
Verification & Performance Measurement for
Transport Protocol Parallel Routing of an

AUTOSAR Gateway System

vom Fachbereich Informatik der Technischen Universität Kaiserslautern zur Verleihung des
akademischen Grades Doktor der Ingenieurwissenschaft (Dr.-Ing.)

Genehmigte Dissertation

von

Hassan Mohammad

Dekan: Prof. Dr. Klaus Schneider
Vorsitzender der Prüfungskommision: Prof. Dr. Hans Hagen

Berichterstatter: Prof. Dr.-Ing. habil. Peter Liggesmeyer
Prof. Dr.-Ing. Eric Sax

Datum der wissenschaftlichen Aussprache: 17. Juni 2016

D 386

Declaration

Hassan Mohammad

I hereby declare that this thesis, entitled Verification & Performance Measurement for
Transport Protocol Parallel Routing of an AUTOSAR Gateway System, is my own work
and that, to the best of my knowledge and belief, it contains no material previously published
or written by another person, nor material which to a substantial extent has been accepted for
the award of any other degree or diploma of the university or other institute of higher learning,
except where due acknowledgment has been made in the text.

(Place, Date) (Signature)

i

Acknowledgments

This thesis was the result of a research project supported by the company MBtech Group GmbH
& Co. KGaA in Sindelfingen between 2012 and 2015. The scientific supervision was under the
responsibility of the Department of Computer Science and the Fraunhofer Institute for Experi-
mental Software Engineering at the Kaiserslautern University of Technology.

Here, first and foremost, I would like to express my sincere gratitude to my supervisor,
Prof. Dr.-Ing. habil. Peter Liggesmeyer, head of the research group Software Engineering:
Dependability and the Scientific Director of the Fraunhofer Institute for Experimental Software
Engineering, for the great guidance, inspiration and supervision he has shown in helping me
complete this research. His knowledge, suggestions and experiences have contributed deeply to
the results presented in this thesis.

I would like to express my appreciation to my second assessor, Prof. Dr.-Ing. Eric Sax, head
of the Institute for information processing techniques at the Karlsruhe Institute of Technology,
for reviewing this work and providing me with scientific support and professional advises.

My love and gratitude go to my wife, Zöhre, whose endless understanding and support made
this work possible. I am very grateful also to my parents. Without their constant support, I could
never have come to this far.

iii

Abstract

A wide range of methods and techniques have been developed over the years to manage the in-
creasing complexity of automotive Electrical/Electronic systems. Standardization is an example
of such complexity managing techniques that aims to minimize the costs, avoid compatibility
problems and improve the efficiency of development processes.

A well-known and -practiced standard in automotive industry is AUTOSAR (Automotive
Open System Architecture). AUTOSAR is a common standard among OEMs (Original Equip-
ment Manufacturer), suppliers and other involved companies. It was developed originally with
the goal of simplifying the overall development and integration process of Electrical/Electronic
artifacts from different functional domains, such as hardware, software, and vehicle communica-
tion. However, the AUTOSAR standard, in its current status, is not able to manage the problems
in some areas of the system development. Validation and optimization process of system con-
figuration handled in this thesis are examples of such areas, in which the AUTOSAR standard
offers so far no mature solutions.

Generally, systems developed on the basis of AUTOSAR must be configured in a way that all
defined requirements are met. In most cases, the number of configuration parameters and their
possible settings in AUTOSAR systems are large, especially if the developed system is complex
with modules from various knowledge domains. The verification process here can consume a
lot of resources to test all possible combinations of configuration settings, and ideally find the
optimal configuration variant, since the number of test cases can be very high. This problem is
referred to in literature as the combinatorial explosion problem.

Combinatorial testing is an active and promising area of functional testing that offers ideas
to solve the combinatorial explosion problem. Thereby, the focus is to cover the interaction
errors by selecting a sample of system input parameters or configuration settings for test case
generation. However, the industrial acceptance of combinatorial testing is still weak because of
the deficiency of real industrial examples.

This thesis is tempted to fill this gap between the industry and the academy in the area
of combinatorial testing to emphasizes the effectiveness of combinatorial testing in verifying
complex configurable systems.

The particular intention of the thesis is to provide a new applicable approach to combina-
torial testing to fight the combinatorial explosion problem emerged during the verification and
performance measurement of transport protocol parallel routing of an AUTOSAR gateway. The
proposed approach has been validated and evaluated by means of two real industrial examples
of AUTOSAR gateways with multiple communication buses and two different degrees of com-
plexity to illustrate its applicability.

v

List of my Publications

[1] H. Mohammad and P. Patil. Verification of transport protocol’s parallel routing of a vehi-
cle gateway system. Vehicular 2014, The Third International Conference on Advances in
Vehicular Systems, Technologies and Applications, IARIA, pages 39–45, 2014.

[2] H. Mohammad and S. M. Shamoon. Handling conflicts to test transport protocol’s paral-
lel routing on a vehicle gateway system. Federated Conference on Computer Science and
Information Systems (FedCSIS), IEEE, pages 1559–1568, 2014.

vii

Contents

List of my Publications v

List of Figures 1

List of Tables 3

Acronyms 5

1 Introduction 9
1.1 Introduction . 9
1.2 Motivation . 10
1.3 Contribution . 11
1.4 Structure of the Dissertation . 11

2 Fundamentals 13
2.1 E/E Systems in Automotive . 13
2.2 Vehicle Bus Systems . 14

2.2.1 LIN Communication Bus . 15
2.2.2 CAN Communication Bus . 15
2.2.3 FlexRay Communication Bus . 17
2.2.4 MOST Communication Bus . 18
2.2.5 Ethernet Communication Bus . 19

2.3 Gateway Systems in Automotive . 19
2.4 AUTOSAR . 21

2.4.1 AUTOSAR Gateway . 23
2.4.2 AUTOSAR Transport Protocols . 25

3 Transport Protocol Routing of AUTOSAR Gateway 27
3.1 Background . 27
3.2 Terminology of TP Routing . 29
3.3 Definitions . 31
3.4 TP Routing Paradigms of an AUTOSAR Gateway 35

3.4.1 Segmented CAN to CAN TP Routing with Normal Addressing 35
3.4.2 Segmented CAN to FlexRay TP Routing with Normal Addressing . . . 39

ix

3.4.3 Other TP Routing Paradigms . 43
3.5 TP Parallel Routing of an AUTOSAR Gateway 46
3.6 The Combinatorial Explosion Problem . 49

4 Software Testing 53
4.1 Introduction . 53
4.2 Testing Based on Actual Execution . 54
4.3 Testing Based on Methodology . 54
4.4 Testing Based on Granularity Level . 55
4.5 Specification Based Testing . 55
4.6 Random Testing . 60
4.7 Search Based Testing . 60

5 Combinatorial Testing 61
5.1 Introduction . 61
5.2 Input Parameter Model (IPM) . 62

5.2.1 Interaction Model . 64
5.2.2 Interaction Strength . 64
5.2.3 Conflict Model . 64

5.3 Coverage Level . 65
5.4 Conflict Handling Strategy . 66
5.5 Combinatorial Approach . 67
5.6 Computational Implementation . 68
5.7 Test suite Evaluation and Systematic Reduction 69
5.8 Test Case Generation, Test Case Execution and Test Result Evaluation 69

6 Verification & Performance Measurement of Transport Protocol Parallel Routing 71
6.1 Building an IPM . 72

6.1.1 Creating an Interaction Model . 73
6.1.2 Interaction Strength . 77
6.1.3 Creating a Conflict Model . 77

6.2 Definition of a Coverage Level . 78
6.3 Conflict Handling Strategy . 80

6.3.1 TypeA-Conflict Handling . 81
6.3.2 TypeB-Conflict Handling . 82
6.3.3 TypeC-Conflict Handling . 84

6.4 Computational Implementation . 85
6.5 Test Suite Reduction . 85
6.6 Test Case Generation, Execution and Evaluation 86

6.6.1 Testing TP parallel routing for SNRs 86
6.6.2 Testing TP parallel routing for MNRs 88

7 Validation and Evaluation 91
7.1 Implementation of the Test System . 91

x

7.1.1 Manual Definitions . 91
7.1.2 Parameter Abstraction and IPM . 92
7.1.3 Test Case selection and Generation Engine 96
7.1.4 Restbus Simulation . 97
7.1.5 Analysis . 99
7.1.6 Reporting . 101

7.2 Gateway Test Object . 104
7.3 General Information . 104

7.3.1 TP Routing Scenarios . 104
7.3.2 Similarity Criteria . 105
7.3.3 Conflicts . 105

7.4 The First Experiment . 106
7.4.1 Results of the Experiment . 106

7.5 The Second Experiment . 110
7.5.1 Results of the Experiment . 111

8 Summary and Outlook 113
8.1 Discussion . 113
8.2 Conclusion and Future Work . 113

Bibliography 115

xi

List of Figures

2.1 Automotive E/E Architecture . 14
2.2 OSI Reference Model . 16
2.3 AUTOSAR Software Architecture Standard . 22
2.4 AUTOSAR Gateway Modules . 24

3.1 Automotive Distributed Network System . 28
3.2 CAN to CAN Simple Frame Routing Example . 28
3.3 CAN to FlexRay Frame Routing Example . 28
3.4 CAN to CAN segmented Transport Protocol Data Routing 36
3.5 CAN to FlexRay segmented Transport Protocol Data Routing 40
3.6 TP Parallel Routing Example of an AUTOSAR Gateway 47
3.7 E/E System from the TP functionality Point of View 50

5.1 Extended Combinatorial Test Process . 63

6.1 V-Model . 72
6.2 IPM for TP parallel Routing of AUTOSAR Gateway 73
6.3 Advantages of Building Similar Groups for TP Parallel Routing 76
6.4 TypeA-Conflict Handling Approach . 81
6.5 TypeB-Conflict Handling Approach . 83
6.6 TP Parallel Routing for SNRs . 87
6.7 TP Parallel Routing for MNRs . 89

7.1 Test System Design . 92
7.2 HTML Report: Description Section . 102
7.3 HTML Report: Test Cases Section . 103

1

List of Tables

2.1 Comparison of Communication Buses . 20

3.1 CAN Flow Control Frame Content Structure with Normal Addressing 36
3.2 CAN First Frame Content Structure with Normal Addressing 37
3.3 CAN Consecutive Frame Content Structure with Normal Addressing 38
3.4 FlexRay Flow Control Frame Content Structure for Normal Addressing 40
3.5 FlexRay Start Frame Content Structure with Normal Addressing 41
3.6 FlexRay Consecutive Frame Content Structure with Normal Addressing 42
3.7 FlexRay Last Frame Content Structure with Normal Addressing 43

6.1 Example of a Combination Table . 79

7.1 First Experiment: First Sub-IPM’s Groups . 107
7.2 First Experiment: Second Sub-IPM’s Groups . 108
7.3 First Experiment: Third Sub-IPM’s Groups . 108
7.4 First Experiment: Forth Sub-IPM’s Groups . 108
7.5 First Experiment: Combination Table of the first SNR in the first Sub-IPM 109
7.6 First Experiment: An Example of a Resulting Combination 110
7.7 Second Experiment: First Sub-IPM’s Groups . 111
7.8 Second Experiment: Second Sub-IPM’s Groups 111

3

Acronyms

ABT Abort

ADC Analog Digital Converter

ART Adaptive Random Testing

ARXML AUTOSAR Extensible Markup Language

AUTOSAR Automotive Open System Architecture

BC Bandwidth Control

BfS Buffer Size

BS Block Size

BSW Basic Software

CA Covering Arrays

CAN Controller Area Network

CAN FD CAN Flexible Data Rate

CAN TP CAN Transport Protocol

CDD Complex Device Driver

CFT Consecutive Frame Type

CIT Combinatorial Interaction Testing

COM Communication

CP Category Partition

5

CSMA/CD Carrier Sense Multiple Access/Collision Detection

CT Combinatorial Testing

CTS Continue To Send

DA Destination Address

DCM Diagnostic Communication Manager

DIO Digital Input/Output

DLC Data Length Code

DoIP Diagnostics over Internet Protocol

DTD Document Type Definition

E/E Electrical/Electronic

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read-Only
Memory

EMI Electromagnetic Interference

FF_DL First Frame Data Length

FlexRay TP FlexRay Transport Protocol

FPL Frame Payload

FTDMA Flexible Time Division Multiple Access

I2C Inter-Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

IPDUM IPDU Multiplexer

IPM Input Parameter Model

ISO International Organization for Standardization

6

LIN Local Interconnect Network

LIN TP LIN Transport Protocol

MCAL Microcontroller Abstraction Layer

ML Message Length

MOST Media Oriented Systems Transport

ms millisecond

N_AE Network Address Extension

OA Orthogonal Arrays

OATS Orthogonal Array Testing System

OBD Onboard Diagnostic

OS Operating System

OSI Open Systems Interconnection

OVFLW Overflow

PDU Protocol Data Unit

POF Plastic Optical Fiber

RT Random Testing

RTE Runtime Environment

RTR Remote Transmit Request

SA Source Address

SAE International Standards Organization and Society
of Automotive Engineers

Slot_ID Slot Identifier

SN Sequence Number

STmin Minimum Separation Time

7

SUT System Under Test

TDMA Time Division Multiple Access

TP Transport Protocol

V&V Validation and Verification

W3C World Wide Web Consortium

WT Wait

XML Extensible Markup Language

8

CHAPTER 1
Introduction

1.1 Introduction

The competition in automotive market has become very hard in the last decade. Nowadays, cos-
tumer satisfaction is very essential and can affect directly the automotive industry. The decision
to buy a new car is not any more a simple process. Diverse factors may play decisive role in the
decision process [1]. Therefore, automotive companies try to win more customers by providing
new intelligent and comfort features with feasible costs. Here are some aspects driving very
strongly the automotive manufacturer:

• Selling prices.

• Fuel consumption.

• Emissions issues.

• Comfort and convenience features.

• Safety in automotive.

• Time to market.

• After sale services and costs.

• Other innovation features (internet access, mobile communication).

• Competition with other automotive manufacturer.

In order to contribute to the optimization of these aspects, carmakers keep investing in the
development of new and innovative technologies. Consequently, the number of features and
functionalities continues to increase in modern vehicles. This leads to more complexity of the
overall system.

9

Since innovations in the automotive industry are currently dominated by software based
functionalities [2], the software part of the vehicle systems is mostly affected by the complexity
issue. It is well-known that the quality of complex software systems is a major problem for
the software industry. According to the National Institute of Standards & Technology [3] “the
national annual costs of an inadequate infrastructure for software testing is estimated to range
from $22.2 to $59.5 billion”. Testing is one of the most important means to retain confidence
and validate the correctness of software functionalities. However, the decision on the testing
technique and the testing thoroughness may affect the overall costs of the development to a
wide extend. In order to manage the associated costs of testing and still have an acceptable and
measurable coverage, systematic and automatable approaches are used.

This thesis aims to give a scientific research that addresses the software testing problem in
highly configurable systems or in systems with a large input space like the automotive central
gateway.

1.2 Motivation

As mentioned before, manufacturing costs, time to market and after sale services are leading
factors for carmakers. OEMs (Original Equipment Manufacturer) are making noticeable effort
to move these factors in a positive direction, either by optimizing processes or by developing
new innovative technologies. One of these vehicle’s innovations is the deployment of high end
devices and high performance functionalities in E/E (Electrical/Electronic) systems. The present
work deals with the testing problem of the high performance functionality of TP (Transport
Protocol) parallel routing of AUTOSAR gateways available in modern vehicle’s E/E system.
This technology accelerates the production time by allowing parallel flashing of multiple ECUs
(Electrical Control Units) in the production phase. It helps also to minimize the maintenance
period in after sale services. The optimization gained through TP parallel routing is achieved
by reducing the required time to update the vehicle’s software or to inquire the status of various
vehicle’s ECUs in parallel, which would then take care for more customer satisfaction.

The implementation of TP parallel routing in automotive field bears a new challenge for
testing. This can be seen particularly in complex systems with high configuration grade and
large input space, such as the central gateway that represents a central point of communication
among the various domains of the vehicle, and to the external world. Such kind of gateways is
used currently in most modern vehicle’s E/E systems.

In order to ensure a correct implementation of the TP parallel routing functionality of an AU-
TOSAR gateway, the test has to cover a large number of possible scenarios. With the increasing
number of ECUs that are reachable over the gateway, the number of possible test scenarios is
growing exponentially.

Moreover, the testing problem becomes even more complex, since each ECU has also a
possible set of configuration parameters that can be modified over the development period.

10

1.3 Contribution

This thesis is focused on combinatorial testing which is currently an active research topic in
the area of software testing. Combinatorial testing consists of various key issues that address
the complications related to fighting the combinatorial explosion problem emerged during the
testing process. This kind of problems is very common in highly configurable systems or in
systems with a big input space.

The contributions of this thesis are focused on the following issues:

• The integration of recent research experiences into a new combinatorial test process.

• Building a creative input parameter model that assists in reducing the number of parameter
combinations in the case of testing TP parallel routing of an AUTOSAR gateway system.

• Designing a novel coverage level that helps to avoid similar combinations and increase
the test coverage.

• Providing an evidence that combinatorial testing can be effectively applied to complex
industrial applications.

• Providing an evidence that combinatorial testing is possible to be automated and is effec-
tive in reducing the number of test cases.

1.4 Structure of the Dissertation

The thesis is organized as follows. This chapter gives an overview and scope of the research
topic. Chapter 2 includes a technical background on the areas of the handled theme. It introduces
the current understandings of E/E architectures in automotive field as well as a briefly description
of utilized communication buses. Additionally, automotive gateway systems along with the
AUTOSAR standard are explained in chapter 2.

Chapter 3 deals with the transport protocol routing functionality of an AUTOSAR gateway.
Transport protocols of the AUTOSAR standard are mainly utilized to meet diagnostic require-
ments, such as flashing of new software into ECUs of the vehicle or updating their firmware in
the after sales services. A deeply investigation of the terms and the supported transport proto-
col routing paradigms is provided in this chapter to illustrate the functionality. However, the
focus is given to the transport protocol parallel routing and the combinatorial explosion problem
emerged during the verification and performance measurement process.

In chapter 4, the diverse trends in software testing are stated and discussed. Since the prob-
lem dealt with in this thesis is categorized as a combinatorial testing problem, chapter 5 is
reserved to discuss the research results on the key areas of combinatorial testing along with the
state of the art. Based on this research, a combinatorial test process is consequently proposed
to cover the gained knowledge in this area. An implementation methodology is then developed
in chapter 6 to apply the proposed combinatorial test process to verify the transport protocol
parallel routing of an AUTOSAR gateway and measure the performance. Chapter 7 verifies the

11

implementation methodology. An evaluation is also given in this chapter to show the results
achieved. Finally, chapter 8 completes this work with a summary and outlook.

12

CHAPTER 2
Fundamentals

In this chapter, the fundamentals of modern vehicle E/E systems are explained briefly. These
include the basics of E/E architectures along with their utilized bus systems and involved soft-
ware. A special attention is given to the vehicle gateways and the AUTOSAR standard, which
are nowadays vital for modern vehicle systems.

2.1 E/E Systems in Automotive

An E/E system or E/E architecture is a term used frequently in automotive industry. However,
the understandings under this term are wide different from one person to another.

According to the IEEE standard 1471-2000 [4], the architecture of a software-intensive sys-
tem is defined generally as: “the fundamental organization of a system embodied in its com-
ponents, their relationships to each other, and to the environment, and the principles guiding
its design and evolution”. In automotive industry, an E/E architecture of a vehicle is a system
that comprises all software functions, hardware components, the wiring harness and the physical
topology. However, some details like the type of a hardware component or the used program-
ming language are not considered as a part of the automotive E/E architecture if they have no
impact on other elements.

In the automotive domain, it is common to describe an E/E architecture as a top-down
scheme using different views or layers (see fig. 2.1). The first top layer is the Requirements
layer which describes all requirements to be met by the E/E architecture. These requirements
are realized through a network of functional units in the second layer, the so-called Functional
Network layer. The Hardware Component Network layer includes ECUs, bus systems, sensors
and actuators realizing functional units from the previous layer. Details about connectors and
wiring between the individual components as well as the energy supply are embedded in the
Schematic Layer. The layer ”Wiring Harness“ describes the wiring harness and the lowest layer
”Physical Topology“ shows in details the physical placement of the ECUs as well as the wiring.

Generally, an automotive E/E architecture can be described as a system that consists of
several ECUs operating in different functional domains. For each functional domain, a bus

13

RequirementRequirement
Requirements

Functional

Network

HW Component

Network

Schematic

Layer

Wiring

Harness

Physical

Topology

Requirement

Function

ActuatorFunction

Sensor

Sensor

Sensor ECU

ECU ECU

Actuator

Sensor ECU

ECU

Actuator

DoorRadar

Sensor

ECU

ActuatorECU

Mapping

Mapping

Mapping

RequirementRequirement
Requirements

Functional

Network

HW Component

Network

Schematic

Layer

Wiring

Harness

Physical

Topology

Requirement

Function

ActuatorFunction

Sensor

Sensor

Sensor ECU

ECU ECU

Actuator

Sensor ECU

ECU

Actuator

DoorRadar

Sensor

ECU

ActuatorECU

Mapping

Mapping

Mapping

Figure 2.1: Automotive E/E Architecture

system with special characteristics is deployed, and for the data exchange among the functional
domains, one or more gateways are responsible [5].

The layered architecture shown in fig. 2.1 is also usual in different design tools that focus on
the verification of automotive E/E systems in the development phase, such as PREEvision [6]
and Volcano Network Architect [7].

2.2 Vehicle Bus Systems

Today’s vehicle E/E systems are designed as distributed systems with a heterogeneous nature
in order to manage the increasing complexity and meet the diversity of requirements such as
performance, comfort, safety and costs. Therefore, different bus systems are utilized.

In the context of vehicle bus systems, two basic communication paradigms are used. The
first paradigm is the time-triggered and the second is the event-triggered.

14

Within a time-triggered communication, the nodes can access the bus according to a pre-
defined time slots, leading to a deterministic behavior during the operation of the system. On
the contrary, the bus access in the event-triggered approach can occur at any time during the
operation, leading to the advantage of fast reaction to external events which are not known in
advance.

In this section, common types of these bus systems are discussed. At the end of the section,
a comparison between the explained bus systems is provided (see table 2.1).

2.2.1 LIN Communication Bus

Local Interconnect Network (LIN) was developed as a low cost and low speed (up to 20Kbit/s)
serial communication bus for automotive systems. It is mainly used for low performance devices,
such as power window, sun roof, rain sensors or seat controllers, where low data transmission
rate and a simple fault management are required.

For realizing the communication on the bus, the LIN protocol uses the basics of a time-
triggered scheme and a master/slave mechanism. Typically, a system or a subsystem that oper-
ates with LIN protocol shall be organized as a cluster that consists of a single master node and
one or more slave nodes. The master node manages the message transmissions according to a
schedule table and provides the synchronization for all nodes of the cluster.

Scheduling in the LIN protocol is realized through tasks. While the master node contains
both a master task and a slave task, each slave node contains only a slave task. The master task
uses a polling mechanism to request data from slaves by transmitting a header, which is related
to a specific slave task each time it has been sent. Once a header has been transmitted from
the master, slave tasks of slave nodes along with the slave task of the master node verify it to
determine whether it needs to transmit or receive. If a slave task needs to transmit, it sends one
to eight bytes onto the bus followed by a check-sum byte. If the slave task needs to receive, it
reads the data and check-sum bytes from the bus.

LIN is standardized through multiple versions. The first standard version completing the
byte layer communication was LIN 1.3 [8]. The other versions emerged later (2.0, 2.1, 2.2
and 2.2A) are compatible with LIN 1.3 and supports several additional services and enhance-
ments, such as energy saving through a sleep and wake-up mechanism, simple error detection
algorithms, and a bandwidth saving solution.

Currently, LIN is used primarily in low performance body domain application because of its
low cost. LIN is planned also to be standardized as ISO standard ISO 17987 Part 1-7.

2.2.2 CAN Communication Bus

Controller Area Network (CAN) bus system was invented originally by Robert Bosch GmbH in
1983, and installed firstly in the late 1980’s in Mercedes-Benz cars. The goal was to reduce the
wiring harness in automotive E/E systems by developing a serial communication protocol that
offers the ability to connect the ECUs directly to one medium.

Reducing the wiring harness has a positive impact on the complexity of the system, since
fewer wires have to be modeled and installed. This leads also to the reduction of manufacturing

15

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Data Generation

Encryption & Formatting

Establish Connection

Delivery & Sequencing

Routing to Destination

Local Network Host Delivery

Access to Media

7

6

5

4

3

2

1

Figure 2.2: OSI Reference Model [9]

costs. Moreover, fewer wires means that the whole weight of the car decreases and this results
in a reduction of the fuel consumption.

The CAN communication protocol is asynchronous serial protocol that supports a real time
communication in reliable and safe manner. To guarantee real time critical aspects, the release
version 2.0B of CAN specification increased the maximum communication rate to 1Mbit/sec. At
this rate, even most time-critical messages can be transmitted serially without latency concerns.

In its design, the CAN protocol implements most of the lower two layers of the Open Sys-
tems Interconnection (OSI) reference model created by the International Standards Organization
(ISO) (see fig. 2.2).

For flexibility purposes, the Bosch CAN specification left out the communication medium
portion of the physical layer of the OSI model. As a consequence, some interoperability issues
can be raised. To address these issues, the ISO organization in company with the Society of Au-
tomotive Engineers (SAE) defined some examples of CAN based protocols, such as ISO11898,
ISO11519 and J1939. All these examples include also the definition of the media dependent
interface of the physical layer.

Access to the medium in CAN is realized based on the concept of Carrier Sense Multiple
Access/ Collision Detection (CSMA/CD) and the technique of non-destructive bit wise arbitra-
tion. The identifier field of the CAN message is used for the arbitration process, in which a
dominant bit (normally logic bit 0) will always win the arbitration over a recessive bit (normally
logic bit 1). Therefore, the lower the value of the identifier field, the higher the priority of it.

In a CAN network, each node must have a unique identifier that is used to identify the node’s
data and prioritize the node. During the communication, messages are received and eventually

16

acknowledged by every CAN node of the network. After that, the nodes can decide whether to
process the data or discard it. This concept of communication is called message based and is
different from address based. In the address based data exchange, messages include the address
of the receiving node and only that node will receive and process the message. One benefit
of the message based concept is that new nodes can be easily added to the system without the
necessity to modify all existing nodes. Another useful feature embedded into the CAN protocol
is the Remote Transmit Request (RTR), where nodes can specifically request data to be sent to
it.

Generally, four different types of messages or frames are defined in the CAN protocol. The-
ses are Data Frames, Remote Frames, Error Frames and Overload Frames. The first two frames
are described previously. An Error Frame can be sent by any node that detects one of the errors
defined by CAN. However, Overload Frames are generated by nodes that require more time to
process messages already received.

For the purpose of data integrity, the CAN nodes have the ability to determine five error
conditions and change in one of three error states during the communication. Changing in an
error state is based on the detected faults and its count (for more details about error conditions
and error states, refers to CAN release version 2.0B [10]).

In 2012, Bosch introduced the CAN FD (CAN Flexible Data Rate) protocol at the interna-
tional CAN Conference in Germany [11]. In contrast to CAN, the CAN FD provides bit-rates
higher than 1 Mbit/s and payloads up to 64 bytes per frame. The main idea of CAN FD is to
use different bit-rates in the arbitration and data phase of the communication. That is, once the
arbitration has been decided and only one node has to use the bus, the bit-rate can be increased.

It is important to mention that the original CAN FD protocol developed by Bosch has been
changed to improve the failure detection capability. The ISO 11898-2:2015 that describes the
specification of CAN FD has been already submitted for review.

CAN is used primarily in powertrain, chassis and Body/Comfort application domains of
the vehicle. Because of its successful deployment in automobiles, the CAN bus system was
established also in other fields, such as medical equipment, avionics (A380), process control
and other distributed real-time control systems.

2.2.3 FlexRay Communication Bus

FlexRay was developed jointly by automobile manufacturers and suppliers to deliver determin-
istic, fault-tolerant and high-speed communication bus required for x-by-wire applications, such
as steer-by-wire and break-by-wire. These applications demand more safety, performance and
reliability than provided by CAN.

The FlexRay protocol with devices from NXP and Freescale was installed firstly at the end
of 2006 in the BMW X5 sport activity vehicle. In 2009, the FlexRay ISO standards ISO 17458-1
to 17458-5 were published as a result of collaboration in the FlexRay consortium. In the mid of
2010, the production reached its maximum. However, the high costs and the emergence of time
triggered Ethernet threaten the future use of FlexRay.

