
Mario	Trapp	
	
Assuring	Functional	Safety		
in	Open	Systems	of	Systems

Assuring	Functional	Safety		
in	Open	Systems	of	Systems

Vom Fachbereich Informatik der TU Kaiserslautern

im Rahmen des Habilitationsverfahrens

akzeptierte Habilitationsschrift

von

Dr. Mario Trapp

01.06.2015

Abstract

Mario Trapp Assuring Functional Safety in Open Systems of Systems 2/156

	

Abstract

Mario Trapp Assuring Functional Safety in Open Systems of Systems 3/156

Abstract

Interconnected, autonomously driving cars shall realize the vision of a zero-accident,
low energy mobility in spite of a fast increasing traffic volume. Tightly interconnected
medical devices and health care systems shall ensure the health of an aging society. And
interconnected virtual power plants based on renewable energy sources shall ensure a
clean energy supply in a society that consumes more energy than ever before. Such open
systems of systems will play an essential role for economy and society.

Open systems of systems dynamically connect to each other in order to collectively
provide a superordinate functionality, which could not be provided by a single system
alone. The structure as well as the behavior of an open system of system dynamically
emerge at runtime leading to very flexible solutions working under various different
environmental conditions. This flexibility and adaptivity of systems of systems are a key
for realizing the above mentioned scenarios.

On the other hand, however, this leads to uncertainties since the emerging structure and
behavior of a system of system can hardly be anticipated at design time. This impedes the
indispensable safety assessment of such systems in safety-critical application domains.
Existing safety assurance approaches presume that a system is completely specified and
configured prior to a safety assessment. Therefore, they cannot be applied to open systems
of systems. In consequence, safety assurance of open systems of systems could easily
become a bottleneck impeding or even preventing the success of this promising new
generation of embedded systems.

For this reason, this thesis introduces an approach for the safety assurance of open
systems of systems. To this end, we shift parts of the safety assurance lifecycle into
runtime in order to dynamically assess the safety of the emerging system of system. We
use so-called safety models at runtime for enabling systems to assess the safety of an
emerging system of system themselves. This leads to a very flexible runtime safety
assurance framework.

To this end, this thesis describes the fundamental knowledge on safety assurance and
model-driven development, which are the indispensable prerequisites for defining safety
models at runtime. Based on these fundamentals, we illustrate how we modularized and
formalized conventional safety assurance techniques using model-based representations
and analyses. Finally, we explain how we advanced these design time safety models to
safety models that can be used by the systems themselves at runtime and how we use
these safety models at runtime to create an efficient and flexible runtime safety assurance
framework for open systems of systems.

Table of Contents

Mario Trapp Assuring Functional Safety in Open Systems of Systems 4/156

Table of Contents

1. Introduction ... 6

1.1. Motivation ... 6

1.2. Safety Challenges in Open Systems of Systems ... 7

1.2.1. Open Adaptive Systems ... 7

1.2.2. Safety Challenges ... 8

1.2.3. Solution Overview .. 10

1.2.4. Document Structure .. 15

2. Fundamentals of Safety Assurance .. 17

2.1. Terms and Definitions ... 17

2.2. Safety Engineering in a Nutshell ... 24

2.3. Hazard Analysis and Risk Assessment .. 28

2.3.1. Hazard Identification .. 28

2.3.2. Risk Assessment ... 29

2.4. Safety Analysis Techniques ... 33

2.4.1. Failure Mode and Effects Analysis (FMEA) .. 33

2.4.2. Hazard and Operability Analysis (HAZOP) ... 35

2.4.3. Event Tree Analysis (ETA) .. 38

2.4.4. Fault Tree Analysis (FTA) ... 39

2.4.5. Reliability Block Diagrams (RBD) .. 44

2.5. Safety Concepts and Safety Cases ... 45

2.5.1. Goal Structuring Notation .. 46

2.6. Software Fault Tolerance Mechanisms ... 51

2.6.1. Overview .. 52

2.6.2. Error Detection ... 54

2.6.3. Programming Techniques ... 59

2.6.4. Design-Diversity ... 59

2.6.5. Data-Diversity .. 61

3. Fundamentals of Model-Driven Engineering .. 63

3.1. The Model-Driven Engineering Paradigm .. 63

3.2. Meta-Modeling .. 67

3.3. The Model Driven Architecture – MDA® .. 70

Table of Contents

Mario Trapp Assuring Functional Safety in Open Systems of Systems 5/156

3.4. Model-Driven Engineering of Embedded Systems 71

3.5. Model Driven Optimization ... 74

4. Model-Driven Safety Engineering ... 77

4.1. Motivation ... 78

4.1.1. Problem Analysis .. 78

4.1.2. Advantages of Model-Driven Safety Engineering 80

4.2. Safety Modelling ... 86

4.2.1. Modular Safety Assurance ... 86

4.2.2. Meta-modeling ... 89

4.3. Model Driven Safety Analyses .. 92

4.3.1. Failure Logic Modeling .. 92

4.3.2. Safety Analysis Meta-Models .. 94

4.4. Model-Driven Safety Concepts and Safety Cases 106

4.4.1. Modular Certification Approaches ... 107

4.4.2. Safety Concept Meta-Models ... 109

5. Runtime Safety Assurance ... 113

5.1. Overview on safety models for runtime evaluation 114

5.2. SafetyCertificates@Runtime ... 115

5.3. SafetyCases@Runtime .. 118

5.4. V&V-Models@Runtime .. 120

5.5. SafetyAnalyis@Runtime ... 121

5.6. Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime) 122

5.7. Evaluation of the different approaches .. 123

5.8. Conceptual safety assurance framework for Open Adaptive Systems 125

5.9. Conditional Safety Certificates – ConSerts ... 128

5.9.1. General Assumptions on Modeling Open Systems of Systems 129

5.9.2. Safety Guarantees and Demands .. 131

5.9.3. Runtime Evidences ... 133

5.9.4. Mapping Functions and Runtime Evaluation 134

5.9.5. Specification Technique ... 137

6. Summary and Future Work ... 141

7. References ... 144

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 6/156

1. Introduction

1.1. Motivation

We live in a digital society. Using PCs, smart phones or any other kind of mobile device
we are used to be globally connected – everywhere, every time. Digital systems have been
the main driver for recent innovations that shaped the character of our society and
economy. Besides the obvious world of smartphones and the internet, digital systems
have been the key enabler for most product innovations of the last decade. Hidden from
the user, embedded systems have enabled new product features like driver assistance
systems in cars, new medical devices for cancer therapy, or precision farming in the
agricultural domain.

Up to now, traditional IT systems and embedded systems have been rather isolated
from each other. In general, embedded systems used to be isolated systems with a limited
connectivity to other systems. In the near future, however, embedded systems will be
open in the sense that they dynamically interconnect to other systems or the ‘cloud’. In
order to manage such a permanently changing runtime context, they will dynamically
adapt their structure and their behavior to optimize their functionality to the current
runtime context. In recent years, the term ‘Cyber Physical System’ has emerged as a
buzzword describing this new generation of embedded systems. In research such systems
are often called ‘open adaptive systems’ reflecting their most important characteristics.

Regarding industry roadmaps across various application domains, such open systems
of systems seem to be the technological answer to a series of societal challenges:
Interconnected, autonomously driving cars shall realize the vision of a zero-accident, low
energy mobility in spite of a fast increasing traffic volume. Tightly interconnected
medical devices and health care systems shall ensure the health of an aging society. And
interconnected virtual power plants based on renewable energy sources shall ensure a
clean energy supply in a society that consumes more energy than ever before.

As a consequence, society and economy will depend on embedded systems more than
ever before. This leads to an increasing importance of the systems’ safety and reliability.
This is particularly true since most application scenarios can be found in safety-critical
application domains. This means that a failure in such complex systems could easily lead
to catastrophic consequences.

Assuring safety in open systems of systems is however a non-trivial task. Openness
and adaptivity are key properties facilitating the economic potential of cyber physical
systems. However, this flexibility in the context of cyber physical systems leads to
unpredictability, which is a major challenge for safety assurance. Available safety
assurance approaches on the one hand usually assume that all safety-relevant
uncertainties have been resolved before the system is certified. Current safety research is
still rather focused on development time assurance not considering runtime adaptivity.
Engineering approaches supporting open connectivity and adaptivity on the other hand

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 7/156

have considered safety only as one out of many non-functional properties without
regarding the specific characteristics and challenges of safety assurance. Safety can
therefore easily become a bottleneck impeding or even preventing the promising vision
of cyber physical systems. Thus, new safety assurance approaches are indispensable to
open the full potential of this new generation of embedded systems. Enabling the required
flexibility without endangering the systems’ safety is therefore one of the most important
research challenges today.

Considering that there is for example still no commonly accepted approach available
that supports modular safety assurance at development time, it is obviously quite a long
journey from traditional safety engineering to the safety assurance of open systems of
systems. This thesis therefore introduces a framework for assuring safety in open systems
of systems. To this end, it points out the major challenges and explains the major steps
we have taken to advance traditional safety engineering approaches for supporting the
safety assurance of open systems of systems.

This thesis summarizes the results of several years of research, which has led to more
than fifty publications and six dissertations. Therefore, it provides an introduction to the
required basic fundamentals and gives a detailed overview on the resulting overall safety
assurance framework incorporating the different single constituents, which have been
subject to our research over the last years. To this end, it describes the most important
concepts we have developed and it particularly shows the big picture of how they work
together in an integrated framework. Moreover, we elaborate key findings based on our
overall research, which are of general importance for the safety assurance of open systems
of systems.

1.2. Safety Challenges in Open Systems of Systems

Terms like cyber physical systems, internet of things or ambient systems helped to
shape a new generation of embedded systems. From a scientific point of view, however,
those terms provide no precise definition of a system class. Therefore, this section refines
the research problem of assuring safety in open systems of systems. To this end, Section
1.2.1 first provides a more precise definition of the system characteristics that are of
relevance for safety assurance. Based on these core characteristics, Section 1.2.2 analyzes
the resulting challenges for safety assurance of such systems. Section 1.2.3 provides a
solution overview how we addressed these challenges in the safety assurance framework
we describe in this thesis. Based on this solution overview, section 1.2.4 explains the
structure of the remaining document.

1.2.1. Open Adaptive Systems

Openness and adaptivity are key properties facilitating the business goals associated
with cyber physical systems [1].

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 8/156

Openness is required to yield a collective functionality of the resulting system of
systems. Collective means that each system contributes its specific capabilities in order
to fulfill a superordinate functionality together with other systems. For example, cars
dynamically interconnect to each other in order to collectively realize a cross road
assistant – a functionality that could not be realized by a single system alone. Openness
in this context therefore means that the systems can dynamically interconnect to other
systems. Open systems of systems are able to handle the connectivity themselves -
possibly with the support of end users like operators or drivers. In order to yield collective
behavior, dynamic connectivity is not limited to interfaces and interoperability but it
includes the behavioral level since the systems dynamically form a distributed algorithm,
e.g., for a distributed cross road management.

In consequence this means that the prospective collaboration partners of a system and
their specific characteristics are not known during development time. Additionally, cyber
physical systems are used very flexibly in various different usage contexts, which cannot
be predicted completely. This leads to significant uncertainties that cannot be resolved at
development time, i.e. uncertainties impede a complete anticipation of the context. For
this reason, open systems of systems must be adaptive so that they can dynamically adapt
their behavior and/or structure to the given context at runtime.

It is important to note that there is a difference between adaptability and adaptivity.
Adaptability refers to the property of the system that it can be easily adapted by someone
to a new context. This means that adaptability requires the involvement of a person to
modify the system (usually a developer). Adaptivity on the other hand refers to the
property of the system that it is able to adapt itself to a new context – any involvement of
persons is not required. In order to underline this important difference, research often
talks about self-adaptive systems. When the terms adaptive or adaptivity are used in this
document, they always refer to self-adaptive and self-adaptivity, respectively.

1.2.2. Safety Challenges

From a safety assurance point of view, the main challenge of open systems is given by
their inherent uncertainties. All existing safety assurance approaches assume that the
system is completely specified prior to a safety assessment and that the system exposes a
completely predictable and deterministic behavior. Consequently, the dynamic
integration of systems to systems of systems or the dynamic adaptation of the systems’
structure and behavior is not supported.

This basic principle of determinism and predictability is also reflected in safety
standards. Thus, they prohibit any kind of intelligent solutions. For example, the use of
artificial intelligence for fault correction is prohibited by the functional safety standard
IEC 61508 [2]. Even less sophisticated approaches like the dynamic re-deployment of
software in case of hardware faults is prohibited (prohibition of dynamic reconfiguration
in [2]).

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 9/156

In general, safety standards demand a complete and deterministic system specification,
following the reasonable paradigm that it is only possible to certify something that is
completely known and understood. For example, standards demand that all possible
hardware and software interactions are determined and evaluated in a software
architecture specification [2], which is obviously not possible, if the interaction partners
are not known during development time. Furthermore, safety standards demand that all
modes of operation of the systems themselves and the modes of operation of all
collaborating systems must be considered in all safety assurance activities. This demand
presumes that all modes of operation can be determined at development time, which is
not the case for open systems of systems. As a further aspect, if flexible self-adaptations
at runtime ought to be supported, they must comply with the same normative demands
like system modifications at development time in a traditional development process. This
would mean that an impact analysis and a revalidation of modified elements or even of
the overall system must be performed at runtime.

Though safety standards certainly reflect the commonly accepted state of the art, they
are usually based on outdated methodologies and can obviously hardly be applied to
leading edge technology like open adaptive systems. Nonetheless, the basic ideas
underlying safety standards shape a corridor we cannot leave if we aim for accepted safety
assurance approaches for open systems of systems. In consequence, this means that we
have to show that the safety assurance of open systems leads to systems, which are at
least as safe as conventional systems, today. To this end, it is first necessary to map
runtime activities of open systems of systems to the corresponding development time
activities. In the second step it is necessary to show that the runtime activities undergo a
safety assurance that is comparable to the safety assurance as it is demanded by safety
standards for the corresponding development activities:

In order to realize openness, systems dynamically connect with other systems to build
a system of systems. This step is comparable to the integration of components at
development time. Experience has shown that many problems do not arise within the
single units of the system but during their integration. Therefore, the integration of safe
systems does not necessarily lead to a safe system of systems. In fact, it is a challenging
task to check whether or not the interaction of the components is safe. Answering this
question at runtime requires sophisticated interface checks and possibly additional
runtime verification mechanisms like integration tests.
In order to realize adaptivity, the system changes its structure and/or behavior. If
adaptivity is limited to a dynamic reconfiguration, this runtime activity is comparable to
a system configuration. If more flexible adaptations are required, this can be seen as a
system modification at runtime. This leads to several challenges since any change of the
system requires an impact analysis and a re-verification of modified parts, or – depending
on the required safety integrity level– even a re-verification of the overall system. Today,
both activities require a lot of human interaction making it very difficult to perform these
steps automatically and autonomously at runtime.

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 10/156

As an additional aspect it must be considered that there is no superordinate root element
during runtime integration, which has the knowledge about the overall system of systems
and which could therefore coordinate the runtime integration. In fact, all systems are equal
partners, which have been unknown during development time and which must build an
ad-hoc collective in order to jointly coordinate the integration check. Instead of a
hierarchy as it can be found in traditional systems, open systems of systems expose a
heterarchical structure.

This also leads to a non-technical but nonetheless important challenge. In open systems
of systems, there is no expert in the loop, who finally checks the systems’ safety. In fact,
the systems themselves decide on whether or not they are safe. This means a change of a
basic paradigm of safety assurance. The knowledge that a human expert checked the
system is an essential prerequisite for societal acceptance. Without this trust, it is unlikely
that a new product would be accepted by the market. For this reason, societal acceptance
is an important issue, but it is not a technical challenge and will therefore not be
considered in further detail in this thesis.

Summarizing, the main challenges for safety assurance arise from the uncertainty that
is immanent to open and adaptive systems. As a consequence, it is not possible to
completely assure the systems’ safety at development time, already. In fact, it is necessary
to shift parts of the assurance process to runtime. In order to yield certifiably safe systems,
it is however necessary that runtime assurance leads to a quality that is at least as good as
that of development time assurance. Namely, this means that

(1) the runtime integration of systems of systems must be as safe as systems integrated
at development time.

(2) system adaptations at runtime must be as safe as system modifications at
development time.

1.2.3. Solution Overview

Regarding the challenges described in the previous section, there are various issues to
be solved, which will certainly require a lot of further research. This document does not
address all of those challenges. In fact, we focus on the safety engineering process since
the latter builds the backbone of the development of safe systems. The general concepts
of safety engineering lifecycles will be discussed in chapter 2. However, Figure 1-1 gives
a coarse overview on the relation between the safety engineering lifecycle on the one
hand and the development lifecycle on the other hand. A development can roughly be
subdivided into the phases requirements, architecture, design, implementation and
validation & verification. The safety engineering lifecycle is performed in parallel in
close interaction with the development lifecycle. Starting with a hazard analysis based
on the first requirements, the hazards are identified and the associated risks are assessed.
As a result of this step, the safety goals are identified and added to the requirements
specification as top level safety requirements. In order to identify required counter

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 11/156

measures, safety analyses such as FMEA or FTA are performed iteratively based on the
system architecture and design specifications for identifying the cause-effect
relationships potentially leading to a violation of the safety goals. Based on the analysis
results, the safety requirements are step wisely refined and documented in a safety
concept. The safety concept defines modifications of the requirements, architecture, or
design of the system that are necessary to ensure the system’s safety. For example, it
could demand plausibility checks, redundancy architectures, or specific validation
activities. Once the safety requirements have been implemented, validation and
verification activities are required to provide evidence that the implementation is correct.
These evidences are attached to the according requirements of the safety concept in order
to create a safety case, which provides a seamless argument on the system’s safety and
therefore builds the basis for a safety certification.

Figure 1-1 Relation between development lifecycle and safety engineering lifecycle.

Obviously, the safety engineering activities build the backbone of safety assurance by
identifying hazards and assessing the associated risks, identifying the causes and
providing the final argument that all causes have been addressed by appropriate counter
measures in order to sufficiently reduce the residual risk of the system. Safety assurance
is impossible without these steps. Therefore, we focus on safety engineering activities
that are required in order to support the safety assurance of open systems of systems.
Certainly, there are further modifications of development and quality assurance activities
that are required for the assurance of open adaptive systems. For example, there might be
a need for runtime verification activities. Nonetheless, such extensions will not be
considered in this document. Instead, we will refer to related work as far as such
extensions are required. In fact, however, it should always be one of the main objectives
to keep as many safety assurance activities as possible at development time and to avoid
complex mechanisms like runtime verification in order to increase the likelihood that a
safety assurance approach is accepted by certification bodies.

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 12/156

A first major step to overcome the challenges identified in the previous section is to
consider a system not as a monolithic whole, but as a composition of sub systems and to
adopt available safety engineering techniques to support modular safety assurance. More
recent standards like the ISO 26262 [4] already define concepts like the so-called ‘safety
element out of context (SEooC)’, which provide a normative basis for modular safety
assurance. Though they do not provide concrete suggestions on how to realize modular
safety assurance, we have developed a sophisticated set of modular safety engineering
techniques over the last years, which build a sound basis for modular safety assurance.
However, conventional modular safety assurance approaches assume that the systems are
integrated at development time and they do not support runtime modifications in the sense
of self-adaptivity. In order to extend these approaches for supporting open adaptive
systems, we used approaches that are available in the field of software engineering for
self-adaptive systems as it will be described in more detail later on.

Summarizing this means that the combination of modular safety assurance approaches
with engineering principles for self-adaptive systems is a key to advance safety
engineering techniques in order to support the safety assurance of open systems of
systems. Following this basic idea, our research approach was structured as shown in
Figure 1-2, namely we combined two threads of research:

Figure 1-2 Roadmap of our research on safety assurance of open adaptive systems.

First, safety assurance builds the basis for a safety assurance framework for open
systems of systems. More precisely, modular safety assurance is an indispensable
prerequisite for runtime safety assurance. Traditional safety analysis approaches, for
example, are not modular and can only be applied to monolithic systems as a whole. The
modular, compositional character of systems of systems can therefore not be reflected in

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 13/156

traditional safety assurance approaches. There are a few approaches available supporting
modular safety assurance, which will be described in more detail in chapter 4. In the first
step, we therefore modularized safety analysis techniques. As a starting point we used
component fault trees [26], a modularization of the established fault tree analysis
technique, which was introduced by Kaiser at el. In general, modular certification is a
major ongoing trend in the safety engineering community, so that the assurance of open
systems of systems profits from continuous results in this field. In addition, we
modularized the failure modes and effects analysis in order to support the second
important safety analysis technique. Since safety analyses are only one safety artifact, we
additionally modularized safety requirements in form of safety concept trees [65][68].

Modularization is however not sufficient. Since safety assurance of open adaptive
systems partially takes place at runtime without human interaction, the safety artifacts
must be formalized so that a system is enabled to perform the assurance steps and to
interpret the results at runtime. We therefore applied model-driven development
principles to safety assurance activities, which is an ideal basis to provide a sufficiently
formal basis (cf. box ‘model-driven safety engineering’ in Figure 1-2). First, models
provide an intuitive yet sufficiently formal means to specify safety aspects. Second,
model-driven development of embedded systems is gaining more and more acceptance in
research as well as industry. And the seamless integration of development models on the
one hand and safety models on the other hand provides several advantages. First, it
improves the consistency between development and safety models. Second, the
developers are used to the modeling notations so that it is easier for them to define safety
models using similar notations. Third, safety aspects become an integral part of the model.
If, for example, a component is reused, its safety model is reused, as well. And if
components are to be connected, the safety models can be included in interoperability
checks etc. Fourth, the seamless integration helps to improve the semantics of safety
models. If, for example, a failure mode is associated with a signal, it can be formally
mapped to the respective signal in the architecture model. This link therefore provides an
additional semantic information for the analysis and interpretation of safety models,
which is very important for automating single steps of the safety assurance process. Based
on our work, all safety assurance artifacts are available as part of an integrated model-
driven development process [64]. Most important are model-driven representations of
safety analyses and safety assurance models incorporating safety concepts and safety
cases. The former are available as so-called component-integrated component fault trees
(C²FT), which we developed as an extension of CFTs [57]. Moreover, an extension of
safety concept trees incorporates a model of safety requirements and safety cases
[65][68]. The concepts of model-driven safety engineering will be described in detail in
Chapter 4.

Model-driven safety assurance is a very important thread of research in the safety
assurance community, in general. As regards runtime safety assurance, the underlying
formalisms provide an essential basis, but they are not sufficient. Therefore, we advanced
these results to runtime safety assurance approaches (cf. box ‘Runtime Safety Assurance’

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 14/156

in Figure 1-2). In order find an appropriate approach to transfer model-driven safety
assurance approaches to runtime, we regarded a second thread of research from a
completely different research community: the development of open self-adaptive
systems.

In general, the modeling of the adaptation behavior of an adaptive system can be used
as a basis to understand how dynamically adaptive systems work and how they can be
systematically engineered. We developed sophisticated approaches for the modeling of
adaptive systems [201] [202]. And we also derived approaches for performing
probabilistic analyses based on models of adaptive systems [93], which can be used to
support safety analyses for adaptive systems. Therefore, a broad basis for analyzing the
adaptation behavior of adaptive systems is already available. However, the details of
modeling adaptation will not be regarded in detail in this document. Instead, we will focus
on the general underlying idea of Models@Runtime as one major paradigm for
engineering open adaptive systems as it is shown in Figure 1-3.

In model-driven engineering, a developer uses models (e.g., safety models) to analyze
and to optimize specific characteristics of systems (e.g., safety). To this end, she or he
has to predict the system’s runtime context since system properties like safety depend on
the system and its interaction with its environment at runtime.

Figure 1-3 Principle idea of models at runtime

For open and adaptive systems, however, the runtime context cannot be sufficiently
predicted. Therefore, it is the idea of models at runtime to make important models
available at runtime so that the system can perform model based analyses in order
optimize itself autonomously to a given runtime context. This requires a) a more formal
and more efficient runtime representation of the models and b) an additional specification

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 15/156

how the system shall interpret the analysis results and how it should adapt to meet its
optimization goals. To this end, a so-called adaptation model must be specified, which
formalizes the developers’ knowledge on how to adapt the system in a given runtime
context. Applied to safety assurance this means that safety assurance models have to be
made available at runtime. We therefore applied the idea to define safety models at
runtime (SM@RT) - so that the system can run simplified safety checks at runtime. In
analogy to the adaptation behavior, an additional behavior specification is required that
tells the system how it shall react to the runtime analysis results, e.g., how it shall decide
on whether or not it is safe in the given context, or how it must adapt in order to assure
its safety. Though this approach shifts parts of the safety assurance process to runtime,
the usage of models in combination with an explicit specification of how the system will
interpret the model-based analysis results minimizes the uncertainty of runtime safety
assurance. Nonetheless, this approach leaves sufficient freedom to flexibly adapt the
system at runtime. The idea of safety models at runtime is described in chapter 5.

In principle, all safety artifacts mentioned before can be shifted into runtime. But it is
reasonable to leave as much responsibility as possible at development time in order to
shift only a sufficient minimum of responsibility of safety assurance from a human being
to the system. Therefore, we first focused on safety certificates at runtime. Namely, so-
called Conditional Safety Certificates (ConSerts) provide a first step towards runtime
safety assurance of open systems of systems. Using these safety certificates at runtime as
a basic building block, we derived a generic safety assurance framework for open systems
of systems. If each system of a system of systems provides a ConSert as black box safety
interface, the ConSerts can be used to safely compose the systems. Additional information
on how the safety is internally assured in the systems is not required. Therefore, ConSerts
facilitate information hiding and enable a modular runtime safety assurance. In
consequence, it is easily possible to flexibly integrate different, heterogeneous safety
assurance approaches within the single systems. And due to the modularity the framework
scales to very complex systems of systems.

Summarizing this means that we advanced safety assurance approaches from existing
modular safety analyses to holistic modular safety assurance approaches. Then, we
integrated these approaches seamlessly into a model-driven development setting, in order
to increase the efficiency of safety assurance at development time and to provide an
essential, sufficiently formal basis for runtime verification. In the final step, we merged
the ideas of model-driven safety assurance and models at runtime for deriving a runtime
safety assurance framework based on safety models at runtime (SM@RT) with a special
focus on safety certificates at runtime.

1.2.4. Document Structure

As described in the previous section, the safety assurance of open systems of systems
requires a combination of safety assurance approaches, model-driven development
approaches, and models at runtime. To this end, the first part of this thesis introduces all

Introduction

Mario Trapp Assuring Functional Safety in Open Systems of Systems 16/156

the basics on safety assurance and model-driven development as they are required for the
realization of a runtime safety assurance framework. Chapter 2 therefore introduces the
required knowledge about safety assurance before Chapter 3 describes the required
concepts of model-driven development. Based on these fundamentals, Chapter 4 will then
illustrate our research results how safety assurance approaches can be modularized and
integrated into a model-driven design process. Finally, Chapter 5 will then present our
research results on how the safety assurance concepts can be advanced to a runtime safety
assurance framework.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 17/156

2. Fundamentals of Safety Assurance

Experience in practice and academia shows that there are many misunderstandings
regarding the intention and purpose of safety assurance. Therefore, this chapter provides
an overview of the basic principles of safety engineering as a fundamental basis of safety
assurance for open adaptive systems. To this end, Section 2.1 first introduces the basic
terms and definitions before Section 2.2 gives an overview on the principle steps of safety
engineering. The subsequent sections describe the single phases and the artifacts used in
more detail, since these artifacts built the essential basis for safety models at runtime as
they are used for the runtime safety assurance framework for open systems of systems.
Finally, section 2.6 introduces fault tolerance mechanisms, which provide a further basis
for runtime safety assurance based on error detection and handling.

2.1. Terms and Definitions

Often, there are misinterpretations of important terms that are relevant in the context
of safety engineering. Terms like dependability, safety, reliability or availability are
mixed up and used as synonyms. Therefore, this section introduces the most important
terms that are of relevance for the safety assurance of open systems of systems.

Often, the confusion already starts with basic terms like dependability, availability,
reliability, and safety. In fact, there are clear differences between the different terms.
However, there are different sources providing different definitions that are inconsistent
to each other. In the following, we refer to the widely used definitions of Laprie et. al [3]
as well as different safety standards.

The term dependability covers a wide range of different aspects of system quality. It
is a very generic term, which is used with very different meanings in different contexts.
Following [3] it is defined as follows:

 Dependability [3]

The dependability of a computing system is the ability to deliver a correct service.

The service delivered by a system is its behavior as it is perceived by its user(s).

A user is another system (physical, human) that interacts with the former at the service
interface.

The function of a system is what the system is intended for, and is described by the
system specification.

Correct service is delivered when the service implements the system function.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 18/156

Laprie et al. additionally gave a more complex definition of the term dependability by
structuring the definition of dependability to different elements as they are shown in
Figure 2-1.

Figure 2-1 Definition elements of the term dependability

They define the term in three dimensions, namely attributes, means, and threats. The
attributes dimension in some sense refers to different sub properties that must be fulfilled
in order to yield dependable systems. Therefore, dependability subsumes the quality
properties availability, reliability, safety, confidentiality, integrity, and maintainability.
Up to now, however, there is no common agreement about the completeness of this
definition. Nonetheless, we agree with the idea that dependability is a term covering
different important quality characteristics and that these terms can therefore not be used
synonymously. For safety assurance, the terms reliability, availability, and safety are
certainly the most important ones and will be regarded in more detail later on.
The means dimension includes possible measures that can be applied to ensure
dependability. All counter measures available today can be classified to fault prevention,
fault tolerance, fault removal, and fault forecasting. In fact, this classification also holds
for all counter measures available in safety engineering including the counter measures
as they are defined in safety standards.
The threats dimension actually classifies the possible causes endangering system
dependability. In fact, this classification to faults, errors, and failures can be found in
similar ways in many safety standards and definitions.

Coming back the first dimension, it is important to understand the meaning of the
different terms, since they are often mixed-up and used with a wrong meaning:

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 19/156

 Availability [3]
Availability A is the property of a system, to fulfill its purpose at a given point of time.

MTTRMTBF

MTBF







TotalTime

OffTimeTotalTime
A

with:
MTBF: Mean Time Between Failure
MTTR: Mean Time To Repair

Obviously, availability does not consider the fact how long a system has been running
properly without any interruption. For IT-servers, for example, this metrics is often
sufficient since a reboot can be tolerated as long as the server’s down time is much lower
than its up time. For embedded systems, however, it is often important to have metrics
that refers to the time a system is running properly without interruption. Therefore, system
reliability is often more important for embedded systems.

 Reliability [3]
Reliability R is the property of an entity to fulfill its reliability requirements during or
after a given time span under given application conditions. The reliability R(t) is a
function over the time t.

Safety is the third important quality property of embedded systems. Safety is defined
in several norms. In the following, we use the definitions of the ISO 26262 [4], as it is
one of the most recent standards.

 Safety [4]
Safety is the freedom from unacceptable risk.

The risk associated with a system is defined as:

 Risk [4]
Risk is the combination of the probability of occurrence of harm and the severity of
that harm.

Usually, however, it is not possible to directly assess the harm that is potentially caused
by a system. Instead, safety managers identify the hazards of a system.

 Hazard [4]
Hazard is a potential source of harm.

In many domains, this vague definition is further refined. In the automotive domain,
for example, ‘hazards shall be defined in the terms of conditions and events that can be
observed at the vehicle level’ [4].

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 20/156

Regarding the probability of occurrence of harm, it is important to note that harm is
only caused when a hazard, a specific environmental situation, and a specific operation
mode of the system coincide. This coincidence is called hazardous event. The probability
of occurrence of harm therefore depends on various different factors. In the automotive
industry, the occurrence probability is determined by the probability of the relevant
driving situations and the probability that a driver would be able to control the car in spite
of a system failure.

In fact, hazards could be anything ranging from choking hazards of small parts to
exothermic reactions of batteries in electric vehicles. Particularly for the development of
embedded systems, however, the focus lies on hazards caused by malfunctions of the
system. This subset is defined as functional safety:

 Functional Safety [4]
Functional Safety is the absence of unacceptable risk due to hazards caused by mal-
functional behavior of electric/electronic systems

In the context of functional safety, the focus lies on hazards that are caused by failures
of an electric / electronic system. Based on these system level failures, safety engineers
identify the cause-effect relationships in order to define appropriate counter measures. To
this end, it is necessary to have a precise understanding of the different terms describing
‘problems’ in a system. The most relevant terms in this context are mistake, fault, error,
and failure (cf. [3]). As illustrated in Figure 2-2, these terms can be related in a cause-
effect relationship. If a developer makes a mistake, this may lead to a fault in the system,
e.g., a non-initialized variable. At runtime, this fault may lead to an error, e.g., the
variable takes a wrong value thus leading to an erroneous state of the system. An error
may in turn lead to failure, e.g., a component sends an erroneous value to an actuator.

Figure 2-2 Relationship between Mistake, Fault, Error, and Failure

It is, however, important to note that the terms are sometimes used in exchanged
meanings. Whereas, for example, the definition of Laprie et al. (cf. Figure 2-1) and the
automotive safety standard ISO 26262 use the definition as described above, the avionics
standard DO 178C [5] uses the terms fault and error in exchanged meanings. This means
that in the avionics domain, a non-initialized variable would be called an error, whereas
its manifestation at runtime would be called a fault.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 21/156

In the remainder of this thesis, we will use the terms as defined in the ISO 26262:

 Failure [4]
Termination of the ability of an entity to perform a function as required.

 Error [4]
Discrepancy between a computed, observed or measured value or condition and the
true, specified or theoretically correct value or condition.

 Fault [4]
Abnormal condition that may cause a reduction in, or loss of the capability of an
element to perform a required function.

Although it is not explicitly considered in most safety standards, it is important to
include the developers’ mistakes as well, in order to yield a complete picture. Therefore,
we define a mistake as follows:

 Mistake
A mistake is made by a human during development time, for example, due to non-
attention, and may lead to a fault in the system.

Once safety engineers have identified the hazards and analyzed the cause-effect-
relationships leading to these hazards, they have to identify appropriate counter measures.
As it was shown in Figure 2-1, Laprie et. al. identified four principle classes of counter
measures: fault forecast, fault prevention, fault removal, and fault tolerance. Regarding
the counter measures used in practice as well as the respective demands in safety
standards, these four classes cover all possible measures.

Figure 2-3 Relation between possible Counter Measures

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 22/156

A safety engineer has to select a set of necessary and sufficient measures leading to a
sufficiently high probability that these measures will interrupt the fault-error-failure
cascade before a hazard can occur. Figure 2-3 provides an overview of the different
classes and shows at which point in the fault-error-failure cascade they can be applied.

Fault forecast approaches build the backbone for controlling the overall safety
engineering process by supporting the identification of cause-effect-relationships and a
quantitative or at least qualitative prediction of the system’s safety. Typical examples are
fault tree analyses (FTA), failure modes and effects analyses (FMEA), or generalized
stochastic petri nets (GSPN). Obviously, such safety analysis techniques are of utmost
importance in safety engineering.

 Fault Forecast
Fault forecast approaches enable the identification of hazards, their causes, the related
cause-effect-relationships as well as a quantitative and/or qualitative estimation of the
expected system safety.

