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Zusammenfassung

Viele technisch relevante metallische Werkstoffe besitzen eine heterogene
Mikrostruktur. Das makroskopische Materialverhalten ist das Resultat des
Zusammenwirkens einer Vielzahl von Phasen und Strukturen, mit jeweils unter-
schiedlichen mechanischen Eigenschaften. Insbesondere die Gefügeentwicklung
in metastabilen austenitischen Stählen unterliegt dem Einfluss verschiedener
Mechanismen. In diesem Zusammenhang ist die martensitische Transformation
hervorzuheben, bei der das Kristallgitter ausgehend von der metastabilen kubisch-
flächenzentrierten austenitischen Phase in den kubisch-raumzentrierten Martensit,
die stabile Phase, umklappt. Durch die Phasenumwandlung kommt es zu einer
Volumenänderung sowie einer Gitterscherung, was zu einer Eigen- oder Transfor-
mationsverzerrung innerhalb des Martensits führt. Abhängig von der Richtung der
Gitterscherung entstehen unterschiedliche martensitische Orientierungsvarianten,
die sich in einer komplexen Mikrostruktur anordnen. Der Martensit wächst meist
nadel- oder plattenförmig, wobei ein autokatalytischer Effekt beobachtet wird,
d. h. eine Martensitplatte das Wachstum weiterer Platten induziert. Zusätzlich
führt die Eigendehnung im Martensit auf der atomaren Skala zu einem Wandern
von Versetzungen, die wiederum die Phasentransformation beeinflussen. Kontin-
uumsmechanisch werden solche Versetzungswanderungen als Plastizität erfasst.
Darüber hinaus entstehen im austenitischen Stahl Mikrorisse die ebenfalls mit der
martensitischen Transformation wechselwirken. In diesem Zusammenhang ist im
Experiment die Bildung von Martensit an der Rissspitze zu beobachten. Da der
Martensit andere Materialeigenschaften als der Austenit aufweist, wirkt sich die
Martensitbildung auf die Rissentwicklung aus.
Um zu einem besseren Verständnis der komplexen Zusammenhänge auf der
Mikroebene von metastabilen austenitischen Stählen beizutragen, wird in dieser
Arbeit ein Phasenfeldmodell für martensitische Transformationen vorgestellt. Das
zweidimensionale Modell berücksichtigt zwei martensitische Orientierungsvari-
anten.

Im Rahmen des Phasenfeldansatzes gibt ein Ordnungsparameter die jeweils
vorliegende Phase – Austenit oder Martensit – an. Im ersten Teil der vorliegen-
den Arbeit wird rein elastisches Materialverhalten angenommen. Die Kopplung
der Materialeigenschaften an den Ordnungsparameter ermöglicht die Erfassung
unterschiedlicher Werte für die verschiedenen Phasen. Zwischen den Phasen
gewährleistet der Phasenfeldansatz einen stetigen Übergang der insbesondere für
die numerische Umsetzung von Vorteil ist. Mit Hilfe von Kalibrierkonstanten wird
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die Einstellung der Breite des Übergangsbereichs zwischen den Phasen mittels
eines Modellparameters ermöglicht. Ein zweiter Modellparameter bestimmt die
Grenzflächenenergie.
Die Metastabilität bzw. Stabilität des Systems wird durch ein Landaupolynom mit
lokalen und globalen Minima modelliert, wobei die Koeffizienten des Polynoms die
temperaturabhängige Energielandschaft festlegen. Im Rahmen dieser Arbeit werden
zwei verschiedene Polynome vorgestellt die sich hinsichtlich der Berücksichtigung
von zwei Martensitvarianten bezüglich des Ordnungsparameters unterscheiden. Ein
Ansatz modelliert die beiden Varianten durch zwei Ordnungsparameter. Alternativ
können die beiden Varianten mit einem einzelnen Ordnungsparameter modelliert
werden, wenn das Polynom zwei geeignete globale Minima aufweist. Dieser Ansatz
ist zwar betreffend der numerischen Umsetzung effizienter, führt allerdings bei der
Mikrostrukturentwicklung zu Einschränkungen. Die Entwicklung der Mikrostruktur
wird durch die Evolutionsgleichung des Ordnungsparameters beschrieben, wobei
diesbezüglich von einer zeitabhängigen Ginzburg-Landau-Gleichung ausgegangen
wird.

Um weitere Einflüsse auf die martensitische Transformation zu untersuchen,
wird das elastische Phasenfeldmodell erweitert. Zunächst wird Versetzungswan-
derung im Rahmen der Kristallplastizität berücksichtigt. Dadurch können für
die verschiedenen Phasen unterschiedliche Gleitsysteme verwendet werden. In
einer zweiten Erweiterung erfolgt die Kopplung des bestehenden elastischen
Modells an ein Phasenfeldmodell für Bruch. Hierbei erfolgt die Beschreibung des
Rissfelds mittels einer Schädigungsvariablen, deren Entwicklung ebenso durch
eine zeitabhängige Ginzburg-Landau-Gleichung beschrieben wird. Da es aufgrund
der martensitischen Eigendehnung trotz einer globalen Zugbelastung zu lokalen
Druckspannungen kommt, wird das Vorzeichen der lokalen Volumenänderung
berücksichtigt. Auf diese Weise kann ein physikalisches Verhalten eines Risses
unter Druckbelastung erreicht werden. Zusätzlich wird die Irreversibilität des
Risswachstums modelliert.

Das Modell ist in das Finite Elemente Programm FEAP (Finite Element Analysis
Program) implementiert. Bei mechanischen Finite-Elemente-Problemen werden die
Einträge des Verschiebungsvektors als Knotenfreiheitsgrade erfasst. Für den Phasen-
feldansatz wird neben den Verschiebungen zusätzlich der Ordnungsparameter als
Knotenfreiheitsgrad berücksichtigt, sodass in jedem Knotenpunkt die vorliegende
Phase berechnet wird. Zu den gekoppelten, nicht-linearen Feldgleichungen zählt
neben der Evolutionsgleichung des Ordnungsparameters die Gleichgewichtsbe-
dingung. Für die numerische Implementierung wird die jeweils schwache Form
der Feldgleichungen diskretisiert. Die Lösung des Gleichungssystems erfolgt mit
Hilfe des Newton-Raphson-Verfahrens, das eine Linearisierung der Gleichungen
erfordert. Die Zeitabhängigkeit der Problemstellung benötigt eine Zeitintegration,
die implizit mittels des Euler-Rückwärts-Verfahrens durchgeführt wird. Bezüglich
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der Kristallplastizität erfolgt die Zeitintegration auf verschiedenen Ebenen: Die
Lösung des Gleichungssystems und damit die Entwicklung des Ordnungsparameters
als Knotenfreiheitsgrad finden global statt, während die Evolutionsgleichungen
der Kristallplastizität am Integrationspunkt auf der Elementebene in Form eines
Prädiktor-Korrektor-Verfahrens integriert werden.

Zunächst wird eine Kalibrierung des Finite-Elemente-Modells durch atomistische
Simulationen vorgenommen. Diese stellen für reines Eisen bei einer Temperatur
von T = 100 K sämtliche Materialparameter bereit. Anschließend erfolgt eine
Validierung der Werte bei T = 1300 K. Im nächsten Schritt wird mit Hilfe der
Finite-Elemente-Simulationen der Einfluss der Volumenänderung sowie der Berück-
sichtigung mehrerer Orientierungsvarianten für austenitische Stähle analysiert.
Diesbezüglich führt alleine die martensitische Eigendehnung zu einer Wanderung
der Grenzfläche. Weiterhin lösen äußere mechanische Lasten die martensitische
Umwandlung aus. Mit Hilfe des Phasenfeldmodells wird die Entwicklung der
martensitischen Phasen mit unterschiedlichen Eigendehnungstensoren untersucht,
wobei in diesem Zusammenhang auch energetische Betrachtungen während des
Keimvorgangs und der Ausbreitung des Martensits analysiert werden. Die Sim-
ulationsergebnisse zeigen in Übereinstimmung mit Experimenten plattenförmige
martensitische Strukturen.

Im Anschluss werden im Rahmen der Kristallplastizität für die unterschiedlichen
Phasen verschiedene Gleitsysteme berücksichtigt und so der Zusammenhang
zwischen plastischen Dehnungen und der Phasentransformation untersucht. Dabei
verursacht die Transformationsdehnung plastische Deformationen. Gleichzeitig
lösen plastische Verformungen die martensitische Transformation aus. Motiviert
durch den Fertigungsprozess des kryogenen Drehens von metastabilen Austeniten
wird zusätzlich eine, mit einer Wanderlast beaufschlagte, Oberfläche kristallplas-
tisch modelliert. Hier stellt sich heraus, dass plastische Deformationen von der
austenitischen an die martensitische Phase vererbt werden. Außerdem kann der
autokatalytische Effekt, der im Zusammenhang mit der Bildung von martensitischen
Platten beobachtet wird, mit plastischen Verformungen in Verbindung gebracht
werden. Eine qualitative und quantitative Übereinstimmung der Simulationsergeb-
nisse mit experimentellen Proben ist gegeben.

Um abschließend die Wechselwirkungen der martensitischen Transformation
mit Rissen auf der Mikroebene zu analysieren, wird das vorgestellte Phasen-
feldmodell für martensitische Transformationen mit einem Phasenfeldmodell für
Bruch gekoppelt. Übereinstimmend mit experimentellen Beobachtungen bildet
sich in den numerischen Simulationen Martensit an der Rissspitze und beeinflusst
somit die Rissausbreitung. Gleichzeitig korrespondieren die Charakteristika der
Simulationsergebnisse mit Mikroskopaufnahmen einer martensitischen Struktur.
Sowohl bei der experimentellen als auch der berechneten Mikrostruktur treten
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Risse ausschließlich im Martensit auf – entweder im Übergangsbereich zwischen
den martensitischen Platten oder senkrecht zur Plattenrichtung.
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Abstract

On the microlevel many metallic materials are composed of different structures with
various mechanical properties, which affect the macroscopic mechanical behavior
of the specimen. Especially the microstructure evolution of metastable austenitic
steels is subjected to the influence of several phenomena. One important structural
change is the martensitic transformation during which the crystal lattice changes
from the metastable austenitic phase – with a face centered cubic lattice – to stable
martensite with a body centered cubic lattice. The volume change and the lattice
shear, which accompany the phase transition, lead to a transformation-induced
eigenstrain or transformation strain within the martensitic phase. Depending on
the lattice shear direction, different martensitic orientation variants arise which
are combined to a complex microstructure. In experiments martensite is observed
to grow in a lath- or plate-like shape in combination with an autocatalytic effect,
i.e. one plate induces the formation of further martensitic plates. Additionally, the
martensitic eigenstrain causes dislocation movement on the atomic scale, which
also influences the evolution of phases. On the macroscale such a dislocation move-
ment corresponds to plastic deformations. Moreover, microcracks are observed on
the microlevel of austenitic steels interacting with the phase transformation. In
this context martensite mainly forms at the crack tip, in turn affecting the crack
path. In order to contribute to a better understanding of the complex formation of
microstructure, in this thesis a two-dimensional phase field model for martensitic
transformations, which considers two different martensitic orientation variants, is
developed.

Within the phase field approach an order parameter is introduced to indicate
whether the present phase is austenite or martensite. In the first part of the thesis
an elastic material model is used while the different material properties of the
phases are coupled to the order parameter. In this manner, the elastic properties
can be considered individually for each phase. The order parameter interpolates
smoothly between the phases, which is beneficial for the numerical implementation.
By introducing calibration constants the width of the continuous transition zone
between the phases can be controlled by a model parameter. With a second model
parameter the interface energy is adjustable. The metastable and stable states of
the system are modeled with help of a Landau polynomial, which has both local
and global minima while the choice of the coefficients of the polynomial determines
the temperature dependent energy landscape. In this thesis two different Landau
polynomials are proposed to consider both martensite variants, differing in terms
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of the order parameter. One approach takes two variants by two different order
parameters into account. Alternatively, both variants can be considered by a single
order parameter if the polynomial has two different global minima. Concerning
the numerical implementation, the latter approach is more efficient. However, it
imposes restrictions on the formation of the martensitic phase. Furthermore, the
evolving microstructure is described by the evolution of the order parameter, which
is assumed to follow the time-dependent Ginzburg-Landau equation.

The elastic phase field model is enhanced in two different ways to take fur-
ther phenomena into account. First, dislocation movement is considered by a
crystal plasticity setting. In this context, different slip systems for the different
phases are included. Second, the elastic model for martensitic transformations is
combined with a phase field model for fracture where a damage variable is related
to fracture. In analogy to the order parameter, the evolution of the crack field
is governed by a time-dependent Ginzburg-Landau equation. For this combined
approach, there are some issues, which have to be considered. The eigenstrain
within the martensite leads to both tensile and compressive loads. Therefore, the
sign of the local volume change has to be taken into account to obtain physical
results. In addition, to prevent the material from healing the irreversibility of a
crack has to be ensured.

In order to perform numerical simulations the model is implemented into the
finite element code FEAP (Finite Element Analysis Program). In a finite element
scheme for mechanical problems, classically, the displacements are considered as
nodal degrees of freedom. For the phase field approach, the order parameter is
additionally taken as nodal degree of freedom, indicating the present phase in
each nodal point. The set of non-linear coupled field equations is completed by
the evolution equation(s) of the order parameter(s) and the equilibrium condition.
For the numerical implementation, the weak forms of the field equations are
discretized. Due to the non-linearity a Newton-Raphson scheme is applied to
solve the system of equations, which requires a linearization of the equations.
Additionally, integration in time is necessary to describe the temporal evolution
of the microstructure. To ensure a robust performance the implicit Euler back-
ward scheme is used. With regard to the time integration, special care has to
be taken concerning the crystal plasticity setting. On the one hand, the order
parameter evolves on a global level, where the system of equations is solved
in each time step. On the other hand, there are evolution equations related to
the crystal plastic material law, for which a backward Euler scheme in form of
a predictor corrector method is applied on the element level at the integration point.

In a first step, the elastic finite element model is calibrated using atomistic
simulations. Therefore, the parameters are identified by a molecular dynam-
ics simulations for pure iron for the temperature T = 100 K and verified for
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T = 1300 K. Subsequently, with the aid of numerical simulations the influence of
the volume change and different orientation variants is investigated for considering
the material data of austenitic steels. In this regard, the transformation-induced
eigenstrain leads to interface motion without applying external loads. Furthermore,
martensite is generated through defined mechanical loads acting on the metastable
austenitic phase. By using the phase field model, the impact of a mechanical
load history on the formation of the different martensitic phases with different
transformation-induced eigenstrains is studied. In this context, the energy evolution
during nucleation and growth of martensite is also considered. In the numerical
simulations martensite is found to grow in a plate-like shape in accordance with
experimental and other numerical studies.

In a next step the enhanced model with the crystal plasticity setting is em-
ployed. The relations between the phase transition and plastic deformations, which
are calculated from the slip of different slip systems, are examined. The evolution
of slip partially results from the transformation strain such that slip induced by the
martensitic transformation is observed. On the other hand, the crystal plasticity also
influences the formation of martensite. Furthermore, martensitic transformations
in a crystal plastic material are studied at a loaded surface. The numerical setup is
motivated by the process of cryogenic turning where due to the cooling the phase
transition is triggered by the load of the turning tool. It turns out that the plastic
deformations are inherited from austenite to martensite. Moreover, the resulting
microstructure evolution reveals a link between the autocatalytic formation of
martensitic plates and the plastic deformations. The simulation results qualitatively
and quantitatively coincide with experimental observations.

Finally, with the aid of the combined phase field approach for martensitic
transformations and damage the interactions between microcrack propagation and
the formation of the martensitic phase are studied. Martensite forms in agreement
with experimental observations at the crack tip and thus influences the crack
formation. In addition, the main features of the numerical simulations are in
accordance with micrographs of a martensitic structure, where the cracks arise
exclusively in the martensite, either perpendicular to the martensitic plate direction
or in the transition zone between the phases.
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1 Introduction

1.1 Motivation and Background

In mechanical engineering the component surface is of particular importance.
It strongly influences the component behavior since wear and cracks frequently
initiate at the surface layer. Wear resistance and fatigue strength of a component
are improved by a hardened surface. For ferrous metals this could be done by
the martensitic transformation. Classically, the material is heated to obtain an
austenitic crystal lattice. The subsequent cooling at a high cooling rate changes
the crystal structure to the harder phase martensite. This surface treatment
means an additional production step, which is costly, consuming time and energy.
Alternatively, for sufficiently low temperatures, i.e. for temperatures below the
martensite start temperature, the transformation from metastable austenite to
stable martensite can also be triggered by plastic deformation of the specimen. This
is exploited for manufacturing by cryogenic turning which motivates the present
investigation. During the turning process the workpiece of metastable austenitic
AISI 347 steel is cooled with carbon dioxide snow. In this way, the martensitic
transformation is induced by the deformation of the turning tool at the compo-
nent surface and surface hardening is obtained during the cutting. Hence, a single
workstep results in the final shape of a workpiece including a hardened surface layer.

