
Formal Specification of
Real-Time Requirements for
Building Automation Systems

C. Peper, R. Gotzhein, M. Kronenburg

SFB 501 Report 01/97

Formal Specification of
Real-Time Requirements for
Building Automation Systems

Christian Peper, Reinhard Gotzhein, Martin Kronenburg

{peper,gotzhein,kronburg}@informatik.uni-kl.de

Report 01/97

Sonderforschungsbereich 501

Computer Science Department
University of Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Germany

1

Formal Specification of
Real-Time Requirements for
Building Automation Systems

Christian Peper, Reinhard Gotzhein, Martin Kronenburg

SFB 5011

University of Kaiserslautern

Abstract
A generic approach to the formal specification of system requirements is presented. It is based on a pool
of requirement patterns, which are related todesign patterns well-known in object-oriented software
development. The application of such patterns enhances thereusability andgenericity as well as the intel-
ligibility of the formal requirement specification. The approach is instantiated by a tailoredreal-time tem-
poral logic and by selectingbuilding automation systems as application domain. With respect to this
domain, the pattern discovery and reuse tasks are explained and illustrated, and a set of typical require-
ment patterns is presented. Finally, the results of a case study where the approach has been applied are
summarized.

Keywords: requirements engineering, reuse, formal specification, temporal logic, real time, application,
reactive systems

1 Intr oduction
The specification of requirements is among the first tasks of any system development. The
requirements document is part of the contract between the customer and the system developer,
and will be the basis for the acceptance of the final implementation. To avoid later disagree-
ments, it is important that the requirements are stated completely and precisely, while still being
intelligible for both parties. Generally, both sides are likewise interested in a strict limitation of
the bilateral duties.

In practice, requirements are often stated unprecisely - due to the use of natural language - and
incompletely - due to the inherent difficulty to perceive all essential aspects of the problem to be
solved. This could lead to disagreements during subsequent development stages including the
acceptance of the final product by the customer. Therefore, the use of formal description tech-
niques (FDTs) for the specification of requirements is being advocated.

Especially for large and complex systems, the investment to obtain a "good" requirement specifi-
cation is substantial. To reduce this effort, it may be possible to benefit from earlier system
developments by reusing parts of already developed products. While reuse has been well studied
for systems'design- for instance, by using object-oriented techniques - less research is available

1. This work was supported by theDeutsche Forschungsgemeinschaft (DFG) as part of theSonder-
forschungsbereich (SFB) 501: "Development of Large Systems with Generic Methods".

2

on how to apply this principle toFDT-based requirements engineering. Reuse has the potential
of reducing the effort to specify system requirements. Furthermore, reuse in the requirements
phase may have a positive impact on subsequent development stages by an increased reuse of
designs and implementations.

In general, a prerequisite for successful reuse is that components and systems to be developed
are in some sense "similar". Such similarities may be expected, for instance, if the focus is
restricted to a certain application area. In this paper, we address requirements occurring in build-
ing automation systems, in particular, real-time requirements.

The reuse of predesigned solutions for recurring design problems is an important topic in object-
oriented software development. Recently, design patterns [Ga+95] have been advocated as a
promising concept, which is related to other well-known approaches such asframeworks, or
toolkits. Different from our method, these approaches are directed towards the design and imple-
mentation phases, and are not based on FDTs.

The remainder of the paper is organized as follows. In Section 2, we present our generic
approach to the formal specification of requirements in an FDT- and domain-independent way.
This approach is then instantiated in Section 3 by selecting a tailored temporal logic as FDT and
building automation systems as application domain. With respect to this domain, the pattern dis-
covery and reuse tasks are explained and illustrated, and a set of typical requirement patterns
together with pattern instantiations is presented. In Section 4, the results of a case study where
the approach has been applied are summarized. Finally, we draw conclusions and give an out-
look in Section 5.

2 A Generic Approach to the Formal Specification of Requirements
Genericity is an important general (software) engineering concept applying both to products
(requirements, design, implementation) and development processes. Genericity of products is
supported by concepts such as compositionality, adaptation, parameterization, and reusability1.
Genericity of the development process is additionally supported by the concepts of synthesis and
generation. In the following, we focus on the generic development of requirement specifications.

2.1 A Requirement Specification Development Model

System development usually starts with anatural language requirement specification consisting
of an initial set of requirements that is supplied by the customer ("Customer NLRS" for short, see
Figure 1). As already mentioned, natural language has no unique semantics. For instance, what
is the meaning of "In case of a hazardous condition, the windows must be closed"? Does "must
be closed" describe a state or an action? If it is an action, when must it be taken? Therefore, these
requirements should be formalized by the system developer, yielding aformal requirement spec-
ification (FRS).

As a result of this formalization, existing ambiguities of the natural language description are
resolved in one particular way, which may differ from the original intentions of the customer.
Therefore, the customer needs to check whether his intentions are correctly expressed in the
FRS. Since the customer may not have a background in FDTs, we propose to translate theFRS
back to natural language resulting in a further document called"Developer NLRS" (see Figure 1).
Since this natural language description is directly translated from a formal specification, we
assume that it is more precise than the originalCustomer NLRS. TheDeveloper NLRS may now
serve as a basis for customer and developer to reach agreement on the system requirements.

1. These concepts are not orthogonal.

3

If agreement is reached, theDeveloper NLRS replaces the previousCustomer NLRS and serves as
the basis for the acceptance of the final implementation. As another benefit, the new Customer
NLRS already has a corresponding formalization, namely theFRS, which can be used as the start-
ing point for subsequent development steps.

If agreement is not reached, the customer supplies a modifiedCustomer NLRS based on theDevel-
oper NLRS, and another cycle of the requirement specification development is started. Thus, the
development of a requirement specification is an iterative process:

Figure 1: A requirement specification development model

2.2 Reuse of Requirement Patterns

As we have argued, the described approach to the development of requirement specifications has
a number of benefits. However, the effort to produce theFRS and its derived natural language
description usually is substantial, especially if large and complex systems are to be character-
ized. To reduce this effort, we propose ageneric approach to the formalization of requirements.
Our approach is based on apool of requirement patterns. By requirement pattern, we refer to a
generic description of a class of domain-specific requirements. Requirement patterns are related
to design patterns, a well-known concept of object-oriented software development [Ga+95].

To describe requirement patterns, we propose the format shown in Table 1, calledrequirement
pattern description template. Instantiations of this template are termedrequirement patterns,
which, itself instantiated, form the constituents of a requirement specification. The actual con-
tents of the template will depend on the application area and the FDT used to specify patterns
and their semantic properties. Criteria for the selection of an appropriate FDT are discussed in
Section 2.4. Requirement patterns for a particular application domain and a particular FDT are
defined in Section 3.

Customer

FRS

translation

NLRS

Developer
NLRS

formalization

modification / acceptance

system developer taskscustomer tasks

Legend: activity document

4

Based on the pattern pool and theCustomer NLRS, the formalization of requirements through pat-
tern reuse consists of the following steps (see Figure 2):

Step 1. Requirement patterns areselected from the pattern pool. This selection is supported
by information provided by pattern descriptions such as intention, definition, and
semantic properties.