FlexRay unifies time- and dynamic event-triggering mechanisms in one protocol, where the
communication is based on the Time Division Multiple Access (TDMA) and Flexible Time
Division Multiple Access (FTDMA) schemes of networking.

17

In FlexRay, single and dual channel configurations are supported, where the dual variant
offers enhanced fault tolerance and/or increased bandwidth. However, most FlexRay networks
utilizes only one channel to keep the wiring costs down. The bit rates provided in FlexRay are up
to 10 Mbit/s as bus, star and multiple star network technologies. For physical wiring, unshielded
twisted pair cabling is used to connect the nodes.

As mentioned previously, time triggered scheme for deterministic data and dynamic event
driven scheme for a large variety of frames are supported in FlexRay. The main element of
FlexRay is the communication cycle that repeats itself cyclically during system run. After de-
signing the network, the duration of the communication cycle is fixed. The duration value is
typically between 1 to 5 ms. Four main parts build up each repeated communication cycle:

• Static segment for deterministic and time triggered data

• Dynamic segment for event triggered data

• Symbol window for maintenance an starting the network

• Network idle time for synchronization purposes

In a FlexRay network, each node is synchronized to the same clock and waits for its turn to
write on the bus. The static segment consists of equal-length slots assigned to nodes, where
FlexRay nodes may have more than one slot. When a slot occurs in time, the assigned node
can transmit its data into that slot. The dynamic segment, which utilizes a scheme similar to the
arbitration used by CAN, consists of a defined number of minislots. To prioritize the data during
dynamic segment, minislots are assigned to nodes based on message identifiers. A minislot
is typically a microsecond long. Higher priority nodes get minislots closer the beginning of
the dynamic segment. Once a minislot occurs, the assigned node can transmit its data. If the
node misses its minislot, it has to wait until the assigned minislot of the next dynamic segment.
While transmitting data during the dynamic segment, future minislots must wait until the node
completes its data transmission.

2.2.4 MOST Communication Bus

Media Oriented Systems Transport (MOST) was developed by a consortium of automobile com-
panies and suppliers under the leadership of BMW and DaimlerChrysler. MOST is mainly used
for automotive multimedia and infotainment applications, such as video, audio, navigation and
telecommunication systems.

MOST supports synchronous and asynchronous data transmission modes along with an ad-
ditional asynchronous control channel. The synchronous transmission is primarily used for
real-time data transmission, like audio/video, with a data bit rates around 25 Mbit/s. For the
realization of synchronous transmission, the Time Division Multiplexing (TDM) mechanism is
utilized, where the maximum possible number of synchronous data bytes in one MOST frame is
60 bytes. In the case of larger data blocks than 60 bytes, asynchronous transmission with a data
bit rate of 15 Mbit/s and a maximum packet length of 1014 bytes can be configured and used.

18

The additional asynchronous control channel in MOST protocol is mainly used to transfer
control data based on the Carrier Sense Multiple Access (CSMA) with a data bit rate of 700
Kbit/s.

The release version 3.0 of MOST specification standard added additional Ethernet and isoch-
ronous channels to existing channels of previous specification versions. While isochronous
transport mechanism supports extensive video applications with a high bandwidth of 150 Mbit/s,
the Ethernet channel is used for efficient transport of IP-based packet data.

MOST networks use the master/slave mechanism to synchronize nodes and establish the
communication. One node of a MOST network has to be determined as a master, while all other
nodes are slaves. A maximum of 64 nodes arranged in a ring, star or chain topology can be
connected to a MOST network. MOST employs Plastic Optical Fiber (POF) as the physical
layer for better resilience to Electromagnetic Interference (EMI) and higher data rates.

2.2.5 Ethernet Communication Bus

Ethernet is standardized by the Institute of Electrical and Electronics Engineers (IEEE) 802.3
working group in several standards which define the physical and data link layers. Ethernet
together with the higher layer protocol Internet Protocol (IP) are already utilized for some auto-
motive applications such as diagnostics, car-2-car communication, and software flashing. Most
of these applications are OEMs specific and not standardized yet. In the area of diagnostics, an
International Organization for Standardization (ISO) standard called Diagnostics over Internet
Protocol (DoIP) has been released. The standard defines a uniform interface and protocols for
diagnostic tester based on Ethernet and IP. Currently, Ethernet is used only for external com-
munication between the vehicle and its environment. There are some studies and researches on
using Ethernet as a backbone for intra-communication between the different vehicle domains or
for camera links [12]. Ethernet can be a very attractive alternative for existing bus systems in
automotive area because of the high throughput provided (10 Mbit/s up to 40 Gbit/s). However,
the real time aspects must be studied thoroughly for the usage in some automotive domains. Cur-
rently, some solutions for hard real time in automation industry are available [13]. Nevertheless,
utilizing them in automobile field should be verified.

2.3 Gateway Systems in Automotive

Over the last years, the increasing number of functionalities in automotive field has led to a high
grade of complexity in E/E architectures. Some of the essential factors that contributed to this
complexity are the diversity of demands in vehicle functional domains like telematics and safety,
as well as the cost aspects. Today’s vehicle E/E architectures are distributed in order to overcome
this complexity and meet the requirements such as performance, comfort and safety. In a vehicle
distributed system, gateways are indispensable. They enable ECUs of connected networks to
interchange information necessary for accomplishing specified functionalities. Furthermore, the
gateways ensure a comprehensive access through the whole system. Generally, a gateway has to
achieve following tasks:

19

LIN CAN CAN FD FlexRay MOST Ethernet

Functional
Domains Body

Powertrain,
Chassis,
Body

Powertrain,
Chassis,
Body

Chassis,
x-by-wire

Multimedia,
Infotain-
ment

Diagnostics,
Car-2-Car,
Flashing

Bit Rate Up to 20
Kbit/s

Up to 1
Mbit/s

Up to 8
Mbit/s

Up to
10Mbit/s

Up to 25
Mbit/s

10 Mbit/s
up to 100
Mbit/s

Data Byte
Length Up to 8 Up to 8 Up to 64 Up to 254

Up to 60
for synch.,
up to
1014 for
asynch.

Up to
1500

Physical
Layer

Single
wire

Twisted
pair

Twisted
pair

Twisted
pair, POF

POF
Twisted
pair, Fiber
optic

Bus
Access Polling

CSMA/CA CSMA/CA TDMA
/FDMA

TDM /C-
SMA

CSMA/CD,
Token
ring, To-
ken bus

Topology Bus Bus Bus
Bus, Star,
Hybrid

Ring

Bus, Star,
Ring,
Mesh,
Tree

Table 2.1: Comparison of Communication Buses

• Signal and Frame Routing: Signals are pieces of information which consist of several
bits. They represent data units that cannot be divided. Signal routing is a functionality
of the gateway, in which signals are received on one bus and transferred to one or more
buses of the connected networks. For the purpose of bandwidth minimization, signals are
mostly collected to form one frame. Frame routing is more complex than signal routing.
In frame routing, received frames can be routed directly to the destination bus without any
manipulation. In other cases, frames may be manipulated in such a way that signals are
extracted and new frames are formed and routed to the destination bus.

• Changing Attributes before Routing: In some cases, the gateway has to change the
attributes of received messages or frames before routing. These attributes are mostly
timing aspects. For example, a message is received on one bus sporadic and the gateway
sends it cyclic on the destination bus. The signal values of the routed cyclic message can
be in this case the last received one or a default one.

• Transport Protocols: Transport protocols are utilized in gateways to manage the routing
of big data packets which do not fit in one defined frame of the destination network. In this

20

case, the gateway provides features for segmentation, reassembling, flow control and error
detection for routing. Furthermore, the gateway has the ability to convert one transport
protocol to another when different types of bus systems and hence transport protocols are
involved.

• Network Management: For the purposes of energy saving, the gateway manages also the
sleep and wake-up behavior of the connected networks. It handles network management
requests and responses on all connected networks.

• Data Filtering: The gateway has the task of filtering data not required on its connected
networks so that the traffic on each network stays at its minimal level.

• Further Functionalities: Some gateways has also the ability to collect and save diagnos-
tic information that can be requested later to analyze the behavior and the status of the
deployed system.

2.4 AUTOSAR

The Automotive Open System Architecture (AUTOSAR) is an international organization found-
ed in 2003. The aim of the organization is to establish an open standard (the AUTOSAR stan-
dard) for the software architecture in vehicle’s ECUs. The organization consists of members
from OEMs, suppliers, software developers, compiler and semiconductor manufacturers. The
goal of the AUTOSAR standard is to improve and facilitate the development of automotive ap-
plications by offering the opportunity to reuse soft- and hardware components among different
vehicle platforms. To achieve this, AUTOSAR defines a methodology that supports distributed
and function-driven development process. The methodology seeks to standardize the software
through a layered architecture which consists of the following components as shown in fig. 2.3:

• Application Software Components: These are AUTOSAR software components or AU-
TOSAR Sensor/Actuator components that implement the desired functionalities of the
application.

• Runtime Environment (RTE): The RTE is a middle ware layer that provides a communi-
cation medium between the application software components. Moreover, the RTE enables
the application software components to access services of the basic software modules.

• Basic Software (BSW): The BSW provides various services to the application software
components, such as communication services, mode and memory management services.
These services are necessary to run the functional part of the software. The BSW com-
prises the following modules:

– Services: These are system services, such as diagnostic protocols and memory man-
agement services.

– Communication (COM): The COM module provides the communication services
over the various bus systems like CAN, LIN, FlexRay and Ethernet. It is also re-
sponsible for providing input/output and network management services.

21

Application

Software

Component

AUTOSAR Interface

Actuator

Software

Component

AUTOSAR Interface

Sensor

Software

Component

AUTOSAR Interface

Application

Software

Component

AUTOSAR Interface

.….

AUTOSAR Software

AUTOSAR Runtime Environment (RTE)

AUTOSAR Middleware

AUTOSAR InterfaceAUTOSAR InterfaceStandardized InterfaceStandardized InterfaceStandardized Interface

Services Communication
ECU

Abstraction

Standardized InterfaceStandardized Interface Standardized Interface

Standardized Interface

Microcontroller

Abstraction

Operating

System

S
ta

n
d

a
rd

iz
e

d
In

te
rfa

c
e

Complex

Device

Drivers

ECU-Hardware

Basic Software

API 2 VFB & RTE relevant API 1 RTE relevant API 0 BSW relevant

Standard Software AUTOSAR Software Component ECU Firmware Interface

Application

Software

Component

AUTOSAR Interface

Actuator

Software

Component

AUTOSAR Interface

Sensor

Software

Component

AUTOSAR Interface

Application

Software

Component

AUTOSAR Interface

.….

AUTOSAR Software

AUTOSAR Runtime Environment (RTE)

AUTOSAR Middleware

AUTOSAR InterfaceAUTOSAR InterfaceStandardized InterfaceStandardized InterfaceStandardized Interface

Services Communication
ECU

Abstraction

Standardized InterfaceStandardized Interface Standardized Interface

Standardized Interface

Microcontroller

Abstraction

Operating

System

S
ta

n
d

a
rd

iz
e

d
In

te
rfa

c
e

Complex

Device

Drivers

ECU-Hardware

Basic Software

API 2 VFB & RTE relevant API 1 RTE relevant API 0 BSW relevant

Standard Software AUTOSAR Software Component ECU Firmware Interface

Figure 2.3: AUTOSAR Software Architecture Standard [14]

– Operating System (OS): The OS module provides services of task scheduling and
resource management.

– ECU Abstraction: The ECU abstraction module provides a software interface to
the electrical values of any specific ECU in order to decouple higher-level software
from all underlying hardware dependencies.

– Complex Device Driver (CDD): The CDD is a special module of AUTOSAR that
can be configured in various ways to allow a direct access of the higher-layer soft-
ware components to the ECU hardware or the basic software components. Further-
more, it allows basic software components to directly access the hardware particu-
larly for resource critical applications.

– Microcontroller Abstraction Layer (MCAL): The MCAL module is a hardware
specific layer that ensures a standard interface to the components of the basic soft-
ware. It manages the microcontroller peripherals and provides the components of
the basic software with microcontroller independent values. MCAL implements no-
tification mechanisms to support the distribution of commands, responses and infor-
mation to different processes. It routes the access to the hardware to avoid direct

22

access to microcontroller registers from higher-level software. The MCAL module
supports the following services of the microcontroller to the higher layer software
components:

∗ Digital I/O (DIO)
∗ Analog/Digital Converter (ADC)
∗ Pulse Width (De)Modulator
∗ EEPROM
∗ Flash
∗ Capture Compare Unit
∗ Watchdog Timer
∗ Serial Peripheral Interface
∗ I2C Bus

2.4.1 AUTOSAR Gateway

An AUTOSAR gateway is a special vehicle ECU that uses the AUTOSAR standard as a basis
to implement the common functionalities of a gateway. In an AUTOSAR gateway, two BSW
modules are mainly responsible for realizing the routing functionalities. These are the PDU
Router and the integral part of the COM module, which is also called Signal Based Gateway.
Figure 2.4 shows the position and the interaction relationships of these two modules in the
AUTOSAR BSW of a gateway.

PDU Router is the module concerned with PDU routing. During PDU routing, the PDU
Router does not change the structure of a PDU. It forwards frames simply as received to the
specified destination module. PDU Router is the central BSW module which provides PDU
routing between the following modules:

• Communication interface modules

• TP modules

• IPDUM and communication interface modules

• COM module and communication interface modules

• DCM and TP Modules

Basically, the AUTOSAR PDU Router of an AUTOSAR gateway supports two configurable
routing paradigms:

• On-the-Fly Routing: is a routing mechanism in which frames are routed directly without
any delay (the software processing time is not considered as delay).

• Store-and-Forward Routing: is a routing mechanism defining that the gateway starts
routing after receiving and saving a defined number of frames.

23

AUTOSAR Runtime Environment (RTE)

Communication

Manager

Signal

Based

Gateway

Signals /

Signal Group

COM
Diagnostic

Communication

Manager

Generic

Network

Management

Network

Management

Module

NM Data

Signal

PDU Router

I-PDU I-PDU

IPDUM

CAN TPFlexRay TP

FlexRay Interface CAN Interface
LIN Interface

(incl. LIN TP)

FlexRay Driver CAN Driver LIN Low Level Driver

I-PDU

I-PDU I-PDU I-PDU

I-PDU I-PDU

N-PDUN-PDU

L-PDU L-PDU L-PDU

Figure 2.4: AUTOSAR Gateway Modules [14]

PDU Router is a mandatory module instantiated in every AUTOSAR ECU. It provides two
different routing schemes. The first routing scheme is based on routing tables and predefined
identifiers for configured PDUs. The second scheme provides routing of special PDUs to the
DCM module for diagnostic purposes.

The second module involved in the routing process of an AUTOSAR gateway is the Sig-
nal Based Gateway, which is part of the COM module. The Signal Based Gateway module is
responsible for routing signals and signal groups out of PDUs. To determine the destination
of signals and signal groups, the Signal Based Gateway uses unique static names along with a
configuration table.

24

2.4.2 AUTOSAR Transport Protocols

The main functionality of an AUTOSAR gateway is to route data between its connected net-
works. One type of data routing of the gateway is TP routing. TP routing is required once the
data does not fit into one frame of the source or the destination network of the routing process.
For TP routing, basic software modules, like CanTP, FrTp and LinTp, are required to realize
the routing process. These modules provide the basic features of TP routing, like segmentation,
reassembling, flow control and error detection.

In TP routing, the AUTOSAR gateway has also the capability to change the transport proto-
col of received frames into another transport protocol once the routing involves different types
of transport protocols for the source and destination networks, such as routing TP data from a
CAN network to a FlexRay network and vice versa.

In the next subsection, the common transport protocol software modules of an AUTOSAR
gateway are explained briefly. The availability of these modules depends on the type of networks
connected to the gateway. In other words, if the gateway connects a CAN network, a CAN
transport protocol module must be available in the software. If the gateway connects also a
FlexRay network, a FlexRay transport protocol module must be also available, and so on.

AUTOSAR CAN Transport Protocol

In an AUTOSAR gateway, the basic software module CAN Transport protocol (CAN TP) is
responsible for segmenting and reassembling data of the CAN networks that does not fit into the
defined CAN frames. The CAN TP module is located between PDU Router and CAN Interface
of the AUTOSAR BSW (see fig. 2.4). The functionality of the module is based on the interna-
tional standard ISO 15765 [15]. This basic software module is required once the AUTOSAR
gateway has a connected CAN network. According to AUTOSAR, the CAN TP module has the
ability to handle multiple CAN TP connections in parallel. The number of parallel connections
depends on the configuration of the module. Configuring more than one connection increases
the complexity of the module and has a major effect on resource consumption, as for example
processing time and memory usage.

AUTOSAR FlexRay Transport Protocol

As in the case of CAN TP, the basic software module FlexRay Transport Protocol (FlexRay
TP) is required to segment and reassemble data that does not fit in the defined FlexRay frame.
The FlexRay TP module is located between PDU Router and FlexRay Interface modules of the
AUTOSAR BSW (see fig. 2.4). The functionality of the module is based on the international
standard ISO 10681-2 [16]. Once the gateway has a connected FlexRay network, this module
must be available in the BSW of the AUTOSAR gateway. According to AUTOSAR, the FlexRay
TP module has the ability to handle multiple FlexRay TP connections in parallel. The number
of parallel connections depends on the configuration of the module. Configuring more than one
FlexRay connection increases the complexity of the module and has a major effect on resource
consumption, as for example processing time and memory usage.

25

AUTOSAR LIN Transport Protocol

The functionality of LIN Transport Protocol (LIN TP) is integrated in the AUTOSAR basic
software module LIN Interface (see fig. 2.4). Currently, LIN TP parallel routing is not supported
in the AUTOSAR LIN TP.

26

CHAPTER 3
Transport Protocol Routing of

AUTOSAR Gateway

3.1 Background

A simple example of a modern vehicle E/E system is depicted in fig. 3.1. As seen in the figure,
the system is distributed and hence the functionalities of the system are distributed.

Generally, a modern vehicle E/E system consists of multiple functional domains, such as
chassis, powertrain, infotainment, body and diagnostic. Each functional domain is realized as
an individual functional network, like the red part of the fig. 3.1 for the body functional domain.
A functional network consists of a number of ECUs communicating over a single bus system in
order to implement the functionalities of the related domain. Since each functional domain has
its own requirements, different communication buses are deployed. As an example, for time crit-
ical drive assistant systems, a functional network with FlexRay communication bus is deployed
(see the blue part of the fig. 3.1). In other words, a modern E/E system consists of different
networks, each communicating over a different bus and hence with a different communication
protocol.

For the case that an ECU of a functional network has to exchange data with an ECU located
on a different functional network, data routing has to be established. Data routing is the task of
a gateway, in which the gateway receives data from one network and sends it to one or multiple
networks with or without processing.

The complexity of modern vehicle E/E systems as well as the diversity of communication
busses have led to complex and innovative designs that involve multiple gateways such as the
central gateway, the telematic gateway and many other more. Nowadays, gateways are indis-
pensable in E/E systems. They enable ECUs within connected networks to interchange infor-
mation necessary to accomplish specified functionalities. During information interchange, the
gateway routes data between its connected networks although they work on different communi-
cation protocols.

27

Brake Control

Chassis Steering

Environmental

Sensors

Passive Safety

Airbag

Chassis Sensors

Engine Control

Hybrid Drive

Transmission

PT Sensors

Central Gateway

Auxiliary

Gateway

Navigation

Audio

Telephone

Instrument

Door Modules

Light Control

Climate

Seat ECU

OBD-Connector

FlexRay Network: 10MB, CAN Network: 250Kilobaud, CAN Network: 125 Kilobaud, MOST Network, CAN Network: 500 Kilobaud, OBD: Onboard Diagnostic

Figure 3.1: Automotive Distributed Network System

Mainly, two types of data routing can be established over the gateway. The first type is frame
routing and concerns with routing of data that fits into one frame of the source and destination
networks. Figure 3.2 shows an example of a simple frame routing between two CAN networks
(Network1 and Network2). The gateway in this example receives a cyclic CAN frame on the
source CAN network (Network1) and routes it without any changes (forward) to the destination
CAN network (Network2).

Gateway

CAN Frame

Cycle1

CAN Frame

Cycle1

......CAN Frame

Cycle1

CAN Frame

Cycle1

......

Network1 (CAN) Network2 (CAN)

Gateway

CAN Frame

Cycle1

CAN Frame

Cycle1

...... CAN Frame

Cycle1Cycle1

CAN Frame

Cycle1Cycle1

......CAN Frame

Cycle1Cycle1

CAN Frame

Cycle1Cycle1

......

Network1 (CAN) Network2 (CAN)

Figure 3.2: CAN to CAN Simple Frame Routing Example

Figure 3.3 represents another paradigm of frame routing, in which the gateway receives mul-
tiple cyclic CAN frames holding different information on the source CAN network (Network1)
and routes them together in one FlexRay frame to the destination FlexRay network (Network2).
The routing paradigm in this case is more complex than in the first example, as the gateway

Gateway

CAN Frame1

Cycle1

CAN Frame1

Cycle1

......

Network1 (CAN)

CAN Frame2

Cycle2

CAN Frame2

Cycle2

......

CAN Frame3

Cycle3

CAN Frame3

Cycle3

......

Network2 (FlexRay)

FlexRay Frame

Slotx
... ... FlexRay Frame

Slotx
...

Main Cycle Main Cycle

Gateway

CAN Frame1

Cycle1

CAN Frame1

Cycle1

...... CAN Frame1

Cycle1Cycle1

CAN Frame1

Cycle1Cycle1

......

Network1 (CAN)

CAN Frame2

Cycle2Cycle2

CAN Frame2

Cycle2Cycle2

......

CAN Frame3

Cycle3

CAN Frame3

Cycle3

...... CAN Frame3

Cycle3Cycle3

CAN Frame3

Cycle3Cycle3

......

Network2 (FlexRay)

FlexRay Frame

Slotx
... ... FlexRay Frame

Slotx
...

Main Cycle Main Cycle

Figure 3.3: CAN to FlexRay Frame Routing Example

28

has to deal with two different communication protocols (CAN and FlexRay) on the source and
destination networks. However, routing in this case remains frame routing, since the data fits in
one frame of the source and destination networks.

In more complex examples of frame routing, the gateway can process received frames, i.e.,
change their attributes or extract data from them and form new frames for routing. Even though,
routing remains frame routing.

The second type of data routing is Transport Protocol (TP) routing. It concerns with routing
of data packets that do not fit into one frame of the corresponding networks. Routing of large data
packets is required for intra-vehicular communication, such as the case of flashing new software
over the gateway onto ECUs of the E/E system. For such use case, an external device called
External Diagnostic Device is connected via an external interface “OBD-connector” (see fig. 3.1)
to the central gateway in order to access and communicate with the ECUs of the connected
networks. TP routing is also required for inter-vehicular communication, such as the case of
routing large data packets between ECUs of the E/E system.

In TP routing, the gateway utilizes transport protocols. The main purpose of transport proto-
cols is to segment and reassemble data longer than specified message length of the corresponding
network. The behavior of the gateway during TP data routing can be different depending on the
following aspects:

• Communication protocols of the source and destination networks, e.g., CAN communica-
tion protocol and FlexRay communication protocol.

• TP parameters of the source and destination communicating partners. Each ECU im-
plementing TP functionality has a number of TP parameters that specify how the ECU
behaves during TP communication.

• Type of routing, i.e., physical routing or functional routing (see section 3.2).

• Size of TP data to be routed.

In the next sections, TP routing of an AUTOSAR gateway is explained in details.

3.2 Terminology of TP Routing

In this section, the terms of TP routing of an AUTOSAR gateway are explained.

• Routing Channel: A link of the gateway at which a data routing can take place.

• TP Routing Channel: A link of the gateway at which a TP data routing can take place.

• External Diagnostic Device: A device which is not permanently connected to the vehicle
E/E system. The External Diagnostic Device can be connected to the vehicle for various
purposes, e.g. for development, manufacturing and services.

• OBD-Connector: A connector to the external environment of the vehicle, to which ex-
ternal devices like External Diagnostic Device can be connected to access the vehicle E/E
system.

29

• Functional Routing: Describes the case in which the gateway receives data on one of its
connected networks and routes it to multiple other networks. Functional routing can only
be unsegmented. This type of routing is also referred to as ’broadcast’, ’multicast’ or ’1
to n routing’.

• Physical Routing: Describes the case in which the gateway routes data from a source
ECU of one network to a destination ECU of another network. This kind of routing is also
referred to as ’1 to 1 routing’.

• Protocol Data Unit (PDU): A unit of data used for transmission among entities of a
vehicle E/E system .

• Unsegmented routing: A routing process of the gateway in which the length of data to
be routed fits in one frame of the source and destination networks. In this case, no data
processing is required by the gateway.

• Segmented routing: A routing process of the gateway in which the length of data to be
routed does not fit in one frame of the source or destination network. In this case, data
processing is required by the gateway.

• Acknowledged routing: A routing process of the gateway in which an acknowledgment
of frame reception is required from receiving communication partner.

• Unacknowledged routing: A routing process of the gateway in which no acknowledg-
ment of frame reception is required from receiving communication partner.

• Data Length Code (DLC): A parameter specifies the number of data bytes transmitted in
a CAN Frame.

• Base Identifier: 11 bits CAN identifier.

• Extended Identifier: 29 bits CAN identifier.

• Request Identifier: Each ECU implementing TP functionality has a unique Request Iden-
tifier used for TP communication.

• Response Identifier: Each ECU implementing TP functionality has a unique Response
Identifier used for TP communication.

• Network Address Extension (N_AE): A parameter used to extend the available address
range for large networks, and to encode both sending and receiving network layer entities
of subnets other than the local network where the communication takes place.

• Normal Addressing Format: An addressing format without Network Address Extension
(N_AE) (see [15] [16] for more details).

• Mixed Addressing Format: An addressing format with Network Address Extension
(N_AE) (see [15] [16] for more details).

30

• First Frame: A CAN TP specific term. It refers to the first frame that the source ECU
sends during segmented routing.

• Flow Control Frame: A special TP frame used to inform the sending ECU how to behave
during the routing.

• Consecutive Frame: A special TP frame used to hold the data required to be routed.

• Block Size (BS): A CAN TP specific parameter defining the number of consecutive frames
(called block) allowed to be send from the source ECU, before waiting for an authorization
from the receiver to continue the transmission.

• Minimum Separation Time (STmin): A CAN TP specific parameter defining the mini-
mum time the source ECU is to wait between two consecutive frames of a block.

• Base Cycle: A FlexRay TP specific parameter defining the offset in cycles for the first
occurrence of the respective PDU (see [16] for more details)

• Cycle Repetition: A FlexRay TP specific parameter denoting the frequency of a PDU.

• Slot Identifier (Slot_ID): An identifier of a specific time slot in the FlexRay schedule.

• Buffer Size (BfS): A FlexRay specific parameter similar to Block Size parameter of CAN.

• N_Bs Timer: A network layer timing parameter used to control TP communication.

• N_Cr Timer: A network layer timing parameter used to control TP communication.

3.3 Definitions

An AUTOSAR gateway is part of a vehicle E/E system (see fig. 3.1). It is a special ECU that can
be configured to serve multiple routing channels. Routing channels of the AUTOSAR gateway
are used to route data between ECUs of the system, and they are mostly heterogeneous in re-
spect of characteristics and behavior. Generally, a number of ECUs (u) can exchange data over
an AUTOSAR gateway in predefined fashions. Each fashion is characterized through a set of
configuration parameters. These are required by the gateway to establish routing between com-
municating ECUs connected to different networks. For TP routing of an AUTOSAR gateway,
the following definitions are considered:

• TP_Routing_Fashion describes a possible routing behavior of TP data and is charac-
terized through a particular set of gateway configuration parameters. An example of a
TP_Routing_FashionF with P parameters shall be described (3.1) (for possible configura-
tion parameters of CAN TP see [15] and for FlexRay TP see [16]).