The turning at a cryogenic temperature induces different processes, which in-
teract on the microscale of the material. First, there is the phase transformation
from the face-centered cubic austenite to body-centered cubic martensite. The
phase transition leads to a volume change and a lattice shearing, resulting in
a transformation-induced eigenstrain within the martensitic phase. Depending
on the shearing direction of the crystal lattice different orientation variants of
martensite arise, which are combined to a complex microstructure. Furthermore,
the martensitic transformation is accompanied by dislocation movement, which
can be inherited from austenite to martensite. The plastic deformations lead to
new nucleation sites for the martensitic phase, which results in an autocatalytic
effect. Thus, plasticity plays a crucial for the phase transformation. In addition,
microcracks are observed on the microlevel of metastable austenites. In conjunction
with the phase transformation, martensite mainly forms at the crack tip. This
influences the crack propagation due to the eigenstrain acting in the martensite. On
the other hand, the formation of the martensitic phase is affected by crack growth.
The aim of this work is to contribute to a better understanding of these complex
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1 Introduction

interactions with the aid of a numerical model.

Classically, a sharp interface between austenite and martensite is considered.
This approach is applied e.g. by Cherkaoui et al. [1998], Cherkaoui and Berveiller
[2000]. However, the tracking of those interfaces is numerically cumbersome.
Alternatively, the phase field ansatz can be employed. Therein, an order parameter
is introduced to indicate the present phase. The approach leads to a smooth
transition zone between the phases. The properties of the phases are coupled
to the order parameter such that these can be considered for each phase indi-
vidually without dealing with discontinuities. The microstructure evolution is
described by the evolution equation of the order parameter, which is known as the
time-dependent Ginzburg-Landau equation. It is based on the thermodynamically
consistent assumption that the rate of the order parameter is proportional to the
variational derivative of the global free energy of the system with respect to the
order parameter. A general overview on phase field modeling is given by Moelans
et al. [2008] while Mamivand et al. [2013] provide a literature review of the past
phase field modeling studies concerning the formation and growth of martensite.
Chen et al. [1992], Wang and Khachaturyan [1997] introduced the first phase field
models for martensitic transformations. These seminal works have been followed
by many others, e.g. Artemev et al. [2000, 2001], Jin et al. [2001], Ahluwalia
et al. [2004], Wang and Khachaturyan [2006], Zhang et al. [2007], Zhong and
Zhu [2014]. In the following years enhanced models have been proposed. There
are approaches which additionally consider dislocation dynamics e.g. Kundin et al.
[2011] or plastic deformations, e.g. Guo et al. [2005], Richards et al. [2013]. All of
them are based on Fourier transformation formalism. Yamanaka et al. [2008, 2009]
use finite differences to solve the elasto-plastic field equations. For considering
complicated boundary conditions or complex material laws, the finite element
method is most effective. It is used, for example, by Levitas et al. [2010, 2013],
Hildebrand and Miehe [2010, 2012], Roumi [2010], Yeddu et al. [2012], Malik
et al. [2013].

1.2 Overview

In this thesis a phase field model for martensitic transformations is introduced
which is implemented into the finite element code FEAP (Finite Element Analysis
Program, Taylor [2014]). The order parameter is considered as additional nodal
degree of freedom besides the mechanical displacements. The numerical realization
of the phase field approach using finite elements is straightforward since the smooth
transition zone circumvents dealing with discontinuities. Furthermore, the order
parameter describes the distribution of the phases throughout the computation
domain, so a laborious tracking of the interfaces is not necessary. With the aid of
numerical simulations the single effects, which contribute to the microstructure
formation, can be studied separately. In a first step the elastic field equations are
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1.2 Overview

solved. Subsequently plastic deformations are taken into account within a crystal
plasticity scheme. Finally, the interactions between the phase transformation and
microcracks are studied by including a damage variable.

In particular, this work comprises of six chapters. Following the introduction,
the most important continuum mechanical fundamentals, which are relevant for
this thesis, are given in Chapter 2. These include the kinematic relations within
the small strain context and the balance laws. Further simplifying assumptions are
specified and the employed notation is introduced.
Chapter 3 summarizes the characteristics of the martensitic transformation. In
this context also energetic considerations and driving mechanisms of the phase
transition are taken into account.
In Chapter 4 the phase field model for martensitic transformations is outlined.
In the course of an initial motivation a one-dimensional model, including the
model parameters, is presented. For the two-dimensional model the numerical
implementation into a finite element scheme is discussed, followed by a parameter
calibration, which uses information from atomistic simulations of pure iron. Addi-
tionally, the influence of the volume change during the phase transformation, the
consideration of different martensite variants and external loads on the formation
of the microstructure are investigated for metastable austenites.
Chapter 5 starts with the proposal of a numerically more efficient approach to
consider different martensitic orientation variants. Subsequently, the model, which
is introduced in Chapter 4, is enhanced such that plastic deformations can be taken
into account by employing a crystal plasticity scheme. The numerical examples
document the influence of the plastic deformations. Motivated by the process
of cryogenic turning the phase transformation at a loaded surface is numerically
studied and compared to experimentally obtained results. Finally, the model is
combined with a phase field model for fracture, which allows a deeper insight into
the interplay of martensitic transformations with damage.
The last Chapter 6 concludes the thesis with a summary of the most important
contributions. Additionally, open issues and future work are briefly discussed.
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2 Continuum Mechanics and

Thermodynamics

In this chapter the basic relations concerning continuum mechanics and thermody-
namics are presented. In the first section the concepts of kinematics describing the
deformations of a material body are introduced while this work is limited to the geo-
metrically linear theory. In Section 2.2 the balance equations for mass, momentum,
angular momentum, energy and entropy are discussed so that eventually general
constitutive equations can be deduced. Textbooks on this topic are e.g. Altenbach
and Altenbach [1994], Gurtin et al. [2010], Haupt [2002], Holzapfel [2000], Becker
and Gross [2002]. Furthermore, in Gross and Seelig [2007] an introduction with
focus on fracture- and micromechanics is given.

2.1 Kinematics

Figure 2.1: Deformation X of a body B.

The statements in this chapter refer to a material body B with boundary ∂B in
Euclidean space R3, consisting of material points as shown in Figure 2.1. The spatial
position of a material point χ in the reference configuration is given with X. A
deformation is described by the mapping x = ϕ(X, t) : B → R3 with x(X, t)

5



2 Continuum Mechanics and Thermodynamics

denoting the position of the material point χ in the current or deformed configuration
for the time t. Below, X is used to refer to the material point χ. The difference
between the reference and the current configuration defines the displacement vector

u = x−X. (2.1)

The velocity of a material point is the material time derivative of x (indicated by a
superposed dot)

v =
dx
dt

=
∂x(X, t)

∂t
= ẋ, (2.2)

while the acceleration is defined to be the material time derivative of the velocity v

a =
dv
dt

=
∂v(X, t)

∂t
= v̇ = ẍ =

d2x

dt2
, (2.3)

which is related to the local time derivative of v with

a =
d
dt

v
(

x(X, t), t
)

=
∂v(x, t)

∂t
+∇v(x, t)

∂x(X, t)

∂t
=
∂v

∂t
+ (∇v)v. (2.4)

The symbol ∇(·) in Eq. (2.4) denotes the gradient grad(·). The deformation gradient

F =
∂ϕ(X, t)

∂X
=

∂x

∂X
(2.5)

is defined by the partial derivatives of a given deformation ϕ, i.e. F is the Jacobian
matrix of the mapping ϕ(X, t). In this work ϕ(X, t) is assumed to be invertible and
orientation preserving leading to the non-vanishing determinant of the Jacobian

J = det F ̸= 0. (2.6)

Because the inverse F −1 exists, the velocity gradient L = ∇ẋ is given by

L = Ḟ F−1. (2.7)

Using the deformation gradient F and the displacement vector u, the displacement

gradient H is written

F =
∂x

∂X
=
∂ (X + u)

∂X
= I +∇u = I +H , (2.8)

where I denotes the second order identity tensor. With the displacement gradient H
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2.2 Balance Equations

a line element dx of the current configuration can be expressed as

dx = du+ dX (2.9)

=
∂u

∂X
dX + dX (2.10)

= HdX + dX . (2.11)

For the definition of the strains the difference between the square of the line ele-
ments ds2 = dx · dx and dS2 = dX · dX is considered

ds2 − dS2 = [(HdX + dX) · (HdX + dX)]− dX · dX (2.12)
= dXT ·

(

H +HT +HTH
)

︸ ︷︷ ︸

2E

dX. (2.13)

The tensor E =
1

2

(

H +HT +HTH
)

denotes the Green-Lagrange strain tensor for
finite strains. In this work only small displacement gradients with |H| ≪ 1 are
considered. Thus, the third summand of E is of higher order small and can be
neglected, leading to the linearized strain tensor

ε =
1

2

(

H + HT) =
1

2

(

∇u+ (∇u)T
)

. (2.14)

Within the geometrically linear small strain context, there is no distinction between
reference and current configuration (x→X).

The split of the linearized strain tensor into a spherical and a deviatoric part

by

ε =
tr(ε)
3

I
︸ ︷︷ ︸

spherical
part

+ e
︸︷︷︸

deviatoric
part

with e = ε−
tr(ε)
3

I (2.15)

is for some problems beneficial. In the next step the balance equations are discussed.

2.2 Balance Equations

In this section the fundamental balance equations which are valid in continuum
mechanics are introduced. Based on these, the use of the Coleman-Noll1 procedure
finally provides constitutive relations. For a start, the general form of a balance
equation is given.

1cf. Coleman and Noll [1963]
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2 Continuum Mechanics and Thermodynamics

General Balance Equation

For the field quantity V=
∫

B

ϑ dv of a material body B with outer normal vector n

along ∂B, the global form of the general balance equation

d
dt

∫

B

ϑ dv =

∫

∂B

fϑ(x,n) · n da +
∫

B

pϑ(x, t) dv +
∫

B

sϑ(x, t) dv, (2.16)

equates the temporal change of V(x, t) =
∫

B

ϑ dv with the inward fluxfϑ of Vacross

the boundary ∂B per unit time and per unit boundary area ∂B in n-direction, the
production pϑ of V in B per unit time and per unit volume, and the supply sϑ
of V in B per unit time and per unit volume. Assuming ϑ to be continuously
differentiable, the Reynolds’ transport theorem is applied to the left-hand side of
Eq. (2.16)

d
dt

∫

B

ϑ dv =

∫

∂B

ϑv · n da +
∫

B

∂ϑ

∂t
dv. (2.17)

Converting the surface integrals results in the local form of the balance equation

∂ϑ

∂t
= div (fϑ − ϑv) +pϑ + sϑ (2.18)

for each point x of B for all times.

Conservation of Mass

The conservation of mass is deduced from the general balance equation with
V= m(x, t) =

∫

B

ρ dv, where ϑ = ρ is the mass density. Assuming that the mass

of a material volume does not change in time yields pρ = sρ = 0 and fρ = 0 and the
local form of mass balance is

∂ρ

∂t
+ div (ρv) =

dρ
dt

+ ρ div v = 0. (2.19)

Linear Momentum Balance and Angular Momentum Balance

Considering the material body B in Figure 2.2, subjected to the surface traction
vector t(x,n, t) acting on the boundary ∂B and the body force density b(x, t) per
unit mass of B, the total linear momentum is defined L = V= m v =

∫

B

ρv dv and

Newton’s second law reads

d
dt

∫

B

ρ v dv =

∫

∂B

t da+
∫

B

ρb dv, (2.20)

which is the global form of the linear momentum balance. The linear momentum is
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2.2 Balance Equations

Figure 2.2: Material body B.

a vector quantity, which requires adapting the general quantities correspondingly.
Comparing Eq. (2.20) with the general balance equation (2.16) in vector format
identifies the flux density in n-direction with fρvn ! t(x,n, t) and the supply den-
sity with the volume force sρv ! ρb(x, t). Since the linear momentum is a conserved
quantity, the production density pρv = 0. With use of Cauchy’s theorem

t = σT n (2.21)

for the Cauchy stress tensor σ, and the mass balance in Eq. (2.19), inserting the
above densities in Eq. (2.18) in vector format yields the local form of the linear
momentum balance

ρa = divσT + ρb. (2.22)

In an analogous manner the local form of the angular momentum balance is derived,
resulting in the symmetry of the Cauchy stress tensor

σ = σT. (2.23)

With the acceleration a assumed to be zero for all x and in absence of volume forces,
the linear momentum balance in Eq. (2.22) reduces with considering Eq. (2.23) to
the equilibrium condition

div σ = 0. (2.24)

Energy Balance - First Law of Thermodynamics

The first law of thermodynamics is the balance of energy, postulating the equivalence
of the rate of external mechanical and thermal work to the change in total energy.
The effect of other non-mechanical energies is neglected in this thesis. The total
energy of a material body B is composed of the kinetic energy

∫

B

ρ |v]2

2 dv and the

internal energy
∫

B

ρu dv with the specific internal energy per unit mass u. A change

of energy is effected by the energy supply, resulting from the mechanical part, which
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2 Continuum Mechanics and Thermodynamics

is the power of the external forces

P =

∫

∂B

t · v da+
∫

B

ρb · v dv, (2.25)

the heat supply Q =
∫

∂B

qth da+
∫

B

ρr dv with the scalar heat radiation r, and the

heat conduction qth, where a positive sign corresponds to heat supply across the
boundary ∂B, i.e.

d
dt

∫

B

(
|v|2

2
+ u

)

ρ dv =

∫

∂B

[(σn) · v − qth · n] da+
∫

B

(ρb · v + ρr) dv. (2.26)

The comparison of the global form of the energy balance in Eq. (2.26)
with Eq. (2.16) yields for ϑe ! ρ |v|2

2 + ρu the flux density in
n-direction fe · n ! qth · n+ (σn) · v, the supply sϑ ! ρr + ρb · v. Since the
energy is a conserved quantity pe = 0. Inserting these quantities in Eq. (2.18)
results with the mass balance in Eq. (2.19), the linear momentum balance in
Eq. (2.22), and the symmetry of σ, in the local form of energy balance

ρ
du
dt

= −div qth + σ : ∇v + ρr. (2.27)

Balance of Entropy - Second Law of Thermodynamics

The global form of the balance of entropy states the equivalence of the temporal
change of entropy to the sum of the entropy supply and the entropy production.
Using the following quantities, ϑs ! ρs, where s is the specific entropy per unit mass;
fs ! φs is the entropy flux; ps ! ρps, where ps is the specific entropy production
per unit mass; and ss ! ρzs, where zs the specific entropy supply per unit mass, the
local form of the entropy balance reads

ρ
d s
dt

= −div φs + ρ (ps + zs) . (2.28)

The second law of thermodynamics postulates a non-negative entropy production,
providing the entropy inequality

ps ≥ 0, (2.29)

which has to be obeyed by every admissible thermodynamic process for each time t
for all material points x. For thermodynamic processes close to equilibrium the
entropy flux and the entropy supply can be approximated by

φs =
qth

T
and zs =

r

T
, (2.30)
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2.2 Balance Equations

where T is an absolute temperature. Inserting these approximations together with
the entropy balance in Eq. (2.28) into Eq. (2.29) results in the Clausius-Duhem in-

equality

ρ
ds
dt

+ div
qth

T
− ρ

r

T
= ρps ≥ 0, (2.31)

which can be recast with the energy balance in Eq. (2.27) to

ρ (T ṡ− u̇)−
1

T
∇T · qth + σ : L ≥ 0. (2.32)

With the symmetry of the Cauchy stress tensor σ considered, the last term of
Eq. (2.32) is within the small strain context equivalent to σ : ε̇. Following the
procedure proposed in Coleman and Noll [1963] and Coleman and Gurtin [1967],
the introduction of the Helmholtz free energy per unit mass with

ψ∗ = u− Ts, ψ̇∗ = u̇− Ṫ s− T ṡ, (2.33)

enables to rewrite Eq. (2.32) into

σ : ε̇− ρ
(

ψ̇∗ + sṪ
)

−
1

T
qth ·∇T ≥ 0. (2.34)

It is assumed that a material point x is characterized by ψ = ψ̂(ε, T ), where ψ = ρ ψ∗

is the Helmholtz free energy per unit volume, leading to

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂T
Ṫ , (2.35)

which is inserted into Eq. (2.34)
(

σ −
∂ψ

∂ε

)

: ε̇+

(

−ρs−
∂ψ

∂T

)

Ṫ −
1

T
qth ·∇T ≥ 0. (2.36)

Since the inequality in Eq. (2.36) has to be fulfilled for all rates of ε and T the
constitutive relations

σ =
∂ψ

∂ε
and − ρs =

∂ψ

∂T
(2.37)

can be deduced and the heat conduction inequality

qth ·∇T ≤ 0 (2.38)

remains which is e.g. satisfied by Fourier’s law qth = −λ ∇T with the symmetric,
positive-definite conductivity tensor λ.

In the following isothermal conditions are assumed, i.e.

