A Catalogue of Criteria for Evaluating Formal
Methods and Its Application

Thomas Deif3, Martin Kronenburg, Dirk Zeckzer

{deiss|kronburg|zeckzer}@informatik.uni-kl.de

04/1997

Sonderforschungsbereich 501

Universitat Kaiserslautern
Erwin-Schrodinger Strafle
D-67653 Kaiserslautern

A Catalogue of Criteria for Evaluating Formal Methods
and Its Application™

Thomas Deifl;, Martin Kronenburg, Dirk Zeckzer

Abstract

A large set of criteria to evaluate formal methods for reactive systems is presented.
To make this set more comprehensible, it is structured according to a Concept-Model of
formal methods. It is made clear that it is necessary to make the catalogue more specific
before applying it. Some of the steps needed to do so are explained. As an example the
catalogue is applied within the context of the application domain building automation
systems to three different formal methods: SDL, statecharts, and a temporal logic.

1 Introduction

Today, more and more software systems are constructed which are part of other systems.
Typically, these software systems maintain an ongoing interaction with their environment.
This class of systems is termed reactive systems since they typically react on stimuli of their
environment. Such systems often have to show a complex behavior to fulfill the tasks they
are intended for.

To make precise statements about such systems and especially about their behaviors formal
description techniques can be used. Thereby we mean description techniques which are
based on well-defined syntactical constructs which have a well-defined semantics. Besides
being unambiguous, formal descriptions have further advantages. For example, they can be
analyzed with mathematical rigor or they can be used to generate test cases.

In addition to a precise definition of the syntax and semantics of a formal description tech-
nique, it should be defined precisely what should be the content of a formal description and
how this content should be arranged in a formal description. Also, the activities working on
such descriptions should be defined precisely, i.e. products and processes, as understood e.g.
in [Ost87], have to be defined precisely. A formal description technique together with such
descriptions of products and processes will be called a formal method here.?

Up to now a broad spectrum of formal methods for describing systems and their properties
has been developed. This rises the problem which of them is the most helpful one when
developing a specific system in a specific context. In literature, this problem has already
been considered several times throughout the last years. E.g. in [Bro96] requirements for

*This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Sonder-
forschungsbereich (SFB) 501, Development of Large Systems with Generic Methods.

'n the following, we will use the term formal method also for description techniques with not strictly
formally or even informally described syntax, semantics, products, and processes.

formal description techniques and some models to be expressed by them are identified. In
[ACJT96] a set of criteria is listed and applied to seven different formal methods, including
even a programming language. From these and other publications a large set of criteria has
been compiled. This set has been extended based on experience gained by the authors when
performing several case studies on the formal specification of reactive systems.

In general, by a criterion one aspect of a formal method is investigated. For example, the
readability of descriptions written by using a specific formal description technique can be
examined. In the catalogue, the criteria are given in the form of questions, and examples of
useful answers representing possible attributes of formal methods are proposed. But it is left
as an open problem, how a specific attribute contributes to the quality of a formal method.

Since the catalogue consists of a large set of criteria investigating very different aspects of
formal methods, e.g. their semantics or the processes related to a formal method, the catalogue
is structured and criteria covering similar aspects are arranged in groups. This structure is
based on a Concept-Model of formal methods. Furthermore, some of the criteria investigate
the same aspect, but with a varying degree of detail. Where appropriate, such criteria are
arranged with respect to a refinement relation.

Because the collected criteria cover a broad range of aspects related to formal methods,
there is the problem, that they are too general to be really useful in a specific application.
As a first step to make the catalogue more specific the kind of systems described and the
kind of descriptions considered are restricted. The criteria presented here are intended for the
evaluation of formal methods for describing reactive systems and their behaviors. Descriptions
considered directly are specifications of systems and their behaviors and designs of systems.
Implementations are considered only indirectly by investigating the relationship between
specifications and designs on the one hand and implementations on the other hand. This
means for example to ask, whether an implementation can be derived from a specification by
successive refinement steps.

Although the criteria become more specific by these restrictions, they and the spectrum of
aspects covered by the catalogue are still too general. As an example, it is not specific enough
to ask whether descriptions are readable. It has to be stated precisely on the one hand, when
a description shall be considered readable and how this can be measured. On the other hand
it has to be made clear, for whom such a description shall be readable and which background
such a person has. It might be even necessary to rephrase the question or to replace it by
several more specific ones to get the information needed for the evaluation. These problems
and partial solutions for some of them are discussed in this report.

Therefore, the criteria catalogue as presented here should be considered only as a first step
towards evaluating formal methods in a precise and well-defined way. It should be clear,
that such evaluations are necessarily based to some degree on the subjective experiences and
opinions of the individuals which contribute the information about the formal methods. But
on the other hand, the criteria themselves, their application in a specific context, and their
contribution to an overall evaluation have to be as precise as possible. In its current state,
as presented here, the catalogue is no more than a structured collection of criteria. Making
the catalogue and its application more specific and precise is left open to future work.

As an example, the catalogue is applied to three different formal methods used by the authors
for specifying control systems in the application domain building automation systems. The
formal methods used are SDI. [SDLa], statecharts [Har87], and a real-time temporal logic
called tRTTL [KPG96]. Two purposes are pursued by this application of the catalogue.

Mainly, the experience of the authors made by using these formal methods are recorded. At
second, as far as possible, the formal methods are compared to detect some relative strengths
and weaknesses.

The paper is structured as follows: In section 2 the Concept-Model of formal methods, which
is used to structure the criteria catalogue, and the main notions related to formal methods
are introduced. In section 3 the notion criterion and its use is explained. The problems
arising from the generality of single criteria and the complete catalogue and some possible
solutions are discussed in this section, too. The criteria catalogue itself and its structure is
presented in section 4. The application of the criteria catalogue is illustrated by an example
in section 5. The report ends with some remarks which describe how this catalogue can be
improved by further applications of it, see section 6.

2 Concept-Model of Formal Methods

In this section the main notions and concepts relevant in the context of a formal method are
clarified and comprised in the Concept-Model of formal methods which is depicted in figure 1.
This model is used to structure the criteria catalogue.

Figure 1 has to be seen as an entity-relationship diagram [Che76] where each box represents
a set of entities and each arrow represents a set of relationships. Since all relationship sets
are n : m mappings no mapping is depicted in this diagram in order to keep it clear. In the
following the notion concept instead of entity is used.

FDTs
written*
in
Producing | SUPPOIt | Producing [Produce Use | Using support | Ysing
Guidelines P Activities > FSDs Activities [Guidelines
repre-
sent +
|:| product oriented part Moddls
|:| process oriented part

Figure 1: Concept-Model of formal methods

The basic concept within this model is that of formal description techniques (FDTs). The
other concepts are considered with respect to FDTs. An FDT provides a syntar and a
semantics. The syntax is a formal language, i.e. an alphabet of atomic symbols and a set
of rules defining in which way the words of the formal language can be constructed. The

semantics defines mathematically the meaning of these words.

FDTs are used to write down formal system descriptions (F'SDs). A formal system description
is a document written in one or more FDTs representing models of a system. A model is an
abstraction of a specific system. Such abstractions of a system are needed since usually a
system is too complex to describe all its features in detail. A system can be described either
explicitly by presenting models of it or implicitly by stating its properties. The concepts
FDTs, formal system descriptions, and models constitute the product oriented part of the
Concept-Model.

In the process oriented part of the Concept-Model the activities dealing with the formal sys-
tem descriptions are considered. Most of the activities can be assigned to two main classes of
activities: producing and using activities. By producing activities formal system descriptions
are produced as outputs. We regard activities changing formal system descriptions also as
producing activities. Using activities use formal system descriptions as inputs. Moreover,
there are activities, for example learning how to apply an FDT, which are not directly related
to one of these two main classes. In the criteria catalogue they will be investigated separately.

Activities mainly specify what has to be done with a formal system description. Additionally,
it has to be stated, how activities based on one or more FDTs can or should be performed.
This should include both, a well-defined description how to perform processes and a precise
explanation how to structure products and what information they should contain, see [Ost87].
Today, for most formal methods neither well-defined and precisely described processes nor
precise descriptions of the content and structure of formal descriptions exist. This information
is mostly given in the form of more informal guidelines and rules. They can be of a more
general nature or specific for one formal description technique. We will call the combination
of an FDT with a set of guidelines or rules, even if they are given in an informal way, a formal
method, see also [BH93].

In figure 1 two concepts are omitted: Persons and Tools. They are not depicted since there
is a large number of different relations between these two concepts and the other ones of the
Concept-Model: Persons play a lot of different roles and tools can support different kinds
of activities. Depicting all relations would make the Concept-Model in figure 1 too complex
and confusing. Nevertheless, we will take the different roles and relations into account when
presenting the catalogue in section 4.

A similar approach to clarify the principles relevant in the context of a formal method is
given in [Bro96]. There, the author presents the following principles for a formal method?* to
make it a useful tool in system development:

e formal syntax,

e formal semantics,

e clear conceptual system model,

e uniform notion of an interface,

e sufficient expressiveness and descriptive power,

e concept of development techniques with a proper notion of refinement and implemen-
tation.

{Note, that in [Bro96] the notion FDT is used for that, what we have defined as formal method.

The first two principles are comprised by our concept FDTs, the following three principles
are part of our concept Models, and the last principle corresponds to the process oriented part
of our Concept-Model.

3 Annotations to the Criteria Catalogue

Before the criteria catalogue is presented in section 4.2 several annotations have to be made in
order to make clear how this catalogue has to be read and utilized. Therefore we first explain
the notion criterion; in the second part we point out what has to be done and considered
when applying the criteria catalogue to a formal method.

3.1 Criterion

In order to evaluate a formal method it has to be characterized, i.e. the atiributes of the
considered formal method have to be found out and stated explicitly. To support this task
criteria are used that investigate different aspects of formal methods, so-called attribute types.
In the following we define what a criterion is and explain in which way a criterion will be
represented in the catalogue of section 4.2.

Let F be a set of formal methods and A a set of attribute values. Then a criterion C is
a function C : F — 24, where 24 is the power set of A. By this definition it is made
clear that a criterion C assigns a specific attribute to a formal method f € F, namely the
attribute C(f) € \A. An example for a criterion is a function C that assigns to a formal
method f the set of metrical temporal properties that can be expressed using f, e.g. C(f) =
{bounded response, bounded invariance}.

Considering this definition there are three problems that have to be solved. Firstly, it has
to be defined what contributes to a formal method f, i.e. what syntax and semantics is
considered and what rules and guidelines are taken into account. Secondly, the set A of the
attribute values of a criterion has to be determined. This includes a precise definition of each
attribute value. Finally, the function C itself has to be defined, this means it has to be stated
which subset of A, i.e. which attribute, is assigned to which formal method f.

Usually, it is easy to make clear what contributes to a formal method. In contrast to this, up
to now, very often it is neither possible to enumerate all attribute values of A exhaustively
nor it is possible to define them precisely. Considering for example the effort needed to learn
to write good system descriptions using a formal method, no-one would deny that this is an
attribute of a formal method. But there is still the problem to define what is meant by effort
and good system descriptions. Moreover, it is necessary to characterize the background of the
person learning to use the formal method. As a consequence of this difficulty the assignment
of an attribute to a formal method, i.e. the definition of a criterion, is a difficult task.

Although these problems obviously exist, we think that it is already now possible and useful
to present a criteria catalogue. This structured collection of criteria has to be seen as an
interim report and as a hint to what has to be done in the future. In order to represent
a criterion C in the catalogue a question is given that focuses on the attribute type that
is investigated by the criterion. A question instead of a description of the attribute type
investigated by a criterion C is utilized in order to simplify the assignment of attributes to
a formal method f. By using a question an answer given to this question with respect to f

can be interpreted as the attribute C(f).

Obviously, this kind of determining C(f) depends on the subjective view of the person an-
swering the question, but it is a first step to the characterization of a formal method using
criteria. An important goal is to replace as many questions as possible by precise definitions
of possible attribute values, resulting in a well-defined function C : F — 24. Nevertheless,
we are just at the beginning and therefore we have to use the question-variant.

