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Abstract In retail, assortment planning refers to selecting a subset of products to
offer that maximizes profit. Assortments can be planned for a single store or a re-
tailer with multiple chain stores where demand varies between stores. In this paper,
we assume that a retailer with a multitude of stores wants to specify her offered
assortment. To suit all local preferences, regionalization and store-level assortment
optimization are widely used in practice and lead to competitive advantages. When
selecting regionalized assortments, a trade-off between expensive, customized as-
sortments in every store and inexpensive, identical assortments in all stores that
neglect demand variation is preferable.

We formulate a stylized model for the regionalized assortment planning problem
(APP) with capacity constraints and given demand. In our approach, a common as-
sortment that is supplemented by regionalized products is selected. While products
in the common assortment are offered in all stores, products in the local assortments
are customized and vary from store to store.

Concerning the computational complexity, we show that the APP is strongly NP-
hard. The core of this hardness result lies in the selection of the common assortment.
We formulate the APP as an integer program and provide algorithms and methods
for obtaining approximate solutions and solving large-scale instances.

Lastly, we perform computational experiments to analyze the benefits of region-
alized assortment planning depending on the variation in customer demands be-
tween stores.
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1 Introduction

A retailer with a multitude of stores has two basic strategies for specifying her of-
fered assortment:

e Every store has a customized assortment. Here, all demand differences can be
considered, but customized assortments are expensive to maintain.

e Assortments in all stores are the same. Here, the assortments may not be opti-
mized to suit all local preferences, but with a single assortment, economies of
scale and a recognition value can be generated.

In this paper, we analyze the benefit of mixed strategies, i.e., the selection of
a common assortment that is supplemented by regionalized products. Thus, prod-
ucts in the common assortment are offered in all stores, while products in the local
assortments are customized and vary from store to store.

1.1 Previous Work

The assortment planning problem (APP) is considered in both operations research
and retail literature in various settings. Nevertheless, researchers always consider
one of the basic strategies described above. For extensive reviews, see [10, 14, 15,
20]. Generally, most researchers take shelf space [3], inventory [7, 9], or pricing
decisions [25] into account. If a product is not available, customers may substitute
it by an offered one. Thus, demand depends on the offered assortment.

Usually, choice models are used to estimate demand based on actual customer
behavior. A review of different choice modeling approaches can be found in [14].
Common approaches are multinomial logit (MNL) models [8, 19], nested logit mod-
els [12], locational choice models [7], exogenous demand models [13], and gener-
alizations thereof [5, 24]. Other approaches for estimating demand are described,
e.g., in [1, 2], where four factors that influence demand are identified, in [23], where
demand depends on displayed inventory, and in [6, 18], where attribute-based ap-
proaches are proposed.

In [22], the authors show that a greedy algorithm is optimal for an unconstrained
assortment planning problem under an MNL model. In [19], the researchers give an
example where a greedy heuristic is suboptimal for a capacitated problem and de-
velop a polynomial-time algorithm. [16] proposes an assortment selection heuristic
for a problem with given demand. In [3], the authors formulate a sequential as-
sortment and shelf space allocation procedure when gross margins are given. [17]
proposes a robust knapsack model for the assortment planning problem with given
profit. Our approach follows these assumptions: we formulate a stylized model for
the regionalized assortment planning problem with given demand.

Regionalization and store-level assortment optimization lead to competitive ad-
vantages and are widely used in practice (see, e.g., [6, 8, 11]). In [14], the authors de-
scribe this as follows: Chain store management dictates a portion of the assortment
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that is carried in all stores, while the remainder is chosen to satisfy local customer
preferences. Surprisingly, very little research is done in this context.