In order to increase system safety, it is obviously reasonable to prevent faults before
they are created. To this end, the class of fault prevention techniques includes rigorous
development processes, coding guidelines, modeling guidelines etc. By this means, the
developer shall be strictly guided in order to prevent that developers’ mistakes result in
system faults. For example, if coding rules prohibit the use of pointers, it will be more
unlikely to find any pointer-related faults in the system.

 Fault Prevention
Fault prevention measures have the purpose to prevent the introduction of system
faults through mistakes of developers.

In practice, rigorous development processes and additional means like coding rules are
commonly accepted state-of-the-practice. In fact, fault prevention measures play a central
role in most safety standards. Obviously, it is however impossible to prevent all possible
faults just by the means of fault prevention measures. Therefore, it is essential to identify
and remove system faults before the system’s commissioning. To this end, the class of
fault removal measures is used.

 Fault Removal
Fault removal measures have the purpose to identify and to remove faults that have
been introduced into a system.
Static fault removal measures do not require an execution of the system. They directly
analyze the development artifact and identify faults in the analyzed artifact.
Dynamic fault removal measures observe the executed system in order to identify
failures. Based on the failures observed, the engineer must identify and remove the
causing faults.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 23/156

Today, it is common practice to use static code analyses like abstract interpretation
(static fault removal) as well as different testing approaches (dynamic fault removal).
Liggesmeyer gives a very good overview on available approaches in [6].

In spite of the various available fault removal approaches, it is however not possible to
completely avoid faults in the system. First, today’s systems are often too complex to
ensure freedom from faults. Second, also hardware faults like bit flips may cause software
errors. Therefore, it is essential to detect and handle errors at runtime in order to avoid
the occurrence of hazards. To this end, the class of fault tolerance measures can be
applied.

 Fault Tolerance
Fault tolerance measures have the purpose to identify and to handle errors at runtime.

Following the definition of [3], fault tolerance measures consist of error detection and
recovery.

 Error Detection
Error detection originates an error signal or message within the system.
Concurrent error detection takes place during service delivery. Preemptive error
detection takes place while service delivery is suspended.

 Recovery
Recovery transforms a system state that contains one or more errors and (possibly)
faults into a state without detected errors and faults that can be activated again.
Recovery includes the following elements:

Error handling
eliminates errors from the system state:

 a) rollback: system state is set back to a previously saved checkpoint
b) roll forward: system is set to a new, error-free state

Fault handling
prevents located faults from being activated again

Fault diagnosis
identifies and records the cause(s) of error(s)

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 24/156

Fault isolation
performs physical or logical exclusion of the faulty components from further
participation in service delivery

System reconfiguration
either switches in spare components or reassigns tasks among non-failed components

System reinitialization
checks, updates and records the new configuration and updates system tables and
records.

For safety engineering, it is often sufficient if recovery mechanisms bring the system
to a safe state, e.g., in the simplest case by switching it off. In this case, it is not necessary
to identify and isolate the causing faults.

2.2. Safety Engineering in a Nutshell

While the previous section introduced the definitions of the most important terms, it is
very important to understand them in the context of a safety engineering lifecycle.
Therefore, this section gives a brief overview on the basic steps of safety engineering
from the hazard analysis to the final safety case.

Engineering a safety critical system includes various different aspects. As illustrated in

Figure 2-4, safety standards define the basic demands on the development of safety-
critical systems. These requirements can be subdivided into three types:

Safety Standards

Processes

Safety
Engineering

System- &
Software

Engineering

Figure 2-4 Elements of safety-related development

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 25/156

The first type of requirements addresses the development process as one of the most
important fault prevention measures.

The second type of requirements addresses the development methodologies and
techniques that have to be used. This includes requirements on fault prevention, fault
removal, as well as fault tolerance measures. Fault prevention measures could be coding
guidelines, limitations in the use of programming and modeling languages, or concrete
demands on which aspects have to be defined in a software architecture. Fault removal
measures are addressed by defining detailed requirements on testing and static analysis
approaches that have to be applied in order to ensure the quality of safety-critical systems.
As regards fault tolerance measures, these requirements further define demands on
runtime error detection and handling mechanisms that have to be implemented in the
system.

The third type of requirements addresses the actual safety assurance activities. This
mainly includes all fault forecasting approaches that have to be used during development,
i.e. all approaches necessary to identify the hazards, to assess the resulting risk, to analyze
the cause effect relationships, to define a safety concept, and to eventually derive a safety
case. As described above, these activities build the backbone of every safety-related
development. Understanding the cause-effect relationships that lead to hazardous
situations is the prerequisite for selecting appropriate counter measures and for proving
the fulfillment of safety goals.

If we have a closer look at the safety engineering lifecycle, safety engineers have to
identify all relevant hazardous events and to assess the associated risks as the first step of
the lifecycle. This step is called ‘hazard analysis and risk assessment (HRA)’ as shown
in Figure 2-5. This step is performed during the very early phases of the development
process, at the latest when the system requirements are available.

As a result of this step, safety goals are defined as top-level safety requirements, which
build an extension of the system requirements. In the subsequent steps, a safety manager
must incrementally refine the safety goals. Usually, any safety requirement consists of a
functional part and an associated integrity level. The functional part defines what the
system must (not) do, whereas the integrity level defines the rigor demanded for the
implementation and verification of this requirement. The integrity level depends on the
risk associated with the hazardous event, which is addressed by the safety goal. For
example, ISO 26262 defines so-called automotive safety integrity levels (ASIL).

Once the safety goals have been defined, the system development continues through
different phases like the definition of a network of functions, the system and software
architecture, the design, and finally the implementation of the system.
The subsequent steps in the safety engineering process should be performed in parallel
with the development activities (though this is often not the case in practice). To this end,
the available development artifacts are used as input to safety analyses at different
abstraction levels in order to identify potential causes of the identified system failures. A

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 26/156

wide range of different safety analysis techniques is available. Failure Modes and Effects
Analysis (FMEA) and Fault Tree Analysis (FTA) are certainly the most widely used
safety analysis techniques in practice.

Figure 2-5 Safety Engineering Lifecycle

Based on these results, a safety manager derives a safety concept. Following the idea
of ISO 26262, a safety concept can be defined as

Safety Concept [4]

A specification of the safety requirements, their allocation to architectural elements and
their interaction necessary to achieve the safety goals, and information associated with
these requirements.

In the same way as developers incrementally refine the system over the different
development phases, the safety manager analyzes the refined development artifacts step
by step and refines the safety concept accordingly. In the beginning, the safety concept is
focused on purely functional aspects and will be step wisely refined to a technical concept
at system and software level. The safety concept plays a very important role in safety
engineering. It defines which countermeasures have to be applied and how the measures
in combination shall ensure the fulfillment of the safety goals.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 27/156

Finally, the safety manager has to define a safety case, which forms the basis for the
certification or a final assessment of the systems’ safety. A safety case can be defined as

Safety Case [4]

An argument why an item is safe supported by evidence compiled from work products of
all safety activities during the whole lifecycle.

To this end, the safety manager uses the safety concept as a basis and tries to prove the
fulfillment of each and every safety requirement with so-called evidences. Evidence can
be anything supporting an argument in the safety case. The results of validation and
verification activities as well as safety analysis results are of particular importance. Since
a safety case compiles all evidences that are relevant for proving the system’s safety, it is
an efficient basis for safety certification or assessment.

Depending on the application domain, today, these steps are performed rather
informally. Hazards analyses and risk assessments are usually based on simple
spreadsheets and safety concepts as well as safety cases are described as informal text
documents or requirements databases. Mainly for safety analyses, dedicated formal
approaches and tools for performing FTAs and FMEAs are used. As a further important
aspect, most safety approaches used today assume the overall system as a static,
monolithic item, i.e. they hardly support modularity and variability.

Such an informal, monolithic approach is used since it seems to be more efficient from
a practitioner’s point of view. And indeed, using informal documents like spreadsheets
and text documents is often faster than obeying to the stricter rules of more formal
approaches and the according complex tools. However, embedded systems are not
developed as static monolithic systems from the green field. There are many changes
already during development. Usually systems are not built from scratch, but by reusing
and adapting existing components and systems. Moreover, they are characterized by a
very high variability. For example, for an engine control software more than one thousand
variants have to be derived per year. And each variant has to undergo a safety assessment.
Considering these aspects, the informal approaches used today do not scale and easily
become very inefficient.

Regarding open systems of systems, the approaches used today cannot be used.
Assuring their safety requires modular concepts in order to be able to modularly assess
the safety of the single systems in order to be able to safely compose them to systems of
systems at runtime. To this end, the safety artifacts must be described in a more formal
way so that they can be interpreted and validated by the systems at runtime.

For these reasons, current safety assurance approaches must be extended. Modular,
model driven approaches as they are described in the subsequent chapter are emerging as
promising new way of safety assurance – in practice as well as in research. First, such
approaches are interesting for increasing the efficiency of safety assurance in the context

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 28/156

of the fast increasing complexity and variability. Second, these approaches build an ideal
basis for assuring the safety of open adaptive systems since they are modular, and since
the models are sufficiently formal to be used at runtime.

Before the modularization and formalization of the safety artifacts is described in the
subsequent chapter, the following sections provide a more detailed introduction to the
single artifacts in order to provide a more detailed basic knowledge.

2.3. Hazard Analysis and Risk Assessment

Any safety engineering lifecycle starts with a hazard analysis and risk assessment
(HRA). The concrete HRA approach varies from domain to domain, but the core concepts
are very similar. In almost all domains, the HRA can be subdivided into two basic steps.
The first step is the identification of hazards. In the second step, the associated risk is
assessed for each of the identified hazards

2.3.1. Hazard Identification

In the context of functional safety, hazard identification is identical to the identification
of system-level failures. This is a very creative process, which can be supported by
different safety analysis techniques. In principle there are two main approaches to hazard
identification.

The first approach has a focus on the system’s interface. This approach is based on the
assumption that any hazard can only occur at the direct interface between a system and
its environment. To this end, it is however necessary to consider the complete interface.
This means that it is not sufficient to consider explicitly defined interfaces like steering
or brake actuators. In fact, there are additional implicit interfaces like for example
electricity that could cause an electric shock if the power supply of a xenon lighting
system is not switched off after an accident. Once the interface is defined, safety managers
use approaches like the hazard and operability study (HAZOP, cf. Section 2.4.2). To this
end, different guidewords are applied for identifying potential hazards at the interface. If
we for example consider the interface steering, we could apply the guidewords like too
high or too low leading to potential hazards like ‘The steering sets a higher steering angle
than it was desired in the current situation’. Such formulations build the basis for a
systematic brainstorming. Relevant hazards are then further refined to yield more precise
and thus more useful definitions. For example, in the example it would be necessary to
define when exactly a steering angle is considered too high etc. Although it is not possible
to anticipate all possible hazards that will occur in the field, applying a predefined list of
guidewords to an interface leads to a systematic approach making it more unlikely to omit
hazards. Alternatively, often approaches based on a failure modes and effects analysis
(FMEA, cf. Section 2.4.1) are used.

However, the focus on the interface might lead to the omission of hazards that are
caused by specific interactions of different actuators. As an example let us consider an

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 29/156

electric power train with two separate e-machines driving the rear wheels. One important
hazard is that the two e-machines create different torques at the different wheels, which
in turn causes an undesired yaw torque. In a strictly interface-based approach, both
machines would be analyzed separately making it very unlikely to identify hazards like
an undesired yaw torque. Therefore, it is alternatively reasonable to analyze the functions
of a system instead or in addition to its interface. This is the typical approach in the
avionics domain, where this approach is called Functional Hazard Analysis (FHA). To
this end, a complete list of specifications of the system’s functions is required. Using
approaches like HAZOP or FMEA again, safety managers try to identify possible hazards.
In the avionics domain, there are special lists of possible failures modes available that can
be applied as guidewords to different functions. If we, for example, consider the function
torque vectoring of the electric car and apply the guideword high, this could lead to the
hazard ‘the torque vectoring creates a higher yaw momentum than desired’.

2.3.2. Risk Assessment

Once the potential hazards are identified, safety managers have to identify the
associated risks. To this end, different assessment parameters must be defined. Following
the definition of risk given in Section 2.1, one parameter specifies the severity of the harm
that might be caused by a hazardous event. A set of further parameters specifies the
probability that a hazard, i.e. a failure at the system border, actually leads to a hazardous
event. Which concrete parameters have to be used depends on the application domain and
the relevant safety standards. In most approaches, however, at least two parameters are
used: Hazards often only cause harm if they occur in a certain environmental situation.
Therefore, the probability of an environmental situation must be defined. In the
automotive domain, this is done by specifying the likelihood of driving situations.
Moreover, it might be possible that harm can be prevented by persons or external safety
measures. In the automotive domain, the controllability parameter is used to define the
likelihood that the driver or any other person involved can prevent the hazardous event in
spite of a system failure.

 In order to derive an integrated risk assessment, safety engineers must integrate all of
these parameters to single criticality classes. To this end, most risk assessment approaches
used today follow a risk graph approach, as it is for example described in the IEC 61508
[2] (cf. Figure 2-6).

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 30/156

Figure 2-6 Risk graph following IEC 61508-5 [2]

A risk graph is used to determine the risk of a hazardous event based on different
parameters as they also have been defined above:

- The C-parameter reflects the consequences, i.e. the severity of harm, on an ordinal
scale (e.g., C1: minor injuries to C4: very many people killed).

- The F-parameter reflects the frequency of exposure in the hazard zone (e.g., F1:
rare exposure to the hazardous zone and F2: frequent to permanent exposure in the
hazardous zone).

- The P-parameter reflects the possibility of avoiding the hazardous event (e.g., P1:
possible under certain conditions and P2: almost impossible)

- The W-parameter reflects the probability of the unwanted occurrence. However,
this parameter does not reflect the probability of a failure within the embedded
system and does not consider safety measures implemented in the system. But it is
used to reflect different risk reduction measures like for example covers, cages, or
mechanical pressure valves (e.g., W1: A very slight probability that the unwanted
occurrences will come to pass and only a few unwanted occurrences are likely to
happen. W3: A relatively high probability that the unwanted occurrences will come
to pass and frequent unwanted occurrences are likely to happen)

Based on these parameters, it is easily possible to determine the related risk and the
related safety integrity level that is required to mitigate the analyzed hazardous event. In
contrast to the ISO 26262, as it was described before, the IEC 61508 defines safety
integrity levels ranging from SIL1 to SIL4 with SIL4 reflecting the highest possible
integrity level.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 31/156

In the first step, the consequences are assessed. In the case of C1, for example, no
special risk reduction measures are required as only minor injuries are possible. In case
of very critical consequences (C4), it is not possible to have a lower integrity level than
SIL 3 and neither the exposure nor the controllability can reduce the risk. Only the
occurrence probability based on external risk reduction measures has an impact on the
integrity level. The “X” in this case means that a single safety system is not sufficient to
reduce the risk to an acceptable level, i.e. further external risk reduction measures are
required (in order to reduce the W-parameter) or redundant safety systems are required.
Depending on the path taken based on the evaluation of the C-parameter, the exposure F
is regarded in the second step and the controllability P in the third step. Finally, the
occurrence probability W is considered.

Figure 2-7 Instantiation of the risk graph approach for the automotive industry based on
ISO26262

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 32/156

This generic approach has to be tailored to each application domain and possibly to
each system. The identification of the acceptable risk and the associated risk graph
parameters is a non-trivial step and will not be considered in this document. In order to
release developers from this difficult step, the ISO 26262 predefines a simplified risk
graph including all parameters for automotive systems. The resulting instantiation of the
risk graph for the automotive industry is shown in

Figure 2-7. As mentioned earlier, the ISO 26262 defines the integrity levels as
automotive safety integrity levels (ASIL) A to D, with ASIL D being the most critical
one. The ISO26262 considers only three risk parameters:

- S: severity, which maps to the consequence parameter C of the IEC 61508

- E: exposure, which maps to the exposure/frequency parameter F of the IEC 61508

- C: controllability, which maps to the controllability parameter P of the IEC 61508

- The W-parameter as it is considered in the IEC 61508 is not considered in the ISO
26262

As shown in detail in Table 2-1, each of the risk parameters can have four different
values. The parameter values S0 (no injuries) and C0 (controllable in general) are not
explicitly considered in the risk graph, as obviously no harm would be caused in this
case.

Class S0 S1 S2 S3

Description No injuries Light and moderate
injuries

Severe and life-
threatening injuries
(survival probable)

Life-threatening injuries
(survival uncertain), fatal
injuries

Class E1 E2 E3 E4

Description Very low
probability

Low probability Medium probability High probability

Class C0 C1 C2 C3

Description Controllable
in general

Simply controllable Normally controllable Difficult to control or
uncontrollable

Table 2-1 Risk parameters defined in ISO 26262 [4]

At first sight, the risk graph of IEC 61508 seems to be more rigorous since for example
a high severity immediately leads to at least a SIL 3. However, it must be considered that
the ISO 26262 considers different parameter classes. For example, the severity value S4
in the ISO26262 means “life-threatening and fatal injuries”, which can be seen between
the consequence classes C2 und C3 of the IEC 61508, which mean “serious permanent
injuries to one or more persons; death to one person” and “death to several people”,
respectively. As a further aspect, the acceptable risk might be defined differently in
different application domains.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 33/156

Though the parameters and the parameter values used for the risk assessment must be
adjusted to the different application domains, the risk graph approach is applied across
various different application domains and can therefore be seen as (one of) the major risk
assessment techniques.

2.4. Safety Analysis Techniques

Once the risks have been identified and assessed, a safety engineer must understand the
potential causes and the cause-effect-relationships. To this end, she or he uses different
safety analysis techniques. This section gives a brief overview on the most important
analysis techniques used today.

Usually, it is required to combine different analysis techniques. At least, most standards
demand the combination of so-called deductive analyses with inductive analyses.
Deductive analyses like a fault tree analysis (FTA) use the effect, e.g., the hazard, as
starting point and try to deductively derive possible causes that might lead to the analyzed
effect. Inductive analyses like the failure modes and effect analysis (FMEA) on the other
hand start from potential failure modes of a system element and try to identify potential
effects.

2.4.1. Failure Mode and Effects Analysis (FMEA)

The Failure Mode and Effects Analysis (FMEA) was originally developed by NASA
for the quality assurance of the Apollo projects in the 1960ies. During the course of the
following decades it was increasingly used in a wide range of application domains. In
Germany, the FMEA was first standardized in 1980. Today, it is used in almost any
application domain.

Since the FMEA is applicable to nearly each problem and at each system level, different
specializations of the FMEA have been derived. The construction-FMEA which is also
named product- or design-FMEA regards the constructive specification of the
characteristics of a system part like a capacitor or a microcontroller. The process-FMEA
is focused on the analysis of processes like for example manufacturing or maintenance
processes. The result of a FMEA is usually documented in tables.

Methodology

A FMEA is conducted by a team of all relevant stakeholders and experts, whose
knowledge and expertise is required to complete the analysis. A trained FMEA moderator
leads the meetings for ensuring a systematic analysis process. A FMEA is applied to
single elements of a system at different hierarchy levels. In the first step, the team tries to
identify potential failure modes of the component. Then the possible effects of a failure
mode have to be identified. Furthermore, the team has to identify potential causes that
could lead to the failure mode. After they have identified failure modes, the related effects
and possible causes, the team describes already existing counter measures and assesses
whether or not further actions are required in order to ensure the element’s quality. To

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 34/156

this end they define necessary actions with a deadline and directly assign them to a
responsible person.

In order to have a possibility to assess the criticality of a failure mode and to prioritize
the usually long list of identified failure modes, the original FMEA was extended to a
Failure Modes, Effects and Criticality Analysis (FMECA). Today, the term FMEA
usually refers to an FMECA. In an FMECA, the team has to define different parameters
that classify the criticality of the single findings: First, they have to define an Occurrence
Probability (O) of the failure mode. Usually this is done using an ordinal scale ranging
from 1 (very unlikely) to 10 (very probable). As a second parameter they have to define
the severity (S) of the expected effect – again using an ordinal scale with 1 being the
lowest severity. The third parameter describes the probability that the corresponding error
can be detected (D) in order to prevent the effect. For this parameter, the ordinal scale
ranges again from 1 (very likely to be detected) to 10 (very unlikely to be detected). These
three parameters are then combined to a risk priority number (RPN), which is usually
derived by multiplying the single parameters, so that it can range from 1 to 1000. Based
on the RPN, the team can assign a priority to the single entries in an FMEA table.

As a further extension, the FMECA has been extended to the FMEDA (Failure Modes,
Effects and Diagnostics Analysis). The FMEDA aims at defining a quantitative failure
rate for a failure mode, a diagnostic coverage (DC) and a safe failure fraction (SFF). The
diagnostic coverage indicates the probability that dangerous errors can be detected. The
SFF is defined as the ratio between the average rates of safe errors plus the average rate
of dangerous, but detectable errors, over the entire average error rate of an element. To
this end, a conventional FMECA is conducted first. Then, all identified failure modes are
subdivided into safe, detectable-dangerous and non-detectable-dangerous errors.
Afterwards the DC and the SFF are calculated.

Advantages and disadvantages

The FMEA is an inductive safety analysis, since it identifies failure modes of system
elements and tries to derive the related effects. It can be used on nearly any problem and
at any system level in order to completely determine the risks of a system. By its team-
oriented approach, it integrates specialized knowledge from different perspectives.
Conducting an FMEA usually requires only little knowledge of methods and also a wide
range of supporting tools is available. As a disadvantage, the FMEA does not support the
analysis of error combinations. Except for some limited capabilities of the FMEDA,
FMEAs do not support quantitative analyses.

Further References

In Germany the FMEA is standardized by the DIN 25 448 [12]. The IEC 60812 [21]
describes both the FMEA, and the FMECA. The latter is also addressed in detail by the
MIL-STD-1629A [34]. The conduction of a FMEDA is standardized in the IEC 61165
[23]. The System-FMEA is described in detail in [46] and in [9]. Moreover, there are two
additional standards from the Society of Automotive Engineers, which describe further

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 35/156

adjustments of the FMEA for different applications. The J1739 [43] is a specialization
for the automotive domain whereas the ARP5580 [42] should be used for other
application domains.

2.4.2. Hazard and Operability Analysis (HAZOP)

The Hazard and Operability Analysis (HAZOP) originates from the chemical industry
and was developed during the 1960ies and 1970ies. The goal of a HAZOP is the
identification of possible hazards of an industrial plant or industrial process. Today, the
HAZOP is applied in a wide range of different application domains.

Methodology

Ideally, the HAZOP is conducted by an interdisciplinary team consisting of five to
seven persons, as soon as first drafts of a design of the system or component are available.
In order to identify potential hazards, the HAZOP is based on a set of guide words as they
are shown in Table 2-2. All components are successively analyzed by applying the guide
words for identifying possible deviations from the expected behavior.

The guidewords describe hypothetical deviations from the expected behavior. To this
end, they are combined with different parameters that are relevant for the analysis (like
for example temperature or pressure) in order to define questions that support the analysis
team in identifying potential failure modes. For each identified failure mode, the team
tries to identify possible causes and effects and derives required counter measures. In
some sense, a HAZOP is therefore similar to an FMEA and the main advantage is given
by the guidewords.

Guide Word Meaning

NO OR NOT Complete negation of the design intent

MORE Quantitative increase

LESS Quantitative decrease

AS WELL AS Qualitative modification/increase

PART OF Qualitative modification/decrease

REVERSE Logical opposite of the design intent

OTHER THAN Complete substitution

EARLY Relative to the clock time

LATE Relative to the clock time

BEFORE Relating to order or sequence

AFTER Relating to order or sequence

Table 2-2 HAZOP - guide words

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 36/156

For example, the application of the HAZOP to a vehicle brake system leads to the
following breakdown conditions [6]: System does not brake, brakes more than normal,
brakes less than normal, accelerates (reverse). Not all guidewords lead to reasonable
questions. Since a brake system can usually not cause acceleration, the application of the
guideword reverse does not result in a reasonable question. Nonetheless, the team should
consider as many guidewords as possible in order to reduce the likelihood of omitting
possible failure modes.

The result of the HAZOP is finally a table including all identified deviations, the
identified causes and consequences as well as a list of appropriate counter measures. A
possible form of the table is defined in the IEC 61882 [21] as it is shown in Figure 2-8.

Advantages and disadvantages

The main advantage of the HAZOP is given by the guidewords, which systemize the
creative process of failure mode identifications. Despite the guidewords, the HAZOP is
quite similar to an FMEA. As the FMEA is more widely used in many domains, it is often
common practice to use an FMEA as basic analysis technique and to enhance it by
applying guidewords as it is described for the HAZOP. This is particularly true, since the
guideword idea can be easily adapted.

For example, different variants for the identification of human failures or the analysis
of software systems have been defined by Leveson for software safety analyses (Software
Hazard Analysis and Resolution in Design - SHARD [71]). As an even more sophisticated
extension, we have extended the idea of guide words to guide phrases which further
increase the completeness of hazard and failure mode identification in the SafeSpection
analysis technique [98].

References

The first manual describing the application of the HAZOP was provided by the
Chemical Industries Association [17] in 1977. A short description of the analysis,
including the advantages and disadvantages can be found in [31]. Detailed descriptions
of the HAZOP can be found [30], [40] and [47]. The SHARD method is described in [71].
More details on SafeSpection can be found in [98].

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 37/156

Figure 2-8 HAZOP-Table from the standard IEC 61882 [21]

N
o
.

G
u
id
e
w
o
rl
d

El
e
m
e
n
t

C
o
m
m
e
n
ts

A
ct
io
n
s
re
q
u
ir
e
d

P
o
ss
ib
le
 c
au

se
s

C
o
n
se
q
e
n
ce
s

Sa
fe
gu

ar
d
s

A
ct
io
n
 a
ll
o
ca
te
d
 t
o

St
u
d
y
ti
tl
e
:

P
ag
e
:

 o
f

D
ra
w
in
g
n
o
.:

R
e
v.
 N
o
.:

D
at
e
:

H
A
ZO

P
 t
e
am

:

P
ar
t
co
n
si
d
e
re
d
:

D
e
si
gn

 in
te
n
t:

M
at
e
ri
al
:

So
u
rc
e
:

A
ct
iv
it
y:

D
e
st
in
at
io
n
:

D
e
vi
at
io
n

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 38/156

2.4.3. Event Tree Analysis (ETA)

The Event Tree Analysis (ETA) is used for the analysis of the consequences of an initial
event [31]. In contrast to a fault tree analysis, the ETA is an inductive analysis, as it starts
from a failure mode and step wisely identifies different effect scenarios.

Methodology

Event trees are usually defined as binary decision trees. The analysis starts with an
initial event that has to be analyzed. The initial event could be a system or component
failure or an external event affecting the system (e.g. an operating mistake). In the
subsequent steps, possible event sequences are determined, which can occur as reactions
to the initial event. For each event, the analysis distinguishes between the cases that the
event occurs or that the event does not occur. By this means, a tree is created and each
path from the root to the leaves describes one potential effect scenario. As the events often
refer to counter measures, the two paths describe success and failure of the measures. The
leaves of the tree usually describe the successful avoidance or the occurrence of a
hazardous event, respectively.

Figure 2-9 Structure of an event tree

For a quantitative analysis, it is additionally possible to assign probabilities to each
branch of the tree and to multiply all probabilities along a path. The probabilities of all
paths leading to the same hazard type can be combined to an overall probability that the
according failure type will occur in spite of the implemented counter measures.

Variants

As described above, event trees are usually represented as binary decision trees with a
branch for success and failure at the individual branch points. However, different
extensions enable the definition of more than two branches. The methodology, the
notation as well as the evaluation of the Event-Tree-Analysis are standardized in the
German standard DIN 25419 [11]. As a further extension, the DIN 25419 defines
exclusive OR-gates, which enables analysts to join different paths in an event tree for
reducing the complexity of larger trees. Moreover, special gates like transmission gates

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 39/156

simplify the modeling of more complex event trees. An example of a DIN 25 419 event
tree is shown in Figure 2-10.

Figure 2-10 Example of an event-tree according to DIN 25 419 [11]

Advantages and disadvantages

Event trees are usually used to analyze the effectiveness of already existing multi-level
counter measures. However, this presumes that the protective mechanisms are already
known, so that Event-Tree-Analyses are often used relatively late in the development
process [31]. In contrast to other methods like for example the HAZOP, event trees are
usually conducted by one or two persons, who consult further experts if necessary. The
definition of an event tree becomes difficult, if different temporal sequences of events
lead to different failure types.

References

A short description of event trees is given in [6]. A more detailed description is given
in [31]. The latter describes the advantages and disadvantages of event trees as well as
the classification within the development process. Further useful information on the
application of event tree analyses can be found in [47]. The DIN 25419 [11] standardizes
the event tree analysis notation.

2.4.4. Fault Tree Analysis (FTA)

The Fault Tree Analysis (FTA) was developed in 1961 by the Bell Telephone
Laboratories for the ‘Minute Man Launch Control System’, a rocket launching system. It
was extended in 1966 by Boeing for computer-assisted applications. Up to now, it has
emerged to one of the most widely used safety analysis techniques across all safety-
relevant application domains. An example of a fault tree is shown in Figure 2-11.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 40/156

Figure 2-11 Example Fault Tree

Methodology

A fault tree analysis starts with an undesired top event, such as a system failure. In
moderated team meetings, the analysts then try to deductively identify necessary and
sufficient combinations of potential causes. To this end, gates can be used to define the
required combinations of causes. The events that represent an elementary cause are called
basic events and build the leaves of the fault tree.

It is however not the idea of a FTA to identify basic causes in as few steps as possible.
It is rather the intention to step wisely derive a traceable and seamless cause-effect-chain.
Without such a systematic approach, the discussions within the analysis team often lose
their focus – leading to unstructured and mostly incomplete results. The FTA is therefore
an efficient means to structure the analysis. In fact, the guided analysis process as such is
much more valuable to understand and improve the system’s safety than the pure analysis
result. Therefore, it is important that the analysis is performed manually. The automatic
generation of fault trees is technically possible, but impedes the actual intention of a
guided analysis process.

The FTA cannot be used to identify the top events, but the top events must be given as
input and are used as starting point of the analysis. The analysis is then first focused on
immediate causes of the top-event, only. This means that only faults are considered that
are the immediate predecessor of the top-event in a cause-effect-chain. Then the approach
is recursively repeated for each identified cause by identifying potential combinations of
immediate sub-causes. In principle, a fault tree can be derived in a depth-first or in a

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 41/156

width-first approach. Today, a width-first approach is preferred, i.e. it is common practice
to analyze all events at one abstraction levels first, before the identified causes are further
refined. It is, however, not necessary to define a balanced tree. This means that it is
possible that certain sub trees are refined to a higher level of detail than others. By this
means, the effort can be reduced without decreasing the analysis’ quality, as usually not
all sub trees have the same impact on the top event so that it is not necessary to analyze
them in detail. Usually, it is nonetheless an important question at which refinement level
the analysis can and should be stopped. As this question cannot be answered in general,
it is a rule of thumb to refine the analysis until the analysts are either able to define a
concrete, sufficient counter measure to an identified cause or if there is sound evidence
that the regarded sub tree has no substantial impact on the top-event.

In fault trees it is possible to define combinations of causes that lead to the event under
consideration. To this end, it is possible to use AND-Gates and OR-Gates. An AND-Gate
means that all incoming events must occur to cause the outgoing event. An OR-Gate
means that one of the incoming events is sufficient to cause the outgoing event. The fault
tree standards as well as current analysis tools support a variety of additional gates. An
overview of basic gates that are used in fault trees is shown in Table 2-3.

Gates
Symbol

International Europe

AND-Gate

OR-Gate

NOT-Gate

XOR-Gate

n-out-of-m

Table 2-3 Basic Gates used in Fault Trees

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 42/156

Based on this formal structure, the tree can be analyzed qualitatively as well as
quantitatively. An important qualitative analysis is the calculation of so-called minimal
cut sets (MCS). A minimal cut set is a set of events that are necessary and sufficient to
cause the top-event. Sufficient means that the coincidence of the events in a MCS directly
causes the top-event. If we, for example, regard the fault tree shown in Figure 2-11, we
yield the minimal cut sets highlighted in grey in Figure 2-12. The AND-gate’s output
events only occur if both input events occur, therefore Intermediate Event 1 as well as
Intermediate Event 2 must occur in order to cause the top event. In order to cause
Intermediate Event 2, it is necessary that Basic Event 3 and Basic Event 4 must occur. In
order to cause Intermediate Event 1, however, it is sufficient if Basic Event 1 or Basic
Event 2 occur. In consequence, there are two possible combinations of basic events whose
occurrence leads to the occurrence of the top-event.

Figure 2-12 Minimal Cut sets of a Fault Tree

In order to provide quantitative analysis reports, a probability distribution must be
assigned to each basic event. This probability distribution describes the probability that
the event occurs over the mission time of the analyzed system or component. To this end,
typically exponential distributions and Weibull-distributions are used. Based on the
probabilities of the basic events, it is possible to derive the probability that the top event
occurs using the following calculation schemes for the different gates:

AND-Gate:

For two inputs: i1 and i2, Output: o

ܲሺ݋ሻ ൌ ܲሺ݅ଵሻ ∙ ܲሺ݅ଶሻ

For n inputs: i1, …, in, , Output: o

ܲሺ݋ሻ ൌෑܲሺ݅௞ሻ

௡

௞ୀଵ

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 43/156

OR-Gate:

For two inputs: i1 and i2, Output: o

ܲሺ݋ሻ ൌ ܲሺ݅ଵሻ ൅ ܲሺ݅ଶሻ െ ܲሺ݅ଵሻ ∙ ܲሺ݅ଶሻ ൌ 1 െ ሺ൫1 െ ܲሺ݅ଵሻ൯ ∙ ൫1 െ ܲሺ݅ଶሻ൯ሻ

For n inputs: i1, …, in, Output: o

ܲሺ݋ሻ ൌ 1 െෑ൫1 െ ܲሺ݅௞ሻ൯

௡

௞ୀଵ

Extensions and variants

Various extensions to fault trees have been developed in order to increase their
expressiveness. The most important extensions are briefly presented in the following.

Dynamic Fault Trees - DFT

A problem of fault trees is that all events must be stochastically independent from each
other. In many cases, however, it is necessary to model stochastically dependent events,
as well. To this end, Dynamic Fault Trees (DFT) [48] have been developed, which extend
fault trees by additional gates supporting stochastic dependencies.

The Functional-Dependency-Gate can be used to express that a single trigger input
event can release a set of dependent entrance events. The Cold-Spare-Gate is used to
express typical cold stand-by architectures, which consist of several redundant channels.
In contrast to conventional redundancy, however, a redundant channel is not activated
until the main channel fails. This creates an obvious dependency between failures in the
different channels that can be expressed using the cold spare gate. The latter considers
that an input event can only occur after the preceding input event occurred. As a further
special gate, the Sequence-Enforcing-Gate can be used to model that input events must
occur in a certain sequence to cause the output event. Therefore, all input events must
occur in the order from left to right to trigger the output event. A comparable behavior
can also be achieved using a Priority-AND-Gate. The latter is however limited to two
input events.