Step 2. The selected patterns areadapted by suitable instantiations. The same kind of adap-
tation is applied to the semantic properties. Already at this stage is it possible to for-
mally reason about single requirements.

Step 3. The adapted patterns arecomposed to yield the requirement specification. During
this composition, it may turn out that there exist conflicts between individual requi-
rements. These conflicts may be resolved, for instance, by exploiting existing pre-
cedence relationships between requirements.

Figure 2: Formalization throughpattern reuse(cf. Fig. 1)

Table 1: Requirement pattern description template

Name The name of the requirement pattern

Intention An informal description of the kind of requirements addressed by
this pattern.

Example An example from the application area illustrating the purpose of
the requirement pattern.

Definition The pattern is described both formally, using a suitable FDT, and
in natural language. The formal description is the basis for subse-
quent development steps finally leading to the requirement speci-
fication (pattern selection, adaptation, and composition). The
description in natural language will serve the translation of
instantiated patterns of theFRS into informal requirements of the
NLRS. Furthermore, the description provides some information
about possible instantiations.

Semantic properties Properties that have been formally proven from the pattern. By
instantiating these properties in the same way as the requirement
pattern, proofs can be reused, too.

FRS

pattern reuse

selection adapt- compo-
sitionationPattern

Pool

formalization

conventional formalization

Customer
NLRS

5

The degree to which the formalization of requirements can be achieved through pattern reuse
depends both on theCustomer NLRS and the contents of the pattern pool. If the structure of an
informal requirement follows a requirement pattern that is already contained in the pool, then its
formalization can be achieved directly by instantiating the pattern. If the structure is different,
then either transformations and/or modifications of the informal requirement (cf. Section 2.1)
may lead to a structure that is already supported by the pattern pool, or the formalization must be
done in the conventional way, i.e. without reuse (see Figure 2). The pool of requirement patterns
should evolve over time. As a consequence, the portion of requirements that is developed from
requirement patterns will increase, reducing the overall effort of requirement specification.

The existence of a pool of requirement patterns can be exploited further to reduce the effort for
the specification of requirements. Based on previous experience, a set of pattern instantiations
may be selected, forming acatalogue of formal requirements (FRS catalogue, see Figure 3).
Translation of these requirements leads to aNLRS catalogue that can be used by customers to
state informal requirements during the entire requirements development process. On the one
hand, this provides some guidance to customers on how and what requirements may be stated.
On the other hand, the formalization of these requirements through pattern reuse, if not yet avail-
able, becomes straightforward, since the corresponding pattern is already contained in the pat-
tern pool.

Figure 3: Adding a catalogue

2.3 Discovery of Requirement Patterns

So far, we tacitly assumed the existence of a pattern pool containing a set of already known
domain specific patterns, where each entry follows the template defined in Table 1. The main dif-
ficulty here is that it is by no means obvious a priori what patterns will be useful later on, as this
depends on the application domain as well as on the requirements to be specified. Therefore,
building up the pattern pool will be an iterative process itself. Thispattern discovery task can be
modeled as a sub-cycle in the specification development model. Typically, each external specifi-
cation development cycle triggers one or more internal pattern discovery/reuse cycles affecting
both pattern pool andFRS, since eachFRS modification can lead to new patterns or the improve-
ment of existing patterns.

FRS

pattern reuse

selection, adaptation, composition

Pattern
Pool

formalization

Customer
NLRS

selected
instantiations

selection NLRS
Cataloguemodification

FRS
Catalogue translation

6

Figure 4: Integration of the pattern discovery task

The discovery of new patterns is a difficult and time-consuming process. In general, many
requirements have similarities in the way they restrict time bounds, delays and dependences
between system states or other domain specific properties. These similarities can be exploited in
order to extract the underlying patterns. Based on a proper FDT, it is often not difficult to find
lexically identical or at least similar sub-specifications of requirements. But testing the applica-
bility of a generalized pattern and checking its semantic properties are quite complex tasks, since
the meaning of requirements has also to be taken into account. This is supported by the formal
semantics of the FDT. In Section 3.3, we report on the discovery of a particular requirement pat-
tern in detail. The discovery of another real-time requirement pattern is presented in
[GoKrPe96]. From these examples, it becomes evident that pattern discovery indeed is a sub-
stantial investment that will only pay off through extensive pattern reuse.

When we put Figures 1 to 4 together, we obtain the development model shown in Figure 5:

Figure 5: Complete requirement specification development model

FRS

pattern reuse

Pattern
Pool

formalization

Customer
NLRS

pattern discovery

FRS

pattern reuse

selection adapt- compo-
sitionation

Pattern
Pool

formalization

conventional formalization

Customer
NLRS

selected
instantiations

selection
NLRS

Cataloguemodification

FRS
Catalogue

pattern discovery

translation

translation
Developer

NLRS

acceptance

7

2.4 FDT Selection Criteria

The proposed requirement specification development can be facilitated if its subtasks are prop-
erly supported by the applied FDT. The following aspects should be considered when selecting a
formal technique (see Section 3.1):

The FDT should allow adomain-specifictailoring of its expressiveness: on the one hand it must
be able to express all necessary functional and non-functional requirements (such as (real-)time
in the building automation domain), on the other hand one should not be forced to overspecify in
order to express all relevant aspects.

The temporary co-existance of anincomplete formal and a non-formal description supports a
gradual development of requirements. For this purpose, the FDT’s abstraction/refinement mech-
anism should allow the combination with other description techniques (including natural lan-
guage).

Furthermore, there are some criteria concerning the pattern pool usage. The selection of a pattern
is based either on a natural language input or on a formally specified input. In the first case, a lot
of human intelligence is involved in this task. In the second case, the selection could be sup-
ported by some kind of syntactical pattern matching. In the same way, the pattern discovery task
is based either on semantical or on syntactical similarities in theFRS. Consequently, the FDT
syntax should support the development of suchsyntactical comparison operations.

Especially for the adaptation and discovery tasks, the presence of abstraction/refinement and
parameterization mechanisms is necessary. For the composition task, thecomposability of spec-
ifications is essential. The translation task is simplified, if a close correspondance between the
informal and the formal requirements can be established. The FDT should therefore have aprop-
erty-oriented style, if the natural language requirements are also given in a property-oriented
way.

3 An Instantiation for Building Automation Systems
In this section, we instantiate the generic approach to the formal specification of requirements by
selecting a tailored real-time temporal logic as FDT and building automation systems as applica-
tion domain. In Section 3.1, the tailored real-time temporal logic is sketched. In Section 3.2, the
role of the physical environment and its relationship to the requirement specification is high-
lighted. Section 3.3 then elaborates on pattern discovery. In Section 3.4, a number of require-
ment patterns are defined. Their reuse is illustrated in Section 3.5.