In [6], the authors consider a similar problem: They characterize an algorithm
for assortment planning that allows a maximum number L of individual assortments
(where L is chosen between 1 and the number of stores 7). To achieve this, they
construct L store clusters and identify optimal assortments. While this leads to a
reduced number of assortments, these assortments are independent of each other.
With independent assortments, economies of scale cannot be generated. [21] allo-
cates products to assortment modules. Then, these modules are assigned to stores.
Hereby, a trade-off between standardization and individualization is possible. But,
as in [6], a recognition value and economies of scale cannot be generated. [18] de-
velops a model where only a fraction of products can change between two periods.
If they use a chain-wide assortment as a starting point and apply their model once
at every individual store, custom assortments that differ in a fixed fraction from the
original assortment can be generated.

1.2 Our Contribution

We propose an alternative solution method that reflects industry practice. Items for
the common assortment and items for the local assortments are selected simultane-
ously in order to maximize the total profit. We show that this problem is strongly
NP-hard and present a heuristic that is able to tackle large-scale instances that can-
not be solved within a reasonable amount of time by applying a commercial solver
to a standard integer programming formulation. Moreover, we evaluate the quality
of our algorithm in several computational experiments.

2 Formulation of the APP as an Integer Program

In this section, we formulate a stylized model for the APP that is obtained by sim-
plifying the original problem using some reasonable assumptions (see also [4]).

Assumption 1 We develop our model using the following assumptions:

e The assortment consists of standardized products, offered at standardized shelf
space (i.e., all products have unit size).
Every store has the same capacity.
Demand can be estimated for every product and every store.
Products that are assigned to the common assortment are offered in every store,
while products in a local assortment are offered only in this particular store.

The most restrictive assumption is that all products have unit size. However, we
can view the unit size as a standardized area (e.g., 1m?) that is occupied by each
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item. Then, an item corresponds to the number of units of a particular product that
fit into this area (e.g., 1000 pencils, 4 toasters). The assumption that every store has
the same capacity can be loosened (see Section 4).

Now, we describe the APP as a variant of the multiple knapsack problem. We are
given m bins (stores) with size K (capacity of the store) in which we want to pack
unit size items (products). In total, there are n different items. With each item j,
we associate m + 1 different profits w; > 0 and vj; > 0 for k = 1,...,m. We obtain
profit w; if the item is packed into all bins (i.e., packed into the common assortment)
and profit v if item j is packed into bin k, but there is at least one bin in which we
do not pack it. Using this notation, we can model the problem as the following
integer program:

maximize Zn: WX+ i i VjikY jk

=1 j=lk=1
n
(APP) subjectto Y (x;j+yy) <K Vke{l,...,m}
=1
Xj+Yik <1 Vie{l,...,nhke{l,...,m}
Xj Yk e {0,1} Vje{l,...,n},ke{l,....m}

1, ifitem jis packed into the common assortment
X; =
! 0, else

1, ifitem j is packed into a bin k (but not into the common assortment)
Yijk =
! 0, else.

The profits w; and v, are composed of estimated revenue and cost as follows:
Let rj; be the estimated revenue of product j in store k, ¢y jx the cost of type d (e.g.,
procurement, transportation, storage cost) of product j in store k, ¢* the assignment
cost for assigning a product to the common assortment, and ci the assignment costs
for assigning a product to the local assortment of store k. Then, we can write the
objective function of the APP as

erjk(xj +Yik) *Z%,%Cdjk(xﬂryjk) *Z;(C’Yxﬂrc%)’jk)-
J ok J J

where

Wj:z<rjk_zcdjk_cx> and vy =rje— ) caji— -
k d d

Thus, the estimation of the parameters w; and v j is essentially the estimation of the
revenue and costs of the products.
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The main goal of this model for the APP is to decide which products to place in
the common assortment and which in the local assortments, given estimated param-
eters w; and v j.

3 Computational Complexity of the APP

In this section, we analyze the computational complexity of the APP. Theorem 2
states that the problem is strongly NP-hard. Thus, unless P = NP, there is no algo-
rithm that solves the APP exactly in polynomial time.

Theorem 2. The APP is strongly NP-hard.