TP_Routing_FashionF = {PF1 , PF2 , ..., PFP
} (3.1)

Some common TP_Routing_Fashions with their associated parameters are listed below:

31

– CAN to CAN TP routing with Normal Addressing

TP_Routing_Fashion1 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BlockSize,Destination_BlockSize,

Source_MinimumSeparationT ime,

Destination_MinimumSeparationT ime

} (3.2)

– CAN to CAN TP routing with Mixed Addressing

TP_Routing_Fashion2 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BlockSize,Destination_BlockSize,

Source_MinimumSeparationT ime,

Destination_MinimumSeparationT ime

Source_N_AE,Destination_N_AE,

} (3.3)

– CAN to FlexRay TP routing with Normal Addressing

TP_Routing_Fashion3 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BlockSize,Destination_BufferSize,

Source_MinimumSeparationT ime,

Request_Slot_ID,Response_Slot_ID,

Base_Cycle, Cycle_Repetition,

} (3.4)

32

– FlexRay to CAN TP routing with Normal Addressing

TP_Routing_Fashion4 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BufferSize,Destination_BlockSize,

Destination_MinimumSeparationT ime,

Request_Slot_ID,Response_Slot_ID,

Base_Cycle, Cycle_Repetition,

} (3.5)

– CAN to FlexRay TP routing with Mixed Addressing

TP_Routing_Fashion5 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BlockSize,Destination_BufferSize,

Source_MinimumSeparationT ime,

Request_Slot_ID,Response_Slot_ID,

Base_Cycle, Cycle_Repetition,

Source_N_AE,Destination_N_AE,

} (3.6)

– FlexRay to CAN TP routing with Mixed Addressing

TP_Routing_Fashion6 = {
Request_Identifier,Response_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

Source_BufferSize,Destination_BlockSize,

Destination_MinimumSeparationT ime,

Request_Slot_ID,Response_Slot_ID,

Base_Cycle, Cycle_Repetition,

Source_N_AE,Destination_N_AE,

} (3.7)

33

– CAN to CAN TP functional routing

TP_Routing_Fashion7 = {
Request_Identifier,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

} (3.8)

– CAN to FlexRay TP functional routing

TP_Routing_Fashion8 = {
Request_Identifier,Request_Slot_ID,

Source_Network,Destination_Network,

Source_DLC,Destination_DLC,

} (3.9)

• TP_Routing_Channel is an instance of a TP_Routing_Fashion. It has the same set of
gateway configuration parameters as in a TP_Routing_Fashion and is used by the AU-
TOSAR gateway to route TP data between particular ECUs. A TP_Routing_Channelx in
the TP_Routing_FashionF shall be described (3.10).

TP_Routing_Channelx = {PF1x, PF2x, ..., PFP x} (3.10)

Equations (3.11) and (3.12) are examples of TP_Routing_Channels in the TP_Routing_Fa-
shion1 “CAN to CAN TP Routing with Normal Addressing”.

TP_Routing_Channel1 = {0x450, 0x5d9, 1, 2, 8, 8, 32, 8, 0, 10} (3.11)

TP_Routing_Channel2 = {0x456, 0x5d5, 1, 2, 8, 8, 32, 8, 0, 10} (3.12)

Equation (3.13) is another example of a TP_Routing_Channel in the TP_Routing_Fashion2

“CAN to CAN TP Routing with Mixed Addressing”.

TP_Routing_Channel2 = {0x4e9, 0x499, 1, 2, 8, 8, 32, 32, 0, 0, 14, 14} (3.13)

• TP_Routing_Scenario an AUTOSAR gateway has a number of configured TP_Routin-
g_Channels to establish TP routing in different scenarios. Examples of TP scenarios are
flashing and Onboard Diagnostic (OBD). TP_Routing_Scenarios shall be described as a
group of s scenarios (3.14).

TP_Routing_Scenarios = {S1, S2, ..., Ss} (3.14)

Equation (3.15) is an example of possible TP_Routing_Scenarios of an AUTOSAR gate-
way.

TP_Routing_Scenarios = {Flashing, Uploading,OBD,Data_Scan} (3.15)

34

• TP_Routing_Instance is a relationship between a specific TP_Routing_Channel and a
possible TP_Routing_Scenario. An example of a TP_Routing_Instancex shall be de-
scribed (3.16).

TP_Routing_Instancex = {PF1x , PF2x , ..., PFPx
, Sx} (3.16)

Equation (3.17) is an example of a TP_Routing_Instance (a relationship between TP_Rou-
ting_Channel1 and the TP_Routing_Scenario Flashing).

TP_Routing_Instance1 = {0x450, 0x5d9, 1, 2, 8, 8, 32, 8, 0, 10, F lashing} (3.17)

3.4 TP Routing Paradigms of an AUTOSAR Gateway

TP routing paradigms are routing models supported by AUTOSAR gateways. Depending on
the communication buses of connected networks and the desired behavior, a subset of these
paradigms can be configured for a particular AUTOSAR gateway implementation.

In subsections 3.4.1 and 3.4.2, two examples of TP routing paradigms are explained in de-
tails. Subsequently, the most well-known and frequently configured TP routing paradigms for
AUTOSAR gateways are listed.

The examples explained below do not refer to any error handling mechanisms supported in
AUTOSAR TP routing. In addition, the examples are discussed from the gateway point of view.

3.4.1 Segmented CAN to CAN TP Routing with Normal Addressing

Figure 3.4 illustrates the segmented TP data routing of an AUTOSAR gateway between two
CAN networks. In this paradigm, a Source ECU located on a CAN network (Source Network)
requires to transmit TP data over the Gateway to a Destination ECU located on another CAN
network (Destination Network). Due to the same communication protocol of the Source and
Destination networks (CAN communication protocol), no protocol change inside the Gateway
is required.

During segmented TP data routing, the Gateway (in the middle of fig. 3.4) controls the trans-
mission on the Source and Destination Networks of the routing process. It acts as a receiver on
the Source Network and as a sender on the Destination Network. That is, the Gateway receives
data from the Source ECU on the Source Network (receiver) and routes it to the Destination
ECU on the Destination Network (sender).

Although the Source and Destination ECUs are located on CAN networks, they may have
different capabilities regarding processing and memory. Therefore, in order to adjust the capa-
bilities of the Source and Destination ECUs, the Gateway makes use of Flow Control Frames
and has to save blocks of CAN messages temporarily in its internal memory by means of defined
buffers. Flow Control Frames are used to indicate the current status of the receiver and to control
the data routing.

Table 3.1 shows the content structure of a CAN Flow Control Frame with Normal Ad-
dressing. Flow Status (FS), which is encoded in the low nibble of Byte 0, can have one of the
following values depending on the current status of the receiver:

35

First Frame

First Frame

Flow Control

N_Bs_Source

N_Cr_Source

STmin_Source
Block

Flow Control

N_Bs_Source

N_Bs_Target

N_Cr_Target

STmin_Target

Flow Control

N_Bs_Target

Flow Control

.

.

.

.

Block

GatewaySource Network (CAN)Source ECU Destination ECUDestination Network (CAN)

First Frame

First Frame

Flow Control

N_Bs_Source

N_Cr_Source

STmin_Source
Block

Flow Control

N_Bs_Source

N_Bs_Target

N_Cr_Target

STmin_Target

Flow Control

N_Bs_Target

Flow Control

.

.

.

.

Block

GatewaySource Network (CAN)Source ECU Destination ECUDestination Network (CAN)

Figure 3.4: CAN to CAN segmented Transport Protocol Data Routing

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
7 6 5 4 3 2 1 0

BS STmin N\A N\A N\A N\A N\A
0 0 1 1 FS

Table 3.1: CAN Flow Control Frame Content Structure with Normal Addressing

• 0: Continue To Send (CTS) indicates that receiving ECU, which can be in this case the
Gateway on the Source Network or the Destination ECU on the Destination Network, is
able to receive further block of data.

• 1: Wait (WT) indicates that sending ECU, which can be in this case the Source ECU on
the Source Network or the Gateway on the Destination Network, must wait for another
Flow Control Frame before proceeding the transmission.

• 2: Overflow (OVFLW) indicates that receiving ECU, which can be in this case the Gate-
way on the Source Network or the Destination ECU on the Destination Network, is not
able to complete the receiving, and the sender must abort the transmission.

• 3-F: Reserved

The parameter BS (Block Size), which is encoded in Byte 1 of the CAN Flow Control Frame,
defines the maximum number of frames to be sent successively from the sender before waiting

36

for another Flow Control Frame from the receiver. The parameter STmin (minimum Separa-
tion Time), which is encoded in Byte 2, defines a minimum time gap to be hold between two
consecutive frames from the sender.

Routing in this paradigm consists of multiple steps on both Source and Destination Net-
works. These steps are explained below.

On the Source Network

1. The Gateway receives a request frame from the Source ECU on the Source Network as a
First Frame. The First Frame must have the content as in table 3.2.

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
7 6 5 4 3 2 1 0

Data Data Data Data Data Data
0 0 0 1 FF_DL

Table 3.2: CAN First Frame Content Structure with Normal Addressing

The parameter FF_DL (First Frame Data Length) of the First Frame is used to determine
the length of data required to be routed in the current session of TP routing. FF_DL can
have a value up to FFF (4095) bytes for CAN TP communication.

After receiving the First Frame correctly, one of three states can be raised in the gateway:

a) The gateway is able to process the First Frame. In this case, following actions are
taken:

• Received First Frame is routed directly without any delay to the Destination
ECU on the Destination Network (internal processing time is not considered as
a delay).
• A Flow Control Frame with the value (0) for FS is sent to the Source ECU

before a timer N_Bs_Source expires.
• The Gateway starts a new timer N_Cr_Source on the Source Network to receive

a block of data from the Source ECU.
• The routing proceeds as in step 2.

b) The gateway is not able to process the First Frame because no available resources
can be reserved for the routing. In this case, a Flow Control Frame with the value
(2) for FS is sent to the Source ECU to indicate that routing has been aborted and
the Source ECU can send later another routing request. That is, the TP routing is
aborted and no further steps are necessary.

2. The gateway receives a block of CAN Consecutive Frames on the Source Network be-
fore the timer N_Cr_Source expires. The number of frames of the block and the time gap
between them must be as specified in the BS and STmin parameters of received Flow Con-
trol Frame on the Source Network. Consecutive Frames must have the content structure
as specified in table 3.3

37

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
7 6 5 4 3 2 1 0

Data Data Data Data Data Data Data
0 0 1 0 SN

Table 3.3: CAN Consecutive Frame Content Structure with Normal Addressing

The parameter SN (Sequence Number) in table 3.3 is used to indicate the order of corre-
sponding Consecutive Frame. The parameter SN can take a value between 0 and F and
must be incremented by 1 for each further Consecutive Frame. Once the value F has been
reached, a wraparound to 0 for the next Consecutive Frame must be occurred.

After a correct reception of a block of CAN Consecutive Frames, routing proceeds as in
step 3.

3. The gateway sends a Flow Control Frame to the Source ECU on the Source Network and
starts a new timer N_Bs_Source. The FS value of the Flow Control Frame depends on the
current status of the gateway and can be one of the following:

• 0: if the Gateway is able to receive further block. In this case, the routing process
proceeds as in step 4.

• 1: if the reserved buffer is full and the Source ECU must wait for a further Flow
Control Frame from the gateway. This is the case when blocks received from the
Source ECU have not been yet routed to the Destination ECU, as for example due to
slow processing or high bus load on the Destination Network. In this case, the step
3 is repeated for a defined maximum number of attempts. If the maximum allowed
number of attempts has been reached, the routing process is aborted and no further
steps will be necessary.

• 2: if the gateway has currently no free memory for further blocks and some timing
parameters cannot be hold any more. In this case, the routing process is aborted and
no further steps are necessary.

4. The gateway receives further block of CAN Consecutive Frames as specified in the last
sent Flow Control Frame before the timer N_Cr_Source expires.

5. The transmission proceeds as in steps 3-4 until the whole data has been routed.

On the Destination Network

If the Gateway was able to process the First Frame on the Source Network, following steps will
be taken in the Gateway:

1. The Gateway routes the First Frame directly to the Destination Network.

2. The Gateway starts a new timer N_Bs_Target on the Destination Network to control the
reception of a Flow Control Frame from the Destination ECU.

38

3. The Gateway receives a Flow Control Frame from the Destination ECU with the content
structure as specified in table 3.1 before the timer N_Bs_Target expires. The value of
parameter FS in the received Flow Control Frame depends on the current status of the
Destination ECU and can be one of the following:

• 0: if the Destination ECU is able to receive a block of Consecutive Frames. In this
case, the routing process proceeds as in step 4.

• 1: if the reserved buffer in the Destination ECU is full and the Gateway must wait
for a further Flow Control Frame. In this case, the process proceeds as in step 2.

• 2: if the Destination ECU has currently no free memory for further blocks and some
timing parameters cannot be hold any more. In this case, the routing process will be
aborted and no further steps are necessary.

4. The gateway routes a saved block of CAN Consecutive Frames to the Destination Network
before the timer N_Cr_Target expires. The number of block’s frames and the time gap
between them must be as specified in the BS and STmin parameters of the received Flow
Control Frame on the Destination Network. Consecutive Frames must have the content
structure as specified in table 3.3

5. The process proceeds as in steps 2-4 until the whole data has been routed.

Basically, the gateway can route CAN frames to the Destination ECU once they have been re-
ceived from the Source ECU. If any timer could not be hold during the routing, the routing
process will be aborted and an error will be saved in the software of the gateway. Timing param-
eters (N_Bs_Source, N_Cr_Source, N_Bs_Target, N_Cr_Target) and Control parameters (BS,
STmin) of the Source and Destination ECUs are mostly not the same because of the different
capabilities of the ECUs and the diversity of configured communication buses.

3.4.2 Segmented CAN to FlexRay TP Routing with Normal Addressing

The second TP routing paradigm explained in this thesis is the segmented CAN to FlexRay
TP Routing with Normal Addressing, which is depicted in fig. 3.5. In this paradigm, a Source
ECU located on a CAN network (Source Network) establishes TP data routing over the gateway
to a Destination ECU located on FlexRay network (Destination Network). Due to different
communication protocols of the Source and Destination Networks (CAN and FlexRay), the
gateway has to invoke a protocol change.

Two different types of Flow Control Frames on CAN and FlexRay networks are utilized
in this paradigm. The first type on the CAN network is the same as described previously in
table 3.1. However, the second type on the FlexRay network has the structure as in table 3.4.
In table 3.4, the parameter DA (Destination Address) in Byte 0 and Byte 1 is used to hold the
address of receiving FlexRay ECU. The address of sending FlexRay ECU SA (Source Address)
is encoded in Byte 2 and Byte 3 of the FlexRay Flow Control Frame. Flow Status (FS) in the
low nibble of Byte 4 is required to report the current status of receiving FlexRay ECU and can
have one of the following values:

39

Gateway

First Frame

Start Frame

Flow Control

N_Bs_Source

N_Cr_Source

STmin_Source
Block

Flow Control

N_Bs_Source

C_Bs_Target

C_Cr_Target

Flow Control

C_Bs_Target

Flow Control

Source Network (CAN)

Consecutive Control_EOB
.

. .

.

Last frame

Source ECU Destination ECUDestination Network (FlexRay)

B
u
ff
e
r

s
iz

e

Gateway

First Frame

Start Frame

Flow Control

N_Bs_Source

N_Cr_Source

STmin_Source
Block

Flow Control

N_Bs_Source

C_Bs_Target

C_Cr_Target

Flow Control

C_Bs_Target

Flow Control

Source Network (CAN)

Consecutive Control_EOB
.

. .

.

Last frame

Source ECU Destination ECUDestination Network (FlexRay)

B
u
ff
e
r

s
iz

e

Figure 3.5: CAN to FlexRay segmented Transport Protocol Data Routing

byte 0 byte 1 byte 2 byte 3 Byte 4 Byte 5 Byte 6 + Byte 7 Byte 8 to Byte 41
15 ∼ 0 15 ∼ 0 7 ∼ 4 3 ∼ 0

BC BfS N/A
DA SA 8 FS

Table 3.4: FlexRay Flow Control Frame Content Structure for Normal Addressing

• 3: Continue To Send (CTS) indicates that receiving FlexRay ECU, which is the Desti-
nation ECU on the Destination Network in fig 3.5, is able to receive further data with a
maximum as specified in the BfS and BC parameters.

• 5: Wait (WT) indicates that sending ECU, which is the Gateway in this case, must wait
for a further Flow Control Frame to proceed the routing.

• 6: Abort (ABT) indicates that sending ECU, which is the Gateway in this case, must
abort the routing process.

• 7: Overflow (OVFLW) indicates that receiving FlexRay ECU, which is the Destination
ECU on the Destination Network, has not enough memory to save the number of bytes
specified and the Gateway must abort the routing process.

• 8-F: Reserved

40

The parameter BC (Bandwidth Control) of a FlexRay Flow Control Frame is used to determine
the receiving performance of the receiving FlexRay ECU to the sender, and the parameter BfS
(Buffer Size) indicates the maximum number of data bytes allowed to be sent before waiting for
a further Flow Control Frame to resume the routing.

Routing in this paradigm consists of multiple steps on both Source and Destination Networks
as follows:

On the CAN Source Network

The steps on this side of TP routing process is the same as described in the previous TP routing
paradigm on the Source Network.

On the FlexRay Destination Network

Once the Gateway was able to process the First Frame on the CAN Source Network, it imple-
ments the following steps on the FlexRay Destination Network:

1. The Gateway generates a FlexRay Start Frame with the content structure as described in
table 3.5 and sends it directly without any delay to the FlexRay Destination Network. Byte
0 and Byte 1 of the FlexRay Start Frame hold the Destination Address (DA) of routing,
whereas byte 2 and byte 3 are used to hold the Source Address (SA). The low nibble
of Byte 4 will be 0 if the routing is acknowledged and 1 if it is unacknowledged. The
parameter FPL (Frame Payload) defines the number of data bytes in the FlexRay frame,
and the parameter ML (Message Length) defines the length in bytes of the whole data
required to be routed in the current session. The data included in the FlexRay Start Frame
is the same as in the received CAN First Frame on the Source Network.

byte 0 byte 1 byte 2 byte 3 Byte 4 Byte 5 Byte 6 + Byte 7 From Byte 8
15 ∼ 0 15 ∼ 0 7 ∼ 4 3 ∼ 0

FPL ML Data
DA SA 4 0/1

Table 3.5: FlexRay Start Frame Content Structure with Normal Addressing

2. The Gateway starts a new timer C_Bs_Target on the FlexRay Destination Network to
receive a FlexRay Flow Control Frame from the Destination ECU.

3. The Gateway receives a FlexRay Flow Control Frame from the Destination ECU with the
content structure as specified in table 3.4 before the timer C_Bs_Target expires. The value
of parameter FS of received FlexRay Flow Control Frame depends on the current status
of the Destination ECU and can be one of the following:

• 3: if the Destination ECU is able to receive a maximum number of bytes as specified
in BfS parameter. In this case, the routing process proceeds as in step 4.

41

• 5: if the reserved buffer of the Destination ECU is full and the Gateway must wait
for a further FlexRay Flow Control Frame. In this case, the routing proceeds as in
step 2.

• 6: if the Destination ECU cannot continue the reception of data. In this case, the
routing process will be aborted and no further steps will be necessary.

• 7: if the Destination ECU has currently no free memory for further data. In this case,
the routing process will be aborted and no further steps will be necessary.

4. Depending on the value of parameter BfS of received FlexRay Flow Control Frame from
the Destination ECU, the Gateway routes data received from the Source Network to the
Destination Network before the timer C_Cr_Target expires. The performance of routing is
calculated based on the value of parameter BC of received FlexRay Flow Control Frame.
Routing in this case proceeds as in one of following cases:

• If the value of parameter BfS is equal to 0, the Gateway routes the data using the
content structure of Consecutive Frames as specified in table 3.6 without waiting
for any further authorization from the Destination ECU and until the whole data has
been routed. However, the last frame in this case has the content structure as defined
in table 3.7.
In table 3.6, the parameter CFT (Consecutive Frame Type) is 5 if the Consecutive
Frame is from type 1 and 6 if it is from type 2. The SN (Sequence Number) param-
eter of Consecutive Frames holds the order number and has a value between 0 and
F. Once the value F has been reached, the next value for the next Consecutive Frame
will be 0. The first Consecutive Frame after Start frame has the value of 1 that will
be incremented by 1 for each further Consecutive Frame.

• If the value of parameter BfS is not equal to 0, the Gateway routes a block of bytes
as specified in BfS parameter using the content structure of Consecutive Frames as
specified in table 3.6. In this case, the last consecutive frame of the block must have
the value 7 for CFT parameter. After that, the Gateway proceeds routing as in step
2. Here, the last frame of data must have the content structure as specified in table
3.7.

Basically, the gateway can route CAN frames once they are received from the Source ECU. If
any timer could not be hold during the routing, the routing process will be aborted and an error
will be saved in the software of the gateway. Timing parameters (N_Bs_Source, N_Cr_Source,
N_Bs_Target, N_Cr_Target) of the Source and Destination ECUs are mostly not the same.

byte 0 byte 1 byte 2 byte 3 Byte 4 Byte 5 from Byte 6
15 ∼ 0 15 ∼ 0 7 ∼ 4 3 ∼ 0

FPL Data
DA SA CFT SN

Table 3.6: FlexRay Consecutive Frame Content Structure with Normal Addressing

42

byte 0 byte 1 byte 2 byte 3 Byte 4 Byte 5 Byte 6 + Byte 7 from Byte 8
15 ∼ 0 15 ∼ 0 7 ∼ 4 3 ∼ 0

FPL ML Data
DA SA 9 0

Table 3.7: FlexRay Last Frame Content Structure with Normal Addressing

3.4.3 Other TP Routing Paradigms

Based on the complexity and the heterogeneity of configured networks of the AUTOSAR gate-
way and the TP configuration parameters of connected ECUs, diverse TP routing paradigms
can be supported. The most known and common configured TP routing paradigms of an AU-
TOSAR gateway for CAN and FlexRay networks are listed below. The general concept of TP
data routing shall be the same as described in the last two paradigm.

• unsegmented physical TP data routing from CAN network to CAN network with normal
addressing (11 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to CAN network with normal
addressing (11 bit CAN identifier)

• segmented physical TP data routing from CAN network to CAN network with normal
addressing (11 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to CAN network with normal
fixed addressing (29 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to CAN network with normal
fixed addressing (29 bit CAN identifier)

• segmented physical TP data routing from CAN network to CAN network with normal
fixed addressing (29 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to CAN network with extended
addressing (29 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to CAN network with ex-
tended addressing (29 bit CAN identifier)

• segmented physical TP data routing from CAN network to CAN network with extended
addressing (29 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to CAN network with mixed
addressing (11 bit CAN identifier)

• segmented physical TP data routing from CAN network to CAN network with mixed
addressing (11 bit CAN identifier)

43

• unsegmented physical TP data routing from CAN network to CAN network with mixed
addressing (29 bit CAN identifier)

• segmented physical TP data routing from CAN network to CAN network with mixed
addressing (29 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to FlexRay network with nor-
mal addressing (acknowledged/unacknowledged, known/unknown message length with
11 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to FlexRay network with nor-
mal addressing (only unacknowledged, known message length with 11 bit CAN identifier)

• segmented physical TP data routing from CAN network to FlexRay network with normal
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

• unsegmented physical TP data routing from CAN network to FlexRay network with nor-
mal fixed addressing (acknowledged/unacknowledged, known/unknown message length
with 29 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to FlexRay network with
normal fixed addressing (only unacknowledged, known message length with 29 bit CAN
identifier)

• segmented physical TP data routing from CAN network to FlexRay network with normal
fixed addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to FlexRay network with ex-
tended addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented functional TP data routing from CAN network to FlexRay network with ex-
tended addressing (only unacknowledged, known message length with 29 bit CAN iden-
tifier)

• segmented physical TP data routing from CAN network to FlexRay network with ex-
tended addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented physical TP data routing from CAN network to FlexRay network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

• segmented physical TP data routing from CAN network to FlexRay network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

44

• unsegmented physical TP data routing from CAN network to FlexRay network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 29 bit
CAN identifier)

• segmented physical TP data routing from CAN network to FlexRay network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 29 bit
CAN identifier)

• unsegmented physical TP data routing from FlexRay network to CAN network with nor-
mal addressing (acknowledged/unacknowledged, known/unknown message length with
11 bit CAN identifier)

• unsegmented functional TP data routing from FlexRay network to CAN network with nor-
mal addressing (only unacknowledged, known message length with 11 bit CAN identifier)

• segmented physical TP data routing from FlexRay network to CAN network with normal
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

• unsegmented physical TP data routing from FlexRay network to CAN network with nor-
mal fixed addressing (acknowledged/unacknowledged, known/unknown message length
with 29 bit CAN identifier)

• unsegmented functional TP data routing from FlexRay network to CAN network with
normal fixed addressing (only unacknowledged, known message length with 29 bit CAN
identifier)

• segmented physical TP data routing from FlexRay network to CAN network with normal
fixed addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented physical TP data routing from FlexRay network to CAN network with ex-
tended addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented functional TP data routing from FlexRay network to CAN network with ex-
tended addressing (only unacknowledged, known message length with 29 bit CAN iden-
tifier)

• segmented physical TP data routing from FlexRay network to CAN network with ex-
tended addressing (acknowledged/unacknowledged, known/unknown message length with
29 bit CAN identifier)

• unsegmented physical TP data routing from FlexRay network to CAN network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

45

• segmented physical TP data routing from FlexRay network to CAN network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 11 bit
CAN identifier)

• unsegmented physical TP data routing from FlexRay network to CAN network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 29 bit
CAN identifier)

• segmented physical TP data routing from FlexRay network to CAN network with mixed
addressing (acknowledged/unacknowledged, known/unknown message length with 29 bit
CAN identifier)

For further communication busses like LIN, MOST and Ethernet, there are other TP routing
paradigms that are not discussed in this thesis. However, the concept proposed for test case
selection and generation remains the same.

3.5 TP Parallel Routing of an AUTOSAR Gateway

TP parallel routing is a feature of the AUTOSAR standard that allows gateways to handle more
than one TP_Routing_Channel in parallel (simultaneously). That is, an AUTOSAR gateway
can be configured to serve multiple TP_Routing_Instances in parallel in order to obtain a better
utilization of the resources and reduce the processing time.

In AUTOSAR, the maximum number of TP_Routing_Channels handled in parallel is config-
ured statically. The configuration is achieved by adjusting some parameters of the AUTOSAR
basic software modules of the gateway. These configuration parameter are for example, TP
buffers in the PDU Router module, receive and transmit channels in the CAN TP module, re-
ceive and transmit channels in the FlexRay TP module.

Basically, AUTOSAR does not specify a limit for the maximum number of supported par-
allel TP_Routing_Channels, since the performance and capabilities of the deployed hardware
and software of a gateway can vary and are in continuous improvement, as for example the
performance of deployed processor, the size of used memory and the intelligence of deployed
software. Generally, the maximum number is a configuration parameter that should be adjusted
based on the capability of the gateway.

In order to explain the aspects of TP parallel routing of an AUTOSAR gateway, consider
the simple example of E/E system depicted in fig. 3.6. This system consists of a Gateway that
connects four individual networks together (Network1, Network2, Network3 and Network4).
ECUs of the system are distributed as follows:

• ECU1 and ECU2 are located on Network2.

• ECU3 is located on Network3.

• ECU4 and ECU5 are located on Network4.

• An External Diagnostic Device is connected to Network1. This kind of devices is consid-
ered as an ECU that is temporarily available to access ECUs of the system.

46

In order to enable TP data routing between the External Diagnostic Device and ECUs of the
system, the gateway has the following configured TP_Routing_Channels:

• TP_Routing_Channel1 to route TP data from the External Diagnostic Device to ECU1

• TP_Routing_Channel2 to route TP data from the External Diagnostic Device to ECU2

• TP_Routing_Channel3 to route TP data from the External Diagnostic Device to ECU3

• TP_Routing_Channel4 to route TP data from the External Diagnostic Device to ECU4

• TP_Routing_Channel5 to route TP data from the External Diagnostic Device to ECU5

Gateway

Network2 Network4

ECU5ECU1

External Diagnostic Device

ECU3

Network1

Network3

TP_Routing_Channel2

TP_Routing_Channel5

TP_Routing_Channel3

ECU4ECU2

TP_Routing_Channel1

TP_Routing_Channel4

Gateway

Network2 Network4

ECU5ECU1

External Diagnostic Device

ECU3

Network1

Network3

TP_Routing_Channel2

TP_Routing_Channel5

TP_Routing_Channel3

ECU4ECU2

TP_Routing_Channel1

TP_Routing_Channel4

Figure 3.6: TP Parallel Routing Example of an AUTOSAR Gateway

Individual TP_Routing_Channels can be assigned to any of TP Routing Paradigms explained
in section 3.4. Furthermore, employed parameters for TP data routing, such as BS, STmin and
N_Bs for CAN TP routing, or BfS and Cycle Repetition for FlexRay TP routing, are ECU
specific and have in general a heterogeneous nature. As mentioned before, the reason behind
this heterogeneity is the different performance levels of corresponding ECUs and configured
networks. In other words, the AUTOSAR gateway behaves differently during TP data routing if
parameters or even connecting networks of communicating partners are different.

