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Abstract

Sustainable and efficient agricultural practices lay the foundation for feeding a growing

world population from limited resources. For that reason, the focus of agriculture is now

shifting from methods based on large area uniform treatment towards methods considering

actual needs on a local scale down to single plant treatment. Key enabler for these new

practices is accurate control of agricultural machinery. Within the last decade Global

Positioning System (GPS) based path tracking control of tractors, in particular, became

a widely used technology in agriculture. Highly sophisticated tractor path tracking control,

however, revealed that control of the implement, performing the actual task, is equally

or even more important. To address this increasing interest this work focuses on accurate

path tracking control of both tractors and implements. The latter, as an prerequisite for

improved control, are equipped with steering actuators like steerable wheels or a steerable

drawbar, i.e. the implements are considered to be actively steered. Since it was only

recently that steerable implements sparked interest, this work contributes both new plant

models and new control approaches for those kinds of tractor-implement combinations.

Modeling faces challenges from the numerous variants of implements and actuator types

that need to be accounted for. For that reason derivation of all plant models was per-

formed in a systematic way allowing for automation using computer algebra software.

A tractor towing an implement with steerable wheels and a steerable drawbar was used

as an example throughout the work. Plant models of different complexity have been de-

veloped. All variants, however, are stated as explicit differential equations to allow for

further analysis. For controller and estimator design simple kinematic models based on

geometric properties and wheel velocity constraints have been developed. Those models

can be parameterized without difficulties in order to account for variants. For simulation

and further analysis more detailed dynamic models of tractor-implement combinations

have been derived. Those models account for forces and moments causing the vehicle mo-

tion and allow the depiction of disturbances resulting e.g. from gravity on slopes. As a

downside, however, those models require tire and inertial parameters which are difficult

to obtain for a large set of variants. Parameterization therefore was only carried out for

a single experimental hardware setup. Dynamic modeling of steerable implements in par-

ticular faces challenges from actuators between tractor and implement. Within this work

it was proposed to consider them as time dependent or rheonomic constraints, assuming

an underlying steering controller is in place. This assumption, together with a system-

atic derivation using Lagrangian mechanics and some well-chosen intermediate coordinate

transformations, made it possible to handle the resulting lengthy equations and to obtain

the associated explicit differential equations.

Control of combinations of tractors and steerable implements is not only required to be

accurate up to centimeter level, but must also support a multitude of different implement



and actuator variants. At the same time robustness or adaption is required to cope with

uncertainties and disturbances, e.g. resulting from changing tire-soil interaction. In addi-

tion, the final setup, performed by the operator, must remain simple and intuitive. Last but

not least the resulting controller is required to run on an Electronic Control Unit (ECU)

with limited computational capacity. In order to meet those requirements an extensive sur-

vey and comparison of path tracking control approaches for passenger cars, tractor-trailer

and tractor-implement combinations has been performed. A Linear-Quadratic Regula-

tor (LQR) was considered as the most promising starting point. To reduce both tuning

and implementation effort, LQR state feedback control was approximated by means of

static output feedback using measured angular and positional deviations (heading and

lateral errors of tractor and implement) from a desired path. The output feedback was

designed to approximate the dominant eigenvalues of the LQR state feedback closed loop

system. Controller tuning was based on choosing weights for steering inputs as well as

heading and lateral errors. The individual error weights allowed emphasizing particular

objectives for a given task, focusing e.g. on implement lateral position and orientation

control. The relative weight between inputs and tracking errors served as an overall gain,

which was the only parameter that had to be found in experiments in the field. Experi-

ments revealed that additional measures are required to account for disturbances resulting

from wheel side-slip on slopes and in curves. Two variants have been implemented to ac-

count for that. The first variant extended LQR using integral control (LQR w. I). The

second variant invoked disturbance feedforward based on Extended Kalman Filter (EKF)

wheel-side slip estimates using an extended kinematic model (LQR w. EKF). For all vari-

ants an additional feedforward control law based on the path curvature was found to

be advantageous. The respective control laws for steerable implements have been newly

derived in this work.

As the final part of this work, numerous simulations and experiments have been carried

out. The latter relied on a mid-size tractor towing a custom built implement with nu-

merous steering actuators. Simulations utilized a non-linear dynamic model which was

parameterized to depict the experimental setup. Initial condition responses in simulations

and experiments indicated that LQR w. I in particular is prone to overshooting behavior

and windup resulting from steering actuator absolute and rate limits. Absolute limits had

been considered in anti-windup measures already. Including rate limits still might offer

room for improvement. Simulations on slopes and experiments on circular paths showed

that both LQR w. I and LQR w. EKF are effective measures to reduce steady-state track-

ing errors resulting from wheel side-slip. To consider a numerical example, experiments

have been performed on a level field of dry loam, which was tilled and slightly compacted

due to multiple passes. The path was circular with 20 m radius and the tractor forward

velocity was 3 m/s. In those circumstances LQR w. I with tractor wheel steering only

resulted in 3.3 cm, 5.5 cm, and 1.0◦ standard deviation (SD) as well as 0 cm, -27.7 cm,



and -0,7◦ mean for tractor lateral error, implement lateral error, and implement heading

error. By using only one steering input it is generally possible to achieve zero steady-state

error for only one controlled variable if constant disturbances are present. The tractor

lateral error was chosen to be this controlled variable in the example above. In contrast,

using LQR w. I with tractor wheel steering as well as implement drawbar and wheel

steering resulted in 3.2 cm, 2.0 cm, and 0.7◦ SD with zero mean for tractor lateral error,

implement lateral error, and implement heading error. In this scenario three actuators

were available and tractor and implement lateral error as well as implement heading error

could be chosen as controlled variables. Similarly LQR w. EKF using three actuators re-

sulted in 3.2 cm, 2.2 cm, and 0.3◦ SD with -2.0 cm, 1.3 cm, and -0.4◦ mean. Experiments

considering transient conditions while tracking paths consisting of straights, clothoids and

arc segments resulted in similar tracking errors as long as curvature change rates were

moderate (0.1◦/m2). Increased curvature change rates resulted in larger deviations from

the assumption of constant disturbances due to wheel side-slip and hence also resulted in

slightly increased tracking errors. Finally, a parameter variation study has been carried

out. Experiments with different tractor velocities indicated that LQR w. I in particular

must account for velocity changes. Gain scheduling was proposed as a possible solution.

Implementation, however, is still pending. Simulations have been performed with tire and

inertial parameters varied by ±50%. Closed loop systems for both LQR w. I and LQR

w. EKF remained stable during parameter variation. Tire cornering stiffness parameters,

however, unsurprisingly exhibited a strong influence on path tracking accuracy in transient

conditions.

Keywords: tractor, actively steered implement, kinematic model, dynamic model, path

tracking, Linear-Quadratic Regulator (LQR), output feedback approximation, Extended

Kalman Filter (EKF), wheel side-slip estimation





Kurzfassung

Nachhaltigkeit und Effizienz in der Landwirtschaft bilden die Grundlage der Ernährung

einer wachsenden Weltbevölkerung mittels begrenzter Ressourcen. Das Interesse im Be-

reich landwirtschaftlicher Anbauformen verlagert sich daher vermehrt von großflächig

einheitlichen Praktiken zu bedarfsgerechteren lokalen Bearbeitungsformen bis hin zur

Einzelpflanzenbehandlung. Genaue Regelung und Steuerung landwirtschaftlicher Geräte

stellt hierbei eine Schlüsseltechnologie dar. Insbesondere Global Positioning System (GPS)

basierte Lenksysteme zur automatischen Querführung von Traktoren auf vordefinierten

Pfaden erfuhren in den letzten 10 Jahren eine weite Verbreitung. Hochgenaue Traktor-

lenksysteme offenbarten dabei, dass die genaue Querführung der Anbaugeräte selbst von

mindestens ebenso großer Bedeutung ist. Um dem gesteigerten Interesse gerecht zu werden

widmet sich diese Arbeit der Querführung von sowohl Traktoren als auch Anbaugeräten.

Als Voraussetzung zur verbesserten Querführung verfügen die betrachten Anbaugeräte

selbst über Lenkaktorik, wie z.B. gelenkte Räder oder eine gelenkte Knickdeichsel. Da

das gesteigerte Interesse an gelenkten Anbaugeräten selbst recht neu ist, finden sich die

Beiträge dieser Arbeit sowohl im Bereich Regelung und Steuerung als auch im Bereich

einer vorhergehenden Modellbildung der Traktor-Anbaugeräte-Kombinationen.

Hinsichtlich der Modellierung von Traktor-Anbaugeräte-Kombinationen ist insbesondere

die große Vielfalt an Geräten und Lenkaktoren eine Herausforderung. Zur Herleitung

der beschreibenden Differentialgleichungen wurde daher stets eine systematische Vorge-

hensweise gewählt, welche sich durch Computer-Algebra-Software großteils automatisieren

lässt und mit nur kleinen Veränderungen an Varianten angepasst werden kann. Im Rah-

men der Arbeit wurde exemplarisch eine Kombination aus einem an den Vorderrädern

gelenkten Traktor und einem gezogenen einachsigen Anbaugerät, welches sowohl über

Radlenkung als auch Knickdeichsellenkung verfügt, näher betrachtet. Die resultierende

Regelstrecke wurde in verschieden Detaillierungsgraden modelliert. Alle Varianten wurden

jedoch durch explizite gewöhnliche Differentialgleichungen beschrieben, um eine weiter-

gehende Analyse zu ermöglichen. Zum Zwecke des Regler- und Beobachter/Schätzfilter-

entwurfs wurden einfache kinematische Beschreibungen der Strecke basierend auf Geome-

trieparametern und Zwangsbedingungen der Radgeschwindigkeitsvektoren entwickelt. Der

Vorteil dieser Streckenbeschreibungen liegt in ihrer einfachen Parametrierbarkeit durch

die Bestimmung von Geräteabmessungen, wodurch sich Varianten von Anbaugeräten

sehr leicht berücksichtigen lassen. Zum Zwecke der numerischen Simulation und weiter-

gehenden Streckenanalyse wurden detailliertere dynamische Fahrzeugmodelle entwick-

elt. Diese Modelle berücksichtigen der Bewegung zugrundeliegende Kräfte und Momente

und erlauben es beispielsweise Störungen durch Kräfte am Hang genauer darzustellen.

Nachteilig an diesen Streckenbeschreibungen ist, dass diese auf Reifen- sowie Massen-

trägheitsparameter zurückgreifen, welche für eine große Zahl von Gerätevarianten nur mit

erheblichem Aufwand bestimmbar sind. Die Parametrierung wurde deshalb nur für einen



experimentellen Geräteaufbau durchgeführt. Die Beschreibung lenkbarer Anbaugeräte

durch dynamische Fahrzeugmodelle stellt insbesondere dann eine Herausforderung dar,

wenn sich die Aktorik, wie im Fall einer Knickdeichsellenkung, zwischen Traktor und An-

baugerät befindet. Im Rahmen dieser Arbeit wurde vorgeschlagen die Aktorik als unter-

lagert winkel-/positionsgeregelt anzunehmen und sie anschließend lediglich als zeitverän-

derliche bzw. holonom-rheonome Zwangsbedingung zu berücksichtigen. Durch diese Vorge-

hensweise sowie eine systematische Herleitung anhand des Lagrange-Formalismus zweiter

Art und einiger geschickt gewählter Koordinatentransformationen war es dennoch möglich

die sehr langen resultierenden Gleichungen zu handhaben und die beschreibenden Differ-

entialgleichungen in expliziter Form anzugeben.

Die Anforderungen an eine automatische Querführung von Traktoren und lenkbaren An-

baugeräten beschränken sich nicht nur auf eine Genauigkeit im Zentimeter-Bereich. Ins-

besondere die Variantenvielfalt bei Geräten und Aktoren muss berücksichtigt werden.

Darüber hinaus ist es nötig mit Unsicherheiten und Störungen, wie sie beispielsweise durch

wechselnde Reifen-Boden-Interaktion entstehen können, umzugehen. Mögliche adaptive

oder robuste Regelungsansätze sind hier in Betracht zu ziehen. Daneben muss die ab-

schließende Parametrierung des Reglers durch den Bediener in allen Fällen einfach und

intuitiv gehalten werden. Eine weitere Anforderung ist schließlich, dass der entworfene

Regler auf einem Traktorsteuergerät mit begrenzten Ressourcen zum Einsatz kommen

soll. Um die beschriebenen Anforderungen zu erfüllen, wurde zunächst eine umfassende

Literaturrecherche zum aktuellen Stand der automatischen Querführung von PKW und

Nutzfahrzeugen sowohl auf als auch abseits von Straßen durchgeführt. Ausgehend von

einer ersten Bewertung wurde ein Linear-Quadratic Regulator (LQR) als vielversprechen-

der Ausgangspunkt gewählt. Um den Parametrierungs- und Umsetzungsaufwand zu re-

duzieren wurde auf eine beobachter-/schätzfilterbasierte Zustandsschätzung verzichtet.

Stattdessen wurde der resultierende Zustandsregler durch eine statische Ausgangsrück-

führung approximiert. Diese wurde derart entworfen, dass sie die dominanten Eigenwerte

des geschlossenen Kreises mit Zustandsrückführung gut nachbildet. Die Reglereinstellung

basierte auf der Gewichtung von Stellgrößen sowie gemessenen Positions- und Winkelab-

weichungen des Traktors und Anbaugerätes von einem vorgegebenen Pfad. Die relative

Gewichtung der Abweichungen erlaubte es bestimmte Ziele der Anwendung zu betonen,

um z.B. eine Positions- und Orientierungsregelung des Anbaugerätes zu realisieren. Das

relative Gewicht von Abweichungen und Stellgrößen diente als Parameter zur Einstel-

lung der Reglergesamtverstärkung und wurde als einziger Parameter im Feld ermittelt.

Versuche offenbarten, dass zusätzliche Maßnahmen nötig sind um mit Radschräglauf und

bleibenden stationären Positionsabweichungen umzugehen. Hierzu wurden zwei Varianten

betrachtet. Die erste Variante basiert auf einer Erweiterung des LQR Reglers um einen

Integralanteil (kurz: LQR m. I). Die zweite Variante basiert auf einer Störgrößenaufschal-

tung unter Zuhilfenahme geschätzter Schräglaufwinkel an allen Rädern. Die Schätzung



erfolgte hierbei mittels eines Extended Kalman Filter (EKF) und einem erweiterten kine-

matischen Streckenmodell (kurz: LQR m. EKF). In allen Fällen stellte sich heraus, dass

eine Vorsteuerung basierend auf Krümmungsinformation des Sollpfades vorteilhaft ist.

Die Gleichungen zur Vorsteuerung von gelenkten Anbaugeräten wurden hierzu in dieser

Arbeit erstmals hergeleitet.

Den abschließenden Teil der Arbeit bildeten zahlreiche Simulationen und Fahrversuche.

Letztere erfolgten unter Verwendung eines mittelgroßen Traktors und eines speziell für

diese Arbeit entworfenen Anbaugeräts mit einer Vielzahl von Lenkaktoren. Die Simulatio-

nen basieren auf einem nichtlinearen dynamischen Fahrzeugmodell, welches so parametri-

ert wurde, dass es den Versuchsaufbau nachbildet. Durch Betrachtung des Einschwingver-

haltens der automatische Querführung sowohl in Simulationen als auch in Versuchen

wurde deutlich, dass insbesondere LQR m. I im Falle von Stellgrößen- oder Stellratenbe-

schränkungen zu Überschwingen und Windup neigt. Stellgrößenbeschränkungen wurden

bereits in Anti-Windup Maßnahmen berücksichtigt. Eine Berücksichtigung der Stellraten-

beschränkungen könnte eine weitere Verbesserungsmöglichkeit darstellen. Simulationen

von Fahrten am Seitenhang und Versuche mit Kreisfahrten zeigten, dass sowohl LQR m. I

als auch LQR m. EKF in der Lage sind Störungen und bleibende Abweichungen aufgrund

des Schräglaufs der Räder zu unterdrücken. Als Zahlenbeispiel seien Kreisfahrten mit

20 m Radius und 3 m/s Trakorlängsgeschwindigkeit genannt. Die Versuche erfolgten auf

trockenem Lehm, der zuvor mit einem Grubber bearbeitet wurde und durch mehrfache

Überfahrten leicht verfestigt war. Im Falle von LQR m. I und einer Beschränkung auf

Traktorlenkaktorik resultierten Standardabweichungen SD von 3.3 cm, 5.5 cm und 1.0◦

sowie Mittelwerte von 0 cm, -27.7 cm und -0,7◦ für die seitliche Positionsabweichungen

des Traktors und des Anbaugeräts, sowie die Winkelabweichung des Anbaugeräts. Durch

die Beschränkung auf eine Stellgröße lässt sich im Allgemeinen nur für eine einzige Regel-

größe stationäre Genauigkeit erzielen, falls konstante Störungen auf das System wirken. Im

Zahlenbeispiel wurde die seitliche Positionsabweichung des Traktors gewählt. Im Gegen-

satz dazu ließen sich für LQR m. I bei Verwendung von Radlenkung an Traktor und An-

baugerät sowie Knickdeichsellenkung am Anbaugerät Genauigkeiten von 3.2 cm, 2.0 cm

und 0.7◦ SD mit verschwindenden mittleren Fehlern erzielen. Gleichermaßen ergaben

sich für LQR m. EKF Genauigkeiten von 3.2 cm, 2.2 cm und 0.3◦ SD mit Mittelw-

erten von -2.0 cm, 1.3 cm und -0.4◦ für die seitliche Positionsabweichungen des Traktors

und des Anbaugeräts, sowie die Winkelabweichung des Anbaugeräts. Versuche zum in-

stationären Verhalten auf Pfaden bestehend aus Geraden-, Klothoiden- und Kreisstücken

lieferten ähnliche Ergebnisse, so lange die Krümmungsänderungsrate des Pfades moderat

war (0.1◦/m2) und die Annahme einer konstanten Störung näherungsweise erfüllt blieb.

Erhöhte Krümmungsänderungsraten resultierten in leicht erhöhten Abweichungen. Ab-

schließende Untersuchungen zum Einfluss von Parameterschwankungen offenbarten, dass

Geschwindigkeitsänderungen insbesondere für LQR m. I berücksichtigt werden müssen.



Gain Scheduling wurde als mögliche Lösung vorgeschlagen, eine Implementierung steht

jedoch noch aus. Simulationen mit um ±50% veränderten Trägheits- und Reifenparame-

tern hatten sowohl für LQR m. I als auch LQR m. EKF keinen Einfluss auf die Stabilität

des Regelkreises, jedoch offenbarte sich der erwartungsgemäß hohe Einfluss der Reifen-

schräglaufsteifigkeit auf die erzielbare Genauigkeit.

Stichworte: Traktor, gelenktes Anbaugerät, kinematisches Fahrzeugmodell, dynamis-

ches Fahrzeugmodell, Querführung, Linear-Quadratic Regulator (LQR), Ausgangsrück-

führungsapproximation, Extended Kalman Filter (EKF), Radschräglaufwinkelschätzung
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Terms and Definitions

Dynamic Vehicle Model: Vehicle model accounting for the forces and moments causing

the vehicle motion.

Guidance System: System calculating the vehicle steering/speed commands based on a

desired path/trajectory and vehicle position information.

Kinematic Vehicle Model: Vehicle model not accounting for the forces and moments

causing the vehicle motion which is based on simplified assumptions constraining

the wheel velocity vector directions.

Path Tracking: Following a given curve without time requirements, i.e. a particular po-

sition on the curve may be reached at any time.

Trajectory Tracking: Following a given curve with time requirements, i.e. a particular

position on the curve must be reached at a specified time.
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SMC Sliding Mode Control
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Symbols

This section lists all symbols used throughout the document in an alphabetical order.

Scalars are denoted using lower and upper case italic letters. Units use lower and upper

case non-italic letters. Vectors are lower case bold with exceptions for variables that are

commonly upper case (e.g. forces and moments). Matrices are described using upper

case bold letters. The transpose of a vector or matrix is indicated by ’T’ as an upper

right superscript. Matrix upper right superscripts ’−1’ and ’‡’ denote the inverse and the

Moore-Penrose Pseudo-Inverse [BIT03]. In addition upper right superscripts are used to

specify coordinates and coordinate systems. rx,t for instance is the x coordinate of vector

r in a tractor-fixed coordinate system. Subscripts specify the variable more precisely. The

frequent subscripts t and r1 in particular relate properties to the tractor and the first

rear mounted implement. Time or frequency dependencies of variables are stated only if

required to avoid ambiguity. In this case (t) and [k] are used to denote continuous and

discrete time dependencies. (s) outlines a dependency on the complex Laplace variable

s = σ + jω in the frequency domain. Angular expressions may be given in rad or ◦. The

first is used for all internal calculations, the latter may be used to present parameters and

results in a more comprehensible way.
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Symbol Description Unit

Latin letters

A System matrix of a linear system in continuous time state-space

representation

Ad System matrix of a linear system in discrete time state-space

representation

Ae System matrix of an extended linear system in continuous time

state-space representation

â Estimated parameter vector

âc Estimated controller parameter vector

âp Estimated plant parameter vector

ã1, . . ., ãn Coefficients of closed-loop characteristic polynomial

B Input matrix of a linear system in continuous time state-space

representation

Bd Input matrix of a linear system in discrete time state-space

representation

Be Input matrix of an extended linear system in continuous time

state-space representation

B Magic Formula tire model stiffness factor

b(y, ẏ) Unknown input function of nonlinear controllable canonical form

bmin, bmax Lower and upper bound for b(y, ẏ)

b̂(y, ẏ) Known estimate of input function of nonlinear controllable

canonical form

C Set of all complex numbers

C Output matrix for measured outputs of a linear system in

continuous time state-space representation

Cc Output matrix for controlled outputs of a linear system in

continuous time state-space representation

Cd Output matrix for measured outputs of a linear system in discrete

time state-space representation

Ce Output matrix for measured outputs of an extended linear system

in continuous time state-space representation

C Magic Formula tire model shape factor

Csx,w Individual wheel longitudinal stiffness kN

Cα,r1r Combined implement wheel cornering stiffness kN/rad

Cα,tf Combined tractor front wheel cornering stiffness kN/rad

Cα,tr Combined tractor rear wheel cornering stiffness kN/rad

Cα,w Individual wheel cornering stiffness kN/rad

Cγ,w Individual wheel camber stiffness kN

D Magic Formula tire model peak value factor

Dr1d Implement drawbar steering actuator damping constant

Dr1r Implement wheel steering actuator damping constant

Dtf Tractor front wheel steering actuator damping constant

dah Look-ahead distance m

d̂ Estimated disturbance vector

er Vector of reference output error
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Symbol Description Unit

ex,e, ey,e, ez,e Unit vectors of earth-fixed coordinate system

ex,r1, ey,r1, ez,r1 Unit vectors of implement-fixed coordinate system

ex,r1r, ey,r1r, ez,r1r Unit vectors of implement wheel-fixed coordinate system

ex,t, ey,t, ez,t Unit vectors of tractor-fixed coordinate system

ex,tf , ey,tf , ez,tf Unit vectors of tractor front wheel-fixed coordinate system

ex,tr, ey,tr, ez,tr Unit vectors of tractor rear wheel-fixed coordinate system

ex,w, ey,w, ez,w Unit vectors of wheel-fixed coordinate system

e⊥,r1r Vector perpendicular to implement wheel velocity vector and ez,e

e⊥,tf Vector perpendicular to tractor front wheel velocity vector and ez,e

e⊥,tr Vector perpendicular to tractor rear wheel velocity vector and ez,e

E Magic Formula tire model curvature value factor

E {x} Expectation of a random vector x

er1l Implement lateral error m

er1h Implement heading error rad

etl Tractor lateral error m

eth Tractor heading error rad

F fd(x, u) linearized about x

f(x, u) System and input function of a nonlinear system in continuous time

state-space representation

fd(x, u) System and input function of a nonlinear system in discrete time

state-space representation

fu(x) Nonlinear state feedback control law

F Estimation error bound for
∣
∣
∣f̂(y, ẏ) − f(y, ẏ)

∣
∣
∣

F x,e
r1 , F y,e

r1 Applied forces on implement c.g. in earth-fixed coordinates N

F x,r1
r1 , F y,r1

r1 Applied forces on implement c.g. in implement-fixed coordinates N

F x,r1r
r1r , F y,r1r

r1r Longitudinal and lateral ground reaction forces at implement wheel

in implement wheel-fixed coordinates

N

F x,e
t , F y,e

t Applied forces on tractor c.g. in earth-fixed coordinates N

F x,t
t , F y,t

t Applied forces on tractor c.g. in tractor-fixed coordinates N

F x,tf
tf , F y,tf

tf Longitudinal and lateral ground reaction forces at tractor front

wheel in tractor front wheel-fixed coordinates

N

F x,tr
tr , F y,tr

tr Longitudinal and lateral ground reaction forces at tractor front

wheel in tractor rear wheel-fixed coordinates

N

F x,w
w , F y,w

w , F z,w
w Ground reaction forces in wheel-fixed coordinates N

f Frequency Hz

f(y, ẏ) Unknown system function of nonlinear controllable canonical form

f̂(y, ẏ) Known estimate of system function of nonlinear controllable

canonical form

G(s) Laplace transfer function matrix of plant

G(s) Laplace transfer function of plant

Guk,yl
Laplace transfer function from input uk to output yl

H hd(x) linearized about x

h(x) Output function of a nonlinear system in continuous time

state-space representation
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Symbol Description Unit

hd(x) Output function of a nonlinear system in discrete time state-space

representation

I Identity matrix

Ir1 Implement moment of inertia about ez,r1r kg m2

It Tractor moment of inertia about ez,t kg m2

J Performance index of an optimization problem

K Static state feedback matrix

K EKF Kalman gain matrix

K(s) Laplace transfer function matrix of dynamic controller

Ky Static output feedback matrix

ki EKF Kalman gain vector for measurement update of output vector

element yi

L Lagrangian function J

lr1 Implement distance between drawbar joint and axle m

lr1d Implement distance between drawbar joint and hitch point m

lr1f Implement distance between drawbar joint and c.g. m

lr1r Implement distance between c.g. and axle m

lt Tractor wheel base m

ltf Distance between tractor c.g. and front axle m

lthr Distance between tractor rear axle and rear hitch point m

ltr Distance between tractor c.g. and rear axle m

M Generalized mass matrix in nonlinear dynamic equations of motion

MR Spherical region with radius R

Mx,w
w , My,w

w , Mz,w
w Ground reaction moments in wheel-fixed coordinates Nm

Mz,e
r1 Applied moment on implement in earth-fixed coordinates Nm

Mz,r1

r1 Applied moment on implement in implement-fixed coordinates Nm

Mz,e
t Applied moment on tractor in earth-fixed coordinates Nm

Mz,t
t Applied moment on tractor in tractor-fixed coordinates Nm

mr1 Implement mass kg

mt Tractor mass kg

Np MPC prediction horizon

P Unknown matrix in ARE

P(s) Laplace transfer function matrix of extended plant for H∞ control

pi,w Wheel inflation pressure bar

P̂− EKF a priori estimate of error covariance matrix

P̂+ EKF a posteriori estimate of error covariance matrix

P̂±

i EKF intermediate estimate of error covariance matrix after

measurement update for output vector element yi has been

performed

Q LQR or MPC weighting matrix for system states or outputs

Q Process noise covariance matrix

Q1, . . ., Q4 Generalized forces

q1, . . ., q4 Generalized coordinates

q1,1, . . ., qn,n Diagonal elements of process noise covariance matrix Q
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Symbol Description Unit

R Set of all real numbers

R LQR or MPC weighting matrix for system inputs

R Measurement noise covariance matrix

r Reference input vector

r Remainder vector in nonlinear dynamic equations of motion

rr1 Implement c.g. position vector m

rr1r Implement wheel position vector m

rt Tractor c.g. position vector m

rtr Tractor rear wheel position vector m

R Radius

r1,1, . . ., rn,n Diagonal elements of measurement noise covariance matrix R

rd,w Dynamic rolling radius m

rx,e
r1 , ry,e

r1 Implement c.g. position in earth-fixed coordinates m

rx,e
r1r, ry,e

r1r Implement wheel position in earth-fixed coordinates m

rx,e
t , ry,e

t Tractor c.g. position in earth-fixed coordinates m

rx,e
tr , ry,e

tr Tractor rear wheel position in earth-fixed coordinates m

S(t) Sliding surface

Sh Magic Formula tire model horizontal shift

Sv Magic Formula tire model vertical shift

s Complex Laplace variable s = σ + jω 1/s

s(y, ẏ) Function defining sliding surface

sx,w
w , sy,w

w Longitudinal and lateral wheel slip

Tr1,e Transformation matrix from implement-fixed to earth-fixed

coordinates

Tt,e Transformation matrix from tractor-fixed to earth-fixed coordinates

Tyu(s) Laplace transfer function matrix after upper fractional

transformation of extended plant P(s) for H∞ control

Tzw(s) Laplace transfer function matrix after lower fractional

transformation of extended plant P(s) for H∞ control

T Kinetic energy J

Tr1d Implement drawbar steering actuator time constant s

Tr1r Implement wheel steering actuator time constant s

Ttf Tractor front wheel steering actuator time constant s

Tα,w Wheel relaxation time constant s

U(s) Laplace transform of system input vector

u System input vector

u∗(t) Optimal control law

umin, umax System input constraints

ū New input of linearized system

Vi Matrix of closed loop eigenvectors obtained using state feedback

v Measurement noise vector

vi Closed loop eigenvector obtained using state feedback

vr1 Implement c.g. velocity vector m/s

vr1r Implement wheel velocity vector m/s

vt Tractor c.g. velocity vector m/s
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vtf Tractor front wheel velocity vector m/s

vtr Tractor rear wheel velocity vector m/s

vw Velocity vector of wheel center m/s

V Potential energy J

V (x) Lyapunov function candidate

vx,t
r1r, vy,t

r1r Implement wheel horizontal velocity in tractor-fixed coordinates m/s

vx,e
t , vy,e

t Tractor c.g. horizontal velocity in earth-fixed coordinates m/s

vx,t
t , vy,t

t Tractor c.g. horizontal velocity in tractor-fixed coordinates m/s

vx,t
tf , vy,t

tf Tractor front wheel horizontal velocity in tractor-fixed coordinates m/s

vx,t
tr , vy,t

tr Tractor rear wheel horizontal velocity in tractor-fixed coordinates m/s

vx,w
w , vy,w

w Wheel horizontal velocity in wheel-fixed coordinates m/s

vx,w
w,0 Freely rolling wheel longitudinal velocity m/s

W Weighting matrix for closed loop eigenvalues λi (i = 1 . . . n)

obtained using state feedback

W1(s), W2(s) Extended plant weighting transfer function matrices for H∞ control

w Weighted input of extended plant P(s) for H∞ control

w Process noise vector

wi Weight for closed loop eigenvalue λi obtained using state feedback

X(s) Laplace transform of state vector

x System state vector

xe System state vector of extended plant

xmin, xmax System state constraints

x̂ Estimate of system state vector

x̂− EKF a priori estimate of system state vector

x̂+ EKF a posteriori estimate of system state vector

x̂±

i EKF intermediate estimate of system state vector after

measurement update for output vector element yi has been

performed

Y(s) Laplace transform of measured output vector

y Vector of measured outputs

yc Vector of controlled outputs

ye Vector of measured outputs of extended plant

yr Vector of reference outputs

ŷ Estimate of measured outputs

z Weighted output of extended plant P(s) for H∞ control

Greek letters

αRk,l
FLC degree of match of condition l of rule Rk

αRk
FLC firing strength of rule Rk

αre,r1r Transient implement wheel side-slip angle rad

αre,tf Transient tractor front wheel side-slip angle rad

αre,tr Transient tractor rear wheel side-slip angle rad

αre,w Transient wheel side-slip angle rad

αr1r Implement wheel side-slip angle rad

αtf Tractor front wheel side-slip angle rad
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αtr Tractor rear wheel side-slip angle rad

αw Wheel side-slip angle rad

α̂r1r Estimated implement wheel side-slip angle rad

α̂tf Estimated tractor front wheel side-slip angle rad

α̂tr Estimated tractor rear wheel side-slip angle rad

βz,e
r1,i Implement angular velocity coefficient

βz,e
t,i Tractor angular velocity coefficient

βt Tractor side-slip angle at tractor c.g. rad

βtf Tractor side-slip angle at tractor front wheel location rad

∆(s) Unstructured uncertainty transfer function matrix

δr1d Implement drawbar steering angle rad

δr1d,d Desired implement drawbar steering angle rad
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feedforward

rad

δr1d,d,dff Desired implement drawbar steering angle part from disturbance
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rad
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control
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δr1d,min, δr1d,max Implement drawbar steering angle limits rad

δr1r Implement wheel steering angle rad

δr1r,d Desired implement wheel steering angle rad

δr1r,d,cff Desired implement wheel steering angle part from curvature

feedforward

rad

δr1r,d,dff Desired implement wheel steering angle part from disturbance

feedforward

rad

δr1r,d,fb Desired implement wheel steering angle part from feedback control rad
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δtf,d,dff Desired tractor front wheel steering angle part from disturbance

feedforward

rad

δtf,d,fb Desired tractor front wheel steering angle part from feedback control rad

δtf,min, δtf,max Tractor front wheel steering angle limits rad

δ̇r1d,min, δ̇r1d,max Implement drawbar steering angle rate limits rad

δ̇r1r,min, δ̇r1r,max Implement wheel steering angle rate limits rad

δ̇tf,min, δ̇tf,max Tractor front wheel steering angle rate limits rad

γx,e
r1,i, γy,e

r1,i Implement linear velocity coefficients

γx,e
t,i , γy,e

t,i Tractor linear velocity coefficients
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κ Desired path curvature rad/m
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κt Tractor desired path curvature rad/m

λ Strictly positive constant
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1 Introduction

1.1 Motivation

Today’s agriculture feeds a growing world population with decreasing arable land per

capita [Bru11] using chemical fertilizers from limited natural deposits or energy intensive

synthesis. In order to keep up with future demand agricultural methods are now shifting

from large area uniform treatment towards more efficient and sustainable techniques.

Core to those techniques is accuracy, which allows to e.g. work, seed, plant, weed, spray,

or apply fertilizer based on a location’s actual demand.

Accurate GPS based path tracking control in particular became a key technology for this

new approach to agriculture. Using GPS and Real-Time Kinematic (RTK) correction sig-

nals allows for position measurements that are accurate up to a centimeter level. Those

position measurements are input to a vehicle guidance system calculating the vehicles de-

viation from a previously defined path on a field. The path tracking controller within that

guidance system subsequently ensures accurate path following by actuating the vehicles

steering system.

Today most tractor manufacturers offer solutions for accurate tractor path tracking either

directly or by suppliers [Dee12, Tri01, Top12, Aut12]. Increasingly sophisticated tractor

path tracking control, however, revealed that accurate positioning of the actual implement

is equally or even more important. Applications like bedded crops, row crops, strip-till

fields, controlled traffic farming, drip irrigation, or simply sloped or curved fields still

require improvements in implement control. For that reason attention is now drawn to

steerable implements, i.e. implements with steering actuators like steerable wheels or a

steerable drawbar.

Controlling the resulting tractor-implement Multiple Input Multiple Output (MIMO)

system, however, is still a challenge. One reason is that there is not a single tractor-

implement combination but a multitude of combinations for different crops and different

tasks within a particular crop. Performing only one of those tasks accurately is of little

use and hence the challenge is to support a multitude of implements while maintaining

the final in field controller setup intuitive and user friendly. As a further challenge the

system is placed in an imprecisely defined natural environment and therefore needs to cope

with uncertainties and disturbances, e.g. resulting from varying soil, without requiring the

operator to constantly adjust the controller.
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1.2 Objectives

Motivated by an exemplary application to agriculture this work focuses on accurate path

tracking control of vehicle combinations with particular emphasis on MIMO systems. A

survey on the current state of research on off-road as well as on-road path tracking control

of tractor-implement or tractor-trailer combinations is performed. An assessment of those

approaches provides the basis for further research in this work.

The desired path tracking control approach is particularly required to be:

• accurate up to centimeter level,

• systematic, to support a multitude of implements and steering actuators,

• intuitive regarding the user’s setup,

• robust/adaptive with regard to possible uncertainties and disturbances,

• computationally simple to run on a vehicle’s ECU.

Modeling tractor-implement combinations is an important part of this work as well. The

developed models may be of different complexity in order to serve system analysis, con-

troller design, or numerical simulation. The first two of those applications require the

models to be derived:

• explicitly to allow for analysis of the underlying differential equations,

• systematically to support a multitude of implements and steering actuators.

In addition to simulation an experimental tractor-implement combination will be setup.