Advantages and disadvantages

The FTA offers the possibility to structurally identify a seamless cause-effect chain
leading to the analyzed top-event. Fault trees provide a clear notation to specify the cause-
effect relationships, but at least as important is the related methodology that enables
engineers to analyze even complex systems. Moreover, fault trees support qualitative and
quantitative analyses including the analysis of complex fault combinations. In
combination with the various existing extensions, fault trees are certainly one of the most
important safety analysis techniques available today. As the top-event must already be
known before an FTA can be performed, the application of the FTA presumes that the
hazards have already been identified. The FTA as such cannot be used to identify hazards.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 44/156

References

The FTA is standardized by [10] and [24]. A more detailed description can be found in
[37] and [36]. Dynamic fault trees are introduced in [48].

2.4.5. Reliability Block Diagrams (RBD)

Reliability Block Diagrams (RBD) is a further important safety analysis technique. It
uses blocks to model elements of the system that might fail. The cause effect relationship
is modeled by connecting the single blocks. The methodology, the graphical notation as
well as the possibilities for the analysis of reliability block diagrams are standardized in
the international standard IEC 61078 [18].

Methodology

For defining a reliability block diagram, a first system structure definition must be
available. Using this structure as template, the regarded system is subdivided into
individual functional blocks that have an impact on system success or failure. Though a
reliability block diagram is modeled following the system structure, the RBD structure is
not necessarily identical to the system structure, since additional blocks might be required
to model the cause-effect relationship. Also it is possible that some system elements are
not represented as blocks if they do not contribute to a system failure.

Once the blocks are defined, a failure probability is assigned to each block, defining
the likelihood that the according element in the system fails. The probabilities that are
assigned to the single blocks must be stochastically independent from each other.
Furthermore, it must be considered that a block can only be in one of the two states ‘ok’
or ‘failed’. More detailed failure modes or aspects like operation modes cannot be
modeled using RBDs.

By connecting the blocks, these probabilities can be used to calculate the overall failure
probability of the system. Basic RBDs support two kinds of connections: a serial
connection and a parallel connection. If blocks are modeled in parallel, this means that
all parallel blocks must fail to cause a system level failure. If blocks are modeled in a
serial connection it is sufficient if one block fails to cause a system failure. An example
is shown in Figure 2-13. In this example, the system fails if component A fails or if
components B and C fail: A OR (B AND C).

Figure 2-13 Example of a Reliability Block Diagram

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 45/156

In addition to these basic elements, RBDs have been extended by further modeling
elements. The most important extension is given by the k-out-of-n node as it is shown in
Figure 2-14. A k-out-of-n node has n edges leading into it. The outgoing path is considered
to have failed if more than k of the incoming n paths have failed. For example, the RBD
shown in Figure 2-14 specifies a system that fails if component A fails or at least two of
the components B,C, and D fail.

Figure 2-14 Example for a k-out-of-n element

References
A short description of reliability block diagrams can be found in [6]. A more detailed
explanation is given in [7].

2.5. Safety Concepts and Safety Cases

Once the hazards have been identified and the safety manager has analyzed the possible
causes and the resulting error propagation within the system, he or she can define the
safety concept. Following the idea of ISO 26262 [4], a safety concept is a ‘specification
of the safety requirements, their allocation to architectural elements and their interaction
necessary to achieve the safety goals, and information associated with these
requirements’. Based on the hazard analysis and risk assessment, the safety manager can
define the top level safety goals. Using safety analyses, he gets a better understanding of
the underlying cause-effect-relationships potentially leading to the hazards. Using this
information, he can step wisely refine the safety goals to more fine grain requirements
until he reaches a level, where he is able to define concrete, i.e., implementable, and
testable safety requirements, which can then be assigned to the systems’ components.
Safety concepts are used to model this systematic break-down of requirements. This
includes arguments that ‘prove’ that the fulfillment of all identified refined requirements
implies the fulfillment of the superordinate requirement. Usually, this is not done based
on techniques like formal proofs. Instead, textual qualitative argumentations are used. For
the final safety assessment, the safety manager includes so-called evidences, which prove

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 46/156

that the safety requirements have been fulfilled. Evidences can be anything that provides
convincing arguments that the respective requirement has been fulfilled. In most cases,
evidences are given by documents like test reports, review protocols, or safety analysis
results. By attaching evidences, the safety concept seamlessly evolves to a safety case.
Such a safety case includes (a) a systematic decomposition of safety requirements, (b) the
arguments why these requirements are sufficient, and (c) the evidences showing that the
requirements have been met. Therefore, this meets the ISO 26262 definition of a safety
case being an ‘argument why an item is safe supported by evidence compiled from work
products of all safety activities during the whole lifecycle.’

Today, safety concepts are defined in a quite informal way. Since they cover safety
requirements, they are often integrated into an existing requirements management
workflow. Therefore, the safety requirements are defined in typical requirements
databases. In addition, safety managers write reports describing the big picture of the
safety concept including the rationales that lead to the concept.

As regards the safety case, however, the goal structuring notation (GSN) has evolved
as an accepted alternative to simple text documents. Though the GSN is yet not widely
used in industry, it is continuously gaining acceptance and importance. It is nonetheless
the most important and most widely used dedicated notation for safety cases. Therefore,
the following subsection gives a brief overview on the GSN and its fundamental modeling
elements.

2.5.1. Goal Structuring Notation

It is the main goal of the goal structuring notation (GSN) to provide an efficient means
to describe arguments in safety assurance cases. According to the GSN community
standard [49], an assurance case is ‘a reasoned and compelling argument, supported by a
body of evidence, that a system, service or organization will operate as intended for a
defined application in a defined environment.’ Such an argument is defined as ‘a
connected series of claims intended to establish an overall claim.’ This usually requires a
hierarchy of claims. It is the aim of the GSN to efficiently support the definition and the
graphical notation of such hierarchical claims. To this end, the GSN includes the
following core elements:

 Goals

 Strategies

 Solutions

 Contexts

 Assumptions

 Justifications

These elements can be related to each other using the following relationships:

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 47/156

 SupportedBy

 InContextOf

The graphical notation and the principle meaning of these core elements is summarized
in Table 2-4.

Graphical Notation Description

 A goal, rendered as a rectangle, presents
a claim forming a part of the argument.

 A strategy, rendered as a parallelogram,
describes the nature of the inference that
exists between a goal and its supporting
goal(s).

A solution, rendered as a circle,
presents a reference to an evidence item
or items.

 A context, rendered as a rounded
rectangle, presents a contextual artifact.
This can be a reference to contextual
information, or a statement.

 A justification, rendered as an oval with
the letter ‘J’ at the bottom-right, presents
a statement of rationale.

 An assumption, rendered as an oval
with the letter ‘A’ at the bottom-right,
presents an intentionally unsubstantiated
statement.

Undeveloped entity, rendered as a
hollow diamond applied to the center of
an element, indicates that a line of
argument has not been developed. It can
apply to goals (as below) and strategies.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 48/156

Graphical Notation Description

An undeveloped goal, rendered as a
rectangle with the hollow-diamond
‘undeveloped entity’ symbol at the
center-bottom, presents a claim which is
intentionally left undeveloped in the
argument.

The SupportedBy relationship,
rendered as a line with a solid
arrowhead, allows inferential or
evidential relationships to be
documented. Inferential relationships
declare that there is an inference
between goals in the argument.
Evidential relationships declare the link
between a goal and the evidence used to
substantiate it. Permitted SupportedBy
connections are: goal-to-goal, goal-to-
strategy, goal-to-solution, strategy to
goal.

The InContextOf relationship, rendered
as a line with a hollow arrowhead,
declares a contextual relationship.
Permitted connections are: goal-to-
context, goal-to-assumption, goal-to-
justification, strategy-to-context,
strategy-to-assumption and strategy-to-
justification.

Table 2-4 Core Elements of the GSN (based on [49])

The possibility to define claim hierarchies is a key purpose of the GSN. To this end, a
safety manager can refine Goals using the SupportedBy relationship. In the example
shown in Figure 2-15, the top level goal G1 can be fulfilled if the sub goals G2 and G3
are fulfilled.

Often, it is however not sufficient to simply break down a goal into sub goals. Instead,
it is necessary to describe the underlying rationale, why the developer beliefs that this
decomposition is valid. To this end, he can define a strategy, which describes why and
how this breakdown of the goals is valid. To this end, he can use the strategy element of
the GSN as shown in Figure 2-16.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 49/156

Figure 2-15 Goal refinement in GSN (based on [49])

Figure 2-16 Use of strategies in GSN (based on [49])

In order to argue why it is necessary and sufficient to refine goal G1 by its sub goals
G2 and G3, the engineer defines strategy S1. In principle such strategies do not provide
any formal proof and they do not even follow a formal syntax. In fact, strategies are
defined as informal text providing a qualitative argument. Nonetheless, it is of course
possible to combine the GSN with more formal approaches in order to facilitate more
formal proofs of the safety case’s correctness and completeness. The GSN as such,
however, only supports informal safety cases.

In fact, it is often necessary to refine a goal using various different strategies. Therefore,
the GSN supports the refinement of goals using several strategies as it is shown in Figure
2-17. The top-level goal G1 is refined by four sub goals G2 to G5. The refinement to G2

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 50/156

and G3 is argued using strategy S1 whereas the refinement to the goals G4 and G5 is
argued using strategy S2.

As a further aspect Figure 2-17 also shows the use of solutions. As mentioned above,
solutions provide a link to evidences ‘proving’ that the associated goals have been
achieved. In the example, the achievement of goal G2 is shown by solution Sn1, the
achievement of G3 by solution Sn2 and so on.

Figure 2-17 Goal refinement using several strategies (based on [49])

Figure 2-18 shows a generic safety case using the GSN as a summarizing example. The
generic top level goal defines that the system is demanded to be acceptably safe. In order
to refine this goal, the system definition is given as context information. The refinement
of this top level goal is based on the strategy that the system is acceptably safe if the
occurrence of all identified hazards is sufficiently unlikely.

Obviously, this strategy only holds if an acceptably complete set of hazards has been
identified. This limitation is documented as an assumption that is assigned to the strategy.
Based on this strategy, a maximum failure rate goal is defined for each hazard. In order
to show that these sub goals have been fulfilled, the according fault tree analysis is
referenced as evidence. In general, safety analyses like fault trees are important evidences
in order to prove that the refinement of requirements is complete.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 51/156

Figure 2-18 Example of a generic safety case using the GSN

Usually, the goals must be further refined since a direct quantitative proof is not
possible for rather abstract safety goals. Therefore, the safety case has to be step wisely
refined until all derived goals are concrete enough to provide sound evidence that the
goals have been fulfilled. This means, for example, that it must be possible to provide
sound test results showing that the goals have been fulfilled. If, for example, a plausibility
check is defined being an efficient means of error detection, the results of a fault-injection
test are required to provide that the error detection provides a sufficiently high diagnostic
coverage.

Besides the basic notational elements described above, the GSN provides different
extensions in order to support alternative strategies and refinements, or to support
modular safety cases. All available extensions as well as detailed guidelines on the usage
of the GSN can be found in [49].

2.6. Software Fault Tolerance Mechanisms

As described in section 2.1, fault tolerance is one of the major possibilities to assure
safety. Particularly for open systems, fault tolerance mechanisms can be very important.
As long as failures can be reliably detected and handled at runtime, the system’s safety
can be assured. If there is a good fault tolerance monitor in place, the safety demands on

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 52/156

the monitored main functionality can be significantly reduced. This creates some freedom
for using more advanced technologies for the development of open adaptive systems.

Therefore, this section provides a brief introduction to the most important fault
tolerance mechanisms. To this end, sub section 2.6.1 gives an overview on available
mechanisms based on a general classification scheme. The subsequent sub sections will
then introduce the single classes of fault tolerance mechanisms.

2.6.1. Overview

Despite various different approaches to avoid or to remove any kind of faults in a
system, fault-free systems are very unlikely to become reality. From a safety point of
view, however, software faults are not critical as long as the resulting errors are detected
and handled, before safety-critical failures can occur. To this end, any safety-critical
system must implement fault tolerance techniques. In fact, fault tolerance can be realized
at various levels of abstraction. Ranging from hardware mechanisms to redundant system
designs. Software implemented fault tolerance (SWIFT) has a very long history and many
publications introduce and evaluate a long list of different approaches. All of them follow
the basic ideas shown in Figure 2-19.

Figure 2-19 Overview on Fault Tolerance Mechanisms

For obvious reasons, error detection is a basic constituent of any fault tolerance
mechanism. Therefore, this aspect is dedicatedly described in sub section 2.6.2. Once an
error is detected, appropriate counter measures must be taken to avoid a resulting failure.
In principle, there are two ways of realizing such handling mechanisms. First, single-
version fault tolerance techniques do not implement any kind of redundancy. They can
be used to detect errors and to bring the system to a safe state. Therefore, they are
important for fail-safe and fail-silent system, which can be switched off in the case of
errors. According programming techniques are introduced in sub section 2.6.3.

If the system needs to be fail-operation, i.e. if it must continue operation in spite of
errors, it is usually necessary to implement multi version fault tolerance. This means that
redundant channels must be implemented. This could also be required in order to realize
an error detection by comparing two independently computed result values. Multi-version
fault tolerance can be implemented using design diversity and / or data diversity. Design

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 53/156

diversity means that the actual behavior is realized in multiple versions. Data diversity
means that data is stored in redundant representations. Approaches belonging to the class
of design diversity will be introduced in sub section 2.6.4. Data diversity approaches will
be introduced in sub section 2.6.5.

In fact, however, fault tolerance mechanisms can be classified in multiple dimensions
and there is no commonly accepted classification available. Therefore, Table 2-5 shows
the fault tolerance mechanisms introduced in this section in relation to different
classification criteria.

S

in
gl

e-
/M

ul
ti-

V
er

si
on

D
at

a-
/D

es
ig

n
D

iv
er

si
ty

S
er

ia
l/P

ar
al

le
l

E
xe

cu
tio

n

B
ac

kw
ar

d
/

F
or

w
ar

d
R

e
co

ve
ry

Atomic Actions /- na /- /-

Checkpointing /- na na /

Consensus Recovery
Blocks -/ -/ / /-

Distributed Recovery Blocks -/ -/ / /

Exception Handling /- na na /

N-Copy Programming /- /- -/ -/

N-Self-Checking
Programming -/ -/ -/ -/

N-Version Programming -/ -/ -/ -/

Recovery Blocks -/ -/ /- /-

Retry Blocks /- /- /- /-

t/(n-1)- Variant
Programming -/ -/ -/ na

Two-Pass Adjudicators -/ / / na

Table 2-5 Classification of software implemented fault tolerance techniques

In addition to the criteria described before, it is possible to distinguish between serial
and parallel execution of redundant channels. Parallel execution does not necessarily

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 54/156

mean that different channels are executed concurrently, but that all redundant channels
are executed and only then the results are compared to each other. Whereas in serial
execution approaches only one channel is executed and an error detection checks the
result. Redundant channels are only executed if an error of the result is detected. This
safes computation power, but then redundancy cannot be used for error detection. And
there will be an execution delay in the case of an error, which is sometimes not tolerable
in real time systems.

As a further criterion, it is important to distinguish the recovery direction. Backward
recovery means that a system is set back a previously stored, correct state if an error is
detected. The system is then restarted in this state. In the case of forward recovery, the
system is set to a new correct state in case of an error.

2.6.2. Error Detection

Error detection is an indispensable constituent of any fault tolerance mechanism. In the
case of multi-version fault tolerance, error detection can be realized by comparing the
results of the different channels. In the case of single version fault tolerance, serial
execution mechanisms, or if the single channels are additionally monitored, explicit error
detection mechanisms are required.

As illustrated in Figure 2-20, error detection mechanisms can be applied in different
combinable ways to single version systems. First, it is possible to realize self-protection
mechanisms. This approach is used to protect a component against erroneous input
values, which might corrupt the component’s functionality. To this end, only the input
values and their semantics can be used to implement a check. Including any information
about the algorithms used to calculate the input values or any other white box information
about the component creating the input values must not be considered when defining the
checks in order to preserve the component’s modularity. Otherwise any change in one
component might invalidate self-protection checks implemented in other components.

Figure 2-20 Principle Application of Error Detection in Single Version Systems

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 55/156

Alternatively or in addition, error detection mechanisms can be used to realize self-
checking mechanisms. In this case, input values, output values and the detailed
knowledge about the implemented functionality are used to check the correctness of the
calculated output values, i.e., the correctness of the monitored function is checked. In a
defensive design, self-protection and self-checking are combined in order to provide self-
contained fault-tolerance concepts. This means, the component does not assume to get
correct input values from the context and avoids to send incorrect output values to the
context.

In both cases, error detection only detects runtime errors. In addition, an error handler
is required to react to detected errors. In some cases, intra-component error handlers might
repair the component or they shut down the component to a safe state and set an error
flag, which is processed by a superordinate error handler.

In addition or alternatively to error detections within a component, an external monitor
can be used to monitor a component or several components at once. In principle, a monitor
works like a self-checking mechanism. Often, however, external monitors do not include
so much internal white box information, but the detection is usually based upon the black
box specification of a component. Monitors have the advantage to be independent from
the monitored component. Therefore, an error in the component does not influence the
monitor. Moreover, the monitor can be used to monitor unprotected third-party
components. As a further advantage, a monitor can cover several components in a more
complex data path. First, this leads to more efficient solutions. Second, more global
semantic information about the data flow allows for better error detection algorithms.

In any way, error detections must always be tailored to the monitored functionality.
Therefore, error detection mechanisms found in literature mainly provide patterns on how
to realize a detection, in general. Table 2-6 provides a brief overview on the most
important error detection mechanisms and explains widely used terms in the context of
error detection. Moreover, it lists references for each of the mechanisms, which can be
used for further reading to get more detailed information on the different approaches.

Name Description References

Time checks Time checks are used, if modules have to keep
clear time conditions as for example deadlines or
response times. An example for the realization is
a watchdog timer, which can be realized in
hardware or software. In this case, the monitored
software has to actively reset the watchdog
timer. If this does not happen in time, e.g,
because of an erroneous endless loop, the timer
runs out and triggers a counter action. Often, an
embedded micro controller is reset to reboot the

[103], [114],
[121], [126],
[127], [197]

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 56/156

Name Description References

system. There are various different extensions of
watch dog mechanisms available.

Inverse
functions

Inverse functions are used to calculate the inputs
of a module by taking the module’s outputs as
input values for the inverse function. An error is
detected, if the computed inputs do not
correspond to the actual inputs. This approach is
obviously only applicable if the inverse function
of the module can be determined easily.

[102]

Check Codes In this approach, redundant check codes are used
to detect errors. For example, data errors can be
detected by cyclic redundancy checks (CRC).
Arithmetic codes such as AN-codes or Residue-
codes are applied to the input data of an
arithmetic operation in such a way that also the
result must be correctly coded. With AN-codes,
for example, both operands of an addition are
multiplied by a constant A. After executing the
addition, the result must be divisible by A in
whole numbers.

[107], [148]

Plausibility
checks

Plausibility checks are used to check the
semantic characteristics of data. This includes,
for example, checking value ranges, gradients,
value sequences etc. In principle, the idea of
plausibility checks is very generic, since the
check must always be tailored to the monitored
function. For example, physical signals like the
longitudinal acceleration of a car must follow
certain physical constraints, which can be
checked in plausibility checks. Therefore, it is
rather a general pattern than a concrete error
detection mechanism.

[103], [148]

Structural
Checks

Structural checks are used to check known,
invariant properties of data structures. For
example, the number of elements or the correct
linking of pointers can be checked. It is also
possible to store redundant data within data
structures, such as the length of lists, in order to
dynamically check them at runtime. By this

[103], [177],
[178], [179],
[180].

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 57/156

Name Description References

means, it is possible to detect corrupted data
structures.

Hardware
implemented
error detection

As a further possibility, it is possible to
implement error detection checks in hardware.
Due to the caused effort and cost, these checks
must be independent from the monitored
application in order to be reusable for different
functionalities. Typical well-known examples
are division by zero, overflows, or underflows.

[103], [147].

Control Flow
Monitoring

Control flow monitoring is used for detecting
errors in the control flow of instructions. To this
end, the software is subdivided into basic blocks.
This means that a set of instructions without
branches is bundled in one basic block. For each
of these blocks a deterministic signature is
calculated. At runtime, this signature is
recalculated and compared to the static signature.
By this means, a corruption of the program
memory can be detected and undesired jumps can
be avoided. Control flow monitoring is a well-
established concept, which is often demanded by
safety standards. Various different realizations
and optimizations of the approach can be found in
the references.

[114], [121],
[127], [129],
[130], [132],
[135], [136],
[141], [142],
[195]

Duplication of
data and
instructions

A further possibility for error detection is
duplicating data as well as the program. To this
end, the program can be stored in different
memory locations, to execute it concurrently and
to compare the results. Alternatively, an
orthogonal redundancy can be created. In this
case, the operations are executed redundantly by
using different hardware units. Regarding the
state of the art, the duplication is automated as
part of the compiler or as code-to-code
translators, which use predefined transformation
rules to extend the source code with error
detection code. In those approaches, software and
hardware tolerance mechanisms are combined in
hybrid approaches.

[115], [119],
[123], [127],
[135], [136],
[140], [157],
[158], [171],
[196].

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 58/156

Name Description References

Software-
Hardening

Software-Hardening is often used as term to
describe approaches applying an automated
duplication of data and instructions.

[115], [119],
[158], [171]

Acceptance test The term acceptance test refers to a generic idea
on how to check computation results, as it is for
example done for recovery-blocks [165].
Therefore, there are no concrete techniques or
checks defined. It is rather necessary to define
application-specific checks for each particular
functionality. The primary problem with
acceptance tests is to define them as simple as
possible, in order to prevent faults in the test itself
and to ensure an efficient execution at runtime.
On the other hand, however, the diagnostic
coverage must be sufficiently high. To this end,
often the fulfillment of specifications is checked
(also called self-check). For example, for
checking a sorting algorithm it is not necessary to
redundantly sort the data. Instead, it is possible to
check if the result values are sorted and if the sum
of the output values is equal to the sum of the
input values. Obviously, some errors cannot be
detected by this check, but it is sufficiently
unlikely that a hardware or software fault leads to
an incorrect result that is not detected by this
acceptance test. A methodology for defining
acceptance tests and self-checks can be found in
[145].

[145]

Assertions Assertions are provided by programming
languages in order to detect arbitrary error
conditions during program execution. By this
means, it is for example possible to check pre-
conditions, post-conditions, and/or invariants of a
function. In the same way as most error detection
mechanisms, assertions must be specifically
defined for a concrete application. [193]
introduces an approach for deriving assertions in
the context of embedded systems.

[111], [112],
[138], [141],
[193], [194],
[195], [197],
[198], [199],
[200]

Table 2-6 Overview on Error Detection Mechanisms

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 59/156

2.6.3. Programming Techniques

Before the different fault tolerance approaches based on design and data diversity are
introduced in the following sub sections, this section introduces two important
programming techniques, which are applied in the development of fault tolerant systems.
One the one hand, they directly improve the systems’ fault tolerance if single-version
systems are developed. On the other hand, they are an important basis for realizing fault
tolerance in general, since they are a prerequisite for enabling system recovery in the case
of errors.

Checkpointing means that different check points are inserted into the source code,
when the current system state (e.g. variables, register values, etc.) is stored. In case of an
error, the last stored state can be restored to restart the system. In this case, checkpointing
is only applicable to transient errors, since it is assumed that simply repeating the code
execution leads to a correct result. This is for example true in the case of bit flips due to
transient electromagnetic radiation. In the case of distributed systems as well as process
and task duplications, checkpointing can also be used for forward recovery.
The system state can be stored in different ways. Either the complete system state is stored
at each check point, or only delta information is stored, i.e. the differences to the last
system state. Checkpoints can be stored in fixed or in variable time intervals.
More information on checkpointing can be found in [102], [131], [147], [158], [159],
[167], [182], and [191].

Another programming technique is Atomic Actions. In this case, all of those
commands are encapsulated into one block, if either all or none of these commands must
be executed at a time. Atomic Actions are particularly important in multi-threaded-
applications in order to coordinate the cooperation between different threads. In the case
of an error, it must be possible to roll back all effects of all commands of an atomic action.
This is a prerequisite for error handling at runtime. More information on atomic actions
can be found in [102], [155], [159], [169], [173], and [183].

2.6.4. Design-Diversity

In order to realize fail-operational systems, it is necessary to provide any kind of
diversity. Design diversity is the most commonly used approach for designing redundant
systems. In this case, fault tolerance is achieved by having several different versions of a
program or a program fragment, respectively. The different versions are developed based
on a common specification. However, the versions are developed by different teams who
should not know each other. And the different teams should use different technologies
like different programming languages or compilers etc. In spite of this independence, it
has nonetheless been shown that diverse software is not necessarily free of common cause
failures. Therefore, it is reasonable to combine design diversity with other techniques,
e.g. by additionally monitoring the single channels and applying rigorous fault avoidance
and fault removal approaches.

There are four important design diversity approaches available, which will be briefly
described in the following.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 60/156

N-Version Programming

In the case of N-Version Programming (NVP), N different versions of a program are
developed based on a common specification. The single versions are then executed in
parallel or sequentially and the different results are compared to each other. If all results
are equal to each other, the result is output as a correct result. Otherwise a voting
mechanism like a majority voter is required. A majority voter selects that output which
has been provided by the majority of the versions. If there is no majority providing the
same output value, an error is raised. In any way, an error flag is set in order to inform
the superordinate system that at least one of the versions seems to be defect.

Obviously, the number of errors that can be tolerated depends on the number N of
different versions. If N=2, it is only possible to detect errors since it cannot be decided
which of the versions provided the correct result. If N=3 one error can be tolerated. If two
versions have the same result, this value is assumed to be correct, and the third version is
assumed to be erroneous. The number of tolerable errors increases by increasing N.
Usually an odd number of versions is realized in order to ensure a majority for the voting
mechanism.

More details on N-version-programming can be found in [109], [115], [116], [117],
[135], [151], [152], [154], [162], [182], and [187].

t/(n-1)-Variant Programming

t/(n-1)-variant programming assumes that a failure diagnosis happens at system level.
Comparable to N-Version-Programming, n versions of a program or program fragment
are developed, which are executed in parallel at runtime. Under the assumption, that at
most t of these n versions could produce an error at the same time, the erroneous versions
can be isolated in a set of the maximal size of n-1. This means that there is at least one
error-free version left, whose output value can be used.

The identification of the erroneous versions and the construction of the according
system architecture is based upon a decision mechanisms based on the t/(n-1)
diagnosability theory. More information on this concept can be found in [158], [182],
[185], [186], and [188].

N-Self-Checking Programming

N-Self-Checking Programming means that several versions of a program are
implemented and usually concurrently executed on different processors. Two versions
are combined into a group and the results of the versions within the groups are compared
with one another. If the versions of a group provide different results, an error flag is set
and the group is ignored in the further steps. The results of the error-free groups are
afterwards compared again with one another. If all of the groups provide the same result,
the output is used. Otherwise an error flag is set, or if there are enough groups available,
a voting mechanism can be applied to select the correct result. More information on N-
Self-Checking can be found in [144], [152], [153], [159], and [182].

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 61/156

Recovery Blocks

For recovery blocks, several versions of a program are implemented. In contrast to N-
Version-Programming, however, the single versions are executed sequentially. After a
version was executed, the result is checked using an error detection mechanism. If no
error is detected, the output is used and no further versions are executed. In case of an
error, the system state is rolled back to the state it had before the first version was
executed. Then the next version is executed and the same procedure is repeated until a
valid result is rendered by one of the versions. If none of the versions leads to a valid
result, the execution exits with an error message.

Recovery blocks provide a comparably efficient means since only one version needs to
be executed in the best case. In the worst case, however, there is a long delay if a version
outputs an erroneous result. Nonetheless, recovery blocks are an important fault tolerance
approach, which is described in more detail in [109], [145], [146], [151], [152], [154],
[162], [164], [166], [182], and [185].

Distributed Recovery Blocks are an extension of recovery blocks. In this case, two
versions of a program or program fragment are implemented and they are executed
concurrently on two different processors. Comparable to conventional recovery blocks,
the results of the single versions are checked using error detection mechanisms, i.e. the
results are not compared with each other to detect errors. If the result of the first processor
is correct, this output is used. If not, the output of the second processor is used if the error
detection found no error. If both processors provide erroneous results, their state is rolled
back to the state they had before the versions were executed. Then the versions are
exchanged between the processors and executed again. If again no correct solution is
provided, the execution of the program or program fragment exits with an error message.
More information on distributed recovery blocks can be found in [143], [148], [149],
[150], [159], [166], and [186].

As another extension, consensus recovery blocks are a mixture of N-Version-
Programming and recovery blocks. In this approach, N versions of the same program or
program fragment are executed like in N-version-Programming. Using a decision
algorithm like a majority voter, it is tried to find a correct result. If this is not successful,
the results of the single versions are checked using acceptance tests in order to identify a
correct result. Alternatively, the single versions can be executed again following the idea
of recovery blocks. More information on consensus recovery blocks can be found in
[159], [171], [172], [181], and [182].

2.6.5. Data-Diversity

Besides design diversity, data diversity provides another possibility for realizing
redundancy in fault tolerant systems. Data diversity means that data is stored in diverse
representations. To this end, the input data of a program or program fragment are
modified using data transformation algorithms prior to the program’s execution.

Fundamentals of Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 62/156

N-Copy-Programming

N-Copy-Programming is very similar to N-Version-Programming. N different data
transformation algorithms are defined to transform a program’s input data into another
representation or value. It is important that the result value can be consistently
transformed back to the original representation. Then, N copies of the program are
executed using the different transformed data representations, the results are transformed
back to the original representation and compared to each other like in N-version-
programming. Either a correct result can be determined using a decision algorithm like
majority voting, or the program exits with an error message. More information can be
found in [106], [107], [108], and [159].

Retry-Blocks

Retry Blocks are a similar concept to recovery blocks. The program is called several
times in sequence, but before each call, the input data is transformed into a different
representation. Just like for N-copy-programming, this requires several different data
transformation algorithms. After each execution, the results are checked using an
acceptance test. If a program execution leads to a valid result, the result is used as output
and no further program calls are required. If no data representation leads to a valid result,
the program exits with an error message. More information on retry-blocks can be found
in [106], [107], [108], [159], and [162].

Two-Pass Adjudicators

Two Pass Adjudicators are a combination of N-version-programming and N-copy-
programming. Therefore, they combine the ideas of design diversity and data diversity.
The program is executed in two phases. In the first phase, N versions of a program are
executed using the original input data. After that, the results are compared to each other
and a result is selected or an error message is raised just like in N-version-programming.
If a valid result is available, this is used as output value and the execution is stopped. If
no valid result can be found, the second phase is executed. In the second phase, the input
data is transformed into N different representations using data transformation algorithms.
Then, the N different program versions are executed using the N different data
representations. The results are again transformed back and compared to each other. And
a result is selected or an error message is raised if no valid result can be found. More
information on two-pass-adjudicators can be found in [159], [160], and [161].

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 63/156

3. Fundamentals of Model-Driven Engineering

As described in the introduction, the models@runtime paradigm builds a promising
basis for the development of open systems of systems with predictable qualities.
Obviously, models play a central role in this context. In some sense, models@runtime
can be seen as the next evolution stage of model-driven development. Consequently,
understanding the basic idea of model-driven development is a major prerequisite for
understanding the concept of models@runtime.

Therefore, this chapter gives an introduction to the basic concepts of model-driven
development. To this end, Section 3.1 first introduces the basic idea of model-driven
engineering (MDE) before Section 3.2 describes the principles of models and their
definition based on meta-models. Section 3.3 introduces the Model Driven Architecture
(MDA™) standard, which provides a reference for many MDE approaches available as
of today. The MDA, however, has its origin in the development of IT-systems so that
approaches for embedded systems have to be adopted as it is described in Section 3.4.

Although model driven engineering approaches are mainly associated with automated
model transformations ultimately aiming at the efficient code-generation, models are
useful for many other development aspects. First of all, models are used to analyze and
to predict system (quality) properties and to optimize the systems already in very early
development phases based on model-driven prognostics. This aspect is very important for
the idea of models@runtime. Instead of using models at development time, in
models@runtime, runtime representations of the models will be used to dynamically
optimize systems to a given runtime context. Therefore, the idea of model-driven
optimizations will be briefly discussed in Section 3.5.

3.1. The Model-Driven Engineering Paradigm

The complexity of embedded software systems is growing even more rapidly than ever
before. Already today, most embedded systems are much too complex to be directly
implemented in C code. Many companies had to experience this fact by tremendous
quality problems, drastically increasing time-to-market, and exploding development
costs.
The main principle that is applied to get this complexity under control is the very same
as it has been applied for the shift from assembly code to high level programming
languages: Modelling languages introduce more powerful and expressive means for
specifying software systems. Using generators, the code is generated automatically, i.e.
the models are not an inconsistent documentation but a central development artifact.
Already today, such code generators often create very efficient code.
Figure 3-1 illustrates this aspect based on a very simple example. Figure 3-1 a) shows a
simplified state chart model specifying the behavior of a DVD player. Obviously, the
state chart is not very complex and even without having a deep understanding of state
charts, the semantics is quite intuitive. Based on this state chart, it is possible to generate

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 64/156

source code as it is shown in Figure 3-1 b). However, Figure 3-1 b) does not show the
complete source code but only the method headers. Both, model and code, specify the
very same behaviour, but obviously shifting from source code to state charts
tremendously reduces the complexity of the representation developers have to work with.

Figure 3-1 Comparison of a state chart and the generated Java method headers

The abstraction that can be achieved by applying model-based development is
obviously a key to managing the ever-increasing complexity of embedded software
systems. Already today, many systems are developed using model-based tools and
languages like Matlab/Simulink®, ASCET, LabView, or UML® - to name only a few
examples. The applications range from aerospace to automotive systems to medical
devices. In the future, coding will probably be replaced by modelling for the application-
level development just like high level programming languages have almost completely
replaced assembly code.

The idea of using models instead of code for the development of embedded systems
has been around for more than a decade now. The key for the current success of the
approach is the combination of abstraction and semi-automated refinement of the models
using model-transformations as it is illustrated in Figure 3-2.

Using formal models and automated model transformations, model-driven engineering
supports the step-wise refinement of the system. A developer starts with more abstract
models abstracting from different implementation details. Once the system is defined at
this level, he defines some additional information to refine the model. Based on this
information, the model can be automatically transformed to a more detailed model. This
process can be repeated step by step until the last transformation generates code.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 65/156

Figure 3-2 General principle of Model-Driven Engineering

This means particularly that models enable the developer to specify the systems using
concepts of the problem domain instead of the implementation domain. For example, it
is easily possible to specify even complex digital filters by using a single modeling
element, which can be used to define the transfer function of the filter. The
implementation of this filter, which leads to a complex algorithm, can be generated
automatically.

Moreover, it is possible to abstract from the concrete execution platform. For example,
aspects like the microcontroller, operating system, or used scheduling strategies need not
to be regarded in the early development phases. First, this further reduces the complexity
since the developer can concentrate on the functionality of the system through intuitive,
graphical modeling languages and does not need to deal with technical details. Second,
this enables the platform independent engineering of systems, i.e. it is easily possible to
change the execution platform later on without changing the platform-independent
models.

In order to further clarify the special characteristics of model-driven engineering,
Figure 3-3 illustrates the relation of model-driven engineering to ad-hoc implementation
and non-model driven software engineering approaches.

