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Abstract

This thesis is concerned with interest rate modeling by means of the potential

approach. The contribution of this work is twofold. First, by making use of

the potential approach and the theory of affine Markov processes, we develop

a general class of rational models to the term structure of interest rates which

we refer to as the affine rational potential model. These models feature posi-

tive interest rates and analytical pricing formulae for zero-coupon bonds, caps,

swaptions, and European currency options. We present some concrete models to

illustrate the scope of the affine rational potential model and calibrate a model

specification to real-world market data. Second, we develop a general family of

multi-curve potential models for post-crisis interest rates. Our models feature

positive stochastic basis spreads, positive term structures, and analytic pricing

formulae for interest rate derivatives. This modeling framework is also flexible

enough to accommodate negative interest rates and positive basis spreads.





Zusammenfassung

Diese Arbeit befasst sich mit der Modellierung von Zinsstrukturkurven mit

Hilfe des Potential-Ansatzes. Zunächst konstruieren wir mittels des Potential-

Ansatzes und der Theorie der affinen Markov-Prozesse eine allgemeine Klasse von

rationalen Zinsstrukturmodellen, die wir als The Affine Rational Potential Model

bezeichnen. Diese Modelle bieten positive Zinssätze und analytische Formeln für

Zero-Coupon Bonds, Caps, Swaptions, und europäische Währungsoptionen. Zur

Illustration betrachten wir einige spezielle Modelle in dieser allgemeinen Klasse

und kalibrieren ein spezifisches Modell an empirische Marktdaten. Der zweite

zentrale Beitrag dieser Dissertation ist die Entwicklung der Multi-Curve Po-

tential Modelle. Die Multi-Curve Potential Modelle verfügen über zahlreiche

wünschenswerte Eigenschaften wie zum Beispiel positive stochastische Spreads,

positive Zinssätze und analytische Bewertungsformeln für Zinsderivate. Unser

Modellierungsansatz kann jedoch auch negative Zinssätze und positive Spreads

abbilden.
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Chapter 1

Introduction

The primary concern of this thesis is interest rate modeling using the potential

approach, with a particular focus on post-crisis multi-curve models. In this

introductory chapter, we generally outline the necessary background and provide

an overview of the thesis.

Interest rate models and the potential approach. Fixed-income instru-

ments such as bonds, forward rate agreements, swaps, caps/floors, and swaptions

make up the largest portion of the global financial market. Therefore, modeling

the term structure of interest rates is of paramount importance. The vast ma-

jority of the classical interest rate models can be divided into three classes: the

short rate models, the forward rate models, and the market models.

In the short rate models, one specifies directly the spot shot rate process

and then derives pricing formulae for zero-coupon bonds and other interest rate

derivatives from the short rate dynamics. A huge number of research papers have

been devoted to developing various models for the short rate process including,

among many others, Vasicek (1977), Cox, Ingersoll & Ross (1985), Schaefer &

Schwartz (1987), Black, Derman & Toy (1990), Hull & White (1990), Longstaff

& Schwartz (1991), and Duffie & Kan (1996).

In the forward rate models, the instantaneous forward rate process is modeled

directly. This modeling approach was pioneered by Ho & Lee (1986) who study

1



2 Chapter 1. Introduction

the evolution of forward rates in a discrete-time setting. It was then thoroughly

extended in a continuous-time setting by Heath, Jarrow & Morton (1992).

The so-called market models are based on direct specification of observable

market rates such as LIBOR and swap rates. These models are easy to calibrate

to market data and have quickly become popular among practitioners. Important

contributions in this direction are Brace, Gatarek & Musiela (1997), Jamshidian

(1997), and Miltersen, Sandmann & Sondermann (1997).

In contrast to the above interest models, the basic idea of the potential ap-

proach is to consider the state-price deflator process, D say, as the modeling

primitive and to express the time t-price of any contingent claim CT settled at

time T ≥ t through the formula:

Ct =
Et[CTDT ]

Dt
,

where the conditional expectation Et[·] is taken under a common reference proba-

bility measure P. To our knowledge, the earliest paper on the potential approach

is Constantinides (1992), who specifies the state-price deflator as an exponential

quadratic function of a Gaussian process. This modeling methodology was fur-

ther analyzed by Flesaker & Hughston (1996a), and was formalized by Rogers

(1997); see also Rutkowski (1997), Goldberg (1998), Nakamura & Yu (2000),

Jin & Glasserman (2001), and Yao (2001). The potential approach offers a

great simplification when it comes to modeling in a cross-currency setting: the

no-arbitrage spot exchange rate process between two economies is determined as

the quotient of their state-price deflators. This important advantage of the po-

tential approach in multi-currency modeling has also been highlighted by Rogers

(1997):

”[...] if one has adopted the potential approach to term-structure modeling, then

once the term structure has been modeled in two countries, the exchange rate

between them is determined; no further Brownian motions are needed. [...] By

modeling a single Markov process, and then defining a yield curve model in terms

of a function of that Markov process, we are able to extend our model to in-

corporate additional countries, simply by taking a new function of the Markov

process.”
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In Chapter 4 of this thesis we will employ this practical feature to model

multiple term structures after making a quanto interpretation of the LIBOR rate

which renders an analogy between multi-curve and multi-currency modeling.

Multi-curve framework. Prior to the recent financial crisis, LIBOR 1 was

considered as a proxy for the riskless interest rate. Since many interest rate

derivatives depend on LIBOR, only one curve is needed to be constructed for

valuation purposes when discounting is based on LIBOR. This single-curve mod-

eling framework was typically consistent with the pre-crisis market observations

as the basis spreads were just about some basis points and thus could be safely

regarded as negligible. However, after the financial crisis started in the second

half of 2007, the traditional fixed-income pricing methodology of using a unique

curve for both discounting and generating future cash flows has been called into

question when substantial spreads emerged between rates that used to track each

other: In post-crisis interest rate markets, overnight indexed swap rates generally

deviate from swap rates of the same maturities, as do swap rates with different

floating legs and identical fixed legs; see Figure 1.1 for an illustration. Therefore,

the multi-curve approach has been adopted by academics and practitioners alike

to deal consistently with the new market realities. This has quickly become the

standard pricing approach for interest rate derivatives: In the multi-curve frame-

work, one curve is used for discounting, and for each given market tenor (e.g.,

3m) a different curve is constructed for generating forward rates corresponding

to that tenor. For a brief review of the recent literature concerning multi-curve

modeling we refer to Section 4.1.

Outline of the thesis. The purpose of this thesis is twofold. On the one hand,

we develop a class of tractable interest rate models using the potential methodol-

ogy and the theory of affine Markov processes. On the other hand, we establish

a general family of multi-curve potential models for post-crisis interest rates.

1LIBOR stands for London Interbank Offered Rate, the rate at which panel banks lend to

each other. In chapter 4, we will elaborate upon LIBOR as well as other important interest

rates.
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Figure 1.1: Historical basis spreads from October 2006 to October 2014 with one

year maturity.

The thesis is structured as follows: Chapter 2 briefly provides the necessary

background on interest rate modeling and the potential approach. We discuss in

detail the special advantage of the potential approach for multi-currency mod-

eling since this will be exploited to construct our multi-curve potential models

in Chapter 4.

In Chapter 3, we construct a positive supermartingale from an affine Markov

process and use it to model the state-price deflator. We derive closed-form ex-

pressions for bond prices and semi-closed form formulae for caps, swaptions, and

European currency options. Moreover, we present some specific rational term

structure models within our modeling framework and provide some numerical
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examples at the end of the chapter.

In Chapter 4, we develop a general multi-curve potential model which can

provide stochastic positive basis spreads and analytical formulae for important

interest rate derivatives. We also present four concrete model specifications and

calibrate the multi-curve rational lognormal models to swap and swaption market

data.

Chapter 5 concludes with a review of the main contributions of this thesis

and the important directions for future research.
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Chapter 2

The Potential Approach

In this chapter we present the definitions and basic facts of the potential approach

to interest rate modeling, with a particular focus on its application in a cross-

currency setting. For a more detailed account of the issues discussed here, we

refer to Flesaker & Hughston (1996a,b, 1997), Rogers (1997), Rutkowski (1997),

and Jin & Glasserman (2001).

2.1 Basics of Interest Rate Modeling

This section recalls some basic definitions of interest rate modeling. We refer to

Brigo & Mercurio (2006) for a full treatment of classical interest rate models

and related issues.

2.1.1 Bonds and interest rates

To begin with, we recall the definition of zero coupon bonds, the fundamental

building blocks of interest rate products.

Definition 2.1. A zero (coupon) bond with maturity T , also called a T -

bond or pure discount bond, is a default-free contract that guarantees its

holder the payment of one unit of currency at time T , without intermediate

coupon payments. We denote by p(t, T ) the time t-price of a zero bond with

maturity T . Obviously, p(t, t) = 1 for all t.

7
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Figure 2.1: Term structure of interest rates.

For a fixed maturity T > 0, p(·, T ) is a scalar stochastic process of prices

at different times prior to maturity of the T -bond. Hence, its trajectory is very

irregular. For a fixed time t, the function p(t, ·) gives time t-prices of zero bonds

with different maturities and therefore its graph is typically rather smooth.

Spot rates

Definition 2.2. The (zero coupon) yield, y(t, T ), is defined as the fixed rate

for the time interval [t, T ] at which an investment of p(t, T ) at time t accrues

continuously to 1 at maturity T , i.e.

p(t, T )e(T−t)y(t,T ) = 1,

or

y(t, T ) = − ln p(t, T )

T − t
.

For a fixed t, the curve (y(t, T ))T>t is called the term structure of interest

rates or yield curve as of time t.

The term structure is said to be normal if it is increasing, inverted if it is

decreasing and flat if it is constant; see Figure 2.1. The shape of a yield curve
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often provides valuable insights as to what is believed to take place in the fixed

income market in the future. A normal yield curve indicates that the economy is

expected to grow in the future and this growth may lead to higher inflation and

higher interest rates. A normal yield curve typically takes place when central

banks (such as European Central Bank) ease monetary policy, thereby increa-

sing money supply in the economy. By contrast, an inverted yield curve implies

that investors expect the economy to slow or even decline in the future and this

might lead to lower inflation and lower interest rates.

Definition 2.3. The LIBOR rate, L(t, T ), for the time period [t, T ] is defined

as the simple compounding counterpart of the yield y(t, T ), i.e.

p(t, T )(1 + (T − t)L(t, T )) = 1,

or

L(t, T ) =
1

T − t

(
1

p(t, T )
− 1

)
. (2.1)

Note that in an infinitesimal time period, the above definitions of yield and

LIBOR rate are equivalent. This leads to the following:

Definition 2.4. The short rate, rt, is the limit of the yield y(t, T ) and LIBOR

rate L(t, T ) as maturity T approaches t, i.e.

rt = lim
T→t+

y(t, T ) = lim
T→t+

L(t, T ).

A simple computation yields that

rt = −∂T ln p(t, T )|T=t = −∂T p(t, T )|T=t.

Definition 2.5. The money market account B is defined by

Bt = e
∫ t
0 rsds.

Clearly, B satisfies

dBt = rtBtdt, B0 = 1.
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From the above dynamics we have

Bt+dt −Bt
Bt

≈ rtdt,

for an infinitesimal dt. Hence, at each time instant t, the money market account

B grows at a rate of rt.

Forward rates

Definition 2.6. A forward rate agreement for the time interval [T, T +∆] is

a contract in which two parties agree at a time t prior to T that, at the maturity

time T + ∆

• one party pays a fixed amount of ∆K and receives a LIBOR-payment of

∆L(T, T + ∆),

• the other party pays ∆L(T, T + ∆) and receives ∆K.

The party that pays the fixed rate (here, ∆K) is called the payer of the contract,

the other the receiver.

The value of the contract to the payer at maturity is therefore

V (T + ∆) = ∆(L(T, T + ∆)−K).

From Equation (2.1) we further have

V (T + ∆) =
1

p(T, T + ∆)
− (1 + ∆K).

Its time T -value is therefore given by

V (T ) = 1− (1 + ∆K)p(T, T + ∆).

Hence, the time t-value of the forward contract is

V (t) = p(t, T )− (1 + ∆K)p(t, T + ∆).

We then define the time t-forward LIBOR rate as the fixed rate K that renders

the forward contract fair at time t. Formally, we have the following:
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Definition 2.7. The time t-forward LIBOR rate on [T, T + ∆], denoted by

F (t;T, T + ∆), is defined by

F (t;T, T + ∆) :=
1

∆

(
p(t, T )

p(t, T + ∆
− 1

)
. (2.2)

The time t-instantaneous forward rate for investment at time T is defined

as

f(t, T ) := lim
∆↓0

F (t;T, T + ∆). (2.3)

It can be interpreted as the time t-forward LIBOR rate for the infinitesimal

period [T, T + dT ].

A more explicit formula for instantaneous forward rate is derived as follows

f(t, T ) = lim
∆↓0

1

p(t, T + ∆)

p(t, T )− p(t, T + ∆)

∆
= −∂T p(t, T )

p(t, T )
= −∂ ln p(t, T )

∂T
.

It then follows immediately that bond prices relate to forward rates via

p(t, T ) = e−
∫ T
t f(t,s)ds.

2.1.2 Interest rate derivatives

We briefly present the definitions of some important interest rate derivatives.

More details on these instruments will be provided as we proceed.

Definition 2.8. An interest rate swap is a contract in which two parties

exchange (swap) a stream of fixed rate payments for a stream of floating rate

(e.g., LIBOR, EURIBOR) payments over the payment period. Maturity, no-

tional amount and tenor are agreed in the contract. The par swap rate is the

value of the fixed rate that renders the value of the contract zero at inception.

The swap which pays (receives) the fixed leg is called a payer (receiver) swap.

As an example, we consider an interest rate swap with two different tenor

structures:

0 < T0 < T1 < ... < TN and T0 = τ0 < τ1 < ... < τM = TN .
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We denote by ∆i := Ti − Ti−1 and δi := τi − τi−1. At each time Ti one party

pays ∆iC, i = 1, ..., N , for a fixed rate C, and the other party pays the floating

amount of δiL(τi−1, τi) at every time τi , i = 1, ...,M , where

L(τi−1, τi) =
1

δi

(
1

p(τi−1, τi)
− 1

)
.

By a simple calculation, we obtain today’s values of the fixed leg and the floating

leg as follows

Fi(0) = C

N∑
i=1

∆ip(0, Ti),

F l(0) =
M∑
i=1

δip(t, τi)F (t; τi−1, τi) = p(0, τ0)− p(0, τM ).

By definition, the par swap rate is the fixed rate C which solves the equation

Fi(0) = Fl(0), and it is thus given by

C =
p(0, τ0)− p(0, τM )∑N

i=1 ∆ip(0, Ti)
.

In addition to bonds and swaps, there are two classes of highly liquid interest rate

derivatives, which are caps and floors, and options on swaps, termed swaptions.

Definition 2.9. Consider a tenor structure T = T0 < T1 < ... < TN . A payer

(receiver) swaption with strike rate C, maturity T = T0 and payment dates

T1 < ... < TN is an option that gives its holder the right (but not obligation)

to enter a payer (receiver) interest rate swap with fixed leg rate C and payment

dates T1, ..., TN at time T . A swaption is said to be at-the-money if the strike

rate C coincides with the par swap rate of the associated interest rate swap.

The time T -value of a payer swaption is thus given by

(S(T ))+ := Max(S(T ), 0),

where S(T ) denotes the time T -value of the associated payer swap.
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Definition 2.10. A caplet with strike rate K on the time interval [S, T ] is a

call option on the future spot LIBOR rate L(S, T ) which guarantees its holder

the payment of

(T − S)(L(S, T )−K)+

at maturity T . A floorlet with strike K on [S, T ] is a put option on the future

spot LIBOR rate L(S, T ) with payoff

(T − S)(K − L(S, T ))+

at time T . A cap (floor) is simply a portfolio of caplets (floorlets).

2.2 The Potential Approach

The potential approach to the term structure of interest rates, set forth by

Constantinides (1992), Flesaker & Hughston (1996a,b, 1997), and Rogers

(1997), has been around for years. In contrast to alternative interest rate models,

which consider basic interest rates such as short rates, instantaneous forward

rates, and spot LIBOR rates as the modeling primitives, the key element of the

potential approach is to model directly the state-price deflator process and to

express prices of interest rate derivatives in terms of this process.

2.2.1 Generalities

Our starting point is a probability space (Ω,F, (Ft)t≥0,P) satisfying the usual

conditions. We assume that the market is free of arbitrage opportunities and

denote by Q a fixed equivalent martingale measure with the money market ac-

count B as the numéraire. Then the time-t no-arbitrage price ΠY (t, T ) of any

contingent claim Y settled at time T is given by

ΠY (t, T ) = EQ
t

[
Bt
BT

Y

]
,

where EQ
t indicates conditional expectation, given the σ-field Ft, with respect to

the measure Q. We denote by Z the Radon-Nikodym density process of Q with
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respect to P, i.e.
dQ
dP

∣∣∣∣
Ft

= Zt.

Applying Bayes’ rule for conditional expectations, we can represent the price of

the contingent claim Y under the reference measure P as follows:

ΠY (t, T ) = EQ
t

[
Bt
BT

Y

]
=

Et[ZT Bt
BT
Y ]

Zt
=

Et[ZTBT Y ]
Zt
Bt

,

where Et denotes conditional expectation with respect to P. Setting

Dt =
Zt
Bt

we obtain

ΠY (t, T ) =
Et[DTY ]

Dt
. (2.4)

We refer to D as the state-price deflator process (D is also known as the state-

price density process or pricing kernel process). As a special case of formula (2.4),

we obtain the no-arbitrage price of a T -bond at time t prior to T :

p(t, T ) =
Et[DT ]

Dt
. (2.5)

The following result gives a necessary and sufficient condition that ensures that

the implied interest rates remain non-negative.

Proposition 2.11. The term structure p(t, ·) implied by (2.5) is decreasing for

all t ≥ 0 if and only if the state-price deflator D is a positive supermartingale.

Proof. Suppose that p(t, ·) is decreasing and observe that in that case

1 = p(t, t) ≥ p(t, T ) =
Et[DT ]

Dt
.

Hence

Dt ≥ Et[DT ] for all t ≤ T,

or D is a supermartingale. Conversely, if D if a positive super-martingale, then

for any t ≤ T ≤ S we have

p(t, S) =
Et[DS ]

Dt
=

Et[ET [DS ]]

Dt
≤ Et[DT ]

Dt
= p(t, T )
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by the tower property of conditional expectations. It follows that p(t, ·) is de-

creasing for all t ≥ 0.

Obviously, p satisfies in addition the natural condition limT→∞ p(0, T )→ 0 if

and only if limT→∞ E[DT ] = 0. A positive supermartingale D with this asymp-

totic property is called a potential (Meyer 1966, Prottter 1990).

The basic idea of the state-price deflator pricing methodology is to model

the market under the reference measure P together with the state-price deflator

process D, and to use Equations (2.4), (2.5) for pricing. The following result

shows that this ensures the model is free of arbitrage opportunities.

Proposition 2.12. Let D be a strictly positive semimartingale with D0 = 1

and E[Dt] < ∞ for all t ≥ 0. Suppose that for any T ≥ 0 the price p( · , T )

of the T -bond is given by (2.5). Then, for any T ∗ > 0, there are no arbitrage

opportunities in the bond market (p(t, T ))t∈[0,T ∗], T≥0. In particular, (2.4) yields

a no-arbitrage price for any contingent claim Y settled at time T .

Proof. It suffices to show that there exists an equivalent martingale measure

along with a suitable numéraire for any fixed T ∗ > 0. By (2.5) the process

(Dtp(t, T ))t∈[0,T ] is a P-martingale for each T ≥ 0. In particular, the process Z

given by

Zt := Dt
p(t, T ∗)

p(0, T ∗)
, t ∈ [0, T ∗]

is a strictly positive martingale with Z0 = 1. Thus, we can define an equivalent

probability measure P∗ on (Ω,FT ∗) via

dP∗

dP

∣∣∣∣
Ft

= Zt, t ∈ [0, T ∗].

Denote by E∗u[ · ] the conditional expectation, given Fu, under the measure P∗.
For any 0 ≤ s ≤ t ≤ T ∗, Bayes’ rule yields

E∗s
[
p(t, T )

p(t, T ∗)

]
=

Es[Zt p(t,T )
p(t,T ∗) ]

Zs
=

Es[p(t, T )Dt]

p(s, T ∗)Ds
=

p(s, T )

p(s, T ∗)
.
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Hence, p( · ,T )
p( · ,T ∗) is a P∗-martingale on [0, T ∗] for any T ≥ 0, and P∗ is an equivalent

martingale measure for the bond market with associated numéraire p( · , T ∗).

Remark 2.13. If instead of the base measure P, we work with another base mea-

sure P◦, which is equivalent to P, then there exists a P◦- positive supermartingale

D◦ such that

p(t, T ) =
E◦t [D◦T ]

D◦t
for all t ∈ [0, T ],

where E◦t denotes the conditional expectation given the filtration Ft, taken with

respect to P◦. Indeed, denote by V the Radon-Nikodym density process of P◦

with respect to P, i.e.
dP◦

dP

∣∣∣∣
Ft

= Vt,

and define the process D◦ as D◦t = Dt
Vt

for all t ≥ 0. Then, by virtue of the

Bayes’ rule for conditional expectation, we have

E◦t [D◦T ]

D◦t
=

Et[D◦TVT ]

D◦t Vt
=

Et[DT ]

Dt
= p(t, T ), for all t ∈ [0, T ].

Moreover, for any 0 ≤ s < t, the Bayes’ rule yields that

E◦s[D◦t ] =
Es[D◦t Vt]

Vs
=

Es[Dt]

Vs
≤ Ds

Vs
= D◦s ,

whence D◦ is a supermartingale with respect to P◦.

2.2.2 Connection to multi-currency modeling

The potential approach outlined above is particularly well-suited for multi-

currency settings because the exchange rate is determined as the the quotient

of the associated state-price deflators; see Flesaker & Hughston (1996a,b) and

Rogers (1997). Hence, if the term structures in each currency are modeled using

the potential approach, we have direct access to the associated exchange rate.

This in particular implies that, in contrast to alternative models, it is not nec-

essary to postulate separate dynamics for the spot exchange rate process. The

following key result formalizes this insight:
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Proposition 2.14 (Exchange rate in the potential framework). Consider

a domestic market in the currency $d, and a foreign market with currency $f , and

assume that each market is free of arbitrage. Let Dd and Df denote the associated

state-price deflators, and denote by xfd the spot exchange rate between $d and

$f : At time t, one unit of the foreign currency is equivalent to xfd(t) units of

the domestic currency. Then the overall market excludes arbitrage opportunities

if

xfd(t) =
Df
t

Dd
t

xfd(0). (2.6)

Proof. Let Sf be the price process of a traded asset in the foreign currency $f .

