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Abstract

Gröbner bases are one of the most powerful tools in computer algebra and commutative
algebra, with applications in algebraic geometry and singularity theory. From the the-
oretical point of view, these bases can be computed over any field using Buchberger’s
algorithm. In practice, however, the computational efficiency depends on the arithmetic
of the coefficient field.

In this thesis, we consider Gröbner bases computations over two types of coefficient
fields. First, consider a simple extension K = Q(α) of Q, where α is an algebraic number,
and let f ∈ Q[t] be the minimal polynomial of α. Second, let K ′ be the algebraic function
field over Q with transcendental parameters t1, . . . , tm, that is, K ′ = Q(t1, . . . , tm). In
particular, we present efficient algorithms for computing Gröbner bases over K and K ′.
Moreover, we present an efficient method for computing syzygy modules over K.

To compute Gröbner bases over K, starting from the ideas of Noro [35], we proceed
by joining f to the ideal to be considered, adding t as an extra variable. But instead of
avoiding superfluous S-pair reductions by inverting algebraic numbers, we achieve the
same goal by applying modular methods as in [2, 4, 27], that is, by inferring information
in characteristic zero from information in characteristic p > 0. For suitable primes p, the
minimal polynomial f is reducible over Fp. This allows us to apply modular methods
once again, on a second level, with respect to the modular factors of f . The algorithm
thus resembles a divide and conquer strategy and is in particular easily parallelizable.
Moreover, using a similar approach, we present an algorithm for computing syzygy
modules over K.

On the other hand, to compute Gröbner bases over K ′, our new algorithm first special-
izes the parameters t1, . . . , tm to reduce the problem from K ′[x1, . . . , xn] to Q[x1, . . . , xn].
The algorithm then computes a set of Gröbner bases of specialized ideals. From this
set of Gröbner bases with coefficients in Q, it obtains a Gröbner basis of the input ideal
using sparse multivariate rational interpolation.

At current state, these algorithms are probabilistic in the sense that, as for other
modular Gröbner basis computations, an effective final verification test is only known
for homogeneous ideals or for local monomial orderings. The presented timings show
that for most examples, our algorithms, which have been implemented in Singular
[17], are considerably faster than other known methods.
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Zusammenfassung

Gröbnerbasen sind eines der leistungsfähigsten Werkzeuge in der Computeralgebra und
der kommutativen Algebra, mit Anwendungen in algebraischer Geometrie und Singu-
laritätentheorie. Aus theoretischer Sicht können solche Basen mit dem Algorithmus von
Buchberger über beliebigen Körpern berechnet werden. In der Praxis hängt die Effizienz
solcher Berechnungen aber von der Arithmetik im Koeffizientenkörper ab.

In dieser Dissertation betrachten wir Berechnungen von Gröbnerbasen über zwei ver-
schiedenen Arten von Koeffizientenkörpern. Im ersten Fall betrachten wir einfache Er-
weiterungen K = Q(α), wobei α eine algebraische Zahl sei und wir das Minimalpolynom
von α mit f ∈ Q[t] bezeichnen. Im zweiten Fall sei K ′ der algebraische Funktionenkörper
über Q mit transzendenten Parametern t1, . . . , tm, also K ′ = Q(t1, . . . , tm). Insbesondere
stellen wir effiziente Algorithmen zur Berechnung von Gröbnerbasen über K und K ′ vor.
Außerdem stellen wir eine effiziente Methode zur Berechnung von Syzygienmoduln über
K vor.

Um Gröbnerbasen über K zu berechnen, fügen wir, ausgehend von den Ideen von
Noro [35], das Polynom f zum betrachteten Ideal hinzu, mit t als zusätzlicher Variable.
Anstatt aber überflüssige Reduktionen von S-Paaren durch das Invertieren algebraischer
Zahlen zu vermeiden, erreichen wir dasselbe Ziel durch Anwendung modularer Methoden
wie in [2, 4, 27], also durch Rückschlüsse von Daten in Charakteristik p > 0 auf Daten
in Charakteristik Null. Für geeignete Primzahlen p ist das Minimalpolynom f über Fp
reduzibel. Dies erlaubt uns,auf einer zweiten Ebeneein weiteres Mal modulare Meth-
oden anzuwenden, bezüglich der modularen Faktoren von f . Der Algorithmus gleicht
daher einer Teile-und-herrsche-Strategie und ist insbesondere leicht zu parallelisieren.
Außerdem stellen wir einen Algorithmus zur Berechnung von Syzygienmoduln über K
vor, der einen ähnlichen Ansatz verfolgt.

Um hingegen Gröbnerbasen über K ′ auszurechnen, werden in dem neuen Algorithmus
zunächst verschiedene konkrete Werte für die Parameter t1, . . . , tm eingesetzt, um das
Problem von K ′[x1, . . . , xn] auf Q[x1, . . . , xn] zurückzuführen. Der Algorithmus berech-
net dann eine Menge von Gröbnerbasen der so erhaltenen Ideale. Aus dieser Menge
von Gröbnerbasen mit Koeffizienten in Q wird dann durch Sparse Multivariate Rational
Interpolation eine Gröbnerbasis des Inputideals berechnet.

Dem gegenwärtigen Stand nach sind diese Algorithmen probabilistisch in dem Sinne,
dass wie bei anderen modularen Gröbnerbasisberechnungen ein effektiver finaler Veri-
fikationstest nur für homogene Ideale oder für lokale Monomordnungen bekannt ist. Die
vorgelegten Laufzeitmessungen zeigen, dass die neuen, in Singular [17] implementierten
Algorithmen bei den meisten Beispielen wesentlich schneller sind als andere bekannte
Methoden.
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5.3 Gröbner Bases Using Sparse Rational Interpolation . . . . . . . . . . . . 93

5.3.1 Choice of Evaluation Points . . . . . . . . . . . . . . . . . . . . . 103
5.3.2 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.3 Implementation and Timings . . . . . . . . . . . . . . . . . . . . 111

5.4 Special Case for Function Fields of One Variable . . . . . . . . . . . . . . 113
5.4.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.2 Implementation and Timings . . . . . . . . . . . . . . . . . . . . 122

5.5 Further Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.5.1 Implementation and Timings . . . . . . . . . . . . . . . . . . . . 122

6 Conclusion and Future Work 129

Appendices 131

A Benchmark Problems 133
A.1 Benchmark Problems for nfmodStd . . . . . . . . . . . . . . . . . . . . . 133
A.2 Benchmark Problems for nfmodSyz . . . . . . . . . . . . . . . . . . . . . 135
A.3 Benchmark Problems for ffmodStd . . . . . . . . . . . . . . . . . . . . . 136

Bibliography 145

vi



List of Figures

1.1 Black box for polynomial evaluation . . . . . . . . . . . . . . . . . . . . . 29

2.1 General scheme for the new algorithm . . . . . . . . . . . . . . . . . . . . 49

3.1 General scheme for computing the syzygy module of M over K . . . . . 70

4.1 Black box for rational function evaluation . . . . . . . . . . . . . . . . . 77

5.1 General scheme for the new algorithm (general case) . . . . . . . . . . . 97
5.2 General scheme for the new algorithm (special case) . . . . . . . . . . . . 115

vii





List of Algorithms

1.1 Polynomial Interpolation (polyInterpolation) . . . . . . . . . . . . . . 21
1.2 MQRFR (fareypoly(g,f)) . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Sparse Multivariate Polynomial Interpolation (sparseInterpolation) . 32
1.4 Early Termination Sparse Interpolation (sparseInterpolation) . . . . . 38

2.5 Chinese Remainder Algorithm (CRA) for polynomials . . . . . . . . . . . 45
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Introduction

Gröbner bases were introduced by Bruno Buchberger in 1965. In his thesis, Buchberger
used Gröbner bases to give an algorithmic way of computing in affine rings, see [11].
In particular, he designed an algorithm which computes Gröbner bases. Historically,
this algorithm is the first for computing such bases, and it has been implemented in
most computer algebra systems, see, for example, Singular [17]. The basic idea of the
method is the transformation of a given set of polynomials F into a certain standard
form G, which Buchberger called Gröbner basis [11]. For a detailed information about
Buchberger and Gröbner bases, we refer the reader to [1, 13, 18, 25, 34, 42].

Gröbner bases have found extensive applications in many areas of mathematics includ-
ing algebraic geometry [13, 25, 18], invariant theory [13, 18, 19], and coding theory [14],
to mention a few. Nowadays, these bases are one of the most powerful tools in computer
algebra and commutative algebra, with applications in algebraic geometry and singu-
larity theory, see [1, 13, 14, 18, 21, 25]. For example, they are used for solving systems
of polynomial equations, the implicitization problem, intersecting ideals, the ideal and
radical membership problem, and many more.

Gröbner bases can be computed over any field using Buchberger’s algorithm. However,
since the complexity of this algorithm is extremely high, computing these bases is in
general time consuming. Howbeit, applications of Gröbner bases increase the demand for
computationally efficient algorithms. In fact, extensive efforts in improving the method
for computing these bases have been made, see [20, 22, 23, 24]. On the other hand,
when Gröbner bases are computed over a field of characteristic zero using Buchberger’s
algorithm, one often suffers from intermediate coefficient swell which usually slows the
computations down. That is, the number and size of the intermediate polynomials
during the computation can become much larger than in the final result. For example,
in order to tackle the coefficient swell problem over Q, modular techniques have been
employed, see [2, 27, 40, 36]. As defined in [44], modular techniques implies using certain
projections for improving the efficiency of the total computation, whereas by modular
computation, we mean corresponding computations applied to projected images.

The aim of this thesis is to investigate efficient methods for computing Gröbner bases
over algebraic number fields and algebraic function fields. Furthermore, we investigate
an efficient method for computing syzygy modules over algebraic number fields as one
of the applications of Gröbner bases. In particular, we discuss the following problems:

(1) Given an ideal I ⊆ K[x1, . . . , xn] where K = Q(α) is an algebraic number field,
what is an efficient way to compute a Gröbner basis of I?

1



2 Introduction

(2) If M a submodule of the free K[x1, . . . , xn]-module

K[x1, . . . , xn]r =
r⊕
i=1

K[x1, . . . , xn]ei

where K = Q(α) is an algebraic number field and e1, . . . , er form the canonical
basis of K[x1, . . . , xn]r, what is an efficient way to compute the syzygy module of
M?

(3) What is an efficient way to compute a Gröbner basis of an ideal I ⊆ K[x1, . . . , xn]
where K is a field of rational functions in the symbolic parameters t1, . . . , tm with
coefficients in Q?

Computing Gröbner bases or syzygy modules over the field K = Q(α) or over K =
Q(t1, . . . , tm) are usually slow due to the arithmetic in K. To improve the efficiency of
the computations, we study extended modular techniques over K, that is, we extend
the modular algorithms described in [2, 27, 36]. An important question to address here
is how to tackle the coefficient swell problem in K. The basic idea of the modular
algorithms described in [2, 27, 36] is to perform the computational task over fields of
prime characteristic for several primes and to lift the results back to the field of rational
numbers via the Chinese remaindering algorithm and the Farey rational map.

Problem (1) above was studied by Noro [35], who designed a modified version of Buch-
berger’s algorithm. In his algorithm, he computes the inverse of an algebraic number
using modular techniques, which is in general computationally expensive. In this thesis,
we study a new efficient method to solve this problem which uses

- modular methods over Q w.r.t. different prime numbers to avoid intermediate
coefficient swell;

- factorization of the minimal polynomial of the algebraic number α in positive
characteristics to considerably reduce the degree of the field extensions.

Furthermore, we extend the method adopted from Problem (1) to compute Gröbner
bases of submodules of a free module with slight modifications. Based on this modified
algorithm, we study Problem (2), where we also use results from [25].

In [10], Brickenstein introduced a variation of Buchberger’s algorithm to investigate
our third problem using so-called slim polynomials. The algorithm is designed to keep
coefficients small and polynomials short in the intermediate computations. Although
his method works well in many cases, it is however limited in terms of efficiency. The
method we study in this thesis to address this challenge utilizes

- modular methods over Q as above w.r.t. different prime numbers;

- sparse interpolation of multivariate rational functions w.r.t. different evaluation
points from Qm to avoid the intermediate coefficient swell that occurs due to the
arithmetic in K.
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The basic idea of our new method for the third problem is as follows: First, we choose
suitable evaluation points b := (b1, . . . , bm) for (t1, . . . , tm) from Qm to map I ⊆ K[x1, . . . ,
xn] to Ib ⊆ Q[x1, . . . , xn] via the map sending ti to bi ∈ Q. In the polynomial ring over Q,
we then compute Gröbner bases of Ib for different b’s as many times as necessary. From
this set of Gröbner bases with coefficients in Q, we obtain a Gröbner basis corresponding
to I using the sparse rational interpolation algorithm described in [16].

These new algorithms are implemented in Singular [17], which is an open source
general computer algebra system, and we demonstrate the efficiency of our methods via
several examples. In addition, we present tables containing timings which compare our
methods to other known methods.

This thesis is structured as follows: The first chapter introduces the most essential
and important definitions, notation, results, and remarks regarding Gröbner bases and
sparse interpolation of rational functions used in this thesis. As part of our investiga-
tion, we have implemented the algorithms in this chapter such as univariate polynomial
interpolation, univariate rational function reconstruction, and sparse multivariate poly-
nomial interpolation in Singular [17]. Chapter 2 presents the aforementioned method
that addresses our first problem. In this chapter, we explain how this method solves
the coefficient swell problem which occurs due to the arithmetic in K = Q(α). The key
ingredient for this new method is factorizing the minimal polynomial of the algebraic
number α modulo a suitable prime. In Chapter 3, an algorithm for computing syzygy
modules which solves the second problem is presented. This algorithm uses the results
from Chapter 2. Moreover, we discuss a further optimization of this algorithm.

The fourth chapter introduces the notion of sparse interpolation of multivariate ratio-
nal functions. In this chapter, following [16], we discuss how to reconstruct a multivariate
rational function in a black box from given numerical data. For this chapter, we use
the last three sections from Chapter 1. As an application of the results from Chapter 4,
we present, in Chapter 5, an efficient method that solves our third problem. Here we
explain how the new method avoids the extreme growth of intermediate coefficients in
K = Q(t1, . . . , tm). We also apply further optimizations to our algorithm. Finally, in
Chapter 6, we close our presentation by drawing conclusions and suggesting possible
directions for future work.

A more detailed synopsis is given at the beginning of each chapter. In this thesis, we
assume all rings to be commutative rings with identity. Chapter 2 is the result of a joint
work with W. Decker, C. Fieker, and A. Steenpaß, see [8]. The benchmark problems
which we use for the timings are listed in the appendix.





Chapter 1

Preliminaries

In this chapter we state the most essential and important definitions and results with
respect to Gröbner bases [25], algebraic number fields [15], dense univariate rational
interpolation [42], and sparse multivariate polynomial interpolation [3] (see also [31, 32])
that are used in this thesis. We restrict ourselves to a brief description, for example, we
will not discuss the Berlekamp/Massey algorithm for computing minimal polynomials
[3] (see also [31, algorithm in Section 2.1]). For a more detailed description, we refer to
[1, 3, 13, 15, 21, 25, 31, 32, 34]. Throughout this chapter, let K be any field and let
X = {x1, . . . , xn} be a set of variables.

In Section 1.1, we give a short but brief description of the theory of Gröbner bases.
Since any method for computing Gröbner bases relies on the chosen monomial ordering,
we also discuss the most important monomial orderings which are particularly relevant
for this thesis. The notion of Gröbner bases for modules is presented in Section 1.2.
In Section 1.3, we present some results on algebraic number fields. In Section 1.4,
we discuss how univariate rational functions can be recovered from given numerical
data. The notion of sparse interpolation of multivariate polynomials is discussed in
Section 1.5. In particular, we discuss an algorithm by Ben-Or/Tiwari which recovers
multivariate polynomials from given numerical data. In the last section, we consider the
early termination version of the algorithms presented in Sections 1.4 and 1.5. As part
of this thesis, all algorithms discussed in this chapter including the Berlekamp/Massey
algorithm are implemented in the Singular library ffmodstd.lib [6].

1.1 Rings, Ideals, and Gröbner Bases

Most of the definitions, theorems, and remarks which we give in this section can be
found, for example, in any of the textbooks [1, 13, 25, 34]. We closely follow [25].

Definition 1.1.1. Let R be a ring.

1. (a) A monomial in n variables X = {x1, . . . , xn} is a power product

Xα = xα1
1 · · · xαnn , α = (α1, . . . , αn) ∈ Nn.

5



6 1. Preliminaries

(b) A non-zero constant multiple of a monomial is called a term.

(c) The degree deg Xα of Xα is defined by

degXα = |α | := α1 + . . .+ αn .

(d) The set of monomials in n variables is denoted by

Mon(X) := Monn := {Xα | α ∈ Nn} .

Note that Mon(X) is a monoid under multiplication, with neutral element 1 = X0.

2. A polynomial f in X with coefficients in R is a finite sum of terms. We write f in

the form

f =
∑
α

aαX
α, aα ∈ R,

where the sum is over a finite number of n-tuples α = (α1, . . . , αn). For α ∈ Nn,

the integer

deg(f) :=

{
max{|α | | aα 6= 0} if f 6= 0

−∞ otherwise

is called the degree of f . If aα 6= 0, then we call aαX
α a term of f .

3. The polynomial ring in X over R, denoted by R[X] = R[x1, . . . , xn], is the set

of all polynomials with coefficients in R together with the usual addition and

multiplication: ∑
α

aαX
α +

∑
α

bαX
α :=

∑
α

(aα + bα)Xα,(∑
α

aαX
α

)
·

(∑
α

bαX
α

)
:=
∑
γ

( ∑
α+β=γ

aαbβ

)
Xγ.

The presentation of a polynomial as a finite sum of non-zero terms is unique up to the
order of the summands, due to the commutativity of the addition. We make this order
unique by choosing a total ordering on the set of monomials.

Definition 1.1.2. A monomial ordering is a total (or linear) ordering > on the set of

monomials Mon(X) in n variables satisfying

Xα > Xβ =⇒ XγXα > XγXβ

for all α, β, γ ∈ Nn. Given a ring R, we then also say that > is a monomial ordering on

R[X].
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In the following, choosing a monomial ordering > allows us to write a given polynomial
in a uniquely ordered way.

Definition 1.1.3. Let > be a fixed monomial ordering on Mon(X). Write f ∈ R[X]\{0}
in a unique way as a finite sum of non-zero terms (sparse representation of f)

f = aαX
α + aβX

β + . . . ,

where Xα > Xβ > . . . and aα, aβ, . . . are in R. We define:

a) lm(f) = Xα, the leading monomial of f ,

b) lc(f) = aα, the leading coefficient of f ,

c) lt(f) = aαX
α, the leading term or head of f ,

d) tail(f) = f − lt(f), the tail of f .

Monomial orderings are very important for computing Gröbner bases. They are clas-
sified as global, local and mixed.

Definition 1.1.4. Let > be a monomial ordering on Mon(X).

a) > is called a global ordering if Xα > 1 for all α 6= (0, . . . , 0).

b) > is called a local ordering if 1 > Xα for all α 6= (0, . . . , 0).

c) > is called a mixed ordering if it is neither global nor local.

In this thesis we only consider global orderings.

The most important monomial orderings which are particularly relevant for this thesis
are introduced in the following definition.

Definition 1.1.5. The following are monomial orderings on Mon(X).

(i) Lexicographical ordering (denoted in Singular by lp):

Xα >lp X
β :⇐⇒ there exists 1 ≤ i ≤ n : α1 = β1, . . . , αi−1 = βi−1, αi > βi .

(ii) Degree reverse lexicographical ordering (denoted in Singular by dp):

Xα >dp X
β :⇐⇒ degXα > degXβ

or (degXα = degXβ and there exists 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi) .
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(iii) Product or Block ordering : Let Y = {y1, . . . , ym} be a set of variables, and let >X

and >Y be monomial orderings on Mon(X) and Mon(Y ), respectively. Then the

product ordering or block ordering > = (>X , >Y ) on Mon(X, Y ) is defined by

XαXY αY > XβXY βY :⇐⇒ XαX >X XβX or (XαX = XβX andY αY >Y Y
βY ),

for all αX , βX ∈ Nn, αY , βY ∈ Nm. The product ordering > is global (resp. local)

if both orderings >X and >Y are global (resp. local), otherwise it is a mixed

ordering.

Note that >lp and >dp are global orderings.

Ideals are in the centre of commutative algebra and algebraic geometry. We introduce
only basic notions which are relevant for this thesis. Let R be a ring.

Definition 1.1.6. A subset I ⊆ R is called an ideal if it is an additive subgroup which

is closed under scalar multiplication, that is,

I 6= ∅,
f, g ∈ I =⇒ f + g ∈ I,

f ∈ I, r ∈ R =⇒ rf ∈ I.

Definition 1.1.7. Let I ⊆ R be an ideal.

a) A family (fλ)λ∈Λ of elements fλ ∈ I is called a system of generators of I if every

element f ∈ I can be expressed as a finite linear combination f =
∑

λ∈Λ rλfλ for

suitable rλ ∈ R. We then write

I = 〈fλ | λ ∈ Λ〉 = 〈fλ | λ ∈ Λ〉R =
∑
λ

fλR.

If Λ = {1, . . . , k} is finite, we write

I = 〈f1, . . . , fk〉 = 〈f1, . . . , fk〉R.

b) I is called finitely generated if it has a finite system of generators; it is principal if

it can be generated by one element.

Definition 1.1.8. Let I be any ideal in the ring R. We define the quotient ring or factor

ring R/I to be the set of co-sets {[r] = r + I | r ∈ R} with addition and multiplication

defined via representatives:

[r] + [s] = [r + s] ,

[r] · [s] = [r · s] .
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Definition 1.1.9. Let f ∈ K[x] be a non-constant polynomial in one variable over the

field K. The polynomial f is called irreducible if it is not the product of two non-constant

polynomials of strictly smaller degree.

Theorem 1.1.10. Let f ∈ K[x] be a non-constant polynomial. Then the following are

equivalent:

1. K[x]/〈f〉 is a field.

2. K[x]/〈f〉 is an integral domain.

3. f is irreducible.

Proof. See [25,Exercise 1.1.5].

For a given set of polynomials we consider a special ideal, the so-called leading ideal,
which is the central notion when defining a Gröbner basis of an ideal.

Definition 1.1.11. Let > be a global monomial ordering on Mon(X) and G ⊆ K[X]

be a set of polynomials. Then we define the set of leading monomials of G, denoted by

Lm(G), as

Lm(G) = {lm(g) | g ∈ G \ {0}},

and the leading ideal of G, denoted by L(G), as

L(G) = 〈Lm(G)〉 ⊆ K[X].

In the following we introduce the notion of Gröbner bases of an ideal I ⊆ K[X] as
a finite set of polynomials of I such that their leading monomials generate the leading
ideal L(I).

Definition 1.1.12. Let > be a global monomial ordering on Mon(X) and I ⊆ K[X] be

an ideal.

(a) A finite set G ⊆ K[X] of polynomials is called a Gröbner basis of the ideal I if

G ⊆ I and L(G) = L(I).

(b) By saying that G is a Gröbner basis, we mean that G is Gröbner basis of the ideal

〈G〉 it generates.

(c) A Gröbner basis G ⊆ K[X] is called reduced if

(1) 0 6∈ G,
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(2) lc(g) = 1 for all g ∈ G and

(3) for each g ∈ G, lm(g) does not divide any monomial of any element of G\{g}.

The following basic proposition deals with existence and uniqueness of Gröbner bases.

Proposition 1.1.13. Let > be a global monomial ordering on Mon(X), and let I ⊆
K[X] be a non-zero ideal. Then the following hold:

(a) There exists a Gröbner basis of I.

(b) If G ⊆ K[X] is any Gröbner basis of I, then G generates the ideal I in K[X].

(c) There exists a uniquely determined reduced Gröbner basis of I.

Remark 1.1.14. A reduced Gröbner basis can always be computed from any given

Gröbner basis (in a finite number of steps).

The definition of normal form is essential for the computation of Gröbner bases.

Definition 1.1.15. Let G denote the set of all finite ordered sets G ⊆ K[X]. A map

NF : K[X]× G −→ K[X]

(f,G) 7−→ NF(f,G)

is called a normal form on K[X] if, for all f ∈ K[X] and all G ∈ G, the following

conditions hold:

(1) NF(0, G) = 0.

(2) NF(f,G) 6= 0 implies lm(NF(f,G)) 6∈ L(G).

(3) Either f−NF(f,G) = 0, or there exists a representation

f − NF(f,G) =
∑
g∈G

cgg, cg ∈ K[X]

such that

lm (f − NF(f,G)) ≥ max{lm(cgg) | g ∈ G, cgg 6= 0}.

Such a representation is called a standard representation of f−NF(f,G) w.r.t. G.

Moreover, NF is called a reduced normal form if lc(NF(f,G)) = 1 and no monomial of

tail(NF(f,G)) is contained in L(G) for all f ∈ K[X] and all G ∈ G.
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Remark 1.1.16. For a global ordering, there exists a normal form (see [25, Algorithm

1.6.10]), respectively reduced normal form (see [25, Algorithm 1.6.11]).

The notion of S-polynomials and Buchberger’s criterion are essential for the compu-
tation of Gröbner bases.

Definition 1.1.17. Let f, g ∈ K[X] be non-zero polynomials with lm(f) = Xα and

lm(g) = Xβ. Set γ := lcm(α, β) = (max(α1, β1), . . . ,max(αn, βn)) ∈ Nn, then Xγ is the

least common multiple of Xα and Xβ. We define the S-polynomial of f and g by

spoly(f, g) := Xγ−α · f

lc(f)
−Xγ−β · g

lc(g)
.

Theorem 1.1.18 (Buchberger criterion). Let > be a global monomial ordering on

Mon(X), let I ⊆ K[X] be an ideal, and let G be a finite subset of I. Moreover, let

NF(−, G) be a normal form on K[X] with respect to G. Then the following are equiva-

lent:

a) G is a Gröbner basis of I.

b) NF(f,G) = 0 for all f ∈ I.

c) I = 〈G〉 and NF(spoly(g, g′), G) = 0 for all g, g′ ∈ G.

From this theorem, we obtain an algorithm due to Buchberger for computing Gröbner
bases. This algorithm is called Buchberger algorithm [11], see also [1, Algorithm 1.7.1].
Note that the procedure std is implemented in Singular [17] since 1990, and that it
computes a Gröbner basis of the input ideal for any monomial ordering.

1.2 Modules and Gröbner Bases

The theory of Gröbner bases for ideals carries over to modules almost without any
changes. In this section, we formulate, closely following [25], the relevant definitions and
remarks. For a more detailed description, we refer to [25].

Definition 1.2.1. Let A be a ring. An A-module (M,+, ·) is a set M with maps

+ : M ×M −→M and · : A×M −→M such that

(1) (M,+) is an abelian group,

(2) the scalar multiplication · is distributive over the addition +, that is, (a+ b) ·m =

a ·m+ b ·m and a · (m+ n) = a ·m+ a · n for all a, b ∈ A and m,n ∈M , and

(3) for all a, b ∈ A and m ∈M , (a · b) ·m = a · (b ·m) and 1 ·m = m.
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Example 1.2.2.

(a) Every abelian group (G,+) is a Z-module with scalar multiplication

· : Z×G −→ G,

(n, x) 7−→ n · x,

where n · x is defined by

n · x :=



x+ . . .+ x︸ ︷︷ ︸
n times

if n > 0

0 if n = 0

−x+ . . .+−x︸ ︷︷ ︸
n times

if n < 0.

(b) Let A be a ring. Consider the Cartesian product

Ar =


a1

...

ar

 ∣∣∣∣ ai ∈ A, i = 1, . . . , r

 .

Then Ar is an A-module (with the component-wise addition and scalar multipli-

cation).

In this section, in the interest of saving space, we usually write elements of Ar as row
vectors enclosed in parentheses, that is,

(a1, . . . , ar) instead of

a1
...
ar

 .
Definition 1.2.3. Let A be a ring, and let M,N be A-modules. A map ϕ : M −→ N

is called an A-module homomorphism (or A-linear) if, for all a ∈ A and m,n ∈M ,

ϕ(m+ n) = ϕ(m) + ϕ(n), and ϕ(am) = aϕ(m).

Definition 1.2.4. Let M be an A-module. A non-empty subset N of M is called a

submodule of M if, for all m,n ∈ N and a ∈ A, it holds

m+ n ∈ N, and a ·m ∈ N.

Remark and Example 1.2.5 ([25, Lemma 2.1.12]). Let ϕ : M → N be an A-module

homomorphism. The kernel of ϕ, Ker(ϕ)= {m ∈M | ϕ(m) = 0}, is a submodule of M .
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Definition 1.2.6. Let M be an A-module.

(a) M is called finitely generated if there is a surjective A-module homomorphism

ϕ : Ar →M.

In this case, the images mi = ϕ(ei) ∈ M of the canonical basis vectors ei, i =

1, . . . , r, are called generators. Since ϕ is surjective, every element of M can be

written as an A-linear combination of m1, . . . ,mr, that is, for all m ∈M there exist

a1, . . . , ar ∈ A with m = a1m1 + . . . + armr. We then write M = 〈m1, . . . ,mr〉.
Moreover, we call M a cyclic module if it is generated by one element.

(b) M is called free of rank r, if there is an isomorphism ϕ : Ar → M , that is, if

Ar ∼= M . In this case, a representation m = a1m1 + . . .+ armr as above is unique,

and we call m1, . . . ,mr a basis of M .

Let K be a field and consider the polynomial ring A = K[X] = K[x1, . . . , xn]. To
study Gröbner bases for modules, we need to extend the notion of monomial orderings
to the free module Ar =

⊕r
i=1Aei.

Definition 1.2.7. An element of the form Xαei = (0, . . . , Xα, . . . , 0) ∈ Ar is called a

monomial (involving the component i), and a non-zero constant multiple of a monomial

is called a term.

Definition 1.2.8. A module monomial ordering, or simply a module ordering, on Ar

is a total ordering � on the set of monomials in Ar such that if Xαei and Xβej are

monomials in Ar, and Xγ is a monomial in A, then

Xαei � Xβej ⇒ XγXαei � XγXβej.

Remark 1.2.9. In this thesis, we always suppose

Xαei � Xβei ⇐⇒ Xαej � Xβej for all i, j.

In this case, � induces a unique monomial ordering on A, and we say that � is global,

local, mixed if the induced ordering on A is global, local, mixed, respectively.

If we are given a monomial ordering on A, there are two canonical ways of obtaining
a module ordering on Ar.

Definition 1.2.10. Let > be a monomial ordering on A. In a canonical way we obtain

the following module orderings on Ar:
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(1) Priority to the monomials, that is, term over position (TOP):

Xαei >TOP X
βej :⇐⇒


Xα > Xβ

or

Xα = Xβ and i < j,

for all monomials Xαei and Xβej of Ar. In Singular, >TOP is denoted by (>, c).

(2) Priority to the components, that is, position over term (POT):

Xαei >POT X
βej :⇐⇒


i < j

or

i = j and Xα > Xβ,

for all monomials Xαei and Xβej of Ar. In Singular, >POT is denoted by (c, >).

Definition 1.2.11. With respect to a given module ordering � on Ar, any element

f ∈ Ar \ {0} can be written uniquely as

f = cαX
αei + f ′

with cα ∈ K \ {0} and Xαei � Xα′
ej for any non-zero term c′Xα′

ej of f ′. Then, as in

Definition 1.1.3, we define:

a) lm(f) = Xαei, the leading monomial of f ,

b) lc(f) = cα, the leading coefficient of f ,

c) lt(f) = cαX
αei, the leading term or head of f .

Definition 1.2.12. Let � be a global module ordering on Ar and let G ⊆ Ar be a set

of vectors. Then we define

(a) the set of leading monomials of G, denoted by Lm(G), as

Lm(G) = {lm(g) | g ∈ G \ {0}} , and

(b) the leading module of G, denoted by L(G), as

L(G) = 〈lm(g) | g ∈ G \ {0}〉 ⊆ Ar,

the monomial submodule generated by the leading monomials.

The notion of Gröbner bases of a submodule M of Ar as a finite set of vectors of M such
that their leading monomials generate the leading module L(M) is defined as follows:
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Definition 1.2.13. Let M ⊆ Ar be a submodule and let � be a global module ordering

on Ar.

(a) A finite set G ⊆M is called a Gröbner basis of M w.r.t. � if

L(G) = L(M).

(b) A Gröbner basis G ⊆ Ar of M is called reduced if

(1) 0 6∈ G,

(2) lc(g) = 1 for all g ∈ G, and

(3) for each g ∈ G, lm(g) does not divide any monomial of any element of G\{g}.

As for ideals, the definition of normal forms is essential for the computation of Gröbner
bases.

Definition 1.2.14. Let G denote the set of all finite ordered sets G ⊆ Ar. A map

NF(−, G) : Ar × G −→ Ar

(f,G) 7−→ NF(f,G)

is called a normal form on Ar if, for all f ∈ Ar and all G ∈ G, the following conditions

hold:

(1) NF(0, G) = 0.

(2) NF(f,G) 6= 0 implies lm(NF(f,G)) 6∈ L(G).

(3) Either f − NF(f,G) = 0, or there exists a representation

f − NF(f,G) =
∑
g∈G

cgg, cg ∈ A

such that

lm (f − NF(f,G)) ≥ max{lm(cgg) | g ∈ G, cgg 6= 0}.

Such a representation is called a standard representation of f−NF(f,G) w.r.t. G.

Moreover, NF is called a reduced normal form if lc(NF(f,G)) = 1 and no monomial of

NF(f,G)− lm (NF(f,G)) is contained in L(G) for all f ∈ Ar and all G ∈ G.

Remark 1.2.15 ([25, Remark 2.3.4]). For global orderings, a reduced normal form

exists.
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The notion of S-vectors for modules is defined as follows:

Definition 1.2.16. Consider f, g ∈ Ar \ {0} with lm(f) = Xαei and lm(g) = Xβej.

Set γ := lcm(α, β) = (max(α1, β1), . . . ,max(αn, βn)) ∈ Nn, then Xγ is the least common

multiple of Xα and Xβ. We define the S-vector of f and g by

S-vector(f, g) :=

 Xγ−α · f

lc(f)
−Xγ−β · g

lc(g)
if i = j,

0 if i 6= j .

Using this definition, both the Buchberger criterion and Buchberger’s algorithm can
be extended from the case of ideals to submodules of Ar.

1.3 Algebraic Number Fields

In this section we study algebraic number fields. An algebraic number field is one of the
coefficient fields over which we compute Gröbner bases (see Chapter 2). This section
provides only basic notions and results that are relevant for this thesis. There are a
couple of introductory textbooks about algebraic number fields. We refer to [15, 28],
but we essentially follow [15].

We begin by introducing the notion of integral elements of ring extensions.

Definition 1.3.1. Let R ⊆ S be a ring extension. An element s ∈ S is said to be

integral over R if it satisfies a polynomial equation

xn + rn−1x
n−1 + . . .+ r1x+ r0 = 0

where r0, r1, . . . , rn−1 ∈ R.

Note that every element r ∈ R is integral over R as it is a root of the polynomial
x− r ∈ R[x].

Definition 1.3.2. A complex number which is integral over Z is called an algebraic

integer.

Example 1.3.3.

a)
√

5 is an algebraic integer as it satisfies the equation x2 − 5 = 0.

b) α =
1√
2

is not an algebraic integer. This is because the polynomial f(x) = x2−1/2

is not in Z[x], though f(α) = 0, and there is no monic polynomial in Z[x] with

root α.
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Definition 1.3.4. Let R ⊆ S be a ring extension. Suppose that R is a field and s ∈ S
is integral over R; then s is said to be algebraic over R.

Definition 1.3.5. A complex number that is algebraic over Q is called an algebraic

number.

Example 1.3.6. In Example 1.3.3, α is an algebraic number as it satisfies the equation

x2 − 1

2
= 0.

Theorem 1.3.7 ([15, Theorem 4.2.6]). Every algebraic number is of the form a/b, where

a is an algebraic integer and b is a non-zero ordinary integer.

Example 1.3.8. The algebraic number α in Example 1.3.3 can be written as
β

b
with

β =
√

2 and b = 2. Clearly β is an algebraic integer.

Let K be a subfield of the field C of complex numbers. Let α ∈ C be algebraic over
K. We now study the notion of the minimal polynomial of α over K. As α is algebraic
over K, there exists a non-zero polynomial g(x) ∈ K[x] such that g(α) = 0. We let
IK(α) denote the set of all polynomials in K[x] having α as a root, that is,

IK(α) = {f(x) ∈ K[x] | f(α) = 0}. (1.1)

Clearly the set IK(α) contains the zero polynomial. It is easy to check that IK(α) is an
ideal of K[x]. Moreover, IK(α) 6= 0 as g(x) ∈ IK(α). As K is a field, we know that K[x]
is a Euclidean domain and thus a principal ideal domain. Hence there exists p(x) ∈ K[x]
such that

IK(α) = 〈p(x)〉. (1.2)

Suppose q(x) ∈ K[x] is another polynomial that generates IK(α), that is,

IK(α) = 〈q(x)〉.

Then

〈p(x)〉 = 〈q(x)〉.

So, there exists a polynomial u(x) ∈ K[x] such that

q(x) = u(x)p(x),

where u(x) is a unit in K[x]. But K[x]∗ = K∗, which implies u(x) ∈ K∗. This shows
that we may assume the polynomial p(x) to be monic, in which case p(x) is uniquely
determined by (1.2).
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Definition 1.3.9. Let K be a subfield of C. Let α ∈ C be algebraic over K. Then the

unique monic polynomial p(x) ∈ K[x] such that

IK(α) = 〈p(x)〉

is called the minimal polynomial of α over K and is denoted by irrK(α).

Definition 1.3.10. Let K be a subfield of C. Let α ∈ C be algebraic over K. Then

the degree of α over K, written degK(α), is defined by

degK(α) = deg(irrK(α)).

When K = Q, we write deg(α) for degQ(α).

Theorem 1.3.11 ([15, Theorem 5.1.1]). Let K be a subfield of C. Let α ∈ C be algebraic

over K. Then irrK(α) is irreducible in K[x].

Definition 1.3.12. Let K be a subfield of C.

(i) Let α ∈ C. Then we write

K(α) =
⋂

K⊆F⊆C
α∈F

F,

where the intersection is taken over all subfields F of C which contain both K and

α.

(ii) A subfield L of C for which there exists α ∈ C such that L = K(α) is called a

simple extension of K.

Since the intersection of subfields of C is again a subfield of C, K(α) is the smallest
field containing both K and α. We say that K(α) is formed from K by adjoining a
single element α. Clearly if α ∈ K, then K(α) = K.

Theorem 1.3.13 ([15, Theorem 5.5.1]). Let K be a subfield of C. Let α ∈ C be algebraic

over K of degree n. Then

K(α) =
{
a0 + a1 α+ . . .+ an−1 α

n−1 | a0, a1, . . . , an−1 ∈ K
}
.

Theorem 1.3.13 shows that K(α) can be viewed as an n−dimensional vector space
over K with basis {1, α, . . . , αn−1}.

Definition 1.3.14. Let K be a subfield of C, let α1, . . . , αk ∈ C (k ≥ 2). Then the field

L = K(α1, . . . , αk) defined inductively by

K(α1, . . . , αk) = . . . = K(α1, . . . , αk−1)(αk)

is called a multiple extension of K.
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In this definition, L is the smallest subfield of C that contains both K and the αi.

Theorem 1.3.15 ([15, Theorem 5.6.2]). Let K be a subfield of C. Let α1, α2, . . . , αk ∈ C
be algebraic over K. Then there exists α ∈ C that is algebraic over K such that

K(α1, α2, . . . , αk) = K(α).

The proof of Theorem 1.3.15 is constructive (see [15, Example 5.6.1]).

Definition 1.3.16. An algebraic number field is a subfield of C of the form

Q(α1, . . . , αk),

where α1, . . . , αk are algebraic numbers.

Example 1.3.17. Q(
√

2,
√

11) and Q(
√

31) are examples of algebraic number fields.

By Theorem 1.3.15, each algebraic number field can be obtained by adjoining a single
algebraic number α to Q. Moreover, by Theorem 1.3.13 any element of an algebraic
number field K = Q(α) can be written as a polynomial in α with coefficients in Q.

For a field K and an element α of an extension field E of K, we have a homomorphism

ϕ : K[x] −→ E

f(x) 7−→ f(α).

If the kernel of this map is 〈0〉, then for f ∈ K[x],

f(α) = 0 =⇒ f = 0 (in K[x]).

This means there does not exist a non-zero polynomial in K[x] satisfying f(α) = 0,
which shows that α is not algebraic, and that the homomorphism

K[x] −→ K[α]

is an isomorphism, and that it extends to an isomorphism

K(x) −→ K(α).

On the other hand, if the kernel of ϕ is not the zero ideal, then we have f(α) = 0 for
some non-zero f ∈ K[x] which implies that α is algebraic over K by Definition 1.3.4. In
this case, ϕ defines an isomorphism

K[x]/kerϕ −→ K[α].

Moreover, if f is the minimal polynomial of α, then kerϕ = 〈f〉. Hence

K[α] = K(α) ∼= K[x]/〈f〉. (1.3)

Example 1.3.18. Let α ∈ C be such that α3−3α−1 = 0. Then the polynomial

x3 − 3x− 1 ∈ Q[x] is monic, irreducible, and has α as a root, and so it is the minimum

polynomial of α over Q. The set {1, α, α2} is a basis for Q[α] over Q and

Q[α] = Q(α) ∼= Q[x]/〈x3 − 3x− 1〉.
Note that an element t of E which is not algebraic over K is called transcendental.
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1.4 Dense Univariate Rational Interpolation

In this section we discuss polynomial interpolation and, more generally, rational function
interpolation. Throughout this section, we assume that F is a field.

The problem of (univariate) rational interpolation is, given distinct elements x0, . . . ,
xn−1 ∈ F and arbitrary elements y0, . . . , yn−1 ∈ F , and a positive integer k with 0 ≤
k ≤ n, to find a rational function Γ(x) = r/t ∈ F (x), with r, t ∈ F [x] satisfying
deg r + deg t < n, deg r < k, and deg t ≤ n− k such that

t(xi) 6= 0 and Γ(xi) =
r(xi)

t(xi)
= yi for 0 ≤ i ≤ n− 1. (1.4)

Note that the representation of the rational function Γ(x) is not necessarily unique;
however, if it is in canonical form, that is, lc(t) = 1 and gcd(r, t) = 1, then Γ(x) is
uniquely determined.

We will see later that this interpolation problem can be solved in two steps. For the
first step, we need an algorithm that solves the polynomial interpolation problem, see
equation (1.5) below.

1.4.1 Polynomial Interpolation

Polynomial interpolation is a simple but important algebraic tool to determine a poly-
nomial formula from a sequence of numerical data.

The problem of (univariate) polynomial interpolation is, given n distinct elements x0,
x1, . . ., xn−1 ∈ F , and y0, y1, . . . , yn−1 ∈ F , to find a polynomial Pn−1(x) ∈ F [x] of
degree at most n− 1 such that the following interpolation conditions are satisfied:

Pn−1(xi) = yi for 0 ≤ i ≤ n− 1. (1.5)

The existence and uniqueness of an interpolating polynomial is given by the following
theorem which can be found in any introductory book on numerical analysis, see, for
example, [12, Theorem 3.2].

Theorem 1.4.1. Let x0, x1, . . . , xn−1 ∈ F be distinct elements, and let y0, . . . , yn−1 ∈ F .

Then a unique polynomial Pn−1(x) ∈ F [x] of degree less than n exists satisfying the

interpolation conditions (1.5). Moreover, this polynomial is inductively given by

Pj(x) = v0 +

j∑
i=1

vi

i−1∏
k=0

(x− xk) (1.6)

for 0 ≤ j ≤ n− 1 where the vi are given by

v0 = y0,

vi =
yi − Pi−1(xi)∏i−1
k=0(xi − xk)

for 1 ≤ i ≤ n− 1.
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Note that we do not assume any ordering between the points x0, x1, . . . , xn−1, as such
an order will make no difference. However, we limit the degree of Pn−1(x) to be at most
n− 1 because it singles out precisely one interpolating polynomial that will do the job.