To overcome this lack of precision and objectivity the following aspects have to be considered.
It is necessary to define formally in a precise way the attribute values of each criterion. This
can be done by introducing appropriate mathematical models. See for example [Bro96] where
several mathematical models of systems and their description have been presented. Based on
such mathematical models there are a lot of criteria for which an assignment of an attribute
for a specific formal method is easily possible just by analyzing it. But there are also several
criteria that require empirical data, for example the one mentioned above dealing with the
effort needed to learn to write good system descriptions. In such cases we suggest to perform
controlled experiments in the sense of [Bas96] in order to acquire the data needed.

3.2 Application of the Criteria Catalogue

When applying the criteria catalogue to a formal method two tasks have to be performed:
the tailoring of the criteria catalogue and the acquisition of data. Because of the current
representation of the criteria catalogue, i.e. the question-variant, the acquisition of data just
means to answer the given questions. In the following we will therefore concentrate on the
tailoring of the criteria catalogue.

Besides the general problems described in the previous section, e.g. the general difficulty to
enumerate the possible attribute values of a criterion, there is another reason that necessitates
a tailoring of the criteria catalogue. The criteria catalogue presented in section 4.2 is a general
one. This means that a wide spectrum of attributes of formal methods is investigated in a
general manner. Since the catalogue is usually applied with respect to a specific purpose
and within a given context, it has to be adapted to become specific for an application. The
steps that have to be performed in order to tailor the criteria catalogue are described in the
following.

Define the Purpose of the Application of the Criteria Catalogue

At first it is stated which formal methods are investigated and for which purpose; for example
in order to record in a structured way experiences made in a previous project or in order to
determine whether a set of formal methods is suited for the use in a planned project.

Define the Context of the Application of the Criteria Catalogue
To define the context of an application several aspects have to be considered, for example:

e the application domain and the relevant models within this domain,
e the kind of descriptions that are created, e.g. specification or design documents,
e intended uses of a formal system description, e.g. verification or documentation,

e the background of the persons intended to use a description.

This list contains only some examples of aspects that contribute to the context; many further
aspects can be relevant for a specific application of the criteria catalogue.

This information about the context as well as the purpose is needed in order to adapt the
criteria catalogue in the next tailoring step.

Adapt the Criteria Catalogue

Based on the defined purpose and context two adaptions have to be made: the set of relevant
criteria and their corresponding attribute values have to be determined. Criteria considered
not to be relevant for the defined purpose and context are deleted. For example, if the
purpose of the application of the criteria catalogue is the recording of experiences, and none
were made with respect to changing a formal system description, then criteria investigating
this aspect are not relevant. Furthermore, although the criteria catalogue is considered to be
comprehensive for evaluating formal methods used for the specification and design of reactive
systems, it might be necessary to add new criteria in order to capture attribute types of formal
methods which are not taken into consideration by any of the criteria of the catalogue.

The second adaption concerns the set of attribute values of each relevant criterion. As far as
it is possible these sets should be stated and the meaning of each attribute value defined. As
already mentioned this is a very difficult task and for a large number of criteria this can not
be done as precisely as it should be. Nevertheless, it should be explained what it means that
a specific attribute is assigned to a formal method.

Assess the Criteria

The three steps described so far are sufficient for the tailoring of the criteria catalogue in order
to characterize formal methods. This step is only needed if the purpose of the application of
the criteria catalogue implies a valuation of a formal method, for example because it is to be
compared with other formal methods.

The assessment of the relevant criteria determined in the previous step is performed on two
levels. At first, the possible attributes, i.e. the subsets of the set A of attribute values, of
each criterion are assessed. Next, the criteria are classified according to their importance
with respect to the considered purpose and context.

To assess the several attributes we suggest to establish a partial order on the set 2. This
order is in general a partial one, because there might be attributes that are not comparable.
Based on these partial orders it is possible to assess a single formal method or to compare
several formal methods with respect to one criterion.

In order to be able to assess or compare formal methods on a more global level the criteria can
be classified in different categories representing the importance of a criterion. In [ACJ*96]
for example the classification fundamental selection criteria and important selection criteria
is proposed. Again, it should be made clear why a criterion is assigned to a specific category.

Note, that as long as the definition of a criterion can not be done in a precise and formal
way the assessment is a problematic task, since it depends on the person performing the
evaluation. Each establishment of an order on the possible attributes that can be assigned
by a criterion or the classification of the criteria depends on the subjective view of the person
doing this, on his likes and dislikes, his background, and so on. Thus, no objective view is
given.

Moreover, it can be asked whether it is really necessary to get an answer of the question:
Which method is objectively seen the best one within a given context? It might be sufficient
just to ask whether a formal method is well-suited for the context it is used in. To find the
best one may be too cost expensive.

4 The Criteria Catalogue

This section is the central part of the report. Here we present a structured catalogue of
criteria for classifying and evaluating formal methods. As already mentioned, these criteria
are intended for the evaluation of formal methods for the specification and design of reactive
systems.

The criteria presented have been collected from three different kinds of sources. Similar
collections of criteria have been published, see for example [AB96, ABL96, ACJ*96, Bro96,
CGR93, dR91, Fau9h, HL.94, Zav91]. These have been looked through, and a lot of the criteria
in these publications have been taken over to the catalogue presented here. Also, colleagues
from all subprojects of the Sonderforschungsbereich (SFB) 501 contributed to a list of criteria,
which served as a first version of this catalogue [BDD194]. The criteria gained from these
sources have been complemented by further ones based on the experience of the authors in
specifying reactive systems, see e.g. [Dei94, Dei96, PGK97, DH97], and the homepages of two
Teams$ within the SFB 501.

The structure of the criteria catalogue is described in section 4.1. The catalogue itself is
presented in section 4.2. Note, that this catalogue has to be tailored to a specific purpose
before it can be applied. This is described in more detail in section 3.

4.1 Structure of the Criteria Catalogue

In order to simplify the readability and the application of the criteria catalogue it is structured
hierarchically, whereby two structuring principles are used. At first the set of all criteria is
divided into subsets aggregating criteria that investigate similar aspects. This principle is
used hierarchically, i.e. a subset can be split into further subsets, resulting in a hierarchy of
so called groups (of criteria). Such a division into groups of criteria is not necessarily disjoint.
In the catalogue presented in section 4.2 there are some criteria which are mentioned several
times but explained and refined only once in a general manner, for example the criteria
investigating tool support and learning support. Note, that a group is not a criterion itself
but a collection of criteria.

The groups and subgroups are established according to the structure of the Concept-
Model. The set of all criteria is divided into four main groups: Product Oriented, cri-
teria, Process Oriented_ criteria, criteria with respect to Tools_, and criteria concerning
Persons . In accordance with the Concept-Model the set of product oriented criteria is
divided into the subgroups FDT, ; FSD , and Models, , and the set of process oriented
criteria into the subgroups Producing_ and Using_ . The complete group-hierarchy of the
criteria catalogue is depicted in figure 2. Note, that the proposed division into groups and
subgroups is not the only possible one, it results from the structure of the Concept-Model.

Shttp://wwwsfb501. informatik.uni-k1.de:8080/teamldoc and /team2doc

Syntaan — Structuring ConceptsAaaa

FDT, 4[a
SemantlcsAab

FSD

— Product Oriented, .
Behavior
Aca
Time
Models Acb
Ac ConcurrencyA
ccC

Application DomainAcd

. CreatingBaa
Producing Changing
Bab

ValldatlonBba

Further DevelopmentB

| —Process OrientedB bb

Verification
UsmgBb Tost Bbc
eStehq

Maintenance
Bbe

Documentatloanf

_ToolsC

L _Persons
D

Figure 2: Group hierarchy of the criteria catalogue

Between some criteria of a group a refinement relation can exist. This is the second struc-
turing principle. A criterion D is a refinement of a criterion C if the application to a formal
method f is only meaningful if a specific attribute C(f) is assigned to f by C, and if D
focuses on a special aspect of the attribute type of C. For the criteria presented here, it will
be obvious or stated explicitly under which conditions a refining criterion is meaningful.

For easier reference each criterion and each group of criteria is given a name and a unique
label. To distinguish criteria and groups, criteria names are written in a sanserif font and
labeled by sequences of numbers, group names are written in bold font and labeled by
sequences of letters. These sequences correspond to the location in the group-hierarchy or in
the refinement-hierarchy of criteria, respectively.

4.2 The Criteria Catalogue

A: Product OrientedA Note, that the group Models, contains cri-
teria, which investigate which models can
be described in principle by an FDT. The
models relevant in a specific application do-
main have to be considered when applying

This group comprises the criteria concerning
the product oriented part of the Concept-
Model. According to the structure of the
Concept-Model this group is split into the

the catalogue to a specific purpose and con-
subgroups FDT, , FSD,,, and Models, . text. This is discussed in section 3.2.

A_a:FDTAa

Here all criteria are mentioned that are di-
rectly related to an FDT. This group con-
tains the criteria examining which syntacti-
cal constructs are provided to structure a
formal system description. They are col-
lected in the group Syntax, . By the crite-
ria of the group Semantics, it is consid-
ered how the semantics of the syntactical el-
ements is defined. Additionally, there is one
criterion dealing with the Specification Style,
of an FDT. The structure of this group is de-
picted in figure 3.

Aaa: Syntax,

This group deals with the structuring con-
cepts that are provided by an FDT. Further-
more, the notational style is considered.

1 Notation1

Which notation-style is provided by the
FDT?

This criterion deals with the basic symbols
provided by the syntax of an FDT to con-
struct descriptions and which are the carrier
of information. Since the syntax of an FDT
is a formal language the questions asks for
the kind of alphabet of the FDT. Note, that
this question is independent of the criterion
Degree of Formality, where we consider how
formally the interpretation of the formal lan-
guage is performed. Examples of attribute
values are:

textual: Natural language is used.

mathematical: The alphabet of the FDT in-
cludes mathematical symbols like V, >~
that are not used in natural languages.

tabular: Tables are provided, for example
for structuring a description (see for
example [CP93]).
graphical: Circles, rectangles, and other
graphical symbols can be used in a de-
scription.

10

Obviously, one FDT can offer different no-
tation-styles.

The notation-style of an FDT is considered,
since it can influence the readability of for-
mal system descriptions. For example it is
often claimed that a graphical or tabular
notation can more easily be understood by
a person not familiar with an FDT than a
mathematical one. See also Readability, .

Aaaa: Structuring Concepts,

The criteria of this group deal with the
syntactical concepts provided by the FDT
to structure a description.
of the structuring concepts has to be well-

defined by the FDT.

The semantics

2 Modularity,

Can a formal description be structured and
decomposed into manageable parts?

To answer this question with yes the FDT
has to provide concepts for building a sys-
tem description from several smaller pieces
of descriptions. The meaning of each part of
the description as well as the meaning of the
composition of some parts has to be defined
by the FDT.

Note, that the structure of a description does
not need to coincide with the structure of the
system, although this usually simplifies the
understanding of the description. See also
the criteria Interface Model | and Structure ,.

2.1 Interfacez1

Is the notion of an interface supported as a
syntactical construct by the FDT?

To get an overview and to support consis-
tency and completeness of formal system de-
scriptions it is helpful to have a clear notion
of an interface as a syntactical object.

For example, a list of input and output chan-
nels together with the sort of messages sent
over them, can be considered as the inter-
face of a component of a system. Which in-
formation can be described in an interface is
investigated by criterion Interface Model .

Notation1

FDT

Semantics
Aab

Specification Style,

Syntax 4[Modularit
y Aaa Structuring COHC@PtSAaaa { "

Interfacez L

Inheritance3

Degree of Formality,

Figure 3: Structure of the group FDT,

This example is biased towards a correspon-
dence between parts of a description and
components of a system. But interfaces are
also useful for other kinds of descriptions,
e.g. signatures of an abstract data type can
also be considered as an interface.

3 Inheritance3

Which kind of inheritance is supported by
the FDT?

Similar to modularity inheritance can be a
powerful concept for structuring a descrip-
tion. We distinguish between the following
attribute values:

no inheritance: Inheritance is not suppor-
ted by the FDT.

single: An object can inherit features from
at most one other object.

multiple: An object can inherit features
from more than one other object.

Since modularity and inheritance are the
main structuring concepts provided by ob-
ject orientation this concept is not men-
tioned as a separate criterion.