By construction of Df , DfSf is a P-local martingale. The price of the same

asset in the domestic currency is given by

Sfxfd =
Df
t S

f
t

Dd
t

and hence DdSfxfd is a P-local martingale as well. An analogous argument

applies to the price process of any asset traded in the domestic currency.

Remark 2.15. If the (multi-currency) market is complete, then the process

xfd given by (2.6) is the only exchange rate process that excludes arbitrage

opportunities; see, e.g., Rogers (1997) and Björk (2009).

Proposition 2.16. Let Xfd denote the forward exchange rate between the cur-

rencies $d and $f . Thus, as of time t ≤ T , one unit of the foreign currency

delivered at time T is equivalent to Xfd(t, T ) units of the domestic currency

deliverable at T . Then we have the no-arbitrage relation

Xfd(t, T )pd(t, T ) = xfd(t)pf (t, T ), (2.7)

where pf and pd are the discount curves in the foreign and domestic currency.

Moreover, the forward exchange rate process Xfd satisfies

Xfd(t, T ) =
xfd(t)pf (t, T )

pd(t, T )
= xfd(0)

Et[Df
T ]

Et[Dd
T ]
. (2.8)
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currency

time
Tt

xfd(t)pf (t, T )$d

Xfd(t, T )pd(t, T )$d

domestic market

foreign market

1$f

Xfd(t, T )

pf (t, T )

Figure 2.2: Illustration of the proof of Proposition 2.16: Discounting in the

foreign market with pf (t, T ) and currency conversion at spot rate xfd(t) (blue)

versus conversion with time-t forward exchange rate Xfd(t, T ) and discounting

in the domestic market with pd(t, T ) (green).

Proof. Consider a claim to one unit of the foreign currency $f at time T ; see

Figure 2.2. Discounting with the foreign discount curve pf and then converting

to the domestic currency, we obtain its time t-value

pf (t, T )$f = pf (t, T )xfd(t)$
d.

On the other hand, by definition of the forward exchange rate, at time t the time-

T value of 1$f in the domestic currency is Xfd(t, T )$d. Discounting with the do-

mestic discount curve pd we have that 1$f at time T is worth Xfd(t, T )pd(t, T )$d

at time t. Hence, by absence of arbitrage, we have

Xfd(t, T )pd(t, T ) = xfd(t)pf (t, T ).

Recall that pf (t, T ) =
Et[DfT ]

Dft
and pd(t, T ) =

Et[DdT ]

Ddt
. Using Proposition 2.14 it
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then follows that

Xfd(t, T ) =
xfd(t)pf (t, T )

pd(t, T )
= xfd(0)

Et[Df
T ]

Et[Dd
T ]
.

2.2.3 Flesaker-Hughston framework

We briefly focus on a specific model in the class of the potential approach that was

proposed by Flesaker & Hughston (1996a). Let Φ(·) be a positive deterministic

function such that
∫∞

0 Φ(s)ds = 1 and let {Ms(t)}0≤t≤s be a family of positive

martingale indexed by s ∈ [0,∞) with Ms(0) = 1 for all s ≥ 0. Then the process

D given by

Dt =

∫ ∞
t

Φ(s)Ms(t)ds

is a positive supermartingale with D0 = 1. Indeed, for any t ≤ T we have

Et[DT ] =

∫ ∞
T

Et[Φ(s)Ms(T )]ds =

∫ ∞
T

Φ(s)Et[Ms(T )]ds

=

∫ ∞
T

Φ(s)Ms(t)ds ≤
∫ ∞
t

Φ(s)Ms(t)ds = Dt.

Therefore, D can be used as a state-price deflator in the potential approach.

With this specification, bond prices are given by

p(t, T ) =
Et[DT ]

Dt
=

∫∞
T Φ(s)Ms(t)ds∫∞
t Φ(s)Ms(t)ds

.

and a straightforward calculation gives the short rates

rt =
Φ(t)Mt(t)∫∞

t Φ(s)Ms(t)ds
, t ≥ 0.

This model is commonly known as the Flesaker-Hughston model. It guarantees

positive interest rates and is not subsumed by the standard classical short rate

models. Moreover, it is sufficiently flexible to provide a perfect fit to the initial
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term structure of interest rates: Indeed, by choosing Φ(s) = −∂sp(0, s), s ≥ 0,

we obtain

p(0, T ) =

∫∞
T Φ(s)Ms(0)ds∫∞
0 Φ(s)Ms(0)ds

=

∫ ∞
T

Φ(s)ds, for all T ≥ 0.

The most popular example of the Flesaker-Hughston class is the so-called

rational lognormal model. This model has many appealing features, including

positive interest rates, perfect fit to the initial yield curve, and analytic formulas

for caps and swaptions. The rational lognormal model is obtained by specifying

the state-price deflator

Dt = α(t) + β(t)Mt, t ∈ [0,∞)

where α, β are positive, decreasing deterministic functions and M is a lognormal

martingale,

Mt = e
∫ t
0 σ(s)dWs− 1

2

∫ t
0 σ

2(s)ds, t ≥ 0,

with W a standard Brownian motion and σ a deterministic function. Bond prices

are then obtained immediately from (2.4) via

p(t, T ) =
Et[DT ]

Dt
=
α(T ) + β(T )Mt

α(t) + β(t)Mt

and the short rate is given by

rt = −α
′(t) + β′(t)Mt

α(t) + β(t)Mt
≥ 0, t ∈ [0,∞).

To fit the rational lognormal model to any given initial term structure, it suffices

to choose α, β in such a way that

α(0) + β(0) = 1 and α(T ) + β(T ) = p(0, T ) for T ∈ [0,∞).

For further details of the Flesaker-Hughston approach and the rational lognormal

model see, e.g., Hunt & Kennedy (2000), Brody & Hughston (2004), Cairns

(2004), Björk (2009), and Musiela & Rutkowski (2011).



2.2. The Potential Approach 21

2.2.4 Rogers’ Markov potential approach

Rogers (1997) presents a generic approach to model the state-price deflator using

the classical theory of Markov processes. The key elements of the approach are

a continuous-time Markov process X taking values in Rd and a positive function

f with domain Rd. Rogers then defines the state-price deflator D in terms of f

and X as follows:

Dt = e−αtf(Xt), t ≥ 0,

for some parameter α ∈ R. Then the time t-price, Ct, of any contingent claim

CT settled at time T > t is determined by the formula:

Ct =
E[DTCT ]

Dt
= e−α(T−t)Et[CT f(XT )]

f(Xt)
.

In particular, the price of a zero-coupon bond with maturity T is given by

p(t, T ) = e−α(T−t)Et[f(XT )]

f(Xt)
, t ∈ [0, T ].

If the function f is given by

f(x) = Rα[g](x) := E
[∫ ∞

0
e−αsg(Xs)ds

∣∣∣∣X0 = x

]
, 1

for some bounded, measurable function g : Rd → [0,∞) and α > 0, then the

state-price deflator

Dt = e−αtf(Xt) = e−αtRα[g](Xt)

is a positive supermartingale. Moreover, the corresponding short rate process r

is given by

rt =
g(Xt)

f(Xt)
, t ≥ 0.

For any given positive function f , one can show that

f = Rα[g] if and only if g = αf −Gf,
1Rα is called resolvent of the Markov process X.
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where G is the infinitesimal generator of the Markov process X, which is defined

by

Gf(x) := lim
t→0

E[f(Xt)|X0 = x]− f(x)

t
.

We refer to Rogers (1997), Rogers & Yousaf (2002), and Björk (2009) for

further details on the Rogers’ Markov potential approach.



Chapter 3

The Affine Rational Potential

Models

We develop a class of rational term structure models in the framework of the

potential approach, based upon a family of positive supermartingales that are

driven by an affine Markov process. These models generally feature non-negative

interest rates and analytic pricing formulae for zero bonds, caps, swaptions, and

European currency options, even in the presence of multiple factors. Moreover,

in a model specification, the short rate stays near the zero lower bound for an

extended period.

This chapter is based on a joint work with Frank Thomas Seifried: Nguyen &

Seifried (2015b).

3.1 Introduction

The main advantage of the potential approach, as discussed in Section 2.2.2, is

the ease in multi-currency modeling since the arbitrage-free exchange rate be-

tween any two currencies is determined as the quotient of the associated state-

price deflators and therefore there is no need to postulate a separate dynamics for

the exchange rate process. However, as mentioned in Rogers & Yousaf (2002),

23
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the potential approach is likely to suffer the drawback of analytical intractability

since only one universal probability measure together with a state-price deflator

is used for pricing every interest rate derivative. For instance, the generic mod-

els of Flesaker & Hughston (1996a) and Rogers (1997) do not provide analytic

pricing formulae for important interest rate derivatives such as caps and swap-

tions; analytical tractability is only obtained in some specific models.

In view of the issue discussed above, in this chapter we propose a class of

interest rate models in the potential framework, which overcomes the limita-

tion of analytical intractability. Using an affine Markov process we construct

(strictly) positive supermartingales to be used as the state-price deflator. The

rich structural properties of affine Markov processes allow us to derive analytic

pricing formulae for important interest rate derivatives including zero bonds,

caps, swaptions, and European currency options. Moreover, as the state-price

deflator is a supermartingale, our models feature non-negative interest rates.

In a specific model, where the underlying affine process is chosen to be a Cox-

Ingersoll-Ross (CIR) process, we show that the short rate can stay near the zero

lower bound for an extended period of time, which is a frequently observed fea-

ture in the low interest rate regime; see Section 3.6. In addition, bond prices and

interest rates in our models are rational functions of the underlying state pro-

cess, therefore our models belong the the broad class of rational term structure

models including, among others, the models by Flesaker & Hughston (1996a),

Brody & Hughston (2004), Hughston & Rafailidis (2005), Brody et al. (2012),

Akahori et al. (2014), and Filipović et al. (2015). In particular, our models are

not part of the classical short-rate ones.

The remainder of this chapter is structured as follows: Section 3.2 briefly in-

troduces the affine Markov processes along with a construction of non-negative

supermartingales, which are used to construct the state-price deflator. In Section

3.3, based upon the non-negative supermartingales constructed in Section 3.2,

we develop a general affine rational potential model and general explicit formulae

for zero bond prices. In relation to Filipović et al. (2015), we present a decom-
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position of the underlying process into unspanned factors and term structure

factors. In Section 3.4 we derive analytic pricing formulae for caps, swaptions,

and European options on the exchange rate in the generic affine rational poten-

tial model. Section 3.5 presents some concrete models based on the specification

of the affine process as a CIR process and a subordinator Lévy process. In

Section 3.6, we calibrate the two-factor CIR specification of the affine rational

potential model to market data. The stability of model parameters over the

calibrated dates is analyzed. Moreover, using Monte Carlo estimation method

we show that the short rate stays near the zero lower bound over an extended

period.

3.2 Affine Processes

In this section we briefly review some key properties of affine Markov processes

and present a general construction of non-negative supermartingales from an un-

derlying affine process. These supermartingales will be used as the basic building

block in our rational term structure model that is presented in Section 3.3. For

further background on the theory of Markov affine processes and their applica-

tions in finance, we refer to Ethier & Kurtz (1986), Rogers & Williams (2000),

Duffie et al. (2000), Duffie et al. (2003), Keller-Ressel (2008), and Keller-Ressel

et al. (2013).

Let (Ω,F,F) be a filtered space, where F = (Ft)t∈[0,T∞] denotes the associ-

ated filtration and T∞ > 0 represents a fixed, finite time horizon. Suppose that

(Xt,Px)t∈[0,T∞],x∈E is a stochastically continuous, time-homogeneous Markov

process taking values in E := Rd≥0 and (Px)x∈E is a family of probability mea-

sures on (Ω,F) such that X0 = x holds Px-almost surely. We assume that

X is an affine process, i.e., there exist functions φ : [0, T∞] × iRd → C and

ψ : [0, T∞]× iRd → Cd such that

Ex
[
e〈u,Xt〉

]
= exp (φt(u) + 〈ψt(u), x〉) (3.1)

for all x ∈ E and all (t, u) ∈ [0, T∞] × iRd. Here, we denote by Ex[·] the

expectation with respect to probability measure Px and 〈 · , · 〉 the inner product
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over Cd. We set

I :=

{
u ∈ Rd : sup

t∈[0,T∞]
Ex[e〈u,Xt〉] <∞ for all x ∈ E

}
. (3.2)

Assumption. We assume throughout that 0 ∈ int(I), where int(I) denotes the

interior of the set I. We denote by S(I) the strip

S(I) = {z ∈ Cd : <z ∈ I}.

By Lemma 3.12 and Lemma 3.19 in Keller-Ressel (2008), there exists a unique

continuous extension of φt(u) and ψt(u) to [0, T∞]× S(I) such that (3.1) holds

for all (t, u) ∈ [0, T∞] × S(I). By Theorem 3.18 in Keller-Ressel (2008), the

affine process X is regular in the sense that the derivatives

F (u) :=
∂

∂t

∣∣∣∣
t=0+

φt(u) and R(u) :=
∂

∂t

∣∣∣∣
t=0+

ψt(u)

exist for all u ∈ S(I) and are analytic on int(S(I)). The functions φ and ψ solve

the generalized Riccati equations

∂

∂t
φt(u) = F (ψt(u)), φ0(u) = 0 (3.3a)

∂

∂t
ψt(u) = R(ψt(u)), ψ0(u) = u (3.3b)

for all (t, u) ∈ [0, T∞]× S(I), where F and R have the Lévy-Khintchine form

F (u) = 〈b, u〉+

∫
E

(
e〈ξ,u〉 − 1

)
m(dξ), (3.4a)

Ri(u) = 〈βi, u〉+ 1
2 〈αiu, u〉+

∫
E

(
e〈ξ,u〉 − 1− 〈u, hi(ξ)〉

)
µi(dξ). (3.4b)

Here, (b,m, αi, βi, µi)1≤i≤d are admissible parameters in the sense of Duffie et al.

(2003) that are uniquely determined by the dynamics of X, and hi : Rd≥0 → Rd,
i = 1, . . . , d, are suitable truncation functions.

Remark 3.1. Since X is a time-homogeneous Markov process, it follows that

Ext [e〈u,XT 〉] = exp(φT−t(u) + 〈ψT−t(u), Xt〉) for 0 ≤ t ≤ T ≤ T∞, u ∈ S(I).
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Hence, for any 0 ≤ t ≤ t+ s ≤ T∞ and for any x ∈ E we have

Ex[e〈u,Xt+s〉] = Ex[Exs [e〈u,Xt+s〉]]

= Ex[eφt(u)+〈ψt(u),Xs〉]

= exp(φt(u) + φs(ψt(u)) + 〈ψs(ψt(u)), x〉). (3.5)

On the other hand, the definitions of φ and ψ imply that

Ex[e〈u,Xt+s〉] = exp(φt+s(u) + 〈ψt+s(u), x〉). (3.6)

By comparing (3.5) and (3.6) we obtain the semi-flow property of φ and ψ:

φt+s(u) = φt(u) + φs(ψt(u)) (3.7a)

ψt+s(u) = ψs(ψt(u)), (3.7b)

for 0 ≤ t ≤ t+ s ≤ T∞ and u ∈ S(I).

We now construct a family of non-negative supermartingales on [0, T∞] based

on the above affine Markov dynamics.

Theorem 3.2 (Construction of non-negative supermartingales). For any

u ∈ E ∩ I the process Mu given by

Mu
t = φT∞−t(u) + 〈ψT∞−t(u), Xt〉

is a non-negative supermartingale (with respect to all (Px)x∈E).

Proof. First, note that φt(u) ∈ R and ψt(u) ∈ Rd for all (t, u) ∈ [0, T∞] × I.

Therefore, the process Mu takes only real values. Further observe that the

process Nu
t = exp(φT∞−t(u) + 〈ψT∞−t(u), Xt〉) is a martingale since

Nu
t = Ext [exp(〈u,XT∞〉)].

Since u ∈ E = Rd≥0, it follows that 〈u,XT∞〉 ≥ 0, and thus

Nu
t = Ext [exp(〈u,XT∞〉)] ≥ 1.
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Hence Mu
t = ln(Nu

t ) ≥ 0 for all t ∈ [0, T∞]. Jensen’s inequality for conditional

expectations implies that

Es[Mu
t ] = Exs [ln(Nu

t )] ≤ ln(Exs [Nu
t ]) = ln(Nu

s ) = Mu
s

for all s, t ∈ [0, T∞] with s ≤ t, so Mu is a supermartingale. This completes the

proof.

Remark 3.3. In a related article, Keller-Ressel et al. (2013) propose a general

LIBOR market model which produces non-negative LIBOR rates, where the

quotients of zero bond prices are modeled using the martingales Nu in the above

proof.

We conclude this section with an auxiliary result that we will need in Chapter

4.

Lemma 3.4. The functions φt(·) and ψt(·) are oder-preserving in the sense that

for any (t, u), (t, v) ∈ [0, T∞]× I with u ≤ v, it holds

φt(u) ≤ φt(v) and ψt(u) ≤ ψt(v).

Here, the inequality u ≤ v is interpreted component-wise.

Proof. See Lemma 4.2 in Keller-Ressel et al. (2013).

3.3 The Affine Rational Potential Model

In this section, based on the non-negative supermartingales in Theorem 3.2, we

construct a general rational term structure model which produces non-negative

interest rates and closed-form formulae for zero bond prices. Moreover, in this

general model we obtain analytic pricing formulae for caps, swaptions, and Eu-

ropean currency options, even in the presence of multiple factors ; see Section

3.4. In connection to Filipović et al. (2015), a decomposition of the underlying

state process into so-called unspanned factors and terms structure factors is also

presented.
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In all that follows we fix an initial value x ∈ E of the process X and set

P = Px and E[·] = Ex[·]. For each fixed u ∈ E ∩ I we define

Du
t := c+Mu

t = c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉 , t ∈ [0, T∞], (3.8)

for some positive constant c > 0. Theorem 3.2 implies that Du is a (strictly)

positive supermartingale. Thus, Du can act as a state-price deflator, and this

specification defines a rational term structure model that we will henceforth refer

to as the affine rational potential model. In this framework, zero-coupon

bond prices are given by

p(t, T ) =
Et[Du

T ]

Du
t

for all 0 ≤ t ≤ T ≤ T∞, (3.9)

and the time t-price Ct of any contingent claim CT to be paid at time T > t is

given by

Ct =
Et[CTDu

T ]

Du
t

. (3.10)

Remark 3.5. Propositions 2.11 and 2.12 imply that the affine rational potential

model is free of arbitrage opportunities and it generally guarantees non-negative

interest rates.

In order to obtain closed-form expressions for the bond prices (3.9), we next

address the conditional expectation Et[Du
T ].

Lemma 3.6 (Conditional expectations). For any u ∈ I and t ∈ [0, T ], we

have

Et[XT ] =
∂φT−t(0)

∂u
+
∂ψT−t(0)

∂u

t

·Xt (3.11)

where1

∂φt(u)

∂u
:=

(
∂φt(u)

∂u1
, . . . ,

∂φt(u)

∂ud

)t

,

and

∂ψt(u)

∂u
:=


∂ψ1

t (u)
∂u1

· · · ∂ψ1
t (u)
∂ud

...
. . .

...
∂ψdt (u)
∂u1

· · · ∂ψdt (u)
∂ud

 .

1Throughout this thesis, we use the notation At to indicate the transpose of matrix A.
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In particular, it follows that

Et[Du
T ] = c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)

∂u

〉
+

〈
∂ψT−t(0)

∂u
· ψT∞−T (u), Xt

〉
. (3.12)

Proof. Consider an arbitrary component Xj of the process X. Then for v ∈ R
with |v| sufficiently small we have

Et[exp(vXj
T )] = exp(φT−t(vej) + 〈ψT−t(vej), Xt〉)

where ek denotes the kth unit vector in Rd. Applying Lemma A.1 we obtain

Et[Xj
T ] =

∂φT−t(0)

∂uj
+

d∑
k=1

∂ψkT−t(0)

∂uj
Xk
t .

Hence

Et[XT ] =
∂φT−t(0)

∂u
+
∂ψT−t(0)

∂u

t

·Xt

and it follows that

Et[Mu
T ] = Et[φT∞−T (u) + 〈ψT∞−T (u), XT 〉]

= φT∞−T (u) + 〈ψT∞−T (u),Et[XT ]〉

= φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)

∂u
+
∂ψT−t(0)

∂u

t

·Xt

〉

= φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)

∂u

〉
+

〈
∂ψT−t(0)

∂u
· ψT∞−T (u), Xt

〉
.

Since Et[Du
T ] = Et[Mu

T ] + c, this completes the proof.

Corollary 3.7 (Bond prices). In the affine rational potential model, zero-

coupon bond prices are given by p(t, T ) = F (t, T,Xt) where the deterministic

function F is defined via

F (t, T, x) =
c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)
∂u

〉
+
〈
∂ψT−t(0)

∂u · ψT∞−T (u), x
〉

c+ φT∞−t(u) + 〈ψT∞−t(u), x〉
.

(3.13)
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Proof. The representation (3.13) follows immediately from (3.9) and (3.12).

Following Filipović et al. (2015), we define the term structure kernel as the

set

A =
⋂

0≤t≤T≤T∞
kerF (t, T, ·)

where

kerF (t, T, ·) := {ξ ∈ Rd : 〈∇F (t, T, x), ξ〉 = 0 for all x ∈ E}.

We next characterize the term structure kernel A in terms of the underlying

model coefficients:

Proposition 3.8. Suppose that for each T ∈ (0, T∞] there exist t ≤ T and

x, y ∈ E such that F (t, T, x) 6= F (t, T, y). Then the term structure kernel A is

given by

A = span

{
∂ψT−t(0)

∂u
· ψT∞−T (u) : 0 ≤ t ≤ T ≤ T∞

}⊥
.

Proof. A direct computation using (3.13) shows that

∇F (t, T, x) =
∂ψT−t(0)

∂u · ψT∞−T (u)− F (t, T, x)ψT∞−T (u)

c+ φT∞−t(u) + 〈ψT∞−t(u), x〉
.

Obviously we have

A⊥ = span
{
∇F (t, T, x) : 0 ≤ t ≤ T ≤ T∞, x ∈ Rd≥0

}
.

Hence, the above representation of ∇F (t, T, x) implies that A⊥ is given by the

linear span of the set{
∂ψT−t(0)

∂u
· ψT∞−T (u)− F (t, T, x)ψT∞−T (u) : 0 ≤ t ≤ T ≤ T∞, x ∈ Rd≥0

}
.

For each 0 < T ≤ T∞, we choose t ∈ [0, T ], and x, y ∈ Rd≥0 such that

F (t, T, x) 6= F (t, T, y). Since (F (t, T, x) − F (t, T, y)) · ψT∞−T (u) ∈ A⊥ and

F (t, T, x)− F (t, T, y) 6= 0, it follows that ψT∞−T (u) ∈ A⊥, and thus

∂ψT−s(0)

∂u
· ψT∞−T (u) ∈ A⊥ for all s ∈ [0, T ].
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On the other hand we have the trivial identity

ψT∞−T (u) =
∂ψ0(0)

∂u
· ψT∞−T (u).