The interpolation formula given in (1.6) is called the Newton form of the interpolation
formula. The polynomial Pn−1(x) given in the theorem above can easily be computed
with the following straightforward algorithm which can be performed with O(n2) oper-
ations in F , see [42, Theorem 5.1]:

Algorithm 1.1 Polynomial Interpolation (polyInterpolation)

Input: x0, x1, . . . , xn−1 ∈ F pairwise distinct, and y0, y1, . . . , yn−1 ∈ F .

Output: An interpolating polynomial Pn−1(x) ∈ F [x] of degree at most n−1 satisfying

the interpolation conditions (1.5).

1: P0(x)←− y0, g0(x)←− 1

2: for j = 1, . . . , n− 1 do

3: sj ←− xj − x0, tj ←− yj − Pj−1(xj), gj(x)←− gj−1(x) · (x− xj−1)

4: for k = 1, . . . , j − 1 do

5: sj ←− sj · (xj − xk)

6: vj ←− tj/sj, Pj(x)←− Pj−1(x) + vj · gj(x)

7: return Pn−1(x)

Definition 1.4.2. ([25, Definition 8.26]) Let R be a ring. A function M : N>0 −→ R>0

is called a multiplication time for R[x] if polynomials in R[x] of degree less than n can

be multiplied using at most M(n) operations in R.

For example, the classical algorithm for multiplying two polynomials in R[x] of degree
less than n uses at most M(n) = 2n2 operations in R, see [25, Table 8.6].

Remark 1.4.3. Given an algorithm for multiplying two polynomials of degree less than

n, let M(n) be its complexity. Then based on this algorithm, there is a fast polynomial

interpolation algorithm which takes at most O(M(n)logn) arithmetic operations in F ,

see [25, Section 10.2]. However, we do not consider it here.

Turning our attention to the rational interpolation problem (1.4), we now briefly
explain how this problem can be solved in two steps. In the first step, we apply Algo-
rithm 1.1 to compute a unique interpolating polynomial g := Pn−1(x) ∈ F [x] of degree
less than n such that g(xi) = yi for i = 0, . . . , n − 1. Let f =

∏n−1
i=0 (x − xi). In the

second step, we wish to find a rational function r/t ∈ F (x) satisfying

gcd(f, t) = 1 and rt−1 ≡ g mod f, deg r < k, deg t ≤ n− k, (1.7)

where t−1 ∈ F [x] is the inverse of t modulo f .
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The algorithm recovering fractions in F (x) modulo f that we consider in Subsec-
tion 1.4.2 relies on the extended Euclidean algorithm (EEA), see, for example, [42,
Algorithm 3.14]. We thus fix, only for this section, the following notation. Let f and
g be polynomials in F [x] with deg f > deg g. Set r0 := f and r1 := g. By division
with remainder, we inductively define ri+1 = ri−1 − qiri, where the qi are the quotients,
deg ri+1 < deg ri. This process ends when rl+1 = 0 is reached for some l ∈ N. For the
extended Euclidean algorithm, we additionally consider coefficients si and ti inductively
defined by s0 = t1 = 1, s1 = t0 = 0, si+1 = si−1− qisi and ti+1 = ti−1− qiti for 1 ≤ i ≤ l.
Note that we obtain, thus, a representation

ri = sif + tig

of the ri as a linear combination of the input polynomials (see Lemma 1.4.4 below). The
elements ri, si and ti form the i-th row in the EEA, for 1 ≤ i ≤ l. We will see later that
the intermediate results ri, qi and ti computed by the extended Euclidean algorithm are
useful for recovering fractions in F (x).

The following lemma presents some properties of the EEA.

Lemma 1.4.4 ([42, Lemma 3.8 and 3.15]). Let r0 = f, r1 = g for f, g ∈ F [x], and let

ri, si, ti for 0 ≤ i ≤ l + 1 be the rows of the EEA for the pair (r0, r1), with rl+1 = 0. Let

ni = deg ri. Then for 0 ≤ i ≤ l, we have

(i) gcd(f, g) = gcd(ri, ri+1) = rl;

(ii) sif + tig = ri; in particular, slf + tlg = gcd(f, g);

(iii) gcd(si, ti) = 1;

(iv) gcd(ri, ti) = gcd(f, ti);

(v) deg si+1 = n1 − ni, and deg ti+1 = n0 − ni for i 6= 0.

1.4.2 Univariate Rational Function Reconstruction

This subsection presents an algorithm for computing a rational function that solves
(1.7) if such a function exists. The general problem of rational reconstruction consists of
rational number reconstruction and rational function reconstruction problems. Rational
number (resp. function) reconstruction is a method that allows one to recover a rational
number (resp. function) from its image modulo an integer (resp. a polynomial). Rational
number reconstruction, originally developed by Paul Wang in 1981 [43], has found many
applications in computer algebra. Later, in 2004, Michael Monagan [33] presented a
more efficient solution for the rational number reconstruction problem, which he called
Maximal Quotient Rational Reconstruction (MQRR). His algorithm applies the EEA
to inputs m,u ∈ Z with gcd(m,u) = 1 and outputs a rational number ri/ti where i
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represents the index of the maximal quotient qi appearing in the EEA for the inputs
m,u ∈ Z. In the following we will see that the same strategy can be used to recover
fractions in F (x) from their image modulo a polynomial f(x) ∈ F [x]. For a more detailed
description, we refer to [33, 42].

Definition 1.4.5. A rational function r/t ∈ F (x) is said to be in canonical form if

lc(t) = 1 and gcd(r, t) = 1.

In (1.7), since t is a unit modulo f , we may multiply the congruence by t to obtain
an equivalent condition. When we drop the gcd requirement, we obtain

r ≡ tgmod f, deg r < k, deg t ≤ n− k . (1.8)

This condition is strictly weaker because for some fixed k ∈ {0, . . . , n}, there are cases
where (1.7) has no solution. Let us take a look at the following example:

Example 1.4.6. Consider f = x3 − x, g = x2 + 1 ∈ Q[x]. Here, for k = 3, we have the

trivial solution r = g and t = 1 which satisfies both (1.7) and (1.8). However, if k = 2,

then the solution r = x and t =
1

2
x satisfies (1.8), but not (1.7).

By the following theorem, there is an algorithm which decides whether (1.7) is solvable.

Theorem 1.4.7 ([42, Theorem 5.16]). Let f ∈ F [x] be of degree n > 0 and let g ∈ F [x]

be of degree less than n. Furthermore, let rj, sj, tj ∈ F [x] be the j-th row in the EEA for

the pair (f, g), where j is minimal such that deg rj < k.

(i) There exist polynomials r, t ∈ F [x] satisfying (1.8), namely r = rj and t = tj. If

in addition gcd(rj, tj) = 1, then r and t also solve (1.7).

(ii) If r/t ∈ F (x) is a canonical form solution to (1.7), then r = β−1rj and t =

β−1tj, where β = lc(tj) ∈ F \ {0}. In particular, (1.7) is solvable if and only if

gcd(rj, tj) = 1.

The algorithm which we obtain from the above theorem finds a canonical form solution
(if it exists) to (1.7) for any fixed k. Since for our application we need the sum of the
degrees of r and t in Theorem 1.4.7 to be minimal, it is very important to know the
value of k in advance for which the solution r/t satisfies this condition. Nevertheless,
there is an algorithm, due to Monagan [33], which finds a rational function of small
degree even without an integer k being supplied. This algorithm is called the Maximal
Quotient Rational Function Reconstruction (MQRFR).
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Maximal Quotient Rational Function Reconstruction

The MQRFR algorithm presented in [33] finds a correct solution for (1.7) satisfying
n > deg r + deg t + 1. Like over the rational numbers, Monagan’s algorithm runs the
EEA on the input f, g ∈ F [x] with gcd(g, f) = 1 and outputs the rational function ri/ti,
where i represents the index of the quotient qi of maximal degree appearing in the EEA.
Let us start with an example that illustrates how the MQRFR algorithm works:

Example 1.4.8 ([33, Example 2.1]). Consider f =
∏12

i=5(x − i) and g = 10x7 + x6 +

2x5 + 10x4 + 12x3 + 7x2 + 12x + 8 ∈ Z13[x]. The EEA with inputs f and g yields the

following table.

i deg ri deg ti deg ri + deg ti deg qi

1 7 0 7 1

2 6 1 7 1

3 5 2 7 1

4 2 3 5 3

5 1 6 7 1

6 0 7 7 1

From the table one can simply choose a rational function ri/ti where deg ri + deg ti is
minimal. As illustrated in the table, deg ri + deg ti reaches its minimum for i = 4 which
also corresponds to the quotient q4 of maximal degree 3. The reason for this is clear, as
explained in the following lemma.

Lemma 1.4.9. Let f, g ∈ F [x]. In the EEA for f and g we have, with notation as

above,

deg ri + deg ti + deg qi = deg f

for 1 ≤ i ≤ l, where l is the total number of division steps.

Proof. By Lemma 1.4.4 (v), we have deg ti = deg f − deg ri−1. Now

deg ri + deg ti + deg qi = deg ri + (deg f − deg ri−1) + (deg ri−1 − deg ri)

= deg f.

The following lemma states that if the degree of f is large enough then there is only
one pair of (rj, tj) such that deg rj + deg tj is minimal.

Lemma 1.4.10 ([33, Lemma 2.3]). Let r, t ∈ F [x] be polynomials with lc(t) = 1 and

gcd(r, t) = 1. Let f, g be two polynomials in F [x] satisfying gcd(f, t) = 1 and g ≡
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rt−1 mod f , where t−1 is the inverse of t modulo f . Let j denote the index of a quotient

with maximal degree in the EEA with inputs f and g. If deg f > 2 · (deg r+ deg t), then

j is unique, and we have r = rj and t = tj.

Definition 1.4.11. Let f ∈ F [x]. We define

a) the normal form of f , denoted by normal(f), as:

normal(f) =

{
f/ lc(f) if f 6= 0

0 otherwise;

b) the leading unit of f , denoted by lu(f), as:

lu(f) =

{
lc(f) if f 6= 0

1 otherwise.

Taking the above results into account, we have Algorithm 1.2.
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Algorithm 1.2 MQRFR (fareypoly(g,f))

Input: g, f ∈ F [x] and n = deg f > deg g.

Output: r, t ∈ F [x] with deg r + deg t + 1 < n, lc(t) = 1, gcd(r, t) = 1, and r/t ≡
gmod f , or FAIL implying that no solution of (1.7) exists.

1: ρ←− lu(g)

2: (r1, r2)←− (normal(f), normal(g))

3: if r2 = 0 then

4: return (0, 1)

5: if 2 · deg g < n then

6: return (g, 1)

7: (t1, t2)←− (0, 1/ρ)

8: (r3, rm, q)←− (0, 0, 0) (the index m refers to maximum)

9: (qm, tm)←− (1, 1)

10: while r2 6= 0 do

11: (q, r3)←− (r1 quo r2, r2) (q is the quotient in F [x] on dividing r1 by r2)

12: r2 ←− r1 rem r2 (r2 is the remainder in F [x] on dividing r1 by r2)

13: (ρ, r2)←− (lu(r2), r2/ρ)

14: (r1, r3)←− (r3, t2)

15: (t1, t2)←− (r3, (t1 − qt2)/ρ)

16: if deg q > deg qm then

17: (qm, rm, tm)←− (q, r1, t1)

18: if deg qm = 1 then

19: return FAIL

20: if gcd (rm, tm) 6= 1 then

21: return FAIL

22: return (rm/lc(tm), tm/lc(tm))
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In Algorithm 1.2, we start by setting ρ := lu(g) and (r1, r2) := (normal(f), normal(g)),
see Definition 1.4.11. If g = 0, then the only solution to (1.7) is 0

1
= 0, see lines 3-4.

If 2 · deg g < n (see line 5), then the unique solution to (1.7) which corresponds
to the quotient of maximal degree is (g, 1) (see line 6), see Lemma 1.4.10. This is
because by division with remainder, we have f = qg + s with deg s < deg g and, hence,
deg g = deg f − deg q. This implies deg f < 2 · deg q. Let r and t be polynomials which
correspond to q in the EEA. Then 2·(deg r+deg t) < deg f , see Lemma 1.4.9. In this case,
Lemma 1.4.10 implies that one division step yields (r, t) = (r2/lc(t2), t2/lc(t2)) = (g, 1)
which is a solution to (1.7) in canonical form, see line 6.

In all the other cases, a solution is computed by division with remainder. The while
loop in lines 10-17 is a simple modification of the while loop in the extended Euclidean
algorithm, see, for example, [42, Algorithm 3.14]. The algorithm returns FAIL if the
degree of qm is 1 since by Lemma 1.4.9 the algorithm requires the degree to be at
least 2 (see line 18), or if gcd(rm, tm) 6= 1 (see line 20) since in this case, rm

tm
is not

a solution to (1.7), see Example 1.4.6. But if gcd(rm, tm) = 1, then r
t

with (r, t) =
(rm/lc(tm), tm/lc(tm)) is a solution to (1.7) in canonical form by Lemma 1.4.7, see line 22.

Note that Algorithm 1.2 computes a unique solution of (1.7) using O(n2) operations
in F (see, for example, [42, Corollary 5.17]), where n is the degree of f .

Remark 1.4.12. There is a fast rational function reconstruction algorithm which takes

O(M(n)logn) arithmetic operations in F , where M(n) is as in Definition 1.4.2, see [42,

Section 11.1] and [33]. This algorithm is based on a fast extended Euclidean algorithm

(FEEA) which in turn is based on a fast algorithm to compute the quotients in the Eu-

clidean algorithm for univariate polynomials over F , using O(M(n)logn) field operations

for inputs of degree at most n. The fast algorithm for the quotients uses a fast polyno-

mial multiplication algorithm, see, for example, [42, Chapter 8]. In [33], it is pointed out

that in practice, the usual EEA performs better than the FEEA for polynomials of low

degree. However, the Java implementation of the FEEA beats the EEA for deg f ≥ 200.

The fast algorithm highlighted in the remark above is not considered in this thesis.
We thus close this section with an example illustrating how to reconstruct a rational
function from given numerical data.

Example 1.4.13. Compute a rational function Γ(x) ∈ Q(x) for the following interpo-

lation points:

i 0 1 2 3 4 5

xi 1 2 3 4 5 6

Γ(xi) 39/7 10 171/11 288/13 149/5 654/17

In the first step, using the information given in the table, Algorithm 1.1 computes the
unique polynomial

g =
−12

85085
x5 +

282

85085
x4 − 3

91
x3 +

11675

17017
x2 +

217457

85085
x+

200748

85085
∈ Q[x]



28 1. Preliminaries

of degree less than 6. Let f =
∏5

i=0(x − xi). We then apply Algorithm 1.2 to the pair
(g, f) to obtain

Γ(x) =
1/2x3 + 9/2x2 + 17/2x+ 6

x+ 5/2
∈ Q(x). (1.9)

In this example, the rational function Γ(x) = r(x)
t(x)

with (r, t) = (1/2x3 +9/2x2 +17/2x+

6, x+ 5/2) satisfies the following conditions:

(1) The value of r
t

at x = xi coincides with the corresponding value Γ(xi) given in the
table for each i,

(2) deg r + deg t+ 1 < deg f = 6, and

(3) gcd(r, t) = gcd(t, f) = 1. Here, the fact that gcd(r, t) = gcd(t, f) follows from
Lemma 1.4.4 (iv). Thus it suffices to show that either gcd(r, t) = 1 or gcd(t, f) = 1.
Since the degrees of r and t are relatively small in comparison to the degree of f ,
we prefer to check whether r and t are coprime. Indeed, one can easily verify that
gcd(r, t) = 1.

1.5 Sparse Multivariate Polynomial Interpolation

Suppose we are given a black box, see Figure 1.1 below, which contains a multivariate
polynomial B = B(x1, . . . , xn) represented as

B =
t∑
i=1

ciBi ∈ Q[x1, . . . , xn], (1.10)

in the standard power basis where

Bi = x
ei,1
1 · · ·xei,nn and ci ∈ Q.

The black box implicitly defines the unknown multivariate polynomial through sub-
stituting elements from a given field for the variables. Thus to determine the coefficients
and terms of a black box polynomial is the problem of black box interpolation. There
are various techniques for interpolating sparse polynomials such as Zippel’s probabilis-
tic algorithm [45] and the algorithm of Ben-Or and Tiwari [3]. In this section, for our
purpose, only the algorithm by Ben-Or and Tiwari will be discussed for the following
reasons:

(1) It is a deterministic algorithm for interpolating a multivariate polynomial in a
polynomial ring with characteristic zero.

(2) It does not interpolate a multivariate polynomial one variable at a time. Instead,
it interpolates all variables at once.
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(3) Although it requires a bound τ on the number of terms, it does not require a bound
on the partial degrees di = degxi B, 1 ≤ i ≤ n.

Due to the above reasons we prefer to use the interpolation algorithm by Ben-Or and
Tiwari as a tool to recover polynomials in a polynomial ring with characteristic zero, see
Chapter 4 and Chapter 5.

(a1, . . . , an) B B(a1, . . . , an)

Figure 1.1: Black box for polynomial evaluation

1.5.1 The Sparse Interpolation Algorithm of Ben-Or and Tiwari

If the number of variables n and a bound τ on the number of terms t, that is, τ ≥ t
are given, then the algorithm uses the first n distinct primes p1, p2, . . . , pn in the 2τ
evaluation points ej = (pj1, p

j
2, . . . , p

j
n), 0 ≤ j ≤ 2τ−1. The algorithm can be partitioned

into two phases. In the first phase, we determine the exponents ei,k using a linear
generator, and then in the second phase we determine the coefficients ci by solving a
linear system of equations over Q.

Suppose for simplicity τ = t. Let aj be the output from a probe to the black box with
the input ej for 0 ≤ j ≤ 2t− 1. Let bi = Bi(p1, . . . , pn) = p

ei,1
1 · · · p

ei,n
n . Then

aj = B(ej) =
t∑
i=1

cib
j
i .

In order to determine the integers bi, let us define an auxiliary polynomial Λ(z) as

Λ(z) =
t∏
i=1

(z − bi) = zt + λt−1 z
t−1 + . . .+ λ0 ∈ Q[z]. (1.11)

In the following we show how to determine the coefficients of this polynomial by solving
a linear system. This linear system tells us the relation between the coefficients of the
auxiliary polynomial Λ(z) and the sequence {aj}j≥0. The linear system for determining
the coefficients λi is derived as follows: First observe that, since Λ(bi) = 0 for any
1 ≤ i ≤ t, we have

0 = cib
j
i Λ(bi) = ci

(
λ0 b

j
i + λ1 b

j+1
i + . . .+ bj+ti

)
.

Summing over all i, we get

0 = λ0

t∑
i=0

cib
j
i + λ1

t∑
i=0

cib
j+1
i + . . .+

t∑
i=0

cib
j+t
i . (1.12)
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But it also holds that

bji = (p
ei,1
1 · · · pei,nn )j = (pj1)ei,1 · · · (pjn)ei,n = Bi(p

j
1, . . . , p

j
n) = Bi(ej). (1.13)

This implies

t∑
i=1

cib
j
i =

t∑
i=1

ciBi(ej) = B(ej) = aj. (1.14)

Using the relation (1.14) for all j ≥ 0, we can rewrite (1.12) as

−aj+t = λ0 aj + λ1 aj+1 + . . .+ λt−1 aj+t−1. (1.15)

This last equation gives us the linear relation we want in order to determine the coeffi-
cients λi. Now to determine t coefficients λ0, . . . , λt−1, we need t such linear relations.
Letting j = 0, . . . , t− 1, we need 2t elements a0, . . . , a2t−1, so we make 2t probes to the
black box. Once we have these evaluations, we can solve Aλ = a, where

A =


a0 a1 . . . at−1

a1 a2 . . . at
...

...
. . .

...
at−1 at . . . a2t−2

 , λ =


λ0

λ1
...

λt−1

 , a =


−at
−at+1

...
−a2t−1

 . (1.16)

This method of finding a linear generator Λ(z) for B costs O(τ 3) arithmetic opera-
tions in Q. Thus we use the Berlekamp/Massey Algorithm (BMA) (see, for example,
[3, Section 2.1]), a technique from coding theory, to reduce the runtime to O(τ 2) arith-
metic operations in Q. The algorithm depends on the key equation (1.15). It works by
processing a sequence of elements a0, a1, . . . ∈ F where F is a field. If the sequence has
a linear generator Λ(z) of degree t satisfying the key equation (1.15), the algorithm will
compute it after processing 2t elements from the sequence. There is no a priori bound
for the sequence and, hence, the algorithm can update the current guess for the linear
generator appropriately whenever the next element ai of the sequence does not fit the
current linear recursion. In that case a non-zero discrepancy

∆j = λs aj−1 + λs−1 aj−2 + λs−2 aj−3 + . . .+ λ0 aj−s−1 (1.17)

is detected for 0 ≤ s < t and s + 1 ≤ j ≤ 2s + 1. This relation can be obtained in
a similar way as Equation (1.15). To see this, note that the algorithm computes the
reverse of the generator polynomial. That is, in contrast to the polynomial Λ in (1.11),
we define the same polynomial with reversed coefficients. In this case, we have

Λ(z) = λ0 z
t + λ1 z

t−1 + . . .+ 1 = (−1)t
t∏
i=1

(biz − 1). (1.18)
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Within the Berlekamp/Massey algorithm, the polynomial Λ in (1.18) is internally com-
puted by using the relation in (1.17) but only if ∆j = 0 it is linearly factored. In this
case, the algorithm reverses the coefficients λi and returns the polynomial Λ as in (1.11).
Coming back to Equation (1.18), since Λ(b−1

i ) = 0 for any 1 ≤ i ≤ t, we have

0 = cib
j−1
i Λ(b−1

i ) = ci
(
λ0 b

j−t−1
i + λ1 b

j−t
i + . . .+ bj−1

i

)
.

From (1.12) to (1.15), we obtain the following relation by a similar argument :

0 = λt aj−1 + λt−1 aj−2 + λt−2 aj−3 + . . .+ λ0 aj−t−1.

If, in this relation, t is less than the number of terms of B (or equivalently, if t is less
than the degree of the generating polynomial Λ), then the equality does not hold, that
is,

∆j := λs aj−1 + λs−1 aj−2 + λs−2 aj−3 + . . .+ λ0 aj−s−1 6= 0

for 0 ≤ s < t and s + 1 ≤ j ≤ 2s + 1. Thus we have obtained the relation we wanted.
For a detailed description, we refer to [31].

Now, once we have found λi, we compute all integer roots of Λ(z) to obtain bi, see,
for example, [3, integer root finding algorithm in Section 5]. Then each term Bi =
x
ei,1
1 · · · x

ei,n
n is recovered through repeatedly dividing bi by p1, p2, . . . , pn. Finally, the

coefficients ci are computed via solving the linear system

aj =
t∑
i=1

cib
j
i with 0 ≤ j ≤ t− 1,

which turns out to be a t× t transposed Vandermonde system:
1 1 · · · 1
b1 b2 · · · bt
...

...
. . .

...
bt−1

1 bt−1
2 · · · bt−1

t



c1

c2
...
ct

 =


a0

a1
...

at−1

 (1.19)

Before presenting the algorithm, let us first take a look at the following example:

Example 1.5.1. If B = x2y + 2, then t = 2. Let ej = (2j, 3j) for 0 ≤ j ≤ 2t − 1 = 3.

Then a0 = B(e0) = 3, a1 = 14, a2 = 146, a3 = 1730. From the system of equations[
a0 a1

a1 a2

][
λ0

λ1

]
=

[
−a2

−a3

]
for 0 ≤ j ≤ 3, as in (1.16), we obtain

λ1 = −13, λ0 = 12

=⇒ Λ(z) = z2 − 13z + 12 = (z − 1)(z − 12)

=⇒ b1 = 1 = 20 · 30, b2 = 12 = 22 · 31

=⇒ B1 = 1, B2 = x2y
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From the 2× 2 transposed Vandermonde system[
1 1

b1 b2

][
c1

c2

]
=

[
a0

a1

]
,

we obtain c1 = 2, and c2 = 1.

The so-called sparse multivariate polynomial interpolation algorithm, see Algorithm 1.3
below, recovers multivariate polynomials given in a black box.

Algorithm 1.3 Sparse Multivariate Polynomial Interpolation (sparseInterpolation)

Input: B(x1, . . . , xn) : a multivariate black box polynomial.

τ : τ ≥ t, t is the number of non-zero terms in B.

Output: ci and Bi such that B(x1, . . . , xn) =
∑t

i=1 ciBi and ci 6= 0.

[ The BMA ]

1: aj = B(pj1, . . . , p
j
n), 0 ≤ j ≤ 2τ − 1, where pi is the i-th prime

2: compute Λ(z) from {aj}2τ−1≥j≥0

[ Determine Bi ]

3: find all t distinct roots bi of Λ(z)

4: determine each Bi through repeatedly dividing every bi by p1, . . . , pn

[ Compute the coefficients ci ]

5: solve the transposed Vandermonde system (1.19)

6: return ci and Bi

In Algorithm 1.3, a severe coefficient swell occurs when the BMA is run over Q, see
line 2, which makes the algorithm very slow. This problem was addressed by Kaltofen
et al. [30] using modular methods. Later, different approaches have been described
to tackle the above problem. These approaches are highlighted in a recent paper by
Javadi et al. [29]. In this paper, the drawbacks of the above approaches and the
modular methods by Kaltofen et al. are given. A probabilistic algorithm described in
[29] interpolates a sparse multivariate polynomial f ∈ Fp[x1, . . . , xn] over a finite field,
given in a black box. This algorithm modifies Algorithm 1.3 to interpolate f in a positive
characteristic by doing extra probes to determine the degrees of the variables in each
monomial in f . To interpolate the target polynomial, the algorithm needs to know a
bound on the degree of f and on the number of terms in f . However, for the application
that we are interested in, we prefer to consider the early termination strategy described
in [31, 32], see the next section. This is because the method described in these papers
is a useful tool for controlling intermediate coefficient swell in computer algebra and,
hence, saves computation time. Moreover, it performs well for sparse examples, even
without knowing any bounds on the degree or the number of terms. A more detailed
description is given in the following section.
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1.6 Early Termination Strategy

To interpolate a polynomial of degree at most n, we need n + 1 evaluation points, see
Subsection 1.4.1. Let F be a field. Suppose we are given, for a black box univariate poly-
nomial f of unknown degree, n + 1 evaluation points (x0, f(x0)), . . . , (xn, f(xn)) ∈ F 2.
To find the polynomial f , we need to know a degree bound. Recall that Algorithm 1.3
described in Subsection 1.5.1 requires a bound on the number of terms. Some important
questions, when no such bound is given, are now the following:

(a) Given evaluation points for a black box univariate polynomial of unknown degree, is
there a way to find a degree bound so that we can recover the black box polynomial?

(b) Given evaluation points for a black box multivariate polynomial with an unknown
number of terms, is there a way to find a bound on the number of terms so that
we can recover the black box polynomial?

(c) Given evaluation points for the polynomial in (a) or (b), is there any other approach
to find the desired polynomial without knowing the bounds, the degree bound
required in (a) and the bound on the number of terms required in (b), in advance?

Unfortunately, we do not know the answer for the questions (a) and (b). But for the
last question, an efficient probabilistic approach, early termination, presented in [31, 32]
finds the targeted polynomial when no such bound is supplied. The early termination
algorithms are randomized in the Monte Carlo sense, that is, their results are correct
with high probability, see [31, 32].

In this section, we shortly explain, closely following [32], how the early termination ver-
sion of the sparse interpolation algorithm described in Subsection 1.5.1 works. Moreover,
we also extend the early termination version of the polynomial interpolation method
described in [32, Theorem 1] (see Theorem 1.6.1) to rational interpolations in a straight-
forward way. The basic idea behind the early termination approaches is based on the
fact that an already interpolated rational function does not change as more interpolation
points are added.

1.6.1 Early Termination with Threshold in Dense Rational

Interpolations

We start by the following theorem:

Theorem 1.6.1 ([32, Theorem 1]). Let F be a field. Let f(x) be a black box univariate

polynomial with coefficients in F , and let η ∈ Z be a positive integer. Suppose p0, p1, . . .

are distinct points that are chosen randomly and uniformly from a subset S of F , and

that the polynomial f [i](x) is the i-th interpolant that interpolates f(p0), f(p1), . . . , f(pi).

If d is the smallest non-negative integer such that

f [d](x) = f [d+1](x) = . . . = f [d+η](x),
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then f [d](x) correctly interpolates f(x) with probability no less than

1− η · deg(f(x)) ·
(

deg f(x)

#(S)

)η
.

In this theorem, we assume the points p0, p1, . . . to be distinct although they are not
necessarily distinct in [32, Theorem 1]. However, it is pointed out that the assumption
that p0, p1, . . . are distinct avoids false early termination due to interpolating at repeated
points, see the paragraph below Lemma 2 in [32]. Indeed, it is very significant for the
application that we are interested in that the above points are distinct.

The early termination strategy in the theorem above does not always work if the
target function is rational, see, for example, the i-th interpolating polynomial gi = L[1]
in Example 1.6.2. In order to work for a black box univariate rational function Γ, we do
the same as in the above theorem except that for every i ≥ 0, the polynomials f [i](x)
are considered as rational functions over the field F . The idea is as follows: to recover
a fraction Γ(x) ∈ F (x) from its evaluations at distinct points x0, x1, . . . , Algorithm 1.1
first updates an i-th interpolant g[i](x) for every i ≥ 0 and Algorithm 1.2 is then applied
to the pair (g[i](x), f [i](x)) to obtain the i-th rational function Γ[i](x) where g[i](x) is a
polynomial interpolating Γ(x0), . . . ,Γ(xi) of degree at most i and f [i](x) =

∏i
j=0(x−xj).

As we pointed out earlier, the polynomials g[i](x) and g[i+1](x) do not always coincide.
Now, since at least one i-th order term is constructed in every g[i](x), the target rational
function Γ(x) is recovered as a possible dense rational interpolation up to the degree
bound. Note that for successful interpolation, the size of S needs to cover enough
distinct points required by the early termination, that is, no less than n1 + d1 + 1 + η
points where n1 and d1 are the degrees of the numerator and the denominator of Γ,
respectively.

An important fact in the rational interpolation algorithm is that once the target
rational function is interpolated, the interpolant does not change even if we keep inter-
polating Γ(x) at more distinct points. Based on this observation, the early termination
with thresholds is applied as follows: An integer η > 0 is given as a threshold, the
sequence x0, x1, . . . are random distinct values, g[i](x) is updated for every i ≥ 0 and,
hence, a new rational function Γ[i](x) is obtained. Whenever Γ[i](x) stops changing η
times in a row, we have Γ(x) = Γ[i](x) with high probability.

The following example illustrates the early termination version of the univariate ra-
tional interpolation described in Section 1.4:

Example 1.6.2.

i 0 1 2 3 4 5 6

xi 1 2 3 4 5 6 7

Γ(xi) 39/7 10 171/11 288/13 149/5 654/17 915/19

We use the Singular commands polyInterpolation and fareypoly from the Sin-

gular library ffmodstd.lib [6] to compute the rational function Γ. In the following,
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i = size(d) − 1, L[1] = gi := g[i](x) is the i-th interpolant, L[2] =
∏i

j=0(x − xj) =: fi,

and L[3] = x0, x1, . . . , xi. If there are not enough interpolation points, then the list L is

required for adding more interpolation points. Moreover, Γ[i] := Ri[1]/Ri[2] is the i-th

rational function interpolating Γ. For simplicity, let us start from i = 4:

> ring r = 0,x,dp;

> list d = 1,2,3,4,5;

> list e = 39/7,10,171/11,288/13,149/5;

> list L = polyInterpolation(d,e,1); // 1 refers to the output w.r.t.

// the 1st variable

> L;

L[1] = 6/5005*x^4-3/143*x^3+655/1001*x^2+371/143*x+11724/5005

L[2] = x^5-15*x^4+85*x^3-225*x^2+274*x-120

L[3] = 1,2,3,4,5

> poly g_4 = L[1];

> poly f_4 = L[2];

> list R4 = fareypoly(g_4,f_4); // returns numerator vs denominator

> R4;

R4[1] = 6/5005*x^4-3/143*x^3+655/1001*x^2+371/143*x+11724/5005

R4[2] = 1

> L = polyInterpolation(list(6),list(654/17),1,L);

> L;

L[1] = -12/85085*x^5+282/85085*x^4-3/91*x^3+11675/17017*x^2

+217457/85085*x+200748/85085

L[2] = x^6-21*x^5+175*x^4-735*x^3+1624*x^2-1764*x+720

L[3] = 1,2,3,4,5,6

> poly g_5 = L[1];

> poly f_5 = L[2];

> list R5 = fareypoly(g_5,f_5);

> R5;

R5[1] = 1/2*x^3+9/2*x^2+17/2*x+6

R5[2] = x+5/2

We see that the rational functions R4[1]/R4[2] and R5[1]/R5[2] do not coincide. We still

need to continue updating L by adding more points until Ri−1[1]/Ri−1[2] and Ri[1]/Ri[2]

coincide. Now for i = 6, we have

> L = polyInterpolation(list(7),list(915/19),1,L);
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> L;

L[1] = 24/1616615*x^6-732/1616615*x^5+9558/1616615*x^4-14187/323323*x^3

+1148101/1616615*x^2+4089347/1616615*x+547356/230945

L[2] = x^7-28*x^6+322*x^5-1960*x^4+6769*x^3-13132*x^2+13068*x-5040

L[3] = 1,2,3,4,5,6,7

> poly g_6 = L[1];

> poly f_6 = L[2];

> list R6 = fareypoly(g_6,f_6);

> R6;

R6[1] = 1/2*x^3+9/2*x^2+17/2*x+6

R6[2] = x+5/2

The rational function stops changing at i = 6. In fact, the functions R5[1]/R5[2] and

R6[1]/R6[2] are the same. Hence

Γ =
1/2x3 + 9/2x2 + 17/2x+ 6

x+ 5/2

with high probability. Note that the interpolating polynomials g5 and g6 are not equal

although the functions R5[1]/R5[2] and R6[1]/R6[2] coincide.

1.6.2 Early Termination in the Ben-Or/Tiwari Interpolation

Algorithm

The algorithm by Ben-Or/Tiwari, Algorithm 1.3, needs to know the number of terms
t, or an upper bound τ ≥ t. From the practical point of view, since there are, de-
pending on the output in our application, usually two or more polynomials need to be
interpolated at once, knowing this bound in advance would save a lot of computation
time. For example, we would factorize then only need a single factorization step, see
line 13 of Algorithm 1.4. Even if the bound τ on the number of terms is not known in
advance, the early termination version of the algorithm by Ben-Or/Tiwari described in
[32], which requires a single interpolation run, tackles this problem with high probability,
see Algorithm 1.4. We describe, following [32], the basic idea of this strategy:

Pick a random point p = (p1, . . . , pn), where the pi are distinct primes, for the eval-
uations aj = B(pj1, . . . , p

j
n) in the Ben-Or/Tiwari algorithm, and show that with high

probability the Berlekamp/Massey algorithm (see Algorithm in [31, Section 2.1]) does
not encounter a singular j × j principal sub-matrix

Aj =

 a0 · · · aj−1
...

. . .
...

aj−1 · · · a2(j−1)

 (1.20)
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until j = t + 1. This is not generally true since for any B(x1, . . . , xn) = B(X) =∑t
k=1 ckX

ek that satisfies B(p0) = a0 = c1 + . . . + ct = 0, the first discrepancy ∆1 is
zero. Let us now show that the first discrepancy is zero: As in the Berlekamp/Massey
algorithm, we define Λj−1 by

Λj−1 = λ0 z
t + λ1 z

t−1 + . . .+ λt

where λ0 6= 0, t = deg(Λj−1) for j ≥ 1, Λ0 = 1 and λt = 1 for all t ≥ 0. Since
t = deg(Λ0) = 0, we have λ0 = 1 for j = 1. Thus from (1.17), we get

∆1 = λ0 ·a0 = 1 · 0 = 0.

The above problem, nevertheless, can be fixed either by shifting the sequence by one
element or by increasing the threshold for the early termination.

In the following theorem, each embedded principal sub-matrix Aj has non-zero deter-
minant for 1 ≤ j ≤ t.

Theorem 1.6.3 ([32, Theorem 4]). The determinant of Aj is non-zero for j = 1, . . . , t.

Theorem 1.6.4 ([32, Theorem 5]). Let S be a subset of an integral domain. If p1, . . . , pn

are chosen randomly and uniformly from S, then for the sequence {aj}j≥0, where aj =

B(pj1, . . . , p
j
n), the Berlekamp/Massey algorithm encounters a singular Aj matrix (and

the corresponding zero discrepancy) the first time at j = t+ 1 (or when the length of the

sequence is equal to 2t+ 1) with probability no less than

1− t(t+ 1)(2t+ 1) deg(B)

6 ·#(S)

where #(S) is the number of elements in S.

Based on this theorem, Algorithm 1.4, the early termination version of the sparse
interpolation algorithm, recovers a multivariate polynomial given in a black box with
high probability.

In line 11 of Algorithm 1.4, the polynomial Λ(z) is updated whenever the next element
aj of the sequence does not fit the current linear recursion. In line 12, instead of checking
whether the matrix Aj is singular, we check whether a zero discrepancy ∆j is detected
for some j, as in (1.17).

The following example illustrates the early termination version of the sparse multi-
variate polynomial interpolation:

Example 1.6.5. Compute the multivariate polynomial B(x1, x2, x3) ∈ Q[x1, x2, x3] for

the following evaluation points aj = B(2j, 3j, 5j)

j 1 2 3 4 5 6 7

aj−1 1 8 64 512 4096 32768 262144
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Algorithm 1.4 Early Termination Sparse Interpolation (sparseInterpolation)

Input: B(x1, . . . , xn) : a multivariate black box polynomial.

η: a positive integer (default 1), the threshold for early termination.

Output: ci 6= 0 and Bi such that B(x1, . . . , xn) =
∑t

i=1 ciBi with high probability,

or an error message if the procedure fails to complete.

[The early termination within the BMA]

1: pick random distinct prime numbers p1, . . . , pn

2: j ←− 1

3: a0 ←− B(1, . . . , 1)

4: while (TRUE) do

5: j ←− j + 1

6: t←− j − 1

7: i←− 2 · j − 2

8: for k = i− 1, . . . , i do

9: ak ←− B(pk1, . . . , p
k
n)

10: Aj ←−

 a0 · · · aj−1

...
. . .

...

aj−1 · · · a2(j−1)


11: let Λ(z) be the polynomial obtained by performing the BMA on {ak}0≤k≤i

12: if the matrix Aj is singular η times in a row then

13: compute all the roots bi of Λ(z) in the domain of p1, . . . , pn

14: if the number of the roots bi of Λ(z) is equal to deg(Λ) then

[ the early termination was correct ]

15: break out of the loop

[ Determine Bi ]

16: repeatedly divide the bi’s by p1, . . . , pn to obtain the exponents αi1, . . . , αin ∈ Z≥0

such that Bi = xαi11 · · ·xαinn
[Compute the coefficients ci]

17: solve the linear system aj =
∑t

i=1 cib
j
i with 0 ≤ j ≤ t− 1

18: return ci and Bi
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Consider the embedded principal sub-matrices

A1 =
(

1
)
, A2 =

(
1 8

8 64

)
, A3 =

 1 8 64

8 64 512

64 512 4096

 , . . . .

Since det(A2)= 0, the number of terms t of the target polynomial is equal to 1 (see

Theorem 1.6.3) and, hence, the length of the sequence required to recover this polynomial

is equal to 2t+ 1 = 3, see Theorem 1.6.4. Thus, to recover the multivariate polynomial

B in Q[x1, x2, x3], it suffices to take the sequence 1, 8, 64. The auxiliary polynomial Λ is

of degree 1 since t = 1. In fact, it is easy to see that Λ(z) = z− 8 and its integer root is

equal to 8. Using the Singular command sparseInterpolation from the Singular

library ffmodstd.lib [6], we compute the polynomial B as follows:

> ring r = 0, (x1,x2,x3),dp;

> list L = 1, 8, 64, 512, 4096, 32768, 262144;

> list T = BerlekampMassey(L,1); // 1 refers to the position

// of the variable in Lambda

> poly Lambda = T[1]; // only if size(T)=2, otherwise we use T

// for adding more evaluation points to determine Lambda

> Lambda; // the minimal polynomial generating the sequence L = 1,8,64

x1-8

> T[2]; // the max. length of L required to recover the polynomial B

2

> list pr = 2,3,5; // list of primes where pr[i] -> x_i

> poly B = sparseInterpolation(Lambda,L,pr,0,0); // The fourth

// argument refers to the position of the auxiliary

// variable z. In this case, it is 0 since z is not

// defined here. The fifth argument refers to the

// exponent of the primes that the evaluation

// started with, that is, to j-1. In this case,

// we have j-1=0 and a_0 = B(1,1,1).

> B; // the desired polynomial

x1^3





Chapter 2

Gröbner Bases over Algebraic Number

Fields

From the theoretical point of view, Gröbner bases computations can be done over any
field by using Buchberger’s algorithm (see, for example, [1, 13, 25]). In particular,
they can be performed over an algebraic number field, but the computation is often
inefficient if the arithmetic operations in this field are used directly. Consider a simple
extension K = Q(α) of Q. Let f ∈ Q[t] be the minimal polynomial of α. The algebraic
number field K can be represented as the residue class ring Q[t]/〈f〉, and a Gröbner
basis computation over K can then be reduced to one over Q by joining f to the ideal
to be considered. Unfortunately, this method is not satisfactory in view of efficiency.
One of the reasons for this is that over the field of rational numbers, we often suffer
from coefficient swell. Various methods to avoid this have been investigated; the trace
algorithm [40] and modular algorithms [2, 27] are successful in this direction. But using
these approaches, we still have to deal with the complicated arithmetic in algebraic
number fields, in particular with the computation of inverses.

In this chapter we present a new efficient method to compute Gröbner bases over
an algebraic number field. Starting from a polynomial ring over Q as explained above,
we apply the modular methods for computing Gröbner bases discussed in [2, 4, 27]
to pass to positive characteristic p. Choosing a set P of suitable prime numbers, see
Definition 2.4.2, the image fp of f in Fp[t] is, for p ∈ P , reducible and squarefree. We can
thus again apply modular methods, with respect to the factors f1,p, . . . , frp,p of fp, passing
to the rings Fp[t]/〈fi,p〉. As above, we avoid computing in quotient rings by joining fi,p
to the ideal to be considered. Having computed the corresponding reduced Gröbner
basis for each of these factors, we first recombine the results to a set of polynomials Gp

over Fp[t]/〈fp〉 using Chinese remaindering for polynomials. In a second lifting step, the
sets Gp, p ∈ P , are then used to reconstruct a set of polynomials G over Q, via Chinese
remaindering for integers and rational reconstruction. Finally, we verify whether the
input ideal is contained in 〈G〉 and G is the reduced Gröbner bases of the ideal it
generates. If not, we enlarge P and repeat the process.

In Section 2.1, we introduce some notation which is used throughout this chapter.
The structure of the new method is outlined in Section 2.2. Since this method relies
on the Chinese remainder algorithm applied to different domains, we shortly recall the

41
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relevant theoretical background in Section 2.3. The core part of the proposed algorithm is
discussed in Section 2.4. Here we explain how modular methods are applied on different
levels and why our approach is considerably faster than other known methods. The
application of modular methods follows a well-known scheme, see [4]. For reference, we
recall the relevant parts of this scheme in Section 2.5. An illustrating example is given
in Section 2.6. Finally, Section 2.7 contains remarks on the implementation of the new
method in Singular [17] and timings comparing it to other approaches. The benchmark
problems which we used for the timings are listed in the appendix, see Section A.1.

2.1 Notation

LetK = Q(α) be an algebraic number field and let f ∈ Q[t] be the minimal polynomial of
the algebraic number α. Then every element of K can be written as a linear combination
of elements in {1, α, α2, . . . , αd−1} where d = deg f . Hence we may regard every element
of K as a polynomial in α with coefficients in Q. Let X = {x1, . . . , xn} be a set of
variables, and let t be an extra variable. Consider the polynomial rings S = Q(α)[X],
T = Q[X, t], and Q[t]. Fix a global monomial ordering >1 on the monoid of monomials
Mon(X) and consider the product ordering >K := (>1, >) on Mon(X, t), where > is the
global ordering on Mon(t). Note that this implies Xa >K tb for all a ∈ Nn \ {(0, . . . , 0)}
and b ∈ N.