Let us assume in the example of fig. 3.6 that Network1, Network2 and Network4 are CAN
networks with a speed of 500 Kilobaud, and Network3 is a FlexRay network with one chan-
nel and a speed of 10 Mbit/s. Additionally, assume that each individual TP_Routing_Channel

47

has configuration parameters different than the others. In this case, the behavior of the gate-
way would be different when TP data routing is established for example between the External
Diagnostic Device and ECU1 than between the External Diagnostic Device and ECU3 because:

1. Network2 as a destination network is involved in the first TP routing process, while
Network3 as a destination network is involved in the second TP routing. It is obvious
that the combination (500 Kilobaud CAN, 500 Kilobaud CAN) of involved networks in
the first TP routing process triggers another behavior of the gateway than the combination
(500 Kilobaud CAN, 10MB FlexRay) in the second TP routing process.

2. Parameters of TP_Routing_Channel1 utilized in the first TP routing are different than
parameters of TP_Routing_Channel3 utilized in the second TP routing. As mentioned
previously, a TP_Routing_Channel comprises parameters required for TP routing. If the
count, the type or the values of these parameters vary between two TP_Routing_Channels,
the behavior of the gateway will be different once they are used to establish TP routing.
In other words, parameters of TP_Routing_Channel1 causes a different behavior in the
gateway than parameters of TP_Routing_Channel2.

Another example of TP routing can be between the External Diagnostic Device and ECU1,
and between the External Diagnostic Device and ECU2. Although the same source and destina-
tion networks are involved in this case, the behavior of the gateway will be different due to the
different configuration parameters of TP_Routing_Channel1 and TP_Routing_Channel2

A modern External Diagnostic Device has the capability to establish parallel transmission
of TP data and hence trigger TP parallel routing of the AUTOSAR gateway. In this use case,
the gateway builds up individual TP_Routing_Instances simultaneously. Back to the example of
fig. 3.6, let us assume that the gateway is configured to support four different TP_Routing_Instan-
ces in parallel. In this configuration possibility, the gateway would be able theoretically to es-
tablish TP parallel routing with one of the following combinations of TP_Routing_Channels:

• TP_Routing_Channel1, TP_Routing_Channel2, TP_Routing_Channel3 and TP_Routing_Channel4

• TP_Routing_Channel1, TP_Routing_Channel2, TP_Routing_Channel3 and TP_Routing_Channel5

• TP_Routing_Channel1, TP_Routing_Channel3, TP_Routing_Channel4 and TP_Routing_Channel5

• TP_Routing_Channel2, TP_Routing_Channel3, TP_Routing_Channel4 and TP_Routing_Channel5

• TP_Routing_Channel1, TP_Routing_Channel2, TP_Routing_Channel4 and TP_Routing_Channel5

Each variant of these combinations has a different impact on the behavior of the gateway
once they are used to practice TP parallel routing. For example, involving three CAN net-
works with 500 Kilobaud and one FlexRay network with 10MB as in the first combination
leads to another behavior than involving three CAN networks with 500 Kilobaud as in the last
combination. Furthermore, parameters of TP_Routing_Channel1, TP_Routing_Channel2 and
TP_Routing_Channel3 in combination with parameters of TP_Routing_Channel4 in the first
combination trigger another behavior than in combination with parameters of TP_Routing_Cha-
nnel5 in the second combination, and so on.

48

As AUTOSAR offers a particular grade of flexibility through various implementation and
configuration variants, the complexity regarding configuration has been increased. Nowadays,
it is challenging to find out the optimal configuration for an AUTOSAR based system, since the
number of configuration parameters is very high and the interactions between these parameters
require deeply understanding in diverse areas of software engineering. For instance, it is impor-
tant to adjust the configuration parameters of an AUTOSAR gateway in order to enable a correct
handling of TP parallel routing. On the one hand, the configuration has an important impact on
the resource consumption of the gateway and, on the other hand, the configuration parameters
of TP_Routing_Channels as well as their interactions affect the behavior to a large extent.

3.6 The Combinatorial Explosion Problem

In this section, the combinatorial explosion problem related to testing of TP parallel routing
of an AUTOSAR gateway is discussed. The aim of testing is to verify the TP parallel rout-
ing functionality and measure its performance. Moreover, the gained information shall help in
optimizing the configuration parameters of the gateway system.

The explosion problem is a well-known issue in software testing. Depending on the test
object and the test methodology, the problem is referred to in different ways in literature. For
example, the term ”state explosion“ or ”path explosion“ [17] is used to describe the explosion
problem in model based testing where methods like symbolic model checking [18], partial order
reduction model checking [19] [20] and symmetry reduction [21] are used to alleviate the prob-
lem. In the case of black box testing or functional testing [22], the problem is referred to as the
combinatorial explosion which can be solved by means of combination test strategies [23].

In order to illustrate the combinatorial explosion problem of testing TP parallel routing of an
AUTOSAR gateway, consider the E/E system example in fig. 3.7. The gateway in this example
acts as a central point of communication between connected ECUs. To realize TP data routing,
the gateway has n configured TP_Routing_Channels as follows:

• TP_Routing_Channel1 between ECU1 and ECU2

• TP_Routing_Channel2 between ECU1 and ECU3
.
.
.

• TP_Routing_Channeln between ECUl and ECUk

Configured TP_Routing_Channels of the gateway define which ECUs are allowed to estab-
lish TP routing and determine, by means of configuration parameters, the behavior during the
TP routing process.

Since AUTOSAR features parallelism for transport protocols [24] [25], the standard allows
handling of multiple TP communication instances in parallel. That is, an AUTOSAR gate-
way can be configured to support a limited number of parallel TP_Routing_Channels among
ECUs. For each supported parallel channel, the gateway shall reserve individual resources

49

Resources1 for a TP_Routing_Channel (State Machine, Buffer, timers …)

List of possible TP_Routing_Channels with Parameters

{

-TP_Routing_Channel1 between ECU1 and ECU2

-TP_Routing_Channel2 between ECU1 and ECU3
.

-TP_Routing_Channeln between ECUl and ECUk
}

List of possible TP_Channels of ECU1
{

-TP_channel11
-TP_channel12
.

-TP_channel1n
}

ECU1

Gateway

.

.

1

List of possible TP_Channels of ECU2
{

-TP_channel21
-TP_channel22
.

-TP_channel2n
}

ECU2

2

.

List of possible TP_Channels of ECU3
{

-TP_channel31
-TP_channel32
.

-TP_channel3n
}

ECU3

3

List of possible TP_Channels of ECU4
{

-TP_channel41
-TP_channel42
.

-TP_channel4n
}

ECU4

4

Bus
1

Bus
2

Bus
3

Resources2 for a TP_Routing_Channel (State Machine, Buffer, timers …)

Resourcesy for a TP_Routing_Channel (State Machine, Buffer, timers …)

Figure 3.7: E/E System from the TP functionality Point of View

such as buffers, timers, variables and finite state machines. In order to support y parallel
TP_Routing_Channels, the gateway has to reserve y individual instances of required resources
as follows (see fig. 3.7):

• Resources1 for the first TP_Routing_Channel of TP parallel routing

• Resources2 for the second TP_Routing_Channel of TP parallel routing
.
.
.

• Resourcesy for the yth TP_Routing_Channel of TP parallel routing

Reserved resources for parallel TP_Routing_Channels are generic and can be utilized to
establish any of the configured TP_Routing_Channels among ECUs.

Generally, ECUs that have the capability to trigger TP routing over the gateway shall possess
a specific number of configured TP_Channels, which are referred to as a list of TP_Channels
under each ECU in the fig. 3.7. The number of configured TP_Channels can vary from one (as
in most ECUs) up to hundreds (as in the External Diagnostic Device).

Once an authorized ECU (ECU that has a configured TP_Channel) triggers TP routing, the
gateway applies related parameters of corresponding TP_Routing_Channel to one instance of
the reserved generic resources. If a powerful ECU, like the External Diagnostic Device, or more

50

than one ECU trigger TP routing simultaneously, the gateway establishes TP parallel routing. In
this case, the gateway applies related parameters of corresponding TP_Routing_Channels to the
required generic resources.

However separate resources of the gateway, such as buffers and timers, are reserved for the
channels of TP parallel routing, the main resources like the processor and communication busses
are shared. For an optimum and correct utilization of the shared resources, suitable values for
configuration parameters of TP_Routing_Channels of the gateway shall be chosen. Generally,
the selection is a trade-off process that requires knowledge about the whole system. In this
context, testing shall support the designer to verify a selected configuration or even to choose a
suitable configuration variant for the whole system.

During the test of TP parallel routing of an AUTOSAR gateway, the combinatorial explo-
sion problem arises. To explain the problem in this case, let us consider again the E/E system
in fig. 3.7. The gateway is configured to serve ”n“ TP_Routing_Channels between connected
ECUs. It is also configured to support ”y“ TP_Routing_Channels in parallel by means of re-
served resources. System designers have to select suitable values for configuration parameters
in order to implement the specification and meet performance requirement. Testing has the task
to verify selected configuration parameters and to measure the performance. It has also the task
of providing statistical information that can help to understand performance issues and optimize
values of configuration parameters.

To verify the gateway’s capability to serve “y” parallel TP_Routing_Channels correctly and
determine the next value for “y” in case of errors, all possible combinations from 1 to y of
TP_Routing_Channels should be included at least once in test cases. This results in a number of
combinations to be tested which can be calculated using the equation (3.18).

X =
n!

y!(n− y)!
+

n!

(y − 1)!(n− (y − 1))!
+ ...+

n!

1!(n− 1)!
(3.18)

The equation(3.18) calculates the sum of all possible combinations for a number of (n)
TP_Routing_Channels, where the selected number of TP_Routing_Channels in each term varies
from y to 1.

The combinatorial explosion problem of functional testing of configurable concurrent sys-
tems like TP parallel routing of an AUTOSAR gateway, is different than described combinato-
rial explosion problem in literature. The combinatorial explosion problem mentioned in litera-
ture [26–28] shall be explained as in the following example:

Assume a distributed system that consists of a central unit interacting over communication
channels with u units of the network: U1, U2, ..., Uu. Each unit Ui uses a defined parameter
pi for communication. The parameter pi shall have vi possible configuration values. By as-
suming that configuration values of parameters are independent from each other, the number
of possibilities in which the system can be configured would be v1*v2*...*vu. If each possible
configuration requires c test cases to verify it, the number of test cases for exhaustive test would
be c*v1*v2*...*vu. In a nontrivial software system, the values of u and vi are large which leads
to a huge number of possible combinations of parameter values.

Related to TP parallel routing, two main goals are defined for testing:

51

1. Measuring the performance of the gateway to handle parallel TP_Routing_Connections in
a configured system.

2. Testing that the gateway is able to execute all supported paradigms of TP routing correctly.

In this case, the combinatorial explosion problem is more complex because:

• System input parameters are TP_Routing_Channels where each consists of a set of con-
figuration parameters.

• The number of system input parameters is not fixed. It can be different for every new
release of the system.

• System input parameters include also timing parameters where the interactions are diffi-
cult to resolve.

• The number of parallel TP_Routing_Channels “y”, which is also a configuration param-
eter, is used to build possible combinations to be tested. Combinations are any y elements
of the system input parameter set. In case of errors, one of the goals is to determine the
next “y” and verify it (performance measurement).

• In TP parallel routing, each additional instance will consume resources of the system and
may lead to errors. Hence, it is not only a specific combination of TP_Routing_Channels
which can affect the behavior and may reveal errors, but also the number of included
TP_Routing_Channels and their values.

52

CHAPTER 4
Software Testing

4.1 Introduction

Software testing is one of the main techniques of software Validation and Verification (V&V).
It is defined as an activity, in which the software is analyzed to detect the discrepancies between
existing and required conditions and to evaluate the features of the software item [29, 30].

Software Validation and Verification are software quality assurance activities used to ensure
that a software system meets its requirements. According to IEEE [30], Verification is “the
process of evaluating a system or component to determine whether the products of a given de-
velopment phase satisfy the conditions imposed at the start of that phase”. Verification activities
may include technical reviews, walkthroughs, software inspections, traceability check, testing
and audit. On the other hand, Validation is defined as “the process of evaluating a system or
component during or at the end of the development process to determine whether it satisfies
specified requirements” [30].

Before discussing software test techniques in details, some related definitions are stated [30].

• Mistake: a human action that produces an incorrect result.

• Fault: incorrect step, process, or data definition in a program.

• Failure: the inability of a system or component to perform its required function within
the specified performance requirement.

• Error: the difference between a computed, observed, or measured value or condition and
the true, specified, or theoretically correct value or condition.

• Specification: a document that specifies in a complete, precise, verifiable manner, the
requirements, design, behavior, or other characteristic of a system or component, and
often the procedures for determining whether these provisions have been satisfied.

53

• Informal specification: statement about the properties of a product made using the gram-
mar, syntax, and common definitions of a natural language.

• Semi-formal specification: uses combination of natural language with a notation with
defined semantics to describe system specifications.

• Formal specification: uses mathematical notations such as logic and set theory to de-
scribe system specifications.

In general, there are diverse possibilities to classify software testing techniques. Most known
classification paradigms are described in the next sections.

4.2 Testing Based on Actual Execution

According to this classification paradigm, testing is categorized in two major classes:

1. Static Testing: static testing [31] describes techniques for error detection which are used
during the software development life cycle prior to application execution. Most static
testing techniques, e.g., walkthroughs, reviews, inspections and data flow analysis, can
be utilized to check any form of documents including source code, design documents,
models, functional specification or requirement specification. These test techniques can
only detect particular types of errors.

2. Dynamic Testing: dynamic testing [31] defines methods for testing through actual execu-
tion, i.e., with real data and under real or simulated circumstances. In order to implement
dynamic methods, a working system, or a prototype of it, should be available. Therefore,
dynamic testing cannot be used in the initial development phases. This type of testing
requires some initial efforts to implement, but then, it can be re-used for various versions
of the system or also various types of software.

4.3 Testing Based on Methodology

Two categories are available in this classification paradigm:

1. Functional Testing (Black Box): functional testing [32] (also referred to as “black box”
testing) concentrates on the expected functional behavior of the system as specified in
the functional requirements. In functional testing, the test object is being regarded as a
black box and test cases are derived directly from the functional specifications without
necessarily having to understand underlying details of the software design.

2. Structural Testing (White Box): structural testing [32] (also referred to as white-box
testing) deals with the structure of the test object, i.e., it focuses on the form rather than
the semantic of the functionality of the test object. Structural test techniques help in
designing test cases based on the internal structure and design of the test object. Typical
examples of this kind of testing are statement, branch, and path coverage on the basis of

54

control flow graphs. Another example is the data flow coverage on the basis of control
flow charts.

4.4 Testing Based on Granularity Level

Three different granularity levels are available in this classification paradigm:

1. Unit Testing: unit testing refers to testing of separate system’s units and it requires the low
level design or code structure as a specification. Units can be a collection of procedures
or functions performing a specific task of the test object. In unit testing, white box testing
techniques are used to verify that the code does what it is intended to do at a very low
structural level.

2. Integration Testing: integration testing is utilized to ensure the correctness of integrated
system. It evaluates the interactions between software components. For integration test-
ing, both black and white box testing techniques are used for the verification that is based
on low and high level design specifications. Integration testing is often the most expen-
sive and time consuming testing. Techniques for integration testing can include top-down
integration, bottom-up integration or regression testing [33].

3. System Testing: based on high level design and requirement specifications, black box
testing techniques are used to achieve system testing. In system testing, the complete
system is exercised to ensure that all functions combine for the desired result. The main
problem related to system testing is to figure out the cause of errors once they are uncov-
ered.

4.5 Specification Based Testing

In this classification paradigm, testing techniques are categorized based on the type of specifi-
cation used to describe the system. Specification based testing is mostly a black box testing that
consists in deriving test data and constructing test cases from requirement specifications or test
specifications of the test object. Specification based testing is independent from the implemen-
tation details of the system and can be launched before the system development begins. This is a
very useful practice, since it opens the opportunity to develop tools and algorithms for automatic
generation and execution of test cases regardless of implementation information.

Specifications used for testing can be generally classified in three different categories: infor-
mal specification, semi-formal specification and formal specification. Some common and often
used instances of these categories are discussed below.

• Written Document: the requirements in this case are specified in a natural human lan-
guage and fall in the category of informal specifications. Written documents are the oldest
approach to express features and functionalities of the software system. However, they
suffer from the following disadvantages:

55

– Lack of clarity and specificality.

– Ambiguity and incompletely.

– Trying to include clarity in a written document could lead in complex systems to a
document that is difficult to read.

– Functional and non-functional requirements are often mixed in written document,
which results in so called requirements confusion where only one sentence can in-
clude more than one functionality and leads to requirements amalgamation.

To avoid these disadvantages and address the quality of written specification documents,
IEEE published in 1998 a Recommended Practice for Software Requirement Specifica-
tions [34].

Once a software system specified in written documents has to be tested, the test engineer
adopts written specifications concerned with the implementation to write a test specifi-
cation document in a human language. Generally, a written test specification document
describes how specified functions and interfaces must be tested in order to ensure their
correct implementation.

In written document based testing, the quality of the test methodology depends strongly on
the quality of written test specification document and hence on the experiences of the test
engineer and his understanding of the functions to be implemented. Due to the manual
definition of test specifications in this category, the complete possibilities of input and
output variants are in most scenarios difficult to be determined. That is, the test engineer
has to spend a lot of time to design and write input patterns in order to make it possible
to generate test patterns automatically. Consequently, the effectiveness and efficiency of
test patterns depend to a wide extend on the test engineer. In addition, the covering degree
of the test is limited because of the very low automation level supported with written test
specification documents.

In spite of all mentioned disadvantages, written documents are widely used because of
their low cost and the possibility to apply them in most phases of the development pro-
cess. Written test specification documents are typically very abstract and describe either
the environment of the system or the interfaces; therefore they are generally suitable for
Black-Box and Integration test and not for White-Box or Unit test. Furthermore, testing
strategies developed from written documents are mostly simple strategies, which cover
only simple scenarios, because of the high costs related to manual construction of test
cases.

• DTD and XML: Document Type Definition (DTD) and Extensible Markup Language
(XML) [35] are standards defined at the World Wide Web Consortium (W3C) [36] . The
aim of the standards is to determine general rules and constraints for structuring flexi-
ble, human and machine readable files. In consequence, the standards define organizing
elements to encode information in a regular way into a documents.

Necessitate of such standards arises when software applications developed by different
companies with diverse purposes require to communicate with other entities (such as other

56

software applications or developers). In this case, the exchanging data must be under-
standable for all communication partners. To realize a mechanism for that purpose, XML
and DTD were introduced as standardized formats to represent exchange data. In simple
words, XML and DTD are communication languages between software applications, or
some times between developers and software applications, that are working independent
and conceivably on different platforms.

XML and DTD are used mainly to describe the external interfaces of entities that could be
in this context a software application or a software module. That is, they cannot be used
to describe the internal behavior of specified entities; therefore, they fall in the category
of semi-formal specifications.

A special case of this category of semi-formal specifications is the AUTOSAR Extensible
Markup Language (ARXML) [37] developed for automotive field. The concept is the
same as in XML but the rules and the end users are different.

As XML and DTD are used to specify the interfaces of entities and not the internal behav-
ior, testing based on this kind of specifications can be only a Black Box testing.

Generally, testing the functionality of interfaces based on DTD or XML specifications is
simple, since input and output data of the interfaces are mostly part of the specification.
The input interfaces can be tested with data included in the DTD or XML instances, and
the output interfaces can be verified by testing the conformance of the output DTD or
XML instances generated by the output interfaces.

One of the most benefits of this kind of specification is the ability to automatically interpret
included information in clearly defined rules. In contrast to written documents, DTD
and XML standards enable individual functionalities of the system to be encoded clearly
and separately in the specification file. Nonetheless, testing based on DTD and XML
documents suffers from following disadvantages:

– DTD and XML are open standards with a certain level of freedom for designing
specification documents; therefore the document itself could be erroneous and must
be validated against the intended schema to ensure its conformance. Schema con-
formance check includes testing if the document satisfies demanded rules and con-
straints of used schema. Several aspects must be validated in this context to assure
the quality of the document [38]. Syntactical testing is for example a widespread ap-
proach. Moreover, testing the semantics is also available in literature [39]. Confor-
mance test is an extra overhead added to this category of specification based testing.

– Different releases of the standard lead to the problem of managing the differences
and the compatibility between the different releases. Some applications could un-
derstand one schema but have problems to understand another one.

– This kind of specification based testing is restricted to Black Box testing, as the
data representation includes only the communication data, which are the inputs or
outputs of communicating partners. Details about the internal functionality of the
application cannot be included.

57

– Tools for generating the test instances (input instances of specific programs) based
on a specific schema are also available, but only for applications using the same kind
of specification language [40] [41] [42].

– DTD- and XML-based specifications are until now not able to describe the internal
behavior of a function. They are also not able to describe complex state machines or
sequence diagrams and therefore could not be used for White Box testing.

• Algebraic/Co-algebraic Specification: Algebraic specification emerged in the 1970’s as
a formal specification method of abstract data types [43]. The technique of algebraic relies
on the observation that programs are mostly modeled as a collection of functions, modules
or classes which handle sets of data values by using mathematical operations [43]. Alge-
braic specification is also called property based specification [44]. They are particularly
well-suited for the specification of interfaces. This comes from the fact that interfaces
are defined as abstract data types or object classes. However, in the case where object
operations are not independent of object states, this kind of specifications has problems to
specify systems.

For dealing with the reactive behavior of systems represented as automata, the co-algebraic
specification has been introduced [45]. Through final co-algebras, which are the key ele-
ments of co-algebraic specification, infinite set of system behavior can be described.

Testing based on algebraic and co-algebraic specification is mainly a Black Box testing, in
which test cases are derived from system algebraic and respectively co-algebraic specifi-
cation [46] [47]. Generally, algebraic based testing has some known problems such as the
oracle problem and the infinite test data sets. The oracle problem describes the case where
it is not possible to decide if an execution returns a correct or a faulty result. This comes
from the abstract nature of the functional specifications, since data types are represented
in the specification in an abstract form. However, through the execution of the program,
the data types of results are concrete.

Two issues are raised with the oracle problem. The first issue is that the expected results
are not known in advance for some input values and hence cannot be included in the
specification. The second issue arises when a comparison needs to take place between
expected values defined in the specification and returned values from exercising the SUT.

The comparison issue is straightforward if the two values are from predefined sorts of
programming languages such as integer and boolean, which are also referred to as observ-
ables. The problem in this case can be solved by using the equality operation supported
by the programming language. However, if the results returned from system execution
and results in the specification are from the type user-defined, which is also referred to as
non-observables, the comparison problem would be more complex to solve [48]. To deal
with the comparison problem, some hypotheses can be defined and utilized [49].

Related to the problematic of infinite test data sets, the issue can be handled by choosing a
selection criteria based on some known hypotheses such as regularity and uniformity [48].

Generally, all algebraic specification based test techniques introduced in literature were
concerned mainly with the test data selection phase, which is understandable, since the

58

most problems are related to this phase of test. There is a small research on techniques of
test case generation based on algebraic specification. Some applications found in literature
are: unit test of object oriented programs [50], test of object oriented programs [51] and
test of java components [52].

Since algebraic and respectively co-algebraic specifications present only functional prop-
erties of the system, they are not used to deal with testing of non-functional aspects such
as performance and robustness. The well-known algebraic and co-algebraic specification
languages supported through tools are CASL, COCASL, HASCASL and HETCASL.

• Model Specification: Models are formal specifications that describe the SUT on a specific
abstraction level. Model-based testing (MBT) uses formal models of software systems
to derive test cases. In general, two types of models can be identified in MBT. The first
model is the finite state machine (FSM) [53] and the second is the labeled transition system
(LTS) [54].

In MBT which utilizes FSM, a structural coverage criterion like transition coverage, state
coverage or path coverage is used to derive test sequences from the model of the FSM
[55]. The fact that most approaches to MBT based on FSMs deal only with deterministic
FSMs, leads to a restriction of the method, as testing of reactive systems. To optimize
the number of tests abstracted from FSM with respect to length, overlap and other goals,
many research works have been achieved in the past (see Transition-Tour [56] and Unique-
Input-Output [57]).

Generally, FSMs are not expressive enough to model real software systems. Therefore,
extended finite state machines (EFSM) have been proposed. These extend the regular
FSMs with data state variables and data parameters for inputs and outputs. A typical
example of EFSMs is a state chart.

In MBT that is based on LTS, a conformance relation is defined to check the conformance
of a SUT with respect to a LTS model. A well-known implementation of LTS in MBT is
Input/Output Conformance (IOCO) [58] with numerous extensions for real time systems
[59] [60] and for symbolic LTS [61] [62]. Another implementation is the alternating
simulation [63] in the framework of Interface Automata (IA) [64].

As LTS based MBT describes only a conformance relation, test selection strategies have
been developed for this type of models (see for instance selection strategies based on
coverage criteria [65], on metrics [66], on test purposes [67], on state partitioning [68], on
graph traversal [69] and on model slicing [70])

In general, two main challenges are a continuous line of research in MBT. The first chal-
lenge is related to test data generation from the system model, where various approaches
are tried [71, 72]. However, the second challenge is concerned with testing real-time sys-
tems, where the test generation algorithms should determine when an input should be sent
and when an output should be received [73].

In respect to modeling notations, there are a wide variety of used notations. Notations can
be generally either textual or graphical (as in UML). ETSI produced in 2011 a standard

59

that collected a number of tool-independent general requirements on notations for MBT
[74].

4.6 Random Testing

Random testing (RT) is a fundamental software testing technique, in which test cases or test data
are generated in a random manner. RT may be in some cases the only possible testing method
if the specifications are incomplete or unavailable. However, it has been often proven that the
effectiveness of random testing in detecting software failures is controversial [75]. Therefore,
cohen et al. [76] proposed the adaptive random testing (ART) in order to enhance the effective-
ness of failure detection of RT. The concept of ART is based on the observation that input data
which is able to reveal failures in the test object, is frequently clustered into contiguous failure
regions [77]. That is, if a run test case has not revealed a failure, the next test case should be
far from the already executed one. As a result, test cases should be distributed over the input
domain. This concept has been implemented in various algorithms [78] [79] [80].

Anti-random testing [81] is another variation of random testing that improves the fault-
detection capability by employing the location information of previously executed test cases.
In contrast to ART, anti-random testing is deterministic. However, the first test case is selected
randomly.

4.7 Search Based Testing

Search based testing is another category of software testing. Its focus is the optimization of
algorithms that search for test data and/or test cases. Tests generated by search based algorithms
aim to maximize the possibility of finding errors while minimizing the costs. The key issue of
search based techniques is the design of a so-called fitness function that represents the desired
test objective. During search, the fitness function is used to guide search algorithms towards
the represented test objective. Test objectives can be any of the known goals of testing such as
functional [82], structural [83], non-functional [84] or state-based [85].

60

CHAPTER 5
Combinatorial Testing

In this chapter, the state of the art in Combinatorial Testing (CT) or Combinatorial Interaction
Testing (CIT) is introduced and discussed. Moreover, a modified and extended combinatorial test
process is proposed, which adopts recent research ideas and experiments of the last years. The
extended combinatorial test process is applied in chapter 6 to solve the combinatorial explosion
problem related to testing of TP parallel routing of an AUTOSAR gateway and measuring its
performance.

5.1 Introduction

CT is a branch of software testing that consists of various active research areas. These areas are
the key issues used to build the combinatorial test process proposed in this thesis (see fig. 5.1).

CT has been given an increasing attention in the last decade as modern software systems
tended to be more flexible and highly configurable in order to support various platforms and
environments. This trend of software systems introduced a new grade of complexity in terms
of design, implementation, size, number of inputs and configuration possibilities. As a result,
too many possible combinations of input parameters or software configuration variants shall be
tested once the system has to be verified. Generally, three different goals can be recognized
while testing of such software systems:

• The system configuration variant is considered to be correct and testing has to verify the
software implementation (implementation testing)

• The software implementation is considered to be correct and testing has to verify config-
uration variants (configuration testing)

• Testing has to find a trade-off between software implementation and system configuration
variants (trade-off testing)

61

In software testing, input parameters of the SUT and their interactions must be considered
for the test to ensure the accurate detection of different software bugs. However, in complex
software systems, like industrial applications or highly configurable applications, this leads to a
large number of possible test cases. This problem is referred to in literature as the Combinatorial
Explosion Problem [27] (see 3.6 for more details about the combinatorial explosion problem
related to testing of TP parallel routing of an AUTOSAR gateway).

Generally, the consideration of all input parameters or configuration parameters and their
interactions in exhaustive testing is impossible due to time and resource limitations [86]. There-
fore, innovative and systematic approaches are required to ensure an efficient and sufficient
coverage of interactions with a minimum number of test cases. To achieve this goal, strategies
of CT have been developed [23].

