Formal Specification of
Real-Time Requirements or
Building Automation Systems

C. PeperR. Gotzhein, M. Kronenbg
SFB 501 Report 01/97

Formal Specification of
Real-Time Requirements br
Building Automation Systems

Christian FReper Reinhad Gotzhein, Martin Ksnenlurg

{peper, got zhei n, kr onbur g} @ nf or mat i k. uni -kl . de

Report 01/97

Sonderforschungsbereich 501

Computer Science Department
University of Kaiserslautern
Posthch 3049
67653 Kaiserslautern
Germary

Formal Specification of
Real-Time Requirements br
Building Automation Systems

Christian Feper Reinhad Gotzhein, Martin Kesnenlurg

SFB 501
University of Kaiserslautern

Abstract

A generic approach to the formal specification of system requirements is presented. It is based on a pool
of requirrment patternswhich are related tdesign patternsvell-knowvn in object-oriented softare
development. The application of such patterns enhanceegtisabilityandgenericityas well as the intel-

ligibility of the formal requirement specification. The approach is instantiated by a tadalgime tem-

poral logic and by selectingpuilding automation systemss application domain. ¥k respect to this
domain, the pattern diseery and reuse tasks argpiained and illustrated, and a set of typical require-
ment patterns is presented. Finatlye results of a case study where the approach has been applied are
summarized.

Keywords: requirements engineering, reuse, formal specification, temporal logic, real time, application,
reactve systems

1 Introduction

The specification of requirements is among the first tasks yofsgstem deelopment. The
requirements document is part of the contract between the customer and the systepeide
and will be the basis for the acceptance of the final implementatioa/oid later disagree-
ments, it is important that the requirements are stated completely and pyediselstill being
intelligible for both parties. Generalljpoth sides are léwise interested in a strict limitation of
the bilateral duties.

In practice, requirements are often stated unprecisely - due to the use of natural language - and
incompletely - due to the inherentfititilty to perceie all essential aspects of the problem to be
solved. This could lead to disagreements during subsequealbgenent stages including the
acceptance of the final product by the custorkerefore, the use of formal description tech-
niques (FDTSs) for the specification of requirements is beingcaded.

Especially for lage and complesystems, the uestment to obtain a "good" requirement specifi-
cation is substantial.oTreduce this &brt, it may be possible to benefit from earlier system
developments by reusing parts of alreadyaleped products. While reuse has been well studied
for systemstlesign- for instance, by using object-oriented techniques - less researctilddbke

1. This work was supported by thBeutshie Forsdhungsg@meinshaft (DFG) as part of thesonder-
forschungsbegich (SFB) 501: "Deelopment of Lage Systems with Generic Methods".

on hav to apply this principle té-DT-based equirements engineeringreuse has the potential

of reducing the ébrt to specify system requirements. Furthermore, reuse in the requirements
phase may he a positie impact on subsequentvddopment stages by an increased reuse of
designs and implementations.

In general, a prerequisite for successful reuse is that components and systems/étopedie
are in some sense "similar". Such similarities may ygeeted, for instance, if the focus is
restricted to a certain application area. In this paperaddress requirements occurring i
ing automation systems, in particylezal-time requirements.

The reuse of predesigned solutions for recurring design problems is an important topic in object-
oriented softwre deelopment. Recentlydesign pattern§Ga+95] hae been adwcated as a
promising concept, which is related to other well\kncapproaches such &mmevorks or

toolkits Different from our method, these approaches are directedds the design and imple-
mentation phases, and are not based on FDTs.

The remainder of the paper isganized as folles. In Section 2, we present our generic
approach to the formal specification of requirements in an Rbd@ domain-independentayw

This approach is then instantiated in Section 3 by selecting a tailored temporal logic as FDT and
building automation systems as application domaiith\spect to this domain, the pattern dis-
covery and reuse tasks argpkained and illustrated, and a set of typical requirement patterns
together with pattern instantiations is presented. In Section 4, the results of a case study where
the approach has been applied are summarized. Finglgrav conclusions and ge an out-

look in Section 5.

2 A Generic Approach to the Formal Specification of Requiements

Genericity is an important general (sofiv®) engineering concept applying both to products
(requirements, design, implementation) andettspment processes. Genericity of products is
supported by concepts such as compositionaifgptation, parameterization, and reusability
Genericity of the deelopment process is additionally supported by the concepts of synthesis and
generation. In the folleing, we focus on the genericvadopment of requirement specifications.

2.1 A Requirement Specification Deelopment Model

System deelopment usually starts withreatural language requirement specificatiooonsisting
of an initial set of requirements that is supplied by the custoraest¢imer NLRS" for short, see
Figure 1). As already mentioned, natural language has no unique semantiostance, what
is the meaning of "In case of a hazardous condition, the wimdaust be closed"? Does "must
be closed" describe a state or an action? If it is an action, when must i@ Tdlerefore, these
requirements should be formalized by the systeveldper yielding aformal requirement spec-
ification (FRS).

As a result of this formalization xisting ambiguities of the natural language description are
resohed in one particular &y, which may difer from the original intentions of the customer
Therefore, the customer needs to check whether his intentions are corxpotlgsed in the

FRS. Since the customer may notvbaa background in FDTs, we propose to translat&rise

back to natural language resulting in a further document ca@lésdioper NLRS" (see Figure 1).
Since this natural language description is directly translated from a formal specification, we
assume that it is more precise than the origlmatomer NLRS. The Developer NLRS may hav

sene as a basis for customer andaleper to reach agreement on the system requirements.

1. These concepts are not orthogonal.

If agreement is reached, tbeveloper NLRS replaces the pw#ous Customer NLRS and seres as
the basis for the acceptance of the final implementation. As another benefitwtbestuener
NLRS already has a corresponding formalization, namely#se which can be used as the start-
ing point for subsequent dglopment steps.

If agreement is not reached, the customer supplies a modifather NLRS based on thbevel-
oper NLRS, and anotherycle of the requirement specificationvd®pment is started. Thus, the
development of a requirement specification is an iteegtrocess:

Figure 1 A requirement specification dglopment model

@ formalization
modification / acceptance e

Developer
NLRS

customer tasks system deeloper tasks

2.2 Reuse of Requi#ment Ratterns

translation

As we hae agued, the described approach to theettgoment of requirement specifications has

a number of benefits. Maver, the efort to produce th&RS and its dexied natural language
description usually is substantial, especially ifand compbe systems are to be character-

ized. To reduce this ébrt, we propose generic appoad to the formalization of requirements.