Hence, we obtain

A⊥ = span

{
∂ψT−t(0)

∂u
· ψT∞−T (u) : t ∈ [0, T ], T ∈ (0, T∞]

}
as asserted.

In an important special case, there are no unspanned factors:

Corollary 3.9. Suppose the matrix ∂ψt(0)
∂u is diagonal, i.e.

∂ψt(0)

∂u
= diag(a1(t), . . . , ad(t))

and that the functions a1, . . . , ad are linearly independent. Then the term struc-

ture kernel A is trivial, i.e. A = {0}, if and only if the parameter u = (u1, . . . , ud)

satisfies ui > 0 for all i = 1, . . . , d.

Proof. Necessity is obvious. Conversely, for T = T∞ we get ψT∞−T (u) =

ψ0(u) = u. Thus, by Proposition 3.8 we have

span

{
∂ψt(0)

∂u
· u : 0 ≤ t ≤ T∞

}
⊆ A⊥.

Hence, for any z ∈ A and all t ∈ [0, T∞] we have 〈z, ∂ψt(0)
∂u ·u〉 = 0, or equivalently∑d

i=1 ziuiai(t) = 0. Since a1, . . . , ad are linearly independent and ui > 0 for all

i = 1, . . . , d, it follows that zi = 0 for all i = 1, . . . , d. Hence z = 0 and

A = {0}.

Let n = dimA and m = d − n = dimA⊥. We now use some linear alge-

bra to obtain an equivalent representation where the unspanned dimensions are

contained in the last components of the state vector.

Lemma 3.10. There exists an invertible linear transformation S on Rd such

that S(A) = {0} × Rn and S−t(A⊥) = Rm × {0}.
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Proof. Denote by {e1, . . . , ed} the canonical basis of Rd and by {ε1, . . . , εd} an-

other basis of Rd, where {ε1, . . . , εm} spans A⊥ and {εm+1, . . . , εd} spans A. Set

B = (bij)i,j=1,...,d where bij are given by εi =
∑d

j=1 bijej and let S = B−t. We

first show that {0} × Rn ⊆ S(A). For any

z =
d∑

k=m+1

ckek ∈ {0} × Rn

we have

S−1z =

d∑
k=m+1

ckB
tek =

d∑
k=m+1

ckεk,

so for every i ∈ {1, . . . ,m} we have

〈
S−1z, εi

〉
=

d∑
k=m+1

ck 〈εk, εi〉 = 0.

Hence S−1z ∈ A, i.e. z ∈ S(A), and {0}×Rn ⊆ S(A). To show the converse, let

y =
d∑

k=m+1

dkεk ∈ A

and observe that

Sy =
d∑

k=m+1

dkB
−tεk =

d∑
k=m+1

dkek ∈ {0} × Rn.

The second part of the assertion is immediate from the first one.

We now decompose the transformed vector process Xt = SXt into two sub-

vectors via

Xt = SXt =

(
Zt

Ut

)
∈ Rm × Rn.

Then it follows that the term structure depends only on the sub-vector Zt.

Indeed, since ψt(u),
∂ψT−t(0)

∂u · ψT∞−T (u) ∈ A⊥, Lemma 3.10 implies

S−tψt(u) =

(
ψt(u)

Z

0

)
∈ Rm × {0},
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and

S−t · ∂ψT−t(0)

∂u
· ψT∞−T (u) =

∂ψT−t(0)
∂u · ψT∞−T (u)

Z

0

 ∈ Rm × {0}.

Therefore, we have

p(t, T )

=
c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)
∂u

〉
+
〈
∂ψT−t(0)

∂u · ψT∞−T (u), S−1Xt

〉
c+ φT∞−t(u) +

〈
ψT∞−t(u), S−1Xt

〉
=
c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)
∂u

〉
+
〈
S−t

∂ψT−t(0)
∂u · ψT∞−T (u), Xt

〉
c+ φT∞−t(u) +

〈
S−tψT∞−t(u), Xt

〉
=

c+ φT∞−T (u) +
〈
ψT∞−T (u),

∂φT−t(0)
∂u

〉
+

〈
∂ψT−t(0)

∂u · ψT∞−T (u)
Z

, Zt

〉
c+ φT∞−t(u) +

〈
ψT∞−t(u)

Z
, Zt

〉 .

Thus, in the terminology of Filipović et al. (2015), the components of Ut are

unspanned factors and the components of Zt are term structure factors.

3.4 Valuation of Interest Rate Derivatives

In this section we derive semi-closed form pricing formulae for caps, swaptions,

and European options on foreign exchange rate in the generic affine rational

potential model established in Section 3.3.

3.4.1 Caps

Since a cap is simply a linear portfolio of caplets, it suffices to consider caplets.

We consider a caplet with strike rate K and tenor structure 0 < T < T+∆ ≤ T∞

for some ∆ > 0. Thus, at time T + ∆ the buyer of the caplet receives the payoff

C(T + ∆) = ∆(L(T, T + ∆)−K)+,

where the LIBOR rate L(T, T + ∆) settled at time T is given by

L(T, T + ∆) =
1

∆

(
1

p(T, T + ∆)
− 1

)
.
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Using (3.9) it follows that the time-T price of the caplet is

C(T ) = p(T, T + ∆)C(T + ∆) =

(
1−K

ET [Du
T+∆]

Du
T

)+

,

where K := 1 + ∆K. For t ≤ T the time-t-price of the caplet is thus given by

C(t) =
Et[Du

TC(T )]

Du
t

=
1

Du
t

Et
[(
Du
T −KET [Du

T+∆]
)+]

. (3.14)

By Theorem 3.6 and by the definition of Du, we have

Du
T = c+ φT∞−T (u) + 〈ψT∞−T (u), XT 〉 , (3.15)

ET [Du
T+∆] = c+ φT∞−T−∆(u) +

〈
ψT∞−T−∆(u),

∂φ∆(0)

∂u

〉
+

〈
∂ψ∆(0)

∂u
· ψT∞−T−∆(u), XT

〉
. (3.16)

Plugging (3.15) and (3.16) into (3.14) yields

C(t) =
1

Du
t

Et
[
(〈a,XT 〉+ b)+] , (3.17)

where

a := ψT∞−T (u)−K
∂ψ∆(0)

∂u
· ψT∞−T−∆(u), (3.18a)

b := c(1−K) + φT∞−T (u)−KφT∞−T−∆(u)

−K

〈
ψT∞−T−∆(u),

∂φ∆(0)

∂u

〉
. (3.18b)

Proposition 3.11. The time-t price of a ∆-tenor caplet with strike rate K

maturing at time T is given by the formula

C(t) =

∫∞
0 <

[
exp(b(µ+iy)+φT−t((µ+iy)a)+〈ψT−t((µ+iy)a),Xt〉)

(µ+iy)2

]
dy

π (c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉)
, (3.19)

where µ > 0 is a real number such that µa ∈ I, and a, b are given in (3.18).
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Proof. Since µa ∈ I, the conditional expectation Et[e〈(µ+iy)a,XT 〉] exists and is

given by

Et
[
e〈(µ+iy)a,XT 〉

]
= exp(φT−t((µ+ iy)a) + 〈ψT−t((µ+ iy)a), Xt〉).

Hence

Et
[
e(µ+iy)(〈a,XT 〉+b)

]
= exp ((µ+ iy)b+ φT−t((µ+ iy)a) + 〈ψT−t((µ+ iy)a), Xt〉) . (3.20)

Applying Lemma A.2 and combining (3.17) with (3.20) we obtain the caplet

pricing formula (3.19).

3.4.2 Swaptions

Consider a payer swaption with strike rate K, maturity T = T0 and payment

dates

T1 < · · · < TN .

Setting ∆i := Ti − Ti−1, i = 1, . . . , N , the payoff of the swaption at maturity T

is given by

S(T ) =

(
N∑
i=1

∆ip(T, Ti)
(
L(T ;Ti−1, Ti)−K

))+

.

Substituting for

L(T ;Ti−1, Ti) =
1

∆i

(
p(T, Ti−1)

p(T, Ti)
− 1

)
, i = 1, . . . , N,

and for p(T, Tk) = ET [Du
Tk

]/Du
T , k = 1, . . . , N , yields

S(T ) =
1

Du
T

(
N∑
i=1

ET
[
Du
Ti−1

]
−KiET

[
Du
Ti

])+

,

where Ki := 1 + ∆iK. Hence, the time-t price of the swaption is

S(t) =
Et[S(T )Du

T ]

Du
t

=
1

Du
t

Et

( N∑
i=1

ET
[
Du
Ti−1

]
−KiET

[
Du
Ti

])+
 .
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By Theorem 3.6, for i = 0, . . . , N , we have

ET
[
Du
Ti

]
= c+ φT∞−Ti(u) +

〈
ψT∞−Ti(u),

∂φTi−T (0)

∂u

〉
+

〈
∂ψTi−T (0)

∂u
· ψT∞−Ti(u), XT

〉
.

So we get

S(t) =
1

Du
t

Et
[(
〈α,XT 〉+ β

)+]
, (3.21)

where

α :=

N∑
i=1

∂ψTi−1−T (0)

∂u
.ψT∞−Ti−1(u)−Ki

∂ψTi−T (0)

∂u
.ψT∞−Ti(u), (3.22a)

β :=

N∑
i=1

c(1−Ki) + φT∞−Ti−1(u) +

〈
ψT∞−Ti−1(u),

∂φTi−1−T (0)

∂u

〉
−KiφT∞−Ti(u)−Ki

〈
ψT∞−Ti(u),

∂φTi−T (0)

∂u

〉
. (3.22b)

Note that (3.21) is of the same form as (3.17). Thus, similarly as in the proof of

Theorem 3.11, we obtain the following no-arbitrage pricing formula:

Proposition 3.12. The time-t no-arbitrage price of the swaption is given by

S(t) =

∫∞
0 <

[
exp(β(µ+iy)+φT−t((µ+iy)α)+〈ψT−t((µ+iy)α),Xt〉)

(µ+iy)2

]
dy

π (c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉)
, (3.23)

where µ > 0 is such that µα ∈ I, and α, β are given in (3.22).

Remark 3.13. From (3.19) and (3.23), we see that if we transform the underly-

ing process X via the transformation S discussed at the end of Section 3.3, then

the unspanned sub-vector Ut does not appear in the pricing formulae for bonds,

caplets or swaptions. Therefore, the unspanned factors are, in fact, irrelevant

for the term structure model.
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3.4.3 Currency options

We consider two economies with two currencies $i and $j , whose state-price

deflators, Dui and Duj , are given respectively by

Dui
t = ci + φT∞−t(ui) + 〈ψT∞−t(ui), Xt〉 , (3.24)

D
uj
t = cj + φT∞−t(uj) + 〈ψT∞−t(uj), Xt〉 , (3.25)

for some parameters ui, uj ∈ I∩E, and some positive parameters ci > 0, cj > 0.

Denote by xij the exchange process between these two currencies, so one $i can

be exchanged for xij(t) units of $j at time t. Proposition 2.14 then implies that

the following specification of xij in terms of the two state-price deflators excludes

arbitrage opportunities:

xij(t) =
Dui
t

D
uj
t

xij(0). (3.26)

We now consider a European call option on xij with strike rate k and maturity

T ∈ [0, T∞]. Its payoff, in currency $j , is given by

O(T ) := (xij(T )− k)+.

It follows from Equation (3.26) that the time t-value of the option is provided

by

O(t) :=
1

D
uj
t

Et
[
D
uj
T (xij(T )− k)+

]
=

1

D
uj
t

Et
[(
xij(0)Dui

T − kD
uj
T

)+]
.

Substituting (3.24) and (3.25) in the above equation yields

O(t) =
Et
[
(〈A,XT 〉+B)+]

cj + φT∞−t(uj) + 〈ψT∞−t(uj), Xt〉
,

where

A :=xij(0)ψT∞−T (ui)− kψT∞−T (uj), (3.27a)

B :=xij(0)ci − kcj + xij(0)φT∞−T (ui)− kφT∞−T (uj). (3.27b)

As in the preceding subsection, this immediately yields the following pricing

formula for the European currency option:
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Proposition 3.14 (Currency option). In the affine rational potential model,

the time-t no-arbitrage price of a European call option on the foreign exchange

rate with strike k and maturity T ≥ t is given by

O(t) =

∫∞
0 <

[
exp((µ+iy)B+φT−t((µ+iy)A)+〈ψT−t((µ+iy)A),Xt〉)

(µ+iy)2

]
dy

cj + π (φT∞−t(uj) + 〈ψT∞−t(uj), Xt〉)
, (3.28)

where µ > 0 is such that µA ∈ I, and A, B are given in (3.27).

3.5 Examples

In this section the underlying process in the general affine rational potential

model is specified as a one-factor CIR process, a multi-factor CIR process and

a subordinator Lévy process. This in turn yields three concrete rational term

structure models with non-negative interest rates.

3.5.1 CIR processes

Consider a one factor CIR process X given by

dXt = λ(θ −Xt)dt+ 2η
√
XtdWt, X0 = x ∈ R≥0,

where λ > 0 and θ, η ∈ R≥0. This is an affine process with

E[euXt ] = exp (φt(u) + ψt(u)x) ,

where

φt(u) = − λθ

2η2
ln

(
1− 2η2u

λ
(1− e−λt)

)
, ψt(u) =

ue−λt

1− 2η2u
λ (1− e−λt)

, (3.29)

and u satisfies

u ∈
[
0,

λ

2η2(1− e−λT∞)

)
;

see also Section 8 in Keller-Ressel et al. (2013).

From (3.8) the state-price deflator Du is given in explicit form by

Du
t = c− λθ

2η2
ln

(
1− 2η2u

λ
(1− e−λ(T∞−t))

)
+

ue−λ(T∞−t)Xt

1− 2η2u
λ (1− e−λ(T∞−t))

.
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A simple computation yields

∂φt(0)

∂u
= θ(1− e−λt) and

∂ψt(0)

∂u
= e−λt. (3.30)

Plugging (3.29) and (3.30) into (3.13) we obtain an explicit representation of

bond prices via

p(t, T ) =
G(t, T )Xt +H(t, T ) + c

G(t, t)Xt +H(t, t) + c
for t ≤ T ≤ T∞,

where

G(t, T ) =
ue−λ(T∞−t)

1− 2η2u
λ (1− e−λ(T∞−T ))

,

and

H(t, T ) =
θue−λ(T∞−T )

(
1− e−λ(T−t))

1− 2η2u
λ (1− e−λ(T∞−T ))

− λθ

2η2
ln

(
1− 2η2u

λ
(1− e−λ(T∞−T ))

)
.

It follows that the short rate is given by

rt = −∂T p(t, T )|T=t =
−∂TG(t, t)Xt

G(t, t)Xt +H(t, t) + c
, (3.31)

where

−∂TG(t, t) =
2η2λ2u2e−2λ(T∞−t)

(λ− 2η2u(1− e−λ(T∞−t)))2
.

3.5.2 Multi-factor CIR process

We extend the one-factor CIR process in the previous example to the case of

d independent CIR processes. Consider a process X consisting of d factors

X1, . . . , Xd given, for each i ∈ {1, . . . , d}, by

dXi
t = λi(θi −Xi

t)dt+ 2ηi

√
Xi
tdW

i
t , Xi

0 = xi ∈ R≥0,

where λi > 0, θi, ηi ∈ R≥0, and W 1, . . . ,W d are independent Brownian motions.

This process is an affine process satisfying

E[e〈u,Xt〉] = exp (φt(u) + 〈ψt(u), x〉) ,
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where

φt(u) =
d∑
i=1

−λiθi
2η2
i

ln

(
1− 2η2

i ui
λi

(1− e−λit)
)
, (3.32a)

ψt(u) =

 u1e
−λ1t

1− 2η2
1u1

λ1
(1− e−λ1t)

, . . . ,
ude
−λdt

1− 2η2
dud
λd

(1− e−λdt)

t

, (3.32b)

and u = (u1, . . . , ud) such that

ui ∈
[
0,

λi
2η2
i (1− e−λiT

∞)

)
, i = 1, 2, . . . , d.

As in the previous example, we have

∂φt(0)

∂u
=
(
θ1(1− e−λ1t), . . . , θd(1− e−λdt)

)t
(3.33a)

∂ψt(0)

∂u
= diag

(
e−λ1t, . . . , e−λdt

)
. (3.33b)

Now using (3.32) and (3.33) in (3.13) we obtain the closed-form bond price

formula

p(t, T ) =
〈A(t, T ), Xt〉+B(t, T ) + c

〈A(t, T ), Xt〉+B(t, t) + c
, 0 ≤ t ≤ T ≤ T∞, (3.34)

where

A(t, T ) =

 u1e
−λ1(T∞−t)

1− 2η2
1u1

λ1
(1− e−λ1(T∞−T ))

, . . . ,
ude
−λd(T∞−t)

1− 2η2
dud
λd

(1− e−λd(T∞−T ))

 ,

and

B(t, T ) =

d∑
i=1

θiuie
−λi(T∞−T )

(
1− e−λi(T−t)

)
1− 2η2

i ui
λi

(1− e−λi(T∞−T ))

− λiθi
2η2
i

ln

(
1− 2η2

i ui
λi

(1− e−λi(T∞−T ))

)
.

A straightforward computation yields the short rate via

rt = −∂T p(t, T )|T=t =
−〈∂TA(t, t), Xt〉

〈A(t, t), Xt〉+B(t, t) + c
, (3.35)
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where

∂TA(t, t)

=

(
−2η2

1λ
2
1u

2
1e
−2λ1(T∞−t)

(λ1 − 2η2
1u1(1− e−λ1(T∞−t)))2

, . . . ,
−2η2

dλ
2
du

2
de
−2λd(T∞−t)

(λd − 2η2
dud(1− e−λd(T∞−t)))2

)
.

3.5.3 Lévy processes

Suppose the affine process X is a Lévy subordinator, with cumulant generating

function κ. Then we know that

φt(u) = tκ(u) and ψt(u) = u for u ≥ 0.

The supermartingale Du in (3.8) takes the form

Du
t = c+ φT∞−t(u) + ψT∞−t(u)Xt = c+ (T∞ − t)κ(u) + uXt. (3.36)

We have
∂φt(u)

∂u
= tκ′(u) and

∂ψt(u)

∂u
= 1.

Substituting these derivatives in Equation (3.13) we obtain

p(t, T ) =
uXt + (T∞ − T )κ(u) + (T − t)κ′(0)u+ c

uXt + (T∞ − t)κ(u) + c
for all t ≤ T ≤ T∞.

(3.37)

The corresponding short rate process is given by

rt =
κ(u)− uκ′(0)

uXt + (T∞ − t)κ(u) + c
. (3.38)

Remark 3.15. We observe that bond prices and the short rate in the above

models are quotients of affine functions of the underlying state process. This

in particular implies that our models do not belong to the classical short-rate

world. Moreover the short rate is bounded from below by zero and rt → 0 as

Xt → 0 in the CIR-process specifications, while in the subordinator Lévy model

we have rt → 0 as Xt →∞.
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3.6 Numerical Examples and Calibration

We calibrate the two-factor CIR process specification of the affine rational po-

tential model to market zero-coupon yields of several dates. We then numerically

show that the short rate in this specific model stays in the vicinity of the zero

lower bound for an extended time period, which is a desired feature of interest

rate models in the low interest rate environment.

3.6.1 Calibration to zero yield curves

We calibrate the above mentioned specific model to market yields, ȳ(0, T ), of

the first business days of six months ranging from March 2014 to August 2014,

where time-to-maturity T takes values in the set {1/12, ..., 11/12, 1, 2, 3, ..., 20}.
The market yields are bootstrapped from Overnight Indexed Swap rates in the

EUR market collected from Thomson-Reuters. We then use the log-linear inter-

polation method to construct the corresponding market yield curves. It follows

from (3.34) that the model yield curve is provided by

y(0, T ) = − 1

T
ln p(0, T ) = − 1

T
ln

(
〈A(0, T ), X0〉+B(0, T ) + c

〈A(0, 0), X0〉+B(0, 0) + c

)
,

where

A(0, T ) =

 u1e
−λ1T∞

1− 2η2
1u1

λ1
(1− e−λ1(T∞−T ))

,
u2e
−λ2T∞

1− 2η2
2u2

λ2
(1− e−λ2(T∞−T ))

 ,

and

B(0, T ) = B1(0, T ) +B2(0, T ),

with

Bi(0, T ) =
θiuie

−λi(T∞−T )
(
1− e−λiT

)
1− 2η2

i ui
λi

(1− e−λi(T∞−T ))
−
λiθi ln

(
1− 2η2

i ui
λi

(1− e−λi(T∞−T ))
)

2η2
i

.

In this specification we fix the time horizon T∞ = 30 and the positive constant

c = 10−12.
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March April May June July August

λ1 0.549276 0.497267 0.500330 0.573803 0.607132 0.581543

λ2 0.790560 0.774901 0.773401 0.777001 0.778531 0.778708

θ1 0.013684 0.015599 0.013054 0.014416 0.012805 0.014741

θ2 0.938575 0.950647 0.949184 0.952366 0.955570 0.955717

η1 0.997704 1.001440 0.998511 1.004880 1.072343 1.063727

η2 0.759785 0.759879 0.763593 0.756466 0.760272 0.752361

u1 0.275902 0.247914 0.250907 0.284121 0.263989 0.256974

u2 0.050178 0.047340 0.044421 0.059910 0.053436 0.063993

X1
0 5.000358 4.276595 3.928803 6.495502 7.500005 6.952000

X2
0 2.525113 1.924437 1.244368 0.244368 4.599037 6.153459

Table 3.1: Calibrated parameters.

We calibrate the model for the following set of parameters:

Θ = {λ1, λ2, θ1, θ2, η1, η2, u1, u2, X
1
0 , X

2
0},

where we consider X1
0 and X2

0 as extra parameters of our model. We use the

least squares method for the calibration, i.e., we minimize the squared differences

between market yields and model yields

31∑
i=1

(y(0, Ti)− ȳ(0, Ti))
2 ,

where

{T1, T2, ..., T31} ≡ {1/12, ..., 11/12, 1, 2, 3, ..., 20}.

The calibrated parameters for the selected dates are reported in Table 3.1. The

calibration results are rather satisfactory as displayed in Figure 3.1. Moreover,

since the parameters λ1, λ2, θ1, θ2, η1, η2, u1, u2 are constant, they are expected

not to fluctuate too much over time. As shown in Figure 3.2, the calibrated

parameters of our model are relatively stable over the six-month period of cali-

bration.
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(a) March-2014.

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

Time to maturity (years)
Z

er
o−

yi
el

d
 

 
Model yields
Market yields

(b) April-2014.
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(c) May-2014.
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(d) June-2014.
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(e) July-2014.
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(f) August-2014.