Strategies of CT are approaches to functional testing or black-box testing. They are used to
select specific test cases by combining test input parameters to detect interaction errors with an
acceptable number of test cases [87]. Earlier approaches such as the category partition method
[22], equivalence partitioning [75] or boundary analysis [87], tried to reduce the number of
test cases by splitting input parameters of the test object into subsets whose parameters trigger
similar behavior in the test object. Subsequently, representatives are chosen from the subsets to
construct test cases. Sampling with the help of representatives contributes to the reduction of
test cases. However, it is not appropriate to effectively tackle bugs due to interactions. To cover
interactions between input parameters, combination strategies have been developed. Currently,
a wide range of combinatorial approaches are existed to close this gap in software testing such
as AETG [26], IPO [88], TCG [89] and many more.

To apply CT, a test process is required. Some combinatorial test processes have been already
suggested in literature [90]. However, refinements and adaptations are needed to follow research
ideas and experiments developed over the last years. Figure 5.1 shows a modified and extended
test process suggested in this thesis to apply CT. The test process consists of multiple activities
that represent the modern key issues of CT. These steps are explained in details in the next
subsections.

5.2 Input Parameter Model (IPM)

Designing of an IPM is the first activity in the proposed CT process. This activity has to be
performed carefully, since the structure of the resulting IPM may affect the effectiveness and the
efficiency of the testing process.

An IPM can be defined as a possible structure of system parameters with associated values
on a particular abstraction level. Commonly, designing of IPM is a creative process that depends
on the skills of the test engineer and his understanding of the system’s functionalities. Therefore,
the same SUT can result in different IPMs.

To guarantee consistent and coherent IPMs in CT, formal specification may be used. How-
ever, most industrial and commercial software systems suffer from the absence of formal speci-
fication.

According to the proposed test process in fig. 5.1, the design process of IPM comprises
various steps which are explained in the next subsections.

62

Input Parameters

Test Case Generation

Test Case Execution

Test Result Evaluation

Interaction Model

Input Parameter Model

Coverage Level

Combinatorial Approach

Reduced Test Suite

Systematic

Reduction?
Testsuite

Evaluation

Computational implementation

Interaction Strength

Conflict Handling Strategy

Conflict Model

Figure 5.1: Extended Combinatorial Test Process

63

5.2.1 Interaction Model

In this step of the IPM design process, the test engineer has to determine and define the In-
teraction Model of input parameters based on the system specification. The SUT can be often
represented either by means of input parameters or input/output parameter relationships. The
representation option depends on the system specification and the possibility to determine out-
put parameter values in relation with input parameter values. It is important to mention here
that in most complex systems the input-output relationships are hard to resolve (see the oracle
problem [91]).

Since CT have been emerged to fight the Combinatorial Explosion Problem while covering
parameter’s interactions, the model of parameter interactions may contribute to this goal [92].
According to the research work in the area of interaction models, there are three possible param-
eter interaction models that can be classified for CT.

1. Pure input parameter interaction model: this interaction model supports the generation of
input parameter combinations without considering any relationships to the output param-
eters.

2. Input-output parameter interaction model: this interaction model supports the generation
of input parameter combinations by considering the input-output relationships of the sys-
tem parameters.

3. Mixed interaction model: in this interaction model, some of input parameter combinations
are generated without taking into consideration any relationships to the output parameters,
while others with the help of input-output relationships.

5.2.2 Interaction Strength

As well as determining the interaction model of system input parameters, the test engineer has
to define the interaction strength of these parameters. Two cases are noted in the literature
regarding the strength of parameter interactions:

1. Uniform Strength Interaction: here, all input parameters are assumed to be uniformly in-
teracting (i.e. with constant interaction strength (t) throughout). To test all interacting
parameters, the test suite must cover all the t-way combinations at least once [93], i.e., for
3-wise interaction testing, each exhaustive parameter-value combination of 3-way inter-
acting parameter tuples must be tested at least once.

2. Variable Strength Interaction: in this case, different subsets of input parameters can have
different interaction dependency [94].

5.2.3 Conflict Model

Most approaches to CT dictate that system input parameters must be independent of each other.
However, experiences have often shown that some system input parameters may be mutually

64

exclusive [95]. As a result, invalid test cases can be generated. These must be removed in order
to produce a valid test suite.

In CT, system input parameters that are mutually exclusive, have relationships called con-
flicts. A conflict is an impossible combination of some values of two or more parameters. It
could be also an impossible combination of any values of two or more parameters.

A conflict can be explained with the help of a simple example. Assume a system that can
be delivered in three different variants: low-, middle- and high-end. The operating function of
the system can be either from the type basic or comfort for the middle- and high-end variants.
However, the low-end variant can be only delivered with the basic operating function. In this
example, the system can be described with the help of two variables. The first variable (variant)
can have one of the possible values low, middle and high, and is used to describe the variant.
The second variable (function) represents the operating function of the system and can have one
of the values basic and comfort. It is obvious that the combination of the two parameter values
(low, comfort) is conflicting, since the low-end can only be delivered with the basic operating
function.

In order to generate a valid test suite, conflicts among system input parameters must be
resolved. In a complex system, the number of conflicts can be large [95]. Therefore, they
must be modeled in a consistent and effective way. Generally, constraints or conditions are
the typical methods to model conflicts. It is the responsibility of the test engineer to design a
good Conflict Model in this step, since designing of good conditions or constraints to describe
conflicts may affect the test automation process and have an impact on the selection of conflict
handling strategies explained later in 5.4.

5.3 Coverage Level

In this step, the test coverage level is selected and designed. The test coverage level is a metric
that measures the percentage of covered parameter value combinations relative to the total com-
binations. It is used to define the degree of interaction required to get confidence in the SUT.
Additionally, it can be used to evaluate the effectiveness and the efficiency of a test suite.

Defined coverage level is a key factor that may affect the selection process of combinatorial
approach, i.e., it may force the usage of specific combinatorial approach or combination of
multiple approaches. In general, the coverage level is referred to in literature as t-way, where
t can take a value between 2 and the maximum number of system parameters N. Since 1-way
coverage level demands that every value of every parameter is included at least once in a test
case, the interactions between parameter values are not the focus of 1-way coverage level. The
lowest coverage level in CT is 2-way. It demands that every possible pairs of parameter values
are included at least once in a test case. The extreme case is N-way coverage level, also called
exhaustive coverage. With the N-way coverage level, every possible combination of parameter
values is required to be included at least once in the test suite.

To explain the various coverage levels and their impact on the test suite, consider the example
of a system with 10 parameters, where each parameter has 5 different values. Depending on the
selected coverage level, the test suite may have in this case, 1,125 2-way combinations, 15,000
3-way combinations, 131,250 4-way combinations, 787,500 5-way combinations and so on. The

65

N-way coverage level or the exhaustive test in this case is the 10-way, where the test suite would
have 9,765,625 possible parameter value combinations.

Kuhn et al. [96] [97] studied the faults in various software systems and found that all known
faults are caused by the interactions among 6 or fewer parameter values. This can be true,
when the interactions are not the main source of errors. However, in complex systems with high
interaction relationships, the defined coverage level will have a high impact on the quality of
testing. The same issue can be recognized while verifying the performance of SUT, where every
higher interaction level leads to another behavior and reveals another performance symptoms.
For that reason, the coverage level must be clearly and reasoning defined, as it has a direct impact
on the efficiency of the test suite and the effectiveness of fault detection or performance aspects.

While defining a suitable coverage level, the interaction strength among parameter values
must be examined. The aim is to find out if parameter values have a fix or a variable strength of
interaction among each other [98]. In general, two types of interaction strength among system
input parameters can be stated, fix and variable. With the fix interaction strength, all parameter
values are known to have the same strength of relationship to each other. In contrast to fix in-
teraction strength, parameter values have different strength of relationships to each other in the
variable interaction strength. That is, one coverage level is defined for systems with fix interac-
tion strength while various coverage levels can be defined for systems with variable interaction
strength.

Another aspect related to coverage levels is the effect of conflicts between parameter values.
Handling conflicts in the IPM can cause a loss of the defined coverage level. It is the task of the
generation algorithm to keep satisfying the defined coverage level after handling conflicts in the
IPM.

5.4 Conflict Handling Strategy

To avoid invalid combinations of system input parameter values and hence invalid test cases,
impossible combinations must be prohibited with the help of a conflict handling strategy in
this step. In complex systems with large number of input parameters and conflicts, automatic
detection and removal/avoidance are decidable for an effective test case selection and generation
methodology. A general factor of a feasible conflict handling method is the observance of the
selected coverage criterion. That is, after removing or avoiding invalid combinations, the test
suite must still be complied with the defined coverage level.

Two methods to handle conflicts in IPMs are widely mentioned and used in literature. The
first method ”sub-models“ [26] [99] handles conflicts by splitting the IPM into multiple conflict-
free sub-IPMs. To achieve that, parameters involved in conflicts are determined. This is achieved
by the definition of a Conflict Model as mentioned previously. Subsequently, the parameter with
the least number of values is selected to be used for the splitting process. The splitting process
creates sub-IPMs, where each one contains one value of the selected parameter along with all the
values of every other parameter. Resulting sub-IPMs that contain conflicts involving the value of
the selected parameter are processed then by omitting values of the other parameters that cause
the conflicts. The method is applied recursively to the resulting sub-IPMs if other conflicts still
remain. If all final sub-IPMs are conflict-free, the possibility to merge some of them shall be

66

examined. Finally, test cases are generated from all sub-IPMs separately and the final test suit is
the sum of all generated test cases from all sub-IPMs.

The second well-known method to handle conflicts is the ”avoid“ method [26]. This method
is simply prevents the selection of conflicting combinations of input parameter values while
trying to satisfy the defined coverage level.

Further methods have been also proposed by Grindal et. al [100]. For instance, the abstract
parameter method, in which two or more parameters involved in a conflict are represented by
means of an abstract parameter whose values are only conflict-free sub-combinations of the
represented parameters. Another example is the replace method, in which conflicts are handled
after generating the test suite by replacing the conflicting values of parameters with an arbitrary
values that are conflict-free.

5.5 Combinatorial Approach

The combinatorial approach is one of the most important key issues of the CT process and has
to be selected in this step. It is the technique used to select test cases by sampling subsets of
the input space of SUT in a systematic way. The aim of sampling is to solve the Combinatorial
Explosion Problem caused by the large interaction space of system parameter values. Generally,
the sampling process relies on a constructed IPM that represents the system as parameters with
possible values (see IPM 5.2). From the IPM, combinatorial approaches select combinations
from the Cartesian Product of the system parameter values. Thereby, the focus is to detect
interaction errors caused by possible combinations.

The first utilization of combinatorial approaches to software testing goes back to the year
1985, where Mandl used the concept of Orthogonal Latin Squares [27] to sample 2-way combi-
nations of parameter values to test the Ada compiler. In 1988, Ostrand and Balcer [22] developed
the Category Partition (CP) method, in which the system is modeled as categories and partitions,
each with a set of choices that represent equivalence classes for testing. The focus in the CP
method was to reduce the input space for testing by selecting representatives from equivalence
classes. The method built later the basis for the development of combinatorial approaches as an
important area of software testing.

Since the interactions between parameter values are not the concern of CP, the method does
not recognize the Combinatorial Explosion Problem caused by parameter value interactions.
Therefore, Brownlie et al. [101] presented in 1992 an extension of Mandl’s concept, called the
Orthogonal Array Testing System (OATS), to test a weather forecast generator. The essential
key of the OATS is that all pairs of input parameter values are tested exactly once. The test
suite resulted by applying OATS was able to detect errors that had never been detected before.
However, applying OATS in complex systems still results in a large test suite. In 1996 [102] and
1997 [26], Cohen et al. presented the use of Covering Arrays (CA), motivated by the idea that
all pairs must be tested at least once instead of exactly once.

Previously mentioned approaches to CT share the same assumption that all input parameter
values interact in an uniform manner. In 2004, Cohen observed that the strength of interaction
may be not uniform among all parameter values. Therefore, he proposed the variable strength
interaction approach [98]. The approach is based on the observation that in most real systems,

67

some parameter values exhibit stronger interaction level than the others. In this case, it is useful
to separate the input parameters in various sets and apply different coverage levels based on the
strength of interaction. This is more natural and practical, especially in complex systems with
a large input space. However, the concept of variable strength interaction requires knowledge
about the SUT to determine sets of parameter values and their strength of interaction. This makes
the variable strength interaction approach lose one of the advantages of CT, i.e., the test engi-
neer must have the required knowledge to form sets of parameters and define the corresponding
coverage levels.

Generally, combinatorial approaches utilized to construct test suites from IPM can be clas-
sified into four main categories: greedy approaches, algebraic approaches, random approaches
and heuristic search approaches.

In greedy approaches, there are two different techniques to select parameter value combi-
nations. In the first technique, combinations are constructed in a successive way such that each
subsequent combination covers as many uncovered interactions as possible until the test suite
has been completed. Examples of this technique are AETG [26], PICT [103] and density-based
greedy algorithm [104]. In the second technique, all t-sets for the first t factors are generated and
then incrementally expands using heuristics until the coverage level has been reached. Examples
of this technique can be found in [86] and [105]. Greedy approaches have the advantage that
they are speed in generating the test suite. Therefore, they are the most used approaches for test
suite generation in CT.

The second category of combinatorial approaches is called algebraic approaches. Its main
advantage is the ability to efficiently construct test suits in a short time. However, with algebraic
approaches, it is difficult to produce accurate results on a board and general variety of inputs.
Latin squares [27], orthogonal arrays [101] and sequence covering arrays [106] are examples of
algebraic techniques for combinatorial combination selection and test case generation.

In the third category of combinatorial approaches which is referred to as random algorithms,
combinations of parameter values are selected randomly based on a distribution function. It is
obvious here that the effectiveness of this class of approaches depends to a wide extend on the
quality of the distribution function and the distribution of possibly available errors.

The last category of combinatorial approaches utilizes techniques of heuristic search and
artificial intelligence to sample combinations of system parameter values. Examples in this cat-
egory are simulated annealing [107], genetic algorithms [108] and ant colony algorithms [109].
The main advantage of combinatorial approaches from the heuristic and artificial intelligence
areas is the ability to produce a small test suite. However, these approaches have a negative side.
They consume a high duration time to compute and select combinations.

5.6 Computational Implementation

Since finding an optimal test suit with less number of test cases has been proven to be an NP-
complete problem, the computation process of combinations can be labor-intensive and time-
consuming. This can be seen in algorithms with high processing time such as genetic algorithms
[108] and ant colony algorithms [109], or in complex systems with large input space, complex

68

parameter relationships and complex constraints. Furthermore, a high coverage level (t > 6) will
make the computation aspect an important issue [110].

Othman et al. [92] gave attention to the computational problem as key issue of CT. In their
survey, they suggested that the computation can be also implemented with the help of parallel
computing. In contrast to sequential computing used for the implementation in most current
combinatorial algorithms, parallel computing aids in optimizing the computational time and
performing higher coverage levels. Depending on the nature of computation algorithm, parallel
computing may have no contribution to optimizing the computation, as for instance, the algo-
rithms with recursive generation. Therefore, the introduction of parallel computing in CT is
feasible only for some approaches and can be seen as an optional step in the proposed process
for CT.

5.7 Test suite Evaluation and Systematic Reduction

In this step, the test engineer provides a mechanism to evaluate the generated test suite. The
aim is to examine the validity of the test suite with respect to defined coverage level and the
absence of conflicts as well as the number of test cases. In the case that the test suite remained
large, a decision shall be met. Either a different coverage level shall be selected, or a systematic
reduction approach shall be developed. A reduction approach in this phase of the CT process is
mostly intuitive and system specific.

5.8 Test Case Generation, Test Case Execution and Test Result
Evaluation

Using formal specifications to describe the test requirements is of vital importance to the au-
tomation of the test process in these steps. For the test case generation, the availability of for-
mal specifications supports an automatic transformation of abstract test cases into executable
test cases. The transformation procedure is responsible for creating real test case inputs and
identifying the expected test case outputs. Additionally, complementary information about the
communication interface with the SUT shall be added by the transformation procedure. Subse-
quently, executable test cases are run and the results are recorded for evaluation.

69

CHAPTER 6
Verification & Performance

Measurement of Transport Protocol
Parallel Routing

In this chapter, a methodology is proposed to apply the combinatorial test process explained
previously in fig. 5.1. The methodology aims to verify TP parallel routing functionality of an
AUTOSAR gateway system while measuring its performance. Several goals are in the focus of
the methodology:

1. Building a creative IPM that helps to fight the combinatorial explosion problem raised
during the verification and performance measurement process.

2. Handling conflicts in the IPM.

3. Defining a coverage level that satisfies the verification objective.

4. Reducing the size of resulting test suite systematically.

5. Automating the test process.

As explained previously in chapter 3, a big number of configuration variants is possible
for a complex AUTOSAR system like the central gateway. Therefore, the implementation of
the combinatorial test process in this thesis focuses only on one possible configuration of the
system, i.e., once the system has been configured, the methodology can be applied.

Since the development of modern complex and highly configurable systems is an expensive
process that is carried out in multiple phases (see V-Model in fig. 6.1), various types of errors
can be introduced in the system. This thesis is concentrated on covering errors of TP parallel
routing which are provoked by combinations of input parameters under a predefined configura-
tion variant of the system. This kind of testing, called System Testing in fig. 6.1, covers in this
case the following errors:

71

• Functional errors which could not be covered before, since the configuration of the system
was not available.

• Configuration errors, i.e., errors caused by erroneous or prohibited configuration.

User

Specification

Software

Specification

High Level

Design

Detailed

Design

Coding

Unit Testing

Integration

Testing

System

Testing

Acceptance

Testing

Figure 6.1: V-Model [111]

Additionally, performance aspects of TP parallel routing under a predefined configuration
variant are explored and documented with the help of combinatorial testing.

The next subsections give a detailed description on how to implement steps of the combina-
torial test process in the case of verifying TP parallel routing.

6.1 Building an IPM

As mentioned previously, IPM is a possible representation of the input space of the test object.
It is required for any combinatorial test process. Generally, IPM is constructed from available
system specifications. It is obvious that informal and semi-formal specifications lead mostly to
different representations due to different interpretation possibilities [112]. Even formal specifi-
cation can result in more than one possible IPM based on the experiences and the creativity of
the test engineer.

An IPM consists of parameters with associated values used to practice properties of the test
object. In the original approach, parameters of the test object are mapped one-to-one onto pa-
rameters of the IPM. Subsequently, values of IPM parameters are reduced by utilizing methods
such as equivalence partitioning and boundary analysis [75]. However, in many new and inno-
vative approaches, parameters are collected together into groups to represent functionalities of

72

the test object instead of the parameters themselves. In this way, the number of test cases shall
be reduced and test cases shall be more effective.

Generally, grouping of input parameters in an efficient way requires more details about the
test object and depends to a high level on the experiences of the test engineer, i.e., grouping of
parameters by different persons will result in different IPMs.

To build an IPM for TP parallel routing, several actions must be performed. These are
explained below.

6.1.1 Creating an Interaction Model

In order to define and create an Interaction Model of the IPM that supports the verification of TP
parallel routing of an AUTOSAR gateway system, the approach depicted in fig. 6.2 is suggested.

TP_Routing_Scenarios

= {S1, S2,…, Sl}

Group1

TP_Routing_Fashions =

{F1, F2, F3, ..., Fm}

TP_Routing_Channels =

{Ch1, Ch2, Ch3, ..., Chn}

AUTOSAR Description File of

the Gateway

TP_Routing_Instances

= {I1, I2,…, In}

Group2 Groupk
. . .

Extended Group1
. . . Extended Group2 Extended Groupk

Figure 6.2: IPM for TP parallel Routing of AUTOSAR Gateway

According to the AUTOSAR methodology [14], an AUTOSAR description file must be
available for any system that utilizes the standard. The AUTOSAR file uses a format similar
to xml, called arxml, to describe the system on a specific abstraction level. It serves in most
cases as a specification file. ARXML based files are semi-formal specifications which contain
information about the system design. Input as well as output parameters of an AUTOSAR
system are part of its AUTOSAR description file. Hence, this file is used as an input for the
construction of IPM.

73

As depicted in fig. 6.2, several constructs are required to build up the desired Interaction
Model (see fig. 5.1 for more details about the Interaction Model). Some of these constructs
are formed automatically with the help of scripts (programs), while others have to be formed
manually. To create the required constructs, several procedures are deployed as follows:

1. Determine TP_Routing_Scenarios

Commonly, TP_Routing_Scenarios are determined through discussions with the persons
who practice TP routing functionalities. Different advantages are gained from this proce-
dure:

• Real use case scenarios are mostly not described and cannot be recognized or built
automatically from the AUTOSAR description file of the gateway.

• Some use case scenarios are theoretically conceivable, however, they are not prac-
ticed.

• Conflicts between scenarios are also determined. These conflicts describe which
scenarios are/aren’t practiced in parallel.

• Future real use case scenarios can be discussed and considered for the test.

Two records are the output of this procedure. The first record, called TP_Routing_Scenar-
ios, is used for the build process of the Interaction Model and has the structure as in (6.1):

[TP_Routing_Scenarios] =

{
S1,

S2,

.

.

.

Sl

} (6.1)

where S1, S2, ..., Sl are the determined TP_Routing_Scenarios.

The second record, called TP_Routing_Scenarios_Conflicts, includes conflicts among
scenarios and is used later for the conflict handling process. This record has the struc-

74

ture as in (6.2):

[TP_Routing_Scenarios_Conflicts] =

{
TP_Scenario_Conflict1

TP_Scenario_Conflict2

.

.

.

TP_Scenario_Conflictc

} (6.2)

This procedure is performed manually. However, it has to be done only once. After that,
gathered information can be utilized for every new release of the system or for similar
systems.

2. Abstract TP_Routing_Channels and Build TP_Routing_Fashions
In this procedure, TP_Routing_Channels with their associated parameters are abstracted
from AUTOSAR description file of the gateway. In parallel, parameters of TP_Routing_C-
hannels are analyzed in order to build patterns of available TP_Routing_Fashions, i.e., for
all TP_Routing_Channels that have the same number and type of parameters, a unique
TP_Routing_Fashion will be defined. The outputs of this step are records which can be
saved in a text file. These records are either from the type TP_Routing_Channel (see
(3.10)) or TP_Routing_Fashion (see (3.1)).

With the help of a script, this procedure can be completely automated, since all required
information is part of the AUTOSAR description file of the gateway. A script can parse
the AUTOSAR file to abstract all available TP_Routing_Channels with their related pa-
rameters and analyze parameters to build TP_Routing_Fashions.

3. Build TP_Routing_Instances
As described previously, a TP_Routing_Instance is a relationship between a specific TP_R-
outing_Channel and a possible TP_Routing_Scenario. This relationship can be automati-
cally resolved with the help of TP_Routing_Fashions, i.e., in order to practice a particular
TP_Routing_Scenario, a TP_Routing_Channel from a specific TP_Routing_Fashion is
implemented. In this procedure, records of TP_Routing_Instances are formed by assign-
ing the right TP_Routing_Scenarios to individual TP_Routing_Channels. At this phase
of the build process, the IPM can be seen as one-to-one assignment of the input/output
parameter space.

4. Group TP_Routing_Instances
Grouping is a procedure in which TP_Routing_Instances that stimulate similar behav-
ior in the gateway are clustered into groups. Two TP_Routing_Instances are said to

75

be similar if and only if they have the same number and values for all related parame-
ters excluding the Request_Identifier and Response_Identifier. Creating groups of similar
TP_Routing_Instances helps to reduce the number of test cases once combinations have
to be built. Following example explains the reduction achieved with the help of groups:

Assume that the gateway test object has 4 TP_Routing_Instances A, B, C and D (see
fig. 6.3) and is configured to support 2 TP_Routing_Instances in parallel. The number
of possible combinations of 2 instances out of 4 would be 6 (the order has no effect). If
TP_Routing_Instances A, B and C, D are respectively similar to each other, then groups
can be constructed based on similarity criteria such that Group1 consists of instances A
and B, whereas Group2 consists of instances C and D. After grouping, the number of
combinations could be reduced from 6 to 3, since all other possible combinations would
resemble a similar behavior, i.e., combinations of instances (A, C), (A, D), (B, C) and (B,
D) are all similar and can be replaced by only one substitute (A, C). Hence, the combina-
tions (A,B), (C,D) and (A,C) are sufficient to verify the system in this case.

(A, B)

(C, D)

(A, C)

(A, D)

(B, C)

(B, D)

Group1 Group2

(A, B)

(C, D)

(A, C)

TP_Routing_Instance A TP_Routing_Instance B TP_Routing_Instance C TP_Routing_Instance D

Figure 6.3: Advantages of Building Similar Groups for TP Parallel Routing

With the help of a script, this procedure can be completely automated. As a result, records
of TP_Routing_Instances are collected into groups. The number of resulting groups de-
pends on the grade of diversity in parameters of TP_Routing_Instances.

5. Extend Groups of TP_Routing_Instances

In this procedure, two additional parameters are assigned to individual groups. The first
parameter (Similarity Number) is an integer variable used to recognize similar groups.
Two groups are said to be similar if and only if their TP_Routing_Instances have the
same number and values for all related parameters excluding the following parameters:

76

Source_Network, Destination_Network, Request_Identifier and Response_Identifier. Nev-
ertheless, the source and destination networks of TP_Routing_Instances of similar groups
must have the same characteristics, e.g., the same type and bandwidth of bus communica-
tion protocol. In this case, similar groups will be assigned the same value for Similarity
Number parameter.

The value of the second parameter (Stress Factor) is calculated dynamically during test
case execution based on aspects such as processing time, memory usage and channel
bandwidth.

Introducing the Similarity Number and Stress Factor parameters helps to reduce the num-
ber of combinations to be tested as described later in the approach.

Since TP_Routing_Instances represent relationships, in which input and output parameters
of the system are available, the Interaction Model is considered to have the form of an input-
output parameter model.

6.1.2 Interaction Strength

Since no knowledge is available in advance about the effect of individual TP_Routing_Instances
and their combinations on the behavior of the AUTOSAR gateway, the Uniform Strength In-
teraction is considered as interaction strength at the beginning of the test run. However, as test
cases are constructed and run recursively in the proposed approach (see 6.6.1), the parameter
Stress Factor of included TP_Routing_Instances is calculated. This parameter helps to deter-
mine different interaction strengths of TP_Routing_Instances and hence introduce the Variable
Strength Interaction.

6.1.3 Creating a Conflict Model

During the construction process of IPM, conflicts must be resolved in order to guarantee a valid
generation of test cases.

As explained previously, a conflict in IPM refers to invalid combination of parameters or
parameter values. Hence, conflicts can lead to the generation of wrong test cases and must be
handled.

In order to handle conflicts of an IPM, conflicts must be determined. In the case of TP
parallel routing of an AUTOSAR gateway, three types of conflicts can be resolved:

1. TypeA-Conflicts: Conflicts between TP_Routing_Scenarios. These are resolved with the
help of constraints describing TP_Routing_Scenarios not practiced in parallel (see the
generated record [TP_Routing_Scenarios_Conflicts]).

2. TypeB-Conflicts: Conflicts between TP_Routing_Channels. These are resolved with the
help of rules to recognize TP_Routing_Channels not allowed to be practiced in parallel.
The usage of these rules depends on the utilized bus communication protocols of routing.
Rules are saved as conditions for bus communication protocols.

77

3. TypeC-Conflicts: Conflicts because of configuration parameters. These are constraints
describing known or desired capabilities of the gateway. These conflicts are also saved as
conditions.

To explain these types of conflicts, assume an example of a gateway that has six TP_Routing_Ins-
tances used to route TP data between its connected ECUs as follows:

TP_Routing_Instance1 = (0x450, 0x5d9, 1, 2, 8, 8, 32, 8, 0, 10, F lashing)

TP_Routing_Instance2 = (0x411, 0x4c1, 2, 1, 8, 8, 8, 32, 10, 10, 11, 11, Uploading)

TP_Routing_Instance3 = (0x456, 0x5d5, 1, 2, 8, 8, 32, 8, 0, 10, F lashing)

TP_Routing_Instance4 = (0x411, 0x4c1, 2, 1, 8, 8, 8, 32, 10, 10, 12, 12, Uploading)

TP_Routing_Instance5 = (0x7f1, 1, 2, 8, 8, OBD)

TP_Routing_Instance6 = (0x7f1, 1, 3, 8, 8, OBD)

Assume also that the gateway supports two TP_Routing_Instances in parallel. In this case,
following examples can explain the three types of conflicts:

• TypeA-Conflicts: TP_Routing_Scenario Flashing and TP_Routing_Scenario Uploading
are non-combinable. That is, a combination of TP_Routing_Instance1 and TP_Routing_I-
nstance2 is for example an invalid combination.

• TypeB-Conflicts: TP_Routing_Channel2 and TP_Routing_Channel4 are non-combinable
due to a rule defining that TP_Routing_Channels which have the same value for parameter
Request_Identifier are non-combinable.