Let H̃ = {g1(X, t), . . . , gs(X, t)} be a subset of T , let I ⊆ S be the ideal generated

by H := {g1(X,α), . . . , gs(X,α)}, and let Ĩ ⊆ T be the ideal generated by H̃ ∪ {f}.
Furthermore, let G̃ ⊆ T be the reduced Gröbner basis of Ĩ w.r.t. >K . Let ϕ be the
canonical homomorphism from T to S which leaves the xi fixed and maps t to α. We
will show, in Theorem 2.4.1, that the non-zero elements of ϕ(G̃) ⊆ S form the reduced
Gröbner basis of I w.r.t. >1.

Let p be a prime number, and let Z〈p〉 ⊆ Q be the set of all rational numbers (in lowest
terms) such that none of the denominators of the elements in Z〈p〉 vanishes modulo p.
That is,

Z〈p〉 =
{a
b
| a ∈ Z, b ∈ Z \ pZ

}
⊆ Q .

Consider the map from Z〈p〉 to Fp which sends a
b

to ab−1 ∈ Fp. If p does not divide
any denominator of the coefficients of f and g1(X, t), . . . , gs(X, t), we apply this map
to the coefficients of these polynomials. We then write fp := (f mod p) ∈ Fp[t] and

Ĩp := 〈g1(X, t)p, . . . , gs(X, t)p, fp〉 ⊆ Fp[X, t].

2.2 Structure of the New Method

Noro [35] has presented a modified version of Buchberger’s algorithm which computes
Gröbner bases over an algebraic number field using the arithmetic in Q[t]/〈f〉. Instead
of computing in the ring (Q[t]/〈f〉)[X], one might as well add the minimal polynomial f
to the ideal to be considered and work over Q[X, t], see Theorem 2.4.1. In this situation,
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the elements of a reduced Gröbner basis are, except f itself, all monic in (Q[t])[X], that
is, they are of the form Xa+(lower terms), see the proof of Theorem 2.4.1. Noro noticed
that during the execution of Buchberger’s algorithm, many (superfluous) intermediate
basis elements of the form tbXa + (lower terms) are computed before a monic element
Xa + (lower terms) is generated. Of course, each additional basis element produces new
S-pairs which usually make the subsequent computation inefficient. Noro has resolved
this problem by making each generated basis element monic in (Q[t])[X] before it is
added to the basis. For this, the inverse of an algebraic number has to be computed
which is in general computationally expensive. Instead, we use a different approach
to reduce the number of basis elements which are computed before a monic element
Xa + (lower terms) is generated.

The new method computes the reduced Gröbner basis of the input ideal in three steps:
In the first step, for a suitable prime p such that fp ∈ Fp[t] is reducible and squarefree,

see Definition 2.4.2, we compute the reduced Gröbner basis G̃p of Ĩp over Fp w.r.t. >K , as
follows: Let fp =

∏
1≤i≤rp fi,p be the irreducible factorization of fp over Fp, with rp > 1.

Set Ĩi,p := 〈H̃p ∪ {fi,p}〉 ⊆ Fp[X, t]. For each i ∈ {1, . . . , rp}, we compute the reduced

Gröbner basis G̃i,p of Ĩi,p. Using the Chinese remainder algorithm for polynomials (see

Algorithm 2.5 below), we determine a set of polynomials G̃p ≡
(
G̃i,p \ {fi,p}

)
mod fi,p

which together with fp is the reduced Gröbner basis of Ĩp with high probability (see
Remark 2.4.6). Note that, at this step of the algorithm, computing modulo the different

factors of the minimal polynomial fi,p (by adding them to the ideal 〈H̃p〉) is, from the
theoretical point of view, just the same as computing modulo several prime numbers,
see Section 2.3.

In the second step, following [2, 27], we use the Chinese remainder algorithm for

integers together with rational reconstruction to lift these results to a set G̃ which is
the reduced Gröbner basis of Ĩ with high probability. In the last step, we lift G̃ to a
Gröbner basis G of I over K by mapping t to α (see Theorem 2.4.1).

The idea of the algorithm is based on the concepts of modular methods and univariate
polynomial factorization over finite fields. For the former we need the Chinese remainder
theorem.

2.3 Factorization and the Chinese Remainder Algorithm

The well-known Chinese remainder theorem is essential for our algorithm.

Theorem 2.3.1 ([42, Corollary 5.3]). Let R be a Euclidean domain and let m1, . . . ,

mr ∈ R be coprime elements so that gcd(mi,mj) = 1 for 0 ≤ i < j ≤ r. Let m =

m1 · · ·mr be the product of these elements. Then R/〈m〉 is isomorphic to the product
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ring R/〈m1〉 × . . .×R/〈mr〉 via the isomorphism

R/〈m〉 → R/〈m1〉 × . . .×R/〈mr〉 ,
amodm 7→ (amodm1, . . . , amodmr) .

For our purpose, we need this theorem in the following two incarnations.

Corollary 2.3.2. Let p1, . . . , pk be prime numbers, and let N = p1 · · · pk be their product.

Then we have the following isomorphism:

Z/〈N〉 ∼= Fp1 × . . .× Fpk ,

amodN 7−→ (amod p1, . . . , amod pk) .

The second application of the Chinese remainder theorem refers to univariate polyno-
mial rings over finite fields.

Corollary 2.3.3. Let f1,p, . . . , frp,p ∈ Fp[t] be pairwise coprime polynomials, and let

fp = f1,p · · · frp,p be their product. Then we have the ring isomorphism

Fp[t]/〈fp〉 ∼= Fp[t]/〈f1,p〉 × . . .× Fp[t]/〈frp,p〉 ,
gmod fp 7−→ (gmod f1,p . . . , gmod frp,p) .

The proof of Theorem 2.3.1 is constructive (see [42, Theorem 5.2, Corollary 5.3]) and
yields the Chinese remainder algorithm. For reference, we state it here in the form of
Corollary 2.3.3, see Algorithm 2.5.

Remark 2.3.4.

(1) Since cihi ≡ 0 mod fj,p for j 6= i and cihi ≡ qisihi ≡ qi mod fi,p, we have

g ≡ cihi ≡ qi mod fi,p .

Hence, the algorithm works correctly.

(2) Although stated here for Fp[t], Algorithm 2.5 works for polynomial rings over any

ground field.

(3) Instead of q1, . . . , qrp ∈ Fp[t], Algorithm 2.5 can also be applied coefficient-wise to

polynomials and vectors with coefficients in Fp[t].
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Algorithm 2.5 Chinese Remainder Algorithm (CRA) for polynomials

Input: q1, . . . , qrp ∈ Fp[t], f1,p, . . . , frp,p ∈ Fp[t] pairwise coprime.

Output: g ∈ Fp[t] such that g ≡ qi mod fi,p for 1 ≤ i ≤ rp.

1: g ←− 0

2: fp ←−
∏

1≤i≤rp fi,p

3: for i = 1, . . . , rp do

4: hi ←−
fp
fi,p

5: by the Extended Euclidean Algorithm [42, Algorithm 3.14], compute si, ti ∈ Fp[t]
such that

sihi + tifi,p = 1

6: ci ←− NF(qisi, fi,p)

(ci is the remainder in Fp[t] on dividing qisi by fi,p)

7: g ←− g + cihi

8: return g

2.4 Gröbner Bases using Factorization and Modular

Methods

As Noro does (see [35, Theorem 1]), we rely on the following result whose proof we give
for the lack of reference.

Theorem 2.4.1. Let G̃ be the reduced Gröbner basis of Ĩ w.r.t. >K. Then (G̃\{f})|t=α
is the reduced Gröbner basis of I w.r.t. >1.

Consider the ring homomorphism

ϕ : T −→ S ,

t 7−→ α ,

xi 7−→ xi .

Since ϕ is the identity map on Q[X], we get an isomorphism

S ∼= T/〈f〉 .

Clearly, ϕ(Ĩ) = I. We are now ready to prove Theorem 2.4.1.

Proof. Without loss of generality, we may assume that Ĩ 6= 〈1〉. Let

G̃ = {m1(X, t), . . . ,ma(X, t),ma+1(X, t)}
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be the reduced Gröbner basis of Ĩ. We first prove that f ∈ G̃. Suppose f /∈ G̃. Then

there exists a non-zero non-constant polynomial f ′ ∈ G̃ ∩ Q[t] with deg f ′ < deg f .

Hence

I = ϕ(Ĩ) = 〈ϕ(f ′), ϕ(G̃ \ {f ′})〉 = 〈1〉

since ϕ(f ′) is invertible in S. This implies Ĩ = 〈1〉, a contradiction. So, f = mi(X, t)

for some i, say i = a+ 1. Then we have

ϕ(G̃ \ {f}) = {m1(X,α), . . . ,ma(X,α)}
= (G̃ \ {f})|t=α =: G .

The result follows easily once we show that the leading coefficient of m(X, t), considered

as an element in the polynomial ring Q[t], is equal to 1 for all m(X, t) ∈ G̃ \ {f}. To

prove this statement, suppose there is an index 1 ≤ j ≤ a such that lt(mj(X, t)) = c ·Xδ

with c ∈ Q[t] and deg c > 0. Clearly, c is monic. Write

mj(X, t) = c ·Xδ + V (X, t)

where V (X, t) = tail(mj(X, t)), which implies that V (X, t) does not contain any term

divisible by Xδ. We have deg c < deg f and therefore gcd(c, f) = 1 since f is irreducible.

Thus, by the extended Euclidean algorithm (see [42, Algorithm 3.14]), there exist a, b ∈
Q[t] such that a · c + b · f = 1. Considering the polynomial a ·mj(X, t) + b · f ·Xδ, we

have

〈G̃〉 3 a ·mj(X, t) + b · f ·Xδ

= (a · c+ b · f) ·Xδ + a · V (X, t)

= Xδ + a · V (X, t)

=: F (X, t) .

But lt(F (X, t)) = Xδ divides c ·Xδ = lt(mj(X, t)) which is a contradiction to the choice

of G̃.

The notion of primes which are admissible of type A w.r.t. a monic irreducible poly-
nomial, which is essential for our algorithm, is defined as follows:

Definition 2.4.2. Let f ∈ Q[t] be as given above. Let p be a prime not dividing

any numerator or any denominator of the coefficients occurring in f . We say that p is

admissible of type A w.r.t. f if fp is reducible and squarefree over Fp. In this case, we

write fp as fp =
∏

1≤i≤rp fi,p.
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For a non-zero polynomial g ∈ T considered as a polynomial in X over Q[t], that is,
g ∈ (Q[t])[X], let Sg be the set of all distinct coefficients (in Q[t]) of g of degree greater
than or equal to 1. That is,

Sg =
{

lcQ[t](u) | u is a term of g with deg(lcQ[t](u)) ≥ 1
}
.

With notation as above, the notion of primes which are admissible of type B w.r.t. a
monic irreducible polynomial and a set of polynomials is defined as follows:

Definition 2.4.3 (Weak version). Let H̃ = {g1(X, t), . . . , gs(X, t)} be as given above.

Let p be a prime not dividing any numerator or any denominator of the coefficients

occurring in H̃. We say that p is admissible of type B w.r.t. f and H̃ if p is admissible

of type A w.r.t. f and if, for each g in H̃, none of the elements in Sg is divisible by any

of the factors of fp over Fp.

To see the relevance of this definition, consider the ideal

J = 〈x2 + xy + t, x+ y + t− 1〉 =: 〈h1, h2〉

and the minimal polynomial f = t3 + t+ 1. If p = 3, then

fp ≡ (t− 1)(t2 + t− 1) =: f1,p · f2,p mod p

and, using the degree reverse lexicographic ordering with x > y, the reduced Gröbner
bases of the ideals J + 〈f1,p〉 and J + 〈f2,p〉 are

{1} and {t2 + t− 1, y + 1, x+ t+ 1},

respectively. In this case, Algorithm 2.5 cannot be applied since the sizes of these sets do
not fit. The calculation suggests that the reason for this is that the element t− 1 ∈ Sh2
vanishes when reduced w.r.t. the set {t− 1, t2 + t− 1}.

Next, consider the ideal

J ′ = 〈x2 + xy + t, t2x+ y〉 =: 〈g1, g2〉.

Here, the reduced Gröbner bases of the ideals J ′ + 〈f1,p〉 and J ′ + 〈f2,p〉 are

{1} and {t2 + t− 1, x+ yt− t, y2 − 1},

respectively. Again the sizes of these sets do not coincide, hence, we still cannot apply
Algorithm 2.5. Moreover, none of the coefficients in Sg1 and Sg2 is divisible by either
f1,p or f2,p which shows that the condition in Definition 2.4.3 is not sufficient. Indeed,
the element t2 ∈ Sg2 vanishes when reduced w.r.t. the set {t2 + t− 1, t− 1}. Therefore,

we may impose a stronger condition by saying that for all g ∈ H̃ none of the elements in
Sg vanishes when reduced w.r.t. the set {f1,p, . . . , frp,p} (in some order) and thus reduce
the probability that the reconstruction fails. In the following example we see that this
condition is still not sufficient.
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Consider the ideal

J ′′ = 〈x2 + xy + t, tx+ y + t〉 =: 〈k1, k2〉.

The reduced Gröbner bases of the ideals J ′′ + 〈f1,p〉 and J ′′ + 〈f2,p〉 are

{t− 1, x− 1, y − 1} and {t2 + t− 1, x+ yt− y + t+ 1, y2 + yt+ y + t− 1},

respectively. Although none of the elements in Sk1 and Sk2 vanishes when reduced w.r.t.
the set {t2 + t − 1, t − 1}, and the sizes of these sets coincide, we see that applying
Algorithm 2.5 yields

{t2 − t+ 1, x− 1, y2t2 + y2t− y2 + yt2 + yt+ t2 + t+ 1}

which is not the desired result because the reduced Gröbner basis of J ′′ + 〈fp〉 is

{t2 + t− 1, y + 1, x+ t+ 1}.

In practice, however, it is very unlikely that this case happens. It is, nevertheless,
important to address this problem. A possible way to handle this difficulty is to refine
Definition 2.4.3 as follows:

Definition 2.4.4 (Strong version). Let f and H̃ = {g1(X, t), . . . , gs(X, t)} be as given

above. Let p be a prime which is admissible of type A w.r.t. f , and write f = f1,p · · · frp,p
as in Definition 2.4.2. Suppose that p does not divide any numerator or any denominator

of the coefficients occurring in H̃. For i = 1, . . . , rp, set Ĩi,p := 〈H̃p ∪ {fi,p}〉, and let G̃i,p

be the reduced Gröbner basis of the ideal Ĩi,p. We say that p is admissible of type B

w.r.t. f and H̃ if for all indices i, j with i 6= j

1. the sizes of G̃i,p and G̃j,p coincide, and

2. Lm(G̃i,p \ {fi,p}) = Lm(G̃j,p \ {fj,p}).

In the above examples, the prime number 3 is not admissible of type B w.r.t. t3 + t+1
and the generators of each of the ideals J , J ′ and J ′′ in the sense of Definition 2.4.4. This
is because in the first two cases, both conditions of this definition are violated whereas
in the third case, the second condition is not satisfied. For the rest of our discussion we
use the strong version of this definition.

We now turn our attention to the notion of lucky primes :

Definition 2.4.5 ([27]). Let Ĩ be an ideal given as above and let p be a prime number.

Furthermore, let G̃ be the reduced Gröbner basis of Ĩ and let G̃p be the reduced Gröbner

basis of Ĩp. Then p is called lucky for Ĩ if and only if Lm(G̃p) = Lm(G̃). Otherwise p is

called unlucky for Ĩ.



2.4. Gröbner Bases using Factorization and Modular Methods 49

Ĩ

Ĩpk

G̃rpk ,pk
· · ·G̃1,pk

· · ·

· · ·

Ĩp2

G̃rp2 ,p2
· · ·G̃1,p2

Ĩp1

G̃rp1 ,p1
· · ·G̃1,p1

G̃p1 G̃p2
· · · G̃pk

Modular Reconstruction (over Q)

level 2

Input

level 1

level 3

Figure 2.1: General scheme for the new algorithm

Since f is independent of X, we get, by Corollary 2.3.3, the isomorphism

Fp[X, t]/〈fp〉 ∼= Fp[X, t]/〈f1,p〉 × . . .× Fp[X, t]/〈frp,p〉 .

Remark 2.4.6. Let Ĩ, H̃, and f be as above. Let p be a prime which is both admissible

of type B w.r.t. f and H̃ as well as lucky for Ĩ. We work over Fp[X, t] equipped with

the product ordering >K . Suppose a set of polynomials G̃p is the reduced Gröbner

basis of the ideal Ĩp. For i = 1, . . . , rp, set Si := (G̃p \ {fp}) mod fi,p ⊆ Fp[X, t]/〈fi,p〉.
Then for each i, the set Si ∪ {fi,p} is the reduced Gröbner basis of the ideal Ĩi,p (as

in Definition 2.4.4) with high probability. Conversely, let G̃i,p be the reduced Gröbner

basis of Ĩi,p. Let G̃′p be the set of polynomials that is obtained by applying Algorithm 2.5

coefficient-wise to the input(
(G̃1,p \ {f1,p}, . . . , G̃rp,p \ {frp,p}), (f1,p, . . . , frp,p)

)
.

Then the set G̃′p∪{fp} is the reduced Gröbner basis of the ideal Ĩp with high probability.

Hence, we have G̃′p ∪ {fp} = G̃p with high probability.

The main innovation of our new algorithm, which is illustrated in Figure 2.1, is as
follows: Instead of computing the reduced Gröbner bases at level 1, our algorithm com-
putes them at level 2. For the primes satisfying the conditions in Definition 2.4.4 (and
only for those), the Chinese remainder algorithm for polynomials then combines these

results at level 3. The ideals 〈G̃pi〉 at this level are expected to be the same as the

ideals Ĩpi at level 1 with high probability (see Remark 2.4.6). The remaining parts of the
computation are carried out in the same way as in the modular algorithms described in
[27].
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Now we give a brief description of the new algorithm. In the beginning, randomly
choose a set P of prime numbers which are admissible of type A w.r.t. f . At level 2,
given a prime p ∈ P , factorize f ∈ Q[t] over Fp and compute, for each i, the reduced

Gröbner basis G̃i,p of the ideal Ĩi,p corresponding to the i-th factor. If the prime p is

admissible of type B w.r.t. f and H̃, then lift these results via Chinese remaindering
for polynomials (at level 3) to obtain the reduced Gröbner basis G̃p of Ĩp with high
probability. Repeat this process for every prime p ∈ P which is admissible of type B, in
the same way as in the modular algorithms in [27].

The main reason why the method to compute Gröbner bases over algebraic number
fields described above is faster than other known methods, see Section 2.7, is that factor-
izing the minimal polynomial f in positive characteristic allows us to compute in rings
with minimal polynomials of degree much less than deg f : Experiments have shown that
the performance of Gröbner basis computations over simple algebraic extensions depends
heavily on the degree of the minimal polynomial. Additionally, the computations are
carried out over finite fields which avoids the problem known as coefficient swell, and
we do not directly use the computationally expensive arithmetic in K. Finally, the new
method is a priori easily parallelizable.

2.5 Modular Algorithms

To compute the reduced Gröbner basis of the ideal Ĩ, the modular algorithm described in
[27] first chooses a set of primes P and computes the reduced Gröbner basis G̃p of Ĩp for
each p ∈ P . It then uses the Chinese remainder algorithm and rational reconstruction
to obtain the reduced Gröbner basis G̃ over Q with high probability. Finally, it verifies
whether Ĩ is contained in 〈G̃〉 and G̃ is the reduced Gröbner bases of the ideal it generates.

One of the problems after computing the set of reduced Gröbner bases GP := {G̃p | p ∈
P} is that P may contain unlucky primes. To deal with such unlucky primes, the
following method is used, see [4]:

DeleteUnluckyPrimesSB ([27]): We define an equivalence relation on (GP ,P)

by

(G̃p, p) ∼ (G̃q, q) :⇐⇒ Lm(G̃p) = Lm(G̃q).

Then the equivalence class of largest cardinality1 is stored in (GP ,P), the others are
deleted.

Now, all G̃p, p ∈ P , have the same set of leading monomials. Hence, we can apply
the Chinese remainder algorithm for integers and the rational reconstruction algorithm
to the coefficients of the Gröbner bases in GP to obtain a reduced Gröbner basis G̃ of Ĩ
with high probability. Since we cannot check, however, whether P is sufficiently large, a

1Here, we have to use a weighted cardinality count if Algorithm 2.6 requires more than one round of

the loop, see [4, Remark 5.7].
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final verification step is needed. Since this may be expensive, especially if Ĩ 6= 〈G̃〉, we
first perform a test in positive characteristic:

pTestSB ([27]): We randomly choose a prime p /∈ P which is admissible of type B

w.r.t. f and H̃. We test if including this prime in the set P would improve the result.
That is, explicitly test whether Ĩ reduces to zero w.r.t G̃ mapped to Fp[X, t], and vice-

versa, whether G̃ mapped to Fp[X, t] reduces to zero w.r.t. G̃p.

The advantage of this test is that it accelerates the algorithm enormously. Algo-
rithm 2.6 is a modified version of Algorithm 1 in [27] (which is implemented in Singu-
lar [17] in the library modstd.lib [26]), in the sense that we do apply modular methods
not only once, but twice, where the second application is with respect to the factors of
the minimal polynomial f .

Now, taking Theorem 2.4.1 into account, we can compute a Gröbner basis of an ideal
in K[X] = Q(α)[X] as in Algorithm 2.7: We first map α to t and join the minimal
polynomial f ∈ Q[t] to the ideal to be considered. Then, after applying Algorithm 2.6,
we only need to map t back to α to get a Gröbner basis of the input ideal.

Algorithm 2.6 is probabilistic in the sense that the test in lines 17 to 19 does not
guarantee that 〈G̃〉 = Ĩ. If I is homogeneous, however, the result G of Algorithm 2.7
can be verified along the lines of [2, Theorem 7.1]. With this test included, Algorithm 2.7
is deterministic.

Remark 2.5.1. Some parts of Algorithm 2.6 are inherently parallelizable. In the cur-

rent implementation, see Section 2.7, we could easily take advantage of this thanks to

Singular’s parallel framework. We have, first of all, parallelized the for-loop starting in

line 4. This corresponds to the modular computations on level 1, see Figure 2.1. Besides

this, we also make use of parallelization for the selection of primes in line 1, for the appli-

cation of the Farey rational map in line 16, and for the final test in line 18. The for-loop

starting in line 6, which corresponds to the modular computations on level 2, is inher-

ently parallelizable as well, but experiments have shown that a parallel implementation

of this step does not yield any further speedup for our test cases.

2.6 Example

The following example illustrates how the new algorithm works:
Consider the ideal

I = 〈x2 + ay, axy − x+ a〉 ⊂ Q(a)[x, y]

where a is a zero of the polynomial f = t2 + 1 ∈ Q[t]. A Singular computation shows
that the reduced Gröbner basis of I with respect to the degree reverse lexicographical
ordering (dp in Singular) with x > y is

{y2 + ax+ ay, xy + ax+ 1, x2 + ay} .
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Algorithm 2.6 Modified modular Gröbner bases algorithm over Q

Input: An ideal Ĩ = 〈H̃, f〉 ⊆ T = Q[X, t] where H̃ = {g1(X, t), . . . , gs(X, t)} and

f ∈ Q[t] is irreducible.

Output: G̃ ⊆ T , a Gröbner basis of Ĩ w.r.t. >K .

1: choose P , a set of random primes which are admissible of type A w.r.t. f

2: GP ←− {}
3: loop

4: for p ∈ P do

5: factorize fp ∈ Fp[t] into irreducible factors fp =
∏

1≤i≤rp fi,p

6: for i = 1, . . . , rp do

7: Ĩi,p ←− 〈H̃p ∪ {fi,p}〉 ⊆ Fp[X, t]
8: compute the reduced Gröbner basis G̃i,p of Ĩi,p w.r.t. >K

9: if p is admissible of type B w.r.t. f and H̃ over Fp then

10: apply Algorithm 2.5 coefficient-wise to the input((
G̃1,p \ {f1,p}, . . . , G̃rp,p \ {frp,p}

)
,
(
f1,p, . . . , frp,p

))
to obtain a set of polynomials G̃p ⊆ Fp[X, t]

11: G̃p ←− G̃p ∪ {fp}
12: else

13: G̃p ←− 0

14: GP ←− GP ∪ {G̃p}

15: (GP ,P)←− DeleteUnluckyPrimesSB(GP ,P)

16: lift (GP ,P) to G̃ ⊆ T by applying the Chinese remainder algorithm and the

Farey rational map

17: if pTestSB(Ĩ , G̃,P) then

18: if G̃ is the reduced Gröbner basis of 〈G̃〉 then

19: if Ĩ ⊆ 〈G̃〉 then

20: return G̃

21: enlarge P
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Algorithm 2.7 Modular Gröbner basis algorithm over K = Q(α) (nfmodStd)

Input: I = 〈g1(X,α), . . . , gs(X,α)〉 ⊆ S = K[X].

Output: G ⊆ S, a Gröbner basis of I w.r.t. >1.

1: map I to 〈H̃〉 via the map sending α to t

2: Ĩ ←− 〈H̃〉+ 〈f〉
3: call Algorithm 2.6 to compute the reduced Gröbner basis G̃ of Ĩ w.r.t. >K= (>1, >)

4: lift G̃ to G via the map sending t to α

5: return G

In the following, we show how this basis is obtained using our method: At level 1, let
us choose k = 2 with p1 = 5 and p2 = 13. At level 2, we have

fp1 ≡ (t− 2)(t+ 2) mod p1 and

fp2 ≡ (t− 5)(t+ 5) mod p2.

Now, corresponding to each factor, we compute, using Singular, the reduced Gröbner
bases of the following ideals:

Ĩ1,p1 = 〈x2 + ty, txy − x+ t, t− 2〉 ,
Ĩ2,p1 = 〈x2 + ty, txy − x+ t, t+ 2〉 ,
Ĩ1,p2 = 〈x2 + ty, txy − x+ t, t− 5〉 ,
Ĩ2,p2 = 〈x2 + ty, txy − x+ t, t+ 5〉 .

> ring r = 5, (x,y,t), (dp(2),dp(1));

> ideal I1p1 = x^2+y*t, x*y*t-x+t, t-2;

> ideal I2p1 = x^2+y*t, x*y*t-x+t, t+2;

> option(redSB);

> ideal S1 = std(I1p1);

> S1;

S1[1] = t-2

S1[2] = y^2+2*x+2*y

S1[3] = x*y+2*x+1

S1[4] = x^2+2*y

> ideal S2 = std(I2p1);

> S2;

S2[1] = t+2

S2[2] = y^2-2*x-2*y

S2[3] = x*y-2*x+1

S2[4] = x^2-2*y
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The Chinese remainder algorithm for polynomials combines these results at level 3 to
obtain the reduced Gröbner basis of Ĩp1 with high probability, as follows:

> list l = S1, S2;

> poly f = t^2+1;

> list m = t-2, t+2;

// CRA for polynomials (coefficient-wise):

> ideal Gp1 = chinrempoly(l, m);

> Gp1 = simplify(Gp1,2); // erase the zero entries

> Gp1 = f, Gp1;

> Gp1;

Gp1[1] = t^2+1

Gp1[2] = y^2+x*t+y*t

Gp1[3] = x*y+x*t+1

Gp1[4] = x^2+y*t

Similarly, the reduced Gröbner basis of Ĩp2 , with high probability, is

> Gp2;

Gp2[1] = t^2+1

Gp2[2] = y^2+x*t+y*t

Gp2[3] = x*y+x*t+1

Gp2[4] = x^2+y*t

It is not hard to see that the primes p1 and p2 are admissible of type B w.r.t. f and
H̃ = {x2 + ty, txy − x + t}. Furthermore, it is also clear that they are lucky primes

for Ĩ = 〈H̃, f〉. At this point we have to change the current basering in Singular to
characteristic zero in order to apply the Chinese remainder algorithm for integers and
to pull the modular coefficients back to the rational numbers.

/* Chinese remaindering for integers */

> ring s = 0, (x,y,t), (dp(2),dp(1));

> list l = imap(r, Gp1), imap(r, Gp2);

> intvec m = 5, 13;

> ideal j = chinrem(l, m);

> j;

j[1] = t^2+1

j[2] = y^2+x*t+y*t

j[3] = x*y+x*t+1

j[4] = x^2+y*t
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/* rational reconstruction */

> j = farey(j, 5*13);

> j;

j[1] = t^2+1

j[2] = y^2+x*t+y*t

j[3] = x*y+x*t+1

j[4] = x^2+y*t

Note that the computed result already coincides with the reduced Gröbner basis stated
above. To simplify the presentation, we therefore skip some of the steps in Algorithm 2.6,
such as the final test. However, we have to map the result back to the ring Q(a)[x, y] in
Singular:

> ring sr = (0,a), (x,y,t), (dp(2), dp(1));

> minpoly = a^2+1;

> ideal G = imap(s, j);

> G = subst(G, t, a);

> G = simplify(G,2);

> G; // G is the reduced Groebner basis of I

G[1] = y^2+a*x+a*y

G[2] = x*y+a*x+1

G[3] = x^2+a*y

Thus we get the same result as the one we mentioned at the beginning.

2.7 Implementation and Timings

Algorithm 2.7 is implemented in the Singular library nfmodstd.lib and we com-
pare its performance against the implementation of [27, Algorithm 1] in the library
modstd.lib (the command is modStd), the Singular command std, and the Magma
[9, 38] command GroebnerBasis. For modStd, we added the minimal polynomial f to
the given input ideal I (considered as an ideal in a polynomial ring over a polynomial

ring) and computed the reduced Gröbner basis of the ideal Ĩ = 〈H̃〉+ 〈f〉 w.r.t. >K . For
GroebnerBasis and std, we computed the reduced Gröbner basis of the ideal I over an
algebraic number field with the minimal polynomial f . Note that the implementation
of our algorithm is internally linked with the existing implementation of Algorithm 1 in
[27].

We consider nine benchmark problems (see appendix Section A.1) to demonstrate
the superiority of our new algorithm. The cyclic ideal Cn in n variables has become a
benchmark problem for Gröbner basis techniques. For our algorithm, we have replaced
the coefficients of this ideal by a random element in Q(a) where a is an algebraic number
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(see, for example, the ideal I6 in the appendix). Some of the benchmark problems are
chosen from [2, 35] (the ideals I1 and I2 are from [2], I6 and I7 are from [35]) where
the coefficients are replaced by a random algebraic number. The minimal polynomials,
selected for our computations, are:

m1 = a2 + 1 ,

m2 = a5 + a2 + 2 ,

m3 = a7 − 7a+ 3 ,

m4 = a6 + a5 + a4 + a3 + a2 + a+ 1 ,

m5 = a12 − 5a11 + 24a10 − 115a9 + 551a8 − 2640a7

+ 12649a6 − 2640a5 + 551a4 − 115a3 + 24a2 − 5a+ 1 ,

m6 = a2 + 5a+ 1 ,

m7 = a8 − 16a7 + 19a6 − a5 − 5a4 + 13a3 − 9a2 + 13a

+ 17 , and

m8 = a7 + 10a5 + 5a3 + 10a+ 1 .

With respect to these minimal polynomials, timings are conducted by using Singu-
lar 4.0.2 and Magma version V2.21-2 on a Dell PowerEdge R720 machine with two
Intel Xeon E5-2690 CPUs, 16 cores and 32 threads in total, 2.9-3.8 GHz, and 192 GB
of RAM running the Gentoo Linux operating system.

The results are summarized in Table 2.1. Some of the computations in Magma did
not finish within 12 hours. This is indicated by a dash (-). Note that in all those cases,
the computation also occupied an excessive amount of memory, more than 100 GB at
the point when we interrupted it. All timings are in seconds. We use the degree reverse
lexicographical ordering (dp in Singular) for all examples.

In our implementation, the number of primes which are chosen in line 1 of Algo-
rithm 2.6 depends on the number of cores. For our timings, we started with 10 primes
on one core and 25 primes on 32 cores. The runtime depends heavily on the splitting
behaviour of the minimal polynomial modulo the chosen primes. Finding the optimal
strategy for this is still under active research.

Remark 2.7.1. We understand that Magma has no parallel version of the Gröbner

basis algorithm which works over algebraic number fields. Therefore we have conducted

the timings in Magma using one core only.

From Table 2.1, we see that the Singular commands std and modStd perform well
in comparison to the Magma command GroebnerBasis. However, one can see that our
algorithm nfmodStd is even much faster.
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Example Magma Singular

Ideal
Min. Groebner

std
modStd nfmodStd

Poly. Basis one core 32 cores one core 32 cores

I1 m1 1241.98 1.51 1.24 0.37 0.22 0.13

I2 m2 error 70.55 19.59 4.79 1.89 0.61

I3a m3 - 0.90 143.79 9.34 3.27 0.51

I3b m3 - 314.00 11212.00 1118.78 97.43 19.23

I4 m4 - 265.53 9163.38 567.03 686.01 99.41

I5 m5 - 2061.95 3321.28 256.58 430.23 71.47

I6 m6 2.93 8931.13 197.20 47.54 24.26 8.99

I7 m7 - 0.90 2044.08 195.41 8.54 1.87

I8 m8 - 15477.87 15274.97 4787.49 92.99 23.89

Table 2.1: Total running times in seconds for computing a Gröbner basis of the consid-

ered ideals with the corresponding minimal polynomial via GroebnerBasis,

std, modStd and nfmodStd, using 1 core and 32 cores where applicable





Chapter 3

Syzygies over Algebraic Number Fields

One of the most immediate and important applications of Gröbner bases is the com-
putation of syzygies. Roughly speaking, a syzygy is a relation to zero between given
elements of a given module. In many algorithms of commutative algebra, syzygies play
an important role, for example, for the computation of ideal quotients or ideal intersec-
tions, see [25, 34]. Moreover, many important constructions in algebraic geometry make
use of the computation of syzygies, see [18]. Syzygies contain important algebraic and
geometric information.

Let A be a ring, and let M be an A-module. Let f1, . . . , fk be elements of M . Then
the set of all syzygies on f1, . . . , fk is an A-module and we call this module the syzygy
module of f1, . . . , fk. Buchberger’s algorithm for computing Gröbner bases allows us
to compute syzygy modules as well, see [25, Lemma 2.5.3]. The reduction to zero of
the S-vector of a pair of vectors in a Gröbner basis provides a syzygy. Since, from the
theoretical point view, Gröbner bases can be computed over any field using Buchberger’s
algorithm, the same holds for modules of syzygies. In particular, the syzygy module can
be computed over an algebraic number field. Consider a simple extension K = Q(α) of
Q, where α is an algebraic number. The main result of this chapter is a fast algorithm
for computing syzygy modules over K. This algorithm uses the results from Chapter 2.
In Chapter 2, we described modular techniques over the field K that solve the coefficient
swell problem which occurs due to the arithmetic in K. Let f ∈ Q[t] be the minimal
polynomial of the algebraic number α. Like in Chapter 2, the new method which we
present in this chapter uses the concepts of modular techniques [2, 27] and univariate
polynomial factorization over finite fields. However, unlike in Chapter 2, it does not rely
on Theorem 2.4.1. This is because, in contrast to Chapter 2, we do not add the factors
of (f mod p), where p is a suitable prime, to the input submodule, see Remark 3.3.4.

To state the idea of the new method more precisely, we proceed as follows: Let
K be defined as above and consider the ring K[x1, . . . , xn] =: K[X], and let > be a
global monomial ordering on Mon(X). Let H = {f1, . . . , fk} be a subset of K[X]r =⊕r

i=1 K[X]ei where e1, . . . , er form the canonical basis of the free module K[X]r, and
let M ⊆ K[X]r be the K[X]-module generated by H. Consider the embedding

K[X]r ⊆ K[X]r+k =
r+k⊕
i=1

K[X]ei, ei 7→ ei .

59
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Consider the submodule F = 〈f1 + er+1, . . . , fk + er+k〉 of K[X]r+k, and let G =
{g1, . . . , gs} be a Gröbner basis of F w.r.t. the ordering >POT which is an elimina-
tion ordering w.r.t. e1, . . . , er, see Definition 1.2.10. Here we compute G using a method
similar to the one described in Chapter 2, that is, using Algorithm 3.8, see Section 3.3
below. Note that we order the set G w.r.t. >POT reversely. Suppose

G ∩
r+k⊕
i=r+1

K[X]ei 6= ∅.

Then we may partition the generating set G of the submodule F as a 2×2 block matrix

G =

[
B0 BGB

Bsyz BT

]
∈ K[X](r+k)×s

where

(a) B0 ∈ K[X]r×l is the zero matrix,

(b) BGB ∈ K[X]r×(s−l) does not contain zero columns, and

(c) Bsyz ∈ K[X]k×l and BT ∈ K[X]k×(s−l)

for some uniquely determined integer l with 1 ≤ l ≤ s. With this notation, the block
Bsyz is a syzygy matrix of H, that is, HBsyz = B0, see [25, Lemma 2.5.3]. Equivalently,
the vector (h1, . . . , hk) ∈ K[X]k is a syzygy on f1, . . . , fk ∈M if and only if the extended
vector (0, h1, . . . , hk) ∈ K[X]r+k with 0 ∈ K[X]r is a K[X]-linear combination of the
columns of the matrix 

f1 . . . fk
1 . . . 0
...

. . .
...

0 . . . 1

 ∈ K[X](r+k)×k .

The columns of the block BGB form a Gröbner basis of M whereas the block BT is a
transformation matrix such that BGB = HBT . In this chapter, we are not interested in
the matrices BGB and BT . If G ∩

⊕r+k
i=r+1K[X]ei = ∅, then this means that the module

of syzygies of M is the zero module.
The Gröbner basis G of the submodule F of K[X]r as above can be computed w.r.t.

>POT as follows: First recall that the algebraic number field K can be represented as
the residue class ring Q[t]/〈f〉. Starting from a polynomial ring over Q[t]/〈f〉, we apply
the modular methods for computing Gröbner bases described in [2, 4, 27] to pass to
positive characteristic p. As in Chapter 2, we choose a set P of suitable prime numbers,
see Definition 2.4.2, such that the image fp of f in Fp[t] is, for p ∈ P , reducible and
squarefree. Let f1,p, . . . , frp,p be the factors of fp. With respect to these factors, we again
apply modular methods passing to the rings Fp[t]/〈fi,p〉, by making slight modifications
to the algorithms presented in Chapter 2. However, unlike in Chapter 2, we do not avoid
computing in the quotient rings Fp[t]/〈fi,p〉. Once we have computed the corresponding
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Gröbner basis for each of these factors, we first recombine the results to a set of vectors
Gp over Fp[t]/〈fp〉 using Chinese remaindering for polynomials, see Algorithm 2.5. In
a second lifting step, the sets Gp, p ∈ P , are then used to reconstruct a set of vectors
G over Q[t]/〈f〉, via Chinese remaindering for integers and rational reconstruction. By
making a final test as described in Chapter 2, we finally obtain the set G that generates
F as desired.

Section 3.1 introduces some notation which is used throughout this chapter. An
overview of the new method is outlined in Section 3.2. Section 3.3 presents the proposed
new algorithm for computing syzygy modules. An illustrating example is presented in
Subsection 3.3.1 whereas timings comparing the new algorithm to other approaches are
presented in Subsection 3.3.2. A further optimization is presented in Section 3.4. An
example illustrating the optimized algorithm is presented in Subsection 3.4.1. Subsec-
tion 3.4.2 presents timings comparing the algorithms in Section 3.3 and Section 3.4.
The benchmark problems which we use for the timings are listed in the appendix, see
Section A.2.

3.1 Notation

Let K = Q(α) be an algebraic number field and let f ∈ Q[t] be the minimal polynomial
of the algebraic number α. Let X = {x1, . . . , xn} be a set of variables, and let t be
an extra variable. Consider the polynomial rings A = Q(α)[X] = K[X] and Q[t]. Fix
a global ordering > on Mon(X). Consider the free A-module Ar and fix a module
ordering � on Ar, see Definition 1.2.8. We assume that � is of type >POT or >TOP,
see Definition 1.2.10. Let H = {g1, . . . , gk} be a subset of Ar, and let M = 〈H〉 ⊆ Ar

be the A-module generated by H. Let g be a non-zero element of Ar. Note that by
Theorem 1.3.13, any coefficient β ∈ K of g can be written as a polynomial β =

∑d
i=0 ci α

i

in α with coefficients in Q, where d < deg f . In this chapter, when we say that some
prime p does not divide any numerator or any denominator of the coefficients of g, we
mean that none of the numerators or denominators of the coefficients ci ∈ Q of any
coefficient β of g is divisible by p.

Let p be a prime number, and let Z〈p〉 ⊆ Q be the set of all rational numbers (in lowest
terms) such that none of the denominators of the elements in Z〈p〉 vanishes modulo p.
That is,

Z〈p〉 =
{a
b
| a ∈ Z, b ∈ Z \ pZ

}
⊆ Q .

Consider the map from Z〈p〉 to Fp which sends a
b

to ab−1 ∈ Fp. If p does not divide
any denominator of the coefficients of each element in H ∪ {f}, we apply this map to
the coefficients of these elements. We then write fp := (f mod p) ∈ Fp[t] and Mp :=
〈Hp〉 = 〈gp | g ∈ H〉 ⊆ Arp with Ap := (Fp[t]/〈fp〉) [X]. Let F be the submodule of Ar+k

generated by the set {g1 + er+1, . . . , gk + er+k} ⊆ Ar+k, where e1, . . . , er+k denote the
canonical generators of Ar+k.

Let p be a prime which is admissible of type A w.r.t. f , see Definition 2.4.2. In this
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case, we write

fp =

rp∏
i=1

fi,p ∈ Fp[t],

where rp > 1 and each factor fi,p of fp is irreducible. With respect to this prime, by
Corollary 2.3.3, we have the ring isomorphism

Fp[t]/〈fp〉 ∼=
rp∏
i=1

Fp[t]/〈fi,p〉. (3.1)

Since f is independent of X, the above isomorphism can naturally be extended to a ring
isomorphism

(Fp[t]/〈fp〉) [X] ∼=
rp∏
i=1

(Fp[t]/〈fi,p〉) [X]. (3.2)

Note that since each fi,p is irreducible, each residue class ring Fp[t]/〈fi,p〉 is a field, see
Theorem 1.1.10.

3.2 Overview of the New Method

The idea of the algorithm which we consider in this chapter is similar to the one discussed
in Chapter 2. As mentioned in the introduction, the main difference is the following:
Let p be a prime which is admissible of type A w.r.t. f , see Definition 2.4.2. Instead of
adding the factors of fp to the input submodule, we work over the residue class rings
Fp[t]/〈fi,p〉, where the fi,p are factors of fp.

The general idea for computing a syzygy module of M is as follows: First, set

Hi,p :=
{
gp mod fi,p | g ∈ {g1 + er+1, . . . , gk + er+k} ⊆ Ar+k

}
⊆ Ar+ki,p

where Ai,p = (Fp[t]/〈fi,p〉)[X]. For each i ∈ {1, . . . , rp}, we compute the reduced Gröbner
basis Gi,p of the Ai,p-module generated by Hi,p over Fp[t]/〈fi,p〉 w.r.t. >POT. Using the
Chinese remainder algorithm for polynomials (see Algorithm 2.5), we obtain a set of
vectorsGp ⊆ Ar+kp satisfying the conditionsGp ≡ Gi,p mod fi,p. We then use, following [2,
27], the Chinese remainder algorithm for integers together with rational reconstruction
to lift these results to a set G which is the reduced Gröbner basis of F with high
probability. Finally, from

G ∩
r+k⊕
i=r+1

K[X]ei,

we compute a generating set for the syzygy module of M by [25, Lemma 2.5.3].
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3.3 Algorithm for Computing Syzygies

We start by the following definition:

Definition 3.3.1. Let A be a ring, let M be an A-module, and let f1, . . . , fk ∈ M .