Aab: Semantics
Aab

This group contains only one criterion that
deals with the way in which the semantics of

the FDT is defined.

11

4 Degree of Formality,

In which way is the semantics of the FDT
defined?

By this criterion it is examined how formally
the basic symbols of the syntax, see group
Syntax, , areinterpreted. Examples of at-
tribute values are:

informal: The semantics is only given in
natural language, so that one gets a
rough idea of what the symbols mean.

formal: Fach word of the formal language
of the FDT has a mathematically well
defined, i.e. unique and unambiguous,
meaning.

rigorous: This is the case if the definition
of the semantics is given in a mixture
of natural language and mathematical
notions.

no way: The meaning of the formal lan-
guage is in no way explained but left
open to the intuition of the persons us-
ing the FDT.

Note, that in this criterion the notion formal
description technique is used in a broader
sense than it was defined in section 2. Here
we also consider description techniques that
have no mathematically defined semantics.
In some subsequent criteria this broader
sense is used, too.

5 Specification Style,

Which specification style is supported by the
FDT?

We want to distinguish between two specifi-
cation styles, which can be mixed:

property oriented: This style is also called
declarative style [dR91] or extensional

model [CS96].

model oriented: This style is called by the
same authors operational style and in-
tensional models, respectively.

According to [dR91] the distinction is
whether the specification of a system itself
models a computational process (model ori-
ented) or not (property oriented).

Note, that this criterion does not belong to
the group Semantics, .

Ab: FSD
Ab

This group consists of all criteria related
to formal system descriptions written in
an FDT. The criteria Internal Completeness,
and Internal Consistency — are refined and
structured similarly. This structure and the
refined criteria are explained only once for
the criterion Internal Completeness . The en-
tire structure of this group is depicted in fig-
ure 4.

6 Combination of Notations6

Is it possible to use different notations in one
formal system description?

This criterion is only meaningful if more
than one notation style has been men-
tioned by criterion Notation . The ques-
tion should be answered with yes only
if a relation between the different styles
is provided, for example translation rules.
This
rion Application of Domain Models_ .. Here,
the emphasis is on different notation-
styles in one description whereas crite-
rion Application of Domain Models,_ focuses

criterion is similar to the crite-

12

on the combination of models of the domain
and the system.

7 Abstraction7

Is it possible to look at a system on vari-
ous levels of abstraction in one formal sys-
tem description?

What details can be omitted between differ-
ent levels of abstraction depends on the con-
sidered FDT and the application domain.
This criterion is related to the criterion
Orthogonality, .

7.1 Refinement“

Is there a refinement relation between formal
system descriptions on different levels of ab-
straction?

By a refinement relation it is defined how
different levels of abstraction are related.

8 Orthogonality,

Is it possible to have different views on a sys-
tem on the same level of abstraction in one
formal system description?

In contrast to the criterion Abstraction_ the
same level of abstraction is considered but
from different points of view. If an FDT al-
lows to represent several models of a system,
for example the control and data flow, there
are automatically different views. Further-
more, even within one such model different
views can be expressible. For example, one
can describe the behavior of a system sep-
arately for each of its interfaces. By this
criterion both cases are considered.

8.1 Compatibility,

Is there a notion of compatibility between dif-
ferent views of one system (expressed in the
same formal system description)?

A notion of compatibility means that it
is defined precisely under which conditions
two different views are not contradictory.
This criterion is related to the criterion
Internal Consistency .

— Combination of Notations6

_Abstraction7

— Orthogonality,

I—Internal Completeness
FSD, _| 9
Ab
L Internal Consistency104|:

Reflnement“

Compatibility8 .

Technlqueg.l.1
DeC|dab|I|ty9A1 LocatlongAm

Tool Supportg.L3
Incompletenessg.2

Technique

10.1.1

Deudabllltylo.1 4E Locatlonlo.l‘2

Tool Supportml‘3

Incon5|stency10.2

Figure 4: Structure of the group FSD

9 Internal Completeness,

Is there a notion of internal completeness of
formal system descriptions defined?

Examples (not meant as criteria) for the no-
tion internal completeness are:

e In ecach state a reaction on the occur-
rence of each input event is defined.

e Allinputs are used somewhere, all pos-
sible outputs can be produced. This
is supported by having syntactical
constructs for interfaces, see criterion
Interface, .

e The transition function of a state tran-
sition system is total.

9.1 Decidability,

Is it possible to decide whether a formal sys-
tem description is internally complete?

This is a more theoretical criterion pointing
out how hard the problem is.

9.1.1 Technique, |

By which technique can it be decided whether
a formal system description is internally
complete?

13

Examples of attribute values are:

reviews: It can be found out by reading
the description, perhaps according to
a specific reviewing strategy (see cri-
terion Reviewing Strategy,), whether
the description is complete or not.

manual proof: A proof to show or disprove
the completeness can be constructed
with paper and pencil.

automatic proof: The completeness prop-
erty can be checked automatically by
an appropriate tool.

9.1.2 Location

9.1.2
Is it possible to locate the incomplete parts
of a formal system description?

It can not only be decided whether a de-
scription is complete or not, but if it is not,
there is a technique allowing to find the in-
complete parts.

9.1.3 Tool Support, .

Are there tools supporting the completeness
check?

9.2 Incompleteness,

Is it possible to work in a useful way with a
formal system description, which is not in-
ternally complete?

This criterion is important for several rea-
sons: Since it is sometimes not possible to
decide whether a description is complete or
not and since usually a lot of work has to
be done in order to achieve a complete de-
scription it is often necessary to continue the
development process although a description
is incomplete. In the case of the execution
of an incomplete automaton it is for example
possible to provide the missing parts manu-
ally throughout the execution when they are
needed.

10 Internal Consistency

Is there a notion of internal consistency of
formal system descriptions defined?

There are a lot of different notions of inter-
nal consistency in the literature. Examples
for the notion internal consistency are (not
meant as criteria):

e absence of non-determinism, i.e. dis-
ambiguity

e logical consistency, i.e. satisfiability

e compatibility between different views,
see Compatibility,

10.1 Decidability

10.1
Is it possible to decide whether a formal sys-
tem description is internally consistent?

10.1.1 Technique

10.1.1

By which technique can it be decided whether
a formal system description is internally
consistent?

10.1.2 Location

10.1.2
Is it possible to locate the inconsistent parts
of a formal system description?

14

10.1.3 Tool Support

10.1.3

Are there tools supporting the consistency
check?

10.2 Inconsistency

Is it possible to work in a useful way with a
formal system description, which is not in-
ternally consistent?

Ac: ModelsAc

This group collects all criteria investigating
which models can be described in principle
by the FDT. This means that there are ap-
propriate syntactical elements with a well-
defined semantics that can be used to de-
scribe the models. In figure 5 the structure
of this group is depicted.

11 Data
What aspects of data can be expressed?

The following list of attribute values to this
question is not meant to be exhaustive, but
as a proposal for some aspects which are rel-
evant concerning the representation of data.

abstract data types: It is possible to define
abstract data types and operations on
these data types.

refinement: The FDT supports a refinement
between data types. An example of a
refinement of a data type is that the
abstract data type stack can be re-
fined either to an array or a 1ist.

specialization: It is possible to express
specialization /generalization of data.
Thereby similarity between data types
can be expressed. For example a
sorted list is a specialization of
list. See also criterion Inheritance,.

12 Interface Model12

What aspects of an interface between compo-
nents can be described?

_Data11
| — Interface l\/IodeI12
_Structure13

— Quality Aspects, ,

| Time
Acb

ModelsAc —

| — Concurrenc
yAcc

| Application DomainAcd

L Further Properties26

Traces 15

| Behavior —I: ; L
Aca Behavior Descrlptlon16

— General Temporal Properties17

- Communication21

L Priority23

Granularity of Tlmelg.1

Model of Time 4|: . .
18 Metric Temporal Properties .

L_ Global Time19

_Parallellsm20

Synchronlzatlonm.1

_Falrness22

Domain Models24

Application of Domain Models,

Figure 5: Structure of the group Models,

Note, that this question deals with the in-
terfaces between components of the sys-
tem and not between the system descrip-
tion and the description of the environ-
ment. This is considered by criterion
Application of Domain Models,_.

Obviously, this question is only meaningful
if the FDT supports modularity and inter-
face descriptions, see the criteria Modularity,
and Interface, . The following attribute val-
ues are taken from [Che70].

data type: Data type of the information ex-
changed by the components.

monitored/controlled: 1t can be expressed
whether a value is monitored or con-
trolled by a component.

magnitude: The magnitude of the values
can be described.

probability: The probability that certain

15

values occur can be described.

time: It is possible to specify the time a
value occurs.

frequency: It is possible to specify the fre-
quency a value occurs.

13 Structure13

What structural aspects of a system can be
expressed?

This criterion examines what static aspects
of a system structure can be described. Ex-
amples of attribute values are:

hierarchical: It is possible to express the
structure of a system as a set of hi-
erarchically related components.

flow of data: It is possible to describe the
flow of data or information between
various components of the system.

14 Quality Aspects
What quality aspects can be expressed?

Quality aspects correspond to non-func-
tional requirements that are not temporal
requirements. Since there is a large num-
ber of different quality aspects the following
list of attribute values is not meant to be
exhaustive:

performance of a system or its components
availability of a system or its components

fault-tolerance of a system or its compo-
nents

robustness of a system or its components

In dependence on a specific application do-
main this list has to be adapted (see also
section 3.2).

Aca: Behavior
Aca

The two criteria of this group investigate
how the behavior of a system can be de-

scribed by an FDT.

15 Traces15

Which kind of elements constitute the ob-
servable traces?

The behavior of a reactive system is usually
described by a trace resulting from the ob-
servation of the environment and/or the sys-
tem. We want to distinguish between two
kinds of basic elements such traces can be
composed of. It is also possible that both
kinds occur in the same trace.

states: An element of a trace describes the
values of observable variables; this can
include control variables. Normally, a
state is expected to be valid for a pe-
riod of time greater than zero.

signals: An element of a trace describes that
a variable has a specific value. A sig-
nal is often also called an event and is
considered as occurring exactly at one

16

instant of time, having no temporal ex-
tension.

16 Behavior Description

How can the dynamic behavior of the system
or its components be described?

The following examples of attribute values
can be supported both by one FDT:

blackbox: The behavior of a system is de-
scribed by viewing the system as a
black box, i.e. the internal structure
of the system is not considered when
describing the behavior.

whitebox (glassbox): The behavior of the
system is described by displaying the
behavior of the individual compo-
nents, thereby using internal structure
of the system.

Note, that in [Bro96] the notion blackbox is
used in a different way. There a blackbox
description specifies only the interface of a
system component, but not its behavior.

Acb: Time
Acb

When specifying reactive systems it is sub-
stantial to be able to express temporal as-
pects. For that reason we consider several

criteria directly related to time.

17 General Temporal Properties

What kind of general temporal properties can
be expressed?

According to [AS85] the following two
classes of temporal properties can be distin-

guished:

safety: Informally, a safety property pre-
scribes that something bad never hap-
pens.

liveness: Informally, a liveness property pre-
scribes that something good will even-
tually happen.

In [AS85] these classes are also defined for-
mally. In [MP90] further classes of temporal
properties are introduced and analyzed for-
mally.

18 Model of Time
In which way is time represented?

We distinguish between a quantitative and
qualitative model of time, depending on
whether it is possible to express metrical as-
pects of time. In this case it is for example
possible to express not only that event A oc-
curs before event B, but also that it occurs
4 time units earlier.

The following two refinements of this crite-
rion are only meaningful if there is a quan-
titative notion of time.

18.1 Granularity of Time |

What granularity has the time domain?

Examples of attribute values are:

discrete: Between two time points there is
always a finite number of further time
points. A typical time domain with
this property is N, the set of natural
numbers.

dense: Between two different time points
there are always infinitely many time
points. Typical time domains having
this property are Q* and R™.

18.2 Metric Temporal Properties

What kinds of metric temporal properties
can be described?

The following list of attribute values is not
meant to be exhaustive:

bounded response: Between two observable
elements of a trace only a maximal pe-
riod of time is allowed to pass.

minimal separation: Between two observ-
able elements of a trace there must be
a minimal time period.

