order to express timing requirements in a formula, bRTTL employs time—
bounded variants of some of the temporal operators.

5. In bRTTL, the time domain is the set of non—negative real numbers R .

2.2 Syntax

Definition 1 Syntax of bRTTL

Let P be the set of all propositional formulae over a set V of propositional variables
and the propositional operators =, N,V —, <+. Further let 7 € R*.

The set F of the correct temporal formulae of bRTTL is the minimal set fulfilling the
following conditions:

(i) PCF



(ii) If o, € F then also

o ~p, oV, p AN, =P, o peF
o [o],0p, Qp, My, p, oWip € F
L DST@? OSTS‘% .STS‘% ‘STS‘O € F

p € P is called a state formula.

The operators are named:
|  action-operator

—

O  henceforth-operator

O< indexed henceforth-operator

{0  eventually—operator

Q< indexed eventually-operator

B  has-always-been-operator

M. indexed has-always—been-operator
¢  once-operator

4. indexed once-operator

W waiting—for—operator

Note, that only positive upper bounds “< 77 for the timing restrictions of the operators
are allowed. This restriction is made for the sake of simplicity, especially the definition
of the semantics of the formulae will be shorter.

2.3 Semantics

To define the semantics of the formulae of bRTTL, we use a general model for real time
systems based on the one proposed in [AlHe91].

Definition 2 State, timed state sequence, trace
LetV and P as in Definition 1.

a) A state is a function o1V — {0,1}.
It extends to o : P — {0,1} in the usual way.
The set of all states is denoted as X.

b) A timed state sequence p is a function
p: Ry =%
¢) A timed state sequence p is a trace if there exists an interval sequence T =
[0, [1, ... with:
(Z) Vl,l eN: I, = [ai,bi) with a; € Ra_,bz eRTU {OO}'%,&Z' < b;

S00 has the usual properties, e.g.: V2,2 € R : 2 < 0o

4



(1)) Yi,t € N 1 b; # 00~ b = aiq

(tii) Yi,o € N:VIVU Lt € 12 p(t) = p(t)

(iv) Vi,t e R T, i e Nt el

(v) If p is nol constant from any point T, i.e.: Vi,t € R{ :Aflt’,t' > 1o
p(t) # p(t'), then: Yi,i e N : Vi, t € I, : Vi, t € I41: p(1) # p(t).

(vi) If p is constant from a point T, i.e.: It t € R[')' Vit >t p(t
p(t"), then: In : T = Iy, I1,..., 1, and Vi,i € {0,...,n — 1} : Vi, € [
Vit € Livi:p(t) # p(t).

Such an interval sequence I is called compatible with p.
The set of all traces is denoted as 11.

)

Condition (i) excludes singular intervals, i.e. intervals of type [¢,c], and other kinds
of intervals, e.g. (a;,b;); (ii) guarantees that two neighboring intervals /; and ;4 are
adjacent; (iii) guarantees that the state is invariant during each single interval ;.
Condition (iv) (together with (iii)) excludes Zeno—sequences of states; i.e. an infinite
number of different states during a finite period of time is not allowed. In [LaHo95]
this is called finite variability. Conditions (v) and (vi) guarantee that each interval I; of
the sequence 7 is a maximum interval in the sense that it ends if and only if the state

changes. Due to these two conditions, there is for each timed state sequence at most

one interval sequence 7 fulfilling (i) to (vi). Note, that propositional formulae have the

same truth value during an interval I; of Z. As we will see in Section 2.4, this can not
be guaranteed for every bRTTL formula.

Now we can formally define the semantics of the temporal formulae of bRTTL:

Definition 3 Semantics of bRTTL

Let p: Ry — X be a trace and T = Iy, I, . ..

the interval sequence compatible with p.

Further let p,op € F and t,7 € RT.

Then the salisfaction relation |= is defined as follows:

(i)
(it)
(iii)

(iv)

(v)
(v1)
(vii)

(p:t) E ¢ f p(t)(e)=1  ifp€eP
-, \,V,—,and < are interpreted as usual.