Our approach is based ompaol of equirrment patternsBy requirement patternwe refer to a
generic description of a class of domain-specific requirements. Requirement patterns are related
to design patternsa well-knavn concept of object-oriented sofive deelopment [Ga+95].

To describe requirement patterns, we propose the formamsinoTable 1, calledequirement

pattern description templaténstantiations of this template are termrediuirrment patterns

which, itself instantiated, form the constituents of a requirement specification. The actual con-

tents of the template will depend on the application area and the FDT used to specify patterns
and their semantic properties. Criteria for the selection of an appropriate FDT are discussed in
Section 2.4. Requirement patterns for a particular application domain and a particular FDT are
defined in Section 3.

Table 1: Requirement pattern description template

Name The name of the requirement pattern

Intention An informal description of the kind of requirements addresse
this pattern.

Example An example from the application area illustrating the purpog
the requirement pattern.

Definition The pattern is described both formallging a suitable FQ&nd

in natural language. The formal description is the basis for s||

guent deelopment steps finally leading to the requirement sy
fication (pattern selection, adaptation, and composition).
description in natural language will senthe translation o
instantiated patterns of tiF&s into informal requirements of th
NLRS. Furthermore, the description prdes some informatio
about possible instantiations.

bse-
jeci-
The

Semantic properties

Properties that & been formally pneen from the pattern. By
instantiating these properties in the sanay @&s the requireme

pattern, proofs can be reused, too.

Based on the pattern pool and thatomer NLRS, the formalization of requirements through pat-
tern reuse consists of the fallimg steps (see Figure 2):

Step 1. Requirement patterns aselectedrom the pattern pool. This selection is supported
by information preided by pattern descriptions such as intention, definition, and
semantic properties.

Step 2. The selected patterns ar@aptedby suitable instantiations. The same kind of adap-
tation is applied to the semantic properties. Already at this stage is it possible to for-
mally reason about single requirements.

Step 3. The adapted patterns aremposedo yield the requirement specification. During
this composition, it may turn out that thesése conflicts between indidual requi-
rements. These conflicts may be reedlvfor instance, byxploiting existing pre-
cedence relationships between requirements.

Figure 2 Formalization througlpattern euse(cf. Fig. 1)

Pattern
@ Pool

formalization

pattern reuse

4

L p-| Selection >

cornventional formalization

v L] A
adapt-

compo-
ation ’O’ sition »

The dgree to which the formalization of requirements can be eetithrough pattern reuse
depends both on theustomer NLRS and the contents of the pattern pool. If the structure of an
informal requirement follys a requirement pattern that is already contained in the pool, then its
formalization can be achied directly by instantiating the pattern. If the structure ifewift,

then either transformations and/or modifications of the informal requirement (cf. Section 2.1)
may lead to a structure that is already supported by the pattern pool, or the formalization must be
done in the corentional vay, i.e. without reuse (see Figure 2). The pool of requirement patterns
should @olve over time. As a consequence, the portion of requirements thateétoded from
requirement patterns will increase, reducing therall efort of requirement specification.

The «istence of a pool of requirement patterns canxpéoged further to reduce thefeft for

the specification of requirements. Based orviptes eperience, a set of pattern instantiations
may be selected, forming aatalogue of formal requirementsrFRS catalogue, see Figure 3).
Translation of these requirements leads t@LRS catalogue that can be used by customers to
state informal requirements during the entire requirementslaj@ment process. On the one
hand, this preides some guidance to customers ow lamd what requirements may be stated.
On the other hand, the formalization of these requirements through pattern reuse, ifvait-yet a
able, becomes straightfoand, since the corresponding pattern is already contained in the pat-
tern pool.

Figure 3 Adding a catalogue

formalization

pattern reuse
| _——— 1 ®7selection, adaptation, composition — >
Pattern
Pool octed
selecte FRS ;
@ instantiationg Catalogue translation
|
selection <

modification

2.3 Discwoery of Requirement Ratterns

So far, we tacitly assumed theistence of a pattern pool containing a set of alreadyvkno
domain specific patterns, where each entry fadlthe template defined imble 1. The main dif-

ficulty here is that it is by no meansvidius a priori what patterns will be useful later on, as this
depends on the application domain as well as on the requirements to be specified. Therefore,
building up the pattern pool will be an itekatiprocess itself. Thigattern discgerytask can be
modeled as a sulycle in the specification gelopment model. yipically, each gternal specifi-

cation deelopment gcle triggers one or more internal pattern disg/reuse ycles afecting

both pattern pool aneRs, since eaclFRS modification can lead to nepatterns or the impve-

ment of &isting patterns.

/

Figure 4 Integration of the pattern diseery task

formalization

>
>

Pattern
Pool

pattern reuse

pattern disceery

.
7

BN

The disceoery of nev patterns is a ditult and time-consuming process. In general, ynan
requirements hee similarities in the way the restrict time bounds, delays and dependences
between system states or other domain specific properties. These similaritiesqaloitsal én

order to atract the underlying patterns. Based on a proper, R0O3 often not dificult to find
lexically identical or at least similar sub-specifications of requirements. But testing the applica-
bility of a generalized pattern and checking its semantic properties are quite xctaskte since

the meaning of requirements has also to bertakto account. This is supported by the formal
semantics of the FDTnh Section 3.3, we report on the digeoy of a particular requirement pat-
tern in detail. The dissery of another real-time requirement pattern is presented in
[GoKrPe96]. From thesexamples, it becomesviglent that pattern diseery indeed is a sub-
stantial ivestment that will only pay bthrough &tensve pattern reuse.

When we put Figures 1 to 4 togethee obtain the delopment model sl in Figure 5:

Figure 5 Complete requirement specificatiorvelpment model

formalization

N

pattern reuse

1

corventional formalization

H—

Pattern
Pool

L]] a4
; adapt- compo-
selection ™ “ation ’O’ sition
selected FRS :
instantiationg Catalogue translation
pattern disceery -

selection
modification|

acceptance

translation

2.4 FDT Selection Criteria

The proposed requirement specificatiomalepment can beatilitated if its subtasks are prop-
erly supported by the applied FDIhe followving aspects should be considered when selecting a
formal technique (see Section 3.1):

The FDT should al adomain-specifitailoring of its expressieness: on the one hand it must

be able to xpress all necessary functional and non-functional requirements (such as (real-)time
in the huilding automation domain), on the other hand one should not be forceerspecify in

order to &press all releant aspects.

The temporary coéstance of arincompleteformal and a non-formal description supports a
gradual deelopment of requirementsoFthis purpose, the FD3 abstraction/refinement mech-
anism should allw the combination with other description techniques (including natural lan-
guage).