17

duration: A property has to be valid for a
given amount of time.

frequency: An observable element has to oc-
cur n times during m time units.

timeouts: A signal is triggered after a spec-
ified amount of time.

19 Global Timelg

Is time considered as being global or is time
considered local to individual components?

Time is called global in a system if there is
the same time for all its components. If time
is local, i.e. each component can have its own
time, this implies that time can proceed dif-
ferently in the components.

Acc: Concurrency
Acc

When specifying reactive systems criteria
concerning the description of concurrency
are as important as those for temporal as-
pects considered in the previous group.

20 Parallelism20

How are traces of concurrently proceeding
components composed?

Usually two kinds of parallelism are distin-

guished, see e.g. [CS96]:

interleaving: In this case concurrency is ‘re-
duced’ to nondeterminism by treating
the parallel execution of actions as the
choice between their sequentialisations.
Each choice establishes a total order
on the union of the observable ele-
ments of the several traces.

maximal parallelism: This is also called true
concurrency. In this case concurrency
is treated as a primitive notion. Be-
sides the orders on the single traces
there is no additional ordering relation
between observable elements of differ-
ent traces.

21 Communication21

What communication-concept between com-
ponents is used?

Examples of attribute values are shared vari-
ables and message passing.

21.1 Synchronization, |

Is communication between components syn-
chronous or asynchronous?

This criterion is only meaningful when mes-
sage passing is provided as communication-
concept.

22 Fairness,,
What kind of fairness is supported?

Fairness is important if there is a restricted
resource which two or more components of
system want to use simultaneously. This is
a typical situation when specifying reactive
systems. Usually two kinds of fairness are
distinguished, see e.g. [MP93]:

weak: It is forbidden that an action or tran-
sition is continually enabled beyond a
certain point but taken only finitely
many times.

strong: It is forbidden that an action or
transition is enabled infinitely many
times, but taken only finitely many
times.

23 Priority_,

Is it possible to express priority between com-
ponents?

The reason why it can be useful to express
priority between components is the same as
for Fairness, : resolve conflicting access to
restricted resources.

Acd: Application Domain,
Up to now we have only considered criteria
concerning the FDT which are related to the
description of a system. Since it is important
to embed and analyze a reactive system in
the environment in which it should operate,

18

in this group criteria dealing explicitly with
the application domain are presented.

24 Domain l\/IodeIs24

Which models of the application domain can
be expressed in the considered FDT?

Obviously this question can only be an-
swered with respect to a specific application
domain.

25 Application of Domain Models ,

How can formal descriptions and models of
the application domain be combined?

Usually a system description has to be con-
nected with descriptions of the application
domain in order to get a meaning. The com-
bination of a system description with a de-
scription of the application domain written
in a different FDT is normally more diffi-
cult than the combination with a description
written in the same FDT.

26 Further Properties,
What further properties can be described?

Besides the non-functional properties con-
sidered by the criterion Quality Aspects
and properties of data (criterion Data) and
behavior (group Behavior,) and tempo-
ral properties (group Time,) there can be
further properties that can be expressed us-
ing the FDT. These properties are taken into
account by this criterion.

Note, that this criterion does not belong to
the group Application Domain, butisa
direct successor of the group Models , see
figure 5.

B: Process Oriented

This group comprises the criteria related to
the method part of a formal method. This
part corresponds to the process-oriented
part of the context model depicted in fig-
ure 1. The criteria investigating these me-
thodical aspects are grouped according to
the kind of processes which deal with for-

mal system descriptions. The processes
are distinguished mainly whether they are
used to produce formal system descriptions
(Producing_) or whether they use them as

input (Using_).

The method part of a formal method is seen
as a set of guidelines and rules which de-
scribe what should be done and how this
should be done. There are general guidelines
which can be applied to any FDT. Exam-
ples of such guidelines are ‘Use meaningful
names’ or ‘Decompose a system into man-
ageable pieces, describe them separately and
provide clear interfaces between them’. Be-
sides these general guidelines and rules there
should be some which are tailored to the spe-
cific FDT. Such guidelines and rules are im-
portant as they allow to use an FDT in a
cost-effective way.

Ba: Producing_

The processes used to produce formal sys-
tem descriptions can be divided roughly into
those to create formal system descriptions
from other descriptions and processes to
change formal system descriptions. It should
be clear that the separation between these
processes is not a strict one. In general,
when creating a formal system description
it can be assumed that this is done in an it-
erative way. Therefore, aspects of changing
descriptions have to be considered here, too.
Nevertheless, it has been tried to separate

these aspects as clear as possible.

Therefore, the the group
Creating_ are concerned more with pro-
ducing a formal system description from
other kinds of descriptions, such as e.g. an
informal problem description. The criteria
in the group Changing_ are concerned
more with making changes of formal sys-
tem descriptions throughout regular main-
tenance processes.

criteria in

An overview of the criteria considered in this
group is given in figure 6.

19

Baa: Creating__

27 Guidelines27

To which extent is creating formal sys-
tem descriptions supported by guidelines and
rules?

There is a broad range of possible applica-
tions of guidelines and rules on the creation
of descriptions. Therefore, there are several
refinements of this criterion.

27.1 Processw1

To which extent is the process of creating
a formal system description supported by
guidelines and rules?

Here guidelines and rules on how and when
to perform individual steps are considered.

As an example of the first kind of guidelines
and rules consider the process of capturing
requirements. One guideline could be to de-
scribe typical interaction sequences of the
system and a user of it.

On the other hand, since creating a formal
description can be considered as an itera-
tive process or can consist of several activ-
ities performed in parallel, there should ex-
ist guidelines which describe when to start a
further iteration or a new activity.

27.2 Embedding .

To which extent can the guidelines and rules
be embedded in existing development pro-
cesses?

Most formal methods today do not cover the
complete development of a system, but con-
centrate on specification and design. There-
fore, they should allow for a smooth transi-
tion from and to other phases of the develop-
ment. An example for such an embedding is
the combined use of SDL [SDLa] and OMT
[RBP*91] as described e.g. in [Ree96].

By this criterion it is considered, whether
there are guidelines and rules which sup-
port such a transition. By the related cri-
teria Understanding, and Implementation it

_GU|deI|nes27

Process27‘1

Embedding,

Product27‘3
D|SC|pI|ne27.4
—Traceability28
. CreatmgBaa e Resources29
_Reuse30 External Reuseso‘1 Reuse Costso‘l‘1
[Internal Reuseso‘2
|— Tool Support
Producing . —| PPO:1
Ba L Learning,,
_Processsa1
— Guidelines,,—t— Embedding,_ ,
L_ Revision Control33 5
. — Location
ChanglngBab 34.1
|— Effects of Change
l_Control, — | 34.2
34 — Ease of Change,, .
L ResourcesM.4

L Tool Support35

Figure 6: Structure of the group Producing_

is considered whether the descriptions pro-
duced allow such a transition.

This criterion is important, because a for-
mal method allowing such an embedding can
be introduced in industrial practice with lit-
tle additional effort besides introducing the
method itself.

27.3 Product

27.3
Are there guidelines and rules on the struc-
ture and appearance of a formal system de-
scription?

Notational and structuring guidelines and
rules can be an aid in creating and under-
standing formal system descriptions. By
guidelines and rules on the structure it is
made clear where in a description which kind
of information is located. Notational guide-
lines and rules support a uniform appear-

20

ance of descriptions, making it easier to un-
derstand them. For example, there exist a
lot of notational rules on the appearance of
descriptions written in SDL in [BH93].

Another point which can be considered here
is whether there are standard ways or pat-
terns for expressing models or properties of
an often occurring type. Such a set of pat-
terns for specifying real-time properties of
systems is described in [PGKO97].

27.4 Discipline,_,

Which guidelines and rules exist whose ap-
plication leads to reasonable formal system
descriptions with respect to non-functional
properties?

An example of such a rule is to specify the
reaction of a system on every input in each
state, even on the unexpected inputs. If it

is applied, it contributes directly to the ro-
bustness of the implemented system. Fur-
ther rules of this kind can be found e.g.
in [JLHMO1].

28 Traceability,

Does the formal method support establishing
a traceability relation?

The traceability relation is between parts
of the documents from which a formal sys-
tem description is derived and the descrip-
tion itself. Here, traceability between re-
quirements stated in an informal way and
their formal counterparts in a specification
is considered. Traceability between require-
ments stated formally and those parts of
design documents which describe how they
should be realized are considered by crite-
rion Traceability, .

29 Resou rces,

Are there cost models on the resources
needed to create a formal system descrip-
tion?

This means, can it be estimated a priori how
much resources are needed to create a formal
system description? It should also be con-
sidered whether it is possible to supervise
whether such a process is still within sched-
ule. Resources used can be e.g. the number
of persons, the total amount of time they
spent on the work, or the usage of computer
resources.

30 Reuse30

Is it possible to reuse formal system descrip-
tions or parts of them?

30.1 External Reuse,

Is it possible to reuse formal system descrip-
tions from previous development projects?

30.1.1 Reuse Cost

30.1.1
How much effort is necessary to reuse a for-
mal system description from a previous de-
velopment process?

21

This includes the expense of packaging a for-
mal system description, retrieving it from a
library, and modifying it such that it can be
used in the current project.

30.2 Internal Reuseso.2

Is it possible to reuse parts of formal sys-
tem descriptions from the current develop-
ment project?

Building up specialization hierarchies can
serve as an example for expressing and us-
ing similarity between objects, thereby con-
tributing to internal reuse. Inheritance
as a concept is considered by criterion
Inheritance, .

31 Tool Support,,

Which of the guidelines and rules are sup-
ported by tools?

More detailed criteria concerning tools are
collected in the group Tools_.

32 Learning,,

How difficult is it to learn to create formal
system descriptions?

For a more detailed exposition of this crite-
rion see Learning, .

Bab: Changing_

Some of the criteria below are very similar to
those in the group Creating_ . Therefore,
their explanations are not repeated here.

33 Guidelines_,

To which extent is changing formal sys-
tem descriptions supported by guidelines and
rules?

33.1 Processsa1

To which extent is the process of chang-
ing a formal system description supported by
guidelines and rules?

33.2 Embedding__ .

To which extent can the guidelines and rules
be embedded in existing development pro-
cesses?

33.3 Revision Controlsa3

Are there guidelines and rules with respect
to the management of changes?

34 Control34

How difficult is it to change a formal system
description?

To perform a single request for change of
a formal system description it is necessary
to locate the parts of it which have to be
changed. Furthermore, the changes have
to be performed in a controlled way. This
means, that it must be possible to ensure,
that the changes do not affect other parts in
an unforeseen way.

34.1 Location34.1

How difficult is to locate which parts of a for-
mal system description have to be changed?

34.2 Effects of Change,, ,

How difficult is it to predict the effects of a
change on a formal system description?
34.3 Ease of Change,, ,
How easy is it to change a formal system
description syntactically?

For some DT it might be even more costly
to change a description than to produce a
new description from scratch. If editing of
descriptions is supported by tools, then this
is closely related to the quality of the tool
used.

34.4 Resou rees,, ,

Are there cost models on the resources
needed to change a formal system descrip-
tion?

35 Tool Support,,

Is changing a formal system description sup-
ported by tools?

Tools are investigated in more detail in the
group Tools_.

22

Bb: Using

The processes which are based on already
produced formal system descriptions are
investigated by the criteria of the groups
Validation_, , Further Development
Verification , , Test_ ,
and Documentation_, .

Bbb’
Maintenance_
Bbe

The aspects related to maintenance pro-
cesses are very similar to those of chang-
ing formal system descriptions. Therefore,
the group Maintenance_ , is not given
in detail, but refers simply to the group
Changing__ .

An overview of the criteria considered here
is given in Figure 7.

Bba: Validatioana

When creating a formal system description,
it has to be ensured that this description re-
flects correctly the information used as input
to the creation process. The term validation
is used here for the process of checking that
this is actually the case. This process cannot
be seen in isolation from the process of creat-
ing a description. But because it is based on
already created formal system descriptions
the corresponding criteria are presented here
and not in the group Producing_ .

36 Requirements Validation_

To which extent is the validation process sup-
ported by guidelines and rules?

Examples of such guidelines are descriptions
of appropriate review techniques for formal
system descriptions.

37 Traceability,

Is validation supported by a traceability rela-
tion?