This hardware together with a rapid control prototyping system is used to validate the

developed control approaches in real world conditions.

1.3 Structure of this Work

This work is divided into five major parts. Following this introduction, Chapter 2 sum-

marizes the current state of the art in terms of modeling of lateral vehicle motion and in

terms of vehicle path tracking control. A tractor without implement is used to define all

relevant properties in a concise form. Models of lateral vehicle motion with different levels

of detail are outlined. Compared to passenger cars or trucks, modeling of farm tractors is

only considered on rare occasions. Therefore, particular emphasis is put on outlining the

previous works on farm tractor modeling and parameter identification. As a second part

of Chapter 2, an extensive survey on path tracking control of passenger cars as well as

tractor-trailer combinations both in the on-road and off-road domain is provided. Each

approach is briefly outlined using a concise example. In addition, a discussion is pro-

vided for each approach in order to outline the advantages and disadvantages regarding
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this work’s objectives. These discussions give rise to a comparison of existing approaches

which is presented as a conclusion at the end of Chapter 2.

Chapter 3 ties in with the modeling approaches discussed in the previous chapter. At this

point, however, the full tractor-implement combination is considered and new models are

derived in order to depict actively steered implements. Models of different levels of detail

are considered. Simple kinematic models are developed to allow for model based controller

and estimator design. More detailed dynamic models are developed to allow for further

analysis and more detailed numerical simulation. Model parameters are chosen to depict

the behavior of an experimental setup consisting of a mid-size tractor and a custom built

implement with a multitude of steering actuators. Chapter 3 concludes with a comparison

of the different models developed.

Chapter 4 picks up the results of the comparison of path tracking control approaches

in Chapter 2. The most promising approach from literature is used as a starting point.

Further developments in this chapter are made to address the objectives of intuitive setup,

computational simplicity, and robustness. Further developments address the particular

needs arising from actively steered implements.

Chapter 5 summarizes the results of numerous simulations and experiments carried out

using the newly developed control approaches. Experiments are performed, again using

the mid-size tractor and the custom built actively steered implement. Initial condition

responses, slopes, steady-state cornering conditions as well as transient behavior on paths

consisting of straights, clothoids and arc segments are considered. Chapter 5 concludes

with a parameter variation study.

Chapter 6 finally summarizes all previous chapters and provides an outlook on subsequent

steps that might follow this work.
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2 State of the Art

2.1 Models of Lateral Vehicle Motion

Vehicle modeling is widely used throughout the entire development process with appli-

cations ranging from those in basic research to those in final system validation. As a

consequence there are numerous models which may be categorized by modeling detail or

range of validity. Using the definitions of Figure 2.1 less detailed models might be solely

focused on lateral, longitudinal, or vertical motion in order to asses cornering, drive train,

or driving comfort properties. More complex models arise from considering interactions

between different system parts, e.g. roll motion and wheel load transfer during cornering,

or by including detailed descriptions of particular system parts like suspensions or tires.

Regarding the range of validity one can distinguish between normal operation, e.g. turn-

ing or lane keeping, and operation close to the vehicle’s limits, which typically emphasizes

safety aspects like the prevention of instability, rollover, or jack-knifing.

In terms of path tracking control modeling the lateral behavior of tractor-trailer or tractor-

implement combinations during normal operation is of particular interest. The main pur-

pose of this section is to provide an overview of past and present research done on those

models. This is done distinguishing between dynamic, kinematic, and identified models.

longitudinal

ex,t

ey,t

ez,t

lateral

vertical

roll

pitch

yaw

c.g.

Figure 2.1: Linear and angular motion of a tractor chassis defined using a tractor-fixed
coordinate system (ex,t, ey,t, ez,t) located at the tractor center of gravity (c.g.)
(Photo: John Deere).
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Unfortunately analysis of tractor-implement or tractor-trailer models suffers from lengthy

equations due to constraints relating both vehicle parts. This is particularly true for mod-

els with steering actuators between the tractor and the implement which are newly derived

in this work. For that reason, the principles of each modeling approach are introduced

using a tractor without trailer or implement. Particularities of vehicle combinations will

be addressed subsequently.

2.1.1 Dynamic Models

Dynamic models are derived from physical laws governing the system, i.e. these models

account for forces and moments causing the vehicle’s motion. This section outlines the

assumptions typically made for dynamic models of lateral vehicle motion. The equations

of motion resulting from those assumptions are first stated accounting for forces and mo-

ments in a general manner. Subsequently, wheel forces are considered with a particular

focus on tractor tires. Combining wheel forces and equations of motion results in a non-

linear model for simulation purposes. A linearized description is provided to allow further

analysis. Finally the current state of dynamic tractor-trailer or tractor-implement models

is addressed in particular.

Modeling Assumptions

From a very general perspective, a vehicle can be seen as an assembly of numerous flexible

bodies. The first assumption is made by lumping model elements together using rigid

bodies connected by joints, springs, and dampers. For a passenger car [MW04] starts with

a simplified description assuming the chassis and the 4 wheels to be rigid bodies, hence

resulting in 30 Degrees of Freedom (DoFs). Including a drive train model increases this

number even further. The DoFs entail a similar number of coupled Ordinary Differential

Equations (ODEs) describing the system’s behavior. Such a description may be suitable

for multibody dynamics simulation software. However, model based controller design and

further analysis are hardly possible. A common simplification is to neglect weak couplings

of system parts and to assume a more restricted vehicle movement. Path tracking control

similar to a driver steering the vehicle is mostly influencing a vehicle’s lateral motion.

Lateral motion is strongly coupled with yaw motion and less strongly coupled with roll

motion of a vehicle [MW04]. The respective motions are excited by steering, asymmetric

wheel forces, and external disturbances resulting from wind or slopes. Based on these

considerations a simplified system description can be obtained by restricting the vehicle

to plane motion in ex,t and ey,t direction. This model may still be coupled with a simple

model of roll motion to account for wheel load transfer. If neither wheel load transfer

nor asymmetric wheel forces are of importance, a further simplification can be made by

combining all wheels of an axle to a single wheel summarizing all of their properties. The
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ex,e

ey,e

ez,e

ex,t

ey,t

rt
vt

c.g.

Ψt

Ψd

δtf

ltf

ltr

lt

1

1

desired path

eth

etl

etl

dah sin(eth)

dah

look-ahead point

Figure 2.2: Tractor single track model with earth-fixed (ex,e, ey,e, ez,e) and tractor-fixed
(ex,t, ey,t, ez,t) coordinate system, tractor center of gravity (c.g.) position rt,
tractor c.g. velocity vt, tractor wheel steering angle δtf , tractor heading angle
Ψt, orientation of the desired path Ψd, tractor lateral error etl, tractor heading
error eth, look-ahead distance dah, tractor wheel base lt, and c.g. location given
by ltf and ltr.

resulting description is a single track model [MW04, Pac06] as shown in Figure 2.2. The

model is assumed to be a rigid body in plane motion with a mass mt and a moment of

inertia It about ez,t. It retains 3 DoFs which may be expressed using tractor heading Ψt

and tractor position rt, the latter, for instance, given in earth-fixed coordinates rx,e
t and

ry,e
t . The desired path and the respective tracking errors are introduced for later use.

Equations of Motion

There is no difficulty in applying Newton’s laws of motion to the single track model of

Figure 2.2. Assuming arbitrary forces F x,e
t and F y,e

t acting on the tractor c.g. in ex,e and

ey,e direction as well as a moment Mz,e
t in ez,e direction the equations of motion are:

r̈x,e
t =

1

mt

F x,e
t , (2.1)

r̈y,e
t =

1

mt

F y,e
t , (2.2)

Ψ̈t =
1

It

Mz,e
t . (2.3)
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Introducing tractor-fixed coordinates vx,t
t and vy,t

t of vt as well as tractor-fixed forces (F x,t
t ,

F y,t
t ) and moments (Mz,t

t ) those equations can be rewritten (see Section A.1.1) as:

v̇x,t
t =

1

mt

F x,t
t + Ψ̇tv

y,t
t , (2.4)

v̇y,t
t =

1

mt

F y,t
t − Ψ̇tv

x,t
t , (2.5)

Ψ̈t =
1

It

Mz,t
t , (2.6)

noting that v̇x,t
t and v̇y,t

t are only part of the vehicle’s absolute acceleration:

r̈x,t
t = v̇x,t

t − Ψ̇tv
y,t
t , (2.7)

r̈y,t
t = v̇y,t

t + Ψ̇tv
x,t
t , (2.8)

with r̈x,t
t and r̈y,t

t as seen from an earth-fixed reference frame, stated, however, in tractor-

fixed coordinates. The additional terms depict the centripetal acceleration resulting from

the tractor-fixed coordinate system’s motion.

In case of tractor-implement combinations multiple rigid bodies have to be considered.

Those rigid bodies are subject to constraints imposed by the connecting drawbar. Ap-

plying Newton’s laws of motion in case of constraints ranges form tedious to impractical.

This is particularly true for steering actuators between those rigid bodies causing the con-

straints to become time-dependent or rheonomic [Gre88]. A practical straightforward way

to consider constraints invokes Lagrange’s equations of motion. The corresponding equa-

tions however are normally obtained in earth-fixed coordinates. Deriving those equations

in vehicle-fixed coordinates, as required for further analysis, involves some thoughtfully

chosen steps. A particularly advantageous approach has been presented by [Gen97] con-

sidering tractors and unsteered trailers. A generalized version of this approach will be

used in this work to derive the equations of motion of a tractor and a steered implement.

To illustrate the approach a concise example deriving the above equations (2.4) to (2.6)

is provided in Section A.1.1.

Wheel Forces and Moments

Tire-road or tire-soil interaction and the resulting wheel forces and moments are core to

dynamic vehicle modeling. Again, longitudinal, lateral, and vertical tire properties closely

relate to a vehicle’s driving/braking, handling, and ride characteristics. This section there-

fore focuses on the modeling of horizontal properties. Tires on roads have been extensively

studied for decades and there are numerous models for this purpose. An overview given

in [Pac06] distinguishes empirical, semi-empirical, simple physical, and complex physical

models. Empirical models are based on measurements and curves fitted to those mea-

surements. Semi-empirical models interpolate and extrapolate measured data relying on
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Top View Rear View

Contact Patch

αw

γw

ex,w

ey,w

ey,w

ez,w

F x,w
w

F y,w
w

F y,w
w

F z,w
w

Mx,w
w

Mx,w
w

My,w
w

My,w
w

Mz,w
w

Mz,w
w

vw

Figure 2.3: Definition of wheel related properties: wheel-fixed coordinate system (ex,w,
ey,w, ez,w), ground reaction force components (longitudinal force F x,w

w , lateral
force F y,w

w , vertical force F z,w
w ), ground reaction moment components (over-

turning moment Mx,w
w , rolling moment My,w

w , aligning moment Mz,w
w ), slip

angle αw, camber angle γw, and velocity of the wheel center vw. Definitions
according to [DIN94] except for αw and γw which are chosen to obtain positive
cornering and camber force gradients.

similarity methods and basic physical principles. [Pac06] provides the Magic Formula tire

model as an example. Simple physical models may use mechanical analogies, e.g. brush tire

model [Pac06], and may still have a closed form solution. Complex physical models may,

for instance, rely on finite element methods and extensive computer simulations. Tires off

roads operate in a less defined environment and physical models in particular require a

closer look at the terrain including its elastic and plastic properties. An introduction to

this vehicle-terrain interaction or terramechanics is provided by [Won08]. For tractor tires

in particular, soil compaction, traction and suspension characteristics are of importance,

which is also reflected in existing research. The lateral tire properties of modern tractor

tires are a subject of recent studies by [GAP+05] and [Sch05]. Both provide a compre-

hensive overview of previous research. They independently obtained measurements with

custom tractor tire test rigs and proposed tractor tire models. Following some general

definitions this section will focus mostly on their results.

Tire Properties: Figure 2.3 outlines the basic definitions of wheel related properties.

The wheel-fixed coordinate system’s origin is placed on ground level at the contact patch’s

center. The ground reaction force components (F x,w
w , F y,w

w , F z,w
w ) are assumed to act on the

origin and are used to summarize normal and horizontal forces on the contact patch. The

ground reaction moment components (Mx,w
w , My,w

w , Mz,w
w ) account for possible asymmetric

force distributions on the contact patch. The rolling moment My,w
w typically arises from

larger vertical forces at the contact patch’s front. The aligning moment Mz,w
w usually

is caused by larger lateral forces at the contact patch’s rear and may be alternatively
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represented by shifting F y,w
w backwards by a distance commonly referred to as pneumatic

trail [Pac06].

As a consequence of elastic tire properties and limited static friction both tire deformation

and partial sliding in the contact patch will occur if horizontal wheel forces have to be

developed. From a overall perspective both deformation and sliding of particular tire

elements contribute to wheel slip. Wheel slip therefore is crucial for describing horizontal

tire forces. To define wheel slip more precisely some auxiliary variables are required. Ωw

denotes the wheel’s speed of revolution which is defined positive for a forward rolling wheel.

Note, Ωw may only be part of the wheel’s entire angular velocity [Pac06]. Assuming αw = 0

and γw = 0 as well as vx,w
w,0 and Ωw,0 to be measured on a freely rolling (i.e. undriven)

wheel allows to introduce the dynamic rolling radius:

rd,w =
vx,w

w,0

Ωw,0
. (2.9)

Following [Pac06] and assuming forward motion, i.e. vx,w
w,0 ≥ 0 and Ωw,0 ≥ 0, the longitu-

dinal sx,w
w and lateral slip sy,w

w may be defined as:

sx,w
w =

rd,wΩw − vx,w
w

max (vx,w
w , rd,wΩw)

=







rd,wΩw−v
x,w
w

rd,wΩw
for rd,wΩw ≥ vx,w

w (driving),
rd,wΩw−v

x,w
w

v
x,w
w

for rd,wΩw < vx,w
w (braking),

(2.10)

sy,w
w =

−vy,w
w

vx,w
w

= tan (αw) ≈ αw. (2.11)

With these definitions horizontal forces in steady-state rectilinear motion in general are

functions [Pac06]:

F x,w
w = F x,w

w (sx,w
w , αw, γw, F z,w

w ) , (2.12)

F y,w
w = F y,w

w (sx,w
w , αw, γw, F z,w

w ) . (2.13)

Varying either sx,w
w with αw = 0, or αw with sx,w

w = 0 with both cases assuming γw = 0

and constant F z,w
w yields the characteristic curves as shown in Figures 2.4, 2.5, and 2.6.

Both lateral and longitudinal characteristics for tractor tires exhibit close similarities to

those for passenger cars found e.g. in [MW04, Pac06]. Both F x,w
w vs. sx,w

w and F y,w
w vs. αw

are approximately linear for small slip. With increasing slip the increase in lateral and

longitudinal force diminishes. A large longitudinal slip in particular may be accompanied

by a decrease in longitudinal force due to a behavior dominated by sliding [MW04]. [Sch05]

considers both driving and braking scenarios and notices differences in the longitudinal

force-slip gradient with smaller values for braking wheels. He argues that this might be

due to angled lugs. For passenger cars the longitudinal force coefficient µx,w = F x,w
w /F z,w

w

varies little with changing wheel loads F z,w
w . [Sch05] in contrast notices an increase of
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Figure 2.4: Longitudinal force F x,w
w vs. longitudinal slip sx,w

w from measurements with
varying wheel load F z,w

w . Tire: 520/70 R34, inflation pressure pi,w = 0.8 bar.
Note: Definition of sx,w

w = 0 for driven wheel compensating rolling moment
My,w

w deviates slightly from this work’s definition. (from [Sch05])

0 5 10 15 20
0

5

10

15

20

 

 

20.8 R38

650/65 R38

800/65 R32

αw in ◦

F
y
,w

w
in

kN

Asphalt, |vw| = 5 km/h

0 5 10 15 20
0

5

10

15

20

 

 

520/70 R34

αw in ◦

F
y
,w

w
in

kN
Silt loam, |vw| = 2 km/h

Figure 2.5: Lateral force F y,w
w vs. slip angle αw from measurements with inflation pressure

pi,w = 0.5 bar, wheel load F z,w
w = 20 kN, and varying tires. (from [Sch05])

µx,w with wheel load on loose soil and supposes an increased soil compaction contributing

to improved traction. Similar to passenger cars [MW04] measurements both on asphalt

and loose soil by [Sch05] exhibit a lateral force F y,w
w increasing with wheel load yet with

decreasing increments. [Sch05] performed measurements with combined slip conditions,

i.e. both sx,w
w 6= 0 and αw 6= 0. The results resembled the behavior of passenger car

tires, i.e. with a constant slip angle αw applying a longitudinal force F x,w
w resulted in a

decreased lateral force F y,w
w . In contrast to passenger cars the asymmetry in F y,w

w vs. F x,w
w

was more pronounced, with largest lateral forces not obtained for F x,w
w = 0 but for small

braking forces. The influence of camber was neither studied by [Sch05] nor [GAP+05]. For

passenger cars a camber angle γw approximately causes a vertical shift in the F y,w
w vs. αw

characteristic. A camber angle towards the curve’s center results in a reduced αw for a

constant lateral force [MW04].
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Figure 2.6: Magic Formula curve fits of measured tractor wheel lateral force F y,w
w vs. slip

angle αw and longitudinal force F x,w
w vs. longitudinal slip sx,w

w . F y,w
w and F x,w

w

are normalized to maximum values F y,w
w,max and F x,w

w,max obtained during mea-
surements on asphalt. αw is normalized to a reference slip angle αw,max. Tire:
Pirelli TM700 300/70 R20, inflation pressure pi,w = 1.5 bar. (from [GAP+05])

Linearizing (2.12) and (2.13) about zero slip and zero camber angle as well as assuming

a constant wheel load yields [Pac06]:

F x,w
w = Csx,wsx,w

w , (2.14)

F y,w
w = Cα,wαw + Cγ,wγw, (2.15)

with longitudinal slip stiffness Csx,w, cornering stiffness Cα,w and camber stiffness Cγ,w.

The cornering stiffness in particular is an important parameter in terms of vehicle handling

and stability.

Steady-State Tire Models: Numerous models have been proposed to depict (2.12)

and (2.13). A common semi-empirical approach is based on fitting curves to measured data

and using similarity methods to obtain results for situations not covered by measurements.

For tractor tires [GAP+05] use the popular Magic Formula tire model [Pac06]. Core to

this model is a curve fit [Pac06]

x = tan (αw) + Sh, (2.16)

F y,w
w = D sin (C arctan (Bx − E (Bx − arctan (Bx)))) + Sv, (2.17)

with similar expressions for F x,w
w and Mz,w

w . B, C, D, and E are factors affecting stiffness,

shape, peak value and curvature. Sh and Sv account for possible horizontal and vertical

shifts. The factors are obtained for pure longitudinal or lateral slip as well as nominal wheel

load and camber angle. Deviations from these conditions are considered using similarity

methods. Figure 2.6 depicts examples for curves obtained by [GAP+05]. Unfortunately,
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they just present normalized curves and do not state the quite numerous tire model

parameters.

[Sch05] considers several steady-state tire models. A simple model of lateral tire forces

using only two important tire parameters is:

F y,w
w = F y,w

w,max

(

1 − exp

(

−αwCα,w

F y,w
w,max

))

(2.18)

with F y,w
w,max denoting the maximum tire force. [Sch05] conducted experiments with various

tires, wheel loads, speeds, and tire pressures. He used a fit of (2.18) to obtain F y,w
w,max and

Cα,w as shown in Table 2.1. The purely empiric tire model (2.18) is not used with similarity

methods, yet the wide range of scenarios covered by Table 2.1 proved to be a useful source

of otherwise scarce information on cornering properties of tractor tires.

The second tire model parameterized by [Sch05] is a Fiala tire model. This is a simple

physical model assuming the tire to be a spring-bedded ring. With one particular set of

parameters the model approximately resembles a third order polynomial in terms of αw

and is capable of depicting lateral forces for a particular wheel load. Hence the advantage

is rather in analyzing tire principles than in comprehensive modeling.

The last steady-state tire model considered by [Sch05] is a Slip-Drift model proposed by

Grečenko. It is intended to model combined slip conditions on loose soil. This physical

model is motivated by combined tire and soil deformation and the associated shear stress.

Table 2.1: Tire parameters’ influence on cornering stiffness Cα,w based on test rig mea-
surements on asphalt. (from [Sch05])

Tire Wheel load Inflation
pressure

Speed Max.
lateral force

Cornering
stiffness

F z,w
w in kN pi,w in bar |vw| in

km/h
F y,w

w,max in
kN

Cα,w in
kN/◦

Varying
wheel
load

20.8 R38 10 0.8 2 10.14 1.71

15 13.11 2.41

20 15.15 2.66

25 16.51 3.35

Varying
pressure

20.8 R38 10 0.8 2 10.14 1.71

1.2 13.24 1.50

1.6 14.15 1.22

Varying
speed

20.8 R38 20 0.8 2 15.15 2.66

5 17.67 2.84

10 18.04 2.11

Varying
tire

20.8 R38 20 0.5 5 15.94 1.98

650/65 R38 16.05 3.20

800/65 R32 15.21 3.58
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The model relies on four parameters for a particular wheel load comprising the maxi-

mum lateral and longitudinal force coefficient and two parameters modeling deformation.

[Sch05] uses measurements with pure or combined slip conditions to parameterize the

Slip-Drift model and finds that the obtained parameters differ to a noticeable degree.

Transient Tire Models: The previous tire models were based on static functions re-

lating slip with tire forces. A changing wheel steering angle in this case results in an

immediate side-slip angle change and an immediate change of the lateral tire force. In

order to obtain a more realistic description of transient behavior additional measures are

necessary.

For passenger cars transient lateral tire behavior is commonly introduced by using the

tire relaxation length σα,w [MW04]. This is based on measurements indicating that lateral

tire force generation is not time dependent but dependent on the distance a tire rolls. In

measurements with tractor tires [Sch05] found a similar distance dependent behavior. In

a test setup he enforced sinusoidal side-slip angles and measured the resulting lateral tire

forces. Analyzing either amplitude ratio or phase shift and assuming a linear transient

tire model

Tα,w
︸ ︷︷ ︸
σα,w

v
x,w
w

Ḟ y,w
w + F y,w

w = Cα,wαw. (2.19)

[Sch05] determined the time constants Tα,w as shown in Table 2.2 and calculated the

relaxation lengths

σα,w = Tα,wvx,w
w . (2.20)

A second experiment was conducted to obtain Tα,w using step responses. The determined

values exhibited some variation depending on the chosen approach. Typical relaxation

length values obtained by [Sch05] range from slightly below the wheel’s radius to the

wheel’s diameter. For passenger cars [MW04] provides 2/3 of a wheel’s circumference as a

typical value. [Sch05] performed a small number of tests in a soil bin with silt loam. The

results obtained are depicted in Table 2.3. He found a decrease in cornering stiffness and,

interestingly, a decrease in relaxation length, as well.

The delay in tire force buildup described by the linear transient tire model (2.19) may

be combined with nonlinear steady-state models. This is done by introducing a transient

side-slip angle αre,w and the ODE

σα,w

vx,w
w

α̇re,w + αre,w = αw (2.21)

αre,w then replaces αw in the former steady-state tire force models.
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Table 2.2: Tire parameters’ influence on lateral force generation first order lag time con-
stant Tα,w based on test rig measurements on asphalt. Tα,w is either based on
phase or amplitude of measurements. (from [Sch05])

Tire Wheel load Inflation
pressure

Speed Time from
amplitude

Time from
phase

F z,w
w in kN pi,w in bar |vw| in km/h Tα,w in s Tα,w in s

Varying
tire

20.8 R38 20 0.5 5 0.63 1.20

650/65 R38 1.37 1.65

800/65 R32 1.15 1.07

Varying
pressure

800/65 R32 20 0.5 2 1.15 1.07

0.8 0.98 0.85

1.2 1.11 0.84

1.6 0.76 0.53

Varying
speed

20.8 R38 20 0.8 2 2.33 1.85

5 0.80 0.95

10 0.26 0.47

Table 2.3: Influence of terrain on cornering stiffness Cα,w and tire relaxation length σα,w.
Tire: 520/70 R34, inflation pressure pi,w = 0.8 bar. (from [Sch05])

Terrain Wheel load Speed Cornering stiffness Relaxation length

F z,w
w in kN |vw| in km/h Cα,w in kN/◦ σα,w in m

Silt loam 10 2 0.94 0.46

Silt loam 4 0.84 0.38

Asphalt 5 1.73 0.62

Silt loam 20 2 0.98 0.47

Silt loam 3.5 1.14 0.65

Asphalt 5 1.87 0.89

Dynamic Tractor Model

The properties discussed for an individual wheel and the single track model given in Fig-

ure 2.2, as well as (2.4), (2.5), and (2.6) are now combined. Figure 2.7 depicts the relevant

properties of a tractor front wheel. Definitions for tractor rear wheel and possible imple-

ment wheels are similar. The subscript w is omitted to avoid lengthy double subscripts.

By combining all wheels of an axle the properties of a single track model’s wheel differ

from individual wheel properties discussed previously. Nevertheless it is common to use

the same variables. The cornering stiffness Cα,tf for instance describes a combined corner-

ing stiffness of all tractor front wheels. In this work no dual tires have been considered,

hence the combined cornering stiffness is approximately twice the cornering stiffness of a

single wheel. For vehicle handling or path tracking the focus is on lateral vehicle motion.
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Figure 2.7: Definition of tractor front wheel related properties: wheel-fixed coordinate
system (ex,tf , ey,tf , ez,tf), longitudinal wheel force F x,tf

tf , lateral wheel force

F y,tf
tf , and wheel side-slip angle αtf . βt denotes the commonly used tractor side-

slip angle located at the tractor c.g. Similarly βtf defines the tractor side-slip
angle at the tractor front wheel location. Rear wheel and implement properties
are defined analogously.

Common assumptions therefore are that the tractor longitudinal velocity vx,t
t is constant

or slowly changing. Hence, it is assumed to be an additional plant parameter in vehicle

lateral motion. The influence of longitudinal wheel slip and forces is initially neglected

within the describing equations. Nevertheless, the influence can be studied subsequently

by varying lateral tire parameters. Similarly, different wheel loads and soil conditions may

be studied using parameter variation. With tractor path tracking being part of vehicle

normal operation away from vehicle limits a linear tire model is chosen to describe lateral

tire forces.

With these assumptions the overall dynamic tractor model can be stated using the front

and rear wheels side-slip angels αtf and αtr, which can be found to be (cf. Figure 2.7):

αtf = δtf − arctan

(

vy,t
tf

vx,t
tf

)

= δtf − arctan

(

ltf Ψ̇t + vy,t
t

vx,t
t

)

, (2.22)

αtr = − arctan

(

vy,t
tr

vx,t
tr

)

= − arctan

(

−ltrΨ̇t + vy,t
t

vx,t
t

)

. (2.23)

The resulting tire forces are modeled transient by introducing front and rear wheel tire

relaxation lengths σα,tf and σα,tr. With (2.21) the transient side-slip angles αre,tf and

αre,tr are given by ODEs:

α̇re,tf =
cos (δtf ) vx,t

t + sin (δtf )
(

ltf Ψ̇t + vy,t
t

)

σα,tf

(αtf − αre,tf) , (2.24)

α̇re,tr =
vx,t

t

σα,tr

(αtr − αre,tr) . (2.25)
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Using the combined cornering stiffnesses Cα,tf and Cα,tr to describe lateral tire forces the

equations of motion (2.5) and (2.6) may be rewritten:

v̇y,t
t =

1

mt

(cos (δtf ) Cα,tf αre,tf + Cα,trαre,tr) − Ψ̇tv
x,t
t , (2.26)

Ψ̈t =
1

It

(ltf cos (δtf ) Cα,tf αre,tf − ltrCα,trαre,tr) . (2.27)

In a next step, one may introduce earth-fixed coordinates describing the vehicle position

for simulation purposes. This is done using e.g. ODEs for the tractor rear wheel position

rx,e
tr and ry,e

tr :

ṙx,e
tr = cos (Ψt)

(

vx,t
t

)

− sin (Ψt)
(

−ltrΨ̇t + vy,t
t

)

, (2.28)

ṙy,e
tr = sin (Ψt)

(

vx,t
t

)

+ cos (Ψt)
(

−ltrΨ̇t + vy,t
t

)

. (2.29)

Alternatively the vehicle position may be stated in terms of deviations from a desired

path. Referring to the straight path of Figure 2.2 the associated ODEs are:

ėth = Ψ̇t − Ψ̇d, (2.30)

ėtl = sin (eth)
(

vx,t
t

)

+ cos (eth)
(

−ltrΨ̇t + vy,t
t

)

. (2.31)

The latter description is particularly suitable for controller design as well as further analy-

sis. Having put emphasis on using tractor-fixed variables the system given by (2.22) to

(2.27) as well as (2.30) and (2.31) allows for linearization. Defining the system state vector

x, input vector u, and output vector y as:

x =
[

etl, eth, vy,t
t , Ψ̇t, αre,tf , αre,tr

]T
, (2.32)

u = δtf , (2.33)

y = [etl, eth]T (2.34)

the system linearized about x = 0 and u = 0 is:

ẋ = Ax + Bu, (2.35)

y = Cx, (2.36)
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A =

















0 vx,t
t 1 −ltr 0 0

0 0 0 1 0 0

0 0 0 −vx,t
t

Cα,tf

mt

Cα,tr

mt

0 0 0 0 ltf Cα,tf

It

ltrCα,tr

It

0 0 −1
σα,tf

−ltf

σα,tf

−v
x,t
t

σα,tf
0

0 0 −1
σα,tr

ltr

σα,tr
0 −v

x,t
t

σα,tr

















, B =

















0

0

0

0
v

x,t
t

σα,tf

0

















, (2.37)

C =




1 0 0 0 0 0

0 1 0 0 0 0



 . (2.38)

Optionally, this may be further simplified for steady-state cornering without relaxation

length using:

x =
[

etl, eth, vy,t
t , Ψ̇t

]T
, (2.39)

u = δtf , (2.40)

y = [etl, eth]T , (2.41)

yielding a system description given by:

A =












0 vx,t
t 1 −ltr

0 0 0 1

0 0 −Cα,tf −Cα,tr

mtv
x,t
t

−mt(v
x,t
t )

2
−ltf Cα,tf +ltrCα,tr

mtv
x,t
t

0 0 −ltf Cα,tf +ltrCα,tr

Itv
x,t
t

−l2
tf

Cα,tf −l2trCα,tr

Itv
x,t
t












, B =











0

0
Cα,tf

mt
ltf Cα,tf

It











,

(2.42)

C =




1 0 0 0

0 1 0 0



 . (2.43)

For passenger cars the differential equations describing v̇y,t
t and Ψ̈t, given by the last two

rows of (2.42), are of fundamental importance for vehicle handling and stability. Properties

of these equations are widely studied by [MW04, Pac06].

Conditions encountered during path tracking with agricultural tractors deviate from typ-

ical conditions for passenger cars or trucks. Both vehicle parameters and operating speeds

are different. Using this work’s tractor parameters of Appendix A.5, Figure 2.8 depicts

the eigenvalues of system matrices A given by (2.37) and (2.42) for various tractor speeds.

Both systems, regardless of a particular speed, exhibit two eigenvalues at 0. Examining

the block triangular form of (2.37) and (2.42) allows to trace those eigenvalues to (2.30)

and (2.31). Both lateral error etl and heading error eth are not fed back into other sys-

tem parts. With a typically small lateral tractor rear wheel velocity
(

−ltrΨ̇t + vy,t
t

)

the

tracking error dynamics may be seen as the yaw rate Ψ̇t being integrated twice yielding
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Figure 2.8: Eigenvalues of system matrix A either considering relaxation length (2.37) or
neglecting it (2.42). Parameters are chosen as stated in Appendix A.5 and
tractor lateral velocity vx,t

t is varied.

approximately etl. This double integrator however exhibits a velocity dependent gain as

seen in (2.31). The remaining parts of (2.37) and (2.42) are different. For low speeds

the simple system without relaxation length given by differential equations for v̇y,t
t and Ψ̈t

yields two real eigenvalues. At higher speeds these eigenvalues become conjugate complex.

This resembles the behavior found for passenger cars with positive understeer gradients

[Pac06]. Considering the tire relaxation length immediately results in two conjugate com-

plex eigenvalue pairs. Having described the tracking error dynamics approximately by two

integrators with input Ψ̇t, the remaining system parts may be further analyzed considering

the transfer function from steering angle input δtf to yaw rate Ψ̇t, i.e.:

L

{

Ψ̇t(t)
}

L {δtf (t)} = Gδtf ,Ψ̇t
(s) (2.44)

with L {·} denoting the Laplace transform [Foe94]. The corresponding Bode diagrams are

depicted in Figure 2.9, using again the tractor parameters of Appendix A.5. Magnitude

and phase for both indicate an upper limit for steering frequencies the vehicle is capable

to follow. This however is without delays due to hydraulic tractor steering actuators.

The simple case neglecting tire relaxation length is extensively studied for passenger cars

[Pac06]. For small speeds the steady-state gain increases almost linearly with speed. The

peak in
∣
∣
∣Gδtf ,Ψ̇t

(s)
∣
∣
∣, as found for some passenger cars [Pac06], can be found for the given

parameters as well yet at tractor speeds beyond typical values. In case relaxation length

is considered,
∣
∣
∣Gδtf ,Ψ̇t

(s)
∣
∣
∣ exhibits a peak for small speeds also. It is worth noting that

both cases with and without relaxation length are in agreement with research by [KS10]

using a different tractor and different parameters. In particular their transfer function

Gδtf ,Ψ̇t
(s) accounting for relaxation length has been found to resemble their measurements

remarkably well.
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Figure 2.9: Steering angle to yaw rate transfer function Gδtf ,Ψ̇t
(s) either considering re-

laxation length (2.37) or neglecting it (2.42). Parameters are chosen as stated
in section Appendix A.5 and tractor lateral velocity vx,t

t is varied.

Dynamic Tractor-Trailer and Tractor-Implement Models

Having outlined the principal idea of dynamic vehicle modeling this, section now provides

an overview of related work modeling tractor-implement or tractor-trailer combinations.

On-road tractor-trailer combinations have been subject to research for quite a while and

fundamentals on modeling and lateral stability can be found in [Ell94] and [Gen97]. Both

derive the describing ODEs explicitly, but consider unsteered trailers only. [Gen97] uses

a very systematic approach to modeling invoking Lagrangian mechanics and some well-

considered coordinate transformations. [Ell94] and [Gen97] use linear tire models for ve-

hicle handling analysis and provide an outlook on using nonlinear tire models for detailed

simulations. [CT95a, CT00] derive a dynamic tractor-trailer model for path tracking con-

trol on automated highways and use trailer brakes as additional inputs. To account for

asymmetric forces due to braking, individual wheels are considered. Simulations are per-

formed using a dedicated nonlinear truck tire model from literature. Controller design

relies on tires modeled by longitudinal and cornering stiffness parameters. [TWH+98] ex-

tend this model by adding multiple trailers. [RT07] model a tractor with three trailers

placing steerable front wheels on all or a subset of those trailers. The objective is to

minimize the rearward amplification of the trailers’ lateral accelerations. A single track

model, with cornering stiffnesses being the only tire parameters, is used for both con-

troller design and simulation. [Wag10] uses dynamic modeling for path tracking control

of train-like tractor-trailer combinations with all-wheel-steering. The tire model used is

based on cornering stiffnesses only. All approaches so far have stated the underlying ODEs

in an explicit form in order to allow for comprehensive system analysis and subsequent

controller design. If the focus was mostly on simulation without the need of explicit ODEs,

a multibody dynamics simulation software would be a further modeling option. Common

tractor-trailer combinations are supported by commercial software like Adams/Car Truck

[MSC12], IPG TruckMaker [WOS+10], and Simpack Automotive [SIM11].
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Off-road tractor-trailer or tractor-implement combinations are usually operated at lower

speeds, which is accompanied by lower lateral accelerations and smaller wheel side-slip

while cornering on solid ground. Despite that, on loose or slippery soil as well as on slopes

wheel side-slip might still be prominent. A dynamic vehicle model might in this case

be a reasonable choice to depict the real world behavior. [PKE07] have derived a single

track model for a tractor towing an implement with steerable wheels under the influence

of lateral disturbances. [SKEP09] have extended this model by attaching an unsteered

trailer to the implement. In both cases lateral tire forces are modeled using cornering

stiffnesses. Longitudinal tire forces are divided into traction forces and rolling resistances.