Ṫ = 0, ∇T = 0 (2.39)
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2 Continuum Mechanics and Thermodynamics

reducing the Clausius-Duhem inequality to

σ : ε̇− ψ̇ ≥ 0. (2.40)

Coleman and Noll [1963] and Coleman and Gurtin [1967] exploit this in terms of
internal variables, which is not in the focus of the present modeling and thus not
discussed here.
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3 Martensitic Transformations

In Chapter 2 the relations concerning continuum mechanics and thermodynamics
are formulated for a material body without further specifications. Here, some ther-
modynamic aspects concerning the phase transition between austenite and marten-
site are given. Previously, the characteristics of the martensitic transformation are
discussed. Textbooks on that topic are e.g. Porter and Easterling [1992], Pereloma
and Edmonds [2012], Bhattacharya [2003] and Khachaturyan [2008]. On the mi-
crolevel of metastable austenitic steels, besides the phase transition also dislocation
movement and microcracks are observed. At the end of this chapter some infor-
mation on these competing mechanisms is given. In the context of the martensitic
transformation also plastic deformations and damage are studied in this work.

3.1 Characteristics of the Martensitic Transformation

In metallurgy, any product of a diffusionless phase transformation is called marten-
site. A diffusionless transformation, where the movement of the atoms is less than
the interatomic spacing, takes place when time is insufficient for a diffusion con-
trolled process. The martensitic phase transition is an abrupt change of the crystal
lattice which transforms, e.g. in austenitic stainless steels, from face centered cu-

bic (fcc) austenite to body centered cubic (bcc) α′-martensite. The model introduced

Figure 3.1: Schematic illustration of the Bain correspondence for martensite in steels.

by Bain [1924] intuitively visualizes this transition. Figure 3.1 schematically shows
the Bain correspondence, where a preexisting bcc unit cell, marked in red, is defined
within two austenitic fcc cells, marked in green. To obtain the martensitic bcc cell, a
deformation of the preexisting bcc cell is necessary. Within the small strain context,
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3 Martensitic Transformations

this deformation is described by the Bain strain tensor B and can be derived from
Figure 3.1 using the lattice parameters of austenite and martensite, afcc and abcc,
respectively,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

abcc −
afcc√
2

afcc√
2

0 0

0
abcc −

afcc√
2

afcc√
2

0

0 0
abcc − afcc

afcc

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.1)

The lattice mismatch between austenite and martensite leads to an eigenstrain
within the martensitic phase, which is illustrated in Figure 3.2. A region of an
austenitic continuum (depicted in green) is cut out. In this stress-free state, the
region is undergoing a phase change according to the Bain strain or, more generally,
the transformation strain or eigenstrain ε0, transforming the region into the
martensitic phase (depicted in red). For reinserting the region into the austenitic
continuum, its original shape is restored by applying stress. When the austenitic
matrix with the martensitic inclusion is relaxed both matrix and inclusion are
deformed. This reduces the elastic energy, which is introduced by the eigenstrain
within the martensitic phase. Yet, after the relaxation there are still stresses acting
in the continuum although no external load is applied.

An experimentally observed feature of the martensitic transformation is the
presence of a habit plane, an undistorted and unrotated plane between the phases
austenite and martensite, see e.g. Pereloma and Edmonds [2012], Zhang and
Kelly [2009]. The habit plane is postulated by the phenomenological crystallo-
graphic theories on the martensitic transformation, which have been developed
independently from each other by Wechsler et al. [1953], Bowles and Mackenzie
[1954]. Mathematically speaking, this requires the transformation path to be
described by an invariant plane transformation strain tensor ε0. Considering small
deformations, for a given transformation strain tensor ε0 with the principal strains
or eigenvalues ϵI , ϵII , ϵIII with ϵI ≤ ϵII ≤ ϵIII and the eigenvectors eI , eII , eIII the
invariant plane strain condition is

ϵI ≤ 0, ϵII = 0, ϵIII ≥ 0. (3.2)

If Eq. (3.2) is satisfied by the transformation strain tensor ε0, there are two invariant
planes with the normal vectors

nϵ
+/− = ±

√
−ϵI

√

2(ϵIII − ϵI)
eI +

√
ϵIII

√

2(ϵIII − ϵI)
eIII . (3.3)
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3.1 Characteristics of the Martensitic Transformation

Figure 3.2: The lattice mismatch leads to an eigenstrain within the martensitic phase,
Khachaturyan [2008].

The vectors nϵ
+/− indicate the normal direction of the habit plane and will be

referred to as habit plane normal directions. The invariant plane strain condition
corresponding to the Hadamard jump condition ensures the kinematic compatibility,
i.e. a coherent interface between the phases, see Bhattacharya [2003]. Eshelby
[1957] shows that the elastic energy of an infinitely thin oblate spheroid shaped
inclusion could be reduced to zero if the eigenstrain ε0 satisfies the invariant plane
strain condition. This agrees not only with the experimentally observed habit plane
but also with the martensite morphologies, often designated as plate- or disc-like,
which is exemplary shown in Figure 3.3(b).

Generally, the eigenstrain tensor ε0 is an invariant plane strain consisting of
an eigenshear ε0shear in habit plane direction and a volume change ε0vol perpendicular
to the habit plane (see Zhang and Kelly [2009]). Depending on the shear direction,
there are different martensitic orientation variants. This work is limited to two
dimensions, assuming plane strain conditions. Hence, two different orientation
variants (see Figure 3.3(a)) are taken into account with the eigenstrain tensors

ε01 =

⎡

⎢
⎣

ε0vol ε0shear 0

ε0shear ε0vol 0

0 0 0

⎤

⎥
⎦ , ε02 =

⎡

⎢
⎣

ε0vol −ε0shear 0

−ε0shear ε0vol 0

0 0 0

⎤

⎥
⎦ . (3.4)
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(a) (b)

Figure 3.3: (a) Orientation variants of the martensitic phase. (b) Austenitic grains with
martensite growing in a plate-like shape, Rios and Guimarães [2008], KTH
Stockholm [2015].

The eigenvalues of ε01 and ε02 are given by

ϵI1 = ϵI2 = ε0vol − ε0shear, ϵII1 = ϵII2 = 0, ϵIII1 = ϵIII2 = ε0vol + ε0shear (3.5)

and satisfy the invariant plane strain condition in Eq. (3.2) if ε0shear ≥ ε0vol, or in the
words of Cohen et al. [1979], if the phase transformation is deviatoric dominant.
However, Eq. (3.2) is only satisfied by the transformation strain tensor for the two-
dimensional case. For three dimensions it is fulfilled by the difference between
the transformation strain tensors ∆ε0 = ε01 − ε02, which stems from a martensite-
martensite interface, with the eigenvalues

ϵI∆ = −2 ε0shear, ϵII∆ = 0, ϵIII∆ = 2 ε0shear. (3.6)

This explains the experimentally observed twin related formation of martensite. An
interested reader is referred to Bhattacharya [2003].

3.2 Driving Mechanisms

To look at the martensitic transformation from a thermodynamic point of view, a
system with the Helmholtz free energy ψ, consisting of the different solid phases
austenite and martensite is considered. A change from one phase into another will
take place if the new phase is a more stable state of the system, i.e. the phase
transition corresponds to a change towards the equilibrium. From the second law of
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thermodynamics it can be derived1 that for a given temperature T and a given strain
tensor ε, the Helmholtz free energy ψ of a system has a minimum in an equilibrium
state, i.e.

dψ = 0. (3.7)

Here, particularly the martensitic transformation in metastable austenitic stainless
steels is in the focus. At room temperature, metastable austenites have due to
their chemical composition an austenitic crystal structure. This corresponds to the
metastable state, which is shown in Figure 3.4(a). The free energy ψ of a metastable

(a) (b)

Figure 3.4: (a) Schematic variation of Helmholtz free energy with crystal structure for a
fixed temperature. (b) Chemical free energies of austenite and martensite as a
function of temperature, Tamura [1982].

austenitic steel is plotted as a function of the atom configurations of the system. For
austenite, ψ has a local minimum indicating an equilibrium state, which satisfies
Eq. (3.7). However, there is a more stable configuration ’martensite’ where ψ has a
global minimum. The austenitic configuration therefore corresponds to a metastable
equilibrium, and the martensitic phase consequently to a stable equilibrium. From
Figure 3.4(a) it becomes obvious that for the phase transformation from austenite
to martensite activation energy is necessary to overcome the barrier between the
minima. This activation energy is temperature dependent, which can be seen in
Figure 3.4(b), showing schematically the chemical free energies of austenite (green
curve) and martensite (red curve) as functions of temperature. For the equilibrium

temperature T0 the free energies of both phases are identical. For temperatures
lower than T0 martensite is the stable, austenite the metastable phase. At the
martensite start temperature TM

s the martensitic phase starts to grow by cooling,
associated with the chemical driving force ∆GA−M

TM
s

. For a temperature T1 (between
TM

s and T0) the chemical driving force ∆GA−M
T1

is insufficient to trigger the phase
transformation. However, the mechanical energy U , which results from applied
stress, can provide the necessary activation energy. Depending on the activation,

1see e.g. Guggenheim [1967]. According to Fischer et al. [1994] the work potential pV is replaced
by −σ : ε, cf. Chapter 2 of this work
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there is a distinction between thermally and mechanically induced martensite.

(a) (b)

Figure 3.5: (a) Stress-assisted and strain-induced nucleation of martensite, see Olson and
Cohen [1972]. (b) Austenitic lattice (green) is transformed to martensite (red
and blue) while the dislocation indicated by ⊥ is inherited between the phases.

Concerning the latter which will be focused in the following, there are two
different mechanisms to trigger the martensitic transformation. This can be
seen in Figure 3.5(a), showing the stress dependent transformation path as a
function of temperature. Below the martensite start temperature TM

s , the phase
transformation occurs spontaneously at preexisting nuclei. At higher temperatures
the stress-assisted nucleation is initiated by the additional mechanical energy U in
the form of applied stress, see the black line in Figure 3.5(a). If the applied stress
exceeds the austenitic yield strength, which is indicated by an orange dashed line
in Figure 3.5(a), the necessary stress increases less with respect to the temperature
since plastic strain introduces new catalyzing defects leading to a strain-induced

nucleation, see Olson and Cohen [1972, 1976]. Since the plastic deformations affect
the stresses, plasticity and phase transformations can interact not only through the
kinetics but also through the stresses. Thus, plastic deformations, resulting from
dislocation movement, which accompanies the martensitic transformation, play an
important role for the phase transition.

For the model introduced in this work, plastic deformations are taken into
account. Regarding the phase transformation, it is assumed that the plastic
deformation can be inherited from the austenitic to the martensitic phase. The
assumption is motivated by Figure 3.5(b), which shows a dislocation in the austen-
ite. This dislocation is supposed not to vanish due to the phase transformation to
martensite, resulting in a dislocation in the martensitic phase, which is inherited
from the austenite. Furthermore, the martensitic phase is harder, more brittle and
has a higher yield strength than austenite, see e.g. Skorupski et al. [2014].

Additionally, microcracks are observed on the microscale of austenitic stain-
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less steels. This is illustrated in Figure 3.6, showing a micrograph with cracks in
an austenite-martensite microstructure. It can be seen that the microcracks appear

Figure 3.6: Micrograph of microcracks arising in plate-shaped martensite, Marder et al.
[1970].

exclusively in the martensite, both in the transition zone between two plates and
perpendicular to the plate directions. So, obviously the martensitic phase influences
the fracture process.

In the next chapter a continuum phase field model for martensitic transfor-
mations is introduced which considers the above discussed characteristics. With the
aid of the model the complex interactions between the different mechanisms on the
microscale of metastable steels are studied.
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4 An Elastic Phase Field Model for

Martensitic Transformations

In this chapter a continuum model for martensitic transformations is introduced.
The interested reader is also referred to Fischer et al. [1994], where the continuum
mechanical aspects of phase transformations in solids are discussed, giving rise to
different model approaches. In Reisner et al. [1998] the strain induced martensitic
transformation is described via a thermodynamic transformation criterion, while in
Bartel and Hackl [2008], Bartel et al. [2011] the concept of energy relaxation is
applied and the evolution equations are derived from inelastic properties. Assuming
an infinitely sharp interface between the phases the martensitic transformation is
micromechanically modeled with the concept of moving boundaries in Cherkaoui
et al. [1998], Cherkaoui and Berveiller [2000]. However, the numerical realization
of this approach is generally difficult, e.g. problems arise due to the tracking of the
interfaces. These can be circumvented by regularizing the discontinuities within the
phase field approach, which introduces an order parameter. The evolution of the
order parameter is described with the time-dependent Ginzburg-Landau equation.
Based on Chen et al. [1992] and Wang and Khachaturyan [1997], several phase
field models dealing with the martensitic transformation are proposed, differing in
the numerical realization. Jin et al. [2001], Artemev et al. [2000], Ahluwalia et al.
[2004] are exemplary works using fast Fourier transformation for the numerical
solution. Alternatively finite differences e.g. Yamanaka et al. [2008] or finite
elements e.g. Hildebrand and Miehe [2010, 2011], Levitas et al. [2010], Yeddu
et al. [2012], Malik et al. [2013], Levitas et al. [2013], Schmitt et al. [2013a,c] are
applied.

In the following chapter a phase field model for martensitic transformations
is introduced, considering the characteristics of the phase transition, which are
outlined in Chapter 3. In Section 4.1, the basic equations and the model parameters
are given for the one-dimensional case. Subsequently, in Section 4.2 the parameters
are calibrated for pure iron by comparison with atomistic simulations. Therefore,
the model is extended to two dimensions and implemented into a finite element
scheme, which is also discussed briefly. Finally, in Section 4.3, metastable austenitic
steels are considered to study the impact of the volumetric eigenstrain, the necessity
of different orientation variants and the influence of external loads on the formation
of the microstructure.
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4 An Elastic Phase Field Model for Martensitic Transformations

4.1 One-Dimensional Model

First, the phase field approach is motivated using a basic one-dimensional example.
On this basis, the evolution equation of the order parameter is derived applying
a thermodynamically consistent continuum theory. By introducing calibration con-
stants the model parameters are subsequently identified.

4.1.1 Motivation

In order to introduce the phase field concept an indefinitely extended one-
dimensional continuum as depicted in Figure 4.1(a) is considered. The body con-
sists of the phases austenite and martensite, which differ in their crystal structure
and are separated by an interface S at x = 0. The present phase is indicated by
an order parameter ϕ(x) ∈ [0, 1], where ϕ=0 corresponds to austenite and ϕ=1 to
martensite, resulting in a discontinuous function

ϕ(x) =

{

0 x < 0

1 x ≥ 0
, (4.1)

which is plotted in dependence of x in Figure 4.1(b). It is often cumbersome to deal
with discontinuities especially regarding the numerical realization. The difficulties
can be circumvented by using the smooth interpolation

ϕ(x) =
1

2

[

tanh
(
2x

ℓ

)

+ 1

]

, (4.2)

see Hildebrand and Miehe [2010], McFadden et al. [1993]. The plot of this function

ϕ=0

Austenite

x−∞ +∞

Martensite

ϕ=1

(a) (b) (c)

Figure 4.1: (a) Indefinitely extended two phase one-dimensional continuum. (b) Discontin-
uous change of the order parameter. (c) Smooth change of the order parameter.

in Figure 4.1(c) shows that the length of the transition zone between ϕ=0 and ϕ=1
corresponds to the parameter ℓ since

ϕ′(x) =
1

ℓ

[

1− tanh2

(
2x

l

)] ∣
∣
∣
x=0

=
1

ℓ
with ⟨·⟩′ =

d⟨·⟩
dx

. (4.3)
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4.1 One-Dimensional Model

Concerning the phase field ansatz it is interesting to note that Eq. (4.2) solves the
partial differential equation

ϕ′′(x) =
32

ℓ2
ϕ(x)

(

ϕ(x)−
1

2

)(

ϕ(x)− 1

)

, (4.4)

⇔
16

ℓ

(

ϕ3(x)−
3

2
ϕ2(x) +

1

2
ϕ(x)

)

−
ℓ

2
ϕ′′(x) = 0, (4.5)

which can be identified as the Euler-Lagrange equation

∂ψ̃

∂ϕ
−

d
dx

∂ψ̃

∂ϕ′
= 0 (4.6)

of the variational problem

+∞∫

−∞

δψ̃ dx = 0 with F̃ =

+∞∫

−∞

ψ̃ dx, ψ̃ =
16

ℓ

(
1

4
ϕ4 −

1

2
ϕ3 +

1

4
ϕ2

)

︸ ︷︷ ︸

f̃(ϕ)

+
ℓ

4
(ϕ′)2, (4.7)

see also Hildebrand [2013]. In Eq. (4.7), the quantity F̃ could be interpreted as
the total free energy of the one-dimensional continuum in Figure 4.1(a), which is
the volume integral of the local free energy density ψ̃, consisting of a double well
polynomial function f̃(ϕ) and a gradient term. For this one-dimensional example
the elastic energy is not taken into account. The static problem can be extended to
moving interfaces, which is shown in the next paragraph.