3.1 The System Requirement FDT

For reasons that are addressed below, we have chosen a tailored real-time temporal logic
(tRTTL) as FDT. In this section, we give a short overview of the logic. For further details, in par-
ticular, its formal semantics, see Appendix A and [KrGoPe96].

The set
�

 of correct tRTTL formulae is given by the following formation rules:

1. � ⊆ � �
where� is the set of propositional atomic formulae

2. Let ϕ, ψ ∈ �
, andτ, τ1, τ2 ∈ R0

+. Then

• ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ→ψ, ϕ↔ψ ∈ �
• ❏ϕ, ■ϕ, ◊ϕ, ◆ϕ, ϕWψ, [ϕ] ∈ �
• ❏≤τ ϕ, ■≤τ ϕ, ◊≤τ ϕ, ◆≤τ ϕ, ⊕ τ1

≥ τ2 ∈ �

8

• ϕ ➪≤τ ψ, ϕ ⇔≤τ ψ

3.
�

is minimal with 1. and 2.

The informal meaning of the operators is the following:

• ¬, ∧, ∨, →, ↔ are the usual propositional operators (negation, conjunction, disjunction,
implication, and equivalence).

• ❏ϕ ("always"): is true, ifϕ is true now and always in the future. The indexed version
❏≤τ ϕ is true ifϕ is true now and during the following τ time units.

• ■(≤τ) ϕ ("always in the past"): is true, ifϕ is true now and has always been true in the past
(τ time units)

• ◊(≤τ) ϕ ("eventually"): is true, ifϕ is true sometimes in the future (τ time units)

• ◆(≤τ) ϕ ("sometimes in the past"): is true, ifϕ has been true sometimes in the past
(τ time units)

• ϕ W ψ ("waiting for"): is true, ifϕ is true at least untilψ becomes true

• [ϕ] ("action operator"): is true ifϕ is true now and was false in the preceding state

• ⊕ τ1
≥ τ2 ϕ ("accumulated invariance"): is true, ifϕ is valid for at leastτ2 time units during

the next τ1 time units

• ϕ ➪≤τ ψ ("delayed implication"): Ifϕ holds permanently forτ time units,ψ holds by then
and will hold at least as long asϕ.

• ϕ ⇔≤τ ψ ("delayed equivalence"): Ifϕ holds permanently forτ time units,ψ holds by then
and will hold at least as long asϕ; analogously for¬ϕ and¬ψ.

This set of real-time operators is the result of the domain-specific tailoring of the logic’s expres-
siveness, as demanded by the criteria in Section 2.4. The refinement of predicates in terms of
another description technique is straightforward. For instance, the predicatehazardousCondition
could be refined either in natural language ("heavy rain or storm") or in terms of a environment
description (rain > 50 mm/h or wind > 80 km/h). This may result in conflicts between require-
ments that become visible only after the refinement. Detection and resolution of conflicts is out-
side the scope of this paper.

Parameterization of tRTTL formulae is restricted to predicates and time constants. For instance,
the specification of the requirement pattern "ϕ will lead toψ within τ time units" is parameter-
ized with the formulaeϕ andψ and reaction timeτ. Composition of requirement patterns can be
done by logical conjunction. Tests for syntactical similarity should be feasible. The property-ori-
ented logical description style has turned out to be suitable for the translation into natural lan-
guage.

9

3.2 Some remarks on the physical envir onment

A building automation system acts and reacts in a certain physical environment. A complete
description of the tasks of such a reactive system must therefore include some assumptions about
the behaviour of the surrounding physics. It is beyond the scope of this report to suggest a proper
physical model. Nevertheless, we need to state assumptions about the environment in order to
specify the correlations and interactions between the system and its environment.

The temporal logic introduced before is not sufficiently expressive w.r.t. the physical phenomena
of the environment, such as temperature or air flow. To describe these phenomena, different for-
malism including, for instance, differential equations, may be needed in addition. In general, the
meaning of predicates that are considered atomic in a temporal logic description can be defined:

1. using the temporal logic itself

This is the standard concept for refinement and abstraction in a propositional logic. It
replaces atomic predicates by more complex formulae. The refined predicate is no longer
atomic. It is not possible to leave the restricted world of the logical description in this way.

2. using another description technique

Since the logical description is interpreted in a certain environment described in another
technique, it is necessary to combine both descriptions. The definition of an atomic predi-
cate allows this transition between both models and a specification of correlations. The fol-
lowing environment descriptions typically appear:

a) in terms of the physical model

The relationship between the physical model and the logical requirement specifica-
tion is established by a refinement of the atomic formulae in terms of environmental
properties.

b) in terms of natural language

It is also possible to postpone the formal definition of an atomic predicate to a later
version of the specification. E.g.,hazardousCondition in Section 4 is not yet defined,
but an intuitive meaning is given. Nevertheless, the abstract requirement specifica-
tion can be given without looking into the precise definition ofhazardousCondition.

c) in terms of an existing implementation

There are often diverse preconditions for an implementation, e.g., a set of already
installed sensors that have to be used by the control system provider. This definition
option allows to derive the meaning of a predicate from a certain presupposed imple-
mentation. E.g., a physical description of "there is no person in the room" would
become quite complicated. So, one could pragmatically agree on: "roomEmptyif f
the motion sensor returns 1".

3.3 Pattern Discovery

In this section, we illustrate the process of pattern discovery. Starting point is an initialCustomer
NLRS containing statements such as "In the case of hazardous conditions, the windows have to
be closed to secure the member’s and group’s possessions", "Avoidance of damage to windows
in regard to weather conditions" and "Close windows in case of possible wind or water damage
because of open windows or attempts to open windows".

10

A first formalization is based on predicateshazardousCondition andwindowClosed modeling
the essential states:

• ❑ ((hazardousCondition ∧ ¬ windowClosed) →
◊≤ 30s[windowClosed ∨ ¬ hazardousCondition])

• ❑ ((hazardousCondition ∧ windowClosed) → (windowClosed W ¬hazardousCondition))

Since this type of state dependences appeared more than once in the first version of theFRS, the
patterns underlying these formulae, termedConditionalBoundedResponse andConditionalCon-
tinuity, were extracted and inserted in the pattern pool (see Tables 2 and 3; all shaded tables were
included in the initial pattern pool). The original usage was kept in the "Example" field. The
fields "Intention" and "Semantic properties" of the pattern description template are omitted is
some cases for brevity.

Next, it was observed that both patterns were often used together with the same parameter val-
ues. This led to another pattern termedConditionalBoundedResponseAndContinuity, formed by
the conjunction of the patterns shown in Table 2 and 3:

Table 2: Conditional Bounded Response

Name ConditionalBoundedResponse (ϕ, ψ, t)

Example ❑ ((hazardousCondition ∧ ¬ windowClosed) →
◊≤ 30s[windowClosed ∨ ¬ hazardousCondition])

Whenever a hazardous condition is detected, but the window is
not closed, then the window will be closed within30 seconds, or
the hazardous condition ceases within this time interval.