Furthermore, there are some criteria concerning the pattern pool usage. The selection of a pattern
is based either on a natural language input or on a formally specified input. In the first case, a lot
of human intelligence is wolved in this task. In the second case, the selection could be sup-
ported by some kind of syntactical pattern matching. In the saayedhe pattern disa@ry task

is based either on semantical or on syntactical similarities iFRBeConsequentlythe FDT

syntax should support thexadopment of suckyntactical comparisonperations.

Especially for the adaptation and digeny tasks, the presence of abstraction/refinement and
parameterizatiommechanisms is necessafgr the composition task, tltemposabilityof spec-
ifications is essential. The translation task is simplified, if a close correspondance between the
informal and the formal requirements can be established. The FDT should therefoapiop-
erty-orientedstyle, if the natural language requirements are alengn a property-oriented

way.

3 An Instantiation for Building Automation Systems

In this section, we instantiate the generic approach to the formal specification of requirements by
selecting a tailored real-time temporal logic as FDT arildling automation systems as applica-

tion domain. In Section 3.1, the tailored real-time temporal logiceckkd. In Section 3.2, the

role of the plgsical ewironment and its relationship to the requirement specification is high-
lighted. Section 3.3 then elaborates on pattern dggoln Section 3.4, a number of require-
ment patterns are defined. Their reuse is illustrated in Section 3.5.

3.1 The System Requgment FDT

For reasons that are addressed Welwve hae chosen a tailored real-time temporal logic
(tRTTL) as FDT In this section, we gé a short werview of the logic. Br further details, in par-
ticular, its formal semantics, see Appendix A and [KrGoPe96].

The setF of correct tRTL formulae is gien by the follaving formation rules:
1. 20 7, where?is the set of propositional atomic formulae
2. Letd, p 0 % andt, 11,12 0R,". Then
© 20,000, 00, 0P, b F
« 0o, md, 00, 0¢, oW, [¢] O 7
¢ O W, 000, 0qd, 0™, 07

c dUqPd =gy
3. & is minimal with 1. and 2.
The informal meaning of the operators is the feifw:

« =, 00 -, - are the usual propositional operatorsgétmn, conjunction, disjunction,
implication, and eqwalence).

* O¢ ("always"): is true, if$p is true nav and alvays in the future. The inged \ersion
U< ¢ is true if¢ is true nev and during the follwing T time units.

* ()¢ ("always in the past”): is true, ¢f is true nov and has atays been true in the past
(T time units)

* O ¢ ("eventually”): is true, ifp is true sometimes in the futuret{me units)

* U<r) ¢ ("sometimes in the past”): is truegifhas been true sometimes in the past
(T time units)

« ¢ Wy ("waiting for"): is true, if$ is true at least untib becomes true
* [¢] ("action operator"): is true B is true nav and vas flse in the preceding state

e [le 2 ¢ ("accumulated wariance"): is true, i is valid for at least2 time units during
the net 11 time units

* ¢ O Y ("delayed implication™): 1% holds permanently far time units,y holds by then
and will hold at least as long és

* ¢ = Y ("delayed equialence"): If¢p holds permanently fartime units, holds by then
and will hold at least as long dsanalogously for¢ and- .

This set of real-time operators is the result of the domain-specific tailoring of the legies-
siveness, as demanded by the criteria in Section 2.4. The refinement of predicates in terms of
another description technique is straightfarek For instance, the predicatazardousCondition

could be refined either in natural language (Viyeain or storm™) or in terms of ax@mnment
description (rain > 50 mm/h or wind > 80 km)hThis may result in conflicts between require-
ments that become visible only after the refinement. Detection and resolution of conflicts is out-
side the scope of this paper

Parameterization of fRTL formulae is restricted to predicates and time constantsnBtance,

the specification of the requirement patteprwill lead to within T time units" is parameter-

ized with the formulag andy and reaction time. Composition of requirement patterns can be
done by logical conjunction.€Bts for syntactical similarity should be feasible. The property-ori-
ented logical description style has turned out to be suitable for the translation into natural lan-
guage.

3.2 Some emarks on the plysical ervironment

A building automation system acts and reacts in a certaigigal ewironment. A complete
description of the tasks of such a reaetystem must therefore include some assumptions about
the behsiour of the surrounding pfsics. It is bgond the scope of this report to suggest a proper
physical model. Neertheless, we need to state assumptions about Wireranent in order to
specify the correlations and interactions between the system andiiitserent.

The temporal logic introduced before is noffisigntly expressie wir.t. the plysical phenomena

of the ewironment, such as temperature or aiwfldo describe these phenomenafedént for-

malism including, for instance, firential equations, may be needed in addition. In general, the
meaning of predicates that are considered atomic in a temporal logic description can be defined:

1. using the temporal logic itself

This is the standard concept for refinement and abstraction in a propositional logic. It
replaces atomic predicates by more comftemulae. The refined predicate is no longer
atomic. It is not possible to leathe restricted wrld of the logical description in thisay.

2. using another description technique

Since the logical description is interpreted in a certaiir@mment described in another
technique, it is necessary to combine both descriptions. The definition of an atomic predi-
cate allovs this transition between both models and a specification of correlations. The fol-
lowing ervironment descriptions typically appear:

a) in terms of the pysical model

The relationship between theysiical model and the logical requirement specifica-
tion is established by a refinement of the atomic formulae in termwiobemental
properties.

b) in terms of natural language

It is also possible to postpone the formal definition of an atomic predicate to a later
version of the specification. E.¢pazadousConditiorin Section 4 is not yet defined,

but an intuitve meaning is gien. Nevertheless, the abstract requirement specifica-
tion can be gien without looking into the precise definitionl@EzadousCondition

c) in terms of anxasting implementation

There are often derse preconditions for an implementation, e.g., a set of already
installed sensors thatVeto be used by the control systemvder. This definition
option allavs to dewe the meaning of a predicate from a certain presupposed imple-
mentation. E.g., a pfisical description of "there is no person in the roonould
become quite complicated. So, one could pragmatically agre&amEmptyiff

the motion sensor returns 1".

3.3 Rattern Discovery

In this section, we illustrate the process of pattern desgoStarting point is an initiatustomer
NLRS containing statements such as "In the case of hazardous conditions, thesaliago to
be closed to secure the memberhd grou possessions”, Widance of damage to winds
in regard to weather conditions” and "Close windoin case of possible wind orater damage
because of open winds or attempts to open winds".