4.1.2 Evolution Equation of the Order Parameter

To consider propagating interfaces, an evolution equation for the order parameter is
required, which is derived in this section. Therefore, an arbitrary body Bas depicted
in Figure 2.1 is regarded. According to the thermodynamically consistent continuum
theory proposed by Fried and Gurtin [1993, 1994], Gurtin [1996] a microforce sys-
tem is introduced, consisting of the vector stress ξ, the internal and external (scalar)
body forces Π and γ, respectively. The microstresses and the microforces obey the
microforce balance in global and local form

∫

∂B

ξ · n da
∫

B

(Π + γ) dv = 0, div ξ + Π+ γ = 0. (4.8)
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4 An Elastic Phase Field Model for Martensitic Transformations

The microforces1 account for the work associated with changes in the order param-
eter ϕ. Hence, the terms

∫

∂B

ξ · n ϕ̇ da and
∫

B

γ ϕ̇ dv have to be considered for the

power of external forces P in Eq. (2.25), entering the energy balance in Eq. (2.26)
and eventually appear in the Clausius Duhem inequality in Eq. (2.40)

ψ̇ − σ : ε̇− ξ ·∇ϕ̇+ Πϕ̇ ≤ 0, (4.9)

where the local form of the microforce balance in Eq. (4.8) has been used. Further-
more, the order parameter and its gradient are added to the list of variables of the
Helmholtz free energy ψ = ψ̂(ε,ϕ,∇ϕ) and its time derivative can be calculated
accordingly

ψ̇ =
∂ψ

∂ε
: ε̇+

∂ψ

∂ϕ
ϕ̇+

∂ψ

∂∇ϕ
·∇ϕ̇. (4.10)

Inserting Eq. (4.10) into the Clausius Duhem inequality in Eq. (4.9) yields
(
∂ψ

∂ε
− σ

)

: ε̇+

(
∂ψ

∂∇ϕ
− ξ

)

·∇ϕ̇+

(

Π+
∂ψ

∂ϕ

)

ϕ̇ ≤ 0. (4.11)

Requiring the fulfillment of Eq. (4.11) for any given rates of ε,ϕ,∇ϕ results in the
constitutive relations

σ =
∂ψ

∂ε
, ξ =

∂ψ

∂∇ϕ
, (4.12)

and the following remaining inequality
(

Π +
∂ψ

∂ϕ

)

︸ ︷︷ ︸

Πdis

ϕ̇ ≤ 0, (4.13)

with Πdis = Π̂dis(ε,ϕ,∇ϕ). According to Gurtin [1996], the most general form of
Πdis consistent with Eq. (4.13) is

Πdis = −βϕ̇, (4.14)

with the scalar mobility parameter β ≥ 0. Choosing a constant mobility parameter
and inserting the above derived quantities

ξ =
∂ψ

∂∇ϕ
Π = −

∂ψ

∂ϕ
− βϕ̇ (4.15)

into the local microforce balance in Eq. (4.8) yields in absence of external micro-
forces (γ = 0)

βϕ̇ = div
∂ψ

∂∇ϕ
−
∂ψ

∂ϕ
= −

δψ

δϕ
, (4.16)

1The forces are designated as "micro" since the change in order parameter is associated with atom
configurations on the microscale.
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4.1 One-Dimensional Model

the time-dependent Ginzburg-Landau equation (TDGL). It describes the evolution
of the order parameter ϕ to be proportional to the variational derivative of ψ with
respect to ϕ. Since for equilibrium states δψ

δϕ = 0, this equation characterizes the
relaxation towards equilibrium. Inserting the local free energy density ψ̃ of the
one-dimensional continuum given in Eq. (4.7) into Eq. (4.16) yields

−βϕ̇ =

[
16

ℓ

(

ϕ3 −
2

3
ϕ2 +

1

2
ϕ

)

−
ℓ

2
ϕ′′

]

, (4.17)

where the right-hand side of Eq. (4.17) corresponds to the Euler-Lagrange equation
of the static variational problem in Eq. (4.5) which is solved in Section 4.1.1. Taking
the motivating example of Section 4.1.1 as a starting point, the basic equations of
the phase field model are given in the following.

4.1.3 Model Parameters

The local free energy density ψ̃ of the one-dimensional continuum depicted in Fig-
ure 4.1(a) is given in Eq. (4.7) in terms of a double well potential and a gradient
term

ψ̃ =
16

ℓ

(
1

4
ϕ4 −

1

2
ϕ3 +

1

4
ϕ2

)

︸ ︷︷ ︸

ψ̃sep

+
ℓ

4
ϕ′2

︸︷︷︸

ψ̃grad

. (4.18)

In the context of phase field modeling ψ̃ is also designated as the phase field
potential. In a more general way, the terms in Eq. 4.18 are reformulated us-

ing the phase separation potential ψ̃sep = κsep
G

L
f(ϕ) and the gradient energy den-

sity ψ̃sep =
1

2
κgrad G Lϕ′2. Analogously to the parameter ℓ in Eq. (4.18), the parame-

ter L appears in both terms. The model parameters are introduced below. With ψ̃sep

and ψ̃grad the evolution equation of the order parameter reads

ϕ̇ = −
1

β

[
∂ψ

∂ϕ
−
(
∂ψ

∂ϕ′

)′]

= −
1

β

(

κsep
G

L

∂f

∂ϕ
− κgradG L ϕ′′

)

. (4.19)

To allow the model to account for stable and metastable states, the double well
function in Eq. (4.18) is replaced by the Landau polynomial

f(ϕ) = D +
A

2
ϕ2 −

B

3
ϕ3 +

C

4
ϕ4, (4.20)

proposed by Yamanaka et al. [2008]. The plot of f(ϕ) in Figure 4.2(a) shows a local
minimum, corresponding to a metastable state and a global minimum, correspond-
ing to a stable state. Here, the coefficients A, B, C and D are chosen such that
the local minimum is at ϕ = 0 and the global minimum at ϕ = 1. This models the
metastable phase austenite and the stable phase martensite, respectively. For the
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4 An Elastic Phase Field Model for Martensitic Transformations

(a) (b)

Figure 4.2: (a) Landau polynomial f(ϕ) with the energy barrier ∆e. (b) For a uniquely
defined Σif, a symmetric reference state |∆f | is necessary.

change of ϕ = 0 to ϕ = 1, the system has to overcome an energy barrier

∆e = f(ϕmax)− f(0) with ϕmax = argmax
ϕ∈[0,1]

f(ϕ), (4.21)

which is indicated in Figure 4.2(a). Since the energy landscape depends on temper-
ature, the coefficients are temperature dependent, too. For T < T0 martensite is the
stable phase which is ensured by D = 1, B = 3A+ 12 and C = 2A+ 12. For T > T0

the relations D = 0, B = 3A−12 and C = 2A−12 lead to a global minimum at ϕ = 0.

In order to still be able to control the width of the interface by the parame-
ter L, the calibration constants κsep and κgrad are introduced, based on the works
of Cahn and Hilliard [1958], Schrade et al. [2008, 2013]. For the sake of clarity,
only temperatures below the equilibrium temperature T0 are considered since
the procedure for T > T0 is the same. Starting point is an indefinitely extended
one-dimensional continuum consisting of two phases as shown in Figure 4.1(a). In
terms of the parameters G, L and the constants κsep, κgrad the global free energy F
of the system reads

F (ϕ,ϕ′) =

+∞∫

−∞

ψ(ϕ,ϕ′) dx =

+∞∫

−∞

(

κsep
G

L
f(ϕ) +

1

2
κgradGL(ϕ′)2

)

dx. (4.22)

The approach results in G corresponding to the specific interface energy Σif

between the phases, where Σif is the difference of the actual free energy of the
system and the free energy of the system for a single phase, per interface area.
However, the asymmetric Landau polynomial f(ϕ) results in different free energies
for a single phase, depending on whether austenite or martensite is present.
Hence, for a unique definition of Σif, a standard equilibrium state of the phases
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4.1 One-Dimensional Model

|∆f(ϕ)| = |f(ϕ)− g(ϕ)| with g(ϕ) = 1 − ϕ is defined.2 The plot of the functions
in Figure 4.2(b) shows that |∆f | is a symmetric function with two equal minima.
For small values of A, there is an intersection of f and g so that the absolute
value of ∆f is used to ensure minimal values of |∆f | = 0 for ϕ = 0 and ϕ = 1.
However, this adjustment implicates slightly inaccurate results for small values of A.

With the symmetric reference state |∆f | taken into account, the specific interface
energy of the system can be uniquely described

Σif =

+∞∫

−∞

(

κsep
G

L
|∆f(ϕ)|+

1

2
κgradGL(ϕ′)2

)

dx =

+∞∫

−∞

ψ̆ dx. (4.23)

Since a one-dimensional problem is considered, the interface area does not appear
in Eq. (4.23). For equilibrium states, Σif is minimal such that the Euler-Lagrange
equation can be applied on the integrand3 in Eq. (4.23),

ψ̆ − ϕ′ ∂ψ̆

∂ϕ′
= 0, (4.24)

κsep
G

L
|∆f |−

1

2
κgradGL(ϕ′)2 = 0 " ϕ′ =

1

L

√

2
κsep

κgrad
|∆f |. (4.25)

In analogy to Section 4.1.1, where the length of the transition zone is given by the
parameter ℓ, Eq. (4.25.2) is evaluated for the position of the interface x = xif which
is defined with xif := {x | ϕ(x) = 0.5} and equated with 1

L ,

dϕ
dx

∣
∣
∣
∣
∣
xif

=
1

L

√

2
κsep

κgrad
|∆f(ϕ(xif))|

!
=
1

L
. (4.26)

In a second equation the parameter G is identified with the interface energy

Σif =

+∞∫

−∞

ψ̆ dx = G
√

2κsepκgrad

1∫

0

√

|∆f | dϕ !
=G, (4.27)

where Eq. (4.25.1) has been inserted to calculate ψ̆ while the integral is transformed
using Eq. (4.25.2). To calculate the calibrations constants κsep and κgrad, Eq. (4.26)
and Eq. (4.27) are recast,

κgrad = 2κsep|∆f(ϕ(xif))|, κsepκgrad =
1

2

⎛

⎝

1∫

0

√

|∆f | dϕ

⎞

⎠

−2

, (4.28)

2For T > T0, the function g(ϕ) = ϕ has to be considered.
3Since ψ̆ does not explicitly dependent on x, the Euler-Lagrange equation can be written in the

stated way, cf. Margenau and Murphy [1965].
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resulting in the calibration constants

κsep =

⎛

⎝2
√

|∆f(ϕ(xif))|
1∫

0

√

|∆f | dϕ

⎞

⎠

−1

, κgrad =

√

|∆f(ϕ(xif))|
1∫

0

√

|∆f | dϕ
, (4.29)

which depend on the Landau polynomial f(ϕ).

(a) t = 1.825 ns (b)

(c) t = 1.825 ns (d)

Figure 4.3: Plot of ϕ(x) for different values of A, (a) without and (c) with considering κsep,
κgrad. (b) Interface energy density in comparison with G. (d) Interface velocities
depending on A.

To illustrate the impact of the calibration constants, the evolution equation (4.19)
is solved for a one-dimensional continuum consisting of two continuous phases
(cf. Figure 4.1(a)) with a length of 176.5 nm, using the parameters G = 0.96 J

m2 ,
L = 10 nm and the mobility constant β = 0.238 Ns

m2 . Isothermal conditions are
assumed where T < T0 such that martensite is the stable phase, and thus, the
interface propagates to the left. Indicating the interface position for t = 0 with
a solid black line, Figure 4.3(a) shows the resulting interface profiles ϕ(x) at
t = 1.825 ns for A = [2.8, 9.7, 21.1] where the calibration constants κsep and κgrad
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4.1 One-Dimensional Model

are not considered.4 The interface width increases with a decreasing coefficient A.
Additionally, the purple curve Figure 4.3(b) shows that the specific interface
energy Σif calculated according to Eq. (4.23) is varying strongly for the different
values of A. Since the interface energy is a material parameter it should be con-
sidered as input data of the model, which is difficult to realize with Σif depending
on the coefficient A. Similarly, the interface width should be known, especially
when the problem is solved numerically using the finite element approach, which
requires to resolve the interface region by several elements. For the results shown
in Figure 4.3(c), the calibration constants are calculated according to Eq. (4.29).
Despite the wide range of A this leads to almost constant values of the interface
width which corresponds to the parameter L. Furthermore, Figure 4.3(b) indicates
that interface energy (orange curve) fits the parameter G (black curve). This
behavior is not unique to the given parameter set and can also be observed for
different choices of the parameters L and G.

4.1.4 Interface Velocity

With the parameter L describing the interface width, an approximation of the inter-
face velocity ṽif can be calculated making use of the chain rule

ϕ̇
∣
∣
∣
xif

=
dϕ
dxif

dxif

dt
≈

1

L
ẋif " ṽif := L ϕ̇

∣
∣
∣
xif

(4.30)

where ϕ̇
∣
∣
∣
xif

is evaluated using the evolution equation (4.19) with ϕ
∣
∣
∣
xif

= 0.5

ϕ̇
∣
∣
∣
xif

= −
1

β

(

κsep
G

L

∂f

∂ϕ

∣
∣
∣
ϕ=0.5

︸ ︷︷ ︸

∓
3

2

−κgradG Lϕ′′
∣
∣
∣
x=0

︸ ︷︷ ︸

≈ 0

)

. (4.31)

In Eq. (4.31) the second term in brackets is neglected with reference to the analytical
solution in Eq. (4.2). Inserting ϕ = 0.5 into the derivative of the Landau polynomial
with respect to the order parameter yields ∂f

∂ϕ

∣
∣
∣
ϕ=0.5

= ∓3
2 independent of A because

of the temperature dependent definitions of the coefficients B and C. The negative
sign holds for T < T0, the positive sign for for T > T0. This results with Eq. (4.30.2)
in the interface velocity

ṽif =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

−
3

2

κsepG

β
T < T0

3

2

κsepG

β
T > T0

. (4.32)

4The plots of the Landau polynomial f(ϕ) for the corresponding values of A can be seen in Fig-
ure 4.9(a) designated with T = 100 K, T = 300 K and T = 500 K.
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The sign in Eq. (4.32) is in accordance with the results in Figure 4.3(c), where the
interface propagates in negative x-direction for T < T0.

Alternatively, the interface velocity of a phase field model can be calculated
using configurational forces, which were originally introduced by Eshelby [1951].
Within the theory of configurational forces, driving forces on material inhomogen-
ities are derived by energetic considerations and thus can be applied to analyze
material defects. For more detailed informations the reader is referred to textbooks
on this topic, e.g. Kienzler and Herrmann [2000], Gurtin [2000], Müller [2005].
In Kuhn [2013], the concept of configurational forces is extensively discussed in
the context of phase field modeling, providing a better insight into the energetic
driving mechanisms of the evolution of the phases. Here, the approach is picked up
to calculate the interface velocity and hence is briefly introduced. Differing from
Eshelby’s approach that is described e.g. in Kanninen [1970], in this work instead
of the elastic energy density, the phase field potential ψ is considered. The phase
field potential is assumed to depend on the order parameter ϕ, its gradient ϕ′ and
the location of the interface xif, i.e. ψ = ψ̂(ϕ,ψ′, xif). Furthermore, the free energy ψ
does not depend explicitly on x since no inhomogeneities are considered. Thus,
differentiation of ψ with respect to x yields

ψ′ =
∂ψ

∂ϕ
ϕ′ +

∂ψ

∂ϕ′
ϕ′′ +

∂ψ

∂xif (x
if)′ where

∂ψ

∂ϕ′
ϕ′′ =

(
∂ψ

∂ϕ′
ϕ′

)′

−
(
∂ψ

∂ϕ′

)′

ϕ′

ψ′ =

[
∂ψ

∂ϕ
−
(
∂ψ

∂ϕ′

)′]

ϕ′ +

(
∂ψ

∂ψ′

)′

+
∂ψ

∂xif (x
if)′ with Eq. (4.19.1)

ψ′ = −ϕ̇βϕ′ +

(
∂ψ

∂ψ′

)′

+
∂ψ

∂xif (x
if)′. (4.33)

Equation (4.33) may be rewritten as the configurational force balance

Σ′ + g = 0, with Σ = ψ −
∂ψ

∂ϕ′
ϕ′ and g = ϕ̇βϕ′

︸ ︷︷ ︸

= gdis

−
∂ψ

∂xif (x
if)′

︸ ︷︷ ︸

= gif

(4.34)

where Σ is the generalized Eshelby stress and g the generalized configurational volume
force for this one-dimensional setting. To calculate the interface velocity for the one-
dimensional continuum in Figure 4.1(a) according to Kuhn [2013], the dissipative
part of the configurational force is defined as

Gdis =

+∞∫

−∞

−gdis dx =

+∞∫

−∞

−ϕ̇βϕ′ dx. (4.35)

The phase transition is described by the smooth approximation of the inter-
face ϕ(x, t), which is assumed to propagate unchanged with its initial profile ϕ0,
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i.e. ϕ(x, t) = ϕ0(x − l(t)), with l(t) describing the interface position at time t, see
Figure 4.4. Computing the time derivative

ϕ̇(x, t) =
dϕ
dt

=
d
dx
ϕ(x− l(t))

d
dt

(x− l(t)) = −ϕ′l̇ := −ϕ′ẋif, (4.36)

yields after the multiplication with −βϕ′ and subsequent integration over the length
of the one-dimensional continuum

ẋif = vif =
Gdis

+∞∫

−∞

β(ϕ′)2 dx
. (4.37)

When the phase field problem is solved, all quantities in Eq. (4.37) are known and
the interface velocity can be computed easily. Alternatively, this could be done more
costly in the course of post processing by tracking the interface position.