Definition ❑ ((ϕ ∧ ¬ψ) → ◊≤t [ψ ∨ ¬ϕ])

Whenever ϕ is true, but ψ is false, thenψ becomes also true
within t time units, orϕ ceases within this time interval.

Table 3: Conditional Continuity

Name ConditionalContinuity (ϕ, ψ)

Example ❑ ((hazardousCondition ∧ windowClosed) →
(windowClosed W ¬hazardousCondition))

Whenever a hazardous condition is detected and the window is
closed, then the window will remain closed at least as long as the
hazardous condition is true.

Definition ❑ ((ϕ ∧ ψ) → (ψ W ¬ϕ))

Whenever ϕ andψ are both true, thenψ remains true at least as
long asϕ is true.

11

This pattern has a considerable syntactical complexity, which makes it difficult to read. Further-
more, it restricts the system behaviour such that it may be impossible to develop implementa-
tions in a distributed environment. For instance, if a hazardous condition has just been detected
and the window is already closed, it must remain closed. To achieve this, the current value of
hazardous condition must be known instantaneously in the corresponding parts of the building
automation system, which is a strong limitation.

Therefore, the second version of the previous pattern has reduced system restrictions and a short-
ened syntax. Nevertheless, the original natural language requirements are not really touched,
since their lack of precision leaves enough room for such semantic modifications:

An inspection of the improved pattern’s properties produced two results: 1) Supposeϕ becomes
true and stays so for a longer time period (>t). In the time interval t following on this change of

Table 4: Conditional Bounded Response and Continuity I

Name ConditionalBoundedResponseAndContinuity (ϕ, ψ, t)

Example ❑ (((hazardousCondition ∧ ¬windowClosed) →
◊≤30s[windowClosed ∨ ¬hazardousCondition]) ∧
((hazardousCondition ∧ windowClosed) →

(windowClosed W ¬hazardousCondition)))

Whenever a hazardous condition is detected, but the window is
not closed, the window will be closed within30 s, or the hazard-
ous condition ceases within this time interval; and whenever a
hazardous condition is detected and the window is closed, then
the window will remain closed at least as long as the hazardous
condition is true.

Definition ❑ (((ϕ ∧ ¬ψ) → ◊≤t [ψ ∨ ¬ϕ]) ∧ ((ϕ ∧ ψ) → (ψ W ¬ϕ)))

Whenever ϕ is true, but ψ is false, thenψ becomes also true
within t time units, orϕ ceases within this time interval; and
whenever ϕ andψ are both true, thenψ remains true at least as
long asϕ is true.

Table 5: Conditional Bounded Response and Continuity II

Name ConditionalBoundedResponseAndContinuity (ϕ, ψ, t)

Example ❑ (hazardousCondition → ◊≤30s(windowClosed ∧
windowClosed W ¬hazardousCondition ∨

¬hazardousCondition))

Whenever a hazardous condition is detected, then, within30 s,
the window is closed and will stay closed at least as long as the
hazardous condition is true, or the hazardous condition releases.

Definition ❑ (ϕ → ◊≤t (ψ ∧ ψ W ¬ϕ ∨ ¬ϕ))

Wheneverϕ is true, then, withint time units,ψ becomes also true
and stays true at least as long asϕ, or ϕ releases.

12

ϕ, ψ has also to turn to true and it must not fall back beforeϕ - even in this opening time interval.
As before, it is not in conflict with the natural language requirement to allow ψ to be in any state
during the opening time interval. But afterwards it must be coupled to ϕ. 2) The new pattern
could be expected to be (temporally) transitive, which is not the case for the above definition.

Due to these observations, the pattern definition is modified to allow a "fluttering" ofψ during
the mentioned opening time interval and to support the transitivity property. The improved pat-
tern expresses the time delayed implication of two predicates and is therefore termedDelayed-
Implication:

In a final step, it was found that the premise "ϕ → " could be removed from the pattern without
any semantic changes. Additionally, the operator➪≤t , defined by

ϕ ➪≤t ψ =Df ◊≤t (ψ W ¬ϕ)

was added to the logic and used to abbreviate the modified pattern. The resultingDelayedImpli-
cationpattern can be used to specify time-displaced dependences between two states:

Table 6: Delayed Implication I

Name DelayedImplication (ϕ, ψ, t)

Example ❑ (hazardousCondition →
◊≤30s(windowClosed W ¬hazardousCondition))

Whenever a hazardous condition holds continuously for at least
30 s, then eventually within this time span, the window is closed
and remains closed at least as long as the hazardous condition
continues.

Definition ❑ (ϕ → ◊≤t (ψ W ¬ϕ))

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ.

Table 7: Delayed Implication II

Name DelayedImplication (ϕ, ψ, t)

Intention ψ is depending onϕ with time delayt.

Example ❑ (hazardousCondition ➪≤ 30 s windowClosed)

Whenever a hazardous condition holds continuously for at least
30 s, then eventually within this time span, the window is closed
and remains closed at least as long as the hazardous condition
continues.

Definition ❑ (ϕ ➪≤t ψ)

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ.

Semantic properties ❑ (ϕ1 ➪≤t ϕ2) ∧ ❑ (ϕ2 ➪≤t’ ϕ3) → ❑ (ϕ1 ➪≤t+t’ ϕ3)
❑ (ϕ ➪≤t ψ1) ∧ ❑ (ϕ ➪≤t ψ2) ↔ ❑ (ϕ ➪≤t (ψ1 ∧ ψ2))

13

3.4 The Requirement Pattern Pool for Building Automation Systems

In this section, further patterns contained in the initial pool for building automation systems are
listed - with the exception of ConditionalBoundedResponse, ConditionalContinuity and
DelayedImplication, which have been presented before. These patterns are the result of several
case studies.

The invariance pattern is used for the specification of properties that shall hold during the sys-
tem’s running time:

The delayed equivalence is a bilateral delayed implication with the same time bound t, meaning
thatψ is a time displaced copy of ϕ. For conciseness, operatorϕ ⇔≤t ψ =Df (ϕ ➪≤t ψ) ∧ (¬ϕ
➪≤t ¬ψ) was added to the logic.

Table 8: Invariance

Name Invariance (ϕ)

Intention Allows to specify that a certain property must always hold.

Example ❑ tempActGtZero

Let tempActGtZero represent an indoor temperature greater than
0 oC. Then the indoor temperature is always greater than zero.
This formula requires a "no frost" condition (typically to prevent
freezing of water pipes, etc.).

Definition ❏ ϕ

ϕ is always true.

Table 9: Delayed Equivalence

Name DelayedEquivalence (ϕ, ψ, t)

Intention ψ is a time displaced copy of the truth value ofϕ.

Example ❑ (hazardousCondition ∧ windowOpen ⇔≤ 30 s warnedUser)

Supposed, the window is only manually operable.