Figure 3.1: Market versus model implied zero-yields.
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Figure 3.2: Stability of calibrated parameters over time.

3.6.2 Short rate

We consider the short rate in the two-factor CIR specific model with the cali-

brated parameters from August 2014. Specifically, we analyze the evolution of

the short rate in a period of one year starting from the calibrated date. We

will be interested in the event that that the short rate stays below a given level

during that period. Hence, we consider for each level L > 0 a quantity

qL := P
(

max
t∈[0,1]

rt ≤ L
)
,

where the short rate rt is given by (3.35) with the number of factors d = 2.

Given that the current short rate r0 stays near the zero lower bound, we want to

see how likely the short rate will stay in a small neighborhood of r0 in a period

of one year.

For each level L, we estimate the corresponding probability qL using Monte

Carlo method via

q̂L :=
#{maxt∈[0,1] rt ≤ L}

N
,

where N is the number of trials and #S denotes the cardinality of the set S.

These estimates are plotted in Figure 3.3 with N = 100000 and 95% confidence

intervals.
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We observe that with the current short rate r0 being 5 basis points (bps), the

probabilities that the short rate will stay below 10bps, 15bps, and 25bps in one

year ahead are about 42%, 76%, and 97 % respectively, while the probabilities

that it stays below 25bps, 30bps, and 40bps are respectively 38%, 60%, and 96%

when the current short rate r0 is 15bps.

As an illustration, Figure 3.4 displays 5 simulated paths of the short rate

with the current short rate r0 being 5bps and 15bps, where we use the exact

simulation scheme for CIR processes in Glasserman (2003), p. 124.
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Figure 3.3: Estimated probabilities L 7→ qL = P(maxt∈[0,1] rt ≤ L) with 95%-

confidence intervals.
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Figure 3.4: Simulated paths of the short rate in one year ahead.



Chapter 4

The Multi-Curve Potential

Models

We develop a general class of multi-curve term structure models for post-crisis in-

terest rates using the potential approach. Our models feature positive stochastic

basis spreads, positive term structures, and analytic pricing formulae for interest

rate derivatives. Our modeling framework is also flexible enough to accommo-

date negative rates and positive basis spreads. Making a quanto interpretation

of LIBOR lending transactions, we use a multi-currency analogy to model mul-

tiple term structures and formulate a general, tractable model of multiple term

structures.

This chapter is an extended version of the article Nguyen & Seifried (2015a),

which has been published in International Journal of Theoretical and Applied

Finance, Vol. 18, No. 07.

4.1 Introduction

Motivated by the considerations discussed in Chapter 1, a rapidly growing lit-

erature on multi-curve modeling has evolved recently. From a methodological

perspective, the majority of existing multi-curve models can be broadly classified

49
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into the following three categories, for each of which we provide an incomplete

set of references:

Short Rate Models. Kijima et al. (2009) apply short rate models to rates of

various qualities. Kenyon (2010) uses a Hull-White model for the short rate

processes driving the OIS and the LIBOR curves. Morini & Runggaldier (2014)

model the risk-free short rate jointly with the short rate spread between the

LIBOR and the OIS term structure, based on Vasicek and CIR processes.

Heath-Jarrow-Morton (HJM) Approaches. Fujii et al. (2011), Crépey et al.

(2012), Cuchiero et al. (2015), Moreni & Pallavicini (2014), and Crépey et al.

(2015a), among others, use HJM methodology in the multi-curve framework.

Fujii et al. (2011) propose an HJM approach to model simultaneously the in-

stantaneous OIS forward rate and the spread between the FRA rate and the

OIS forward rate in a cross-currency setup. Crépey et al. (2012) apply a default-

able HJM methodology to model the term structure of multiple interest rate

curves, and Crépey et al. (2015a) consider a Lévy-driven HJM model for credit

valuation adjustments. Moreni & Pallavicini (2014) extend the classical HJM

framework to the multi-curve setting and model FRA rates using a common

family of Markov processes. Cuchiero et al. (2015) provide an HJM approach in

a general semimartingale setting to model the joint evolution of the term struc-

tures of OIS bond prices and of the term structures of multiplicative spreads

between FRA rates and OIS forward rates.

Libor Market Models (LMM). Mercurio (2009, 2010b), Bianchetti (2010),

Grbac et al. (2015), among others, construct multi-curve models in the LMM

setup. Mercurio (2009, 2010b) extends the classical LMM to the multi-curve

framework. Bianchetti (2010) exploits a foreign-currency analogy to derive

double-curve market pricing formulae for plain vanilla interest rate derivatives.

Grbac et al. (2015) extend the affine LIBOR models proposed by Keller-Ressel

et al. (2013) to the multi-curve setting.

The articles referred to above all take a reduced-form approach: They acknow-

ledge the market segmentation across tenors, and construct consistent pricing

models that reflect the relevant basis spreads. The spreads are not, however,

attributed to fundamental risk factors. By contrast, Filipović & Trolle (2013)
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analyze the structure of interbank rates and decompose the LIBOR-OIS spread

into default and liquidity components. In a recent paper, Gallitschke et al. (2014)

construct a structural model for interbank money market rates that endogenously

generates post-crisis basis spreads from fundamental risk factors including credit

risk and liquidity risk.

In this chapter, we adopt the reduced-form perspective and develop a general

reduced-form multi-curve model in a potential framework. Following Constan-

tinides (1992) and Rogers (1997), the general potential approach is based on

the direct specification of the relevant state-price deflator. Both Rogers (1997)

and Flesaker & Hughston (1996a,b, 1997) point out that this methodology is

particularly suited for cross-currency modeling: The arbitrage-free exchange rate

between two currencies is uniquely determined as the ratio of their state-price

deflators; see Chapter 2. To the best of our knowledge, this work is the first to

make use of potential methods in a multi-curve setup.

Following the multi-currency analogy of Bianchetti (2010), in the multi-

curve potential approach the OIS term structure is modeled as the discount

(equivalently, domestic) curve, and the spot multiplicative spread between LI-

BOR and OIS is modeled as the quotient between the state-price deflator in a

hypothetical forward (equivalently, foreign) currency and the state-price defla-

tor in the domestic currency. LIBOR rates then emerge as the interest rates

implicit in quanto borrowing transactions, where debt is issued in the domes-

tic currency and repaid in the foreign currency. In this setting, multiplicative

LIBOR-OIS spreads can be identified with forward exchange rates. In partic-

ular, the multi-curve potential approach is able to generate stochastic spreads.

By an appropriate specification of the relevant state-price deflators, we are able

to construct multi-curve term structure models that offer both positive spreads

and tractable pricing formulae.

The remainder of this chapter is structured as follows: Section 4.2 presents

the basic post-crisis concepts and the notation we use. Section 4.3 presents the

general multi-curve potential model, based on the interpretation of the spot mul-
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tiplicative spread as an exchange rate between two currencies. We construct a

general framework with pricing formulae for basic interest rate derivatives. In

Section 4.4 we analyze a specific multi-curve potential model that generalizes

the single-curve rational lognormal model of Flesaker & Hughston (1996a) to

the multi-curve framework. In this model we obtain stochastic spreads as well as

explicit valuation formulae for interest rate derivatives. In Section 4.5 we extend

the affine rational potential model in Chapter 3 and the linear rational model in

Filipović et al. (2015) to the multi-curve framework by using the general multi-

curve potential model established in Section 4.3. We show that the analytical

tractability of the single-curve models carries over to these multi-curve exten-

sions. Section 4.6 presents another tractable specification of the multi-curve

potential model in which the state-price deflators are constructed from a com-

mon Gaussian dynamics. Finally, in Section 4.7 we calibrate the multi-curve

rational lognormal models to EUR market data.

4.2 Multi-Curve Definitions and Notation

In this section we briefly introduce the most important definitions and notation

for post-crisis multi-curve interest rate markets.

4.2.1 Interbank interest rates

The main reference rates for an enormous number of fixed income contracts are

the London Interbank Offered Rate (LIBOR) in the USD fixed income market

and the Euro Interbank Offered Rate (EURIBOR) in the EUR fixed income

market. LIBOR is the average rate at which a contributor bank can obtain un-

secured funding in the London interbank market. It is produced every business

day for 5 currencies: CHF (Swiss Franc), EUR (Euro), GBP (Pound Sterling),

JPY (Japanese Yen), and USD (US Dollar), with 7 maturities: 1 day, 1 week,

and 1, 2, 3, 6, and 12 months. Every LIBOR contributor bank is asked to base

their submissions to the IntercontinentalExchange (ICE) on the following ques-

tion: ”At what rate could you borrow funds, were you to do so by asking for and

then accepting interbank offers in a reasonable market size just prior to 11 am
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London time?”. Every ICE LIBOR rate is calculated as a trimmed average: the

highest and lowest 25 % of the rates submitted are excluded, the mean of the rest

is published as ICE LIBOR rate. EURIBOR is calculated every business day by

Global Rate Set Systems (GRSS) for 8 maturities: 1, and 2 weaks, and 1, 2, 3, 6,

9, and 12 months. Each panel bank submits the rates that it believes one prime

bank is quoting to another prime bank for interbank term deposits within the

Euro zone. The published rate is the trimmed average of the quoted rates: the

highest and lowest 15% of the quotes are eliminated, the remainder are averaged.

Thus, EURIBOR is an average of the rates at which contributor banks believe a

prime bank can access unsecured funding in the euro interbank market. In the

following we will use the term LIBOR to refer to any of these two interbank rates.

Another important reference rate is the overnight rate: the effective federal

funds (FF) rate in the USD market, and the Euro overnight index average (EO-

NIA) rate in the EUR market. The FF rate is the weighted average of rates of

overnight unsecured transactions of reserve balances at Federal Reserve Bank of

New York that depository institutions make to one another. The rate is calcu-

lated daily by the Federal Reserve Bank of New York based on data provided by

the depository institutions. The day count convention is ACT/365. EONIA is

the reference rate for overnight unsecured transactions in the EUR market, cal-

culated on the basis of actual transactions. Each contributing bank reports daily

data on the total volume of transactions in unsecured overnight money and the

weighted average of interest rates for these transactions to the European Cen-

tral Bank, which calculates a weighted average interest rate. The day count

convention is ACT/360. EONIA and EURIBOR are the two most important

benchmarks for interest rates in the EUR markets.

4.2.2 Interest rate swaps and spreads

Overnight Indexed Swap. An overnight indexed swap is a fixed-for-floating inter-

est rate swap (see Definition 2.8) whose floating rate is the geometric average of

an overnight index, defined as the FF rate in the USD market and the EONIA
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rate in the EUR market. The par rate of this swap is called the OIS rate. OIS

rates are widely considered as the best proxy for the risk-free term structure. In

addition, OIS rates have also become market standard as the reference rates in

collateralization agreements; see Mercurio (2010a).

LIBOR-OIS Spread. In a LIBOR-based interest rate swap, the floating rate is

the LIBOR rate of the corresponding tenor. The LIBOR-OIS spread is then

defined as the difference between the par swap rates of a LIBOR-based swap

and an overnight indexed swap with the same maturities.

Basis Spread. The basis spread is the difference between the par swap rates of

two LIBOR-based interest rate swaps with different floating legs and the same

fixed leg and identical maturities.

For further information on various types of interest rate swaps, spreads, and

market quoting conventions, we refer to Filipović & Trolle (2013).

4.2.3 Notation

We consider a given domestic currency $d, which could be either USD or EUR.

We identify the OIS term structure with the discount curve in this domestic cur-

rency. As above, we denote by p(t, T ) the discount factor at time t for maturity

T . Based on market data, the discount curve p can be bootstrapped from quotes

of OIS rates using classical single-curve methods.

4.2.4 Forward rate agreements and FRA rates

In all that follows, we denote by L∆(T, T + ∆) the spot LIBOR rate determined

at time T for the time interval [T, T + ∆]. We recall from Definition 2.6 that

a forward rate agreement for the future time interval [T, T + ∆] is a contract

where two parties agree at time t ≤ T that, at the maturity time T + ∆, one

party pays a fixed amount of ∆K and receives ∆L∆(T, T + ∆), and the other

party pays ∆L∆(T, T + ∆) and receives ∆K. The cashflow to the payer is given

by

FRA(T + ∆) = ∆(L∆(T, T + ∆)−K).
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By absence of arbitrage, the time t-FRA rate L∆(t;T, T + ∆) is given by

L∆(t;T, T + ∆) = ET+∆
t [L∆(T, T + ∆)],

where ES denotes expectation under the S-forward measure, with the OIS-based

zero-coupon bond p as the numéraire. Obviously we have

L∆(T ;T, T + ∆) = L∆(T, T + ∆).

In the single-curve setting, we would have

L∆(t;T, T + ∆) = F (t;T, T + ∆) (4.1)

where F (t;T, T + ∆) denotes the time-t OIS forward rate for the time interval

[T, T + ∆], which is defined via

F (t;T, T + ∆) :=
1

∆

(
p(t, T )

p(t, T + ∆)
− 1

)
;

see Definition 2.7. The identity (4.1), however, no longer holds true in the multi-

curve setting; in post-crisis markets one generally observes that

L∆(t;T, T + ∆) > F (t;T, T + ∆) for all t ∈ [0, T ].

Intuitively, this can be attributed to increased credit and liquidity risks in the

interbank market; see, e.g., Mercurio (2009), Filipović & Trolle (2013), and

Gallitschke et al. (2014).

Definition 4.1. The (additive) FRA spread between the FRA rate and the

OIS forward rate is defined as

S∆(t, T ) := L∆(t;T, T + ∆)− F (t;T, T + ∆),

and the associated multiplicative FRA spread is given by

S∆
m(t, T ) :=

1 + ∆L∆(t;T, T + ∆)

1 + ∆F (t;T, T + ∆)
.
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In the literature, there exist two main approaches to spread modeling: de-

terministic spreads as in Henrard (2010), and stochastic spreads as in Mercurio

& Xie (2012) or Henrard (2013). Henrard (2010) assumes the multiplicative

spread S∆
m(t, T ) to be constant over time, i.e.

S∆
m(t, T ) = S∆

m(0, T ) for all t ∈ [0, T ].

Note that the multiplicative spread S∆
m is not constant, but a deterministic func-

tion of the relevant maturity. Mercurio & Xie (2012) construct a model with a

stochastic basis using an additive FRA spread S∆, modeled as a function of the

corresponding OIS forward rate and an independent martingale. This approach

is also used by Henrard (2013) to model the multiplicative spread S∆
m.

In this thesis, we choose the spot multiplicative FRA spread S∆
m(t, t), or

equivalently, the hypothetical forward (foreign) state-price deflator D∆
t , as a

building block for our model. S∆
m(t, t) can be interpreted easily as a spot ex-

change rate between two currencies (see below). Thus, modeling spot multi-

plicative spreads corresponds to modeling exchange rates in a cross-currency

setup, which fits naturally into the potential approach introduced in Chapter

2. Furthermore, we also show that the multiplicative spread S∆
m(t, T ) can be

interpreted as a forward exchange rate and is therefore, in general, stochastic.

4.3 The Multi-Curve Potential Model

4.3.1 Motivation

In the single-curve setting we have

L∆(t, t+ ∆) = F (t, t+ ∆) =
1

∆

(
1

p(t, t+ ∆)
− 1

)
and thus L∆(t, t + ∆) is equivalently characterized as the simply compounded

rate of the following simple investment:

• invest 1$d at time t,
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t t+ ∆

1
p(t,t+∆)$∆1$d

Figure 4.1: Quanto investment underlying the LIBOR-OIS spread.

• receive 1
p(t,t+∆)$d at maturity t+ ∆.

By contrast, as discussed in Section 4.2.4, in the post-crisis framework we gen-

erally have

L∆(t, t+ ∆) > F (t, t+ ∆).

The implied positive LIBOR-OIS spread can be regarded as a premium that

the lending bank requires from its counterparty due to credit and liquidity risk

concerns. Equivalently, we can think of a typical financial institution as borrow-

ing in the currency $d, but repaying its lenders in a different currency $∆ that

reflects the level of credit, liquidity and other interbank market risks. Then we

identify the LIBOR rate as the interest rate paid on this type of transaction. To

formalize this, let us consider the following quanto investment:

• invest 1$d at time t,

• receive 1
p(t,t+∆)$∆ at maturity t+ ∆, in a foreign currency $∆;

see Figure 4.1. Thus, the lender invests $d, but receives $∆. Note that, in

this reduced-form approach, the forward (foreign) currency $∆ is a theoretical

object. Let us denote by x∆ the exchange rate process between $d and $∆: 1$∆

at time t is equivalent to x∆(t) units of $d. Then the above quanto transaction

is equivalent to investing 1
x∆(t)

$∆ at time t and receiving 1
p(t,t+∆)$∆ at maturity

t+ ∆. Note that, if we consider L∆(t, t+ ∆) as the simply compounded rate of

this quanto investment, in units of the currency $∆, i.e.

1

x∆(t)
(1 + ∆L∆(t, t+ ∆)) =

1

p(t, t+ ∆)
,
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then the spot multiplicative spread S∆
m(t, t) is identical to the spot exchange rate

process x∆(t):

S∆
m(t, t) =

1 + ∆L∆(t, t+ ∆)

1 + ∆F (t, t+ ∆)
= x∆(t).

4.3.2 Definition of the multi-curve potential model

Since the spot multiplicative spread S∆
m(t, t) can be regarded as a spot exchange

rate process, we can use Proposition 2.14 to construct a general, arbitrage-free

multi-curve potential model by simultaneously modeling the OIS curve p and

the spot multiplicative spread process (S∆
m(t, t))t≥0: First, choose a (strictly)

positive semimartingale D as the state-price deflator in the domestic currency

$d, and construct the OIS term structure via

p(t, T ) =
Et[DT ]

Dt
for t ≤ T.

Second, model the spot multiplicative spread process (S∆
m(t, t))t≥0 as

S∆
m(t, t) =

D∆
t

Dt

for some positive, semimartingale D∆. The spot LIBOR rate L∆(t, t + ∆) is

then given by

L∆(t, t+ ∆) =
1

∆

(
1

p(t, t+ ∆)

D∆
t

Dt
− 1

)
. (4.2)

A few remarks are in order. First, it is easy to see that we obtain positive

LIBOR rates if and only if D∆
t ≥ p(t, t+∆)Dt. Second, note that our approach is

not symmetric with respect to the domestic and forward currency: The domestic

currency $d and the associated deflator D are distinguished as the unique state-

price deflator to be used in the general risk-neutral pricing formula

Π(t) =
Et[Π(T )DT ]

Dt
,
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which is valid for any price process Π. Third, this asymmetry also becomes

apparent from the ∆-LIBOR rate (4.2), which involves both the corresponding

deflator D∆ and the domestic deflator D. Equivalently, although the normalized

process D∆
t could be interpreted as the state-price deflator in the currency $∆,

the simply compounded interest rate in that market is not the ∆-LIBOR rate.

Thus, in this respect our approach differs from that of Bianchetti (2010), where

the ∆-LIBOR rate is defined as the simply compounded rate implied by the

$∆-term structure. Finally, we recover the single-curve potential model when

D∆ ≡ D, i.e., the two currencies $ and $∆ are identical.

4.3.3 General pricing formulae

In this section we present general clean valuation formulae for important interest

rate derivatives in the general multi-curve potential framework. Here “clean”

means that we consider contracts that are fully collateralized in cash, and where

the collateral rate coincides with the OIS rate. In that case, it is clear from

arbitrage arguments (see Piterbarg 2010) that the OIS curve is the correct

discount curve; this is also the widely accepted market standard.

Forward rate agreements

We consider a forward rate agreement for the time interval [T, T + ∆] with cash

flow at time T + ∆:

FRA(T + ∆) = ∆(L∆(T, T + ∆)−K).

Discounting with the OIS curve p from T + ∆ back to time T we have

FRA(T ) = p(T, T + ∆)∆(L∆(T, T + ∆)−K)

= p(T, T + ∆)

(
S∆
m(T, T )

p(T, T + ∆)
− (1 + ∆K)

)
= S∆

m(T, T )− (1 + ∆K)p(T, T + ∆).
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Therefore, the time-t price of the forward rate agreement is given by

FRA(t) =
1

Dt
Et[DTFRA(T )]

=
1

Dt
Et
[
DTS

∆
m(T, T )

]
− (1 + ∆K)

1

Dt
Et[DT p(T, T + ∆)]

=
1

Dt
Et
[
D∆
T

]
− (1 + ∆K)p(t, T + ∆).

Solving the equation FRA(t) = 0 for K we obtain the time-t FRA rate

L∆(t;T, T + ∆) =
1

∆

(
p(t, T )

p(t, T + ∆)

Et[D∆
T ]

Et[DT ]
− 1

)
. (4.3)

We thus obtain the additive and multiplicative FRA spreads as follows.

Theorem 4.2 (FRA spread in the multi-curve potential model). The

FRA spread in the multi-curve potential model is given by

S∆(t, T ) = L∆(t;T, T + ∆)− F (t;T, T + ∆)

=
p(t, T )

∆p(t, T + ∆)

(
Et[D∆

T ]

Et[DT ]
− 1

)
, (4.4)

and the multiplicative FRA spread S∆
m(t, T ) is provided by

S∆
m(t, T ) =

1 + ∆L∆(t;T, T + ∆)

1 + ∆F (t;T, T + ∆)
=

Et[D∆
T ]

Et[DT ]
. (4.5)

In particular, all FRA spreads are positive (equivalently, all multiplicative FRA

spreads are greater than 1) if the condition D∆
t ≥ Dt holds for all t ≥ 0.

Remark 4.3. By comparing Equations (4.5) and (2.8) in the general case, we see

that the multiplicative spread S∆
m is the forward exchange rate process between

the domestic currency $d and the foreign currency $∆. Thus, the interpretation

of the spot multiplicative spread S∆
m(t, t) as an exchange rate process is consistent

and the model produces, in general, stochastic spreads. In particular, if D∆
t =

ϕ∆(t)Dt for some deterministic function ϕ∆, then the multiplicative spread S∆
m

is deterministic:

S∆
m(t, T ) =

Et[ϕ∆(T )DT ]

Et[DT ]
= ϕ∆(T ) for all t ∈ [0, T ], and T ≥ 0.

We thus recover the deterministic spread assumption in Henrard (2010).
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Overnight indexed swaps

We consider an overnight indexed swap that exchanges a fixed rate K > 0 for

the floating compound overnight rate L̄(t, T ) that is defined by

L̄(t, T ) =
1

T − t

(
e
∫ T
t rsds − 1

)
where r is the relevant overnight rate (FF in the USD market and EONIA in

the EUR market). We further assume that the swap has the tenor structure

0 ≤ T0 < T1... < TN = T for some N ∈ N, where Ti − Ti−1 = ∆̄, i = 1, . . . , N.