A first formalization is based on predicateszardousCondition andwindowClosed modeling
the essential states:

e [((hazardousCondition 0 - windowClosed) -
O< 30s[windowClosed - hazardousCondition])

* [((hazardousCondition OwindowClosed) - (windowClosed W —hazardousCondition))

Since this type of state dependences appeared more than once in teesfoatof therRS, the
patterns underlying these formulae, tern@mnhditionalBoundedResponaadConditionalCon-
tinuity, were &tracted and inserted in the pattern pool (s#&€k 2 and 3; all shaded tables were
included in the initial pattern pool). The original usages\vept in the "Example” field. The
fields "Intention" and "Semantic properties” of the pattern description template are omitted is
some cases for brigy.

Table 2: Conditional Bounded Response

Name ConditionalBoundedResponsig (, t)

Example O ((hazardousCondition 0= windowClosed) -
O< 3pslwindowClosed U - hazardousCondition])

Whene&er a hazardous condition is detectedt, the windov is
not closed, then the windowill be closed withir30 seconds, of
the hazardous condition ceases within this time iaterv

Definition O((¢ U=y) - 04 [wO=¢])

Wheneer ¢ is true, lut g is false, thenp becomes also true
within t time units, op ceases within this time inteal

Table 3: Conditional Continuity

Name ConditionalContinuity ¢, g)

Example O ((hazardousCondition OwindowClosed) -
(windowClosed W = hazardousCondition))

Wheneer a hazardous condition is detected and the windg
closed, then the windowill remain closed at least as long as [the
hazardous condition is true.

Definition O 0O0P) - (WW=9))

Wheneer ¢ andy are both true, thew remains true at least as
long asp is true.

Next, it was obsered that both patterns were often used together with the same paraaheter v
ues. This led to another pattern tern@@hditionalBoundedResponseAndContindilymed by
the conjunction of the patterns sWtoin Table 2 and 3:

10

Table 4: Conditional Bounded Response and Continuity |

Name ConditionalBoundedResponseAndContinutydg, t)

Example O (((hazardousCondition - windowClosed) -

O<30s[windowClosed [—hazardousCondition]) [

((hazardousCondition [JwindowClosed) -
(windowClosed W - hazardousCondition)))

Wheneer a hazardous condition is detectedt, the windov is
not closed, the windw will be closed within30 s or the hazard;
ous condition ceases within this time infdrvand wheneer a
hazardous condition is detected and the wind® closed, ther
the windav will remain closed at least as long as the hazarglous
condition is true.

Definition O(((¢ T=1) - O« [WwD=6]) O((¢ OW) - (WW=0))

Wheneer ¢ is true, lut | is false, thenp becomes also true
within t time units, or¢ ceases within this time intexly and
wheneer ¢ and are both true, thety remains true at least as
long asp is true.

This pattern has a considerable syntactical coxitglavhich males it dificult to read. Further-
more, it restricts the system belwmur such that it may be impossible tovd®p implementa-
tions in a distribted erironment. fr instance, if a hazardous condition has just been detected
and the windw is already closed, it must remain closed.athiee this, the currentalue of
hazardous condition must be ko instantaneously in the corresponding parts of thiglihg
automation system, which is a strong limitation.

Therefore, the seconession of the pndous pattern has reduced system restrictions and a short-
ened syntax. Neertheless, the original natural language requirements are not really touched,
since their lack of precision leas enough room for such semantic modifications:

Table 5: Conditional Bounded Response and Continuity Il

Name ConditionalBoundedResponseAndContinuftylf, t)

Example 0 (hazardousCondition - O<30¢5(windowClosed [J
windowClosed W - hazardousCondition [
- hazardousCondition))

Wheneer a hazardous condition is detected, then, wiBfirs
the windav is closed and will stay closed at least as long ag the
hazardous condition is true, or the hazardous condition reledses.

Definition 0@ - 0 WOPW=6¢ 0-9))

Wheneer ¢ is true, then, within time units,) becomes also try
and stays true at least as longpasr ¢ releases.

112

An inspection of the imprad patterrs properties produced owesults: 1) Supposiebecomes
true and stays so for a longer time periot).(tn the time interal t following on this change of

11

¢, Y has also to turn to true and it must radk back before - even in this opening time inteal:
As before, it is not in conflict with the natural language requirement v gilto be in ag state
during the opening time inteailr But aftervards it must be coupled tp 2) The ne pattern
could be gpected to be (temporally) trans#i which is not the case for the abalefinition.

Due to these obsaations, the pattern definition is modified to alla "fluttering” ofy during
the mentioned opening time intahand to support the transity property The improed pat-
tern presses the time delayed implication obtpredicates and is therefore ternidelayed-

Implication

Table 6: Delayed Implication |

Name

Delayedimplicationd, , t)

Example

0O (hazardousCondition -
O<30s(WindowClosed W —hazardousCondition))

Wheneer a hazardous condition holds continuously for at lgast

30 s then eentually within this time span, the windas closed

and remains closed at least as long as the hazardous cof

continues.

Definition

00 - 0« (WW=9))

Wheneer ¢ holds continuously for at leasttime units, ther
eventually within this time spanp is true and remains true
least as long at.

dition

At

In a final step, it as found that the premisé . " could be remeed from the pattern without
ary semantic changes. Additionglthe operatot]; , defined by

¢ UqW =pr O (WW-0)

was added to the logic and used to abibte the modified pattern. The resultidglayedimpli-
cationpattern can be used to specify time-displaced dependences betwestates:

Table 7: Delayed Implication Il

Wheneer ¢ holds continuously for at leasttime units, ther
eventually within this time spanp is true and remains true
least as long at.

Semantic propertie

0010t $2) DO (020 03) - 0O (91 Ucprr $3)

dition

Name Delayedimplicationd, y, t)

Intention U is depending o with time delayt.

Example 0 (hazardousCondition O 3q g windowClosed)
Wheneer a hazardous condition holds continuously for at least
30 s then e@entually within this time span, the windas closed
and remains closed at least as long as the hazardous cof
continues.

Definition O OqY)

At

0@ Dq)O0@0gqWr) « 00 Og (W100)

12

3.4 The Requiement Rattern Pool for Building Automation Systems

In this section, further patterns contained in the initial pool fidding automation systems are
listed - with the rception of ConditionalBoundedRespons€onditionalContinuity and
Delayedimplicationwhich hae been presented before. These patterns are the resuleidl se
case studies.

The irvariance pattern is used for the specification of properties that shall hold during the sys-
tem’s running time:

Table 8: Invariance

Name Invariance)
Intention Allows to specify that a certain property mustals hold.
Example O tempActGtZero

Let tempActGtZar represent an indoor temperature greater than
0 °C. Then the indoor temperature isvays greater than zerp.
This formula requires a "no frost" condition (typically toymet
freezing of vater pipes, etc.).