In ad-hoc coding (cf. Figure 3-3 a) the requirements are directly transformed to code.
This is obviously a purely manual process performed by the developer. Abstract concepts
of the problem domain have to be mapped to a code-based implementation in one step.
All technical details have to be considered from the very beginning (e.g., multi-threading,
semaphores, data structures, detailed algorithms, etc.). In the domain of IT-systems, many
companies had to experience that this approach leads to problems for the development of

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 66/156

complex systems more than two decades ago. With the increasing complexity of
embedded systems, however, also many companies in embedded systems domains
already have encountered or are currently encountering comparable challenges.

Figure 3-3 Relation between traditional development approaches and model driven
engineering

For this reason, it is an established approach to engineer software instead of
programming it. The system specification is refined step-wisely from the requirements to
architecture to design and finally to code (cf. Figure 3-3 b)1. Although this approach
already decreases the development complexity, the manual transformation of the models
requires additional effort and a rigorous development discipline in order to not consider
everything above the code as inconsistent documentation and not to focus on the source
code, only.

In the model-driven engineering approach, the same development artifacts are created
as in conventional software engineering approaches. However, the model transformations
are automated. In contrast to non-model-driven approaches, this requires that the
specified models follow a formally defined syntax and have an unambiguous semantics.
Using semi-automated model transformations, it is possible to tap the full potential of
software engineering. The indispensable abstraction and information hiding using
different modeling artifacts can be combined with automated transformations in order to
shorten the development time and to further increase the quality of the developed systems.
Particularly, this means that MDE made models to the central development artifact.

1 There are various different software engineering approaches with different development phases and artifacts

available. The chosen phases are based on a possible derivative of the V-product-model since the main purpose is
to illustrate the relation to model-driven engineering.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 67/156

Therefore, model driven engineering approaches rapidly gained importance and
acceptance.

3.2. Meta-Modeling

Models are the key ingredient of model-driven development. Models provide an
abstract specification of a system’s structure and behavior. Though programs specified
using textual programming languages could be considered to be models, as well, model-
driven development usually refers to graphical models. The main intention of models is
the reduction of complexity by abstraction. As described in the previous section, a single
model element can represent a complex behavior, which could only be specified by a
complex program if textual programming languages were used. In some sense, a key
principle of models is therefore to abstract from the implementation domain to the
problem domain. Implementation domain means that programs have to be written using
concepts dictated by the underlying hardware and the principles of software programs
(e.g., loops, branches, basic commands etc.). In contrast to that, MDE abstracts from these
implementation concepts by providing modeling languages that reflect concepts of the
problem or application domain (e.g., fast fourier transformations, PID-controllers etc.).
The transformation from this problem or application domain to a software-based
implementation is then done using automated code generation.

In order to provide a formal means to software development, models have to follow a
clear syntax and must have an unambiguous semantics. In the same way as grammars are
used to define the syntax of textual programming languages, the syntax of models is
defined using meta-models. A meta-model defines all modelling elements that are part of
the language as well as the valid interconnections between these elements.

For example, the meta-model shown in Figure 3-4 defines a modeling language for data
flow models. It consists of the flow model that contains flow elements (processing nodes,
which are comparable to Simulink blocks), and flow links between the blocks. A model
may contain any number of flow elements and links, each flow element and link is
assigned to exactly one flow model. The flow element meta-class is abstract, which means
that it may not be instantiated directly. Therefore, there will be no FlowElement language
element in the resulting modeling language. Language elements are defined by
specializations of the flow element meta-class. Two specializations are defined: Ports
represent input and output ports, similar to Simulink ports. Add blocks define blocks that
process data. This data is delivered through flow links, which implement data flows,
Therefore, each flow link provides one value. Add blocks sum up all of these values and
provide the result of this calculation as output flow.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 68/156

Figure 3-4 Data flow modeling meta model

Meta modeling is supported through different approaches by current tools. Most UML
tools do not support true meta-modeling, but UML profiles enable the creation of new
modeling languages. Meta models may be transformed into UML profiles. For example,
Figure 3-5 shows the meta-model from Figure 3-4 implemented as UML profile. With
this profile, the data flow modeling language will be supported by any UML tool that is
able to load profiles.

Figure 3-5 Data flow modeling language implemented as UML profile

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 69/156

The difference between a meta-model and an UML profile is that UML profiles define
no entirely new meta-classes, but specializations of existing meta classes, which inherit
all members of their base classes. Through profiles, it is therefore not possible to create
entirely new classes. The base class that will be specialized is shown in brackets, e.g.
[Model] indicates that a stereotype specializes the meta-class model. Available UML
meta-classes are defined in the UML meta-model, which is part of the UML language
specification. This means that profiles cannot be used to define completely new
languages, but only to extend and to refine the UML.

Other tools like Eclipse, on the other hand, support true meta-modeling with the Eclipse
Modelling Framework (EMF). EMF defines the following core elements:

 Classes implement meta-classes that will become language elements. EMF
classes may be concrete or abstract.

 Specializations define inheritance hierarchies between meta-classes.

 Properties define relations between meta-classes.

 Packages group classes into logical groups.

Figure 3-6 shows the example meta-model from Figure 3-4 realized as EMF model.
Based on this model, the Eclipse Graphical Modeling Framework (GMF) provides
generated graphical editors that are tailored to this language. Further information
regarding EMF and GMF is available in [50].

Figure 3-6 Data flow modelling language implemented as EMF model

Using meta models, it is therefore easily possible to define almost arbitrary modeling
languages. At the same time, meta models define a formal data structure representing a

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 70/156

system that has been defined using the respective modeling language. By this means,
models can be easily processed by automated code generators and analysis algorithms.

A meta model as shown above is usually referred to as the abstract syntax of a modeling
language as it only describes the available modeling elements and their interrelationships.
In order to enable developers to use this language, a concrete syntax must be defined.
This mainly means that the graphical representation of the modeling elements and
interconnections must be defined.

Obviously, the definition of meta-models also requires a kind of a modeling language–
in the same way as the EBNF is used to define grammars of programming languages. In
model-driven engineering, this is called a meta-meta modeling language. In fact, there is
an abstraction hierarchy of different meta-models:

 M3: On M3 level, the basic meta-meta modeling language is defined. This
language is used for defining modeling languages for developers. For example,
the Meta Object Facility (MOF), as it is standardized by the OMG, defines the
core meta-meta-model of several modeling languages. It defines primitives like
classes, attributes, and packages.

 M2: On M2 level, meta models define modeling languages that are used by
developers, for example, the UML. These meta models are based on the MOF
that resides on M3 level. UML profiles and their stereotypes therefore do extend
the meta model of the UML on the M2 level. Meta models describing non MOF-
conforming languages, e.g. the meta model describing Simulink models, also
reside on the M2 level. If meta models of several modeling languages are built
on top of each other, all of these meta-models do exist on M2 level.

 M1: Models of (software) systems that are created using modeling languages
do reside on M1 level.

 M0: Instances of the software system, i.e. the executed system in memory, do
reside on M0 level.

3.3. The Model Driven Architecture – MDA®

Although there are different approaches available to realize model-driven software
development and the idea has been the vision of many developers and researchers for a
very long time, the Model Driven Architecture (MDA® [51]) of the OMG defines a de-
facto standard. Although MDA is not focused to a specific domain, one of its main
applications is enterprise business systems. It was one of the major original goals of the
MDA to separate the business logics and functionalities from fast changing
implementation technologies. Nonetheless, MDA is often used as a reference for any
model-driven development approach including embedded systems development.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 71/156

The concept of MDA is illustrated in Figure 3-7. Implementing the general idea of
model-driven engineering, as it was introduced above, the MDA considers four different
types of models.

Code

Platform Specific
Model (PSM)

(Semi-)
Automated
Transformation

Computation
Independent Model

(CIM)
(Semi-)
Automated
Transformation

Platform Independent
Model (PIM)

(Semi-)
Automated
Transformation

Figure 3-7 Model Driven Architecture (MDA)

The most abstract model is the Computation Independent Model (CIM). These models
mainly capture the requirements on a system defining what the system has to do and how
well the system has to do this. At this level, there are usually however no details defined
on how the system has to realize these requirements. Moreover, the CIM is used to define
the environment the system is embedded into.
The Platform Independent Model (PIM) is used to define the system independently from
the target execution platform. At the PIM level, the actual application is defined, i.e. in
the case of the MDA origin this means modeling the business logics and functionalities.
Technology specific details are only modeled in the Platform Specific Model (PSM).
Different execution platforms in the context of the MDA could be CORBA, .NET, or
J2EE to name a few examples. The execution platforms are described in Platform Models
(PM), which can be used as an additional input for the transformation of a PIM to a PSM.

3.4. Model-Driven Engineering of Embedded Systems

Regarding the development of embedded systems, the idea of model-driven
engineering has originally been driven independently from the MDA®. Many vendors of
development tools for embedded systems came up with different model-based design
tools like Matlab/Simulink®, Labview, or ASCET. One of the most important objectives
of these tools was to shift the focus from programming to modeling embedded systems.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 72/156

Based on these models, it is therefore possible to specify software using models and to
create production code using code generators. It is often necessary to manually modify
the code for performance reasons and to integrate it manually into the execution platform.
Nonetheless, the code generated by most tools has already a very high quality. After the
MDA® has rapidly gained visibility and acceptance, the tool vendors in the embedded
systems domain aligned their products to the MDA®. Regarding the origin of the tools,
they are obviously focused on the very next level above the implementation. Although
sometimes propagated otherwise by tool vendors, it is therefore currently not possible to
cover the complete software engineering lifecycle with a single tool.

This tool vendor driven approach in the embedded systems domain, on the one hand,
lead to very concrete, but pragmatic and proprietary solutions implemented in
professional tools. The MDA® approach, on the other hand, lead to a more systematic
and unified understanding and definition of the model driven engineering paradigm, but
without providing concrete, professional implementations. The merge of these two
approaches in the embedded systems domain therefore lead to a further progress towards
the model-driven engineering of embedded systems. Because of this process, most
vendors meanwhile agree that it is necessary to provide an appropriate tool chain with an
appropriate model exchange. On the one hand, this has pragmatic reasons since the
various different tools are already available. Regarding the diversity of the different
development tasks in the overall lifecycle on the other hand, it is obviously reasonable to
provide a set of tools -each one specialized to a certain lifecycle phase- rather than trying
to cover all of these different tasks in a single development tool.

Based on these preliminary remarks, Figure 3-8 illustrates a possible model-driven
software development lifecycle. The lifecycle is related to the MDA® on the one hand
and available model-based design tools on the other hand.

The requirements (and thus the computation independent model – CIM) are usually
captured using special requirements engineering tools such as DOORS™. Depending on
the modeling languages used to describe requirements, alternatively or in addition the
UML can be used to model requirements.

The transformation from requirements to architecture (and thus from CIM to PIM) is
today mainly a manual step since the definition of an architecture is a very creative
process. Therefore, the link between requirements and architecture is usually limited to
traceability links.
An architecture definition consists of various different views. Supporting various
different diagrams and being easily extendable, the UML is an appropriate modeling
language for architecture specification. Data-flow oriented modeling tools like
Matlab/Simulink® do not provide the required language concepts and flexibility and are
therefore in most cases not applicable to the modeling of architectures.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 73/156

Figure 3-8 Relation of model-based design tools to MDA and the software development
lifecycle

Once the architecture of a system is defined, it must be refined in the design. In the first
step, the design leads to an executable, but still platform-independent model. Therefore,
the platform-independent design also belongs to the platform independent model in the
context of the MDA. During this first step of the design, the different components and
connections that have been identified during the architecture specification are refined to
obtain an executable system. To this end, further sub components must be identified and
the actual behavior of the basic components must be modeled. The design can be done
using UML-based tools and/or data-flow-oriented modeling tools like
Matlab/Simulink®. Although there are various different approaches available, there is a
trend to use the UML for modeling the refined structure of the system. Matlab/Simulink®
is used to model the behavior of components, particularly if it is necessary to model
continuous or hybrid behavior like closed-loop controllers or signal processing. Already
today, commercial tools support this combination of UML and Simulink.

In principle, these models are already sufficient to generate executable code. Usually,
however, it is necessary to further refine / extend the models in the platform-specific
design in order to support the generation of efficient code for the target platform. In
relation to the MDA, the platform specific models are created in this phase. Examples for
these tasks are the transformation of the behavior models from floating-point to fix point
arithmetic or the integration of the generated application code to the platform. This task
covers issues like the connection of the application software to the I/O interfaces of the
platform (e.g., analog-digital-converters, digital I/O, communication busses etc.) as well
as the scheduling of the application code.

Although it is not possible to seamlessly cover the complete development lifecycle
using model-driven engineering paradigm, today, tool integration makes rapid progress

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 74/156

and particularly for the design phase the automated transformation from design models
to code is possible already today.

3.5. Model Driven Optimization

Often, model-driven engineering is reduced to a series of model-transformation
eventually leading to automatically generated code. In fact, however, using models has
many further advantages. As one of the most important advantages of models, they enable
and facilitate the analysis and simulation of systems already in very early design phases.
This approach is comparable to early model-based analyses and simulations as they are
used in mechanical engineering. For example, the wings of a new aircraft are modeled,
simulated, and optimized before the first wing prototype is actually built. By this means,
valuable time and cost can be saved. Comparable to the models used in mechanical
engineering, the software system models used for early design evaluations abstract from
the actual implementation but preserve the relevant characteristics of the system. Often,
early evaluations are based on specifications, i.e. they do not measure the concrete quality
properties the systems will finally have, but they rather provide a prognosis on the
probable quality the system can have if its implementation will follow the given
specification. Therefore, such simulations are not used to verify the systems’
implementation but they are used to validate their specification prior to its cost-intensive
and time-consuming implementation.

Usually, embedded systems must be optimized with respect to various different, often
conflicting quality properties. In the context of a model-driven engineering process,
developers do therefore not only define models concerning the actual behavior, but
additional models specify the systems’ (intended) timing behavior or safety models can
be integrated in order to systematically reason about the systems’ safety. In combination
with the existing design models, this enables the early automated analysis and
optimization of systems. As shown in Figure 3-9, the formal syntax of models and the
semantics of the underlying models of computation are used to perform automated
analyses and simulations in order to determine or to anticipate relevant system properties.
Based on these properties, engineers can evaluate the system’s quality with respect to
different quality properties in order to identify the system’s weak spots. Those build the
basis for the subsequent optimization step.

In principle, a model-driven optimization makes use of the primary advantage of
models: Since models use more abstract specification concepts of the application domain,
it is possible to yield formally specified, executable system specifications, which facilitate
the early analysis and simulation, very early in the development process. Certainly such
models still abstract from many implementation details. For many optimization goals,
however, they sufficiently preserve the relevant characteristics. To this end it is however
reasonable to choose or extend the modeling language in order to facilitate the modeling
of important characteristics.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 75/156

Modeling

Optimization Simulation / Analysis

Evaluation

Figure 3-9 Principle Lifecycle of a model-driven optimization process

An example of a model-driven optimization is shown in Figure 3-10. Two models are
used. One model defines the E/E-architecture of an aircraft (top-left) including the
computers’ geometric positions within the aircraft. A second model specifies the available
functions that are realized by software including interface requirements (e.g. access to
certain sensors, peripherals, memory, CPU-performance etc.). It is now a typical design
task to deploy these functions, i.e. to assign them to available computers with the goal to
optimize different properties like cost, weight, timing, safety and reliability etc. In order
to support this design decision, a model-driven optimization approach takes these two
models as input and generates for example an ILP (integer linear programming)-
formulation that can be used as input for an ILP-solver in order to identify an optimal
deployment.

Usually, however, this is no fully automated step. In fact, the developers define certain
constraints (e.g. due to an independence that is required from a safety perspective). Then,
the optimizer provides a first solution. Developers take this solution and adopt and extend
their models and constraints and start the optimizer again. Using such an iterative
approach, the design space exploration can be significantly simplified and important
decisions in early development phases can be based upon sound evidence. The
developers’ experience is very valuable and therefore included in such an iterative
process. But due to the immense complexity of such optimization problems, only relying
on experience often leads to costly wrong decisions.

Fundamentals of Model-Driven Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 76/156

Figure 3-10 Example: Use of models as decision support for deployment optimization

Actually, using models for optimizations is the primary use case of models at runtime
as we want to use it for runtime safety assurance: Since system qualities heavily depend
on the system’s runtime context, an appropriate anticipation of the latter is indispensable
for reasonable optimizations. For open adaptive systems, however, it is almost impossible
to predict the runtime context with a sufficient precision. It is therefore the idea of models
at runtime to shift models to runtime so that the optimization can take place at runtime
when the concrete context is known. The runtime safety assurance framework described
in the subsequent chapters applies this idea to the use of safety models at runtime in order
to optimize the available system functionality without violating any safety goal.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 77/156

4. Model-Driven Safety Engineering

The complexity of embedded software systems is rapidly increasing. Since most
embedded systems are used to implement safety related functionalities, this trend also
affects the safety assurance of these systems. In practice this means that safety engineers
have hardly a chance to assure the systems’ safety with the required rigor in the time
given. In spite of the increasing complexity, the available resources for safety assurance
are not increased. In fact, the resources for safety engineering are even step wisely
reduced in some application domains. In consequence, the efficiency of safety assurance
approaches must be improved.

In order to manage the rapidly increasing development complexity, model-driven
engineering has emerged as a new paradigm for embedded systems development. In the
same way, by creating model-driven safety engineering approaches, we aim at a reduction
of the complexity of safety assurance and therefore to increase the efficiency of safety
engineering. It is the idea to profit from the same benefits of model-driven engineering,
where

 full modularity,

 more abstract, intuitive, and expressive graphical notations, and

 a sufficient formality to support automation

significantly improved the development efficiency. To this end, safety assurance
approaches are set-up based on the principles of model-driven engineering. Though there
might be different approaches to improve the efficiency of safety assurance, model-driven
safety engineering has the invaluable advantage to be seamlessly integrated into model-
driven development approaches, which are more and more used for the development of
embedded systems.

As regards the safety assurance of open systems of systems, advancing conventional
safety assurance towards model-driven safety assurance has two main advantages. First
of all, models provide a sufficiently formal means to represent safety-relevant
information. Second, model-driven safety assurance is based up on modular assurance
concepts, which are essential for integrating safety assurance with modular development
approaches. Therefore, modular safety models provide a sound starting point for the
runtime composition of single systems to systems of systems. Model-driven safety
assurance does not only improve the efficiency of assuring the safety of conventional
systems. But is particularly a very important intermediate step towards the safety
assurance of open adaptive systems using safety models at runtime as they will be
described in the subsequent chapter.

For these reasons, this chapter introduces model-driven safety engineering. To this end,
section 4.1 first gives an overview on the current status quo, analyzes the problems, and
shows how we try to use model-driven safety engineering approaches to address these
problems. Section 4.2 introduces basic fundamentals of model-driven safety assurance,

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 78/156

before Sections 4.3 and 4.4 introduce our approaches for model-driven safety analyses
and safety concepts, respectively.

4.1. Motivation

Before we introduce the main principles of model-driven safety engineering and our
concrete approaches, this section describes the big picture of model-driven safety
engineering. To this end, we analyze the current challenges and show how model-driven
safety engineering can provide appropriate solutions.

4.1.1. Problem Analysis

If we regard the status quo today, the systems’ complexity is a major challenge for
safety engineers in practice. In order to solve this problem, practitioners see a huge
potential in reusability. And indeed, most systems are not developed from the green field
but they are based upon already existing systems. Therefore, it is self-evident to think that
reusing available safety assurance artifacts from previous projects is a powerful leverage
to reduce the safety engineering effort. Reality, however, looks different: For example,
the effort that is required for the recertification of an avionics system after a modification
may be even higher than the certification effort that was needed for the original system
[52]. Considering that about 70% of the total development cost is allocated to verification
and certification illustrates the economical dimension of this challenge.

The reasons for this effect are manifold. In general, however, it is not surprising since
the approaches used for safety assurance like Fault Tree Analysis (FTA) or Failure Modes
and Effects Analysis (FMEA) still follow the basic principles that were developed for
non-software systems several decades ago. In consequence, they neither address the
specific characteristics of software systems nor do they scale to the rapidly increasing
complexity.

We identified four main causes that make safety assurance inefficient and that impede
the efficient reuse of safety assurance artifacts:

(1) Inappropriate Architecture
In practice, a main reason for complexity can be found in inappropriate system
architectures. Often developers complain that their systems would be too complex
to apply safety analysis or quality assurance techniques with the required rigor.
Regarding the architecture of real world systems, however, they often look like the
example shown in Figure 4-1, which was created by reverse engineering source
code of an automotive system. For obvious reasons, it is hardly possible to perform
any kind of analysis or modification in such a system. Therefore, the first reason of
complexity is rather the system architecture than the complexity of safety assurance
approaches. And it is important to note that no safety assurance approach can
compensate a bad system architecture.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 79/156

Figure 4-1 Architecture of one out of 20 sub-systems of a real-world embedded system.

(2) Modularity
But even if we assume there was a sound, modifiable and extendable architecture
available, the essential modularity of this architecture could not be represented in
traditional safety assurance approaches. For example, neither conventional Fault
Trees Analyses nor Failure Modes and Effects Analyses support modularity.
Traditional safety analyses, for example, only consider one-dimensional error
propagation paths, which is a valid assumption for mechanical systems, where a
fault of a sub system propagates to the superordinate system. Regarding electronic
or software-systems, errors propagate along data paths (e.g., erroneous signals),
hardware resources (e.g., shared busses, memory etc.), or physical interactions
(e.g., temperature, radiation etc.). The resulting error propagation is multi-
dimensional: from sub components to super components, along the signal path
between components at the same hierarchy level, between hardware and software,
or between the system and its physical environment etc. When this n-dimensional
problem is mapped to a one-dimensional safety analysis approach, it is not possible
to modularly define all safety aspects that are related to one system component.

(3) Misalignment between Architecture and Safety Artifacts
For the reasons mentioned above, missing modularity leads to a misalignment
between system architecture on the one hand and the structure of safety assurance
artifacts on the other hand. For example, the faults of a single component can be
scattered to several sub trees of a fault tree. In consequence, major parts of a safety
analysis can be affected even though only a single component in the system
architecture is modified. This problem becomes even worse, since not only safety
analyses, but also all other safety artifacts like safety concepts and safety cases are
affected. Identifying all required changes of safety artifacts therefore becomes a
very time-consuming and error-prone task.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 80/156

(4) Decoupled Design and Safety Assurance Approaches
This problem is even further aggravated since design and safety assurance are
decoupled approaches. Safety engineering artifacts are created in a manual process
based on design artifacts like system requirements or architecture. But there is no
formal link between them. In consequence, even smallest changes in the design
artifacts cause inconsistencies and therefore invalidate the related safety artifacts.
In consequence, all of the steps of an impact analysis must be performed manually.
And even worse, many inconsistencies are not even detected directly since there is
no means to check the consistency automatically. And developers are often not
aware that their modifications have an impact on safety so that the safety engineers
are not even informed in the case of seemingly minor modifications. The later the
inconsistencies are detected in the development lifecycle, the more effort is caused
by their correction.

4.1.2. Advantages of Model-Driven Safety Engineering

In order to address these challenges, we applied the idea of the model-driven
development paradigm to safety assurance models, namely safety analyses, safety
concepts, and safety cases. To this end, all safety artifacts are represented as models in a
semi-formal way as it is done in model-driven development. This means that the modeling
notation follows a meta-model that formally defines the syntax of the models whereas the
semantics is defined using informal text. But nonetheless different analysis and model-
transformation algorithms can be implemented to unambiguously realize the semantics in
the same way as for example code generators are used to formally implement the informal
semantics description in conventional model-driven development approaches.

Generally speaking, using model-driven safety engineering closes the gap between
design documents and safety documents in order to improve the alignment and the
coupling between design and safety assurance. Therefore, model-driven safety assurance
improves consistency, simplifies modifiability and reusability, and furthermore increases
the degree of automation by using additional information from the design models for
safety analyses.

In principle, model driven safety engineering provides several potential advantages,
which build upon each other:

Aligned Modularity

In the first step, it is necessary to provide sufficient concepts of modularity for the
safety engineering approaches, before the actual model-driven safety engineering
concepts can be used beneficially. It is however important to note that the modularity
must be aligned with the concepts of modularity as they are used in the system design in
order to improve the modifiability and reusability of the safety models. For example, if
the architecture is decomposed into components whose interface is defined by signal
ports, the decomposition of the safety models should follow the component structure as

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 81/156

well, and the interfaces of the modular safety models should be related to the components’
signal ports. As an example, Figure 4-2 shows how the concepts of modularity of model-
driven fault trees seamlessly follows the modularity of the system architecture. A single
safety model, in this case a modular fault tree, is seamlessly associated with the
component. In model-driven development, modular safety analyses are an integral part of
the component’s model-based specification. This one-to-one relationship significantly
improves the understandability of the relation between safety models and design models,
since all faults of the component are defined in its own single safety model.

Figure 4-2 Example of integrated safety models based on component fault trees

The self-evident this aspect might seem, the important it is to be considered since
different safety approaches support modularity but do not consider the alignment of safety
models with the system’s architecture. For example, safety case approaches like the goal
structuring notation GSN provide their own concepts of modularity [53]. The
modularization might however be based on the chain of argumentation. The resulting
safety case structure is modular but hardly shows similarities to the system structure.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 82/156

Therefore, this would again lead to a misalignment between architecture and safety
models with all the problems described earlier. Though using modular concepts, the
modifiability and reusability would hardly be improved.

Traceability

Aligned modularity is a prerequisite for simplified modifiability and improved reuse.
Without the latter, an isolated change in the system may easily impact major parts of the
safety assurance models. In order to improve the modifiability of the system, it is
additionally important to have an efficient means to identify all parts of the safety models
that are impacted by system modifications. This is a major advantage of model-driven
safety engineering since a sufficiently formal integration of safety models and design
models enables intelligent traceability links. Therefore, model-driven safety engineering
as an integrated ingredient of model-driven development provides the ideal basis to
efficiently realize complete traceability.

For example, the safety models and design models shown in Figure 4-2 are based upon
the same meta-model and refer to the same modeling elements. Thus, they formally refer
to the very same ports of a component. Based on this formal link, a change of the
component’s interface automatically affects the safety model, as well, and inconsistencies
can be detected and partially removed automatically.

As a further example,

Figure 4-3 shows how the model-driven integration of different safety models and
design models enables a seamless traceability based on our model-driven safety analysis

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 83/156

tool iSafE [64]. The safety requirements defined in a safety concept are formally linked
to the failure modes that are covered by the requirement as well as to the architectural
elements like components, ports, or signals they are referring to. By this means, the
impact of changes in the architecture on the safety models can be identified automatically.
In the same way, it is possible to identify modifications of the architecture that are
required to implement the requirements. Furthermore, it is, for example, much easier to
analyze the completeness of the safety requirements with respect to the failure modes that
need to be addressed.

Levels of Reusability

Aligned modularity and traceability are prerequisites for reusability. Modularity
provides the basis to define self-contained reusable entities. If the safety models are
aligned with the architecture, reusing a component means that its safety models are reused
automatically, as well. All safety-related information concerning this component is a
seamlessly integrated part of the component’s specification and can be reused much more
easily than separated safety information that is scattered across various unlinked
documents. Additionally, it must be easily possible to check whether or not reused safety
artifacts are still valid in a new context. To this end, traceability is required. Simple traces
enable checks, whether or not all components or signals that are required to implement
the reused safety measure are still available in the new system.

Figure 4-3 Seamless integration between different safety and design models

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 84/156

Reusing components and their associated safety models is however only one of
different possible levels of reusability that are supported by model-driven safety
engineering. In addition to reusing components, it is also possible to reuse more generic
knowledge and parts of the safety assurance as additional advantages of model-driven
safety assurance:

For example, the concrete structure of a system often varies from one product to another
one, but the relevant signals like the vehicle speed or the lateral acceleration are very
stable within a specific domain like vehicle dynamics. Therefore, all the safety-related
information concerning these signals is reusable. Such information may include failure
modes and possible error detection or handling mechanisms including an argument why
those measures are appropriate for the given failure mode. Such information can be reused
for semi-automatically generating safety analyses and even safety concepts. Independent
from the concrete structure of the component that creates or uses this signal, it is very
likely that its safety model has to identify the failure modes of this signal, which can then
be reused in order to speed up the process and to enhance the completeness, since the
knowledge about potential failure modes increases with each and every product. In
addition, it is very likely that the knowledge about possible counter measures for the
different failure modes can be reused including potentially available assurance cases for
the counter measure.

As a further aspect, counter measures such as the three-layer monitoring architecture
‘e-gas’, as it is often used in the automotive industry, usually affect a series of
components. From an architectural point of view, such counter measures can be reused in
form of design patterns. With extending model-driven engineering approaches to safety,
also the concept of patterns can be extended accordingly. This means that it is not only
possible to reuse a typical measure in form of a pattern to modify the architecture, but the
pattern can also define the according modifications of related safety models. For example,
applying an e-gas pattern would then not only modify the architecture, but it could also
modify the corresponding safety analyses in order to include the measure, and it could be
used to modify the safety concept / safety case, including already available evidences why
the e-gas pattern is appropriate to handle a given set of failure mode types.

As a further extension, so-called aspects have gained importance over the last decade.
Comparable to patterns, aspects can be used to specify typical, reusable system behavior
that is scattered to different components. A typical example is application level
communication protocols that are centrally defined as an aspect, which is then
automatically weaved at certain joint points into the system. This means that at every part
of the system where signals with specific characteristics are sent or received, the protocol-
relevant behavior is integrated automatically. By this means, a cross-cutting aspect like a
protocol can be easily modified and reused although its implementation is scattered across
different components of the system. Again, this concept can be extended to safety. For
example, such mechanisms could be used to model application-level end-to-end
communication protocols that ensure a safe communication over untrusted

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 85/156

communication stacks and media as it is done in the AUTOSAR technical safety concept.
The aspect will then not only change the system, but it will also be included at all relevant
places in the safety analysis models as a counter measure for communication errors. It is
then only necessary to model the aspect once in a safety concept as a counter measure for
communication problems and it is automatically applied to all untrusted communication
channels.

As these examples show, only reusing components including their associated safety
models would by far not tap the full potential of model-driven safety engineering. Instead,
it is possible to reuse more generic, partially domain-specific but application-independent
know-how, which is robust with respect to structural changes of the system. Regarding
practice, reusing a lot of knowledge from previous projects does not necessarily lead to
similar architectures. As the examples described above show, it is possible to efficiently
reuse valuable safety know-how, even though not a single component would be reused
unchanged in a new product context. If we, for example, regard the safety concept of a
sunroof, the clamping protection has many similarities with that of a power window.
Although the architecture of the two systems might look completely different, the failure
modes are comparable and can be reused. In the same way the patterns that have been
used to assure a clamping protection can be reused and applied to the new architecture.
In addition to the knowledge about the pattern as such, for example, all available safety
assurance documents can be reused for the safety case, as well.

Automation

All of the advantages described above already increase the efficiency of safety
engineering if they are used manually. The main potential, however, lies in the automation
of many activities based on the formality of the models. For example, if safety analysis
models are given for single components, the resulting analysis model for the overall
system can be automatically composed using the design structure as it is defined in the
architecture models. Therefore, a manual specification of the system’s structure and a
network of functions as it has to be done in current FMEA tools, is not required. This
information is already defined in design models and can be reused automatically. This
example illustrates a main principle of model-driven development: The formality of
models in combination with automation ensures that all information that has been defined
once is automatically and thus efficiently reused wherever it is required. This approach
reduces effort, but also avoids inconsistencies. As another example, consistency checks
or impact analyses can be automated in order to increase the efficiency and to improve
the model quality.

Particularly regarding the different levels of reuse, automation provides a leverage to
significantly improve efficiency. The validity of reusing a component or even the
identification of reusable components can be automated. Based on safety-related
information about signal types, different parts of safety analyses can be generated
automatically. And for obvious reasons, the automation of safety pattern applications or
the weaving of safety aspects significantly reduces the required effort.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 86/156

As regards the safety assurance of open adaptive systems, all of these aspects are of
relevance. Of particular importance are the increased degree of formalization enabling an
interpretation of the models at runtime as well as the supported modularity, which is an
indispensable ingredient enabling runtime safety assurance.

4.2. Safety Modelling

As illustrated in the previous section, model-driven safety engineering provides a series
of advantages. The basis for increasing the efficiency lies in the aligned modularity of the
safety models as well as the seamless integration into a model-driven development
approach. Therefore, this section provides some general information on how we achieve
modular safety assurance, and it introduces the fundamental ideas of meta-modeling as
they are required for model-driven safety engineering.

4.2.1. Modular Safety Assurance

The idea of modular development is an established key principle in software and
systems engineering. Therefore, modular safety assurance can be based upon the basic
principles of component based development, which is the most recent and most advanced
approach towards modular embedded software and systems engineering.

Regarding component based software development as a basis, a software component
can be defined as ‘a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed
independently and is subject to composition by third parties.’ [54].

This definition points out different important characteristics of a component. The first
important characteristic is that a component must have contractually specified interfaces.
This means that it must be completely and formally specified which services are provided
and which services are required by the component. For example, using pre- and post-
conditions, a contract defines what is required by a component and what the component
provides if all of the defined preconditions are fulfilled. These pre-conditions may include
required input data, but also further (non-functional) requirements such as the required
quality and timing properties of the data used, required memory, CPU-time, special I/Os,
or temperature requirements. In this context, it is very important that a component has
explicit context dependencies only. This means that a component must only interact with
the usage context using the explicitly defined interfaces. Unspecified side effects, for
example caused by communication mechanisms like global variables or shared memory,
are not allowed.

As a further important property, a component can be deployed independently. This
means a component is a completely independent sub system that can be developed
(completely) independently without knowing anything about the usage context except for
the information that is given in the interface specification. Consequently, a component
can be deployed as a standalone product with all binaries and documents that are required

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 87/156

to integrate the component into a system. Since a component is subject to composition by
third parties, it must be defined in such way that it can be integrated into a system without
knowing anything about its internal realization except for the information given in the
component’s interface specification.

In order to enable modular safety assurance, the same principle ideas can be adopted
for safety assurance approaches. According to the ideas of component based
development, modular safety assurance means that it must be possible to completely
assure a components safety without knowing anything else about the usage context than
the information that is specified in the component’s interface. This characteristic is crucial
to preserve the component’s modularity since any specific relations on the context that
go beyond its interface creates a context dependency, which means a violation of the
principle of modularity. Moreover, it must be possible to include the component’s safety
assurance artifacts in the safety assurance case of a superordinate system without
requiring any internal white box information about the component. As soon as it is
necessary to understand the component’s internals in detail, the intended complexity
reduction would be impeded. And it would become difficult for a component supplier to
protect its intellectual property.

Interfaces

 For these reasons, interfaces are a central element of modularity. In general, an
interface should define which types of information are required and provided by a
component, respectively. To this end, type systems are used to unambiguously define the
components’ interface, for example, by defining the service types that are required and
provided by a component, respectively. For software components it is not sufficient to
define which kind of information is exchanged, but also how this information is
exchanged. To this end, it is for example possible to define so-called protocol automata
or sequence charts, which specify the protocols, e.g., the sequence of signals, that must
be implemented to use the component. As a simple example, such automata could specify
that the component requires its input data periodically in specific constant periods.