At each time Ti, i = 1, ..., N , the fixed leg pays ∆̄K and the floating leg pays

∆̄L̄(Ti−1, Ti). The fair values of the fixed leg and the floating leg at any time

t ≤ T0 are given by

OISfix(t) =
1

Dt

N∑
i=1

Et[∆̄KDTi ] =
N∑
i=1

∆̄Kp(t, Ti)

and by

OISflo(t) =
1

Dt

N∑
i=1

Et[∆̄L̄(Ti−1, Ti)DTi ] = p(t, T0)− p(t, T ).

By solving the equation OISfix(t) = OISflo(t) we obtain the following classical

single-curve formula for the OIS rate:

OIS∆̄(t;T0, T ) =
p(t, T0)− p(t, T )∑N

i=1 ∆̄p(t, Ti)
. (4.6)

Remark 4.4. By the standard market convention, payments for both legs of

an overnight indexed swap take place at a one-year frequency, i.e., ∆̄ = 1. For

overnight indexed swaps with maturities less than one year (T < 1), there is

only one payment, which occurs at maturity.



62 Chapter 4. The Multi-Curve Potential Models

t0 = 0 t1 = 0.5 t2 = 1 t3 = 1.5 t4 = 2

T0 = 0 T1 = 1 T2 = 2

Figure 4.2: Two underlying tenor structures with maturity T = 2y, fixed leg

tenor ∆̄ = 1y, and floating leg tenor ∆ = 6m.

LIBOR-swaps and LIBOR-OIS spreads

We consider a LIBOR-swap with the following two underlying tenor structures:

0 ≤ T0 < T1... < TN = T and 0 ≤ t0 = T0 < t1 < ... < tM = T.

Let ∆̄ = Ti − Ti−1 and ∆ = ti − ti−1; see Figure 4.2 for an illustration. At each

time Ti, i = 1, ..., N , one party pays ∆̄K, whereas at each time ti, i = 1, ...,M ,

the other party pays ∆L∆(ti−1, ti). The time-t values of the fixed and the floating

leg are given respectively by

IRSfix(t) =
N∑
i=1

∆̄Kp(t, Ti)

and

IRSflo(t) =
1

Dt

M∑
i=1

Et[∆L∆(ti−1, ti)Dti ] =
M∑
i=1

∆p(t, ti)L
∆(t; ti−1, ti).

Hence, the swap rate IRS∆
∆̄

(t;T0, T ), i.e., the value of K that ensures

IRSfix(t) = IRSflo(t),

is given by

IRS∆
∆̄(t;T0, T ) =

∑M
i=1 ∆p(t, ti)L

∆(t; ti−1, ti)∑N
i=1 ∆̄p(t, Ti)

. (4.7)

Combining Equations (4.6) and (4.7), and noting that for the discount curve we

have the classical telescoping sum formula

p(t, t0)− p(t, tM ) =
M∑
i=1

∆p(t, ti)F (t; ti−1, ti),
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we obtain the following representation of the LIBOR-OIS spread.

Theorem 4.5 (LIBOR-OIS spreads in the multi-curve potential model).

The ∆-tenor LIBOR-OIS spread (with maturity T ) in the multi-curve potential

model is provided by

S∆
∆̄(t;T0, T ) := IRS∆

∆̄(t;T0, T )−OIS∆̄(t;T0, T )

=

∑M
i=1 ∆p(t, ti)[L

∆(t; ti−1, ti)− F (t; ti−1, ti)]∑N
i=1 ∆̄p(t, Ti)

=

∑M
i=1 ∆p(t, ti)S

∆(t, ti−1)∑N
i=1 ∆̄p(t, Ti)

. (4.8)

If the condition D∆
t ≥ Dt for all t ≥ 0 is satisfied, then the ∆-tenor LIBOR-OIS

spread is also positive.

Proof. The first part of the claim is clear from the preceding discussion. Pos-

itivity of the LIBOR-OIS spread follows from the fact that, under the stated

condition, each FRA spread S∆(t, ti−1), i = 1, 2, ...,M , is positive.

We next address the most important nonlinear products in the interest rate

market and derive general pricing formulae for caps and swaptions. These prod-

ucts are among the most liquid interest rate derivatives, and are typically used as

calibration instruments. Hence, it is crucial to have tractable valuation formulae

for these options, so that the model can be easily calibrated to market data; see

Section 4.7 below for an illustration with real-world market data.

Caplets

As a cap is nothing but a linear portfolio of caplets, valuation of a cap boils

down to pricing its component caplets. We thus consider a caplet with strike

rate K for the time interval [T, T + ∆], whose payoff is given by

C(T + ∆) = ∆(L∆(T, T + ∆)−K)+.
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The time-T price C(T ) of the caplet therefore satisfies

C(T ) = ∆p(T, T + ∆)
(
L∆(T, T + ∆)−K

)+
= ∆p(T, T + ∆)

(
1

∆

(
D∆
T

DT p(T, T + ∆)
− 1

)
−K

)+

=

(
D∆
T

DT
− (1 + ∆K)p(T, T + ∆)

)+

.

Discounting with the OIS curve p, we obtain the time-t price C(t) of the caplet:

C(t) =
Et[DTC(T )]

Dt
=

1

Dt
Et[(D∆

T − (1 + ∆K)DT p(T, T + ∆))+].

By plugging p(T, T + ∆) =
ET [DT+∆]

DT
into the above equation we further have

C(t) =
1

Dt
Et[(D∆

T − (1 + ∆K)ET [DT+∆])+]. (4.9)

Swaptions

Consider a payer swaption with strike rate K, maturity T = T0 and payment

dates

T1 < ... < TN where Ti − Ti−1 = ∆, i = 1, ..., N.

The payoff of the swaption at T is given by

S(T ) = ∆

(
N∑
i=1

p(T, Ti)
(
L∆(T ;Ti−1, Ti)−K

))+

.

Substituting for

L∆(T ;Ti−1, Ti) =
1

∆

(
p(T, Ti−1)

p(T, Ti)

ET [D∆
Ti−1

]

ET [DTi−1 ]
− 1

)
, i = 1, ..., N,

and for p(T, Tk) = ET [DTk ]/DT , k = 1, ..., N in the above equation yields

S(T ) =
1

DT

(
ET

[
N∑
i=1

D∆
Ti−1
− (1 + ∆K)DTi

])+

.
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Hence, the time-t price of the swaption is given by

S(t) =
Et[S(T )DT ]

Dt

=
1

Dt
Et

( N∑
i=1

ET [D∆
Ti−1

]− (1 + ∆K)ET [DTi ]

)+
 . (4.10)

Remark 4.6. As we have seen, the two state-price deflator processes D and

D∆ are the basic quantities in all the interest rate derivatives considered above.

Thus, once these quantities are specified, the whole model is constructed with

pricing formulae for all relevant products, represented in terms of the two defla-

tors. Therefore, the tractability of the model depends crucially on the dynamics

of these processes. The most important criterion for the specification of the

general multi-curve potential model is the availability of analytic formulae for

basic interest rate products such as forward rate agreements and swaps, and this

requires the computation of the conditional distributions of D and D∆.

4.4 Multi-Curve Rational Lognormal Models

In this section we consider a specification of the general multi-curve potential

model developed in Section 4.3. The specific potential model that we consider

here is a multi-curve extension of the rational lognormal model proposed in

Flesaker & Hughston (1996a) (see also Section 2.2.3). In a single-curve setting,

the classical rational lognormal model guarantees positive interest rates and

closed-form formulae for both caps and swaptions (see Rutkowski 1997). We

demonstrate that the analytic tractability of the model carries over to our multi-

curve extension. As in the single-curve setting, in the case of a one-factor model

we obtain closed-form formulae for both caps and swaptions. In the case of a

two-factor model, we obtain semi-closed form cap and swaption formulae that

are explicit modulo a one-dimensional integration.
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4.4.1 One-factor model

In the one-factor multi-curve rational lognormal model, the state-price deflator

processes D and D∆ are given by

Dt = f(t) + g(t)Mt and D∆
t = f∆(t) + g∆(t)Mt

where

• f and g are deterministic functions with f(0) + g(0) = 1,

• f∆ and g∆ are positive deterministic functions,

• and the positive martingale M follows the lognormal dynamics

Mt = e
∫ t
0 σ(s)dWs− 1

2

∫ t
0 σ

2(s)ds

for some deterministic function σ : [0,∞) → R, and a standard Brownian

motion W .

Remark 4.7. If the conditions f∆(t) ≥ f(t), g∆(t) ≥ g(t) are satisfied for all

t ≥ 0 then D∆
t ≥ Dt for all t ≥ 0, which in turn guarantees positivity of the

FRA spreads and the LIBOR-OIS spreads generated by the model.

As discussed in Section 4.3.3, the conditional distributions of the processes

D and D∆ play a crucial role to the availability of closed-form pricing formulae

for the prices of interest rate derivatives. Specifically, FRA rates, FRA spreads

and basis spreads can only have explicit formulae if the conditional expectations

Et[DT ] and Et[D∆
T ] can be calculated analytically. With the above specification

of D and D∆, these conditional expectations are given explicitly:

Et[DT ] = Et[f(T ) + g(T )MT ] = f(T ) + g(T )Mt, (4.11)

Et[D∆
T ] = Et[f∆(T ) + g∆(T )MT ] = f∆(T ) + g∆(T )Mt. (4.12)

The OIS discount curve is then given, as in the single-curve setting, by the

following explicit formula:

p(t, T ) =
Et[DT ]

Dt
=
f(T ) + g(T )Mt

f(t) + g(t)Mt
for all 0 ≤ t ≤ T. (4.13)

We now proceed to work out analytic expressions for the interest rate prod-

ucts from the general formulae derived in Section 4.3.3.
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FRA rates and FRA spreads

Plugging (4.13), (4.11), and (4.12) into the general formula (4.3), we obtain the

following explicit formula for the time-t FRA rate:

L∆(t;T, T + ∆) =
1

∆

(
f∆(T ) + g∆(T )Mt

f(T + ∆) + g(T + ∆)Mt
− 1

)
. (4.14)

The model thus implies a stochastic FRA spread given by

S∆(t, T ) = L(t;T, T + ∆)− F (t;T, T + ∆)

=
1

∆

f∆(T )− f(T ) + (g∆(T )− g(T ))Mt

f(T + ∆) + g(T + ∆)Mt
. (4.15)

Swap rates, LIBOR-OIS spreads

Having closed-form formulae for the OIS discount curve p, FRA rates, and FRA

spreads, it is straightforward to calculate the swap rates and ∆-tenor LIBOR-

OIS spreads in Equations (4.7) and (4.8). We have

IRS∆
∆̄(t;T0, T ) =

∑M
i=1 f

∆(ti−1)− f(ti) + (g∆(ti−1)− g(ti))Mt

∆̄
∑N

i=1 f(Ti) + g(Ti)Mt

, (4.16)

S∆
∆̄(t;T0, T ) =

∑M
i=1 f

∆(ti−1)− f(ti−1) + (g∆(ti−1)− g(ti−1))Mt

∆̄
∑N

i=1 f(Ti) + g(Ti)Mt

. (4.17)

In the following we focus on deriving closed-form pricing formulae for caplets

and swaptions.

Valuation of caplets

We consider the caplet as specified in Section 4.3.3. Since

DT p(T, T + ∆) = ET [DT+∆] = f(T + ∆) + g(T + ∆)MT

and

D∆
T = f∆(T ) + g∆(T )MT
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we obtain from Equation (4.9)

C(t) =
1

Dt
Et
[
(AMT −B)+

]
,

where

A := g∆(T )− (1 + ∆K)g(T + ∆),

B := (1 + ∆K)f(T + ∆)− f∆(T ).

We consider the following cases:

Case 1. Assume
g∆(T )

g(T + ∆)
>

f∆(T )

f(T + ∆)
.

Then there are three possibilities:

Case 1.1. We have

K ∈
(

f∆(T )

∆f(T + ∆)
− 1

∆
,

g∆(T )

∆g(T + ∆)
− 1

∆

)
and in that case it follows that A > 0, B > 0. We have

E[(AMT −B)+|Ft] = E[(AMte
Y −B)+|Ft],

where

Y :=

∫ T

t
σ(s)dWs −

1

2

∫ T

t
|σ(s)|2ds. (4.18)

Note that the conditional distribution of Y given Ft is normal,

Y | Ft ∼ N

(
−1

2
ν2(t, T ), ν2(t, T )

)
with ν2(t, T ) =

∫ T

t
|σ(s)|2ds,

as Y is independent of Ft. Thus, applying Lemma A.4 with a = AMt, b = B

and σ = ν(t, T ) we get

C(t) = (f(t) + g(t)Mt)
−1 (AMtΦ(d∆

1 )−BΦ(d∆
2 )
)
,
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where

d∆
1,2 =

1

ν(t, T )

(
ln c∆

t ±
1

2
ν2(t, T )

)
, (4.19)

c∆
t =

AMt

B
= Mt

g∆(T )− (1 + ∆K)g(T + ∆)

(1 + ∆K)f(T + ∆)− f∆(T )
. (4.20)

Case 1.2. We have

K ≥ g∆(T )

∆g(T + ∆)
− 1

∆

in which case A ≤ 0, B ≥ 0 and thus (AMT −B)+ = 0. Hence C(t) = 0.

Case 1.3. We have

K ≤ f∆(T )

∆f(T + ∆)
− 1

∆

so A ≥ 0, B ≤ 0. Hence (AMT −B)+ = AMT −B and we get

C(t) =
1

Dt
Et[AMT −B] =

AMt −B
f(t) + g(t)Mt

.

Case 2. Assuming
g∆(T )

g(T + ∆)
≤ f∆(T )

f(T + ∆)
,

we also have the following three possibilities:

Case 2.1. We have

K ∈
(

g∆(T )

∆g(T + ∆)
− 1

∆
,

f∆(T )

∆f(T + ∆)
− 1

∆

)
.

This implies that A < 0 and B < 0. Then we have

(AMT −B)+ = (−(−AMT +B))+ = (−AMT +B)+ +AMT −B.1

1Here, we use the identity (−x)+ = x+ − x,∀x ∈ R.
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It follows that

E[(AMT −B)+|Ft] = E[(−AMte
Y +B)+|Ft] +AMtEt[eY ]−B

= E[(−AMte
Y +B)+|Ft] +AMt −B, (4.21)

since Et[eY ] = 1, where Y is given in (4.18). Applying Lemma A.4 with

a = −AMt > 0, b = −B > 0 and σ = ν(t, T )

yields

E[(−AMte
Y +B)+|Ft] = −AMtΦ(d∆

1 ) +BΦ(d∆
2 ), (4.22)

where d∆
1,2 and c∆

t are defined in (4.19) and (4.20). Combining Equations (4.21)

and (4.22), we obtain

E[(AMT −B)+|Ft] = −AMtΦ(d∆
1 ) +BΦ(d∆

2 ) +AMt −B

= AMt(1− Φ(d∆
1 ))−B(1− Φ(d∆

2 ))

= AMtΦ(−d∆
1 )−BΦ(−d∆

2 ).

Therefore, in this case we have

C(t) = (f(t) + g(t)Mt)
−1 (AMtΦ(−d∆

1 )−BΦ(−d∆
2 )
)
.

Case 2.2. We have

K ≥ f∆(T )

∆f(T + ∆)
− 1

∆
.

This implies A ≤ 0 and B ≥ 0 and thus (AMT − B)+ = 0. Hence, we have

C(t) = 0.

Case 2.3. We have

K ≤ g∆(T )

∆g(T + ∆)
− 1

∆

which implies A ≥ 0 and B ≤ 0. It follows then that (AMT −B)+ = AMT −B
and we obtain

C(t) =
1

Dt
Et[AMT −B] =

AMt −B
f(t) + g(t)Mt

,
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since M is a martingale.

We summarize the above results in the following:

Theorem 4.8 (Caplets in the one-factor rational lognormal model).

Consider a caplet based on the LIBOR rate for the future time interval [T, T+∆]

with strike rate K, whose payoff is given by

C(T + ∆) = ∆(L∆(T, T + ∆)−K)+.

Then its time-t price C(t) is given by

C(t) =


0 if K ≥ K∗

AMt−B
f(t)+g(t)Mt

if K ≤ K∗
(f(t) + g(t)Mt)

−1 (AMtΦ(wd∆
1 )−BΦ(wd∆

2 )
)

otherwise

where

K∗ :=
f∆(T )

∆f(T + ∆)
− 1

∆
∨ g∆(T )

∆g(T + ∆)
− 1

∆

K∗ :=
f∆(T )

∆f(T + ∆)
− 1

∆
∧ g∆(T )

∆g(T + ∆)
− 1

∆

A = g∆(T )− (1 + ∆K)g(T + ∆),

B = (1 + ∆K)f(T + ∆)− f∆(T ),

d∆
1,2 =

1

ν(t, T )

(
ln c∆

t ±
1

2
ν2(t, T )

)
,

c∆
t =

AMt

B
= Mt

g∆(T )− (1 + ∆K)g(T + ∆)

(1 + ∆K)f(T + ∆)− f∆(T )
,

ν2(t, T ) =

∫ T

t
|σ(s)|2ds,

and

w :=

1 if g∆(T )
g(T+∆) ≥

f∆(T )
f(T+∆) ,

−1 if g∆(T )
g(T+∆) <

f∆(T )
f(T+∆) .



72 Chapter 4. The Multi-Curve Potential Models

Valuation of swaptions

We next determine the fair price of the swaption given in Section 4.3.3. The

time-t price of the swaption is obtained from the general formula (4.10) via

S(t) =
Et[DTS(T )]

Dt
=

1

Dt
Et
[
(pMT − q)+

]
,

where

p :=

N∑
i=1

g∆(Ti−1)− (1 + ∆K)g(Ti), (4.23)

q :=
N∑
i=1

(1 + ∆K)f(Ti)− f∆(Ti−1). (4.24)

We further define

Kmin :=

∑N
i=1 f

∆(Ti−1)

∆
∑N

i=1 f(Ti)
− 1

∆
∧
∑N

i=1 g
∆(Ti−1)

∆
∑N

i=1 g(Ti)
− 1

∆
, (4.25)

Kmax :=

∑N
i=1 f

∆(Ti−1)

∆
∑N

i=1 f(Ti)
− 1

∆
∨
∑N

i=1 g
∆(Ti−1)

∆
∑N

i=1 g(Ti)
− 1

∆
. (4.26)

We are now in exactly the same situation as in the valuation of caplets. Hence,

following similar steps as above, we obtain:

Theorem 4.9 (Swaptions in the one-factor rational lognormal model).

The time-t price S(t) of the swaption is provided by

S(t) =


0 if K ≥ Kmax

pMt−q
f(t)+g(t)Mt

if K ≤ Kmin

pMtΦ(wd̃∆
1 )−qΦ(wd̃∆

2 )
f(t)+g(t)Mt

if K ∈ (Kmin,Mmax)

where

d̃∆
1,2 :=

1

ν(t, T )

(
ln c̃∆

t ±
1

2
ν2(t, T )

)
,

c̃∆
t :=

pMt

q
= Mt

∑N
i=1 g

∆(Ti−1)− (1 + ∆K)g(Ti)∑N
i=1(1 + ∆K)f(Ti)− f∆(Ti−1)

,

ν2(t, T ) =

∫ T

t
|σ(s)|2ds,
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and

w :=

1 if
∑N
i=1 f

∆(Ti−1)

∆
∑N
i=1 f(Ti)

− 1
∆ ≤

∑N
i=1 g

∆(Ti−1)

∆
∑N
i=1 g(Ti)

− 1
∆ ,

−1 if
∑N
i=1 f

∆(Ti−1)

∆
∑N
i=1 f(Ti)

− 1
∆ >

∑N
i=1 g

∆(Ti−1)

∆
∑N
i=1 g(Ti)

− 1
∆ .

4.4.2 Two-factor model

We next address a multi-factor extension of the model discussed above. In the

two-factor rational lognormal model, the state-price deflators D and D∆ are

specified as follows:

Dt = f(t) + g(t)Mt + h(t)Nt,

D∆
t = f∆(t) + g∆(t)Mt + h∆(t)Nt,

where

• f , g and h are deterministic functions with f(0) + g(0) + h(0) = 1,

• f∆, g∆ and h∆ are positive deterministic functions,

• M and N are two positive martingales with M0 = N0 = 1.

In this setting, the conditional expectations Et[DT ] and Et[D∆
T ] are given by

Et[DT ] = f(T ) + g(T )Mt + h(T )Nt,

Et[D∆
T ] = f∆(T ) + g∆(T )Mt + h∆(T )Nt.

In particular, the OIS term structure is given in closed form via

p(t, T ) =
Et[DT ]

Dt
=
f(T ) + g(T )Mt + h(T )Nt

f(t) + g(t)Mt + h(t)Nt
.

Proceeding similarly as in Section 4.4.1, we obtain the following formulae for

FRA rates, FRA spreads, and LIBOR-OIS spreads.
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FRA rates, FRA spreads, and LIBOR-OIS spreads

In the two-factor multi-curve rational lognormal model, the FRA rate, FRA

spread, and ∆-tenor LIBOR-OIS spread are given respectively by:

L∆(t;T, T + ∆) =
1

∆

(
f∆(T ) + g∆(T )Mt + h∆(T )Nt

f(T + ∆) + g(T + ∆)Mt + h(T + ∆)Nt
− 1

)
, (4.27)

S∆(t, T ) =
f∆(T )− f(T ) + (g∆(T )− g(T ))Mt + (h∆(T )− h(T ))Nt

∆ (f(T + ∆) + g(T + ∆)Mt + h(T + ∆)Nt)
,

(4.28)

and

S∆
∆̄(t;T0, T )

=

∑M
i=1 f

∆(ti−1)− f(ti−1) + (g∆(ti−1)− g(ti−1))Mt + (h∆(ti−1)− h(ti−1))Nt

∆̄
∑N

i=1 [f(Ti) + g(Ti)Mt + h(Ti)Nt]
.

(4.29)

Remark 4.10. If f∆(t) ≥ f(t), g∆(t) ≥ g(t) and h∆(t) ≥ h(t) for all t ≥ 0,

then the FRA spreads and the LIBOR-OIS spreads generated by the two-factor

rational lognormal model are positive.

In what follows, we again assume lognormal dynamics for M and N , i.e.

dMt = Mtσ1(t)dW̃1(t), dNt = Ntσ2(t)dW̃2(t),

where W̃1 and W̃2 are possibly correlated Brownian motions with instantaneous

correlation ρ, i.e. ρdt = dW̃1(t)dW̃2(t), and σ1, σ2 are two deterministic func-

tions. We can represent W̃1, W̃2 in terms of independent Brownian motions W1

and W2 via

W̃1(t) = W1(t), W̃2(t) = ρW1(t) +
√

1− ρ2W2(t).