Validation of a formal system description is
supported by providing explicitly the corre-
spondence between elements of the formal
system description and of those descriptions
from which it was derived. It should be pos-
sible to use this relation in both directions,
from the system description back to its ori-

_Valldatloana

I Further DevelopmentBbb —

Usinng_

| — Verification
Bbc

| — Test
Bbd

| Maintenance
Bbe

L Documentatloanf

L Rewews46

— Provable Theorems4

— Adapting Proofs,

— Requirements Validation36
_Traceablllty37
— Readablllty38

_Translatlon39

Anlmatlonm1

—Execution40—|:s_ lati
imulation,

L Formal Analysis41

— Understanding,,

Successive Refinements43 .

I— Implementation 4|: .
43 Code Generation,, |

— Implementation Freedom44

_Traceability45

Reviewing Strategy

46.1

7

— Constructing Proofs,

9

| — Proof Result50

L Tool Support51

— Test Cases52
Test Evaluation53

L Tool Support54

Documentation55

Figure 7: Structure of the group Using_

gins, but also vice versa. This is clearly re-
lated to Traceability, .

38 Readability,

Which persons are able to understand a for-
mal system description directly?

To validate a formal system description dif-
ferent kinds of persons besides the experts
in the method have to be involved. These
can be e.g. the owner of the system to be
build, users of this system, application ex-
perts, personal of sub-contractors, and man-
agement personal of the contractor. FEach
of them has a different background on the

23

FDT, in mathematics, engineering disci-
plines, in the application domain, etc. Note,
that one person can belong to more than one
of these groups of persons, for example the
owner can also be a user of the system. The
corresponding aspect of the concrete nota-
tion is investigated in criterion Notation .

39 Translation39

To which languages better understood by
non-experts can a formal system description
be translated?

It can be assumed, that not all persons men-
tioned in the criterion Readability_ are able

to understand a formal system description
directly. One way to make such a descrip-
tion understandable for them is to translate
it to another language. The meaning of the
description should not be changed by such a
translation. Examples of such languages are
natural language or description techniques
of the application domain.

40 Execution
40

Can a formal system description be exe-
cuted?

To validate the dynamic behavior of a sys-
tem it is helpful to produce traces of the sys-
tem starting from specific situations and to
check these traces.
method to test a formal system description.

This can be seen as a

40.1 Animation40.1

In which way can a formal system descrip-
tion be animated?

This means, which possibilities exist to vi-
sualize an execution of a formal system de-
scription? This can be e.g. a visualization
of the currently active states of a state-
transition system or a graph showing the
value of a variable over time.

40.2 Simulation,

Can a formal system description be linked to
the environment of the system or a simula-
tion of it?

To execute a formal system description of a
dynamic system it is necessary that there is
also an (executable) description of its envi-
ronment, such that the control loop of the
system can be closed. Instead of produc-
ing a formal description of the environment
and executing it, it can be useful to link the
description of the system directly to the en-
vironment or a simulation of it.

41 Formal Analysis,

Is it possible to analyze a formal system de-
scription to derive further information?

Given a formal system description, it is

24

sometimes useful to check whether the sys-
tem described has further properties besides
those stated explicitly. Examples of such
properties are:

e Given a description of a communica-
tion protocol in the form of communi-
cating processes. Is the size of buffers
used in this description always below
some given threshold?

e Given a description of a distributed
system, again as communicating pro-
cesses, which use a common resource.
Is always at most one process using
this resource?

As one can see from the examples given,
this criteria is intended primarily for model-
oriented descriptions. There, deriving fur-
ther properties can be used to check whether

the model describes the system as intended.

This criterion is related to the criteria in
the group FSD . It can be defined e.g.
that a formal system description is consis-
tent if the processes in the description can-
not deadlock. But this is also a property in
the sense used here. Furthermore, this crite-
rion is directly related to those in the group
Verification_, .

Bbb: Further Development

One of the most important purposes of pro-
ducing a formal system description is that
it is the starting point of the further devel-
opment of the system. A design or an im-
plementation has to be derived from such a
description. Throughout the following cri-
teria, a formal system description is mainly
seen as a specification.

42 Understanding

Does a specification provide the information
needed by a designer or programmer?

To be useful, a specification has to state
the task to be solved in a clear and precise
way. Furthermore, constraints on the design
or implementation of the system have to be

stated. This has to be done in a way which
is understood by the persons involved, there-
fore this criterion is related to the criterion
Readability,, .

43 Implementation

Which guidelines and rules exist to derive an
implementation from a specification?

These can be guidelines and rules for deriv-
ing an implementation manually, for exam-
ple:

e how to derive a hierarchy of classes in
an object oriented programming lan-
guage from a class model of object ori-
ented analysis,

e how to derive an efficient implementa-
tion of a state-transition system.

43.1 Successive Refinements%.1

Is it possible to derive an implementation by
successively refining a specification?

An advantage of implementing a system by
successive refinements is, that the refine-
ment relation is usually formally defined and
that corresponding proof obligations can be
derived. If these can be proven, correctness
of the implementation is established. As a
byproduct, the refinement relation can be
seen as a special kind of a traceability re-
lation, see Traceability,, .

43.2 Code Generation

43.2

Is it possible to generate code from a specifi-
cation?

In its most advanced form this means to pro-
duce good code automatically from a speci-
fication. But it is already useful if e.g. signa-
tures of functions, class templates, etc. can
be derived automatically. Besides the sav-
ings of the time needed to implement the
system it is also possible to concentrate the
verification efforts on the code generator in-
stead of verifying the correctness of each sys-
tem independently.

25

44 Implementation Freedom

Does the formal method preserve implemen-
tation freedom?

This means, does it preserve freedom to real-
ize and satisfy non-functional requirements,
e.g. performance or robustness
ments? This criterion can be seen as a con-
tradiction to the criterion Implementation_,
but this is not the case.
sidered, whether possible solutions are ex-
cluded already by the way the problem is
stated or not.

require-

Here, it is con-

45 Traceability,

Is it possible to establish a useful traceability
relation between a specification and an im-
plementation?

46 Reviews46

Is a specification useful as a reference docu-
ment for reviews of an implementation?

46.1 Reviewing Strategy,

Does there exist a reviewing strateqy tailored
to the formal method?

Bbe: Velc'iﬁcationBbc

The term werification is used here for the
process of deriving properties of systems
within a formal system and with mathemat-
ical rigor. Therefore it is not a direct coun-
terpart to validation. Essentially the proof
of correctness of an implementation with re-
spect to a specification is considered here,
other aspects of verification are considered
in the criterion Formal Analysis, .

47 Provable Theorems47
What can be proven?

The theorems to be proven usually state
properties of the system. These properties
can refer to each of the different kinds of
models of the system mentioned in the group
Models, .

48 Constructing Proofs

How much ingenuity is needed to construct
a proof?

In some formal systems it is possible to de-
rive proofs automatically, in other ones it
is in general impossible or intractable to
find proofs automatically. In these cases it
should be possible to prove simple properties
in a routine way without requiring much in-
genuity of the person carrying out the proof.

49 Adapting Proofs,
How difficult is it to adapt a proof?

Often proofs reveal errors in the descriptions
of a system or in the properties to be proven.
These descriptions have to be changed ac-
cordingly and these proofs and other already
succeeded ones need to be redone. In this
case it is helpful if the proofs can be adapted
to the changed descriptions in an easy way
or even better if it is possible to redo them
automatically.

50 Proof Result,
What is the result of a proof?

The most basic result of a proof should be
whether the theorem to be proved is cor-
rect or not. But further information is de-
sirable. In the case of a positive answer, one
can ask, whether a proof gives additional in-
sight into the system and the reasons why
the theorem holds. In the case of a neg-
ative answer it is helpful if one can come
up with a counterexample or if it is possi-
ble to make clear why the proof failed. For
example, it would be extremely helpful if it
is possible to trace this back to e.g. a wrong
assumption. This is related to the criteria

Locat|0n9A1‘2 and Locatlonw.m.

51 Tool Support,

In which way is verification supported by
tools?

More detailed questions concerning tools can
be found in the group Tools .

26

Bbd: Test
Bbd

Testing is a common technique to search for
errors in an implementation. It can be sup-
ported by formal system descriptions by us-
ing them as a clear and precise reference for
evaluating tests and for generating test cases
in a systematic way.

52 Test Cases52

Is it possible to derive test cases from a for-
mal system description?

For example, if the system is described by a
state-transition system, then there should be
testcases corresponding to the initial states
and to transitions between states.

53 Test Evaluation53

Is it possible to use a formal system descrip-
tion to evaluate tests?

This requires that, given a test case and the
result of performing it, it is possible to give a
definitive answer whether the result of this
test corresponds to the formal system de-
scription.

54 Tool Support,,

Which of these tasks are supported by tools?
More detailed questions concerning tools can
be found in the group Tools .

Bbe: 1\/L':1inten::1nceBbe

See group Changing_ .
Bbf: Documentation_,

55 Documentation55

Can a formal system description serve as a
reference document of a system?

This means, can a formal system description
be the basic source of information about a
system or is it necessary to resort to other
descriptions, e.g. the code itself?

C: Tools_

Tools play a crucial role to make tasks like
syntax-checking less tedious or tasks like ver-
ification less error-prone. Therefore, tools
can help a lot when applying a specific for-
mal method. Furthermore, insufficient tool
support is considered an impediment to in-
troducing formal methods into industrial
practice.

Since this group is referenced several times
in this catalogue, it is necessary to apply the
criteria in this group to each of the corre-
sponding aspects. This does not exclude,
that when appropriate, several of them can
be considered together.

The structure of this group is depicted in
figure 8.

56 FDT Support,_

Which syntactic features of the FDT are
handled by the tool?

This criterion investigates whether the tool
does support all syntactical elements or not.

57 Process Support,
Which activities are supported by the tool?

A possible answer can be that the tool is
just a comfortable (syntax oriented) editor.
All activities supported by the tool should
be enumerated in the answer. See also the
criterion Tool Support of the following cri-
teria and groups: Internal Completeness ,

Internal Consistency , Creating_ |
Changing,_ , Verification , and
Test_, .

58 Tool Maturity,
How mature is the tool?
The answer shall point out whether the tool

does what it is expected to do.

58.1 Bugs

58.1

How often does the tool reveal a bug?

27

58.2 Interface Evaluation__
How good is the user interface?

Important aspects are:

e Compliance to interface standards.
e User guidance.

e [earning effort. See also
Learning Tool Interface, .

58.3 Tool Feature Evaluation58.3

Which features are particularly good or bad?

59 Learning,

How much time is necessary to learn to use
the tool efficiently?

59.1 Learning Tool Interface_, |

To which extent is the learning of the tool
supported by the conceptual design of the tool
and the user interface?

Compliance with standards for user inter-
faces makes learning easier and is one point
to be taken into consideration here. See also
Interface Evaluation__ .
59.2 Learning Support__,

Which kinds of support for learning the tool
exist?

See Learning Support |

3"
60 Data Interchange_

Which part of information can be inter-
changed between different tools?

Information to be interchanged can be:

textual information: A representation of
the content of a formal system descrip-
tion (e.g. a postscript file containing a

state diagram).

semantic information: The content of a for-
mal system description (e.g. a list of
states and transitions).

visual information: The spatial arrange-

ment and connectivity of graphical

—FDT Support56

I— Process Support57

Bugs

58.1

I— Tool I\/Iaturlty584Elnterface Evaluatlon58.2
Toolsc_ Tool Feature Evaluatlon5&3

Learning Tool Interface_, |

L Learnin {
850 Learning Support,, ,

LData Interchange, —— Data Interchange Standards_ |

Figure 8: Structure of the group Tools_

elements contained in a formal system
description.

60.1 Data Interchange Standards_ |

Which standards to exchange data are sup-
ported?

Examples of such standards are Frame-
Maker-documents, Tex-documents or stan-
dards for the particular formal method.

D: Persons_

61 Learning,_

How difficult is it to become familiar with a
formal method?

In the first two refinements of this criterion
the difficulty is related to the time needed to
understand the concepts and to learn to pro-

duce good formal system descriptions, re-
spectively. As long as no controlled exper-
iments have been conducted, the attributes
can only be assigned subjectively.