Definition O¢d

4

¢ is alays true.

The delayed equalence is a bilateral delayed implication with the same time bound t, meaning
thaty is a time displaced cgmf ¢. For conciseness, operafpre P =ps (¢ O @) (= ¢
O« —y) was added to the logic.

Table 9: Delayed Equivalence

Name DelayedEquivalencep(U, t)
Intention Y is a time displaced cygmf the truth alue of¢.
Example O (hazardousCondition OwindowOpen < . 35 swarnedUser)

Supposed, the wingwis only manually operable.

Wheneer the windav is continuously open during a hazardgus
condition for at leasB0 s then &entually within this time span,
the user is wrned and remainsasned at least as long as the pre-
condition is true. And carersely wheneer there is a closed wir-
dow or no hazardous condition for at le86ts then @entually
within this time span, the uselawing is suppressed and remajns
suppressed at least as long as this precondition holds.

Definition O =<W)

Wheneer ¢ holds continuously for at leasttime units, ther
eventually within this time spanp is true and remains true [at
least as long a¢. And cowersely wheneer ¢ is continuously
false for at least time units, thenentually within this time
spany is false and remainsifse at least as long @s

13

If the validity of the agumentd is only required for a certain time and not for the syseroin-
plete running time, this rariance may be limited:

Table 10: Limited Invariance Pattern

Name

Limitedlrvariance ¢, t)

Intention

Suppression of the "fluttering" df, i.e. the &st change ob’s
validity. In a certain sense, this pattern is a kind of pass filter
enabling only slw state changes.

Example

O ([windowOpen] - U< minWindowOpen)

Each time the winda is open, it will stay open for at ledsmin-
utes.

If a lower bound for the close time isvgh in the same manng
the frequeng for window state changes is limited ly(2[5 min)
=1.67 10 Hz

=

Definition

0 (9] - O« 9)

Each timep becomes true, it will stay true for at least t time units.

Semantic propertie

0 ([¢0y] ~ Og 60W) - O (([¢] ~ O ¢) O([W] - Ut)
O(([9] -~ O« 9) O([W] - O W) - O (5] ~ O (90))

Another kind of ivariance does not request the system to be in a certain state for a continuous
time. Instead, it sfites if the accumulated time in this state doesalbshort of a gien limit.

Table 11: Accumulated Invariance Pattern

Name Accumulatediwariance(d, T, t)

Intention The system must satisfy a propeftyat least for a certain timg
but the &act points of times are unimportant. Note, that the tifne
could also be replaced by a ratfd to allov a percental specifit
cation.

Example o [, 1, .- windowOpen
Within ary hour the winda is open for at least2 minutes. l.e.
the windav is open20% of the total time to enable digient ven-
tilation.

Definition 0 DTt)

Within ary time intenal T, ¢ is true for at leadttime units.

14

3.5 Rattern Reuse

With the initial requirement pattern pool beingaéable, requirements may wde formalized

as described in Section 2.2. This means thetiga problem statement of thastomer NLRS, a

suitable requirement pattern can be selected from the pool, adapted by setting the pattern param-
eters, and later composed with further requirements.

As an eample, consider the problem statement "If the room is not in use for at least 10 minutes,
it must be assured that the doors areddtkAn inspection of the pattern pool sfsothat this
statement is close to thHgelayedimplication(¢,), t) pattern, which is therefore selected. In
order to formalize the problem statementy redicatesoomUsed anddoorsLocked are intro-
duced. By suitable naming, we get a close correspondance to the natural language description.
Of course, it still remains to be definedahthese predicates are related to thegsptal ewiron-

ment (see Section 3.2). Arample may be found in [GoKrPe96], where, starting from the natu-
ral language description of tisastomer NLRS, a non-trvial formally specified refinement of the
predicateroomUsed is derved. Wth the predicates being determined, the requirement pattern
can nov be adapted by setting the parametérs - roomUsed, = doorsLocked and
t=10min, yieldingO (= roomUsed 0 19min doorsLocked).

The translation of the formalized requirement into natural language according to the description
of theDelayedImplicatiorpattern (seedble 7) yields: "Whener the room is not used continu-
ously for at least 10 minutes, theweatually within this time span, the doors are kdtland

remain locled at least as long as the room is not used". Note that this is more precise than the
original problem statement. The statementwaetifrom the formalization is then included into
theDeveloper NLRS (see Figure 1), which maywaene as a basis for customer angeleper to

reach agreement on the system requirements.

As discussed in Section 2.2, the pool of requirement patterns can be fuplloéed by lilding

up a requirements catalogue. In a first stepFi®eCatalogue is formed by selecting requirement
patterns from the pool, and by (partially) instantiating thean.ifstance Delayedimplication
(-roomUsed, doorsLocked, t) and DelayedIimplication(hazardousCondition, windowsClosed,

t) may be inserted into tiRRS Catalogue. Translation of these formal requirements according to
the pattern description (as in theyioais ekample) then leads to thaeRS Catalogue, which can
provide some guidance to the customer on what kind of requirements to statewatoddecso.

This has the adintage that (some) customer requirements alreagyd&rm that is supported

by the logical operators, and that can immediately be related to patterns of the pool, thus simpli-
fying the formalization process.

4 Results of a Case Study

The typical starting point for the delopment of a bilding automation system comprises a
building with some pre-installed (at most partially automizedjads, such as windes and
radiators, and a description of the automation systeesired influence ondronmental quan-
tities, such as temperature, etc. (usually specified in a natural language).

The starting point for the folleing formal requirement specificationa an informal problem
description preided by a project group of the SFB 501. The transition process from the informal
to the formal description is illustrated for one selected aspect in [GoKrPe96]. A restacted v
sion of this system contains one sample room for which the system control capabilities had to be
fixed preciselywhose complete requirement specification is presented in this section.

15

4.1 The Plysical Environment

In the underlying case studye use of bilding automation requirementsag restricted to a sin-
gle room. The most relant elements of this reference room are:

» two windaw sections consisting of an upper andwadosash, respeggly

The upper sash can be automaticallyetiby an actuatpthe laver sash is only manually
operable.

« aradiator for each windosection

Due to this restriction, the formalization of theypttal world may be reduced to aNevariables
and functions. Theseaviables and functions represent the sysevien of the emironment.
The types €mp and Tme can be mgarded as real numbers.:

* Temp tempy;

the current eternal (outdoor) temperature
* Temp temp;

the current room temperature
* Temp tempaq

the current radiator temperature

» deltaTime: Tempx Temp - Time
the time deltaime (templ, temp2) to heat up the room from temperature templ to temp2.