Applied to safety assurance this means that it is necessary to extend existing type
systems with safety specific information. Considering safety analyses and safety
requirements as the mostly used safety artifacts, there must be according interface
specifications for both of these artifacts.

For safety analyses, we do this by specifying the possible failure modes of the data that
is exchanged between components. If, for example, the functional interface of a
component is defined using ports that send or receive signals of a certain type, these
signals types can be analyzed in order to identify potential failure modes of the signals.
By this means, it is for example possible to automatically connect modular safety
analyses, if the components’ modular safety models are based upon the same failure type
system. This is a very efficient approach, since the failure modes have to be defined only

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 88/156

once for a domain when the signal type system is defined.
Usually this can be done using existing safety analysis techniques like HAZOP
guidewords. As the types should be valid independently from the implementation of the
algorithm providing the signals, the analysis can be performed without knowing anything
about the component’s implementation. Once the failure modes of the signal types are
defined, they provide a very efficient means to specify safety interfaces in a sufficiently
formal means. The failure modes can then be used to extend the signal types, facilitating
an efficient composition of modular safety models since type checks are quite easy to
realize but nonetheless allow for unambiguous compliance checks.

In order to extend this idea to modular safety concepts, i.e. to safety requirements, it is
necessary to define a kind of unambiguous safety requirement types in order to specify
which safety requirements are required, i.e. demanded by the component, and which
safety requirements are provided, i.e. guaranteed by the component. Though this is a
difficult challenge for requirements in general, a straight forward solution for safety
requirements can be derived from the failure modes: For example, the requirements can
be typed as detection or mitigation of specific failure modes. If this is not sufficient, it is
possible to define acceptable counter measures for the signals’ failure modes. In the same
way as the signal failure modes can be derived independently from a component’s
implementation, it is also possible to identify potential counter measures independently
from a component’s realization. The signal failure mode types can then be extended by
appropriate counter measures. It is then sufficient to reference the according counter
measure types in a requirement in order to demand or guarantee its implementation. By
this means, even complex requirements can be reduced to types. And checking the
compliance of requirements can be reduced to type checks.

In contrast to functional interfaces, it is usually not necessary to extend such a type-
based interface with something comparable to protocol automata. Requiring and
providing safety requirements is purely static and temporal sequences of requirement
fulfilment are not considered in practice. The same is true for safety analyses, since
mostly time-independent analyses like fault trees or FMEAs are used in practice, whereas
analyses like stochastic petri nets, which can be used to model temporal dependencies,
are hardly found in practice.

This basic idea of safety interfaces will be seized again in Sections 4.3 and 4.4 in order
to explain its concrete realization for safety analyses and safety concepts, respectively.

Mapping

In addition to the pure interface of a component, it is necessary to have a basic
understanding from a black box point of view of how the component’s outputs depend on
its inputs. In system and software engineering, this is nothing else than a black box
behavior specification of the component. For safety engineering this means that we must
define a mapping from input failure modes to output failure modes, and from safety
requirements that are required, i.e. demanded by the component, to safety requirements

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 89/156

that are provided, i.e. guaranteed by the component. In order to support heterogeneous
safety models, this mapping should abstract from concrete safety models that are used
internally within the component. To this end, it is important to choose a mapping that is
expressive enough so that all relevant safety models can be easily transformed into this
general mapping specification.

As regards safety analyses, the mapping specification therefore depends on the required
expressiveness. As long as it is not necessary to consider the temporal order of events,
quite simple mappings are sufficient. For example, minimal cut sets are an efficient and
sufficient means to define which input failure modes and which internal failure modes
lead to which output failure modes. Besides the qualitative dependencies, cut sets can also
be used to quantitatively calculate the failure probability distributions of the output failure
modes based on the probabilities of the input and internal failure modes. All time-
independent analysis techniques like FTA and FMEA can be easily transformed into a
cut set notation. If temporal dependencies shall be considered, it is necessary to use more
expressive notations like generalized stochastic petri nets (GSPNs) [55]. This aspect will
be discussed in more detail in Section 4.3.

While the typical mappings are quite well established for safety analyses, there are no
established approaches for the mapping of requirements available. Nonetheless, we
defined first concepts, which could be understood as ‘positive trees’, i.e. they are
comparable to fault trees with the difference that they do not consider faults and their
consequences, but they consider the success case. By this means it is possible to model
which combination of demands must be fulfilled so that a guarantee will be fulfilled
[65][66][67][68]. This aspect will be discussed in more detail in Section 4.4.

4.2.2. Meta-modeling

As described in more detail in the previous chapter, meta models are one of the core
foundations of model-driven development. Just like grammars are used to define new
programming languages, meta-models are the basis to define new modeling languages.
To this end, they define the syntax of the language, i.e. which modeling elements can be
defined and how the single modeling elements can be connected. In addition, it is essential
to define the language’s semantics. This means that it must be defined how the system
will behave based on the model-based specification. The semantics is therefore the
indispensable basis for automated analyses and transformations based on the models.
Formal languages define the semantics using formal specification techniques, which
provide the basis for sophisticated analyses like formal proofs. In practice, so-called semi-
formal modeling languages like the UML are more widely used. In this case, the syntax
is formally defined, whereas the semantics is unambiguously described but not formally
specified. Nonetheless, the semantics is eventually implemented in model
transformations (e.g., code generators) and model-based analyses. Usually this leads to a
sufficiently formal realization of the semantics from a practical point of view.

Syntax of Safety Models

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 90/156

In order to integrate safety models into a model-driven development approach, it is
therefore indispensable to extend the underlying modeling language. To this end, the
modeling elements that are required for specifying safety artifacts must be integrated into
the underlying meta model.

In order to illustrate this aspect, Figure 4-4 shows exemplarily the integration of model-
based fault trees into the meta-model of an UML-based modeling approach. The
underlying modeling approach provides modeling elements to model components, to
specify the components’ interfaces using ports, and to define the interaction of
components using connections between ports. In order to be able to model failure modes
that can occur at certain ports, this modeling element must be extended in the meta-model
as it is shown in Figure 4-4.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 91/156

Figure 4-4 Meta-Model Integration of Design Models and Safety Models

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 92/156

Semantics of Safety Models

Additionally, it is important to define the semantics. For safety analyses this is often
possible quite easily since model-driven safety analysis approaches are based upon
existing analysis techniques like fault trees. Since the semantics of the analysis techniques
is usually mathematically and thus formally described, it is sufficient to specify a mapping
between the modeling elements and the corresponding concepts of the existing analysis
approach. If no new concepts are introduced in the modeling language, this step is usually
quite straight forward. For example, the modeling element ‘BasicEvent’ in the meta-
model of a model-driven fault tree can be directly mapped to the established
(mathematical) meaning of a basic event in fault tree analysis. If new modeling elements
are introduced, like for example failure ports in component fault trees, it is necessary to
extend this semantics. To this end, it is reasonable to describe the semantics by extending
the underlying mathematical analysis model. For example, the mathematical semantics
of component fault trees including the port concept is described mathematically in [27].
Knowing the semantics is very important for safety engineers. Otherwise they would not
be able to ensure that the safety models actually express the intended meaning of the
modeler. For obvious reasons, the semantics is even more important for engineers who
would like to extend the model-driven safety engineering approach with their own
analyses or generators.

As regards safety concepts, it is a little bit more difficult to express their semantics in
a sufficiently formal way, since no established underlying formalisms exist. As described
in the previous section, it is however possible to define the semantics of safety concept
interfaces based on extended type systems. As regards the mapping, it is often based upon
a simple logical mapping between demanded and guaranteed requirements comparable to
fault trees. In this case, the semantics of the mappings could be defined using predicates.
Obviously, it is often not necessary to use highly sophisticated and thus complex
formalisms, but rather simple solutions are often sufficient and even more
recommendable.

4.3. Model Driven Safety Analyses

In order to realize model-driven safety analyses, it is first necessary to understand the
basic principle of modularizing safety analyses. Today, most of the available modular
safety analysis approaches follow the idea of failure logic modeling as it is introduced in
sub section 4.3.1. As a concrete implementation, sub section 4.3.2 briefly introduces our
model-driven safety analysis approaches.

4.3.1. Failure Logic Modeling

Aligned modularity is a key to model-driven safety analyses. Conventional safety
analyses such as fault tree analyses or failure modes and effects analyses are not modular
by default. Conventional fault trees, for example, are real trees and therefore only allow

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 93/156

for defining sub trees, but no real modules are supported that could be assigned to
architectural components.

In order to ensure the alignment of the modularity used in design and safety, the
modularization concepts used for the safety models should be similar to those used in
development. Regarding typical modeling approaches for embedded systems, they follow
an actor-oriented development approach [56]. Superficially explained this means that
different concurrently executed components (called actors) are modelled, whose
interfaces are defined using ports and who communicate with each other using
connections between the ports. In other words, this means that modularity is achieved by
port based interfaces, and the composition is realized by connecting the ports.

A similar concept for modularizing safety models can be found in failure logic
modeling [69]. Based on failure logic modeling (FLM) we define a general concept for
modular safety analyses as it is shown in Figure 4-5. A modular analysis model defines
how failure modes at a component’s input interface in combination with failure modes
inside the component propagate to failure modes at the component’s output interface. In
principle, the interface can include any kind of interaction between a component and its
context. Besides the functional interactions such as the exchange of signals, this might
also include physical aspects such as heat, radiation, or power consumption.

Figure 4-5 Principle Idea of Modular Safety Analysis Modeling

In a simplified understanding, a modular safety analysis model can be seen as a tuple

ܯܣܵܯ ൌ 〈Φ௜,Φ௖,Φ௢,ܯ〉

with

Φ௜ ∈ Φ:set	of	input	failure	modes
Φ௖ ∈ Φ:set	of	internal	failure	modes
Φ௢ ∈ Φ:set	of	output	failure	modes

Φ: set	failure	types	
Φ௜:ܯ ൈ	Φ௖ ↦ 	Φ௢

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 94/156

For each component, a set of input failure modes Φ௜, a set of internal failure modes Φ௖,
and a set of output failure modes Φ௢ must be defined. In order to ensure the composability
of two components, it is necessary to type the failure modes. This means that in contrast
to traditional analyses, it is not sufficient to simply define failure modes using a string,
but all failure modes must have a type. Otherwise, it would not be possible to
unambiguously map the output failure modes of one component to the input failure modes
of a connected component. In consequence this means that at least the modular safety
analysis models of each pair of connected components must be based upon the same set
of failure types Φ.

In order to define the failure propagation inside the component, it is necessary to define
a mapping M, which specifies how input and internal failure modes are mapped to output
failure modes.

In principle, any modular safety analysis approach follows this idea and defines specific
realizations for the single elements of the tuple. This means that any modular safety
analysis approach must provide a means to specify

 a failure type system
 typed input failure modes
 (typed) internal failure modes
 typed output failure modes
 a mapping between input/internal failure modes and output failures modes.

The first modular approaches such as the failure propagation and transformation
notation (FPTN) [70] introduced new notations for defining failure modes and the
mapping between them. Therefore, they are hardly found in practice, today.
Papadopoulos et al. introduced the Hierarchically Performed Hazard Origin and
Propagation Studies (HiP-HOPS) in [203]. HiP-HOPS have been the basis of the error
annex of EAST-ADL. Based on EAST-HDL, HiP-HOPS have also been integrated into
model-driven tool chains. HiP-HOPS play an important role in research and industry. A
further approach was introduced by Hawkins and McDermid for object oriented systems,
which is based on contracts for modular safety analyses [204].

In practice, more established analysis approaches have gained more importance. For
example, the fault tree analysis has been advanced to a modular approach by the
introduction of component fault trees (CFT) [26], as it will be introduced in more detail
in Section 4.3.2. Analogously we extended the failure modes and effects analysis (FMEA)
following the idea of modular safety analysis modeling.

4.3.2. Safety Analysis Meta-Models

In order to realize a model-driven modular safety analysis model, it is necessary to
define a meta-model, which specifies a modeling language, a safety engineer can use to
model the failure mode propagation. The first modular safety analysis approaches used
their own notation and have not found acceptance in practice. Established approaches like

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 95/156

fault tree analyses or failure modes and effects analysis on the other hand did not provide
sufficient concepts of modularity. With the introduction of component fault trees (CFT)
[26] by Kaiser et al., fault trees as an established safety analysis approach had been
extended by a sufficient concept of modularity. Component fault trees were further
matured and a sound underlying mathematical concept was defined [27]. Component fault
trees provided the means to model them following the systems’ structure. But they were
still defined independently from architecture models. Moreover, CFTs did not support
failure type systems. Therefore, we have extended the concept in order to seamlessly
integrate it into a component-based development approach: Component-Integrated
Component Fault Trees C²FT [57][58][59]. In order to particularly support the analysis
of software-based systems, we further extended the concept by a semi-quantitative
analysis approach based on second-order-probabilities [60]. As a further step towards
model-driven safety analysis, we seamlessly integrated C²FTs as a profile into the UML
[61]. We then integrated C²FTs into a standardized approach for the model-based
engineering of embedded systems [62].

In practice, however, different analysis techniques are used for safety engineering.
Therefore, we defined an approach enabling the combination of different established
safety analysis approaches, namely fault tree analyses and failure modes and effects
analyses as it will be described in this thesis. This generalized approach will be briefly
introduced in the following.

Generic Failure Propagation Meta-Model

Particularly considering the modularization of development, it is quite likely that
different analysis techniques are combined within one system. While one component
might be analyzed using an FTA, another one might be analyzed using an FMEA.
Nonetheless, it should be possible to analyze the resulting overall failure propagation
throughout the overall system. Therefore, we defined an analysis framework facilitating
the combination of different analysis techniques.

To this end, it is necessary to first define a generic failure propagation meta-model as
it is shown in Figure 4-6. This provides a generic abstraction from a concrete safety
analysis technique. If the meta-models of different analysis techniques like FTA and
FMEA are then derived from this common failure propagation model, they can be easily
combined in an integrated safety analysis.

In this meta-model, all model elements are derived from the base class
FpModelElement. A basic modeling element that is required in any failure propagation
model are failure modes, which are represented by BasicFailureMode. Moreover, this
basic meta-model defines that any FailurePropagationModel has to define
InputFailureModes as well as OutputFailureModes, which are specializations of a
generic super class InterfaceFailureMode.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 96/156

Figure 4-6 Failure Propagation Meta-Model

In fact, the failure propagation model represents a basic modular safety analysis model.
Following the idea described in the previous section, it defines a typed interface of input
and output failures modes. Basic failure modes provide the basis for internal failure
modes. In addition to the elements shown in Figure 4-6, a simple mapping based on
minimal cut sets is supported as a common basis for the different heterogeneous safety
analysis models.

Failure Type System

In order to connect different failure propagation models, it is necessary to ensure that
they have the same meaning of failure modes. To this end, we use a failure type system
providing a lightweight mechanism to formally specify failure modes [63]. Although
there are different approaches available, which aim at defining a common failure type
system including failure modes like omission, commission, too late, too early, etc.,
practice shows that failure modes are very system, component and signal-specific.
Therefore, it is important to enable safety engineers to define a failure mode type system
for a system, which lays the common basis for all modular failure propagation models.
The meta model of the failure mode type system we have defined is shown in Figure 4-7.
A FailureTypeSystem consists of a list of different FailureTypes, which are related to
each other as subTypes and superTypes.

Figure 4-7 Failure Type System Meta-model

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 97/156

An example is shown in Figure 4-8. The example shows a generic failure type
classification as it was defined by McDermid et al. [72]. Following this commonly
accepted classification, a failure type can be refined to timing failures, value failures, and
provision failures. Provision failures are refined to commission failures and omission
failures, respectively. As regards value failures, McDermid distinguishes between
magnitude failures and logical failures. The former is refined to ‘too high’ and ‘too low’
failure modes, respectively. The latter is refined to ‘false positive’ and ‘false negative’
failure modes, respectively. As regards timing failures, he defines the refined failure
modes ‘too early’ and ‘too late’.

Figure 4-8 Example of a failure type system

As mentioned before, this example is based on a generic failure classification scheme.
But many modular analysis approaches only allow to use such generic failure types.
Experience in practice, however, has shown that it is reasonable and often indispensable
to have more specific failure types. Nonetheless, this generic classification often provides
a good starting point for deriving product-specific failure type systems.

In fact, dedicated failures types contain a lot of reusable knowledge. As an example,
let us consider a wheel speed signal vWheel of a car. If we apply the generic failure type
system shown in Figure 4-8, the failure mode that the value is higher than it should be
would be represented by the failure type ‘too high’. There are, however, various different
reasons why the value can be too high, each of which requiring different counter measures
and being of a different criticality. For example, the value can be too high due to a sensor
failure. But since the wheel speed is measured based on rotation pulses, a wrong

Failure Type System of Failure Type System Diagram

«FailureType»
Commission

«FailureType»
Omission

«FailureType»
Prov ision Failure

«FailureType»
Too Low

«FailureType»
Too High

«FailureType»
Magnitude Failure

«FailureType»
False Negative

«FailureType»
False Positive

«FailureType»
Logical Failure

«FailureType»
Value Failure

«FailureType»
Too Late

«FailureType»
Too Early

«FailureType»
Timing Failure

«FailureType»
FailureType

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 98/156

calibration of the wheel’s diameter could also lead to too a high value of vWheel. A further
reason could be that the wheels are spinning, i.e. wheel slip, which is not an actual error,
but is a nominal result based on the limitations of the principle of measurement.
All of these failure modes require different counter measures. For sensor failures, a sensor
self-test can be used to check the sensor value, or a plausibility check using other wheel
speed values could be used to implement an error detection. As regards a wrong
estimation of the wheel’s diameter, however, this sensor check would be useless, since
even a correct sensor would nonetheless lead to a wrong value. Therefore, different
checks and recalibration algorithms are required to detect and potentially to correct wrong
diameter estimations. Lastly, spinning wheels are no real failure mode, but nonetheless
this situation causes too high a wheel speed value leading to similar effects in depending
components like a faulty signal. In this case, however, the actual functionality, i.e. the
nominal behavior must be adjusted instead of defining an error detection and handling
mechanism.
Explicitly defining these different failure modes in a type system with an according
explanation obviously contains a lot of valuable domain knowledge, which has been
gathered over years of experience in a series of safety analyses. It is hardly possible to
regain the same maturity of failure mode definitions in a simple safety analysis.
Therefore, it is very reasonable to explicitly define those failure modes in a type system.
Moreover, obviously completely different counter measures are required. Storing this
knowledge about appropriate counter measures is very valuable, as well. More
importantly, however, this shows that simply defining a failure type ‘too high’ is not
sufficient since it is not detailed enough to define an adequate counter measure. Nor is it
sufficient for implementing a check whether or not an implemented counter measure is
appropriate since, for example, a sensor check does not cover a wrong diameter
calibration. Moreover, a failure type check based on a simple type such as ‘too high’
easily leads to wrong results. While, for example, the analyst of the providing components
thinks of a calibration problem, when defining a ‘too high’ failure, the analyst of the
consuming component might consider the same failure type being a sensor failure. As a
consequence, the safety analysis models would be inconsistent to each other and their
composition would lead to wrong analysis results.

Even this very simple example shows, why we believe that defining dedicated type
systems is not only reasonable in the sense of storing valuable and reusable domain
knowledge. But that it is particularly necessary to avoid wrong analysis results if
independent modular safety analysis models are composed based on the failure type
systems. For this reason, failure type models play an essential role in modular safety
analysis approaches.

Structural Propagation Meta-Model

In order to enable an aligned modularity supporting heterogeneous analysis models, it
is necessary to provide some generic representation of the structure as part of the safety
meta-model. Usually, the structure follows the structure of the architecture of the

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 99/156

analyzed system. But the interfaces of the structural elements do not represent the data
interface, but the failure mode interface of the single components. This is necessary, since
a signal usually has more than one failure mode. And in order to compose the modular
safety analysis models, it is necessary to have the possibility to unambiguously connect
the single failure modes. Figure 4-9 shows the structural propagation meta-model as we
defined it for supporting general structural failure propagation models.

Figure 4-9 Structural Propagation Meta-Model

All elements of a structural propagation model are derived from the basic class
SPModelElement. A component defined in a structural propagation model is nothing else
than a special failure propagation model. Therefore, the meta-model element
SPComponent is derived from FailurePropagationModel, which was defined before.
Each SPComponent contains an instance of another failure propagation model
(FailureModelInstance), which could be another structural propagation model in case the
component is structurally refined. Or it could be another propagation model like an FTA
or an FMEA. The interfaces are defined using FailurePorts, which are specialized to
FailureOutports and FailureInports.

This generic structural failure propagation model is very important. Just like behavior
models are often only defined for the atomic components, i.e. components without sub
components, safety analyses are often also only defined for atomic components.
Nonetheless, the propagation obviously spans across all hierarchy levels. Structural
failure propagation models therefore provide the essential means facilitating aligned
modularity, i.e. a one-to-one relationship between architectural components on the one
hand and the structural elements used in the safety analysis model on the other hand.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 100/156

Figure 4-10 Example of a structural failure propagation model.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 101/156

Figure 4-10 shows an example of a structural failure propagation model. The upper part
of Figure 4-10 shows the logical architecture of a control system of an electric drive drain
consisting of six connected components. The lower part of Figure 4-10 shows the failure
propagation model. Each component of the architecture is represented by one structural
failure propagation component. Instead of signal ports, however, the interfaces in the
structural propagation model are defined by failure types propagating from one
component to another one.

At this level of the hierarchy, no failure propagation models like fault trees are defined
for the single components. Instead, it is sufficient to model the propagation following the
system structure. As a result, the structure of the safety analysis model is completely
aligned to the system structure defined in the architecture model.

Component Fault Tree Meta Model

Once the safety analysis has been refined to the lowest level of the hierarchy that ought
to be considered, it is necessary to define a concrete modular safety analysis model for
modelling the failure propagation. It is, however, often not necessary that the analysis
model replicates all hierarchy levels of the architecture. In fact, it is often reasonable to
not further refine a component from a safety point view and to directly define the failure
propagation model even though the architectural component is further refined to sub
components.

Figure 4-11 Component Fault Trees and Fault trees Meta-Model

A very important concrete modular safety analysis model is component fault trees.
Figure 4-11 shows the meta model of component fault trees. In order to support
heterogeneous safety analysis models, they are defined as a specialized failure
propagation model. In fact, our meta model integrates the concept of basic fault trees,

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 102/156

which are used to model the failure propagation as such, with component fault trees,
which extend fault trees by the concept of failure mode interfaces and hierarchy.

The fault tree model as such is quite simple, since a fault tree mainly consists of
BasicEvents and Gates. All other required elements are inherited from the generic failure
propagation models. A ComponentFaultTree is then a specialization of a fault tree. A
component fault tree might contain SubCFTs in order to model hierarchical fault trees.
Since component fault trees additionally inherit all elements of a structural propagation
component (SPComponent), they also provide all concepts required to model input and
output failure modes.

Defining component fault trees as a specialization of conventional fault trees has
several advantages. Most importantly, converting component fault trees to conventional
fault trees prior to analysis opens a wide range of possibilities since already existing
analysis techniques can be easily adopted to model-driven fault trees without requiring a
modification of the analysis algorithm to modular component fault trees. Moreover, it is
then possible to export the models to established tools in order to run the analyses
provided by these tools. First, this increases the range of possible analyses. Second, and
more importantly, this enables the use of qualified analysis tools. Since safety analysis
results are used as evidences in safety cases, it is necessary to prove that the analysis
provides correct results. Such a proof is very difficult and requires a lot of effort. Using
existing proven-in-use tools therefore avoids this need for a proof, which is very
important for the practical application of model-driven safety analyses.

As an example, the lower part of Figure 4-12 shows the component fault tree of the
architectural component DriverController of a drivetrain control system. Component
fault trees are very similar to traditional fault trees, but there are two main differences.
First, a component fault tree can have several inputs and outputs, i.e. it may have several
top events. Second, C²FTs are seamlessly integrated into the architectural component.
This means that the fault tree is an inherent part of the component. If the component is
reused, its fault tree is reused as well. Furthermore, the input and output failure modes of
the C²FT are semantically and syntactically assigned to the according ports of the
architectural component. By this means, the failure propagation can be determined
automatically by using the system architecture. And it is possible to detect inconsistencies
automatically, for example, if ports are modified, added, or removed. Moreover, it
facilitates completeness checks, since it is for example possible to detect ports, which are
not considered in the failure model.

Even though the example is rather simple, it shows some typical aspects of modular
failure propagation models. Failure modes of the outputs depend on internal failures of
the component as well as on failures of the input signals. The component calculates a
phase current for controlling an electric motor. In this simplified example we use the
generic failure type system introduced before. Therefore, the most important failure mode
of the according output signal is ‘too_high’.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 103/156

Figure 4-12 Example of a component fault tree

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 104/156

This happens only, if there is a commission failure of the signal ‘DriverSupply’, i.e.,
the signal is received due to an error although it should not be received. Additionally, the
phase current calculation must be erroneous. This could happen if there is an internal
calculation error (‘Erroneous phase current computation’), or if the PWM input signal is
already ‘too high’.

These two branches of internal problems as well as external problems resulting from
faulty input values is a typical pattern found in almost any modular safety analysis models
as it was described before.

Failure Modes and Effects Analysis (FMEA) Meta-model

Besides fault trees, the failure modes and effects analysis (FMEA) is one of the most
widely used safety analysis techniques in practice. A conventional FMEA is not modular
since it is usually applied to a monolithic system design. For example, assume a system
with two components A and B and that A sends a signal to B. If we now analyze
component A using a conventional FMEA, we would first define a failure mode. If we
now define the effect of this failure mode, we would have a look at component B, since
B depends on a signal from A. More precisely, the effect defined for a failure mode in A,
would be a failure mode defined in component B. Vice versa, if we analyze the causes of
the failure mode in component B, we would identify the failure mode of A as one potential
cause. Therefore, the FMEA of A depends on the FMEA of B and vice versa. In
consequence, they cannot be modularly defined.

Figure 4-13 FMEA Meta-Model

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 105/156

Therefore, we first needed to modularize the FMEA in order to provide an FMEA
notation as modular safety analysis model. This result is shown in Figure 4-13. In the
same way as component fault trees, the FMEA is also realized as a failure propagation
model.

In principle, a modular FMEA contains the same elements as any FMEA, namely
FailureModes, Causes, Effects, and Measures. In a traditional FMEA, however, the effect
is related to a failure mode of a depending component (e.g., the super component) and the
cause is related to the failure mode of a used component (e.g., a sub component). As a
consequence, a conventional FMEA is not modular, but it strongly depends on the overall
system structure and the relationships between the single components. In order to
overcome this limitation, a modular FMEA only refers to elements of the analyzed
component. To this end, the cause is refined to an ExternalCause and an InternalCause.
The internal cause refers to a fault or error inside the analyzed component. The external
cause refers to an input failure mode, e.g., a failure mode of an input signal, and can thus
be specified based on the component’s interface without any knowledge about the
superordinate context. In the same way, we distinguish between a LocalEffect and a
GlobalEffect. The local effect relates to an output failure mode, e.g., a resulting failure
mode of an output signal. Again, this effect can be specified based on the component’s
local interface. The global effect is only informal text, which is not used for any formal
analysis, but it helps safety managers to document any ideas on additional effects that go
beyond the local interface (e.g. potential effects at system level, which can be cross-
checked during the system level analysis).

As an additional aspect, a Measure is not informally defined as in a conventional
FMEA. Instead, it must be assigned to the element it addresses, i.e., a measure may
address a single cause, the failure mode as such, or one of its effects. This is necessary
for determining the failure propagation model. By this means, such a modular FMEA can
be easily translated into a fault tree following a simple worst case estimation. The effects
form the top events of the fault tree. All failure modes of an effect are combined in an or-
gate, since a single failure mode is sufficient to cause the effect. In the same way, all
causes of a failure mode are connected using an or-gate. Only the measures are connected
using an and-gate.

As an example Figure 4-14 shows the graphical representation of a modular, model-
driven FMEA. Causes, failure modes, effects, and measures are assigned to different
compartments in order to keep a clear structure. As mentioned above, the measures are
assigned to the element they address. For example, the PlausibilityCheck detects all
possible erroneous calculations independently from the cause, whereas the
InputGradientCheck only detects errors in the input PhaseCurrents, i.e. it covers only a
single cause of the failure mode. In the same way as component fault trees, the input
causes and effects of the FMEA are syntactically and semantically assigned to the
according ports of the associated architectural component.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 106/156

Figure 4-14 Example of a graphical representation of a model-driven FMEA

4.4. Model-Driven Safety Concepts and Safety Cases

In addition to modular safety analyses, the modular definition of safety requirements
as modular safety concepts as well as modular safety cases, i.e. the proof that
requirements have been fulfilled, play an increasingly important role. Regarding
approaches summarized in terms like modular safety certification - as they are also
described in safety standards - mainly consider modular safety cases. Defining a safety
case is in principle a decoupled process, which can run after or in parallel to other safety
assurance activities summarizing the main outcomes in order to compile a qualitative
proof that the system meets its safety goals. Just like any other validation and verification
activity, however, a safety case should be strongly related to the safety requirements,
since eventually it shall proof that the safety requirements are fulfilled by the system.

Therefore, it is reasonable to use similar approaches for safety concepts containing the
safety requirements and safety cases. Starting with a safety concept, the latter will be step
wisely extended by evidences that the requirements have been fulfilled, like test reports
etc. In consequence, a safety concept and a safety case are the same development artifact,
which evolves with the progress of the project. For this reason, we provide an integrated
model-driven approach for modular safety concepts and modular safety cases.

FMEA-Diagram of TorqueControlloer.FMEA

TorqueReference

RotorAngle

PhaseCurrents

PWM

«Component»
TorqueControlloer

FM RM«Component»
TorqueControlloer

FM RM«Component»
TorqueControlloer

FM RM

TorqueReference

RotorAngle

PhaseCurrents

PWM

«FMEA»
TorqueControlloer

Causes Failure Modes Effects

Measures

«Effect»

PWM Too High

Type: Local

«Cause»

Algorithm wrongly
Implemented

Type: Internal

«FailureMode»

Erroneous torque
computation

«Cause»

TorqueReference Too High

Type: External

«Cause»

RotorAngle Too High

Type: External

«Cause»

PhaseCurrent Too High

Type: External
failureType: Too Early

«Effect»

Undesired vehicle
acceleration

Type: Global

«Measure»

Plausibil ityCheck

«Measure»

InputGradientCheck

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 107/156

Before our approach is described in section 4.4.2, section 4.4.1 gives a short overview
on currently available modular certification approaches.

4.4.1. Modular Certification Approaches

The international standard ISO 26262 for the functional safety of road vehicles defines
the concept of a Safety Element out of Context (SEooC) [4]. A SEooC is defined as a
component for which there is no single predestinated application in a specific system.
Therefore, the SEooC developer does not know the concrete role the product has to play
in the safety concept. Subsystems, hardware components, and software components may
be developed as SEooCs. Typical software SEooCs are reusable, application-independent
components such as operating systems, libraries, or middleware in general.
The standard does not provide any suggestions or methods on how to identify safety
requirements or how to increase the chance that demanded and guaranteed requirements
match. Neither does the standard provide information on how to perform the verification
of the guaranteed requirements during integration of the SEooC.

The DO-297 [73] standardizes the modular certification of components in an Integrated
Modular Avionic (IMA) system in the avionics domain. In the avionics domain, the term
incremental acceptance is used instead of modular certification. Acceptance is defined as
the confirmation of a certification body that a module of an IMA system (a general-
purpose execution platform or an application) fulfills its specification. This is important,
since a certification can only be given to a final, completely integrated system. An
acceptance, however, can be achieved for an IMA system and is one building block of
the final certification, with the latter always being in the context of a specific aircraft. The
wording incremental has been chosen because the process of the DO-297 allows step-
wise acceptance of single modules of a system and because it allows incrementally
extending a system with new applications, without having to re-certify all the modules in
the system. This is particularly important, since not only the composition of a system out
of single components is interesting, but also the re-certification effort after modifying the
system should be reduced.

There are different research approaches available, which could be used to instantiate
these rather coarse concepts defined in safety standards:

Rushby provides some considerations on the use of modular certification for software
components in IMA architectures. The goal is to enable the certification of software
components by enabling them to perform their functions in a given (aircraft) context
solely based on assumptions about other related software components. He identified three
key elements as the potential backbone of a corresponding approach [74]:

1. Partitioning creates an environment that enforces the interfaces between components;
thus, the only failure modes that need be considered are those in which software
components perform their function incorrectly, or deliver incorrect behavior at their
interfaces.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 108/156

2. Assume-guarantee reasoning is a technique that allows one component to be verified
in the presence of assumptions about another one, and vice versa.

3. Separation of properties into normal and abnormal properties. Abnormal properties
capture behavior in the presence of failures.

To ensure that the assumptions are fulfilled and that the system is safe, he identified
three classes of properties that must be established using assume-guarantee reasoning:

1. Safe function ensures that each component performs its function safely under all
conditions consistent with its fault hypothesis;

2. True guarantees ensure that each component delivers its appropriate guarantees;

3. Controlled failure is used to prevent a ‘domino effect’ where the failure of one
component causes others to fail, too.

Another possible approach is given by the Goal Structuring Notation (GSN) [49] (cf.
Chapter 2), which is a graphical notation for modeling a safety argument, which is the
core part of every safety case. A safety case has been defined in the context of the GSN
as follows:

‘A safety case communicates a clear, comprehensive and defensible argument that a
system is acceptably safe to operate in a particular context.’

Therefore, a safety case serves the purpose of specifying a comprehensive argument to
prove the safety of a system. To this end, the GSN allows modeling tree-like arguments
beginning with safety goals, and iteratively connecting them through chains of logical
argumentation and sub-goals, with the evidences created during system development.
Evidences can be performed tests or analysis reports from an FMEA or an FTA that are
used for underpinning the fulfillment of the goals.

In order to deal with modular systems and modular certification, there is an extension
to the GSN available that allows for modularizing safety cases [53]. The interface of a
safety case module is defined by a set of public items that are available to be used in other
safety case modules and a set of items that the safety case module at hand demands from
other modules. Those items can be goals, evidences, and context. A strategy for the
construction of a modular safety case architecture is given in [75].

The DECOS (Dependable Embedded Components and Systems) project [76] provided
a generic safety case approach for incremental certification, which improves the
efficiency of the certification process and thus shall facilitate significant cost savings
during the development of safety-critical systems. Modularity is achieved by separating
the certification of core services and architectural services from applications [77] [76].

Following these basic ideas, we developed the VerSaI (Vertical Safety Interfaces)
method in order to assist the integrator of an integrated architecture in checking whether
the application software components are able to run safely on the execution platforms of

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 109/156

the system, and if so, provide assistance in generating appropriate evidence [66]. This is
particularly important since applications are developed independently from platforms
like, for example, in AUTOSAR [78] or IMA [79].