Whenever the window is continuously open during a hazardous
condition for at least30 s, then eventually within this time span,
the user is warned and remains warned at least as long as the pre-
condition is true. And conversely, whenever there is a closed win-
dow or no hazardous condition for at least30 s, then eventually
within this time span, the user warning is suppressed and remains
suppressed at least as long as this precondition holds.

Definition ❑ (ϕ ⇔≤t ψ)

Whenever ϕ holds continuously for at leastt time units, then
eventually within this time span,ψ is true and remains true at
least as long asϕ. And conversely, whenever ϕ is continuously
false for at leastt time units, then eventually within this time
span,ψ is false and remains false at least as long asϕ.

14

If the validity of the argumentϕ is only required for a certain time and not for the system’s com-
plete running time, this invariance may be limited:

Another kind of invariance does not request the system to be in a certain state for a continuous
time. Instead, it suffices if the accumulated time in this state does not fall short of a given limit.

Table 10: Limited Invariance Pattern

Name LimitedInvariance (ϕ, t)

Intention Suppression of the "fluttering" ofϕ, i.e. the fast change ofϕ’s
validity. In a certain sense, this pattern is a kind of low pass filter
enabling only slow state changes.

Example ❑ ([windowOpen] → ❑≤5 min windowOpen)

Each time the window is open, it will stay open for at least5 min-
utes.

If a lower bound for the close time is given in the same manner,
the frequency for window state changes is limited by1/(2⋅5 min)
= 1.67×10-3 Hz.

Definition ❑ ([ϕ] → ❏≤t ϕ)

Each timeϕ becomes true, it will stay true for at least t time units.

Semantic properties ❑ ([ϕ∧ψ] → ❏≤t ϕ∧ψ) → ❑ (([ϕ] → ❏≤t ϕ) ∨ ([ψ] → ❏≤t ψ))
❑ (([ϕ] → ❏≤t ϕ) ∨ ([ψ] → ❏≤t ψ)) → ❑ ([ϕ∨ψ] → ❏≤t (ϕ∨ψ))

Table 11: Accumulated Invariance Pattern

Name AccumulatedInvariance(ϕ, T, t)

Intention The system must satisfy a propertyϕ at least for a certain time,
but the exact points of times are unimportant. Note, that the timet
could also be replaced by a ratiot/T to allow a percental specifi-
cation.

Example ❑ ⊕1h
≥ 12 min windowOpen

Within any hour the window is open for at least12 minutes. I.e.,
the window is open20% of the total time to enable sufficient ven-
tilation.

Definition ❑ ⊕T
t ϕ

Within any time interval T, ϕ is true for at leastt time units.

15

3.5 Pattern Reuse

With the initial requirement pattern pool being available, requirements may now be formalized
as described in Section 2.2. This means that given a problem statement of theCustomer NLRS, a
suitable requirement pattern can be selected from the pool, adapted by setting the pattern param-
eters, and later composed with further requirements.

As an example, consider the problem statement "If the room is not in use for at least 10 minutes,
it must be assured that the doors are locked". An inspection of the pattern pool shows that this
statement is close to theDelayedImplication(ϕ, ψ, t) pattern, which is therefore selected. In
order to formalize the problem statement, two predicatesroomUsed anddoorsLocked are intro-
duced. By suitable naming, we get a close correspondance to the natural language description.
Of course, it still remains to be defined how these predicates are related to the physical environ-
ment (see Section 3.2). An example may be found in [GoKrPe96], where, starting from the natu-
ral language description of theCustomer NLRS, a non-trivial formally specified refinement of the
predicateroomUsed is derived. With the predicates being determined, the requirement pattern
can now be adapted by setting the parametersϕ = ¬ roomUsed, ψ = doorsLocked and
t = 10min, yielding❑ (¬ roomUsed ➪≤ 10min doorsLocked).

The translation of the formalized requirement into natural language according to the description
of theDelayedImplication pattern (see Table 7) yields: "Whenever the room is not used continu-
ously for at least 10 minutes, then eventually within this time span, the doors are locked and
remain locked at least as long as the room is not used". Note that this is more precise than the
original problem statement. The statement derived from the formalization is then included into
theDeveloper NLRS (see Figure 1), which may now serve as a basis for customer and developer to
reach agreement on the system requirements.

As discussed in Section 2.2, the pool of requirement patterns can be further exploited by building
up a requirements catalogue. In a first step, theFRS Catalogue is formed by selecting requirement
patterns from the pool, and by (partially) instantiating them. For instance,DelayedImplication
(¬roomUsed, doorsLocked, t) and DelayedImplication(hazardousCondition, windowsClosed,
t) may be inserted into theFRS Catalogue. Translation of these formal requirements according to
the pattern description (as in the previous example) then leads to theNLRS Catalogue, which can
provide some guidance to the customer on what kind of requirements to state, and how to do so.
This has the advantage that (some) customer requirements already have a form that is supported
by the logical operators, and that can immediately be related to patterns of the pool, thus simpli-
fying the formalization process.

4 Results of a Case Study
The typical starting point for the development of a building automation system comprises a
building with some pre-installed (at most partially automized) devices, such as windows and
radiators, and a description of the automation system’s desired influence on environmental quan-
tities, such as temperature, etc. (usually specified in a natural language).

The starting point for the following formal requirement specification was an informal problem
description provided by a project group of the SFB 501. The transition process from the informal
to the formal description is illustrated for one selected aspect in [GoKrPe96]. A restricted ver-
sion of this system contains one sample room for which the system control capabilities had to be
fixed precisely, whose complete requirement specification is presented in this section.

16

4.1 The Physical Envir onment

In the underlying case study, the use of building automation requirements was restricted to a sin-
gle room. The most relevant elements of this reference room are:

• two window sections consisting of an upper and a lower sash, respectively
The upper sash can be automatically driven by an actuator, the lower sash is only manually
operable.

• a radiator for each window section

Due to this restriction, the formalization of the physical world may be reduced to a few variables
and functions. These variables and functions represent the system’s view of the environment.
The types Temp and Time can be regarded as real numbers.:

• Temp tempExt

the current external (outdoor) temperature

• Temp tempAct

the current room temperature

• Temp tempRad

the current radiator temperature

• deltaTime : Temp x Temp→ Time
the time deltaTime (temp1, temp2) to heat up the room from temperature temp1 to temp2.

Additionally, there are also some variables that are directly influenced by the user. They can be
regarded as system input:

• Temp tempTarget : The currently valid target room temperature.

• Temp tempComfort, tempStandby, tempOff : The target room temperature settings for the
system statescomfortMode, standByMode andoffMode.

• δTarget+ : The currenltly valid upper deviation from tempTarget.

• δComfort+δStandby+δOff+

• δTarget- : The currently valid lower deviation from tempTarget.