Then M and N satisfy

Mt = exp

(∫ t

0
σ1(u)dW1(u)− 1

2

∫ t

0
σ2

1(u)du

)
, (4.30)

Nt = exp

(
ρ

∫ t

0
σ2(u)dW1(u) +

√
1− ρ2

∫ t

0
σ2(u)dW2(u)− 1

2

∫ t

0
σ2

2(u)du

)
.

(4.31)
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We now proceed to derive caplet and swaption pricing formulae.

Valuation of caplets

We consider again the caplet in Section 4.3.3. Plugging

ET [DT+∆] = f(T + ∆) + g(T + ∆)MT + h(T + ∆)NT

and

D∆
T = f∆(T ) + g∆(T )MT + h∆(T )NT

into Equation (4.9), we get

C(t) =
1

Dt
Et

[(
A∆(T )MT +B∆(T )NT + C∆(T )

)+
]
, (4.32)

where

A∆(T ) := g∆(T )− (1 + ∆K)g(T + ∆),

B∆(T ) := h∆(T )− (1 + ∆K)h(T + ∆),

C∆(T ) := f∆(T )− (1 + ∆K)f(T + ∆).

Combining (4.30), (4.31), and (4.32) yields

C(0) = E
[(
A∆(T )eX−

1
2
v2
1 +B∆(T )eY−

1
2
v2
2 + C∆(T )

)+
]
, (4.33)

where

X :=

∫ T

0
σ1(u)dW1(u) ∼ N(0, v2

1),

Y := ρ

∫ T

0
σ2(u)dW1(u) +

√
1− ρ2

∫ T

0
σ2(u)dW2(u) ∼ N(0, v2

2),

v2
1 :=

∫ T

0
σ2

1(u)du, v2
2 :=

∫ T

0
σ2

2(u)du.

Set

θ :=
Cov[X,Y ]√

V ar[X]
√
V ar[Y ]

=
ρ
∫ T

0 σ1(u)σ2(u)du

v1v2
.
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We then have (X,Y ) ∼ N(0,Σ), where

Σ :=

(
v2

1 θv1v2

θv1v2 v2
2

)
.

Hence, (X,Y ) has the density

f(x, y) =
1

2πv1v2

√
1− θ2

exp

{
− 1

2(1− θ2)

[
(
x

v1
)2 − 2θ

xy

v1v2
+ (

y

v2
)2

]}
= λeEeFy−Gy

2
,

where

λ =
1

2πv1v2

√
1− θ2

, F =
θ

1− θ2

x

v1v2
,

E = − 1

2(1− θ2)

x2

v2
1

, G =
1

2(1− θ2)v2
2

.

Assuming B∆(T ) 6= 0, we consider the following possibilities:

Case 1: B∆(T ) > 0. It follows immediately from Equation (4.33) that

C(0) =

∫
R2

(
A∆(T )ex−

1
2
v2
1 +B∆(T )ey−

1
2
v2
2 + C∆(T )

)+
f(x, y)dxdy

=

∫
R

∫ +∞

ȳ(x)

(
A∆(T )ex−

1
2
v2
1 +B∆(T )ey−

1
2
v2
2 + C∆(T )

)
f(x, y)dydx,

where ȳ(x) is given by

ȳ(x) :=


ln

(
−C∆(T )−A∆(T )ex−

v2
1
2

B∆(T )e−
v2
2
2

)
if C∆(T ) +A∆(T )ex−

v2
1
2 < 0

−∞ otherwise.

We find

C(0) =

∫
R

[(
C∆(T ) +A∆(T )ex−

1
2
v2
1

)
I1(x) +

(
B∆(T )e−

1
2
v2
2

)
I2(x)

]
dx, (4.34)

where

I1(x) :=

∫ ∞
ȳ(x)

λeEeFy−Gy
2
dy, I2(x) :=

∫ ∞
ȳ(x)

λeEe(F+1)y−Gy2
dy.
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Applying Lemma A.3, we obtain

I1(x) = λ

√
π√
G
eE+F2

4G

[
1− Φ

(
ȳ(x)
√

2G− F√
2G

)]
,

I2(x) = λ

√
π√
G
eE+

(F+1)2

4G

[
1− Φ

(
ȳ(x)
√

2G− F + 1√
2G

)]
.

Here, as above, Φ is the distribution function of the standard normal distribution.

By noting that

λ

√
π√
G

=
1

v1

√
2π
, E +

F 2

4G
= −1

2

(
x

v1

)2

,

F√
2G

=
θx

v1

√
1− θ2

,
√

2G =
1

v2

√
1− θ2

,

and
2F + 1

4G
=

(1− θ2)v2
2

2
+
v2θx

v1
,

we further have

I1(x) =
e
− 1

2
( x
v1

)2

v1

√
2π

Φ

(
θx

v1

√
1− θ2

− ȳ(x)

v2

√
1− θ2

)
, (4.35)

I2(x) =
e
− 1

2
( x
v1

)2

v1

√
2π

e
(1−θ2)v2

2
2

+
v2θx
v1 Φ

(
θx

v1

√
1− θ2

− ȳ(x)

v2

√
1− θ2

+ v2

√
1− θ2

)
.

(4.36)

Using (4.35) and (4.36) in Equation (4.34), we arrive at the following formula:

C(0) =

∫ +∞

−∞

e
− 1

2
( x
v1

)2

v1

√
2π

[(
A∆(T )ex−

v2
1
2 + C∆(T )

)
Φ(h̄1(x))

+B∆(T )e
v2θx
v1
− θ

2v2
2

2 Φ(h̄2(x))

]
dx,

where

h̄1(x) :=
θx

v1

√
1− θ2

− ȳ(x)

v2

√
1− θ2

, h̄2(x) := h̄1(x) + v2

√
1− θ2.
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Case 2: B∆(T ) < 0. In this case we obtain from Equation (4.33) that

C(0) =

∫
R2

(
A∆(T )ex−

1
2
v2
1 +B∆(T )ey−

1
2
v2
2 + C∆(T )

)+
f(x, y)dxdy

=

∫
R

∫ ỹ(x)

−∞

(
A∆(T )ex−

1
2
v2
1 +B∆(T )ey−

1
2
v2
2 + C∆(T )

)
f(x, y)dydx,

where ỹ(x) is given by

ỹ(x) :=


ln

(
−C∆(T )−A∆(T )ex−

v2
1
2

B∆(T )e−
v2
2
2

)
if C∆(T ) +A∆(T )ex−

v2
1
2 > 0

−∞ otherwise.

Similarly as above, we have

C(0) =

∫
R

[(
C∆(T ) +A∆(T )ex−

1
2
v2
1

)
J1(x) +

(
B∆(T )e−

1
2
v2
2

)
J2(x)

]
dx,

(4.37)

where

J1(x) :=

∫ ỹ(x)

−∞
λeEeFy−Gy

2
dy, J2(x) :=

∫ ỹ(x)

−∞
λeEe(F+1)y−Gy2

dy.

Applying Lemma A.3 and following similar steps as in the above case, we further

obtain

J1(x) =
e
− 1

2
( x
v1

)2

v1

√
2π

Φ

(
ỹ(x)

v2

√
1− θ2

− θx

v1

√
1− θ2

)
, (4.38)

J2(x) =
e
− 1

2
( x
v1

)2

v1

√
2π

e
(1−θ2)v2

2
2

+
v2θx
v1 Φ

(
ỹ(x)

v2

√
1− θ2

− θx

v1

√
1− θ2

− v2

√
1− θ2

)
.

(4.39)

Plugging Equations (4.38) and (4.39) into Equation (4.37), we obtain the follow-

ing caplet formula:

C(0) =

∫ +∞

−∞

e
− 1

2
( x
v1

)2

v1

√
2π

[(
A∆(T )ex−

v2
1
2 + C∆(T )

)
Φ(h̃1(x))

+B∆(T )e
v2θx
v1
− θ

2v2
2

2 Φ(h̃2(x))

]
dx,
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where

h̃1(x) :=
ỹ(x)

v2

√
1− θ2

− θx

v1

√
1− θ2

, h̃2(x) := h̃1(x)− v2

√
1− θ2.

As a combination of the above two cases, we have the following result:

Theorem 4.11 (Caplets in the two-factor rational lognormal model).

In the two-factor multi-curve rational lognormal model, the price at time t = 0

of the caplet specified in Section 4.3.3 is given by

C(0) =

∫ +∞

−∞

e
− 1

2
( x
v1

)2

v1

√
2π

[(
A∆(T )ex−

v2
1
2 + C∆(T )

)
Φ(wh1(x))

+B∆(T )e
v2θx
v1
− θ

2v2
2

2 Φ(wh2(x))

]
dx, (4.40)

where we assume B∆(T ) 6= 0 and define

v1 =

√∫ T

0
σ2

1(u)du, v2 =

√∫ T

0
σ2

2(u)du, θ =
ρ
∫ T

0 σ1(u)σ2(u)du

v1v2
,

h1(x) =
θx

v1

√
1− θ2

− y∗(x)

v2

√
1− θ2

, h2(x) = h1(x) + v2

√
1− θ2,

y∗(x) =

ln

(
−C∆(T )+A∆(T )ex−

1
2 v

2
1

B∆(T )e−
1
2 v

2
2

)
if B∆(T )

(
C∆(T ) +A∆(T )ex−

1
2
v2
1

)
< 0

−∞ otherwise,

and

w =
B∆(T )

|B∆(T )|
=

1 if B∆(T ) > 0

−1 if B∆(T ) < 0.

Remark 4.12. If B∆(T ) = 0, the price of the caplet becomes

C(0) = E[(A∆(T )MT + C∆(T ))+],

where the martingale M is given by (4.30). Then there are four possible situa-

tions:
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Case 1: A∆(T ) < 0 and C∆(T ) < 0. Then trivially (A∆(T )MT +C∆(T ))+ = 0

and therefore C(0) = 0.

Case 2: A∆(T ) > 0 and C∆(T ) > 0. In this case we have

(A∆(T )MT + C∆(T ))+ = A∆(T )MT + C∆(T )

and thus

C(0) = E[A∆(T )MT + C∆(T )] = A∆(T )M0 + C∆(T )

= A∆(T ) + C∆(T ).

Case 3: A∆(T ) > 0 and C∆(T ) < 0. Applying Lemma A.4 with a = A∆(T ),

b = −C∆(T ) and σ = v1 =
√∫ T

0 σ2
1(u)du, we obtain

C(0) = A∆(T )Φ(d∆
1 ) + C∆(T )Φ(d∆

2 ),

where

d∆
1,2 :=

1

v1

(
ln

(
−A

∆(T )

C∆(T )

)
± v2

1

2

)
.

Case 4: A∆(T ) < 0 and C∆(T ) > 0. Applying Lemma A.4 again with a =

−A∆(T ), b = C∆(T ) and σ = v1, we get

E[(−A∆(T )MT − C∆(T ))+] = −A∆(T )Φ(d∆
1 )− C∆(T )Φ(d∆

2 ).

Using the identity (−x)+ = x+ − x we further have

C(0) = E[(A∆(T )MT + C∆(T ))+]

= E[(−A∆(T )MT − C∆(T ))+ +A∆(T )MT + C∆(T )]

= A∆(T )(1− Φ(d∆
1 )) + C∆(T )(1− Φ(d∆

2 ))

= A∆(T )Φ(−d∆
1 ) + C∆(T )Φ(−d∆

2 ).
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Valuation of swaptions

Finally, we reconsider the swaption given in Section 4.3.3. With the two-factor

specification of D and D∆, it is not difficult to verify that the time-t price of the

swaption is given by

S(t) =
1

Dt
Et

[(
O∆(T )MT + P∆(T )NT +Q∆(T )

)+
]
,

where

O∆(T ) :=

N∑
i=1

g∆(Ti−1)− (1 + ∆K)g(Ti),

P∆(T ) :=

N∑
i=1

h∆(Ti−1)− (1 + ∆K)h(Ti),

Q∆(T ) :=
N∑
i=1

f∆(Ti−1)− (1 + ∆K)f(Ti).

Note that S(t) has the same form as C(t). Thus, similarly as above, we obtain

Theorem 4.13 (Swaptions in the two-factor rational lognormal model).

The fair price at time t = 0 of the swaption specified in Section 4.3.3 is given by

S(0) =

∫ +∞

−∞

e
− 1

2
( x
v1

)2

v1

√
2π

[(
O∆(T )ex−

v2
1
2 +Q∆(T )

)
Φ(w`1(x))

+ P∆(T )e
v2θx
v1
− θ

2v2
2

2 Φ(w`2(x))

]
dx, (4.41)

where we assume P∆(T ) 6= 0 and set

v1 =

√∫ T

0
σ2

1(u)du, v2 =

√∫ T

0
σ2

2(u)du, θ =
ρ
∫ T

0 σ1(u)σ2(u)du

v1v2
,

`1(x) =
θx

v1

√
1− θ2

− z̄(x)

v2

√
1− θ2

, `2(x) = `1(x) + v2

√
1− θ2,

z̄(x) =

ln

(
−Q∆(T )+O∆(T )ex−

1
2 v

2
1

P∆(T )e−
1
2 v

2
2

)
if P∆(T )

(
Q∆(T ) +O∆(T )ex−

1
2
v2
1

)
< 0

−∞ otherwise,
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and

w =
P∆(T )

|P∆(T )|
=

1 if P∆(T ) > 0

−1 if P∆(T ) < 0.

Remark 4.14. In the case where P∆(T ) = 0, similarly as in Remark 4.12, we

obtain:

S(0) =



0 if O∆(T ) < 0, Q∆(T ) < 0,

O∆(T ) +Q∆(T ) if O∆(T ) > 0, Q∆(T ) > 0,

O∆(T )Φ(d̃∆
1 ) +Q∆(T )Φ(d̃∆

2 ) if O∆(T ) > 0, Q∆(T ) < 0,

O∆(T )Φ(−d̃∆
1 ) +Q∆(T )Φ(−d̃∆

2 ) otherwise,

where

d̃∆
1,2 :=

1

v1

(
ln

(
−O

∆(T )

Q∆(T )

)
± v2

1

2

)
.

4.5 Multi-Curve Affine Rational Models

We present two explicit specifications of the general multi-curve potential model

based on the Markov affine process considered in Chapter 3. The first specifica-

tion is an extension of the affine rational potential model established in Chapter

3 to the multi-curve framework. We show that the analytical tractability of

the single-curve model carries over to this multi-curve extension. In the second

specific multi-curve potential model, we extend the single-curve rational model

proposed by Filipović et al. (2015) to the multi-curve setting, where the original

underlying process is replaced by the Markov affine dynamics. We show that

the analytical formulae for linear products, and caps and swaptions are obtained

in this model. Upon appropriate selection of relevant parameters we are able

to obtain positive stochastic basis spreads in both models. Moreover, while the

first concrete model guarantees interest rate positivity, which is consistent with

typical market observations, the second model can produce negative OIS rates,

which is in line with the current observations in the European- and the Japanese

markets. In this section we work exclusively in the context of Chapter 3.
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4.5.1 Multi-curve affine rational potential model

We specify the state-price deflators D and D∆ as follows:

Dt = c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉 ,

D∆
t = c∆ + φT∞−t(u

∆) +
〈
ψT∞−t(u

∆), Xt

〉
,

where c, c∆ ∈ R>0, u, u∆ ∈ I ∩ E, and the underlying state process X is the

affine Markov process considered in Chapter 3; recall that E := Rd≥0 and I is

defined by (3.2).

Remark 4.15. One sufficient condition for positive basis spreads in the model

is that D∆
t ≥ Dt for all t ∈ [0, T∞]; see Theorem 4.2 and Theorem 4.5. This

condition is fulfilled if c∆ ≥ c and u∆ ≥ u. Indeed, from Lemma 3.4 it then

follows that

φT∞−t(u
∆) ≥ φT∞−t(u) and ψT∞−t(u

∆) ≥ ψT∞−t(u), for all t ∈ [0, T∞].

On the other hand, the process X takes values in E = Rd≥0. We thus obtain

D∆
t = c∆+φT∞−t(u

∆)+
〈
ψT∞−t(u

∆), Xt

〉
≥ c+φT∞−t(u)+〈ψT∞−t(u), Xt〉 = Dt.

Therefore, the multi-curve affine rational potential model can produce positive

stochastic basis spreads.

Lemma 3.6 implies that the conditional expectations Et[DT ] and Et[D∆
T ] have

the following closed-form expressions:

Et[DT ] = c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)

∂u

〉
+

〈
∂ψT−t(0)

∂u
· ψT∞−T (u), Xt

〉
, (4.42)

and

Et[D∆
T ] = c∆ + φT∞−T (u∆) +

〈
ψT∞−T (u∆),

∂φT−t(0)

∂u

〉
+

〈
∂ψT−t(0)

∂u
· ψT∞−T (u∆), Xt

〉
. (4.43)
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OIS discount curve

Using Equation (4.42), we find that the OIS discount curve in the multi-curve

affine rational model is given, as in the single-curve model, by

p(t, T ) =
Et[DT ]

Dt

=
〈A(t, T ), Xt〉+B(t, T )

〈A(t, t), Xt〉+B(t, t)
, t ∈ [0, T ], (4.44)

where

A(t, T ) :=
∂ψT−t(0)

∂u
· ψT∞−T (u), (4.45)

B(t, T ) := c+ φT∞−T (u) +

〈
ψT∞−T (u),

∂φT−t(0)

∂u

〉
, (4.46)

and
∂ψT−t(0)

∂u ,
∂φT−t(0)

∂u are defined in Lemma 3.6.

Remark 4.16. Note that for any fixed t ∈ [0, T∞], the discount curve p(t, ·)
is a decreasing function since, by construction, the state-price deflator D is a

positive supermartingale; see Theorem 3.2. Thus, the multi-curve affine rational

model guarantees interest rate positivity.

FRA rates and FRA spreads

We consider the FRA rate L∆(t;T, T + ∆) of a forward rate agreement for the

future time interval [T, T + ∆]. Substituting Equations (4.42) and (4.43) in the

general formula (4.5), we find that the multiplicative FRA spread S∆
m(t, T ) is

given by

S∆
m(t, T ) =

Et[D∆
T ]

Et[DT ]

=

〈
A∆(t, T ), Xt

〉
+B∆(t, T )

〈A(t, T ), Xt〉+B(t, T )
, (4.47)

where

A∆(t, T ) :=
∂ψT−t(0)

∂u
· ψT∞−T (u∆), (4.48)

B∆(t, T ) := c∆ + φT∞−T (u∆) +

〈
ψT∞−T (u∆),

∂φT−t(0)

∂u

〉
, (4.49)
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and A(t, T ) and B(t, T ) are given in (4.45) and (4.46). Using Equation (4.3), we

then obtain the following closed-form formula for the FRA rate L∆(t;T, T + ∆):

L∆(t;T, T + ∆) =
1

∆

(
p(t, T )

p(t, T + ∆)
S∆
m(t, T )− 1

)
=

1

∆

( 〈
A∆(t, T ), Xt

〉
+B∆(t, T )

〈A(t, T + ∆), Xt〉+B(t, T + ∆)
− 1

)
. (4.50)

Remark 4.17. Having closed-form expressions for OIS discount curve and FRA

rates, we easily obtain closed-form formula for LIBOR-OIS spreads using Theo-

rem 4.5.

We now focus on the derivation of pricing formulae for caplets and swaptions.

Caplets

We consider the caplet in Section 4.3.3. Substituting

D∆
T = c∆ + φT∞−T (u∆) +

〈
ψT∞−T (u∆), XT

〉
,

ET [DT+∆] = c+ φT∞−T−∆(u) +

〈
ψT∞−T−∆(u),

∂φ∆(0)

∂u

〉
+

〈
∂ψ∆(0)

∂u
· ψT∞−T−∆(u), XT

〉
in the general caplet pricing formula (4.9) we obtain the time t-price, C(t), of

the caplet:

C(t) =
1

Dt
Et
[
(〈a,XT 〉+ b)+] , (4.51)

where

a := ψT∞−T (u∆)− (1 + ∆K)
∂ψ∆(0)

∂u
· ψT∞−T−∆(u), (4.52a)

b := c∆ − (1 + ∆K)c+ φT∞−T (u∆)− (1 + ∆K)φT∞−T−∆(u)

− (1 + ∆K)

〈
ψT∞−T−∆(u),

∂φ∆(0)

∂u

〉
. (4.52b)

We are now in a position to derive caplet pricing formula:
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Proposition 4.18 (Caplets in the multi-curve affine rational potential

model). The time-t price of the ∆-tenor caplet considered in Section 4.3.3 is

provided by

C(t) =

∫∞
0 <

[
exp(b(µ+iy)+φT−t((µ+iy)a)+〈ψT−t((µ+iy)a),Xt〉)

(µ+iy)2

]
dy

π (c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉)
, (4.53)

where µ > 0 is a real number such that µa ∈ I, and a, b are given in (4.52).

Proof. It follows from the condition µa ∈ I that the conditional expectation

Et[e〈(µ+iy)a,XT 〉] exists. Moreover, it is given by

Et
[
e〈(µ+iy)a,XT 〉

]
= exp(φT−t((µ+ iy)a) + 〈ψT−t((µ+ iy)a), Xt〉).

Hence, we obtain

Et
[
e(µ+iy)(〈a,XT 〉+b)

]
= exp ((µ+ iy)b+ φT−t((µ+ iy)a) + 〈ψT−t((µ+ iy)a), Xt〉) . (4.54)

The pricing formula (4.53) now follows readily from Equations (4.51), (4.54),

and Lemma A.2.

Swaptions

We consider the swaption considered in Section 4.3.3. From the general pricing

formula (4.10), it follows that the time t-price of the swaption is given by

S(t) =
1

Dt
Et
[
(〈α,XT 〉+ β)+] , (4.55)
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where

α :=

N∑
i=1

∂ψTi−1−T (0)

∂u
.ψT∞−Ti−1(u∆)− (1 + ∆K)

∂ψTi−T (0)

∂u
.ψT∞−Ti(u),

(4.56a)

β := N(c∆ − (1 + ∆K)c) +

N∑
i=1

φT∞−Ti−1(u∆)− (1 + ∆K)φT∞−Ti(u)

+

〈
ψT∞−Ti−1(u∆),

∂φTi−1−T (0)

∂u

〉
− (1 + ∆K)

〈
ψT∞−Ti(u),

∂φTi−T (0)

∂u

〉
.

(4.56b)

Similarly as in the above derivation of caplet formula, we obtain the following

semi-closed form formula for the swaption:

Proposition 4.19 (Swaptions in the multi-curve affine rational potential

model). The time-t price of the swaption in Section 4.3.3 is given by

S(t) =

∫∞
0 <

[
exp(β(µ+iy)+φT−t((µ+iy)α)+〈ψT−t((µ+iy)α),Xt〉)

(µ+iy)2

]
dy

π (c+ φT∞−t(u) + 〈ψT∞−t(u), Xt〉)
, (4.57)

where µ > 0 is such that µα ∈ I, and α, β are defined in (4.56).