In order to check the safety compatibility between the application and the platform,
demands and guarantees have to be specified using a model-based approach. Demands
are typically used to express all the properties a platform needs to provide for an
application to be executed safely, whereas guarantees represent the safety-related
properties the platform possesses. A compatibility check is successful if a sound argument
for the fulfillment of the demands with the available guarantees can be established. In
order to enable tool-supported integration, the VerSaI approach offers a semi-formal
language for modeling these demands and guarantees. The language consists of a number
of elements, each representing a certain type of demand or guarantee exchanged by an
application and a platform. This implies that there is a finite number of language elements
and, therefore, also a finite number of dependencies that can be expressed with the
language. First evaluations have shown that this is suitable, because the typical service
relationships between an application and a platform are finite and regular, too.

4.4.2. Safety Concept Meta-Models

As mentioned earlier, it is in many cases reasonable to define safety concepts and safety
cases in the same artifact. Starting with the top-level safety goals, the safety requirements
are step wisely refined in a modular and hierarchical way, in order to derive more detailed
requirements for the single components of the system. Along the development lifecycle,
evidence will be added to the safety concept in order to proof the fulfillment of the safety
requirements. In early phases, the results of safety analyses can be used to proof the
adequacy of a refinement of a safety requirement. In later phases, results of verification
and validation activities will be added in order to proof the fulfillment of the single
requirements.

To this end, safety concepts can be represented as modular requirement trees.
Comparable to a fault tree, such safety concept trees (SCT) [65], support Boolean
operators, namely or- and and-operators, for a more precise definition of the refinement
of requirements. While an or-operator expresses that one of the sub requirements is
sufficient to fulfill the superordinate requirements (i.e. a redundancy is expressed), an
and-operator expresses that all sub requirements must be fulfilled for fulfilling the
superordinate requirement.

We use this idea to define safety requirement modules as it is illustrated in Figure 4-15.
A RequirementsModule consists of a set of SafetyRequirements, InterfaceElements, and
a Rationale. The latter is important for the safety case and documents the principle
strategy of the safety concept.

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 110/156

Figure 4-15 Meta-Model of modular safety requirements

The interface specification follows a contract-based approach. To this end, the interface
consists of Guarantees and Demands. Guarantees and demands describe informal or
semi-formal contracts, which are usually defined as textual requirements with some
additional Arguments, which refine the requirements. For example, if the requirements
demand a timely signal delivery, an argument can be used to specify acceptable delay
times. Alternatively, the interfaces as well as any other safety requirements can be defined
as formal contracts [80].

In order to refine safety requirements, it is necessary to use RefinementOperators. In
case of a Decomposition, all sub requirements must be fulfilled in order to fulfill the
superordinate requirement. This operator represents the and-operator of safety concept
trees. In case of a Variant, one of the sub requirements is sufficient to fulfill the
superordinate requirement. Thus this operator represents the or-operator of safety concept
trees.

Safety
Requirement

Interface Element

Guarantee

Demand

Informal contract

RequirementsModule

Rational

Refinement

Arguments

Refinement Target

Refinement
Operator

Decomposition Variant

Formal Contract

Promise

Assumption

Safety Contract description Pattern

Safety contracts
0..*

1..*

expressed by

1

1

target

0..*

0..*

0..*

1..*

Addresed by

0..*

target

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 111/156

Figure 4-16 Example of a modular safety requirements model

Model-Driven Safety Engineering

Mario Trapp Assuring Functional Safety in Open Systems of Systems 112/156

An example is shown in Figure 4-16. The upper part shows an excerpt of the
architecture of a control system of an electric drivetrain. The lower part shows the
associated safety requirements model. The requirements model contains two sub modules
following the architecture. Using guarantees and demands, the safety interfaces of the sub
components are defined. By this means, the requirements model follows the structure of
the architecture and if a component is reused, its requirements can be reused as well.
Considering its guarantees and demands, it can be checked, whether or not it fits into its
new usage context or which modifications are necessary to use it.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 113/156

5. Runtime Safety Assurance

Regarding the concepts of model-driven, modular safety assurance, a safety expert
assesses the integrated system. If we want to apply such concepts to open systems of
systems, however, there will be no human expert to check the system’s safety. Rather, the
system must assure its safety autonomously. This leads to a series of new challenges as
they were introduced in Chapter 1. Extrapolating the current developments of safety
engineering, it would take much too long until urgently required safety assurance
approaches for open systems of systems would be available. In the same way as open
systems of systems form a new paradigm in system development, there needs to be a
change of paradigms in safety assurance, as well.

And in the same way, as the systems become more and more intelligent for realizing
future functionalities, it is necessary to increase their safety intelligence, as well. Instead
of using rather simple fault tolerance mechanisms, the systems must become self-aware
with respect to their safety properties. By this means, they are enabled to reason about
their safety in a concrete context given at runtime, e.g., if they connect to other ‘foreign’
systems, or if they are used in environmental situations that have not been anticipated
during development.

During the last decade, Models@Runtime [81] have emerged as a new paradigm for
maturing the systems’ reflection capabilities to self-awareness. In fact, Models@Runtime
are an evolution of model-driven development. And even though they enable very flexible
runtime mechanisms, using models at runtime leads to a sufficient degree of formalism
and determinism. Models@Runtime provide a deterministic reflection of the systems’
runtime quality since the models are not unpredictably modified during runtime. In
contrast to approaches like artificial intelligence, it is therefore possible to predict and to
reproduce how the systems behave.

Applying the idea of Models@Runtime to safety assurance means to make existing
safety models like safety cases available at runtime [82]. Considering the idea of model-
driven safety assurance as it was introduced in the previous chapter, there is an ideal basis
available to create safety models at runtime. To this end, the models need to be available
in a machine interpretable form so that they can be evaluated based on runtime
information automatically. Additionally, an algorithm is required enabling the system to
interpret the results and to react appropriately. Particularly the latter aspect constraints
the applicability, since safety assurance usually requires cognitive interpretations of the
results by human beings. Therefore, section 5.1 gives an overview on established safety
models with respect to their applicability for runtime evaluation, before the subsequent
chapters illustrate how the models can be used at runtime. Section 5.7 will then evaluate
the different approaches before Section 5.8 derives a runtime safety assurance framework
based on the idea of Safety Models@Runtime (SM@RT).

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 114/156

5.1. Overview on safety models for runtime evaluation

Considering the idea of model-driven safety assurance as it was introduced in the
previous chapter, all safety artifacts that are created during a safety lifecycle are available
as models, which could serve as a basis for safety models at runtime. Figure 5-1 gives an
overview on the models created during a safety assurance lifecycle.

Figure 5-1 Overview on safety models in a safety assurance lifecycle

Any safety assurance starts with a hazard analysis and risk assessment, also leading to
the top level safety requirements. Using safety analyses, the safety requirements are
refined. Using the analysis results as well as results of the verification and validation
activities as evidences, the safety requirements are evolved to a safety case. Finally, the
system’s safety is assessed based on the safety case. And a ‘certificate’2 is issued if the
assessment comes to a positive result, which includes potential limitations and constraints
that must be considered for safely using the system.

As regards the hazard analysis and risk assessment, models are also available for this
safety artifact. However, deriving and particularly assessing hazards and the associated
risks is a creative process and requires a lot of human intelligence. Nonetheless, if, for

2 The term certificate often refers to a formal process including official certification bodies so that it is avoided in

some domains (e.g., in the automotive domain). But nonetheless some kind of certificate is required as final
document confirming the system’s safety.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 115/156

example, system requirements were to be changed at runtime, it would be necessary to
update the hazard analysis and risk assessment. In consequence, this also means that
potentially the complete subsequent safety assurance process has to be updated, as well.
But though providing hazard analyses at runtime is a challenging task, they will be
required for supporting more flexible system adaptations at runtime.

Safety analyses at runtime can be very beneficial since any change of the structure or
the current state of the system could be reflected in runtime analysis models and the
analysis can be dynamically updated at runtime. However, it must be considered that
particularly systematic faults are regarded in a qualitative way, only. In contrast to a
quantitative evaluation, it is therefore potentially non-trivial for a system to interpret the
analysis results at runtime.

As regards safety requirements, they evolve to a safety case by adding evidences that
a complete set of requirements has been derived and that the requirements have been
fulfilled. From a safety point of view, it is therefore more reasonable to directly consider
safety cases instead of safety requirements at runtime.

Finally, safety certificates are the final document stating the systems’ safety including
potential constraints and limitation. Particularly regarding modular certificates, they are
very promising to be used at runtime since they summarize the results of the creative
process of safety assurance, so that they can be more easily interpreted at runtime. On the
other hand, they are usually not available in a sufficiently formal format and they only
support a very restricted flexibility. Nonetheless, having certificates at runtime is the most
promising first step towards runtime safety assurance, since it leaves the major
responsibility of safety assurance with human experts at development time.

In general, providing safety models at runtime becomes more challenging the earlier in
the safety lifecycle they are created. Therefore, the subsequent sections elaborate on the
different safety models at runtime in reverse order of their creation in the safety lifecycle.

5.2. SafetyCertificates@Runtime

Safety certificates contain all information that is necessary to identify which safety
requirements are fulfilled at which integrity level and which constraints have to be
considered to use the system safely. The same information must be available in a machine
processable format in SafetyCertificates@Runtime. Just like conventional safety
certificates, SafetyCertificates@Runtime do not contain any white-box information on
how the system was realized to yield the certification. They are particularly interesting
for the safe integration of systems of systems at runtime, since
SafetyCertificates@Runtime can be used to retrieve the safety requirements fulfilled by
the single systems as well as the constraints that must be fulfilled to safely integrate the
systems. This includes possibly required checks that must be executed at runtime to verify
the integrated system.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 116/156

So summarizing SafetyCertificates@Runtime are modular certificates that can be
interpreted, composed, and adapted at runtime. They are dynamically adapted to
represent the safety state of the system at runtime. The certificates of subsystems can be
composed at runtime in order to yield an overall safety approval for a given composition.

The idea of how SafetyCertificates@Runtime can be used for a dynamic composition
of systems of systems is shown in Figure 5-2. The individual subsystems provide a
runtime representation of the modular certificates (SafetyCertificate@Runtime). In order
to assess the safety of the resulting system of systems, the single certificates have to be
composed.

Figure 5-2 SafetyCertificates@Runtime enable dynamic system composition.

In order to yield such a SafetyCertificate@Runtime, the process is very similar to
modular certification. After the subsystem has been developed, it must undergo a manual
certification process at design time. Usually, however, the safety assurance of a single
subsystem at design time can only yield a conditional certificate, since the certification is
based on various assumptions. These assumptions might be concrete demands on other
subsystems. For example, there might be a demand that the failure modes of a received
signal must be mitigated by another subsystem according to a specific safety integrity
level. Other assumptions might consider the integration context in general, such as the
maximal number of collaborating subsystems, the type and quality of the communication
system used, etc. Consequently, SafetyCertificates@Runtime often follow the idea of
safety contracts defining a set of safety guarantees provided by the subsystem and a set
of safety demands the subsystems require to be fulfilled by the integration context. This
means that they provide runtime information on which safety properties can be
guaranteed by the system under the precondition that the defined demands are fulfilled.
At runtime, the fulfillment of the demands is checked and the resulting guarantees are
derived. Usually, however, safety is not a completely modular property, i.e., the
composition of safe components does not necessarily lead to a safe composition, even
though the safety demands are fulfilled. Therefore, it is often necessary to perform
additional checks in the integration context at runtime.

When subsystems are composed at runtime, it is possible to compose the
Certificates@Runtime, as well. To this end, the conditions defined in the runtime
certificates must be checked. In the simplest approach, a system of systems is considered
safe if all preconditions of all conditional certificates are true. Otherwise, the system of

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 117/156

system must not be used. In most cases, however, the certificates of the single subsystems
are not harmonized with each other. So it is very unlikely that there will be any safe
match, at all. In fact, such an approach is only reasonable if it is possible to adapt the
SafetyCertificate@Runtime to the current integration context.

Figure 5-3 Runtime adaptation of certificates provides more flexibility

Actually, the possibilities of how a runtime certificate could adapt are as versatile as
adaptation in general. There could be different pre-defined variants that are dynamically
selected in a given context. Or there could be more sophisticated and flexible adaptations
of the certificate. From a safety point of view, however, predictable, traceable, or even
provable solutions are more likely to be accepted. Some ideas are illustrated in Figure
5-3. If we assume, for example, that there is an adaptation model defining how the system
adapts in certain situations, this information could also be used to adapt the certificate.
Alternatively or additionally, a traceability model could be used to identify those elements
that are affected by system adaptations and to derive necessary certificate adaptations. An
efficient impact analysis is of utmost importance in traditional safety engineering in order
to identify necessary changes and thus reduce the revalidation effort. As long as the
effects of adaptations can be traced back to anticipated classes of system changes, even
complex system adaptations could be handled by simple variants in the
SafetyCertificate@Runtime.
As a further extension, it could be possible to use error detection mechanisms to adjust
the runtime certificates using up-to-date runtime error information.

Usually, the adaptation goal for the certificates is to provide the best possible
guarantees in the given context. The context, in turn, is usually given by the set of
externally fulfilled safety demands and the internal state of the system. In the simplest
form, they simply provide different alternatives how the safety guarantees can be
achieved, i.e. depending on the amount and quality of fulfilled demands, they will provide
a different amount and quality of guarantees. We used this basic idea for Conditional
Safety Certificates – ConSerts [83][84][85], which have already proven to be very
valuable for the safety assurance of open systems. Therefore, ConSerts will be explained
as one concrete approach in more detail in Section 5.9.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 118/156

5.3. SafetyCases@Runtime

The more adaptive a system is, the more difficult it is to consider all the different
adaptations in a SafetyCertificate@Runtime. This particularly increases the effort at
design time since the complete adaptation space must be considered in the certification
process. Alternatively, it could therefore be another option to provide
SafetyCases@Runtime. Safety cases are a direct input to certification. In contrast to
certificates, however, they include the complete argument why a system is considered
safe. A good safety case model includes a complete breakdown of top-level safety goals
to the detailed requirements realized in the system. And it particularly includes the
evidence proving that the arguments used are sound and that the requirements have been
fulfilled.

SafetyCases@Runtime therefore provide more information at runtime and enable more
flexible system adaptations. In consequence, however, they are more complex to handle,
since there is no pre-certification at design time and all the steps from a safety case to
certification have to be shifted to runtime as well. As a further consequence, this will most
likely reduce the acceptance of such an approach compared to
SafetyCertificates@Runtime.

Summarizing these ideas, a SafetyCase@Runtime is a formalized, modular safety case
that can be interpreted and adapted at runtime. Based on the interpretation, it can be
dynamically checked to which extent the safety goals of subsystems are met. Using
adaptations, the line of argumentation can be adjusted to system adaptations. In addition,
the revalidation of evidences at runtime must be supported in the case that system
adaptations lead to the invalidation of evidences.

As shown in Figure 5-4, SafetyCases@Runtime extend the idea of
SafetyCertificates@Runtime. Instead of explicitly defining the adaptation of the
certificates, it is possible to describe the adaptation of the safety cases and use the
SafetyCases@Runtime to adapt the safety certificates automatically.

Figure 5-4 Conceptual model of how safety cases could be used at runtime

A certificate certifies that certain safety guarantees are fulfilled. The safety case models
the argument why these guarantees are fulfilled. If a safety case is adapted at runtime, the

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 119/156

resulting argumentation should enable the system to conclude autonomously which safety
guarantees can still be provided at which integrity level.

By shifting safety cases to runtime, it is possible to adapt (1) the argumentation and/or
(2) the evidences to the currently given context. As regards the adaptation of the
argumentation, a very straightforward solution would be to include different variants of
the argumentation. In more complex versions, more intelligence might be integrated that
is able to derive new lines of argumentation.

As regards the evidences, which are, for example, verification and validation results or
the results of safety analyses, it is necessary to attach constraints to the evidences used in
the safety case. At runtime, it is then possible to evaluate whether or not these constraints
are still fulfilled. If not, there are basically two combinable options. First, it is possible to
find an alternative argumentation based on the remaining valid evidences – including
argumentations that potentially require a reduction of the safety guarantees that can be
provided in the given context. A second option would be the revalidation of evidences.
This requires the capability to re-perform safety analyses and/or validation and
verification activities at runtime. For SafetyCases@Runtime, let us assume that this
revalidation is limited to repeating the checks defined at design time in order to provide
the evidence. This presumes that the system adaptation does not lead to a change of
requirements or a change of the system’s interface.

If the respective pass-criteria are met, the newly created evidence can replace the
invalidated original evidence and can be integrated into a new argumentation. Otherwise,
the evidence remains invalid and the system must either find an alternative line of
argumentation or invalidate the affected safety goals.

Conventional safety cases are often still compiled in simple text documents or tables
instead of (semi-) formal models. Though approaches like the goal structuring notation
(GSN) [49] provide a standardized notation for safety cases, which has been realized as
part of a model-driven safety assurance lifecycle, the actual semantics of the
argumentation still lies in informal text, which can hardly be interpreted at runtime.

Approaches like VersaI [66], which we proposed for the automated modular
certification at design time provide a formal basis for runtime safety cases, since they are
based on formalized requirements type systems rather than text. This approach, however,
is focused on hardware-software-integration with a dedicated type system for the
resulting specific types of requirements. Combined with more generic safety
requirements type systems as they are also used for ConSerts [85] (cf. Section 5.9), the
approach could nonetheless provide a sound basis for safety cases at runtime.

For the time being, however, we limit the concept of SafetyCases@Runtime to
modeling different variants of lines of argumentation. To this end, we use model driven
safety concepts, as they have been defined in Section 4.4.2 as starting point. These safety
concepts already define gates for refining the requirements, namely decomposition and
variant gates. The latter already allows defining different variants. Usually these variants,

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 120/156

however, are used to model redundancy. Therefore, we additionally add an alternative
gate, which can be resolved at runtime. In order to achieve an efficient runtime
representation, all argumentation lines between two alternative gates are considered as
argument block. And all evidences that are assigned to the requirements of one block are
collected in an evidence set. For all of these evidences, the safety engineer has to decide
whether and how these can be checked at runtime. For the time being, this requires the
definition of dedicated runtime executable checks.

At runtime, it is then possible, to check the demands, which are the sources of each
modular safety case at runtime in the same way as it is done for
SafetyCertificates@Runtime. And in principle, the variants can be checked in the same
way, as well. Additionally, however, it is possible to not only consider predefined
certification variants. But it is possible to flexibly adapt the system at runtime. After the
adaptation, all evidences are revalidated based on the new system structure and behavior,
e.g. by running runtime tests which have been defined by the safety engineers. As long
as the evidences are still valid, the safety case is still considered to be valid and the system
adaptation is considered safe. Else, the system adaptation has to be rolled back to a
previous, safe state.

Obviously, this is only a slight extension of safety certificates and safety cases at
runtime provide much more potential. Therefore, further extensions are subject of
ongoing research.

5.4. V&V-Models@Runtime

SafetyCases@Runtime already provide a very flexible means for safety assurance at
runtime. Some system adaptations, however, might require a new set of verification and
validation checks to provide the evidence required for the argument. Moreover, it might
be desirable to be able to remove the faults identified during runtime V&V instead of
being limited to only checking the pass-criteria.

For the former aspect, it is necessary to additionally enable the system to define
verification and validation suites autonomously. Realizing the latter aspect even requires
systems that are able to localize the causing faults, and to isolate or even remove them.
Considering how difficult this step easily becomes for developers at design time, it is
obviously a very challenging task to shift these activities to runtime.

In consequence, a realization of V&V-Models@Runtime means that all models that are
necessary to perform validation and verification activities (e.g., test cases, pass/fail-
criteria etc.) can be interpreted and adapted at runtime in order to create new evidences
after system adaptations.

As regards the current state of the art, runtime validation and verification are typically
applied in a complementary way together with corresponding development-time
activities. On the one hand, there are runtime verification techniques that utilize runtime
monitoring to record software execution traces that can then be analyzed [86]. On the

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 121/156

other hand, there are approaches that employ quantitative model checking at runtime as
an assurance technique in the context of adaptive systems (e.g., [87], [88], and [89]). In
[90], Goldsby et al. present AMOEBA-RT, a run-time monitoring and verification
technique that provides assurance (based on dynamic model checking) that ensures that
dynamically adaptive software satisfies its requirements. Calinscu and Grunske
introduced the QoSMOS (QoS Management and Optimization of Service-based systems)
framework for the development of adaptive, service-based systems that are able to
manage their QoS adaptively and predictably [91]. QoSMOS utilizes probabilistic model
checking at runtime to evaluate whether or not the system satisfies the given QoS
requirements. In the traditional development-time versions of these kinds of approaches,
the analysis of temporal-logic properties (including probabilities, costs, and rewards) is
commonly used to assess relevant non-functional properties of a system. At runtime, such
analyses can be performed on a model base that is continually updated as the underlying
system evolves. In general, this introduction of runtime measures is particularly
promising since traditional development-time techniques do not scale sufficiently well.
Moreover, at runtime, detected issues can be addressed directly with adequate adaptations
(i.e., counter measures). A short related survey (which is not limited to V&V) considering
runtime assurance techniques for adaptive systems has been published by Calinescu [92].

From a safety assurance point of view, however, validation and verification approaches
at development time must be qualified. This means that it is necessary to show that, for
example, the test tools provide correct results. In the same way, it would be necessary to
qualify runtime V&V-approaches in order to create the required confidence to trust in the
runtime analysis results. As of today, this is sometimes more difficult than proving the
safety of the actual system. Therefore, V&V-Models@Runtime are an interesting
research topic for future applications, but they are still far away from a serious practical
application.

5.5. SafetyAnalyis@Runtime

A further very important safety artifact is safety analyses. In fact, safety analysis
models already have a formal format and can be analyzed automatically. Therefore, they
can be easily made available at runtime. By this means, safety analyses can be repeated
after any system adaptation or if the composition of a system of system changes.
Particularly for software-intensive systems, however, safety analyses are not quantitative
but qualitative so that the evaluation of the results usually requires an expert’s
interpretation.

So a SafetyAnalysis@Runtime means that safety analysis models are made available
at runtime and that the system is enabled to evaluate the models using typical analyses
like quantitative evaluation or minimal cut set calculations. Moreover, the system needs
to be enabled to interpret the analysis results in order to conclude on the system’s safety.
The safety analysis models are adapted according to system adaptations in order to re-
analyze the system’s safety after it has adapted itself.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 122/156

In order to realize the adaptation of safety models, there are various possible ways.
Considering modular safety analysis models as they have been described in the previous
chapter, exchanging, removing, or adding a component or a system at runtime only
requires to exchange the corresponding safety analysis component, as well, in order to re-
analyze the system. If single components adapt, the corresponding adaptation of the safety
analysis models becomes more difficult. If a system only reconfigures itself, then the
possible configurations can be modularly analyzed at design time and the corresponding
safety analysis models can be exchanged at runtime. Therefore, we developed an
approach that enables the application of safety analyses to reconfigurable systems [93].

If the system adapts in a more flexible way by actually modifying its behavior in
previously unknown ways, it will be necessary to modify the safety analysis models, as
well. However, creating safety analysis models is a very creative process which is based
upon moderated meetings with a group of experts. Current approaches to automatically
create safety analysis models, e.g. based on model checking, are still not sufficiently
mature – even for design time analyses.

The main application scenario for safety analysis at runtime is therefore a change of a
composition of a system of systems. Using modular safety analyses, the emerging system
of system can be analyzed automatically. Even though it is difficult to provide
quantitative analysis results, it is often sufficient to perform qualitative analyses based on
minimal cut sets. To this end, we further extended the semantics of model-driven fault-
trees, as they have been introduced in the previous section. Most importantly, it is
necessary to provide different types of basic events. Namely, it is reasonable to
distinguish between primary faults and a loss of a counter measure. By this means, it is
then possible to analyze the resulting cut sets for identifying single point failures, or to
ensure that all possible fault combinations leading to a hazard are covered by counter
measures.
As a further aspect, it is necessary to type failure modes as well as counter measures.
Then, it is possible to specify valid tuples <failure type, measure type> for specifying
valid counter measures for the different failure types. For example, timing failures could
be covered by a watchdog as counter measure, whereas a wrong data value cannot be
detected by a watchdog timer. By this means, it is not only possible to check whether or
not all failure modes are addressed by a counter measure, but it is additionally possible to
check the appropriateness of the counter measure in place. This requires quite detailed
type definitions for enabling valid evaluations at runtime. On the other hand, the more
detailed the types are defined, the lower is the supported flexibility of system adaptations.
Therefore, it is always necessary to find an appropriate trade-off between the rigor of
safety assurance on the one hand and flexibility on the other hand.

5.6. Hazard Analysis and Risk Assessment@Runtime (HRA@Runtime)

In the previous alternatives, we assumed that the requirements and the resulting safety
goals are not adapted. As a consequence, it has ‘only’ been necessary to adapt the

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 123/156

argumentation that the safety goals are still met in spite of system adaptations based on
the safety case, safety analyses, and the evidences created at runtime. Some adaptation
approaches, however, also consider a change of requirements at runtime. If we apply the
safety lifecycle to the idea of Models@Runtime, this means that we require a hazard and
risk analysis at runtime, i.e. that the system must adapt and extend the hazard and risk
analysis and potentially has to adapt and to extend the set of safety goals. By doing so,
the complete existing argumentation for a changed safety goal might be invalidated. For
new safety goals, an argumentation is completely missing. On the one hand, this type of
runtime assurance certainly provides the highest possible flexibility. On the other hand,
however, it requires very intelligent mechanisms for defining a safety argumentation and
generating the necessary evidence autonomously at runtime.

A HRA@Runtime implies that a hazard and risk analysis model can be interpreted and
adapted at runtime. This includes the identification of new hazards and the reassessment
of existing hazards after adaptations at the requirement level.

So far, there are no significant research results available for supporting hazard analyses
at runtime. One approach including the aspect of hazard analyses has been proposed by
Priesterjahn et al. in [94]. The main idea of this approach is to ensure the safety of adaptive
systems during runtime by checking whether a reconfiguration is allowed based on
associated hazard probabilities and potential damage that would be imminent after the
reconfiguration. To this end, adapted hazard and risk analysis techniques are applied
during runtime. In this case, however, the hazard and risk analysis and models at runtime
are used to monitor the system, but they are not adapted in order to reflect adapted system
requirements.

Hazard analyses and risk assessment are usually based on spreadsheets. Accepted
model-based, more formal representations are not available at this point in time. However,
first approaches integrate hazard analyses and risk assessments into the model-driven
design process, as we have done it, for example, as part of the model-driven safety tool
iSafE [64]. A major challenge, however, lies in the runtime interpretation of hazard
analyses and risk assessments. In order to further formalize hazard analyses, we
introduced the SAHARA [95] approach, which provides a formalization based on
ontologies. Though this does still not provide a sufficient support for runtime evaluations,
it provides a first step towards HRA@Runtime.

5.7. Evaluation of the different approaches

Regarding the approaches described above, they obviously build upon each other. This
means that a HRA@Runtime requires V&V-Models@Runtime and
SafetyAnalyses@Runtime, which in turn require SafetyCases@Runtime and so on. So it
is necessary to decide to which extent we want to shift parts of the safety lifecycle to
runtime. This results in a trade-off decision. From a safety point of view, it is certainly
preferable to leave as much responsibility as possible with a human expert. Consequently,
it would be reasonable to have only SafetyCertificates@Runtime. From an adaptation

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 124/156

point of view, however, it is preferable to have as much flexibility as possible in order to
tap the full potential of dynamic adaptation. In consequence, this would require shifting
elements of the complete safety lifecycle to runtime.

In order to further illustrate this trade-off, Figure 5-5 shows the relations of the different
approaches to their acceptance on the one hand and to their flexibility on the other hand.
Acceptance in this case refers to the probability of acceptance by safety authorities and
legislation. Since there is no practical experience available, this is a qualitative estimation.
First, we assume that acceptance is inversely proportional to the responsibility and
intelligence given to the system. Second, the acceptance of an approach is usually
inversely proportional to its complexity. Or vice versa: The simpler an approach can be
realized, the more probable is its acceptance. For obvious reasons, it is very probable that
the required intelligence as well as the resulting complexity will grow with the number
of safety assurance steps that are shifted to runtime. Consequently, in our opinion,
SafetyCertificates@Runtime have the best chances of being accepted, whereas the
acceptance of a HRA@Runtime (i.e., shifting all safety assurance activities to runtime)
is quite improbable. As a further aspect, acceptance will be higher if the Safety-
Models@Runtime are reconfigured at runtime to predefined variants only, whereas
acceptance will rapidly decrease if the safety models themselves are adapted more
flexibly at runtime.

Figure 5-5 Qualitative relations between acceptance and flexibility

Flexibility, on the other hand, represents the degree of which different types of
adaptations are supported. More precisely, in this case we refer to the type of adaptation
used to adapt the system itself and not to the type of adaptation used to adapt the safety
models, since different adaptation approaches might be used for the system itself on the
one hand and the safety models on the other hand. In order to classify the supported
flexibility of system adaptations, we differentiate between three basic classes. We first
differentiate between ‘known unknowns’ and ‘unknown unknowns’. In the former case,

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 125/156

we assume that the system can only adapt to a runtime context that has been anticipated
at design time. In the latter case, we assume that the system needs to flexibly adapt to
situations not anticipated at design time. In consequence, the system structure or behavior
is hard or even impossible to predict. We have further subdivided the ‘unknown
unknowns’ into adaptations at the design level on the one hand and at the requirements
level on the other hand. In the former case, we assume that the requirements can remain
unchanged and an adaptation of the realization (e.g., at the architecture level) is sufficient
to adapt to the context given. In the latter case, the adaptation also includes the adaptation
of existing and/or the definition of new requirements.

SafetyCertificates@Runtime can only be used to address ‘known unknowns’ since an
adaptation of certificates to an unpredicted context is not possible without considering the
underlying safety case, which forms the indispensable basis for a sound argumentation of
a certificate’s validity. But even for ‘known unknowns’ the configuration space might be
too large to be covered completely by variants at the certificate level. Therefore, it might
be reasonable to use SafetyCases@Runtime already to efficiently support ‘known
unknowns’.

If we consider ‘unknown unknowns’ at the design level, this means especially that the
requirements and thus the safety goals remain unchanged. Depending on the degree of
system modifications required for the adaptation, SafetyCases@Runtime or V&V-
Models@Runtime and SafetyAnalyses@Runtime are therefore sufficient. While
SafetyCases@Runtime are limited to running predefined validation and verification
activities at runtime, V&V-Models@Runtime as well as SafetyAnalyses@Runtime
additionally support the modification of V&V models, e.g., the modification of test cases
or pass/fail criteria, as well as a re-analysis of the system’s safety at runtime. The more
flexible the system adaptations must be, the more likely it is that V&V-Models@Runtime
as well as SafetyAnalyses@Runtime approaches will be required in addition to
SafetyCases@Runtime.

As soon as the adaptation to ‘unknown unknowns’ also requires an adaptation of
requirements, it is additionally necessary to adapt the hazard and risk analysis and the
resulting safety goals at runtime. As described above, it is not sufficient to identify new
hazards or to re-assess the associated risk at runtime. In fact, the system must be able to
appropriately create or adapt all affected artifacts along the complete safety lifecycle.

5.8. Conceptual safety assurance framework for Open Adaptive Systems

Models@Runtime obviously provide a wide range of possible approaches for the safety
assurance of open systems of systems and it is certainly not possible to pick out one
particular approach that leads to the best trade-off between flexibility and acceptance in
general. In fact, we believe that it will be necessary to integrate different approaches into
an assurance framework in order to use the advantages and compensate for the
disadvantages of the different approaches.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 126/156

Therefore, we defined the runtime safety assurance framework shown in Figure 5-6.
Learning from traditional safety engineering, we use modularity as the basic ingredient
for a safety assurance framework from the very beginning. First, this obviously reduces
complexity. Second, this enables us to use different assurance approaches for different
modules. In this context, we use the term module very flexibly to express a modularized
entity that can range from a complete system in a system of systems to a single software
component. Since the required types of adaptation usually differ widely across the
different modules, it is reasonable to limit more complex assurance approaches to those
modules that actually have to adapt very flexibly.

Figure 5-6 Integrated Runtime Safety Assurance Framework

Following the idea of modular certification, we use SafetyCertificates@Runtime as the
basic building blocks enabling the modularization and runtime integration of different
subsystems. In this case, SafetyCertificates@Runtime are the common denominator
enabling the combination of a wide range of different assurance approaches used for the
single modules. As long as each system in a system of systems provides a
SafetyCertificate@Runtime, the system of system can be safely integrated. And most
importantly, it is not necessary to know anything about how the internal safety assurance
is realized within the single systems. This means that SafetyCertificates@Runtime

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 127/156

provide the generic interface of the runtime safety assurance framework enabling
information hiding in the safety assurance process. This is a key for the scalability and
the flexibility of the concept.

Assume, for example, that we have a module that reconfigures to ‘known unknowns’
only, as shown in the upper left corner of Figure 5-6. Then it might be sufficient to
perform the major safety assurance activities at development time and limit the runtime
models to SafetyCertificates@Runtime, only. If we have a module that has too large a
configuration space or that also adapts to ‘unknown unknowns’, it might be necessary to
have SafetyCases@Runtime as well, as shown in the upper right corner of Figure 5-6. As
described above, SafetyCases@Runtime are an extension of
SafetyCertificates@Runtime, so that a runtime certificate is still available at the module’s
interface, facilitating the safe integration of the components. In some cases, a module
might adapt so flexibly that we will need V&V-Models@Runtime,
SafetyAnalyses@Runtime or even a HRA@Runtime. However, realizing this is very
complex, so it is reasonable to keep the complexity of such modules very small. To this
end, it is helpful that the modularization of the framework can be applied recursively to
achieve hierarchical decomposition, as illustrated in the lower left corner of Figure 5-6.
This decomposition additionally illustrates an alternative way of composing
SafetyCertificates@Runtime. Particularly regarding systems of systems, each providing
a SafetyCertificate@Runtime, the single systems are usually sufficiently independent
from each other that composition at the certificate level is likely to be sufficient. If we
assume the runtime integration of different software modules running on the same
platform, however, there are usually tight interdependencies. Merely the fact that they
share the same resources, for example, creates a safety-relevant dependency. For this
reason, it is likely that additional evidences will be required for proving that the
integration of the single modules is safe as well. Therefore, it might also be reasonable to
have SafetyCases@Runtime at the integration level.

The acceptance of sophisticated assurance approaches, in particular, is very low. An
alternative way to ensure the safety of highly adaptive systems is given by different
traditional approaches, particularly in the field of fault tolerance. So-called safety bags
(cf. e.g., IEC 61508 [2]), for example, are a typical concept for monitoring a function to
detect anomalies and trigger counter-reactions. Assuming that it would be possible to
define a safety bag that can detect and handle any safety-related failure of an adaptive
module, it would not be necessary to provide further assurance of that module. Though
such approaches are based on traditional mechanisms rather than Models@Runtime, they
would nonetheless fit into the framework as shown in the lower right corner of Figure
5-6. In general, any type of assurance approach can be easily integrated into the
framework, as long as it is possible to provide a valid SafetyCertificate@Runtime.

Summarizing, we defined this framework based on a prognostic evolution of state-of-
the-practice safety engineering lifecycles using the idea of Models@Runtime as a catalyst
for building a conceptual bridge between the world of safety engineering on the one hand

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 128/156

and Models@Runtime on the other hand. Being based on safety engineering principles
makes acceptance of the approach more likely. Yet it provides sufficient flexibility to
integrate various different solution approaches based on Models@Runtime.