Traction forces are inputs to the system. The rolling resistances exhibit a velocity and a

wheel load dependent term. [KS10] modeled a tractor and an unsteered towed implement

using a single track description. The model is used for path tracking controller design and

simulation. They consider two linear tire model variants, which are a simple model using

cornering stiffnesses as only parameters and a second model accounting for tire relaxation

length. [GB08, DB09] consider the special case of a three-point hitch mounted implement

which, in contrast to a towed implement, is not pivotable and forms a single rigid body

with the tractor. They use a single track description and model both lateral tire forces

as well as lateral forces caused by the ground engaging implement tools via cornering

stiffnesses.

2.1.2 Kinematic Models

Kinematic models, as for instance discussed in introductory literature [Raj06], describe

vehicle motion in a simplified manner without considering forces and moments causing

the movement. This section outlines the modeling assumptions made and derives a simple

concise kinematic tractor model. Related work regarding kinematic models of tractor-

trailer or tractor-implement combinations is addressed subsequently.

Modeling Assumptions

Starting with Figure 2.2 and the assumptions made for a dynamic single track vehicle

model, the kinematic model is assumed to be in plane motion with all wheel properties

combined into a single wheel per axle as well. In addition to those premises, the kinematic

model is further restricted. The model is based on geometric properties and the assumption

of purely rolling wheels. In other words, side-slip is neglected and the wheels’ velocities

are assumed to point in wheel forward direction. The kinematic model does not account

for forces and moments causing the motion and dynamic model parameters like mass and

moment of inertia are not required. The model exhibits 3 DoFs which may be defined

using tractor heading Ψt and the tractor rear wheel position rx,e
tr and ry,e

tr in earth-fixed

coordinates for instance. The tractor c.g. position is not used, because there is no need to

determine the c.g. position at all. The tractor’s lateral velocity vx,t
tr = vx,t

t is assumed to

be a parameter of the system.
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Kinematic Tractor Model

Core to kinematic modeling is the assumption of restricted wheel velocity directions.

Considering Figure 2.2 these constraints can be formalized as follows:

[

− sin (δtf ) , cos (δtf )
]

︸ ︷︷ ︸

eT
⊥,tf




vx,t

tf

vy,t
tf



 = 0, (2.45)

[

0, 1
]

︸ ︷︷ ︸

eT
⊥,tr




vx,t

tr

vy,t
tr



 = 0, (2.46)

with e⊥,tf and e⊥,tr denoting vectors perpendicular to the respective wheel velocity vectors

vtf and vtr. e⊥,tf and e⊥,tr are chosen to depict the zero side-slip constraint. From (2.46)

immediately follows vy,t
tr = 0, i.e. the lateral rear wheel velocity vanishes. Using




vx,t

tf

vy,t
tf



 =




vx,t

tr

vy,t
tr



+




0

Ψ̇tlt



 =




vx,t

tr

Ψ̇tlt



 (2.47)

and (2.45) allows to solve for Ψ̇t yielding

Ψ̇t =
vx,t

tr

lt
tan (δtf ) . (2.48)

In contrast to the transfer functions found for the previously discussed dynamic tractor

models, the kinematic model exhibits a simple static function relating steering angle δtf

and yaw rate Ψ̇t.

Introducing earth-fixed coordinates describing the vehicle position for simulations may be

done similar to (2.28) and (2.29) using:

ṙx,e
tr = cos (Ψt) vx,t

tr − sin (Ψt) vy,t
tr
︸︷︷︸

0

, (2.49)

ṙy,e
tr = sin (Ψt) vx,t

tr + cos (Ψt) vy,t
tr
︸︷︷︸

0

. (2.50)

Similar to (2.30) and (2.31) the vehicle position in terms of deviations from a straight

path as shown in Figure 2.2 can be stated as:

ėth =
vx,t

tr

lt
tan (δtf )

︸ ︷︷ ︸

Ψ̇t

−Ψ̇d (2.51)

ėtl = sin (eth) vx,t
tr + cos (eth) vy,t

tr
︸︷︷︸

0

. (2.52)
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Defining the system state vector x, input vector u, and output vector y as:

x = [etl, eth]T , (2.53)

u = δtf , (2.54)

y = [etl, eth]T (2.55)

the system linearized about x = 0 and u = 0 is

ẋ = Ax + Bu, (2.56)

y = Cx, (2.57)

with

A =




0 vx,t

t

0 0



 , B =




0

v
x,t
t

lt



 , C =




1 0

0 1



 . (2.58)

The linearized system possesses only two eigenvalues at zero and the transfer function

from steering input δtf to lateral error etl is:

L {etl(t)}
L {δtf (t)} = Gδtf ,etl

(s) =

(

vx,t
t

)2

lt

1

s2
. (2.59)

Kinematic Tractor-Trailer and Tractor-Implement Models

Kinematic modeling of on-road tractor-trailer combinations is not very common due to the

fact that wheel side-slip normally has to be considered at higher vehicle speeds. However,

geometric properties might be useful to assess the turning radii of those combinations

[Gen97].

Off-road tractor-trailer or tractor-implement combinations are more frequently described

using kinematic models. [Bel99, Bev01, CLTM10, KS10] each modeled a tractor towing an

unsteered implement. [BOV12] modeled a towed seed drill with a steerable drawbar. Al-

though kinematic models lack the ability to include side-slip based on physical principles,

[CLTM10, BOV12] try to include this effect by adding bias parameters to the kinematic

model. Using those extended models in an estimator which is computed parallel to the real

tractor-implement combination allows them to capture the differences between kinematic

model and real system. Those differences are then considered within the control laws.
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2.1.3 Identified Models

Kinematic and dynamic models are the result of a theoretical modeling approach consid-

ering physical laws and the actual structure of the system. Identified models or black-box

models [Ise07] in contrast assume a certain class of models, e.g. a transfer function with

still undefined coefficients, without knowing the system’s internal structure. The black-box

model parameters are identified using information from input and output measurements

only.

[Bev01] used this approach and created a black-box model for the major part of a tractor

towing an unsteered implement. Only the lateral tracking error calculation required some

geometric parameters to be measured.

Identification of entire models relies on test drives in order to obtain sufficient measure-

ments for identification. These test drives have to be performed for each particular tractor-

implement combination. Requiring an operator to do these drives in possibly planted fields

was seen as a major drawback over e.g. measuring geometric properties required to obtain

a kinematic model. Hence, identified models have not been considered in this work.
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2.2 Path Tracking Control

Research interest in vehicle path tracking control is driven by numerous applications.

In the on-road domain examples range from automated highways to autonomous cars

in urban environments. In the off-road domain path tracking control of agricultural ma-

chinery in particular aroused interest due to the possibilities resulting from automation,

repeatability, and accuracy.

This chapter provides an overview of past and present research on path tracking control.

In case a particular approach has been applied to passenger cars as well as tractor-trailer

or tractor-implement combinations the overview focuses on combinations. An additional

tabular summary of tractor-trailer and tractor-implement path tracking research is given

in Table A.9 of Appendix A.8. A survey on passenger car path tracking control in partic-

ular is given by [Sni09]. For each approach a brief introduction to the underlying theory

is included in this section. The simple kinematic tractor model of Section 2.1.2 is used to

illustrate the principle idea of each approach. The approaches’ particular advantages and

disadvantages regarding this work’s objectives are discussed for later use.

2.2.1 Kinematic Tractor Example Prerequisites

Depending on the particular control approach different representations describing the

kinematic tractor model of Section 2.1.2 are required. The measured output of the system

is always assumed to be

y = [etl, eth]T (2.60)

The controlled output may be a subset of (2.60) or the weighted sum

y = etl + dah sin(eth) ≈ etl + daheth, (2.61)

which has a geometric interpretation as shown in Figure 2.2. dah is denoted as look-ahead

distance. The output in this case can be seen as the distance of the look-ahead point from

the desired path.

In case a control approach is based on a nonlinear system description which is tailored

towards a particular system structure the description given by (2.51) and (2.52) is used

directly. In case the approach is not tailored towards a particular system structure the

nonlinear system may be denoted more generally

ẋ = f(x, u), (2.62)

y = h(x), (2.63)

with u = δtf and x = [etl, eth]T.
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Controller design based on a linear continuous-time system description may use the general

time domain representation given by (2.56) and (2.57) or the respective frequency domain

representation relating the input and output signal Laplace transforms U(s) and Y(s) by

using the transfer function matrix G(s) [Lun10]

Y(s) = G(s)U(s) = C (sI − A)−1
BU(s). (2.64)

Using output (2.61) in particular results in a simple Single Input Single Output (SISO)

transfer function

G(s) =

(

vx,t
tr

)2

lt

s dah

v
x,t
tr

+ 1

s2
. (2.65)

In some cases a discrete time representation of (2.56) and (2.57) is advantageous, which

can be found to [Lun10]

x[k + 1] = Adx[k] + Bdu[k], (2.66)

y[k] = Cdx[k], (2.67)

with sample time Ts and numerically calculated matrices:

Ad = eATs , Bd =
∫ Ts

0
eAτ dτ B, Cd = C. (2.68)

2.2.2 PID Control

Proportional-Integral-Derivative (PID) control of a vehicle with front wheel steering input

and the distance between look-ahead point and desired path as an output is a classical

approach to path tracking control found in introductory literature [Raj06]. The rather

simple linearized kinematic vehicle model given by its transfer function (2.65) allows

an outline of this control approach. With (2.65) the control problem can be interpreted

as asymptotic stabilization [SL91] of a double integrator system with a zero at s0,1 =

−vx,t
tr /dah. The look-ahead distance dah might be either predetermined by the type of

sensor used, e.g. a camera detecting the center of a lane some distance ahead, or might

be chosen freely, e.g. with a GPS receiver allowing to determine the lateral error etl

and heading error eth separately. The look-ahead distance’s influence can be seen from

the open-loop Bode diagrams [Foe94] and the closed loop root locus plots [Foe94] of

Figure 2.10. The root locus plots depict the system’s closed loop poles for proportional

control with a controller gain varying from 0 to +∞. For a look-ahead distance of dah = 0 it

is impossible to asymptotically stabilize the resulting system using proportional control.

With a positive look-ahead distance dah proportional control stabilizes the system and

larger values of dah result in an increased damping. However, dah may not be chosen
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Figure 2.10: Open-loop bode diagram and closed loop proportional control root locus for
tractor kinematic model with wheel base lt = 2.8 m, longitudinal velocity
vx,t

tr = 3 m/sec and several look-ahead distances dah.

arbitrarily large for practical applications. For curved paths an increase of dah results in an

increased cutting of corners. Up to a certain limit this cutting of corners is acceptable for

less demanding applications like lane keeping. For accurate path tracking, however, this is

undesirable. If the look-ahead distance is fixed, e.g. by sensor design, using Proportional-

Derivative (PD) control with an additional zero and phase lead might be necessary to

allow for sufficient damping of the closed loop system.

In order to include path tracking control of a steerable trailer or implement a decentral-

ized control approach may be used. This means that the tractor is controlled ignoring

the implement and using the SISO control approach described above. Subsequently, the

resulting system is controlled using an implement steering input and the implement lat-

eral or heading error as a controlled output. Alternatively one could try to apply tuning

rules for MIMO Proportional-Integral (PI) controllers, as given by [Lun10] for instance.

An initial guess for a controller gain matrix is typically found by inverting the plant’s

steady-state gain. In case of tractor-implement control this inversion requires the plant to

be stabilized in a previous step. Stabilization could be done by first controlling the tractor

only using a SISO PID controller as outlined.

Literature Survey

Besides [Raj06], applying the described approach to passenger car lane keeping, [TWH+98,

TT03] use the sketched combination of a look-ahead distance and PD control for a tractor

with an unsteered trailer. [Wag10] uses decentralized PD control for a tractor towing

multiple single-axle trailers with steerable wheels. The lateral error of each unit is a

controlled variable. [GB08] use PD lateral error control of a tractor with a three-point

hitched implement without looking ahead, i.e. dah = 0. They adapt the controller gain

according to an EKF estimate of the steering angle to yaw rate steady-state gain in

order to account for changed cornering properties with ground engaging tools on the



28

implement. For the same task [DB09] use PID lateral position control and an adapted

feedforward gain which is calculated using a reference model. [Dee13, Aut08, Tri07] are

dedicated commercial systems for decentralized implement lateral error control which are

meant to be used in combination with commercial tractor path tracking controllers like

[Dee12, Aut12, Tri01]. Details on their control approaches are not publicized, their setup

however relies on some user adjusted gain parameters.

Discussion

Pro: The main advantages of PID control are its computational simplicity and the limited

system information required for the controller setup. It is possible to set up the controller

by tuning without prior knowledge of the system. Using integral control in particular

increases the chance of obtaining a controller that is rather robust with regard to slowly

changing system parameters or disturbances.

Contra: As a drawback, the control approach is not systematic and depends very much

on the actual input-output combination of an implement. Several controllers are required

to control e.g. tractor lateral error, implement lateral and heading error. This approach

neglects any possible coupling between those control loops. Similarly, the controller setup

is little intuitive because different input-output combinations and hence different transfer

functions react differently on controller gain tuning.

2.2.3 Linear-Quadratic Regulator

A Linear-Quadratic Regulator (LQR) [Nai02] is a popular optimal control approach for

linear systems. Instead of using auxiliary means like bode and root locus diagrams LQR

design is based on weighting the time course of a system’s input and state (or output)

variables directly. Keeping the notation of (2.56) and (2.57) for a continuous time infinite

horizon problem this is done by introducing the performance index

J =
∫ ∞

0

(

xT(t)Qx(t) + uT(t)Ru(t)
)

dt. (2.69)

The constant symmetric weighting matrices Q (positive semi-definite) and R (positive

definite) are normally chosen to be diagonal and the performance index in this case simply

weights the squares of inputs and states. The idea of optimal control is to find an optimal

control law u∗(t) that minimizes (2.69) subject to (2.56). Interestingly, this optimal control

law for the inifinite horizon LQR problem (2.69) has a very simple structure. Considering

a few prerequisites [Nai02] it is simply given by a time invariant state feedback

u∗(t) = − R−1BTP
︸ ︷︷ ︸

K

x(t). (2.70)

The matrix P is found by numerically solving the Algebraic Riccati Equation (ARE)

ATP + PA − PBR−1BTP + Q = 0. (2.71)
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The solution has to be computed during the controller setup using numerical representa-

tions of Q, R, A, and B. The term optimal control is slightly misleading. The controller

is optimal for a particular choice of weighting matrices Q and R. The important feature

of LQR, however, is not this optimality but the straightforward controller design based

on the weighting of input and state (or output) variables. LQR results in a state feedback

controller and therefore additional effort might be necessary to estimate states that are

not measured. A popular choice is to combine LQR with a Kalman filter for state estima-

tion which is referred to as Linear-Quadratic Gaussian (LQG) control [Lun10]. There is

an interesting frequency domain interpretation considering both LQR and LQG special

cases of H2 optimal control [Mac04]. The related H∞ control however is a more common

frequency domain approach and will be discussed below. Besides the stated continuous

time infinite horizon LQR problem (2.69) there are numerous variants considering dis-

crete or time varying system descriptions, finite or receding horizon performance indices,

as well as time varying weighting matrices [BGW90, Nai02].

Literature Survey

LQR control is used for both passenger car path tracking [Sni09] as well as tractor-

trailer or tractor-implement path tracking. [Bel99], [Bev01], and [KS10] used LQR for a

tractor towing an unsteered implement. [Bel99] and [KS10] briefly simulate tractor and

towed implement control assuming all states are measured. [Bev01] conducts experiments

combining LQR control with EKF based full state feedback and focuses on accurate

implement lateral control. [CT95b] state simulation results for lateral LQR control of an

on-road tractor trailer-combination with the tractor steering as an input and all states

being measured. They present a frequency shaping LQR variant in order to penalize large

lateral accelerations e.g. during lane change maneuvers. [RT07] simulate LQR control of

a manually steered tractor and three trailers with automatically steered front wheels.

The weights are chosen to minimize the rearward amplification of the trailers’ lateral

accelerations. They only consider ideal state feedback with all states being measured.

Discussion

Pro: LQR control based on weighting matrices for inputs, states or outputs in most cases

turns out to be very intuitive in terms of controller design. MIMO systems with different

input-output combinations can be handled systematically and the resulting controller is

computationally simple.

Contra: LQR results in a state feedback controller and most practical problems therefore

require additional effort for state estimation. Furthermore, LQR is MIMO proportional

control only and hence may result in a large steady-state error in case of uncertainties or

disturbances. For that reason additional measures like error integral states or disturbance

feedforward might be necessary.
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2.2.4 Model Predictive Control

Model Predictive Control (MPC) is an optimization based control approach characterized

by using a plant model and the model’s predicted behavior over a receding (i.e. mov-

ing fixed length) horizon [Mac02]. During each controller time step an optimal control

signal sequence is found in order to minimize a performance index over the receding hori-

zon. Only the first control signal values of that sequence are applied to the plant. The

remaining control sequence is discarded, the horizon is shifted, and the optimization is

restarted during the next time step. There is a multitude of historical approaches with

different terminology describing the idea of MPC [Mac02] and LQR with a receding hori-

zon can be interpreted as a special case of MPC [BGW90]. MPC in general, however, is

a more powerful approach, because it is particularly tailored towards optimization with

constraints. Those constraints might be for example limits on inputs, input slew rates, or

system states.

Using the discrete system description (2.66) and (2.67) a MPC optimization problem for

the simple example could be stated using the performance index

J [k] =
Np
∑

i=1

xT[k + i|k]Q[i]x[k + i|k] +
Np−1
∑

i=0

∆uT[k + i|k]R[i]∆u[k + i|k] (2.72)

which is assumed to be subject to constraints

xmin ≤ x[k + i|k] ≤ xmax for i = 1, . . . , Np, (2.73)

umin ≤ u[k + i|k] ≤ umax for i = 0, . . . , Np − 1, (2.74)

∆umin ≤ ∆u[k + i|k] ≤ ∆umax for i = 0, . . . , Np − 1. (2.75)

Q[i] and R[i] are (time variant) symmetric positive semi-definite weighting matrices. Np

states the prediction horizon. u[k + i|k] denotes a future value of u as it is assumed at

step k. Similarly x[k + i|k] denotes a predicted future state vector x which is calculated

using the assumed future input values up to u[k + i − 1|k] and (2.66). ∆u[k + i|k] =

u[k + i|k] − u[k + i − 1|k] is the difference between subsequent input values.

This MPC problem can be rewritten as Quadratic Programming optimization problem

with linear inequality constraints, which is convex and can be solved using numerical

approaches like active set or interior point method [Mac02]. Numerical optimization yields

the optimal control signal sequence at step k:

[∆u∗[k|k], . . . , ∆u∗[k + Np − 1|k]]T = argmin
[∆u[k|k],...,∆u[k+Np−1|k]]T

J [k] (2.76)

Only u∗[k|k] = ∆u∗[k|k] + u[k − 1] is applied to the plant and the entire optimization is

repeated during the next time step.



31

Prediction of future system states using (2.66) so far has assumed knowledge of the current

state x[k]. In practical applications the current state is often estimated.

In order to apply MPC to nonlinear systems a straightforward approach is to replace

the linear difference equation (2.66) predicting the system’s behavior by a more accurate

nonlinear difference equation. The resulting nonlinear MPC optimization problem is not

convex in general and the solution therefore might only be a local optimum. Optimization

might take an unpredictably long time or might never terminate. For that reason, measures

must be taken to stop the optimization and use a suboptimal yet stabilizing input signal

[Mac02].

Literature Survey

Path tracking using MPC has been subject to research in mobile robotics, automotive, and

agricultural applications and [Bac13] summarizes these approaches. All of them have not

considered a trailer or an implement attached to the vehicle. [BOV09, Bac13] in contrast

focus on MPC of a tractor towing a seed drill with a steerable drawbar. For prediction

they use a kinematic model of tractor and implement and include a multiplicative factor

accounting for tractor front wheel side-slip. Both tractor and implement lateral error are

controlled variables. [BOV09] started with linear MPC and realized that a linear model

was not sufficient. Therefore nonlinear MPC was used in subsequent publications [Bac13].

In the simple example above, a performance index (2.72) for a straight path tracking

problem was given. In more general applications MPC is naturally tailored towards tra-

jectory tracking, i.e. following a series of desired positions given as a function of time. For

path tracking in contrast desired positions are stated independently of time, i.e the time

a particular position is reached is irrelevant. [Bac13] proposed a modified performance in-

dex to replace trajectory tracking by path tracking for curved paths. [Bac13] in addition

combines path tracking control with collision avoidance by augmenting the MPC perfor-

mance index. Estimation of system states and the front wheel side-slip factor was done

using an Extended Kalman Filter (EKF). The nonlinear MPC was implemented using a

very capable computer (Intel Core 2 Duo E8600 2x3.3GHz, 2GB memory). Despite this

fact the nonlinear MPC with a sample time of 100 ms was too demanding to maintain

the desired prediction horizon of 30 steps. The prediction horizon, therefore, was reduced

during runtime depending on the current computational load.

Discussion

Pro: Similar to LQR setup of MPC is based on weighting of inputs, states or outputs

and is normally very intuitive. The approach is easily extended to MIMO systems with

different input-output combinations, as well. In contrast to LQR it allows to consider

actuator, actuator rate, and system state limits. This is an advantage in case limits are

either reached frequently or in case optimized performance at those limits is crucial.
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Contra: The major drawback of MPC is the computational load due to numerical opti-

mization performed at each time step. A measurement or estimate of all system states is

required. To obtain a small steady-state error in presence of uncertainties or disturbances

additional measures, like including disturbance estimates or error integral states, may be

necessary.

2.2.5 Robust H∞ Control

Classical controller design for linear SISO systems makes excessive use of a plant’s fre-

quency domain description given by the complex transfer function G(s) (2.65). A fre-

quency domain description for a MIMO system is given by the complex transfer function

matrix G(s) (2.64). Unfortunately, the simple interpretation of an input signal’s gain given

by the transfer function’s magnitude |G(jω)| is not applicable to MIMO systems. Follow-

ing the strict but lengthy definitions of [Mac04] a useful alternative for MIMO systems

is the use of singular values σ (G(jω)) [Mac04]. They at least allow to state frequency

dependent upper and lower bounds for an input signal vector’s gain, which are given by:

σ (G(jω)) : the largest singular value of G(jω), and

σ (G(jω)) : the smallest singular value of G(jω).

In addition, the supremum of the largest singular value is used to define the H∞ norm:

‖G‖∞ = sup
ω∈R

σ (G(jω)) . (2.77)

An interesting property of ‖G‖∞ is that it can be interpreted as an upper bound for the

ratio between output and input signal vector energy.

The main idea of robust H∞ control is to design a dynamic output feedback controller

K(s) that stabilizes not only a nominal plant G(s) but every plant belonging to an entire

set of uncertain plants, i.e. the controller robustly stabilizes this set of uncertain plants.

Again following the strict definitions of [Mac04], Fig. 2.11 outlines the general framework

of robust H∞ control. The nominal plant G(s) models the assumed plant behavior. This

is a simplified description of reality neglecting e.g. high-frequency dynamics or parameter

uncertainties. In order to deal with uncertainty during controller design the nominal plant

model is extended introducing new weighted inputs w and outputs z resulting in an

extended plant P(s). Uncertainty is introduced by closing the upper loop with an unknown

unstructured model of uncertainties denoted by the transfer function matrix ∆(s). The

only assumption is that ∆(s) is a real-rational transfer function matrix without poles on

the imaginary axis and in the right half-plane of s. With P(s) of Fig. 2.11 the uncertainty is

assumed to be output multiplicative as an example. The uncertain plant model is found by
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only closing the upper loop and calculating the resulting transfer function matrix Tyu(s)

from u to y:

Tyu(s) = (I + W1(s)∆(s)W2(s))G(s). (2.78)

The stable weighting transfer functions matrices W1(s) and W2(s) may be used to nor-

malize signals of different magnitudes or to emphasize particular frequency ranges with

uncertainties.

Closing just the lower loop yields the transfer function matrix Tzw(s) from w to z:

Tzw(s) = W2(s)G(s)K(s) (I − G(s)K(s))−1
W1(s). (2.79)

Tzw(s) plays a crucial role in robust stability analysis and controller design. Assuming

the nominal feedback loop, i.e. the loop as shown in Fig. 2.11 with ∆(s) = 0, is internally

stable [Mac04] and γ > 0, then the following holds as a result of the Small Gain Theorem

[Mac04]:

If and only if ‖Tzw‖∞ ≤ γ then the uncertain feedback loop as depicted in Fig. 2.11 is

well-posed [Mac04] and internally stable for all uncertainties fulfilling the assumptions on

∆(s) stated above and ‖∆‖∞ < 1
γ
.

As a consequence, the robust stabilization problem is translated into a general optimal

H∞ problem, i.e. finding all controllers K(s) that minimize ‖Tzw‖∞. Solving the optimal

H∞ problem is a difficult task, and practical approaches only approximately minimize

∆(s)

W1(s) W2(s)

G(s)
P(s)

K(s)

w

u

z

y

Figure 2.11: Uncertain feedback system considered for robust H∞ control, with nominal
plant G(s), extended plant P(s), controller K(s), unknown unstructured
uncertainty ∆(s), as well as weighting matrices W1(s) and W2(s). As an
example P(s) is chosen to model an output multiplicative uncertainty.
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‖Tzw‖∞. Algorithms solving this general suboptimal H∞ problem may either rely on

iterated solutions of two Algebraic Riccati Equations (AREs) or may be based on solving

a Linear Matrix Inequalities problem [Mac04]. [MG90] in contrast consider a special case

relying on a particular plant factorization using coprime factors. As a consequence the

two AREs have to be solved only once. The resulting dynamic controllers K(s) and in

particular those found by solving two AREs exhibit close structural similarities to LQG

control (i.e. LQR plus Kalman filter) and the more general H2 control [DGKF89].

So far robust stability was the only objective during controller design. There are several

possibilities to specify performance objectives. For the general suboptimal H∞ problem

[MG90] propose to consider additional weighted inputs and outputs in w and z in order

to represent important closed-loop transfer functions, e.g. from a disturbance to the plant

output. The minimization of the extended ‖Tzw‖∞ results in a tradeoff between different

objectives stated as closed-loop transfer functions, which is denoted as mixed sensitivity

weighting [Mac04]. For the special case based on coprime factorization [MG90] propose

a two-step approach. They first shape the open-loop nominal plant G(s) by attaching

shaping transfer function matrices to its inputs and outputs. Those matrices are chosen to

specify a desired performance. In a subsequent step this shaped plant is robustly stabilized.

The overall controller then consists of the robustly stabilizing controller combined with

the shaping transfer function matrices.

Uncertainties ∆(s) were assumed to be unstructured during controller H∞ synthesis. In

some control problems there is more information regarding the structure of uncertainties.

∆(s) might be a block diagonal matrix for example. In this case, H∞ synthesis might

result in a very conservative controller performance. Robust control can be refined in this

case by defining structured uncertainties, structured singular values, and using the D-K

iteration algorithm for controller synthesis [Mac04].

Literature Survey

Research on robust H∞ path tracking control has been carried out for passenger cars

[OIU96], buses [Mam96] and on-road tractor-trailer combinations [HWTT03]. They all

used the two-step approach proposed by [MG90] which is based on open-loop shaping

and subsequent robust stabilization. [HWTT03] in particular used a dynamic tractor-

trailer model with tractor front wheel steering as an input and the tractor lateral error at

a look-ahead distance as an output. Uncertainties due to varying road conditions, trailer

mass, and tractor velocity have been considered. Controller validation was based on sim-

ulations and experiments. [MM03] consider a tractor-trailer combination very similar to

[HWTT03]. They also claim to use H∞ control based on open-loop shaping and subse-

quent robust stabilization, yet do not provide any details on the variant and weighting

functions used. Validation was done in experiments. In order to improve performance

and robustness with varying velocity [HWTT03] consider further variants combining H∞

control with velocity dependent gain scheduling.
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Discussion

Pro: Robust H∞ control is well suited for MIMO control problems. The requirement of

robust stability is a part of controller design and can be achieved not only for vaguely

defined slightly perturbed plants but for every uncertain plant of a well-defined set. This

is a great advantage in case there is only one attempt in controller design, e.g. if an

unstable closed-loop system has catastrophic consequences and there are little testing

and tuning possibilities. The computational requirements of a H∞ controller are rather

low and comparable to state feedback with observer.

Contra: In order to not sacrifice performance to robust stability a closer look at possible

uncertainties as well as the system’s frequency domain description is required. Choosing

the weighting transfer function matrices is a task for an engineer rather than an operator.

This is a major drawback for the given problem of controlling a multitude of tractor-

implement combinations which are chosen and set up by the customer.

2.2.6 Nonlinear Lyapunov Based Control

The basic idea of this approach is to utilize Lyapunov’s theory of stability to find a

(nonlinear) control law. Following the definitions of [SL91] and starting with the nonlinear

system (2.62) the first step is to choose a control law

u = fu(x) (2.80)

that possibly stabilizes the equilibrium point x = 0 of the resulting autonomous system

ẋ = f(x, fu(x)). (2.81)

In a second step a scalar Lyapunov function candidate V (x) with continuous first partial

derivatives is chosen so that

V (0) = 0 and x 6= 0 ⇒ V (x) > 0 for x ∈ MR = {x | ‖x‖ < R} , (2.82)

i.e. V (x) is locally positive definite in a spherical region MR with radius R.

Finally with the Lyapunov theorem for local stability [SL91], if

V̇ (x) =
∂V (x)

∂x
ẋ =

∂V (x)

∂x
f(x, fu(x)) (2.83)

is locally negative semi-definite in MR, i.e.

V̇ (0) = 0 and x 6= 0 ⇒ V̇ (x) ≤ 0 for x ∈ MR (2.84)
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then the equilibrium point x = 0 is stable in the sense of Lyapunov [SL91], meaning

∀R > 0, ∃ r > 0, ‖x(0)‖ < r ⇒ ∀t ≥ 0, ‖x(t)‖ < R. (2.85)

This definition requires ‖x(t)‖ to be less than an arbitrarily small R. However, it does not

imply asymptotic stability (x(t) → 0 as t → ∞). Demanding V̇ (x) to be locally negative

definite or ensuring the requirements of La Salle’s invariant set theorem [SL91] are met

allows to account for asymptotic stability. If the test for negative semi-definiteness of V̇ (x)

fails a modified control law (2.80) has to be chosen and the described steps have to be

repeated. This makes the Lyapunov based control approach an iterative task that requires

some educated guessing for the control law and the Lyapunov function candidate.

For the kinematic single track tractor example (2.52) and (2.51) in particular possible

choices (following [ABL04]) for the control law (2.80) and the Lyapunov function candi-

date V (x) could be

δtf = arctan

(

−k1 tanh(etl)
sin(eth)

eth

− k2 tanh
(

eth

k2

))

, with k1 > 0, k2 > 0, (2.86)

V (etl, eth) =
k1

lt
log (cosh(etl)) +

1

2
e2

th. (2.87)

Using (2.52) and (2.51) this results in

V̇ (etl, eth) =
∂V

∂etl

ėtl +
∂V

∂eth

ėth = − vx,t
tr k2

lt
eth tanh

(
eth

k2

)

. (2.88)

With vx,t
tr > 0 the derivative V̇ (etl, eth) is negative semi-definite in R2 and [etl, eth]T =

0 therefore is a stable equilibrium point. Further investigation shows that V (etl, eth) is

radially unbounded, i.e. V (etl, eth) → ∞ as
∥
∥
∥[etl, eth]T

∥
∥
∥ → ∞, and the application of

La Salle’s global invariant set theorem [SL91] finally allows to conclude that the chosen

control law results in a globally asymptotic stable equilibrium point [etl, eth]T = 0, i.e. for

all initial conditions in R2 this point is reached with t → ∞.

Literature Survey

[ABL04] apply the control approach of this example to a tractor and an unsteered trailer

in forward and backward motion. [CLTM10] use Lyapunov based control for a similar

system in off-road applications. However, the control law in their case is the result of

a two-step approach. They first stabilize the trailer motion by considering it a virtual

vehicle with the trailer’s direction of travel at the hitch point as an input. In a second

step a tractor control law ensuring this direction of travel is conceived. Finally, stability

is proven by using Lyapunov’s theory. In order to cope with the uncertainties resulting

from tire-soil interaction [CLTM10] combine this control law with a nonlinear observer

estimating the wheel side-slip angles.
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Discussion

Pro: Lyapunov based control allows to account for the nonlinearity of the actual system

and provides at least a lower bound estimate for the domain of attraction [SL91] within

the system’s state space. The computational demand of the control approach depends

on the actual system, however, with application to path tracking control in [ABL04] and

[CLTM10], it turns out to be simple. MIMO systems are supported without any changes

to the approach.

Contra: The major drawback of Lyapunov based control is that finding a control law and

a Lyapunov function candidate, as shown in the example, is not systematic and requires

some educated guessing. This makes an application to a multitude of implements with

different input-output combinations impractical. Similarly choosing the controller gain (k1

and k2 in the example) is far from intuitive. The control law itself results in a nonlinear

state feedback which is very likely to require additional measures in order to make it

robust or adaptive. [CLTM10] therefore added an estimation of the wheel side-slip angle

to their observer and used the estimates in their control law.

2.2.7 Feedback Linearization

Feedback linearization may be grouped in two categories depending on the resulting sys-

tem [SL91]. Input-state linearization is based on finding a nonlinear state feedback and a

nonlinear state transformation that result in an equivalent linear system described by a

linear system matrix A and a linear input matrix B. In contrast to Jacobian linearization

this transformation maintains an exact description of the original system. Input-output

linearization aims for a nonlinear state feedback resulting in linear differential equations

relating inputs and outputs. In both cases the resulting linear system is subsequently

stabilized by using a linear controller.

Considering the example (2.52) and (2.51) with output y = etl, an input-output linearizing

control law can be found by first calculating

y = etl, (2.89)

ẏ = ėtl = vx,t
tr sin(eth), (2.90)

ÿ = vx,t
tr cos(eth)ėth =

(

vx,t
tr

)2

lt
cos(eth) tan(δtf ) (2.91)

where vx,t
tr is assumed to be positive and constant or slowly changing. The relative degree

r = 2 at [etl, eth]T = 0 equals the number of system states, hence there is no internal

dynamics that might affect stability [SL91].
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Solving (2.89) and (2.90) for etl and eth and substituting them in (2.91) yields

ÿ = 0
︸︷︷︸

f(y,ẏ)

+

(

vx,t
tr

)2

lt
cos

(

arcsin

(

ẏ

vx,t
tr

))

︸ ︷︷ ︸

b(y,ẏ)

tan(δtf )
︸ ︷︷ ︸

u

, (2.92)

which is a system representation in terms of y and time derivatives referred to as nonlinear

controllable canonical form [Ada09]. Having transformed the system into this canonical

form a possible input-output linearizing state feedback is found to be

u =
1

b(y, ẏ)
(−f(y, ẏ) + ū) , (2.93)

with ū denoting a new input. Linearity can be verified by inserting (2.93) in (2.92). The

resulting linearized system is a chain of two integrators with input ū and output y, which

can be stabilized by the linear control law

ū = −ã1ẏ − ã0y (2.94)

with ã1 and ã0 denoting the coefficients of an arbitrarily chosen desired closed loop char-

acteristic polynomial. To implement (2.93) and (2.94) y and ẏ are calculated using the

transformations given by (2.89) and (2.90). Input-output linearization in case of a rela-

tive degree lower than the number of system states is very similar. This, however, requires

using the Byrnes-Isidori canonical form [Ada09] and checking the internal dynamics for

stability.

Literature Survey

The sketched feedback input-output linearization approach is not limited to SISO systems

and [CT95b, CT00] apply it to a tractor-trailer combination using the tractor front wheel

steering angle and the trailer’s differential braking force to control the tractor lateral error

and the trailer hitch angle. [Wag10] considers a slightly modified approach to input-output

linearization: instead of linearizing feedback he uses linearizing feedforward calculated

from desired system states. This is done with the assumption of rather small differences

between desired and actual system states. The result is a set of almost linear differential

equations which are stabilized using linear controllers. He applies his approach to a tractor

with two trailers. Tractor and trailer wheels are the steering inputs and the tractor lateral

position and the trailer hitch angles are the controlled variables.

Discussion

Pro: Feedback linearization, similar to Lyapunov based control, allows accounting for

the system’s nonlinearities and hence tends to result in a large domain of attraction.
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The computational load of calculating nonlinear state feedback and state transformations

depends on the particular system. Path tracking control for the stated approaches, though,

is still rather computationally simple.

Contra: A linearizing state feedback can be found more systematically compared to itera-

tive guessing with Lyapunov based control. However, it is still tailored towards a particu-

lar input-output combination. For each variant a transformation into one of the described

canonical forms has to be found analytically which is a task difficult to automate. In addi-

tion to this, the linearizing state feedback and state transformations tend to be sensitive

to modeling errors and uncertainties [SL91]. In case of larger, more complex systems it is

not easy to find a physical interpretation of the transformed system states or high order

derivatives of particular outputs. This makes the subsequent design of a linear stabilizing

controller for the linearized system less intuitive.