Figure 4.4: The initial interface profile ϕ0 is assumed to propagate unchanged through the
beam.

In Figure 4.3(d) the approximation of the interface velocity |ṽif|, calculated
according to Eq. (4.32) (orange curve), and |vif|, which is determined using the
dissipative part of the configurational forces according to Eq. (4.37) (black curve),
are plotted with regard to the coefficient A. It can be seen, that |ṽif| and |vif| are in
good agreement, confirming properly chosen calibration constants. For both curves
the interface velocity increases for a decreasing coefficient A, which corresponds
to a smaller energy barrier (cf. Figure 4.9(a)). In the next step, information from
atomistic simulations is included to calibrate the mobility constant β.

4.2 Phase Field Model for Multivariant Martensitic

Transformations

In this section the model parameters are determined according to results from
molecular dynamic (MD) simulations. In a first step this is done for pure iron.
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In the future, the MD simulations will be extended to iron-carbon systems, where
eventually further alloying elements will be considered and material parameters
for metastable austenitic steels could be deduced. This thesis proposes a general
approach to calibrate the mobility parameter β using information from atomistic
simulation of pure iron according to the work of Schmitt et al. [2013c]. The model
equations, which are extended to the two-dimensional case, are discussed in Sec-
tion 4.2.1 followed by the numerical implementation with finite elements in Sec-
tion 4.2.2, based on Schmitt et al. [2012, 2013a]. In Section 4.2.3 the parameters
are determined with the aid of MD simulations, while in Section 4.2.4 the impact of
an external load on the evolution of the martensitic phase is touched briefly.

4.2.1 Model Equations

In order to enable the cooperation with atomistic simulations, the one-dimensional
model is extended to two dimensions. To write the model equations more generally,
two martensitic orientation variants are considered. Thus, a second order parameter
is introduced, where ϕ1 = ϕ2 = 0 for the austenitic phase and ϕ1 = 1 for the first and
ϕ2 = 1 for the second martensitic variant. Including even more martensite variants
is straightforward, cf. Schmitt et al. [2013c]. As far as possible, ϕi with i = 1, 2
is used instead of ϕ1 and ϕ2 for the sake of clarity. In Section 3.1 the crucial role
of the elastic energy in the context of the martensitic transformations is discussed.
It is therefore included in the local energy of the system and the linearized strain
tensor ε enters the list of variables

ψ(ε,ϕi,∇ϕi) = W (ε,ϕi) + ψgrad(∇ϕi) + ψsep(ϕi) (4.38)

with
W (ε,ϕi) =

1

2

[

ε− ε0ϕ(ϕi)
]

: (ϕi)
[

ε− ε0ϕ(ϕi)
]

. (4.39)

The elastic energy density W considers the transformation-induced eigen-
strain ε0(ϕi) which arises due to the crystallographic misfit of the austenitic and
the martensitic phases. The eigenstrain tensor ε0 and the elasticity tensor depend
linearly on the order parameters ϕ1,ϕ2

ε0ϕ(ϕ1,ϕ2) = ϕ1 ε
0
1 + ϕ2 ε

0
2, (ϕ1,ϕ2) = A + ϕ1( M1

− A) + ϕ2( M2
− A).

(4.40)
With the lattice parameters known from MD, the eigenstrain ε0i of the martensitic
phases is calculated using the Bain model. Assuming plane strain conditions, the
eigenstrain tensor of the first variant results from the geometrical relations in the
x-z-plane of Figure 3.1. A rotation of the coordinate system in Figure 3.1 by 90◦
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yields eigenstrain tensor of the second variant,

ε01 =

⎡

⎢
⎢
⎢
⎢
⎣

√
2abcc − afcc

afcc
0

0
abcc − afcc

afcc

⎤

⎥
⎥
⎥
⎥
⎦

, ε02 =

⎡

⎢
⎢
⎢
⎢
⎣

abcc − afcc

afcc
0

0

√
2abcc − afcc

afcc

⎤

⎥
⎥
⎥
⎥
⎦

. (4.41)

In Eq. (4.38), the gradient term and the separation potential for the two-
dimensional case read

ψgrad =
1

2
κgrad GL

2
∑

i=1

|∇ϕi|2, ψsep = κsep
G

L
f(ϕi), (4.42)

with the Landau polynomial f(ϕ1,ϕ2) extended to two martensitic orientation vari-
ants

f(ϕ1,ϕ2) = D +
A

2

(

ϕ2
1 + ϕ2

2

)

−
B

3

(

ϕ3
1 + ϕ3

2

)

+
C

4

(

ϕ2
1 + ϕ2

2

)2
. (4.43)

Figure 4.5: Landau polynomial f(ϕi) = f(ϕ1,ϕ2)

The plot of f(ϕ1,ϕ2) in Figure 4.5 shows two absolute minima of value 0 at
(1, 0) and (0, 1) corresponding to the stable phases for T < T0, the first and the
second martensitic variant, respectively. The local minimum of value 1 at (0, 0)
corresponds to the metastable austenitic phase. Thus, the energy landscape of the
separation potential ensures that in each point only a single phase occurs.

To describe the evolution of each order parameter, two TDGL equations are
necessary, where the variational derivatives of the phase field potential ψ in
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Eq. (4.38) with respect to ϕ1 and ϕ2 yield

βϕ̇i = −
δψ

δϕi
= −

∂W

∂ϕi
−G

(
κsep

L

∂f

∂ϕi
− κgrad L∆ϕi

)

. (4.44)

Since the elastic energy density enters the phase field potential ψ, the mechanical
quantities come into play. These have to satisfy the balance of linear momentum in
Eq. (2.22) which reduces to the equilibrium condition

div σ = 0 (4.45)

for the Cauchy stress tensor σ if inertia effects and volume forces are neglected. The
stresses are given by the constitutive relation in Eq. (4.12) with

σ =
∂ψ

∂ε
= (ϕi)

(

ε− ε0ϕ(ϕi)
)

. (4.46)

Since and ε0 depend on the order parameters, Eq. (4.44) and Eq. (4.45) represent
a coupled non-linear time dependent boundary value problem. It is completed by
the boundary conditions for the stresses and the displacements

σn = t∗ on ∂Vt, (4.47)

u = u∗ on ∂Vu, (4.48)

while concerning the order parameter

ξ∗i = 0 on ∂V, with ξi · n = ξi
∗ (4.49)

is considered. The micro stresses ξi in Eq. (4.49) are defined according to Sec-

tion 4.1.2 with ξi =
∂ψ

∂∇ϕi
= κgrad GL∇ϕi. To solve Eqs. (4.44), (4.45) the finite

element method is employed, where the numerical implementation is discussed in
the following section.

4.2.2 Numerical Implementation

In the literature, several approaches are proposed to solve the field equations of a
phase field model for martensitic transformations. Chen et al. [1992] and Wang and
Khachaturyan [1997], who introduced the first phase field models for martensitic
transformations, used the fast Fourier transformation (FFT) formalism, which was
also used in numerous further works, for example Jin et al. [2001], Artemev et al.
[2000], Ahluwalia et al. [2004]. Under certain circumstances, e.g. the mechanical
equilibrium can be solved very efficiently in Fourier space, see also the work of Hu
and Chen [2001]. However, for considering complicated boundary conditions or
complex material laws, especially with phase dependent material properties, the
finite element method is more flexible. In the context of phase field modeling of
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the martensitic transformation it is applied for example by Hildebrand and Miehe
[2011], Levitas et al. [2010], Yeddu et al. [2012], Malik et al. [2013], Levitas et al.
[2013], Schmitt et al. [2013a]. Another alternative to solve the field equations is
the finite difference method, see e.g. Yamanaka et al. [2008].
In the present work the finite element approach is employed, where this subsection
summarizes the most important details concerning the numerical implementation
of the model introduced above. For further background information on the finite
element method the reader is referred to various textbooks e.g. Hughes [2000],
Zienkiewicz and Taylor [2000], Wriggers [2001].

The phase field model is implemented into the finite element code FEAP with
the displacements u and the order parameters ϕ1 and ϕ2 as nodal degrees of free-
dom. Starting point for the numerical implementation are the field equations (4.44)
and (4.45) with the corresponding boundary conditions. The scalar product of
the field equations with arbitrary test functions δu and δϕi and the subsequent
integration by parts over the volume V of the computation domain yields the weak
formulation of the problem

∫

V

(∇δu)T : σ
︸ ︷︷ ︸

δε : σ

dv =

∫

∂Vt

δu · t∗ da, (4.50)

and
∫

V

−
[

δϕi β ϕ̇i +∇δϕi · ξi + δϕi

(
∂W

∂ϕi
+G

κsep

L

∂f

∂ϕi

)]

dv = 0, with i = 1, 2.

(4.51)
For the spatial discretization the continuous volume V is divided into Ne finite ele-
ments, each of them occupying a domain Ωe

V ≈ V h =
Ne⋃

e=1

Ωe (4.52)

where the element size corresponds to the mesh parameter h. The assembly opera-
tor
⋃

describes the assembly of the system. According to the isoparametric concept,
the nodal degrees of freedom u, ϕi and the geometry x are approximated element
by element by the same shape functions NI of node I, where nel is the total number
of nodes per element,

uh =
nel∑

I=1

NI ûI , ϕh
i =

nel∑

I=1

NI ϕ̂iI , xh =
nel∑

I=1

NI x̂I . (4.53)

In Eq. (4.53) the approximated quantities have a superscript (·)h while nodal quan-
tities are indicated with a superposed hat (̂·). The shape functions, which interpolate
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Figure 4.6: Isoparametric quadrilateral four-node element.

between the nodal values, are defined on a reference element Ωe in a r-s-coordinate
system. In this work quadrilateral elements with nel = 4 and bilinear shape functions

NI(r, s) =
1

4

(

r2 + rIr
) (

s2 + sIs
)

(4.54)

are used where rI and sI are the local coordinates of node I corresponding to the
right-hand side of Figure 4.6. Details on the computation of shape functions and
derivatives can be found in any textbook on the finite element method, see for
example Hughes [2000], Zienkiewicz and Taylor [2000], Wriggers [2001].

With introducing the two-dimensional differential operator matrices

Bu

I =

⎡

⎢
⎣

NI,x 0

0 NI,y

NI,y NI,x

⎤

⎥
⎦ and Bϕi

I =

[

NI,x

NI,y

]

, (4.55)

the discretizations of the gradient quantities read

εh =
nel∑

I=1

Bu

I ûI , ∇ϕh =
nel∑

I=1

Bϕi

I ϕ̂iI ⇒ ξh
i
= κgradGL

nel∑

I=1

Bϕi

I ϕ̂iI . (4.56)

In Eq. (4.56) Voigt notation is applied for ε and ξi, i. e.

ε = (εxx, εyy, 2εxy)
T , ξ

i
= κgradGL (ϕi,x, ϕi,y)

T , (4.57)
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which is marked by the underline. The test functions and their gradients are dis-
cretized accordingly

δuh =
nel∑

I=1

NIδûI , δεh =
nel∑

I=1

Bu

I δûI ,

δϕh
i =

nel∑

I=1

NIδϕ̂iI , ∇δϕh
i
=

nel∑

I=1

Bϕi

I δϕ̂iI .

(4.58)

Applying the discretizations in Eqs. (4.53), (4.56), (4.58) to Eqs. (4.50),(4.51) al-
lows constructing the approximations of the global weak forms by assembling the
equations of all elements

Ne⋃

e=1

nel∑

I=1

(

δuh
)T

⎡

⎣−
∫

Ωe

(Bu

I )
T σh dv +

∫

∂Ωe∩∂Ωt

NIt
∗h da

⎤

⎦

︸ ︷︷ ︸

Ru

e,I

= 0 (4.59)

Ne⋃

e=1

nel∑

I=1

δϕh
i

⎡

⎣−
∫

Ωe

NIβϕ̇
h
i dv −

∫

Ωe

Bϕi

I
T
ξhi dv −

∫

Ωe

NI

(
∂W h

∂ϕi
+G

κsep

L

∂f

∂ϕi

)

dv

⎤

⎦

︸ ︷︷ ︸

Rϕi

e,I

= 0.

(4.60)
The terms in squared brackets in Eq. (4.59) and Eq. (4.60) define the element resid-
uals of node I

Ru

e,I = −
∫

Ωe

(Bu

I )
T
σh dv +

∫

∂Ωe∩∂Ωt

NIt
∗h da (4.61)

Rϕi

e,I = −
∫

Ωe

NIβϕ̇
h
i dv −

∫

Ωe

Bϕi

I
T
ξhi dv −

∫

Ωe

NI

(
∂W h

∂ϕi
+G

κsep

L

∂f

∂ϕi

)

dv. (4.62)

To obtain the element residuals Re the corresponding nodal residuals are combined
in a vector. For the quadrilateral element with nel = 4, it reads

Re =

⎡

⎢
⎢
⎢
⎣

Re,1

Re,2

Re,3

Re,4

⎤

⎥
⎥
⎥
⎦

with Re,I =

[

Ru
e,I

Rϕi

e,I

]

. (4.63)
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As Eq. (4.59) and Eq. (4.60) must hold for arbitrary test functions the terms in
squared brackets have to vanish, leading to the residual equation

R(d̂, ˆ̇d) =
Ne⋃

e=1

Re
!
= 0. (4.64)

In Eq. (4.64), R = R(d̂, ˆ̇d) is the global residual vector which depends on the nodal
degrees of freedom given by the global vector

d̂ =

⎡

⎢
⎣

d̂1
...

d̂Nn

⎤

⎥
⎦ with d̂K =

[

ûK

ϕ̂iK

]

, (4.65)

where the subscript K = 1, . . . , Nn is the global node number.
In order to solve the residual equation (4.64) in each time step for d̂, ˆ̇

d an im-
plicit time integration scheme is used. The discretization in time according to the
backward Euler method yields for the time step tn the relation

ˆ̇
d =

d̂n+1 − d̂
n

∆t
, (4.66)

where d̂(tn) is abbreviated with d̂n. For computing the solution d̂n+1, the Newton-
Raphson method is applied which requires the linearization of the residual equa-
tion (4.64)

R(m+1)(d̂, ˆ̇d) ≈ R(m)(d̂, ˆ̇d) +
∂R(d̂, ˆ̇d)

∂d̂

∣
∣
∣
∣

(m)

︸ ︷︷ ︸

−S(m)

∆d̂
(m)

= 0, (4.67)

where the superscript (·)(m) denotes the iteration step of the Newton-Raphson
method. For the sake of clarity the time step index (·)n is suppressed for not
converged values. Quantities without the iteration superscript (·)(m)represent con-

verged values. With the definition of the system matrix S(m) = −
∂R(d̂, ˆ̇d)

∂d̂

∣
∣
∣
∣

(m)

the

equation, which is solved, reads

S(m)∆d̂
(m)

= R(m)(d̂
(m)

, ˆ̇d(m)). (4.68)
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while the solution is obtained by the subsequent algorithm

d̂
(0)

= d̂n

solve R(m) = S(m)∆d̂
(m)

update d̂
(m+1)

= d̂
(m)

+∆d̂
(m)

}

until R(d̂
(m+1)

) ≤ TOL

⇒ d̂n+1 = d̂
(m+1)

.

(4.69)

Because the residual R depends on ˆ̇
d, d̂ the chain rule applies for the system ma-

trix S

S∆d̂ = −
∂R(d̂)

∂d̂
︸ ︷︷ ︸

−K

∆d̂ −
∂R(ˆ̇d)

∂ˆ̇d
︸ ︷︷ ︸

−D

∂ˆ̇d

∂d̂
︸︷︷︸

1

∆t

∆d̂, (4.70)

" S = K +
1

∆t
D. (4.71)

Within the finite element scheme the stiffness matrix K and the damping matrix D

are calculated on the element level. The entries of the element stiffness matrix KIJ,e

are given by

KIJ,e = −
∂RI

∂d̂J

=

⎡

⎢
⎣

Kuu

IJ,e K
uϕ1

IJ,e K
uϕ2

IJ,e

Kϕ1u

IJ,e Kϕ1ϕ1

IJ,e Kϕ1ϕ2

IJ,e

Kϕ2u

IJ,e Kϕ2ϕ1

IJ,e Kϕ2ϕ2

IJ,e

⎤

⎥
⎦ , with I, J = 1, 2, ..., nel (4.72)

where the matrix entries are calculated with

σ̃h
i =

∂

∂ϕi

(

εh − ε0ϕ
)

σ0,h
i =

∂

∂ϕi

(

εh − ε0ϕ
)

(4.73)
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as follows (for i, j = 1, 2)

Kuu

IJ,e =
∂Ru

I,e

∂ûJ

=

∫

Ωe

(Bu

I )
T

Bu

J dv

K
uϕi

IJ,e =
∂Ru

I,e

∂ϕ̂iJ

=

∫

Ωe

(Bu

I )
T
(

σ̃h
i + σ0,h

i

)

NJ dv

Kϕiu

IJ,e =
∂Rϕi

I,e

∂ûJ

=

∫

Ωe

NJ

(

σ̃h
i + σ0,h

i

)

Bu

I dv

Kϕiϕi

IJ,e =
∂Rϕi

I,e

∂ϕ̂iJ

=

∫

Ωe

κgradGL (Bϕi

I )T Bϕi

J dv+

∫

Ωe

NI

(
(

ε0i
)T
(

σ0,h
i +2σ̃h

i

)

+κsep
G

L

∂2f

∂ϕ2
i

)

NJ dv

K
ϕiϕj

IJ,e =
∂Rϕi

I,e

∂ϕ̂jJ

=

∫

Ωe

NI

(

σ̃h
i

(

ε0i + ε0j
)

+ ε0j σ
0,h
i + κsep

G

L

∂2f

∂ϕiϕj

)

NJ dv (i ̸= j).