Proof. We use a reduction from the satisfiability problem SAT. An instance of
SAT consists of n boolean variables xi,...,x, and m clauses Cy,...,C,, of arbitrary
length.

Given an instance of SAT, we construct an instance of APP with 2n 4 1 items
and n+m+ 1 bins of size n+ 1 as follows: There is an item for each positive literal
denoted by x;, an item for each negative literal denoted by X;, and one additional

item z. The first n bins Ay,...,A, correspond to the variables and the next m bins
By,...,B,, correspond to the clauses. Additionally, there is one extra bin Z. We
define the following profits for the items:
1,ifk=i 1, ifx; € Gy, 0
Ve A, i= Ve B, = Vi Z =
Ak 0, else B 0, else s
1,ifk=i 1, ifx; € Gy 0
Vi Ay = V%, B, <= Vg 7 t=
Tio 0, else %i:B 0, else it
Vz Ay = 0 Vk Vz.By = 0 Vk Ve Z = N
For the items corresponding to the literals, we set wy, := M and wy, := M,

where M > n-+m+ 1 is a large integer. For the additional item z, we set w; := N,
where N > M is an even larger integer.

We now show that the given instance of SAT admits a satisfying assignment if
and only if there exists a packing with objective value at least nM +n+m+ N for
the constructed instance of the APP.

First, suppose that the SAT instance admits a satisfying assignment. Then, we
pack item x; (X;) into the common assortment if variable x; from the SAT instance is
set to TRUE (FALSE) in this assignment. This results in a total profit of nM from
the common assortment. Now, exactly one additional item fits into each bin. We put
item z into bin Z and, thus, obtain an additional profit of N. For each i, exactly one
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of the two items x;,X; is packed into the common assortment and, thus, we can put
the other one into bin A;, which yields an additional profit of #» when considering all
n bins A;. Moreover, we know that each clause C; is satisfied, so there exists a literal
x; € Cj (%; € Cj) for which the corresponding variable x; is set to TRUE (FALSE).
By the construction above, this means that item x; (;) is packed into the common
assortment and X; (x;) is not. Thus, we can pack item X; (x;) into bin B; and obtain an
additional profit of 1. Hence, since all clauses are satisfied, we obtain an additional
profit of m in this way, which yields a total profit of nM +n+m+N.

Now suppose that there exists a packing with objective value at least nM +n +
m+ N for the constructed instance of APP. In this packing, item z cannot be in the
common assortment since, otherwise, the most profitable way to pack items is to put
n items into the common assortment (as M > n+m+ 1), which results in an overall
profit of N +nM. Moreover we can assume without loss of generality that item z
is packed into the last bin Z since this yields a profit of N and the alternatives of
packing another item into bin Z or packing another item into the common assortment
yield profits 0 and M < N, respectively. Also, since M > m+n+ 1, we have to put
n items into the common assortment in order to obtain profit nM. In order to obtain
the remaining profit of n +m, each items packed into one of the remaining n+ m
empty slots of the bins A; and B; has to yield a profit of one. Thus, for each i,
one of the items x; and X; must not be packed into the common assortment since,
otherwise, no item can generate further profit in bin A;. Hence, we can define a
truth assignment of the variables in the SAT instance by setting variable x; to TRUE
(FALSE) if item x; (;) is packed into the common assortment. This truth assignment
satisfies all clauses since an item x; (¥;) that generates a profit of 1 is packed into
each bin B, which means that the literal X; € C; (x; € C;) satisfies the clause.

O

4 Algorithmic Approaches

As it turns out (see Section 5), commercial solvers are unable to obtain optimal
solutions within a reasonable amount of time even for instances with 300 stores and
15.000 products. This motivates the development of algorithms that run fast and
produce close to optimal solutions.