(p,t) = [¢] iff (t=0and (p,0) =) or (t >0 and (p,t) = ¢ and
L0 <A <tV < <t (p,t") = )

p.t) EQe  iff YU, ' >1t: (p,t') E g
Op il U=t (pl) ¢

[ iff Y.o<t'<t:(p,t)Ee

(ps1) =
(1) =
(1) =
(p:1) =

=40 iff 0SSt (pl)EY

Pl



(viit) (p,t) = W il (p,1)
Guzt( )F¢de%<ﬂ<t(JﬁF@

EOcwe iff VU< <t+7:(p,t) v

EOwe iff <V <t+7ipifEe

=Bl iff VUl <t'<t:(pt)=e and 1y, =max{0,t -7}
=< iff 3t <<t (pt) = and 1, = max{0,1 — 7}
(xiii) p = ¢ df (p,0) = o

Based on the salisfaction relation = we define for every trace p a funclion

pr: Ry x F —{0,1}

2.4 Short Discussion of bRTTL

Note that there exist temporal formulae having different truth values during an interval
I; of an interval sequence Z. A simple one is the formula [¢] which is valid exactly at
one point. Another example is given by Figure 1. The corresponding interval sequence
to the considered trace p is: Iy = [0,1), I} = [1,4), I; = [4,00). Then the formula Oc,¢
is valid at ¢t = 1 but not at ¢t = 3.

o) |

| |
| |
0 1 2 3

IS e —
(24
(@]
o~

Figure 1: example 1

In the following we present and discuss briefly some relationships of the indexed oper-
ators and several properties of the waiting—for—operator. The following notations are
used:

o If a formula ¢ is equivalent to a formula ¢, i.e. Vp,p € Il : p E ¢ iff p |E ¢, we
write = @ <> 1.

o If ¢ is a logical consequence of , i.e. Vp,p € Il : p = ¢ implies p = ¢, we write
= v =

o If ¢ is not a logical consequence of ¢, we write [£ ¢ — 1.

6



Let o, @1, 9,3 € F and 7,7, 7 € RT in the following.

Similar to the unindexed versions of the operators, O<, §< and W<, #< are dual oper-
ators, respectively:

F O ¢ =0 (101)
L P L (102)
Furthermore, as for the unindexed versions, the box—-operators, O< and B<, are stronger

than the diamond-operators, {< and 4<, respectively. This relationship is independent
of the time bounds of the operators:

|: DSﬁS‘o — <>§7'299 (103)
W0 — b (104)
With respect to the waiting—for—operator, we present several sufficient conditions for
the validity of 1 Weps, (W1 to W5), and show that the W-operator is not transitive,
(W6). The sufficient conditions offer alternatives if the requirement ¢ We, has to be
realized. The proofs can be found in Appendix A. Tables 1 and 2 display the relations

between different combinations of the W—-operator and the propositional operators A
and V.

These tables as well as the ones presented in Section 3.3.1 have to be read in the
following way. Each entry describes if a specific formula ¢ — ¢ is valid. The formula
standing in the first column always represents the formula ¢, i.e. the premise. The
formula in the uppermost row represents the formula v, i.e. the conclusion. A “4”
points out that this instantiation of ¢ — ¥ is valid, a “-” points out that it is not valid.
These tables are needed to prove several properties of the new operators introduced in
the following.

Sufficient conditions:
= 2 = (1 Wea) (W)
F Oe1 = (g1 We2) (W2)
= ((p1Wes) AO(¢3 = 92)) = (1 We2) (W3)
F ((e1We2) A (01 = 03)We2)) = (s W) (W4)
F ((etW=2) A (92 Woips)) = (1 Wogs) (W5)
W is not transitive:

= (01 We2) A (92Wes)) = (91 Wes) (WV6)



A VWD | (o0 v oW | PIVOIA T (V) v
(1A @)V | (e V)P 50wy | (e

(e AWy | * ! !
(21 V @2) W0 B + ] i

(L1 W) A

(oW ' . ! -

(1 W)V - i

(2 W) i :

Table 1: Distributivity of W, first argument

EW(1 A 2) | @W (1 Viha) | (@Wr) A (@Wiha) | (@Wih1) V (W)
EW (11 A ha) + + + +
W (D1 V 1) . + - +
(eWYr1)A )
(Witn) + + +
(W) V ) )
(W) i i

Table 2: Distributivity of W, second argument

3 Tailored Real Time Temporal Logic

If a temporal logic like bRTTL is applied to specify the properties of a real time
system, appropriate operators have to be found for the formalization of a customer’s
natural language requirements. This problem arises because the operators of bRTTL
are general purpose operators. They can be used in many different contexts to express
a lot of diverse properties.

The search space spread by these general purpose operators and the possible com-
binations of them is extremely large (in general infinite). Furthermore, these general
purpose operators offer no help for finding an appropriate formula in a special situation.
Consequently, the search space is also unstructured.