The symmetry of the stiffness matrix arises due to the underlying variational princi-
ple. Furthermore, the entries of the element damping matrix DIJ,e read

DIJ,e = −
∂RI,e

∂ ˆ̇dJ
=

∫

Ωe

⎡

⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

0 0 βNINJ 0

0 0 0 βNINJ

⎤

⎥
⎥
⎥
⎦

dv,

with I, J = 1, 2, ..., nel.

(4.74)

Using Gauß quadrature the integrals over the element domains are solved nu-
merically in the parameter space of the reference element Ωe. This requires the
transformation of the integral

∫

Ωe

G(x) dv =

1∫

−1

1∫

−1

G(r, s)det J e(r, s) dr ds. (4.75)
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The Jacobian matrix J e links the line elements of the physical coordinates x to the
line elements of the r-s-coordinate system

[

NI,r

NI,s

]

=

⎡

⎢
⎢
⎢
⎣

∂x

∂r

∂y

∂s

∂x

∂r

∂y

∂s

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

Je

[

NI,x

NI,y

]

. (4.76)

For the numerical integration Eq. (4.75) is approximated with

1∫

−1

1∫

−1

G(r, s)det J e(r, s) dr ds ≈
nq
∑

q=1

G(rq, sq)det Je(rq, sq)wq, (4.77)

where wq are the weights and rq, sq are the coordinates of the Gaussian points to
evaluate the term.

4.2.3 Input Parameters of Pure Iron from Atomistic Simulations

In the following, the parameters for the implemented phase field model are cho-
sen, based on the results of the atomistic simulations of pure iron for two different
temperatures T1 = 100 K and T2 = 1300 K. Due to the potential which is applied for
the MD simulations the equilibrium temperature T0 = 825 K is considered. Hence,
T0 is far away from both T1 and T2. For the determination of the parameters only
a single martensitic orientation variant with the order parameter ϕ is used, as the
atomistic simulations do not distinguish between different martensite variants. With
the atomic volumes given by MD for austenite and martensite, the lattice constants
can be calculated due to the cubic crystal structures of both phases. For simplic-
ity, the considerably small temperature dependence of the atomic volumes is ne-
glected. With the lattice constants, the eigenstrain tensor ε0 is determined according
to Eq. (4.41) with

ε0 =

[

−0.2217 0.0

0.0 0.1007

]

. (4.78)

Using the elastic constants of the austenite- and martensite-lattices resulting from
MD simulations, effective Lamé parameters are calculated in agreement with
Pimpinelli and Villain [1998]

λ =
1

5
( 11 + 4 12 − 2 33), µ =

1

5
( 11 − 12 + 3 33) (4.79)

41



4 An Elastic Phase Field Model for Martensitic Transformations

which eventually yield the effective isotropic elasticity tensors in Voigt notation for
the austenitic and the martensitic phase, respectively,

A =

⎡

⎢
⎣

221 880 149 840 0

149 840 221 880 0

0 0 36 030

⎤

⎥
⎦ MPa,

M =

⎡

⎢
⎣

292 700 106 250 0

106 250 292 700 0

0 0 93 220

⎤

⎥
⎦ MPa.

The characteristic interface energy density is calculated atomistically by Wang and
Urbassek [2013] with G = 0.96 J

m2 . The parameter L = 10 nm, is chosen sufficiently
large, such that the transition zone can be resolved by several elements. In order to
determine the coefficients A, B, C and D of the Landau polynomial in Eq. (4.43),
the energy per atom is evaluated for the states the atom occupies during the
martensitic transformation with MD simulations for T1 = 100 K and T2 = 1300 K.
These data are plotted in Figure 4.7, (black crosses) with the order parameter ϕ on
the abscissa. The curves are normalized, such that the ordinate-value f = 1 for the
local minimum. Thus, the black curve resulting from MD simulations corresponds
to the Landau polynomial in Eq. (4.43) with ϕ1 = ϕ, ϕ2 = 0. Using least-square
method (orange curves in Figure 4.7), the coefficients A, B, C and D are deter-
mined. For T1 = 100 K (T1 < T0) the coefficient D = 1, while the orange curve in

(a) T = 100 K (b) T = 1300 K

Figure 4.7: Normalized energy barrier resulting from MD (black crosses) with Landau poly-
nomial f(ϕ) (orange curve).

Figure 4.7(a) yields A = 2.8. The relations B = 3A+ 12 = 20.4, C = 2A+ 12 = 17.6
ensure the local minimum at ϕ = 0 and the global minimum at ϕ = 1, which
corresponds to the metastable phase austenite and the stable phase martensite,
respectively. The calibration constants are calculated according to Eq. (4.29) with
κsep = 2.637 and κgrad = 1.450. In order to determine the mobility parameter β,
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these input data are used to simulate a two phase continuum with a length of
176.5 nm, discretized with 200 uniform elements in horizontal direction. The initial

y

x
✲

✻

(a) T1 = 100 K, t = 1.125ns (b) t = 0 ns (c) T2 = 1300 K, t = 1.125ns

Figure 4.8: Interface motion of a two-phase beam (green: austenite, red: martensite).
(b) Initial configuration. (a) T1 = 100 K. (c) T2 = 1300 K.

configuration can be seen in Figure 4.8(b): The left half of the beam is austenitic,
depicted in green, the right half martensitic, depicted in red. The boundaries of
the computation domain are stress free i.e. no external loads are applied. To avoid
the rigid body movement, the bottom left corner is fixed in both the horizontal
and vertical directions, and the bottom right corner is fixed in vertical direction.
For T1 = 100 K, Figure 4.7(a) indicates that martensite is the energetically more
favorable stable phase. Concerning the energy of the initial configuration depicted
in Figure 4.8(b), the eigenstrain ε0 of the martensitic phase increases the elastic
energy of the system while austenite has a contribution resulting from the separa-
tion potential ψsep. Additionally, the interface between the phases contributes to the
gradient energy density ψgrad. Hence, the system minimizes the global total energy
by shifting the interface continuously to the left, where the eigenstrain within the
martensite leads to a slightly curved interface (see Figure 4.8(a)). For the final
state, a purely martensitic material, the total energy density ψ = 0. There is no
contribution to the gradient energy density ψgrad since there is no interface. In all
points the order parameter ϕ = 1 such that the separation potential ψsep = 0 all over
the computation domain. Furthermore, for a purely martensitic beam, the eigen-
strain is compensated on the macroscopic level, leading to the elastic energy W = 0.

The velocity of the propagating interface is calculated according to Eq. (4.37)
where the discretization of the configurational forces is discussed in Kuhn and
Müller [2010], Kuhn [2013]. In this context, the comparison of the result obtained
by Eq. (4.37) and the interface velocity derived by tracking the interface has
ensured that the influence of the interface curvature is negligibly small. The
interface velocity is scaled by the mobility parameter β, which is in Eq. (4.44)
indirectly proportional to the time derivative of the order parameter ϕ̇. In the next
step, the mobility parameter β is calibrated such that the interface velocity vif of
the simulation is in accordance with the interface velocity given by MD simulations
vMD

if = 24.2 m
s . This is the case for β = 0.238 N s

m2 .

This procedure is repeated for the temperature T2 = 1300 K (T2 > T0). The
energy per atom during the martensitic transformation is indicated with black
crosses in Figure 4.7(b). It shows, that for T2 = 1300 K austenite is the stable
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and martensite the metastable phase. The orange curve in Figure 4.7(b), result-
ing from the least square method, yields A = 11.81 while for T2 > T0 D = 0,
B = 3A − 12 = 23.43 and C = 2A − 12 = 11.62. According to Eq. (4.29) the
calibration constants are determined with κsep = 2.164 and κgrad = 2.408. With
these input data, again the two-phase beam, shown in Figure 4.8(b), is employed
as initial configuration with no external loads applied. Using the same mobility
parameter β = 0.238 N s

m2 than for the above simulation (for T1 = 100 K), the result-
ing interface velocity for T2 = 1300 K is vif = 29.33 m

s . This value fits the velocity
obtained from MD simulations vMD

if = 26.0 m
s , which is interpreted as verification

of the mobility constant β. As a result, for this simulation the mobility constant β
hardly depends on the temperature.

Due to this finding a temperature dependent phase field potential for pure
iron is introduced. Atomistic simulation results provide the energy per atom for the

(a) f(ϕ) (b) ∆e(T ), |vif|

Figure 4.9: (a) Landau polynomial f for different temperatures. (b) Interface velocity and
energy barrier as functions of temperature.

transformation path for several temperatures. Using these data the coefficients A
and D in the Landau polynomial f in Eq. (4.43) are introduced as functions of the
temperature T such that f can be calculated for a given T . Details concerning the
determination of these functions are given in Schmidt [2015]. In Figure 4.9(a),
the Landau polynomial f is plotted for some selected temperatures T . It can be
seen that the energy barrier ∆e increases when T approaches the equilibrium
temperature at T0 = 825 K. With increasing distance to T0 the energy barrier gets
smaller. This can also be seen in Figure 4.10, where f is plotted in dependence of
both T and the order parameter ϕ. The relation between the energy barrier ∆e and
the temperature is clarified by Figure 4.9(b), where the purple curve shows ∆e as
a function of T . Since for the equilibrium temperature T0 there is no spontaneous
phase transition the energy barrier ∆e achieves a very high value. To evaluate the
influence of the temperature dependent Landau polynomial f(ϕ, T ) on the interface
velocity, the two phase beam, depicted in Figure 4.8(b), is considered and vif is

44



4.2 Phase Field Model for Multivariant Martensitic Transformations

Figure 4.10: Landau polynomial f(ϕ, T ).

calculated for several temperatures. The resulting orange curve in Figure 4.9(b)
shows the absolute value of vif as a function of T 5 which is in agreement with the
purple curve in Figure 4.9(b): A high energy barrier leads to a low interface velocity
and vice versa. Hence, the energy barrier is an important feature characterizing the
phase transition.

4.2.4 External Loads on a Two-Phase Beam

The material parameters derived for pure iron at T = 100 K are used to examine
the correlation between an external load and the interface velocity. Therefore, the
beam with the initial configuration depicted in Figure 4.8(b) is considered.

The eigenstrain ε0 according to Eq. (4.78) corresponds to pressure in hori-
zontal direction and tension in vertical direction. When the eigenstrain ε0 is
supported by applying pressure σa = −23 MPa in horizontal direction of the beam,
the interface velocity |vif| = 25.1 m

s is higher than with no load applied (see above
|vif| = 24.2 m

s ). In analogy, applying tension σa = 23 MPa in horizontal direction,

5For T < T0 the interface propagates to the left resulting in a negative sign of vif.
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Figure 4.11: Interface motion for a two-phase beam with external load, green: austenite,
red: martensite.

which works against the eigenstrain ε0, leads to a lower velocity |vif| = 23.3 m
s .

Thus, depending on the eigenstrain ε0, external loads affect the interface velocity vif.

In the following, the influence of the transformation strain ε0 is studied more
detailed. Since the focus of this work is the material behaviour of metastable
austenites, the material parameters of AISI 347 are taken into account. For future
work, the cooperation with MD simulations is promoted. The proposed proce-
dure could be repeated with considering further alloying elements for atomistic
simulations such that the material parameters of steel are approximated.

4.3 Metastable Austenites

The mobility constant β = 0.238 N s
m2 , which is calibrated in the previous section

for pure iron, is used to investigate the processes on the microlevel of metastable
austenitic steels. Here, temperatures below the equilibrium temperature are fo-
cused. Due to the cooling with carbon dioxide snow during the process of cyrogenic
turning a maximum temperature of the workpiece of about T = 350 K is obtained.
This is far away from the equilibrium temperature T0 of AISI 347 which lies be-
tween 800 K and 1200 K. Concerning the coefficients in the Landau polynomial in
Eq. (4.43) this yields D = 1. So far, for AISI 347 no data from atomistic simulation
are available. The value A = 5.16 is chosen which corresponds to the energy barrier
of pure iron for about T ≈ 175 K. With A = 5.16, the coefficients B and C can be
calculated with B = 3A + 12 = 27.48 and C = 2A + 12 = 22.32. Using Eq. (4.29)
the calibration constants are determined with κsep = 2.114 and κgrad = 1.474. Hence,
the parameter L = 3.5 nm controls the width of the transition zone. In comparison
to the material parameters of pure iron, a smaller value is chosen since the model
should be able to resolve the fine microstructures of austenitic steels. Furthermore,
the parameter G = 0.1 J

m2 corresponds to the interface energy density. This value
lies within the range of the free energy densities of other phase field models, e.g.
Schrade et al. [2009]. For the elasticity constants of austenite, the values of the
comparable mono-crystalline AISI 316 according to Ledbetter [1985], Skorupski
et al. [2014] are applied where the coordinate system of the proposed tensor is ro-
tated by 45◦. Quantities of the rotated coordinate system are indicated with (·)∗.
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Martensite is assumed to be ten percent stiffer than austenite

∗
A =

⎡

⎢
⎣

2.87 0.53 0

0.53 2.87 0

0 0 1.17

⎤

⎥
⎦ 105 MPa, ∗

M = 1.1 ∗
A. (4.80)

Two different martensitic orientation variants are considered by using the order
parameters ϕ1 and ϕ2. For the eigenstrain tensors of the two variants, Yamanaka
et al. [2008] propose

ε01 =

[

ε0vol −0.1
−0.1 ε0vol

]

, ε02 =

[

ε0vol 0.1

0.1 ε0vol

]

, (4.81)

where Yamanaka and coworkers assume ε0vol = 0. Rotating the coordinate system of
the eigenstrain tensor by 45◦ yields

ε01
∗
=

[

ε0vol + 0.1 0

0 ε0vol − 0.1

]

, ε02
∗
=

[

ε0vol − 0.1 0

0 ε0vol + 0.1

]

. (4.82)

The volumetric eigenstrain ε0vol is specified below. For the simulations in this section
the rotated (·)∗-coordinate system is used for the eigenstrain- and elasticity tensors.

The eigenvalues for the eigenstrain tensor in Eq. (4.82) are given in Eq. (3.5)
while the eigenvectors coincide with the coordinate axes in Figure 4.12. This results
with Eq. (3.3) in the habit plane normal directions for an austenite-martensite-
interface

nϵ∗
1± =

1√
0.2

⎡

⎣

−
√

0.1 + ε0vol

±
√

0.1− ε0vol

⎤

⎦ , nϵ∗
2± =

1√
0.2

⎡

⎣

±
√

0.1− ε0vol

−
√

0.1 + ε0vol

⎤

⎦ . (4.83)

With the eigenvalues in Eq. (3.6) the habit plane normal directions for a martensite-
martensite interface read according to Eq. (3.3)

n∆ϵ∗
+ =

1√
2

⎡

⎢
⎣

−1
−1
0

⎤

⎥
⎦ , n∆ϵ∗

− =
1√
2

⎡

⎢
⎣

1

−1
0

⎤

⎥
⎦ . (4.84)

4.3.1 Volumetric Eigenstrain and Orientation Variants

In a first example a quadratic matrix with an edge length of a = 176.5 nm is mod-
eled, discretized with 200 × 200 uniform elements. The size and the discretization
of the computation domain is henceforth applied unless otherwise specified. The
initial configuration is depicted in Figure 4.12: The austenitic matrix contains a
single circular nucleus (with a diameter of 0.2a) of variant 1 martensite, where
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❄✻0.2a

✻

❄

a

✲
✻

y

x

Figure 4.12: Initial configuration and boundary conditions. Austenite: green, martensite:
red.

ϕ1 = 1. The circular shape does not predetermine a growing direction of the
martensite.