• TypeC-Conflicts: Due to the condition defining that only a maximum of two TP_Ro-
uting_Instances is supported, all combinations of more than two TP_Routing_Instances
are invalid.

6.2 Definition of a Coverage Level

The definition of an appropriate coverage level is essential to combinatorial testing, since the
coverage level affects the complexity and the thoroughness of the resulting test suit [90]. Many
combinatorial test strategies support merely a certain coverage level. Therefore, the decision on
which combinatorial strategy to apply may has an impact on the definition of the coverage level
and vice versa.

In the proposed methodology for applying combinatorial testing to verify TP parallel routing
of an AUTOSAR gateway system and measuring its performance, the coverage level is defined
with respect to combinations of TP_Routing_Instances from constructed extended groups. For
example, 1-wise coverage requires that at least one possible combination with maximum sup-
ported TP_Routing_Instances from every input group is included at least once in a test case.
Such combinations from groups are sufficient enough to satisfy 1-wise coverage criterion, since
all TP_Routing_Instances of a group stimulate a similar behavior of the gateway.

78

On the other side, N-wise coverage criterion (exhaustive testing) requires that all possible
combinations with maximum supported TP_Routing_Instances from N input groups are in-
cluded in some test cases.

The proposed methodology in this thesis supports N-wise coverage, where the design of cov-
erage level can be described as follows:
For an arbitrary number of input groups, each with an arbitrary number of TP_Routing_Instances,
the algorithm generates a Combination Table to satisfy N-wise interactions between the groups.
The maximum number of resulting combinations is calculated as in (6.3):

X =
(n+ y − 1)!

y!(n− 1)!
(6.3)

Where n is the number of input groups and y is the maximum supported number of TP_Routin-
g_Instances in parallel. Table 6.1 represents a Combination Table example of the defined N-wise
coverage level. This example assumes an input of 4 groups (G1,G2,G3,G4) and a maximum of 3
TP_Routing_Instances supported to be practiced in parallel. The maximum number of resulting
combinations (rows) in this example can be calculated according to (6.3) and is equal to 20 (20
rows).

Table 6.1: Example of a Combination Table

G1 G2 G3 G4
3 0 0 0
2 1 0 0
2 0 1 0
2 0 0 1
1 2 0 0
1 1 1 0
1 1 0 1
1 0 2 0
1 0 1 1
1 0 0 2
0 3 0 0
0 2 1 0
0 2 0 1
0 1 2 0
0 1 1 1
0 1 0 2
0 0 3 0
0 0 2 1
0 0 1 2
0 0 0 3

Rows of the table 6.1 represent combinations, while the numbers in columns represent the

79

count of TP_Routing_Instances that should be selected from corresponding groups to generate
test cases.

Consider for example the second row of table 6.1. This row represents a combination in
which two TP_Routing_Instances from group G1 and one TP_Routing_Instance from group G2
shall be selected to generate a test case covering that combination.

Since all TP_Routing_Instances of a group are similar to each other, including any of them
will be appropriate to cover the combinations represented in rows, e.g., selecting any two TP_Ro-
uting_Instances from group G2 for the combination in the second row will lead to the same
behavior.

While generating test cases to cover combinations represented in rows, following additional
aspects shall be considered:

• Each TP_Routing_Instance must be included at least once in some combinations. This is
not required to satisfy the coverage level. However, it is a good practice to cover all avail-
able TP_Routing_Instances. That is, for the second row in table 6.1, 2 TP_Routing_Insta-
nces different than the 3 TP_Routing_Instances for the first row shall be selected from
group G1.

• The sum of numbers in a column must be greater than or equal to the number of elements
in the corresponding group in order to guarantee that each TP_Routing_Instance has been
included at least once. If this is not the case, the remaining TP_Routing_Instances from
that group shall be included and tested individually. These additional test cases are also
not related to the coverage level. However, they are important to verify the functionality.

• The number in each column must be lesser than or equal to the total number of combin-
able TP_Routing_Instances in the corresponding group (see the next section for conflict
handling). Otherwise, the combination in the related row is invalid and must be omitted.

To compare the reduction achieved in this example, let us assume that each of the 4 groups
of the previous example has only 3 TP_Routing_Instances. The total number of input settings in
this case would be equal to 12 and the resulting combinations without building groups would be
equal to 220 (as calculated in (6.4)). This corresponds to a reduction of 90% of input settings.

(12)!

3!(12− 3)!
= 220 (6.4)

6.3 Conflict Handling Strategy

Two basic rules must be retained while conflicts of the IPM are handled. Firstly, the defined
coverage level must be satisfied and secondly, the test suit must be reduced since some combi-
nations shall be avoided. In [113], four different methods for handling conflicts in IPMs were
investigated. The result of the study was that the avoid method is best suited with respect to the
size of the test suite if it can be utilized. To handle conflicts with the avoid method; a procedure
is integrated in the test case selection algorithm to prohibit the selection of conflicting combi-
nations. Another method mentioned in the study is the sub-models method, in which conflicts

80

are removed by splitting the IPM into multiple smaller conflict-free IPMs used separately for
test case selection and generation. In this thesis, a combination of these two conflict handling
methods is utilized to handle the determined conflicts during the test of TP parallel routing.

6.3.1 TypeA-Conflict Handling

Since constructed Extended Groups possess TP_Routing_Instances similar to each other, TP_R-
outing_Instances of each Extended Group will have the same attached TP_Routing_Scenario.
To handle conflicts between TP_Routing_Scenarios, the sub-models method is utilized. Thereby,
the parameter TP_Routing_Scenario is used to split IPM into sub-IPMs which are TypeA-Conflict-
free.

As depicted in fig. 6.4, Extended Groups along with the record [TP_Routing_Scenarios_Co-
nflicts] are the input for the implementation of sub-models method. In order to create sub-IPMs
which are TypeA-Conflict free, the sub-models method processes the record [TP_Routing_Scena-
rios_Conflicts] to collect TypeA-Conflict free Extended Groups and create TypeA-Conflict free
sub-IPMs. This procedure is performed automatically and shall be completed before Combina-
tion Tables of the defined coverage level are generated.

Resulting sub-IPMs are then processed successively, where for each sub-IPM a Combination
Table is generated and handled separately.

Extended Group1
. . . Extended Group2 Extended Groupk

TypeA-Conflicts

[TP_Routing_Scenarios_Conflicts]

TypeA-Conflict Handling

(sub-models method)

sub-IPM1

Extended Groupx1

Extended Groupx2

Extended Groupxx

.

.

.

sub-IPM2

Extended Groupy1

Extended Groupy2

Extended Groupyy

.

.

.

. . . sub-IPMp

Extended Groupz1

Extended Groupz2

Extended Groupzz

.

.

.

Figure 6.4: TypeA-Conflict Handling Approach

81

6.3.2 TypeB-Conflict Handling

As explained previously, TypeB-Conflicts describe impossible combinations of TP_Routing_Ch-
annels which are the main components to build TP_Routing_Instances. In order to handle this
kind of conflicts, the avoid method is utilized.

After Combination Tables are built for TypeA-Conflict free sub-IPMs from the previous step,
the avoid method is applied to each Combination Table separately and in a recursive manner.

To automate the implementation of the avoid method, three reserved variables are attached
to individual TP_Routing_Instances of input groups. These are Conflict ID, Include Times and
Token.

The Conflict ID variable identifies which TP_Routing_Instances are non-combinable due to
TypeB-Conflicts. That is, TP_Routing_Instances which are conflicting due to the same TypeB-
Conflict, will be assigned the same value for variable Conflict ID and are non-combinable with
each other. However, TypeB-Conflict free TP_Routing_Instances will be assigned the special
value “0” for Conflict ID and can be always combined.

The Include Times variable holds the number of times a TP_Routing_Instance has been se-
lected to build combinations. As mentioned previously, TP_Routing_Instances of an Extended
Group are similar to each other, and the selection of any of them is sufficient to satisfy a de-
fined combination from the Combination Table. Therefore, this variable is utilized to choose
TP_Routing_Instances from an Extended Group that have not been yet included or less included
than other instances to guarantee a fair coverage of available TP_Routing_Instances.

Every TP_Routing_Instance is assigned an Include Times value “0” at the initial phase of the
selection process. This number gets incremented whenever that particular TP_Routing_Instance
becomes part of a generated combination.

Since the selection of TP_Routing_Instance to build combinations is performed in a recur-
sive manner as explained later, the value of the third variable Token is used to decide whether a
TP_Routing_Instance is considered for the next selection or not. That is, for every loop of the
selection and generation process, the so-called Token is rotated to another TP_Routing_Instance
to avoid conflicts. The Token variable can have one of the following values:

• 0: denotes that related TP_Routing_Instance has no TypeB-conflict and can be included
in any combination and in every selection loop.

• 1: denotes that related TP_Routing_Instance has TypeB-conflict and can be considered
only for the next selection loop.

• 2: denotes that related TP_Routing_Instance has TypeB-conflict and is not considered for
the next selection loop.

The algorithm for handling TypeB-Conflicts with the avoid method is depicted in fig. 6.5.
The algorithm describes the procedure applied to one TypeA-Conflict free sub-IPM. The pro-
cedure begins with the assignment of values to variables Conflict ID of TP_Routing_Instances.
This is achieved based on defined rules for TypeB-Conflicts and follows the concept described
previously. In the next step, initial values for variables Token and Include Times are assigned.
Hereby, all Include Time variables will get the initial value 0, whereas, the initial value for vari-
ables Token depends on the Conflict ID values.

82

Y

End

Defined Rules for

TypeB-Conflicts

TypeA-Conflict free

Extended Groups

Combination Table Assign Values to

Variable „Conflict ID“

Pick up the next Row

Pick up TP_Routing_Instances from Associated Groups

According to the Numbers in the Row and the Values of

Variables „Token“ and „Include Times“. For each selected

TP_Routing_Instance, increment the associated „Include

Times“ variable by one.

All Rows

Processed?

N

Row Valid?

Y

NAll Rows

Processed?

Y

Assign initial Values to

Variables „Token“ and

„Include Times“

Update Values of

Variable „Token“

Combination to build a

Test Case

Figure 6.5: TypeB-Conflict Handling Approach

83

Since TP_Routing_Instances that have the same TypeB-Conflict are assigned the same value
for variable Conflict ID, only one of them will get the initial value 1 for variable Token for
the next selection and generation loop. Other TP_Routing_Instances with the same Conflict ID
value will get the initial value 2. TP_Routing_Instances which are TypeB-Conflict free will get
the initial value 0 that remains constant during the whole procedure.

After generating the Combination Table for Extended Groups of a sub-IPM, the algorithm
processes its rows successively. It picks up one row and check its validity before selecting
TP_Routing_Instances from groups. For the case that one row is invalid, the whole row (com-
bination) is avoided. Validity check depends on the numbers in processed row and combinable
TP_Routing_Instances of related groups. If at least one number of the row is greater than com-
binable TP_Routing_Instances of related group, the row is considered as invalid. To determine
the count of combinable TP_Routing_Instances, the variable Token is used. The method calcu-
lates the number of combinable TP_Routing_Instances based on the values 0 and 1 for the Token
variable.

Avoiding invalid rows of Combination Table does not affect the coverage level, since the
number of TP_Routing_Instances that shall be selected from one group of invalid row is im-
possible, and the interaction of the invalid row shall be implicitly covered in other rows. To
explain this, consider again the Combination Table example in 6.1. Assume that only one
TP_Routing_Instance of group G2 is combinable at a time, i.e., rows 5, 11, 12 and 13 are
invalid. Row 5 covers the interaction between 1 TP_Routing_Instance from group G1 and 2
TP_Routing_Instances from group G2. As only 1 TP_Routing_Instance from group G2 is com-
binable at a time, the combination of row 5 should be replaces by 1,1,0,0. This replacement is
implicitly part of rows 2,6 and 7 and considering it again is redundant. Therefore, the row 5
shall be avoided. The same is applied for rows 11, 12 and 13.

For the case that a row is valid, TP_Routing_Instances from input Extended Groups are
picked up according to the numbers in row as well as the values of variables Token and Include
Times. Only TP_Routing_Instances with the values 0 and 1 for variable Token are allowed to be
selected to build a combination. Additionally, smaller values for the variable Include Times have
priority over others. In the case that a decision has to be taken between TP_Routing_Instances
which have the same values for variables Include Times and Conflict ID, the first one can be
chosen. This will help to include all TP_Routing_Instances with the same repetition.

Once TP_Routing_Instances have been selected for one row, these will be used to construct
a test case.

Updating the variable Token in the next step is performed based on the values of Con-
flict ID and Include Times. The idea is to give the value 1 to the Token variable of the next
TP_Routing_Instance with the same Conflict ID and minimum Include Times. The procedure
continues until processing all rows of Combination Table based on the same concept.

6.3.3 TypeC-Conflict Handling

As explained previously, TypeC-Conflicts are constraints that determine the maximum supported
numbers of parallel TP_Routing_Instances of the deployed TP protocols. These constraints are
handled during the construction process of Combination Tables. That is, the sum of numbers
in rows of a Combination Tables must not exceed the maximum supported numbers of parallel

84

TP_Routing_Instances of TP protocols related to Extended Groups of columns. Since combina-
tions and corresponding test cases are generated recursively from the Combination Table, these
constraints can be corrected depending on the results of run test cases. The correction helps to
determine the TP routing performance of the gateway, e.g., reducing the maximum number of
supported parallel TP_Routing_Instances for CAN TP if a performance issue raised during TP
routing. If these constraints have to be corrected during test run, the Combination Table must be
respectively modified. In this case, invalid rows must be avoided or corrected for the next loops
of the selection and generation process.

6.4 Computational Implementation

Since constructed sub-IPM are processed successively and independently from each other in
the proposed approach, parallel computing is well-suited. However, the limited resources were
deciding for the deployment of sequential computing in this thesis.

6.5 Test Suite Reduction

To achieve the goal of reducing the size of the test suite and still have the same desired coverage
level, two additional constructs can be defined for individual TypeA-Conflict free sub-IPMs.
The first construct is Single Network Relationship (SNR) and the second is Multiple Network
Relationship (MNR).

Basically, several SNRs and merely one MNR are formed for one TypeA-Conflict free sub-
IPM. These are used for the test process which is consequently carried out in two separate steps
for individual sub-IPMs as follows:

1. Testing TP parallel routing for SNRs

2. Testing TP parallel routing for MNR

SNRs are built with the help of a similarity criterion. An individual SNR comprises Extended
Groups of TP_Routing_Instances responsible for routing TP data between two specific networks
of the gateway. That is, Extended Groups of a sub-IPM that have the same values for parameters
Source_Network and Destination_Network shall form an individual SNR.

After SNRs are formed, the first test step is conducted and executed as described in details in
the next section. While TP parallel routing for SNRs is carried out, the test results are analyzed
in order to assign a suitable value for parameter Stress Factor. The Stress Factor parameter helps
consequently to form MNR used in the second test step.

A MNR is built with the help of gained information from test cases executed for individual
SNRs. The MNR of a sub-IPM is a collection of Extended Groups with one selected Extended
Group from each SNR. The selection process is based on the values of parameter Stress Factor.
From each SNR, the Extended Group with the best value for parameter Stress Factor is chosen
to form the unique MNR of the processed sub-IPM.

85

Defining the two constructs SNR and MNR has two advantages. The first advantage is
related to reducing the number of rows in the Combination Table and can be explained with the
following example:

Assume that we have a TypeA-Conflict free sub-IPM which consists of 10 individual Ex-
tended Groups. Assume that TP_Routing_Instances of the 10 Extended Groups are responsi-
ble for routing TP data between CAN network. The maximum supported number of parallel
TP_Routing_Instances on CAN is equal to 3. Let us assume that each Extended Group has at
least 3 TP_Routing_Instances available to build combinations. According to the equation (6.3),
the number of rows in the Combination Table for the 10 Extended Groups would be in this case
220.

Assume now that we can build 3 SNRs as follows: the first SNR has 3 Extended Groups,
the second SNR has 3 Extended Groups and third SNR has 4 Extended Groups. For these
SNRs, the three Combination Tables would have respectively the following number of rows
according to the equation (6.3): 10, 10 and 20. Since three SNRs are built, the unique MNR
would have 3 selected Extended Groups, and the Combination Table of MNR would contain 10
rows. Altogether, 50 rows and therefore 50 combinations will be generated from all Combination
Tables. In this simple example, the number of row was reduced from 220 to 50 by utilizing the
two constructs SNR and MNR.

The second advantage is concerned with reducing the search space for reasons of errors,
once they are discovered. Since the test is carried out separately for SNRs and a SNR includes
TP_Routing_Instances between two specific networks, discovered errors during the test of a par-
ticular SNR would give hints that errors are possibly related to specific networks. Additionally,
if similar errors are discovered during the test of SNRs with the same types of networks, this
would then give hints that errors are possibly related to a specific type of networks and so on.

Testing SNRs and MNRs is described in details in the next section.

6.6 Test Case Generation, Execution and Evaluation

6.6.1 Testing TP parallel routing for SNRs

The procedure for testing TP parallel routing for SNRs is depicted in fig. 6.6. The procedure
accepts TypeA-Conflict free sub-IPMs as input and processes them successively. For each sub-
IPM, the Selector () function extracts Extended Groups of the next SNR. With the help of the
mechanism explained previously to satisfy N-wise coverage level, the Combination Table is built
for groups of the current processed SNR. Subsequently, TypeB-Conflict handling is conducted
to select recursively TP_Routing_Instances according to rows of the Combination Table. For
each produced combination of TP_Routing_Instances, some additional information are added to
generate a runnable test case. In the next step, the generated test case for processed combination
is executed and the test results are analyzed. Diverse aspects are analyzed from the results of
executing test cases, such as the time required to route TP data using TP_Routing_Instances from
specific Extended groups and the behavior of TP data routing during the whole routing process.
Based on this analysis, values for parameter Stress Factor of individual Extended Groups are

86

TypeA-Conflict Free Sub-

IPM (G1, G2 … Gn)

Selector ()

Groups of Next SNR

Build and Run Test

Case

Analyze Result

Determine Stress

Factors and Variance

to TypeC-Conflicts

All Combinations

Tested?

N Y

Build “Combination

Table” to Satisfy N-

Wise Coverage

Criterion

TypeB-Conflict

Handling

Combination to Build a

Test Case

All SNRs

Covered?

All TypeA-Conflict-

Free Sub-IPM

Covered?

N

Y

N

Y

To the next Phase

Figure 6.6: TP Parallel Routing for SNRs

87

assigned and variance to TypeC-Conflicts is determined to correct the constraints and measure
the performance.

This procedure is repeated for all rows of the Combination Table until the N-wise coverage
level is satisfied for each SNR. The same process is repeated until all TypeA-Conflict free sub-
IPM are processed.

After the completion of this step, each Extended Group will be assigned a calculated Stress
Factor, which will be used by the next test step.

6.6.2 Testing TP parallel routing for MNRs

The procedure for testing TP parallel routing for MNRs is depicted in fig. 6.7. In this procedure,
TypeA-Conflict-free sub-IPMs are processed successively. As mentioned previously, an arbitrary
number of SNRs is created for each sub-IPM. To build the MNR for a sub-IPM, a representative
Extended Group from each of its SNRs is selected. The selection depends on calculated Stress
Factor of Extended Groups. That is, the Extended Groups with the best values for parameter
Stress Factor build the MNR of a sub-IPM and are the basis for testing in this step. Once
Extended Groups of MNR are determined, the groups that have the same Similarity Numbers
will be omitted in order to avoid similar combinations. Then, the same procedure as in the
previous step is utilized to build combinations and execute test cases until N-wise coverage
level is satisfied. The procedure stops once all TypeA-Conflict-free sub-IPMs are processed.
During recursive testing of MNR, constraints of TypeC-Conflicts are also corrected if an error is
observed. With the help of the correction, further combinations are reduced and the performance
of the gateway can be determined.

88

Representatives of SNRs

(G1, G2 … Gm) = MNR

Next TypeA-Conflict Free

Sub-IPM

Build and Run Test

Case

Analyze Result

Determine Variance to

TypeC-Conflicts

All Combinations

Tested?

N Y

Build “Combination

Table” to Satisfy N-

Wise Coverage

Criterion

TypeB-Conflict

Handling

Combination to Build a

Test Case

All TypeA-Conflict-

Free Sub-IPM

Covered?

N

Y

End

Figure 6.7: TP Parallel Routing for MNRs

89

CHAPTER 7
Validation and Evaluation

In this chapter, the proposed combinatorial test approach is validated by means of two examples
of real AUTOSAR gateway systems. Moreover, the results achieved by applying the test ap-
proach are evaluated to show its effectiveness to reduce the number of combinations to be tested
and hence the test time.

7.1 Implementation of the Test System

In this section, the test system which implements the proposed combinatorial test approach is
presented. Figure 7.1 depicts the design of the test system. As shown in the figure, the test
system consists of multiple parts responsible for realizing the approach discussed previously as
well as implementing a restbus simulation required to execute selected and generated test cases.
Additionally, the test system design consists of a reporting part to document generated test cases
and the information related to their execution.

The test system works automatically. It uses as input the description file of the gateway test
object (AUTOSAR ECU Description File) and some manual definitions. The manual definitions
are created during the design phase of the test system. Consequently, gateway test objects can
be evaluated automatically without any further manual intervention. However, the AUTOSAR
ECU Description File must be adapted each time a new gateway test object or a new version of
the gateway test object has to be verified.

7.1.1 Manual Definitions

The automated test system requires onetime manual definition of the following records:

• [TP_Routing_Scenarios]: The record in which scenarios utilizing TP routing functional-
ity of the gateway system are registered.

• [TP_Routing_Fashions]: The record in which the number and type of parameters re-
quired for each TP_Routing_Scenario are registered.

91

Real ECU

(or Evaluation Board)
Hardware and

Software Interface

ECUM. . .Diagnostic Tester

Simulation Tool

ECU2ECU1

Test Case Selection and Generation Engine

Test Case

Restbus Simulation

Analysis

Script File

AUTOSAR ECU Description File

Reporting

Manual Definitions

Logging

Figure 7.1: Test System Design

• [TP_Routing_Scenarios_Conflicts]: This record contains conditions or constraints of
combinable TP_Routing_Scenarios.

• [TP_Routing_Connections_Conflicts]: The record in which rules for TypeB-Conflicts are
specified. This record helps to recognize conflicting TP_Routing_Channels automatically.

7.1.2 Parameter Abstraction and IPM

According to the AUTOSAR standard, an AUTOSAR based gateway must have an AUTOSAR
Description File that contains information about the gateway test object. Information regarding
TP routing is part of this file.

As mentioned previously, an AUTOSAR Description File has a format similar to XML,
called ARXML, which is human- and machine-readable. In order to abstract TP relevant pa-
rameters from the AUTOSAR Description File of the gateway test object, a script written in the
scripting language “Perl” is used. The Perl script works with any AUTOSAR Description File
uses the specification of the system template V3.6.0 R3.2 Rev 3 [37]. An AUTOSAR system
template contains “keywords” that can be used to search and abstract required information re-
lated to TP routing on CAN, FlexRay and LIN bus systems. The Perl script uses among others
the following keywords (written in cursive) of the AUTOSAR Description File to search and
abstract TP information required to implement the proposed approach:

• Keywords of PDU Router Module

92

1. PduR: Keyword used to search for the container of the configuration parameters of
PDU Router module.

2. PduRGeneral: Keyword used to search for the subcontainer of PduR container that
contains general configuration parameters of PDU Router module, as for example
the parameter PDUR_MEMORY_SIZE which defines the memory size reserved for
PDU Router buffers and PDUR_GATEWAY_OPERATION which is used to enable
and disable PDU Router gateway operation.

3. PduRTpBufferTable: Keyword used to search for the subcontainer of PduR con-
tainer that contains the definition of all TP buffers. The configuration parameter
PDUR_MAX_TP_BUFFER_NUMBER which defines the maximum number of TP
buffers is included in this container.

4. PduRTpBuffer: Keyword used to search for the container of PduRTpBufferTable
subcontainer that specifies a TP buffer. The configuration parameter Length which
defines the length of the buffer is included in this container.

5. PduRRoutingTable: Keyword used to search for the subcontainer of PduR container
that contains all routing paths of PDUs.

6. PduRRoutingPath: Keyword used to search for the container of PduRRoutingTable
subcontainer that specifies the routing path of a PDU. Configuration parameters Sd-
uLength to define the length of PDU and TpChunkSize to define the chunk size are
included in this container.

7. PduRSrcPdu: Keyword used to search for the container of PduRRoutingPath sub-
container that specifies the source of the PDU to be routed.

8. PduRDestPdu: Keyword used to search for the container of PduRRoutingPath sub-
container that specifies one destination of PDU to be routed.

For more keyword of PDU Router module see [114].

• Keywords of FlexRay TP Module

1. FrTpConfiguration: Keyword used to search for the container that contains general
configuration parameters of the FlexRay TP module. Examples of configuration pa-
rameters included in this container are: FRTP_CHAN_NUM to define the number of
concurrent channels supported, FRTP_HAVE_ACKRT to enable and disable the ac-
knowledgment and retry mechanisms, FRTP_HAVE_GRPSEG to enable and disable
segmentation of 1:n messages and FRTP_HAVE_TC to enable and disable transmit
cancellation.

2. FrTpChannelConfiguration: Keyword used to search for the container that contains
configuration parameters of one FlexRay TP channel. Examples of configuration
parameters included in this container are: FRTP_CHANNEL_ID to define the ID
of the channel, FRTP_CON_NUM to define the number of connections used in
the channel, FRTP_TIMEOUT_AS, FRTP_TIMEOUT_AR, FRTP_TIMEOUT_BS,
FRTP_TIMEOUT_BR, FRTP_TIMEOUT_CS and FRTP_TIMEOUT_CR that define

93

timing parameters of the channel, and FRTP_ACKTYPE to define the type of ac-
knowledgment for the channel.

3. FrTpConnectionConfiguration: Keyword used to search for the container that con-
tains configuration parameters of one FlexRay TP connection. Examples of con-
figuration parameters included in this container are: FRTP_CON_CHANNEL that
defines the ID of the channel to which the connection belongs to, FRTP_SDUID
that defines the ID of the connection, FRTP_LA that defines the local address for the
respective connection, and FRTP_RA that defines the remote address for the respec-
tive connection.

For more keywords of FlexRay TP module see [24].

• Keywords of CAN TP Module

1. CanTp: Keyword used to search for the container that contains configuration param-
eters of CAN TP module.

2. CanTpGeneral: Keyword used to search for the subcontainer of CanTp container
that contains general configuration parameters of CAN TP module. Examples of
configuration parameters included in this container are: CanTpMainFunctionPeriod
that defines the cycle time of the main function of CAN TP module and CanTpTc
that enable or disable transmit cancellation on CAN bus.

3. CanTpRxNSdu: Keyword used to search for subcontainers that contain configura-
tion parameters of each configured CAN N-SDU received by CAN TP module. Ex-
amples of configuration parameters included in this container are: CANTP_ADD-
RESSING_FORMAT to define the addressing mode for the received N-SDU, CA-
NTP_BS that defines the block size, CANTP_NAR, CANTP_NBR and CANTP_NCR
that define timing parameters of N-SDUs, CANTP_RX_CHANNEL to define the link
to the RX connection channel used to receive the N-PDU, CANTP_WFTMAX to de-
fine the maximum number of wait N-PDUs that can be consecutively transmitted by
the receiver and CANTP_STMIN that defines the minimum separation time.

4. CanTpTxNSdu: Keyword used to search for the subcontainer that contains config-
uration parameters of each configured CAN N-SDU to be transmitted by the CAN
TP module. Examples of configuration parameters included in this container are:
CANTP_ADDRESSING_MODE that defines the addressing mode of the transmitted
N-SDU, CANTP_NAS, CANTP_NBS, CANTP_NCS, CANTP_NAS that define tim-
ing parameters and CANTP_DL that defines the data length code of the transmitted
N-SDU.

For more keywords of CAN TP module see [25].

• Keywords of LIN TP Module

1. LinTp: Keyword used to search for the descriptor of LIN TP module.

94

2. LinTpGeneral: Keyword used to search for the container that contains all LIN TP
general parameters.

3. LinTpRxNSdu: Keyword used to search for containers of received N-SDUs on LIN
channels. Configuration parameters included in each of these containers are for ex-
ample, LIN-TP_DL which holds the data length of the received N-SDU, LINTP_NSD-
U_ID which holds the identifier of received N-SDU and LINTP_NAD which holds
the NAD value for a specific LIN slave.