2.2.8 Sliding Mode Control

Sliding Mode Control (SMC) is a robust control approach particularly addressing nonlin-

ear systems with parametric uncertainties or unmodeled dynamics. Robustness is achieved

by using a switching control law. The principal idea of the approach is to divide the con-

trol of a nth order nonlinear system into two control tasks. One considering a first order

nonlinear system and a second considering a (n − 1)th order linear system. This is done

by choosing a surface S(t) in R
n in a way which makes it possible to find a switching

controller that forces the system’s trajectories onto this surface within finite time. Once

on the surface the system’s trajectories are forced to remain on the surface. The system’s

behavior on this surface is called sliding mode [SL91] and with an appropriate choice of

S(t) this behavior will be of order (n − 1), linear, and asymptotically stable.

In order to apply SMC to the example given by (2.52) and (2.51) it is again transformed

into the nonlinear controllable canonical form (2.92) and hence given by:

ÿ = 0
︸︷︷︸

f(y,ẏ)

+

(

vx,t
tr

)2

lt
cos

(

arcsin

(

ẏ

vx,t
tr

))

︸ ︷︷ ︸

b(y,ẏ)

tan(δtf )
︸ ︷︷ ︸

u

. (2.95)

Following [SL91] the above functions f and b are assumed to be unknown and f̂ and b̂

denote their known estimates. The estimation errors are assumed to be bounded by

∣
∣
∣f̂ − f

∣
∣
∣ ≤ F, (2.96)

0 < bmin ≤ b ≤ bmax. (2.97)
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Choosing b̂ =
√

bminbmax the latter can be rewritten as

β−1 ≤ b̂

b
≤ β, with β =

√

bmax

bmin

. (2.98)

The first step in SMC is to define a sliding surface S(t) in R2. [SL91] proposes the definition

s(y, ẏ) = 0 with

s(y, ẏ) = ẏ + λy (2.99)

and λ being a strictly positive constant. With this definition the condition a switching

controller needs to fulfill in order to force the system’s trajectory [y, ẏ]T onto S(t) can be

formalized by introducing the sliding condition

1

2

d

dt
s2 ≤ −η |s| , i.e.







ṡ ≤ −η for s > 0,

ṡ = 0 for s = 0,

ṡ ≥ +η for s < 0

(2.100)

with η being a strictly positive constant. s2 can be interpreted as a measure for the

distance of the system’s trajectory from the sliding surface S(t). Requiring η to be strictly

positive implies the sliding surface is reached in finite time. Once on the surface the sliding

condition requires the trajectory [y, ẏ]T to remain on the surface, i.e. s remains 0. With

(2.99) this results in a reduced order linear system which is asymptotically stable due to

the choice of λ.

With the previous definitions [SL91] derives a robust controller

u =
1

b̂

(

−f̂ − λẏ − k sgn(s)
)

(2.101)

satisfying the sliding condition (2.100) if k is chosen to fulfill

k ≥ β (F + η) + (β − 1)
∣
∣
∣−f̂ − λẏ

∣
∣
∣ . (2.102)

In case of b̂ = b and f̂ = f this control law may be interpreted as input-output linearizing

state feedback (2.93) with the resulting chain of integrators being subsequently stabilized

using the new input ū = −λẏ − k sgn(s). In case of model uncertainties (2.101) provides

approximate input-output linearization only. The sign function

sgn(s) =







+1 for s > 0,

0 for s = 0,

−1 for s < 0

(2.103)



41

results in a discontinuous control law being switched at the surface S(t). The factor k

is chosen considering the upper bounds of the model’s uncertainties. The larger those

uncertainties are the larger the switched part of the control signal has to be in order to

overcome the uncertainties. In practice switching is not instantaneous and the system’s

trajectory therefore will not slide perfectly on the surface but will chatter across both

sides of the surface. Consequence is a very high control switching frequency. Only few

applications are suitable for high frequency switching and that is why the sign function

is normally replaced by a saturation function [SL91]

sat
(

s

Φ

)

=







+1 for s
Φ

> 1,

s
Φ

for
∣
∣
∣

s
Φ

∣
∣
∣ ≤ 1,

−1 for s
Φ

< −1.

(2.104)

The strictly positive boundary layer thickness Φ is a tuning parameter used to smooth

the control signal. The price of smoothing the control signal is a weakened robustness and

a remaining steady-state error, which is however kept within guaranteed limits [SL91].

Keeping (2.99) in mind the saturation function within the boundary layer Φ only resembles

PD control.

Literature Survey

[TT03] use several variants of SMC for a tractor-trailer combination. Tractor front wheel

steering serves as an input and the lateral error at a look-ahead distance as an output.

Besides the approach sketched above, they combine SMC with an adaption of tire corner-

ing stiffness parameters. In addition, they state a slightly different switching control law

not requiring the introduction of a sliding surface. The term SMC is used throughout the

entire work. This, however, is misleading, because in most simulations and all experiments

[TT03] use an infinite boundary layer thickness Φ resulting in a degenerated SMC which

actually is PD control only.

Discussion

Pro: SMC is very similar to feedback linearization. It is able to account for a system’s

nonlinearities and is computationally simple for the given problem. In contrast to feedback

linearization SMC is designed to cope with parameter uncertainties and unmodeled system

dynamics. This robustness is achieved by introducing a switching control law.

Contra: SMC may perform extremely well in applications that allow for switching con-

trollers. Tractor and implement steering actuators unfortunately are not intended for

switching control and in addition exhibit a steering rate limitation imposed by the max-

imum hydraulic valve flow. Either this rate limit or the necessary smoothing boundary

layer at the switching surface will deteriorate the controller’s robustness. As a conse-
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quence the steady-state error can be kept within certain limits, but will not necessarily

vanish. Deriving SMC is tailored towards particular input-output combinations for the

same reasons as feedback linearization, i.e. controller design involves transforming each

system variant into an appropriate canonical form. The bounds F , β, the sliding surface

s, and the boundary layer thickness Φ depend on the actual implement and have to be

tuned by the user.

2.2.9 Geometric Path Tracking

The main idea of geometric path tracking is to use geometric properties of the vehicle

and the desired path to derive a (heuristic) control law. From a multitude of variants

[Sni09] states some that are particularly popular in mobile robotics. His pure pursuit

control approach is given as an example. Figure 2.12 depicts the approach and the required

geometric properties. The approach comprises several steps with the objective to calculate

a steering angle that results in driving a circular arc to a particular point on the desired

path ahead. The first step is to draw a circle with radius dah around the tractor’s rear

axle. dah here denotes a look-ahead distance with a definition slightly different from the

δtf

δtf

lt

circular arc

desired path

dahR

R

2α

α

Figure 2.12: Geometric path tracking control of a tractor using a pure pursuit approach.
The instantaneous steering angle δtf is calculated to bring the tractor’s rear
axle back on track by following the depicted circular arc which intersects the
desired path at a chosen look-ahead distance dah.
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previous one used for PID control. In a next step the point of intersection between this

circle and the desired path ahead is calculated. In a third step a circular arc is placed

between this intersection and the tractor rear axle. With α defined as shown in Figure 2.12

the arc’s radius R and the chord length dah are related by

dah = 2R sin(α). (2.105)

Assuming no wheel side-slip and using the Ackermann steering angle (from Figure 2.12)

δtf = arctan

(

lt
R

)

, (2.106)

the instantaneous pure pursuit steering angle is

δtf = arctan

(

2 ltsin(α)

dah

)

. (2.107)

This steering angle is applied to the tractor at the current controller time step. During the

next time step the previous result is discarded and a new circular arc as well as a new pure

pursuit steering angle are calculated. Controller tuning can be achieved by introducing a

multiplicative tuning parameter within equation (2.107).

Literature Survey

The second geometric approach stated by [Sni09] and denoted as the Stanley method is

based on a weighted sum of the vehicle heading error and the distance between the vehicle

front axle and the desired path. [Sni09] applies both the pure pursuit and the Stanley

method to passenger cars only. In order to control a tractor towing an implement with

steerable drawbar [BOV12], besides their proposed MPC control approach, introduce a

simple comparative approach which is based on a variant of pure pursuit and an additional

geometric control law for the drawbar.

Discussion

Pro: Geometric approaches offer a straightforward solution to path tracking control with-

out requiring any knowledge of control systems, which might be one reason for their

popularity. In addition to this, the resulting control laws turn out to be computationally

simple.

Contra: As a drawback the straight forward yet heuristic approaches impede analysis

regarding stability and performance. The geometric control laws are tailored to a partic-

ular implement and actuator and this complicates application to a multitude of different

combinations. The considered control laws furthermore do not account for parameter

uncertainties or disturbances making controller retuning during field work rather likely.
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2.2.10 Fuzzy Logic Control

Numerous control problems are concerned with the automation of tasks that have been

previously performed by skilled operators. The idea of Fuzzy Logic Control (FLC) is to

use human expert knowledge directly for controller design. Human knowledge however

is seldom expressed mathematically but in most cases given as a set of linguistic rules.

Considering the simple path tracking example of Figure 2.2 such a rule could look like “IF

the lateral error is positive AND the heading error is positive THEN the steering angle is

negative”.

Fuzzy logic provides means to translate human knowledge into a mathematical form. To

outline this connection the concepts of fuzzy sets and linguistic variables are required,

which are introduced following the strict definitions of [Bot93]. An ordinary (crisp) set

may either contain or not contain an element. The idea of fuzzy sets in contrast is to

specify a degree to which a certain element is member of a fuzzy set. For a fuzzy set A

this is done using a membership function µA taking values in the interval [0, 1], with 1 and

0 denoting full membership and no membership respectively. The fuzzy set A may then

be defined using ordered pairs of elements x and their respective degrees of membership

µA(x), i.e. A = {(x, µA(x))|x ∈ X}, with X generally being a collection of objects denoted

as universe of discourse [Lee90a]. In the following section X is assumed to be a set of real

numbers given by the interval [xmin, xmax]. Omitting some technicalities [Bot93] linguistic

variables are characterized by a variable name, e.g “lateral error”, and linguistic values

taken from a set of linguistic terms, e.g. {“positive”, “zero”, “negative”}.

Using those definitions fuzzy logic associates linguistic values with fuzzy sets and linguis-

tic operators (e.g. AND, OR, IF-THEN) with operations on those fuzzy sets and their

membership functions. With FLC this link between linguistic and mathematical expres-

sions is used to design a controller based on linguistic rules. A fuzzy logic controller may

be divided into a fuzzification interface, a knowledge base, an inference engine, and a

defuzzification interface [Bot93]. The knowledge base comprises a collection of linguistic

rules specifying the controller behavior. The inference engine uses those rules and linguis-

tic controller input values to obtain linguistic controller output values. Actual calculations

are performed using the corresponding fuzzy sets. The theoretical basis of decision making

within the inference engine is approximate reasoning [Bot93]. The key idea is an extension

of Boolean logic allowing not only for expressions like "IF A is true THEN B is true" but

also for "IF A is true to a certain degree THEN B is true to certain degree". The fuzzifi-

cation interface is used to express controller input values, e.g. measured process variables,

their integrals, and their derivatives, in linguistic terms and their corresponding fuzzy

sets. The defuzzification interface is used to calculate a crisp controller output value from

a linguistic controller output value given as a fuzzy set.
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1

“positive”“zero”“negative”

µPetl
(etl)

µZetl
(etl)

µNetl
(etl)

µ

etletl,maxetl,min

Figure 2.13: Membership functions µPetl
(etl), µZetl

(etl), and µNetl
(etl) numerically repre-

senting the linguistic values “positive”, “zero”, and “negative”. Values of etl

are assumed to be within a suitable universe of discourse given by the inter-
val [etl,min, etl,max]. For eth and δtf membership functions and linguistic values
are chosen similarly.

There are numerous variants of FLC using different fuzzy sets and operators on fuzzy sets

[Bot93, Lee90a, Lee90b]. In order to illustrate FLC a particular variant using triangular

and trapezoidal membership functions as well as Mamdani’s Max-Min-Inference method

[Bot93] is applied to the simple path tracking example of Figure 2.2. The controller inputs

are etl and eth with the corresponding linguistic variables “lateral error” and “heading er-

ror”. Similarly, the controller output is δtf with the linguistic variable “steering angle”.

The universes of discourse for etl, eth, and δtf are chosen to be suitable intervals in R.

The universe of discourse of each input and output is partitioned by defining membership

functions as depicted in Figure 2.13. Considering e.g. the linguistic value “zero”, the idea

of fuzzy sets becomes apparent. The fuzzy set denoted by Zetl
and defined using the mem-

bership function µZetl
(etl) comprises not only the numerical value 0 but also small values

close to 0 reflecting an imprecise linguistic definition. The choice of suitable membership

functions as well as their shapes and sizes is part of controller design. The choice is based

on human expert knowledge. The exemplary partition using three membership functions

is rather coarse and there are finer partitions e.g. distinguishing between “large positive”

and “small positive” etc. [Bot93].

The second important part of controller design is the creation of a linguistic rule base.

A possible rule base for the simple path tracking example is stated in Table 2.4. The

rule base depicts human expert knowledge and implicitly considers their knowledge of the

controlled plant.

Table 2.4: Fuzzy path tracking control rule base.
R1: IF lateral error is positive AND heading error is positive THEN steering angle is negative
R2: IF lateral error is positive AND heading error is zero THEN steering angle is negative
R3: IF lateral error is positive AND heading error is negative THEN steering angle is zero
R4: IF lateral error is zero AND heading error is positive THEN steering angle is negative
R5: IF lateral error is zero AND heading error is zero THEN steering angle is zero
...
R9: IF lateral error is negative AND heading error is negative THEN steering angle is positive
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The remaining choices during controller design are more technical and comprise fuzzifi-

cation, decision making, and defuzzification strategies. Fuzzification of controller input

values is achieved by representing them using fuzzy sets. Using e.g. etl,m to denote the

current measured lateral error a simple representation is given by defining the fuzzy set

Metl
with membership function:

µMetl
(etl) with







µMetl
(etl) = 1 for etl = etl,m,

µMetl
(etl) = 0 for etl 6= etl,m.

(2.108)

Using Mamdani’s Max-Min-Inference method [Bot93] to set up the inference engine a

particular mathematical interpretation of the rules of Table 2.4 is given as follows. The

first condition of rule R1, i.e. “lateral error is positive”, is interpreted as

αR1,1
= sup

etl∈[etl,min,etl,max]

(

min
(

µMetl
(etl), µPetl

(etl)
))

. (2.109)

For the special case (2.108) αR1,1
is

αR1,1
= µPetl

(etl,m). (2.110)

αR1,1
may be seen as the degree to which the first condition of rule R1 is fulfilled. Cal-

culating αR1,2
for the second condition of R1 in a similar way the combined condition

“lateral error is positive AND heading error is positive” is interpreted as

αR1
= min

(

αR1,1
, αR1,2

)

. (2.111)

The implication “IF lateral error is positive AND heading error is positive THEN steering

angle is negative” is implemented by weighting the conclusion’s membership function

µNδtf
(δtf ), i.e:

µR1
(δtf ) = min

(

αR1
, µNδtf

(δtf )
)

. (2.112)

αR1
defines an upper limit for µR1

(δtf ) and is denoted as firing strength [Lee90b] of

rule R1. Performing similar calculations for all rules allows to combine the result in one

membership function

µR(δtf ) = max (µR1
(δtf ), . . . , µR9

(δtf )) . (2.113)
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Defuzzification finally yields the controller output value. Using the center of area method

[Bot93] as an example, the controller output value applied to the plant is

δtf,coa =

δtf,max∫

δtf,min

δtf µR(δtf )dδtf

δtf,max∫

δtf,min

µR(δtf )dδtf

. (2.114)

The entire procedure is repeated for each controller time step. The FLC has no internal

states and results in a nonlinear function relating controller inputs and outputs. For

that reason it may be interpreted as a lookup table [Bot93] which is parametrized using

linguistic expressions.

Literature Survey

In literature FLC was considered in remotely related path tracking applications for mo-

bile robots [ACF07] as well as in applications for passenger cars on automated highways

[HT94]. The latter designed fuzzy logic controllers with rule bases comprising feedback

control, curvature preview, and velocity based gain scheduling. Feedback control com-

pared to the simple example above relies on a finer partition of the universes of discourse,

hence resulting in numerous (125) rules. The fuzzy logic controller was tuned manually

mimicking a driver’s behavior and using an existing LQR to aid the initial choice of pa-

rameters. An experimental comparison with LQR and PID indicated that a well-tuned

fuzzy logic controller is capable of achieving a similar performance without using an ex-

plicit plant model. In a later publication [HT95] tried to reduce the tuning effort of their

fuzzy logic controller by combining it with model reference adaption techniques.

Discussion

Pro: FLC allows for controller design based on linguistic rules and expert knowledge. This

is a great advantage for plants that are difficult to model or not completely understood.

The approach can be applied to MIMO systems without difficulties. With a moderate

number of rules the approach is computationally simple.

Contra: The advantage of FLC in case of vaguely known plants turns into a drawback in

case of plant models that can be stated easily. In this situation both the tuning parameters

of membership functions and the rules within the knowledge base quickly outnumber the

parameters required for e.g. PID or LQR control. FLC is a nonlinear proportional control

law only and additional measures might be necessary to cope with changing parameters

and disturbances.
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2.2.11 State, Parameter, and Disturbance Estimation

Many of the control approaches mentioned above require full state feedback. In most

cases, however, some states are either unmeasurable or measurable only with great effort.

Therefore, numerous ways of estimating unmeasurable system states have been developed.

Figure 2.14 depicts the principle idea of state estimation. A plant model is computed par-

allel to the actual plant. This model is fed with the plant input signals u. The computed

estimated output ŷ is compared with the actual plant output y. The difference between

both is fed back to the plant model. The associated output estimation error feedback is

designed such that the plant model states follow the plant states. If the plant model states

x̂ track the plant states x reasonably fast they can be used as a substitute for the plant

states within a controller for the plant. Besides the system states considered for plant

control, the plant model may include additional (uncontrolled) states modeling distur-

bances [Foe94, Lun10] or slowly changing plant parameters [GKN+74]. The plant model

used within the estimator may be linear or nonlinear. Estimator design is motivated using

either deterministic [FPEN10, Foe94, Lun10, Ada09] or stochastic [GKN+74, May82] sys-

tem descriptions. For linear deterministic plants the Luenberger observer [Foe94, Lun10]

is very common. Research on state estimation for linear stochastic plants produced the

celebrated Kalman filter [GKN+74] which, with some assumptions regarding the system’s

noise [GKN+74], is an optimal filter. This means it provides a minimum error covariance

system state estimate for linear systems. Nonlinear estimation problems have led to nu-

merous estimator variants and it is impractical to provide a comprehensive list within

this section. Only a relevant selection of approaches is briefly discussed. For deterministic

estimator

plant

output estimation error
feedback

plant, parameter, and
disturbance model

−

ŷ

x̂ â d̂

u
y

Figure 2.14: State estimation based on a plant model computed parallel to the plant. The
output estimation error feedback is designed to have the plant model states
follow the plant states. The plant model may include additional disturbance
and parameter models. y and ŷ denote plant output and output estimate. x̂,
â, and d̂ are state, parameter, and disturbance estimates.



49

system descriptions [Ada09] states estimators that closely resemble the ideas of nonlin-

ear controllers, using feedback linearization for instance. For nonlinear stochastic systems

numerous generalizations of the linear Kalman filter have been developed. The very popu-

lar Extended Kalman Filter (EKF) [GKN+74, May82] is a straightforward generalization

that includes a nonlinear plant description. Partly however it is still based on a first order

Taylor series expansion of the nonlinear system. For systems exhibiting stronger nonlin-

earities two alternatives are common. The first one is a second-order filter [GKN+74] that

simply relies on a higher order Taylor series expansion. The second is the more recent

Sigma-Point Kalman Filter [Mer04] which sparked interest because it allows to avoid

plant linearization and the calculation of the respective Jacobian matrices. This estima-

tion approach, instead, relies on statistical analysis of carefully chosen state space sample

points which are propagated using the nonlinear system description. Besides the men-

tioned estimators, which allow for parameter estimation in a state estimation framework

there are related methods focusing on parameter estimation only. Among those the Least

Squares Estimator [SL91] and its variants are common.

Besides those universally applicable state estimation methods some particularities regard-

ing state estimation combined with parameter and disturbance estimation for path track-

ing control applications are noteworthy. [CLTM10] add side-slip parameters for all wheels

to a kinematic tractor-trailer model and use a deterministic observer to estimate those.

[BOV12] in contrast capture side-slip properties of a tractor-trailer combination by mul-

tiplying the tractor front wheel steering angle with an estimated factor. An EKF is used

for state and parameter estimation. [Bel99] considers two variants. The first variant uses

a kinematic tractor model with two parameters accounting for side-slip and calibration

errors. Those parameters are an additive steering angle bias and a multiplicative factor

affecting the tractor yaw rate ODE. An EKF and a more accurate second order nonlin-

ear filter have been used to estimate those parameters. Simulations showed relative small

performance differences between both. The second order nonlinear filter however could

not be computed in real-time and was not considered in experiments. The second variant

of [Bel99] is a slope adjusted parameter estimation approach. In this case the influence of

two parameters accounting for steering angle and yaw angle bias is modeled to be propor-

tional to the tractor’s roll angle. Due to this choice changing slope angles do not perturb

settled bias parameter estimates. The tractor’s roll angle was measured and provided to

the estimator. [Rek01] focuses on parameter estimation for a dynamic tractor model. He

combines multiple physical model parameters to a reduced number of parameters and

proposes two estimator variants for those. The first variant is an EKF including addi-

tional states to model slowly changing parameters. The second variant uses an EKF for

state estimation only which is combined with an outer loop Least Mean Squares (LMS)

parameter identification algorithm. This variant allows maintaining a lower number of

system states and results in a considerably reduced computational effort.
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2.2.12 Adaptive Control

Dynamic systems often exhibit parameters that are uncertain or slowly changing. If the

mismatch between parameters assumed for controller design and actual plant parameters

deteriorates the performance of the controlled system, then the controller may be improved

by changing the control law during runtime based on recent more accurate parameter

estimates. This is the main idea of adaptive control. [SL91] distinguishes two adaptive

control concepts which are depicted in Figure 2.15 and Figure 2.16. The remaining section

briefly summarizes the detailed explanations in [SL91]. The Self-Tuning Controller (STC)

is a straightforward approach using current plant parameter estimates to recalculate the

controller parameters. This approach may be combined with many control approaches

stated before. A STC is quite simple to design. The convergence properties of the resulting

system, however, are difficult to analyze. Model Reference Adaptive Control (MRAC) in

contrast uses a reference model specifying the desired closed loop plant behavior. The

tracking error between reference model output and controlled plant output is fed into

an adaption law modifying some controller parameters until the tracking error converges

to zero. MRAC can be interpreted as estimation of uncertain controller parameters in

contrast to plant parameter estimation with STC. With MRAC controller design normally

is based on trial and error. Convergence analysis however is rather simple. Both adaptive

control approaches share a crucial requirement. Sufficient excitation of the controlled

system is needed in order guarantee stability and parameter convergence. Measurement

noise in particular may cause a drift of parameters in case there is a lack of excitation.

Regarding research on path tracking control [GB08] considers a tractor with a three-point

hitched ripper. The steady-state gain of the steering angle to yaw rate transfer function in

this setup was shown to vary with velocity and working depth of the ripper. To achieve a

consistently good controller performance they derived a PD lateral position controller with

−

plant

estimator

controller

âp

u yr

Figure 2.15: Principle of a Self-Tuning Controller (STC) (following [SL91]). An estimator
is used to obtain plant parameter estimates âp. Subsequently these estimates
are used to recalculate the controller. The reference signal r must provide
sufficient excitation.
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Figure 2.16: Principle of Model Reference Adaptive Control (MRAC) (following [SL91]).
A reference model specifies the desired closed loop behavior. The reference
output error er between actual output y and reference output yr is used to
adapt the estimated controller parameters âc until er converges to 0. The
reference signal r must provide sufficient excitation.

a precalculated controller gain lookup table considering the tractor velocity and a second

parameter accounting for changes in the ripper’s working depth. This second parameter

was estimated using an EKF. Data analysis was included in order stop estimation in case

the yaw dynamics excitation becomes insufficient. [Der08, DB09] as well used a tractor

and a three-point hitched ripper. They presented a PID path tracking controller with two

MRAC variants adapting an inner loop yaw rate controller. The first variant adapted the

feedback gain of the yaw rate controller. This controller however suffered from fluctuations

in the adaption response and system oscillations. Therefore, a second variant introducing

and adapting a feedforward gain for the yaw rate controller was derived. Both controllers

were used for straight path tracking and the adaption was only performed during the

initial path acquisition. [Rek01] considered a tractor with a three-point hitched cultivator

on curved paths. He combined LQR with his EKF/LMS parameter estimator described

in the previous section. He performed experiments on curved paths and recommended

using headland turns for identification in case paths do not provide sufficient excitation.

In order to improve their nonlinear MPC prediction in the presence of wheel side-slip

[BOV12] include an EKF estimation based factor affecting the tractor steering angle.

[CLTM10] used tractor and unsteered implement wheel side-slip estimates to enhance

their nonlinear control law based on a kinematic vehicle description. [TT03] considered

a dynamic model description of an on-road tractor-trailer combination with uncertain

cornering stiffness parameters for all wheels. They combined adaptive with sliding mode

control and utilize estimates of the uncertain cornering stiffness parameters to improve

the linearizing part of the sliding mode control law. Special emphasis was on keeping the

estimated parameters within a specified interval. This allowed maintaining a formal upper

bound for model uncertainties which is needed to motivate sliding mode control.
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2.2.13 Overview and Comparison

The numerous path tracking control approaches outlined within the previous sections

are intended for various applications. Objectives, requirements, and surrounding condi-

tions may differ for those applications. In order to identify solutions suiting this work’s

objectives of Section 1.2 a discussion outlining advantages and disadvantages has been

provided for each approach. This section compiles the results of those discussions in order

to narrow down the wide choice of approaches to a smaller number of promising solutions.

This rather coarse assessment however does not exclude the possibility that other choices

might be modified to meet this work’s objectives as well.

Table 2.5 lists possible control approaches and this work’s objectives which can be con-

sidered prior to actually implementing an approach. In addition to this, the need for state

estimation was included as a criterion depicting increased effort. This effort arises namely

for two reasons. The first is implement specific estimator parameterization which is pos-

sibly done in the field. The second stems from state feedback control on curved paths

requiring a nonlinear reference variable generator to obtain desired system states (e.g.

desired hitch angle) matching the desired path.

Considering variants of implements and actuator combinations, nonlinear Lyapunov based

control, feedback linearization as well as SMC in particular rely on control laws tailored

Table 2.5: Comparison of path tracking control approaches.
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Classical PID Control X X X

Linear-Quadratic Regulator X X X X

Model Predictive Control X X X

Robust H∞ Control X X X X X

Nonlinear Lyapunov X X

Feedback Linearization X X

Sliding Mode Control X X X

Geometric Path Tracking X X

Fuzzy Logic Control X X X X
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towards a particular system input-output configuration. Classical PID control as well as

FLC do not require reformulation of the entire control law. However, they still respond

differently depending on the particular input-output behavior. LQR, MPC, and robust

H∞ control share the advantage that the underlying numerical algorithms are applicable

to (controllable) linear systems in general regardless of a particular structure. Most stated

control approaches are directly applicable to MIMO systems. Only geometric path tracking

as considered in literature [BOV12] and most classical PID controller design approaches

require multiple SISO control loops to be closed and therefore neglect coupling. Robustness

of a control approach must be further distinguished due to different definitions. Robust

controllers as precisely defined by [DG75] (see Appendix A.7) exhibit zero steady-state

error despite particular types of disturbances and uncertain plant parameters. The allowed

parameter perturbations are finite and not just arbitrarily small, provided that the closed

loop system remains stable. PID is such a robust controller for constant disturbances.

Robustness as defined for SMC is in a sense that for specified upper bounds of parametric

uncertainties the steady state error remains within defined limits. The achievable limits

result from a trade-off considering unmodeled dynamics, a finite switching frequency, and

possibly smoothed switching using a boundary layer [SL91]. Robust stability as defined

by [Mac04] while considering robust H∞ control achieves closed loop stability for an entire

set of well-defined uncertain plants. The closed loop however does not necessarily exhibit

good a performance and small steady-state errors. In terms of tuning LQR and MPC

share the advantage that those rely on choosing weights for input signals as well as state

or output signals. Choosing weights for steering inputs and tracking error outputs in

particular allows for intuitive interpretation. FLC is meant to depict expert knowledge

and can therefore be quite intuitive. This is in case the number of rules remains limited.

From previous work MPC was the only one being rather computationally demanding due

to numerical optimization at each time step. Considering additional effort due to state

estimation PID, FLC, and geometric path tracking could rely on measured outputs only.

H∞ controller design immediately results in a dynamic output feedback law and designing

a separate state estimator is not necessary.
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3 Models of Lateral

Tractor-Implement Motion

Tying in with the general introduction on models of vehicle lateral motion provided in

Section 2.1 the present section is used to derive the tractor and implement models needed

throughout the remainder of this work. Both dynamic and kinematic models of lateral

motion are considered. A combination studied in particular comprises a front wheel steered

tractor and a towed implement with steerable wheels and steerable drawbar. Regarding

this combination variants using either all or subsets of the available actuators are taken

into account. The models are given in two representations with the first one being based

on earth-fixed coordinates for simulation purposes. The second representation, in terms

of deviations from a desired path, allows for linearization, further analysis, and model

based controller design. While deriving all models particular emphasis is put on using

approaches that can be easily extended to other implement variants. For both kinematic

and dynamic models the approaches require constraints of a particular implement to be

stated up-front. Subsequently, equations of motion are found using automated procedures

and computer algebra software. Within this section each model is parameterized in order

to resemble the experimental setup described in Appendix A.3. Finally, an analysis and

comparison is given to outline the capabilities and limitations of each model.

3.1 Dynamic Models

The first models to be considered are dynamic models of tractor-implement combinations.

The basic ideas regarding modeling assumptions, equations of motion, as well as wheel

forces and moments can be transferred directly from Section 2.1.1. The introduction of an

implement with steerable drawbar in particular, however, deviates from all previous work

on dynamic vehicle modeling. Wheel steering, as considered before, causes a change in the

external force vector acting on one of the rigid bodies. This is without immediate influence

on the rigid bodies’ position and orientation. Drawbar steering in contrast requires the

connected rigid bodies to move in order obtain a desired steering angle. As a consequence,

drawbar steering compared to wheel steering exhibits a closer coupling with rigid body

dynamics. This section proposes a new solution of how to include drawbar steering and

similar types of actuators in a convenient way.
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3.1.1 Modeling Assumptions

For the given task of path tracking control a simulation model as well as a possibly

linearized and simplified model for further analysis and controller design have to be found.

The considered steering inputs do not result in asymmetric wheel forces. Hence, as in most

previous research stated in Section 2.1.1, all wheel properties of an axle are combined and

a single track model as depicted in Figure 3.1 is used to describe the tractor-implement

combination. The model is assumed to be in plane motion, while wheel load transfer as

well as roll and pitch movement are neglected. The influence of slopes, however, may be

included by adding lateral or longitudinal disturbing forces. Tractor and implement are

modeled as two rigid bodies with masses mt and mr1 as well as moments of inertia It and

Ir1. The rigid bodies exhibit 3 DoFs each, which are further reduced due to constraints

imposed by the drawbar. Steering of tractor and implement is achieved using the tractor

front wheel steering angle δtf as well as the implement drawbar and wheel steering angles

δr1d and δr1r. These steering angles are typically enforced by a steering angle controller

and hydraulic actuators. The desired straight path and the associated tracking errors are

introduced to obtain a linear system description in terms of path deviations.

3.1.2 Equations of Motion

The introductory example of Section 2.1.1 considered a tractor and hence a single rigid

body with simple equations of motion. Tractor-implement combinations described by mul-

tiple rigid bodies, which are subject to constraints, in contrast result in lengthy equations.

To obtain those equations in a systematic manner [Gen97] proposes a particularly useful

approach using Lagrangian mechanics as well as some well-considered intermediated coor-

dinate transformations. [Gen97] uses this approach to derive the equations of motion for

a tractor with an arbitrary number of trailers. As a concise example an extended version

of his approach has been used in Appendix A.1.1 to derive the equations of motion of a

tractor. The extensions made comprise the introduction of arbitrary forces and moments

acting on the c.g. allowing the inclusion of disturbing forces for instance.

In this section the approach as stated in Appendix A.1.1 shall be applied to tractors and

steerable implements. First however the particular case of actuators between two rigid

bodies, such as a steerable drawbar for instance, has to be addressed. There are two

approaches to consider the steerable drawbar. In a first approach one could try to model

the moment applied by the drawbar steering actuators, for instance by including a model

of the underlying hydraulics and a steering angle controller enforcing a desired steering

angle. In a second approach one could assume that some arbitrary kind of actuator and

steering angle controller is in place and that this actuator is capable of providing any

moment required to steer the drawbar. With this second option it is not possible to
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ex,e

ey,e

ez,e

ex,t
ey,t

ex,r1

ey,r1

rt

rr1

vt

c.g.

c.g.

Ψt

Ψr1

Ψd

δtf

δthr

δr1d

δr1r < 0

ltf

ltr

lt

lthr

lr1d

lr1f

lr1r
lr1

1

11

desired path

eth

etl

er1h < 0

er1l

Figure 3.1: Tractor (subscript t) and steerable implement (subscript r1, i.e. first rear-
mounted implement) single track model with earth-fixed (ex,e, ey,e, ez,e),
tractor-fixed (ex,t, ey,t, ez,t), implement-fixed (ex,r1, ey,r1, ez,r1) coordinate
systems, tractor wheel steering angle δtf , implement wheel steering angle δr1r,
drawbar steering angle δr1d, hitch angle δthr, tractor heading angle Ψt, imple-
ment heading angle Ψr1, orientation of the desired path Ψd, tractor lateral error
etl, tractor heading error eth, implement lateral error er1l, implement heading
error er1h, and geometric parameters l.... rt and rr1 specify the tractor and
implement c.g. positions relative to the earth-fixed origin.
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model a blocked actuator, e.g. due to tractor and implement being immovable. Modeling

however is simplified and reduced to the introduction of a time dependent or rheonomic

constraint, independent of a particular actuator. The second approach has been chosen

in this work.

Referring to Figure 3.1 the two rigid bodies in plane motion are subject to two constraints

imposed by the steerable drawbar. Hence four generalized coordinates are introduced to

describe for the remaining DoFs. The generalized coordinates are chosen to be:

q1 = rx,e
t , q2 = ry,e

t , q3 = Ψt, q4 = δthr. (3.1)

Tractor and implement position and orientation in terms of generalized coordinates are:

rx,e
t = q1, (3.2)

ry,e
t = q2, (3.3)

Ψt = q3, (3.4)

rx,e
r1 = q1 − (ltr + lthr) cos(q3) − lr1d cos(q3 − q4) − lr1f cos(q3 − q4 − δr1d), (3.5)

ry,e
r1 = q2 − (ltr + lthr) sin(q3) − lr1d sin(q3 − q4) − lr1f sin(q3 − q4 − δr1d), (3.6)

Ψr1 = q3 − q4 − δr1d. (3.7)

The system’s kinetic energy is [Gre88]:

T =
1

2
ItΨ̇

2
t +

1

2
mt

(

(ṙx,e
t )2 + (ṙy,e

t )2
)

+
1

2
Ir1Ψ̇ 2

r1 +
1

2
mr1

(

(ṙx,e
r1 )2 + (ṙy,e

r1 )2
)

. (3.8)

With potential energy V = 0 the Lagrangian function is:

L = T − V = T. (3.9)

Lagrange’s equations of motion are [Gre88]:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= Qi, i = 1, 2, 3, 4, (3.10)

with generalized forces Qi introduced to account for arbitrary applied forces and moments.