A syzygy or relation on k elements f1, . . . , fk is an element of the kernel of the homo-

morphism ϕ : Ak −→ M , ei 7−→ fi, where e1, . . . , ek is the canonical basis of the free

A-module Ak. In other words, it is a k-tuple (g1, . . . , gk) ∈ Ak satisfying
∑k

i=1 gifi = 0.

In this definition, the set of all syzygies, denoted by Syz(f1, . . . , fk), on f1, . . . , fk is a
submodule of Ak. The map ϕ surjects onto the A-module 〈f1, . . . , fk〉 and Syz(f1, . . . , fk)
= Ker(ϕ) is called the syzygy module of f1, . . . , fk.

Before presenting an algorithm for computing syzygy modules over K, we first consider
a modified version of Algorithm 2.7 that computes the reduced Gröbner bases of given
submodules over the field K. Note that since some of the definitions and remarks for
ideals which we used in Chapter 2 carry over to modules almost without any changes, we
will not repeat them here. For a more detailed description, see Chapter 2. For computing
the reduced Gröbner basis of the submodule F , we can simply adapt those definitions
and remarks for ideals to modules based on the description given in Section 3.2.

Algorithm 3.8 is the aforementioned modified version of Algorithm 2.7 which in turn
calls Algorithm 2.6. It computes the reduced Gröbner basis of a given submodule over
the field K.

Remark 3.3.2. Some parts of Algorithm 3.8 can be parallelized as described in Re-

mark 2.5.1.

The following lemma provides a method to compute syzygies for submodules of Ar.

Lemma 3.3.3 ([25, Lemma 2.5.3]). Let > be a global monomial ordering on A. Let

M = 〈g1, . . . , gk〉 ⊆ Ar =
⊕r

i=1 Aei, with e1, . . . , er the canonical basis of Ar. Con-

sider the embedding Ar ⊆ Ar+k =
⊕r+k

i=1 Aei, ei 7→ ei and the canonical projection

π : Ar+k −→ Ak. Let G = {g′1, . . . , g′s} be a Gröbner basis of the submodule F =

〈g1 + er+1, . . . , gk + er+k〉 of Ar+k w.r.t. the elimination ordering >POT for e1, . . . , er.

Suppose that {g′1, . . . , g′l} = G ∩
⊕r+k

i=r+1Aei, then

Syz(M) = 〈π(g′1), . . . , π(g′l)〉.

The method for computing syzygy modules given in Lemma 3.3.3 is summarized in
Algorithm 3.9. Although this algorithm works for any ring A = k[X] where k is a field
(see also [25, Algorithm 2.5.4]), we restrict ourselves to the ring A with k = K = Q(α).

Remark 3.3.4. Recall that Algorithm 3.8 is an extension of Algorithm 2.6 to sub-

modules of Ar that computes in quotient rings. However, one can also easily extend
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Algorithm 3.8 Modified modular Gröbner bases algorithm over K = Q(α)

Input: A submodule M = 〈H〉 ⊆ Ar, where H = {g1, . . . , gk} and A = K[X].

Output: G ⊆ Ar, the reduced Gröbner basis of M w.r.t. �.

1: let f be the minimal polynomial of α

2: choose P , a set of random primes which are admissible of type A w.r.t. f

3: GP ←− {}
4: loop

5: for p ∈ P do

6: factorize fp ∈ Fp[t] into irreducible factors fp =
∏

1≤i≤rp fi,p

7: for i = 1, . . . , rp do

8: Mi,p ←−Mp mod fi,p ⊆ Ari,p with Ai,p = (Fp[t]/〈fi,p〉) [X]

9: compute the reduced Gröbner basis Gi,p of Mi,p over Fp[t]/〈fi,p〉 w.r.t. �

10: if p is admissible of type B w.r.t. f and H over Fp then

11: apply Algorithm 2.5 coefficient-wise to the input(
(G1,p, . . . , Grp,p), (f1,p, . . . , frp,p)

)
to obtain a set of vectors Gp ⊆ Arp where Ap = (Fp[t]/〈fp〉) [X]

12: else

13: Gp ←− 0

14: GP ←− GP ∪ {Gp}

15: (GP ,P)←− DeleteUnluckyPrimes(GP ,P)

16: lift (GP ,P) to G ⊆ Ar by applying the Chinese remainder algorithm for integers

and the Farey rational map

17: if pTestSB(M,G,P) then

18: if G is the reduced Gröbner basis of 〈G〉 then

19: if M ⊆ 〈G〉 then

20: return G

21: enlarge P
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Algorithm 3.9 Syzygy modules over K = Q(α) (nfmodSyz)

Input: A submodule M = 〈g1, . . . , gk〉 of Ar, where A = K[X].

Output: S = {s1, . . . , sl} ⊆ Ak such that 〈S〉 = Syz(M) ⊆ Ak.

1: let F = {g1 +er+1, . . . , gk+er+k}, where e1, . . . , er+k denote the canonical generators

of Ar+k = Ar
⊕

Ak such that g1, . . . , gk ∈ Ar =
⊕r

i=1 Aei

2: let G ⊆ Ar+k be the output of Algorithm 3.8 applied to F w.r.t. >POT

3: let {g′1, . . . , g′l} = G ∩
⊕r+k

i=r+1Aei with g′i =
∑k

j=1 aijer+j, i = 1, . . . , l

4: let si = (ai1, . . . , aik), i = 1, . . . , l

5: return S := {s1, . . . , sl}

Algorithm 2.6 to an algorithm computing Gröbner bases for submodules of Ar that does

not compute in quotient rings as in the case of ideals. This can be done by adding the

vectors fe1, . . . , fer ∈ Ar, where f is the minimal polynomial of α, to the input sub-

modules to be considered. Algorithm 3.9 still works if we apply this extended algorithm

in line 2 of Algorithm 3.9. Nonetheless, experiments have shown that this approach is

limited in terms of efficiency compared to using Algorithm 3.8 in line 2 of this algorithm

for our test cases. This might be due to the additional r column vectors.

3.3.1 An Illustrative Example

Consider the polynomial ring A = Q(α)[x, y, z], where α is algebraic over Q with minimal
polynomial f = t2 + 1 ∈ Q[t]. Consider the A-module M ⊆ A2 generated by

g1 = (αx+ y)e1 + (αx− z)e2 ,

g2 = (yz − αx)e1 , and

g3 = (y + z)e2 .

To compute the syzygy module of M , first, as in Algorithm 3.9, we consider the sub-
module F of A2+3 = A5 generated by g1 + e3, g2 + e4, and g3 + e5. In other words, F is
generated by the columns of the matrix


αx+ y yz − αx 0
αx− z 0 y + z

1 0 0
0 1 0
0 0 1

 ∈ A5×3 .
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By applying Algorithm 3.8, we compute the reduced Gröbner basis of F w.r.t. >POT.
We thus obtain the set G = {g′1, . . . , g′5} ⊆ A5 of vectors, where

g′1 = (y2z + yz2 − αxy − αxz)e3 + (−αxy − y2 − αxz − yz)e4

+ (−αxyz + yz2 − x2 − αxz)e5,

g′2 = (y + z)e2 + e5,

g′3 = (xz2 + α z3 + αx2 − xz)e2 + (α yz + x)e3 + (x− α y)e4 + (xz + α z2)e5,

g′4 = (x− α y)e1 + (x+ α z)e2 + (−α)e3,

g′5 = (yz + y)e1 + (αx− z)e2 + e3 + e4 .

From the above result, we get, as in line 3 of Algorithm 3.9,

G ∩
5⊕
i=3

Aei = {g′1} =




0
0

y2z + yz2 − αxy − αxz
−αxy − y2 − αxz − yz
−αxyz + yz2 − x2 − αxz


 .

From this set, we obtain the syzygy matrix

Bsyz =

 y2z + yz2 − αxy − αxz
−αxy − y2 − αxz − yz
−αxyz + yz2 − x2 − αxz

 ∈ A3×1

of

H := (g1, g2, g3) =

(
αx+ y yz − αx 0
αx− z 0 y + z

)
∈ A2×3

such that H ·Bsyz =

(
0
0

)
, that is, Syz(M) = 〈π(g′1)〉 ⊆ A3, where

π(g′1) = (y2z+yz2−αxy−αxz)e1+(−αxy−y2−αxz−yz)e2+(−αxyz+yz2−x2−αxz)e3 .

3.3.2 Implementation and Timings

Algorithm 3.9 is implemented in the Singular library nfmodsyz.lib. We compare its
performance against the Magma [9, 39] command SyzygyModule and the Singular
command syz.

We consider twelve benchmark problems as described in appendix Section A.2 to
demonstrate the efficiency of the new algorithm Algorithm 3.9. The first six benchmark
problems are chosen from appendix Section A.1. These are I1, I2, I3a, I4, I5 and I7 and
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their corresponding minimal polynomials are:

m1 = a2 + 1 ,

m2 = a5 + a2 + 2 ,

m3 = a7 − 7a+ 3 ,

m4 = a6 + a5 + a4 + a3 + a2 + a+ 1 ,

m5 = a12 − 5a11 + 24a10 − 115a9 + 551a8 − 2640a7

+ 12649a6 − 2640a5 + 551a4 − 115a3 + 24a2 − 5a+ 1 , and

m7 = a8 − 16a7 + 19a6 − a5 − 5a4 + 13a3 − 9a2 + 13a+ 17 .

For the remaining benchmark problems, we choose the following minimal polynomials:

m8 = a3 + a+ 1 ,

m9 = a4 + 2a2 + 3 ,

m10 = a3 + 7a− 5 ,

m11 = a7 + 2a6 + 7a4 + 3a+ 17 , and

m12 = a6 + 3a5 + a3 + 7a2 + 11.

Remark 3.3.5. The implementation of Algorithm 3.9 also works for the coefficient field

K = Q, we may formally consider a as minimal polynomial in this case, see the last

example in Table 3.1. In this case, we apply the modular algorithms described in [2, 27]

by making slight modifications. However, we do not discuss this case here.

With respect to the above minimal polynomials, the timings are conducted by using
Singular 4.0.3 and Magma V2.21-11 on a Dell PowerEdge R720 machine with 16 cores
and 32 threads, 2.9-3.8 GHz, and 192 GB of RAM running the Gentoo Linux operating
system.

The results are summarized in Table 3.1. For the example in the last row of this
table, see Remark 3.3.5. All timings are in seconds. We use >POT on Ar+k, where >
is the degree reverse lexicographical ordering on Mon(X) for all examples. In this case,
>POT=(c,dp) in Singular. Some of the computations did not finish within twelve
hours. This is indicated by a dash (-).

In this table, there are examples where SyzygyModule is faster than syz and, vice-
versa, there are examples where syz is faster than SyzygyModule. However, with respect
to the average timings, we observe that syz is faster than SyzygyModule. In Table 3.1,
we also see that for almost all examples none of the methods SyzygyModule or syz

beats the algorithm nfmodSyz. Nonetheless, there are examples where nfmodSyz is
less efficient in comparison to SyzygyModule and syz. Moreover, none of the methods
mentioned above is able to compute the example I5. Using SyzygyModule, we got an
error message whereas the computations using syz and nfmodSyz did not finish within
12 hours. Nevertheless, there exists an algorithm which beats Algorithm 3.9 for all
examples in Table 3.1, and which then also beats syz and SyzygyModule. The next
section describes this algorithm.
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Example Magma Singular

module min. poly. SyzygyModule syz
Algorithm 3.9

32 cores

I1 m1 - - 124.31

I2 m2 error - 8083.78

I3a m3 - - 117.52

I4 m4 - 6594.93 702.96

I5 m5 error - -

I7 m7 - 30.81 70.17

I8 m8 20.00 1272.34 34.32

I9 m9 9.56 166.91 73.81

I10 m10 182.32 134.95 40.16

I11 m11 - 3785.13 1116.28

I12 m12 - 7793.77 1878.58

I13 a 34.47 285.65 3.21

Table 3.1: Total running times in seconds for computing a generating set of the syzygy

module of the considered submodules with the corresponding minimal poly-

nomial via SyzygyModule, syz, and Algorithm 3.9
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3.4 Optimizations

In this section, we present an algorithm for computing syzygy modules which does not use
Lemma 3.3.3 directly and, hence, is different from Algorithm 3.9. In fact, it is a simple
modification of Algorithm 3.8. The main difference to Algorithm 3.9 is the following:
Instead of applying Algorithm 3.8 to F as in line 2 of Algorithm 3.9, we directly apply
it to the input submodule M and, instead of computing reduced Gröbner bases of the
submodules Mi,p, we compute generating sets for their syzygy modules in line 9 of this
algorithm. By doing so, we obtain a generating set for the syzygy module of M using
Algorithm 3.8 only. However, we have to be more careful about the generators of the
syzygy modules of the submodules Mi,p since they may not be unique. Nevertheless, if
we compute the reduced Gröbner bases of the syzygy modules of the submodules Mi,p in
line 9 of Algorithm 3.8, we obtain a unique generating set in each case since the reduced
Gröbner bases are unique, see Proposition 1.1.13. To compute the reduced Gröbner
bases of the syzygy modules of the Mi,p, we internally use the Singular command syz

w.r.t. some given options, see Remark 3.4.5.
Note that in both approaches, we compute the reduced Gröbner basis of the syzygy

module of M w.r.t. >POT. But a modified version of Algorithm 3.8 which we present
later in this section also works w.r.t. >TOP.

In what follows, we describe the idea of a modified version of Algorithm 3.8 by applying
modifications to the definitions and remarks in Chapter 2. Let us start with the following
refined definition, compare Definition 2.4.4:

Definition 3.4.1. Let f and M = 〈H〉 be given as in Section 3.1. Let p be a prime

which is admissible of type A w.r.t. f , and write fp = f1,p · · · frp,p as in Definition 2.4.2.

Suppose that p does not divide any numerator or any denominator of the coefficients

occurring in H. For i = 1, . . . , rp, set

Hi,p := {gp mod fi,p | g ∈ H} ⊆ Ari,p

where Ai,p = (Fp[t]/〈fi,p〉)[X]. Let Mi,p be the Ai,p-module generated by Hi,p, and let

Gi,p ⊆ Aki,p be the reduced Gröbner basis of the syzygy module of Mi,p. We say that p

is admissible of type B′ w.r.t. f and M if for all indices i, j with i 6= j

1. the sizes of Gi,p and Gj,p coincide, and

2. Lm(Gi,p) = Lm(Gj,p).

The notion of lucky primes for syzygy modules is defined as follows:

Definition 3.4.2 ([27]). Let M = 〈H〉 and f be defined as above, and let p be a prime

which is admissible of type B′ w.r.t. f and H. Let Gi,p ⊆ Aki,p be given as in the above

definition. Furthermore, let G be the reduced Gröbner basis of the syzygy module of M .

Then p is called lucky for M if and only if Lm(Gi,p) = Lm(G) for 1 ≤ i ≤ rp. Otherwise

p is called unlucky for M .
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M

Mpk

Grpk ,pk· · ·G1,pk

· · ·

· · ·

Mp2

Grp2 ,p2· · ·G1,p2

Mp1

Grp1 ,p1· · ·G1,p1

Gp1 Gp2 · · · Gpk

Modular Reconstruction (over Q(α))

level 2

Input

level 1

level 3

Figure 3.1: General scheme for computing the syzygy module of M over K

The general scheme of the modified new algorithm for computing syzygy modules is
similar to the one described in Chapter 2 for computing Gröbner bases. Nevertheless,
to simplify our presentation, we repeat it here with slight modifications.

Figure 3.1 illustrates the complete picture of the modified new algorithm for computing
syzygy modules. In this figure, the only difference in comparison to Algorithm 3.8 is
that, at level 2, we compute the reduced Gröbner bases of the syzygy modules of the Mi,p

instead of computing the reduced Gröbner bases of the Mi,p themselves. The remaining
steps are similar to the one described in Chapter 2: For the primes in the list {p1, . . . , pk}
satisfying the conditions in Definition 3.4.1 (and only for those), the Chinese remainder
algorithm for polynomials then combines these results at level 3. The remaining parts of
the computation are carried out in the same way as in the modular algorithms described
in [27].

To give a more detailed description of the new modified algorithm, we proceed as
follows: In the first step, randomly choose a set P of prime numbers which are admissible
of type A w.r.t. f . At level 2, given a prime p ∈ P , factorize f ∈ Q[t] over Fp such
that fp =

∏rp
i=1 fi,p, rp > 1, as in Section 3.1. Then compute, for each i, the reduced

Gröbner basis Gi,p of the syzygy module of the submodule Mi,p over Fp[t]/〈fi,p〉 w.r.t.
�. If the prime p is admissible of type B′ w.r.t. f and H, then lift these results to a set
of vectors Gp ⊆ Akp via Chinese remaindering for polynomials (at level 3). Repeat this
process for every prime p ∈ P which is admissible of type B′, in the same way as in the
modular algorithms in [27]. Note that since the elements in each set Gi,p are monic (see
Definition 1.2.13), so are the elements in Gp.

Let GP := {Gp | p ∈ P}. From P , the following method DeleteUnluckyPrimesSyz
selects primes that are lucky with high probability:

DeleteUnluckyPrimesSyz ([27]): We define an equivalence relation on (GP ,P)
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by (Gp, p) ∼ (Gq, q) :⇐⇒ Lm(Gp) = Lm(Gq). Then the equivalence class of largest
cardinality1 is stored in (GP ,P), the others are deleted.

Now, for those primes that are chosen by the above method, we apply the Chinese
remainder algorithm for integers and the rational number reconstruction algorithm to
the coefficients of the elements in GP to obtain a set G = {g′1, . . . , g′s} ⊆ Ak of vectors
which generates the syzygy module of M with high probability. Note that since the
elements in each set Gpi are monic (see Definition 1.2.13), so are the elements in G.
Once we have computed such a set G, a final verification test is needed since we cannot
check whether P is sufficiently large. However, since this test may consume a lot of time,
we first perform a test in positive characteristic as follows.

pTestSyz ([27]): We randomly choose a prime p /∈ P which is admissible of type B′

w.r.t. f and H. Let G′p ⊆ Akp be a set of vectors such that G′p ≡ G′i,p mod fi,p where G′i,p
is the reduced Gröbner basis of the syzygy module of Mi,p. The test is positive if and
only if Gp ⊆ Syz(Mp) and G′p reduces to zero w.r.t. Gp.

Remark 3.4.3. In pTestSyz, we use the following facts:

(1) Consider the set of vectors Hp (resp. Gp) considered as a matrix in Ar×k (resp.

Ak×s). If Hp ·Gp = 0, then by Definition 3.3.1 Gp ⊆ Syz(Mp).

(2) Note that we reduce the set G′p w.r.t. Gp over the ring F[t]/〈fp〉 which is not

necessarily a field. Nevertheless, since the elements of Gp are monic, the reduction

can still be carried out without any problem. Thus, if each element in G′p reduces

to zero w.r.t. Gp, then we have G′p ⊆ 〈Gp〉.

Note that the reason why the method for computing the syzygy modules over algebraic
number fields described above is faster than SyzygyModule and syz, see Section 3.4.2,
is the same as the one given in Chapter 2, see the last paragraph of Section 2.4.

Algorithm 3.10, which is a modified version of Algorithm 3.8, computes a generating
set of the syzygy module of a given submodule over the field K = Q(α). The only
differences between this algorithm and Algorithm 3.8 lie in the output, in line 9, and in
lines 17-18. Algorithm 3.8 also contains one more test, see line 18, which is not part of
Algorithm 3.10.

Remark 3.4.4. Suppose that the test pTestSyz(M,G,P) in line 17 of Algorithm 3.10

succeeds. Then the next and final step in this algorithm is to verify that the set G

indeed generates the syzygy module of M . That is, we have to test explicitly whether

G ⊆ Syz(M) and Syz(M) ⊆ 〈G〉. In fact, it is always possible to carry out the test G ⊆
Syz(M) (see line 18) by checking that H ·G = 0 (see Remark 3.4.3), see Definition 3.3.1.

Unfortunately, the other inclusion, Syz(M) ⊆ 〈G〉, cannot be checked since we do not

1Here, we have to use a weighted cardinality count if Algorithm 3.10 requires more than one round of

the loop, see [4, Remark 5.7].
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Algorithm 3.10 Syzygy modules over K = Q(α) (nfmodSyz)

Input: A submodule M = 〈H〉 ⊆ Ar, where H = {g1, . . . , gk} and A = K[X].

Output: G ⊆ Ak, a generating set for the syzygy module of M w.r.t. �.

1: let f be the minimal polynomial of α

2: choose P , a set of random primes which are admissible of type A w.r.t. f

3: GP ←− {}
4: loop

5: for p ∈ P do

6: factorize fp ∈ Fp[t] into irreducible factors fp =
∏

1≤i≤rp fi,p

7: for i = 1, . . . , rp do

8: Mi,p ←−Mp mod fi,p ⊆ Ari,p with Ai,p = (Fp[t]/〈fi,p〉)[X]

9: compute the reduced Gröbner basis Gi,p of the syzygy module of Mi,p

over Fp[t]/〈fi,p〉 w.r.t. �

10: if p is admissible of type B′ w.r.t. f and H over Fp then

11: apply Algorithm 2.5 coefficient-wise to the input(
(G1,p, . . . , Grp,p), (f1,p, . . . , frp,p)

)
to obtain a set of vectors Gp ⊆ Akp with Ap = (Fp[t]/〈fp〉)[X]

12: else

13: Gp ←− 0

14: GP ←− GP ∪ {Gp}

15: (GP ,P)←− DeleteUnluckyPrimesSyz(GP ,P)

16: lift (GP ,P) to G ⊆ Ak by applying the Chinese remainder algorithm for integers

and the Farey rational map

17: if pTestSyz(M,G,P) then

18: if G ⊆ Syz(M) then

19: return G

20: enlarge P
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know Syz(M) without computing it which is the same as calling Algorithm 3.10. Hence

we cannot guarantee that the set G generates Syz(M). Due to the missing test, our

algorithm is probabilistic.

Remark 3.4.5. Let N be one of the submodules Mi,p as in line 9 of Algorithm 3.10. To

compute the reduced Gröbner basis of the syzygy module of N , in our implementation,

see Section 3.4.2, we use the Singular options redSB and returnSB. If these options

are set, the Singular command syz applied to the input submodule N returns the

reduced Gröbner basis of the syzygy module Syz(N) of N .

Remark 3.4.6. Some parts of Algorithm 3.10 can be parallelized as described in Re-

mark 2.5.1.

3.4.1 An Illustrative Example

Consider the polynomial ring A = Q(a)[x, y, z], where a is algebraic over Q with minimal
polynomial f = t3 + t+ 1 ∈ Q[t]. Compute the syzygy module of the A-module M ⊆ A2

generated by the vectors

f1 = (yz + ay)e1 + (z + (a+ 2)y)e2 ,

f2 = (y2 + az)e1 + z2e2 , and

f3 = (−xz)e1 + ze2 ,

where (e1, e2) is the canonical basis of A2. A Singular computation shows that the
syzygy module of M is generated by just one vector v = v1e1 + v2e2 + v3e3 ∈ A3, where

v1 = xz3 + y2z + az2 ,

v2 = (−a− 2)xyz − xz2 − yz2 − ayz , and

v3 = yz3 + (−a− 2)y3 − y2z + ayz2 + (−a2 − 2a)yz − az2 .

In the following, we show how this generating set is obtained using Algorithm 3.10:
We use the module ordering >POT on Ar, where > is the degree reverse lexicographical
ordering (dp in Singular) on A. That is, >POT = (c,dp) in Singular. At level 1, let
us choose k = 2 with p1 = 13 and p2 = 17. At level 2, we have

fp1 ≡ (t+ 6)(t2 − 6t− 2) mod p1 and

fp2 ≡ (t+ 6)(t2 − 6t+ 3) mod p2.

Now, corresponding to each factor, we compute, using Singular, the reduced Gröbner
basis of the syzygy module of M over the fields

F13[t]/〈t+ 6〉 , F17[t]/〈t+ 6〉 , F13[t]/〈t2 − 6t− 2〉 , and F17[t]/〈t2 − 6t+ 3〉

as follows:
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> ring r1 = (13,t), (x,y,z), (c,dp);

> minpoly = t+6;

> module M = [y*z+(t)*y,(t+2)*y+z], [y^2+(t)*z,z^2], [-x*z,z];

> option(redSB);

> option(returnSB);

> module S1 = syz(M);

> S1;

S1[1] = [x*z^3+y^2*z-6*z^2,4*x*y*z-x*z^2-y*z^2+6*y*z,

y*z^3+4*y^3-y^2*z-6*y*z^2+2*y*z+6*z^2]

> ring r2 = (13,t), (x,y,z), (c,dp);

> minpoly = t^2-6*t-2;

> module M = [y*z+(t)*y,(t+2)*y+z], [y^2+(t)*z,z^2], [-x*z,z];

> module S2 = syz(M);

> S2;

S2[1] = [x*z^3+y^2*z+(t)*z^2, (-t-2)*x*y*z-x*z^2-y*z^2

+(-t)*y*z,y*z^3+(-t-2)*y^3-y^2*z+(t)*y*z^2

+(5*t-2)*y*z+(-t)*z^2]

The Chinese remainder algorithm for polynomials combines these results at level 3 to
obtain the set of vectors Gp1 ⊆ A2

p1
, with Ap1 = (Fp1 [t]/〈fp1〉) [x, y, z], as follows:

> ring rr = 13, (x,y,z,t), (c,dp);

> module S1, S2;

> S1 = imap(r1,S1);

> S2 = imap(r2,S2);

> list l = S1, S2;

> list m = t+6, t^2-6*t-2;

// CRA for polynomials (coefficient-wise):

> LIB "nfmodstd.lib";

> module Gp1 = chinrempoly(l, m);

> ring S = (13,t), (x,y,z), (c,dp);

> minpoly = t^3+t+1;

> module Gp1 = imap(rr,Gp1);

> Gp1;

Gp1[1] = [x*z^3+y^2*z+(t)*z^2,(-t-2)*x*y*z-x*z^2-y*z^2

+(-t)*y*z,y*z^3+(-t-2)*y^3-y^2*z+(t)*y*z^2

+(-t^2-2*t)*y*z+(-t)*z^2]

Similarly, we obtain the set of vectors
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> Gp2;

Gp2[1] = [x*z^3+y^2*z+(t)*z^2,(-t-2)*x*y*z-x*z^2-y*z^2

+(-t)*y*z,y*z^3+(-t-2)*y^3-y^2*z+(t)*y*z^2

+(-t^2-2*t)*y*z+(-t)*z^2].

in A2
p2

w.r.t. p2 where Ap2 = (Fp2 [t]/〈fp2〉) [x, y, z]. With these results, it is easy to check
that the primes p1 and p2 are admissible of type B′ w.r.t. f and M , see Definition 3.4.1.
Furthermore, since Lm(Gp1) = Lm(Gp2), we choose these primes by the DeleteUn-
luckyPrimeSyz method for the remaining parts of the computation. At this point
we have to change the current base ring in Singular to characteristic zero in order to
apply the Chinese remainder algorithm for integers and to pull the modular coefficients
back to the rational numbers.

/* Chinese remaindering for integers */

> ring Rng = (0,t), (x,y,z), (c,dp);

> module M1 = imap(S, Gp1);

> ring s = 0, (x,y,z,t), (c,dp);

> module M1 = imap(Rng, M1);

> module M2 = M1; // since Gp1 and Gp2 are generated by the same elements

> list l = M1, M2;

> intvec m = 13, 17;

> module J = chinrem(l, m);

> J;

/* rational reconstruction */

> J = farey(J, 13*17);

> J;

J[1] = [x*z^3+y^2*z+z^2*t,-x*y*z*t-2*x*y*z-x*z^2

-y*z^2-y*z*t,y*z^3-y^3*t+y*z^2*t-y*z*t^2

-2*y^3-y^2*z-2*y*z*t-z^2*t]

Note that if we map the variable t back to a, then we get the same result as the one we
mentioned at the beginning:

> ring sr = (0,a), (x,y,z,t), (c,dp);

> minpoly = a^3+a+1;

> module G = imap(s, J);

> G = subst(G, t, a);

> G = simplify(G, 2); // erase the zero entries

> G; // G is the syzygy module of M

G[1] = [x*z^3+y^2*z+(a)*z^2,(-a-2)*x*y*z-x*z^2-y*z^2
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Example Magma Singular

module
min. Syzygy

syz

nfmodSyz

poly. Module
Algorithm 3.9 Algorithm 3.10

32 cores one core 32 cores

I1 m1 - - 124.31 326.67 47.20

I2 m2 error - 8083.78 559.71 45.23

I3a m3 - - 117.52 262.58 37.67

I4 m4 - 6594.93 702.96 175.72 20.88

I5 m5 error - - 1618.61 201.92

I7 m7 - 30.81 70.17 221.89 28.02

I8 m8 20.00 1272.34 34.32 51.94 8.31

I9 m9 9.56 166.91 73.81 13.77 4.41

I10 m10 182.32 134.95 40.16 9.34 2.40

I11 m11 - 3785.13 1116.28 11681.350 1105.00

I12 m12 - 7793.77 1878.58 1417.77 210.77

I13 a 34.47 285.65 3.21 11.07 3.21

Table 3.2: Total running times in seconds for computing a generating set for the syzygy

module of the considered submodules with the corresponding minimal poly-

nomial via SyzygyModule, syz, Algorithm 3.9 and Algorithm 3.10

+(-a)*y*z,y*z^3+(-a-2)*y^3-y^2*z+(a)*y*z^2

+(-a^2-2*a)*y*z+(-a)*z^2]

To simplify the presentation, we therefore skip some of the steps in Algorithm 3.10, such
as the pTestSyz and the final verification test.

3.4.2 Implementation and Timings

Algorithm 3.10 is implemented in the Singular library nfmodsyz.lib. The perfor-
mance of this algorithm is compared against Algorithm 3.9 and the results are summa-
rized in Table 3.2. Like in Table 3.1, consider Remark 3.3.5 for the example in the last
row.

Looking at example I5 in Table 3.2, we see that Algorithm 3.10, the optimized version
of Algorithm 3.9, is faster than Algorithm 3.9. One can also see that for all exam-
ples, this algorithm outperforms the other methods SyzygyModule (Magma) and syz

(Singular) by far.



Chapter 4

Sparse Interpolation of Multivariate

Rational Functions

Interpolation is the process of converting a polynomial given by a black box back to
the representation where the polynomial is given by a list of non-zero coefficients and
corresponding terms. Polynomials are represented as either dense or sparse. So in
designing an efficient algorithm for multivariate polynomial computations, it is often
crucial to be careful about the expected sparsity of the polynomial, because an approach
that is efficient for dense polynomials may not be for sparse cases. The problem of
interpolating sparse polynomials has always been one of the central objects of research
in the area of computer algebra. It is the key part of many algorithms such as the
computation of polynomial gcds over algebraic function fields, see [41]. In this chapter,
we discuss, following [16], how to interpolate multivariate rational functions (or how
to recover fractions in Q(x1, . . . , xn)) from given numerical data. Consider a black box
multivariate rational function

f(x1, . . . , xn) =
p(x1, . . . , xn)

q(x1, . . . , xn)
∈ Q(x1, . . . , xn) (4.1)

where p(x1, . . . , xn) and q(x1, . . . , xn) are multivariate polynomials of degree at most d.
We want to reconstruct f in a way which is cost sensitive to its sparsity, namely the
number of non-zero terms in p and q in the power basis, instead of its dense representation
size O(dn). Let τ be the maximum number of terms in p and q. We say that f is τ -sparse
if τ �

(
n+d
d

)
where

(
n+d
d

)
∈ O(dn) is the maximum possible number of terms either p or

q can have. Although the discussions in [16] are stated for a general coefficient field, we
are, in particular, interested in rational functions over the field of rational numbers. The
black box representation of f (see Figure. 4.1) is a routine that takes as input a value for
each variable and evaluates the rational function at the given input. The reconstruction

(a1, . . . , an) B f(a1, . . . , an)

Figure 4.1: Black box for rational function evaluation
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of the rational function f which we will present here is based on the idea of A. Cuyt
and W.-s. Lee [16]. The idea is as follows:

First, starting from the black box representation of the multivariate rational function,
a set of auxiliary univariate rational functions is obtained and interpolated densely.
The multivariate rational function is then reconstructed from the coefficients of the
auxiliary functions through sparse multivariate polynomial interpolation. The sparsity
of the multivariate function is preserved in the coefficients of the auxiliary functions. The
number of black box probes which this interpolation process requires depends on the total
degree d and the sparsity τ of f . Using the early termination Ben-Or/Tiwari algorithm,
the overall performance of this rational interpolation algorithm requires O(τd) black box
evaluations to recover fractions in Q(x1, . . . , xn).

4.1 Multivariate Sparse Rational Interpolation

If a given black box multivariate rational function is defined at 0 = (0, . . . , 0), its constant
term in the denominator is known to be non-zero and can be normalized to 1. However,
in general, the black box multivariate rational function may not be defined at 0. In this
case, one can always shift the coordinates such that the rational function has a non-
zero constant in the denominator. But the sparsity of the original multivariate rational
function will in general be lost in this representation. This is because the representation
of a rational function usually becomes dense when the basis is shifted. As a result, the
interpolation algorithm becomes much slower. To handle this situation, we now present
a shifting strategy preserving the sparsity of f which is demonstrated in [16]. Note that
the purpose of the non-zero constant is to guarantee an a priori normalization of f .

To begin with, let R = Q[x1, . . . , xn] and consider

f(x1, . . . , xn) =

p(x1,...,xn)∈R︷ ︸︸ ︷
s∑

k=1

akx
dk,1
1 · · ·xdk,nn

t∑
l=1

blx
el,1
1 · · ·x

el,n
n︸ ︷︷ ︸

q(x1,...,xn)∈R

(4.2)

where Q 3 ak, bl 6= 0 for 1 ≤ k ≤ s, 1 ≤ l ≤ t, deg p =: ν, deg q =: δ, and gcd(p, q) = 1.

Let us introduce a homogenizing variable for f and define a shift for the power basis,
to form an auxiliary rational function, in the following definition:

Definition 4.1.1. Let z be a homogenizing variable for f . Let σ = (σ1, . . . , σn) be

any point in Qn. The point σ is called a shift if f(σ) is defined, that is, if q(σ) =

q(σ1, . . . , σn) 6= 0. Moreover, the σ-shifted homogenization of f , denoted by Γσ(z, x1, . . . ,
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xn), is defined as

Γσ(z, x1, . . . , xn) = f(x1z + σ1, . . . , xnz + σn) ∈ Q(x1z, . . . , xnz) . (4.3)

The function Γσ is called an auxiliary rational function.

Remark 4.1.2. We write the function Γσ in the above definition as:

Γσ(z, x1, . . . , xn) =

Ñ(z)∈R[z]︷ ︸︸ ︷
α̃ν · zν + . . .+ α̃1 · z + α̃0

β̃δ · zδ + . . .+ β̃1 · z + β̃0︸ ︷︷ ︸
D̃(z)∈R[z]

(4.4)

where α̃k, β̃l ∈ R are homogeneous multivariate polynomials of total degree k and l,

respectively, for all k, l with 0 ≤ k ≤ ν, 0 ≤ l ≤ δ.

In (4.4), terms are collected with respect to the homogenizing variable z. The nu-

merator Ñ(z) and denominator D̃(z) are regarded as univariate polynomials in z with

coefficients from R. The degrees of Ñ(z) and D̃(z) are ν and δ, respectively. They are
also the respective total degrees of p and q in f .

Now by the definition of the σ-shifted homogenization, we have

D̃(z) = c · q(x1z + σ1, . . . , xnz + σn)

for some c 6= 0. Then

D̃(0) = β̃0 = c · q(σ1, . . . , σn) 6= 0.

Since β̃0 is a non-zero value, the auxiliary univariate function Γσ can be normalized such
that the non-zero constant in the denominator is 1,

Γσ(z, x1, . . . , xn) = f(x1z + σ1, . . . , xnz + σn)

=

N(z)∈R[z]︷ ︸︸ ︷
αν ·zν + . . .+ α1 ·z + α0

βδ ·zδ + . . .+ β1 ·z + 1︸ ︷︷ ︸
D(z)∈R[z]

(4.5)

where αk, βl ∈ R for 0 ≤ k ≤ ν, 1 ≤ l ≤ δ.
Let us take a look at the following example:

Example 4.1.3. Consider the rational function

f =
x3

1 + x1x2 + x2x3 + x2
3

x1 + x2

∈ Q(x1, x2, x3)



80 4. Sparse Interpolation of Multivariate Rational Functions

Let σ = (σ1, σ2, σ3) = (2, 3,−1) ∈ Q3. Since f(σ) is defined, σ can be chosen as a

shift. Then the σ-shifted homogenization of f is

Γσ(z, x1, x2, x3) = f(x1z + 2, x2z + 3, x3z − 1)

=
x3

1 · z3 + (6x2
1 + x1x2 + x2x3 + x2

3) · z2 + (15x1 + x2 + x3) · z + 12

(x1 + x2) · z + 5

=

1

5
(x3

1 · z3 + (6x2
1 + x1x2 + x2x3 + x2

3) · z2 + (15x1 + x2 + x3) · z + 12)

1

5
(x1 + x2) · z + 1

.

In this example, one can see that each coefficient of zi is a homogeneous polynomial
of degree i in the polynomial ring Q[x1, x2, x3]. In the following, we will see why it is
important to shift the power basis if a given rational function is not defined at zero.

Let σ = (0, 0, 0). Since f is not defined at σ, σ cannot be chosen as a shift. Working
with this σ, nevertheless, the σ-shifted homogenization of f with respect to z is

Γσ(z, x1, x2, x3) = f(x1z, x2z, x3z)

=
x3

1 · z3 + (x1x2 + x2x3 + x2
3) · z2

(x1 + x2) · z

=
x3

1 · z2 + (x1x2 + x2x3 + x2
3) · z

(x1 + x2)
.

Here, we see that gcd(x3
1·z3+(x1x2+x2x3+x2

3)·z2, (x1+x2)·z) = z 6= 1 in (Q[x1, x2, x3])[z].
The polynomial x1+x2 is a constant term in (Q[x1, x2, x3])(z) which we will never recover
since we would expect it to be constant in Q[x1, x2, x3], which it is not.

We now turn our attention to Equation (4.5). Once we have obtained the unique
normalized auxiliary univariate rational function Γσ by a σ-shifted homogenization of f ,
we determine evaluations of the coefficients of Γσ, αk and βl as in (4.5), as follows:

Fix a point ω = (ω1, . . . , ωn) ∈ Qn \ {(0, . . . , 0)}. We then pick distinct values
η0, . . . , ην+δ for z and evaluate f(ω1ηj + σ1, . . . , ωnηj + σn) for 0 ≤ j ≤ ν + δ. Finally,
we recover

Γσ(z, ω) = f(ω1z + σ1, . . . , ωnz + σn)

=

∑ν
k=0 αk(ω) · zk∑δ
l=0 βl(ω) · zl

(4.6)

with β0(ω) = 1 from the ν + δ + 1 evaluations by the early termination version of
dense univariate rational interpolation (see Section 1.4 and Subsection 1.6.1). Now, the
evaluations of α0, . . . , αν , β1, . . . , βδ at ω are just the coefficients in Γσ(z, ω). Once we
have obtained these evaluations, the multivariate polynomials αk and βl can be obtained
through sparse multivariate polynomial interpolation (see Section 1.5). Note that if we
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homogenize the function f w.r.t. z, we get

f(x1z, . . . , xnz) =
Aν · zν + . . .+ A1 · z + A0

Bδ · zδ + . . .+B1 · z +B0

(4.7)

where Ak, Bl ∈ K for 0 ≤ k ≤ ν, 0 ≤ l ≤ δ. Clearly, we have

p =
ν∑
k=0

Ak and q =
δ∑
l=0

Bl.

Unlike in (4.7), the polynomial coefficients αk and βl in (4.4) also contain terms due to
the expansions of the shift σ. In this case, the number of terms becomes large, that is,
the function’s representation becomes dense which forces us to make additional black box
probes. To address this problem, a simple but very important strategy demonstrated in
[16] is to adjust the coefficients αk and βl for all k and l. We will now explain this in
detail:

Multivariate polynomial interpolation depends on a term bound. In our case, it de-
pends on the maximum number of terms in Ak or Bl for all k, l. For i = 0, 1, . . ., we
have

Γσ(z, ωi) = f(ωi1z + σ1, . . . , ω
i
nz + σn)

=
αν(ω

i) · zν + αν−1(ωi) · zν−1 + . . .+ α0(ωi)

βδ(ω
i) · zδ + βδ−1(ωi) · zδ−1 + . . .+ β1(ωi) + 1

.

Here, all Ak and Bl, for 0 ≤ k ≤ ν, 0 ≤ l ≤ δ, can be interpolated if

i ≥ 2 ·max {{#Ak | 0 ≤ k ≤ ν} ∪ {#Bl | 0 ≤ l ≤ δ}}

where #g denotes the number of terms in a polynomial g. However, for the shifted power
basis this number is not usually sufficient to recover αk and βl. So, in order to preserve
the sparsity, we need to adjust the coefficients αk and βl in the same way as described
in [16]. Note that a shift affects neither the total degrees ν and δ nor the coefficients αν
and βδ of the highest degree terms in N(z) and D(z) (see Example 4.1.3). Moreover,
only terms from the expansion of

c ·

 ∑
dk,1+...+dk,n=ν

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n


can contribute to αν , and similarly for βδ. Since for a fixed shift σ we require the
coefficients in p and q to be normalized such that c = 1, we have

αν =
∑

dk,1+...+dk,n=ν

akx
dk,1
1 · · ·xdk,nn ,

βδ =
∑

el,1+...+el,n=δ

blx
el,1
1 · · ·x

el,n
n .
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Once we have obtained evaluations of αk and βl at ωi for i = 0, 1, . . ., we recover the
polynomials αk and βl in the following way:

We start with sparse multivariate interpolation of only the highest degree coefficients
αν and βδ. The required evaluations αν(ω

i) and βδ(ω
i) are obtained through repeated

dense univariate rational interpolations of (4.6). Other evaluations of αk(ω
i) and βl(ω

i)
for 1 ≤ k < ν and 1 ≤ l < δ are recorded for later interpolations. Once both αν and βδ
are interpolated, we move to the next coefficients αν−1 and βδ−1. Since the expansion
of a shifted lower degree term can never affect the representation of higher degrees, only
terms in ∑

dk,1+...+dk,n=ν

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n and (4.8)

∑
dk,1+...+dk,n=ν−1

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n (4.9)

can contribute to αν−1, which by definition collects the coefficients of zν−1 in the expan-
sion of

N(z) =
s∑

k=1

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n . (4.10)

Now the contribution to αν−1 from (4.8) can be obtained as the coefficient u
(ν)
ν−1 ∈ R in

the expansion of

αν(θ) =
∑

dk,1+...+dk,n=ν

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n

= u(ν)
ν · zν + u

(ν)
ν−1 · zν−1 + . . .+ u

(ν)
0

where θ = (x1z + σ1, . . . , xnz + σn) and u
(ν)
k ∈ R for 0 ≤ k ≤ ν. The effect of the shift

in the second highest degree term can be removed accordingly:
Denote the contribution from (4.9) to αν−1 by Ãν−1 = αν−1−u(ν)

ν−1. Hence by compar-
ing the highest degree terms in (4.9), we conclude that

Ãν−1 =
∑

dk,1+...+dk,n=ν−1

akx
dk,1
1 · · ·xdk,nn ,

which now has a structure identical to that of Aν−1 in (4.7). Note that at this point, since

we have no evaluations of Ãν−1, this is the step where we need the adjustment of the
coefficient Ãν−1. Since we already have the stored evaluations αν−1(ωi), the evaluations

Ãν−1(ωi) are computed as follows:

Ãν−1(ωi) = αν−1(ωi)− u(ν)
ν−1(ωi).
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To determine evaluations of Ãν−1 at ωi, we do not make additional black box probes

except adjusting Ãν−1 by evaluating the polynomial u
(ν)
ν−1 at ωi outside the black box.