Additionally, there are also somanables that are directly influenced by the u$bey can be
regarded as system input:

+ Temp temp,get: The currently alid taget room temperature.

« Temp teMBomeore t€MBstandby 1M @ The taget room temperature settings for the
system statesomfortMode standByModeandoffMode

* Oraget+: The currenltly alid upper deiation from tempaget

6Comfort+5Standby+50ff+
* Oraget-: The currently glid lower deviation from temg,get

¢ 6Comfort-68tandby50ff-
* Interms of the pysical model some temperature inds/can be defined:

comfortinteral =p¢ [teMpPcomfort - dcomforts €MRsomfort + dcomfort+

standByInteral =p¢ [teMpPsiandby” Ostandby €MMBtandby® Ostandbyd
offinterval =pf [teMmpos - 0o, teMys + o]

4.2 Prdicates

Most of the atomic predicates (either trueaisé) for the requirement specification refer to cer-
tain states in the gimonment of the system:

P = {extGtActGtRrget, extLtActLtTarget, extLtTargetLtAct, hazatousCondition,
heatingferiod, heatUpBssStandbyComfotgwerSashClosed, peonExpected
roomEmptytargetEqComfort, tagetEqOf, targetEqStandhytempActGtZer,
templntervallnclusion, tempRadGtéeupperSashClosed, upperSashManualClosed,
upperSashManualOpen, upperSashOpen, valve@lpmtarnedUserLowerSagh

16

We start with the definition of the propositional predicates in terms of thgqgath model:

extGtActGtarget iff tempey > tempyg > teMpBraget
extGtTargetGtActiff tempzy; > temprager™ teMphct
extLtActLtTarget iff tempey, < tempyg < teMpBraget

extLtTargetLtActiff tempey; < tempraget< tEMphct

The four preiously defined predicates respresent certain relations between the current
room temperature, the currexte&rnal temperature and thegat room temperature.

targetEqComforiff

teMPraget= t€MRcomfort 5Target+: Scomfort+! 5Target-: dcomfort-
targeteqOf iff

teMPraget= teMRoft U dtamet+= Ooff+ [Otarget-= Ooft-
targetEqStandbyff

teMpPraget = t€MBstandby Otarget+= Ostandby+ OTarget-= Ostandby-

The three preceding definitions determine the temperature bounds for the systeaoff-states
Mode standbyModendcomfortMode

valveContol iff tempact [[teMPragerStamgets t€MPraget OTamget
The walve control is rgulating the current room temperature in the specified range.

heatUp®ssStandbyComfoiftf
deltaTime (temgandby teMREomfort) < timeHeatUpStandbyComfort

It is possible to haet up the room from tefaRqpyto teMpomeortin timeHeatUpStandby-
Comfort time units (ordster).

tempActGtZeay iff tempyet > 0
tempRadGtZeriff tempgaq> 0
The "no frost" condition for the room and especially the radiator

templntervallnclusionff comfortintenal [0 standbylinteral [offinterval
The user setttings for the respeettemperature ranges are tested for consigtenc

The subsequent predicates aregiin natural language. Thare partially candidates for a later
physical refinement:

hazadousConditioriff "a dangerous situation caused by storm and/onhean"
heatingReriod iff "the current time die aktuelle Zeit ¢ieinnerhalb der Heizperiode
lowerSashCloseilf "the lower windav sash is closed"

roomEmptyff "there is no person in the room"

upperSashCloseiff "the upper sash is closed"

upperSashOpeifif "the upper sash is open”

There are also some candidates for a possible implementational refinment:

upperSashManualCloseff "the user has manually closed the upper sash"

17

upperSashManualOpéeff "the user has manually opened the upper sash"

"Manual" operation means onlyerriding the systems settings, i.e., the system is infor-
med by a user that the sashs should be closed.

warnedUserLowerSadff "the user is receing a warning that the upper sash must be clo-
sed"

personExpectedf "a person is xpected in the room"

A later definition could be dettd from a typical user beviaur as &r as predictable by
the control system.

Besides the presented atomic predicates somedgrredicates turn out as helpful in the speci-
fication. As mentioned tlyeare defined as TL formulae::

offModeiff - personExpected - roomUsed
standByModeff personExpected! - roomUsed
comfortModeff roomUsed

roomUsedff
B 11~ roomEmpty] ([11,75~ roomEmpt}{] [m [15~ roomEmpty

This definition of roomUsed requires at least one of theviitig conditions:
« there vas permanently a person in the room during theTtagime units or

¢ since the last time when ther@asva person permanently in the room for at least
T1+T2time units, the room &s neer empty for more thah3 time units.

4.3 Behaiour Requirements

Based on the satof atomic predicates the complete system descrikemtan be composed as
a conjunction of 23 specific requirement formulae:

Each of these properties belés extended by a translation of the logikpeession to its (less
precise) natural language representation. These comments significantlya i@ antelligibilty

of the formal specification. Wharer a requirement is\gen by a pattern instantiation, its trans-
lation was directly dexied from the pattern descripti@translation:

(R1) O Dtimevent“ationlztimeVentiIationz upperSashOpen

Within ary time intenal timeVentilationl the upper sash is open for at leiaeVentilation2
time units.

(R.2) O tempRadGtZer

The current radiator temperature iways greater than®@
(to prevent freezing of \ater pipes).

(R.3) O tempActGtZar

The current room temperature isvays greater thar®cC.
(R.4) O (offMode - valveContol)

Wheneer the system is in statdfModethe current room temperature epk in the range
[tempogt - Ootr-; teMPoft + Do+l

18

(R.5) O (standByMode- heatUpssStandbyComfQrt

Wheneer the system is istandByModgthe potential change from standby temperature to
comfort temperature tals not more thatimeHeatUpsandnycomfort time units.

(R.6) U (standByModé] <imeHeatUpofistandby ValveContol)

Wheneer the system is continously standByModéor at leastimeHeatUpOffStandby time
units then eentually within this time span, the current room temperature ggngin the

range [tempagerOtamget- t€MPrageitOtamget: and remains so at least as long as the system is
in standByMode

(R.7) O ((heatingReriod U comfortMode) [<timeHeatup ValveContol)

Wheneer the system is continously aomfortModeduring theheatingferiod for at least
timeHeatUp time units then eentually within this time span, the current room temperature is
regulated and remainsgalated in the proper range at least as long as the precondition is true.