With F x,e
t , F y,e

t , F x,e
r1 , and F y,e

r1 denoting applied forces on tractor and implement c.g. as

well as Mz,e
t and Mz,e

r1 denoting applied moments acting on tractor and implement the

respective generalized forces are:

Qi = F x,e
t γx,e

t,i + F y,e
t γy,e

t,i + Mz,e
t βz,e

t,i + F x,e
r1 γx,e

r1,i + F y,e
r1 γy,e

r1,i + Mz,e
r1 βz,e

r1,i, (3.11)
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with linear and angular velocity coefficients [Gre88]:

γx,e
t,i =

∂ṙx,e
t

∂q̇i

=
∂rx,e

t

∂qi

, γy,e
t,i =

∂ṙy,e
t

∂q̇i

=
∂ry,e

t

∂qi

, βz,e
t,i =

∂Ψ̇t

∂q̇i

, (3.12)

γx,e
r1,i =

∂ṙx,e
r1

∂q̇i

=
∂rx,e

r1

∂qi

, γy,e
r1,i =

∂ṙy,e
r1

∂q̇i

=
∂ry,e

r1

∂qi

, βz,e
r1,i =

∂Ψ̇r1

∂q̇i

. (3.13)

Vehicle-Fixed Coordinates

Evaluating (3.1) to (3.13) already allows one to state the system’s equations of motion

for simulation purposes. The resulting description however is in earth-fixed coordinates

and not suitable for linearization. A more suitable description is found by introducing

vehicle-fixed coordinates, using:

Tt,e =




cos(Ψt) − sin(Ψt)

sin(Ψt) cos(Ψt)



 , (3.14)

Tr1,e =




cos(Ψt − δthr − δr1d) − sin(Ψt − δthr − δr1d)

sin(Ψt − δthr − δr1d) cos(Ψt − δthr − δr1d)



 , (3.15)




ṙx,e

t

ṙy,e
t



 =




vx,e

t

vy,e
t



 = Tt,e




vx,t

t

vy,t
t



 , (3.16)




F x,e

t

F y,e
t



 = Tt,e




F x,t

t

F y,t
t



 , Mz,e
t = Mz,t

t , (3.17)




F x,e

r1

F y,e
r1



 = Tr1,e




F x,r1

r1

F y,r1
r1



 , Mz,e
r1 = Mz,r1

r1 . (3.18)

Equations of motion in vehicle-fixed coordinates can be obtained by following the proce-

dure described below. The required steps are similar to those given in the concise example

of Appendix A.1.1. Intermediate results in this section are very lengthy and therefore

omitted. All steps have been performed using computer algebra software.

1. Insert (3.12), (3.13), and (3.11) in (3.10).

2. Calculate partial derivatives of (3.10). Time derivatives are considered later.

3. Reintroduce original coordinates by using (3.1).

4. Replace earth-fixed coordinates by tractor and implement-fixed coordinates using

(3.14) to (3.18).

5. Calculate time derivatives of (3.10).

6. Combine equations (3.10) for i = 1, 2 to column vectors and multiply with T−1
t,e .

7. Perform a multitude of (automated) trigonometric simplifications.
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The result is:

[

v̇x,t
t , v̇y,t

t , Ψ̈t, δ̈thr

]T
= −M−1r, (3.19)

with

M = M(δthr, δr1d), (3.20)

r = r(vx,t
t , vy,t

t , Ψ̇t, δ̇thr, δthr, δ̈r1d, δ̇r1d, δr1d, F x,t
t , F y,t

t , Mz,t
t , F x,r1

r1 , F y,r1
r1 , Mz,r1

r1 ). (3.21)

The full matrix M and vector r are shown in Appendix A.1.2. Most important to note

is that q3 = Ψt is part of the constraints (3.5) to (3.7) but not part of the final result.

Hence (3.19) became independent of earth-fixed references. This is not surprising but in

agreement with expectations, i.e. ODEs for vehicle velocities, yaw rate and hitch angle

are independent of the vehicles’ actual position and orientation. Another look at (3.19)

reveals that the result depends not only on the drawbar steering angle δr1d but also on its

first and second time derivative δ̇r1d and δ̈r1d. This depicts the closer coupling of drawbar

steering and rigid body dynamics requiring the rigid bodies to move in order to enforce a

desired steering angle. A proposal to obtain δ̇r1d and δ̈r1d is provided in Section 3.1.4.

3.1.3 Wheel Forces and Moments

With a focus on path tracking control, vehicle lateral motion during normal operation

away from wheel force limits is of particular interest. For that reason a linear, yet transient

tire model is chosen by introducing combined cornering stiffness and relaxation length

parameters. Influence of longitudinal slip as well as varying soil properties is considered

subsequently by parameter variation.

By extending the introductory example of Section 2.1.1 the side-slip angles of the consid-

ered tractor-implement combination are:

αtf = δtf − arctan

(
vy,t

tf

vx,t
tf

)

, αtr = − arctan

(

vy,t
tr

vx,t
tr

)

, αr1r = δr1r − arctan

(

vy,r1r
r1r

vx,r1r
r1r

)

, (3.22)

with velocities found from time derivatives of (3.2), (3.3), (3.5), and (3.6) considering

(3.1), (3.14), and (3.15).

Similarly, tire forces are modeled to account for transient behavior by introducing tire

relaxation lengths for all wheels. This results in:

α̇re,tf =
cos (δtf ) vx,t

tf + sin (δtf )
(

vy,t
tf

)

σα,tf

(αtf − αre,tf) , (3.23)

α̇re,tr =
vx,t

tr

σα,tr

(αtr − αre,tr) . (3.24)
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α̇re,r1r =
cos (δr1r) vx,r1

r1r + sin (δr1r)
(

vy,r1
r1

)

σα,r1r

(αr1r − αre,r1r) . (3.25)

Lateral wheel forces in wheel-fixed coordinates (cf. Figure 2.7) then are:

F y,tf
tf = Cα,tf αre,tf F y,tr

tr = Cα,trαre,tr F y,r1r
r1r = Cα,r1rαre,r1r (3.26)

Transforming them to vehicle-fixed coordinates and considering the lever arms to the

respective center of gravity (c.g.) yields F x,t
t , F y,t

t , F x,r1
r1 , and F y,r1

r1 as well as Mz,t
t and

Mz,r1
r1 required for (3.19).

3.1.4 Steering Actuator Dynamics

Within the introductory example of Section 2.1.1 the tractor steering angle δtf was used as

an input. This steering angle therefore could be altered arbitrarily fast. In reality hydraulic

steering, however, introduces some delay, which will be considered in the remainder of this

work. It is assumed that a underlying steering angle controller is in place and enforces

a desired steering angle. The resulting closed loop behavior is approximated by a delay.

In order to satisfy the requirement of an existing second order drawbar steering angle

derivative δ̈r1d in (3.19) this delay is modeled to be of second order.

Defining the desired steering angle inputs δtf,d, δr1d,d, and δr1r,d the respective ODEs are:

δ̈tf =
1

T 2
tf

(

−2Dtf Ttf δ̇tf − δtf + δtf,d

)

(3.27)

δ̈r1d =
1

T 2
r1d

(

−2Dr1dTtr δ̇r1d − δr1d + δr1d,d

)

(3.28)

δ̈r1r =
1

T 2
r1r

(

−2Dr1rTtf δ̇r1r − δr1r + δr1r,d

)

(3.29)

In addition, lower and upper steering angle limits δtf,min and δtf,max as well as positive

and negative steering angle rate limits δ̇tf,min and δ̇tf,max are considered (similar for δr1d

and δr1r).

3.1.5 Tracking Errors and Earth-Fixed Positions

Similar to Section 2.1.1 the tractor position in earth-fixed coordinates may be introduced

by stating ODEs for the tractor rear wheel position:

ṙx,e
tr = cos (Ψt)

(

vx,t
t

)

− sin (Ψt)
(

−ltrΨ̇t + vy,t
t

)

, (3.30)

ṙy,e
tr = sin (Ψt)

(

vx,t
t

)

+ cos (Ψt)
(

−ltrΨ̇t + vy,t
t

)

. (3.31)
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The implement’s orientation and wheel position can be found from Figure 3.1:

Ψr1 = Ψt − δthr − δr1d, (3.32)

rx,e
r1r = rx,e

tr − lthr cos(Ψt) − lr1d cos(Ψt − δthr) − lr1 cos(Ψt − δthr − δr1d), (3.33)

ry,e
r1r = ry,e

tr − lthr sin(Ψt) − lr1d sin(Ψt − δthr) − lr1 sin(Ψt − δthr − δr1d). (3.34)

Alternatively it is again possible to introduce a description in terms of deviations from a

straight desired path:

ėth = Ψ̇t − Ψ̇d, (3.35)

ėtl = sin (eth)
(

vx,t
t

)

+ cos (eth)
(

−ltrΨ̇t + vy,t
t

)

, (3.36)

with implement tracking errors (cf. Figure 3.1) given as:

er1h = eth − δthr − δr1d, (3.37)

er1l = etl − lthr sin(eth) − lr1d sin(eth − δthr) − lr1 sin(eth − δthr − δr1d). (3.38)

3.1.6 Dynamic Model Overview

Sections 3.1.1 to 3.1.5 provide all model parts required to describe the lateral motion

of a tractor-implement combination as shown in Figure 3.1. Several variants comprising

nonlinear and linear system descriptions are needed throughout the subsequent chapters.

This section therefore provides an overview by compiling the required equations. For all

variants vx,t
t is assumed to be a constant or slowly changing system parameter, i.e. the

ODE describing longitudinal motion in (3.19) is omitted.

Nonlinear Model

For simulation purposes a nonlinear dynamic system description with a transient tire force

model is used. This description is found by combining (3.19), (3.22), (3.23), (3.24), (3.25),

(3.26), (3.27), (3.28), (3.29), (3.30), (3.31), (3.32), (3.33), and (3.34). The result is:

ẋ = f (x, u) , (3.39)

y = h (x) , (3.40)

x =
[

rx,e
tr , ry,e

tr , vy,t
t , Ψt, Ψ̇t, αre,tf , αre,tr, αre,r1r, δthr, δ̇thr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
,

(3.41)

u = [δtf,d, δr1d,d, δr1r,d]T , (3.42)

y = [rx,e
tr , ry,e

tr , Ψt, rx,e
r1r, ry,e

r1r, Ψr1, δtf , δr1d, δr1r]
T

. (3.43)
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Notes:

• In contrast to passenger cars, with nonlinear models commonly referring to nonlinear

tire force descriptions, nonlinearity in this work arises from large steering angles and

a large hitch angle between tractor and implement.

• The actual numerical simulation model was set up retaining the individual model

parts in order to allow for simple modifications.

Linear Models

To allow for further analysis, two linearized model variants in terms of path deviations

have been considered. The first variant uses a transient tire model with relaxation length

parameters, the second omits transient tire properties using cornering stiffness parameters

only. To obtain the first variant (3.19), (3.22), (3.23), (3.24), (3.25), (3.26), (3.27), (3.28),

(3.29), (3.35), (3.36), (3.37), and (3.38) are combined. System state vector x, input vector

u, and measured output vector y are defined as:

x =
[

etl, eth, vy,t
t , Ψ̇t, αre,tf , αre,tr, αre,r1r, δthr, δ̇thr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
, (3.44)

u = [δtf,d, δr1d,d, δr1r,d]T , (3.45)

y = [etl, eth, er1l, er1h]T . (3.46)

Linearization about x = 0 and u = 0 yields:

ẋ = Ax + Bu, (3.47)

y = Cx. (3.48)

Matrices A, B, and C are again obtained using computer algebra software. An interme-

diate step requires symbolic inversion of matrix M in (3.19). This in particular results in

very long expressions by far exceeding the size of those given for (3.19) in Appendix A.1.2.

For that reason A, B, and C are not stated fully. Nevertheless, an overview outlining

nonzero elements and couplings between system parts is given by the structure matrices

in Appendix A.2.1.

The second simplified linear system variant does not consider transient tire forces modeled

by (3.23), (3.24), and (3.25). Hence the reduced system state vector is:

x =
[

etl, eth, vy,t
t , Ψ̇t, δthr, δ̇thr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
. (3.49)

Again structure matrices of A, B, and C outlining nonzero elements and coupling between

system parts are provided in Appendix A.2.1.
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3.1.7 Model Parameters

Both simulations and experiments will be used to validate this work’s control approaches.

Experiments are performed using the hardware setup described in Appendix A.3 compris-

ing a John Deere 6210R tractor towing a custom built implement with multiple actuators.

For model based controller design as well as simulation purposes the model parameters

have to be chosen to depict this hardware setup. The chosen parameters are summarized

in Appendix A.5. This section outlines the methods used to obtain these parameters.

Geometric parameters have been found using total station measurements (Leica TS15).

In a first step a set of adhesive target marks has been placed on tractor and implement

allowing to set up body-fixed coordinate systems for both. In a second step additional

measurements have been performed to obtain relevant vehicle vertices and sensor locations

within those body-fixed coordinate systems.

Mass parameters and c.g. locations have been calculated from axle load measurements on

a vehicle scale.

Steering actuator time constants and damping ratios have been found from step responses

with small desired steering angle steps. Steering actuator rate limits resulting from limited

hydraulic flow are derived from steering angle slope measurements in large step responses.

Cornering stiffnesses, relaxation lengths, and moments of inertia have been identified

within a dedicated thesis [Pfr13] supporting this work. The task has been divided into

several parameter identification problems solved consecutively. Part of this division was

to first consider tractor parameter identification only. Subsequently, implement parameter

identification was performed with known tractor parameters. The finally chosen identifi-

cation method used iterative optimization methods based on the comparison of measure-

ments and nonlinear system simulations. Special attention was given to choosing multiple

initial conditions to avoid finding a local minimum only. All measurements have been per-

formed on asphalt. Similar measurements on a test field of dry loam have been attempted

yet suffered from large noise in Inertial Measurement Unit (IMU) data due to increased

vehicle vibration.

Combined cornering stiffness parameters in particular have been identified using quasi

steady-state cornering maneuvers with steering angles of ±10◦ and ±20◦. Tractor speed

was slowly varied between 0.2 m/s and 8 m/s in the first case and between 0.2 m/s and

4.2 m/s in the second. Each maneuver has been repeated three times. Identification relied

on measured lateral accelerations and yaw rates, as well as calculated lateral velocities.

The latter calculation was based on the differences between direction of travel and vehicle

heading both obtained from accurate position measurements of two GPS receivers with

RTK correction signals.
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Moments of inertia and relaxation lengths have been found by performing sine sweep ma-

neuvers using either tractor or implement wheel steering inputs. A sine sweep with 10◦

amplitude was used. The frequency was increased from 0.2 to 1 Hz in 30 s and tractor

speed was 2.8 m/s. Each maneuver was repeated four times. Only lateral acceleration

and yaw rate measurements were evaluated in this maneuver. The GPS receiver sample

rate was not sufficient to allow for reasonable vehicle lateral velocity calculations. Fol-

lowing a common approach in vehicle handling studies [Pfr13] first considered simple tire

models with cornering stiffnesses being the only parameters. In this case identification

of the tractor’s moment of inertia resulted in a widespread range of results for different

maneuvers. With none of the identified parameters was it possible to resemble measured

results above a steering input frequency of approximately 0.57 Hz. As a consequence, the

tire models have been extended to explicitly account for transient behavior. Figures 3.2

and 3.3 depict measurements and simulation results with both model variants.

Parameters identified by [Pfr13] are listed in Table 3.1. Combined cornering stiffness and

relaxation length parameters in particular resemble test bench results of [Sch05] provided

in Section 2.1.1, keeping in mind that the combined cornering stiffness summarizes the

properties of both individual wheels. In addition to results by [Pfr13] Table 3.1 outlines

parameters of related research. Comparison of those reveals no major deviations, except

from very large cornering stiffnesses stated by [Bev01]. Those however are contrasting test

bench results by [Sch05] as well.

Discussion

A brief discussion of the parameterized model shall be given. Keeping in mind the con-

ditions encountered in path tracking control of tractor-implement combinations the ca-

pabilities and limitations of the derived models have to be addressed. With the chosen

parameters the model will be capable of providing further insight into tractor and imple-

ment behavior. Differences between simple kinematic and more detailed dynamic models

may be outlined. The derived models in addition will allow to study the influence of pa-

rameter uncertainties and external disturbances, for instance resulting from disturbing

forces on slopes. The models’ applicability to controller design however must be seen as

limited. Dynamic model parameters are subject to large uncertainties, e.g. resulting from

tire-soil interaction or changing implement loads. Even with the rather small number of

parameters of this work’s models parameterization causes considerable effort. In contrast

to on-road applications tractors will in some cases operate with very low speeds. This

in addition will result in poorly conditioned system matrices causing numerical problems

during controller design. For model based control it is therefore very desirable to use a

simplified kinematic description. The controller in this case must, however, be able to

cope with unmodeled uncertainties and disturbances.
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Figure 3.2: Measured and simulated tractor yaw rate Ψ̇t and lateral acceleration r̈y,t
t in re-

sponse to sine sweep tractor steering. The experimental setup used is described
in Appendix A.3. Nonlinear dynamic simulation models with steady-state (cor-
nering stiffness) and transient tire models (cornering stiffness plus relaxation
length) have been used. Measured steering angles served as simulation input.
(from [Pfr13])

2 4 6 8 10 12 14 16 18 20
−0.3

−0.2

−0.1

0

0.1

0.2

 

 

measured w/o relaxation length with relaxation length

t in s

Ψ̇
r1

in
ra

d
/s

2 4 6 8 10 12 14 16 18 20
−4

−2

0

2

4

6

 

 measured w/o relaxation length with relaxation length

t in s

r̈y
,r

1
r1

in
m

/s
2

Figure 3.3: Measured and simulated implement yaw rate Ψ̇r1 and lateral acceleration r̈y,r1
r1

in response to zero tractor steering angle and sine sweep implement wheel
steering. The experimental setup used is described in Appendix A.3. Non-
linear dynamic simulation models with steady-state (cornering stiffness) and
transient tire models (cornering stiffness plus relaxation length) have been
used. Measured steering angles served as simulation input. (from [Pfr13])
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Table 3.1: Comparison of parameters from literature: [Pfr13] using this works’ experimen-
tal setup as described in Appendix A.3, [KS10] using a John Deere 7930 tractor
with Parker 500 grain cart, and [Bev01] using a John Deere 8400 tractor.

Parameter Unit [Pfr13] [KS10] [Bev01]

Tractor mass mt kg 9088 9391 9500

Implement mass mr1 kg 2418 2127

Tractor moment of inertia It kg m2 21782 35709 18525

Implement moment of inertia Ir1 kg m2 5316 6402

Tractor front wheel cornering stiffness Cα,tf kN/◦ 3.54 3.84 22.9

Tractor rear wheel cornering stiffness Cα,tr kN/◦ 7.23 8.48 49.4

Implement wheel cornering stiffness Cα,r1r kN/◦ 3.47 2.91

Tractor front wheel relaxation length σα,tf m 0.40 0.75 0.83

Tractor rear wheel relaxation length σα,tr m 1.61 1.0 1.35

Implement wheel relaxation length σα,r1r m 0.61 0.75
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3.2 Kinematic Models

Initial parameterization effort as well as remaining parameter uncertainty of dynamic

tractor-implement models are a major hurdle for model based controller design consider-

ing a multitude of variants. Kinematic models relying on geometric tractor and implement

properties can be obtained with significantly less effort and therefore seem to be a more

reasonable choice for model based controller design. For that reason a linearized kinematic

tractor-implement model will be derived. A nonlinear kinematic model is derived in order

to be used as part of a disturbance estimator. The latter follows a proposal by [CLTM10]

originally considering an unsteered kinematic tractor-implement description extended by

disturbance models to account for side-slip at all wheels. In terms of steerable imple-

ments [BOV12] come closest by providing a model of a tractor towing a drawbar steered

implement. This section will consider implements with multiple actuators using drawbar

and wheel steering as an example. To allow for variants the models are derived using a

procedure suitable for automation.

3.2.1 Modeling Assumptions

The modeling assumptions made for kinematic tractor-implement combinations extend

those given in Section 3.1.1 for the dynamic single track model as depicted in Figure 3.1.

The model is hence reduced to plane motion and wheel properties of all wheels of an axle

are combined. Extended assumptions comprise further restrictions regarding the vehicle

velocity vectors at the wheels’ location. Kinematic modeling is normally based on the

assumption of zero wheel side-slip, which means the vehicle velocity vectors located there

point in wheel forward direction (during forward motion). In a generalized variant of

kinematic modeling wheel side-slip may be included by considering it a disturbance. With

this approach however side-slip is not based on physical principles and no model describing

the cause of side-slip is given. Instead, assumptions about the disturbances’ course in time

are made and depicted by a signal model. In case the signal models are chosen suitably

an estimator may be used to attribute measured differences between kinematic model

and real plant to these modeled disturbances. Regardless of the chosen model variant the

tractor longitudinal velocity vx,t
tr is assumed to be a constant or rather slowly changing

plant parameter.
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3.2.2 Equations of Motion

Similar to the tractor example of Section 2.1.2 kinematic modeling for tractor-implement

combinations is based on the assumption of restricted vehicle velocities at the wheels’

locations. In contrast to the introductory example this restriction is formulated more

generally. Referring to Figure 2.7 the velocity vector is no longer assumed to point in

wheel forward direction ex,tf . Hence, the assumption of zero wheel side-slip angle αtf

is abandoned. Instead, wheel side-slip is assumed to be an arbitrary given disturbance

without asking for its actual cause. The tractor front wheel velocity vtf of Figure 2.7 and

all other wheel velocities may then be formally related to given steering angles and given

side-slip angles:

[

− sin (δtf − αtf ) , cos (δtf − αtf )
]

︸ ︷︷ ︸

eT
⊥,tf




vx,t

tf

vy,t
tf



 = 0, (3.50)

[

− sin (−αtr) , cos (−αtr)
]

︸ ︷︷ ︸

eT
⊥,tr




vx,t

tr

vy,t
tr



 = 0, (3.51)

[

− sin (δr1r − αr1r − δr1d − δthr) , cos (δr1r − αr1r − δr1d − δthr)
]

︸ ︷︷ ︸

eT
⊥,r1r




vx,t

r1r

vy,t
r1r



 = 0, (3.52)

with e⊥,tf , e⊥,tr, and e⊥,r1r denoting vectors perpendicular to the respective wheel velocity

vectors vtf , vtr, and vr1r.

Due to vx,t
tr being a plant parameter the tractor rear wheel velocity vtr may be found from

(3.51) to:




vx,t

tr

vy,t
tr



 =




vx,t

tr

tan (−αtr) vx,t
tr



 . (3.53)

Relating tractor front vtf and rear wheel velocity vtr yields:




vx,t

tf

vy,t
tf



 =




vx,t

tr

vy,t
tr



+




0

ltΨ̇t



 =




vx,t

tr

tan (−αtr) vx,t
tr + ltΨ̇t



 . (3.54)

Inserting this equation in (3.50) and solving for Ψ̇t results in:

Ψ̇t =
vx,t

tr

lt
(tan (δtf − αtf ) − tan (−αtr)) . (3.55)
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Relating implement wheel vr1r and tractor rear wheel vtr velocity produces a longish

intermediate result which is omitted. This intermediate result inserted in (3.52) allows to

solve for δ̇thr:

δ̇thr = N/D, (3.56)

with

N =
(

− cos (−δr1r + αr1r) lr1δ̇r1d cos (αtr) cos (−δtf + αtf ) lt − (((lt (sin (δthr) cos (δr1d)

+ cos (δthr) sin (δr1d)) cos (αtr) − (((lthr + lt) cos (δthr) + lr1d) cos (δr1d)

− sin (δthr) (lthr + lt) sin (δr1d) + lr1) sin (αtr)) cos (−δr1r + αr1r)

+ sin (−δr1r + αr1r) (lt (cos (δthr) cos (δr1d) − sin (δthr) sin (δr1d)) cos (αtr)

+ sin (αtr) (sin (δthr) (lthr + lt) cos (δr1d) + sin (δr1d) ((lthr + lt) cos (δthr) + lr1d))))

· cos (−δtf + αtf ) + (((cos (δthr) lthr + lr1d) cos (δr1d) − sin (δthr) sin (δr1d) lthr + lr1)

· cos (−δr1r + αr1r) − sin (−δr1r + αr1r) (sin (δthr) cos (δr1d) lthr

+ sin (δr1d) (cos (δthr) lthr + lr1d))) cos (αtr) sin (−δtf + αtf )) vx,t
tr

)

, (3.57)

D = cos (αtr) lt ((lr1 + cos (δr1d) lr1d) cos (−δr1r + αr1r)

− sin (−δr1r + αr1r) sin (δr1d) lr1d) cos (−δtf + αtf ) . (3.58)

The special case of zero wheel side-slip angles αtf , αtr, and αr1r as considered in Sec-

tion 2.1.2 results in simplified expressions:

Ψ̇t =
vx,t

tr

lt
tan (δtf ) (3.59)

δ̇thr = N/D, (3.60)

with

N = ((sin (δtf + δthr + δr1d − δr1r) − sin (−δtf + δthr + δr1d − δr1r)) lthr

+ (sin (δtf − δthr − δr1d + δr1r) − sin (δtf + δthr + δr1d − δr1r)) lt

+ (sin (δtf + δr1d − δr1r) − sin (−δtf + δr1d − δr1r)) lr1d

+ (sin (δtf + δr1r) − sin (−δtf + δr1r)) lr1) vxt
t

− (cos (−δtf + δr1r) + cos (δtf + δr1r)) lr1ltδ̇r1d, (3.61)

D = ((cos (−δtf + δr1d − δr1r) + cos (δtf + δr1d − δr1r)) lr1d

+ (cos (−δtf + δr1r) + cos (δtf + δr1r)) lr1) lt. (3.62)
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As a result, kinematic equations of motion are given as first order ODEs for yaw angle

Ψt and hitch angle δthr, i.e. (3.55), (3.56), (3.57), and (3.58) or simplified without wheel

side-slip (3.59), (3.60), (3.61), and (3.62). It should be noted that the drawbar steering

angle δr1d and its time derivative δ̇r1d are part of the above mentioned equations. Both

are assumed to result from time dependent constraints.

Note: Besides the chosen approach of modeling additive disturbances affecting the wheel

velocity vector directions other possibilities have been considered. Modeling the distur-

bances at this location comes closest to the actual effect of wheel side-slip. Modeling yaw

angle biases or steering angles biases as considered by [Bel99] attributes disturbances to

other model parts increasing the risk of estimation errors. Using multiplicative distur-

bances instead of additive ones, as considered by [BOV12] was seen as disadvantageous

due to a loss of observability properties for zero steering angles and numerical challenges

close to zero steering angles. Straight path tracking on slopes, in particular, is affected by

this.

3.2.3 Steering Actuator Dynamics

Similar to Section 3.1.4, altering steering angles is assumed to be subject to delays. Again

underlying steering angle controllers are assumed to enforce the desired steering angles.

The respective closed inner control loops are approximately modeled by delays. With a

kinematic description only the first drawbar steering angle time derivative δ̇r1d is required.

For that reason one could attempt to simplify inner loop approximations by using first

order delays. This work however retains approximations using second order delays as

stated in (3.27), (3.28), and (3.29), which is to allow for comparison with dynamic models

described previously.

3.2.4 Tracking Errors and Earth-Fixed Positions

For later use, kinematic models are required to be given in earth-fixed coordinates as well

as in terms of deviations from a desired straight path as depicted in Figure 3.1.

The tractor rear wheel position in earth-fixed coordinates may be found by integrating:

ṙx,e
tr = cos(Ψt)v

x,t
tr + sin(Ψt) tan(αtr)v

x,t
tr , (3.63)

ṙy,e
tr = sin(Ψt)v

x,t
tr − cos(Ψt) tan(αtr)v

x,t
tr . (3.64)

Implement position and orientation are related to tractor position and orientation as

previously described in (3.32), (3.33), and (3.34).
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Alternatively it is again possible to introduce a description in terms of deviations from a

straight desired path:

ėth =
vx,t

tr

lt
(tan(δtf − αtf ) − tan(−αtr)) − Ψ̇d, (3.65)

ėtl = sin(eth)vx,t
tr + cos(eth) tan(−αtr)v

x,t
tr . (3.66)

Assuming zero wheel side-slip this simplifies to:

ėth =
vx,t

tr

lt
tan(δtf ) − Ψ̇d, (3.67)

ėtl = sin(eth)vx,t
tr . (3.68)

Implement heading and lateral error are again given by (3.37) and (3.38).

3.2.5 Side-Slip Angle Disturbance Model

Wheel side-slip angles αtr, αtf , and αr1r are assumed to be disturbances affecting the plant

described by a kinematic model. In order to allow for disturbance estimation as introduced

in Section 2.2.11 a model describing the disturbance is required. This can be accomplished

by assuming particular types of signal models with constant, ramp, or sinusoidal signals

being common choices [Foe94].

Wheel side-slip angles in this work are modeled assuming constant signals with ODEs:

α̇tf = 0, α̇tr = 0, α̇r1r = 0. (3.69)

This choice however does not require side-slip angles to be constant. It rather expresses

the way an estimator propagates side-slip angle estimates over time in case there is no

difference between estimated and measured outputs. In case of differences the estimator

must ensure to obtain updated side-slip angle estimates reasonably fast, as compared to

actual plant dynamics.

3.2.6 Kinematic Model Overview

For later use the model variants developed in Sections 3.2.1 to 3.2.5 are compiled in an

overview.

Nonlinear Model

The required nonlinear kinematic model uses an earth-fixed coordinate representation and

accounts for wheel side-slip. It is given by combining (3.55), (3.56), (3.57), (3.58), (3.27),

(3.28), (3.29), (3.63), (3.64), (3.32), (3.33), (3.34), and (3.69) resulting in:
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ẋ = f(x, u), (3.70)

y = h(x), (3.71)

with

x =
[

rx,e
tr , ry,e

tr , Ψt, δthr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r, αtf , αtr, αr1r

]T
, (3.72)

u = [δtf,d, δr1d,d, δr1r,d]T , (3.73)

y = [rx,e
tr , ry,e

tr , Ψt, rx,e
r1r, ry,e

r1r, Ψr1, δtf , δr1d, δr1r]
T

, (3.74)

In deviation from previously derived models, steering angles are included within the mea-

sured output vector. Those will provide additional information for the estimator being

developed.

Linear Model

The linearized model is given in terms of deviations from a desired path and does not

account for wheel side-slip. It is found by combining (3.59), (3.60), (3.61), (3.62), (3.27),

(3.28), (3.29), (3.67), (3.68), (3.37) and (3.38).

Defining:

x =
[

etl, eth, δthr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
, (3.75)

u = [δtf,d, δr1d,d, δr1r,d]T , (3.76)

y = [etl, eth, er1l, er1h]T , (3.77)

and linearizing the combined equations about x = 0 and u = 0 yields:

ẋ = Ax + Bu, (3.78)

y = Cx, (3.79)

with matrices A, B, and C as stated in Appendix A.2.2.

3.2.7 Model Parameters

Kinematic model parameters are simply a subset of the dynamic model parameters ob-

tained before. An overview of parameters describing this works experimental setup (Ap-

pendix A.3) is given in Appendix A.5.
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3.3 Model Analysis and Comparison

Within the preceding sections several models with different levels of fidelity have been

derived. This section provides a comparison and further analysis of those models using

this work’s parameters as stated in Appendix A.5. Linear system descriptions as given in

Sections 3.1.6 and 3.2.6 will be considered more closely.

Figure 3.4 depicts the eigenvalues of system matrices A for a kinematic model and two

dynamic models. The latter either consider or neglect transient tire behavior and therefore

are modeled with or without tire relaxation length. Tractor longitudinal velocity vx,t
t is

varied as a system parameter. All variants exhibit six conjugate complex eigenvalues not

changing with tractor velocity. Those result from steering actuator dynamics modeled as

second order delays (3.27), (3.28), and (3.29). Similarly, all variants exhibit two eigenvalues

located at the origin resulting from tracking error dynamics (3.35), (3.36), (3.67), and

(3.68), which is not fed back to other system parts. The kinematic model exhibits one

additional real eigenvalue resulting from the hitch angle ODE (3.60). It is not surprising

that the hitch angle rate of change δ̇thr exhibits a tractor velocity dependent behavior. The

respective real eigenvalue moves to the left as the tractor velocity increases. Considering

the simple dynamic model without relaxation length reveals four eigenvalues resulting

from rigid body dynamics. Figure 3.4 only depicts them completely for a speed of 7.5 m/s.

For lower speeds the missing eigenvalues are real and located further to the left. For

tractor velocities above 9 m/s the four eigenvalues finally form conjugate complex pairs.

Eigenvalues close to the origin typically dominate a system’s behavior [Foe94]. In case

of the simple dynamic model the three eigenvalues closest to the origin (remembering

two of them are at s = 0) closely match those of the kinematic model up to speeds of

4.5 m/s. The dynamic model with relaxation length exhibits seven eigenvalues resulting

from coupled rigid body dynamics and transient tire models. Again, the three eigenvalues

closest to the origin match the kinematic model’s up to 4.5 m/s. In addition, however,

this most complex model considered exhibits weakly damped conjugate complex pairs of

eigenvalues.

Figure 3.5 depicts the Bode diagrams of transfer functions from desired steering angles to

implement lateral error with a tractor longitudinal velocity of 3 m/s. In case of a kinematic

model the transfer functions are rather short and given as:

Gδtf,d,er1l
=

3.2143(1 − 0.6033sN)

s2
N(1 + 1.4sN)(1 + 1.6(0.19sN) + (0.19sN)2)

m

rad
, (3.80)

Gδr1d,d,er1l
=

−1.76

(1 + 1.4sN)(1 + 1.1(0.12sN) + (0.12sN)2)

m

rad
, (3.81)

Gδr1r,d,er1l
=

4.2

(1 + 1.4sN)(1 + 0.98(0.1sN) + (0.1sN)2)

m

rad
, (3.82)

with sN = s/(1/s), i.e s is normalized to be unitless for convenience. All three exhibit a
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second order lag resulting from the particular steering actuator dynamics and a first order

lag from hitch angle dynamics. The first order lag time constant of T = 1.4 s corresponds

to a corner frequency of f = 0.11 Hz indicating the lowest frequency with a drop in

phase and magnitude as shown in Figure 3.5. Comparing kinematic and dynamic models

reveals first larger deviations at approx 0.7 Hz. The detailed dynamic model exhibits some

resonant behavior which will be further addressed considering the tractor and implement

yaw rates. The notch in magnitude and jump in phase found for the dynamic model

without relaxation length is due to a conjugate complex pair of zeros on the imaginary

axis. Considering Gδtf,d,er1l
in particular, the kinematic transfer function (3.80) allows for

an interesting interpretation. This transfer function describes a SISO plant with a desired

tractor steering angle input and implement lateral error output. The transfer function

exhibits double integrator behavior and is non-minimum phase [Foe94] due to a positive

zero. As a consequence implement lateral error control with tractor steering as only input

is a challenge for classical PID control and one must expect rather poor performance.

A closer look at the model differences is possible by considering the tractor and implement

yaw rates, noting that those can be obtained from other system states by using (3.32) and

(3.35) with Ψ̇d ≡ 0. Figures 3.6 and 3.7 depict the respective Bode plots and responses to

a 1 rad unit step. The most notable characteristics from Figure 3.6 are the resonant peaks

found for a dynamic model with transient tire models. The resonant peaks are close to the

natural frequencies f = 0.92 Hz and f = 1.85 Hz of the weakly damped conjugate complex

eigenvalues s = −0.53 ± j5.73 and s = −2.12 ± j11.42 of Figure 3.4. Considering the

implement steering to tractor yaw rate Bode plots in particular, this resonant behavior is

the only visible influence of implement steering on the tractor. The kinematic model does

neglect any influence of implement steering on the tractor as already seen from (3.59).

The unit step responses as shown in Figure 3.7 visualize the weakly damped complex

eigenvalues’ influence in case of a dynamic model accounting for relaxation length. The

consequences are small oscillations overlaying the main response. In case of implement

steering to tractor yaw rate transfer functions, those oscillations are the only influence.

Considering the implement yaw rate response to a tractor front wheel steering step in

particular allows to observe a response initially moving away from the final steady-state

value. This is again typical for a non-minimum phase transfer function [Foe94].
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Figure 3.4: Eigenvalues of linear system
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t
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Appendix A.5.
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Figure 3.6: Bode diagrams for all desired steering angle to yaw rate transfer functions G
using a linear kinematic model as in Section 3.2.6, linear dynamic models as
in Section 3.1.6, parameters as in Appendix A.5, and vx,t

t = 3 m/s.
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Figure 3.7: Unit step responses from desired steering angles to tractor and implement yaw
rates using a linear kinematic model as in Section 3.2.6, linear dynamic models
as in Section 3.1.6, parameters as in Appendix A.5, and vx,t

t = 3 m/s.
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4 Path Tracking Control

Section 2.2 provided a broad overview of existing path tracking control approaches and a

discussion outlining advantages and disadvantages regarding the objectives of Section 1.2.