But we only know that the number of the stored evaluations αν−1(ωi) is sufficient for the
earlier interpolations of the higher degree terms. If the number of evaluations αν−1(ωi)

does not produce enough evaluations Ãν−1(ωi) for the current interpolation of Ãν−1,
more evaluations of αν−1 can be added through new univariate rational interpolation
of Γσ(z, ωi) at additional i. In this way, the shifting strategy interpolates the adjusted

Ãν , Ãν−1, . . . , Ã0 sequentially. More precisely, we start from the highest degree term
Ãν = αν and interpolate Ãν . For r = 0, . . . , ν − 1, after interpolating

Ãν−r =
∑

dk,1+...+dk,n=ν−r

akx
dk,1
1 · · ·xdk,nn ,

the polynomials u
(ν−r)
0 , u

(ν−r)
1 , . . . , u

(ν−r)
ν−r−1 ∈ R are computed from the expansion

Ãν−r(θ) =
∑

dk,1+...+dk,n=ν−r

ak(x1z + σ1)dk,1 · · · (xnz + σn)dk,n (4.11)

= u
(ν−r)
ν−r · zν−r + u

(ν−r)
ν−r−1 · zν−r−1 + . . .+ u

(ν−r)
0

where θ = (x1z + σ1, . . . , xnz + σn). The polynomials u
(ν−r)
0 , u

(ν−r)
1 , . . . , u

(ν−r)
ν−r−1, for

0 ≤ r ≤ ν − 1, can be represented as an upper triangular matrix

A =



u
(ν)
ν−1 u

(ν)
ν−2 u

(ν)
ν−3 . . . u

(ν)
0

u
(ν−1)
ν−2 u

(ν−1)
ν−3 . . . u

(ν−1)
0

u
(ν−2)
ν−3 . . . u

(ν−2)
0

. . .
...

u
(1)
0


.

The sum of the polynomials (of degree ν − r − 1) in the (r + 1)-th column of this

matrix is a contribution to αν−r from the polynomials Ãν−j in (4.11) for j = 0, . . . , r.

In other words, for r = 1, . . . , ν, the adjusted Ãν−r is obtained by removing from αν−r
the contribution denoted by Uν−r,

Ãν−r = αν−r−Uν−r, (4.12)

where Uν−r is sum of the polynomials in the r-th column of the matrix A, that is,

Uν−r =
r−1∑
j=0

u
(ν−j)
ν−r .
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From the evaluations of (4.12), Ãν−r can be interpolated and then included in the

adjustment for the next Ãν−r−1. We continue interpolating every newly adjusted Ãν−r
until all polynomials Ãk are interpolated. Finally, we obtain

p =
ν∑
r=0

Ãr.

The interpolation of q can be carried out in a similar way (see [16]) and, hence, we have
p

q
= f .

Algorithm 4.11 reconstructs a multivariate rational function given in a black box, see
the sparse interpolation algorithm given in [16, Section 2.2]. In this algorithm, for any
positive integer λ we denote the vector (ωλ1 , . . . , ω

λ
n) ∈ Qn by ωλ.

In line 9 of Algorithm 4.11, since we do not know the number of interpolation points
required to recover the black box rational function f , we apply the early termination
strategy discussed in Subsection 1.6.1. By applying this strategy, we obtain a rational
function Γσ(z, ωi) ∈ Q(z) (see line 10) and then, from the degrees of the numerator and
the denominator of this function, a bound d on the number of interpolation points, see
line 12.

Recall from Section 1.5 that a bound on the number of terms is not known in advance.
To handle this situation, the early termination strategy discussed in Subsection 1.6.2 (see
Algorithm 1.4) can be applied. The while loop in line 14 does this step. In this loop, the
rational functions Γσ(z, ωi) are first generated for i = 0, 1, 2, . . . and the values of αk(ω

i)
and βl(ω

i) for 0 ≤ k ≤ ν−1 and 0 ≤ l ≤ δ−1 are stored for the later interpolations. If the

stored values αν−r(ω
i) or βδ−r(ω

i) are not sufficient for interpolating either Ãν−r or B̃δ−r

(see line 18), we increase i (see line 15) and continue the interpolation of Ãν−r and/or

B̃δ−r by adding more interpolation points. Once we interpolate all Ãν−r and B̃δ−r (see
line 27), we therefore obtain the desired polynomial given in a black box. Algorithm 4.11
returns an error message only if some unlucky (or bad) evaluation points are used in the
computation otherwise it returns the correct result with high probability.

4.2 Illustration by Example

This section presents an example illustrating how the reconstruction method discussed
above works.

Example 4.2.1. Consider the rational function

f =
x3

1 + x1x2 + x2x3 + x2
3

x1 + x2

∈ Q(x1, x2, x3).
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Algorithm 4.11 Sparse Rational Interpolation

Input: A multivariate black box rational function f(x1, . . . , xn) and a positive integer

ζ (1 by default), the threshold required by the early termination strategy.

Output: ak, bl ∈ Q and (dk,1, . . . , dk,n), (el,1, . . . , el,n) ∈ Nn such that

f(x1, . . . , xn) =

∑s
k=1 akx

dk,1
1 · · ·xdk,nn∑t

l=1 blx
el,1
1 · · ·xel,nn

∈ Q(x1, . . . , xn) with high probability,

or an error message if the procedure fails to complete.

1: choose a random non-zero point σ = (σ1, . . . , σn) ∈ Qn such that f(σ) is defined

2: i←− 0, (ω1, . . . , ωn)←− (p1, . . . , pn) where p1, . . . , pn are distinct primes

3: choose a random non-zero element η0 ∈ Q and set B := {η0}
4: j ←− 0, Γσ,j(z, ω

i)←− ηj
1

5: while (TRUE) do

6: j ←− j + 1

7: choose a random non-zero element ηj ∈ Q \ B such that

f(ωi1ηj + σ1, . . . , ω
i
nηj + σn) =: yj is defined

8: B ←− B ∪ {ηj}
9: call the dense univariate rational interpolation algorithm (see Section 1.4)

with inputs ((η0, . . . , ηj), (y0, . . . , yj)) to obtain a rational function Γσ,j(z, ω
i) = f(ωi1z+

σ1, . . . , ω
i
nz + σn) =

∑νj
k=0 αk,j(ω

i) · zk∑δj
l=0 βl,j(ω

i) · zl
10: if Γσ,j−1(z, ωi) = Γσ,j(z, ω

i) then

11: break

12: d←− νj + δj + 1 + ζ, ν ←− νj , δ ←− δj , p←− 0, q ←− 0

13: Uν ←− Uν−1 ←− · · · ←− U0 ←− 0, Vδ ←− Vδ−1 ←− · · · ←− V1 ←− 0

14: while (TRUE) do

15: i←− i+ 1

16: choose d+ 1 distinct random points η0, . . . , ηd ∈ Q such that, for 0 ≤ j ≤ d,

f(ωi1ηj + σ1, . . . , ω
i
nηj + σn) = yj is defined. From these evaluations interpolate

Γσ(z, ωi) =

∑ν
k=0 αk(ω

i) · zk∑δ
l=0 βl(ω

i) · zl
17: for r = 0, . . . ,max (ν, δ) do

18: call Algorithm 1.4 to interpolate Ãν−r and B̃δ−r from the evaluations

Ãν−r(ω
i) = αν−r(ω

i)− Uν−r(ωi), B̃δ−r(ωi) = βδ−r(ω
i)− Vδ−r(ωi)

19: if both Ãν−r and B̃δ−r interpolated without error message then

20: p←− p+ Ãν−r, q ←− q + B̃δ−r

21: Ãν−r(x1z + σ1, . . . , xnz + σn)←−
∑ν−r

j=0 u
ν−r
j (x1, . . . , xn) · zj

22: B̃δ−r(x1z + σ1, . . . , xnz + σn)←−
∑δ−r

j=0 v
δ−r
j (x1, . . . , xn) · zj

23: for j = r, . . . , max(ν, δ − 1) do

24: Uν−j ←− Uν−j + u
(ν−r)
j , Vδ−j ←− Vδ−j + v

(ν−r)
j

25: else

26: FAIL

27: if r = max(ν, δ) then

28: break

29: return p
q
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Recall from Example 4.1.3 that, for σ = (2, 3,−1),

Γσ(z, x1, x2, x3) = f(x1z + 2, x2z + 3, x3z − 1)

=
x3

1 · z3 + (6x2
1 + x1x2 + x2x3 + x2

3) · z2 + (15x1 + x2 + x3) · z + 12

(x1 + x2) · z + 5

=

1

5
(x3

1 · z3 + (6x2
1 + x1x2 + x2x3 + x2

3) · z2 + (15x1 + x2 + x3) · z + 12)

1

5
(x1 + x2) · z + 1

.

Since ν = 3 and δ = 1, we choose 3 + 1 + 1 + 1 = 6 distinct values for z. We first fix
the point (x1, x2, x3) = (20, 30, 50) = (1, 1, 1) ∈ Q3. Then by dense univariate rational
interpolation (see Section 1.4), we obtain the auxiliary rational function

Γσ(z, 20, 30, 50) =
1/5z3 + 9/5z2 + 17/5z + 12/5

2/5z + 1
(4.13)

from its evaluation at the distinct values 1, 2, 3, 4, 5, 6 for z. Note that since we do not
know the bounds ν and δ, we use the early termination methods discussed in Subsec-
tion 1.6.1 to find the rational function Γσ(z, 1, 1, 1) ∈ Q(z). The degree ν = 3 (resp.
δ = 1) of the polynomial in the numerator (resp. denominator) of this function gives an
information on the number of interpolation points which are required to generate such
rational functions in the later interpolations for i = 1, 2, . . .. In fact, the number of in-
terpolation points that we need is at least ν+δ+1+ζ, ζ ≥ 1. Note that the coefficients
of the auxiliary rational function Γσ(z, 20, 30, 50) are the same as in the evaluation of

Γσ(z, x1, x2, x3) =

1

5
(x3

1 · z3 + (6x2
1 + x1x2 + x2x3 + x2

3) · z2 + (15x1 + x2 + x3) · z + 12)

1

5
(x1 + x2) · z + 1

(4.14)

at the point (1,1,1) fixed above. Since we have already obtained a bound on the number
of interpolation points with high probability, we do not need to apply the early termina-
tion strategy for the remaining tasks regarding rational interpolations. Instead, we apply
the dense rational interpolation algorithm discussed in Section 1.4. Now by generating,
for each i = 1, 2, . . . , a rational function of degree 3 (resp. 1) in the numerator (resp. de-
nominator) as above, we apply the early termination strategy to recover the coefficients
in Q[x1, x2, x3] of zk for 0 ≤ k ≤ max{ν, δ} = 3. But for simplicity, we generate, for
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i = 1, 2, . . . , 6, a total of 6 such auxiliary rational functions as in the following:

Γσ(z, 2, 3, 5) =
8/5z3 + 14z2 + 38/5z + 12/5

z + 1
,

Γσ(z, 22, 32, 52) =
64/5z3 + 982/5z2 + 94/5z + 12/5

13/5z + 1
,

Γσ(z, 23, 33, 53) =
512/5z3 + 3920z2 + 272/5z + 12/5

7z + 1
,

Γσ(z, 24, 34, 54) =
4096/5z3 + 444082/5z2 + 946/5z + 12/5

97/5z + 1
,

Γσ(z, 25, 35, 55) =
32768/5z3 + 2107784z2 + 3848/5z + 12/5

55z + 1
, and

Γσ(z, 26, 36, 56) =
262144/5z3 + 255602482/5z2 + 17314/5z + 12/5

793/5z + 1
.

To reconstruct f from the coefficients of powers of z, we follow the steps discussed above.
As it is explained in this chapter, we start by recovering the coefficients of the highest
degree term in the numerator of Γσ(z, 2i, 3i, 5i) for i = 0, 1, . . . , 6, that is, the coefficients
of z3. These coefficients, respectively, are:

(a0, . . . , a6) = (1/5, 8/5, 64/5, 512/5, 4096/5, 32768/5, 262144/5).

By applying Algorithm 1.4 to these evaluations (as input), we get the polynomial Ã3 =
α3 = 1/5x3

1 ∈ Q[x1, x2, x3]. From this result we see that only two evaluation points, 1/5
and 8/5, would be enough to lift the coefficients of z3 to Q[x1, x2, x3].

The next step is now to recover the coefficient Ã2 ∈ Q[x1, x2, x3] of z2. Recall from
Section 1.5 that the number of terms required to recover the polynomial α2 = 6x2

1 +
x1x2 + x2x3 + x2

3 (the coefficient of z2 in the numerator of Γσ(z, x1, x2, x3) as in (4.14))
is at least 8. Although we have only 7 evaluation points which is not sufficient, we
know that the term 6x2

1 in α2 is an additional term due to the expansion of the shift

σ. Thus in order to determine the coefficient Ã2 of z2, first we have to evaluate Ã3 at
θ = (x1z + 2, zx2 + 3, x3z − 1) to obtain

Ã3(θ) = 1/5x3
1 · z3 + 6/5x2

1 · z2 + 12/5x1 · z + 8/5.

Then for i = 0, 1, . . . , 6, by evaluating the polynomial U2 = 6/5x2
1 at (x1, x2, x3) =

(2i, 3i, 5i) outside the black box, we obtain the evaluation of the unknown polynomial

Ã2 at these points as follows:

Ã2(2i, 3i, 5i) = α2(2i, 3i, 5i)− U2(2i, 3i, 5i).

Since the polynomial α2−U2 needs only 6 evaluation points, the number of the stored
evaluations is sufficient to recover the polynomial Ã2. By applying Algorithm 1.4 to these
evaluations (as input), we obtain the polynomial Ã2 = x1x2 + x2x3 + x2

3 ∈ Q[x1, x2, x3].
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Continuing in this way, the adjusted Ãν−r (resp. B̃δ−r) is obtained by removing from
αν−r (resp. βδ−r) the contribution

Uν−r =
r−1∑
j=0

u
(ν−j)
ν−r

(
resp. Vδ−r =

r−1∑
j=0

v
(δ−j)
δ−r

)
,

given as upper triangular matrices


u

(3)
2 u

(3)
1 u

(3)
0

u
(2)
1 u

(2)
0

u
(1)
0

 =



6

5
x2

1

12

5
x1

8

5

1

5
(3x1 + x2 + x3)

4

5

0


,
[
v

(1)
0

]
=
[
1
]
,

for r = 1, . . . ,max{ν, δ} = 3. The contributions are obtained from the expansion of

Ãν−r−1(x1z + 2, zx2 + 3, x3z − 1)
(

resp. B̃δ−r−1(x1z + 2, zx2 + 3, x3z − 1)
)

, 0 ≤ r ≤ 2,

at each interpolation step. Finally, we obtain the rational function

f =
1/5x3

1 + 1/5(x1x2 + x2x3 + x2
3)

1/5(x1 + x2)
,

as desired.



Chapter 5

Gröbner Bases over Algebraic Function

Fields

Computing Gröbner bases is a technique that provides algorithmic solutions to a variety
of problems in commutative algebra and algebraic geometry. From the theoretical point
of view, such a basis can be computed over any field using Buchberger’s algorithm.
However, the computational efficiency depends on the coefficient field. Consider an
algebraic function field K over Q. Like for algebraic number fields, the arithmetic
operations in K usually make the computation of Gröbner bases inefficient if they are
used directly. During the computation of Gröbner bases using Buchberger’s algorithm,
in contrast to computations over algebraic number fields (see Chapter 2), there is no
minimal polynomial with coefficients in Q that bounds the degrees of elements of K.
The problems are now twofold: We have to tackle the coefficient swell in Q and the
problems that arise from the arithmetic of K. These two problems usually make the
computation very slow. For the former problem, various methods to avoid this have been
investigated; the trace algorithm [40] and modular algorithms [2, 27] are successful in
this direction. Unfortunately, the problems that arise from the arithmetic of K cannot
be solved by these methods, see, for example, Example 5.2.1. Brickenstein [10] has
introduced a variation of Buchberger’s algorithm [11] to compute Gröbner bases over
algebraic function fields using so-called slim polynomials. The algorithm is designed to
keep coefficients small and polynomials short in the intermediate computations. This
method, however, is limited in terms of efficiency, especially when the reduced Gröbner
basis of the input ideal has sparse coefficients.

In this chapter we present a new efficient method to compute Gröbner bases over an
algebraic function field. The new method uses the concept of sparse multivariate rational
interpolation. To state the ideas more precisely, let K = Q(t1, . . . , tm) and consider the
ring K[x1, . . . , xn] of multivariate polynomials in n variables x1, . . . , xn whose coefficients
are rational functions of the symbolic parameters t1, . . . , tm with coefficients in Q. Let
H = {f1, . . . , fw} ⊆ K[x1, . . . , xn], and let

I =

〈
fi =

∑
α=(α1,...,αn)∈Nn

cα,ix
α1,i

1 · · ·xαn,in

∣∣∣∣ cα,i ∈ K, 1 ≤ i ≤ w

〉
⊆ K[x1, . . . , xn]

be the ideal generated by H. By a specialization of parameters we mean a choice

89
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of substituting each symbolic parameter ti by a particular element bi of Q. Once a
convenient choice of specialization has been made, we obtain an ideal

Ib =

〈
fi,b =

∑
α∈Nn

cα,i(b)x
α1,i

1 · · · xαn,in

∣∣∣∣ cα,i(b) ∈ Q, 1 ≤ i ≤ w

〉

in Q[x1, . . . , xn] where b = (b1, . . . , bm). When we choose the bi from Q, however, we
have to be careful since the leading term of fi,b w.r.t. a given monomial ordering on
Mon(x1, . . . , xn) may change or the fi,b may be zero. In the polynomial ring over Q, we
compute the reduced Gröbner bases of Ib for different b’s as many times as necessary,
see Section 5.3. Once we have computed a sufficiently large set of Gröbner bases in the
polynomial ring Q[x1, . . . , xn], we recover the coefficients in K of the reduced Gröbner
basis of I using the sparse rational interpolation algorithm discussed in Chapter 4.

This chapter is organized as follows: In Section 5.1, we introduce some notation
which is used throughout this chapter. An overview of the new method is outlined in
Section 5.2. Here we also give an example motivating our new method. The core part
of the proposed algorithm is discussed in Section 5.3. Since the new method relies on
the sparse rational interpolation algorithm from Chapter 4, we also give a more detailed
explanation on how to apply this algorithm coefficient-wise to the sets of polynomials in a
polynomial ring with coefficients in Q. In Subsection 5.3.1, we explain how we choose the
evaluation points. An illustrating example is given in Subsection 5.3.2 whereas timings
comparing the new algorithm to other approaches are presented in Subsection 5.3.3. In
Section 5.4, we introduce a special case algorithm for computing Gröbner bases of ideals
over fields of rational functions with one variable. An illustrating example for this special
case is presented in Subsection 5.4.1. Timings comparing the algorithms in Section 5.3
and Section 5.4 are presented in Subsection 5.4.2. Further optimizations are discussed in
Section 5.5. In Subsection 5.5.1, we present timings comparing the algorithm discussed
in Section 5.3 to the one presented in Section 5.5. Here we also give remarks on the
implementation of the new algorithm in Singular [17] and overall timings comparing
it to other approaches. The benchmark problems which we use for the timings are listed
in the appendix, see Section A.3.

5.1 Notation

Let T = {t1, . . . , tm} be a set of symbolic parameters. Throughout this chapter we
work over the algebraic function field K = Q(T ) (see Definition 5.3.1), that is, over the
field of rational functions in t1, . . . , tm with coefficients in Q. Furthermore, consider the
m-dimensional affine space

Am(Q) = {(a1, . . . , am) | a1, . . . , am ∈ Q}
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over Q. Polynomials are related to the affine space in the following sense. The idea is
that a polynomial f ∈ Q[T ] yields a function

f : Am(Q) −→ Q, (5.1)

(a1, . . . , am) 7−→ f(a1, . . . , am).

A specialization of parameters is a well-defined choice of an element bi of Q for each
symbolic parameter ti. Let us denote such a selection by a mapping σ from T to the
affine space Am(Q), that is,

σ : T −→ Q,
ti 7−→ bi.

Consider the ring R〈t1−b1,...,tm−bm〉 ⊆ Q(T ) of rational functions whose denominators do
not vanish at (b1, . . . , bm), that is,

R〈t1−b1,...,tm−bm〉 =

{
p

q
∈ Q(T )

∣∣∣∣ p ∈ Q[T ], q ∈ Q[T ] \ {0} with q(b1, . . . , bm) 6= 0

}
.

The map σ can naturally be extended to ring homomorphisms, denoted also by σ,

σ : Q[T ] −→ Q and σ : R〈t1−b1,...,tm−bm〉 −→ Q (5.2)

defined as follows: For f =
∑

α cαT
α ∈ Q[T ] with α ∈ Nm, we have σ(f) :=

∑
α cασ(T )α

where Tα = tα1
1 · · · tαmm (a monomial of symbolic parameters) and σ(Tα) = σ(T )α, and

for f = p/q ∈ Q(T ) with σ(q) 6= 0, we have σ(f) = σ(p)/σ(q). Thus σ is just the
evaluation map.

Let X = {x1, . . . , xn} be a set of variables. Consider the polynomial ring S = K[X] =
Q(T )[X]. Fix a global monomial ordering > on the monoid of monomials Mon(X). Let
H = {f1, . . . , fw} be a subset of S, and let I ⊆ S be the ideal generated by H. We
assume that the elements of H are monic w.r.t. >. Let G be the reduced Gröbner basis
of I w.r.t. >, and for any coefficient c (in lowest terms) occurring in G, let cN and cD
be the numerator and the denominator of c, respectively, considered as polynomials in
Q[T ]. With this notation, set

dN := max{d ∈ N | d = deg(cN), c a coefficient occurring in G},
dD := max{d ∈ N | d = deg(cD), c a coefficient occurring in G}, (5.3)

d := dN + dD + 2 ,

and

τ := max

{
τ ′ ∈ N

∣∣∣∣ τ ′ is the number of terms either in cN
or cD, c a coefficient occurring in G

}
. (5.4)

Thus the integer dN (resp. dD) is a bound on the degrees of the numerator (resp. denom-
inator) of the coefficients occurring in G, and the integer d is a bound on the number
of interpolation points required for recovering the coefficients occurring in G. Further-
more, the integer τ is a bound on the number of terms in the denominator and in the
numerator of any coefficient occurring in G.
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5.2 Overview of the New Method

In this section we present an overview of our new approach. Let us start by taking a
quick look at the following example:

Example 5.2.1. Consider the ideal I ⊆ Q(t1, t2)[x1, x2, x3] generated by the following

polynomials:

f1 = x2
1x

3
2x3 + 2t1x1x2x

2
3 + 7x3

2,

f2 = x2
1x

4
2x3 + (t1 − 7t2)x2

1x2x
2
3 − x1x

2
2x

2
3 + 2x2

1x2x3 − 12x1 + t2x2,

f3 = (t21 + t2 − 2)x5
2x3 + (t1 + 5t2)x2

1x
2
2x3 − t2x1x

3
2x3 − x1x

3
2 + x4

2 + 2t21x
2
2x3,

f4 = t1x
2
1x

2
2x3 − x1x

3
2x3 + (−t1 + 4)x3

2x
2
3 + 3t1x1x2x

3
3 + 4x2

3 − t2x1.

The reduced Gröbner basis G of I w.r.t. the degree reverse lexicographical ordering (dp

in Singular) with x1 > x2 > x3 is

G = {g1, g2, g3, g4} ,

where

g1 = x1 −
1

12
t2x2, g2 = x2

3 −
1

48
t22x2, g3 = x2

2x3, and g4 = x3
2.

In this example, the set G has sparse coefficients. Although it is hard to compute
the basis G of I using Buchberger’s algorithm directly over Q(t1, t2), we will see later in
Section 5.3.2 that it can easily be computed using our new method. In fact, during the
computation of the reduced Gröbner basis of I using Buchberger’s algorithm, we observe
that the coefficients in Q(t1, t2) of the intermediate polynomials grow to an enormous
size both with regard to the number of terms and the total degrees even though the
coefficients of the polynomials of the input ideal and the Gröbner basis are relatively
sparse. For example, when computing the reduced Gröbner basis of I modulo p = 499,
in the intermediate computations we observe a polynomial in Fp(t1, t2)[x1, x2, x3] whose
number of terms is 88. The number of terms of the numerator (resp. denominator) of one
of the coefficients c = f

g
∈ Fp(t1, t2) of this polynomial is 105 (resp. 46). Furthermore,

the degree of f (resp. g) is 20 (resp. 15). As mentioned in the introduction, this shows
that the degree of the numerator or denominator of this function cannot be controlled
modulo p. Moreover, the reduced Gröbner basis computation of this ideal modulo p using
Buchberger’s algorithm took more than 24 hours. This means that modular algorithms
alone cannot solve the problems that arise from the arithmetic of K. One can also
easily see that the representation of the function f

g
as compared to the coefficients in the

output is very dense. Note that there is no element of G whose number of terms is more
than 2. Thus this polynomial must be one of the superfluous (or redundant) elements
in the intermediate computations. The reduced Gröbner basis of the above ideal can be
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computed within less than 3 seconds using our new method. With this motivation, we
now give an overview of our new approach.

Our new method computes the reduced Gröbner basis of a given ideal I = 〈H〉 ⊆ K[X]
as follows: First, we choose a suitable non-zero evaluation point s = (s1, . . . , sm) from
Qm. Note that the bounds d and τ defined in Notation 5.1 are not known in advance.
Nevertheless, we will discuss in the next section how to find the bound d with high
probability. In fact, this bound can be determined by fixing one point. The idea is as
follows: We first fix a point b = (p1, . . . , pm) ∈ Qm where the pi’s are distinct primes
(recall that the Ben-Or/Tiwari algorithm uses distinct primes for t1, . . . , tm to recover
sparse multivariate polynomial given in a black box, see Section 1.5). Let z be an extra
variable, and consider the subring Q(t1z, . . . , tmz) of Q(t1, . . . , tm, z) obtained as image
of the map

φ : Q(t1, . . . , tm) −→ Q(t1, . . . , tm, z), ti 7−→ tiz .

Set Tz := (t1z, . . . , tmz) and Q(Tz) := Q(t1z, . . . , tmz). For any polynomial g ∈ S,
define Γg,s by

Γg,s(T, z,X) := g(t1z + s1, . . . , tmz + sm, X) ∈ Q(Tz)[X].

We choose suitable random elements z0, z1, . . . from Q such that the points (p1zi +
s1, . . . , pmzi+sm) ∈ Qm satisfy the conditions in Definition 5.3.3. With these evaluation
points, we obtain the ideals

Ii = 〈Γg,s(b, zi, X) | g ∈ H〉

in the polynomial ring Q[X]. Let Gi be the reduced Gröbner basis of Ii. By applying the
early termination version of the dense univariate rational interpolation algorithm (see
Subsection 1.6.1) coefficient-wise to the sets of polynomials Gi (ordered in such a way
that corresponding polynomials in each set have the same leading monomials), we obtain
a set Gb of polynomials with coefficients in Q(z). From the set Gb, we determine the
bounds d, dN and dD defined in (5.3) with high probability. With respect to these bounds,
after computing such Gb’s as many times as necessary and applying the sparse rational
interpolation algorithm (see Algorithm 1.3) coefficient-wise to the sets of polynomials
in Gb (ordered in such a way that corresponding polynomials in each set have the same
leading monomials), we obtain a set G′ of polynomials with coefficients in Q(T ). Finally,
we verify that the set G′ of polynomials is indeed a reduced Gröbner basis of the input
ideal with high probability. A detailed description will be given in the next section.

5.3 Gröbner Bases Using Sparse Rational Interpolation

We start with the following definition:

Definition 5.3.1. An algebraic function field K in m variables t1, . . . , tm over a field k

is a field extension K over k such that K is a finite extension of k(t1, . . . , tm). That is,

[K : k(t1, . . . , tm)] <∞.
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In this chapter, we only consider the field of rational functions K = Q(t1, . . . , tm) in
m variables which is an algebraic function field over Q.

Definition 5.3.2. Let k be a field. For f ∈ k[t1, . . . , tm], a point a = (a1, . . . , am) ∈
Am(k) with f(a) = f(a1, . . . , am) = 0 is called a zero of f and

Z(f) = {a ∈ Am(k) | f(a) = 0}

is called the zero set or zero locus of f .

Recall from Section 5.2 that we have introduced the new ring Q(Tz). Denote the
polynomial ring Q[Tz] by R. Now for any polynomial g in Q(Tz)[X], there exists a
polynomial hg in R such that g · hg ∈ R[X]. Consider the map

ϕ : Q(Tz)[X] −→ R[X], (5.5)

g 7−→ g · hg.

In this map, we may take hg to be the least common multiple of the denominators in
the coefficients of g. Let s = (s1, . . . , sm) ∈ Qm be a point such that none of the de-
nominators in the coefficients of H vanishes when evaluated at T = s. For a polynomial
g =

∑
α∈Nn cα(T )Xα ∈ H with cα ∈ Q(T ), let gz,s be the polynomial (considered as an

auxiliary polynomial) defined by

gz,s :=
∑
α∈Nn

cα(t1z + s1, . . . , tmz + sm)Xα ∈ Q(Tz)[X],

with coefficients (considered as auxiliary rational functions, see Definition 4.1.1) in

Q(Tz). Let H̃ = {gz,s | g ∈ H}. Let Ĩ be the ideal generated by H̃, that is,

Ĩ = 〈H̃〉 = 〈gz,s | g ∈ H〉 ⊆ Q(Tz)[X], (5.6)

and call this ideal an auxiliary ideal. Let J be the set of coefficients c of

ϕ(H̃) = {h′ ∈ R[X] | h′ = g · hg with g ∈ H̃ and hg ∈ R}

with deg(c) > 0, that is,

J = {c ∈ R | c is a coefficient in ϕ(H̃) with deg(c) > 0}. (5.7)

Let b̃ = (b, z0) be a non-zero point in Qm+1 with z0 ∈ Q such that none of the denomi-

nators in the coefficients of H̃ vanishes when evaluated at (T, z) = (b, z0). Consider the
map

σb̃ : Q(Tz)[X] ⊇ H̃ −→ Q[X], (5.8)

g̃(T, z,X) 7−→ g̃(b, z0, X).
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We denote the set {σb̃(g̃) | g̃ ∈ H̃} of polynomials in Q[X] by σb̃(H̃) and define Ib̃ := σb̃(Ĩ)

to be the ideal generated by σb̃(H̃). For our algorithm, although the evaluation points
are random, they need to be chosen carefully. Let V be the union of the zero set of the
elements in J , that is,

V =
⋃
f∈J

Z(f).

The notion of admissible evaluation points w.r.t. H̃ is defined as follows:

Definition 5.3.3. Let z0 be a non-zero element in Q and let p1, . . . , pm ∈ Q be dis-

tinct primes. Moreover, let s = (s1, . . . , sm) ∈ Qm be a point such that none of

the denominators in the coefficients of H vanishes when evaluated at T = s. The

point b̃ = (p1, . . . , pm, z0) ∈ Qm+1 is said to be an admissible evaluation point w.r.t.

H̃ if b̃ 6∈ V (or, equivalently, if none of the elements in J is contained in the ideal

〈t1 − p1, . . . , tm − pm, z − z0〉).

The conditions in this definition enable us to choose well-defined evaluation points from
Qm+1. For the choice of evaluation points, see Subsection 5.3.1 where we explain to
which extend the algorithms discussed in this chapter are probabilistic.

The notion of lucky evaluation points w.r.t. H̃ is defined as follows:

Definition 5.3.4. Let s = (s1, . . . , sm) ∈ Qm be a point such that none of the de-

nominators in the coefficients of H vanishes when evaluated at T = s. Let z0 be a

non-zero element in Q and let p1, . . . , pm ∈ Q be distinct primes. Suppose that the

point b̃ = (b, z0) ∈ Qm+1 with b = (p1, . . . , pm) is an admissible evaluation point w.r.t.

H̃, see Definition 5.3.3. Let G be the reduced Gröbner basis of I, and let Gb̃ be the

reduced Gröbner basis of the ideal Ib̃ = 〈σb̃(g̃) | g̃ ∈ H̃〉 where σb̃ is defined as in (5.8).

Then the point b̃ is called a lucky evaluation point for Ĩ if and only if Lm(G) = Lm(Gb̃).

Otherwise b̃ is called unlucky for Ĩ.

By this definition, we cannot decide whether the point b̃ is lucky for Ĩ without com-
puting G. This situation is the same as the situation in the modular algorithms (see
Definition 2.4.5). Despite that, we will see later that we can choose lucky evaluation
points with high probability by a similar test as in the modular algorithms [27].
Before turning our attention to the general scheme of our new method, let us consider
the following remark:

Remark 5.3.5. Let Ĩ = 〈H̃〉 be defined as in (5.6) and let p1, . . . , pm be distinct primes.

Set b := (p1, . . . , pm) and let z0, . . . , zd−1 ∈ Q\{0} be distinct such that for i = 0, . . . , d−
1, the points b̃i = (b, zi) ∈ Qm+1 satisfy the conditions in Definition 5.3.3. Let Ib = 〈h |
h = g̃(b, z,X) ∈ Q(z)[X], g̃ ∈ H̃〉 ⊆ Q(z)[X] and let Gb be the reduced Gröbner basis of

Ib. Suppose that each b̃i is lucky for Ĩ and that the number d of these points is sufficiently
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large to recover the coefficients in Q(z) which occur in Gb from the coefficients in Q.

For i = 0, . . . , d − 1, let Ib̃i = 〈σb̃i(g̃) | g̃ ∈ H̃〉 be the ideal in Q[X] where the map σb̃i
is defined as in (5.8). Let Gb̃i

be the reduced Gröbner basis of the ideal Ib̃i . Let G′b be

the set of polynomials obtained by applying the dense univariate rational interpolation

algorithm (see Section 1.4) coefficient-wise to the set of polynomials, from Gb̃i
, whose

leading monomials are the same. Then the set G′b is the reduced Gröbner basis of Ib

with high probability, that is, G′b = Gb with high probability.

This remark says that, in particular, the set G′b of polynomials obtained by the dense
rational interpolation algorithm generates the ideal Ib with high probability.

Coming back to the general scheme of our new approach which is illustrated in Fig-
ure 5.1, we describe the complete picture of the new method as follows: Instead of
computing the reduced Gröbner bases over the field K using Buchberger’s algorithm,
our algorithm computes them in six levels. The levels 1-3 have already been described
above. At level 4, for the points b̃i = (p1, . . . , pm, zi) ∈ Qm+1 satisfying the conditions in
Definition 5.3.3, we compute the reduced Gröbner bases of Ib̃i ⊆ Q[X]. For the points

in the list {b̃0, . . . , b̃ν} satisfying the condition in Definition 5.3.4 (and only for those),
the dense univariate rational interpolation algorithm then lifts the results to the ring
Q(z)[X] at level 5. The results at this level are expected to be the reduced Gröbner
bases of the ideals at level 2 (see Remark 5.3.5). Finally, after sufficiently large sets of
polynomials in Q(z)[X] have been computed, the results are lifted to the ring Q(T )[X]
via sparse multivariate interpolation algorithm at level 6.

Note that Algorithm 4.11 is a combination of the early termination version of the dense
univariate rational interpolation algorithm, which is a combination of Algorithm 1.1 and
Algorithm 1.2, and the sparse multivariate polynomial interpolation algorithm (see Al-
gorithm 1.3) together with the strategy described in [16] which is also described in
Chapter 4. Thus in what follows, whenever we call the algorithms Algorithm 1.1, Algo-
rithm 1.2 and Algorithm 1.3, we refer to Algorithm 4.11.

In the following we give a brief description of the new method: In the beginning,
randomly choose a point s ∈ Qm such that none of the denominators of the coefficients
in H vanishes when evaluated at T = s. With respect to z and s, we obtain an ideal
Ĩ as in (5.6) in the polynomial ring Q(Tz)[X] at level 1. We then fix a point b =
(p1, . . . , pm) ∈ Qm by taking random distinct primes from a set of prime numbers. At
level 2, we randomly choose rational numbers z0, z1, . . . , zv for some v such that the points

b̃i = (b, zi) satisfy the conditions in Definition 5.3.3. Let B =
{
b̃i | 0 ≤ i ≤ v

}
⊆ Qm+1.

At level 3, after evaluating the ideal Ĩ at these points, we obtain ideals, denoted by Ib̃i
for 0 ≤ i ≤ v, in the polynomial ring Q[X]. At level 4, we compute the reduced Gröbner
basis Gb̃i

of the ideal Ib̃i . Like in modular algorithms [2, 27], one of the problems after

computing the set of reduced Gröbner bases GB := {Gb̃i
| b̃i ∈ B} is that B may

contain unlucky evaluation points. In this case, as in the modular algorithms, we use
the following method to delete the unlucky evaluation points:

DeleteUnluckyEvaluationPoints([27]): We define an equivalence relation on (GB,
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Figure 5.1: General scheme for the new algorithm (general case)
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B) by (Gb̃i
, b̃i) ∼ (Gb̃j

, b̃j) :⇐⇒ Lm(Gb̃i
) = Lm(Gb̃j

). Then the equivalence class of

largest cardinality1 is stored in (GB,B), the others are deleted.

With this method, we assume that all Gb̃i
, b̃i ∈ B, have the same set of leading mono-

mials. Once we have such sets of polynomials, we can then apply the dense univariate
rational interpolation algorithm coefficient-wise to a set of polynomials whose leading
monomials are the same. Let Gb̃0

= {hb̃0,1, . . . , hb̃0,r}. Then for j = 1, . . . , r, consider
the set

Fj =
{
gi,j ∈ Gb̃i

| lm (gi,j) = lm
(
hb̃0,j

)
for i = 0, . . . , v

}
of polynomials, in the polynomial ring Q[X], whose leading monomials are the same.
Since we do not know whether B is sufficiently large (or, equivalently, whether v ≥ d−1
where d is as in (5.3)), we apply the early termination version of the dense univariate
rational interpolation algorithm (see Section 1.4 and Subsection 1.6.1) so that we can
add more interpolation points if necessary. This algorithm can be applied coefficient-
wise to each set of polynomials Fj as follows: First we lift the coefficients in Q to Q[z].
To do this, we apply Algorithm 1.1 coefficient-wise to each set Fj to obtain, for each
coefficient given as c0, . . . , cv w.r.t. the v + 1 distinct evaluation points z0, . . . , zv ∈ Q,
a polynomial g ∈ Q[z] of degree at most v. Once we lift all the coefficients in Q to

Q[z], we obtain a set G̃b of polynomials in the polynomial ring (Q[z])[X]. In the second

step, by taking Theorem 1.6.1 into account, for each coefficient g ∈ Q[z] of G̃b, we apply
Algorithm 1.2 w.r.t. the polynomial f =

∏v
i=0(z − zi) ∈ Q[z] to lift the coefficients in

Q[z] to Q(z). We thus obtain a set Gb of polynomials in the polynomial ring Q(z)[X]
at level 4. Moreover, from the set Gb we obtain the following:

(a) A bound d on the number of interpolation points required to recover the coefficients
in Gb as well as in G.

(b) A bound on the degree of each numerator (resp. denominator) of the rational
functions which occur as coefficients of G.

At this level, we compute the sets Gb1 , . . . , Gbk of polynomials with coefficients in Q(z)
w.r.t. the bounds in (a) and (b) and with bj = (pj1, . . . , p

j
m) for j = 1, . . . , k for some k.

The next step is now to lift the coefficients in Q(z) to Q(T ) w.r.t. b and s. Note that
since we do not know the bound τ in (5.4) in advance, we do not know how many Gbj ’s
we need to lift these coefficients. We can nevertheless handle this situation by applying
the early termination version of the sparse interpolation algorithm (see Algorithm 1.6.2).
We do this as follows: Let Gb1 = {hb1,1, . . . , hb1,r}. For i = 1, . . . , r, consider the set

Gi =
{
g ∈ Gbj | lm (g) = lm (hb1,i) for j = 1, . . . , k

}
of polynomials, in the polynomial ring Q(z)[X], whose leading monomials are the same.
At level 5, we apply Algorithm 1.4 coefficient-wise to each set Gi to obtain, for each

1Here, we have to use a weighted cardinality count if Algorithm 5.12 requires more than one round of

the loop, see [4, Remark 5.7].
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coefficient of z to some power, given as a1, . . . , ak ∈ Q w.r.t. b and s, a rational function
f ∈ Q(T ), see Algorithm 4.11.

Once we lift all the coefficients in Q(z) to Q(T ), we obtain a set G of polynomials in the
polynomial ring with coefficients in Q(T ). The following remark gives some conditions
under which the set G is the reduced Gröbner basis of I with high probability.

Remark 5.3.6. If I reduces to zero w.r.t. G and G is the reduced Gröbner basis of

〈G〉, then I = 〈G〉 with high probability.

The method discussed above for computing the reduced Gröbner basis of I w.r.t. >
is summarized in Algorithm 5.14. This algorithm calls Algorithms 5.12 and 5.13 to
compute the reduced Gröbner bases of the ideals at level 2 with high probability (see
Remark 5.3.5). These two algorithms are almost the same. The only difference between
them is that Algorithm 5.12 computes the first basis Gb without bounds on the number
of interpolation points and on the degrees of the numerators and denominators of the
coefficients ofGb, while Algorithm 5.13 computes the remaining Gröbner bases with some
given bounds, where these bounds are obtained from the output of Algorithm 5.12.

Remark 5.3.7. In line 6 of Algorithm 5.12 and in line 5 of Algorithm 5.13, we compute

d reduced Gröbner bases. However, for the ideals in these lines, we do not know whether

coefficient swell occurs during the computation of Gröbner bases. If so, the computations

may be expensive. We can, nevertheless, decide which method to use by running two

algorithms for computing Gröbner bases in parallel since the generating sets of these

ideals only differ by their coefficients. To do this, first, we run the Singular commands

std and modStd in parallel (see remarks in the last page of Subsection 5.5.1) to compute

the reduced Gröbner basis of Ib̃0 as in line 5 of Algorithm 5.13. Once we run this, we take

the output from whatever method finishes first and continue the remaining computations

w.r.t. this method.

In line 6 of Algorithm 5.12 and in line 5 of Algorithm 5.13, if coefficient swell occurs
in the intermediate computations, we use the modular algorithms described in [2, 27],
see Remark 5.3.7. In line 8 of Algorithm 5.13, since we know that d is a bound on the
number of interpolation points, we have to choose at least d distinct lucky evaluation
points w.r.t. the DeleteUnluckyEvaluationPoints method.

A more detailed description how to lift the coefficients in Q(z) to Q(T ), see line 16 of
Algorithm 5.14, is given in Chapter 4. If in line 23 of Algorithm 5.14 either I 6⊆ 〈G〉 or
G is not the reduced Gröbner basis of 〈G〉, then the algorithm restarts the whole process
with new random evaluation points until it succeeds. Since the set of evaluation points
for which the coefficients in Q are correctly lifted to Q(T ) is a non-empty open subset in
the Zariski topology on Am(Q), see Subsection 5.3.1, Algorithm 5.14 returns the correct
result with high probability, see Remark 5.3.11. For g ∈ G, let s′g be the number of
terms in g. In this algorithm, Algorithm 4.11 is applied coefficient-wise s′ times where

s′ =
∑
g∈G

(s′g − 1).
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Algorithm 5.12 Gröbner bases over Q(z) without known bounds

Input: An ideal Ĩ = 〈H̃〉 ⊆ Q(Tz)[X], an evaluation point b ∈ Qm.

Output: Gb, the reduced Gröbner basis of Ib := 〈h | h = g(b, z,X), g ∈ H̃〉 ⊆ Q(z)[X]

w.r.t. > with high probability.