We think that this problem can not be solved in general. But w.r.t. a specific domain,
the formalization of the requirements can be supported and improved by tailoring the
general purpose logic to this domain. We made the experience that introducing new
operators is a powerful mechanism for tailoring a logic. Each newly defined operator
should represent a specific property pattern occurring very often in the requirements
of the domain. As it will be pointed out in this section, new operators are defined in



order to achieve two different goals:

The first group of new operators are abbreviations of more complex operator combina-
tions. Using these new operators, the requirements can be formalized in a more concise
and intelligible way. The second group of new operators extends the expressiveness of
bRTTL allowing to formally state requirements that can not be expressed using pure

bRTTL.

Such new operators are no improvement if they only increase the already large search
space. Since these operators are no general purpose operators but tailored for a special
domain, they extend the search space in a controlled way suitable for this domain.
They can be interpreted as a kind of guidance, because they focus on domain specific
parts of the search space. Therefore one should proceed in the following way, when
formalizing requirements:

Since the tailored operators represent domain specific requirement patterns they should
be considered at first. If this set of operators is not sufficient for formalizing all require-
ments, the general purpose operators are still needed. Possibly, there are still some
requirements not formalizable by bRTTL. In this case new operators can be intro-
duced in order to increase the expressiveness of the logic.

The new operators and corresponding patterns structure the search space in a domain
specific way. In order to diminish the search space, the kind of allowed subformulae
occurring in these patterns can be restricted. For example, it could be sufficient to
allow only propositional formulae (with respect to the selected level of abstraction).

Such a tailored temporal logic can not only simplify the formalization of requirements.
It can also be helpful when reasoning about the formal requirements and when using
them in subsequent steps of the system development. Some hints are given in Section 4.

In the following, we will concentrate on the tailoring of bRTTL for our case study.
We will describe several typical patterns of requirements and the introduced temporal
operators resulting in a tailored real time temporal logic (tRTTL). Subsequently, we
will discuss some properties of the patterns and the new temporal operators.

[MaPn93] presents a excellent, general overview over the classification of properties in
the case of an untimed temporal logic for specifying reactive systems. The general idea
of tailoring a formal description technique is also studied in [Go93].

3.1 Tailored Temporal Operators

In this section we present the typical patterns and tailored operators. Fach of these
patterns is first of all illustrated by an example taken from our case study. Next, we
will give a general formulation of each pattern in natural language and a corresponding
formula. Finally, the new temporal operator is defined.

If the new operator is an abbreviation of the combination of several basic operators,
the symbol “l==4.;” is used: a trace p satisfies the formula on the left side (containing
the new operator) if and only if p satisfies the formula on the right side.



3.1.1 Delayed Implication Pattern

Example: In the case of hazardous conditions, i.e. heavy rain or storm, the windows
have to be closed as fast as possible.

General formulation of this pattern in natural language:

Fuvery time property o holds constantly for T time units, property ¥ holds at
least after this time and then b will be valid at least as long as property ¢ is
valid.

The formal version of this pattern is: O(Q<- (W)
Example: O(¢<-(WindowClosed W—HazardousCondition))

Since this pattern was used very often, we wanted to have an operator expressing the
relationship between ¢ and ¥ in a more intuitive and concise way. Therefore we define
the new delayed implication operator = <:

¢ B <r ¥ ETaer O<-(PWp)

Using the new operator =< the example is written as
O(HazardousCondition <, WindowClosed)

We think that this kind of notation displays the relationship between the two pred-
icates in a more intuitive and concise way, namely that WindowClosed depends on
HazardousCondition. This dependence between the left and the right side of the op-
erator = is briefly discussed in Section 3.3.2.

3.1.2 Delayed Equivalence Pattern

The delayed implication pattern displays only the dependence of a formula ¥ on a
formula . In some situations an extension of this pattern can be used that expresses
also the same relationship between —t and —p.

Example: If in the case of hazardous conditions the windows that can be handled
only manually are open, the user has to be warned as long as both pre—
conditions are fulfilled.

General formulation of this pattern in natural language:

Fvery time property ¢ (—p) holds constantly for T time units, property ¢ (—))
holds at least after this time and then (=) will be valid at least as long as

property ¢ () is valid.

The formal version of this pattern is: O((e =< ) A (mp B<r 7))

In order to abbreviate this expression, we define the delayed equivalence operator:

10



Y S<r Y EFier (p B ) A (mp Bror )

Example: 0O((HazardousCondition A ManualWindowOpen) <<, WarnedUser)

Note, that the reaction time 7 has to be the same for both dependencies, ¢ B<; ¥
and —¢ B <, —1p. Otherwise, the minimum of the two different reaction times can be
taken. This was sufficient in our case study.