Within this section, the most promising approach is used as a starting point for controller

design considering a tractor towing a wheel and drawbar steered implement. Variants of

that combination are considered by using subsets of the available steering actuators. The

kinematic models as derived in Section 3.2 serve as a basis for controller design. Special

emphasis during controller design is placed on handling disturbances and uncertainties

resulting from wheel side-slip. Two alternative approaches are conceived for that pur-

pose. The developed feedback controllers will be complemented by feedforward control

accounting for curved paths. Finally, a system overview is provided to summarize this

section.

4.1 LQR Control

By considering Table 2.5 in Section 2.2.13 and omitting only poor matches one could

regard PID control, MPC, SMC, LQR, robust H∞ control, and FLC as possible choices

to start with. This work uses LQR as a starting point. The problem of overcoming the

remaining drawbacks of lacking robustness and the need for state estimation is addressed

in the subsequent sections. Among alternative choices SISO PID control depicts the cur-

rent state of commercial systems. MPC results in an increased computational load which

is difficult to justify unless actually necessary, e.g. in case actuator limits are reached

frequently. Frequency domain tuning for each particular tractor-implement combination

using weighting transfer functions was seen as a hurdle for robust H∞ control. Path

tracking based on SMC using a switching control law was already degraded to feedback

linearization plus PD in previous research [TT03]. Applying a switching control law to

hydraulic actuators with limited dynamics was not seen as the most promising approach.

FLC for SISO passenger car path tracking by [HT94] resulted in numerous rules (125).

An extension to MIMO tractor-implement combinations therefore appeared to be very

difficult to tune. The FLC considered by [HT94] was actually tuned using LQR to aid the

initial choice of parameters. In general however it should be noted that the choice of LQR

as the most promising approach to begin with does not necessarily exclude the possibility

of tailoring other approaches to this work’s objectives in future research.

An introduction on LQR was provided in Section 2.2.3. The first step of this work’s

controller design closely follows the outlined approach using the linear kinematic model
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given by (3.78), (3.79), (3.75), (3.76), and (3.77). For the given task tractor as well as

implement lateral and heading errors are measured outputs. As a consequence, choosing a

performance index based on output weights rather than weights for system states allows

for a very intuitive interpretation. The performance index therefore is chosen to be

J =
∫ ∞

0

(

yT(t)Qy(t) + uT(t)Ru(t)
)

dt (4.1)

which can be rewritten as

J =
∫ ∞

0

(

xT(t)CTQCx(t) + uT(t)Ru(t)
)

dt (4.2)

resembling (2.69). CTQC and R are required to be positive semi-definite and positive

definite weighting matrices, with Q and R chosen to be diagonal:

Q = diag(qe,tl, qe,th, qe,r1l, qe,r1h), (4.3)

R = diag(rδ,tf , rδ,r1d, rδ,r1r). (4.4)

For a controllable system [Nai02] the optimal control law for the inifinite horizon LQR

problem (4.1) is:

u∗(t) = − R−1BTP
︸ ︷︷ ︸

K

x(t) (4.5)

with P being found by numerically solving the ARE:

ATP + PA − PBR−1BTP + CTQC = 0. (4.6)

Considering the actual plant with parameters given in Appendix A.5, weighting matrices

(4.3) and (4.4) have been parameterized as given in Appendix A.6.2. The elements of Q

and R are normalized to typical error and steering input ranges. Different weights for

elements in Q express the emphasis put on reducing a particular error. For the chosen

weights of Appendix A.6.2 emphasis is on the tractor lateral error as well as the implement

lateral and heading error. The tractor heading error was considered irrelevant and hence

weighted significantly less. Choosing zero weight entries on the diagonal of Q was avoided

in general. This would result in weighting a subset of outputs only and involves ignoring

some rows in C. As outlined by [Nai02] this might cause the system to lose its detectability

property, which in turn is a necessary condition for stability of the closed-loop system.

The relative size of weights in R and Q influences the overall controller gain. Hence,

normalized entries of R have been chosen to represent an overall tuning parameter found

in simulations and experiments.
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4.2 Output Feedback Approximation

Numerous control concepts including LQR require either the measurement or the estima-

tion of all system state variables. The assumption of complete state feedback allows for a

systematic and mathematically exact treatment of control problems. For controllable lin-

ear time-invariant systems in particular this includes the possibility of placing closed-loop

eigenvalues arbitrarily [Won67]. Considering practical applications however, state feed-

back in general may face some challenges, including increased effort for estimator design

and implementation as well as sensitivity in terms of estimator model errors [Foe94].

Motivation

In this work state feedback is avoided for two reasons:

• All possible controlled variables (etl, eth, er1l, er1h) are available from measurements

and additional estimation effort is unnecessary from this point of view.

• Additional tractor-implement combination specific parameterization and implemen-

tation effort for an estimator or observer is undesirable. In case of curved path

tracking in particular this effort comprises of a nonlinear estimator and a nonlinear

reference variable generator to obtain estimated and desired system states without

introducing model errors due to linearization.

Approaches

In order to obtain a simpler controller the assumption of full state feedback based on an

estimation or measurement is abandoned. Instead, a simpler feedback based on measured

outputs is considered. In terms of output feedback one may distinguish between static and

dynamic output feedback [Foe94]. Static output feedback only comprises a proportional

controller Ky with

u = −Kyy. (4.7)

Dynamic output feedback in contrast denotes controllers that contribute additional system

states ranging from simple differentiators or integrators to a full state estimator. In terms

of controller design dynamic output feedback can be reduced to static output feedback

using an extended plant [Foe94].

Compared to state feedback the design of static output feedback controllers is more chal-

lenging due to the reduced number of free parameters. In contrast to state feedback no ex-

haustive theoretical framework exists. Instead various numerical approaches exist [Foe94],

[Lun10], [SAG97] to address the problem. One may distinguish between approaches trying

to approximate a previously calculated state feedback and direct methods of obtaining Ky.

Most approaches presented require either numerical optimization or an iterative solution
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of numerical equations. Two exceptions however allow for output feedback approximation

using closed-form equations. The first method presented by [Foe94] aims to approximate

state feedback by minimizing the difference between input vectors u(t) of both closed-loop

systems as those follow a reference input step. Obtaining the output feedback approxima-

tion Ky requires solving a Lyapunov equation and performing some matrix operations.

The second closed-form solution presented by [Lun10] and originally proposed by [BL74]

relies on approximating a subset of eigenvalues of a closed-loop system with state feedback.

Ky is found in a very concise way requiring some matrix operations and the calculation of

a pseudo-inverse. From the very beginning the approach was intended to be an alternative

to observers or Kalman filters developed previously. This approach is used to obtain an

approximation for (4.5).

Static Output Feedback with Mode Preservation

A brief sketch of the underlying idea by [BL74] is provided in this paragraph. The eigenval-

ues λ̄i (i = 1, . . . , n) and the corresponding eigenvectors vi of a state feedback closed-loop

system matrix A − BK are related (by definition) as follows:

(A − BK) vi = λ̄ivi. (4.8)

With pole placement or slight changes in the performance index those eigenvalues λ̄i can

be chosen to be distinct. Hence eigenvectors vi are linearly independent and form a basis:

V = [v1, . . . , vn] . (4.9)

λ̄i is also an eigenvalue of the output feedback closed-loop system matrix A − BKyC, if

KyCvi = Kvi, (4.10)

which can be seen from:

Avi − BKyCvi = Avi − BKvi = λ̄ivi. (4.11)

Collecting all conditions (4.10) yields

KyCV = KV, (4.12)

which is a matrix equation for the unknown Ky. In case solutions exist, one is given by:

Ky = KV (CV)‡ , (4.13)

with (•)‡ denoting the Moore-Penrose Pseudo-Inverse [BIT03].
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If no solution exists (4.13) at least minimizes the Frobenius matrix norm ‖KyCV − KV‖
F

[BIT03] with

‖M‖F =

√
√
√
√

m∑

k=1

n∑

l=1

|mk,l|2 and M ∈ C
m×n. (4.14)

Mode Weighting

The difference KyCvi−Kvi can be seen as a measure of the approximation of λ̄i. Emphasis

on approximating particular eigenvalues can be expressed by introducing weights wi

KyCviwi = Kviwi (4.15)

resulting in

KyCVW = KVW with W = diag (w1, . . . , wn) . (4.16)

The output feedback controller considering weighted eigenvalues is found similar to (4.13)

yielding the final result:

Ky = KVW (CVW)‡ . (4.17)

Degree of Match

So far an approximation of state feedback closed-loop eigenvalues has been provided. The

success of this approximation and the degree of match however has not been considered.

State feedback of a controllable plant allows for an arbitrary choice of eigenvalues [Won67].

In case of output feedback no similar statement exists and placing eigenvalues is more

involved. It is worth noting two theorems regarding an approximation’s possible degree

of match.

State feedback K and output feedback Ky are equivalent if and only if [Lun10]:

rank




C

K



 = rank (C) (4.18)

In this rare occasion row vectors of K are linear combinations of row vectors of C. The

output feedback Ky then is

Ky = K (C)‡ . (4.19)
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For less restrictive cases [Dav70] provides sufficient conditions ensuring that static output

feedback (4.7) is capable of bringing a limited number of rank (C) eigenvalues arbitrarily

close to preassigned values. Complex preassigned eigenvalues must appear in conjugate

complex pairs. The sufficient conditions are:

• The uncontrolled system with system matrix A and input matrix B is controllable.

• Eigenvalues of A must be distinct or repeated in such a way that the eigenvalues of

each Jordan block of the respective Jordan canonical form are distinct.

Application to Tractor-Implement Combinations

Considering this work’s linear kinematic model given by equations (3.78), (3.79), (3.75),

(3.76), (3.77) and parameters as stated in Appendix A.5 a LQR controller is designed using

an exemplary forward velocity vx,t
tr of 3 m/s and weights as given in Appendix A.6.2. The

resulting state feedback (4.5) is approximated using equation (4.17). The parameterized

open-loop system is controllable and the Jordan canonical form exhibits Jordan blocks

with distinct eigenvalues hence fulfilling the sufficient conditions of [Dav70] stated above.

Therefore, rank (C) = 4 eigenvalues can be brought arbitrarily close to preassigned values,

remembering that complex eigenvalues must form conjugate complex pairs. Considering

the open-loop system eigenvalues as shown in Figure 3.4 weights are chosen to emphasize

the three real eigenvalues closest to the origin. The three conjugate complex pairs of

eigenvalues resulting from steering actuator dynamics are neglected. Numeric values of

weights wi are given in Appendix A.6.3. The resulting closed-loop eigenvalues and initial

condition responses using either state or output feedback are depicted in Figure 4.1. Initial

condition responses are based on simulations using the linear kinematic system description
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Figure 4.1: Comparison of closed-loop eigenvalues and initial condition responses obtained
using state feedback and an respective static output feedback approximation.
A linear kinematic model was used for LQR controller design and simulations.
Parameters are as stated in Appendix A.5, and A.6. vx,t

tr is 3 m/s. The initial
condition represents a scenario of tractor and implement starting with 1 m
lateral error parallel to the desired path.
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as used for controller design. Figure 4.1 at this point is intended to outline the differences

between state feedback and output feedback approximation. A further discussion of closed

loop behavior is given in Chapter 5. In agreement with original examples by [BL74] the

neglected eigenvalues in case of static output feedback become more dominant and move

to the right. This expresses some decrease in performance caused by the approximation.

Comparing the particular initial condition responses of system states x the differences

for the given case are marginal. In theory state feedback allows for an arbitrary choice

of eigenvalues either obtained via pole placement or performance index weights. Output

feedback with limited system information may not be capable to resemble this choice. In

this case it was observed that some neglected eigenvalues move to the right half-plane

resulting in an unstable closed-loop system. For practical applications this requires the

checking of the closed-loop eigenvalues resulting from output feedback. For an unstable

approximation one needs to return to LQR controller design with less demanding weights.

4.3 Integral Control

LQR control and subsequent output feedback approximation as described in the previous

sections results in a proportional controller

u = Kyy (4.20)

with

y = [etl, eth, er1l, er1h]T and u = [δtf,d, δr1d,d, δr1r,d]T . (4.21)

In some variants only a subset of steering angle inputs of u may be available. Results

in Chapter 5 will show that this proportional control approach exhibits unsatisfactory

steady-state errors in curves and on slopes, which is due to the neglected wheel side-slip

acting as a disturbance. In addition, uncertain plant parameters might contribute to this

remaining deviation. From experience with classical SISO PID control one would expect

that integral control will account for uncertain plant parameters as well as for constant

or slowly changing disturbances. Formally this means SISO PID is a robust controller in

a sense as defined by [DG75] and as outlined in Appendix A.7. For MIMO control this

raises the questions:

• Is there a similar robust controller for MIMO?

• In case of m inputs, how many controlled outputs will exhibit zero steady-state

errors despite parameter uncertainties and disturbances?

• What does a suitable robust controller look like?
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- ẋ = Ax + Bu

y = Cx
Ky

[
1 0 0 0
0 0 1 0
0 0 0 1

]

extended plant

u ycyr xse

Figure 4.2: Extended plant considered for robust controller design in case of constant
disturbances and reference inputs, with plant inputs u ∈ Rm, measured plant
outputs y ∈ R

r, controlled plant outputs yc ∈ R
pc , reference input r ∈ R

pc

(here: r ≡ 0), error e ∈ Rpc , and servo-compensator states xs =
∫

e. yc is
obtained by selecting a subset of y such that pc ≤ m. Ky is a static output
feedback controller for the extended plant used to stabilize the overall system.

Answers to those questions have been provided by [DG75] considering possible distur-

bances and reference input signals in a very general way. Results for constant disturbances

and reference inputs are summarized in Appendix A.7. Core to a robust controller is the

inclusion of suitable models depicting the classes of disturbances and reference input sig-

nals that need to be considered. This is now commonly known as the ’internal model

principle’ [FW75]. Constant disturbances and reference inputs in particular require the

inclusion of integrators as depicted in Figure 4.2. For pc = dim(yc) controlled outputs pc

integrators are required. The number of controlled outputs pc however may not exceed

the number of inputs m = dim(u), if all controlled outputs shall exhibit zero steady-state

error despite parameter uncertainties and disturbances. Figure 4.2 indicates this require-

ment by distinguishing between measured outputs y and controlled outputs yc which are

a selection of the former. With those prerequisites robust controller design is a two-step

approach. The first step comprises creation of the extended plant as described. The sec-

ond step is stabilization of that extended plant using an arbitrary suitable controller. In

Figure 4.2 this is done using a static output feedback controller Ky.

It is worth noting that [DD11] only recently considered the case of fewer plant inputs

than controlled outputs in particular. In this case zero steady-state error is normally not

achieved for all outputs if disturbances are present. A controller is proposed to minimize

the remaining steady-state error. This controller however requires the steady-state plant

gain −CcA
−1B to be unaffected by parameter uncertainties, which is a major restriction.

For this work’s application achieving zero steady-state errors for an equal number of

inputs and controlled outputs and at the same time allowing for more general uncertainties

seemed more relevant.
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Application to Tractor-Implement Combinations

Considering the linear kinematic tractor-implement model given by (3.78), (3.79), (3.75),

(3.76), and (3.77) in particular allows to simplify the extended plant as given in Ap-

pendix A.7 resulting in:




ẋ

ẋs





︸ ︷︷ ︸

ẋe

=




A 0

Cc 0





︸ ︷︷ ︸

Ae




x

xs





︸ ︷︷ ︸

xe

+




B

0





︸ ︷︷ ︸

Be

u (4.22)




y

xs





︸ ︷︷ ︸

ye

=




C 0

0 I





︸ ︷︷ ︸

Ce




x

xs





︸ ︷︷ ︸

xe

. (4.23)

Multiple variants with different combinations of inputs u and controlled outputs yc are

considered. This results in the slight differences in the extended plant (4.22) and (4.23).

The most comprehensive plant considered uses tractor front wheel steering input δtf,d

as well as implement drawbar and wheel steering inputs δr1d,d and δr1r,d. The controlled

outputs considered for this variant are the tractor lateral error etl as well as the implement

lateral and heading error er1l and er1h. For this variant vectors x, u, and y remain as

given by (3.75), (3.76), and (3.77). Similarly matrices A, B, and C remain as stated in

Appendix A.2.2. xs and Cc depict the choices made in terms of controlled outputs yc

resulting in:

xs =
[∫

etl,
∫

er1l,
∫

er1h

]T

, (4.24)

Cc =








1 0 0 0

0 0 1 0

0 0 0 1








C. (4.25)

A summary of all variants considered can be found in Table A.4 of Appendix A.6.2. In

those cases the extended plant (4.22), and (4.23) exhibits a reduced number of states

due to less steering actuators. Similarly, xs comprises only of a subset of tracking error

integrals due to a reduced number of controlled outputs.

The stabilization of (4.22) and (4.23) is similar for all variants considered. Again LQR

control with subsequent output feedback approximation as described in Sections 4.1 and

4.2 is used. Additional performance index weights for tracking error integrals have been

introduced and chosen as stated in Appendix A.6.2. To emphasize the approximation

of dominant state feedback closed-loop eigenvalues the weighting rule as stated in Ap-

pendix A.6.3 is used in an unchanged manner.

Assuming a tractor forward velocity of vx,t
tr = 3 m/s and parameters as outlined in Ap-

pendix A.5 the resulting closed loop eigenvalues and initial condition responses of all
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variants are depicted in Figures 4.3 and 4.4. Initial condition responses have been cal-

culated using the linear kinematic model as considered for controller design. Again a

comparison of ideal state feedback and the respective static output feedback approxima-

tion is intended. Further discussion of closed-loop properties will be given in Chapter 5.

In addition to directly comparing the degree of match in Figures 4.3 and 4.4 sufficient

conditions of Davison’s theorem [Dav70] as outlined in Section 4.2 have been evaluated.

Determining rank Ce for each variant showed that the approximation’s weighting rule of

Appendix A.6.3 is not emphasizing too many eigenvalues. All sufficient conditions held for

single input variants. For variants with multiple inputs the sufficient condition of distinct

Jordan block eigenvalues was not fulfilled. Those cases allowed for no conclusion using

Davison’s theorem [Dav70].

As a final remark it should be noted that step responses with integral control typically

exhibit an overshooting behavior. This is already visible in Figures 4.3 and 4.4. In case

reference input steps are frequent a prefilter shaping the command response may be used

[Lun08]. Here initial path acquisition is the only situation requiring particular attention.

Overshooting in this situation will be addressed within the wider frame of anti-windup.
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Figure 4.3: Comparison of closed-loop eigenvalues and initial condition responses obtained
using state feedback and an corresponding static output feedback approxi-
mation. Variants of steering inputs u and controlled outputs yc have been
considered. Linear kinematic models were used for LQR controller design and
simulations. Integral control for all yc was included by using an extended
plant. Parameters are as stated in Appendix A.5 and A.6. vx,t

tr is 3 m/s. The
initial condition represents a scenario of tractor and implement starting with
1 m lateral error parallel to the desired path.
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Figure 4.4: Comparison of closed-loop eigenvalues and initial condition responses obtained
using state feedback and an corresponding static output feedback approxi-
mation. Variants of steering inputs u and controlled outputs yc have been
considered. Linear kinematic models were used for LQR controller design and
simulations. Integral control for all yc was included by using an extended
plant. Parameters are as stated in Appendix A.5 and A.6. vx,t

tr is 3 m/s. The
initial condition represents a scenario of tractor and implement starting with
1 m lateral error parallel to the desired path.

Controller Windup Prevention

Integral controllers (among others) [Hip06] face a challenge that arises from plant input

saturation. If plant inputs u saturate, changes in the plant outputs y and tracking errors

e remain without influence on the plant inputs. During this open-loop situation integral

controller state values may increase dramatically. This is followed by an error overshoot

in the opposite direction in order to decrease the error integral. The error overshoot

is possibly accompanied by reaching the opposite input saturation. As a consequence

a sequence of large and poorly decaying overshoots may develop. This phenomenon is

known as controller windup [Hip06]. Numerous measures have been developed to prevent

controller windup.
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In an overview [Hip06] lists:

• Hold integrators if control inputs are outside defined limits.

• Hold integrators if tracking errors are outside defined limits.

• Feed back difference between saturated and unsaturated plant inputs to stabilize

the controller during saturation.

• Use controllers given in a particular observer structure fed with saturated inputs.

The listed measures range from simple and rather pragmatic to complex and sophisti-

cated. The latter in particular allow to address performance problems in case of frequent

and rapid reference input r changes. Similarly some approaches are tailored towards main-

taining the direction u for particular MIMO systems that are sensitive to such changes.

For the given task of path tracking control actuator limits are reached in very rare occa-

sions. The only exception is the initial path acquisition while transitioning from manual

to automatic steering. For that reason a rather simple method of controller windup pre-

vention has been implemented. It uses the subsequent rules and thresholds as given in

Appendix A.6.4:

• Hold all integrators if at least one desired steering angle exceeds its defined limits.

• Hold all integrators if at least one tracking error exceeds its defined limits.

• Limit a particular integration rate if values of error and error integral are both

positive or both negative.

• Limit error integrals to a defined range.

During path tracking the controller exhibits linear behavior unaffected by those measures.

4.4 Disturbance Estimation and Feedforward

Integral control of Section 4.3 was introduced to account for disturbances resulting from

wheel side-slip. As an alternative this section derives an estimator for wheel-side slip.

The wheel side-slip estimates are used for disturbance feedforward control in order to

reduce steady-state path tracking errors. This section ties in with the introduction on

disturbance estimation of Section 2.2.11. A suitable nonlinear kinematic plant model

accounting for wheel side-slip as additive disturbances was derived in Section 3.2. This

model serves as a basis for estimator design. Estimation relies on the widely used Extended

Kalman Filter (EKF) [GKN+74], [May82], [Wen11] which is motivated by (approximately)

minimizing the state estimation error covariance for a plant with given sensor noise and

process noise properties. The EKF will be implemented using a digital controller and

therefore a discrete time system description is used throughout estimator design.
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Estimator Plant Model

Starting with the nonlinear kinematic model as summarized in Section 3.2.6 a discrete

time system given by difference equations can be found using forward Euler integration

of (3.70) if the sample time Ts is chosen sufficiently small. Introducing additional process

noise w and sensor noise v random vectors [GKN+74] results in a nonlinear stochastic

system:

x[k + 1] = x[k] + Tsf(x[k], u[k])
︸ ︷︷ ︸

fd(x[k],u[k])

+w[k], (4.26)

y[k] = h(x[k])
︸ ︷︷ ︸

hd(x[k])

+v[k] (4.27)

with

x =
[

rx,e
tr , ry,e

tr , Ψt, δthr, δtf , δ̇tf , δr1d, δ̇r1d, δ̇r1r, δ̇r1r, αtf , αtr, αr1r

]T
, (4.28)

u = [δtf,d, δr1d,d, δr1r,d]T , (4.29)

y = [rx,e
tr , ry,e

tr , Ψt, rx,e
r1r, ry,e

r1r, Ψr1, δtf , δr1d, δr1r]
T , (4.30)

In the theory of optimal filtering the process noise w and the sensor noise v are assumed

to be zero mean white gaussian random vectors and therefore defined by expectations

E {•} [GKN+74]:

E {w[k]} = 0, E
{

w[k]wT[l]
}

=







Q[k] for k = l,

0 for k 6= l,
(4.31)

E {v[k]} = 0, E
{

v[k]vT[l]
}

=







R[k] for k = l,

0 for k 6= l.
(4.32)

Obtaining statistical properties in practice is a challenge, however. The measurement

noise covariance matrix R[k] may be obtained from sensor data sheets or measurements.

The process noise covariance matrix Q[k] in contrast is seldom found and rather depicts

a tuning parameter for the resulting filter [Wen11]. If additional information on noise

spectral properties or correlation between w and v exists this may be used to enhance

estimates [Wen11]. Here, due to lack of further information, w and v as well as their

individual elements are assumed to be uncorrelated, resulting in:

E
{

v[k]wT[l]
}

= 0 for all k, l ≥ 0. (4.33)

Q[k] = diag (q1,1[k], . . . , qn,n[k]) , (4.34)

R[k] = diag (r1,1[k], . . . , rp,p[k]) . (4.35)
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Numerical values for Q[k] and R[k] used in this work’s setup are provided in Appendix

A.6.5. For R[k] those have been obtained from sensor data sheets and sensor noise variance

measurements for known sensor positions. For Q[k] numerical values were obtained during

experiments and simulations starting from an initial guess on how large the propagation

errors could become within one time step.

Note that earth-fixed coordinates instead of path deviations have been chosen for (4.26) to

(4.30). This is because wheel-side slip estimation is not necessarily tied to path tracking.

Keeping path information separate from this estimator model increases the flexibility in

terms of possible paths for tractor and implement. Those must not necessarily be identical

and could be given as a sequence of points without the need to find a describing function.

Extended Kalman Filter

The EKF is an estimator as shown in Figure 2.14. It is a nonlinear model based filter

running parallel to the actual plant and its task is to provide estimates x̂ for the actual

plant’s system states x. Along with those state estimates the EKF provides a measure of

estimation accuracy given by the state estimation error covariance matrix

P̂ = E
{

(x − x̂) (x − x̂)T
}

. (4.36)

The process of filtering can be divided into measurement update and propagation. Assum-

ing a discrete time EKF at the beginning of each time step a measurement update is

performed using available plant output measurements y to update the estimated system

states x̂ and the state estimation error covariance P̂. Subsequently, during propagation

the EKF uses system information given by a plant model to predict both the estimated

system states x̂ and the state estimation error covariance P̂ for the next controller time

step. The possibly time varying covariance matrices Q[k] and R[k] express uncertainty in

the system model and measurements. Noisy measurements and hence large R[k] result in

small and slow state estimate changes due to measurement updates. Perfect measurements

in contrast result in quick changes to estimated system states.

For this work’s discrete time plant model given by (4.26) to (4.30) the step of propagation

comprises of evaluating a nonlinear difference equation depicting the propagation of the

estimated states as well as a linear difference equation depicting the propagation of the

estimation error covariance [Wen11]:

x̂−[k + 1] = fd(x̂+[k], u[k]), (4.37)

P̂−[k + 1] = F[k]P̂+[k]FT[k] + Q[k], (4.38)

F[k] =
∂fd(x, u)

∂x

∣
∣
∣
∣
x=x̂+[k],u=u[k]

= I + Ts

∂f(x, u)

∂x

∣
∣
∣
∣
x=x̂+[k],u=u[k]

. (4.39)

(•)− and (•)+ denote a priori and a posteriori estimates, i.e. estimates before and after

measurements have been considered in a particular time step.
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In case all measured plant outputs y are obtained at the same time and with the same

sample rate the EKF measurement update could be stated in the common form [Wen11]:

K[k] = P̂−[k]HT[k]
(

H[k]P̂−[k]H[k]T + R[k]
)−1

, (4.40)

x̂+[k] = x̂−[k] + K[k]







y[k] − hd(x̂−[k])
︸ ︷︷ ︸

ŷ−[k]







, (4.41)

P̂+[k] = (I − K[k]H[k]) P̂−[k] (I − K[k]H[k])T + K[k]R[k]KT[k], (4.42)

with K[k] denoted as Kalman gain and

H[k] =
∂hd(x)

∂x

∣
∣
∣
∣
x=x̂−[k]

. (4.43)

In the given case several sensor signal sample rates have to be considered. As a conse-

quence only a subset of new sensor measurements y is available at some time steps. If

the entire vector y was used for measurement updates this would result in using outdated

sensor measurements y causing an additional estimation error. To overcome this problem

a proposal by [Wen11] is implemented. Instead of using a single measurement update

considering all outputs y a sequence of measurement updates each considering a single

output yi only is performed. If yi is a new measurement the update is performed, if it is

an outdated measurement the update is omitted. For p outputs this results in:

x̂±
0 [k] = x̂−[k], (4.44)

P̂±
0 [k] = P̂−[k], (4.45)

for i = 1, . . . , p do

ki[k] = P̂±
i−1[k]hi[k]

(

hT
i [k]P̂±

i−1[k]hi[k] + ri,i[k]
)−1

, (4.46)

x̂±
i [k] =







x̂±
i−1[k] + ki[k]







yi[k] − hd,i(x̂
−[k])

︸ ︷︷ ︸

ŷi
−[k]







(update),

x̂±
i−1[k] (no update)

(4.47)

P̂±
i [k] =







(

I − ki[k]hT
i [k]

)

P̂±
i−1[k]

(

I − ki[k]hT
i [k]

)T
+ ki[k]ri,i[k]kT

i [k] (update),

P̂±
i−1[k] (no update),

(4.48)

end for

x̂+[k] = x̂±
p [k], (4.49)

P̂+[k] = P̂±
p [k], (4.50)
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with intermediate results x̂±
i [k], P̂±

i [k], Kalman gain column vectors ki[k], and the fol-

lowing row vectors:








hT
1 [k]
...

hT
p [k]








= H[k] =
∂hd(x)

∂x

∣
∣
∣
∣
x=x̂−[k]

. (4.51)

Initial values x̂−[0] and P̂−[0] need to be given as parameters. Those are stated in Ap-

pendix A.6.5.

Disturbance Feedfoward Control

Estimation of x̂ as in (4.28) results in wheel side-slip estimates α̂tf , α̂tr, and α̂r1r. Distur-

bance feedforward is established by including additive terms δtf,d,dff , δr1d,d,dff, and δr1r,d,dff

contributing to the desired steering angles δtf,d, δr1d,d, and δr1r,d used to control tractor

and implement. Those additive terms are defined as:

δtf,d,dff = α̂tf , (4.52)

δr1r,d,dff = α̂r1r, (4.53)

δr1d,d,dff = − arcsin

(

lthr

lr1d

sin (α̂tr)

)

. (4.54)

Referring to Figure 2.7 the disturbance feedfoward terms δtf,d,dff and δr1r,d,dff are simply

chosen to increase the corresponding steering angle and to compensate the influence of

wheel side-slip. The tractor rear wheel is unsteered which excludes this possibility. The

estimate α̂tr is used to aid the positioning of the implement instead. Therefore, the imple-

ment drawbar disturbance feedforward δr1d,d,dff is chosen in such a way that the implement

straight line tracking error caused by the tractor hitch point offset due to wheel side-slip

(i.e. lthr sin (α̂tr)) is compensated.

Controller Windup Prevention

In case of saturated input signals u differences between actual plant and estimator plant

model input signals might cause the estimator to attribute those differences wrongfully to

system state and disturbance estimates. As a consequence controller windup might occur.

A systematic way of preventing this windup is to saturate input signals to the estimator as

well [Hip06]. This was implemented by limiting desired steering angles to the permissible

ranges as stated in Appendix A.5.
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4.5 Path Curvature Feedforward

Path tracking by means of feedback control as derived in the previous sections only takes

place after a tracking error is already present. On paths with changing curvature this will

result in poor performance. To account for changing path curvature prior to leaving the

desired path, feedback control is supplemented by feedforward control based on the paths

curvature. Feedforward control laws for both tractor and implement will be derived by

relating path curvature and steering angles.

Path Curvature and Steering Angle Relations

Tractor feedforward control is found as shown in Figure 4.5. Assuming no wheel side-slip,

path curvature κ = 1/R and tractor front wheel steering angle δtf are related by simple

trigonometry and lt as only parameter. A feedforward steering angle δtf,d,cff that keeps

the tractor on the depicted arc segment, if no wheel side-slip and no disturbances are

present, is given by the well-known equation:

δtf,d,cff = arctan (ltκ) . (4.55)

Implement feedforward control is slightly more involved, yet can be found using trigonom-

etry and a small number of parameters as well. Figure 4.5 depicts a drawbar steered im-

plement. Assuming that the tractor rear wheel and implement wheel are both located on

an arc segment with radius R or curvature κ = 1/R allows to relate drawbar steering

angle and path curvature. Using some trigonometric laws to calculate lengths and angles

of the depicted triangles between tractor rear wheel and implement wheel yields:

δr1d,d,cff = arctan (lr1κ) + arcsin




κ (l2

r1 + l2
r1d − l2

thr)

2lr1d

√

1 + κ2l2
r1



 . (4.56)

This feedforward control law is used in case drawbar steering is available. It is preferred

over feedforward control via implement wheel steering due to not causing an implement

heading error. This means that path tangent and implement remain aligned at the imple-

ment rear wheel position as shown in Figure 4.5.

If only implement wheel steering is available the respective feedforward control law is:

δr1r,d,cff = − arcsin




κ
(

(lr1 + lr1d)2 − l2
thr

)

2 (lr1 + lr1d)



 . (4.57)

It can be found as a special case of (4.56) using the substitutes δr1d,d,cff → −δr1r,d,cff ,

lr1 → 0, and lr1d → lr1d + lr1.
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δtf

δthr
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lr1

Figure 4.5: Tractor and drawbar steered implement on arc segment with radius R and
curvature κ = 1/R. Steering angles and curvature are positive as drawn.
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Path Curvature Look-Ahead

The curvature feedforward control laws (4.55), (4.56), and (4.57) have been derived as-

suming that the tractor and the implement are located on an arc segment with curvature

κ. For arbitrary paths, as for instance given in Appendix A.4, the derived feedforward

control laws are an approximation. To improve performance on those paths two small

modifications are made. First, instead of using only one desired path curvature variable

κ, two separate variables κt and κr1 are obtained from the desired path information. Sec-

ond, to account for delays due to steering actuator dynamics the curvatures obtained

are taken from points slightly ahead of the tractor rear wheel and implement wheel re-

spectively. The corresponding distances are found by multiplying a time constant with

current tractor and implement speed to account for different distances traveled while the

steering actuation takes place. Numerical values of those time constants are given in Ap-

pendix A.6.6. Those have been chosen to depict the delay until a small steering angle step

response reaches 63% of its final value.

4.6 Tracking Error and Curvature Calculation

Feedback controller design was based on a linearized bicycle model in terms of deviations

from a desired straight path as shown in Figure 3.1. Lateral errors etl, er1l and heading

errors eth, er1h were assumed to be measured plant outputs. This choice of outputs was

motivated by the possibility of applying the controller to arbitrary paths without intro-

ducing large errors due to linearization. However, regardless of the chosen desired path no

details on obtaining etl, er1l, eth, and er1h have been provided so far. The same holds for

the path curvature κt and κr1 required for curvature feedforward. This section will sketch

the basic idea of this work’s underlying calculations. The chosen approach is not core to

this work and may be replaced by arbitrary suitable alternatives.

Calculation Inputs

Inputs to error calculation are tractor and implement positions as well as a desired path

given by a sequence of points. All of them are given in local earth-fixed coordinates. The

sequence of points defining the desired path is assumed to be the result of an arbitrary

form of path planning. By choosing a sequence of points over e.g. parameterized curves

path planning and path tracking error calculation share a very general interface and

can be designed independently. The desired paths as described in Appendix A.4 have

been obtained by connecting different types of curves (e.g. straights, curves, clothoids).

Sampling points have been taken with an approximate distance of 15 cm.

Algorithm

In order to obtain heading errors and desired path curvature, an at least two times dif-

ferentiable parameterized curve describing the desired path is required. The key idea of

the chosen approach is to interpolate the given sequence of points using a cubic spline
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moving with tractor and implement. This is regardless of the original curve used during

path planning.

The implemented steps are:

• Find the points in the desired path point sequence that are closest to tractor rear

axle and implement axle.

• Interpolate the desired path by using a moving cubic spline with the arc length sd

as curve parameter (algorithm cf. [PTVF07]).

• Find the points on the interpolated curve that are closest to tractor rear axle and

implement axle. The corresponding distances yield etl and er1l.

• Obtain the desired path curve tangents at those points. The angles between those

and tractor/implement heading yield eth and er1h.

• Obtain the desired path curvatures κt and κr1 at short distances ahead of those

closest points, as described in Section 4.5.

Notes:

• By choosing sufficiently short distances between the sampling points it was ensured

that the differences between derivatives of the original curves and the cubic splines

became negligible.

• In order to use this method with desired paths obtained from measurements a com-

bined interpolation and approximation method smoothing the noisy measurements

is probably advisable.

4.7 Controller Overview

Within the previous sections two alternative control approaches have been conceived. The

resulting block diagrams summarizing them are given in Figures 4.6 and 4.7. LQR with

integral control and subsequent output feedback approximation (denoted as ’LQR w. I’)

as shown in Figure 4.6 is the preferred solution in terms of tuning and simplicity of the

resulting implementation. Therefore, several variants with subsets of steering actuators

as outlined in Table A.4 of Appendix A.6.2 have been developed. The second approach

avoiding integral control and using EKF estimation based disturbance feedforward control

instead (denoted as ’LQR w. EKF’) has been only derived using all steering actuators.