1: let B be the set of pairs (b, a) for a finite number of random points a ∈ Q such that

(b, a) is admissible w.r.t. H̃

2: GB ←− {}
3: e←− 0, Gb ←− {}
4: loop

5: for b̃ = (b, a) ∈ B do

6: compute the reduced Gröbner basis Gb̃ of Ib̃ =
〈
H̃|(T,z)=b̃

〉
⊆ Q[X] w.r.t. >

7: GB ←− GB ∪ {Gb̃}

8: (GB,B)←− DeleteUnluckyEvaluationPoints(GB,B)

9: let Gb̃0
, . . . , Gb̃l

be the elements in GB
10: let g0,1, . . . , g0,r be the elements in Gb̃0

11: f ←−
∏

(b,a)∈B(z − a) ⊆ Q[z]

12: for j = e+ 1, . . . , r do

13: consider the set

Gj = {g ∈ Gb̃i
| lm(g) = lm(g0,j), 0 ≤ i ≤ l} ⊆ Q[X]

of polynomials whose leading monomials are the same

14: lift the coefficients of Gj to Q(z) by applying the early termination version of

the dense rational interpolation algorithm (see Subsection 1.6.1) coefficient-wise

w.r.t. f

15: if all coefficients of Gj are successfully lifted to Q(z) then

16: let gj be the polynomial obtained by lifting Gj to Q(z)[X]

17: Gb ←− Gb ∪ {gj}
18: e←− e+ 1

19: else

20: break out of the for-loop

21: if e = r then

22: break out of the loop

23: enlarge B
24: return Gb
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Algorithm 5.13 Gröbner bases over Q(z) with given bounds

Input: An ideal Ĩ = 〈H̃〉 ⊆ Q(Tz)[X], b ∈ Qm, d ∈ N, and N,D ⊆ N, where d is a

bound on the number of interpolation points and N and D are degree bounds for

the numerators and denominators of the coefficients in the result as explained in the

text.

Output: Gb, the reduced Gröbner basis of Ib := 〈h | h = g(b, z,X), g ∈ H̃〉 ⊆ Q(z)[X]

w.r.t. > with high probability.

1: choose d distinct random points z0, . . . , zd−1 ∈ Q such that each b̃i := (b, zi) is

admissible w.r.t. H̃

2: B ←− {b̃0, . . . , b̃d−1}
3: GB ←− {}
4: for i = 0, . . . , d− 1 do

5: compute the reduced Gröbner basis Gb̃i
of Ib̃i =

〈
H̃|(T,z)=b̃

〉
⊆ Q[X] w.r.t. >

6: GB ←− GB ∪ {Gb̃i
}

7: (GB,B)←− DeleteUnluckyEvaluationPoints (GB,B)

8: if #B =: d′ < d then

9: go to line 1 to replace the unlucky evaluation points with lucky ones

10: f ←−
∏

(b,zλ)∈B
1≤λ≤d′

(z − zλ) ⊆ Q[z]

11: let g0,1, . . . , g0,r be the elements in Gb̃0

12: for j = 1, . . . , r do

13: consider the set

Gj = {g ∈ Gb̃i
| lm(g) = lm(g0,j), 0 ≤ i ≤ d′ − 1} ⊆ Q[X]

of polynomials whose leading monomials are the same

14: apply the dense rational interpolation algorithm w.r.t. f and the degree bounds in N

and D (first Algorithm 1.1 and then Algorithm 1.2, see Section 1.4) coefficient-wise

to each set Gj to obtain a set Gb of polynomials in Q(z)[X]

15: return Gb
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Algorithm 5.14 Gröbner bases over K = Q(T ) (ffmodStd)

Input: An ideal I = 〈H〉 ⊆ S = K[X], where K = Q(T ) and H = {f1, . . . , fw}.
Output: G ⊆ S, the reduced Gröbner basis of I w.r.t. > with high probability.

1: choose a random non-zero point s = (s1, . . . , sm) ∈ Qm such that none of the de-

nominators in the coefficients of H vanishes when evaluated at T = s

2: let Ĩ = 〈H̃〉 ⊆ Q(Tz)[X] be as in (5.6) w.r.t. z and s

3: choose m distinct random prime numbers p1, . . . , pm

4: j ←− 1, b←− bj ←− (p1, . . . , pm)

5: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.12 applied to Ĩ and b

6: let (N,D) be the pair of ordered sets containing the degrees of the polynomials in

the numerators (resp. denominators) of the coefficients of Gbj

7: dN ←− max N , dD ←− max D, d←− dN + dD + 2

8: G←− {}, e←− 0

9: let hb1,1, . . . , hb1,r be the elements in Gb1

10: while e < r do

11: j ←− j + 1

12: bj ←− (pj1, . . . , p
j
m)

13: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.13 applied to Ĩ , bj, and (d,N,D)

14: for i = e+ 1, . . . , r do

15: consider the set

Gi = {g ∈ Gbk | lm (g) = lm (hb1,i) , 1 ≤ k ≤ j} ⊆ Q(z)[X]

of polynomials whose leading monomials are the same

16: lift the coefficients of Gi to Q(T ) by applying the early termination version

of the sparse multivariate interpolation algorithm, Algorithm 1.4, coefficient-

wise w.r.t. b and s

17: if all coefficients of Gi are successfully lifted to Q(T ) then

18: let gi be the polynomial obtained by lifting Gi to Q(T )[X]

19: G←− G ∪ {gi}
20: e←− e+ 1

21: else

22: break out of the for-loop

23: if I 6⊆ 〈G〉 or G is not the reduced Gröbner basis of 〈G〉 then

24: reapply Algorithm 5.14 by choosing different evaluation points in lines 1 and 3

25: return G
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In line 5 of Algorithm 5.14, let Gb := Gb1 = {g1, . . . , gr} and let qi be the number of
terms in gi. Let nλ,i (resp. dλ,i) be the degree of the numerator (resp. denominator) of
the coefficient of the λ-th term of gi. In line 6 of this algorithm, we consider a pair of
ordered sets

(N,D) = ({nλ,i}1≤λ≤qi, 1≤i≤r, {dλ,i}1≤λ≤qi, 1≤i≤r) .

Remark 5.3.8. Some parts of Algorithms 5.12 and 5.13 are inherently parallelizable.

The Singular framework enables us to do some of the tasks in these algorithms in

parallel. In the current implementation, see Section 5.3.3, the for-loops starting in

line 5 of Algorithm 5.12 and in line 4 of Algorithm 5.13 are parallelized. Recall from

above that we use the modular techniques [2, 27] in line 6 of Algorithm 5.12 and in

line 5 of Algorithm 5.13 if coefficient swell occurs in the intermediate computations, see

Remark 5.3.7. In this case, some of the tasks in the modular algorithms are parallelized as

described in Remark 2.5.1. Moreover, in line 14 of Algorithm 5.13, we lift the coefficients

from Q to Q(z) w.r.t. some given bounds in parallel.

5.3.1 Choice of Evaluation Points

In this subsection, we briefly explain to which extend the algorithms discussed in this
chapter are probabilistic.

Proposition 5.3.9. Let W ⊆ Q(T ) = Q(t1, . . . , tm) be a finite set of rational functions.

Then there exists a non-empty Zariski open subset U of Am(Q) such that for each f ∈ W
and each point s ∈ U , the function f can be evaluated at s, that is, f(s) ∈ Q.

Proof. For any element c 6= 0 (in lowest terms) of Q(T ), let cd be the denominator of c,

considered as a polynomial in Q[T ]. With this notation, set CW := {cd ∈ Q[T ] | c ∈ W}
and define a set V by

V :=
⋃

f∈CW

Z(f) . (5.9)

Each algebraic set Z(f), f ∈ CW , is a closed set in the Zariski topology on Am(Q).

Since finite unions of closed sets are closed, the set V is closed, too. Consider the subset

U := Am(Q) \ V of Am(Q). Then U is an open subset in the Zariski topology and by

definition, each function f ∈ W can be evaluated at each point s ∈ U . Moreover, since

none of the polynomials in CW is zero, the dimension of V is at most m − 1, see [13,

Chapter 9]. Thus we have V 6= Am(Q) which implies that the set U is non-empty.

Consider Algorithm 5.15 which is derived from Algorithm 5.14 by replacing line 5 with
(a copy of) line 13 and by skipping lines 23 to 24.

The evaluation points which we use for Algorithm 5.15 are taken from Zariski open
subsets of Am(Q).
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Algorithm 5.15 Gröbner bases over K = Q(T )

Input: An ideal I = 〈H〉 ⊆ S = K[X], and N,D ⊆ N, where K = Q(T ), H =

{f1, . . . , fw}, and N and D are degree bounds for the numerators and denominators

of the coefficients of the reduced Gröbner basis of I as explained in the paragraph

above Remark 5.3.8.

Output: G ⊆ S, the reduced Gröbner basis of I w.r.t. >.

1: choose a random non-zero point s = (s1, . . . , sm) ∈ Qm such that none of the de-

nominators in the coefficients of H vanishes when evaluated at T = s

2: let Ĩ = 〈H̃〉 ⊆ Q(Tz)[X] be as in (5.6) w.r.t. z and s

3: choose m distinct random prime numbers p1, . . . , pm

4: j ←− 1, b←− bj ←− (p1, . . . , pm)

5: dN ←− max N , dD ←− max D, d←− dN + dD + 2

6: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.13 applied to Ĩ , bj and (d,N,D)

7: G←− {}, e←− 0

8: let hb1,1, . . . , hb1,r be the elements in Gb1

9: while e < r do

10: j ←− j + 1

11: bj ←− (pj1, . . . , p
j
m)

12: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.13 applied to Ĩ , bj, and (d,N,D)

13: for i = e+ 1, . . . , r do

14: consider the set

Gi = {g ∈ Gbk | lm (g) = lm (hb1,i) , 1 ≤ k ≤ j} ⊆ Q(z)[X]

of polynomials whose leading monomials are the same

15: lift the coefficients of Gi to Q(T ) by applying the early termination version

of the sparse multivariate interpolation algorithm, Algorithm 1.4, coefficient-

wise w.r.t. b and s

16: if all coefficients of Gi are successfully lifted to Q(T ) then

17: let gi be the polynomial obtained by lifting Gi to Q(T )[X]

18: G←− G ∪ {gi}
19: e←− e+ 1

20: else

21: break out of the for-loop

22: return G
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Proposition 5.3.10. Let I = 〈H〉 = 〈f1, . . . , fw〉 ⊆ K[X] be an ideal where K =

Q(t1, . . . , tm) is an algebraic function field, and let N,D ⊆ N be degree bounds for the

numerators and denominators of the coefficients of the reduced Gröbner basis of I, see

the paragraph above Remark 5.3.8. Let G be the output of Algorithm 5.15 applied to I

and (N,D). Then there exists a non-empty Zariski open subset U of Am(Q) such that

for every s ∈ U , the following holds if s is chosen in line 1 of Algorithm 5.15:

(1) Each time when Algorithm 5.13 is called within Algorithm 5.15 (see lines 6 and

12), then there exists a non-empty Zariski open subset U ′ of A(Q) such that if

z0, . . . , zd−1 are chosen from U ′ in line 1 of Algorithm 5.13, the result of Algo-

rithm 5.13 is correct.

(2) If all the results of Algorithm 5.13 in the intermediate steps are correct, then the

result of Algorithm 5.15 is correct, that is, G is the reduced Gröbner basis of I.

Proof. Let ALG be an algorithm, such as Buchberger’s algorithm, computing a reduced

Gröbner basis of an ideal over any field. We assume that each polynomial in the interme-

diate steps of this algorithm is monic, that is, the leading coefficient of this polynomial

is equal to 1. Moreover, we assume without loss of generality that each element in the

input is monic.

Let W ⊆ Q(T ) be the set of intermediate rational functions (including the input

and the output) which occur during the computation of the reduced Gröbner basis of I

using the algorithm ALG. Since the integer j in line 10 of Algorithm 5.15 is bounded

by two times the maximum number of terms in the numerators and denominators of

the coefficients of the reduced Gröbner basis of I as given in (5.4), the set W is finite.

Thus by Proposition 5.3.9 there exists a non-empty Zariski open subset U of Am(Q)

such that for each f ∈ W and for each s ∈ U , f can be evaluated at s. Now, for any

point s = (s1, . . . , sm) ∈ U , the image of the input ideal

Ĩ = 〈H̃〉 ⊆ Q(Tz)[X] = Q(t1z, . . . , tmz)[X] ⊆ Q(t1, . . . , tm, z)[X]

in Algorithm 5.13 under the map

ϕs : Q(Tz)[X] −→ Q(z)[X], (5.10)

tiz 7−→ siz,

which leaves X fixed is the ideal

I ′ := ϕs

(
Ĩ
)

= ϕs

(
〈H̃〉

)
=
〈
ϕs

(
H̃
)〉
⊆ Q(z)[X].
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Let p1, . . . , pm be distinct primes. Set bj := (pj1, . . . , p
j
m) for some j. Let G′ be the output

of Algorithm 5.13 applied to Ĩ, bj and (d,N,D) as in lines 6 and 12 of Algorithm 5.15.

In fact, instead of applying Algorithm 5.13, one could call any algorithm to compute

the reduced Gröbner basis of I ′. Let W ′ ⊆ Q(z) be the set of intermediate rational

functions (including the input and the output) which occur during the computation of

the reduced Gröbner basis of I ′ using the algorithm ALG.

Since the number of interpolation points required to recover the coefficients of the

reduced Gröbner basis of I ′ is bounded by d, where d is defined as in line 5 of Algo-

rithm 5.15 w.r.t. N and D, the set W ′ is finite. Thus by Proposition 5.3.9 there exists a

non-empty Zariski open subset U ′ of A(Q) such that for each f ∈ W ′ and for each s ∈ U ′,
f can be evaluated at s. Let ψ : Q(z)[X] −→ Q(z)[X] and φ : Q[X] −→ Q[X] be the

maps that send a given ideal to its reduced Gröbner basis. Furthermore, for any point

z0 ∈ U ′, consider the set R〈z−z0〉 ⊆ Q(z) of all rational functions whose denominators do

not vanish at z = z0, that is,

R〈z−z0〉 =

{
f

g
∈ Q(z)

∣∣∣∣ f ∈ Q[z], g ∈ Q[z] \ {0} with g(z0) 6= 0

}
⊇ W ′ .

In what follows, we consider the map

ϕz0 : Q(z)[X] −→ Q[X], (5.11)

z 7−→ z0,

which leaves X fixed where this map is only applied to polynomials in the polynomial

ring R〈z−z0〉[X] ⊆ Q(z)[X]. Consider the following diagram:

Q(z)[X]
ψ−−−−→ Q(z)[X]yϕz0 yϕz0

Q[X]
φ−−−−→ Q[X]

(5.12)

The above diagram commutes for I ′ in the following sense: The maps ψ and φ can be re-

alized by applying the algorithm ALG. If the input ideals are I ′ and ϕz0(I
′), respectively,

then for any z0 ∈ U ′, the algorithm ALG performs the same steps in the same order. In

particular, the diagram commutes. The same holds for any elements z0, . . . , zd−1 of U ′.

Therefore, the result of Algorithm 5.13 is correct if z0, . . . , zd−1 are chosen from U ′ in

line 1 of Algorithm 5.13.

It remains to show that the statement in (2) holds for any s ∈ U . Consider the map

ϕ′ : Q(T )[X] −→ Q(Tz)[X] , (5.13)

ti 7−→ tiz .
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As above, consider the diagram

Q(T )[X]
ψ′

−−−−→ Q(T )[X]yϕ′s yϕ′s
Q(z)[X]

ψ−−−−→ Q(z)[X]

(5.14)

where

(a) s is any element chosen from U as in line 1 of Algorithm 5.15,

(b) ψ is as in diagram (5.12),

(c) ϕ′s = ϕs ◦ ϕ′ where ϕs is as defined in (5.10), and

(d) ψ′ is the map sending a given ideal to its reduced Gröbner basis .

Then it is easy to see that the above diagram commutes in the same sense as explained

for diagram (5.12). Thus the result of Algorithm 5.15 is correct.

Let the notation be as in the proof of the above proposition. For any element c 6= 0
(in lowest terms) of Q(T ) (or Q(z)), let cd be the denominator of c, considered as a
polynomial in Q[T ] (or Q[z]). Set

CH := {cd ∈ Q[T ] | c a coefficient occurring in H} ⊆ CW := {cd ∈ Q[T ] | c ∈ W} ,
CW ′ := {cd ∈ Q[z] | c ∈ W ′} , and (5.15)

Cϕs(H̃) :=
{
cd ∈ Q[z]

∣∣ c a coefficient occurring in ϕs

(
H̃
)}
⊆ CW ′ .

Remark 5.3.11. Let CH , CW , CW ′ and Cϕs(H̃) be as defined in (5.15). From the

theoretical point of view, we recover the coefficients of G and G′, respectively, using

Algorithm 4.11 and the algorithms described in Section 1.4, by choosing evaluation

points from U and U ′. From the practical point of view, however, we choose these

evaluation points from the larger subsets

V ′ = Am(Q)

∖( ⋃
f∈CH

Z(f)

)
⊇ U and

V ′′ = A(Q)

∖ ⋃
f∈C

ϕs(H̃)

Z(f)

 ⊇ U ′ ,

respectively, which are open sets in the Zariski topology. In this chapter, although we

cannot guarantee that none of the polynomials in CW \ CH or CW ′ \ Cϕs(H̃) vanishes

at any of the chosen evaluation points, in practice, it is very unlikely that this case

happens. Thus, the coefficients of G and G′ can be reconstructed with high probability.
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Remark 5.3.12. In line 1 of Algorithm 5.15, in practice, we choose the evaluation

points from a large finite subset of Zm ∩ V ′. In our implementation, we choose these

evaluation points from the set

{100, . . . , 150 + 7 · (m− 1)}m ∩ V ′ .

The same is true in line 1 of Algorithm 5.13. The primes we use for modular com-

putations can be represented in Singular by at most 29 bits. However, for sparse

multivariate interpolations, see line 3 of Algorithm 5.15, we choose small primes.

5.3.2 An Illustrative Example

In this subsection, we consider an example which illustrates how to use the new method
discussed above to compute the reduced Gröbner basis of a given ideal. We com-
pute, following the steps in Algorithm 5.14, the reduced Gröbner basis of the ideal
I ⊆ Q(t1, t2)[x1, x2, x3] generated by the polynomials

f1 = x2
1x

3
2x3 + 2t1x1x2x

2
3 + 7x3

2,

f2 = x2
1x

4
2x3 + (t1 − 7t2)x2

1x2x
2
3 − x1x

2
2x

2
3 + 2x2

1x2x3 − 12x1 + t2x2,

f3 = (t21 + t2 − 2)x5
2x3 + (t1 + 5t2)x2

1x
2
2x3 − t2x1x

3
2x3 − x1x

3
2 + x4

2 + 2t21x
2
2x3, and

f4 = t1x
2
1x

2
2x3 − x1x

3
2x3 + (−t1 + 4)x3

2x
2
3 + 3t1x1x2x

3
3 + 4x2

3 − t2x1

w.r.t. the degree reverse lexicographical ordering (dp in Singular) with x1 > x2 > x3

as follows:
By making each fi monic, we obtain t21 + t2 − 2, t1 ∈ Q[t1, t2] as the denominators

of the coefficients in f ∈ {f1, . . . , f4} whose degrees are greater than zero. Since these
polynomials do not vanish when evaluated at (t1, t2) = (2, 3), we may choose the point
s = (2, 3) as a shift. Note that in this example, we haveX = {x1, x2, x3} and T = {t1, t2}.
Let

Ĩ = 〈H̃〉 = 〈h | h = f(t1z + s1, t2z + s2, X), f ∈ H = {f1, . . . , f4}〉 ⊆ Q(Tz)[X]

be the auxiliary ideal w.r.t. z as in (5.6). Consider the set

J = {2t1z + 4, (t1 − 7t2)z − 19, t2z + 3, t21z
2 + (4t1 + t2)z + 5, (t1 + 5t2)z + 17,

−t2z − 3, 2t21z
2 + 8t1z + 8, t1z + 2, −t1z + 2, 3t1z + 6, −t2z − 3} ⊆ Q[Tz]

of polynomials, as in (5.7), containing all distinct coefficients of H̃ which are of degrees
greater than 0. Set b := b1 := (p1, p2) = (3, 5). For simplicity, we start the computation
by taking three evaluation points. As in Algorithm 5.12, let us choose random distinct
points 3, 5 and 9 from Q. Now consider the points b̃1 = (b1, 3), b̃2 = (b1, 5) and b̃3 =
(b1, 9) ∈ Q3. Since none of the polynomials in J vanishes when evaluated at these points,
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the evaluation points are admissible w.r.t. H̃, see Definition 5.3.3. The reduced Gröbner
bases of the ideals Ĩ|(T,z)=b̃i , i = 1, 2, 3, are

Gb̃1
= {x1 − 3/2x2, x

2
3 − 27/4x2, x

2
2x3, x

3
2},

Gb̃2
= {x1 − 7/3x2, x

2
3 − 49/3x2, x

2
2x3, x

3
2}, (5.16)

Gb̃3
= {x1 − 4x2, x

2
3 − 48x2, x

2
2x3, x

3
2}.

Note that according to the test in line 8 of Algorithm 5.12, all of the evaluation points
are lucky for Ĩ with high probability. As in line 13 of Algorithm 5.12, we have the sets

G1 = {x1 − 3/2x2, x1 − 7/3x2, x1 − 4x2}, (5.17)

G2 = {x2
3 − 27/4x2, x

2
3 − 49/3x2, x

2
3 − 48x2},

G3 = {x2
2x3, x

2
2x3, x

2
2x3}, and

G4 = {x3
2, x

3
2, x

3
2}

of polynomials whose leading monomials are the same. By applying the dense rational
interpolation algorithm, discussed in Section 1.4, coefficient-wise to each set Gi w.r.t.
the polynomial f = (z − 3) · (z − 5) · (z − 9), we obtain the set

Gb1 = {x1 + (−5/12z − 1/4)x2, x
2
3 + (−25/48z2 − 5/8z − 3/16)x2, x

2
2x3, x

3
2} (5.18)

⊆ Q(z)[X].

To see whether the coefficients in each set Gi are correctly lifted to Q(z), we have to

check this by taking one more admissible point. The point b̃4 = (b1, 10) is an admissible

evaluation point w.r.t. H̃ because it satisfies the conditions in Definition 5.3.3. The
reduced Gröbner basis of the ideal Ĩ|(T,z)=b̃4 is

Gb̃4
= {x1 − 53/12x2, x

2
3 − 2809/48x2, x

2
2x3, x

3
2} .

It is not hard to see that b̃4 is lucky for Ĩ with high probability. Having added Gb̃4
to

the sets in (5.16), we continue by applying the dense rational interpolation algorithm
w.r.t. the polynomial f = (z− 3) · (z− 5) · (z− 9) · (z− 10) coefficient-wise to the set of
polynomials whose leading monomials are the same. Having applied this algorithm, we
obtain the set

Gb1 = {x1 + (−5/12z − 1/4)x2, x
2
3 + (−25/48z2 − 5/8z − 3/16)x2, x

2
2x3, x

3
2} (5.19)

⊆ Q(z)[X].

Since the set Gb1 of polynomials in (5.18) coincides with the one in (5.19), the early
termination algorithm says that the coefficients in Q are correctly lifted to Q(z) with high
probability, see Remark 5.3.11. InGb1 , the maximum degree of z in one of the numerators
(resp. denominators) is 2 (resp. 0). Hence d = 3 is a bound on the number of interpolation
points required to recover the coefficients in Q(z). The remaining task is now to lift the
coefficients in Q(z) to Q(T ). To do this, we continue iterating Algorithm 5.14 until we
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reach the bound required by the early termination. For j = 2, 3, it is easy to check that
the evaluation points

(b2, 3), (b2, 5) and (b2, 9), and

(b3, 3), (b3, 5) and (b3, 9)

with bj = (3j, 5j) are admissible w.r.t. H̃. With respect to these evaluation points, we
obtain, in a similar way, the sets

Gb2 = {x1 + (−25/12z − 1/4)x2, x
2
3 + (−625/48z2 − 25/8z − 3/16)x2, x

2
2x3, x

3
2} and

Gb3 = {x1 + (−125/12z − 1/4)x2, x
2
3 + (−15625/48z2 − 125/8z − 3/16)x2, x

2
2x3, x

3
2}

of polynomials in Q(z)[X]. We now apply Algorithm 1.4, following the steps in Al-
gorithm 4.11, coefficient-wise to the set of rational functions in Q(z) which are the
coefficients in Gbj for j = 1, 2, 3. Having applied this algorithm, we obtain the set

G = {g1 = x1 −
1

12
t2x2, g2 = x2

3 −
1

48
t22x2, g3 = x2

2x3, g4 = x3
2} ⊆ Q(T )[X].

To see whether G is a Gröbner basis of I with high probability, we verify the conditions
in line 23 of Algorithm 5.14 (see Remark 5.3.6) as follows:

> ring S = (0,t1,t2), (x1,x2,x3), dp;

> poly f1 = x1^2*x2^3*x3+2*t1*x1*x2*x3^2+7*x2^3;

> poly f2 = x1^2*x2^4*x3+(t1-7*t2)*x1^2*x2*x3^2-x1*x2^2*x3^2

+2*x1^2*x2*x3-12*x1+t2*x2;

> poly f3 = (t1^2+t2-2)*x2^5*x3+(t1+5*t2)*x1^2*x2^2*x3

-t2*x1*x2^3*x3-x1*x2^3+x2^4+2*t1^2*x2^2*x3;

> poly f4 = t1*x1^2*x2^2*x3-x1*x2^3*x3+(-t1+4)*x2^3*x3^2

+3*t1*x1*x2*x3^3+4*x3^2-t2*x1;

> ideal I = f1,f2,f3,f4;

> G = x1+(-t2/12)*x2, x3^2+(-t2^2/48)*x2, x2^2*x3, x2^3;

> attrib(G,"isSB",1);

> reduce(I,G); // I contained in <G>

_[1] = 0

_[2] = 0

_[3] = 0

_[4] = 0

> option(redSB);

> ideal K = std(G);

> reduce(K,G); // G is a Groebner basis of <G>



5.3. Gröbner Bases Using Sparse Rational Interpolation 111

_[1] = 0

_[2] = 0

_[3] = 0

_[4] = 0

Since both conditions in line 23 of Algorithm 5.14 are not satisfied (or, equivalently, both
conditions in Remark 5.3.6 are satisfied), we thus have correctly lifted the coefficients
from Q(z) to Q(T ) with high probability. Hence it follows from this remark that the set
G is the reduced Gröbner basis of I with high probability.

Algorithm 5.14 is implemented in the Singular library ffmodstd.lib [6]. Using the
command ffmodStd from this library, the above steps can be executed as follows:

> LIB "ffmodstd.lib";

> ideal G = ffmodStd(I);

> G;

G[1] = x1+(-t2/12)*x2

G[2] = x3^2+(-t2^2/48)*x2

G[3] = x2^2*x3

G[4] = x2^3

5.3.3 Implementation and Timings

As mentioned above, Algorithm 5.14 is implemented in Singular in the library ffmods-

td.lib. We compare its performance against the Magma [9, 39] command GroebnerB-

asis and the Singular commands std and slimgb.
We consider twenty benchmark problems as described in appendix Section A.3 to

demonstrate the efficiency of Algorithm 5.14. The timings for all benchmark examples
are conducted by using Singular 4.0.3 and Magma V2.21-11 on a Dell PowerEdge
R720 machine with 16 cores and 32 threads, 2.9-3.8 GHz, and 192 GB of RAM running
the Gentoo Linux operating system.

The results are summarized in Table 5.1 for Gröbner bases with sparse coefficients and
in Table 5.2 for Gröbner bases with dense coefficients. Some of the computations did not
finish within 12 hours. This is indicated by a dash (-). All timings are in seconds. The
ideals I8 and J2 to J6 are computed using the lexicographic ordering (lp in Singular),
the remaining ideals are computed using the degree reverse lexicographical ordering (dp
in Singular).

In Table 5.1, there are examples where GroebnerBasis is faster than slimgb and, vice-
versa, there are examples where slimgb is faster than GroebnerBasis. However, with
respect to the average timings, one can see that slimgb is faster than GroebnerBasis.
On the other hand, although slimgb is faster than std for some examples, we see
that our new algorithm ffmodStd is even much faster than slimgb for most examples.
However, it is less efficient for the examples in Table 5.2. In other words, Algorithm 5.14
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ideal GroebnerBasis std slimgb ffmodStd

I1 17702.41 - - 0.25

I2 15858.92 - - 13.89

I3 1.87 65.65 27.96 1.58

I5 - - 18671.40 26.30

I6 4642.14 - - 1.07

I7 - - - 12.92

I8 0.01 5669.89 0.38 0.67

I9 - - - 8.51

I10 - - - 21.81

I11 - - - 5.32

J2 - 31654.76 1.18 1.25

J3 - - - 155.59

J6 - 33973.89 1.18 1.23

J9 - - - 0.14

Table 5.1: Total running times in seconds for computing a Gröbner basis (with sparse

coefficients) of the considered ideals via GroebnerBasis, std, slimgb, and

ffmodStd

ideal GroebnerBasis std slimgb ffmodStd

I4 80.65 2564.01 643.32 18053.34

J1 477.47 193.70 0.31 7.45

J4 11.92 251.09 3.26 151.71

J5 0.01 0.02 0.01 55.31

J7 0.01 0.02 0.02 104.46

J8 0.01 0.01 0.01 8.98

Table 5.2: Total running times in seconds for computing a Gröbner basis (with dense

coefficients) of the considered ideals via GroebnerBasis, std, slimgb, and

ffmodStd
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performs well for Gröbner bases with sparse coefficients, while it is less efficient compared
to for Gröbner bases with dense coefficients. Nonetheless, if the coefficient field K is
the function field of one variable, then there exists an algorithm which beats the above
methods even for Gröbner bases with dense coefficients. As a special case, the next
section describes this algorithm.

5.4 Special Case for Function Fields of One Variable

The main result of this section is a fast algorithm for computing Gröbner bases of ideals
in the polynomial ring S = K[X] over the function field K of one variable, that is, over
K := Q(t). The case of one variable is special because unlike in the case of multivariate
variables t1, . . . , tm, we can directly apply modular methods over Q(t). Moreover, instead
of applying Algorithm 4.11, it suffices to apply the dense univariate rational interpolation
algorithm discussed in Section 1.4. Thus the fast algorithm which we discuss later in this
section uses the concepts of modular methods [2, 27] and the dense univariate rational
interpolation algorithm discussed in Section 1.4.

To begin with, as in (5.5), consider the map

ϕ : Q(t)[X] −→ (Q[t])[X], (5.20)

f 7−→ f · hf ,

for suitable polynomials hf ∈ Q[t] (such polynomials always exist). Let

H = {f1, . . . , fw} ⊆ S,

and let I ⊆ S be the ideal generated by H. Let G be the reduced Gröbner basis of
I w.r.t. >, and let d be a bound on the number of interpolation points required for
recovering the coefficients occurring in G, as defined in (5.3). Let Icoef be the set of
coefficients, c ∈ Q[t], of ϕ(H) = {ϕ(h) | h ∈ H} of degree greater than 0, that is,

Icoef = {c ∈ Q[t] | c is a coefficient in ϕ(H) with deg(c) > 0} ⊆ Q[t]. (5.21)

With this notation as above, the refined version of Definition 5.3.3 for the special case
K = Q(t) is as follows:

Definition 5.4.1. Let H ⊆ S be given as above. Let p be a prime not dividing any

numerator or any denominator of the coefficients occurring in Icoef . An element z0 ∈ Fp\
{0} is said to be admissible w.r.t. p and Hp if none of the elements in Icoef,p := Icoef mod p

is contained in the ideal 〈t−z0〉 ⊆ Fp[t] (or, equivalently, if none of the elements in Icoef,p

vanishes when evaluated at t = z0).

The notion of lucky evaluation points for the special case K = Q(t) is defined as
follows:
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Definition 5.4.2. Let I = 〈H〉 be given as above and let Icoef be defined as in (5.21). Let

p be a prime not dividing any numerator or any denominator of the coefficients occurring

in Icoef . Let z0 ∈ Fp \{0} be a random point satisfying the conditions in Definition 5.4.1

and let G′ be the reduced Gröbner basis of the ideal I ′ = 〈h | h = g(z0, X), g ∈ Ip〉 ⊆
Fp[X]. Furthermore, let Gp be the reduced Gröbner basis of Ip. Then z0 is called a lucky

evaluation point for Ip if and only if Lm(G′) = Lm(Gp). Otherwise z0 is called unlucky

for Ip.

Remark 5.4.3. Let I = 〈H〉 be given as above and let Icoef be defined as in (5.21). Let

p be a prime not dividing any numerator or any denominator of the coefficients occurring

in Icoef . For p� d, let z0, . . . , zd−1 ∈ Fp be non-zero pairwise distinct elements such that

each zi satisfies the conditions in Definition 5.4.1 and is lucky for Ip. Let Gp,zi be the

reduced Gröbner basis of the ideal Ip,zi = 〈h | h = g(zi, X), g ∈ Ip〉 ⊆ Fp[X]. Let Gp ⊆
Fp(t)[X] be the set of polynomials obtained by applying the dense univariate rational

interpolation algorithm (see Section 1.4) coefficient-wise to those sets of polynomials,

from Gp,zi , whose leading monomials are the same. Then the set Gp is the reduced

Gröbner basis of Ip with high probability, see Remark 5.3.11.

In this remark, the assumption p � d is important for the following reason: Recall
from Subsection 1.6.1 that for successful interpolation, the size of Fp needs to cover
enough distinct points for the early termination, that is, p− 1 ≥ d (assuming that each
element z0 ∈ {0, . . . , p − 1} is lucky for Ip). For our application, if the coefficient field
Fp does not cover enough distinct points for the early termination, then the probability
that the set Gp fails to be the reduced Gröbner basis of Ip, as in the above remark, is
high.

Figure 5.2 illustrates the general scheme for computing the reduced Gröbner basis of
I over Q(t). In this figure, instead of computing the reduced Gröbner bases at level 1,
our algorithm computes them at level 3. For the evaluation points that are lucky with
high probability (and only for those), the dense rational interpolation algorithm (see
Section 1.4) then combines these results at level 4. The ideals 〈Gpi〉 at this level are
expected to be the same as the ideals Ipi with high probability (see Remark 5.4.3).
The remaining parts of the computation are carried out as in the modular algorithms
described in [27].

We now turn our attention to a more detailed description of the special case algorithm.
First, randomly choose a set P of prime numbers. At level 2, given a prime p ∈ P ,
choose v + 1 distinct random evaluation points z0, . . . , zv ∈ Fp for some v such that
each zi satisfies the conditions in Definition 5.4.1 and set B := {z0, . . . , zv}. At this
level, after evaluating the ideal Ip at these points, we obtain ideals in the polynomial
ring Fp[X] denoted by Ip,zi for 0 ≤ i ≤ v. At level 3, we compute the set GB =
{Gp,zi | zi ∈ B} of the reduced Gröbner bases of the ideals Ip,zi . Given the inputs GB
and B, we can choose the lucky evaluation points from B with high probability by the
DeleteUnluckyEvaluationPoints method described in Section 5.3. We may thus
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Figure 5.2: General scheme for the new algorithm (special case)

assume that all Gp,zi , zi ∈ B, have the same set of leading monomials. Once we have
such sets of polynomials, we can then apply the dense univariate rational interpolation
algorithm coefficient-wise to a set of polynomials whose leading monomials are the same.
Let Gp,z0 = {g0,1, . . . , g0,r}. Then for j = 1, . . . , r, consider the set

Fj = {gi,j ∈ Gp,zi | lm (gi,j) = lm (g0,j) , i = 0, . . . , v} ⊆ Fp[X]

of polynomials whose leading monomials are the same. As described in Section 5.3, we
do not know whether the v+ 1 distinct evaluation points are sufficient (or, equivalently,
whether v ≥ d− 1 where d is as in (5.3)). Thus we apply the early termination version
of the dense univariate rational interpolation algorithm (see Section 1.4 and Subsec-
tion 1.6.1) so that we can add more interpolation points if necessary. This algorithm
can be applied coefficient-wise to the set of polynomials Fj over Fp, in a similar way as
described in Section 5.3, to lift the coefficients from Fp to Fp(t). Having applied this
algorithm, we obtain a set Gp of polynomials in the polynomial ring Fp(t)[X] at level 4.
Moreover, as in Section 5.3, we obtain from the set Gp:

(a) A bound d on the number of interpolation points required to recover the coefficients
in Gp as well as in G.

(b) A bound on the degree of each numerator (resp. denominator) of the rational
functions which occur as coefficients in G.

With respect to these bounds, we compute such Gp’s for several primes p ∈ P to obtain
the set of reduced Gröbner bases GP = {Gp | p ∈ P} by choosing at least d distinct eval-
uation points which are lucky for Ip. From P , the method DeleteUnluckyPrimesSB
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[27] (see also Section 2.5) selects primes that are lucky with high probability. For those
primes in P , we apply the Chinese remainder algorithm for integers and the rational
number reconstruction algorithm to the coefficients of the Gröbner bases in GP to obtain
a set G ⊆ Q(t)[X] of polynomials which is the reduced Gröbner basis of I with high
probability. In modular algorithms, once we have computed such a set G, a final veri-
fication test is needed since we cannot check whether P is sufficiently large. However,
the test may be expensive, especially if I 6= 〈G〉. We thus first perform a similar test as
in Section 2.5 in positive characteristic as follows:

pTestSB ([27]): We randomly choose a prime p /∈ P which does not divide any
numerator or any denominator of the coefficients occurring in Icoef as in (5.21). The
test is positive if and only if Gp is the reduced Gröbner basis of Ip. That is, we explicitly
test whether Gp ⊆ Ip and (fi mod p) ∈ 〈Gp〉 for i = 1, . . . , w.

Based on the above description, Algorithm 5.18, which is a modified version of Algo-
rithm 1 in [27], computes the reduced Gröbner basis of the input ideal. This algorithm
calls Algorithms 5.16 and 5.17, which are almost the same, to compute the reduced
Gröbner bases of the ideals at level 1 with high probability. The former algorithm only
computes the initial Gröbner basis Gp without bounds on the number of interpolation
points and on the degrees of the numerators and denominators of the coefficients in
Gp, while the latter algorithm computes the remaining Gröbner bases w.r.t. some given
bounds, where these bounds are obtained from the output of Algorithm 5.16.

Remark 5.4.4. In Algorithm 5.16 (resp. 5.17), we have parallelized the for-loop starting

in line 4 (resp. 9). Moreover, some parts of Algorithm 5.18 are parallelized as described

in Remark 2.5.1.

5.4.1 An Illustrative Example

In this subsection, we consider an example illustrating the method discussed above.
Consider the ideal

I = 〈H〉 = 〈(t+ 3) · y2 + (−t) · x, (t− 1) · xy + y〉 ⊆ Q(t)[x, y].

A Singular computation shows that the reduced Gröbner basis of I with respect to
the degree reverse lexicographical ordering (dp in Singular) with x > y is

G = {(t+ 3) · y2 + (−t) · x , (t− 1) · xy + y , (t− 1) · x2 + x} .

In the following, we show how this basis is obtained using Algorithm 5.18. Since none
of the monomials in I vanishes modulo the prime p = 97, we may choose this prime for
the modular computation. For simplicity, we start by taking the ideals

Pp,0 = 〈t− 5〉, Pp,1 = 〈t− 9〉, Pp,2 = 〈t− 3〉, and Pp,3 = 〈t− 13〉
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Algorithm 5.16 Gröbner bases over Fp(t)[X] without known bounds

Input: An ideal Ip = 〈Hp〉 ⊆ Fp(t)[X] and a prime number p, where H = {f1, . . . , fw} .

Output: Gp, the reduced Gröbner basis of Ip w.r.t. >.

1: let B be a set of distinct random points a ∈ Fp which are admissible w.r.t. Hp

2: GB ←− {}
3: e←− 0, G←− {}
4: loop

5: for a ∈ B do

6: Ip,a ←− Ip|t=a
7: compute the reduced Gröbner basis Gp,a of Ip,a ⊆ Fp[X] w.r.t. >

8: GB ←− GB ∪ {Gp,a}

9: (GB,B)←− DeleteUnluckyEvaluationPoints(GB,B)

10: let G0,a0 , . . . , Gk,ak be the elements in GB
11: fp ←−

∏
a∈B(t− a) ⊆ Fp[t]

12: let h0,1, . . . , h0,r be the elements in G0,a0

13: for j = e+ 1, . . . , r do

14: consider the set

Fj = {g ∈ Gi,ai | lm(g) = lm(h0,j), 0 ≤ i ≤ k} ⊆ Fp[X]

of polynomials whose leading monomials are the same

15: lift the coefficients of Fj to Fp(t) by applying the early termination version of

the dense rational interpolation algorithm (see Subsection 1.6.1) coefficient-wise

w.r.t. fp

16: if all coefficients of Fj are successfully lifted to Fp(t) then

17: let gj be the polynomial obtained by lifting Fj to Fp(t)[X]

18: G←− G ∪ {gj}
19: e←− e+ 1

20: else

21: break out of the for-loop

22: if e = r then

23: break out of the loop

24: enlarge B
25: Gp ←− G

26: return Gp
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Algorithm 5.17 Gröbner bases over Fp(t)[X] with given bounds

Input: An ideal Ip = 〈Hp〉 ⊆ Fp(t)[X], a prime number p, d ∈ N, and N,D ⊆ N, where

H = {f1, . . . , fw}, d is a bound on the number of interpolation points and N and

D are degree bounds for the numerators and denominators of the coefficients in the

result as explained in the text.

Output: Gp, the reduced Gröbner basis of Ip w.r.t. >.

1: choose d distinct random points a0, . . . , ad−1 ∈ Fp such that each ai is admissible

w.r.t. p and Hp

2: B ←− {a0, . . . , ad−1}
3: GB ←− {}
4: for i = 0, . . . , d− 1 do

5: compute the reduced Gröbner basis Gp,ai of Ip,ai := Ip|t=ai ⊆ Fp[X] w.r.t. >

6: GB ←− GB ∪ {Gp,ai}

7: (GB,B)←− DeleteUnluckyEvaluationPoints(GB,B)

8: if #B =: d′ < d then

9: go to line 1 to replace the unlucky evaluation points with lucky ones

10: fp ←−
∏

a∈B(t− a) ⊆ Fp[t]
11: let h0,1, . . . , h0,r be the elements in Gp,a0

12: for j = 1, . . . , r do

13: consider the set

Fj = {g ∈ Gp,ai | lm(g) = lm(h0,j), 0 ≤ i < d′} ⊆ Fp[X]

of polynomials whose leading monomials are the same

14: apply the dense rational interpolation algorithm (first Algorithm 1.1 and then Algo-

rithm 1.2, see Section 1.4) w.r.t. fp and the degree bounds N and D coefficient-wise

to each set Fj to obtain a set Gp of polynomials in Fp(t)[X]

15: return Gp
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Algorithm 5.18 Gröbner bases algorithm over K = Q(t) (ffmodStd)

Input: An ideal I = 〈H〉 ⊆ S = K[X] , where K = Q(t) and H = {f1, . . . , fw} .

Output: G ⊆ S, the reduced Gröbner basis of I w.r.t. > .

1: let Icoef be defined as in (5.21)

2: choose P , a set of random primes such that none of the primes in P divides any

numerator or any denominator of the coefficients occurring in Icoef

3: pick an element p from P
4: let Gp ⊆ Fp(t)[X] be the output of Algorithm 5.16 applied to Ip

5: GP ←− {Gp}
6: let (N,D) be the pair of ordered sets containing the degrees of the polynomials in

the numerators (resp. denominators) of the coefficients of Gp

7: dN ←− max N, dD ←− max D, d←− dN + dD + 2

8: loop

9: for q ∈ P \ {p} do

10: let Gq ⊆ Fq(t)[X] be the output of Algorithm 5.17 applied to Iq and (d,N,D)

11: GP ←− GP ∪ {Gq}

12: (GP ,P)←− DeleteUnluckyPrimesSB(GP ,P)

13: lift (GP ,P) to G ⊆ S by applying the Chinese remainder algorithm and the Farey

rational map

14: if pTestSB(I,G,P) then

15: if I ⊆ 〈G〉 then

16: if G is the reduced Gröbner basis of 〈G〉 then

17: return G

18: enlarge P
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in the polynomial ring F97[t], that is, B = {5, 9, 3, 13} ⊆ F97. Let ϕ (resp. Icoef) be
defined as in (5.20) (resp. (5.21)). Then we have

Icoef = {t+ 3, t, t− 1} ⊆ Q[t].

Since none of the elements in Icoef,p = Icoef mod p ⊆ Fp[t] is contained in the ideal Pp,i
for i = 0, . . . , 3, by Definition 5.4.1 the points 5, 9, 3 and 13 are admissible w.r.t. p and
Hp. Set (a0, . . . , a3) := (5, 9, 3, 13). With respect to Pp,i, the reduced Gröbner bases of
Ip,ai = ϕ(Ip) modPp,i for i = 0, 1, 2, 3, respectively are

Gp,a0 = {y2 − 37x , xy − 24y , x2 − 24x} ,
Gp,a1 = {y2 − 25x , xy − 12y , x2 − 12x} ,
Gp,a2 = {y2 + 48x , xy − 48y , x2 − 48x} , and

Gp,a3 = {y2 − 19x , xy − 8y , x2 − 8x} .