4.1 2-Approximation Algorithm

The proof of Theorem 2 did not provide us with any gap that would prevent us
from deriving approximation algorithms. Indeed, a 2-approximation algorithm is
easy to obtain. For a given instance of the APP, let W denote the optimum objec-
tive value of the corresponding instance with objective function }’;w;x; and let V
denote the optimum objective value of the corresponding instance with objective
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function Y’ j vxyji- These values can be computed easily in polynomial time. From
now on, we refer to such a pair of corresponding optimal solutions as restricted
solutions. Letting OPT denote the optimum objective value of the original APP
instance, we then have

OPT<W+V <2 -max{W,V}

Therefore, choosing the better one of the two restricted solutions yields a 2-
approximation. With a more careful analysis, one can show the following lemma:

Lemma 1. We have OPT < (1+min {3, % }) - max{W,V}.

Proof. We have

Vv Vv
OPTSV—%—W:W-W—I—W: (1—|—W)~W and

W w
OPT<V W=V 4V = <l+v>'v' O

The previous lemma shows that the worst case approximation factor of 2 can only
occur if W = V. Indeed, the approximation factor of the algorithm that chooses the
better of the two restricted solutions is heavily dependent on the distribution of the
values w; and v . In particular, if w; and v, are contained in some small interval
for all j, k, the approximation ratio is small:

Lemma 2. Suppose that there exist ® and 0 < € < 1 such that
(1-g)w<wj<o Vj and
(1-g)o<mvi<o Vj, k.

Then, OPT < 1 -max{W,V}.

Proof. Assume that there are L items in the common assortment of a fixed optimum
solution. We define WL as the sum of the L largest values w;, and, for each k, we
define VX" as the sum of the (K — L) largest values v ;. Then, we obtain

m
OPT <W'+ Y Vit
k=1
Howeyver, it also holds that
W>WLr(K—L)-(1—¢)-@ and

m
VY VvErrL-(1-¢) 0.
k=1

In particular, if W >V,
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OPT  _ Wk ym vEE Wt (K-Lo 1
max{W,V} = WL+ (K—-L)(1—¢&)o ~ WE+(K—L)(1—-¢)o ~ 1—¢°

If V > W, we obtain an analogous inequality.
O

The main difficulty of the APP is to choose the items that belong to the common
assortment as shown with the following lemmas.

Lemma 3. If the set of items in the common assortment of an arbitrary optimum
solution is given and has cardinality L, an optimum solution can be obtained by
packing the K — L items with the largest values v j into each bin k.

Proof. This is immediate due to the structure of the problem: the bins are now in-
dependent and all items have the same size.
O

Lemma 4. If K is fixed independently of the input, the APP can be solved in poly-
nomial time.

Proof. 1f K is fixed independently of the input, we can simply enumerate all the
Y5, (1) € O(nX) possible sets of items in the common assortment and, for each
such set, compute the solution obtained by filling the bins as in Lemma 3. The best
one among these solutions must be optimal.

O

4.2 Greedy Heuristic

We now present a greedy heuristic that is used in Section 5 to solve large-scale
instances of the APP. The idea of the algorithm is to first neglect the advantages of
using the common assortment and start with the best local packing for each store
(independent of the others). Then, in each step, the algorithm adds the item that
currently grants the largest gain in total profit to the common assortment. Denoting
the current common assortment by C and the current set of items in bin k by I, the
algorithm can be formulated as follows:

Algorithm 1 Algorithm for the assortment planning problem

1: Let C = 0 and, for each bin k, let [; be the set containing the K items j with the highest
values v ji.

2: For j ¢ C, letuj =wj — (Li g Minjer, vir) — Lk jer, Vik-

3: If u; <0 for all j or |C| = K, stop; else add the item j ¢ C with the largest value u; to the
common assortment C, update the sets [y by removing j from [y if it is contained in I; and
removing an item j* with minimum value v y; from J; otherwise, and go to step 2.
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Each time we update I, its size is reduced by one since we remove one item
and put it into C. Observe that Algorithm 1 also works in the case where the ca-
pacities of the bins differ. Then, in the first step, for each bin k, we pack the best
K items, where K denotes the individual capacity of bin k. Moreover, the second
stopping criterion changes to |C| = min K;. The running time of Algorithm 1 is in
O (nm(log(n) +K)).