4.5.2 An affine rational model with negative rates and positive

spreads

Following Filipović et al. (2015), we define the state-price deflators D and D∆

as follows:

Dt = e−αt (〈γ,Xt〉+ c) ,

D∆
t = e−α

∆t
(〈
γ∆, Xt

〉
+ c∆

)
,
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where α, α∆ ∈ R, γ, γ∆ ∈ E = Rd≥0, c, c
∆ ∈ R>0 are parameters of the model and

X is the affine process considered in Chapter 3. Applying Lemma 3.6, we have

Et[DT ] = Et
[
e−αT (〈γ,XT 〉+ c)

]
= e−αT (〈γ,Et[XT ]〉+ c)

= e−αT

(〈
γ,
∂φT−t(0)

∂u
+
∂ψT−t(0)

∂u

t

·Xt

〉
+ c

)

= e−αT
(〈

∂ψT−t(0)

∂u
· γ,Xt

〉
+

〈
∂φT−t(0)

∂u
, γ

〉
+ c

)
. (4.58)

Similarly, we have

Et[D∆] = e−α
∆T

(〈
∂ψT−t(0)

∂u
· γ∆, Xt

〉
+

〈
∂φT−t(0)

∂u
, γ∆

〉
+ c∆

)
. (4.59)

OIS-discount curve

OIS-discount curve is given in closed-form expression:

p(t, T ) =
Et[DT ]

Dt

= e−α(T−t)

〈
∂ψT−t(0)

∂u · γ,Xt

〉
+
〈
∂φT−t(0)

∂u , γ
〉

+ c

〈γ,Xt〉+ c
(4.60)

Using the formula rt = −∂T p(t, T )|T=t, we find that the short rate is given by

rt = α−

〈
∂2ψT−t(0)
∂u∂T

∣∣∣
T=t
· γ,Xt

〉
+
〈
γ,

∂2φT−t(0)
∂u∂T

∣∣∣
T=t

〉
〈γ,Xt〉+ c

. (4.61)

From this we see that the role of the parameter α is to control the level of the

short rate. For sufficiently small α, the short rate can take negative values. This

is also clear from the fact that D is not a supermartingale; see Proposition 2.11.

FRA rate and spreads

We next derive closed-form expressions for FRA rates and FRA spreads. From

Equations (4.58) and (4.59), we obtain the following explicit formula for the
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multiplicative FRA spread:

S∆
m(t, T ) =

Et[D∆
T ]

Et[DT ]

= e−(α∆−α)T

〈
∂ψT−t(0)

∂u · γ∆, Xt

〉
+
〈
∂φT−t(0)

∂u , γ∆
〉

+ c∆〈
∂ψT−t(0)

∂u · γ,Xt

〉
+
〈
∂φT−t(0)

∂u , γ
〉

+ c
.

Then, a closed-form formula for the FRA rate L∆(t;T, T + ∆) follows immedi-

ately:

L∆(t;T, T + ∆)

=
1

∆

(
p(t, T )

p(t, T + ∆)
S∆
m(t, T )− 1

)

=
1

∆

eα∆−(α∆−α)T

〈
∂ψT−t(0)

∂u · γ∆, Xt

〉
+
〈
∂φT−t(0)

∂u , γ∆
〉

+ c∆〈
∂ψT+∆−t(0)

∂u · γ,Xt

〉
+
〈
∂φT+∆−t(0)

∂u , γ
〉

+ c
− 1

 .

The following proposition shows that, under certain condition, our model can

guarantee positivity of basis spreads.

Proposition 4.20. Suppose that the parameters α, α∆, γ, γ∆, c, c∆ satisfy the

condition:

α∆ ≤ α, γ∆ ≥ γ, and c∆ ≥ c, (4.62)

where the second inequality is interpreted component-wise. Then the FRA- and

LIBOR-OIS spreads in the model are positive.

Proof. Under condition (4.62), it is obvious that the state-price deflators D and

D∆ satisfy D∆
t ≥ Dt for all t ≥ 0. The claim then follows readily from Theo-

rem 4.8.

In the following we show that semi-closed form expressions for caps and

swaptions are also obtained easily in this multi-curve model.
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Valuation of Caplets

We consider again the caplet in Section 4.3.3. Substituting for

D∆
T = e−α

∆T
(〈
γ∆, XT

〉
+ c∆

)
,

and

ET [DT+∆] = e−α(T+∆)

(〈
∂ψ∆(0)

∂u
· γ,XT

〉
+

〈
∂φ∆(0)

∂u
, γ

〉
+ c

)
in the general formula (4.9), we find that the time t-price of the caplet is given

by

C(t) =
1

Dt
Et
[
(〈a,XT 〉+ b)+] ,

where

a := e−α
∆Tγ∆ − (1 + ∆K)e−α(T+∆)∂ψ∆(0)

∂u
· γ , (4.63a)

b := e−α
∆T c∆ − (1 + ∆K)e−α(T+∆)

(〈
∂φ∆(0)

∂u
, γ

〉
+ c

)
. (4.63b)

We are now in exactly the same situation as in the valuation of caplets in the

multi-curve affine rational potential model. Therefore, we obtain immediately

the following result:

Proposition 4.21. The time t-price of the caplet in our model is given by the

following semi-closed form formula:

C(t) =

∫∞
0 <

[
exp(b(µ+iy)+φT−t((µ+iy)a)+〈ψT−t((µ+iy)a),Xt〉)

(µ+iy)2

]
dy

πe−αt (〈γ,Xt〉+ c)
,

where µ > 0 satisfies µa ∈ I and a, b are given in (4.63).

Valuation of Swaptions

We consider the swaption in Section 4.3.3. By plugging

ET [D∆
Ti−1

] = e−α
∆Ti−1

(〈
∂ψTi−1−T (0)

∂u
· γ∆, XT

〉
+

〈
∂φTi−1−T (0)

∂u
, γ∆

〉
+ c∆

)
,
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and

ET [DTi ] = e−αTi
(〈

∂ψTi−T (0)

∂u
· γ,XT

〉
+

〈
∂φTi−T (0)

∂u
, γ

〉
+ c

)
into the formula (4.10), we obtain the time t-price of the swaption:

S(t) =
1

Dt
Et
[
(〈A,XT 〉+B)+] ,

where

A :=

N∑
i=1

e−α
∆Ti−1

∂ψTi−1−T (0)

∂u
· γ∆ − (1 + ∆K)e−αTi

∂ψTi−T (0)

∂u
· γ, (4.64a)

B :=
N∑
i=1

e−α
∆Ti−1

(〈
∂φTi−1−T (0)

∂u
, γ∆

〉
+ c∆

)
− (1 + ∆K)e−αTi

(〈
∂φTi−T (0)

∂u
, γ

〉
+ c

)
. (4.64b)

Similarly as in the valuation of caplets, we arrive at the following result:

Proposition 4.22. The time t-price of the swaption considered above is provided

by:

S(t) =

∫∞
0 <

[
exp(B(µ+iy)+φT−t((µ+iy)A)+〈ψT−t((µ+iy)A),Xt〉)

(µ+iy)2

]
dy

πe−αt (〈γ,Xt〉+ c)
, (4.65)

where µ > 0 is such that µA ∈ I, and A, B are defined in (4.64).

4.6 Multi-Curve Exponential Affine Model

In this section we consider another specification of the generic multi-curve po-

tential model, in which the state-price deflator processes D and D∆ are specified

as exponential functions of a common Gaussian process X whose dynamics is

given by

dXt = κ(θt −Xt)dt+ CdWt, (4.66)

where
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• W = (W 1, ...,W d) is a d-dimensional Brownian motion,

• κ = diag(κ1, ..., κd) ∈ Rd is a diagonal matrix,

• θt = (θ1
t , ..., θ

d
t ) is a vector of deterministic functions,

• C = (cij) ∈ Rd×d is a d× d real matrix.

We first work out the distribution of the Gaussian process X.

Lemma 4.23. For any 0 ≤ t ≤ T , the conditional distribution of XT given Xt

is normal with mean

µ(t, T ) := E[XT |Xt] = e−κ(T−t)Xt + κ

∫ T

t
e−κ(T−u)θudu, (4.67)

and covariance matrix

Σ(t, T ) :=

(
ρij

κi + κj
(1− e−(κi+κj)(T−t))

)
i,j=1,...,d

, (4.68)

where

ρij :=
d∑
l=1

cilcjl, i.e. CCt = (ρij)i,j=1,...,d,

and

e−κz := diag(e−κ1z, ..., e−κdz) for any z ∈ R.

In particular, for any β ∈ Rd, it holds

Et
[
e〈β,XT 〉

]
= exp

(
〈β, µ(t, T )〉+

1

2
βtΣ(t, T )β

)
. (4.69)

Proof. Since (Xt, XT ) is normally distributed, so is XT |Xt. By Lemma A.6, we

have

E[Xi
T |Xt]

= E

Xi
te
−κi(T−t) + κi

∫ T

t
e−κi(T−u)θiudu+

d∑
j=1

cij

∫ T

t
e−κi(T−u)dW j

u

∣∣∣∣∣∣Xt


= Xi

te
−κi(T−t) + κi

∫ T

t
e−κi(T−u)θiudu,
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for all i = 1, ..., d. Hence

E[XT |Xt] = e−κ(T−t)Xt + κ

∫ T

t
e−κ(T−u)θudu.

Moreover, for any i, j ∈ {1, ..., d}, we have

Cov[Xi
T , X

j
T |Xt]

= E[(Xi
T − E[Xi

T |Xt])(X
j
T − E[Xj

T |Xt])|Xt]

= E

[(
d∑
l=1

cil

∫ T

t
e−κi(T−u)dW l

u

)(
d∑

k=1

cjk

∫ T

t
e−κj(T−u)dW k

u

)∣∣∣∣∣Xt

]

=

d∑
l=1

cilcjl

∫ T

t
e−(κi+κj)(T−u)du

=
ρij

κi + κj

(
1− e−(κi+κj)(T−t)

)
.

All in all, XT |Xt is normally distributed with mean and covariance matrix given

by µ(t, T ) and Σ(t, T ) defined in (4.67) and (4.68), respectively. Finally, (4.69)

follows immediately from the fact that

〈β,XT 〉 |Xt ∼ N
(
〈β, µ(t, T )〉 , βtΣ(t, T )β

)
.

We next model the state-price deflator processes D and D∆ in the (multi-

curve) exponential affine model as follows:

Dt = exp(−αt+ 〈γ,Xt −X0〉),

D∆
t = exp(−α∆t+ 〈γ∆, Xt〉),

for some parameters α, α∆ ∈ R, and γ, γ∆ ∈ Rd. As a direct consequence of

Lemma 4.23, we have the following:
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Corollary 4.24. In the exponential affine model, the conditional expectations

Et[DT ] and Et[D∆
T ] are provided by

Et[DT ] = exp

(
−αT − 〈γ,X0〉+ 〈γ, µ(t, T )〉+

1

2
γtΣ(t, T )γ

)
, (4.70)

Et[D∆
T ] = exp

(
−α∆T + 〈γ∆, µ(t, T )〉+

1

2
γt∆Σ(t, T )γ∆

)
, (4.71)

where µ(t, T ) and Σ(t, T ) are given in (4.67) and (4.68). In particular, the OIS

discount bond has the closed-form formula:

p(t, T ) = exp

(〈
e−κ(T−t)γ − γ,Xt

〉
− α(T − t) +

1

2
γtΣ(t, T )γ

+

〈
γ, κ

∫ T

t
e−κ(T−u)θudu

〉)
, (4.72)

and the FRA rate L∆(t;T, T + ∆) for a future period [T, T + ∆] is given by

L∆(t;T, T + ∆) =
1

∆

(
p(t, T )

p(t, T + ∆)

Et[D∆
T ]

Et[Dt]
− 1

)
=

1

∆

(
p(t, T )

p(t, T + ∆)
K∆(t, T )− 1

)
, (4.73)

where the convexity adjustment K∆(t, T ) is defined as

K∆(t, T ) := exp ((α− α∆)T + 〈γ,X0〉+ 〈γ∆ − γ, µ(t, T )〉

+
1

2
γt∆Σ(t, T )γ∆ −

1

2
γtΣ(t, T )γ

)
. (4.74)

Proof. (4.70) and (4.71) follow immediately from (4.69) since

Et[DT ] = e−αT−〈γ,X0〉Et[e〈γ,XT 〉],

Et[D∆
T ] = e−α∆TEt[e〈γ∆,XT 〉].

The closed-form formula (4.72) follows then from (4.70) and the general formula

p(t, T ) =
Et[DT ]

Dt
.

Finally, using (4.70) and (4.71), we obtain the closed-form formula (4.73) for

FRA rate L∆(t;T, T + ∆).
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Remark 4.25. From (4.73), we obtain the multiplicative FRA spread

S∆
m(t, T ) =

1 + ∆L∆(t;T, T + ∆)

1 + ∆F (t;T, T + ∆)
= K∆(t, T ),

where K∆(t, T ) is given in (4.74).

Having a Gaussian dynamics as the underlying process, our exponential affine

model is analytically very tractable. In the following, we derive closed-form

pricing formula for caplets and semi-closed form formula for swaptions.

Valuation of Caplets

In the exponential affine model, we obtain closed-form pricing formula for caplets.

Formally, we have the following:

Proposition 4.26 (Black-type caplet prices in the exponential affine

model). Consider a caplet for the future period [T, T + ∆] with strike rate K,

whose cashflow at maturity T + ∆ is provided by

C(T + ∆) = ∆(L∆(T, T + ∆)−K)+.

Then its time t-price is given by the following Black-type formula:

C(t) = p(t, T + ∆)
[
(1 + ∆L∆(t;T, T + ∆))Φ(d1)− (1 + ∆K)Φ(d2)

]
, (4.75)

where

d1 =
ln
(

1+∆L∆(t;T,T+∆)
1+∆K

)
+ 1

2(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)√
(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)

,

d2 =
ln
(

1+∆L∆(t;T,T+∆)
1+∆K

)
− 1

2(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)√
(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)

,

and µ(·, ·), Σ(·, ·) are given by (4.67) and (4.68).

Proof. From Equation (4.9), we get

C(t) =
1

Dt
Et[D∆

T 1A]− (1 + ∆K)
1

Dt
Et
[
ET [D∆

T+∆]1A
]
, (4.76)
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where

A := {D∆
T ≥ (1 + ∆K)ET [DT+∆]}. (4.77)

Plugging

D∆
T = exp(−γ∆T + 〈γ∆, XT 〉),

ET [DT+∆] = exp (−α(T + ∆)− 〈γ,X0〉+ 〈γ, µ(T, T + ∆)〉

+
1

2
γtΣ(T, T + ∆)γ

)
into Equation (4.77), we obtain

A =
{〈
γ∆ − e−κ∆γ,XT

〉
≥ v
}
, (4.78)

where

v := α∆T − α(T + ∆)− 〈γ,X0〉+
1

2
γtΣ(T, T + ∆)γ + ln(1 + ∆K)

+

〈
γ, κ

∫ T+∆

T
e−κ(T+∆−s)θsds

〉
. (4.79)

Using Lemma A.5 and the fact thatXT |Xt ∼ N(µ(t, T ),Σ(t, T )), we can compute

the first term of C(t) in Equation (4.76) explicitly as follows

1

Dt
Et[D∆

T 1A] =
e−α∆T

Dt
E
[
e〈γ∆,XT 〉1{〈γ∆−e−κ∆γ,XT 〉≥v}

]
=

1

Dt
exp

(
−α∆T + 〈γ∆, µ(t, T )〉+

1

2
γt∆Σ(t, T )γ∆

)
Φ(d1),

(4.80)

where

d1 =
γt∆Σ(t, T )(γ∆ − e−κ∆γ) +

〈
γ∆ − e−κ∆γ, µ(t, T )

〉
− v√

(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)
.

A simple computation using (4.79) yields

d1 =
ln
(

1+∆L∆(t;T,T+∆)
1+∆K

)
+ 1

2(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)√
(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)

,
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and

1

Dt
exp

(
−α∆T + 〈γ∆, µ(t, T )〉+

1

2
γt∆Σ(t, T )γ∆

)
= p(t, T + ∆)(1 + ∆L∆(t;T, T + ∆)).

Therefore, we obtain from Equation (4.80) that

1

Dt
Et[D∆

T 1A] = p(t, T + ∆)(1 + ∆L∆(t;T, T + ∆))Φ(d1). (4.81)

Similarly, applying Lemma A.5, it is not hard to verify that

1

Dt
Et
[
ET [D∆

T+∆]1A
]

= p(t, T + ∆)Φ(d2), (4.82)

where

d2 =
ln
(

1+∆L∆(t;T,T+∆)
1+∆K

)
− 1

2(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)√
(γ∆ − e−κ∆γ)tΣ(t, T )(γ∆ − e−κ∆γ)

.

Finally, (4.75) follows by combining Equations (4.76), (4.81), and (4.82).

Valuation of Swaptions

In order to obtain analytic pricing formulae for swaptions, we restrict ourselves

to the special case in which d = 2, γ = (γ1, 0), and γ∆ = (γ∆1, γ∆2) with

γ1, γ∆1, γ∆2 ∈ R, γ∆2 6= 0.

The following result gives a semi-closed form formula for a payer swaption in the

exponential affine model.

Proposition 4.27 (Swaption prices in the exponential affine model).

With the above restriction of the exponential affine Gaussian model, the price at

time t = 0 of the payer swaption considered in Section 4.3.3 is provided by

S(0) =

∫ ∞
−∞

e
− 1

2

(
x−µ1
σ1

)2

σ1

√
2π

δ(x)

[
N∑
i=1

λi(x)eψi(x)Φ(ωhi(x))− Φ(ωh(x))

]
dx, (4.83)
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where

ω =
γ∆2

|γ∆2|
,

h(x) =
ρ√

1− ρ2

x− µ1

σ1
− ȳ(x)− µ2

σ2

√
1− ρ2

,

hi(x) = h(x) + γ∆2σ2

√
1− ρ2e−κ2(Ti−1−T ),

δ(x) = (1 + ∆K)

N∑
i=1

exp
(
γ1e
−κ1(Ti−T )x+Gi(T )

)
,

λi(x) =
1

δ(x)
exp(γ∆1e

−κ1(Ti−1−T )x+Hi(T )),

ψi(x) = γ∆2e
−κ2(Ti−1−T )

(
µ2 + ρσ2

x− µ1

σ1
+

1

2
(1− ρ2)σ2

2γ∆2e
−κ2(Ti−1−T )

)
,

Gi(T ) = −αTi − γ1X
1
0 + γ1κ1

∫ Ti

T
e−κ1(Ti−u)θ1

udu+
ρ11γ

2
1

4κ1
(1− e−2κ1(Ti−T )),

Hi(T ) = −α∆Ti−1 + γ∆1κ1

∫ Ti−1

T
e−κ1(Ti−1−u)θ1

udu

+ γ∆2κ2

∫ Ti−1

T
e−κ2(Ti−1−u)θ2

udu+
γ2

∆1ρ11

4κ1
(1− e−2κ1(Ti−1−T ))

+
γ2

∆2ρ22

4κ2
(1− e−2κ2(Ti−1−T )) +

γ∆1γ∆2ρ12

κ1 + κ2
(1− e−(κ1+κ2)(Ti−1−T )),

ȳ(x) is the unique solution of the equation

N∑
i=1

exp
(
γ∆2e

−κ2(Ti−1−T )y + γ∆1e
−κ1(Ti−1−T )x+Hi(T )

)
= (1 + ∆K)

N∑
i=1

exp
(
γ1e
−κ1(Ti−T )x+Gi(T )

)
,

and

µ1 = e−κ1TX1
0 + κ1

∫ T

0
e−κ1(T−u)θ1

udu,

µ2 = e−κ2TX2
0 + κ2

∫ T

0
e−κ2(T−u)θ2

udu,
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σ1 =

√
ρ11

2κ1
(1− e−2κ1T ),

σ1 =

√
ρ22

2κ2
(1− e−2κ2T ),

ρ =
ρ12

(κ1 + κ2)σ1σ2
(1− e−(κ1+κ2)T ).

Proof. We first note that the state-price deflators D and D∆ are given by

Dt = exp(−αt+ γ1(X1
t −X1

0 )),

D∆
t = exp(−α∆t+ γ∆1X

1
t + γ∆2X

2
t ).

As a special case of Corollary 4.24, we obtain

ET [DTi ] = exp
(
γ1e
−κ1(Ti−T )X1

T +Gi(T )
)
, (4.84)

ET [D∆
Ti−1

] = exp
(
γ∆1e

−κ1(Ti−1−T )X1
T + γ∆2e

−κ2(Ti−1−T )X2
T +Hi(T )

)
. (4.85)

Pugging Equations (4.84) and (4.85) into the general formula (4.10), we have

S(0) = E

[(
N∑
i=1

exp
(
γ∆1e

−κ1(Ti−1−T )X1
T + γ∆2e

−κ2(Ti−1−T )X2
T +Hi(T )

)
−(1 + ∆K) exp

(
γ1e
−κ1(Ti−T )X1

T +Gi(T )
))+

]
=

∫
R2

(
N∑
i=1

exp
(
γ∆1e

−κ1(Ti−1−T )x+ γ∆2e
−κ2(Ti−1−T )y +Hi(T )

)
−(1 + ∆K) exp

(
γ1e
−κ1(Ti−T )x+Gi(T )

))+
f(x, y)dydx,

where f is the density function of (X1
T , X

2
T ):

f(x, y) =
exp

(
−1

2(1−ρ2)

[
(x−µ1

σ1
)2 − 2ρ (x−µ1)(y−µ2)

σ1σ2
+ (y−µ2

σ2
)2
])

2πσ1σ2

√
1− ρ2

.

We can rewrite f as follows

f(x, y) = λeE+F (y−µ2)−G(y−µ2)2
,
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where

λ :=
1

2πσ1σ2

√
1− ρ2

, E :=
−1

2(1− ρ2)

(
x− µ1

σ1

)2

F :=
ρ

1− ρ2

x− µ1

σ1σ2
, G :=

1

2(1− ρ2)σ2
2

.

Set

ϕ(x, y) :=
N∑
i=1

exp
(
γ∆1e

−κ1(Ti−1−T )x+ γ∆2e
−κ2(Ti−1−T )y +Hi(T )

)
− (1 + ∆K) exp

(
γ1e
−κ1(Ti−T )x+Gi(T )

)
.

We have

∂yϕ(x, y)

= γ∆2

N∑
i=1

exp
(
γ∆1e

−κ1(Ti−1−T )x+ γ∆2e
−κ2(Ti−1−T )y +Hi(T ) + e−κ2(Ti−1−T )

)
.

Therefore, ϕ(x, ·) is monotonic in y for each x ∈ R: it is increasing if γ∆2 > 0

and decreasing if γ∆2 < 0. Moreover, observe that

lim
y→−∞

ϕ(x, y) lim
y→∞

ϕ(x, y) < 0.

Hence, for any fixed x ∈ R, the equation ϕ(x, y) = 0 has a unique solution ȳ(x).