4. LinTpTxNSdu: Keyword used to search for containers of transmitted N-SDUs on
LIN channels. Configuration parameters included in each of these containers are for
example, LINTP_NSDU_ID which holds the identifier of transmitted N-SDU and
LINTP_NA-D which holds the NAD value for a specific LIN slave.

For more keywords of LIN TP module see [115].

While parsing an AUTOSAR Description File, the consistency of configuration parameters
related to TP routing is checked. The aim of consistency check is to figure out errors in the
configuration. For example, a consistency check rule can examine if all required configuration
parameters are available for TP_Routing_Channels of a specific TP_Routing_Fashion.

As the Script abstracts TP configuration parameters and builds TP_Routing_Channels, the
manual definitions are used to assign suitable TP_Routing_Scenarios to TP_Routing_Channels
in order to form TP_Routing_Instances. Once this process is completed, the Script compares
parameters of TP_Routing_Instances to collect them into groups. Finally, the two additional
parameters, Similarity Number and Stress Factor, are assigned to form Extended Groups.

After Extended Groups are formed, the Script deploys the sub-models method to handle
TypeA-Conflicts. This is achieved by collecting the Extended Groups with the help of the
record [TP_Routing_Scenarios_Conflicts]. The results of this step are sub-IPMs that are TypeA-
Conflict free, where each sub-IPM consists of a number of Extended Groups.

Generally, it is usual that Extended Groups are part of more than one sub-IPM. This re-
flects the fact that some TP_Routing_Scenarios may be combined with multiple conflicting
TP_Routing_Scenarios. To explain this, assume a simple example of three different TP_Routi-
ng_Scenarios as follows: S1 is assigned to an Extended Group G1, S2 is assigned to an Extended
Group G2 and S3 is assigned to an Extended Group G3. Let us assume that S1 and S2 are con-
flicting. In this case, handling TypeA-Conflicts will result in the following sub-IPMs:

1. sub-IPM1 with the Extended Groups (G1, G3)

2. sub-IPM2 with the Extended Groups (G2, G3)

Here, the Extended Group (G3) is part of two sub-IPMs.
The approach to handle TypeB-Conflicts is implemented as part of the test case selection

process in the Test Case Selection and Generation Engine part of the test system as explained in
the next subsection.

95

7.1.3 Test Case selection and Generation Engine

This part of the test system is responsible for the generation of Combination Tables for the
different sub-IPMs as well as the selection of TP_Routing_Instances according to rows of the
Combination Tables. It is also responsible for the creation of test cases as described in the
proposed approach.

The test case selection and generation engine accepts TypeA-Conflict free sub-IPMs con-
structed in the previous parts as input and processes them successively. The engine deploys the
following functions to implement its task:

• selector(int Groups_References[][]): The input of this function are groups of a TypeA-
Conflict free sub-IPM which are referenced in the parameter array Groups_References.
The function is used to create SNRs for its input groups.

• initialize(int Groups_References[][]): This function assigns initial values to parameters
Include Times, Conflict ID and Token of TP_Routing_Instances of input groups that are
referenced in the parameter array Groups_References. The initial values for parameter
Include Times is 0 for all TP_Routing_Instances. However, the parameter Token will be
initialized with one of the values 0,1 or 2 depending on the values of parameters Conflict
ID and Include Times.

• build_combination_table(int Groups_References[][]): This function is used to build a
Combination Table that covers N-Wise interactions between input groups. The function
uses the parameter Groups_References to access its input groups.

• next_row(int Combination_Table[][]): This function moves the selection and generation
process to the next row of the processed Combination_Table.

• validate_row(int row[]): This function checks the possibility to build a combination for a
given row. The validity check is based on the availability of conflict-free TP_Routing_Inst-
ances in the related groups as specified in the row of the processed Combination_Table.

• select_elements_of_row(int row[]): This function picks up TP_Routing_Instances as spec-
ified in parameter row to build a combination. Values of parameters Token and Include
Times are used as a selection criterion. Once a TP_Routing_Instance is included in a test
case, its associated Include Times parameter will be incremented by one.

• update_token(): This function uses the current values of Include Times parameter along
with the values of Conflict ID parameter to assign suitable values to Token parameter as
described in the approach.

• generate_test_case(int References[]): This function supplements the selected TP_Routin-
g_Instances with additional information necessary to generate an executable test case.

• construct_MNR(int Groups_References[][]): This function isolates representatives of SN-
Rs of a TypeA-conflict free sub-IPM based on values of parameter Stress Factors. Subse-
quently and with the help of parameter Similarity Number, MNR is formed.

96

These function are utilized to implement steps of the approach included in figures 6.5, 6.6
and 6.7.

7.1.4 Restbus Simulation

The main task of the restbus simulation is to run generated test cases. To achieve this task, the
restbus simulation has the ability to communicate with the gateway test object on its connected
networks as in real scenarios. The access to networks of the gateway is supported by a Hardware
and Software Interface (see fig. 7.1). Over this Interface, the restbus simulation can trigger
TP routing by sending frames on the right networks and responding to outputs as depicted for
example in fig. 3.4.

While executing a test case, the restbus simulation simulates the behavior of the gateway’s
environment according to parameters of a test case. That is, a test case provides the restbus
simulation with parameters required to simulate the environment and validate the reactions.

The restbus simulation implemented in this thesis supports up to 4 CAN networks and one
FlexRay network. The maximum number of supported parallel TP_Routing_Instances is 40.
These two restrictions can be easily extended to support higher capabilities of the gateway test
object. However, an extension is not required if the gateway test object supports the same set or
a subset of these features.

Time in the Restbus Simulation

Since TP routing is a real-time functionality which utilizes timing parameters to control and
monitor the communication, time shall be handled very carefully in the restbus simulation.

Mainly, two timing aspects shall be considered. The first aspect is concerned with monitor-
ing and validating the reaction time of the gateway test object, while the second aspect focuses
on the moment of time in which the restbus simulation shall react to outputs of the gateway test
object. Additionally, a timeout for running of test cases shall be defined to prevent infinite loop
of execution.

During the execution of a test case, timing aspects of the environment are handled by means
of two different techniques. The first technique uses timers supported in most simulation tools,
whereas the second technique is based on the calculation of differences between timestamps.

Due to the uncontrollable additional time required to start and stop timers in most simulation
tools, timers shall be deployed cautiously and only if no another alternative is available. The time
consumed to start and stop timers affects the real time execution of test cases especially in TP
parallel routing, since the restbus simulation has to control and monitor lots of timing parameters
for all applied TP_Routing_Instances of the test case. To solve this problem, differences between
timestamps are calculated to fulfill most of the timing requirements of the test system, as for
example calculating the time gap between two frames to monitor defined timing parameters.

Nevertheless, the usage of timers is non-avoidable, since calculating the differences between
timestamps suffers from the problem of infinite waiting loops. For example, if an expected frame
has been dropped because of an error, the time difference cannot be calculated and the restbus
simulation would enter an infinite waiting loop.

97

For each TP_Routing_Instance of TP parallel routing, the restbus simulation utilizes some
timers to observe and control the communication on both source and destination networks. These
timers can vary depending on the communication bus (CAN, FlexRay, LIN) and the type of the
involved networks (Source or Destination). Required timers are listed below:

• For FlexRay network as a source or destination network: a unique timer to monitor the
Cycle Repetition parameter of each simulated FlexRay ECU of TP parallel routing.

• For CAN network as a source network: a unique timer to monitor the minimum separation
time (STmin) parameter of each simulated CAN ECU of TP parallel routing.

• Timer for the execution time of the test case: This timer shall terminate the test case
execution once the TP routing has encountered an error to avoid infinite waiting loop.

All other timing parameters are monitored and evaluated based on the differences between reg-
istered timestamps.

Send Functions of the Restbus Simulation

In order to transmit data and control frames of TP parallel routing, several send functions are
implemented in the restbus simulation. These functions are summarized as follows:

• Send_Single_Frame_CAN_Parallel(int References[]): to start parallel unsegmented phys-
ical TP data routing on a CAN Source Network. The function is able to handle follow-
ing addressing options in this case: normal addressing with 11 bit CAN identifier, nor-
mal fixed addressing with 29 bit CAN identifier, extended addressing with 29 bit CAN
identifier, mixed addressing with 11 bit CAN identifier and mixed addressing with 29 bit
CAN identifier. This function requires as parameter an integer array with references of
TP_Routing_Instances of the test case to be executed.

• Send_Functional_Frame_CAN_Parallel(int References[]): to start parallel unsegmented
functional TP data routing on a CAN Source Network. The function is able to handle
following addressing options in this case: normal addressing with 11 bit CAN identi-
fier, normal fixed addressing with 29 bit CAN identifier, extended addressing with 29 bit
CAN identifier. This function requires as parameter an integer array with references of
TP_Routing_Instances of the test case to be executed.

• Send_First_Frame_CAN_Parallel(int References[]): to start parallel segmented physical
TP data routing on a CAN Source Network. The function is able to handle following
addressing options in this case: normal addressing with 11 bit CAN identifier, normal
fixed addressing with 29 bit CAN identifier, extended addressing with 29 bit CAN iden-
tifier, mixed addressing with 11 bit CAN identifier and mixed addressing with 29 bit
CAN identifier. This function requires as parameter an integer array with references of
TP_Routing_Instances of the test case to be executed.

98

• Send_FC_CTS_Frame_CAN(int Reference): to send a Flow Control Frame with CTS con-
trol information on a CAN Destination Network of TP routing. The function needs as a
parameter an integer value which holds the reference of processed TP_Routing_Instance.

• Send_CF_Block_CAN(int Reference): to send a block of CAN Consecutive Frames on
a CAN Source Network of TP routing. The function requires as a parameter an integer
value that holds the reference of processed TP_Routing_Instance.

• Send_Start_Frame_Unsegmented_FR_Parallel(int References[]): to start parallel unseg-
mented physical TP data routing on a FlexRay Source Network. The function is able to
handle following addressing options in this case (all addressing formats are acknowledged
/unacknowledged, known/unknown message length): normal addressing, normal fixed ad-
dressing, extended addressing and mixed addressing. The function requires as a parameter
an integer array that holds the references of processed TP_Routing_Instances.

• Send_Functional_Frame_FlexRay_Parallel(int References[]): to start parallel unsegmen-
ted functional TP data routing through sending Start Frame on a FlexRay Source Network.
The function is able to handle following addressing options in this case (all addressing
formats are unacknowledged and with known message length): normal addressing, normal
fixed addressing and extended addressing. The function needs as a parameter an integer
array which holds the references of processed TP_Routing_Instances.

• Send_Start_Frame_Segmented_FR_Parallel(int References[]): to start parallel segmented
physical TP data routing on a FlexRay Source Network. The function is able to handle
following addressing options in this case (all addressing formats are acknowledged/unac-
knowledged, known/unknown message length): normal addressing, normal fixed address-
ing, extended addressing and mixed addressing. The function needs as a parameter an
integer array which holds the references of processed TP_Routing_Instances.

• Send_FC_CTS_Frame_FR(int Reference): to send a Flow Control Frame with CTS con-
trol information on a FlexRay Destination Network. This function needs as a parameter
an integer value which holds the reference of processed TP_Routing_Instance.

• Send_CF_Block_FR(int Reference): to send a block of FlexRay Consecutive Frames on
a FlexRay Source Network. This function needs as a parameter an integer value which
holds the reference of processed TP_Routing_Instance.

• Send_LF_Frame_FR(int Reference): to send a FlexRay Last Frame on a FlexRay Source
Network. This function needs as a parameter an integer value which holds the reference
of processed TP_Routing_Instance.

7.1.5 Analysis

During the execution of a test case for TP parallel routing, the restbus simulation shall process
individual TP_Routing_Instances correctly. In order to achieve this task, the restbus simulation
takes over the following responsibilities:

99

• It triggers TP data routing on the corresponding Source Networks.

• It evaluates responses of the gateway test object on the corresponding Source and Destina-
tion Networks. The evaluation process comprises checking the content of response frames
as well as the related timing parameters.

• It sends responses on the Source and Destination Networks as specified in the test case.

• It reports errors and performance information.

• It adapts the test case selection and generation process according to the information gained
from run test cases.

To carry out these responsibilities, the restbus simulation makes use of the send functions de-
fined previously. Additionally, it utilizes three different arrays to save information related to the
routing behavior of individual TP_Routing_Instances. The first array (TP_Routing_Instances_-
Information[][]) is a two dimensional array used to hold the current status of routing during the
test case run. The first index of the array is a reference to individual TP_Routing_Instances of the
test case, while the second index refers to information related to individual TP_Routing_Instances
of the test case. This information is summarized as below:

• FS, BS and STmin parameters of the last received Flow Control Frame in the case of CAN
networks.

• FS, BC and BfS of the last received Flow Control Frame in the case of FlexRay networks.

• SN of the last sent and the last received CAN frame in the case of CAN networks.

• SN of the last sent and the last received FlexRay frame in the case of FlexRay networks.

• The total number of sent bytes on the Source Network.

• The total number of received bytes on the Destination Network.

The second array (TP_Routing_Instances_Times[][]) is also a two dimensional array used
to hold the timestamps of frames in order to calculate time differences and monitor timing pa-
rameters. During test case run, following timestamps are saved for individual TP_Routing_Insta-
nces:

• Timestamp of the First Frame sent on the Source Network in the case of a CAN network.

• Timestamp of the First Frame routed on the Destination Network in the case of a CAN
network.

• Timestamp of the Start Frame sent on the Source Network in the case of a FlexRay net-
work.

• Timestamp of the Start Frame routed on the Destination Network in the case of a FlexRay
network.

100

• Timestamp of the last Consecutive Frame sent on the Source Network.

• Timestamp of the last Consecutive Frame routed on the Destination Network.

• Timestamp of the last Flow Control Frame received on the Source Network.

• Timestamp of the last Flow Control Frame sent on the Destination Network.

• Timestamp of the Last Frame sent on the Source Network in the case of a FlexRay net-
work.

• Timestamp of the Last Frame routed on the Destination Network in the case of a FlexRay
network.

The third array (TP_Routing_Instances_Performance[][]) is used to collect information
related to TP routing performance of the gateway test object. Following TP routing details are
saved in this array:

• Maximum and minimum routing time of the First Frames and the Start Frames with ref-
erences to the corresponding TP_Routing_Instances and the utilized test cases.

• Maximum and minimum routing time of Consecutive Frames with references to the cor-
responding TP_Routing_Instances and the utilized test cases.

• Maximum and minimum time to receive a Flow Control Frame from the gateway test
object with references to the corresponding TP_Routing_Instances and the utilized test
cases.

• Maximum and minimum routing time of the whole defined data with references to the
corresponding TP_Routing_Instances and the utilized test cases.

• Maximum and minimum count of received Flow Control Frames with the status (WAIT)
on the Source Network with references to the corresponding TP_Routing_Instances and
the utilized test cases.

• Maximum and minimum count of Frames saved temporarily in the gateway test object
with references to the corresponding test cases.

7.1.6 Reporting

Reporting is an important part of software testing. It is a mechanism to represent test results in
a way that helps the customer to understand the status of the product and consequently make the
right decision.

Basically, a test report should have enough information about the SUT and its tested func-
tionality. One of the most important features of a test report is the granularity. This must be
maintained for different persons reading the report, such as developers and managers, to un-
derstand the efficiencies/deficiencies of the system. Furthermore, it is recommended to use

101

Figure 7.2: HTML Report: Description Section

graphical representation to enhance the readability of the report by utilizing mechanisms such
as charts and tables.

In the test system developed in this thesis, the report is designed to include the following
sections (see fig. 7.2):

• Description of the Gateway Test Object
This section of the main page of the report contains general information about the gateway
test object as well as the purpose of testing. It highlights the tested functions and features
with a reference to the corresponding requirement specifications. Information included
here are listed below:

– Name and type of the gateway test object.

– Production series that utilize the gateway test object.

– Number and characteristics of the connected networks.

– Software and hardware versions of the gateway test object.

– Tested functionalities of the gateway test object and information about the involved
software modules with their versions.

– References to the requirement specification documents.

• Scope of Testing
In this section, the scope of testing is communicated to the reader. Testing in this thesis has
two scopes documented in this section. These are the functionality and the performance.

102

Figure 7.3: HTML Report: Test Cases Section

• Test Strategy
In this section, the testing strategy is described to help the reader to understand how test
cases are selected and generated.

• Acceptance and Coverage Criteria
In this section, the test acceptance and coverage criteria are described.

• Test Summary
This section addresses on a very abstract level some of the test details like start/end dates,
the tools used and their versions, the number of generated test cases, the number of errors
and a performance summary of the gateway test object.

• Test Cases
In this section, detailed information about the structure of individual test cases and their
execution is presented (see fig. 7.3). Hereby, the reader has the ability to navigate through
executed test cases to gain information like the involved TP_Routing_Instances and the
routing performance related to each of them.

103

7.2 Gateway Test Object

The gateway test object used to carry out the experiments in this thesis consists of a hardware and
a software part. The software part is developed on the basis of the AUTOSAR standard version
3.2. The transport protocols of the software are based on the ISO standards, ISO 10681 for
FlexRay TP [11], and ISO 15765 for CAN TP [7]. Regarding the hardware part, the evaluation
board V850E2/Fx4 with the following features is deployed:

• 32-bit microcontroller.

• 6 configurable serial interfaces for CAN communication protocol.

• 2 configurable serial interfaces for FlexRay communication protocol.

• 6 configurable serial interfaces for LIN communication protocol.

• 6 configurable serial interfaces for RS232 communication protocol.

• LEDs, switches and buttons for direct user interactions.

• Debug and Flash Programming Connectors.

7.3 General Information

This section contains general information related to defined aspects of the proposed combina-
torial test approach. This information is required by the test system to apply the approach and
generate executable test cases.

7.3.1 TP Routing Scenarios

The determined TP_Routing_Scenarios are:

• Flashing (S1).

• Uploading (S2).

• OBD in the one direction (S3).

• OBD in the other direction (S4).

• Functional TP routing (S5).

104

7.3.2 Similarity Criteria

The Similarity criteria used to form groups are:

• Network relationships of TP_Routing_Channels (Source_Network and Destination_N-
etwork).

• Addressing format (normal or mixed).

• Block Size (BS) and minimum separation time (STmin) if they are available.

• Cycle Repetition if it is available.

• ID Type (normal or extended).

• Address Type (physical, functional or extended).

• TP_Routing_Scenario

7.3.3 Conflicts

The determined conflicts are listed below:

• TypeA-Conflicts

– Flashing and Uploading are non-combinable

– Flashing and OBD in both directions are non-combinable

– Uploading and OBD in both directions are non-combinable

– OBD in both directions are non-combinable

• TypeB-Conflicts

– TP_Routing_Channels with the same Request_Identifier are non-combinable

– TP_Routing_Channels with the same Request_Slot_ID, Base_Cycle and Cycle_Rep-
etition are non-combinable

• TypeC-Conflicts

– The maximum configured number of parallel TP_Routing_Instances for CAN-CAN
routing (50 in the first experiment and 10 in the second experiment).

– The maximum configured number of parallel TP_Routing_Instances for CAN-FlexR-
ay routing (10 in the first experiment and not available in the second experiment).

– The maximum configured buffers for transport protocols (50 in the first experiment
and 10 in the second experiment).

– The maximum configured transmit and receive channels for transport protocols (50
in the first experiment and 10 in the second experiment).

105

7.4 The First Experiment

The central gateway used in the first experiment is a special electronic control unit which con-
nects five different networks representing five functional domains of a modern vehicle. Bus
systems of the five networks are listed as follows:

• A CAN network for the first functional domain with 250 Kilobaud, denoted as bus 1.

• A CAN network for the second functional domain with 250 Kilobaud, denoted as bus 2.

• A CAN network for the third functional domain with 125 Kilobaud, denoted as bus 3.

• A CAN network for the fourth functional domain with 250 Kilobaud, denoted as bus 4.

• A FlexRay network for the fifth functional domain with 10 MB, denoted as bus 5.

The central gateway has 390 configured TP_Routing_Channels that can be categorized as
follows:

• 190 TP_Routing_Channels configured to route TP data from an External Diagnostic De-
vice to available ECUs over the gateway.

• 190 TP_Routing_Channels configured to route TP data from available ECUs to an Exter-
nal Diagnostic Device over the gateway.

• 4 TP_Routing_Channels configured to route TP data between 4 couples of ECUs in the
one direction.

• 4 TP_Routing_Channels configured to route TP data between 4 couples of ECUs in the
another direction.

• 2 functional TP_Routing_Channels.

7.4.1 Results of the Experiment

Based on the previously defined similarity criteria, 39 Extended Groups of similar TP_Routing_I-
nstances are built for the central gateway test object. The implementation of the method to han-
dle TypeA-Conflicts among these groups resulted in 4 different sub-IPMs. These sub-IPMs with
their corresponding groups are represented in tables 7.1, 7.2, 7.3 and 7.4.

Applying the methodology of SNRs and MNRs to the sub-IPMs, along with the approaches
to handle TypeB- and TypeC-Conflicts, led to the following results:

• Four SNRs and one MNR for the first sub-IPM with the following number of combina-
tions:

106

Table 7.1: First Experiment: First Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (19 elements) 1,2 Mixed (20,0) (20,0) - Normal Physical S1

G2 (8 elements) 1,2 Normal (20,0) (12,10) - Normal Physical S1

G3 (14 elements) 1,2 Normal (20,0) (20,0) - Normal Physical S1

G4 (8 elements) 1,2 Normal (12,10) (12,10) - Extended Physical S1

G5 (58 elements) 1,3 Mixed (20,0) (20,0) - Normal Physical S1

G6 (29 elements) 1,3 Normal (20,0) (12,10) - Normal Physical S1

G7 (5 elements) 1,3 Mixed (20,0) (20,20) - Normal Physical S1

G8 (3 elements) 1,3 Normal (20,0) (20,0) - Normal Physical S1

G9 (8 elements) 1,4 Normal (20,0) (20,0) - Normal Physical S1

G10 (2 elements) 1,4 Normal (4,10) (4,10) - Normal Physical S1

G11 (13 elements) 1,4 Normal (20,0) (12,10) - Normal Physical S1

G12 (5 elements) 1,4 Mixed (20,0) (20,0) - Normal Physical S1

G13 (8 elements) 1,5 Normal (20,0) (-,-) 2 Normal Physical S1

G14 (1 elements) 1,5 Normal (20,0) (-,-) 1 Normal Physical S1

G15 (1 elements) 1,5 Mixed (20,0) (-,-) 4 Normal Physical S1

G16 (1 elements) 1,5 Normal (12,10) (-,-) 1 Extended Physical S1

G17 (7 elements) 1,5 Normal (20,0) (-,-) 4 Normal Physical S1

G18 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G19 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

– 10 combinations from the first SNR that consists of groups G1, G2, G3, G4, G18 and
G19.
Table 7.5 represents the Combination Table for the first SNR of the first sub-IPM
after invalid combinations are handled. It is noted in this Combination Table that
although the group G1 contains 19 TP_Routing_Instancess, only combinations of 5
of them are allowed in parallel due to TypeB-Conflicts.

– 152 combinations from the second SNR that consists of groups G5, G6, G7, G8 and
G18.

– 1 combination from the third SNR that consists of groups G9, G10, G11, G12 and G18.

– 31 combinations from the fourth SNR that consists of groups G13, G14, G15, G16,
G17, G18 and G19.

– 4 combinations from the MNR that consists of Groups G1, G5, G12, G17, G18 and
G19.

• Four SNRs and one MNR for the second sub-IPM with the following number of combi-
nations:

– 10 combinations from the first SNR that consists of groups G1, G2, G3, G4, G17 and
G18.

– 78 combinations from the second SNR that consists of groups G5, G6, G7 and G17.

– 1 combination from the third SNR that consists of groups G8, G9, G10, G11 and G17.

107

Table 7.2: First Experiment: Second Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (15 elements) 2,1 Normal (12,0) (12,0) - Normal Physical S2

G2 (7 elements) 2,1 Normal (12,10) (12,0) - Normal Physical S2

G3 (19 elements) 2,1 Mixed (12,0) (12,0) - Normal Physical S2

G4 (8 elements) 2,1 Normal (12,0) (12,0) - Extended Physical S2

G5 (63 elements) 3,1 Mixed (12,0) (12,0) - Normal Physical S2

G6 (29 elements) 3,1 Normal (12,10) (12,0) - Normal Physical S2

G7 (3 elements) 3,1 Normal (12,0) (12,0) - Normal Physical S2

G8 (8 elements) 4,1 Normal (12,0) (12,0) - Normal Physical S2

G9 (13 elements) 4,1 Normal (12,10) (12,0) - Normal Physical S2

G10 (5 elements) 4,1 Mixed (12,0) (12,0) - Normal Physical S2

G11 (2 elements) 4,1 Normal (4,10) (4,10) - Normal Physical S2

G12 (8 elements) 5,1 Normal (-,-) (12,0) 2 Normal Physical S2

G13 (1 elements) 5,1 Normal (-,-) (12,0) 1 Normal Physical S2

G14 (7 elements) 5,1 Normal (-,-) (12,0) 4 Normal Physical S2

G15 (1 elements) 5,1 Mixed (-,-) (12,0) 4 Normal Physical S2

G16 (1 elements) 5,1 Normal (-,-) (12,0) 1 Extended Physical S2

G17 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G18 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

Table 7.3: First Experiment: Third Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (3 elements) 3,4 Normal (6,10) (6,10) - Normal Physical S3

G2 (1 elements) 4,5 Normal (6,20) (-,-) 16 Normal Physical S3

G3 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G4 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

Table 7.4: First Experiment: Forth Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (3 elements) 4,3 Normal (6,10) (6,10) - Normal Physical S4

G2 (1 elements) 5,4 Normal (-,-) (12,20) 16 Normal Physical S4

G3 (1 elements) 1,(2,3,4,5) Normal (-,-) (-,-) - Normal Functional S5

G4 (1 elements) 1,(2,5) Normal (-,-) (-,-) - Extended Functional S5

– 31 combinations from the fourth SNR that consists of groups G12, G13, G14, G15,
G16, G17 and G18.

– 10 combinations from the MNR that consists of groups G3, G5, G10, G14, G17 and
G18.

• Three SNRs and one MNR for the third sub-IPM with the following number of combina-
tions:

– 1 combination from the first SNR that consists of the group G1.

108

Table 7.5: First Experiment: Combination Table of the first SNR in the first Sub-IPM

G1 G2 G3 G4
5 8 14 6
5 8 13 7
5 7 14 7
4 8 14 7
5 8 12 8
5 7 13 8
4 8 13 8
5 6 14 8
4 7 14 8
3 8 14 8

– 1 combination from the second SNR that consists of the group G2.

– 1 combination from the third SNR that consists of groups G3 and G4.

– 1 combination from the MNR that consists of groups G1, G2, G3 and G4.

• Three SNRs and one MNR for the fourth sub-IPM with the following number of combi-
nations:

– 1 combination from the first SNR that consists of the group G1.

– 1 combination from the second SNR that consists of the group G2.

– 1 combination from the third SNR that consists of groups G3 and G4.

– 1 combination from the MNR that consists of groups G1, G2, G3 and G4.

Altogether, 336 combinations were sufficient to measure the performance and verify TP parallel
routing of the central gateway in this experiment. Comparing to the number of possible combi-
nations of the starting point, which can be calculated as in (3.18), this is a huge reduction. The
test time was around three hours.

Table 7.6 represents an example of a combination from the first SNR of the first sub-IPM.
Following numbers of TP_Routing_Instances have been selected to generate this combination:

• 5 TP_Routing_Instances from group G1

• 8 TP_Routing_Instances from group G2

• 14 TP_Routing_Instances from group G3

• 3 TP_Routing_Instances from group G4

109

Table 7.6: First Experiment: An Example of a Resulting Combination

Request ID Response ID Network
Relationship

BS and STmin Message
DLC

NAD Addressing
Format

ID Type TP
Routing
Scenario

0x4e9 0x499 1,2 (20,0) (20,0) 8 14 Mixed Normal S1

0x4e8 0x498 1,2 (20,0) (20,0) 8 32 Mixed Normal S1

0x4c4 0x494 1,2 (20,0) (20,0) 8 5 Mixed Normal S1

0x4d0 0x490 1,2 (20,0) (20,0) 8 8 Mixed Normal S1

0x4e7 0x497 1,2 (20,0) (20,0) 8 13 Mixed Normal S1

0x450 0x5d9 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x456 0x5d5 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x7e4 0x7ec 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x625 0x5a5 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x654 0x5d4 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x652 0x5d2 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x624 0x5a4 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x653 0x5d3 1,2 (20,0) (8,10) 8 - Normal Normal S1

0x64e 0x5ce 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7e5 0x7ed 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7e1 0x7ea 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x665 0x5e5 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x778 0x788 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x64d 0x5cd 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x656 0x5d6 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x650 0x5d0 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7e2 0x7e8 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7e6 0x7ee 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7d9 0x7e7 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x7e3 0x7eb 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x662 0x5e2 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x65b 0x6db 1,2 (20,0) (20,0) 8 - Normal Normal S1

0x18da69f1 0x18daf169 1,2 (12,10) (12,10) 8 - Normal Extended S1

0x18da66f1 0x18daf166 1,2 (12,10) (12,10) 8 - Normal Extended S1

0x18da43f1 0x18daf143 1,2 (12,10) (12,10) 8 - Normal Extended S1

7.5 The Second Experiment

The powertrain controller gateway used in this experiment is a special electronic control unit
which connects four different networks representing four functional domains of a modern vehi-
cle. Bus systems of the four networks are listed as follows:

• A CAN network for the first functional domain with 250 Kilobaud, denoted as bus 1.