5.9. Conditional Safety Certificates – ConSerts

Shifting a kind of safety certificate into run time is obviously a promising first step
towards safety assurance of open systems of systems. As a concrete solution approach,
we have developed the concept of conditional safety certificates (ConSerts) [85].
ConSerts are predefined modular safety certificates of the single systems (i.e., devices)
that are to be integrated at runtime. Following the ideas of modular certification, they use
the idea of contracts by defining safety guarantees one the one hand that are fulfilled by
a component under certain preconditions, and safety demands on the other hand, i.e.,
safety requirements that must be fulfilled by the integration context. In addition, they
define invariants expressing assumptions made during the safety assurance of the
component, which must be fulfilled by the integration context at runtime.

Obviously, ConSerts follow basic principles that have proven to be very valuable for
the modular certification at design time. There are, however, two important differences
between ConSerts and standard modular certificates:

(1) A conventional modular certificate certifies that a fixed set of safety guarantees
is fulfilled by a system - given that a fixed set of invariants as well as safety
demands is fulfilled by the integration context. This is possible since the systems
or components are developed independently, but the development nonetheless
follows the rules and requirements of a central integrator. In open systems of
systems, however, we find heterarchical systems, which –as opposed to
hierarchical systems – do not have a central root node with an integrator who
takes responsibility for the integrated system. But all systems are independent
from each other and have the same rights. Therefore, it is very unlikely that two
systems could be integrated based on a statically and independently defined set
of guarantees and demands since it is unlikely that the demands of a system would
be fulfilled by guarantees of other systems.
Therefore, ConSerts are conditional. They define a number of variants, i.e., a set
of alternative safety guarantees at different integrity levels, depending on which
invariants and safety demands are fulfilled at which integrity level. Depending
on the current integration context and the safety demands it fulfills, the system
evaluates whether it can operate safely in this context and, if yes, which
guarantees the system can fulfill in this context.
In fact, ConSerts are issued, just like static certificates, based on a static
assessment by safety experts at design time. However, the experts must evaluate
not only a single set of guarantees and demands, but all possible variants that are
defined within the ConSert.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 129/156

(2) In consequence this means that ConSerts need to be evaluated at runtime by the
systems themselves. Therefore, ConSerts must be available at runtime in an
executable representation and the systems need to possess mechanisms for
composing and analyzing these runtime models, i.e., the systems must evaluate
which safety guarantees are fulfilled. Often, this step requires a negotiation
protocol, because different options of guarantees and demands must be
negotiated between the involved systems in order to find a configuration
providing a maximal level of functionality. Using these means makes it possible
to establish and maintain safety contracts at runtime that span all levels of a
composition hierarchy through pairs of ConSert-based guarantees and demands.
However, safety is not a completely modular property. Therefore, it is usually
not sufficient, to evaluate guarantees and demands, only. Instead, it is likely that
some evidences must be acquired at the integration level. For example, to check
if a shared communication medium provides sufficient bandwidth and
availability for all communication partners. As another example consider two
systems acting as redundant channels in a redundancy concept. In this case, the
independence of those systems must be checked at runtime in order to exclude
common cause failures. In order to support these types of checks at the integration
level at runtime, we introduced the concept of runtime evidences as part of
ConSerts.

Summarizing these aspects, there are five major constituents of ConSerts, which will
be described in more detail in the following sub sections. First, sub section 5.9.2 illustrates
the basic idea of guarantees and demands, before sub section 5.9.3 introduces the idea of
runtime evidences. The evaluation of demands, runtime evidences and their mapping to
guarantees at runtime is described in sub section 5.9.4. Finally, sub section 5.9.5 briefly
introduces a model-based approach for specifying ConSerts.

Before these aspects are explained, sub section 5.9.1 explains some general
assumptions on modeling open systems of systems.

5.9.1. General Assumptions on Modeling Open Systems of Systems

In order to define model-based safety certificates for open systems of systems, it is
important to have an understanding, how the systems as such are modelled in order to
augment the models with additional safety information. Figure 5-7 shows a possible
approach of basic elements that can be used to describe open systems of systems and how
those can be extended for supporting ConSerts. This approach has been introduced in [96]
as a general basis for modeling open adaptive systems. In principle, ConSerts can be
applied to various different approaches of modeling open systems. Therefore, the idea of
using this approach for the remainder of this section is only for the purpose of illustrating
how ConSerts can be integrated into a modeling framework for open systems. It does not
mean that ConSerts cannot be applied to any other kind of modeling approach for open
systems of systems.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 130/156

Figure 5-7 - Elements of modeling open systems of Systems [84]

The upper part of Figure 5-7 shows the main elements that are required for modeling
open adaptive systems. The approach assumes that components in an open adaptive
system are adaptive in the sense that they set themselves to different configurations at
runtime, i.e. the freedom of dynamic adaptation is limited to dynamic reconfiguration.
The services provided by a component depend on its currently active configuration.
Which configurations can be activated at runtime depends on the availability and quality
of the required external services in the current runtime context. We assume that all
available services in an open system of systems need to be defined in a service type
system, which is then used as a formal basis to match required and provided services as
it is common practice in service oriented architectures.

Since the behavior of a component strongly depends on its current configuration,
ConSerts are assigned to configurations instead of components. In order to express
guarantees and demands of a ConSert, they refer to the services required and provided by
a component. The services define the logical interface of a component. They are extended
by a safety property, e.g., by defining potential failure modes of a service and / or
appropriate counter measures.

For example, consider a component of a tractor providing the service ‘tractor
acceleration’. In turn, the component requires a service ‘acceleration command’, e.g.,
provided by an external tractor implement. The latter service could then be extended by
a safety property ‘too_high’ expressing the failure mode that too high an acceleration is
commanded. A ConSert can then, for example, easily express a demand by referring to
the required service ‘acceleration command’ and specifying that the failure mode
‘too_high’ has to be mitigated by the service provider.

By this means, ConSerts and functional interfaces are tightly coupled. On the one hand
this means that ConSerts and all related safety assurance approaches can be based upon
already existing interfaces. On the other hand, ConSerts can be considered as part of
service interface negotiations.
Regarding the tractor example again, the acceleration interface has to be specified from a
functional perspective anyway. The ConSerts are based upon this already existing
interface. And the tractor component would not only check whether or not the implement

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 131/156

provides the required service. But based on ConSerts, it can additionally check whether
or not the implement fulfills the safety demands before it grants access to the acceleration
interface of the tractor.

5.9.2. Safety Guarantees and Demands

As described above, the dynamic integration of systems of systems technically relies
on a service concept and type systems for all service properties. If one system defines a
safety-related demand and another system defines a safety-related guarantee, it must be
possible to unambiguously and reliably decide whether or not guarantee and demand
match for composing these systems safely.

It is important to find an appropriate level of abstraction supporting automated analyses
at runtime. Thus, in order to represent ConSert guarantees and demands at the service
level, service specifications are augmented with safety properties (SP). A guarantee is
fulfilled if the referred service can be provided in such a way that the assigned safety
properties are fulfilled. In the same way a demand is fulfilled if the referred service is
available in such a way that the associated safety properties are fulfilled.

In fact, safety properties are comparable to safety requirements, which can be derived
similarly to those in a traditional safety engineering approach as described in chapter 2.
The main difference is that the components and the structure of an open system of systems
cannot be completely predicted at design time, so that a typical top-down approach based
on a concrete system would not work. To this end, it is reasonable to work in terms of
service types instead of concrete components. ConSerts assume that any functionality
supported by an ecosystem of systems of systems, such as agricultural machinery, is
documented in an appropriate service type system of the ecosystem and thus known at
design time. This is a reasonable assumption since something like a type system is
required for establishing functional connections anyway. For example, for connecting
tractors and implements in the agricultural domain, the ISOBUS standard [100] specifies
all information required to define such a type system for the ecosystem of connected
machines for agriculture and forestry.

This knowledge can then be used as a basis for a safety analysis. The service
specifications define the to-be-behavior of the services. Using techniques like HAZOP
[40], interface FMEA [46], or sophisticated approaches like dynamic guide phrases
[97][98], possible deviations from the intended behavior can be derived in order to
identify failure modes of the analyzed service type. Based on these failure modes, it is
then possible to define safety properties.

As an example, Figure 5-8 shows a generic definition of safety properties based on a
common failure type classification defined in [72]. Usually, the safety property definition
reflects the domain and service specific failure modes identified during the safety analysis
as described above.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 132/156

Figure 5-8 Generic type system for safety properties [84]

In this generic example, the principle failure modes Value, Provision, and Time are
defined, which are further refined to Coarse and Subtle, Omission and Commission, as
well as Early and Late, respectively.

A demand can then be specified by referring to the respective service type. Since the
service type specification is extended by safety properties, it is additionally possible to
define which of the specified safety properties must hold. In the same way a guarantee
can be defined. Using such a type-system-like definition of safety properties is quite
intuitive since it reflects failure modes as they are identified in safety analyses already
today. And the runtime evaluation can be kept rather simple since it can be reduced to a
type check.

In addition to the simple types, it is also possible to provide a refined specification for
safety properties. For example, the safety property Value as shown in Figure 5-8, can
optionally be refined using an additional parameter. As a concrete example, consider the
failure mode value failure of the acceleration command service required by a tractor. Here
it is possible to specify a concrete threshold using the additional parameter in order to
refine what a value failure means in this particular case. In the concrete case of the
example a value of 0.5 m/s² could be assigned to this parameter in order to express that
the safety property Value is fulfilled, if the current acceleration command is not more
than 0.5 m/s² higher or lower than the intended nominal acceleration value.

Additionally, it is necessary to assign an integrity level to safety properties. Those
integrity levels fulfill the same purpose as integrity levels that are assigned to safety
requirements in every conventional safety assurance approach. Examples are the Safety
Integrity Level (SIL) of the IEC 61508 [2], the Automotive Safety Integrity Level (ASIL)
of the ISO 26262 [4], the Design Assurance Level (DAL) defined in the DO-178C [5],
and the Software Safety Classes for medical devices of the IEC 62304 [99]. Such an
integrity level ultimately represents a level of confidence regarding the fulfillment of a
given safety property.

Based on this information, it is possible to completely define guarantees and demands
in a sufficiently formal way. By relating the definition to existing interfaces based on

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 133/156

service types simplifies the composition and increases the semantic expressiveness. By
extending the type systems with safety properties, it is possible to provide an intuitive,
yet sufficiently formal mechanism enabling runtime checks.

5.9.3. Runtime Evidences

When developing a modular safety argument for a service based on guarantees and
demands, it might happen that additional evidences are required that cannot be
modularized. Consider a device using different external services that must be executed
independently from each other for ensuring the absence of common cause failures. In a
closed system, requirements such as the independence can be proven at design time using
techniques such as fault-tree-based common cause analysis. In open systems of systems,
however, the according evidence must be derived at runtime when the required
information is available. To this end, ConSerts support so-called Runtime Evidences
(RtE) as an additional concept. Comparable to demands, it can be specified that different
runtime evidences must be fulfilled in order to fulfill a guarantee. In contrast to demands,
however, it is necessary to not only check the availability and quality of another service,
but dedicated runtime analyses must be executed in order to check whether or not the
required conditions are fulfilled in the current runtime context.

Figure 5-9 shows an initial classification of runtime evidences as they are currently
supported in the ConSerts approach [85]. They can be classified into two categories,
namely Intra-Device RtE and Inter-Device RtE. The former can be evaluated based on
information available within a single device, whereas the latter require distributed
evaluation mechanisms across several devices. This requires a collaboration of all devices
involved. For this reason, Inter-Device RtEs cannot be defined as ‘freely’ as Intra-Device
RtEs and should be part of a domain-specific standard. Runtime evidences are generally
part of the safety measures and thus need to be certified according to the integrity level
of ‘their’ associated guarantees in the ConSert.

Figure 5-9 Initial classification of runtime evidences [85]

As for Intra-Device-RtEs, ConSerts currently consider three classes of runtime
evidences. One class of evidences considers the system context. For example, consider
the successful allocation of internal resources that are required to provide a given service.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 134/156

The second class addresses safety functions, such as error detection, error handling, fault
tolerance etc., that must work properly at runtime. Therefore, the corresponding runtime
evidences monitor of the correct operation of safety functions. The third class covers
evidences based on the environmental context. For example, the maximal acceleration
accepted by the tractor could depend on the current awareness of the tractor operator,
which could be measured using special sensors at runtime. It is however important to note
that all information required to evaluate an intra-device evidence is available within the
system itself.

As regards Inter-Device RtEs, there are currently three classes of runtime evidences
considered, namely structural evidences, distributed safety functions, and conformance
evidences.
Structural evidences are used to check whether or not the system of systems is structured
as expected. If, for example, different services are used as redundancy, it must be ensured
that they have been realized completely independently from each other in order to avoid
common cause failures. To this end, a runtime evidence checks the structure of the system
of systems for ensuring that the chains of systems, which are required to implement the
services, are independent from each other.
Runtime evidences belonging to the class ‘distributed safety functions’ check whether or
not safety functions that are distributed to different systems work correctly. For example,
a tractor must not be automatically accelerated from a standstill position. The according
safety function can be distributed to the tractor as well as to the implement. The runtime
evidence has then to check that the distributed safety function works properly in the
current machine setting and runtime context.
Lastly, conformance evidences check that all systems involved comply to the same
standards of interoperability, safety etc. For example, it might be necessary to check that
the tractor as well as the implement are compliant to the ISOBUS standard. Moreover,
this includes checks that the ConSerts of all machines have been issued by accredited
authorities.

This is, however, only an initial set of runtime evidences, which can be and must be
extended for concrete application scenarios. Referring to the ideas of safety models at
runtime, it is for example possible to easily integrate runtime checks of safety cases or
runtime verification mechanisms as runtime evidences into the ConSert framework.

5.9.4. Mapping Functions and Runtime Evaluation

With the help of safety properties, we can now specify ConSerts through (sets of)
mapping functions between guaranteed safety properties of provided services and
demanded safety properties of required services and runtime evidences. ConSerts are
generally specified per component, or, in case the component is adaptive and has several
configurations, per configuration. Mapping functions are specified for each offered
service of a configuration. Therefore, a ConSert might comprise several mapping
functions. The domain D of a concrete mapping function f: DG is the union set of sets

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 135/156

of safety demands, i.e., safety properties that are relevant for the required services, and
the set of runtime evidences. The co-domain G is the set of safety guarantees, i.e., the
safety properties that can be guaranteed by the provided service. Though arbitrary
mapping functions are possible, specifying the mapping functions as Boolean functions
turned out to be fully sufficient. To this end, the mappings are split up as described in the
following.

For each provided guarantee of each provided service, there shall be a separate ConSert
sub tree (CST), represented by a Boolean function f: BkB. Inputs of the mapping
function are k Boolean variables, each representing a demanded set of safety properties
belonging to a required service as well as required runtime evidences, respectively. Such
a Boolean variable is true if the demanded safety properties are actually met or if the
runtime evidence evaluates to true at runtime, respectively. The Boolean variable of the
co-domain represents one concrete set of safety properties that can be guaranteed for the
provided service if the Boolean function (i.e., the respective CST) evaluates to true (i.e.,
all demanded safety properties are met by the required services and all required runtime
evidences evaluate to true). So all in all, ConSerts consist of a number of trees specifying
Boolean functions, each modeling the condition for its respective guarantee variant and
taking demands and runtime evidences as input.

Using guarantees and demands and the according mapping functions, a system’s
dynamic safety characteristics can be described completely modularly, since it is only
based on information available in the local interfaces. Due to the simplicity of the
mapping functions and the definition of services and safety properties based on simple
type systems, a runtime evaluation is easily possible.

At runtime, the modular ConSerts of the single systems that shall be integrated need to
be composed in order to assess the safety of the emerging system of systems. It is
desirable to keep the ConSerts and the runtime evaluation as simple as possible and to
leave the major part of safety engineering at development time. It is therefore important
that ConSerts operate at the certificate level, i.e., by conducting (almost) complete safety
engineering and certification at development time and only leaving open some pre-
defined certificate variants. These variants can then be resolved at runtime by checking
the associated conditions that are bound to the fulfillment of formalized domain-specific
demands.

Thus, each component in an open system of systems should at least have one ConSert
(several if it has different configurations), specifying its respective pairs of safety
guarantees and demands. Technically, there needs to be an adequate runtime
representation for ConSerts as well as corresponding mechanisms to enable dynamic
composition and evaluation, which will be described below. When a composition
structure is build at runtime, a ConSert of a component is always responsible for providing
the correct guarantees (i.e., the correct certificate variant) for this component based on
the fulfillment of the respective demands. The demands are either directly related to the
safety properties of required services or to runtime evidences. With runtime evidences, it

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 136/156

is possible to acquire evidences beyond the required services (such as properties of the
compositional structure).

The evaluation of a composition of ConSerts starts from the ‘leaf components’ that do
not have any further service dependencies. Their guarantees are propagated up through
the composition hierarchy by means of the mapping functions until the top-level
component is reached. The evaluation of ConSerts is generally conducted at integration
time and whenever the overall composition or configuration changes. Of course, runtime
evidences (and also ConSerts as a whole) might be further utilized to monitor systems
during runtime. Whenever a runtime evidence is no longer valid, this will have an impact
on the current ConSert and the levels of guarantees that can be assured. Through the
dependencies between ConSerts within a composition hierarchy, this can result in fewer
guarantees or a reduction of integrity levels on the top level, too. When this violates safety
requirements, appropriate countermeasures can be taken. Typical measures are switching
into a fail-safe state or reconfiguration (graceful degradation). The monitoring frequency
could be adjusted according to the respective setting. Services that sporadically send some
information could re-evaluate their ConSerts every time and attach the result to their
information. Some runtime evidences might even be monitored continuously without big
overhead. Others, like independence, would only be evaluated when the application is
initialized or when the structure of the system composition actually changes.

The actual component-level evaluation algorithm is identical for each component. It
begins with the Invariant and then continues with the CST that offers the best safety
guarantees for the service. If the configuration offers several services, this step must be
done for each service. At runtime, a CST is represented as BDD at runtime for enabling
an efficient evaluation. Therefore, it can be evaluated by traversing its runtime BDD
representation, thereby evaluating the BDD nodes that correspond to the Boolean input
variables of the CST.

This evaluation is twofold: If the corresponding Boolean variable refers to a demand,
its specification has to be matched with the specification of the corresponding guarantee
of the consumed service. This comprises matching the different safety properties with
their types, specifications, and integrity levels, which are all specified according to the
type system. If the Boolean variable refers to a runtime evidence, a specific evaluation
(sub-) process is triggered. If a CST (other than the Invariant) evaluates to false, the
subsequent CST will be evaluated. As soon as a CST evaluates to true, the corresponding
set of guarantees is propagated up in the composition hierarchy to the potential consumer
of the evaluated service. If none of the CSTs evaluates to true (or the invariant evaluates
to false), only the default guarantee can be assured. Eventually, all components in the
composition hierarchy have conducted their evaluation process and the top-level
component (i.e., the component that initially started the process) can match the actual
possible safety guarantees with its top-level safety demands. Now, the overall composite
can either be accepted (i.e., corresponding service contracts can be established) or
rejected.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 137/156

As an example for the evaluation of runtime evidences consider an independence
runtime evidence. The latter plays an important role when redundancy is required in order
to avoid dependent failures, such as common cause failures or cascading failures. There
are two different aspects to this problem that need to be resolved. On the one hand, it must
be guaranteed that the respective services do not have any dependencies within single
components (i.e., different dependent services that are offered by the same component
configuration). On the other hand, it must be ensured that there are no commonly used
services on lower levels of the composition hierarchy. The first of these two aspects can
be tackled with the help of dependency matrices, which need to be integrated into the
components. These matrices make potential dependencies between different provided
services of a component explicit. The second aspect requires a dedicated distributed
protocol to generate and compare service dependency traces. A prerequisite for such a
protocol is a suitable naming scheme for services that yields unique service names. A
pragmatic approach is to use a naming scheme that incorporates (unique)
device/component names such as <device_name>.<service_name>.

To generate service dependency traces, the first step is to consult the local dependency
matrix belonging to the current component configuration. The dependency matrix
contains internal as well as external dependencies. For both, the respective service names
are added to the trace. The next step is to request the providers of the required external
services. This is done via a specific independence request, which is issued directly to the
respective components. Again, their dependency matrix is analyzed and the same steps
are conducted. Step by step, all dependent services, internal and external ones, are added
to the trace. Eventually, when there are no further dependencies, the traces are propagated
back to the initial issuer of the request. There, all traces are compared with respect to
common elements. If there are common elements, the services are dependent and the
runtime check fails. Otherwise, the runtime evidence evaluates to true.

In fact, each runtime evidence might require a separate runtime algorithm and/or
protocol. Particularly distributed runtime evidences therefore require a standardization
within an ecosystem of systems of systems. Connecting arbitrary systems not following
the same standards can therefore not be safely integrated using ConSerts.

5.9.5. Specification Technique

In order to seamlessly integrate the idea of ConSerts into a model-driven design
process, it is important to provide a graphical modeling notation for specifying ConSerts.
In fact, this mainly requires a possibility to model CSTs. As described earlier, a CST is a
Boolean function taking demands and runtime evidences as input. Therefore, a CST can
be seen as a tuple (D, R, O, g, E) with:

D: A set of demands

R: A set of runtime evidences

O: A set of Boolean operators, which are represented as gates

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 138/156

g: the provided guarantee, i.e. the guaranteed output value

E: A set edges connecting demands, runtime evidences, operators and the guarantee

In addition to the single CSTs, a ConSert contains an invariant and defines a default
guarantee. For each of these constituents a modeling element has been defined as they are
shown in Figure 5-10.

Figure 5-10 Graphical Modeling Elements of a ConSert [85]

All of these elements can be connected using directed edges. The name of a ConSert
should always follow the following scheme:

<component_name>.<configuration_name>.ConSert

The top-level element of any CST is a guarantee, which has one ingoing edge,
representing the evaluation result, and no outgoing edge. It defines the associated
provided service, the integrity level, and a set of fulfilled safety properties. A special type
of guarantee is the default guarantee, which has no ingoing edges. It defines the
guarantees that can be fulfilled in any case, independent of any demands, runtime
evidences, or invariants.

In addition to defining guarantees, it is possible to define an invariant, which must be
fulfilled for all guarantees except for the default guarantee. In principle, it is defined just
like a CST, which will be evaluated at runtime before any CST of the guarantees is
evaluated. However, an invariant is not associated to a specific service. Therefore, in
contrast to guarantees, there are no further specifications like services or integrity levels
required. To underline this difference, invariants can be defined using a dedicated
modeling element (cf. Figure 5-10).

In order to express the mapping functions for the normal guarantees, different Boolean
gates can be used. A gate has an arbitrary number of ingoing edges and exactly one
outgoing edge. Currently, ConSerts support AND-gates as well as OR-gates. Following
the standard semantics, the output of an OR-gate is true if one of the ingoing edges is true.
The output of the AND-gate is true if all ingoing edges are true. In principle, any kind of
Boolean function could be extended as gate to ConSerts.

The leafs of the resulting tree are defined by demands or runtime evidences,
respectively. Demands express requirements on external services, namely which safety
properties must be fulfilled at which integrity level. Therefore, they have no ingoing edges
and may have an unlimited number of outgoing edges leading to different gates or
guarantees. In the same way as guarantees they specify the associated required service,
the required integrity level, and a set of safety properties that must be fulfilled.

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 139/156

Finally, it is possible to model runtime evidences. They have at least one outgoing edge
and no ingoing edges. Since various different runtime evidences are possible, they are
typed. Depending on the type, additional specification elements might be required.
Considering the independence evidence as example, the additional specification contains
a list of all services that need to be regarded in the analysis.

Figure 5-11 Example of a ConSert [85]

In order to further illustrate the concepts, Figure 5-11 shows an example taken from
[85]. It shows an excerpt of a ConSert of a round baler, which can control a tractor using
a tractor implement automation protocol (TIA). The default guarantee in the middle will
not guarantee any integrity level3, i.e. the system must not be used in safety critical setting.
The left guarantee is the one with highest priority as it is shown by the priority number in
brackets. In general, it provides an integrity level of AgPL3 c and refines certain safety
properties. For example, it guarantees that a self-acceleration will not be caused by the
implement in a standstill situation by AgPL d (SelfAcc{;SS}.AgPl=d). There are two
options modelled, how this guarantee can be fulfilled. To this end, an OR-gate is used.

One of the options has been omitted in the example. The second option, requires
various demands regarding the steering angle commands, speed commands, and power
take off (PTO) engagement. Additionally, a runtime evidence is required, which ensures

3 AgPL= Agricultural Performance Level, notion of integrity levels used in the agricultural domain. QM=Quality

Management, no safety guarantees are given. (ISO 25119 [101])

Runtime Safety Assurance

Mario Trapp Assuring Functional Safety in Open Systems of Systems 140/156

that the safety function that prohibits an operation during standstill is still working at
runtime.

Furthermore, the ConSert shown in the example models an invariant, which must be
fulfilled for all guarantees. In this case, three runtime evidences must be fulfilled to fulfill
the invariant. First, it must be ensured that the implement and the connected partner
currently work compliant to the ISOBUS-standard4 [100]. Second, the implement must
first successfully pass a self-check. And third, a special protocol checks the
interoperability, i.e., whether or not tractor and implement can work together properly
from a functional point of view, which could be realized, e.g., using runtime
interoperability tests.

Based on this notation, ConSerts can be easily integrated into a model-driven design-
flow. They provide a very intuitive yet sufficiently expressive means to express runtime
certificates. Due to the given formality and simplicity, they can be easily evaluated at
runtime. Therefore, they provide an ideal basis for runtime safety assurance. This is
particularly true, if we do not consider ConSerts for runtime certification only, but as the
key element in the broader context of the safety assurance framework that was discussed
in the previous section.

4 The ISOBUS standard defines all rules for implementing tractor implement automation

Summary and Future Work

Mario Trapp Assuring Functional Safety in Open Systems of Systems 141/156

6. Summary and Future Work

Assuring safety in open systems of systems poses several challenges. In general, safety
assurance approaches and the complete underlying philosophies assume that the system
is completely specified prior to a final safety assessment. And that the systems’ safety is
assessed by a human expert before its commissioning. Open systems of systems,
however, cannot be completely specified at design time. They are dynamically composed
at runtime, when different systems ‘meet’ in the field and dynamically interconnect to
each other. Therefore, open systems of systems emerge dynamically in the field at
runtime. This emergent property is however not limited to the structure, but the system
start collaborating as a collective, so that a collective behavior emerges. Moreover, the
systems need to dynamically adapt themselves in order to provide the flexibility that is
required to operate in such a dynamic setting. In consequence, this leads to uncertainties.
This means that there are several properties that cannot be completely anticipated at
design time. Thus, traditional safety assurance approaches cannot be used for open
systems of systems. Instead, it is indispensable to shift certain parts of the safety assurance
process into runtime so that safety assurance can be completed when the concrete context
is known.

In order to yield such a runtime safety assurance framework, it is important to use
conventional safety assurance lifecycles as starting point, because it is necessary to
demonstrate that runtime assurance leads to the system safety integrity as established
design time safety assurance approaches. Several steps were then necessary for advancing
conventional safety assurance approaches to a runtime safety assurance framework. In
order to enable such a framework, we combine the ideas of safety assurance with those
of Models@Runtime, which are used for developing open adaptive systems. This means,
we created safety models which can be shifted into runtime for enabling the system to
reason about its safety at runtime. Using models at runtime enables a sufficient degree of
flexibility without losing the required reproducibility. This approach required several
steps, which are briefly summarized in the following:

In the first step, it is essential to provide the necessary modularity. While modularity is
common practice in engineering, most safety artifacts are not modular by default. In
addition to existing modular fault tree analysis approaches, we therefore also modularized
the FMEA as a further widely used safety analysis technique. And even more importantly,
we also modularized safety concepts and safety cases, as the most important safety
artifacts besides safety analyses.

In addition to the modularity, most conventional safety artifacts do not have a model-
based representation as it is required for enabling safety models at runtime. Particularly
this means that the safety artifacts must provide a minimum level of formality to be
interpreted at runtime. Therefore, we advanced modular safety assurance to model-driven
safety assurance. This means that we defined a model-based representation of all relevant
safety artifacts. By doing so we furthermore seamlessly integrated the safety assurance

Summary and Future Work

Mario Trapp Assuring Functional Safety in Open Systems of Systems 142/156

lifecycle with the development lifecycle. Besides providing a sound basis for safety
models at runtime, this approach has proven to provide many advantages for increasing
the efficiency of design time safety assurance as well.

Finally, we used the safety models as a basis to create safety models at runtime. In
principle, all of the safety models can be made available at runtime. However, it is
reasonable to leave as much responsibility as possible at design time. Therefore, we first
focused on safety certificates at runtime, which we implemented as conditional safety
certificates – ConSerts. ConSerts already provide a very powerful means of runtime safety
assurance for open systems. We have successfully applied the concept in different
projects with industry [85]. But even more importantly, ConSerts are the key element of
our runtime safety assurance framework. If each system in a system of systems provides
a ConSert, it is possible to safely integrate the systems. How the safety assurance happens
within the single systems is not relevant for their safe integration. Therefore, ConSerts as
safety certificates at runtime provide a means for realizing information hiding in the
runtime safety assurance framework. This ensures the required flexibility of the
framework to support heterogeneous assurance approaches and it enables the required
scalability of the framework to large scale systems of systems.

Using safety certificates at runtime as generic safety interface for a safe system
integration at runtime opens a wide range of possibilities to assure the safety of single
systems at runtime. For example, we provided concepts to additionally have safety cases
or safety analyses at runtime enabling even more flexible dynamic system adaptations.
And any other approach for runtime safety assurance can be integrated as long as a
runtime safety certificate is provided as safety interface at the system border. This is an
essential characteristic of our safety assurance framework, since the systems are
developed independently by different companies, each of which needing the freedom to
use its own safety assurance approach.

The safety assurance framework has already shown to be a very valuable result for
runtime safety assurance of open systems of systems. Nonetheless, it opened a door to a
completely new field of safety assurance. Traditional safety assurance research was
experiencing a saturation over the last decade and runtime safety assurance was hardly
considered. Based on our work on runtime safety assurance, safety research got new
impulses and the safety assurance of open systems of systems has gained a lot of
importance over the last five years in the safety community. Particularly the idea of
SafetyModels@Runtime (SM@RT) has a huge potential for future work. Though we
made first steps considering safety cases and analyses at runtime, they bear much more
potential. For example, safety analyses could use real time information for better
estimations of failure rates, e.g., based on similar approaches as they are used for
predictive maintenance. Moreover, the runtime information gathered in analyses and
safety cases cannot only be used within a single a system or system of systems. But it is
possible to gather the collected knowledge of complete fleets. In consequence, general
patterns, issues and solutions could be derived and the systems can be optimized

Summary and Future Work

Mario Trapp Assuring Functional Safety in Open Systems of Systems 143/156

accordingly. This means that the safety of systems of systems cannot only be monitored,
but the collective safety intelligence across a complete fleet could be used to improve the
systems’ safety. Particularly regarding more complex systems like autonomous systems,
whose safety is very difficult to assure, this collective safety knowledge from systems in
the field could be invaluable for an effective safety assurance. In the same way as the
systems’ functional intelligence is increasing based on collective experience collected in
the field, it would be possible to use a runtime safety assurance framework as a basis for
building up collective safety experience in order to improve the systems’ safety
intelligence.

Obviously, the runtime safety assurance framework for open adaptive systems is a first
step into a new world of safety assurance. It provides a basis for a wide range of
completely new possibilities and approaches. And since intelligent, collective systems of
systems will be the basis of future innovations, there will be a continuous need for
appropriate safety assurance approaches.

Therefore, this thesis does not describe the result of a finished thread of research, but
it describes the results, which could be a starting point for a young field of research, which
will continuously gain even more importance in the future.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 144/156

7. References

[1] agendaCPS – Integrierte Forschungsagenda Cyber-Physical Systems (acatech
STUDIE), Heidelberg u.a.: Springer Verlag 2012.

[2] IEC 61508:2010, SC 65A, Functional safety of electrical/ electronic/
programmable electronic safety-related systems

[3] A. Avižienis, J. Laprie, B. Randell, C. Landwehr. “Basic concepts and taxonomy
of dependable and secure computing.” IEEE Transactions on Dependable and
Secure Computing, vol. 1, pp. 11-33, 2004.

[4] ISO 26262-1:2011 Road vehicles -- Functional safety

[5] RTCA DO-178C Software Considerations in Airborne Systems and Equipment
Certification

[6] P. Liggesmeyer, Software-Qualität, 2nd ed. Heidelberg, Germany: Spektrum-
Verlag, 2009.