61.1 Understanding the FDT_ |

How long does it take to understand the con-
cepts of the FDT?

61.2 Creating Descriptions

61.2

How long does it take to learn to produce
good formal system descriptions?

61.3 Learning Support_, .

Which kinds of support for learning the for-
mal method exist?

Examples of attribute values are: text
books, experience reports, courses, online
tutorials.

5 Evaluation of Formal Methods

In this section we will give an exemplary application of the criteria catalogue. First we de-
scribe the tailoring of the criteria catalogue in section 5.1, then we give a short introduction to
the considered formal methods in section 5.2. In section 5.3 we are recording the experiences
made using these formal methods. Finally, we compare the formal methods with respect to

selected criteria in section 5.4.

5.1 Tailoring of the Criteria Catalogue

In the following the catalogue is tailored as described in section 3.

Purposes and Context

The main purpose for which we want to use the criteria catalogue is to record in a structured
way the experiences we made using the formal methods SDL, statecharts, and a temporal
logic for specifying control systems in the domain building automation systems. Based on
this, it is possible to compare them with respect to the context in which they have been
utilized. This comparison is our second purpose, but it is only of minor importance.

The context in which we utilized the three formal methods has been the specification of
control systems in the domain building automation systems. Among the tasks of a building
automation system are the control of temperature, humidity, light, air flow, security, and
safety. For specifying control systems in this domain it is substantial to be able to express
the behavior of a system, i.e. functional requirements, and temporal properties. According
to our experience the ability to express data is of minor importance. Probably, this is caused
by the fact that we have considered only the control part of a system and not for example
management aspects or a (graphical) interface to the user. Note, that this experience is not
related to a specific formal method, but made with respect to the application domain.

Adaption to the Main Purpose

When adapting the proposed criteria catalogue to our main purpose it was not necessary
to refine criteria; only irrelevant criteria had to be deleted. The deleted criteria deal with
activities we have not performed up to now, so that there exists no experience that can be
recorded. Furthermore, most of the criteria for which only subjective experience was available
have not been considered. In order to demonstrate the problem of subjective information the
criteria shown in table 1 have not been excluded. The following list contains the criteria or
groups of criteria we will not consider:

e criteria External Reuse30) and Reuse Cost30 .

Since there were no previous projects, reuse was not possible in our case studies.

e group Changing_
This group is deleted because we did not have to change a description due to new
requirements, but only in order to eliminate detected errors or to improve the readability
and intelligibility of a description. By the criteria of the group Changing_ mainly
modifications of the first kind are considered.

e groups Further Development

DocumentationBbf

The criteria of these groups investigate processes we did not perform in the case studies.

Verification , , Test Maintenance and
C

Bbb’ Bbd’ Bbe’

e groups Tools_ and Persons_,
criteria Tool Support, . ., Tool Support . ,
Only subjective information is available.

Tool Support, , and Learning_,

The set of possible attribute values of those criteria for which we have only subjective informa-
tion is shown in table 1. By these criteria it is investigated to which extent the corresponding

29

processes are supported by guidelines and rules. The attribute value average means that the
processes are supported to an extent which was considered helpful by the authors."

‘ criteria ‘ possible attribute values ‘
Guidelines,_,
P
rocess, v { full, large, average, small, no }

Embedding .
Requirements Validation_

Table 1: Assignment of attribute values to criteria

Adaption to the Second Purpose

First, we have to decide which criteria are taken into account when comparing the formal
methods. Obviously, this must be a subset of the criteria considered for the recording of
the experience. Furthermore, only criteria for which different attributes can be compared
with each other are applied. The following list contains all the criteria for which there is no
meaningful ordering on the set of possible attributes with respect to our second purpose:

Notation , Specification Style,, Traces ., Behavior Description , Granularity of Time
Global Time , Parallelism , Communication, , Synchronization , Animation, .

18.17

Assessment

For the remaining set of criteria we now present for each criterion a partial order on its set
of possible attributes. Most of the partial orders are simple and obvious. But there are also
some which result from our observation which models and properties are relevant or not so
relevant in our application domain.

Normally, we will use the notation a; > ay to denote that attribute a; is better suited than
attribute ag with respect to the focus of our comparison. In the case of a yes-no-question the
relation is always yes>no. Criteria of this category are:

Modularity,, Interface, , Combination of Notations_, Abstraction_, Refinement_ , Orthogonality,,
Compatibility?17 Internal F:om.p.leteness97 I.)ecidabilityg.17 . Locationg.m,. !
InIter.na.I Con5|stency10,. .DeC|dab|I|tyw.17 Location, ., Inconsistency , PI‘IO.I‘.Ity23, F:’roduc.:tﬂ37
D.|SC|p||r.1e27.47 Traceability_, F.{esources297 Reuse, , Internal Reuse, , Traceability, , Execution, ,
Simulation, _, Formal Analysis, .

Incompleteness _,

There are also a lot of criteria for which the attributes assigned by a criterion usually contains
more than one element of the set of possible attribute values. In this case we will use
the principle “the more the better” to denote that the ordering relation among the possible
attributes is based upon the number of attribute values contributing to a attribute. Criteria
of this category are:

Data , Interface Model ,, Structure ., Quality Aspects , General Temporal Properties ,
Metric Temporal Properties . , Fairness , Domain Models , Application of Domain Models_,
Further Properties, , Readability, , Translation_,.

TOne can see here, that it is necessary to define the attribute values more precisely in order to be able to
characterize and evaluate a formal method in an objective way.

30

For the following criteria the set of possible attribute values is given in table 1. The attributes
are ordered in the obvious way.

Guidelines,_, Process . , Embedding, _ , Requirements Validation, .

Finally, we list the partial orders for those criteria which can not be assigned to one of the
categories mentioned so far:

e Inheritance,:
single>no inheritance and multiple>no inheritance
This order is established since we think inheritance is a potentially good structuring
concept. However, it is unclear whether the larger expressiveness of multiple inheri-
tance outweighs its larger complexity; therefore single and multiple inheritance are not
ordered.

o Degree of Formality,:
formal>rigorous>informal>no way
This order is used, since we made the experience, that every time a syntactical feature
is not well defined, this is a source of confusion and time consuming discussions because
of different interpretations of the persons working together.

e Technique and Technique . :
Here the principle the more the better is applied and if two sets are incomparable with
respect to this principle the relation automatic proofs>manual proofs is used if possi-
ble.
We do not compare reviews with automatic or manual proofs because these are com-
pletely different techniques. However, if the tool is mature an automatic proof is more
reliable than a manual one.

e Model of Time :
quantitative>qualitative
This order results from the models needed in our application domain, where quantitative
timing requirements have to be expressed.

Due to these partial orders it is possible to compare the formal methods with respect to one
criterion. In order to get a more global comparison of the considered formal methods we
classify the criteria into the three classes: very important, important, and not so important.
We decided to utilize only this coarse grained rating, since we have not enough information
to establish a finer classification. The importance of a criterion corresponds to the relevance
of the investigated aspect with respect to the application domain considered here.

Very important criteria are:

General Temporal Properties ., Model of Time ,, Metric Temporal Properties , Priority,
Readability,, .

The criteria dealing with time are classified as very important since timing aspects play a
substantial role in our application. The ability to express priority is very important since we
made the experience in our application domain that there is a large number of conflicting
requirements which could be resolved by priority. Readability is regarded as very impor-
tant since several different groups of persons are involved in the developing of a building
automation system, especially persons that are not familiar with any formal method.

31

As already mentioned, according to our experience the ability to express data is of minor
importance in this application domain. Therefore the criterion Data is classified as not so
important.

All other criteria are classified as important.

5.2 Introduction to the Formal Methods Evaluated
5.2.1 Statecharts

Statecharts [Har87] are an extension of state-diagrams by the concepts depth, orthogonality,
and broadcast-communication. By depth hierarchy is added to state-diagrams. Thereby it
becomes possible to view a state-diagram on several levels of abstraction. By orthogonality
it becomes possible to write down concurrently running automata separately instead of their
product automaton. By the term broadcast-communication it is described how information
is exchanged between such concurrent automata, i.e. information is not send to a specific
automata, but presented simultaneously to all of them. This is done instantaneously, thereby
following the so-called synchrony hypothesis, see e.g. [BG92]. Furthermore, it is possible to
refer to data and to use timeouts to describe metric temporal aspects.

Statecharts describe the temporal behavior of automata. They are complemented by two
other types of charts: Activity-charts for describing the data-flow between the concurrent
automata and module-charts for describing the structural decomposition of a system. These
types of charts, together with the corresponding tool, are described in [HLN'90]. In the
following, all three kinds of charts are subsumed under the term statecharts.

Due to the extensions, the semantics of statecharts is not easy to define. In literature, various
different semantics are proposed, for an overview see [vdB94]. The one described in [HN96]
can be considered the ‘official’ semantics of statecharts. In the case studies performed by the
authors an older version of the semantics [stm91] is used, but this is very similar to [HN96].

5.2.2 SDL

SDL (Specification and Description Language) is an FDT for the specification of discrete
reactive systems. We are considering experiences made with SDL-92 which was standardized
by the ITU (International Telecommunication Union) in 1993 [SDLa]. Two notations for
the description of behavior are defined: a graphical one (SDL-GR) and a textual one (SDL-
PR). We only used the graphical notation. In addition there is a mathematical notation for
abstract data types.

In an SDL-description a system is divided into so-called blocks. These blocks are connected
via channels to each other and to the environment. Every block can be built from other blocks.
On the lowest level each block consists of a set of so-called processes. Those processes are
connected to each other and to processes of other blocks via signal routes. On these signal
routes typed messages are transmitted without loss and without any delay in FIFO-order.
The behavior of a system is described using communicating extended finite state machines.
There is an unbounded FIFO-input-buffer for each process. It is possible to save specific
signals in the input queue. Also it is possible to read signals from the queue with a higher
priority. All SDL processes of one system proceed concurrently.

32

The process model we used is the one described in [BH93], but see also [OFMP*94] and
[Ree96]. There, in addition to SDL, other FDTs are used, especially MSC (Message Sequence
Charts) which are tightly connected to SDL and standardized by the ITU in 1993 [MSC],
too.

5.2.3 Temporal Logics

Temporal logics are widely used for specifying reactive systems. A large number of different
kinds of temporal logics have been developed in the last twenty years since Pnuelis pioneering
work [Pnu77]; see for example [AH90, CHR91, CES86, Lam94, SMSV83]. Usually a temporal
logic is based upon a classical one, like the propositional or first order logic, which is extended
by special temporal operators.

The temporal logic we consider here is called tailored real time temporal logic (tRTTL)
[KPGY96]. It is a propositional, linear time temporal logic whose time domain is the set
of non-negative real numbers, and it is based on the temporal logics described in [MP92
MP93, AH90]. During a case study performed in the context of the SFB 501, i.e. within
the application domain building automation systems, new tailored operators have been de-
veloped in order to improve the readability and intelligibility of the formulae and in order
to increase the expressiveness of the logic. Furthermore, based on these new operators so
called patterns have been developed. These are parameterized formulae representing typical
classes of requirements we detected in the considered application domain. Such patterns on
the one hand allow to formalize efficiently informally given requirements by instantiation;
on the other hand it is easily possible to translate the resulting formulae back to natural
language in a uniform way. This work resulted in the definition of tRTTL which is described
and analyzed in [KPG96].

5.3 Evaluation

SDL ‘ statecharts ‘ tRTTL
Product Oriented
‘ FDT, ‘
‘ Syntax, ‘
Notation : Which notation-style is provided by the FDT?

mathematical

textual, graphical, in addition
mathematical to describe ab-
stract data types.

Mainly graphical.

To describe conditions and ac-
tions a simple iterative pro-
gramming language is avail-
able. This allows quantifica-
tion over finite domains, 1.e.

OVEr arrays.

Structuring Concepts,

Modularity:
parts?

Can a formal description be structured and decomposed into manageable

yes

| yes

|HO

33

SDL ‘ statecharts tRTTL

Interface, | Is the notion of an wnterface supported as a syntactical construct by the
' FDT?

yes, restricted to the rela- | no, the information is distrib- | Does not apply.
tion between channels and | uted over various syntactical
blocks and signalroutes and | objects.

processes, respectively.