(R.8) O (offMode - targetEqOf)
(R.9) O (standByMode- targetEqStandby
(R.10) O (comfortMode— targetEqComfort

Wheneer the system is imffMode (standByModge comfortModg the taget temperature
range is set to the predefined settingoftiMode (standByModgcomfortModg

(R.11) 0 (hazadousConditior] jjmesafety UPPerSashClosgd

Wheneer a hazardousCondition arises, the upper sashs are closedtivif8afety time
units.

(R.12) 0 (hazadousConditiori] - lowerSashClose@- imesafety WarnedUserLowerSash

Wheneer the laver sash is continously open during a hazardous condition for atiheast
Safety time units, then\eentually within this time span, the user iarwed and remainsas
ned at least as long as the precondition is true. Andecsgly whener there is a closed
lower sash or no hazardous condition for at 188s$ then entually within this time span,
the user warning is suppressed and remains suppressed at least as long as fthecoadi-
tion holds.

(R.13) O templntervallnclusion

The three possible temperature intdsvare alays restricted in the folleing way: theoff-
Modeintenal includes thestandByModentenal that includes theomfortModentenal.

(R.14)0 (-~ roomUsed- - upperSashManualClosed
(R.15)0 (= roomUsed- - upperSashManualOpgn
If the room is not used grimanual operation” of the upper sash is not accepted.

(R.16) 0 (upperSashManualOp€eD «imeopen UPPErSashOpen
(R.17) 0 (upperSashManualCloséd.imeciosed UPPeErSashClosed

Wheneer the user continously demands that the upper sashs should be open (close) for at
leasttimeOpen (timeClosed) time units, then\entually within this time span, the sashs are
open (close) and remain pen (close) at least as long as the user comnaéidd is v

19

(R.18) 1 (extGtTargetGtACtl <timegnergy UPPErSashOpeh

Wheneer the current room temperature iwér than thexdernal temperature and gt tem-
perature for at leasimeEnergy time units, thenentually within this time span, the upper
sashs are open (to heat the room)and remain open at least as long as this precondition is true.

(R.19) 0 (extGtActGtarget U <timegnergy UPPErSashClose

Wheneer the current room temperature igéo than the x@ernal temperatureub higher than
the taget temperature for at leaiheEnergy time units, then ventually within this time

span, the upper sashs are close ¥tidaa heat-up) and remain close at least as long as this
precondition is true.

(R.20) O (extLtTargetLtActl <timegnergy UPPErSashOpeh

Wheneer the current room temperature is higher than ttermal and higher than the get
temperature for at leasimeEnergy time units, theneentually within this time span, the

upper sashs are open and remain open at least as long as this precondition is true.
(R.21) O (extLtActLtTarget U timeenergy UPPErSashClose

Wheneer the current room temperature is higher than xer@al lut lower than the tayet
temperature for at leatiineEnergy time units, thenwentually within this time span, the sashs

are close and remain close at least as long as this precondition is true.
(R.22) O ([upperSashClosgd- Utimeconstant ™ UpperSashCloségd

(R.23)0 ([upperSashOpgn- Ugtimeconstant ™ UPPErSashOpgn

Each time the upper sashs are closed (open)vitiestay closed (open) for at leasheCon-
stant time units.

4.4 Discussion

For the assessment of the pattern reusapiliy respecte usage frequencies for the specifica-
tion of the case study are listed in

Table 12: Pattern usage frequencies

Pattern Name Syntactical Definition appears in freq.
Invariance O¢ R.2-5, R.8-10, R.13-15 10
DelayedIimplication 0@ Oqw) R.6, R.7, R.16-21 9
Limitedlnvariance O (9] - O ¢) R.22, R.23 2
Accumulatedivariance o 07 ¢ R.1 1
DelayedEquivalence O ««W) R.12 1
ConditionalBoundedResponsé] (0[Y) - O [WTHG]) | - 0
ConditionalContinuity O (oY) - (WW=0)) - 0

20

As the table shas, the ivariance pattern is the one mostly used. Note that all patterns of the ini-
tial pool can be seen as instantiations of tkariance pattern. Heever, this is not considered in

the count. Interestinglythe delayed implication pattern with its more compsemantics is
applied quite often. This indicates that this patteqoresses ery elementary relations among
system states. Therefore, it can Bpeaxted that this pattern could also be reused in other appli-
cation domains. Th€onditionalBoundedResponaad ConditionalContinuitypatterns are not
used at all. The reason is that the requirements where these patterns are applheatlddan
expressed using tHeelayedimplicatiorpattern.

Looking back at the case studyost of the definitions of the atomic predicates are performed by
references to certain péical situations. The resulting list of interactions between the control
system and its @ironment leads straightfoawdly to a number of necessary sensors and actua-
tors to implement these interactiacilities (see @ble 13). Sodr, the notion "sensor" could still
mean a complesystem of seeral plysical sensors to increase reliability or to computevan-a
age \alue to reduce potential measuriaglts.

Table 13: Necessary sensor equipment

atomic predicate(s) \?;%:&2'3 Sensors

roomEmpty motion detector

extGtActGtarget, ExtGtargetGtAct, | tempt | room air temperature sensor
ExtLtActLtRrget, ExtLtRArgetLtAct,

tempActGtZay

tempRadGtZer tempr,g | radiator temperature sensor
upperSashOpen, upper sash open contact
upperSashManualOpen

upperSashClosed upper sash closed contact
lowerSashClosed lower sash closed contact

extGtActGtarget, ExtGtargetGtAct, | temps,; | outdoor air temperature sensor
ExtLtActLtBrget, ExtLtRrgetLtAct

wind speed sensor

hazadousCondition wind direction sensor

rain sensor

In some cases it is mopossible to replace the intwigi predicate definition directly by the results
of a sensor measurement, thus postulating a certain implementation equipment.

21

5 Conclusion and Outlook

We have presented a generic, pattern-based approach to the formal specification of system
requirements. Starting from a pool of requirement patterns, patterns are selected, adapted and
composed to obtain a formal requirement specification. The approach has been instantiated by
using a tailored real-time temporal logic as FRmd choosinguilding automation as applica-

tion domain. A set of patterns and pattern instantiations, most of them stating real-time proper-
ties, is presented, and the process of pattern\aisgas illustrated. Furthermore, results of a

case study are listed and discussed. During ouk,we h&e made the follwing obserations:

« In our case studwll requirements W& been formalized by pattern instantiations.

» Pattern instantiation may be understood as an incremental prooegsstnce, all requi-
rement patterns presented in this paper are instantiations lofviréance pattern. Also,
partial instantiations are possible, resulting in less generic requirement patterns.