3.1.3 Limited Invariance Pattern

The following limited invariance pattern represents a property that prevents a system
from oscillating. We think that this pattern can be used in many other domains, too.

Example: The window should not alternate constantly from open to close and from
close to open.

General formulation of this pattern in natural language:

Fach time property p becomes valid (invalid), it will be constantly valid (invalid)
for at least T time units.

The formal version of this pattern is: O([¢] = O<r )

As an abbreviation we define the limited invariance operator\/_:

V ¢ Edaeslv] = Derp

<T

Example: OV, WindowOpen  and OV, WindowClose

3.1.4 Accumulated Invariance Pattern
This pattern differs from the already introduced ones in the way that it cannot be

defined syntactically by a bRTTL—-formula. Instead, we have to define a new operator
from scratch, i.e. in terms of traces. Thus, it increases the expressiveness of the logic.

Example: During one hour the windows have to be open for at least ten minutes to
provide the room with sufficient fresh air.

General formulation of this pattern in natural language:
During each period of T' time unils, property ¢ is valid for at least T time units.

Let p € P. Given a trace p and a compatible interval sequence 7 = Iy, I1,... with
I; = la;, b;) the accumulated invariance operator @ is defined as:

11



(p,t) =@ p T D> (min(b;,t; 4+ T) — max(a;,t)) > 7

J

with j € {kl(p,ax) E p,a < ap <t +T,t €l =1ab)}

We allow only propositional formulae p € P as arguments of @ because, as already
mentioned, for this class of formulae it can be guaranteed that their truth value is
constant during each interval. If 7 > T, then @7 ¢ is not satisfiable, and if 7 = T,
then O@7T ¢ is equivalent to Oep.

The formal version of this pattern is: 0! ¢
Example: 0@ windowlpen

A similar operator, namely (", is introduced in [LLaHo95] in order to extend the metric
temporal logic (MTL) (see [AlHe90]) to deal with duration aspects. The ["—operator
differs from @7 in the way that [ p is the time { € R the formula p is valid during
the next r time units, while @7 p is a truth value. Again, the ["—operator is a general
purpose operator allowing to express many duration properties while @7 is a tailored
operator expressing exactly one kind of duration property.

In [LLaHo095] the authors also consider a special property, the so called limited-duration
property, given by a formula of the form D(pr > 7). This property is in the following
sense dual to our accumulated invariance pattern:

T T
D(/ p>71) iff O EB —p
T—7

3.1.5 Invariance Pattern

This is the only pattern where it is not necessary to define a new operator.
Example: The room temperature has always to be greater than 0°C.

General formulation of this pattern in natural language:
Property ¢ is always valid.

The formal version of this pattern is: O
Example: [l RoomTemperatureGtZero

The formal version of this pattern is often also called a safety formula if ¢ is a past

formula (e.g. [MaPn93]).

The set F of bRTTL-formulae is extended in the natural way including =<, &<, V.,
and @ as additional operators. The resulting logic is called tailored real time temporal

logic (IRTTL).

12



3.2 tRTTL in Our Case Study

During our case study we made the experience that the patterns described in the last
section are sufficient for formalizing the requirements, and that this formulation is
concise and intelligible. Table 3 shows how many requirements (at the end of the case
study there were 23 formal requirements) we were able to formalize using the patterns.

pattern ‘ times used ‘

invariance 10

delayed implication

delayed equivalence

limited invariance

accumulated invariance

O =N = ©

other formulae

Table 3: Patterns used in the case study

According to this table, two patterns appear to be very typical, namely the classical
invariance pattern and the newly introduced delayed implication pattern. Especially, if
the delayed equivalence pattern is formulated as two delayed implication patterns, 21
of 24 requirements can be expressed by just these two patterns.

3.3 Properties of tRTTL

In this section we will discuss several properties of the new operators. Some proofs are
presented in the appendix.

3.3.1 Combinations of A and V with @,V ., 5<, &<

For each of the new operators, @, V., =<, <<, we consider the distributivity w.r.t.
the two propositional operators “A” and “V”.

Table 4 deals with the operator {/.. Some typical proofs and some counter examples
for the assertions of Table 4 are given in Appendix B.1.

Table 5 displays the combinations of @ with A and V. It shows that there is an total
order on the four formulae according to implication, @7 (¢ A 1)) is the strongest and
@D (o V1)) the weakest one. Since all these relations are obvious no proofs are given.

13



V§T (3‘0 A ¢) + - - +
VST (3‘9 N ¢) - + - -
Ve, pVV, ¥ : T : T

Table 4: Distributivity of /.