As shown at the beginning of this section, it can easily be seen that choosing
the better one of the best packings with |[C| = K (ALG;) and C = 0 (ALG3) yields
an approximation ratio of 2. If we modify Algorithm 1 (ALG) slightly so that it
compares the computed solution with the one obtained by ALG, and chooses the
better one, it also obtains this approximation guarantee.

Additionally, the following preprocessing strategy can be used to identify items
that will never be contained in the common assortment:

Preprocessing rule

Let the restricted packing computed by ALG3 be given. Let V. denote the set of
items in bin k in this packing. Then, for each item j, in order to be eligible to be
packed into the common assortment, its bonus b; := w; — Y, vj; must exceed
the value Y;" ; max{0, mincy, vy — vjr}. We define the residual bonus of item j
as rj :=bj— Y;'  max{0,min;cy, vix — v }. Then, we can establish the following
preprocessing rule: If 7; < 0, then item j is not in the common assortment in any
optimal packing, i.e, we may set x; := 0 (cf. Section 2).

5 Experimental Results

In this section, we present computational experiments in order to compare the so-
lution quality obtained by ALG|, ALG,, and ALGs. In particular, we are interested
in how large the common assortment profits w; must be in relation to the local
profits v in order to see substantial benefits from mixing common and local as-
sortments as in ALG; (when compared to using only the common assortment as in
ALGqj or only the local assortments as in ALG3).

We randomly generate the values v, and w;. However, it seems to be a reason-
able assumption that the values v j; are dependent for a fixed item j although the cost
of providing item j might vary for different stores (e.g., transportation cost). There-
fore, we consider three scenarios where we draw values v; uniformly at random
from [0, 1] independently for all j and then

set vj 1= v; for all k (total dependence), or

e draw ry uniformly from [—0.5p,0.5p] and set v := max(0,v; + ry), where p is
a model parameter (intermediate dependence), or

e draw all values v ; uniformly and independently from [0, 1] (fotal independence).
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Observe that, for p = 0, the first and the second scenario are identical. In order
to generate the values w;, we draw values ¢; uniformly at random from [0.95,1.05]
and set w; := q;bY ;v jr, where b represents the financial gains when a product is
in the common assortment (e.g., from economies of scale or recognition value). We
consider 100 equidistant values of b in [1,2] and generate 100 instances for each of
these values and four different settings concerning the dependence of the values v j;
(total independence, intermediate dependence with p = 0.75 and p = 0.95, and total
independence). The optimal profit for each instance is calculated by solving the IP
formulation given in Section 2 using Gurobi 6.5.

We observe that, when b is too small or too large, algorithms ALG; and/or ALG3
already yield close to optimal solutions (cf. Figure 1). If a company estimates the
value b in such a way, the assortment planning that we propose might not be nec-
essary. Therefore, for each of the four settings concerning dependence of the val-
ues v ji, we concentrate on three values of b that are neither too small nor too large. In
the setting of total independence, we consider b € {1.2,1.35,1.5}, for p =0.75 and
total dependence, we consider b € {1.01,1.05,1.09}, and for p = 0.95, we consider
b € {1.04,1.09,1.14}. Moreover, we consider two different instance sizes (small
and large), where (n,m,K) = (1500, 50,750) and (n,m,K) = (50.000, 150,25.000),
respectively. For all co(r)lsidered instances, ALG obtains nearly optimal solutions

PT

(i.e., the average ratio ALGT of the profits of an optimal solution and the algorithm is
0

below 1.01). Table 1 shows the average ratios % for i = 2,3 obtained by ALG,
and ALGs3. Since the large instances could not be solved to optimality within a rea-
sonable amount of time by using Gurobi, we provide the ratios ‘:]I“‘(éi instead for
these instances. Here, we observe that the gain in profit from using an optimized
assortment compared to one of the solutions produced by ALG; or ALG3 can be
up to 20%. In Figure 2, we compare the running times of Gurobi and Algorithm 1.
It can be seen that, even for instances with (n,m,K) = (15.000,300,7500), Gurobi
already needs 30 hours in order to solve a single instance, whereas Algorithm 1
finishes in less than ten minutes.