• A CAN network for the second functional domain with 125 Kilobaud, denoted as bus 2.

• A CAN network for the third functional domain with 500 Kilobaud, denoted as bus 3.

• A CAN network for the fourth functional domain with 250 Kilobaud, denoted as bus 4.

110

The gateway has 39 configured TP_Routing_Channels that can be categorized as follows:

• 18 TP_Routing_Channels configured to route TP data from External Diagnostic Device
to connected ECUs over the gateway.

• 18 TP_Routing_Channels configured to route TP data from available ECUs to External
Diagnostic Device over the gateway.

• 3 functional TP_Routing_Channels.

7.5.1 Results of the Experiment

Based on the previously defined similarity criteria, 16 Extended Groups of similar TP_Routing_I-
nstances are built for the powertrain gateway test object. The implementation of the method to
handle TypeA-Conflict among these groups resulted in 2 different sub-IPMs. These sub-IPMs
with their corresponding groups are represented in tables 7.7 and 7.8.

Table 7.7: Second Experiment: First Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (5 elements) 1,2 Normal (20,0) (12,10) - Normal Physical S1

G2 (2 elements) 1,2 Mixed (20,0) (20,0) - Normal Physical S1

G3 (4 elements) 1,3 Mixed (20,0) (20,0) - Normal Physical S1

G4 (1 elements) 1,3 Normal (20,0) (12,10) - Normal Physical S1

G5 (2 elements) 1,3 Normal (20,0) (20,0) - Normal Physical S1

G6 (4 elements) 1,4 Normal (20,0) (12,10) - Normal Physical S1

G7 (1 elements) 1,(2,3,4) Normal (-,-) (-,-) - Normal Functional S5

G8 (1 elements) 1,(2,3,4) Normal (-,-) (-,-) - Normal Functional S5

G9 (1 elements) 1,4 Normal (-,-) (-,-) - Normal Functional S5

Table 7.8: Second Experiment: Second Sub-IPM’s Groups

Groups Network
Relationship

Addressing
Format

BS and STmin Cycle
Repetition

ID Type Address
Type

TP Routing
Scenario

G1 (3 elements) 2,1 Normal (12,10) (12,0) - Normal Physical S1

G2 (2 elements) 2,1 Mixed (12,0) (12,0) - Normal Physical S1

G3 (2 elements) 2,1 Normal (12,0) (12,0) - Normal Physical S1

G4 (3 elements) 3,1 Normal (12,0) (12,0) - Normal Physical S1

G5 (4 elements) 3,1 Mixed (12,0) (12,0) - Normal Physical S1

G6 (2 elements) 4,1 Normal (12,10) (12,0) - Normal Physical S1

G7 (2 elements) 4,1 Normal (12,0) (12,0) - Normal Physical S1

G8 (1 elements) 1,(2,3,4) Normal (-,-) (-,-) - Normal Functional S5

G9 (1 elements) 1,(2,3,4) Normal (-,-) (-,-) - Normal Functional S5

G10 (1 elements) 1,4 Normal (-,-) (-,-) - Normal Functional S5

Since the number of Extended Groups is small in this experiment, the two constructs of SNR
and MNR are not employed. That is, the approaches to handle TypeB- and TypeC-Conflicts are

111

applied directly to the groups of sub-IPMs. This led to the following number of combinations
during the selection and generation process:

• 101 combinations from the first sub-IPM.

• 273 combinations from the second sub-IPM.

Altogether, 374 combinations were sufficient to measure the performance and verify TP parallel
routing of the powertrain gateway in this experiment. The test time was around three hours.

112

CHAPTER 8
Summary and Outlook

8.1 Discussion

Depending on the grade of diversity in parameters of TP_Connection_Channels and in charac-
teristics of connected networks; the number of formulated groups can increase. The idea is to
cover the interactions between formulated groups instead of the interactions between TP_Routin-
g_Instances. This helps to avoid similar combinations and contribute to the reduction of the test
suit size. If the number N of groups remains high, either a 2-Wise or 3-wise coverage criterion
can be used.

A drawback of the proposed approach in this thesis is the need of expertise in system func-
tionality in order to define similarity criteria and calculate the Stress Factor parameters for the
groups. However, this needs to be performed only once. Later on, combinations can be gener-
ated and tested automatically for each new release of the system.

8.2 Conclusion and Future Work

In this thesis, a combinatorial test process has been proposed to test the functionality of trans-
port protocol parallel routing of an AUTOSAR gateway system and measure its performance.
The proposed approach comprises a methodology to build a creative input parameter model
that represents the input space of the system and assists in reducing the number of parameter
combinations to be tested. The methodology of input parameter model uses defined similar-
ity criteria to cluster system input parameters represented as TP_Routing_Instances into groups
whose members stimulate similar behavior.

As conflicts in the resulting input parameter model have to be handled, the two known
conflict handling methods sub-models and avoid are used to prohibit invalid combinations of
TP_Routing_Instances.

In order to reduce the number of combinations, a novel coverage level has been presented.
The proposed coverage level covers the interactions between groups of similar input parameters

113

instead of the parameters themselves. This helps to avoid similar combinations and increase the
test coverage.

For further reduction of the size of the test suite, two optional constructs have been also
suggested. The usage of these constructs depends on the number of resulting input similar
groups. The first construct SNR is applied to cover simple interactions between network pairs,
while the second construct MNR is applied to cover complex interactions between multiple
interacting networks.

The proposed approach has been validated and evaluated by means of real industrial exam-
ples. One main conclusion of this thesis is that one method or one approach is not sufficient
to handle all issues related to combinatorial testing. Once a complex system is considered, di-
verse problems are emerged. These problems are handled mostly in different research works,
where each work focuses merely on one problem to provide a separate solution. However, it is
of utmost importance to investigate all approaches suggested in literature to choose a suitable
combination of solutions that covers all emerged aspects of the studied system.

114

Bibliography

[1] J. Zhan, M. M. Porter, J. Polgar, and B. Vrkljan. Older drivers’ opinions of criteria that
inform the cars they buy: A focus group study. Accident Analysis & Prevention, 61:281–
287, 2013.

[2] M. Broy, S. Kirstan, and B. Schätz. What is the benefit of a model-based design of em-
bedded software systems in the car industry? In Emerging Technologies for the Evolution
and Maintenance of Software Models, 2011.

[3] G. Tassey. The economic impacts of inadequate infrastructure for software testing, 2002.

[4] IEEE Recommended Practice for Architectural Description of Software-Intensive Sys-
tems. IEEE Std. 1471-2000, pages 3–3, 2000.

[5] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for automotive
applications. IEEE Computer, 40:42–51, 2007.

[6] PREEvision. http://vector.com/vi_preevision_en.html, 2015. [Online; accessed 28-May-
2015].

[7] Volcano Network Architect. http://www.mentor.com/products/vnd/communication-
management/vna/, 2015. [Online; accessed 28-May-2015].

[8] LIN Specification Package Revision 1.3. LIN Consortium, 2002.

[9] H. Zimmermann. Osi reference model— the iso model of architecture for open
systems interconnection. pages 2–9. Artech House, Inc., Norwood, MA, USA, 1988.

[10] CAN communication protocol: Release Version 2.0B. http://www.bosch-
semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf, 2015. [Online; accessed
28-May-2015].

[11] F. Hartwich. Can with flexible data-rate. Proceedings of the 13th international CAN
Conference, 2012.

[12] M. Broy, G. Reichart, and L. Rothhardt. Architekturen softwarebasierter Funktionen im
Fahrzeug: von den Anforderungen zur Umsetzung. Springer-Verlag, 34:42–59, 2011.

115

[13] Time-Triggered Ethernet (TTEthernet). http://www.tttech.com/technologies/ttethernet/,
2014. [Online; accessed 19-July-2014].

[14] AUTOSAR Methodology. http://www.autosar.org/fileadmin/files/releases/3-
2/methodology-templates/methodology/auxiliary/AUTOSAR_Methodology.pdf, 2014.
[Online; accessed 19-July-2014].

[15] Road vehicles-Diagnostics on Controller Area Networks (CAN)-,. ISO 15765:2004(E),
2004.

[16] Road vehicles-Communication on FlexRay-,. ISO 10681:2010(E), 2010.

[17] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Publishers, 1999.

[18] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic Model
Checking: 1020 states and beyond. Fifth Annual IEEE Symposium on eLogic in Computer
Science, pages 428–439, 1990.

[19] D. Peled. Combining partial order reduction with on-the-fly model-checking. CAV ’94
Proceedings of the 6th International Conference on Computer Aided Verification, pages
377–390, 1994.

[20] P. Godefroid. Partial-order methods for the verification of concurrent systems- an ap-
proach to the state-explosion problem. Lecture Notes in Computer Science, 1032, 1996.

[21] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in model
checking. Lecture Notes in Computer Science, 1427:147–158, 1998.

[22] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generat-
ing fuctional tests. ACM, 31(6):676–686, June 1988.

[23] M. Grindal, J. Offutt, and S. F. Andler. Combination testing strategies: A survey. GMU
Technical Report ISE-TR-04-05, 2004.

[24] Specification of FlexRay Transport Layer. http://www.autosar.org/fileadmin/files/releases/3-
2/software-architecture/communication-stack/standard/AUTOSAR_SWS_FlexRay_TP.pdf,
2014. [Online; accessed 19-July-2014].

[25] Specification of CAN Transport Layer. http://www.autosar.org/fileadmin/files/releases/3-
2/software-architecture/communication-stack/standard/AUTOSAR_SWS_CAN_TP.pdf,
2014. [Online; accessed 19-July-2014].

[26] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG System: An
Approach to Testing Based on Combinatorial Design. IEEE Transaction on Software
Engineering, 23:437–444, 1997.

[27] R. Mandl. Orthogonal Latin Squares: An application of experiment design to compiler
testing. Communications of the ACM, 28:1054 –1058, 1985.

116

[28] C. J. Colbourn, M. B. Cohen, M. L. Fredman, and R. C. Turban. A Deterministic Den-
sity Algorithm for Pairwise Interaction Coverage. IASTED Intl. Conference on Software
Engineering, pages 345–352, 2004.

[29] IEEE Standard for Software Unit Testing. ANSI/IEEE Std. 1008-1987, 1987.

[30] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std. 610.12-1990,
1990.

[31] G. D. Everett and Raymond McLeod, Jr. Software Testing: Testing Across the Entire
Software Development Life Cycle. Wiley-IEEE Computer Society Pr, 2007.

[32] N. Juristo and S. Vegas. Functional Testing, Structural Testing and Code Reading: What
Fault Type Do They Each Detect? Springer Berlin Heidelberg, 2003.

[33] Roger S. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill
Higher Education, 7 edition, 2010.

[34] IEEE Recommended Practice for Software Requirements Specifications. IEEE Std. 830-
1998, 1998.

[35] W3CXML. http://www.w3.org/XML/Schema, 2014. [Online; accessed 19-July-2014].

[36] World wide web consortium (w3c). http://www.w3.org/, 2014. [Online; accessed 19-
July-2015].

[37] AUTOSAR Specification of the System Template.
http://www.autosar.org/fileadmin/files/releases/3-2/methodology-
templates/templates/standard/AUTOSAR_SystemTemplate.pdf, 2014. [Online; accessed
19-July-2014].

[38] J. Bertolino, J. Gao, and E. Marchetti. XML Every-Flavor Testing. INSTICC Press, pages
268–273, 2006.

[39] J. Bing Li and J. Miller. Testing the Semantics of W3C XML Schema. 29th Annual
International Computer Software and Applications Conference, 2:443–448, 2005.

[40] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Automatic Test Data Generation for
XML Schema-based Partition Testing. Proceeding AST ’07 Proceedings of the Second
International Workshop on Automation of Software Test, page 4, 2007.

[41] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Systematic Generation of XML In-
stances to Test Complex Software Applications. Proceeding RISE’06 Proceedings of the
3rd international conference on Rapid integration of software engineering techniques,
pages 114–129, 2007.

[42] M. Kaur, N. Sharma, and R. K. Kaur. XML Schema Based Approach for Testing of
Software Components. International Journal of Computer Applications, 6:7–11, 2010.

117

[43] J. Guttag. Abstract data types and the development of data structures. Commun. ACM,
20(6):396–404, 1977.

[44] I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu, and L. S. Reis. Checking the conformance
of java classes against algebraic specifications. In In Proceedings of the International
Conference Formal Methods and Software Engineering, volume 4260 of LNCS, pages
494–513. Springer-Verlag, 2006.

[45] J. J. M. M. Rutten. Universal coalgebra: a theory of systems, 1996.

[46] J. Gannon, P. McMullin, and R. Hamlet. Data abstraction, implementation, specification,
and testing. ACM Trans. Program. Lang. Syst., 3(3):211–223, 1981.

[47] D. Longuet and M. Aiguier. Specification-based testing for cocasl’s modal specifications.
In Proceedings of the 2Nd International Conference on Algebra and Coalgebra in Com-
puter Science, pages 356–371, Berlin, Heidelberg, 2007. Springer-Verlag.

[48] G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal specifications:
A theory and a tool. Softw. Eng. J., 6:387–405, 1991.

[49] M. C. Gaudel. Testing can be formal, too. In Proceedings of the 6th International Joint
Conference CAAP/FASE on Theory and Practice of Software Development, pages 82–96.
Springer-Verlag, 1995.

[50] R. Doong and P. G. Frankl. The astoot approach to testing object-oriented programs.
ACM Trans. Softw. Eng. Methodol., 3:101–130, 1994.

[51] R. Fletcher and A. S. M. Sajeev. A framework for testing object oriented software using
formal specifications. In In Proceedings of the International Conference on Reliable
Software Technologies: Ada-Europe, Lecture Notes in Computer Science, pages 159–170.
Springer-Verlag, 1996.

[52] B. Yu, L. Kong, Y. Zhang, and H. Zhu. Testing java components based on algebraic spec-
ifications. 1st International Conference on Software Testing, Verification, and Validation,
pages 190–199, 2008.

[53] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE, 84:1090–1123, 2002.

[54] E. Brinksma and J. Tretmans. Modeling and verification of parallel processes. chapter
Testing Transition Systems: An Annotated Bibliography, pages 187–195. Springer-Verlag
New York, Inc., 2001.

[55] B. Legeard. Model-based testing: Next generation functional software testing. In Practi-
cal Software Testing : Tool Automation and Human Factors, Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2010.

118

[56] Z. Füredi and R. P. Kurshan. Minimal length test vectors for multiple-fault detection.
Theor. Comput. Sci., 315(1):191–208, 2004.

[57] A. V. Aho, A. T. Dahbura, D. Lee, and M. Uyar. Conformance testing methodologies
and architectures for osi protocols. chapter An Optimization Technique for Protocol Con-
formance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours,
pages 427–438. IEEE Computer Society Press, 1995.

[58] J. Tretmans. Formal methods and testing. chapter Model Based Testing with Labelled
Transition Systems, pages 1–38. Springer-Verlag, 2008.

[59] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou. Formal
methods and testing. chapter Testing Real-time Systems Using UPPAAL, pages 77–117.
Springer-Verlag, Berlin, Heidelberg, 2008.

[60] B. Nielsen and A. Skou. Automated test generation from timed automata. In Proceedings
of the 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 343–357, London, UK, UK, 2001. Springer-Verlag.

[61] L. Frantzen, J. Tretmans, and Willemse. T. A. C. Test generation based on symbolic
specifications. In Formal Approaches to Software Testing, pages 1–15. Springer Berlin
Heidelberg, 2005.

[62] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approx-
imate analysis. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 349–364. Springer Berlin Heidelberg, 2005.

[63] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement rela-
tions. In Proceedings of the 9th International Conference on Concurrency Theory, pages
163–178. Springer-Verlag, 1998.

[64] L. de Alfaro and T. A. Henzinger. Interface automata. SIGSOFT Softw. Eng. Notes,
26(5):109–120, 2001.

[65] R. Groz, O. Charles, and J. Renévot. Relating conformance test coverage to formal spec-
ifications. In FORTE’96, pages 195–210, 1996.

[66] L. M. G. Feijs, N. Goga, S. Mauw, and J. Tretmans. Test selection, trace distance and
heuristics. In Proceedings of the IFIP 14th International Conference on Testing Com-
municating Systems XIV, pages 267–282, Deventer, The Netherlands, The Netherlands,
2002. Kluwer, B.V.

[67] C. Jard and T. Jéron. Tgv: Theory, principles and algorithms: A tool for the automatic
synthesis of conformance test cases for non-deterministic reactive systems. Int. J. Softw.
Tools Technol. Transf., 7(4):297–315, 2005.

[68] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating finite state machines
from abstract state machines. SIGSOFT Softw. Eng. Notes, 27(4):112–122, 2002.

119

[69] L. Nachmanson, M. Veanes, W. Schulte, N. Tillmann, and W. Grieskamp. Optimal strate-
gies for testing nondeterministic systems. SIGSOFT Softw. Eng. Notes, 29(4):55–64,
2004.

[70] W. Grieskamp, N. Kicillof, and N. Tillmann. Action machines: a framework for encod-
ing and composing partial behaviors. International Journal on Software and Knowledge
Engineering, 16:705–726, 2006.

[71] C. Constant, T. Jéron, H. Marchand, and V. Rusu. Integrating formal verification and
conformance testing for reactive systems. IEEE Trans. Softw. Eng., 8(33):558–574, 2007.

[72] L. Frantzen, J. Tretmans, and T. Willemse. A symbolic framework for model-based test-
ing. FATES 2006 and RV 2006, 4262:40–54, 2006.

[73] K. El-Fakih, N. Yevtushenko, and H. Fouchal. Testing timed finite state machines with
guaranteed fault coverage. In: TestCom 2009, 5826:66–80, 2009.

[74] ETSI. 2011b. requirements for modelling notations. Technical Report ES 202 951. ETSI,
2011.

[75] G. J. Myers, T. Badgett, and C. Sandler. The Art of Software Testing. Wiley, 2011.

[76] T. Y. Chen, T. H. Tse, and Y. T. Yu. Proportional sampling strategy: A compendium and
some insights. J. Syst. Softw., 58(1):65–81, 2001.

[77] H. Liu, F. Kuo, and T. Y. Chen. Comparison of adaptive random testing and random
testing under various testing and debugging scenarios. Softw. Pract. Exper., 42(8):1055–
1074, 2012.

[78] Huai L., X. Xie, J. Yang, Y. Lu, and T. Y. Chen. Adaptive random testing through test
profiles. Softw. Pract. Exper., 41(10):1131–1154, 2011.

[79] A. Shahbazi, A. F. Tappenden, and J. Miller. Centroidal voronoi tessellations - a new
approach to random testing. IEEE Trans. Softw. Eng., 39(2):163–183, 2013.

[80] A. F. Tappenden and J. Miller. A novel evolutionary approach for adaptive random testing.
IEEE Trans. on Reliability, pages 619–633, 2009.

[81] Y. K. Malaiya. Antirandom testing: getting the most out of black-box testing, 1995.

[82] J. Wegen and O. Buehler. Evaluation of different fitness functions for the evolutionary
testing of an autonomous parking system. In In Proceedings of GECCO, pages 1400–
1412. Springer-Verlag, 2004.

[83] M. Harman and P. McMinn. A theoretical and empirical study of search-based testing:
Local, global, and hybrid search. IEEE Trans. Softw. Eng., 36(2):226–247, 2010.

[84] J. Wegener and M. Grochtmann. Verifying timing constraints of real-time systems by
means of evolutionary testing. Real-Time Syst., 15:275–298, 1998.

120

[85] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo. Automated unique input output
sequence generation for conformance testing of fsms. Comput. J., 49:331–344, 2006.

[86] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. Ipog-ipog-d: Efficient test
generation for multi-way combinatorial testing. Software Test., Verif. & Reliab., 18:125–
148, 2008.

[87] B. Beizer. Software Testing Techniques (2nd ed.). Van Nostrand Reinhold Co., 2nd
edition, 1990.

[88] K Tai and Y. Lei. A test generation strategy for pairwise testing. IEEE Transactions on
Software Engineering, 28:109–111, 2002.

[89] Y. W. Tung and W. S. Aldiwan. Automatic test case generation for the new genration
mission software system. IEEE Aerospace Conference, 1:431–437, 2000.

[90] M. Grindal. Handling Combinatorial Explosion in Software Testing. PhD thesis,
Linköping Studies in Science and Technology, 2007.

[91] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University Press,
2008.

[92] R. R. Othman, K. Z. Zamli, and S. M. S. Mohamad. T-way testing strategies: A crit-
ical survey and analysis. International Journal of Digital Content Technology and its
Application, 7:222–235, 2013.

[93] A. W. Williams. Determination of test configurations for pair-wise interaction coverage.
Testing of Communicating Systems IFIP Advances in Information and Communication
Technolog, 48:59–74, 2000.

[94] A. W. Williams and R. L. Robert. A measure for component interaction test cover-
age. IEEE International Conference on Computer Systems and Applications, 48:304–311,
2001.

[95] H. Mohammad and S. M. Shamoon. Handling conflicts to test transport protocol’s parallel
routing on a vehicle gateway system. IEEE Federated Conference on Computer Science
and Information Systems (FedCSIS), pages 1559–1568, 2014.

[96] D. R. Kuhn and M. J. Reilly. An investigation of the applicability of design of experi-
ments to software testing. In Proceedings of the 27th Annual NASA Goddard Software
Engineering Workshop, 13:91–95, 2002.

[97] D. R. Kuhn, D. R. Wallace, and A. M. Gallo Jr. Software fault interactions and impli-
cations for software testing. IEEE Transactions on Software Engineering, 30:418–421,
2004.

[98] M. B. Cohen. Designing Test Suites for Software Interaction Testing. PhD thesis, Univer-
sity of Auckland, 2004.

121

[99] A. W. Williams and R. L. Robert. A practical strategy for testing pair-wise coverage
of network interfaces. In Proceedings of the 7th Internation Symposium on Software
Reliability Engineering, pages 246–254, 1996.

[100] M. Grindal, J. Offutt, and J. Mellin. Managing conflicts when using combination strate-
gies to test software. Software Engineering Conference, pages 255–264, 2007.

[101] R. Brownlie, J. Prowse, and M. S. Phadke. Robust testing of at&t pmx/starmail using
oats. AT&T Technical Journal, pages 41–47, 1992.

[102] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combinatorial design ap-
proach to automatic test generation. IEEE Software, 13:83–87, 1996.

[103] J. Czerwonka. Pairwise testing in the real world: practical extensions to test-case scenar-
ios. In Proceedings of the 24nd Pacific Northwest Software Quality Conference, 2006.

[104] R. C. Bryce and C. J. Colbourn. A density-based greedy algorithm for higher strength
covering arrays. Softw. Test. Verif. Reliab., 19:37–53, 2009.

[105] Z. Wang, B. Xu, and C. Nie. Greedy heuristic algorithms to generate variable strength
combinatorial test suite. International Conference on, Quality Software, pages 155–160,
2008.

[106] D. R. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei. Combinatorial
methods for event sequence testing. IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST), pages 601–609, 2012.

[107] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. Augmenting simulated annealing to
build interaction test suites. Proceedings of the 14th International Symposium on Software
Reliability Engineering, pages 394–405, 2003.

[108] S. A. Ghazi and M. A. Ahmed. Pair-wise test coverage using genetic algorithms. The
2003 Congress on Evolutionary Computation, 2:1420–1424, 2003.

[109] T. Shiba, T. Tsuchiya, and T. Kikuno. Using artificial life techniques to generate test cases
for combinatorial testing. pages 72–77. IEEE Computer Society, 2004.

[110] M. I. Younis and Zamli. K. Z. Mc-mipog: a parallel t-way test generation strategy for
multicore systems. ETRI journal, 32:73–83, 2010.

[111] K. Forsberg and H. Mooz. The relationship of system engineering to the project cycle.
INCOSE International Symposium, 1:57–65, 1991.

[112] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino. Applying
design of experiments to software testing. Proceedings of the 1997 International Confer-
ence on Software Engineering, pages 205–215, 1997.

122

[113] M. N. Borazjany, L. S. G. Ghandehari, Y. Lei, R. N. Kacker, and D. R. Kuhn. An In-
put Space Modeling Methodology for Combinatorial Testing. IEEE Sixth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), pages
372–381, 2013.

[114] Specification of PDU Router. http://www.autosar.org/fileadmin/files/releases/3-
2/software-architecture/communication-stack/standard/AUTOSAR_SWS_PDU_Router.pdf,
2014. [Online; accessed 19-July-2014].

[115] Specification of LIN Interface. http://www.autosar.org/fileadmin/files/releases/3-
2/software-architecture/communication-stack/standard/AUTOSAR_SWS_LIN_Interface.pdf,
2014. [Online; accessed 19-July-2014].

123

Curriculum Vitae

Hassan Mohammad, born in Syria, started in 2001 his study of Computer Science at the Uni-
versity of Aleppo in Syria and graduated with a bachelor degree in 2006. After finishing his
study, he worked as an engineer for one year in a power plant. In 2008, he started a new job as
a research assistant at the Tishreen University in Syria.

In 2009, he was a master student at the Ilmenau University of Technology in Germany. After
doing his Master thesis at Daimler AG in Sindelfingen, Germany, he received in 2011 his Master
Degree in Engineering Informatics from the faculty of Information and Automation in Ilmenau.

From 2012 to 2015, Hassan Mohammad was a researcher and industrial PhD Student at the
MBtech Group GmbH & Co. KGaA in Sindelfingen, Germany, in cooperation with the Depart-
ment of Computer Science and the Fraunhofer Institute for Experimental Software Engineering
at the Kaiserslautern University of Technology.

	List of my Publications
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Introduction
	Motivation
	Contribution
	Structure of the Dissertation

	Fundamentals
	E/E Systems in Automotive
	Vehicle Bus Systems
	LIN Communication Bus
	CAN Communication Bus
	FlexRay Communication Bus
	MOST Communication Bus
	Ethernet Communication Bus

	Gateway Systems in Automotive
	AUTOSAR
	AUTOSAR Gateway
	AUTOSAR Transport Protocols

	Transport Protocol Routing of AUTOSAR Gateway
	Background
	Terminology of TP Routing
	Definitions
	TP Routing Paradigms of an AUTOSAR Gateway
	Segmented CAN to CAN TP Routing with Normal Addressing
	Segmented CAN to FlexRay TP Routing with Normal Addressing
	Other TP Routing Paradigms

	TP Parallel Routing of an AUTOSAR Gateway
	The Combinatorial Explosion Problem

	Software Testing
	Introduction
	Testing Based on Actual Execution
	Testing Based on Methodology
	Testing Based on Granularity Level
	Specification Based Testing
	Random Testing
	Search Based Testing

	Combinatorial Testing
	Introduction
	Input Parameter Model (IPM)
	Interaction Model
	Interaction Strength
	Conflict Model

	Coverage Level
	Conflict Handling Strategy
	Combinatorial Approach
	Computational Implementation
	Test suite Evaluation and Systematic Reduction
	Test Case Generation, Test Case Execution and Test Result Evaluation

	Verification & Performance Measurement of Transport Protocol Parallel Routing
	Building an IPM
	Creating an Interaction Model
	Interaction Strength
	Creating a Conflict Model

	Definition of a Coverage Level
	Conflict Handling Strategy
	TypeA-Conflict Handling
	TypeB-Conflict Handling
	TypeC-Conflict Handling

	Computational Implementation
	Test Suite Reduction
	Test Case Generation, Execution and Evaluation
	Testing TP parallel routing for SNRs
	Testing TP parallel routing for MNRs

	Validation and Evaluation
	Implementation of the Test System
	Manual Definitions
	Parameter Abstraction and IPM
	Test Case selection and Generation Engine
	Restbus Simulation
	Analysis
	Reporting

	Gateway Test Object
	General Information
	TP Routing Scenarios
	Similarity Criteria
	Conflicts

	The First Experiment
	Results of the Experiment

	The Second Experiment
	Results of the Experiment

	Summary and Outlook
	Discussion
	Conclusion and Future Work

	Bibliography