[7] Birolini, A.: Reliability Engineering – Theory and Practice, Third Edition,
Springer-Verlag, 1999

[8] Charpentier, P.: Tools for Software fault avoidance,
Standards for Safety Related Complex Electronic Systems, 2000

[9] DGQ-Band 13-11: FMEA. Fehlermöglichkeits- und Einflussanalyse., Deutsche
Gesellschaft für Qualität e.V., 2001

[10] DIN 25 424: Fehlerbaumanalyse, Deutsches Institut für Normung e.V., 1981

[11] DIN 25 419: Ereignisablaufanalyse – Verfahren, graphische Symbole und
Auswertung, Deutsches Institut für Normung e.V., 1985

[12] DIN 25 448:Ausfalleffektanalyse (Fehler-Möglichkeits- und -Einfluss-Analyse),
Deutsches Institut für Normung e.V., 1990

[13] Dugan, J.,Bavuso, S.J., Boyd, M.A.: Dynamic Fault Tree Models for Fault-
Tolerant Computer Systems, IEEE Transactions on Reliability, Vol. 41, No. 3,
1992

[14] http://www.essarel.de/, Fraunhofer IESE, TU Kaiserslautern, 2006

[15] System Safety Handbook, Federal Aviation Administration, 2005
http://www.faa.gov/library/manuals/aviation/risk_management/ ss_handbook/

[16] HCi: Cause and Effectdiagram,
http://www.hci.com.au/hcisite3/toolkit/causeand.htm

[17] A Guide to Hazard and Operability Studies, Chemical Industries Associations,
1977

[18] IEC: Techniken für die Analyse der Zuverlässigkeit – Verfahren mit dem
Zuverlässigkeitsblockdiagramm, International ElectrotechnicalCommission, 1993

[19] IEC 61508-2: Functional safety of electrical/electronic/programmable electronic
safety-related systems – Part 2: Requirements for
electrical/electronic/programmable electronic safety-related systems,
International Electrotechnical Commission, 2000

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 145/156

[20] IEC 61508-6: Functionalsafety of electrical/electronic/programmable electronic
safety-related systems – Part 6: Guidelines on the application of IEC 61508-2 and
IEC 61508-3, International Electrotechnical Commission, 2000

[21] IEC 60812: Analysetechniken für die Funktionsfähigkeit von Systemen -
Verfahren für die Fehlzustandsart- und auswirkungsanalyse (FMEA),
International Electrotechnical Commission,2001

[22] IEC 61882: Gefährdungs- und Betreibbarkeitsuntersuchung (HAZOP) –
Leitfaden, International ElectrotechnicalCommission, 2001

[23] IEC 61165: Anwendung des Markov-Verfahrens, International
ElectrotechnicalCommission, 2003

[24] IEC 61025: Fault tree analysis (FTA), International Electrotechnical
Commission, 2004

[25] ISO/TS 16949:2002 Corrected Version, Automotive Industry Action
Group(AIAG), 2003

[26] Kaiser, B.,Liggesmeyer, P.,Mäckel, O.: A New Component Concept for Fault
Trees. In: Lindsay,P; Cant, T. :Proceedings of the 8th Australian Workshop on
Safety Critical Systems and Software(SCS’03), Band 33 der Reihe Canberra
Conferences in Research and Practice in Information Technology, 2003

[27] Kaiser, B.: State/Event Fault Trees – A SafetyandReliabilityTechniquefor
Software-Controlled Systems, Dissertation zur Erlangung des akademischen
Grades Doktor der Ingeniuerwissenschaften im Fachbereich Informatik -
eingereicht am Fachbereich Informatik der Technischen Universität
Kaiserslautern, 2005

[28] Ishikawa, K.: Guide to Quality Control, Asian Productivity Organisation, 1986

[29] Jesty, P.H., Hobley, K.M., Evans, R., Kendall, Ian, Safety Analysis of Vehicle-
Based Systems, Proceedings of the 8th Safety-critical Systems Symposium, 2000

[30] Kletz, T.: HAZOP and HAZAN – Identifying and Assessing Process Industry
Standards, Institution of Chemical Engineers, 1992

[31] Leveson, N. G.: Safeware, System Safety and Computers, Addison-Wesley, 1995

[32] Liggesmeyer, P., Rombach, D.: Software-Engineering eingebetteter Systeme,
Elsevier Spektrum-Verlag, 2005

[33] Mauri, G.: Integrating Safety Analysis Techniques, Supporting Identification of
Common Cause Failures, University of York, 2000

[34] MIL-STD-1629A:Procedures for performing a failure mode, effects and
criticality analysis, Department of Defense, 1980

[35] System Safety Handbook, NASA, Dryden Flight Research Center, 1999

[36] Fault tree handbook for aerospace applications, NASA, 2002

[37] NUREG 0492: Fault tree handbook, U.S. Nuclear Regulatory Commission, 1981

[38] Quality System Requirements (QS 9000). Third Edition, Automotive Industry
Action Group(AIAG), 1998

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 146/156

[39] QS 9000 FMEA: Fehler-Möglichkeits- und Einfluss-Analyse –
Referenzhandbuch, Automotive Industrie Action Group(AIAG), 2001

[40] Redmill, F., Chudleigh, M., Catmur, J.: System Safety – HAZOP and Software
HAZOP, John Wiley & Sons, 1999

[41] The Limitations of Using the MTTF as a Reliability Specification, In Reliability
Edge, vol 1, no 1, quarter 2, Tucson, AZ: ReliaSoft Publishing, 2000
http:///www.reliasoft.com/newsletter/2Q2000/mttf.html

[42] SAE ARP5580:Recommended Failure Modes and Effects Analysis (FMEA)
Practices for Non-Automobile Applications, Society of Automotive Engineers,
2001

[43] SAE J1739: Potential Failure Mode and Effects Analysis in Design (Design
FMEA) and Potential Failure Mode and Effects Analysis in Manufacturing and
Assembly Processes (Process FMEA) and Effects Analysis for Machinery
(Machinery FMEA), Society of Automotive Engineers, 2002

[44] Stephans, R. A., Talso, W.: Systems Safety Analysis Handbook, System Safety
Society, New Mexico Chapter, 1997

[45] Trivedi, K. S., Malhotra, M.: Power-Hierarchy of Dependability- Model Types,
IEEE Transactions on Reliability, Vol. 43, No. 3, 1994

[46] VDA: Qualitätsmanagement in der Automobilindustrie, Teil 4. Sicherung der
Qualität vor Serieneinsatz, Teil 2.System-FMEA: Verband der
Automobilindustrie e.V., 1996

[47] U.S. Coast Guard: Risk-Based Decision-Making Guidelines,
Volume 3, Chapter 8: Hazard and Operability (HAZOP) Analysis,
Internetauftritt der U.S. Coast Guard, 2006
http://www.uscg.mil/hq/g-m/risk/e-guidelines/RBDM/html/vol3/08 /v3-08-
cont.htm

[48] Dugan, J., Bavuso, S.J., Boyd, M.A.: Dynamic Fault Tree Models for Fault-
Tolerant Computer Systems, IEEE Transactions on Reliability, Vol. 41, No. 3,
1992

[49] GSN Community Standard Version 1.0, November 2011. Origin Consulting.

[50] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework, Second Edition. Addison Wesley, 2008.

[51] Object Management Group. Model Driven Architecture (MDA). MDA Guide rev
2.0, 2014

[52] J.L. Fenn, R.D. Hawkins, P.J. Williams, T.P. Kelly, M.G. Banner, Y. Oakshott
(Industrial Avionics Working Group). The Who, Where, How, Why and When of
Modular And Incremental Certification. 2nd Institution of Engineering and
Technology International Conference on System Safety, 2007.

[53] T. P. Kelly. Concepts and Principles of Compositional Safety Cases,
(COMSA/2001/1/1) - Research Report, commissioned by QinetiQ, (2001).

[54] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
ACM Press. 1997.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 147/156

[55] M Ajmone Marsan, G. Balbo, G. Conte. A class of Generalized Stochastic Petri
Nets for the performance evaluation of multiprocessor systems. ACM
Transactions on Computing Systems 2 (2) (1984), pp. 93-122

[56] E. A. Lee, D. Neuendorffer, M.J. Wirthlin. Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers 12,
3, 2003, pp. 231-260.

[57] D. Domis, M. Trapp. Integrating safety analyses and component-based
design,"Computer Safety, Reliability, and Security",,,58-71,2008,Springer Berlin
Heidelberg

[58] D. Domis, M. Trapp. “Component-based abstraction in fault tree analysis"
Computer Safety, Reliability, and Security",,,297-310,2009,Springer Berlin
Heidelberg

[59] D. Domis, K. Hofig, M. Trapp. A consistency check algorithm for component-
based refinements of fault trees, Software Reliability Engineering (ISSRE), 2010
IEEE 21st International Symposium on",,,171-180,2010,IEEE

[60] M. Forster, M. Trapp. Fault tree analysis of software-controlled component
systems based on second-order probabilities, Software Reliability Engineering,
2009. ISSRE'09. 20th International Symposium on",146-154,2009,IEEE

[61] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn, P. Schwinn, M. Trapp.
Integration of component fault trees into the UML Models. In: Software
Engineering 312-327,2011,Springer Berlin Heidelberg

[62] K. Höfig, M. Trapp, B. Zimmer, P. Liggesmeyer. Modeling Quality Aspects:
Safety, Model-Based Engineering of Embedded Systems, 107-118, 2012,
Springer Berlin Heidelberg

[63] J. Reich. Konzeption und Entwicklung eines Werkzeugs zur Spezifikation und
Analyse von Safety-Modellen auf Basis von Enterprise Architect, Bachelor
Thesis, TU Kaiserslautern, 2013

[64] P. Antonino, S. Velasco Moncada, D. Schneider, M. Trapp, J. Reich: iSaFe: An
integrated Safety Engineering Tool, To be published in: Proceedings of 5th IFAC
Workshop on Dependable Control of Discrete Systems, 2015

[65] M. Trapp, S. Kemmann, D. Domis, M. Förster. Safety Concept Trees. In:
Proceedings of RAMS Conference 2009.

[66] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger, M. Trapp: Vertical Safety
Interfaces – Improving the Efficiency of Modular Certification. In: Proc 30th
International Conference on Computer Safety, Reliability, and Security
(SAFECOMP’11), Naples, Italy, LNCS 6849, pp.29-43

[67] P. Antonino, M. Trapp, P. Barbosa and L.Sousa: The Parameterized Safety
Requirements Templates. To be published in Proceedings of The 8th
International Symposium on Software and Systems Traceability, IEEE 2015.

[68] P. Antonino, M. Trapp, P. Barbosa, E. C. Gurjão, J. Rosário: The Safety
Requirements Decomposition Pattern. To be published in: Proc 34th International
Conference on Computer Safety, Reliability, and Security (SAFECOMP’15)

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 148/156

[69] O. Lisagor, J.A. McDermid, D.J. Pumfrey. “Towards a Practicable Process for
Automated Safety Analysis.” In: 24th International System Safety Conference,
pp. 596-607, 2006.

[70] P. Fenelon, et al, “Towards Integrated Safety Analysis and Design.” In ACM
Applied Computing Review, 2(1) pp.21-32, 1994.

[71] D.J. Pumfrey. “The Principled Design of Computer System Safety Analyses.”
1999.

[72] J.A. McDermid, D.J. Pumfrey. “A development of hazard analysis to aid software
design.” in Proc Ninth Annual Conference on Computer Assurance. COMPASS
'94 'Safety, Reliability, Fault Tolerance, Concurrency and Real Time, Security',
1994.

[73] DO-297: Integrated Modular Avionics (IMA) Development Guidance and
Certification Considerations, Radio Technical Commision for Aeronautics
(RTCA) SC-200, 2005.

[74] J. Rushby. “Modular Certification.” NASA Contractor Report CR-2002-212130,
NASA Langley Research Center, 2002.

[75] I. Bate, S. Bates, R. Hawkins, T. Kelly, J. McDermid. “Safety case architectures
to complement a contract-based approach to designing safe systems.” in Proc 21st
International System Safety Conference (ISSC'03): System Safety Society, pp.
182–192, 2003.

[76] E. Althammer, E. Schoitsch, G. Sonneck, H. Eriksson,J. Vinter. “Modular
certification support — the DECOS concept of generic safety cases.” 6th IEEE
International Conference on Industrial Informatics, (INDIN), pp. 258–263, 2008.

[77] H. Kopetz, R. Obermaisser, P. Peti and N. Suri: From a Federated to an Integrat-
ed Architecture for Dependable Embedded Real-Time Systems. TU Vienna Uni-
versity of Technology, Austria, and Darmstadt University of Technology, Ger-
many, 2004.

[78] Website of the AUOTOSAR Standard: http://www.autosar.org. Last visited: May
2015.

[79] ARINC 653 P1-2, Avionic Application Software Standard Interface ARINC 653,
2005.

[80] W. Damm, A. Metzner, T. Peikenkamp, A. Votintseva. “Boosting Re-use of
Embedded Automotive Applications Through Rich Components” in Proc.
Workshop on Foundations of Interface Technologies 2005 (FIT'05), 2005.

[81] G.Blair et al., “Models@Run.Time” IEEE Computer Nov. 2010.

[82] M. Trapp, D. Schneider. Safety Assurance of Open Adaptive Systems – A
Survey. Models@run.time. Lecture Notes in Computer Science Volume 8378,
2014, pp 279-318

[83] D. Schneider, M. Trapp. “A Safety Engineering Framework for Open Adaptive
Systems”, in Proc. Fifth IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, Ann Arbor, Michigan, USA; October 3 - October 7,
2011.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 149/156

[84] D. Schneider, M. Trapp. “Conditional Safety Certification of Open Adaptive
Systems”, ACM Transactions on Autonomous and Adaptive Systems (TAAS),
2013.

[85] D. Schneider. Conditional Safety Certification for Open Adaptive Systems.
Dissertation, TU Kaiserslautern, 2013

[86] M. Leucker and C. Schallhart: A brief account of runtime verification. Jour-nal of
Logic and Algebraic Programming, 78(5):293-303, 2009.

[87] R. Calinescu and M. Kwiatkowska: CADS*: Computer-aided development of
self-* systems. In M. Chechik and M. Wirsing, editors, Fundamental Ap-
proaches to Software Engineering (FASE 2009), volume 5503 of Lecture Notes
in Computer Science, pages 421-424. Springer, 2009.

[88] R. Calinescu and M. Kwiatkowska: Using quantitative analysis to implement
autonomic IT systems. In Proceedings of the 31st International Conference on
Software Engineering (ICSE'09), pages 100-110, 2009.

[89] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli: Model evolution by run-
time adaptation. In Proceedings of the 31st International Conference on Software
Engineering (ICSE'09), pages 111-121, 2009.

[90] H. J. Goldsby, B. H. Cheng, and J. Zhang: AMOEBA-RT: Run-Time Verification
of Adaptive Software, In Models in Software Engineering, Holger Giese (Ed.).
Lecture Notes In Computer Science, Vol. 5002. Springer-Verlag, Berlin,
Heidelberg, 2008

[91] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, G. Tamburrelli:
Dynamic QoS Management and Optimization in Ser-vice-Based Systems, IEEE
Transactions on Software Engineering, pp. 387-409, May/June, 2011.

[92] R. Calinescu: When the requirements for adaptation and high integrity meet. In
Proceedings of the 8th workshop on Assurances for self-adaptive systems (ASAS
'11). ACM, New York, NY, USA, pages 1-4, 2011.

[93] R. Adler, M. Förster, M. Trapp.” Determining configuration probabilities of
safety-critical adaptive systems.” In IEEE International Symposium on Ubisafe
Computing (UbiSafe’07), Niagara Falls, Canada, 2007.

[94] C. Priesterjahn, C. Heinzemann, W. Schäfer, M. Tichy: Runtime Safety Anal-ysis
for Safe Reconfiguration. In Proceedings of the 3. Workshop „Self-X and
Autonomous Control in Engineering Applications’, 10. IEEE International
Conference on Industrial Informatics, Beijing, China, 2012.

[95] S. Kemmann, M. Trapp. SAHARA – A Systematic Approach for Hazard
Analysis and Risk Assessment. In: Proceedings of SAE 2011 World Congress
(2011), Detroit Mi.

[96] C. Peper, D. Schneider. Component Engineering for Adaptive Ad-hoc Systems,
Proc. of 30th Intl. Conf. on Software Engineering ICSE‘08, SEAMS Workshop,
2008, Leipzig.

[97] M. Trapp, S. Kemmann, R. Kalmar, C. Denger. Efficient Safety Analysis of
Automotive Software Systems. In: SAE International Journal on Passenger Cars
– Electron. And Electr. Syst. 2(1) 258-270, 2009.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 150/156

[98] C. Denger, M. Trapp, P. Liggesmeyer. SafeSpection - A Systematic
Customization Approach for Software Hazard Identification. In: Harrison,
Michael D. (Ed.) ; Sujan, Mark-Alexander (Ed.): Computer Safety, Reliability,
and Security. 27th International Conference, SAFECOMP 2008 - Proceedings.
Berlin : Springer-Verlag, 2008, 44-57 : Ill., Lit. (Lecture Notes in Computer
Science 5219).

[99] International Standard IEC 62304, Medical device software – Software life cycle
processes. IEC 62304:2006 (E)

[100] ISO 11783:2007. Tractors and machinery for agriculture and forestry – Serial
control and communication data network. International Standards Organisation,
2007.

[101] ISO 25119:2010. Tractors and machinery for agriculture and foresty – Safety-
related parts of control systems. International Standards Organisation, 2010.

[102] Anderson, T., Lee (1981). P.A., Fault Tolerance: Principles and Practice,
Prentice/Hall

[103] Russell J. Abbott, Resourceful Systems for Fault Tolerance, Reliability, and
Safety, ACM Computing Surveys, Vol. 22, No. 1, March 1990, pp. 35 – 68.

[104] Dhiraj K. Pradhan, Fault-Tolerant Computer System Design, Prentice-Hall,
Inc.,1996

[105] Lyu, M. (Ed.). (1995). Software Fault Tolerance. New York, NY, USA: John
Wiley and Sons.

[106] Ammann, P., Knight J.C. (1988). Data diversity: An approach to software fault
tolerance. Computers, IEEE Transactions on, 37 JA - Computers, IEEE
Transactions on (4), pp. 418–425.

[107] Ammann, P. (1987). Data Diversity: An Approach to Software Fault Tolerance.
Proceedings of FTCS-17, Pittsburgh

[108] Ammann, P. (1988). Data Diversity: An Approach to Software Fault Tolerance.
Ph.D. dissertation, University of Virginia

[109] Arlat, J., Kanoun, K., Laprie, J.C. (1990). Dependability Modeling and
Evaluation of Software Fault-Tolerant Systems. 39(4), pp. 504–513.

[110] Andrews, D.M. (1979).Using Executable Assertions for Testing and Fault
Tolerance, Proceedings 9th InternationalSymposium on Fault-Tolerant
Computing, pp. 102-105

[111] Mahmood A., Andrews D.M., McCluskey E.J. (1984). Executable Assertions and
Flight Software, Proceedings6th Digital Avionics Systems Conference, pp. 346-
351,Baltimore (MD), USA, AIAA/IEEE

[112] Mahmood, A.; McCluskey, E.J., Concurrent error detection using watchdog
processors-a survey,Computers, IEEE Transactions on , vol.37, no.2pp.160-174,
Feb 1988

[113] Arora, A., Kulkarni, S. (1998). Detectors and correctors: a theory of fault-
tolerance components. Distributed Computing Systems, 1998. Proceedings. 18th
International Conference on

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 151/156

[114] August, D., Chang, J., Rangan, R., Reis, G., Vachharajani, N. (2005). SWIFT:
software implemented fault tolerance. Code Generation and Optimization, 2005.
CGO 2005. International Symposium on

[115] Avizienis, A. (1995). The methodology of N-Version-Programming. Software
Fault Tolerance, Trends-in-Software Series: John Wiley & Sons

[116] Avizienis, A. (1977). On the implementation of N-Version Programming for
Software Fault-Tolerance During Execution, COMPSAC, Chicago

[117] Avizienis, A., Chen, L. (1978) N-Version Programming: A Fault-Tolerance
Approach to Reliability of Software Operation. Proceedings of FTCS-8 Toulouse

[118] Reis, G. A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee, S.
S. (2005). Design and Evaluation of Hybrid Fault-Detection Systems. In
Proceedings of the 32nd Annual international Symposium on Computer
Architecture (June 04 - 08, 2005). International Conference on Computer
Architecture. IEEE Computer Society, Washington, DC, 148-159

[119] B. Ramamurthy, S. Upadhyaya, Watchdog processor-assisted fast recovery in
distributed systems,International Conference on Dependable Computing for
Critical Applications (DCCA-5), 1995,pp. 125-134

[120] Oh, N., Shirvani, P.P., McCluskey, E.J. (2002). Error detection by duplicated
instructions in super-scalar processors. IEEE Transactions on Reliability,
51(1):63–75

[121] Oh, N., Shirvani, P.P., McCluskey, E.J. (2002).Control-flow checking by
software signatures. Volume 51, pages 111–122

[122] Oh, N.,McCluskey, E.J. (2001). Low energy error detection technique using
procedure call duplication.In Proceedings of the 2001 International Symposium
on Dependable Systems and Networks

[123] J. R. Connet, E. J. Pasternak, and B. D. Wagner, Software defenses in real time
control systems, in Dig. Znt. Symp. Fault TolerantComput.. FTCS-2, Newton,
MA, June 19-21, 1972, pp. 94-99.

[124] J. S. Novak and L. S. Tuomenoksa, Memory mutilation in stored program
controlled telephone systems, in Conf. Rec. 1970 Int.Conf. Commun., vol. 2,
1970, pp. 43-32 to 43-45.

[125] S. M. Ornstein, W. R. Crowther, M. F. Kraley, R. D. Bressler, A.Michel, and F.
E. Heart, Pluribus-A reliable multiprocessor, inProc. AFZPS Conf., vol. 44,
Anaheim, CA, May 19-22, 1975, pp. 551-559

[126] Oh, N., Shirvani, P.P., McCluskey, E. J. 2002. ED4I: Error detection by diverse
data and duplicated instructions. In IEEE Transactions on Computers. Vol. 51.
180 – 199

[127] Ohlsson, J.,Rimen, M. (1995). Implicit signature checking.In International
Conference on Fault-Tolerant Computing

[128] Miremadi, G., Ohlsson, J., Rimen, M., Karlsson, J. (1995). Use of Time and
Address Signatures for Control Flow Checking, International Conference on
Dependable Computing for Critical Applications(DCCA-5), pp. 113-124

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 152/156

[129] Saxena, N.R., McCluskey, E.J. (1990). Control Flow Checking Using Watchdog
Assists and Extended- Precision Checksums, IEEE Transactions on Computers,
Vol. 39, No. 4, pp. 554-559

[130] Yung-Yuan Chen, Concurrent detection of control flow errors by hybrid
signature monitoring, Computers, IEEE Transactions on , vol.54, no.10pp. 1298-
1313, Oct. 2005

[131] Banerjee, S., Gupta, B., & Liu, B. Design of new roll-forward recovery approach
for distributed systems. Computers and Digital Techniques, IEE Proceedings-,
149(3)

[132] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin, Two Software Techniques for
On-line Error Detection, International Symposium Fault-Tolerant Computing,
1992, pp. 328-335

[133] Avizienis, A., Magnus, U.V., Laprie, J.C., Randell, B. (2001). Fundamental
Concepts of Dependability. On applying coordinated atomic actions and
dependable software architectures for developing complex systems. ,Object-
Oriented Real-Time Distributed Computing, 2001. ISORC - 2001. Proceedings.
Fourth IEEE International Symposium on.

[134] Cheynet, P., Nicolescu, B., Rebaudengo, M., SonzaReorda, M., Velazco, R.,
Violante, M. (2000). Experimentally evaluating an Automatic Approach for
Generating Safety-Critical Software with Respect to Transient Errors. Nuclear
Science, IEEE Transactions on, 47

[135] Elmendorf, W.R. (1972). Fault-Tolerant Programming. Proceedings of FTCS-2,
Newton

[136] Goloubeva, O., Rebaudengo M., SonzaReorda, M., Violante M. (2003). Soft-
error Detection Using Control Flow Assertions. Proceedings on 18th
International Symposium on Defect and Fault Tolerance in VLSI Systems

[137] Rabéjac C., Blanquart J.-P., Queille J.-P., Executable Assertions and Timed
Traces for On-Line Software Error Detection, Proceedings 26th International
Symposium onFault-Tolerant Computing, pp.138-147, 1996

[138] Venkatasubramanian, R., Hayes, J.P., Murray, B.T. (2003). Low-cost on-line
fault detection using control flow assertions.In Proceedings of the 9th IEEE
International On-LineTesting Symposium, pages 137–143

[139] Rebaudengo, M., SonzaReorda, M., Torchiano, M., Violante, M. (1999). Soft-
error Detection through Software Fault-Tolerance techniques, IEEE International
Symposiumon Defect and Fault Tolerance in VLSI Systems, pp. 210-218.

[140] Leveson,N.G., Cha, S.S., Knight, J. C., Shimeall, T.J. (1990). The Use of Self
Checks and Voting in Software Error Detection: An Empirical Study, IEEE
Trans. Soft. Eng. 16, 4,432–443

[141] Alkhalifa, Z., Nair, V.S.S., Krishnamurthy, N., Abraham, J.A. (1999). Design and
Evaluation of System-level Checks for On-line Control Flow Error Detection,
IEEE Trans. On Parallel and Distributed Systems, Vol. 10, No. 6, pp. 627-641

[142] Yau, S.S., Chen, F.-C. (1980). An Approach to Concurrent Control Flow
Checking, IEEE Trans. On Software Engineering, Vol. 6, No. 2, pp. 126-137.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 153/156

[143] Yanney, R., Hayes, J. (1986). Distributed Recovery in Fault-Tolerant
Multiprocessor Networks.IEEE Trans. Computers, 35, pp. 871–879

[144] Yau, S.S.; Chung, R. C. (1975). Design of self-checking software, in Proc.
1975Internatl. Conf. on Reliable Software, ACM,New York, p. 450.

[145] Gossens, S., Dal Cin, M. (2004). Structural Analysis of Explicit Fault-Tolerant
Programs.High Assurance Systems Engineering. Proceedings. Eighth IEEE
International Symposium on, pp. 89–96.

[146] Hecht, H. (1976). Fault-Tolerant Software for Real-Time
Applications.ACMComput. Surv., 8(4), pp. 391–407

[147] Xu, J., Randell, B. (1996).Roll-forward error recovery in embedded real-time
systems, Proceedings of International Conference on Parallel and Distributed
Systems 1996

[148] K.H. Kim. (1998). ROAFTS: A Middleware Architecture for Real-Time Object-
oriented Adaptive Fault Tolerance Support.Proceedings on IEEE CS 1998 High-
Assurance Systems Engineering (HASE)

[149] K.H. Kim (1995). The Distributed Recovery Block Scheme. Software Fault
Tolerance – Trends-in-Software Series: John Wiley & Sons.

[150] Kim, K., Goldberg, J., Lawrence, T., Subbaraman, C. (1997). The Adaptable
Distributed Recovery Block Scheme and a Modular Implementation
Model.Proceedings of Pacific Rim International Symposium on Fault-Tolerant
Systems, pp. 131–138.

[151] Kelly, J.P.J., McVittie, T.I., Yamamoto, W.I. (1991). Implementing Design
Diversity to Achieve Fault Tolerance. IEEE Software, 8(4), pp. 61–71

[152] Laprie, J.-C., Béounes, C., Kanoun, K. (1990). Definition and Analysis of
Hardware- and Software-Fault-Tolerant Architectures. Computer, 23(7), pp. 39–
51

[153] Laprie, J.C., Béounes, C., Kanoun, K., Arlat, J., Hourtolle, C. (1987). Hardware
and Software Fault Tolerance: Definition and Analysis of Architectural Solutions.
17th International Symposium on Fault-Tolerant Computing, Pittsburgh

[154] Lawrence, J. Dennis. (1993). Software Reliability and Safety in Nuclear Reactor
Protection Systems.

[155] Lomet, D.B. (1977). Process Structuring, Synchronization and Recovery using
Atomic Actions. ACM SIGPLAN Notices, Vol. 12, No. 3

[156] Nicolescu, B., Rebaudengo, M., Sonza-Reorda, M., Velazco, R., Violante, M.
(2002). A software fault tolerance method for safety-critical systems:
Effectiveness and Drawbacks.Proceedings of 15th Symposium on Integrated
Circuits and Systems Design

[157] Nicolescu, B., Velazco, R., Sonza-Reorda, M. (2001). Effectiveness and
limitations of various software techniques for "soft error" detection: A
comparative study

[158] Pradhan, D. (1996). Fault-Tolerant Computer System Design: Prentice Hall, Inc.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 154/156

[159] Pullum, L. L. (2001). Software Fault Tolerance: Techniques and Implementation.
Boston: Artech House.

[160] Pullum, L.L. (1992). Fault Tolerant Software Decision-Making under the
Occurrence of Multiple Corrrect Results. Doctoral Dissertation,
SoutheasternInstitute of Technology

[161] Pullum, L.L. (1993). A new adjudicator for fault tolerant software applications
correctly resulting in multiple solutions. Proceedings of the 12th Digital Avionics
Systems Conference

[162] Chillarege, R.. (1995). Challenges facing Software Fault-Tolerance. First
Conference on Fault-Tolerant Systems, Madras,

[163] Randell, B. (2000).Fault tolerance in decentralized systems.Autonomous
Decentralized Systems, Proceedings of The Fourth International Symposium on
Integration of Heterogeneous Systems

[164] Randell, B. (1975). System structure for software fault tolerance, IEEE
Transactions on Software Engineering, SE 1, pp. 220–232

[165] Randell, B. (1998). Dependability – A unifying concept, Proceedings of the
Conference on Computer Security, Dependability, and Assurance: From Needs to
Solutions, pp. 16–25

[166] Randell, B., Xu, J. (1995). The Evolution of the Recovery Block Concept. In M.
Lyu (Ed.), Software Fault Tolerance (pp. 1–21). New York, NY, USA: John
Wiley and Sons.

[167] Randell, B., Xu, J. (1996). Roll-Forward Error Recovery in Embedded Real-Time
Systems.Proceedings of the International Conference onParallel and Distributed
Systems, pp. 414–421

[168] Rebaudengo, M., Reorda, M., Torchiano, M., Violante, M. (2001). A source-to-
source compiler for generating dependable software. Proceedings of the First
IEEE International Workshop on Source Code Analysis and Manipulation

[169] Reed, D.P. (1975). Implementing Atomic Actions on Decentralized Data. ACM
TOCS, Vol. 1, No. 1

[170] Reis, G.A., Chang, J., Vachharajani, N., Rangan, R., August, D.I., Mukherjee,
S.S. (2005). Software-controlled fault tolerance.ACM Transactions on
Architecture and Code Optimization, 2(4), pp. 366–396

[171] Scott, R., Gault, J., McAllister, D. (1983). The Consensus Recovery Block.
Proceedings of the Total Systems Reliability Symposium, pp. 74–85.

[172] Scott, R., Gault, J., McAllister, D. (1987). Fault-Tolerant Software Reliability
Modeling.IEEE Transactions on Software Engineering,

[173] Shirvani, P., Oh, N., McCluskey, E., Wood, D., Lovelette, M., Wood, K. (2000).
Software-Implemented Hardware Fault Tolerance Experiments COTS in Space.

[174] Shrivastava, S., Wheater, S. (1990). Implementing fault-tolerant distributed
applications using objects and multi-coloured actions. Proceedings of the 10th
International Conference onDistributed Computing Systems, pp. 203–210

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 155/156

[175] Sundresh, T. S. (1998). Software Hardening - Unifying Software Reliability
Strategies. 1998 IEEE International Conference on,Systems, Man, and
Cybernetics

[176] David J. Taylor, et al, Redundancy in Data Structures: Improving Software Fault
Tolerance, IEEE Transactions on Software Engineering, Vol. SE-6, No.
6,November 1980, pp. 585 - 594.

[177] David J. Taylor, et al, Redundancy in Data Structures: Some Theoretical Results,
IEEE Transactions on Software Engineering, Vol. SE-6, No. 6,November 1980,
pp. 595 - 602.

[178] J. P. Black, et al, Introduction to Robust Data Structures, Digest of PapersFTCS-
10: The Eleventh Annual International Symposium on Fault-TolerantComputing,
October 1 – 3, 1980, pp. 110 - 112.

[179] J. P. Black, et al, A Compendium of Robust Data Structures, Digest of
PapersFTCS-11: The Eleventh Annual International Symposium on Fault-
TolerantComputing, June 24 – 26, 1981, pp. 129 - 131.

[180] Voas, J. (2001). Fault tolerant Software, IEEE, 18

[181] Vouk, M., McAllister, D., Eckhardt, D., Kim, K. (1993). An Empirical
Evaluation of Consensus Voting and Consensus Recovery Block Reliability in
the presence of Failure Correlation. Journal of Computer Software Engineering,
pp. 364–388.

[182] Torres-Pomales, Wilfredo (2000). Software FaultTolerance: A Tutorial.

[183] Xu, J., Randell, B., Romanovsky, A. (2002). A generic approach to structuring
and implementing complex fault-tolerant software. Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-Time Distributing Computing.
(pp. 207–214).

[184] Xu, J., Randell, B., Romanovsky, A., Stroud, R.J., Zorzo, A.F., Canver, E.,
Henke, F. von. (2002). Rigorous development of an embedded fault-tolerant
system based on coordinated atomic actions.IEEE Transactions on Computers,
Vol. 51, No. 2, pp. 164–179.

[185] Xu, J., Randell, B., Rubira-Casavara, C.M.F., Stroud, R.J. (1994).Toward an
object-oriented approach to software fault tolerance. Proceedings of IEEE
Workshop onFault-Tolerant Parallel and Distributed Systems

[186] Xu, J., &Randell, B. (1997). Software fault tolerance: t/(n-1)-variant
programming.Reliability, IEEE Transactions on, 46, pp. 60–68.

[187] Xu, J., &Randell, B. (1993). Object-Oriented Construction of Fault-Tolerant
Software. Technical Report, 444.

[188] Xu, J. (1991). The t/(n-1)-diagnosibility and its application to fault tolerance.
Proc. International Symposium Fault-tolerant Computing, pp. 496–503.

[189] Xu, J., &Randell, B. (1994). The evolution of the recovery block concept.
Software Fault Tolerance, Trends-in-Software Series: John Wiley & Sons.

[190] Yeung, W., Schneider, S., Tam, F. (1998). Design and verification of distributed
recovery blocks in CSP (Technical Report CSD-TR-98-08, Royal Holloway,
University.

References

Mario Trapp Assuring Functional Safety in Open Systems of Systems 156/156

[191] Zhang, Y., Chakrabarty, K. (2004). Dynamic adaptation for fault tolerance and
power management in Embedded Real Time Systems.ACM Transactions on
Embedded Computing Systems (TECS), 3

[192] Hiller, M. (2000). Error Recovery Using Forced Validity Assisted by Executable
Assertions.EUROMICRO Conference, 1999. Proceedings. 25th, 2

[193] Stroph, R., Clarke T. (1998).Dynamic Acceptance Tests for Complex Controllers,
Proceedings 24th EuromicroConference, pp.411-417

[194] Stuck, L.G.,Foshee, G.L. (1975). New assertion concepts for self-metric software
validation.inProc. 1975 Internatl. Conf.on Reliable Software, IEEE, ACM, New
York, pp. 59-71.

[195] Leaphart, E.G., Czerny, B.J., D’Ambrosio, J.G., Denlinger, C.L., Littlejohn, D.
Survey of Software Failsafe Techniques for Safety-Critical Automotive
Applications. SAE Technical Paper Series, 2005-01-0779, 2005.

[196] Barnett, M., Rustan, K. ,Leino, M.Schulte, W. The Spec# Programming System:
An Overview. Manuscript KRML 136, Microsoft Research. In Proceedings of
CASSI 2004. 2004.

[197] Meyer, B., “Eiffel: The Language”, Prentice Hall,1992.

[198] Meyer, B., Object-Oriented Software Construction,Second Edition, Prentice Hall,
Upper Saddle River, NJ, 1997,pp. 3–19, 39–64.

[199] Bolstad, M., Design by Contract: A Simple Technique for Improving the Quality
of Software. In Proceedings of the Users Group Conference (DOD_UGC’04),
IEEE, 2004.

[200] Hoare, C.A.R., “An Axiomatic Basis for Computer Programming”, in
Communications of the ACM, vol. 12, no.10, October 1969.

[201] R. Adler, D. Schneider, M. Trapp. “Engineering Dynamic Adaptation for
Achieving Cost-Efficient Resilience in Software-Intensive Embedded Systems.”
in Proc 2010 15th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS '10). IEEE Computer Society, Washington, DC,
USA, pp. 21-30, 2010.

[202] R. Adler,D. Schneider, M. Trapp, , “Development of Safe and Reliable
Embedded Systems using Dynamic Adaptation.” In: G. Blair et al.; Technische
Universität Berlin. Fakultät für Elektrotechnik und Informatik: First Workshop on
Model-driven Software Adaptation M-ADAPT'07 at ECOOP 2007, Pages 9-14,
Berlin, 2007.

[203] Y. Papadopoulos, J. McDermid. “Hierarchically Performed Hazard Origin and
Propagation Studies.” in Proc 18th International Conference on Computer Safety,
Reliability and Security, LNCS 1608 pp. 139-152, 1999.

[204] R. Hawkins, J.A. McDermid. “Performing Hazard and Safety Analysis of Object
oriented Systems.” in Proc ISSC 2002, System Safety Society, Denver, 2002.

[205] Website: http://www.reliasoft.com Last visited: May 2015.