From a practical point of view, a retailer should estimate the degree of indepen-
dence between items as well as the influences of economies of scale (i.e., estimate
the values v, and w;). Then she can decide if the benefits of using an optimized
assortment planning strategy justify a change in her assortment planning. Observe
that the benefit of using an optimized assortment planning strategy seems to be in-
dependent of the size of the instance.

Table 1 Average ratios % for i = 2,3 (for small instances) and ﬁ]ig: (for large instances).

Value b:| small |medium | large small | medium | large

Instance Size:| small | small small large | large large

Dependence:

total dependence 1.01]1.02{1.00/1.05{1.00|1.09{1.01|1.02{1.00|1.05{1.00|1.09
p=0.75 1.06/1.01{1.04|1.03{1.03]|1.06]1.06/1.01|1.04|1.03|1.03|1.06
p=0.95 1.07]1.02{1.05]1.05{1.04|1.08[1.08|1.02{1.05|1.05[1.04|1.08
total independence 1.18|1.01{1.09|1.05{1.04|1.11]1.20/1.01|1.10|1.03|1.05|1.09
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Fig. 1 On the x-axis, the value b is shown. On the y-axis, the ratio % is shown for i = 2 (stars)

and i = 3 (crosses). We observe that min(ALGz, ALG3) is maximum when b = 1.35 (in the case
of total independence).
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Fig. 2 Comparison of the running time of Gurobi and Algorithm 1. We consider instances with
m =300 and K = 5, where n is given on the x-axis. The running time is given in hours on the y-
axis. An estimation of the the running time of our algorithm also leads to 14 hours (n = 150.000),
26 days (n = 10°), and 72.000 years (n = 10°) on a standard desktop computer.
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Next, we consider mixed scenarios that are represented by a (4 x 3)-matrix,
where each row represents one of the four scenarios we use to generate the val-
ues v ji (total dependence, p = 0.75, p = 0.95, total independence), and each column
corresponds to a choice of the value b (small, medium, large). This provides us with
twelve categories and each entry of the matrix indicates the fraction of items that
are drawn from this category. Table 2 shows the results.

Table 2 Ratios % for different mixed scenarios. Again, we consider small and large instances.
1

Scenario Description l&"('}l; l&‘g} ALG) %31
00 O
00 O .
00.25 0.25 Item profits are rather independent between the| 1.02[1.24 | 1.02[1.23
0 0'25 0'25 stores and economies of scale apply well.
0o 0 0
0o 0 O .
0 0 0 Item profits are independent between the stores| 1.04|1.11 | 1.05[1.09
033 0.33 0.33 and, for some items, economies of scale apply.
0 00
03300
03300 Item profits are rather dependent between the| 1.07/1.09 | 1.07|1.09
0'33 00 stores and economies of scale do not apply.
0o 0 0
8}} g}i 8}1 There is a mixture of dependent and independent| 1.01]1.30 | 1.02[1.29
0.11 0'11 0'11 item profits and, for some items, economies of
' ) ’ scale apply.

6 Conclusion

We have formulated a stylized model for the regionalized assortment planning prob-
lem (APP) and have shown that solving the APP can lead to significant profit gains
for a retailer with multiple chain stores. However, it seems computationally impos-
sible to solve its natural integer programming formulation for large-scale instances.
Therefore, we proposed a local improvement heuristic that computes close to op-
timal solutions in polynomial time. In a next step, we will test this algorithm with
real world data. For future research, we propose extensions of the model such as
sub-regions (here, we also obtain a profit gain when a product is placed in a certain
set of stores) or individual item sizes.
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