We next consider two possible cases:

Case 1: γ∆2 > 0. Then,

S(0) =

∫
R2

(ϕ(x, y))+dydx

=

∫
R

∫ ∞
ȳ(x)

ϕ(x, y)dydx

=

∫
R

N∑
i=1

Pi(x)− (1 + ∆K)Qi(x)dx, (4.86)
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where

Pi(x) :=

∫ ∞
ȳ(x)

exp
(
γ∆1e

−κ1(Ti−1−T )x+ γ∆2e
−κ2(Ti−1−T )y +Hi(T )

)
dy,

Qi(x) :=

∫ ∞
ȳ(x)

exp
(
γ1e
−κ1(Ti−T )x+Gi(T )

)
dy.

Applying Lemma A.3 yields

Qi(x)

= λ

√
π√
G
eE+F2

4G exp
(
γ1e
−κ1(Ti−T )x+Gi(T )

)[
1− Φ

(
(ȳ(x)− µ2)

√
2G− F

2G

)]
.

By noting that

λ

√
π√
G

=
1

σ1

√
2π
, E +

F 2

4G
= −1

2

(
x− µ1

σ1

)2

,

F√
2G

=
ρ(x− µ1)

σ1

√
1− ρ2

,
√

2G =
1

σ2

√
1− ρ2

,

and 1− Φ(z) = Φ(−z), we further obtain

Qi(x) =
e
− 1

2

(
x−µ1
σ1

)2

σ1

√
2π

exp
(
γ1e
−κ1(Ti−T )x+Gi(T )

)
Φ(h(x)). (4.87)

Similarly, we arrive at the following explicit formula for Pi(x):

Pi(x) =
e
− 1

2

(
x−µ1
σ1

)2

σ1

√
2π

exp(γ∆1e
−κ1(Ti−1−T )x+Hi(T ))eψi(x)Φ(hi(x)). (4.88)

A combination of Equations (4.86), (4.87), and (4.88) yields

S(0) =

∫ ∞
−∞

e
− 1

2

(
x−µ1
σ1

)2

σ1

√
2π

δ(x)

[
N∑
i=1

λi(x)eψi(x)Φ(hi(x))− Φ(h(x))

]
dx.

Case 2: γ∆2 < 0. Following similar steps as in case 1, we obtain:

S(0) =

∫ ∞
−∞

e
− 1

2

(
x−µ1
σ1

)2

σ1

√
2π

δ(x)

[
N∑
i=1

λi(x)eψi(x)Φ(−hi(x))− Φ(−h(x))

]
dx.
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4.7 Model Calibration

In this section we illustrate the scope of the multi-curve potential model by

calibrating the rational lognormal specification of our model to real-world market

data. We fix June 10, 2014 as our reference date and use data collected from

Thomson-Reuters. What we have at our disposal are EONIA swap rates, 3m-

EURIBOR swap data and at-the-money swaption prices, where swaptions are

written on the 3m-EURIBOR. Using cubic spline interpolation we are able to

construct the OIS-discount curve p∗ and the 3m-pseudo discount curve p3m
∗ ; see

Figure 4.3a. The implied OIS-forward rates F ∗(0; t, t + 0.25) and the 3m-FRA

rates L3m
∗ (0; t, t+ 0.25) are then given by

F ∗(0; t, t+ 0.25) = 4

(
p∗(0, t)

p∗(0, t+ 0.25)
− 1

)
,

L3m
∗ (0; t, t+ 0.25) = 4

(
p3m
∗ (0, t)

p3m
∗ (0, t+ 0.25)

− 1

)
and are displayed in Figure 4.3b.
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(a) OIS and 3m-EURIBOR curves.
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(b) OIS-forward and 3m-FRA rates.

Figure 4.3: EONIA and 3m-EURIBOR term structures as of June 10, 2014.

We assume that h(t) = 0 for all t ≥ 0, so the state-price deflator process D
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is given by

Dt = f(t) + g(t)Mt.

The OIS curve is therefore exclusively driven by the martingale M , and we have

p(0, t) =
f(t) + g(t)M0

f(0) + g(0)
= f(t) + g(t) (4.89)

since M0 = 1 and f(0) + g(0) = 1. Given the market-consistent OIS curve p∗,

bootstrapped from EONIA swaps, we follow Nakamura & Yu (2000) and choose

the parametrizations

g(t) =
α

β + 1
(p∗(0, t))β+1,

f(t) = p∗(0, t)− g(t) = p∗(0, t)− α

β + 1
(p∗(0, t))β+1.

Here, α and β are parameters satisfying α > 0 and β > 0.

We calibrate our multi-curve rational lognormal models to a matrix of market

prices of the at-the-money swaptions with 6 maturities: 1y, 2y, 3y, 4y, 5y, 7y and

10 tenors ranging from 1y to 10y. We recall that for the swaption considered in

Section 4.3.3, T = T0 is called maturity and the difference TN − T is the tenor

or swaption length. The market prices of the at-the-money swaptions are given

by the following Black formula: 2

SMarket(0;m,n,Katm(m,n))

= ∆

n/∆∑
i=1

p∗(0,m+ i∆)Katm(m,n)

(
2Φ

(
σ(m,n)

√
m

2

)
− 1

)
,

where

• ∆ = 0.25 is the tenor of the underlying swap which is written on 3m-

EURIBOR,

• m,n are maturity and tenor of the swaption,

• σ(m,n) is the market volatility of the swaption,

2It is market practice to price a swaption using a Black-type formula.
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• Katm(m,n) is the strike rate which renders the value of the underlying

swap zero at inception and is given by

Katm(m,n) =

∑n/∆
i=1 p

∗(0,m+ i∆)L3m
∗ (0;m+ (i− 1)∆,m+ i∆)∑n/∆

i=1 p
∗(0,m+ i∆)

.

We calibrate the model parameters by minimizing the sum of the squared dif-

ferences between model and market swaption prices. So the objective function

is defined as∑
m,n

(
SModel(0;m,n,Katm(m,n))− SMarket(0;m,n,Katm(m,n))

)2
,

where SModel(0;m,n,Katm(m,n)) denotes the model price of a swaption with

maturity m, tenor n, and strike price Katm(m,n). The absolute calibration

errors are then defined as

|σimplied(m,n)− σ(m,n)| ,

where σimplied(m,n) is the implied volatility of the model with the associated

calibrated parameters. We recall that σimplied(m,n) is the value of σ that solves

the equation

SModel(0;m,n,Katm(m,n))

= ∆

n/∆∑
i=1

p∗(0,m+ i∆)Katm(m,n)

(
2Φ

(
σ
√
m

2

)
− 1

)
,

and it is given explicitly by

σimplied(m,n) =
2√
m

Φ−1

(
1

2

(
1 +

SModel(0;m,n,Katm(m,n))

∆
∑n/∆

i=1 p
∗(0,m+ i∆)Katm(m,n)

))
.

4.7.1 Calibration of the one-factor model

From Equations (4.14) and (4.89) and the fact that M0 = 1, we obtain

L3m(0; t, t+ 0.25) = 4

(
f3m(t) + g3m(t)

p(0, t+ 0.25)
− 1

)
.
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Hence

f3m(t) + g3m(t) = (1 + 0.25L3m(0; t, t+ 0.25))p(0, t+ 0.25). (4.90)

We construct the functions f3m and g3m from the bootstrapped 3m-EURIBOR

FRA curve L3m
∗ (0; t, t+ 0.25) and the given OIS curve p∗ via

f3m(t) = f(t) + γe−κts(t),

g3m(t) = g(t) + (1− γe−κt)s(t),

where

s(t) := (1 + 0.25L3m
∗ (0; t, t+ 0.25))p∗(0, t+ 0.25)− p∗(0, t), (4.91)

and γ, κ are parameters satisfying γ > 0 and κ > 0. This choice of f , g, f3m, and

g3m satisfies Equations (4.89) and (4.90), i.e., it guarantees a perfect fit of the

one-factor multi-curve rational lognormal model to the initial EONIA and 3m-

EURIBOR term structures p∗ and L3m
∗ . The volatilities σ(t) of the martingale

M is chosen to be a positive constant σ(t) = σ for all t ≥ 0. Therefore, the

calibration output is the following set of 5 parameters:

Θ1 = {α, β, γ, κ, σ}.

Upon minimizing the sum of the squared differences between market and model

swaption prices, we obtain the calibrated parameters reported in Table 4.1.

α β γ κ σ

0.638423 3.270780 0.010787 0.189737 0.767376

Table 4.1: Calibrated parameters of the one-factor rational lognormal multi-

curve potential model.

The implied volatility surface is displayed in Figure 4.4a. In addition, Figure 4.4b

shows the associated calibration errors. We observe that the calibration of the

one-factor rational lognormal multi-curve potential model is rather satisfactory

for swaptions with medium and long maturities and tenors. Moreover, with the
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Figure 4.4: Calibration of the one-factor rational lognormal multi-curve potential

model.

calibrated parameters in Table 4.1 we have f3m(t) ≥ f(t) and g3m(t) ≥ g(t) for

all t ≥ 0; see Figure 4.5. It follows then from Remark 4.7 that the calibrated

parameters guarantee positive basis spreads.
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Figure 4.5: Differences between functions f3m and f , and g3m and g in the

one-factor rational lognormal multi-curve potential model.

4.7.2 Calibration of the two-factor model

We specify the functions f3m, g3m, and h3m in the two-factor multi-curve rational

lognormal model as follows

f3m(t) = f(t) + γ1e
−κ1ts(t),

h3m(t) = γ2e
−κ2ts(t),

g3m(t) = g(t) + (1− γ1e
−κ1t − γ2e

−κ2t)s(t),

where s(t) is defined in (4.91). It is obvious that the above construction guar-

antees a perfect fit of the model to the initial term structures. Moreover, we

assume the volatilities σ1(t) and σ2(t) of the martingales M and N are constant,

i.e., σ1(t) = σ1 > 0 and σ2(t) = σ2 > 0 for all t ≥ 0. So the output of the

calibration is the set of the following 9 parameters:

Θ2 = {α, β, γ1, κ1, γ2, κ2, σ1, σ2, ρ}.

The calibrated parameters are reported in Table 4.2. The implied volatility

surface {σimplied(m,n)}m,n and the absolute calibration errors are displayed in

Figure 4.6a and Figure 4.6b, respectively.
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α β γ1

0.571529 3.141539 0.009872

γ2 κ1 κ2

0.254420 0.132585 0.000058

σ1 σ2 ρ

0.819876 1.702198 0.436887

Table 4.2: Calibrated parameters of the two-factor rational lognormal multi-

curve potential model.

With the exception of some outliers at short maturities and tenors, which

might be due to misalignments in market data,3 the absolute errors are relatively

small. As in the calibration of the one-factor model, we also have

f3m(t) ≥ f(t), g3m(t) ≥ g(t), and h3m(t) ≥ h(t), for all t ≥ 0;

see Figure 4.7. Hence, with the calibrated parameters in Table 4.2, the two-factor

rational lognormal multi-curve potential model produces positive basis spreads;

see Remark 4.10. In summary, it appears fair to say that the rational lognormal

multi-curve potential models calibrate well to EONIA and EURIBOR swap and

swaptions with medium and long maturities and tenors.

3It is well-known that, due to different levels of liquidity, swaption prices are not always

updated simultaneously, which may lead to inconsistencies in market quotes (see, e.g., Brigo &

Mercurio 2006, p. 288).
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Chapter 5

Conclusion and Outlook

In this concluding chapter we summarize the main contributions of this thesis

as well as discuss some important directions for future research.

We establish in Chapter 3 a general class of rational models to the term struc-

ture of interest rates using the potential approach. As the basic building block

of our models, we construct in Theorem 3.2 a general non-negative supermartin-

gale from an affine Markov process. By simply adding a strictly positive constant

to this supermartingale, we further obtain a (strictly) positive supermartingale

which we use to model the state-price deflator.

With the help of the rich structural properties of affine processes, our models

are analytically very tractable. Indeed, Lemma 3.6 shows that the conditional ex-

pectations of the state-price deflator are given in closed-form expressions. Based

on this fact, we further show that our modeling framework guarantees: i) non-

negative interest rates, ii) closed form formulae for bond prices, and iii) semi-

closed form pricing formulae for important interest rate derivatives such as caps,

swaptions, and European currency options.

A perfect fit of the affine rational potential model to the initial term structure

can be obtained by adding a positive deterministic function f to the non-negative

supermartingale Mu in Theorem 3.2. The state-price deflator Du then becomes

Du
t = f(t) + φT∞−t(u) + 〈ψT∞−t(u), Xt〉 , t ∈ [0, T∞].
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However, Du might no longer be a supermartingale and this accommodates neg-

ative interest rates.

In Chapter 4, we extend the general single-curve potential model to a multi-

curve setting. The starting point of this extension is the interpretation of the

LIBOR rate as the simply compounded rate of a quanto investment in which

borrowing and repayment are made in two different currencies; see Section 4.3.1.

Therefore, the spot multiplicative spread between LIBOR and OIS curves can

be interpreted as the spot exchange rate between these two currencies. On the

other hand, as discussed in Section 2.2.2, the potential approach is well-suited

for exchange rate as well as multi-currency modeling. These facts justify our use

of the potential approach to model basis spreads and multiple term structures.

In the general multi-curve potential model, we simultaneously model the OIS-

term structure via a ”domestic” state-price deflator and model the multiplicative

FRA spread as the quotient of the domestic- and a ”foreign” state-price defla-

tor. We show that our model can produce stochastic positive basis spreads and

guarantee positive OIS-term structure; negative OIS-interest rates and positive

spreads can also be obtained simultaneously in this modeling framework.

To illustrate our modeling framework, we present four concrete multi-curve

potential models. The first specific model extends the classical rational lognor-

mal model by Flesaker & Hughston (1996a) to the multi-curve framework. The

second one is a multi-curve extension of our affine rational potential model de-

veloped in Chapter 3. The third model extends the singe-curve linear rational

model in Filipović et al. (2015) to a multi-curve setting. Finally, we present a

specific multi-curve potential model based on a Guassian process. We remark

that these model specifications are very tractable: we obtain closed-form expres-

sions for linear products such as zero-bonds, forward rate agreements, swaps,

and semi-closed form formulae for important interest rate derivatives like caps

and swaptions.

As a showcase example, we calibrate the multi-curve rational lognormal mod-

els to EUR swap and swaption market data. Our models perfectly fit to the

initial EONIA and EURIBOR term structures and calibrate well to swaptions
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with medium and long tenors and maturities.

As directions for future research, our multi-curve potential model can be

extended to a multi-curve multi-currency setting as in the work by Fujii et al.

(2011). Furthermore, it can be applied to computation of value adjustments

(XVA) for interest rate derivatives as in Crépey et al. (2015a,b).
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Appendix A

Auxiliary Results

We provide some auxiliary results that are used to derive pricing formulae in our

models.

Lemma A.1. Let Y be a random variable and assume there exists δ > 0 such

that MY (v) := E[evY ] <∞ for all v ∈ (−δ, δ). Then E[|Y |k] <∞ for all k ∈ N
and

E[Y k] = DkMY (0),

where DkMY (0) represents the kth derivative of MY (v) at v = 0.

Proof. See Theorem 4.25 in von Weizsäcker (2012).

Lemma A.2. Let Y be a random variable on the probability space (Ω,F,F,P)

and fix a time t ∈ [0, T∞]. Define ϕ(z) := Et[ezY ] for all z ∈ C such that the

conditional expectation exists. Assume µ > 0 is a positive number such that

ϕ(µ) <∞. Then the expectation of Y + conditioned on the filtration Ft is given

by

Et[Y +] =
1

π

∫ ∞
0
<
[
ϕ(µ+ iy)

(µ+ iy)2

]
dy. (A.1)

Proof. See Theorem 2.6 in Filipović et al. (2015).
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Lemma A.3. For any real constants a, b, A,B with A > 0 we have∫ b

a
e−Ax

2+Bxdx =

√
π√
A
e
B2

4A

[
Φ

(
b
√

2A− B√
2A

)
− Φ

(
a
√

2A− B√
2A

)]
,

where Φ denotes the distribution function of the standard normal distribution.

Proof. We have

e−Ax
2+Bx =

√
π

A
e
B2

4A

√
A

π
e−A(x− B

2A)
2

.

On the other hand, note that
√

A
π e
−A(x− B

2A)
2

is the density function of the

random variable Z ∼ N
(
B
2A ,

1
2A

)
. Therefore, we obtain

∫ b

a
e−Ax

2+Bxdx

=

√
π

A
e
B2

4A

∫ b

a

√
A

π
e−A(x− B

2A)
2

dx

=

√
π

A
e
B2

4A P(a ≤ Z ≤ b)

=

√
π

A
e
B2

4A P
(
a
√

2A− B√
2A
≤
√

2A

(
Z − B

2A

)
≤ b
√

2A− B√
2A

)
=

√
π√
A
e
B2

4A

[
Φ

(
b
√

2A− B√
2A

)
− Φ

(
a
√

2A− B√
2A

)]
,

since
√

2A
(
Z − B

2A

)
∼ N(0, 1).

Lemma A.4. Let σ, a, b be positive real numbers, and Y be a normally dis-

tributed random variable with mean −σ2/2 and variance σ2, i.e. Y ∼ N(−σ2

2 , σ
2).

Then we have

E[(aeY − b)+] = aΦ(h1)− bΦ(h2),

where Φ is the distribution function of the standard normal distribution and

h1,2 = 1
σ

(
ln(ab )± σ2

2

)
.
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Proof. Let Z ∼ N(λ, ν2) for some λ ∈ R, ν > 0, and let m be any real number.

Then we have

E
[
emZ1{Z≥γ}

]
= exp

(
mλ+

m2ν2

2

)
Φ

(
mν2 + λ− γ

ν

)
. (A.2)

Indeed,

E
[
emZ1{Z≥γ}

]
=

∞∫
γ

1√
2πν

emxe−
1

2ν2 (x−λ)2

dx

= exp

(
mλ+

m2ν2

2

) ∞∫
γ

1√
2πν

e−
1

2ν2 [x−(mν2+λ)]2dx

= exp

(
mλ+

m2ν2

2

)
P(U ≥ γ),

where U ∼ N(mν2 + λ, ν2). Since U−mν2−λ
ν ∼ N(0, 1) and P(X ≥ u) = Φ(−u)

for any X ∼ N(0, 1) and u ∈ R, we have

P(U ≥ γ) = P
(
U −mν2 − λ

ν
≥ γ −mν2 − λ

ν

)
= Φ

(
mν2 + λ− γ

ν

)
.

Putting all together we obtain (A.2). Returning to the lemma, we have

E[(aeY − b)+] = E
[
(aeY − b)1{Y≥ln( ba)}

]
= aE

[
eY 1{Y≥ln( ba)}

]
− bP

(
Y ≥ ln

(
b

a

))
. (A.3)

Applying (A.2) with m = 1, λ = −σ2/2, and ν = σ, we have

E
[
eY 1{Y≥ln( ba)}

]
= Φ

(
ln(ab ) + σ2

2

σ

)
. (A.4)

Note that
Y+σ2

2
σ ∼ N(0, 1). Hence

P
(
Y ≥ ln

(
b

a

))
= P

(
Y + σ2

2

σ
≥

ln( ba) + σ2

2

σ

)
= Φ

(
ln(ab )− σ2

2

σ

)
. (A.5)

The result now follows readily from (A.3), (A.4), and (A.5).
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Lemma A.5. Let Z be a d-dimensional normal random variable with Z ∼
N(µ,Σ) for some µ ∈ Rd and Σ ∈ Rd×d. Then for any a, b ∈ Rd we have

E
[
e〈a,Z〉1{〈b,Z〉≥u}

]
= exp

(
〈a, µ〉+

1

2
atΣa

)
Φ

(
atΣb+ 〈b, µ〉 − u√

btΣb

)
, (A.6)

for any u ∈ R.

Proof. Observe that (〈a, Z〉 , 〈b, Z〉) is normally distributed with

(〈a, Z〉 , 〈b, Z〉) ∼ N

((
〈a, µ〉
〈b, µ〉

)
,

(
atΣa atΣb

atΣb btΣb

))
.

Hence, the conditional distribution of 〈a, Z〉 given 〈b, Z〉 is normal:

〈a, Z〉 | 〈b, Z〉 ∼ N(µ̄, σ̄2),

where

µ̄ := 〈a, µ〉+
atΣb

btΣb
(〈b, Z〉 − 〈b, µ〉),

σ̄2 := atΣa− (atΣb)2

btΣb
.

It follows that

E[e〈a,Z〉| 〈b, Z〉] = exp

(
µ̄+

σ̄2

2

)
= exp

(
〈a, µ〉+

atΣb

btΣb
(〈b, Z〉 − 〈b, µ〉) +

1

2

(
atΣa− (atΣb)2

btΣb

))
.

(A.7)

Using tower property of conditional expectation and Equation (A.7), we have

E
[
e〈a,Z〉1{〈b,Z〉≥u}

]
= E

[
1{〈b,Z〉≥u}E[e〈a,Z〉| 〈b, Z〉]

]
= exp

(
〈a, µ〉 − atΣb

btΣb
〈b, µ〉+

1

2

(
atΣa− (atΣb)2

btΣb

))
× E

[
e
atΣb
btΣb
〈b,Z〉1{〈b,Z〉≥u}

]
. (A.8)
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Since 〈b, Z〉 ∼ N(〈b, µ〉 , btΣb), it follows from (A.2) that

E
[
e
atΣb
btΣb
〈b,Z〉1{〈b,Z〉≥u}

]
= exp

(
atΣb

btΣb
〈b, µ〉+

1

2

(atΣb)2

btΣb

)
Φ

(
atΣb+ 〈b, µ〉 − u√

btΣb

)
.

(A.9)

The equality in the lemma then follows readily from Equations (A.8) and (A.9).

Lemma A.6. The stochastic differential equation (4.66) has a unique solution

X = (X1, ..., Xd) with

Xi
t = Xi

se
−κi(t−s) + κi

∫ t

s
e−κi(t−u)θiudu+

d∑
j=1

∫ t

s
e−κi(t−u)cijdW

j
u ,

for any 0 ≤ s ≤ t.

Proof. Consider a fixed index i ∈ {1, ..., d}. Applying Itô formula we have

d(eκitXi
t) =

(
κie

κitXi
t + κie

κit(θit −Xi
t)
)
dt+

d∑
j=1

cije
κitdW j

t

= κie
κitθitdt+

d∑
j=1

cije
κitdW j

t .

It follows that

eκitXi
t = eκisXi

s + κi

∫ t

s
eκiuθiudu+

d∑
j=1

cij

∫ t

s
eκiudW j

u ,

so that

Xi
t = Xi

se
−κi(t−s) + κi

∫ t

s
e−κi(t−u)θiudu+

d∑
j=1

∫ t

s
e−κi(t−u)cijdW

j
u .
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