The resulting evolution of the martensitic phase with no external loads ap-
plied can be seen in Figure 4.13. In the following, austenite is depicted in green
(ϕ1 = ϕ2 = 0), the first martensitic orientation variant in red (ϕ1 = 1) and the
second variant in blue (ϕ2 = 1). The nucleus increases the elastic energy density W

✒nϵ
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❘nϵ
1
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y
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✻

(a) t=3.1 ns (b) t=10 ns (c) t=12 ns

✒
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1
∗
+

❘
nϵ

1
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−

(d) t=15 ns (e) t=24 ns

Figure 4.13: Austenitic (green) matrix with preexisting circular nucleus. Evolution of the
martensitic phase (martensite 1: red) for ϵ0vol = 0.

due to the eigenstrain ε0 within the martensite. Therefore, Figure 4.13(a) shows
the nucleus initially shrinking i.e. ϕ1 → 0 in the area of the nucleus. This
decreases the eigenstrain and thus the elastic energy density. Yet, concerning
the energy contribution of the separation potential the martensitic phase is more
favourable because of the global minimum of the Landau polynomial at ϕ1 = 1. The
subsequent microstructure evolution depends on which part of the local energy ψ
is minimized. If the size of the nucleus is too small, the nucleus vanishes (which
minimizes the elastic energy), resulting in a purely austenitic matrix. The critical
size of the nucleus depends on the energy barrier i.e. on the temperature. For a
higher energy barrier a bigger nucleus is necessary, cf. Schmitt et al. [2013a]. Here,
the nucleus is above the critical size. The system starts to minimize the separation
potential instead of the elastic energy, leading to a growing nucleus. Furthermore,
the eigenstrain turns the circular nucleus into a square (see Figure 4.13(a)). The
plane interface between the phases fits to the normal directions nϵ

1
∗
+ and nϵ

1
∗
− of

the habit planes, which are indicated in Figure 4.13(a), forming a right angle. The
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vectors nϵ
1
∗
+ and nϵ

1
∗
− result from evaluating Eq. (4.83) with ϵ0vol = 0. Starting from

the nucleus the martensite grows diagonally in the nϵ
1
∗
+-and nϵ

1
∗
−-directions. When

it has propagated through the matrix, it broadens in habit plane normal directions
which finally results in a continuous variant 1 martensite phase, corresponding
to the local energy density ψ = 0, (see Section 4.2). The second martensitic
orientation variant is not built.

In the next step the volumetric eigenstrain ε0vol = 0.04 is considered which ac-
counts for the volume change due to the phase transformation. The resulting
evolution of the phases for the same initial configuration (depicted in Figure 4.12)
is shown in Figure 4.14. In comparison to the results in Figure 4.13 (with ε0vol = 0),

✻ ✻

nϵ
1
∗
+ nϵ

1
∗
−y

x
✲

✻

(a) t=1.9 ns
✻

nϵ
1
∗
−

(b) t=6.9 ns (c) t=8.8 ns

✲nϵ
2
∗
+

(d) t=12 ns (e) t=18 ns

Figure 4.14: Austenitic (green) matrix with preexisting circular nucleus. Evolution of the
martensitic phases (martensite 1: red, martensite 2: blue) for ϵ0vol = 0.04.

the volumetric eigenstrain ε0vol = 0.04 changes the eigenvalues of ε0 leading to new
habit plane normal directions nϵ

1
∗
+ and nϵ

1
∗
− which are indicated in Figure 4.14(a).

With the direction of the interface in accordance with nϵ
1
∗
+ and nϵ

1
∗
−, the vari-

ant 1 martensite nucleus starts to grow in a plate-like shape. This shape of the
martensitic inclusion minimizes the elastic energy density in agreement with the
work of Eshelby [1957]. Furthermore, the formation of plate-shaped martensite
is experimentally observed. So evidently, the volumetric part of the eigenstrain
tensor ε0 should be taken into account for modeling the martensitic transformation.
In the following, the evolving martensite splits up into a cross-like structure such
that the new martensitic plates evolve in nϵ

1
∗
+ and nϵ

1
∗
−-directions. When the plates

have propagated through the matrix, it is deformed according to the eigenstrain ε01
∗

of the variant 1 martensite. The dominant shear part of ε01
∗ corresponds to com-

pression parallel to the vertical edges and tension parallel to the horizontal edges of
the quadratic specimen. This deformation is compensated by the eigenstrain of the
second martensitic variant corresponding to compression in horizontal direction
and tension in vertical direction. This can be seen in Figure 4.14(d) where the habit
plane normal directions of variant 2 martensite nϵ

2
∗
+ and nϵ

2
∗
− are indicated, too. In

the following time steps, the second variant retreats due to the growing variant 1
plate. Eventually a continuous phase of the first martensitic orientation variant
remains.

For comparison, in Figure 4.15 the simulation results are shown, starting from
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Figure 4.15: Austenitic (green) matrix with preexisting circular nucleus, single variant con-
sidered. Evolution of the martensitic phase (red) for ϵ0vol = 0.04.

the initial configuration in Figure 4.12, with only the first martensitic orientation
variant considered. In Figure 4.15(a) the nucleus decreases more than in Fig-
ure 4.14(a), since in the above simulation martensite 2 forms besides the variant 1
nucleus which reduces the initial elastic energy due to the opposite signs of ε0shear1
and ε0shear2. For the two-dimensional case, this initial formation of the second variant
does not nucleate but rebuilds after some time steps and is therefore not visible
in Figure 4.14(a). Although, it leads to the fact that for considering two variants
the martensitic phase nucleates at a smaller initial inclusion. In Figure 4.15(b)
two diagonal slim strips of martensite are built in accordance with the calculated
habit plane normal directions nϵ

1
∗
+ and nϵ

1
∗
−. The subsequent broadening of the

martensitic formation results in a purely martensite 1 specimen.

(a) Eel/Eel
0

(b) F/F0

Figure 4.16: Evolution of the global energies Eel, F , referring to the global energy of the
initial configuration Eel

0 , F0.

Figure 4.16(a) shows the evolution of the global elastic energy Eel =
∫

V W dv
for the above simulations with ε0vol = 0 (orange curve), with ε0vol = 0.04 for two
variants (purple curve) and ε0vol = 0.04 for a single variant (black curve), referring
to the global elastic energy of the initial configuration Eel

0 (with ε0vol = 0.04). The
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time steps of the microstructures depicted in Figures 4.13, 4.14 and 4.15 are
marked with circles. The elastic energy density W is part of the local energy density
in Eq. (4.38). Due to the eigenstrain of the circular nucleus the elastic energy at
t = 0 is very high for all three simulations. It is considerably reduced by the initial
relaxation of the system (which is illustrated in Figure 3.2). For further reduction of
the high elastic energy the nucleus initially shrinks in all three simulations, leading
to a minimum for the curves in Figure 4.16(a). After the minimum the orange curve
(ε0vol = 0) increases with a small slope. The martensitic phase nucleates as in the
area of the nucleus the order parameter recovers, i.e. ϕ → 1. After approximately
10 ns the orange curve increases strongly when the martensite starts to grow
in diagonal directions (cf. Figure 4.13(b)), which coincide with the habit plane
normal directions. These correspond to the main shear directions of ε0. The peak
of the orange curve is reached when the martensitic plates have grown in diagonal
direction through the specimen. As a result, the matrix is consequently deformed
almost homogeneously by the pure shear strain within the martensite, which
reduces the elastic energy in the following. During the broadening of the plates, the
elastic energy decreases until Eel = 0 corresponding to a purely martensite 1 matrix.

The black curve (single variant) has a higher maximum since the additionally
considered volumetric eigenstrain ε0vol = 0.04 increases the elastic energy. The
changed habit plane normal directions cause that the growing directions of the
martensite do no longer coincide with the diagonal directions of the specimen.
When the plates have propagated through the matrix there are still high stresses
besides the martensitic formation. The elastic energy keeps on increasing until the
plates have broadened almost to the corners of the specimen, which finally allows
the compensation of the eigenstrain (cf. Figure 4.15(d)).

The purple curve increases first after the minimum because initially both vari-
ants are formed. The smaller slope between the first two circles (from 1.9 ns
to 6.9 ns) corresponds to the martensite growing in a plate like shape (cf. Fig-
ure 4.14(a)). The branching of the initial plate increases the slope until the
martensitic phase reaches the boundary, which is marked by a circle at t = 8.8 ns
(cf. Figure 4.14(c)). Then the plates broaden in habit plane normal directions while
the purple curve obtains the maximum when the second variant forms. This reduces
in the following the total deformation and thus the elastic energy. For t = 18 ns
the slope of the curve decreases. In this regard, Figure 4.14(e) shows that, due
the growing variant 1 plate, the martensite 2 has vanished. Thus, the formation
of the second variant contributes to the energy reduction of the system. Despite
the higher eigenstrain the purple curve has the lowest maximum of the three curves.

For ε0vol = 0 the second variant is not built. The habit plane normal direc-
tions form a right angle such that these coincide with the habit plane normal
directions of the second variant. Hence, variant 2 martensite can only be formed in
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the same direction or perpendicular to variant 1. This is a restriction compared to
the habit plane normal directions corresponding to ε0vol = 0.04: Both pairs nϵ

1
∗
+, nϵ

1
∗
−

and nϵ
2
∗
+, nϵ

2
∗
− show different angles leading to more possibilities for an energy

minimizing microstructure.

Figure 4.16(b) shows the total global energy F =
∫

V ψ dv as a function of
simulation time. During the formation of the microstructures for t < 20 ns the
purple curve (both variants, ε0vol = 0.04) is below the black and the orange curves
(single variant and ε0vol = 0). Since all simulations start from the same initial
configuration in Figure 4.12, this indicates that for these examples considering
the volume change and two orientation variants minimizes the energy most
effectively. The large interface areas of the microstructures in Figure 4.15(d)
and Figure 4.13(d) cause the eventual steeper decrease of the black and the orange
curve. The broadening of these structures results quicker in a purely martensitic
specimen than the formation in Figure 4.14(e).

Evidently, the volume change and multiple orientation variants are crucial for
modeling the martensitic transformation. Henceforth, two martensite variants and
ε0vol = 0.04 are considered.

4.3.2 External Loads

During the process of cryogenic turning the workpiece is exposed to high mechan-
ical loads. Next, the influence of homogeneous load cases on the microstructure
evolution is studied, starting with tension in horizontal direction. In Figure 4.17(a)
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→
→
→
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→
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(a) t=0 ns (b) t=1.3 ns

✻nϵ
1
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✻nϵ
1
∗
−

(c) t=11 ns (d) t=123 ns

Figure 4.17: Austenitic (green) specimen with martensite 1 nucleus. Evolution of the
martensitic phases (martensite 1: red, martensite 2: blue) for applying ten-
sion in horizontal direction.

the corresponding Dirichlet boundary conditions are illustrated together with the
initial configuration, a circular martensite 1 nucleus in an austenitic matrix. During
the simulation time, u∗

x = 0.05a is held constant. The resulting microstructure is
depicted in Figures 4.17(b)-(d). The external load corresponds to the eigenshear
of the first variant. Thus, due to the load, martensite 1 is induced much faster
compared to the above simulations without load applied. The load increases
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the elastic energy, which can be reduced by the cross-formation of martensite 1
depicted in Figure 4.17(c). A further broadening of the plates would lead to higher
deformations, increasing the elastic energy. Therefore, this microstructure remains
unchanged and the second variant is not built. The vectors nϵ

1
∗
+, nϵ

1
∗
− are indicated

in Figure 4.17(c), showing that these are not influenced by the homogeneous
loading since the difference between the states of strain of the austenitic matrix
and the martensitic inclusions is still the same than without load applied.

↑ ↑ ↑ ↑ ↑ ↑ ↑ u∗
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(a) t=0 ns
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✲nϵ
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(b) t=1.3 ns (c) t=2.5 ns (d) t=123 ns

Figure 4.18: Austenitic (green) specimen with martensite 1 nucleus. Evolution of the
martensitic phases (martensite 1: red, martensite 2: blue) for applying ten-
sion in vertical direction.

In Figure 4.18 the evolving phases for applying tensile stress in vertical direc-
tion can be seen. The external load supports the eigenstrain ε02 of the second
martensitic orientation variant, which corresponds to compression in horizontal
direction and tension vertical direction. For a martensite 2 nucleus, in analogy to
Figure 4.17, a cross-like structure of martensite 2 plates forms. For the nucleus of
the 1st variant in Figure 4.18 the circular nucleus turns into a plate in accordance
with the habit plane normal directions. In the remaining part of matrix martensite 2
forms almost instantaneously, except two stripes in diagonal directions, which are
left austenitic, see Figure 4.18(b). Thereupon, martensite 1 evolves in the austenitic
stripes from the central plate to the boundaries. The interface between martensite 1
and martensite 2 is built in diagonal direction of the matrix according to Eq. (4.84).

Starting from a single nucleus, where the martensitic phases can evolve freely
within pure austenite, allows gaining a better understanding for the correlations.
However, in a real microstructure there are various nucleation sites leading to
complex interactions. This motivates another initial configuration shown in Fig-
ure 4.19(a). In each point the value of one (randomly chosen) order parameter is
randomly chosen with ϕi ∈ [0, 1] while the second order parameter is set to zero.
In the following four simulations the same initial configuration is used. First, the
horizontal displacement is specified where u∗

x = 0.05a. Using this numerical setup
two different simulations are employed. Figure 4.19(b) results from a constant
loading while in the second simulation u∗

x changes the sign for t < 13 ns and is held
constant for t > 13 ns. In Figure 4.19(c) the load curve is depicted together with
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Figure 4.19: Evolution of the martensitic phase for applying (longterm) tension in horizontal
direction, starting from randomly distributed order parameters. Martensite 1:
red, martensite 2: blue, austenite: green.

the resulting microstructure. Due to the load, a part of the randomly distributed
nucleation sites form martensitic plates of both variants, which are arranged
in a laminar-like structure. The constant load supports the eigenstrain of the
first martensitic orientation variant ε01 such that variant 1 martensite dominates.
The volume fractions of the martensitic phases in Figure 4.19(b) are 52 % for
martensite 1 and 38 % for martensite 2, so there is little retained austenite.
The habit plane normal directions between the two martensite variants coincide
with the diagonal directions of the specimen in accordance with Eq. (4.84). In
Figure 4.19(c), which is the resulting microstructure of the cyclic loading, there are
five martensite plates of alternating variants in diagonal directions in the center of
the specimen while in the corners larger martensite areas are formed. The different
microstructure compared to Figure 4.19(b) is caused by the changes in sign of the
load. Each of them leads to the reformation of the phases. Finally, for t > 13 ns
solely tension in horizontal direction is applied. The compression applied afore
in horizontal direction supports the eigenstrain of martensite 2. Nevertheless, the
martensite content of the phases for t = 80 ns in Figure 4.19(c) is the same as in
Figure 4.19(b) (martensite 1 is 52 % and martensite 2 is 38 %). Furthermore,
due to the more "realistic" initial configuration, the results in Figures 4.19(b), (c)
resemble qualitatively the real microstructure which is depicted in the micrographs
in Figure 4.19(d).

Figure 4.20(a) shows the evolution of the global total energy F as a function
of the simulation time for the simulations in Figure 4.17 (black curve), Fig-
ure 4.19(b) (purple curve) and Figure 4.19(c) (orange curve). In order to obtain
comparable results, the values are referred to F0, which is the total global energy of
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(a) (Longterm) tension in horizontal direction. (b) (Longterm) tension in vertical direction.

Figure 4.20: Evolution of the global total energy F , referring to the global energy of the
initial configuration F0 in Figure 4.17(a).

the initial configuration depicted in Figure 4.17(a). For all three simulations tensile
stress in horizontal direction with u∗

x = 0.05a is applied. Differing from the results
in the previous section, where all simulations end up in a continuous martensitic
matrix, here multiple martensitic plates are formed. All three simulations minimize
the global energy until an equilibrium state is reached. The lower martensite
content of 40 % in Figure 4.20(a) leads to a higher separation energy, such that the
black curve is clearly above the other two curves. The laminate-like structures of
martensitic plates in Figures 4.19(b),(c), which both have a total martensite content
of 90 %, lead to a lower total energy. Since for the black and the purple curve the
same load is applied, the final equilibrium state depends on the initial configuration.

Furthermore, the orange curve in Figure 4.20(a) has a zigzag profile corre-
sponding to the load function. It can be seen that the maxima of the compression
are below the maximal values of the tensile loading, which results from the
volumetric part of the eigenstrain. It has a positive sign in both martensitic phases
and thus reduces the compressive part of the eigenstrain. For the black and the
purple curve, the same initial configuration is applied, while the load history differs.
This influences the formation of the phases. Yet, the martensite content and the
global total energy of the purple and the orange curve are approximately the same.
In a next step tension in vertical direction is studied.

Starting from the same randomly distributed initial configuration the results
for constant and cyclic loading with tensile stress in vertical direction are shown in
Figures 4.21(b) and (c). Again, the volume fractions of the phases coincide for both
simulations. With a martensite 1 content of 38 % and martensite 2 content of 52 %
the same values as for tension in horizontal direction are obtained. In contrary to
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Figure 4.21: Evolution of the martensitic phase for applying (longterm) tension in vertical
direction. Martensite 1: red, martensite 2: blue, austenite: green.

the above example, martensite 2 dominates since tension in horizontal direction
corresponds to ε0

∗

2 . The evolution of the total global energy F referring to F0 can
be seen in Figure 4.20(b) (purple and orange curves) where also the simulation
in Figure 4.18 (black curve) is considered. The higher martensite content of 80 %
in Figure 4.18 compared to a martensite content of 40 % of the single nucleus in
Figure 4.17 leads to a lower final total energy of the black curve in Figure 4.20(b)
compared to the black curve in Figure 4.20(a).