• δComfort-δStandby-δOff-

• In terms of the physical model some temperature intervals can be defined:
comfortInterval =Df [tempComfort - δComfort-, tempComfort + δComfort+]
standByInterval =Df [tempStandby- δStandby-, tempStandby+ δStandby+]
offInterval =Df [tempOff - δOff-, tempOff + δOff+]

4.2 Predicates

Most of the atomic predicates (either true or false) for the requirement specification refer to cer-
tain states in the environment of the system:

� = {extGtActGtTarget, extLtActLtTarget, extLtTargetLtAct, hazardousCondition,
heatingPeriod, heatUpPossStandbyComfort,lowerSashClosed, personExpected,
roomEmpty, targetEqComfort, targetEqOff, targetEqStandby, tempActGtZero,
tempIntervalInclusion, tempRadGtZero, upperSashClosed, upperSashManualClosed,
upperSashManualOpen, upperSashOpen, valveControl, warnedUserLowerSash }

17

We start with the definition of the propositional predicates in terms of this physical model:

• extGtActGtTarget iff tempExt > tempAct > tempTarget

• extGtTargetGtAct iff tempExt > tempTarget> tempAct

• extLtActLtTarget iff tempExt < tempAct < tempTarget

• extLtTargetLtAct iff tempExt < tempTarget< tempAct

The four previously defined predicates respresent certain relations between the current
room temperature, the current external temperature and the target room temperature.

• targetEqComfortif f
tempTarget = tempComfort ∧ δTarget+= δComfort+∧ δTarget-= δComfort-

• targetEqOff iff
tempTarget = tempOff ∧ δTarget+= δOff+ ∧ δTarget-= δOff-

• targetEqStandby iff
tempTarget = tempStandby∧ δTarget+= δStandby+∧ δTarget-= δStandby-

The three preceding definitions determine the temperature bounds for the system statesoff-
Mode, standbyMode andcomfortMode.

• valveControl iff tempAct ∈ [tempTarget-δTarget-, tempTarget+δTarget+]
The valve control is regulating the current room temperature in the specified range.

• heatUpPossStandbyComfortif f
deltaTime (tempStandby, tempComfort) ≤ timeHeatUpStandbyComfort

It is possible to haet up the room from tempStandby to tempComfort in timeHeatUpStandby-
Comfort time units (or faster).

• tempActGtZero iff tempAct > 0

• tempRadGtZero iff tempRad > 0

The "no frost" condition for the room and especially the radiator.

• tempIntervalInclusionif f comfortInterval ⊆ standbyInterval ⊆ offInterval
The user setttings for the respective temperature ranges are tested for consistency.

The subsequent predicates are given in natural language. They are partially candidates for a later
physical refinement:

• hazardousConditionif f "a dangerous situation caused by storm and/or heavy rain"

• heatingPeriod if f "the current time die aktuelle Zeit liegt innerhalb der Heizperiode

• lowerSashClosed iff "the lower window sash is closed"

• roomEmptyif f "there is no person in the room"

• upperSashClosed iff "the upper sash is closed"

• upperSashOpen iff "the upper sash is open"

There are also some candidates for a possible implementational refinment:

• upperSashManualClosedif f "the user has manually closed the upper sash"

18

• upperSashManualOpenif f "the user has manually opened the upper sash"
"Manual" operation means only overriding the systems settings, i.e., the system is infor-
med by a user that the sashs should be closed.

• warnedUserLowerSashif f "the user is receiving a warning that the upper sash must be clo-
sed"

• personExpected iff "a person is expected in the room"
A later definition could be derived from a typical user behaviour as far as predictable by
the control system.

Besides the presented atomic predicates some derived predicates turn out as helpful in the speci-
fication. As mentioned they are defined as TL formulae::

• offMode iff ¬ personExpected∧ ¬ roomUsed

• standByMode iff personExpected∧ ¬ roomUsed

• comfortMode iff roomUsed

• roomUsed iff
■≤T1 ¬ roomEmpty∨ 〈∗[■≤T1+T2 ¬ roomEmpty]⇒〉 ■◆≤T3¬ roomEmpty

This definition of roomUsed requires at least one of the following conditions:

• there was permanently a person in the room during the lastT1 time units or

• since the last time when there was a person permanently in the room for at least
T1+T2 time units, the room was never empty for more thanT3 time units.

4.3 Behaviour Requirements

Based on the set� of atomic predicates the complete system descriptionReq can be composed as
a conjunction of 23 specific requirement formulae:

Req = ∧i=1,...,23R.i

Each of these properties below is extended by a translation of the logic expression to its (less
precise) natural language representation. These comments significantly improve the intelligibilty
of the formal specification. Wherever a requirement is given by a pattern instantiation, its trans-
lation was directly derived from the pattern description’s translation:

(R.1) ❑ ⊕timeVentilation1
≥timeVentilation2 upperSashOpen

Within any time interval timeVentilation1 the upper sash is open for at leasttimeVentilation2
time units.

(R.2) ❑ tempRadGtZero

The current radiator temperature is always greater than 0o C
(to prevent freezing of water pipes).

(R.3) ❑ tempActGtZero

The current room temperature is always greater than 0o C.

(R.4) ❑ (offMode→ valveControl)

Whenever the system is in stateoffMode the current room temperature is kept in the range
[tempOff - δOff-; tempOff + δOff+].

19

(R.5) ❑ (standByMode→ heatUpPossStandbyComfort)

Whenever the system is instandByMode, the potential change from standby temperature to
comfort temperature takes not more thantimeHeatUpStandbyComfort time units.

(R.6) ❑ (standByMode➪≤timeHeatUpOffStandby valveControl)

Whenever the system is continously instandByModefor at leasttimeHeatUpOffStandby time
units, then eventually within this time span, the current room temperature tempAct is in the
range [tempTarget-δTarget-, tempTarget+δTarget+] and remains so at least as long as the system is
in standByMode.

(R.7) ❑ ((heatingPeriod ∧ comfortMode) ➪≤timeHeatUp valveControl)

Whenever the system is continously incomfortModeduring theheatingPeriod for at least
timeHeatUp time units, then eventually within this time span, the current room temperature is
regulated and remains regulated in the proper range at least as long as the precondition is true.

(R.8) ❑ (offMode→ targetEqOff)

(R.9) ❑ (standByMode→ targetEqStandby)

(R.10)❑ (comfortMode→ targetEqComfort)

Whenever the system is inoffMode (standByMode, comfortMode) the target temperature
range is set to the predefined settings foroffMode (standByMode, comfortMode).

(R.11)❑ (hazardousCondition➪≤timeSafety upperSashClosed)

Whenever a hazardousCondition arises, the upper sashs are closed withintimeSafety time
units.

(R.12)❑ (hazardousCondition∧ ¬ lowerSashClosed⇔≤timeSafety warnedUserLowerSash)

Whenever the lower sash is continously open during a hazardous condition for at leasttime-
Safety time units, then eventually within this time span, the user is warned and remains war-
ned at least as long as the precondition is true. And conversely, whenever there is a closed
lower sash or no hazardous condition for at least30 s, then eventually within this time span,
the user warning is suppressed and remains suppressed at least as long as the new precondi-
tion holds.