Inheritance_: Which kind of inheritance is supported by the FDT?

single Not supported directly. no inheritance
Parameterization is supported
by so-called generic charts.

SemantlcsAab

Degree of Formality,: In which way is the semantics of the FDT defined?

rigorous in [SDLa], formal in | rigorous formal
[SDLb]; the formal overrules
the rigorous one in case of dif-
ferences. Both are intended
for different users; the rigorous
one is being judged to be easier
comprehensible (see [SDLb]).

Specification Style_: Which specification style is supported by the FDT?

model oriented (behavior); | model oriented property oriented
property oriented and model
oriented (data)

FSD

Ab

Combination of Notations_: Is it possible to use different notations in one formal system descrip-

tion?
yes Module-, activity-, and state- | no
charts can be used together in
a complementary way. There
is only one language for each
of the corresponding aspects.
Abstraction_ : Is 1t possible to look at a system on various levels of abstraction in one
formal system description?
yes | yes | yes
Refinement, Is there a refinement relation between formal system descriptions on different
levels of abstraction?
yes | yes | no
Orthogonality,: Is it possible to have different views on a system on the same level of ab-

straction in one formal system description?

yes, but only between differ- | yes, but only between different | yes
ent kinds of models. By using | kinds of models.
MSCs the behavior of a sys-
tem observed at different in-
terfaces of it can be described

separately.

Compatibility, .: Is there a notion of compatibility betwee@ dzjﬁerent views of one system (ex-
pressed in the same formal system description)?

yes, see Orthogonality,. yes, but only between different | yes: logical consistency

kinds of models.

34

SDL | tRTTL

‘ statecharts

Internal Completeness : Is there a notion of internal completeness of formal system descriptions

defined?

yes, based on syntax, 1.e. are all variables defined, are all inputs
consumed somewhere, etc.

no; therefore the following cri-
teria do not apply.

Decidability, Is 1t possible to decide whether a formal system description is internally

complete?

yes | yes | Does not apply.

By which technique can it be decided whether a formal system description s
internally complete?

Technique, | :

syntactical checks | syntactical checks | Does not apply.

Location, | Is it possible to locate the incomplete parts of a formal system description?

2"

yes

| yes

| Does not apply.

Incompleteness,

s not internally complete?

Is it possible to work in a useful way with a formal system description, which

yes

| yes

| Does not apply.

Internal Consistency, : Is there a notion of internal consistency of formal system descriptions

defined?

yes: again based on syntax.

yes: again based on syntax.

yes: logical consistency, i.e. sa-
tisfiability.

Decidability -

Is 1t possible to decide whether a formal system description is internally

consistent?
yes yes We have not proved this up to
now.
Technique - By which technique can it be decided whether a formal system description is

internally consistent?

syntactical checks |

syntactical checks

| manual proof

Locatlon10 Lo

Is it possible to locate the inconsistent parts of a formal system description?

yes |

yes

| yes

Inconsistency,

s not internally consistent?

Is it possible to work in a useful way with a formal system description, which

ves | ves | yes
Models,

Data : What aspects of data can be expressed?

abstract data types, refine- | no abstract data types; only | none

ment, specialization; in addi-
tion there exist some prede-
fined data types like records
and arrays and the possibility
to give a subrange for numeri-
cal data types.

some predefined data types,
records and arrays are sup-
ported; no refinement, no spe-
cialization.

Data is not supported directly.

Interface |V|ode|12:

What aspects of an interface between components can be described?

data type, monitored/control-
led, properties of abstract data

types

data type, monitored/control-
led, magnitude (in the data
dictionary), time (by the stat-
echarts).

Note, that components are de-
scribed by activities.

Since Modularity, is not sup-
ported, this criterion does not

apply.

Structure1 :

What structural aspects of a system can be

expressed?

hierarchical, flow of data |

hierarchical, flow of data

| none

35

SDL statecharts tRTTL

Quality Aspects ,: What quality aspects can be expressed?

none directly. none none
Certain effects can be modeled
through non-determinism e.g.
channels which can lose data.

Behavior, |
Traces . Which kind of elements constitute the observable traces?
states, signals the configuration of the stat- | states

echarts, i1.e. which states are
currently active; events, values
of variables.

Behavior Description, .: How can the dynamic behavior of the system or its components be de-
scribed?

whitebox | whitebox | blackbox, whitebox

Time
Acb

General Temporal Properties .: What kind of general temporal properties can be expressed?

safety, but note, that properties cannot be stated directly, safety, liveness
because SDIL and statecharts are model oriented description

techniques.

Model of Time : In which way is time represented?

mainly qualitative, in a re- | mainly qualitative, in a re- | quantitative
stricted way also quantitative | stricted way also quantitative.
through the use of timers.

Granularity of Time . : What granularity has the time domain?

dense | discrete | dense

Metric Temporal Properties . .: What kinds of metric temporal properties can be described?

timeouts timeouts bounded response, minimal se-
paration, duration
Global Time Is time considered as being global or is time considered local to individual
components?
local with respect to processes: | There are two different seman- | global
timer-concept tics in [HN96]: in one of them

time can proceed for each com-
ponent, 1.e. activity, indepen-
dently; in the other one time
proceeds at the same pace for
all components.

Concurrency,
Parallelism_ : How are traces of concurrently proceeding components composed?
interleaving maximal parallelism Since Modularity, is not

supported there are no
different components. There-
fore the criteria of group
Concurrency, =~ do not

apply.

36

SDL

statecharts

tRTTL

Communication21:

What communication-concept between components is used?

message passing, remote

procedure calls, remote vari-

ables; shared variables via
reveal /view-construct (not
recommended).

shared variables, events as a
simple form of messages or sig-
nals.

Does not apply.

Synchronization, :

Is communication between components synchronous or asynchronous?

asynchronous | Does not apply. | Does not apply.
Fairness_ : What kind of fairness is supported?

none | none | Does not apply.
Priority,.: Is it possible to express priority between components?

no, except 1t is possible to ex-
press priority on signals.

yes

Does not apply.

Application DomainAcd

Domain |V|ode|s24:
FDT?

Which models of the application domain can be expressed in the considered

structure, data, interface, be-
havior

structure, data, interface, be-
havior as described above.

behavior, especially timing as-
pects

Application of Domain Mpde|s25:
main be co

mbined?

How can formal descriptions and models of the application do-

same

Models of the same kind can
be combined simply by con-
sidering them as concurrent
modules, activities, and stat-
echarts, respectively.

same

Further Properties :

What further properties can be described?

none, remark to

Quality Aspects ,

see

none

none

Process OrientedB

Producing

Creating

GU|deI|nes27:

lines and rules?

To which extent is creating formal system descriptions supported by guide-

full

see refinements of this crite-
rion.

small, only for the usage of pat-
terns, see the following refine-
ments of this criterion.

Process27.1 :

To which extent is the process of creating a

ported by guidelines and rules?

formal system description sup-

full

small, there are only few
guidelines and rules specific for
statecharts, but more general
ones can be applied to a large
extent.

small, since there are only
a few guidelines how to use
the patterns based on the
introduced tailored operators

[PGKI7].

Embedding,_ :

To which e

opment processes?

xrtent can the guidelines and rules be embedded in existing devel-

full

No experience gained in the

case studies; statecharts and

tRTTL have been used ‘stand alone’, i.e. without relation to
other defined development processes.

37

SDL

statecharts

tRTTL

Product,_.:
system des

cription?

Are there guidelines and rules on the structure and appearance of a formal

yes

yes, there are some which al-
ready help a lot.

yes : The introduced patterns
indicate the structure of a sin-
gle formula.

Discipline,_ ,:

Which guidelines and rules exist whose application leads to reasonable formal

system descriptions with respect to non-functional properties?

General ones can be applied,
more specific ones are pro-
posed e.g. in [BH93].

General ones can be applied,
see e.g. [JLHMO91].

none

Traceability, :

Does the formal method support establishing a traceability relation?

yes, but it is not explained how
to really establish 1it.

no, this 1s not supported di-
rectly. But it is possible to do
so manually or by using other
tools.

yes, by translating back the in-
stantiated patterns to natural
language.

Resources_: Are there cost models on the resources needed to create a formal system
description?

no |no |no

Reuse, : Is it possible to reuse formal system descriptions or parts of them?

ves | ves | ves

Internal Reuse30.2.

development project?

Is 1t possible to reuse parts of formal system descriptions from the current

yes yes, e.g. by generic charts. yes, e.g. by utilizing the pat-
terns.

Using_

Validatioana

Requirements Validation,
rules?

. To which extent is the validation process supported by guidelines and

no

|HO

|HO

Traceability,

Is validation supported by a traceability relation?

no, see Traceability, .

| no, see Traceability, .

| no, see Traceability, .

Readability,

Which persons are able to understand a formal system description directly?

only experts; most people can
understand the graphical de-

When using only the basic
concepts, most people can un-

The formulae can only be un-
derstood by experts in the
method. The translation in
natural language should be un-
derstandable by everyone.

scription if the symbols are ex- | derstand statecharts. When
plained once. using the more advanced ones,
then only experts in the
method.
Translation, To which 1
description be translated?

anguages better understood by non-experts can a formal system

none

none

The introduced patterns can
and have been easily trans-
lated in natural language. For
an arbitrary formula this can
not be done in general.

Executlon40.

Can a formal system description be executed?

yes

| yes

|HO

38

SDL ‘ statecharts tRTTL

Animation . : In which way can a formal system description be animated?

The evolution of the system | graphical frontends, so called | In no way.
can be followed graphically by | panels, can be attached to
looking at the current states | statecharts.

and values of variables. The
sequence of signals can be dis-
played by creating MSCs.

Simulation, Can a formal system description be linked to the environment of the system
or a simulation of it?

ves | ves | no

Formal Analysis, : Is it possible to analyze a formal system description to derive further infor-
mation?

yes, the usual properties of communicating automata, e.g. We think that it is possible

reachability of certain states or existence of deadlocks, can be to derive for example timing

checked for. constraints, but we have no

experience.

5.4 Summary of the Comparison

The focus of the answers presented in section 5.3 is on the main purpose of the sample
application of the criteria catalogue, namely the recording of experience. Based on these
answers and the assessment described in section 5.1 the second purpose, the comparison of
the three formal methods, is considered in this section. In accordance with the classification
of the criteria, first the very important criteria are analyzed, next some important criteria are
considered for which there are differences among the three formal methods, a brief remark is
made to the not so important criterion Data

With respect to the three wvery important criteria dealing with time — General Temporal
Properties _, Model of Time ,, Metric Temporal Properties ., — the temporal logic is better
than SDL and statecharts: 1n the case of general and metric temporal properties more prop-
erties are expressible in tRTTL and concerning the criterion Model of Time, , the better rated
one, i.e. a quantitative time model, is supported. SDL and statecharts do not differ with
respect to these time related criteria. This is not the case with respect to the very impor-
tant criterion Priority, .. While in statecharts it is possible to express priority, SDL offers no
comparable mechanism. For tRTTL this criterion is not applicable since modularity con-
cepts are not supported. With respect to the very important criterion Readability, , SDL
and statecharts are rated better than tRTTL. Note, that the attributes are assigned on the
subjective experience of the authors and have to be confirmed by controlled experiments, see
e.g. [Bas96].

Due to the large number of important criteria, here only a few of them are discussed that re-
veal differences among the formal methods. With respect to the criterion Degree of Formality,
tRTTL and SDL are better than statecharts, since we have established the ordering for-
mal>rigorous.

For the criteria Modularity , Interface, , Inheritance,, Abstraction_, and Refinement_ the at-
tributes assigned to SDL and statechalts are 1ated better or equal than those a351gned to
tRTTL. The same is valid for the criteria Interface Model , and Structure , of the group
Models, and the not so important criterion Data . Either the questions of these criteria

39

are answered with yes or in the case of the the more the better criteria the number of assigned
attribute values are better for SDL and statecharts. In the group FSD,, the main difference
is that there is a syntactically defined notion of completeness for SDL and statecharts while
this criterion has to be answered with no for tRTTL.

Up to now, usually SDL and statecharts have been considered together and compared with
tRTTL on the other side. An obvious difference between SDL and statecharts is revealed by
the criteria of the process oriented part of the criteria catalogue. For SDL a large number of
specific guidelines and rules exists [BH93], which is not the case for statecharts. For tRTTL
few guidelines concerning the introduced patterns exist.