By the deleteUnluckyEvaluationPoints method, we see that none of the evalu-
ation points used in the computation is unlucky. Now by applying Algorithm 1.1 and
then Algorithm 1.2, as explained in the text, coefficient-wise to the set of polynomials

F1,p = {y2 − 37x , y2 − 25x , y2 + 48x , y2 − 19x} ,
F2,p = {xy − 24y , xy − 12y , xy − 48y , xy − 8y} , and

F3,p = {x2 − 24x , x2 − 12x , x2 − 48x , x2 − 8x}

w.r.t. the polynomial fp =
∏

a∈B(t− a) mod p ∈ Fp[t], we obtain the set

Gp =

{
y2 − t

t+ 3
x , xy +

1

t− 1
y , x2 +

1

t− 1
x

}
⊆ Fp(t)[x, y]. (5.22)

Let us now take one more ideal to see whether the evaluation points used in the compu-
tations are sufficient. Since none of the elements in Icoef,p is contained in Pp,4 = 〈t− 17〉,
we may take this ideal. The reduced Gröbner basis of Ip,a4 = ϕ(Ip) modPp,4 with
a4 = 17 ∈ B = {5, 9, 3, 13, 17} is

Gp,a4 = {y2 + 4x , xy − 6y , x2 − 6x} .

By applying, once more, Algorithm 1.1 and then Algorithm 1.2 coefficient-wise to the
set of polynomials

F ′1,p = F1,p ∪ {y2 + 4x} , F ′2,p = F2,p ∪ {xy − 6y} , and

F ′3,p = F3,p ∪ {x2 − 6x}

w.r.t. the polynomial fp =
∏

a∈B(t− a) mod p ∈ Fp[t], we obtain, again, the set

Gp =

{
y2 − t

t+ 3
x , xy +

1

t− 1
y , x2 +

1

t− 1
x

}
⊆ Fp(t)[x, y]. (5.23)
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Since the sets Gp in (5.22) and (5.23) coincide, the early termination version of the
dense rational interpolation algorithm (see Section 1.4 and Subsection 1.6.1) indicates
that we have correctly lifted the coefficients in Fp to Fp(t) with high probability. From
the coefficients of Gp, we obtain a bound on the number of interpolation points and
on the degree of each numerator (resp. denominator) of the rational functions which
occur as coefficients of G required to recover the coefficients occurring in Gp as well as
in G. The next step is now to repeat this process in the same way as in the modular
algorithms described in [27] (see also Section 2.5) w.r.t. these bounds. However, to
simplify the presentation, we first show that the prime p is already sufficiently large
to lift the modular coefficients back to Q. To see this, note that it is clear that the
prime p is lucky. At this point, we have to change the current base ring in Singular to
characteristic zero in order to pull the modular coefficients back to the rational numbers.
For this, we use the Singular command farey as follows:

/* rational reconstruction */

> ring S = (0,t), (x,y), dp;

> ideal Gp = y^2-t/(t+3)*x, xy+1/(t-1)*y, x^2+1/(t-1)*x;

> ideal G = farey(Gp, 97);

> G;

G[1] = y^2-t/(t+3)*x

G[2] = xy+1/(t-1)*y

G[3] = x^2+1/(t-1)*x

We see that the computed result already coincides with the reduced Gröbner basis stated
above. This shows that p is sufficiently large. We therefore skip some of the steps in
Algorithm 5.18, such as the Chinese remainder algorithm, the pTestSB, and the final
verification test.

Algorithm 5.18 is implemented in Singular in the library ffmodstd.lib [6]. Using
the command ffmodStd from this library, the above steps can be conveniently executed
as follows:

> LIB "ffmodstd.lib";

> ring S = (0,t), (x,y), dp;

> ideal I = (t-1)*x*y+y, (t+3)*y^2+(-t)*x;

> ideal G = ffmodStd(I);

> G;

G[1] = y^2-t/(t+3)*x

G[2] = xy+1/(t-1)*y

G[3] = x^2+1/(t-1)*x
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Ideal
ffmodStd

Algorithm 5.14 Algorithm 5.18

I1 0.25 0.01

I2 13.89 0.25

I3 1.58 0.34

I4 18053.34 33.67

I5 26.30 1.09

Table 5.3: Total running times in seconds for computing a Gröbner basis of the consid-

ered ideals via ffmodStd

5.4.2 Implementation and Timings

As mentioned above, Algorithm 5.18 is implemented in Singular in the library ffmods-

td.lib. We compare its performance against Algorithm 5.14. The results are summa-
rized in Table 5.3. The examples in this table are the first four examples from Table 5.1
together with I4 from Table 5.2.

Looking at example I4 in Table 5.3, we see that Algorithm 5.18 is much faster. More-
over, the results from this subsection can be used for further improvement of Algo-
rithm 5.14, see the next section.

5.5 Further Optimizations

In Figure 5.1, if we use Algorithm 5.18 or a variant of Buchberger’s algorithm over the
field K = Q(z) instead of using levels 2 to 5 to compute the reduced Gröbner basis Gbj of

Ĩbj , where bj = (pj1, . . . , p
j
m), Algorithm 5.14 can be further improved as in Algorithm 5.19

which computes the reduced Gröbner basis of I with high probability. In lines 8 and
13 of this algorithm, we use Algorithm 5.18 only if there is coefficient swell, otherwise
we use the variant of Buchberger’s algorithm from [10]. In the implementation of this
algorithm, we use the bounds d, N and D defined above internally.

5.5.1 Implementation and Timings

Algorithm 5.19 is implemented in Singular in the library ffmodstd.lib. We compare
its performance against Algorithm 5.14. The results are summarized in Table 5.4 for
Gröbner bases with sparse coefficients and in Table 5.5 for Gröbner bases with dense
coefficients. In these tables, we see that for most examples, Algorithm 5.19 is faster than
Algorithm 5.14.

The overall timings are given in Table 5.6 and Table 5.7. In these tables, we use the
same command ffmodStd as before for Algorithm 5.19.
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Algorithm 5.19 Gröbner bases over K (ffmodStd)

Input: An ideal I = 〈H〉 ⊆ S = K[X], where K = Q(T ) and H = {f1, . . . , fw}.
Output: G ⊆ S, the reduced Gröbner basis of I w.r.t. >.

1: choose a random non-zero point s = (s1, . . . , sm) ∈ Qm such that none of the de-

nominators of the coefficients in H vanishes when evaluated at T = s

2: let Ĩ ⊆ Q(Tz)[X] be defined as in (5.6) w.r.t. z and s

3: choose m distinct random prime numbers p1, . . . , pm

4: j ←− 1, b←− (p1, . . . , pm)

5: bj ←− b

6: Ibj ←− Ĩ|(T,z,X)=(bj ,z,X) ⊆ Q(z)[X]

7: G←− {}, e←− 0

8: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.18 applied to Ibj
9: while e < r do

10: j ←− j + 1

11: bj ←− (pj1, . . . , p
j
m)

12: Ibj ←− Ĩ|(T,z,X)=(bj ,z,X) ⊆ Q(z)[X]

13: let Gbj ⊆ Q(z)[X] be the output of Algorithm 5.18 applied to Ibj
14: let g1,1, . . . , g1,r be the elements in Gb1

15: for i = e+ 1, . . . , r do

16: consider the set

Fi = {gk,i ∈ Gbk | lm(gk,i) = lm(g1,i), 1 ≤ k ≤ j} ⊆ Q(z)[X]

of polynomials whose leading monomials are the same

17: lift the coefficients of Fi to Q(T ) by applying the early termination version of

the sparse multivariate interpolation algorithm, Algorithm 1.4, coefficient-wise

to the set of polynomials Fi

18: if all coefficients of Fi are successfully lifted to Q(T ) then

19: let gi be the polynomial obtained by lifting the Fi to Q(T )[X]

20: G←− G ∪ {gi}
21: e←− e+ 1

22: else

23: break out of the for-loop

24: if I 6⊆ 〈G〉 or G is not the reduced Gröbner basis of 〈G〉 then

25: reapply Algorithm 5.19 by choosing different evaluation points in lines 1 and 3

26: return G
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Ideal
ffmodStd

Algorithm 5.14 Algorithm 5.19

I6 1.07 3.82

I7 12.92 2.18

I8 0.67 0.62

I9 8.51 25.70

I10 21.81 3.44

I11 5.32 0.92

J2 1.25 0.36

J3 155.59 23.35

J6 1.23 0.36

J9 0.14 0.13

Table 5.4: Total running times in seconds for computing a Gröbner basis (with sparse

coefficients) of the considered ideals via ffmodStd

Ideal
ffmodStd

Algorithm 5.14 Algorithm 5.19

J1 7.45 1.13

J4 151.71 4.35

J5 55.31 0.90

J7 104.46 1.96

J8 8.98 0.97

Table 5.5: Total running times in seconds for computing a Gröbner basis (with dense

coefficients) of the considered ideals via ffmodStd
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Example Magma Singular

Ideal
Groebner

std slimgb
ffmodStd

Basis one core 32 cores

I1 17702.41 - - 0.01 0.01

I2 15858.92 - - 0.74 0.25

I3 1.87 65.65 27.96 1.04 0.34

I5 - - 18671.40 2.81 1.09

I6 4642.14 - - 16.51 3.82

I7 - - - 12.73 2.18

I8 0.01 5669.89 0.38 13.38 0.62

I9 - - - 252.43 25.70

I10 - - - 22.52 3.44

I11 - - - 3.52 0.92

J2 - 31654.76 1.18 15.90 0.36

J3 - - - 3494.64 23.35

J6 - 33973.89 1.18 13.45 0.36

J9 - - - 0.20 0.13

Table 5.6: Total running times in seconds for computing a Gröbner basis (with sparse

coefficients) of the considered ideals via GroebnerBasis, std, slimgb, and

ffmodStd

Example Magma Singular

Ideal
Groebner

std slimgb
ffmodStd

Basis one core 32 cores

I4 80.65 2564.01 643.32 88.32 33.67

J1 477.47 193.70 0.31 75.52 1.13

J4 11.92 251.09 3.26 4205.75 4.35

J5 0.01 0.02 0.01 292.40 0.90

J7 0.01 0.02 0.02 984.92 1.96

J8 0.01 0.01 0.01 211.21 0.97

Table 5.7: Total running times in seconds for computing a Gröbner basis (with dense

coefficients) of the considered ideals via GroebnerBasis, std, slimgb, and

ffmodStd
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Some Remarks on the Timings

Modular algorithms over Q perform well at time consuming examples where huge coef-
ficients occur. However, we have seen in Example 5.2.1 that over the field K = Q(T )
modular algorithms over Q alone cannot solve the problems that arise from the arith-
metic of K. The probabilistic algorithm ffmodStd described in this chapter solves these
problems. However, its efficiency depends on the type of the input. To see this, we
distinguish two classes of benchmark problems:

(1) type S-examples : These are examples whose Gröbner bases have sparse coefficients.

(2) type D-examples : These are examples whose Gröbner bases have dense coefficients.

In type S-examples, if there is coefficient swell in the intermediate computations, our
algorithm ffmodStd is faster than other known methods especially for time consuming
examples. More than half of the benchmark problems are type S-examples, see Table 5.6.
However, if no coefficient swell occurs, then in comparison to slimgb, our algorithm,
Algorithm 5.14, is less efficient, check, for example, ideal I8 from Table 5.1 w.r.t. the
degree reverse lexicographic ordering (dp in Singular). Since we are applying modular
algorithms, Algorithm 5.14 is even slower for small examples.

On the other hand, suppose there is coefficient swell in the intermediate computations
for examples of type D. In this chapter, examples of this type are not much investigated.
This is because, as mentioned in the introduction of Chapter 4, an algorithm that
is efficient for sparse polynomials may not be for dense cases. Nevertheless, in the
case where the input ideals are in a polynomial ring with coefficients in K = Q(t),
Algorithm 5.18 described in Section 5.4 solves the coefficient swell problem. An example
of type D is I4, see Table 5.7. In this table, we see that Algorithm 5.19 is faster than
GroebnerBasis. It is also much faster than slimgb and std even if we do not run it in
parallel, that is, even if we run it on a single core.

If no coefficient swell occurs for examples of type D, our algorithm is slower than
other known methods. In order to minimize the time difference between them as in
Table 5.2, we use slimgb which is a variant of Buchberger’s algorithm [10] to compute
the reduced Gröbner bases of ideals in a polynomial ring with coefficients in K = Q(t),
see Algorithm 5.19. However, since we cannot decide which command to use, either
slimgb or Algorithm 5.18, without knowing the output, our implementation tries both
Algorithm 5.18 (the command internally used for this algorithm is ffmodStdOne) and
slimgb in parallel. By using the Singular library parallel.lib [37], this can be done
in Singular as follows:

> LIB "parallel.lib";

> ring r = (0,t), (x,y), dp;

> ideal I = tx+y, y2-txy;

> list commands = list("ffmodStdOne", "slimgb");

> list args = list(list(I), list(I));
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> list L = parallelWaitFirst(commands, args); // perform both tasks in

// parallel and wait for the first of them to finish

> if(typeof(L[2]) != "none")

{

list M = "slimgb", L[2]; // if slimgb finishes first

}

else

{

list M = "ffmodStdOne", L[1]; // if ffmodStdOne finishes first

}

> M;

Once we run this, we take the output M from whatever method finishes first and continue
the remaining computations w.r.t. this method. The examples in Table 5.7 are of type
D, see also the timings in Table 5.5. Note that one can also run the above tasks in
a machine with a single core. In this case, we use Algorithm 5.18 by default in our
implementation.





Chapter 6

Conclusion and Future Work

In this thesis, we have investigated modular algorithms over extension fields of Q with
a focus on Gröbner bases and syzygy modules.

To compute a Gröbner basis of an ideal I in a polynomial ring with coefficients in K
where K = Q(α) is a number field, we have applied modular methods w.r.t. different
prime numbers. However, with this approach there might still be some coefficient swell
in the modular computations. Furthermore, we have observed that the efficiency of
computing such a basis over K strongly depends on the degree of the field extension.
To tackle these problems, the main innovation in our new algorithm nfmodStd is to
factorize the minimal polynomial of α modulo suitable primes such that these factors are
squarefree and irreducible, thereby reducing the degree of the modular field extensions.
One advantage of this algorithm is that it is twofold parallel which increases the speed
of the computation. The algorithm nfmodStd is implemented in the Singular library
nfmodstd.lib [5]. To investigate the performance of nfmodStd, we have compared the
computation time of this algorithm against other known methods such as the Magma
command GroebnerBasis and the Singular commands std and modStd. The results
show that our algorithm nfmodStd performs extremely well in comparison to the above
mentioned methods.

Furthermore, the implementation of this algorithm is not restricted to ideals, it also
works for modules. More so, by slightly modifying this algorithm, we computed gen-
erating sets for syzygy modules. In fact, two slightly different modular algorithms are
presented. To examine their performance, several examples have been considered, and
timing tables comparing them to the Magma command SyzygyModule and the Sin-
gular command syz are presented. For both approaches, the tables show that our
algorithms perform better than the above methods for most of the examples considered
here. However, our second approach, which is implemented in the Singular library
nfmodsyz.lib [7], outperforms the above methods by far, including our former ap-
proach, for all examples.

Another task investigated in this thesis is an efficient method for computing a Gröbner
basis of an ideal I in a polynomial ring with coefficients in K where K = Q(t1, . . . , tm)
is an algebraic function field. Starting from the idea highlighted in the introduction, we
have studied the modular algorithm ffmodStd for computing such a basis which combines
modular methods w.r.t. different prime numbers and sparse interpolation of multivariate
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rational functions. In this study, we have noticed that modular algorithms over Q alone
cannot address the coefficient swell problem in K and, vice-versa, the methods which
we used to avoid the extreme growth of the intermediate coefficients in K alone cannot
improve the efficiency of the total computation. Thus in order to attack this problem, we
used a combination of the two modular algorithms which we call modular algorithms over
K. This combined approach is implemented in the Singular library ffmodstd.lib [6].
To recover the coefficients of the reduced Gröbner basis of I, we use the sparse rational
function interpolation algorithm from [16]. The sparse rational function interpolation
algorithm uses an algorithm which interpolates dense univariate rational functions (resp.
sparse multivariate polynomials) in a black box from given numerical data. Since the
dense (resp. sparse) algorithm requires a bound on the degrees (resp. number of terms)
of the numerators and denominators of the black box rational functions, we use the
early termination version of these algorithms. Moreover, for further optimizations we
have introduced special case modular algorithms over algebraic function fields of one
variable using the early termination version of the dense univariate rational interpolation
algorithm. The efficiency of the algorithm ffmodStd combined with this algorithm is
demonstrated by several examples. The presented timings show that ffmodStd is faster
than GroebnerBasis and the Singular commands std and slimgb, especially for time
consuming examples whose Gröbner bases have sparse coefficients.

On the other hand, from the timing tables, we have also observed that ffmodStd is
limited in terms of efficiency compared to other known methods for input ideals whose
Gröbner bases have dense coefficients. Howbeit, our special case algorithm included in
ffmodStd outperforms the other methods mentioned above for most examples, even if
the reduced Gröbner bases of the input ideals have dense coefficients. In fact, we have
considered two classes of examples: type S-examples and type D-examples. These are
examples whose Gröbner bases have sparse (resp. dense) coefficients. It is clear that
modular algorithms perform well for time consuming examples. In other words, if there
is no coefficient swell in the intermediate computations, then there is no point to use
modular algorithms. From the presented timing tables, we have observed that those
examples where ffmodStd is slower than GroebnerBasis, std, or slimgb are examples
of type D and that their Gröbner bases have no intermediate coefficient swell whereas
for examples of type S, ffmodStd is much faster. Thus, for examples of type S, provided
that there is intermediate coefficient swell, it is preferable to use ffmodStd for computing
Gröbner bases over K.

To improve the efficiency of the algorithm ffmodStd, especially for examples of type D,
we internally run the algorithms slimgb and the special case algorithm in parallel to
compute the reduced Gröbner basis of an ideal with coefficients in K = Q(t), where t is
a single parameter. This allows us to choose the method which finishes the computation
first and to use this algorithm for the remaining computations. Note that this method is
only applied for the case m > 1, that is, if K is a function field of at least two parameters.
With this method included in ffmodStd, we have noticed that the running time is indeed
improved for type D examples as desired. However, we believe that this requires further
investigation since an efficient algorithm recovering sparse rational functions may not
be optimal for dense cases. This is a possible direction for future research.
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Appendix A

Benchmark Problems

A.1 Benchmark Problems for nfmodStd

The ideals given below are the benchmark problems used to demonstrate the efficiency
of Algorithm 2.7. Some of these are chosen from [2, 35] (the ideals I1 and I2 are from
[2], I6 and I7 are from [35]) where the coefficients are replaced by a random algebraic
number. The generators of the remaining ideals except I3b (which is a cyclic ideal
where the coefficients are replaced by random algebraic numbers) are constructed from
randomly chosen monomials and coefficients.

1. ring R = (0,a), (x,y,z), dp;

minpoly = (a^2+1);

poly f1 = (a+8)*x^2*y^2+5*x*y^3+(-a+3)*x^3*z+x^2*y*z;

poly f2 = x^5+2*y^3*z^2+13*y^2*z^3+5*y*z^4;

poly f3 = 8*x^3+(a+12)*y^3+x*z^2+3;

poly f4 = (-a+7)*x^2*y^4+y^3*z^3+18*y^3*z^2;

ideal I1 = f1, f2, f3, f4;

2. ring R = (0,a), (x,y,z), dp;

minpoly = (a^5+a^2+2);

poly f1 = 2*x*y^4*z^2+(a-1)*x^2*y^3*z+(2*a)*x*y*z^2+7*y^3+(7*a+1);

poly f2 = 2*x^2*y^4*z+(a)*x^2*y*z^2-x*y^2*z^2+(2*a+3)*x^2*y*z-12*x+(12*a)*y;

poly f3 = (2*a)*y^5*z+x^2*y^2*z-x*y^3*z+(-a)*x*y^3+y^4+2*y^2*z;

poly f4 = (3*a)*x*y^4*z^3+(a+1)*x^2*y^2*z-x*y^3*z+4*y^3*z^2+(3*a)*x*y*z^3+4*z^2-x+(a)*y;

ideal I2 = f1, f2, f3, f4;

3. ring R = (0,a), (v,w,x,y,z), dp;

minpoly = (a^7-7*a+3);

poly f1 = (a)*v+(a-1)*w+x+(a+2)*y+z;

poly f2 = v*w+(a-1)*w*x+(a+2)*v*y+x*y+(a)*y*z;

poly f3 = (a)*v*w*x+(a+5)*w*x*y+(a)*v*w*z+(a+2)*v*y*z+(a)*x*y*z;

poly f4 = (a-11)*v*w*x*y+(a+5)*v*w*x*z+(a)*v*w*y*z+(a)*v*x*y*z+(a)*w*x*y*z;

poly f5 = (a+3)*v*w*x*y*z+(a+23);

ideal I3a = f1, f2, f3, f4, f5;

4. ring R = (0,a), (u,v,w,x,y,z), dp;

minpoly = (a^7-7*a+3);

poly f1 = (a)*u+(a+2)*v+w+x+y+z;

poly f2 = u*v+v*w+w*x+x*y+(a+3)*u*z+y*z;

poly f3 = u*v*w+v*w*x+(a+1)*w*x*y+u*v*z+u*y*z+x*y*z;
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poly f4 = (a-1)*u*v*w*x+v*w*x*y+u*v*w*z+u*v*y*z+u*x*y*z+w*x*y*z;

poly f5 = u*v*w*x*y+(a+1)*u*v*w*x*z+u*v*w*y*z+u*v*x*y*z+u*w*x*y*z+v*w*x*y*z;

poly f6 = u*v*w*x*y*z+(-a+2);

ideal I3b = f1, f2, f3, f4, f5, f6;

5. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^6+a^5+a^4+a^3+a^2+a+1);

poly f1 = (a+5)*w^3*x^2*y+(a-3)*w^2*x^3*y+(a+7)*w*x^2*y^2;

poly f2 = (a)*w^5+(a+3)*w*x^2*y^2+(a^2+11)*x^2*y^2*z;

poly f3 = (a+7)*w^3+12*x^3+4*w*x*y+(a)*z^3;

poly f4 = 3*w^3+(a-4)*x^3+x*y^2;

ideal I4 = f1, f2, f3, f4;

6. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^12-5*a^11+24*a^10-115*a^9+551*a^8-2640*a^7+12649*a^6-2640*a^5+551*a^4

-115*a^3+24*a^2-5*a+1);

poly f1 = (2*a+3)*w*x^4*y^2+(a+1)*w^2*x^3*y*z+2*w*x*y^2*z^3+(7*a-1)*x^3*z^4;

poly f2 = 2*w^2*x^4*y+w^2*x*y^2*z^2+(-a)*w*x^2*y^2*z^2+(a+11)*w^2*x*y*z^3

-12*w*z^6+12*x*z^6;

poly f3 = 2*x^5*y+w^2*x^2*y*z-w*x^3*y*z-w*x^3*z^2+(a)*x^4*z^2+2*x^2*y*z^3;

poly f4 = 3*w*x^4*y^3+w^2*x^2*y*z^3-w*x^3*y*z^3+(a+4)*x^3*y^2*z^3+3*w*x*y^3*z^3

+(4*a)*y^2*z^6-w*z^7+x*z^7;

ideal I5 = f1, f2, f3, f4;

7. ring R = (0,a), (u,v,w,x,y,z), dp;

minpoly = (a^2+5*a+1);

poly f1 = u+v+w+x+y+z+(a);

poly f2 = u*v+v*w+w*x+x*y+y*z+(a)*u+(a)*z;

poly f3 = u*v*w+v*w*x+w*x*y+x*y*z+(a)*u*v+(a)*u*z+(a)*y*z;

poly f4 = u*v*w*x+v*w*x*y+w*x*y*z+(a)*u*v*w+(a)*u*v*z+(a)*u*y*z+(a)*x*y*z;

poly f5 = u*v*w*x*y+v*w*x*y*z+(a)*u*v*w*x+(a)*u*v*w*z+(a)*u*v*y*z+(a)*u*x*y*z

+(a)*w*x*y*z;

poly f6 = u*v*w*x*y*z+(a)*u*v*w*x*y+(a)*u*v*w*x*z+(a)*u*v*w*y*z+(a)*u*v*x*y*z

+(a)*u*w*x*y*z+(a)*v*w*x*y*z;

poly f7 = (a)*u*v*w*x*y*z-1;

ideal I6 = f1, f2, f3, f4, f5, f6, f7;

8. ring R = (0,a), (w,x,y,z), dp;

minpoly = (a^8-16*a^7+19*a^6-a^5-5*a^4+13*a^3-9*a^2+13*a+17);

poly f1 = (-a^2-1)*x^2*y+2*w*x*z-2*w+(a^2+1)*y;

poly f2 = (a^3-a-3)*w^3*y+4*w*x^2*y+4*w^2*x*z+2*x^3*z+(a)*w^2-10*x^2+4*w*y-10*x*z

+(2*a^2+a);

poly f3 = (a^2+a+11)*x*y*z+w*z^2-w-2*y;

poly f4 = -w*y^3+4*x*y^2*z+4*w*y*z^2+2*x*z^3+(2*a^3+a^2)*w*y+4*y^2-10*x*z-10*z^2

+(3*a^2+5);

ideal I7 = f1, f2, f3, f4;

9. ring R = (0,a), (t,u,v,w,x,y,z), dp;

minpoly = (a^7+10*a^5+5*a^3+10*a+1);

poly f1 = v*x+w*y-x*z-w-y;

poly f2 = v*w-u*x+x*y-w*z+v+x+z;

poly f3 = t*w-w^2+x^2-t;

poly f4 = (-a)*v^2-u*y+y^2-v*z-z^2+u;

poly f5 = t*v+v*w+(-a^2-a-5)*x*y-t*z+w*z+v+x+z+(a+1);

poly f6 = t*u+u*w+(-a-11)*v*x-t*y+w*y-x*z-t-u+w+y;

poly f7 = w^2*y^3-w*x*y^3+x^2*y^3+w^2*y^2*z-w*x*y^2*z+x^2*y^2*z+w^2*y*z^2
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-w*x*y*z^2+x^2*y*z^2+w^2*z^3-w*x*z^3+x^2*z^3;

poly f8 = t^2*u^3+t^2*u^2*v+t^2*u*v^2+t^2*v^3-t*u^3*x-t*u^2*v*x-t*u*v^2*x

-t*v^3*x+u^3*x^2+u^2*v*x^2+u*v^2*x^2+v^3*x^2;

ideal I8 = f1, f2, f3, f4, f5, f6, f7, f8;

A.2 Benchmark Problems for nfmodSyz

The ideals I1, I2, I3a, I4, I5 and I7 from Section A.1 and the submodules given below are
the benchmark problems used to demonstrate the efficiency of Algorithms 3.9 and 3.10.
The generating set of each submodule is constructed from randomly chosen monomials
and coefficients. Note that for all examples we use the same module ordering which is
given below.

1. ring R8 = (0,a), (x,y,z), (c,dp);

minpoly = (a^3+a+1);

vector f1 = [x^2*z+x+(-a)*y, z^2+(a+2)*x];

vector f2 = [y^2+(a)*z+(a), (a+3)*z^3+(-a)*x^2];

vector f3 = [-x*z+(a^2+3)*y*z, x*y+(a^2)*z];

vector f4 = [y*z+(a^2+3)*x*y*z, a*x*y+z+y];

vector f5 = [z^2+(a+3)*x*y, x*z+a*z+x];

module I8 = f1, f2, f3, f4, f5;

2. ring R9 = (0,a), (x,y,z), (c,dp);

minpoly = (a^4+2*a^2+3);

vector f1 = [y*z + (a+7)*x + z, (-a)*x-y-z];

vector f2 = [(a)*x*z^2+y*z^2+(a^2+1), x+y+(a)*z];

vector f3 = [z^2 + a*x*y+a, y^2+y*z+z^2+(a)];

vector f4 = [(a)*x*z^2+y*z^2+(a^2+1), y^2*z^2+(a)*y+z] ;

vector f5 = [x*z+y+(a+1), y*z+(a)*y+x];

module I9 = f1, f2, f3, f4, f5;

3. ring R10 = (0,a), (x,y,z), (c,dp);

minpoly = (a^3+7*a-5);

vector f1 = [(a+8)*x^2*y^2+5*x*y^3, (-a^2+3)*x^3*z+x^2*y*z];

vector f2 = [x^5+2*y^3*z^2, 13*a*y^2*z^3+5*y*z^4];

vector f3 = [8*x^3+(a^2+12)*y^3, x*z^2+(3*a)];

vector f4 = [(-a+7)*x^2*y^4+y^3*z^3, 18*y^3*z^2];

module I10 = f1, f2, f3, f4;

4. ring R11 = (0,a), (x,y,z,w), (c,dp);

minpoly = (a^7+2*a^6+7*a^4+3*a+17);

vector f1 = [(a^3)*w*y^2+(a^3+3*a^2)*x^2*z+(a^2)*w*x+(a)*y*z];

vector f2 = [(a^2)*x^2+(a^2)*w*y+(11*a^2)*x*z+(a)*z^2];

vector f3 = [(-a^4+5*a^2)*w*x+(a)*y*z+(7*a)*w];

vector f4 = [(a^6+2*a^3)*w*x*y+(2*a)*w+(a^2)*y];

vector f5 = [(a^4)*w*x^2*y*z+(a^3)*w^2];

vector f6 = [(a^3)*w^3+(a^3)*x^2+(a^6)*y^2];

module I11 = f1, f2, f3, f4, f5, f6;
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5. ring R12 = (0,a), (x,y,z,w), (c,dp);

minpoly = (a^6+3*a^5+a^3+7*a^2+11);

vector f1 = [(a)*w*y^2+(a^4+3*a^3)*x^2*z, (a^2)*w*x+(a)*y*z];

vector f2 = [(a^2)*x^2+(11*a^3)*x*z, (a)*w*y+(a^3)*z^2];

vector f3 = [(-a^4+5*a^2)*w*x+(a)*y*z, (7*a)*w+(2*a)];

vector f4 = [(a^5+2*a^2)*w*x*y+(a)*y, (-a^3)*w*x+(2*a)*w];

vector f5 = [(a^4)*w*x^2*y*z+(a^3)*w^2, (a^3)*w^3

+(a^3)*x^2+(a^4)*y^2];

module I12 = f1, f2, f3, f4, f5;

6. ring R13 = 0, (x,y,z), (c,dp);

vector f1 = [2*x*y*z^2+7*y^3, 2*x*y^4*z^2-x^2*y^3*z];

vector f2 = [2*x^2*y^4*z+x^2*y*z^2, -x*y^2*z^2+3*x^2*y*z-12*x+12*y ];

vector f3 = [-x*y^3+y^4+2*y^2*z, 2*y^5*z+x^2*y^2*z-x*y^3*z];

vector f4 = [3*x*y^4*z^3+x^2*y^2*z-x*y^3*z, 4*y^3*z^2+3*x*y*z^3

+4*z^2-x+y];

module I13 = f1, f2, f3, f4, f5;

A.3 Benchmark Problems for ffmodStd

The ideals given below are the benchmark problems used to demonstrate the efficiency
of Algorithms 5.14, 5.18, and 5.19. The ideal I2 is taken from Section A.1 where the
coefficients are replaced by random transcendental elements whereas the ideal I8 is taken
from Section A.2.3 in the manual of Singular 4.0.2 where we changed the characteristic
to zero and the ordering to the lexicographic ordering (lp in Singular). The generators
of the remaining ideals are constructed from randomly chosen monomials and coefficients.

1. ring R1 = (0,a), (x,y,z), dp;

poly f1 = (a^10-5*a^9-8*a^8+74*a^7-27*a^6-381*a^5+402*a^4 +760*a^3-1120*a^2-400*a+800)*x*y^4*z^2

+(a^7-a^6-10*a^5+6*a^4+33*a^3-a^2-40*a-20)*x^3*y^2*z +(-a^7+4*a^6+4*a^5-30*a^4+9*a^3

+58*a^2-20*a-40)*x^2*y^3*z+(2*a^7-2*a^6-24*a^5+20*a^4+90*a^3-50*a^2-100*a)*x*y*z^2

+(7*a^3-42*a^2+84*a-56)*y^3+(7*a+1);

poly f2 = (a^9-8*a^8+16*a^7+30*a^6-145*a^5+98*a^4+216*a^3-272*a^2-80*a+160)*x^2*y^4*z+(a^7-13*a^5

-2*a^4+55*a^3+20*a^2-75*a-50)*x^2*y*z^2+(-a^7+3*a^6+10*a^5-34*a^4-25*a^3+115*a^2

-100)*x*y^2*z^2+(2*a^5-16*a^3-4*a^2+30*a+20)*x^2*y*z+(-12*a-12)*x+(a^2+10*a-24)*y;

poly f3 = (2*a^7-20*a^6+70*a^5-60*a^4-240*a^3+736*a^2-800*a+320)*y^5*z+(a^7+3*a^6-18*a^5-26*a^4

+89*a^3+75*a^2-120*a-100)*x^2*y^2*z+(-a^7+5*a^6-a^5-29*a^4+38*a^3+20*a^2-40*a)*x*y^3*z

+(-a^4+5*a^3-6*a^2-4*a+8)*x*y^3+(a^4-8*a^3+24*a^2-32*a+16)*y^4+(2*a^5-8*a^4

-2*a^3+40*a^2-40*a)*y^2*z;

poly f4 = (3*a^11-21*a^10+3*a^9+291*a^8-543*a^7-1167*a^6+3945*a^5+105*a^4-9600*a^3+6600*a^2

+6000*a-6000)*x*y^4*z^3+(a^7-2*a^6-8*a^5+14*a^4+19*a^3-20*a^2-20*a)*x^2*y^2*z+(-a^6

+5*a^5-a^4-29*a^3+38*a^2+20*a-40)*x*y^3*z+(-a^8+10*a^7-26*a^6-44*a^5+303*a^4-310*a^3

-580*a^2+1400*a-800)*y^3*z^2+(3*a^8-3*a^7-51*a^6+45*a^5+315*a^4-225*a^3-825*a^2

+375*a+750)*x*y*z^3+(4*a^4-40*a^2+100)*z^2+(-a-1)*x+(a^2-2*a)*y;

ideal I1 = f1,f2,f3,f4;

2. ring R2 = (0,a), (x,y,z), dp;

poly f1 = (a^10-a^9-10*a^8+7*a^7+32*a^6-11*a^5-34*a^4+13*a^3-a^2-40*a-20)*x^3*y^2*z+(-a^7+4*a^6

+4*a^5-30*a^4+9*a^3+58*a^2-20*a-40)*x^2*y^3*z+(2*a^7-2*a^6-24*a^5

+20*a^4+90*a^3-50*a^2-100*a)*x*y*z^2+(7*a^3-42*a^2+84*a-56)*y^3;
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poly f2 = (a^8-6*a^7+4*a^6+38*a^5-69*a^4-40*a^3+136*a^2-80)*x^2*y^4*z+(a^8-7*a^7-13*a^6+89*a^5

+69*a^4-365*a^3-215*a^2+475*a+350)*x^2*y*z^2+(-a^7+3*a^6+10*a^5-34*a^4-25*a^3+115*a^2

-100)*x*y^2*z^2+(2*a^5-16*a^3-4*a^2+30*a+20)*x^2*y*z+(-12*a-12)*x+(a^2-a-2)*y;

poly f3 = (a^8-12*a^7+55*a^6-100*a^5-60*a^4+608*a^3-1136*a^2+960*a-320)*y^5*z+(a^7+3*a^6-18*a^5

-26*a^4+89*a^3+75*a^2-120*a-100)*x^2*y^2*z+(-a^7+5*a^6-a^5-29*a^4+38*a^3+20*a^2

-40*a)*x*y^3*z+(-a^4+5*a^3-6*a^2-4*a+8)*x*y^3+(a^4-8*a^3+24*a^2-32*a+16)*y^4

+(2*a^5-8*a^4-2*a^3+40*a^2-40*a)*y^2*z;

poly f4 = (a^12-7*a^11+a^10+97*a^9-181*a^8-389*a^7+1315*a^6

+35*a^5-3200*a^4+2200*a^3+2000*a^2

-2000*a)*x*y^4*z^3+(a^7-2*a^6-8*a^5+14*a^4+19*a^3-20*a^2-20*a)*x^2*y^2*z

+(-a^6+5*a^5-a^4-29*a^3+38*a^2+20*a-40)*x*y^3*z+(-a^8+10*a^7-26*a^6-44*a^5

+303*a^4-310*a^3-580*a^2+1400*a-800)*y^3*z^2+(3*a^8-3*a^7-51*a^6+45*a^5+315*a^4

-225*a^3-825*a^2+375*a+750)*x*y*z^3+(4*a^4-40*a^2+100)*z^2+(-a-1)*x;

ideal I2 = f1,f2,f3,f4;

3. ring R3 = (0,a), (x,y,z,w), dp;

poly f1 = (a^4+2*a^3-4*a^2-10*a-5)*x^2*z+(a^2-4*a+4)/(a^2+3*a)*y^2*w+(-a^2-2*a-1)*x^2

+(-7*a^2+28*a-28)/(a^3+3*a^2)*y^2+(-6*a^3-6*a^2+30*a+30)*x*z+(a^3-2*a^2

-5*a+10)/(a^3+3*a^2)*y*z+(a+1)/(a+3)*x*w+(2*a-4)/(a+3)*y*w+(6*a^3+24*a^2

+11*a-7)/(a^2+3*a)*x+(-14*a^2+27*a+2)/(a^3+3*a^2)*y+(9*a^4+27*a^3-44*a^2

-135*a-5)/(a^2+3*a)*z+(a-3)/(a+3)*w+(-9*a^2-34*a+20)/(a^2+3*a);

poly f2 = (a^2+2*a+1)*x^2+(11*a^3+11*a^2-55*a-55)*x*z+(a^5-10*a^3+25*a)*z^2+(a-2)*y*w

+(-17*a-17)*x+(-7*a+14)/(a)*y+(-2*a^3-33*a^2+10*a+165)*z+(a)*w+(a+35);

poly f3 = (a^3-2*a^2-5*a+10)*y*z+(-a^4-a^3)*x*w+(7*a^3+7*a^2)*x+(-a+2)*y

+(a^3-5*a)*z+(3*a^3+7*a)*w+(-21*a^2-a-49);

poly f4 = (a^3-a^2-2*a)*x*y*w+(-7*a^2+7*a+14)*x*y+(a^3+a^2)*x*w+(-3*a^2+6*a)*y*w

+(-7*a^2-7*a)*x+(21*a^2-41*a-2)/(a)*y+(-3*a^2+2)*w+(21*a^2+a-14)/(a);

poly f5 = (a^6-8*a^4-2*a^3+15*a^2+10*a)*x^2*y*z*w+(-7*a^5+56*a^3+14*a^2-105*a

-70)*x^2*y*z+(-a^4+3*a^2+2*a)*x^2*y*w+(a^6+2*a^5-4*a^4-10*a^3

-5*a^2)*x^2*z*w+(-6*a^5+6*a^4+42*a^3-30*a^2-60*a)*x*y*z*w

+(7*a^3-21*a-14)*x^2*y+(-7*a^5-14*a^4+28*a^3+70*a^2+35*a)*x^2*z

+(42*a^4-42*a^3-294*a^2+210*a+420)*x*y*z+(-a^4-2*a^3-a^2)*x^2*w

+(6*a^3-6*a^2-12*a)*x*y*w+(-6*a^5-6*a^4+30*a^3+30*a^2)*x*z*w

+(9*a^4-18*a^3-45*a^2+90*a)*y*z*w+(7*a^3+14*a^2+7*a)*x^2+(-42*a^2+42*a

+84)*x*y+(42*a^4+42*a^3-210*a^2-210*a)*x*z+(-63*a^3+126*a^2+315*a

-630)*y*z+(6*a^3+6*a^2)*x*w+(-9*a^2+18*a)*y*w+(9*a^4-45*a^2)*z*w+(a)*w^2

+(-42*a^2-42*a)*x+(63*a-126)*y+(-63*a^3+315*a)*z+(-9*a^2-14)*w

+(63*a^2+49)/(a);

poly f6 = (a^3)*w^3+(a^2+2*a+1)/(a)*x^2+(a^2-4*a+4)/(a^3)*y^2+(-21*a^2)*w^2

+(-6*a-6)/(a)*x+(2*a-4)/(a^2)*y+(147*a)*w+(-343*a+10)/(a);

ideal I3 = f1,f2,f3,f4,f5,f6;

4. ring R4 = (0,a), (v,w,x,y,z), dp;

poly f1 = (4*a^3+24*a^2+45*a+27)*v^2+(a^4+2*a^3+3*a^2+4*a+2)*x*z+(-a^2-2*a-1)*x

+(5*a^3+5*a^2+10*a+10)*z+(-5*a-5);

poly f2 = (a^3)*w^3+(-a^7-6*a^5-12*a^3-8*a)*z^3+(-18*a^2)*w^2+(3*a^5+12*a^3

+12*a)*z^2+(108*a)*w+(-3*a^3-6*a)*z+(a-216);

poly f3 = (8*a^4+36*a^3+54*a^2+27*a)*v^3+(-a^3-3*a^2-3*a-1)*x^3+(a^4+8*a^3

+9*a^2+16*a+14)*x*y*z+(-15*a^2-30*a-15)*x^2+(-a^2-8*a-7)*x*y

+(5*a^3+35*a^2+10*a+70)*y*z+(-75*a-75)*x+(-5*a-35)*y-125;

poly f4 = (a^2+8*a+7)*x*y+(a^5+a^4+2*a^3+2*a^2)*w*z+(-a^3-a^2)*w+(5*a+35)*y

+(-6*a^4-6*a^3-12*a^2-12*a)*z+(6*a^2+6*a);

poly f5 = (a^3+21*a^2+147*a+343)*y^3+(-a^3-2*a^2-a)*x^2+(-10*a^2-10*a)*x+(-25*a);

poly f6 = (a^3+a^2)*w*x+(2*a^2+17*a+21)*v*y+(2*a^3+3*a^2+4*a+6)*v*z



138 A. Benchmark Problems

+(-2*a-3)*v+(5*a^2)*w+(-6*a^2-6*a)*x+(-30*a);

poly f7 = (4*a^3+28*a^2+57*a+36)*v^2+(a^2+7*a)*w*y+(a^3+12*a^2+21*a-98)*y^2

+(2*a^4+3*a^3+5*a^2+6*a+2)*x*z+(-14*a-21)*v

+(a^2-5*a)*w+(-2*a^2-3*a-1)*x+(-6*a-42)*y+(11*a^3+12*a^2+22*a+24)*z

+(-17*a+18);

poly f8 = (4*a^4+44*a^3+133*a^2+156*a+63)*v^2*x*y+(a^6+8*a^5+4*a^4-26*a^3-37*a^2

-14*a)*x^3*y+(4*a^5+68*a^4+373*a^3+714*a^2+441*a)*v^2*y^2

+(a^7+14*a^6+46*a^5-44*a^4-175*a^3-98*a^2)*x^2*y^2+(4*a^7+16*a^6

+29*a^5+41*a^4+42*a^3+18*a^2)*v^2*w*z+(a^9+a^8-a^7-3*a^6

-8*a^5-10*a^4-4*a^3)*w*x^2*z+(-4*a^5-16*a^4-21*a^3-9*a^2)*v^2*w

+(-a^7-a^6+3*a^5+5*a^4+2*a^3)*w*x^2+(20*a^3+200*a^2+465*a

+315)*v^2*y+(15*a^5+105*a^4-45*a^3-345*a^2-210*a)*x^2*y+(10*a^6

+130*a^5+330*a^4-770*a^3-980*a^2)*x*y^2+(-24*a^6-96*a^5-174*a^4-246*a^3

-252*a^2-108*a)*v^2*z+(10*a^8-10*a^6-20*a^5-60*a^4-40*a^3)*w*x*z

+(-6*a^8-6*a^7+6*a^6+18*a^5+48*a^4+60*a^3+24*a^2)*x^2*z

+(24*a^4+96*a^3+126*a^2+54*a)*v^2+(-10*a^6+30*a^4+20*a^3)*w*x

+(6*a^6+6*a^5-18*a^4-30*a^3-12*a^2)*x^2+(75*a^4+450*a^3

-675*a^2-1050*a)*x*y+(25*a^5+300*a^4+525*a^3-2450*a^2)*y^2

+(25*a^7-25*a^6-50*a^4-100*a^3)*w*z+(-60*a^7+60*a^5

+120*a^4+360*a^3+240*a^2)*x*z+(-25*a^5+25*a^4+50*a^3)*w

+(60*a^5-180*a^3-120*a^2)*x+(125*a^3+625*a^2-1750*a)*y+(-150*a^6+150*a^5

+300*a^3+600*a^2)*z+(150*a^4-150*a^3-300*a^2);

ideal I4 = f1,f2,f3,f4,f5,f6,f7,f8;