(R.13)❑ tempIntervalInclusion

The three possible temperature intervals are always restricted in the following way: theoff-
Mode interval includes thestandByMode interval that includes thecomfortMode interval.

(R.14)❑ (¬ roomUsed→ ¬ upperSashManualClosed)

(R.15)❑ (¬ roomUsed→ ¬ upperSashManualOpen)

If the room is not used any "manual operation" of the upper sash is not accepted.

(R.16)❑ (upperSashManualOpen➪≤timeOpen upperSashOpen)

(R.17)❑ (upperSashManualClosed➪≤timeClosed upperSashClosed)

Whenever the user continously demands that the upper sashs should be open (close) for at
leasttimeOpen (timeClosed) time units, then eventually within this time span, the sashs are
open (close) and remain pen (close) at least as long as the user command is valid.

20

(R.18)❑ (extGtTargetGtAct➪≤timeEnergy upperSashOpen)

Whenever the current room temperature is lower than the external temperature and target tem-
perature for at leasttimeEnergy time units, then eventually within this time span, the upper
sashs are open (to heat the room)and remain open at least as long as this precondition is true.

(R.19)❑ (extGtActGtTarget➪≤timeEnergy upperSashClosed)

Whenever the current room temperature is lower than the external temperature but higher than
the target temperature for at leasttimeEnergy time units, then eventually within this time
span, the upper sashs are close (to avoid a heat-up) and remain close at least as long as this
precondition is true.

(R.20)❑ (extLtTargetLtAct➪≤timeEnergy upperSashOpen)

Whenever the current room temperature is higher than the external and higher than the target
temperature for at leasttimeEnergy time units, then eventually within this time span, the
upper sashs are open and remain open at least as long as this precondition is true.

(R.21)❑ (extLtActLtTarget➪≤timeEnergy upperSashClosed)

Whenever the current room temperature is higher than the external but lower than the target
temperature for at leasttimeEnergy time units, then eventually within this time span, the sashs
are close and remain close at least as long as this precondition is true.

(R.22)❑ ([upperSashClosed] → ❑≤timeConstant ¬ upperSashClosed)

(R.23)❑ ([upperSashOpen] → ❑≤timeConstant ¬ upperSashOpen)

Each time the upper sashs are closed (open), they will stay closed (open) for at leasttimeCon-
stant time units.

4.4 Discussion

For the assessment of the pattern reusability, the respective usage frequencies for the specifica-
tion of the case study are listed in

Table 12: Pattern usage frequencies

Pattern Name Syntactical Definition appears in freq.

Invariance ❏ ϕ R.2-5, R.8-10, R.13-15 10

DelayedImplication ❏ (ϕ ➪≤t ψ) R.6, R.7, R.16-21 9

LimitedInvariance ❏ ([ϕ] → ❏≤t ϕ) R.22, R.23 2

AccumulatedInvariance ❑ ⊕T
t ϕ R.1 1

DelayedEquivalence ❑ (ϕ ⇔≤t ψ) R.12 1

ConditionalBoundedResponse❑ ((ϕ∧¬ψ) → ◊≤t [ψ∨¬ϕ]) - 0

ConditionalContinuity ❑ ((ϕ∧ψ) → (ψ W ¬ϕ)) - 0

21

As the table shows, the invariance pattern is the one mostly used. Note that all patterns of the ini-
tial pool can be seen as instantiations of the invariance pattern. However, this is not considered in
the count. Interestingly, the delayed implication pattern with its more complex semantics is
applied quite often. This indicates that this pattern expresses very elementary relations among
system states. Therefore, it can be expected that this pattern could also be reused in other appli-
cation domains. TheConditionalBoundedResponse andConditionalContinuity patterns are not
used at all. The reason is that the requirements where these patterns are applicable have all been
expressed using theDelayedImplication pattern.

Looking back at the case study, most of the definitions of the atomic predicates are performed by
references to certain physical situations. The resulting list of interactions between the control
system and its environment leads straightforwardly to a number of necessary sensors and actua-
tors to implement these interaction facilities (see Table 13). So far, the notion "sensor" could still
mean a complex system of several physical sensors to increase reliability or to compute an aver-
age value to reduce potential measuring faults.

In some cases it is now possible to replace the intuitive predicate definition directly by the results
of a sensor measurement, thus postulating a certain implementation equipment.

Table 13: Necessary sensor equipment

atomic predicate(s)
physical
variables

sensors

roomEmpty motion detector

extGtActGtTarget, ExtGtTargetGtAct,
ExtLtActLtTarget, ExtLtTargetLtAct,
tempActGtZero

tempAct room air temperature sensor

tempRadGtZero tempRad radiator temperature sensor

upperSashOpen,
upperSashManualOpen

upper sash open contact

upperSashClosed upper sash closed contact

lowerSashClosed lower sash closed contact

extGtActGtTarget, ExtGtTargetGtAct,
ExtLtActLtTarget, ExtLtTargetLtAct

tempExt outdoor air temperature sensor

hazardousCondition

wind speed sensor

wind direction sensor

rain sensor

22

5 Conclusion and Outlook
We have presented a generic, pattern-based approach to the formal specification of system
requirements. Starting from a pool of requirement patterns, patterns are selected, adapted and
composed to obtain a formal requirement specification. The approach has been instantiated by
using a tailored real-time temporal logic as FDT, and choosing building automation as applica-
tion domain. A set of patterns and pattern instantiations, most of them stating real-time proper-
ties, is presented, and the process of pattern discovery is illustrated. Furthermore, results of a
case study are listed and discussed. During our work, we have made the following observations:

• In our case study, all requirements have been formalized by pattern instantiations.

• Pattern instantiation may be understood as an incremental process. For instance, all requi-
rement patterns presented in this paper are instantiations of theInvariance pattern. Also,
partial instantiations are possible, resulting in less generic requirement patterns.

• By translating formalized requirements into natural language, a better basis for discussions
with the customer was achieved, as this translation could be performed in a uniform way.

• The discovery of "good" requirement patterns is a very time consuming task. However, this
seems not to be unusual, since the same experience has been made in different contexts,
too.

• The pattern-based approach is scalable in the sense that more patterns can be added to the
pool when needed.

• The pattern-based development of requirement specifications can lead to a substantial
degree of reuse. With a set of "good" patterns being available, the formalization of
matching requirements is straightforward, reducing the overall effort and leading to impro-
ved readability.

An important aspect, which is not addressed in this paper, is the detection and resolution of con-
flicts between requirements. Such conflicts may lead to inconsistencies when requirements are
composed, impeding the development of a correct implementation. We are currently investigat-
ing criteria in order to detect conflicts, and methods in order to resolve them.

We expect that the pattern-based formalization of requirements may lead to an increased reuse of
design decisions and solutions in subsequent development stages, as far as these decisions can be
related to the application of particular requirement patterns. Also, it may lead to a better tracea-
bility of the consequences when modifying requirements of an already developed system. In
[GeGoRö97], we make a step in this direction by tailoring communication protocols based on
SDL patterns. We see this as a fertile field for future research.