Nearly all attributes assigned to SDL with respect to criteria of the group Process Oriented
are better or equal than those assigned to statecharts and tRTTL (according to the partial
orders established in section 5.1). Only in the case of the criterion Translation, tRTTL is
rated better than SDL (and statecharts).

Summing up this comparison, the most essential and obvious fact is that the two formal
methods SDL and statecharts are very similar and that both differ to a high degree from the
considered specific temporal logic. Furthermore, the strengths and weaknesses of the formal
methods, that have been pointed out, can be hints on directions, in which it is useful to
improve a formal method. Some examples are:

e Improve the expressiveness of statecharts and SDL with respect to temporal properties.
This is already an area of active research, see e.g. [KP92, Dei96, Leu95]. Most temporal
properties can already be described by using timeouts, but not in a very clear way.
Therefore, more suitable temporal operators should be available.

e There are few guidelines and rules which are specific for statecharts. But, as can be
seen from the answers given, statecharts and SDL are very similar. Therefore it seems
to be possible to adapt the guidelines and rules of SDL to statecharts.

e Traceability should be improved for each of the formal methods examined. Therefore
it is necessary to define precisely, which elements of a formal system description are
involved in the traceability relation.

e Structuring concepts should be introduced in tRTTL or it should be combined with a
FDT providing such concepts.

6 Concluding Remarks

A large set of criteria has been presented in this paper. They are intended for formal methods
for specifying and designing reactive systems. The notion of a criterion has been discussed and
several problems of its use in this catalogue have been identified. The problems arise because
the criteria presented are still too general to be used in a specific context. Furthermore,
to give an example of the application of the catalogue, three formal methods, namely SDL,
statecharts, and a temporal logic called tRTTL, have been evaluated.

The structure of the criteria catalogue according to the Concept-Model of formal methods
has been helpful when applying the catalogue as described in section 5. But there are further
possibilities to structure the catalogue, e.g. the process oriented part can be structured more

40

directly towards the different phases of software development. By further applications of the
catalogue it can be supported, that the structure used here is a helpful one, or suggestions
how to improve the structure can be derived.

After further applications of the catalogue, it can be scrutinized, whether the different aspects
of formal methods are investigated with an appropriate level of detail. It can also be reviewed,
whether all criteria really contribute to an evaluation of formal methods, i.e. whether they
actually reveal differences between different formal methods. Note, that this will be useful
mainly within one specific context of the application of the formal methods evaluated.

It is planned to extend the evaluation of SDL, statecharts, and tRTTL in two directions.
On the one hand, more criteria concerning the processes shall be considered and the answers
which are based on the subjective experience of the authors shall be made more objective.
On the other hand, work is in progress, see [BDK*97], to apply the catalogue to the SCR
description technique, see [CP93, HJL96]”. This application is within the same context, but
done independently of the authors of this report. Therefore, this contributes in an ideal way
to the evaluation of the catalogue itself. The evaluations of formal methods contained in both
reports will be joined to a more comprehensive evaluation of formal methods in this specific
context.

Acknowledgements

A lot of people of the Sonderforschungsbereich 501 contributed to this report: by giving
comments on this and earlier versions of the criteria catalogue as well as by working together
with the authors on the case studies upon which the evaluation of SDL, statecharts, and
tRTTL is based. Without their help and work, this report could not have been written:
L. Baum, B. Dellen, B. Geppert, R. Gotzhein, T. Hillenbrand, E. Kamsties, A. v. Knethen,
K. Madlener, C. Peper, M. Schiitze, P. Sturm, S. Vorwieger, G. Zimmermann.

References

[AB96] J. Armstrong and L. Barroca. Specification and verification of reactive systems:
The railroad crossing example. Real-Time Systems, 10:143-178, 1996.

[ABL96] J.-R. Abrial, E. Boerger, and H. Langmaack, editors. Formal Methods for In-
dustrial Applications, Specifying and Programming the Steam Boiler Control,
volume 1165 of LNCS. Springer, 1996.

[ACJt96] M. A. Ardis, J. A. Chaves, L. J. Jagadeesan, P. Mataga, C. Puchol, M. G.
Staskauskas, and J. Von Olnhausen. A framework for evaluating specification

methods for reactive systems, experience report. IEFE Transactions on Software
FEngineering, 22(6):378-389, 1996.

[AH90] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
In Proc. of 5th Ann. IEFFE Symp. on Logic in Computer Science, pages 390-401.
IEEE Computer Society Press, 1990.

”Note7 that when being very precise, the FDTs described in these publications have to be considered as
two different ones. E.g. the granularity of the time domain is different.

41

[ASS5]

[Bas96]

[BDD*94]

[BDK*+97]

[BG92]

[BH93]

[Bro96]

[CESS6]

[CGRO3]

[Che70]

[CheT6]

[CHRO1]

[CP93]

[CS96]

[Deig4]

B. Alpern and F. B. Schneider. Defining liveness. Information Processing Let-
ters, 21:181-185, 1985.

V. R. Basili. The role of experimentation in software engineering: Past, current,
and future. In Proc. of 18th Intl. Conf. on Software Engineering, pages 442—449.
IEEE Computer Society Press, 1996.

M. Baéantsch, T. Deif; J. Denzinger, E. Kamsties, I'. Maurer, J. Paulokat,
M. Schiitze, P. Sturm, and M. Verlage. Kriterien fiir Spezifikationssprachen.
in german, unpublished manuscript, 1994.

L. Baum, B. Dellen, E. Kamsties, A. von Knethen, and S. Vorwieger. Modelling
real-time systems with SCR — lessons learned in a building automation sys-
tem project. SEB 501 Bericht 07/97, Sonderforschungsbereich 501, Fachbereich
Informatik, Universitit Kaiserslautern, 1997.

G. Berry and G. Gonthier. The Esterel synchronous programming language: De-
sign, semantics, implementation. Science Of Computer Programming, 19(2):87—
152, 1992.

R. Braek and @. Haugen. Fngineering Real-Time Systems, An object-oriented
methodology using SDL. Prentice Hall, 1993.

M. Broy. Formal description techniques - how formal and descriptive are they?
In R. Gotzhein and J. Bredereke, editors, Formal Description Techniques IX,
Theory, application and tools, pages 95-110. Chapman and Hall, 1996.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite—
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244-263, 1986.

D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial
applications of formal methods. Technical Report NIST GCR93/626, volume 1,
US National Institute of Standards and Technology, 1993.

H. Chestnut. Information requirements for systems understanding. IFEF Trans-
actions on Systems Science and Cybernetics, 6(1):3-12, 1970.

P. P.-S. Chen. The entity-relationship model — toward a unified view of data.
ACM Transactions on Database Systems, 1(1):9-36, March 1976.

7. Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40:269-276, 1991.

P.-J. Courtois and D. L. Parnas. Documentation for savety critical software.
In Proc. of 15th Intl. Conf. on Software Engineering, pages 315-323. IEEE
Computer Society Press, 1993.

R. Cleaveland and S. A. Smolka. Strategic directions in computing research —
concurrency working group report. FATCS Bulletin, 60:97-122, 1996.

T. Dei. An outsiders evaluation of PAISLey. Internal Report 250/94, Fach-
bereich Informatik, Universitit Kaiserslautern, 1994.

42

[Dei96]

[DH97]

[dR91]

[Fau95]

[Har87]

[HIL96]

[HL94]

[HLN190]

[HN96]

[JLHMO1]

[KP92]

[KPG96]

[Lam94]

[Leu95]

T. Deiff. Combining a state based formalism with temporal logic. SFB 501
Bericht 05/96, Sonderforschungsbereich 501, Fachbereich Informatik, Univer-
sitdt Kaiserslautern, 1996.

T. Deil and T. Hillenbrand. A case study on the use of SDL. SFB 501
Bericht 03/97, Sonderforschungsbereich 501, Fachbereich Informatik, Univer-
sitdt Kaiserslautern, 1997.

W.-P. de Roever. Foundations of computer science: Leaving the ivory tower.
FATCS Bulletin, 44:455-493, 1991.

S. R. Faulk. Software requirements: A tutorial. NRL Memo Report 5546-95-
7775, Naval Research Laboratory, Washington, DC, November 1995.

D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software Fngi-
neering and Methodology, 5(3):232-261, 1996.

C. Heitmeyer and N. Lynch. The generalized railroad crossing: A case study in
formal verification of real-time systems. In Proc. of Real Time Systems Sympo-
sium, pages 120-131. IEEE Computer Society Press, 1994.

D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. STATEMATE: A working environment for
the development of complex reactive systems. IFEF Transactions of Software
FEngineering, 16(4):403-414, 1990.

D. Harel and A. Naamad. The STATEMATE semantics of statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293-333, 1996.

M. S. Jaffe, N. G. Leveson, M. P. E. Heimdahl, and B. E. Melhart. Software
requirements analysis for real-time process-control systems. IFEF Transactions
on Software Engineering, 17(3):241-258, 1991.

Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual repre-
sentation. In J. Vytopil, editor, Proc. of 2nd Intl. Symp. on Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 571 of LNCS, pages 591-620.
Springer, 1992.

M. Kronenburg, C. Peper, and R. Gotzhein. A tailored real time temporal logic
for specifying requirements of building automation systems. SFB 501 Bericht
16/96, Sonderforschungsbereich 501, Universitat Kaiserslautern, 1996.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

S. Leue. Specifying real-time requirements for SDL specifications - a temporal
logic-based approach. In Proc. of 15th Intl. Symp. on Protocol Specification,
Testing, and Verification PSTV’95. Chapman and Hall, 1995.

43

[MP90]

[MP92]

[MP93]

[MSC]

[OFMP+94]

[Ost87]

[PGKO97]

[Pnu77]

[RBP+91]

[Ree96]

[SDLa]

[SDLb]

[SMSV83]

[stm91]

[vdB94]

[Zav91]

7. Manna and A. Pnueli. A hierarchy of temporal properties. In Proc. of 9th
Ann. ACM Symp. on Principles of Distributed Computing, pages 377-408, 1990.

7. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, 1992.

7. Manna and A. Pnueli. Models for reactivity. Acta Informatica, 30:609-678,
1993.

(CCITT), Z.120 (1993), Message Sequence Charts (MSC), Recommendation
7.100.

A. Olsen, O. Faergemand, B. Moller-Pedersen, R. Reed, and J. R. W. Smith.
Systems Engineering Using SDL-92. North-Holland, 1994.

L. Osterweil. Software processes are software too. In Proc. of 9th Intl. Conf. on
Software FEngineering, pages 2-13. IEEE Computer Science Press, 1987.

C. Peper, R. Gotzhein, and M. Kronenburg. Formal specification of real-time
requirements for building automation systems. SEB 501 Bericht 01/97, Sonder-
forschungsbereich 501, Universitat Kaiserslautern, 1997.

A. Pnueli. The temporal logic of programs. In Proc. of 18th Ann. Symp. on
Foundations of Computer Science, pages 46-57, 1977.

J. Rumbaugh, M. Blaha, W. Premerlani, I. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, New York, 1991.

R. Reed. Methodology for real time systems. Computer Networks and ISDN
Systems, 28:1685-1701, 1996.

(CCITT), Z.100 (1993), Specification and Description Language SDIL, Recom-
mendation Z.100.

(CCITT), Z.100 — Annexe F.1 (1993), Definition Formelle du Language de De-
scription et de Specification, Recommendation Z.100 — Annexe F.1.

R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. Interval logic: A higher—
level temporal logic for protocol specification. In H. Rudin and C. H. West,
editors, Protocol Specification, Testing, and Verification I1I, pages 3—-18, 1983.

i-Logix, 22 Third Avenue, Burlington, Mass. 01803, USA. STATEMATEF, The
Semantics of Statecharts, January 1991.

M. van der Beeck. A comparison of statechart variants. In H. Langmaack, W. P.
de Roever, and J. Vytopil, editors, Proc. of 3rd Intl. Symp. Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 863 of LNCS, pages 128-148.
Springer, 1994.

P. Zave. An insider’s evaluation of PAISLey. IFEFE Transactions on Software
FEngineering, 17(3):212-225, March 1991.

44