5. ring R5 = (0,a), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10), dp;

poly f1 = (a^3+2*a)*x2*x5+(3*a^3-20*a^2-69*a+54)*x1*x6+(a^4+7*a^3)*x4*x9

+(-a)*x2+(-6*a^2-12)*x5+6;

poly f2 = (a^5+4*a^3+4*a)*x5^2+(a^4+7*a^3-a^2-7*a)*x3*x8+(a^5

+8*a^4+7*a^3)*x4*x9+(-2*a^3-4*a)*x5+(5*a^3+30*a^2-35*a)*x8+(a);

poly f3 = (a^2+14*a+49)*x4^2+(a^3+a^2+a+1)*x3+(a^2-a)*x10+(5*a^2+5);

poly f4 = (2*a^5+33*a^4+168*a^3+245*a^2)*x8^2+(-2*a^4+17*a^3+9*a^2)*x6*x9

+(5*a^2-5*a)*x7*x10;

poly f5 = (a^4+2*a^3-35*a^2)*x2*x4*x7+(a^3-3*a^2+3*a-1)*x10^3+(-6*a^3-12*a^2

+210*a)*x4*x7+(a^3-3*a^2+2*a-6)*x5+(-a+3);

poly f6 = (a^2-8*a-9)*x3*x6+(a^4)*x9^2+(5*a-45)*x6;

poly f7 = (a^3-9*a^2)*x6*x9+(a^2+7*a)*x8+(a^3-a^2)*x10;

poly f8 = (a^3)*x7^2+(-8*a^2-56*a)*x8+(a^3)*x9+(a-1)*x10;

poly f9 = (a^2-18*a+81)*x6^2+(-14*a^4)*x7*x9;

poly f10 = (3*a-2)*x1+(a^2)*x2+(-6*a);

poly f11 = (a+7)*x4+(a^3+7*a^2+2*a+14)*x5+(a)*x7+(-a-7);

poly f12 = (a^2-10*a+9)*x6+(a^2)*x9+(a^2-a)*x10;

ideal I5 = f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12;

6. ring R6 = (0,a,b), (x,y,z,w), dp;

poly f1 = (a^2)*x^2+(11*a^2*b)*x*z+(a^3)*z^2+(b)*y*w+(-22*a*b^2+4*a)*x+(a*b^2)*y

+(-4*a^2*b+22*a*b)*z+(a)*w+(a^2*b+4*a*b^2-44*b^2+4);

poly f2 = (a^2*b)*x*z+(-a^2)*x*w+(-a^3*b-2*a*b^2)*x+(2*a*b)*z+(-2*a+7)*w

+(-2*a^2*b+7*a*b-4*b^2);

poly f3 = (a*b^2)*y^2*z+(-2*b^3)*y^2+(2*a^2*b)*y*z+(-a^2)*z*w+w^2+(-4*a*b^2)*y

+(-a^3*b+a^3)*z+(4*a*b)*w+(3*a^2*b^2-2*a^2*b);

poly f4 = w^2+(b^2)*y+(2*a*b+1)*w+(a^2*b^2+2*a*b);

poly f5 = (a^6)*x^2*z^4+(-8*a^5*b)*x^2*z^3+(4*a^5)*x*z^4+(2*a*b)*y*w^4

+(24*a^4*b^2)*x^2*z^2+(-32*a^4*b)*x*z^3+(4*a^4)*z^4+(-a^2*b)*x*y*z*w

+(8*a^2*b^2)*y*w^3+(2*a^2)*w^4+(-32*a^3*b^3)*x^2*z+(-a^3*b^2)*x*y*z
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+(96*a^3*b^2)*x*z^2+(-32*a^3*b)*z^3+(2*a*b^2)*x*y*w+(-a^3)*x*z*w+(-2*a*b)*y*z*w

+(12*a^3*b^3)*y*w^2+(8*a^3*b)*w^3+(16*a^2*b^4)*x^2+(2*a^2*b^3)*x*y

+(-a^4*b-128*a^2*b^3)*x*z+(-2*a^2*b^2)*y*z+(96*a^2*b^2)*z^2+(2*a^2*b)*x*w

+(8*a^4*b^4+4*b^2)*y*w+(-2*a^2)*z*w+(12*a^4*b^2)*w^2+(2*a^3*b^2+64*a*b^4)*x

+(2*a^5*b^5+4*a*b^3)*y+(-2*a^3*b-128*a*b^3)*z+(8*a^5*b^3+4*a*b)*w

+(2*a^6*b^4+4*a^2*b^2+64*b^4);

ideal I6 = f1,f2,f3,f4,f5;

7. ring R7 = (0,a,b,c), (x,y,z), dp;

poly f1 = (a^5*b)*x^2*y^3*z+(-2*a^6)*x^2*y^3+(3*a^4*b*c)*x^2*y^2*z

+(4*a^4*b*c)*x*y^3*z+(-6*a^5*c)*x^2*y^2+(-8*a^5*c)*x*y^3

+(3*a^3*b*c^2)*x^2*y*z+(12*a^3*b*c^2)*x*y^2*z+(4*a^3*b*c^2)*y^3*z

+(2*a^3*b^2+a^2*b^4)*x*y*z^2+(-6*a^4*c^2)*x^2*y+(-24*a^4*c^2)*x*y^2

+(-8*a^4*c^2+7*a^3)*y^3+(a^2*b*c^3)*x^2*z+(-8*a^4*b-4*a^3*b^3

+12*a^2*b*c^3)*x*y*z+(12*a^2*b*c^3)*y^2*z+(2*a^2*b^2*c+a*b^4*c)*x*z^2

+(4*a^2*b^2*c+2*a*b^4*c)*y*z^2+(-2*a^3*c^3)*x^2+(8*a^5+4*a^4*b^2

-24*a^3*c^3)*x*y+(-24*a^3*c^3+21*a^2*c)*y^2+(-8*a^3*b*c-4*a^2*b^3*c

+4*a*b*c^4)*x*z+(-16*a^3*b*c-8*a^2*b^3*c+12*a*b*c^4)*y*z

+(4*a*b^2*c^2+2*b^4*c^2)*z^2+(8*a^4*c+4*a^3*b^2*c-8*a^2*c^4)*x+(16*a^4*c

+8*a^3*b^2*c-24*a^2*c^4+21*a*c^2)*y+(-16*a^2*b*c^2-8*a*b^3*c^2

+4*b*c^5)*z+(16*a^3*c^2+8*a^2*b^2*c^2-8*a*c^5+7*c^3);

poly f2 = (a^7*b-a^6*b*c)*x^2*y^4*z+(-2*a^8+2*a^7*c)*x^2*y^4+(4*a^6*b*c

-4*a^5*b*c^2)*x^2*y^3*z+(4*a^6*b*c-4*a^5*b*c^2)*x*y^4*z+(-8*a^7*c

+8*a^6*c^2)*x^2*y^3+(-8*a^7*c+8*a^6*c^2)*x*y^4+(6*a^5*b*c^2

-6*a^4*b*c^3)*x^2*y^2*z+(16*a^5*b*c^2-16*a^4*b*c^3)*x*y^3*z+(4*a^5*b*c^2

-4*a^4*b*c^3)*y^4*z+(a^5*b^2+a^3*b^3*c-7*a^3*b^2)*x^2*y*z^2

+(-a^3*b^2)*x*y^2*z^2+(-12*a^6*c^2+12*a^5*c^3)*x^2*y^2

+(-32*a^6*c^2+32*a^5*c^3)*x*y^3+(-8*a^6*c^2+8*a^5*c^3)*y^4+(-4*a^6*b

-4*a^4*b^2*c+4*a^4*b*c^3+28*a^4*b-4*a^3*b*c^4+2*a^3*b)*x^2*y*z

+(24*a^4*b*c^3+4*a^4*b-24*a^3*b*c^4)*x*y^2*z+(16*a^4*b*c^3

-16*a^3*b*c^4)*y^3*z+(a^4*b^2*c+a^2*b^3*c^2-7*a^2*b^2*c)*x^2*z^2

+(4*a^4*b^2*c+4*a^2*b^3*c^2-30*a^2*b^2*c)*x*y*z^2+(-2*a^2*b^2*c)*y^2*z^2

+(4*a^7+4*a^5*b*c-8*a^5*c^3-28*a^5+8*a^4*c^4-4*a^4)*x^2*y

+(-48*a^5*c^3-4*a^5+48*a^4*c^4)*x*y^2+(-32*a^5*c^3

+32*a^4*c^4)*y^3+(-4*a^5*b*c-4*a^3*b^2*c^2+a^3*b*c^4+28*a^3*b*c

-a^2*b*c^5+2*a^2*b*c)*x^2*z+(-16*a^5*b*c-16*a^3*b^2*c^2+16*a^3*b*c^4

+120*a^3*b*c-16*a^2*b*c^5+8*a^2*b*c)*x*y*z+(24*a^3*b*c^4

+8*a^3*b*c-24*a^2*b*c^5)*y^2*z+(4*a^3*b^2*c^2+4*a*b^3*c^3

-29*a*b^2*c^2)*x*z^2+(4*a^3*b^2*c^2+4*a*b^3*c^3

-32*a*b^2*c^2)*y*z^2+(4*a^6*c+4*a^4*b*c^2-2*a^4*c^4-28*a^4*c

+2*a^3*c^5-4*a^3*c)*x^2+(16*a^6*c+16*a^4*b*c^2-32*a^4*c^4-120*a^4*c

+32*a^3*c^5-16*a^3*c)*x*y+(-48*a^4*c^4-8*a^4*c+48*a^3*c^5)*y^2

+(-16*a^4*b*c^2-16*a^2*b^2*c^3+4*a^2*b*c^5+116*a^2*b*c^2-4*a*b*c^6

+8*a*b*c^2)*x*z+(-16*a^4*b*c^2-16*a^2*b^2*c^3+16*a^2*b*c^5+128*a^2*b*c^2

-16*a*b*c^6+8*a*b*c^2)*y*z+(4*a^2*b^2*c^3+4*b^3*c^4-30*b^2*c^3)*z^2

+(16*a^5*c^2+16*a^3*b*c^3-8*a^3*c^5-116*a^3*c^2+8*a^2*c^6

-16*a^2*c^2-12*a)*x+(16*a^5*c^2+16*a^3*b*c^3-32*a^3*c^5-128*a^3*c^2

+32*a^2*c^6-16*a^2*c^2+a*b)*y+(-16*a^3*b*c^3-16*a*b^2*c^4+4*a*b*c^6

+120*a*b*c^3-4*b*c^7+8*b*c^3)*z+(16*a^4*c^3+16*a^2*b*c^4

-8*a^2*c^6-120*a^2*c^3+8*a*c^7-16*a*c^3+b*c-22*c);

poly f3 = (a^6*b^2+a^5*b*c-2*a^5*b)*y^5*z+(-2*a^7*b-2*a^6*c+4*a^6)*y^5

+(a^5*b+5*a^4*b)*x^2*y^2*z+(-a^5*b-a^4*b^2)*x*y^3*z+(5*a^5*b^2*c

+5*a^4*b*c^2-10*a^4*b*c)*y^4*z+(-2*a^6-10*a^5)*x^2*y^2+(2*a^6

+2*a^5*b-a^4*c)*x*y^3+(-10*a^6*b*c-10*a^5*c^2+20*a^5*c+a^4)*y^4

+(2*a^4*b*c+10*a^3*b*c)*x^2*y*z+(a^4*b*c-3*a^3*b^2*c
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+20*a^3*b*c)*x*y^2*z+(10*a^4*b^2*c^2-2*a^4*b*c-2*a^3*b^2*c+10*a^3*b*c^3

-20*a^3*b*c^2)*y^3*z+(-4*a^5*c-20*a^4*c)*x^2*y+(-2*a^5*c+6*a^4*b*c

-40*a^4*c-3*a^3*c^2)*x*y^2+(-20*a^5*b*c^2+4*a^5*c+4*a^4*b*c

-20*a^4*c^3+40*a^4*c^2-2*a^3*c^2+4*a^3*c)*y^3+(a^3*b*c^2

+5*a^2*b*c^2)*x^2*z+(5*a^3*b*c^2-3*a^2*b^2*c^2+40*a^2*b*c^2)*x*y*z

+(10*a^3*b^2*c^3+2*a^3*b^2*c-2*a^3*b*c^2-6*a^2*b^2*c^2+10*a^2*b*c^4

-20*a^2*b*c^3+20*a^2*b*c^2)*y^2*z +(-2*a^4*c^2-10*a^3*c^2)*x^2

+(-10*a^4*c^2+6*a^3*b*c^2-80*a^3*c^2-3*a^2*c^3)*x*y+(-20*a^4*b*c^3

-4*a^4*b*c+4*a^4*c^2+12*a^3*b*c^2-20*a^3*c^4+40*a^3*c^3-40*a^3*c^2

-6*a^2*c^3+6*a^2*c^2)*y^2+(3*a^2*b*c^3-a*b^2*c^3+20*a*b*c^3)*x*z

+(5*a^2*b^2*c^4+4*a^2*b^2*c^2+2*a^2*b*c^3-6*a*b^2*c^3

+5*a*b*c^5-10*a*b*c^4+40*a*b*c^3)*y*z+(-6*a^3*c^3+2*a^2*b*c^3-40*a^2*c^3

-a*c^4)*x+(-10*a^3*b*c^4-8*a^3*b*c^2-4*a^3*c^3+12*a^2*b*c^3-10*a^2*c^5

+20*a^2*c^4-80*a^2*c^3-6*a*c^4+4*a*c^3)*y+(a*b^2*c^5+2*a*b^2*c^3+2*a*b*c^4

-2*b^2*c^4+b*c^6-2*b*c^5+20*b*c^4)*z+(-2*a^2*b*c^5-4*a^2*b*c^3-4*a^2*c^4

+4*a*b*c^4-2*a*c^6+4*a*c^5-40*a*c^4-2*c^5+c^4);

poly f4 = (a^5*b*c)*x^2*y^2*z+(-a^4*b)*x*y^3*z+(-a^4*b^3+4*a^3*b^2)*y^3*z^2

+(3*a^2*b^3)*x*y*z^3+(-2*a^6*c)*x^2*y^2+(2*a^5)*x*y^3+(2*a^4*b*c^2)*x^2*y*z

+(4*a^4*b*c^2-3*a^3*b*c)*x*y^2*z +(4*a^5*b^2-16*a^4*b-2*a^3*b*c)*y^3*z

+(-18*a^3*b^2)*x*y*z^2+(-3*a^3*b^3*c+12*a^2*b^2*c)*y^2*z^2+(3*a*b^3*c)*x*z^3

+(6*a*b^3*c)*y*z^3+(-4*a^5*c^2)*x^2*y+(-8*a^5*c^2+6*a^4*c)*x*y^2+(-4*a^6*b

+16*a^5+4*a^4*c)*y^3+(a^3*b*c^3)*x^2*z +(36*a^4*b+8*a^3*b*c^3-3*a^2*b*c^2)*x*y*z

+(12*a^4*b^2*c+4*a^3*b*c^3-48*a^3*b*c-6*a^2*b*c^2)*y^2*z+(-18*a^2*b^2*c)*x*z^2

+(-3*a^2*b^3*c^2-36*a^2*b^2*c+12*a*b^2*c^2)*y*z^2+(6*b^3*c^2)*z^3

+(-2*a^4*c^3)*x^2+(-24*a^5-16*a^4*c^3 +6*a^3*c^2)*x*y+(-12*a^5*b*c-8*a^4*c^3

+48*a^4*c+12*a^3*c^2)*y^2+(36*a^3*b*c+4*a^2*b*c^4-a*b*c^3)*x*z+(12*a^3*b^2*c^2

+72*a^3*b*c+8*a^2*b*c^4-48*a^2*b*c^2-6*a*b*c^3)*y*z+(-a*b^3*c^3-36*a*b^2*c^2

+4*b^2*c^3+4*b^2*c)*z^2+(-24*a^4*c-8*a^3*c^4+2*a^2*c^3-a)*x+(-12*a^4*b*c^2-48*a^4*c

-16*a^3*c^4+48*a^3*c^2+12*a^2*c^3)*y+(4*a^2*b^2*c^3+72*a^2*b*c^2+4*a*b*c^5

-16*a*b*c^3-16*a*b*c-2*b*c^4)*z+(-4*a^3*b*c^3-48*a^3*c^2-8*a^2*c^5

+16*a^2*c^3+16*a^2*c+4*a*c^4+b-2*c);

ideal I7 = f1,f2,f3,f4;

8. ring R8 = (0,u1,u2,u3,u4), (x1,x2,x3,x4,x5,x6,x7), lp;

poly f1 = -x4*u3+x5*u2;

poly f2 = x1*u3+2*x2*u1-2*x2*u2-2*x3*u3-u1*u4+u2*u4;

poly f3 = -2*x1*x5+4*x4*x6+4*x5*x7+x1*u3-2*x4*u1-2*x4*u4-2*x6*u2-2*x7*u3+u1*u2+u2*u4;

poly f4 = -x1*x5+x1*x7-x4*u1+x4*u2-x4*u4+x5*u3+x6*u1-x6*u2+x6*u4-x7*u3;

poly f5 = -x1*x4+x1*u1-x5*u1+x5*u4;

poly f6 = -2*x1*x3+x1*u3-2*x2*u4+u1*u4+u2*u4;

poly f7 = x1^2*u3+x1*u1*u2-x1*u2^2-x1*u3^2-u1*u3*u4+u3*u4^2;

ideal I8 = f1, f2, f3, f4, f5, f6, f7;

9. ring R9 = (0,a,b,c,d), (x,y,z,w,v), dp;

poly f1 = (d)*x*z+(c)*y*z+(a^2*b^2+a*b^2*c)*w*v+(2*a+d)*z+(-7*a*b*c+a*b*d-7*b*c^2

+b*c*d)*w+(-2*a^3*b-2*a^2*b*c)*v+(14*a^2*c-2*a^2*d+14*a*c^2-2*a*c*d);

poly f2 = (b^2)*w^2+(b*d)*x+(c)*y+(-a)*z+(-4*a*b)*w+(4*a^2+2*a*b+d);

poly f3 = z^2+(a*b^2*d)*w*v+(-7*b*c*d+b*d^2)*w +(-2*a^2*b*d)*v+(14*a*c*d-2*a*d^2);

poly f4 = (c*d^2)*x^2*y+(d^3)*x^2+(4*a*c*d)*x*y+(a*b^3)*w^2+(a*b*d)*x*v+(4*a*d^2

-7*c*d+d^2)*x+(4*a^2*c)*y +(-4*a^2*b^2)*w+(2*a^2*b)*v

+(4*a^3*b+4*a^2*d-14*a*c+2*a*d);

poly f5 = (c^2)*y^2+(b^2*c)*w^2+(a^2*b^2)*v^2+(2*c*d)*y+(-4*a*b*c)*w+(-14*a*b*c

+2*a*b*d)*v+(4*a^2*c+49*c^2-14*c*d+2*d^2);

poly f6 = (d^2)*x^2+(d)*x*z+(b*d)*x*w +(2*a*d)*x+(2*a)*z+(2*a*b)*w;
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ideal I9 = f1, f2, f3, f4, f5, f6;

10. ring R10 = (0,a,b,c,d,e,f,g), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10), dp;

poly f1 = x1*x3+(c+a)*x1*x7+b*x10;

poly f2 = x2*x5+c*x4*x9+g*x1*x6;

poly f3 = g*x3*x8+(a+g)*x4*x9+f*x5^2;

poly f4 = x4^2+d*x3+e*x10;

poly f5 = (e+f)*x8^2-(2b)*x6*x9+5*x7*x10;

poly f6 = x10^3+a*x2*x7*x4+d*x5;

poly f7 = x9^2+x3*x6;

poly f8 = x6*x9+bc*x10;

poly f9 = b*x7^2-8*x8+d*x9+x10;

poly f10 = x6^2-14*c*x7*x9;

poly f11 = x1+a*x2;

poly f12 = x4+d*x5;

ideal I10 = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12;

11. ring R11 = (0, a,b,u1,u2,u3,u4), (x,y,z,w,v), dp;

poly f1 = w2-az+bx+y;

poly f2 = x1*u3+2*x2*u1-2*x2*u2-2*x3*u3;

poly f3 = u1*x2-u4*yz+b*u3*wv;

poly f4 = x^2+11b*x*z+(a)*z^2+y*w;

poly f5 = (a)*xz+(a-2)*y2 +v2+(a+7)*z;

poly f6 = (a-5)*w-7v+wy+(a+1)*xz+(a+3)*v2;

ideal I11 = f1, f2, f3, f4, f5, f6;

12. ring S1 = (0,t1,t2,t3,t4), (x1,x2,x3,x4,x5,x6), dp;

poly f1 = (96*t1+59)/(13*t1^2)*x3*x4^2*x6 +10/(23*t1^3+4*t1)*x3*x5^2*x6;

poly f2 = (1165*t1^2)/(252*t2^2)*x1*x2^3+(89*t2^2)/(82*t1^3)*x1*x2;

poly f3 = (10*t2^3)/(33*t1^3)*x1^3+(5*t2)/(41*t3)*x1;

poly f4 = (3977*t1^3+533*t1^2*t2+2173*t1*t2^2+806*t1*t2+3286*t2^2)/(3977*t1^2

+6014*t1)*x1^3+(22*t1*t2^2)/(5*t1^2 +61*t2^2)*x2^3

+(42*t1^3+65*t2^3)/(65*t1^2*t2 +47*t1)*x1^2;

poly f5 = (3741*t1^4+94)/43*x2*x3^2+(8*t1^2)/21*x3*x6^2+(54*t1^2)*x3^2;

poly f6 = (96*t1^2*t2^2+41*t1*t2^2*t4)/(95*t1^2*t3^2+32*t2^3*t4)*x1*x2*x3*x5

+(31*t1*t2*t3^2+11*t2^2*t3*t4)/(39*t1^4+51*t1^3*t2)*x3^3*x5+(21*t1*t4

+90*t3^2)/(37*t1*t3+62*t2^2)*x3*x4*x5^2+(63*t1^2*t2*t3+27*t2^4)/(16*t1^3*t3

+67*t2^4)*x2*x3^2;

poly f7 = (726*t1^4+205*t1*t2^4)/(110*t2^3)*x1^2+(61*t2^2)/(36*t1^2)*x1*x3;

ideal J1 = f1, f2, f3, f4, f5, f6, f7;

13. ring S2 = (0,t1,t2,t3,t4,t5,t6,t7,t8), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14), lp;

poly f1 = (10*t1^2*t2+t2^2)*x1^3+(4*t1^2+9*t2)/(2*t2^3)*x2^2;

poly f2 = (17*t1*t6+12*t4*t5)/(8*t3*t4+15*t7)*x2*x4*x9

+(7*t1*t2+6*t2*t4)/(3*t2^2+7*t8^2)*x11^3;

poly f3 = (16*t2^2+17*t4^2)/(7*t1*t3+17*t1*t4)*x4*x12^2

+(19*t2+15*t3*t4)/(13*t3)*x10*x13^2;

poly f4 = (19*t1^2+16*t1*t2*t3)/(7*t1*t2*t5+4*t2*t4*t5)*x2*x3*x4

+(11*t3+6*t5)/(19*t1^2+7*t2*t5)*x4^2;

poly f5 = (3*t1*t3+10*t2*t4)/(15*t1^2*t6+10*t1*t3^2)*x1^2*x2

+(6*t1*t2*t5+7*t1*t3*t4)/(10*t1^2*t5+3*t2^3)*x3^2;

poly f6 = (15*t1*t2+20*t2*t3^2)/(t1^3)*x1+(t2)/(19*t1*t2+6*t1*t3)*x3^2;

poly f7 = (19*t5)/(12*t1)*x1*x2+(7*t3*t5)/(11*t1)*x5*x11;
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poly f8 = (13*t3)/(17*t4)*x1*x4*x7+1/(8*t1)*x3*x4*x9;

poly f9 = (8*t1*t4+20*t2*t8+12*t3*t7)/(11*t1^2+17*t2*t3+9*t2)*x2

+(16*t1*t4+8*t2*t7+9*t3*t8)/(11*t1^2+t1+13*t2*t3)*x3;

poly f10 = (18*t1*t3+8*t1*t8)/(18*t5*t7+9*t5*t8)*x1^2*x3 +(2*t1^2

+2*t1*t8)/(10*t4*t6+11)*x3;

poly f11 = 15/(2*t2)*x1*x2*x7;

poly f12 = (10*t1^3+13*t1*t2*t3)/(13*t3*t4+7*t4^2)*x2*x3*x12+(11*t1*t5

+12*t3*t4)/(17*t1^2+6*t1*t4)*x7*x9;

poly f13 = (3*t2^3+5*t2^2)/(14*t1)*x4*x5+(8*t1)/5*x7;

poly f14 = (20*t3^2+13*t4^2)/(11*t1*t2)*x1*x2*x3

+(2*t3+19*t4^2)/(17*t2^2+17*t3*t4)*x2*x6*x7;

poly f15 = (11*t1^2*t4+t1*t3^2+20*t1*t3*t5)/(13*t1^2*t3+8*t1*t3*t5+16*t5)*x3*x5*x10

+(2*t1+11*t2+2*t5)/(20*t1*t2+8*t2*t3+12*t2)*x3*x6*x7;

poly f16 = (14*t2*t4+15*t3^2+11*t3*t4)/12*x1^3+(6*t1^2*t2+8*t1^2*t3

+9*t1*t2^2)/(13*t1*t4^2+8*t1+t2^2)*x1*x2^2;

poly f17 = (9*t1)/17*x2*x7*x9+(19*t1)/(3*t2)*x4*x5*x9;

poly f18 = 1/(20*t1)*x2*x6+(8*t2^2)/(13*t1*t3)*x9;

poly f19 = (5*t1*t3)/(7*t2^2)*x4*x6*x7 +(16*t2)/(15*t1^2)*x7*x8^2;

poly f20 = (2*t1*t4+19*t2*t4)/(4*t1*t2)*x3*x7*x9+(3*t1*t2+4*t1*t4)/(4*t1^2+t3*t4)*x5^2;

ideal J2 = f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,

f15,f16,f17,f18,f19,f20;

14. ring S3 = (0,t1,t2,t3,t4,t5,t6,t7,t8), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14), lp;

poly f1 = (19*t2*t3)/(10*t1^2)*x1*x3+(5*t1)/(t2)*x5*x6*x7;

poly f2 = (3*t2)/(19*t3)*x1^2+(t4^2)/(t2*t3)*x1*x3^2;

poly f3 = (11*t1^2)*x1+(13*t1^3+17*t1)/(8*t2^2)*x2^2;

poly f4 = (2*t1*t6^2+t1*t7+20*t2^2)/(9*t1*t2*t6 +3*t1*t3*t6+3*t1*t7)*x2*x4^2

+(11*t1*t4+18*t1+5*t3*t4)/(15*t1*t4+17*t2*t6+8*t4*t7)*x5^3;

poly f5 = (11*t2*t4^2)/(19*t1*t2*t3+11*t2*t5^2+8*t5^3)*x3^2*x6+(2*t1^2*t2

+16*t1^2*t3+4*t1^2*t5)/(19*t1^3+19*t1*t3*t4+t2^2)*x7*x11*x12;

poly f6 = 1/18*x3*x5^2+8/9*x5;

poly f7 = (14*t1^2+17*t1*t5^2)/(5*t1^2*t3+t2*t5)*x1*x3*x7+(19*t1^2*t4

+12*t1*t5^2)/(12*t2^2*t4 +13*t2*t3)*x4;

poly f8 = (19*t2*t3)/(10*t1^2)*x4^3+(8*t1)/(9*t2*t5)*x4*x10*x13;

poly f9 = (5*t1*t2*t4+8*t1*t2+8*t1*t4*t5)/(10*t3^3+15*t3*t4^2

+20*t3*t5^2)*x3^2*x4 +(8*t1^2*t4+6*t4^3+t4^2*t5)/(19*t1*t3*t5

+13*t1*t5+3*t2*t3*t5)*x4*x6^2;

poly f10 = 1/3*x1*x10^2+(16*t1^2)/(9*t2*t8)*x3*x6*x12;

poly f11 = (19*t2)/(3*t1*t3)*x1^2*x4 +(16*t2^2)/(5*t1*t6)*x2*x4;

poly f12 = (18*t1*t3*t5+8*t2^2*t3+6*t2*t3)/(3*t1*t2*t4+3*t1*t3^2

+6*t1*t3*t4)*x2^2*x11+(6*t1*t2*t5+8*t2^2+9*t2*t3^2)/(16*t4*t5)*x7*x8^2;

poly f13 = (7*t1*t7+6*t2*t6)/(4*t4*t6+2*t5^2)*x1*x8^2

+(9*t1*t2+19*t2*t3)/(13*t2*t6+18*t4^2)*x3*x4;

poly f14 = (11*t3+14*t4)/(14*t3+10*t6)*x2*x6^2

+(6*t3*t6+17*t4)/(13*t1^2+20*t3)*x8*x9*x12;

poly f15 = (20*t1*t2+5*t2*t5^2+19*t2*t5*t6)/(t1^2*t3+19*t1*t2*t6

+4*t1*t3^2)*x1*x7+(4*t1*t4 +19*t5*t6

+19*t5)/(15*t1*t5+8*t3^2+20*t4*t5)*x4*x5*x7;

poly f16 = (t1*t2)/(5*t3^2)*x1^2*x2+(14*t2*t3)/(t1^2)*x1*x4^2;

poly f17 = 9/8*x2*x3*x4+(13*t1^2*t2)*x3*x4^2;

poly f18 = (6*t1*t3*t6+5*t1*t7*t8+19*t2^2*t8)/(19*t1^2*t6+18*t1*t2*t4

+13*t1*t5)*x4*x6^2+(t1^2*t5+3*t1^2*t8+t1*t3*t4)/(13*t1*t4

+19*t1*t6*t8+3*t2*t3)*x4*x12^2;

ideal J3 = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14,

f15, f16, f17, f18;
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15. ring S4 = (0,t1,t2,t3,t4,t5,t6,t7,t8), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14), lp;

poly f1 = 8/(17*t2)*x3^3+(2*t1^3)*x3*x4*x7;

poly f2 = (18*t1^3+t2*t3+8*t2*t4)/(6*t1*t3*t4+6*t1*t3+14*t4^3)*x1*x2*x3

+(14*t1^2*t4+4*t4^3)/(15*t1^2*t4+19*t1*t2^2+4*t1*t2)*x2^2*x3;

poly f3 = (4*t1*t2^2+16*t1*t2*t6+14*t1*t2)/(12*t1*t2*t5+12*t1*t4*t5

+13*t2^2*t3)*x4^2*x8+(20*t1*t3+5*t1*t4+10*t2*t3)/(15*t1^2+20*t1*t6

+13*t8)*x10^2*x13;

poly f4 = (11*t1*t3)/(4*t2^2)*x6^2+(t1*t7)/(t2*t4)*x6*x9^2;

poly f5 = (16*t2*t4+12*t5^2)/(10*t2^2+t4*t5)*x1*x2^2+(10*t1*t3*t5

+20*t2^2*t3)/(17*t1^2*t3+15*t1*t2*t4)*x4;

poly f6 = (4*t1*t4+8*t2^2*t4+13*t4^3)/(11*t1^2+15*t1*t4^2+3*t4)*x2*x4*x6

+(5*t2^3+9*t2^2*t4+2*t2^2)/(16*t1^2*t3+5*t1^2+3*t2*t3*t4)*x4*x9^2;

poly f7 = (18*t1^2+18*t2*t3)/(13*t1*t7+4*t2^2)*x4^2*x7 +(11*t1*t2*t3

+10*t1*t2*t4)/(11*t1*t5+14*t2*t4*t7)*x5*x6*x7;

poly f8 = (14*t1*t2^2+11*t3^3)/(14*t1*t2^2+11*t1+14*t2*t3)*x1*x3*x5;

poly f9 = (2*t2*t5)/(t1*t3)*x2*x4*x8+11/7*x3;

poly f10 = (9*t1+19*t2*t3^2+17*t3^2*t4)/(13*t1*t2^2+10*t1*t3*t4)*x1*x2*x7

+(8*t1*t2*t4+5*t2*t4+3*t3^3)/(7*t1*t4+2*t2*t3*t4)*x3*x6;

poly f11 = (t5)/(12*t2)*x3*x6*x8+(t1*t4^2)/(5*t2^3)*x3;

poly f12 = (10*t2*t4*t5+14*t3^2*t5+5*t4^3)/(14*t2*t3+6*t4*t5^2

+4*t5^2)*x1*x4*x7+(19*t1*t2^2 +10*t1*t3*t5+2*t1)/(10*t1*t2*t4+4*t2^3

+t2^2*t3)*x4*x5*x7;

poly f13 = (9*t1^2*t4+14*t1*t5+6*t2*t3^2)/(13*t1^2*t2+17*t1*t4*t5

+12*t1*t5)*x2*x9^2+(16*t1^2*t4+19*t2^2*t5+12*t2*t3*t5)/(10*t2*t3*t4

+7*t2*t4+18*t3^2*t4)*x3*x10^2;

poly f14 = 13/(16*t1)*x1*x2*x4;

poly f15 = (t1*t3+12*t3*t4+t4)/(2*t1*t2+4*t1*t4+11*t2)*x1*x4

+(3*t1^2+15*t1*t3*t4+17*t2)/(15*t2^2*t3)*x2*x3*x5;

poly f16 = (16*t1^3+2*t1)*x5*x10^2+(6*t1^2)*x6*x7*x9;

poly f17 = (4*t1*t2+12*t3^3)/(11*t2^2)*x5*x11^2+(2*t1*t2^2+18*t1

+13*t3^2)/(10*t1*t3^2+6*t2*t3^2)*x6^2;

poly f18 = (9*t4)/(8*t1^2*t5+13*t1*t2*t3

+12*t1*t3*t5)*x1*x2*x5+(14*t1*t2*t5+14*t1*t3*t4

+7*t2^2*t3)/(4*t1^2*t3+t1*t2^2+19*t2*t3*t5)*x4;

poly f19 = (9*t1*t3+6*t2*t8)/(9*t1*t5+t3*t8)*x3^2*x9

+(11*t1^2+18*t2)/(16*t1^2+8*t2*t4)*x3*x5*x7;

ideal J4 = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14,

f15, f16, f17, f18, f19;

16. ring S5 = (0,t1,t2,t3), (x1,x2,x3,x4,x5,x6,x7), lp;

poly f1 = (5*t2^2)/(2*t3^2)*x2^3+(8*t1+16*t3^2)/(5*t1*t2*t3+18*t1*t2)*x2*x3^2;

poly f2 = (12*t1^2)/(19*t2^2)*x1*x2+(16*t3^2)/(5*t1^3)*x4^2*x5;

poly f3 = (5*t1^3+4*t1)*x2^2*x5;

poly f4 = 1/(3*t1)*x1^2+(10*t2^2)*x1*x2*x3;

poly f5 = (2*t1*t2+9*t2*t3)/(12*t1^2*t3+9*t2*t3^2)*x3*x4*x7+(8*t1^2+19*t1*t3^2)*x4^3;

poly f6 = (17*t1*t2)*x1*x3^2;

poly f7 = 2/(4*t1^2+7*t1+3*t2)*x1*x2+(4*t1^3)*x2^2*x4;

ideal J5 = f1, f2, f3, f4, f5, f6, f7;

17. ring S6 = (0,t1,t2,t3,t4,t5,t6,t7,t8), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14), lp;

poly f1 = (10*t1^2*t2+t2^2)*x1^3+(4*t1^2+9*t2)/(2*t2^3)*x2^2;

poly f2 = (10*t1^2*t2+t2^2)*x1^3+(4*t1^2+9*t2)/(2*t2^3)*x2^2;

poly f3 = (17*t1*t6+12*t4*t5)/(8*t3*t4+15*t7)*x2*x4*x9

+(7*t1*t2+6*t2*t4)/(3*t2^2+7*t8^2)*x11^3;

poly f4 = (16*t2^2+17*t4^2)/(7*t1*t3+17*t1*t4)*x4*x12^2

+(19*t2+15*t3*t4)/(13*t3)*x10*x13^2;
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poly f5 = (19*t1^2+16*t1*t2*t3)/(7*t1*t2*t5+4*t2*t4*t5)*x2*x3*x4

+(11*t3+6*t5)/(19*t1^2+7*t2*t5)*x4^2;

poly f6 = (3*t1*t3+10*t2*t4)/(15*t1^2*t6+10*t1*t3^2)*x1^2*x2

+(6*t1*t2*t5+7*t1*t3*t4)/(10*t1^2*t5+3*t2^3)*x3^2;

poly f7 = (15*t1*t2+20*t2*t3^2)/(t1^3)*x1+(t2)/(19*t1*t2+6*t1*t3)*x3^2;

poly f8 = (19*t5)/(12*t1)*x1*x2+(7*t3*t5)/(11*t1)*x5*x11;

poly f9 = (13*t3)/(17*t4)*x1*x4*x7+1/(8*t1)*x3*x4*x9;

poly f10 = (8*t1*t4+20*t2*t8+12*t3*t7)/(11*t1^2+17*t2*t3+9*t2)*x2+(16*t1*t4

+8*t2*t7+9*t3*t8)/(11*t1^2+t1+13*t2*t3)*x3;

poly f11 = (18*t1*t3+8*t1*t8)/(18*t5*t7+9*t5*t8)*x1^2*x3

+(2*t1^2+2*t1*t8)/(10*t4*t6+11)*x3;

poly f12 = 15/(2*t2)*x1*x2*x7;

poly f13 = (10*t1^3+13*t1*t2*t3)/(13*t3*t4+7*t4^2)*x2*x3*x12

+(11*t1*t5+12*t3*t4)/(17*t1^2+6*t1*t4)*x7*x9;

poly f14 = (3*t2^3+5*t2^2)/(14*t1)*x4*x5+(8*t1)/5*x7;

poly f15 = (20*t3^2+13*t4^2)/(11*t1*t2)*x1*x2*x3+(2*t3

+19*t4^2)/(17*t2^2+17*t3*t4)*x2*x6*x7;

poly f16 = (11*t1^2*t4+t1*t3^2+20*t1*t3*t5)/(13*t1^2*t3

+8*t1*t3*t5+16*t5)*x3*x5*x10+(2*t1+11*t2

+2*t5)/(20*t1*t2+8*t2*t3+12*t2)*x3*x6*x7;

poly f17 = (14*t2*t4+15*t3^2+11*t3*t4)/12*x1^3+(6*t1^2*t2

+8*t1^2*t3+9*t1*t2^2)/(13*t1*t4^2+8*t1+t2^2)*x1*x2^2;

poly f18 = (9*t1)/17*x2*x7*x9+(19*t1)/(3*t2)*x4*x5*x9;

poly f19 = 1/(20*t1)*x2*x6+(8*t2^2)/(13*t1*t3)*x9;

poly f20 = (5*t1*t3)/(7*t2^2)*x4*x6*x7+(16*t2)/(15*t1^2)*x7*x8^2;

poly f21 = (2*t1*t4+19*t2*t4)/(4*t1*t2)*x3*x7*x9

+(3*t1*t2+4*t1*t4)/(4*t1^2+t3*t4)*x5^2;

ideal J6 = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14,

f15, f16, f17, f18, f19, f20, f21;

18. ring S7 = (0, t1,t2,t3,t4,t5), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10), dp;

poly f1 = (28*t2)/(41*t1)*x1^2*x2^2+95/18*x1^3;

poly f2 = (84*t1^3+63*t1*t2^2)/(26*t1^3+55*t2*t3^2)*x1*x5^3+(82*t1^3

+85*t1*t2*t3^2)/(65*t1^3*t2+69*t2^4)*x1^2*x3*x6;

poly f3 = (27*t1^4+34*t1^3*t2)/(69*t1^3*t2+82*t2^3)*x4*x7^3

+(83*t1^4+3*t2^3)/(61*t1^2*t2)*x3*x7*x9;

poly f4 = (99*t2)/(97*t1)*x1*x3*x7^2+(35*t1^3)/(71*t3^2*t4)*x5*x6*x8;

poly f5 = (7*t1)/(44*t2)*x2*x3^2 +(18*t1^3)/(53*t2)*x2^2;

ideal J7 = f1, f2, f3, f4, f5;

19. ring S8 = (0, t1,t2,t3,t4,t5), (x1,x2,x3,x4,x5,x6,x7,x8,x9,x10), dp;

poly f1 = (9*t1^2+9*t1+35*t2^2)/(26*t1*t2+48*t2)*x3^2*x7^2;

poly f2 = (19*t1*t2^2*t3+27*t1*t2*t3^2+80*t2^2*t3^2)/(67*t1^3*t3

+26*t1^2*t2*t3+7*t1^2*t2*t4)*x1*x2*x3*x4+(79*t1^3*t3+11*t1^2*t2^2

+16*t2^4)/(66*t1^3*t2+90*t1^3*t3+41*t1*t2*t3^2)*x3^3*x7;

poly f3 = (19*t1)/49*x1*x3^2*x7+(62*t1)*x6*x8;

poly f4 = (31*t1)/(45*t2)*x3^2*x6+(71*t2)/(44*t1)*x1^2*x8;

poly f5 = (37*t1^2)/(8*t2^2)*x1*x2*x3^2+83/(49*t1)*x1^2*x3*x4;

ideal J8 = f1, f2, f3, f4, f5;

20. ring S9 = (0,u1,u2,u3,u4,u5), (a,b,x,y,z,u,v,w), dp;

poly f1 = (36*u1)*z-136;

poly f2 = (66*u1^2)*a*z+(78*u1^2*u2)*z*v+(-1056*u1)*a

+(90*u5)*x+336*y+(-90*u1)*u;

poly f3 = (-162*u1^2)*a^2+(50*u1)*a*y+(180*u1^2)*a*z+(55*u1^2)*z*u



A.3. Benchmark Problems for ffmodStd 145

+(-284*u1^2*u2)*a*v+(60*u1*u2)*y*v+(-112*u4)*b

+(260*u5)*x+(70*u3*u5)*w;

poly f4 = (28*u1^3*u2)*a*z*v+(-648*u1^2)*a^2+(36*u4*u5)*b*x

+(128*u1)*a*y+(36*u1*u4)*b*z+(-300*u1^2)*a*u

+(40*u1)*y*u+(44*u1*u2*u5)*x*v+(192*u3*u5)*w;

poly f5 = (-162*u1^2*u4)*a^2*b+(2*u1*u4)*a*b*y+(3*u1^2*u5)*a*x*u

+(4*u1^2*u2*u3*u5)*a*v*w+(6*u3*u4*u5)*b*w;

poly f6 = (u2*u4)*b*y+(u1^3)*z^2+(-55*u1*u3*u5)*z*w;

poly f7 = (-162*u4*u5)*b*x+(u1^2*u2^2)*v^2;

poly f8 = (28*u1^2*u2*u5)*u*v+(u3^2*u5^2)*w^2;

poly f9 = (u2*u4)*b*y+(u1^3)*z^2+(-55*u1*u3*u5)*z*w;

poly f10 = (-240*u1)*a+112*y+(420*u1)*z+(-64*u1*u2)*v;

ideal J9 = f1, f2, f3, f4, f5, f6, f7, f8, f9, f10;
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