Both approaches will be studied in simulations and experiments. In addition, LQR control

with subsequent output feedback approximation without additional measures (denoted as

’LQR w/o I’) will be considered to a limited extend. This is done in order to demonstrate

the need for additional measures to account for wheel side-slip. The corresponding block

diagram is identical to Figure 4.6 except for the omitted integral control.
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5 Results

Within this chapter, the path tracking controllers’ performance is studied in simulations

and experiments. In a first step the test setup comprising experimental hardware, test

field, simulation models, and various path tracking controllers is outlined. Subsequently,

initial condition responses, disturbance step responses, steady-state cornering, and curved

path tracking scenarios with transient cornering conditions are considered. Finally, the

influence of varying parameters is studied.

5.1 Test Setup

5.1.1 Experimental Hardware and Test Field

Experiments have been performed using a John Deere 6210R tractor towing a custom

built implement with a multitude of hydraulic steering actuators. A detailed description

of this combination is provided in Appendix A.3. For this work’s experiments implement

wheel steering and front drawbar steering was used. All other implement actuators have

been held in mid position and steering coulters were raised. Inner loop implement steering

angle control was based on simple proportional control using ISO 11783 hydraulic valve

flow commands as plant inputs and analog steering angle measurements as plant out-

puts. Tractor steering relied on a built-in tractor steering angle controller with a standard

ISO 11783 Tractor Implement Automation (TIA) [ISO09] interface. It accepts curvature

commands corresponding to desired steering angles and returns measured steering an-

gles in a similar format. Tractor and implement position measurements were obtained

with 10 Hz sample rate using John Deere SF 3000 GPS receivers augmented by RTK

correction signals. Both tractor and implement were equipped with two GPS receivers

each. The additional receivers were used to calculate the machine heading accurately. Ob-

taining tractor and implement position involves a projection of measurements from the

antenna position to ground level which needs to account even for small vehicle roll and

pitch angles. To perform this projection the receiver built-in IMU and Terrain Compensa-

tion Module (TCM) were used. A rapid prototyping platform providing Controller Area

Network (CAN) interfaces and analog inputs was used to run the path tracking controller

and the inner loop implement steering angle controllers.

Curved path tracking as well as path acquisition experiments have been performed on a

level field of dry loam [LGB14]. Initially, the field was worked with a ripper and slightly

compacted by repeated tractor passes. Subsequently, tests have been performed with



104

continuously shifted desired paths in order to prevent the creation of grooves due to

multiple passes. Experiments on dry grassy slopes have been performed to a limited

extent. However repeatability of those experiments as required for a sound statistical

analysis could not be achieved. This was because changing desired paths also resulted in

changing slope angles and maintaining a desired path resulted in creation of deep grooves.

5.1.2 Simulation Model

Simulations have been carried out using the most detailed model derived, which is the

nonlinear dynamic tractor-implement model including transient tire forces as compiled

in Section 3.1.6. Unless stated otherwise a tractor velocity of vx,t
tr = 3 m/s and param-

eters as stated in Appendix A.5 are assumed. Those parameters resemble this work’s

tractor-implement experimental setup with tire parameters obtained on solid ground (as-

phalt). Scenarios deviating from those nominal simulation conditions will be considered

by parameter variation. This includes changes of tire parameters accounting for loose soil.

Estimators in particular are affected by noisy sensor signals. For that reason all simula-

tions, unless stated otherwise, account for noise by using additive white Gaussian noise

models with parameters as stated in Appendix A.5. Steering angle sensor noise was added

directly to simulation outputs. For GPS sensor measurements noise has been applied by

first obtaining the four antenna positions from the simulated tractor and implement po-

sition and orientation. In a second step additive noise has been applied to those antenna

position signals. Finally, the resulting noisy antenna position signals are used to calculate

tractor and implement position and heading within the controller.

5.1.3 Path Tracking Controllers

Several control approaches as summarized in Section 4.7 have been studied. For future

reference those are denoted as follows:

LQR w. I: LQR with subsequent output feedback approximation accounting for distur-

bances using integral control

LQR w. EKF: LQR with subsequent output feedback approximation accounting for dis-

turbances using EKF based wheel side-slip estimation and disturbance feedforward

control

LQR w/o I: LQR with subsequent output feedback approximation resulting in purely

proportional control without measures to account for disturbances

Parameters are chosen as outlined in Appendix A.6. A tractor forward velocity of vx,t
tr =

3 m/s was used for controller design if nothing different is stated. Comparison of different

control approaches as stated above was performed using all desired steering angles (δtf,d,
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δr1d,d, δr1r,d) as plant inputs. In this case, tractor lateral error etl as well as implement

lateral and heading error er1l and er1h are the controlled outputs. For ’LQR w. I’ ex-

periments with subsets of actuators and controlled variables have been performed. The

resulting variants denoted by 1 to 5 are summarized in Table A.4 of Appendix A.6.

Less formally speaking those variants depict the following objectives:

1 : Use all three steering inputs to control tractor lateral position as well as implement

lateral position and heading.

2 : Use tractor wheel steering and implement drawbar steering to control tractor and

implement lateral position.

3 : Use tractor wheel steering and implement wheel steering to control tractor and im-

plement lateral position.

4 : Use tractor wheel steering to control implement lateral position.

5 : Use tractor wheel steering to control tractor lateral position, i.e. the implement is

trailing the tractor in an uncontrolled manner.

Identical discrete time path tracking controllers have been used for simulations and ex-

periments. The associated sample times are provided in Appendix A.6 as well. Desired

paths are as outlined in Appendix A.4.

5.2 Initial Condition Responses

The first scenarios investigated in experiments as well as simulations are initial condition

responses starting with a 1 m lateral offset from a desired path. The resulting lateral

errors and measured steering angles are shown in Figures 5.1 and 5.2. In case of LQR

w. EKF tractor and implement position as well as heading measurements are subject to

additional filtering within the EKF (cf. Figure 4.7). In order to allow for better comparison

with other control approaches the associated tracking errors as seen from unfiltered sensor

signals are included and marked by (u). The influence of filtering in the given scenarios

however is marginal.

Observation

From simulations and experimental results of Figure 5.1 can be seen that for LQR w. EKF

lateral errors etl and er1l settle with a small overshoot of less than 10 cm. In experiment

|etl| remains below 50 cm after 6.6 m and below 10 cm after 10.6 m. For |er1l| this is

the case after 8.3 m and 14.4 m. LQR w. I in contrast exhibits a larger overshoot for etl

and er1l which is typical for integral control. In experiments the overshoot was 25 cm and

20 cm respectively. In simulations it was even more pronounced. |etl| remains below 50 cm

after 5.9 m and below 10 cm after 15.4 m. For |er1l| this is after 4.5 m and 17.5 m. Lateral
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errors hence start diminishing quicker, yet settling takes longer. Differences in implement

heading er1h were less pronounced for both approaches.

Considering variants of LQR w. I as shown in Figure 5.2 the variant 1 was already

discussed with Figure 5.1. 5 depicts the case of an uncontrolled implement. Here er1l

initially exhibits an increase. This is due to the tractor hitch point first moving away from

the desired path. This behavior is as expected knowing the transfer function from δtf,d to

er1l is non-minimum phase. For 5 in experiments |er1l| is below 50 cm after 10.8 m and

below 10 cm after 14 m. Implement wheel steering (variant 3 ) results in a performance

similar to variant 1 . Wheel steering does not negatively influence implement heading.

Variant 2 with implement drawbar steering in contrast exhibits a worse performance

with |er1l| staying below 50 cm after 8.6 m and below 10 cm after 19.9 m. Variant 4

using tractor steering to control the implement lateral error took a very long time to settle

in experiments and did not settle in simulations.

Regarding measured steering angles as shown in Figures 5.1 and 5.2 it can be seen that

those are initially subject to steering angle rate limits.

Interpretation

Trying to achieve zero steady-state tracking errors via integral control comes at a price

in terms of overshooting initial condition responses. In experiments the overshoots were

moderate, yet resulted in an increased distance to settle within a 10 cm band of lateral

errors, despite a quicker drop below 50 cm lateral errors. In simulations overshooting

was more pronounced. This might be due to the rather simple second order lag model

depicting steering actuator dynamics. In any case, care must be taken when acquiring

a path with integral control. Measured steering angles showed that steering angle rate

limits are encountered initially. Accounting for those rate limits in anti-windup therefore

still offers possibility for improvement.

LQR w. I variant 4 in particular suffers from difficulties due to the double integrator

non-minimum phase transfer function from δtf,d to er1l. In this case it seems advisable to

acquire the track by different means, e.g. using tractor lateral error etl control prior to

switching to er1l as controlled output.
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Figure 5.1: Experimental and simulated initial condition responses depicting the acquisi-
tion of a straight desired path. Results have been obtained by instantaneously
shifting the desired path laterally by 1 m. This was done after tractor and
implement lateral errors had settled. ∆sd denotes the desired path arc length
covered after the shift occurred. (u) denotes the lateral and heading errors as
obtained from raw sensor measurements prior to EKF filtering.
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Figure 5.2: Experimental and simulated initial condition responses depicting the acquisi-
tion of a straight desired path. Results have been obtained by instantaneously
shifting the desired path laterally by 1 m. This was done after tractor and
implement lateral errors had settled. ∆sd denotes the desired path arc length
covered after the shift occurred.
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5.3 Disturbance Step Responses

Path tracking control in agriculture is subject to large disturbances resulting from lateral

down-hill forces on sloped terrain. Simulations have been performed to assess the proposed

controllers’ performance subject to lateral disturbing force steps while tracking a straight

desired path. The disturbing forces were chosen to act on tractor and implement c.g. in ey,t

and ey,r1 direction. Absolute values depict down-hill forces caused by an instantaneous side

slope angle change from 0◦ to 20◦ considering mt and mr1 respectively. The associated

disturbance step responses are depicted in Figure 5.3. For LQR w. EKF in particular

simulated wheel side-slip angles and the respective EKF estimates are shown Figure 5.4.

Observation

By first considering LQR w/o I in Figure 5.3 it becomes apparent that purely propor-

tional output feedback results in large steady state lateral errors of 35 cm and 38 cm for

the tractor and the implement. The implement heading error is very small. The tractor

heading error is an uncontrolled output and remains nonzero for all control approaches.

As a consequence the tractor is pointing slightly up-hill exhibiting a lateral velocity vy,t
t

in steady state. LQR w. EKF uses the same proportional feedback control law yet is now

accompanied by disturbance feedforward. With this measure steady-state etl, er1l, and

er1h become very small. From Figure 5.4 can be seen that the EKF wheel side-slip angle

estimates used for disturbance feedforward and the actual values within the simulation

model coincide in steady-state. LQR w. I as an approach to account for disturbances

allows to obtain vanishing etl, er1l, and er1h as well. This is the case if all three steering

inputs are used and three controlled variables can be chosen (variant 1 ). In case of 3

and implement wheel steering only the remaining implement heading error is caused by

the tractor hitch point running offset from the desired path due to a remaining eth. As

a consequence the implement is pointing slightly down-hill. Variant 2 , with implement

drawbar steering only, in contrast, results in a steady-state condition with an up-hill

pointing implement and a non-vanishing er1h of opposite sign. In case of an unsteerable

implement zero steady-state error can only be achieved for one controlled output. In case

of 4 and 5 this is the implement lateral error and the tractor lateral error respectively.

Either the tractor is offset 25 cm up-hill or the implement follows 25 cm down-hill.

Interpretation

From large steady-state lateral errors obtained in simulations it appears that purely pro-

portional control is not capable of coping with disturbances that result from wheel side-

slip on sloping terrain. This impression was also supported by preliminary experiments on

slopes. LQR w. I and LQR w. EKF using either integral control or disturbance feedforward

in contrast was found capable of compensating the steady-state influence of wheel side-

slip. It is worth noting, however, that wheel side-slip was the only disturbance in those

simulations. As a consequence LQR w. EKF encountered ideal conditions. In practice

additional disturbances of different origin might contribute to path tracking errors.
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Figure 5.3: Simulated disturbance step responses following lateral tractor and implement
force steps. These forces act on tractor and implement c.g. in ey,t and ey,r1

direction and are chosen to depict an instantaneous side slope angle change
from 0◦ to 20◦. ∆sd denotes the desired path arc length covered. The distur-
bance step was applied at ∆sd = 20 m. (u) denotes the lateral and heading
errors as obtained from raw sensor measurements prior to EKF filtering.
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Figure 5.4: Simulation results showing actual wheel side-slip angles αtf , αtr, αr1r and re-
spective EKF estimates α̂tf , α̂tr, α̂r1r in case of a disturbance step caused by
lateral tractor and implement forces. These forces act on tractor and imple-
ment c.g. in ey,t and ey,r1 direction and are chosen to depict an instantaneous
side slope angle change from 0◦ to 20◦.

5.4 Steady-State Cornering

All control approaches and steering input variants have been assessed in experiments

on a circular desired path with 20 m radius. In each case 3 full left curve circles and 3

full right curve circles served as basis for statistical analysis. Lateral and heading errors

for left curves have been multiplied by -1 to obtain always positive lateral errors for

radii larger than the desired path radius. Statistical results are depicted in Figure 5.5. For

LQR w. EKF in addition side-slip angle estimates obtained from experiments are outlined

in Figure 5.6. In comparison simulation results depicting the principle expectation with

side-slip as only disturbance are provided in Figure 5.7.

Observation

Results for LQR w/o I as shown in Figure 5.5 again exhibit large lateral errors with

13.1 cm and 12.3 cm mean for tractor and implement respectively. Approaches accounting

for wheel side-slip show better results. Tracking errors for LQR w. EKF however are non-

zero mean with -2.0 cm, 1.3 cm and -0.4◦ for etl, er1l, and er1h. The respective SDs are

3.2 cm, 2.2 cm and 0.3◦ if filtered receiver position and heading signals as seen by the

path tracking controller are used. EKF filtering has an only slightly notable influence on

the implement heading error. LQR w. I actually achieves zero mean tracking errors for all

controlled outputs. In case of all three steering inputs (variant 1 ) standard deviations

for etl, er1l, and er1h are 3.2 cm, 2.0 cm and 0.7◦. Lateral errors for variants 2 (implement

drawbar steering only) and 3 (implement wheel steering only) are comparable with 1 .

The large implement heading error in case of 3 is inevitable on curves making drawbar

steering per se a better choice if er1h matters. In case of tractor steering only a single

controlled output remains. Variant 4 places the implement with zero mean and 3.1 cm
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SD the tractor is forced to leave the path with a mean lateral error of 28.2 cm. Variant

5 in contrast accounts for tractor path tracking with a SD of 3.3 cm. The implement

cuts corners with a lateral error mean of -27.7 cm.

Returning to LQR w. EKF, simulation results for side-slip estimates as depicted in Fig-

ure 5.7 raise the expectation of symmetric graphs in case of left and right curves. Wheel

side-slip angles are expected to be all positive for left curves and all negative for right

curves due to centripetal forces. Actual experimental results as depicted in Figure 5.6

however do not resemble this completely and implement wheel side-slip estimates were

found to be of opposite sign. It is worth noting that the remaining difference between

actual and estimated wheel side-slip angles in Figure 5.7 could be reduced by increasing

the sample time used for EKF propagation, which results in an improved discrete time

approximation of the original continuous time model ODEs.

Interpretation

From the experimental results shown above one may conclude that LQR w/o I is not

sufficient for curved path tracking and the additional measures to account for disturbances

resulting from wheel side-slip are actually necessary. LQR w. I exhibits the advantage

that zero steady-state path tracking errors can be achieved regardless of the (constant)

disturbances’ origin. For LQR w. EKF disturbances from other origins like small steering

angle sensor offsets or hardware tolerances may either result in non-zero steady-state

tracking errors or wheel side-slip estimates deviating from the actual values. With both

LQR w. EKF and LQR w. I the lateral error SDs of 3.2 cm or less are already close to

what the given sensor accuracy actually permits (cf. Appendix A.3). In case of LQR w.

EKF implement heading information was filtered most. This is a consequence of having a

higher heading sensor noise variance than the tractor (see Appendix A.6.5) which in turn

results from a shorter distance between both implement GPS receiver antennas. Using a

filtered heading information might be beneficial in this case.
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Figure 5.7: Simulation results for tracking a circular path with 20 m radius. Depicted
are the wheel side-slip angles αtf , αtr, αr1r and respective EKF estimates α̂tf ,
α̂tr, α̂r1r while either steering left or right. Note that the tire parameters used
represent the nominal case as identified on asphalt.
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5.5 Curved Path Tracking

Curved path tracking has been investigated using the desired paths C1 (max. curvature

1◦/m, curvature change rate 0.1◦/m2) and C3 (max. curvature 3◦/m, curvature change rate

0.3◦/m2) consisting of straights, clothoids, and arc segments as defined in Appendix A.4.

Again, experiments were performed on a level field of dry loam. Tractor forward speed was

vx,t
tr = 3 m/s. 6 passes with 3 in each direction have been recorded and used for statistical

analysis of tracking errors. Analysis started with the tractor rear axle entering the first

curve and ended with the implement axle leaving the last curve. The respective results are

summarized in Figures 5.8 and 5.9. For C3 exemplary tracking error and steering angle

plots over the arc length covered are given in Figure 5.12.

For comparison and later use in a parameter variation study simulations have been per-

formed using curve C3 and nominal simulation parameters, i.e. those obtained on asphalt.

Statistical analysis of those simulation results is provided in Figure 5.10. An exemplary

tracking error and steering angle plot is given in Figure 5.13. Finally, in order to assess

the influence of curvature feedforward on implement path tracking, simulations have been

performed omitting implement curvature feedforward. Tractor curvature feedforward was

maintained, as it is already known to be a crucial part in path tracking. The results are

summarized in Figure 5.11.

Observation

Results for tracking path C1 as shown in Figure 5.8 outline rather minor differences

between LQR w. EKF and LQR w. I. The SDs for controlled outputs etl, er1l, and er1h are

4.1 cm, 3.6 cm, and 0.3◦ (0.6◦ unfiltered) in one case and 2.9 cm, 1.9 cm, and 0.5◦ in the

other. Both results, however, exhibit zero mean tracking errors for the given symmetric

path.

Variants 1 (all steering inputs), 2 (implement drawbar steering only), 3 (implement

wheel steering only) for LQR w. I result in very similar lateral errors. Implement heading is

an uncontrolled output for 2 and 3 . In case of drawbar steering the implement heading

error is slightly increased. Wheel steering again suffers from introducing a heading error

while trying to track the curved path. In case of tractor path tracking only 5 with

tractor lateral error as controlled output results are comparable to previous variants. The

uncontrolled implement however is cutting corners. Variant 4 using tractor steering for

implement path tracking control fails to achieve accurate implement control while the

tractor is off-track as well.

Path C3 compared to C1 exhibits a larger maximum curvature as well as an increased

curvature change rate. Results depicted in Figure 5.9 show a similar pattern, yet SDs for

controlled outputs etl, er1l, and er1h are increased. For LQR w. EKF those are 7.1 cm,

7.1 cm, and 0.4◦ (0.7◦ unfiltered). For LQR w. I one obtains 5.6 cm, 3.1 cm, and 0.5◦.
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Considering path C3 in simulations yields results as shown in Figure 5.10. Results obtained

for those nominal conditions exhibit tracking errors with zero means. SDs are below those

found in experiments on dry loam. For etl, er1l, and er1h one obtains 3.6 cm, 2.7 cm, and

0.1◦ for LQR w. EKF as well as 3.0 cm, 1.4 cm and 0.5◦ in case of LQR w. I.

If implement curvature feedforward is omitted as shown in the simulation results of Fig-

ure 5.11 the implement path tracking accuracy suffers compared to the previous results

of Figure 5.10. The resulting SDs for er1l and er1h are 15 cm and 1.8◦ (LQR w. EKF) as

well as 10 cm and 1.3◦ (LQR w. I).

Finally, tracking errors and steering angle plots as shown in Figures 5.12 and 5.13 un-

surprisingly reveal that large lateral errors in simulations as well as experiments coincide

with changing curvature. Tractor front wheel and implement drawbar steering angles as

shown obtain their largest signal part from curvature feedforward.

Interpretation

This section’s results for different curves as well as previous results for steady-state corner-

ing illustrate that comparing different approaches in non-steady state conditions requires

the use of identical paths. In those conditions there will not be a single number describing

the accuracy of a controller. For LQR w. I on path C1 and C3 lateral errors in experiment

remained below 3 cm and 6 cm SD respectively. This was for all variants using a steerable

implement. Experimental results for LQR w. EKF ranged slightly above. This however

might be due to small differences in transient behavior of side-slip estimation and integral

control. Spending increased effort on fine tuning both for a particular scenario might turn

the outcome.

In case of three steering inputs implement heading was made a controlled variable. From

the above results this effort seems unnecessary if implement drawbar steering is used and

the terrain is flat. However, as seen from previous results in Figure 5.3, path tracking on

slopes benefits from wheel steering rather than drawbar steering. If path tracking on curves

and slopes is intended using two implement steering actuators therefore is advantageous.

Controlling the implement lateral position with tractor steering only (variant 4 ) exhib-

ited poor performance on the considered curved paths. This might be due to the current

state of tractor feedforward control which was designed for tractor and implement driving

on one identical path. If controlling unsteered implements was in focus, planning a sepa-

rate tractor path accounting for the required offsets as done in [KT08] could be beneficial.

From simulation results using path C3 it was seen that curvature feedforward is an im-

portant part of accurate implement control.
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Figure 5.8: Experimental results for tracking path C1. Depicted are min-max ranges (⊲
⊳), standard deviations (⊢⊣), and mean values (×) of all tracking errors. Each
result was obtained from 6 passes with 3 in each direction. Tractor forward ve-
locity was vx,t

tr = 3 m/s. (u) denotes the lateral and heading errors as obtained
from raw sensor measurements prior to EKF filtering.
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Figure 5.9: Experimental results for tracking path C3. Depicted are min-max ranges (⊲
⊳), standard deviations (⊢⊣), and mean values (×) of all tracking errors. Each
result was obtained from 6 passes with 3 in each direction. Tractor forward ve-
locity was vx,t

tr = 3 m/s. (u) denotes the lateral and heading errors as obtained
from raw sensor measurements prior to EKF filtering.
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Figure 5.10: Simulation results for tracking path C3. Depicted are min-max ranges (⊲ ⊳),
standard deviations (⊢⊣), and mean values (×) of all tracking errors. Each
result was obtained from 6 passes with 3 in each direction. Tractor forward
velocity was vx,t

tr = 3 m/s. (u) denotes the lateral and heading errors as
obtained from raw sensor measurements prior to EKF filtering.
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Figure 5.11: Simulation results for tracking path C3 without implement curvature feed-
forward. Depicted are min-max ranges (⊲ ⊳), standard deviations (⊢⊣), and
mean values (×) of tracking errors. Each result was obtained from 6 passes
with 3 in each direction. Tractor forward velocity was vx,t

tr = 3 m/s. (u)
denotes the lateral and heading errors as obtained from raw sensor measure-
ments prior to EKF filtering.
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Figure 5.12: Experimental results for tracking path C3. Depicted are tracking errors and
measured steering angles over the arc length ∆sd covered. Tractor forward
velocity was vx,t

tr = 3 m/s. (u) denotes the lateral and heading errors as
obtained from raw sensor measurements prior to EKF filtering.
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Figure 5.13: Simulation results for tracking path C3. Depicted are tracking errors and
measured steering angles over arc length ∆sd covered. Tractor forward veloc-
ity was vx,t

tr = 3 m/s. (u) denotes the lateral and heading errors as obtained
from raw sensor measurements prior to EKF filtering.
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5.6 Parameter Variation Study

Tractor longitudinal velocity vx,t
tr has a pronounced influence on the system under control,

as seen in Chapter 3. Controller design so far assumed a fixed velocity of 3 m/s. Similarly,

experiments and simulations were performed at this nominal velocity. In this section the

influence of a varying tractor velocity is studied. For that reason step response and curved

path tracking experiments have been performed while vx,t
tr was either matching or deviating

from the nominal value used for controller design. The results are outlined in Figure 5.14

and 5.15.

In addition simulations were performed to study the influence of varying model parame-

ters. The nominal simulation model with parameters as stated in Appendix A.6.1 is used

as a reference. Simulations were performed using path C3 and vx,t
tr = 3m/s. The system

remained stable for all variations performed. The resulting changes in tracking errors are

summarized in Figures 5.16, 5.17, and 5.18. The resulting SDs are presented relative to

the nominal results as shown in Figure 5.10. Simulations resulted in zero mean tracking

errors and mean values are not stated for that reason. As a remark it should be noted that

comparison of absolute values ∆ SD between tractor and implement must be considered

with care, because those differ significantly in terms of inertial and tire properties.

Observation

Comparing LQR w. EKF with LQR w. I, as done in Figure 5.14, reveals that step responses

for LQR w. EKF are little susceptible to changes in tractor forward velocity. LQR w. I in

contrast exhibits a tendency towards oscillations if the tractor forward velocity deviates

widely from vx,t
tr = 3m/s as used for controller design. Recalculating the controller by using

identical weights and only changing the velocity parameter, however, allows to prevent

those oscillations and obtain a very short settling distance. Similar observations can be

made from tracking error statistics in Figure 5.15. Recalculating the controller using the

correct velocity resulted in very small tracking errors.

Reducing the cornering stiffnesses by 50% in simulation as shown in Figure 5.16 had a

strong deteriorating influence in transient path tracking conditions of path C3. This was

true for all considered cases. Varying Cα,tf had the most influence on both tractor and

implement lateral errors. Varying Cα,r1r only influenced the implement itself. Comparing

LQR w. EKF and LQR w. I exhibits similar tendencies with slight differences in reaction

to changes of Cα,tf and Cα,tr.

Varying the tire relaxation lengths by 50%, as depicted in Figure 5.17, had a very small

influence of less than 5% on tracking error SDs. This was true in all cases, even when

changes were combined.
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Varying the tractor mass as shown in Figure 5.18 influenced both the tractor and the

implement lateral errors. Varying the implement mass, in contrast, mostly affected the

implement itself. Varying the moments of inertia by 50% had little influence for It and

almost no influence for Ir1. Shifting the tractor c.g. towards the rear axle appeared to be

beneficial, shifting it to the front deteriorated results. This is, however, without considering

changes in cornering stiffnesses due to wheel load transfer. Shifting the implement c.g.

was less influential.

Interpretation

The most important conclusion from above observations is, that LQR w. I must account

for changing velocities. In practical applications this could be achieved, for instance, by

adjusting the controller in a gain scheduling manner.

For all other plant parameters varied the closed loop remained stable in simulations. For

integral control in particular this at least suggests that the controller is robust and remains

stable in a parameter range not too small for practical applications. This means, once the

overall controller gain is set for a particular field and tractor-implement combination,

moderate parameter changes will not require controller readjustment.

Simulations of transient conditions while tracking path C3 unsurprisingly showed that

cornering stiffnesses have a large influence on path tracking accuracy. While there are few

possibilities of altering soil conditions to increase cornering stiffness, lowering tire inflation

pressure (cf. Table 2.1) or using dual tires are design measures that could be taken to

improve the system.
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Figure 5.14: Experimental initial condition responses depicting the acquisition of a
straight desired path using various tractor forward velocities vx,t

tr . Results
have been obtained by instantaneously shifting the desired path laterally by
1 m. This was done after tractor and implement lateral errors had settled.
Controller design assumed vx,t

tr = 3 m/s for all results except the last denoted
by (r). In this case the controller was recalculated using identical weights yet
assuming vx,t

tr = 1 m/s. ∆sd denotes the desired path arc length covered after
the shift occurred.
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Figure 5.15: Experimental results for tracking path C1 using various tractor forward ve-
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and mean values (×) of tracking errors. Each result was obtained from 6
passes with 3 in each direction. Controller design assumed vx,t

tr = 3 m/s for
all results except the last denoted by (r). In this case the controller was
recalculated using identical weights yet assuming vx,t

tr = 1 m/s.
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Figure 5.16: Simulation results for tracking path C3 with varying simulation model pa-
rameters. ∆ SD denotes the resulting change in tracking error standard de-
viations relative to nominal results as presented in Figure 5.10.
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Figure 5.17: Simulation results for tracking path C3 with varying simulation model pa-
rameters. ∆ SD denotes the resulting change in tracking error standard de-
viations relative to nominal results as presented in Figure 5.10.
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Figure 5.18: Simulation results for tracking path C3 with varying simulation model pa-
rameters. ∆ SD denotes the resulting change in tracking error standard de-
viations relative to nominal results as presented in Figure 5.10. In case of †
the total tractor wheel base lt and the implement length lr1 are maintained
by lengthening the respective opposite.
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6 Conclusion and Future Work

In order to meet a growing world population’s demand for food and energy, agricultural

methods are required to become more efficient and sustainable. Accurate GPS based

guidance of agricultural machinery became an important part of this development. Today’s

solutions allow for accurate path tracking control of tractors. However, the actual position

of an implement attached to the tractor and performing the agricultural tasks is neglected

in most cases. To further increase the accuracy of agricultural methods, the focus is now

shifting towards implement path tracking control using actively steered implements, i.e.

implements equipped with steering actuators. In order to address the emerging interest in

those new tractor-implement combinations, this work contributed new plant models and

new path tracking control approaches.

Multiple tractor-implement models of different complexity have been developed. A tractor

towing a wheel and drawbar steered implement has been used as an example throughout

the work. In any case, however, the derivation of the equations of motion was performed in

a systematic way using computer algebra software. Considering other implement actuators

therefore is simple and can be achieved by modifying the constraints stated prior to auto-

mated derivation. All models derived are given in terms of explicit differential equations in

order to allow for controller design and further system analysis. Simple kinematic models

based on a single-track tractor-implement description in plain motion have been devel-

oped. Those models are based on geometric properties as well as constraints regarding

tractor and implement wheel velocities. As a consequence parameterizing the kinematic

models to describe a particular tractor-implement combination is an easy task compris-

ing mostly of the measurement of vehicle dimensions. For that reason, using kinematic

models for controller or estimator design seemed very desirable. A more complex represen-

tation of tractor-implement combinations was found by using dynamic models, yet again

reduced to a single-track description. These models account for forces and moments caus-

ing the vehicle motion. The required parameters comprise tractor and implement inertial

properties as well as tire parameters. Parameterization therefore is more involved and

applicability to model based controller design is very limited due to numerous implement

variants. The derived dynamic models have been used for further analysis and numerical

simulation only. Derivation of dynamic models in particular was aggravated by lengthy

equations resulting from steering actuators between tractor and implement. Within this

work a new way of modeling was proposed. For the example of a steered drawbar it was

assumed that an arbitrary kind of actuator and a steering angle controller are in place.

The actuator was assumed capable of providing any moment required to steer the draw-

bar. With this assumption the steerable drawbar could be modeled as a rheonomic or
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time dependent constraint and derivation of equations of motion was done systematically

using Lagrangian mechanics and computer algebra software. Some well-chosen coordinate

transformations during the derivation allowed to express the equations in such a way that

linearization was possible for small deviations from a desired path which in turn allowed

for further analysis.

In preparation of controlling the MIMO system consisting of a tractor and a steerable

implement, a comprehensive overview of current path tracking control approaches has

been provided. Research on on-road and off-road path tracking control using passenger

cars, tractor-trailer and tractor-implement combinations has been taken into account. The

control approaches considered comprise classical Proportional-Integral-Derivative (PID)

control, Linear-Quadratic Regulators (LQRs), Model Predictive Control (MPC), Robust

H∞ Control, various nonlinear control methods, Sliding Mode Control (SMC), geometric

approaches, and Fuzzy Logic Control (FLC). Each approach was discussed and assessed

regarding this work’s objectives as outlined in Section 1.2. In particular the required ap-

plicability to a multitude of implements and steering actuators as well as the resulting

effort for setup and tuning performed by the user narrowed down the list of approaches

that seemed suitable for this work. Following this initial assessment LQR control was used

as a starting point. Weighting matrices have been chosen in such a way that only steering

inputs and tracking errors (lateral and angular deviations from a desired path) are con-

sidered for tuning. The relative weight of steering inputs and tracking errors provided a

tuning parameter for the overall controller gain. This was the only controller parameter

that had to be found from experiments. Choosing the relative weights for different track-

ing errors allowed for emphasizing a particular objective. It was shown that the chosen

approach is not only suitable for implement lateral position control but also for imple-

ment orientation control, which has been introduced as a new feature within this work.

In this optional case the implement does not only track the desired path but also remains

aligned with the desired path’s direction. To overcome the additional implementation and

tuning effort for state estimation the state feedback controller resulting from LQR design

was approximated using a static output feedback. The chosen method is based on mode

preservation and aims for an output feedback approximating the dominant eigenvalues of

a controlled system with state feedback. From simulations and experiments it was found

that LQR without additional measures resulted in unsatisfactory steady-state tracking

errors on slopes and in curves. For that reason two variants overcoming this problem have

been conceived and implemented. The first variant was a LQR controller augmented by

integral control to account for constant disturbances (LQR w. I). The second variant re-

lied on Extended Kalman Filter (EKF) based wheel side-slip estimation using the side-slip

estimates for subsequent disturbance feedforward control (LQR w. EKF). In comparison

LQR w. EKF exhibits an increased implementation and parameterization effort making

LQR w. I the preferred approach. By considering theoretical limitations it was shown
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that, in general, a second implement steering actuator is required to achieve tractor and

implement lateral position control as well as implement orientation control with zero

steady-state errors in the case of constant disturbances. For all controller variants it was

shown that implement path tracking can be improved by adding a feedforward control law

based on the path’s curvature. Suitable feedforward control laws for steerable implements

have been newly derived within this work.

As final part of this thesis numerous simulations and experiments have been carried out.

Experiments have been performed using a mid-size tractor and a custom built implement

demonstrator with numerous steering actuators. Simulations have been carried out using

a non-linear dynamic model of this experimental setup. Initial condition responses in both

simulations and experiments indicated that LQR w. I in particular is prone to overshoot-

ing behavior in the presence of actuator limits and rate limits. The first of which had

been considered in anti-windup measures already. Considering the latter, however, might

still offer room for improvement. Simulations with lateral down-hill forces on slopes and

experiments on circular paths both indicated that LQR w. I as well as LQR w. EKF are

capable of achieving sufficiently small steady-state tracking errors despite the presence of

constant disturbances and wheel side-slip. As an example, experiments on a circular path

of 20 m radius using tractor front wheel steering, implement wheel steering, and imple-

ment drawbar steering, while driving with a tractor forward velocity of 3 m/s, resulted in

3.2 cm, 2.0 cm and 0.7◦ SD for tractor lateral error, implement lateral error, and imple-

ment heading error in case of LQR w. I. Each error was zero mean. Similarly, errors for

LQR w. EKF have been 3.2 cm, 2.2 cm and 0.3◦ SD with -2.0 cm, 1.3 cm and -0.4◦ mean.

LQR w/o I in contrast resulted in errors with 13.1 cm, 12.3 cm, and -0.5◦ mean. Similar

experiments considering transient conditions on paths consisting of straights, clothoids,

and arc segments exhibited similar results with lateral errors below 3 cm SD for LQR

w. I, if curvature change rate was moderate (0.1◦/m2). Increased curvature change rates

of 0.3◦/m2 resulted in increased tracking errors below 6 cm SD. Tracking errors for LQR

w. EKF were slightly increased. This however could be due to small differences in the

transient behavior of side-slip estimation and integral control. Parameter variation stud-

ies have been carried out using simulations and experiments. Experimental variation of

tractor forward velocity indicated, that LQR w. I in particular must account for velocity

changes. This could be done using gain scheduling techniques for instance. Their imple-

mentation however is subject to future work. Additional simulations have been carried out

with tire and inertial parameters varied by ±50%. The resulting closed loops remained

stable for both LQR w. I and LQR w. EKF. Decreased tire cornering stiffness parameters

however unsurprisingly exhibited a strong influence on path tracking accuracy in transient

conditions.
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Future work might address both the modeling and the control of tractor-implement combi-

nations. Replacing the rather simple linear model for lateral tire forces by a more detailed

description accounting for lateral and longitudinal forces would allow one to consider path

tracking during driving and breaking scenarios. By giving up the assumption of a single-

track model one could consider scenarios with different friction coefficients for different

wheels. In terms of controller design, gain scheduling based on tractor forward velocity

could be the next step. Anti-windup measures may be improved by accounting for steer-

ing actuator rate limits as well as by addressing actuator limits in a refined way, e.g. by

continuing tractor integral control despite saturated implement actuators and vice versa.
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A Appendix

A.1 Dynamic Equations of Motion

A.1.1 Tractor

To illustrate this work’s approach of deriving the dynamic equations of motion for a

tractor and a steered implement this section provides a concise example using the tractor

single track model of Figure 2.2. The approach utilizes Lagrangian mechanics and follows a

proposal by [Gen97], who considered a tractor and unsteered tractor-trailer combinations.