» By translating formalized requirements into natural language, a better basis for discussions
with the customer &as achieed, as this translation could be performed in a unifoey w

» The discwery of "good" requirement patterns isexytime consuming task. Maver, this
seems not to be unusual, since the saxpereence has been made infeliént contgts,
too.

« The pattern-based approach is scalable in the sense that more patterns can be added to the
pool when needed.

« The pattern-based delopment of requirement specifications can lead to a substantial
degree of reuse. Wh a set of "good" patterns beingadlable, the formalization of
matching requirements is straightf@ms, reducing thewerall efort and leading to impro-
ved readability

An important aspect, which is not addressed in this p&p#re detection and resolution of con-

flicts between requirements. Such conflicts may lead to inconsistencies when requirements are
composed, impeding thewddopment of a correct implementatione\&re currently westicat-

ing criteria in order to detect conflicts, and methods in order to eetwdn.

We expect that the pattern-based formalization of requirements may lead to an increased reuse of
design decisions and solutions in subsequerdldpment stages, aarfas these decisions can be
related to the application of particular requirement patterns. Also, it may lead to a better tracea-
bility of the consequences when modifying requirements of an alreagjyopded system. In
[GeGORG97], we maka step in this direction by tailoring communication protocols based on
SDL patterns. W see this as a fertile field for future research.

Acknowledgements.We thank the members of project D1 arehm 2 of the SFB 501, who
were irvolved in the requirement collection and impement.

22

References

[AIHe91] R. Alur, T.A. Henzingeriogics and Models of Reairiie: A Survgin J.W de
Bakker, C. Huizing, WP. de Roger, G. Rozenbey (eds.), Realdme: Theory
and Practice, LNCS 600, 1991

[Ga+95] E. Gamma, R. Helm, R. Johnson, J. Vlissidassign Rtterns - Elements of
Reusable Object-Oriented SoftwaAddison-V\sley, 1995

[GeGORO97] B. Geppert, R. Gotzhein, R6Rler:Configuring Communication Btocols
Using SDL Rtterns accepted for the 8th SDLoFum, Raris, France, Septem-
ber 1997

[G093] R. GotzheinOpen Distriluted Systems - On Concepts, Methods, and Design
from a Laical Roint of iew, Vieweg, 1993

[Go+96] R. Gotzhein, B. Geppert, C. PeperRoRler:Generic Layout of Communica-
tion Subsystems - A Case S{uslyB 501 Report 14/96, Umrsity of Kaiser-
slautern, German 1996

[GoKrPe96] R. Gotzhein, M. Kronenlrg, C. PeperSpecifying and Reasoning about
Generic Real-ime RequiementsSFB 501, €chnical report 15/96, Uver-
sity of Kaiserslautern, Germgnl996

[KrGoPe96] M. Kronenhurg, R. Gotzhein, C. Pepek: Tailored Real-ime Empoal Logic
for Building Automation SystemSFB 501, €chnical report 16/96, Uver-
sity of Kaiserslautern, Germgnl996

Appendix A: The Semantics of tRTL

To define the semantics of formulae of TR, a model for real-time systems that is based on the
one proposed in [AlHe91] is used:

Definition: (State, timed state sequence, model)
Let ? be the set of all atomic formulae.

1. A stateis a functiono: ® - {0, 1}. The set of all states is denoteckas

2. Atimed state sequengeis a functionp: Ry" — = such therexsts an interal sequence
1= |0, |1, ... with

a) i, i ON: I, =[a;, i) witha O Ry, b OR" 0 {}, & < by
b) O, i ON: if by # o thenb; = a1

c) Ui, iON: Ot, Ot, t, t Ol p(t) = p(t)

d Ot tORy™: Oi, i ON:t O

e) If p is not constant from grpoint in time, i.e.l1t;, t; ORy™: Oty', ty’ ORy",
t1' > tq p(ty) Z p(ty), them: i, i ON: Uty to O 1 U 6y, t5' O lipq: p(ty) # p(ty)

f) If p is constant from a point in time, i.€lt;, ty ORy": Oty ,ty ORy", t’ =ty

23

p(ty) =p(ty), then:On O N: 1=1g,l4,.....nandU i, i 0{0,...,n-1}: U tp, t, O 1;: Uty
ty' O liq: p(to) # p(ty)
Such an interal sequenceé is calledcompatible withp.
3. Amodel9is a set of timed state sequences.

Condition a) gcludessingularintenals, i.e. interals of type[c,c], and other kinds of inteals,
e.g.(a;,by); b) guarantees that baneighboring interals |; andl;,, areadjacenf c) guarantees
that the state is wariant during each single intexM; ; Condition d) (together with c)xeludes
Zeno-sequenceax states, i.e. an infinite number offdient states during a finite period of time
is not allaved. Conditions e) and f) guarantee that each iatérof the sequenceis amaxi-
mumintenal in the sense that it ends, if and only if the state changes. Due to thesentii
tions, there is for each timed state sequence at most onairgdequence fulfilling a) to f).
Note that propositional formulae Vethe same truthedue during an inteat I; of 1.

Definition: (Semantics of tRTTL)

Let M be a modelp O M be a timed state sequence, @mdl, |4, ... be an inte sequence
compatible withp andl;=[a;, y). Furtherlet¢, O % and letr, T, t, t', t' range aerRo+. Then
the satisiction relation |= is defined as folle:

1. kYI=0 iffp(t)(¢)=1if¢o 02

2. =,00 -, - are interpreted as usual.

3. (p 1) =[] iff (t=0 and(p,0) |=¢) or (t>0 and(p, t) |=¢ and
Or,o<st<t Ut t<t'<t (p t") |=-¢)

4. (p,t)|=0¢ iff t, ¢ =t (p,t) |=d

5 (Pt =00 iff Jt,t<t<t+t: (p t) [=¢

6. (p,t)|=md iff Jt,0<st<t (pt)|=¢

7. P) |=m 0 iff Jt, towst<st (e t)|=¢ and tg, =max {0t-1}

8. (pH|=dWuy iff (p, t) [=0¢ or

@at, v =t (p, t) |=FYandUdt”, t <<tz (p, ") |=0)

9. (pY)|= DTZ o) iff Zj 0y (min (bj, t+T) - max(g,t)) 2 1
with J={ ON [tOI'=[a’b), &' <a<t+T, (p, §) |=¢}

10.0¢ = U=

1100 =pf 7 U<t 0

12.0¢ =pf m @

13'DST¢ =Df ™ .ST_'¢

14.¢ O W =pf V<t W W =)

15.¢ =gy “pf (@ Ut W) U (-0 Ot~ W)

16.|5 ¢ iff UM Up O M (p, ag) |=9¢ (initial validity)

24