DI (eNY) | DI (eVY) | DI e ADIY | DIVl v
®; (e A Y) + + + +
CAENED : T : :
@, A D; ¢ - + + +
@7 oV D, ¢ - + - +

Table 5: Distributivity of @

In contrast to the two already considered operators the remaining two, =< and &<,
have two arguments. Therefore for each operator two tables are given.

While the Tables 6 and 7 show that for the operator =< some non—trivial relations are
valid, Table 8 displays only trivial relations holding for << w.r.t. its first argument.
In the case of the second argument of the operator << one can only prove that the
combination (¢ <, ¥1) A (¢ &<, 12) is stronger than any other one (see Table 9).

o1 DN | (71 B )V
(1 A ©2) <r ¥ (o1 V @2) < P (02 B ¥) (¢2 e )
(¢1 A pa) B ¥ + - - -
(1 V2) Ber ¥ + + + +
(991 =<r fé/))/\
< + - + +
(992 'f?ST lr/))
(991 =< fé/))\/
< + - - +
(P2 E<r V)

Table 6: Distributivity of B <, first argument

The Tables 4-9 show that a distributivity rule is only valid for the second argument of
the delayed implication operator B <; i.e.:

o (Ui AL A BB Y1) AL A (@ Bgr )

14



. j i of )\/
=2 (7 /\/ = - 2/ \/,‘/7 (SD bST ¢1)A (SO @ST l;)I
Y=< (%bl @12) Y=< (@)1 92) (30 Ber %) (@ B s %)
< (V1A + + + +
O B<r (Y1 V) - + - -
(3‘9 E<r ‘¢’1)/\
= + + + +
(99 ':>§T lr/)Q)
' Y
(SO ':>§'r lrjl)\/ _ + B i
(99 =< lr/)Q)

Table 7: Distributivity of B <;, second argument

i . YN (301 =< lr/))\/
o1 N g) Ber ¥ | (01V 02) r o | (P17 Y) y
(ined) oo b DVed @ v | (00l ) | (2 0er 1)
(1 A p2) ©<r ¥ + ] _ _
(p1V ) ©<r P - i i _
(991 =<r lr/))/\
-_ - - + —I_
(2 =<r V)
(991 <:>§T l,/))\/ - - ) +
(2 &< V)

Table 8: Distributivity of <<, first argument

Excluding the well-known property of the henceforth operator,
O(er A ... Apy) B0 Ao A Oy,

in no other case of the patterns introduced in Section 3.1 a formula can be split into
“smaller” ones.

3.3.2 Further Discussion of =< and &<

Since the delayed implication operator B < seems to be a very useful one in our domain
we will discuss and analyze it and its extension, &<, in more detail. On the one
hand we will present a sufficient precondition for the pattern O(¢ =<, ). On the
other hand we will check if properties like transitivity or symmetry holding for the
undelayed implication (—) and equivalence (¢+) operator, respectively, are still valid
for the delayed versions. The proofs and counter examples are given in Appendix B.

The sufficient precondition we present includes a pattern often mentioned in the liter-
ature as the bounded response pattern, p — Q<;1). According to the valid formula DI1
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‘ ¢ T A (3«9 =<r l;/)l)\/
0 s (V1 A o< (P VY (¢ <o 1) ..
¢ < (P1AY2) | @ S<r (Y1 Vo) (p E<r ) (v ©<r ¥a)
¢ e (1A ) + ‘ ' _
o e<r (Y1V i) ) i ] _

(5«9 =<7 ‘¢’1)A

< + + " "

(¢ ©<r )

(¢ ©&<r Y1)V _ - - +

(¢ ©<r )

Table 9: Distributivity of <<;, second argument

the delayed implication pattern can be regarded as a variation of the bounded response
pattern tailored to the special requirements of our domain.

= (¢ = 0<-) A D = (YW=9))) = (¢ B<r ¥) (DIT)
Furthermore, (DI1) points out a way a requirement ¢ =<, ¢ can be realized by
splitting it into a time dependent response part ¢ — (<, and a time independent
continuous part O(¢p — (Y We)).

The valid formulae (DI2) and (DI3) show that each precondition taken alone is not
strong enough to imply ¢ <, ¥.