Acknowledgements. We thank the members of project D1 and Team 2 of the SFB 501, who
were involved in the requirement collection and improvement.

23

References

Appendix A: The Semantics of tRTTL
To define the semantics of formulae of tRTTL, a model for real-time systems that is based on the
one proposed in [AlHe91] is used:

Definition: (State, timed state sequence, model)

Let � be the set of all atomic formulae.

1. A state is a functionσ: � → {0, 1} � The set of all states is denoted asΣ.

2. A timed state sequenceρ is a functionρ: R0
+ → Σ such there exists an interval sequence�

= I0, I1, ... with

a) ∀ i, i ∈ N: I i = [a i, bi) with ai ∈ R0
+, bi ∈ R+ ∪ {∞}, ai < bi

b) ∀ i, i ∈ N: if bi ≠ ∞ thenbi = ai+1

c) ∀ i, i ∈ N: ∀ t, ∀ t’, t, t’ ∈ I i: ρ(t) = ρ(t’)

d) ∀ t, t ∈ R0
+: ∃ i, i ∈ N: t ∈ I i

e) If ρ is not constant from any point in time, i.e.:∀ t1, t1 ∈ R0
+: ∃ t1’, t1’ ∈ R0

+,

t1’ > t 1: ρ(t1) ≠ ρ(t1’), then:∀ i, i ∈ N: ∀ t2, t2 ∈ I i: ∀ t2’, t2’ ∈ I i+1: ρ(t2) ≠ ρ(t2’)

f) If ρ is constant from a point in time, i.e.:∃ t1, t1 ∈ R0
+: ∀ t1’ , t1’ ∈ R0

+, t1’ ≥ t1 :

[AlHe91] R. Alur, T.A. Henzinger:Logics and Models of Real Time: A Survey in J.W. de
Bakker, C. Huizing, W.P. de Roever, G. Rozenberg (eds.), Real-Time: Theory
and Practice, LNCS 600, 1991

[Ga+95] E. Gamma, R. Helm, R. Johnson, J. Vlissides:Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[GeGoRö97] B. Geppert, R. Gotzhein, F. Rößler:Configuring Communication Protocols
Using SDL Patterns, accepted for the 8th SDL Forum, Paris, France, Septem-
ber 1997

[Go93] R. Gotzhein:Open Distributed Systems - On Concepts, Methods, and Design
from a Logical Point of View, Vieweg, 1993

[Go+96] R. Gotzhein, B. Geppert, C. Peper, F. Rößler:Generic Layout of Communica-
tion Subsystems - A Case Study, SFB 501 Report 14/96, University of Kaiser-
slautern, Germany, 1996

[GoKrPe96] R. Gotzhein, M. Kronenburg, C. Peper:Specifying and Reasoning about
Generic Real-Time Requirements,SFB 501, Technical report 15/96, Univer-
sity of Kaiserslautern, Germany, 1996

[KrGoPe96] M. Kronenburg, R. Gotzhein, C. Peper:A Tailored Real-Time Temporal Logic
for Building Automation Systems,SFB 501, Technical report 16/96, Univer-
sity of Kaiserslautern, Germany, 1996

24

ρ(t1) = ρ(t1’), then:∃ n ∈ N:
�
= I0,I1,...,In and∀ i, i ∈{0,...,n-1}:∀ t2, t2 ∈ I i: ∀ t2’ ,

t2’ ∈ I i+1: ρ(t2) ≠ ρ(t2’)

Such an interval sequence
�
 is calledcompatible withρ.

3. A model � is a set of timed state sequences.

Condition a) excludessingular intervals, i.e. intervals of type[c,c], and other kinds of intervals,
e.g.(ai,bi); b) guarantees that two neighboring intervals I i andI i+1 areadjacent; c) guarantees
that the state is invariant during each single interval I i ; Condition d) (together with c)) excludes
Zeno-sequences of states, i.e. an infinite number of different states during a finite period of time
is not allowed. Conditions e) and f) guarantee that each interval I i of the sequence

�
 is amaxi-

mum interval in the sense that it ends, if and only if the state changes. Due to these two condi-
tions, there is for each timed state sequence at most one interval sequence

�
 fulfilling a) to f).

Note that propositional formulae have the same truth value during an interval I i of
�
.

Definition: (Semantics of tRTTL)

Let � be a model,ρ ∈ � be a timed state sequence, and
�
= I0, I1, ... be an interval sequence

compatible withρ andI i=[a i, bi). Further, let ϕ, ψ ∈ �
, and letτ, T, t, t’, t’ range over R0

+. Then
the satisfaction relation |= is defined as follows:

1. (ρ, t) |= ϕ if f ρ(t)(ϕ) = 1 if ϕ ∈ �
2. ¬, ∧, ∨, →, ↔ are interpreted as usual.

3. (ρ, t) |= [ϕ] if f (t=0 and(ρ,0) |= ϕ) or (t>0 and(ρ, t) |= ϕ and
∃ t’, 0 ≤ t’< t: ∀ t’’, t’ ≤ t’’< t: (ρ, t’’) |= ¬ϕ)

4. (ρ, t) |= ❏ϕ if f ∀ t’, t’ ≥ t: (ρ, t’) |= ϕ

5. (ρ, t) |= ❏≤τ ϕ if f ∀ t’, t ≤ t’≤ t+τ: (ρ, t’) |= ϕ

6. (ρ, t) |= ■ϕ if f ∀ t’, 0 ≤ t’≤ t: (ρ, t’) |= ϕ

7. (ρ, t) |= ■≤τ ϕ if f ∀ t’, tlow ≤ t’≤ t: (ρ, t’) |= ϕ and tlow = max {0,t-τ}

8. (ρ, t) |= ϕ W ψ if f (ρ, t) |= ❏ϕ or
(∃ t’, t’ ≥ t: (ρ, t’) |= ψ and∀ t’’, t ≤ t’’<t’: (ρ, t’’) |= ϕ)

9. (ρ, t) |= ⊕T
 ≥ τ ϕ if f Σj ∈J (min (bj, t+T) - max(aj,t)) ≥ τ

with J={j ∈ N | t ∈ I’=[a’,b’), a’ ≤ aj ≤ t+T, (ρ, aj) |= ϕ}

10.◊ϕ =Df ¬ ❏ ¬ϕ

11.◊≤τ ϕ =Df ¬ ❏≤τ ¬ϕ

12.◆ϕ =Df ¬ ■ ¬ϕ

13.◆≤τ ϕ =Df ¬ ■≤τ ¬ϕ

14.ϕ ➪≤τ ψ =Df ◊≤τ (ψ W ¬ϕ)

15.ϕ ⇔≤t ψ =Df (ϕ ➪≤t ψ) ∧ (¬ϕ ➪≤t ¬ψ)

16. |=i ϕ if f ∀ � : ∀ ρ ∈ � : (ρ, a0) |= ϕ (initial validity)