His method is modified to account for applied forces and moments in a more convenient

way.

The tractor in plain motion exhibits 3 DoFs and hence 3 generalized coordinates are

chosen to be:

q1 = rx,e
t , q2 = ry,e

t , q3 = Ψt. (A.1)

Obviously, the vehicle position and orientation as well as linear and angular velocities can

be stated in terms of generalized coordinates:

rx,e
t = q1, ry,e

t = q2, Ψt = q3, (A.2)

vx,e
t = ṙx,e

t = q̇1, vy,e
t = ṙy,e

t = q̇2, ωz,e
t = Ψ̇t = q̇3. (A.3)

In case the wheel’s kinetic energy is neglected the tractor’s kinetic energy is [Gre88]:

T =
1

2
It (ωz,e

t )2 +
1

2
mt

(

(vx,e
t )2 + (vy,e

t )2
)

(A.4)

=
1

2
Itq̇

2
3 +

1

2
mt

(

q̇2
1 + q̇2

2

)

. (A.5)

With potential energy V = 0 the Lagrangian function is:

L = T − V = T. (A.6)
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In order to obtain equations of motion in a rather general form arbitrary applied forces

F x,e
t and F y,e

t acting on the tractor c.g. as well as an applied moment Mz,e
t are assumed.

These earth-fixed components are related to their respective tractor-fixed components via:




F x,e

t

F y,e
t



 =




cos(Ψt) − sin(Ψt)

sin(Ψt) cos(Ψt)





︸ ︷︷ ︸

Tt,e




F x,t

t

F y,t
t



 , (A.7)

Mz,e
t = Mz,t

t . (A.8)

Lagrange’s equations of motion (2nd kind) [Gre88] are:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= Qi, i = 1, 2, 3. (A.9)

The generalized forces Qi are chosen to account for the applied forces as well as applied

moments and are given by [Gre88]:

Qi = F x,e
t γx,e

t,i + F y,e
t γy,e

t,i + Mz,e
t βz,e

t,i , (A.10)

with γx,e
t,i , γy,e

t,i and βz,e
t,i denoting linear and angular velocity coefficients defined as [Gre88]:

γx,e
t,i =

∂ṙx,e
t

∂q̇i

=
∂rx,e

t

∂qi

, γy,e
t,i =

∂ṙy,e
t

∂q̇i

=
∂ry,e

t

∂qi

, βz,e
t,i =

∂ωz,e
t

∂q̇i

. (A.11)

Inserting (A.5), (A.6), (A.10), and (A.11) in (A.9) yields:

d

dt
(mtq̇1) = F x,e

t · 1 + F y,e
t · 0 + Mz,e

t · 0, (A.12)

d

dt
(mtq̇2) = F x,e

t · 0 + F y,e
t · 1 + Mz,e

t · 0, (A.13)

d

dt
(Itq̇3) = F x,e

t · 0 + F y,e
t · 0 + Mz,e

t · 1. (A.14)

Reintroducing the original coordinates (A.1) leads to the unsurprising result:

d

dt
(mtṙ

x,e
t ) = F x,e

t , (A.15)

d

dt
(mtṙ

y,e
t ) = F y,e

t , (A.16)

d

dt

(

ItΨ̇t

)

= Mz,e
t . (A.17)

These equations of motion in earth-fixed coordinates would be sufficient for simulation

based on numerical integration. For vehicle modeling in general however a vehicle-fixed

representation is advantageous. This is due to the fact that many properties, like tire
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forces for instance, are more suitably described relative to the vehicle. Linearization and

subsequent system analysis in particular benefit from a vehicle-fixed representation. For

that reason [Gen97] proposes a trick based on introducing vehicle-fixed velocities vx,t
t and

vy,t
t prior to evaluating the time derivatives in (A.15) and (A.16). Hence inserting




ṙx,e

t

ṙy,e
t



 =




vx,e

t

vy,e
t



 =




cos(Ψt) − sin(Ψt)

sin(Ψt) cos(Ψt)





︸ ︷︷ ︸

Tt,e




vx,t

t

vy,t
t



 (A.18)

in (A.15) and (A.16) and utilizing (A.7) results in:




cos(Ψt) − sin(Ψt)

sin(Ψt) cos(Ψt)








mtv̇

x,t
t − mtΨ̇tv

y,t
t

mtv̇
y,t
t + mtΨ̇tv

x,t
t



 =




cos(Ψt) − sin(Ψt)

sin(Ψt) cos(Ψt)








F x,t

t

F y,t
t



 . (A.19)

Finally multiplying with T−1
t,e and solving for the highest order derivatives yields the

desired tractor-fixed equations of motion:

v̇x,t
t =

1

mt

F x,t
t + Ψ̇tv

y,t
t , (A.20)

v̇y,t
t =

1

mt

F y,t
t − Ψ̇tv

x,t
t , (A.21)

Ψ̈t =
1

It

Mz,t
t . (A.22)
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A.1.2 Tractor and Implement

In order to provide a complete picture, the equations of motion (3.19) of a tractor towing

a wheel and drawbar steered implement as described in Section 3.1.2 are provided in

detail. Computer algebra software has been used to obtain these equations. Exports to

simulation software and this document have been automated to avoid the introduction of

typographical errors.











m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m1,4

m3,1 m3,2 m3,3 m3,4

m4,1 m4,2 m4,3 m4,4











︸ ︷︷ ︸

M











v̇x,t
t

v̇y,t
t

Ψ̈t

δ̈thr











+











r1

r2

r3

r4











︸ ︷︷ ︸

r

= 0 (A.23)

m1,1 = mr1 + mt, (A.24)

m1,2 = 0, (A.25)

m1,3 = − sin(δthr)lr1dmr1 − sin(δthr + δr1d)lr1fmr1, (A.26)

m1,4 = sin(δthr)lr1dmr1 + sin(δthr + δr1d)lr1fmr1, (A.27)

m2,1 = 0, (A.28)

m2,2 = mr1 + mt, (A.29)

m2,3 = − cos(δthr)lr1dmr1 − cos(δthr + δr1d)lr1fmr1 − (ltr + lthr)mr1, (A.30)

m2,4 = cos(δthr)lr1dmr1 + cos(δthr + δr1d)lr1fmr1, (A.31)

m3,1 = − sin(δthr)lr1dmr1 − sin(δthr + δr1d)lr1fmr1, (A.32)

m3,2 = − cos(δthr)lr1dmr1 − cos(δthr + δr1d)lr1fmr1 − (ltr + lthr)mr1, (A.33)

m3,3 = 2 cos(δthr)(ltr + lthr)lr1dmr1 + 2 cos(δr1d)lr1dlr1fmr1

+ 2 cos(δthr + δr1d)(ltr + lthr)lr1fmr1 + (ltr + lthr)2mr1 + l2
r1dmr1 + l2

r1fmr1

+ Ir1 + It, (A.34)

m3,4 = − cos(δthr)(ltr + lthr)lr1dmr1 − 2 cos(δr1d)lr1dlr1fmr1

− cos(δthr + δr1d)(ltr + lthr)lr1fmr1 − l2
r1dmr1 − l2

r1fmr1 − Ir1, (A.35)

m4,1 = sin(δthr)lr1dmr1 + sin(δthr + δr1d)lr1fmr1, (A.36)

m4,2 = cos(δthr)lr1dmr1 + cos(δthr + δr1d)lr1fmr1, (A.37)

m4,3 = − cos(δthr)(ltr + lthr)lr1dmr1 − 2 cos(δr1d)lr1dlr1fmr1

− cos(δthr + δr1d)(ltr + lthr)lr1fmr1 − l2
r1dmr1 − l2

r1fmr1 − Ir1, (A.38)

m4,4 = 2 cos(δr1d)lr1dlr1fmr1 + l2
r1dmr1 + l2

r1fmr1 + Ir1, (A.39)
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r1 = (lr1fmr1δ̈r1d − F y,r1
r1 ) sin(δthr + δr1d) + (lr1dmr1Ψ̇2

t − 2lr1dmr1Ψ̇tδ̇thr

+ lr1dmr1δ̇2
thr) cos(δthr) + (lr1fmr1Ψ̇2

t − 2lr1fmr1Ψ̇tδ̇r1d − 2lr1fmr1Ψ̇tδ̇thr + lr1fmr1δ̇2
r1d

+ 2lr1fmr1δ̇r1dδ̇thr + lr1fmr1δ̇2
thr − F x,r1

r1 ) cos(δthr + δr1d) + Ψ̇2
t (ltr + lthr)mr1

− vy,t
t Ψ̇tmr1 − vy,t

t Ψ̇tmt − F x,t
t , (A.40)

r2 = (−lr1dmr1Ψ̇2
t + 2lr1dmr1Ψ̇tδ̇thr − lr1dmr1δ̇2

thr) sin(δthr) + (−lr1fmr1Ψ̇2
t + 2lr1fmr1Ψ̇tδ̇r1d

+ 2lr1fmr1Ψ̇tδ̇thr − lr1fmr1δ̇2
r1d − 2lr1fmr1δ̇r1dδ̇thr − lr1fmr1δ̇2

thr + F x,r1
r1 ) sin(δthr + δr1d)

+ (lr1fmr1δ̈r1d − F y,r1
r1 ) cos(δthr + δr1d) + (vx,t

t Ψ̇tmr1) + (vx,t
t Ψ̇tmt) − F y,t

t , (A.41)

r3 = (−2lr1dlr1fmr1Ψ̇tδ̇r1d + lr1dlr1fmr1δ̇2
r1d + 2lr1dlr1fmr1δ̇r1dδ̇thr − lr1dF x,r1

r1 ) sin(δr1d)

+ (−2(ltr + lthr)lr1dmr1Ψ̇tδ̇thr + (ltr + lthr)lr1dmr1δ̇2
thr + lr1dmr1Ψ̇tv

y,t
t ) sin(δthr)

+ (−2(ltr + lthr)lr1fmr1Ψ̇tδ̇thr − 2(ltr + lthr)lr1fmr1Ψ̇tδ̇r1d + (ltr + lthr)lr1fmr1δ̇2
thr

+ 2(ltr + lthr)lr1fmr1δ̇thr δ̇r1d + (ltr + lthr)lr1fmr1δ̇2
r1d + lr1fmr1Ψ̇tv

y,t
t

− F x,r1
r1 (ltr + lthr)) sin(δthr + δr1d) + (−lr1dlr1fmr1δ̈r1d + lr1dF y,r1

r1 ) cos(δr1d)

− cos(δthr)lr1dmr1Ψ̇tv
x,t
t + (−((ltr + lthr)lr1fmr1δ̈r1d) − lr1fmr1Ψ̇tv

x,t
t

+ (F y,r1
r1 (ltr + lthr))) cos(δthr + δr1d) − (ltr + lthr)mr1Ψ̇tv

x,t
t − (δ̈r1dl2

r1fmr1)

+ (F y,r1
r1 lr1f) − (δ̈r1dIr1) − Mz,r1

r1 − Mz,t
t , (A.42)

r4 = (2lr1dlr1fmr1Ψ̇tδ̇r1d − lr1dlr1fmr1δ̇2
r1d − 2lr1dlr1fmr1δ̇r1dδ̇thr + lr1dF x,r1

r1 ) sin(δr1d)

+ ((ltr + lthr)lr1dmr1Ψ̇2
t − lr1dmr1Ψ̇tv

y,t
t ) sin(δthr) + ((ltr + lthr)lr1fmr1Ψ̇2

t

− lr1fmr1Ψ̇tv
y,t
t ) sin(δthr + δr1d) + (lr1dlr1fmr1δ̈r1d − lr1dF y,r1

r1 ) cos(δr1d)

+ cos(δthr)lr1dmr1Ψ̇tv
x,t
t + cos(δthr + δr1d)lr1fmr1Ψ̇tv

x,t
t + (δ̈r1dl2

r1fmr1)

− (F y,r1
r1 lr1f) + (δ̈r1dIr1) + Mz,r1

r1 . (A.43)
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A.2 Linearized System Descriptions

A.2.1 Dynamic Models

The dynamic model with transient tire forces as complied in Section 3.1.6 is given by:

ẋ = Ax + Bu, (A.44)

y = Cx, (A.45)

with

x =
[
etl, eth, vy,t

t , Ψ̇t, αre,tf , αre,tr, αre,r1r, δthr, δ̇thr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
, (A.46)

u = [δtf,d, δr1d,d, δr1r,d]T , (A.47)

y = [etl, eth, er1l, er1h]
T

, (A.48)

and structure matrices

[A] =




































0 ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ⋆ 0 0 0 0 0 0 0 0 0 0 0

0 0 0 ⋆ ⋆ ⋆ ⋆ 0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 ⋆ ⋆ ⋆ 0 0 0 0 ⋆ ⋆ 0 0

0 0 ⋆ ⋆ ⋆ 0 0 0 0 ⋆ 0 0 0 0 0

0 0 ⋆ ⋆ 0 ⋆ 0 0 0 0 0 0 0 0 0

0 0 ⋆ ⋆ 0 0 ⋆ ⋆ ⋆ 0 0 ⋆ ⋆ ⋆ 0

0 0 0 0 0 0 0 0 ⋆ 0 0 0 0 0 0

0 0 0 0 ⋆ ⋆ ⋆ 0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 0 0 0 0 0 0 ⋆ 0 0 0 0

0 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ⋆ 0 0

0 0 0 0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ⋆

0 0 0 0 0 0 0 0 0 0 0 0 0 ⋆ ⋆




































, [B] =




































0 0 0

0 0 0

0 ⋆ 0

0 ⋆ 0

0 0 0

0 0 0

0 0 0

0 0 0

0 ⋆ 0

0 0 0

⋆ 0 0

0 0 0

0 ⋆ 0

0 0 0

0 0 ⋆




































, (A.49)

[C] =









⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 ⋆ 0 0 0 0 0 0 0 0 0 0 0 0 0

⋆ ⋆ 0 0 0 0 0 ⋆ 0 0 0 ⋆ 0 0 0

0 ⋆ 0 0 0 0 0 ⋆ 0 0 0 ⋆ 0 0 0









. (A.50)
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Similarly, the dynamic model neglecting transient tire forces with state, input and output
vectors:

x =
[
etl, eth, vy,t

t , Ψ̇t, δthr, δ̇thr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
. (A.51)

u = [δtf,d, δr1d,d, δr1r,d]
T

, (A.52)

y = [etl, eth, er1l, er1h]
T

, (A.53)

has the structure matrices

[A] =




























0 ⋆ ⋆ ⋆ 0 0 0 0 0 0 0 0

0 0 0 ⋆ 0 0 0 0 0 0 0 0

0 0 ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0

0 0 ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0

0 0 0 0 0 ⋆ 0 0 0 0 0 0

0 0 ⋆ ⋆ ⋆ ⋆ ⋆ 0 ⋆ ⋆ ⋆ 0

0 0 0 0 0 0 0 ⋆ 0 0 0 0

0 0 0 0 0 0 ⋆ ⋆ 0 0 0 0

0 0 0 0 0 0 0 0 0 ⋆ 0 0

0 0 0 0 0 0 0 0 ⋆ ⋆ 0 0

0 0 0 0 0 0 0 0 0 0 0 ⋆

0 0 0 0 0 0 0 0 0 0 ⋆ ⋆




























, [B] =




























0 0 0

0 0 0

0 ⋆ 0

0 ⋆ 0

0 0 0

0 ⋆ 0

0 0 0

⋆ 0 0

0 0 0

0 ⋆ 0

0 0 0

0 0 ⋆




























, (A.54)

[C] =









⋆ 0 0 0 0 0 0 0 0 0 0 0

0 ⋆ 0 0 0 0 0 0 0 0 0 0

⋆ ⋆ 0 0 ⋆ 0 0 0 ⋆ 0 0 0

0 ⋆ 0 0 ⋆ 0 0 0 ⋆ 0 0 0









. (A.55)
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A.2.2 Kinematic Models

The linearized kinematic model as derived in Section 3.2.6 in detail is:

ẋ = Ax + Bu, (A.56)

y = Cx, (A.57)

with

x =
[

etl, eth, δthr, δtf , δ̇tf , δr1d, δ̇r1d, δr1r, δ̇r1r

]T
, (A.58)

u = [δtf,d, δr1d,d, δr1r,d]T , (A.59)

y = [etl, eth, er1l, er1h]T , (A.60)

A =


























0 vx,t
tr 0 0 0 0 0 0 0

0 0 0
v

x,t
tr

lt
0 0 0 0 0

0 0
−v

x,t
tr

lr1d+lr1

v
x,t
tr (lthr+lr1d+lr1)

(lr1d+lr1)lt
0

−v
x,t
tr

lr1d+lr1

−lr1

(lr1d+lr1)
v

x,t
tr

lr1d+lr1
0

0 0 0 0 1 0 0 0 0

0 0 0 −1
T 2

tf

−2Dtf

Ttf
0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 −1
T 2

r1d

−2Dr1d

Tr1d
0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 −1
T 2

r1r

−2Dr1r

Tr1r


























,

(A.61)

B =

























0 0 0

0 0 0

0 0 0

0 0 0
−1
T 2

tf

0 0

0 0 0

0 1
T 2

r1d

0

0 0 0

0 0 1
T 2

r1r

























, (A.62)

C =










1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

1 −lr1 − lr1d − lthr lr1d + lr1 0 0 lr1 0 0 0

0 1 −1 0 0 −1 0 0 0










. (A.63)
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A.3 Experimental Setup

All experiments in this work have been performed using a test setup consisting of a John

Deere 6210R tractor and a custom built implement as show in Figure A.1. Four GPS

receivers augmented by RTK correction signals have been used to obtain tractor and

implement position as well as orientation during path tracking control. The IMUs served

parameter identification purposes in [Pfr13] only.

RTK GPS 1 RTK GPS 3 RTK GPS 4 RTK GPS 2IMU 1

IMU 2

wheel steeringwheel steering drawbar steeringhitch steering

coulter steering

Figure A.1: Experimental setup consisting of a John Deere 6210R tractor towing a cus-
tom built actively steered implement with a multitude of hydraulic steering
actuators. RTK GPS 1 and 2 are the main sensors used for path tracking.
A second GPS receiver on tractor and implement is used to precisely distin-
guish between machine heading and direction of travel. The IMUs serve as
additional sensors for parameter identification purposes only.

Tractor

The tractor used is a series production John Deere 6210R tractor. Front and rear tires

have been low pressure models Michelin XeoBib VF 600/60 R30 (1.0 bar) and Michelin

XeoBib VF 710/60 R42 (0.9 bar). The built-in ISO 11783 TIA [ISO09] interface was used

to steer the tractor. This interface uses curvature commands as a wheel base independent

representation of the desired steering angles. Tractor input and output signals have been

as follows.

Signals Ts Resolution Type

Wheel-based Machine Speed 100 ms 0.001 m/s Output

Guidance Curvature Command 100 ms 0.25 1/km Input

Guidance Curvature Estimated 100 ms 0.25 1/km Output
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Implement

A custom built implement with a multitude of hydraulic steering actuators was used for

all tests. The implement was equipped with Petlas 405/70-20 tires with 1.4 bar pressure.

ISO 11783 capable hydraulic valves have been used to drive the actuators. Analog angle

sensors provided the measured joint angles to an inner loop steering angle controller. This

steering angle controller was implemented on the rapid control prototyping platform also

used for path tracking control.

Signals Ts Resolution Type

Valve Flow Commands (5 valves) 20 ms 0.1 l/min Input

Front Drawbar Steering Angle 1 ms 0.11◦ Output

Rear Drawbar Steering Angle 1 ms 0.11◦ Output

Wheel Steering Angle 1 ms - Output

Coulter Steering Angle 1 ms - Output

Hitch Steering Position 1 ms - Output

GPS Receivers

Tractor as well as implement position and orientation have been obtained using John

Deere SF 3000 receiver position measurements augmented by RTK correction signals.

The horizontal accuracy of these position measurements is 2 cm (2 SD, 15 min pass-

to-pass) and 1.5 cm (2 SD, 24 h absolute) [Dee11b]. Tractor and implement heading

were found using two receiver position measurements each. For each receiver the Terrain

Compensation Module (TCM) was activated, i.e. the receiver built-in IMU has been used

to project the antenna position along the vehicle vertical axis to ground level.

Signals Ts Resolution Type

Latitude 100 ms 3.90625 · 10−10 ◦ Output

Longitude 100 ms 3.90625 · 10−10 ◦ Output

Altitude 100 ms 4.8828 · 10−4 m Output

IMUs

Parameter identification performed by [Pfr13] relied on two additional IMUs (Honey-

well 6DF-1N6-C2-HWL) [Hon13] providing lateral acceleration and angular rate mea-

surements.

Signals Ts Resolution Type

Linear accelerations (3 axes) 40 ms 0.0151 m/s2 Output

Angular rates (3 axes) 40 ms 0.0114 ◦/s Output
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A.4 Path Descriptions

Curved path tracking as outlined in Section 5.5 was performed using desired paths consist-

ing of straight lines, clothoids and arc segments as depicted in Figures A.2 and A.3. Point

sequences with distances of 0.15 m between subsequent points were used to represent the

desired paths within the controller.

0 20 40 60 80 100 120 140 160 180 200

−10

−5

0

x in m

y
in

m

Figure A.2: Path C1 with max. curvature 1◦/m, curvature change rate 0.1◦/m2, and cur-
vature changing sign when path tangent reaches Ψd = ±20◦.
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Figure A.3: Path C3 with max. curvature 3◦/m, curvature change rate 0.3◦/m2, and cur-
vature changing sign when path tangent reaches Ψd = ±45◦.
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A.5 Simulation Model Parameter Summary

Simulations in Chapter 5 have been performed using the parameters as given in Ta-

bles A.1, A.2, and A.3. These parameters were chosen to depict the experimental setup

as described in Appendix A.3. Tractor and implement ODEs have been solved using an

ODE4 (Runge-Kutta) fixed-step solver with 1 ms sample time. Measurement sample times

of GPS antenna positions, tractor steering angle, and tractor wheel speed as provided to

the discrete time controller have been 100 ms. Implement steering angle measurements

were obtained using 20 ms sample times.
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A.6 Controller Parameter Summary

This section summarizes the controller parameters as used in both simulations and ex-

periments of Chapter 5.

A.6.1 Plant Parameters

Controller design is based on a kinematic model description. The respective parameters

are a subset of dynamic model simulation parameters as stated in Appendix A.5. The

parameter subset comprises geometric parameters (lt, lthr, lr1d, lr1) and steering actuator

related parameters (Ttf , Dtf , Tr1d, Dr1d, Tr1r, Dr1r). Numerical values are as stated in

Appendix A.5.

A.6.2 LQR Weights

Output and input weighting matrices Q and R depend on the chosen control approach

and variant. LQR control without additional measures to account for robustness as well

as LQR combined with EKF estimation based disturbance feedforward use the weights as

given in the following paragraph. In the case of integral control additional weights have

to be chosen which is done subsequently.

Standard LQR

Output and input weighting matrices Q and R are given by:

Q = diag(qe,tl, qe,th, qe,r1l, qe,r1h), (A.64)

R = diag(rδ,tf , rδ,r1d, rδ,r1r). (A.65)

Individual entries are normalized using typical signal ranges, resulting in:

qe,tl = qe,tl,N/(1m)2, qe,r1l = qe,r1l,N/(1m)2, (A.66)

qe,th = qe,th,N/(10◦)2, qe,r1h = qe,r1h,N/(10◦)2, (A.67)

rδ,tf = rδ,tf,N/(10◦)2, rδ,r1d = rδ,r1d,N/(10◦)2, rδ,r1r = rδ,r1r,N/(10◦)2. (A.68)

The normalized weights as chosen in simulations and experiments are:

qe,tl,N = 100, qe,th,N = 1, qe,r1l,N = 100, qe,r1h,N = 100 (A.69)

rδ,tf,N = 80, rδ,r1d,N = 80, rδ,r1r,N = 80 (A.70)
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LQR with Integral Control

Weights for LQR with integral control are chosen in a similar way, yet account for addi-

tional error integral outputs. The output and input weighting matrices Q and R therefore

are:

Q = diag(qe,tl, qe,th, qe,r1l, qe,r1h, qint,e,tl, qint,e,r1l, qint,e,r1h), (A.71)

R = diag(rδ,tf , rδ,r1d, rδ,r1r). (A.72)

The entries are normalized using:

qe,tl = qe,tl,N/(1m)2, qe,r1l = qe,r1l,N/(1m)2, (A.73)

qe,th = qe,th,N/(10◦)2, qe,r1h = qe,r1h,N/(10◦)2, (A.74)

qint,e,tl = qint,e,tl,N/(1m · s)2, qint,e,r1l = qint,e,r1l,N/(1m · s)2, (A.75)

qint,e,r1h = qint,e,r1h,N/(10◦ · s)2, (A.76)

rδ,tf = rδ,tf,N/(10◦)2, rδ,r1d = rδ,r1d,N/(10◦)2, (A.77)

rδ,r1r = rδ,r1r,N/(10◦)2. (A.78)

LQR with integral control was considered using variants of input and controlled output

combinations. In those cases Q and R are found by omitting rows and columns containing

unconsidered steering actuators and error integrals. Normalized weights for all variants

as found in simulations and experiments are shown in Table A.4.
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Table A.4: Normalized input and output weights of LQR with integral control.
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Variant 1 2 3 4 5

Inputs δtf,d δtf,d δtf,d δtf,d δtf,d

δr1d,d δr1d,d δr1r,d

δr1r,d

Controlled outputs etl etl etl er1l etl

er1l er1l er1l

er1h

qe,tl,N 100 100 100 1 100

qe,th,N 1 1 1 1 1

qe,r1l,N 100 100 100 100 1

qe,r1h,N 100 1 1 1 1

qint,e,tl,N 100 100 100 - 100

qint,e,r1l,N 100 100 100 100 -

qint,e,r1h,N 100 - - - -

rδ,tf,N 80 80 80 80 80

rδ,r1d,N 80 80 - - -

rδ,r1r,N 80 - 80 - -

A.6.3 Output Feedback Approximation Weights

Output feedback as outlined in Section 4.2 relies on weights emphasizing the approxima-

tion of a subset of state feedback closed-loop eigenvalues λ̄i. Elements wi of the weighting

matrix

W = diag (w1, . . . , wn) (A.79)

are chosen as follows: for the considered open-loop systems with m inputs and n states

2m states result from steering actuator dynamics. Accordingly an equal number of 2m
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less dominant eigenvalues is neglected in the output feedback approximation, resulting in

the weights:

wi =







100 for n − 2m eigenvalues λ̄i closest to the origin,

1 others.
(A.80)

A.6.4 Anti-Windup Thresholds

Anti-windup as described in Section 4.3 uses the thresholds outlined in Table A.5.

Table A.5: Anti-windup threshold parameters.
Parameter Value Unit Description

Desired steering angle thresholds holding integration

δtf,d,th,max +27 ◦ Desired tractor front wheel steering angle upper threshold

δtf,d,th,min −27 ◦ Desired tractor front wheel steering angle lower threshold

δr1d,d,th,max +30 ◦ Desired implement drawbar steering angle upper threshold

δr1d,d,th,min −30 ◦ Desired implement drawbar steering angle lower threshold

δr1r,d,th,max +12 ◦ Desired implement wheel steering angle upper threshold

δr1r,d,th,min −12 ◦ Desired implement wheel steering angle lower threshold

Error thresholds holding integration

etl,th,max +1.2 m Tractor lateral error upper threshold

etl,th,min −1.2 m Tractor lateral error lower threshold

er1l,th,max +1.2 m Implement lateral error upper threshold

er1l,th,min −1.2 m Implement lateral error lower threshold

er1h,th,max +45 ◦ Implement heading error upper threshold

er1h,th,min −45 ◦ Implement heading error lower threshold

Error integration limits in case a particular error and error integral are both positive or negative

etl,max +0.2 m Tractor lateral error integration upper limit

etl,min −0.2 m Tractor lateral error integration lower limit

er1l,max +0.2 m Implement lateral error integration upper limit

ee1l,min −0.2 m Implement lateral error integration lower limit

er1h,max +4 ◦ Implement heading error integration upper limit

ee1h,min −4 ◦ Implement heading error integration lower limit

Error integral limits

etl,int,max +5 m · s Tractor lateral error integral upper limit

etl,int,min −5 m · s Tractor lateral error integral lower limit

er1l,int,max +5 m · s Implement lateral error integral upper limit

er1l,int,min −5 m · s Implement lateral error integral lower limit

er1h,int,max +20 ◦· s Implement heading error integral upper limit

er1h,int,min −20 ◦· s Implement heading error integral lower limit
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A.6.5 Extended Kalman Filter Parameters

If an EKF is used for disturbance estimation and feedforward additional plant parameters

are required. Those comprise of the process and measurement noise covariance matrices

Q[k] and R[k] as stated in Section 4.4. Numerical values used within this work are stated

in Tables A.6 and A.7. Furthermore, initial values for state estimate x̂[k] and estimation

error covariance matrix P̂[k] must be provided. The latter are summarized in Table A.8.

x̂[0] is initialized using the current tractor position and orientation measurements as well

as all current steering angle measurements. All other initial states are set to zero.

Table A.6: Elements of process noise covariance matrix Q[k].
Parameter Value Unit Description

q1,1[k] 0.00052 m2 rx,e
tr process noise variance

q2,2[k] 0.00052 m2 ry,e
tr process noise variance

q3,3[k] 0.012 (◦)2 Ψt process noise variance

q4,4[k] 0.012 (◦)2 δthr process noise variance

q5,5[k] 0.012 (◦)2 δtf process noise variance

q6,6[k] 0.052 (◦/s)2 δ̇tf process noise variance

q7,7[k] 0.012 (◦)2 δr1d process noise variance

q8,8[k] 0.052 (◦/s)2 δ̇r1d process noise variance

q9,9[k] 0.012 (◦)2 δr1r process noise variance

q10,10[k] 0.052 (◦/s)2 δ̇r1r process noise variance

q11,11[k] 0.012 (◦/s)2 αtf process noise variance

q12,12[k] 0.012 (◦/s)2 αtr process noise variance

q13,13[k] 0.012 (◦/s)2 αr1r process noise variance

Table A.7: Elements of measurement noise covariance matrix R[k].
Parameter Value Unit Description

r1,1[k] 0.00752 m2 rx,e
tr measurement noise variance

r2,2[k] 0.00752 m2 ry,e
tr measurement noise variance

q3,3[k] 0.372 (◦)2 Ψt measurement noise variance

r4,4[k] 0.00752 m2 rx,e
r1r measurement noise variance

r5,5[k] 0.00752 m2 ry,e
r1r measurement noise variance

r6,6[k] 0.452 (◦)2 Ψr1 measurement noise variance

r7,7[k] 0.022 (◦)2 δtf measurement noise variance

r8,8[k] 0.052 (◦)2 δr1d measurement noise variance

r9,9[k] 0.022 (◦)2 δr1r measurement noise variance
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Table A.8: Initial estimation error covariance matrix P̂[0].
Parameter Value Unit Description

p̂1,1[0] 0.00752 m2 rx,e
tr initial estimation error variance

p̂2,2[0] 0.00752 m2 ry,e
tr initial estimation error variance

p̂3,3[0] 0.372 (◦)2 Ψt initial estimation error variance

p̂4,4[0] 42 (◦)2 δthr initial estimation error variance

p̂5,5[0] 0.022 (◦)2 δtf initial estimation error variance

p̂6,6[0] 22 (◦/s)2 δ̇tf initial estimation error variance

p̂7,7[0] 0.052 (◦)2 δr1d initial estimation error variance

p̂8,8[0] 52 (◦/s)2 δ̇r1d initial estimation error variance

p̂9,9[0] 0.022 (◦)2 δr1r initial estimation error variance

p̂10,10[0] 22 (◦/s)2 δ̇r1r initial estimation error variance

p̂11,11[0] 0.012 (◦/s)2 αtf initial estimation error variance

p̂12,12[0] 0.012 (◦/s)2 αtr initial estimation error variance

p̂13,13[0] 0.012 (◦/s)2 αr1r initial estimation error variance

A.6.6 Curvature Feedforward Parameters

Path curvature feedforward control as described in Section 4.5 uses curvature values ob-

tained some velocity dependent distance ahead of the current tractor and implement

position. This is to compensate for delays introduced by steering actuator dynamics. In

this work the distance is obtained by multiplying tractor and implement forward speed

with time constants 0.35 s and 0.19 s respectively.

A.6.7 Sample Times

Input and output signals as well as internal controller calculations are subject to vari-

ous sample times which are partly predetermined by standardized CAN messages. GPS

position and orientation measurements as well as tractor wheel speed and steering angle

measurements are obtained every 100 ms. Implement steering angles are measured every

20 ms. Internally the inner loop steering angle controller and the EKF use a 20 ms sample

time. Path tracking control is performed with 40 ms sample time. Desired tractor steering

angle output signals are sent every 100 ms. Implement hydraulic valve flow commands for

inner loop steering angle control are updated every 20 ms.
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A.7 Robust Controllers

Robust controllers as considered here follow a definition by [DG75] which is briefly sum-

marized.

A linear time-invariant system is assumed and described by:

ẋ = Ax + Bu + Ed, (A.81)

y = Cx + Du + Fd, (A.82)

yc = Ccx + Dcu + Fcd, (A.83)

e = yc − r, (A.84)

with system states x ∈ Rn, inputs u ∈ Rm, disturbances d ∈ Rmd , measured outputs

y ∈ Rp, controlled outputs yc ∈ Rpc , reference inputs r ∈ Rpc , and errors e ∈ Rpc. [DG75]

distinguishes between measured outputs y and controlled outputs yc. The first may be

used to stabilize the system. The latter are required to track reference inputs r.

It is assumed:

rank Cc = pc, rank B = m, rank




E

Fc



 = md. (A.85)

Perturbations are denoted by M ∈ Ωǫ indicating that elements mk,l of M are subject to

mk,l ∈ Ωǫ with Ωǫ = {mk,l| |mk,l| < ǫ} . (A.86)

Robust Controller Definition

Suppose there exists a controller stabilizing the system (A.81) to (A.84) and an asymp-

totic regulation takes place (e → 0 for t → ∞). Now assume there are disturbed plant

parameters A + δA, B + δB, C + δC and ǫ > 0 is chosen such that the closed-loop

system remains stable for all δA ∈ Ωǫ, δB ∈ Ωǫ, δC ∈ Ωǫ. Then if asymptotic regulation

still takes place for all δA ∈ Ωǫ, δB ∈ Ωǫ, δC ∈ Ωǫ the controller is said to be a robust

controller.

Robust Controller Existence

[DG75] provide necessary and sufficient conditions for the existence of a robust controller

for system (A.81) to (A.84). They consider reference inputs r and disturbances d in

a general framework allowing for constant, sinusoidal or ramp signals for instance. Here

conditions are abbreviated by only considering constant reference inputs and disturbances.

Necessary and sufficient for the existence of a linear time-invariant robust controller for

(A.81) to (A.84), such that the controlled system is stabilizable and e → 0 as t → ∞ for
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all measureable or unmeasureable constant disturbances d as well as constant reference

inputs r, is that all subsequent conditions hold:

• The system (A, B) is stabilizable.

• The system (C, A) is detectable.

• m ≥ pc, i.e. the number of inputs at least equals the number of controlled outputs.

• The transmission zeros of Cc (sI − A)−1
B + Dc do not coincide with s = 0.

• y contains the actual output yc, i.e. there is a nonsingular T with




yc

ỹ



 = Ty.

Robust Controller Structure

A robust controller is found in a two-step approach. In a first step the plant (A.81) to

(A.84) is extended by introducing suitable controller dynamics which is determined by the

class of reference input and disturbance that must be considered. [FW75] coined the term

’internal model principle’ for this property of a controller. In a second step the extended

plant is stabilized using an arbitrary suitable control approach.

To obtain the extended plant [DG75] introduces the ’servo-compensator’:

ẋs = Asxs + Bse (A.87)

which models the classes of reference inputs r and disturbances d considered. In case of

constant reference inputs and disturbances this results in pc integrators for pc controlled

outputs and the respective block diagonal matrices simply are:

As = blockdiag(0, . . . , 0
︸ ︷︷ ︸

pc times

) Bs = blockdiag(1, . . . , 1
︸ ︷︷ ︸

pc times

). (A.88)

The overall extended plant model is then given by:




ẋ

ẋs





︸ ︷︷ ︸

ẋe

=




A 0

BsCc As
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xe
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B

BsDc
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Be

u +
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 , (A.89)
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 . (A.90)

The final step of robust controller design is stabilizing this extended plant by using an

arbitrary control approach and input u. Within this work LQR control and subsequent

static output feedback approximation is used, resulting in a stabilizing control law:

u = Kyye. (A.91)
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