(g = 0<r) = (v er 9) (D12)
O = (pW=p)) = (¢ e ¥) (DI3)
The delayed implication pattern is transitive in the following sense:
= (Do B<r ¢2) AD(92 Bar 93)) = D(p1 Bcrin 93) (D14)
But in contrast to the undelayed version, the contraposition rule does not hold:
Dl B ¥) © DY B 7o) (DI5)

A typical property, symmetry, holding for <+ is not valid for the delayed equivalence
operator:

Ol < ) = 0@ &< ) (DET)

(DI5) and (DE1) show that different roles can be associated with the two subformulae
of &< and &<. The subformula on the left side of these operators plays an active role
while the formula on the right side is passive and only reacts if necessary.
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4 Conclusions and Future Work

In this report, we have presented a tailored real time temporal logic for specifying
requirements of building automation systems. The logic features several new real time
operators, which are chosen with regard to the application area. The new operators im-
prove the conciseness and readability of formal requirements as compared to a general—
purpose real time temporal logic. In addition, some of the operators enhance the ex-
pressiveness of the logic.

In the course of our case study, we have found that most requirements follow a relatively
small number of patterns. This appears to be another occurrence of the 90-10-rule:
90% of the requirements are instantiations of these patterns, while 10% have a different
form. In this report, we have presented such patterns and corresponding requirements.
We have shown that tRTTL supports the concise specification of these patterns by
tailored operators.

When a set of typical requirement patterns for a given application domain is already
known, this can be exploited in several ways. All the following mentioned benefits are
based on the main concept of pattern reuse.

Firstly, the effort of specifying requirements may be substantially reduced, if most
requirements can be formalized by instantiating predefined patterns. Secondly, re-
quirement patterns may be analyzed prior to their instantiations, thus simplifying the
validation of requirements resulting from pattern instantiation. For instance, conflict
detection as well as correctness proofs may be supported that way. Thirdly, we expect
that the solutions for requirements that follow the same pattern will exhibit a high
degree of similarity, which increases the potential for reuse in subsequent development
phases.

Further research should include the following:

e Further case studies should be performed w.r.t. building automation systems,
but also in other application domains. We expect that this will reveal additional
requirement patterns. Also, it will show whether the set of patterns discussed in
this report forms a stable basis, and how much adaption is necessary w.r.t. other
application areas.

e The formal foundations for specifying requirements using property-oriented tech-
niques should be strengthened. FDTs such as tRTTL support the formal spec-
ification of single requirements which have to be composed into a complete re-
quirements document. However, composition may lead to inconsistencies due to
conflicting requirements. For example, there can be a situation where it is not pos-
sible to satisfy the requirements [J(HazardousCondition =<, WindowClosed)
and O@T WindowOpen together. In general, conflicts should be detectable based
on the specification of requirements or requirement patterns, and be resolved.

Note that in general, additional information about the relationship among pred-
icates, expressing physical conditions of the environment into which the system
will be embedded, is required to detect conflicts. In the example above, the fact
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that the predicates WindowClosed and WindowOpen can not be valid at the same
time has to be stated and fed into the conflict detection approach. Using tRTTL,
this relationship can be stated as O(WindowClosed — —WindowOpen).

o [t should be investigated to what degree the reuse of requirement patterns may
support subsequent activities of system development. This should answer the
important question whether a reuse of requirement patterns indeed leads to a
reuse of solutions.
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A Properties of the Waiting—For—Operator

This appendix provides the proofs of some properties of the waiting—for-operator pre-
sented in Section 2.3.

Let ., 01, @9, @3, 01,19 € F for the rest of this appendix.

o = ((p1We3) ND(ps = 92)) = (91 W)  (W3)
To prove: For every trace p, one has to show:
If p E o1Weps and p |= O(ps — ¢2) then p = o1 Wes.
Proof:
Case 1: p | Oy :
According to the definition of W then also: p | o1 We.
Case 2: p £ Oy :
Then: 31,7 > 0: (p, 1) |~y and V,0 < t' < 1:(p,t') E ¢1.
Now it is sufficient to prove: 3,0 <t <1 : (p,1) |= o.
Due to p = o1 Wes : 3,0 <1 <1:(p,1) |= ps.
Since p = O(p3 — g2) is valid too, one gets especially
(p,1) |= p3 — p, and consequently (p,1) = @,. Let £ = 1.

q.e.d.
o = ((piWep2) A (1 = 93)Wp2)) = (pasWeps) (W4)

To prove: For every trace p, one has to show:
If p = @1 Wea and p = (¢1 — ©3)We, then p = p3We,.
Proof:
Case 1: p | Ops :
According to the definition of W then also: p | @3We,.
Case 2: p £ Ops :
Then: 31,2 > 0: (p,1) = ~p3 and V', 0 < t' < 1 : (p,t') = 3.
Now it is sufficient to prove: 3,0 < 1 <1 : (p,1) |= o
Case 2.1: p E Opy:
Then: (p,1) = ~(1 — 3) and
V0 <t <t (p,t') Ep1 — w3
Due to P E (o1 = p3)Wes J0<i<i: (p,f) E v.
Let t = 1.
Case 2.2: p [£ Opy:
Then: 31,0 < i : (p,1) = =1 and
VL0 <t <i:(p,t) E g1
Case 2.2.1: {1 < {:
Due to p E p1Wes :
0 <1 <i<T:(p,t") = o Let T = 1",
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Case 2.2.2: t > 1 :
Then: (p,1) |= ~(¢1 — ¢3) and
Vi, 0 <t <t:(p,t) = @1 — s
Due to p | (931 — 3)Wey )
"0 <t"<t:(p,t") |E o Let t =1".

q.e.d.
o = ((p1W=p2) A (paW=ip3)) = (01 W—eps) (W5)

To prove: For every trace p, one has to show:
If p E @1 W= and p = paWogps then p |E o1 W-ps .
Proof:
Case 1: p E Oy :
According to the definition of W then also: p |E o1 W-s.
Case 2: p £ Oy :
Then: 3,1 > 0: (p,1) = =y and VI',0 < ' < 1:(p,1') = 1.
Now it is sufficient to prove: 3,0 <t < 1: (p,1) = —p3.
Due to p = 1 Wo, : 31,0 < <1 :(p,i) = s and
VU0 <t <i:(p,t") E g2
Due to p |= paWops 1 37,0 <t <1 : (p,t") |= 3. Let ="

q.e.d.
o £ ((e1We2) A (92aWeps)) = (w1 Wes) (W6)

Counter example:
Let ¢y = true and ¢; = p3 = false, then for every trace p:
p I @1 Wes and p = 02Wes and p [E o1 Wes.

o = (W) A (eWiha)) = (@W (1 A ta))
This is the only property presented in Table 1 and Table 2 we will prove.

Counter example:

ps(1)(¢) L,
ps(1)(¢1) ] .
ps(1)(12) ] .
|
0 t

Figure 2: Counter example for (@Wi1) A (i Wiha)) — (@W(th1 A 1hs))
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B Properties of the new Operators

This appendix provides the proofs of some properties of the new operators presented
in Section 3.

Let o, @1, 09, 03,7, 101,99 € F and 7,m € RY for the rest of this appendix.

B.1 Limited Invariance Operator

All non—trivial valid properties presented in Table 4 are proven. One counter example
is given.

° = VST(‘P Ag) = (Vg-r eV VST )
Expansion of \/_ leads to:
= (e AT = Ocr (0 A ) = ((Ie] = Ocre) V ([Y] = Ogrt0))
To prove: For every trace p, one has to show:
Ifpl=lpAY] = Ol Ay) and p = [p] A [¢]
then p = O< ¢ or (p, 1) = O<rtp.
Proof:
Due to p |= [p] A [Y]: p = [0 A Y]
~pE DO (e AY)
~ p = O or p = Ot

° = (Vg-r A VST P) — (VST(‘P Vi)
Expansion of V/ leads to:
E (([¢] = O<rp) A([¥] = Berp)) = ([ Vbl = Oer (0 V1))

To prove: For every trace p, one has to show:

If p|=[p] = O<r and p = [¢] = O< ¢ and p = [0 V o]
then p = O< (¢ V1))

Proof:

Due to p b= [ V ] also: p = [¢] or p = [¥]

~ p O or p | O¢

~pEOEVY)

q.e.d.
° = (VgT eV VST ¥) = (VST(‘P V1))
Expansion of V/ leads to:
F (([¢] = O<re) V([¥] = O<rp)) = ([ VY] = Or(@ V ¢))

To prove: For every trace p, one has to show:

If (p = [¢] = O<rp o1 p = [¢] = Oc<rtp) and p = [0 V o]
then p |= O (¢ V1))
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Proof:
Due to p = [p V ¢]: p | [¢] or p [ [¢]
~>p = Oerp or p = O
~p EO(VY)

¢ EV (pVY) = (Vi oV VL, ¥)

Counter example:

pMe) 1 1 1|

o = O =

Figure 3: Counter example for V_ (¢ V) = (V. ¢ VV, ¥)

B.2 Delayed Implication Operator

o E (¢ ) A (v B 2)) & (0 B<r (Y1 At))
This is the only property of the operator < presented in the Tables 6 and 7 we
will prove.

Proof:

ST E (e P v) A (e B ) = (@ Brgr (Y1 A )
Expansion of < leads to:
F (O (W =9) A O<r(2W 1)) = (O<r(th1 A h2) W)

To prove: For every trace p, one has to show:

If p |5 O<- (01 We) and p |= Q<- (2 We)

then p = Q< (1 A 2)We).
Case 1: p = Q<

Then: p = Q<-((¢1 A o2) W)
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Case 2: p = O< ¢
Due to p = O<- (i W-y) :
0<t <t4+71:(pt") =L Wp
Analogously: 3”0 < " <t+7: (p,t") E p2W-gp
Let = max{#/,1"}.
~ (p,1) B piW=p and (p,1) | ¥2W-p  (Note: p [ Ocrp)
~ (p,t) |E (1 A pa)W—p  (see Table 1)
~ p Qe (1 A ) W
TR (R (A ) = (P B ) A(p Brar ¥)
Expansion of < leads to:
= Qe A $2)Wp) > (Oxr(taWmip) A Or (W)
To prove: For every trace p, one has to show:
If p|= O<r(th1 A h2)We)
then p = O<; (viWyp) and p | O<r (V2 We).
Due to p |= Q< (1 A tha)W=p):
F0< <t+7:(p,t) = (V1 Aba) W
~ (p,t') E paW=-gp and (p,t') E 2 W-e  (see Table 1)
~ p | O (W) and p | O<r(2W0)

q.e.d.

o = ((p = 0) NO(P = (YW=9))) = (¢ Bror ¥) (DIT)
To prove: For every trace p, one has to show:

Ifp ¢ = O0<rtpand p = O(¢ = (PWop)) then p = O<- (¥ We).

Proof:

Case 1: (p,1) = O<rmp:
~ LSV <t 470 (pt) | o~ (p, 1) |E P Woe
~ (P, 1) E O (PW9)

Case 2: (p,t) E Ocre:
Due to (p,t) E (¢ = O< ) : It <" <t +7:(p,t") =
Because of the second precondition, p | O(¢ — (¢ W-g)):
(P, Zw) |: PW-e
~ (P 1) F O<r (9We)

q.e.d.
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o £ (p = 0crt)) = (p s ¥) (DI2)
Counter example:

Let 7 = 4 time units. A trace p is given by Figure 4.

e !
) — !
| | | | | |
01 2 3 4 5 !
Figure 4: Counter example for (DI2)
o FOW = (YW-p)) = (v < ¥) (DI3)

Counter example:

Let ¢ = true, 1) = false, and 7 € R* then for every trace p:
p EDW = (EW=p)), but p [ (¢ =< ¢).

o E (Olg1 e 02) A Dlgs e 99) = Ol Brie ) (DI
To prove: For every trace p, one has to show:
If p = O0<- (1 W) and p |E OQ<r(p2Wips) then
pi = OO0<rir(w3Woipr).
Proof:
Case 1: (p, 1) = O<rprmpr
~ <Y <t+T47:(p,l) E e
~ (p1) B ps Wi
~ (pst) E O<rin(0aWr)
Case 2: p; = Ocryripn -
Case 2.1: (p,t) = Oy :
Due to (p,1) F O<-(02W=ip1)
<t <t+7:(p,t) EDps
Due to (p, ) E O<r(psWip2) :
"<t <t'+7:(p,t') EOps
Since t" <t+ 747 (p,1) E O<rin(@sW—i1)
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Case 2.2: (p,t) E O—epr:
Let tmin = min{{|i > t + 7 4+ 7 and (p,1) | —~¢1}.
Due to (p,1) E O<r(2W=er) y
<t <t471: VLY <t <lmin: (p,t) E Ops
Due to (p, 1) | O<x(psWp2) : .
A<t <V 4 VY <t <tmin: (pt) E Ops
Since t" <t+ 747 (p,1) E O<rin(@3sW—g1)

q.e.d.
o Fl(pe ) 0 DY 2o mp)  (DID)
Counter example:

Let 7 = 2 time units. A trace p is given by Figure 5.
Consider ¢ = 1.

" 1
G e N O e B
(1)) !
| | | | |
| | | | |
0 1 2 3 4 t
Figure 5: Counter example for (DI5)
B.3 Delayed Equivalence Pattern
o F O e ) = D S v) (DEL)
Counter example:
Let 7 =1 time unit. A trace p is given by Figure 6.
Consider t=0.
e 1
ps(1)(#) .
N — !
| | | |
| | | |
0 1 2 3 t

Figure 6: Counter example for (DE1)
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