Notable is the difference in energy between the orange and the purple curve
despite the same martensite content. Figure 4.21(d) shows the contour plot of
the order parameter ϕ2, which reveals that ϕ2 < 0 in the area of the austenite at
the horizontal boundaries next to the austenite-martensite-1 interface. Since the
Landau polynomial of the separation potential in Eq. (4.43) is locally minimal
for ϕ2 = 0, f increases for ϕ2 < 0. This increase causes the difference between the
final value of the orange and the purple curve in Figure 4.20(b).
Concerning the microstructure in Figure 4.21(c) the curvature of the austenite-
martensite-1 interface increases when it approaches the horizontal boundary.
At the boundary it is parallel to the load direction. The indicated habit normal
directions show that these are approximately met in some distance to the hori-
zontal boundaries. With decreasing distance, the derivation increases until at the
horizontal boundary the interface is oriented in vertical direction. This explains
the negative order parameter in this region. The habit plane normal direction n∆ϵ∗

of the austenite-martensite-1 interface, calculated according to Eq. (3.3) with
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4.3 Metastable Austenites

∆ε0∗ = ε0∗1 − ε0∗(ϕ2 → −1), approaches the horizontal direction. This is consistent
with the vertically oriented interface. In Figure 4.21(d) the habit plane normal
direction is exemplary indicated in orange for ϕ2 = −0.25. Yet, a negative order
parameter is energetically penalized by the separation potential. Additionally,

ϕ2 < −
ε012 − ε0vol

ε012 + ε0vol
results in two positive eigenvalues of ∆ε0 = ε01 − ε0(−ϕ2) such

that the invariant plane strain conditions in Eq. (3.2) would not be satisfied. Thus,
a minimal value of ϕ2 ≈ −0.25 is obtained. By this way, the habit plane normal
directions are met by the negative order parameter. In Section 5.2.3 it is shown,
that this is also achieved less "artificially" by plastic deformations.

This mechanism applies analogously for the austenite-martensite-2 interfaces
at the horizontal boundaries in Figure 4.21(c). For the other simulations of this
section, where an external load is applied, the interfaces at the loaded boundaries
are formed in the same way in load direction, (see e.g. the austenite-martensite-2
interface at the right-hand side of Figure 4.19(c)). However, in Figure 4.21(c) the
influence of the negative order parameter is due to the two interfaces higher.

In summary, it is found that for considering the volumetric eigenstrain and
more than a single martensite variant the model reflects the features of the marten-
sitic transformation qualitatively. External loads influence the microstructure
evolution depending on the eigenstrain. The martensite grows in a plate-like shape
mostly in accordance with the calculated habit plane normal directions, which
ensures, that the invariant plane strain condition is satisfied. The external load
partially leads to deviant interface directions. This is compensated with negative
order parameters by the elastic model. The related increase of the separation
potential prevents the order parameters to leave the range. Thus, the model can be
used to understand the interacting mechanisms on the microscale. In this context,
also plastic strain induced martensite should be considered. Therefore, in the next
chapter an enhanced phase field model is proposed.

57



4 An Elastic Phase Field Model for Martensitic Transformations

58



5 An Enhanced Phase Field Model for

Martensitic Transformations

The microstructure of a component of austenitic steel, which is manufactured by
cryogenic turning, is the result of various processes interacting on the microscale.
In the following, the model introduced in Chapter 4, is enhanced to investigate the
impact of plastic deformations and microcracks on the phase transformation. As this
modification increases the numerical effort, in this context two variants are consid-
ered by an alternative approach in order to save computational power. However,
this ansatz is also accompanied by some disadvantages. The details of this topic are
discussed in Section 5.1. Building on this, a crystal plasticity scheme is included
in Section 5.2, which allows accounting for the different crystal structures of the
phases. Numerical simulations illustrate the importance of plastic deformations for
the phase transition. Finally, in Section 5.3 the model is coupled to a phase field for
fracture to study the relation between the martensitic transformations and cracks.

5.1 An Alternative Separation Potential

The findings in Section 4.3 show that two martensitic orientation variants have to
be taken into account for modeling the martensitic transformation properly. So far
for each variant an individual order parameters is used, leading to two additional
nodal degrees of freedom for the FE-implementation, which enlarges the system of
equations. For the two-dimensional case, two variants can be included numerically
less costly by using the Landau polynomial proposed by Roumi [2010]

p(ϕ) =
(3Γ2 − 1− 2ϕ2)(1− ϕ2)2

3Γ2 − 1
, (5.1)

within the separation potential ψsep. Figure 5.1(a) shows the plot of p(ϕ) with two
global minima for ϕ = ±1, corresponding to two stable martensite variants. The
local minimum at ϕ = 0 models the metastable phase austenite. Hence, with p(ϕ)
two variants are considered with a single order parameter ϕ ∈ [−1, 1]. The energy
landscape is modified by the parameter Γ in Eq. (5.1). As the calibration constants
depend on the Landau polynomial, these have to be redetermined according to Sec-
tion 4.1.3 for considering p(ϕ). Therefore, a standard equilibrium state of the phases
∆p(ϕ) = p(ϕ) − q(ϕ) with three equal minima is defined (see Figure 5.1(b)). The
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5 An Enhanced Phase Field Model for Martensitic Transformations

(a) p(ϕ) (b) Standard equilibrium state ∆p.

Figure 5.1: (a) Landau polynomial p(ϕ). (b) For a uniquely defined Σif, a symmetric refer-
ence state ∆p is necessary.

procedure following Eqs. (4.26)-(4.29) results in the calibration constants

κsep =

⎛

⎝2
√

∆p(ϕ(xif))

1∫

−1

√

∆p dϕ

⎞

⎠

−1

, κgrad =

√

∆p(ϕ(xif))
1∫

−1

√
∆p dϕ

. (5.2)

The parameter Γ of the Landau polynomial in Eq. (5.1) is set such that the energy
barrier ∆p coincides with the energy barrier of Section 4.3, where the material
parameters of metastable austenites are assumed. This leads to Γ = 0.35 while the
calibration constants result to be κsep = 2.059 and κgrad = 1.229.

The change in sign of ϕ is exploited for describing the eigenstrain of the
martensitic variants

ε0(ϕ) =

[

ϕ2 ε0vol ϕ ε012
ϕ ε012 ϕ2 ε0vol

]

. (5.3)

The quadratic dependence on the order parameter ϕ results in a positive sign for
the volumetric transformation strain ε0vol for both orientation variants while the
transformation shear part depends linearly on ϕ. Thus, ε012 differs in sign for the
different variants. For this definition of ε0 the coordinate system is considered in
such a way that the diagonal entries of ε0 correspond to the volumetric part of
the eigenstrain tensor ε0vol which is illustrated in Figure 5.2 by using Mohr’s circle.
For the numerical examples in Chapter 4 the principal coordinate system is used
(orange line in Figure 5.2). To consider the dependence of the order parameter
according to Eq. (5.3), a rotation of the coordinate system by 45◦ is required, which
corresponds a rotation by 90◦ in Mohr’s circle (purple line in Figure 5.2). This
difference needs to be taken into account when setting up numerical simulations,
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5.1 An Alternative Separation Potential

Figure 5.2: Mohr’s circle for eigenstrain tensors according to Eq. (4.82) (orange) and
Eq. (5.3) (purple).

that compare the two approaches.

Analogously, the elasticity tensor

(ϕ) = A + ϕ2 ( M − A) (5.4)

depends quadratically on the order parameter. This relation implicates the same
stiffness M for both variants. In the following, the elasticity tensors for the phases
of Section 4.3 are applied. However, equivalently to the eigenstrain tensor in
Eq. (5.3) the coordinate system is rotated by 45◦, which yields

A =

⎡

⎢
⎣

2.07 1.33 0

1.33 2.07 0

0 0 1.17

⎤

⎥
⎦ 105 MPa, M = 1.1 A. (5.5)

The further input parameters remain unchanged compared to Section 4.3 and the
phase field potential reads

ψ =
1

2

(

ε− ε0
)

:
(

ε− ε0
)

+ κgrad G L|∇ϕ|2 + κsep
G

L
p. (5.6)

To study the differences which arise due to applying p(ϕ) according to Eq. (5.1)
instead of f(ϕ1,ϕ2) according to Eq. (4.43) some simulations are employed using
both approaches. First, the two-phase beam, consisting of austenite and martensite,
depicted in Figure 4.8(b), is applied. For these simulations the elastic energy
density in the phase field potential is neglected to be able to analyse only the
interface-related parts, the separation potential and the gradient term. In Fig-
ure 5.3(a) the evolution of Esep =

∫

V ψ
sep dv and Egrad =

∫

V ψ
grad dv can be seen for

the autocatalytic propagation of the austenite-martensite-interface (A-M-interface)
where the orange curves correspond to using p(ϕ) and the purple curves to
using f(ϕ1,ϕ2). All curves are referred to Egrad(t = 0) or rather to Esep(t = 0) with
f(ϕ1,ϕ2) applied. Starting from the sharp interface in the initial configuration, the
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5 An Enhanced Phase Field Model for Martensitic Transformations

transition zone is built, which decreases the gradient energy considerably. When
the regularized interface propagates unchanged through the beam Egrad remains
constant.
The moving interface increases the martensitic part of the beam. Since martensite
corresponds to the global minimum of the Landau polynomial, Esep decreases con-
tinuously. The purple Esep-curve is steeper since the interface velocity vif = 1.49 m

s
with using f(ϕ1,ϕ2) is slightly above vif = 1.35 m

s of the present approach (us-
ing p(ϕ)). However, generally the curves of both simulations in Figure 5.3(a)
fit quite well. On the other hand, Figure 5.3(b) shows the results for a

(a) A-M interface (b) M-M interface

Figure 5.3: Evolution of Esep and Egrad for a two-phase beam with (a) A-M-interface and
(b) M-M-interface using p(ϕ) (orange) and f(ϕ1,ϕ2) (purple).

martensite-1-martensite-2-beam. As both phases are stable, the martensite-
martensite-interface (M-M-interface) does not propagate through the beam, but
the transition zone is built. Concerning the gradient energy Egrad the curves are
qualitatively similar to those in Figure 5.3(a). Yet, the orange curve is noticeable
higher than the purple curve, even though, for the purple curve the gradient parts
of both order parameters have to be taken into account. This results from the range
of the order parameter which is for the orange curve – using p(ϕ) with ϕ ∈ [−1, 1] –
twice compared to the range of the approach applied in Section 4.3 (purple curve)
with ϕi ∈ [0, 1]. Since the length of the transition zone, during which the order
parameter changes, is the same for both simulations this leads to higher gradients
for using p(ϕ).
For the initial configuration – the two martensitic phases divided by a sharp
interface – the Landau polynomial is minimal in all points. Thus, the formation
of the transition zone increases Esep, where the increase is greater for the orange
curve using p(ϕ). Figure 5.1(a) shows that for a M-M-transition zone the order
parameter ϕ has to cross the local minimum at ϕ = 0. In contrast, the function
f(ϕ1,ϕ2) is not limited to two dimensions, thus, the system is able to choose
the energetically most favorable path (cf. Figure 4.5). Since both variants are a
stable state of the system the interface does not move. Therefore, the separation
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✻
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Figure 5.4: Initial configuration and boundary conditions.

energy Esep remains constant after the transition zone has been built.
To sum up, the two different approaches lead to similar results for A-M-interfaces.
However, for the M-M-transition the Landau polynomial p(ϕ) yields a higher
interface energy.

In the next step the initial configuration depicted in Figure 5.4 is applied for
both approaches: A quadratic austenitic specimen (edge length a) which contains
a circular martensite 1 inclusion with a diameter of 0.3a. Henceforth, the elastic
energy is considered. For the single order parameter approach the coordinate
system of the eigenstrain tensor and elasticity tensor are rotated by 45◦ compared
to ε0∗ and ∗, which are used in Chapter 4. This changes the growing direction
of the martensite. To ensure comparable conditions when the martensitic phase
reaches the boundary of the computation domain, the matrix is rotated by 45◦ for
the simulations where p(ϕ) is used. Yet, the results in Figures 5.5 and 5.6 are shown
in the same matrix orientation. Note in this regard the rotated coordinate system in
Figure 5.6.

y

x
✲

✻

✻ ✻

nϵ
1
∗
+ nϵ

1
∗
−

(a) t=1 ns (b) t=3.5 ns

✲nϵ
2
∗
+

(c) t=7 ns (d) t=18 ns (e) t=60 ns

Figure 5.5: Austenitic (green) matrix with preexisting nucleus. Microstructure evolution for
using f(ϕ1,ϕ2) (martensite 1: red, martensite 2: blue).

Figure 5.5 shows the evolution of the martensitic phase for the approach proposed
in Chapter 4 using f(ϕ1,ϕ2). In Figure 4.14 the same initial configuration is applied
for a smaller nucleus with a diameter of 0.2a, which leads to a different formation of
martensite. Therefore, the size of the initial nucleus influences the microstructure
evolution.
In Figure 5.6 the simulation results for using the single order parameter ap-
proach with the Landau polynomial p(ϕ) can be seen. The martensitic phases of
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✲✻y x

✻ ✻

nϵ
1+ nϵ

1−

(a) t=1 ns (b) t=3.5 ns (c) t=7 ns

✲nϵ
2+

(d) t=18 ns (e) t=60 ns

Figure 5.6: Austenitic (green) matrix with preexisting nucleus. Microstructure evolution for
using p(ϕ) (martensite 1: red, martensite 2: blue).

both variants form in accordance with the calculated habit plane normal direc-
tions nϵ

1+, nϵ
1−, nϵ

2+, and nϵ
2−. These are indicated in Figure 5.6 for the eigenstrain

tensor in Eq. (5.3).

For both simulation results in Figure 5.5 and Figure 5.6, the circular nucleus
turns initially into a plate-like shape. However, in the following, the martensite 1
plate in Figure 5.5(b) grows continuously while close-by the second variant is
built. For using a single order parameter, at the same time step only martensite 1
is formed around the original plate (see Figure 5.6(b)). In Figure 5.6 the single
order parameter restricts the possibilities to minimize the energy. For considering
the two variants by two order parameters, each of them forms a transition zone.
In each point, both order parameters can have a value between 0 and 1. By this
way, the second variant is built around the growing variant 1 nucleus. On the other
hand, for considering a single order parameter, the martensite 1 plate cannot evolve
continuously when variant 2 is built around it. Thus, a discontinuous martensite 1
formation is observed in Figure 5.6(b). Since the growth of second variant in
Figure 5.5(b) contributes to the minimization of the energy, this leads additionally
to the fact, that for using the Landau polynomial p(ϕ) a larger nucleus is necessary
to trigger the evolution of the martensitic phase.
Some time steps later, the microstructures in Figure 5.5(c) and Figure 5.6(c) are
similar. The martensite 1 plate has grown through the matrix while besides the
second variant forms. However, in Figure 5.5(d), the first variant grows around
the variant 2 martensite, which is not observed in Figure 5.6(d). In this context,
the results in Figure 5.3(b) revealed that for using the Landau polynomial p(ϕ) a
M-M-interface is energetically more costly than for considering f(ϕ1,ϕ2). Thus, the
M-M-interface is not built in Figure 5.6(d). Finally, both approaches end up in a
purely martensite 1 matrix.

In summary, the use of the Landau polynomial p(ϕ) compared to the previous
approach in Section 4 using f(ϕ1,ϕ2) yields similar results for A-M-interfaces.
However, the single order parameter restricts the possibilities of microstructure
formation while the higher interface energy for the M-M-interface can lead to
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different results. Additionally, the proposed ansatz entails limitations as for both
martensite variants the same elasticity tensor has to be applied. Beyond that, the
single order parameter approach cannot be extended to three dimensions.
On the other hand, using a single order parameter saves a lot of computational
power compared to the previous approach. In this chapter the model is enhanced
to consider the interactions of the phase transformation with crystal plasticity and
damage, which already expands the numerical effort. Therefore, in a first step
the Landau polynomial in Eq. (5.1) is used to improve the numerical efficiency.
For future work, especially for an extension to three dimensions, the multiple
order parameter approach should be employed. In this context the numerical
performance can be improved e.g. by a GPU-accelerated implementation, which is
proposed for a phase field model by Schlüter et al. [2014].

5.2 Crystal Plasticity

As discussed in Section 3.2 the martensitic transformation is accompanied by
dislocation movement, which can be inherited by the martensitic phase, and thus
influences the microstructure evolution. In this section dislocation movement is
taken into account in the framework of crystal plasticity such that the different
crystallographic structures of the phases can be included. Basic principles of crystal
plasticity can be found e.g. in Schröder and Miehe [1997], Yalcinkaya [2011] while
Lubliner [2008] and Simo and Hughes [1998] give a comprehensive overview
concerning plasticity theory and its numerical implementation. In the context of
phase field modeling of the martensitic transformation, crystal plastic deformations
are taken into account e.g. by Yamanaka et al. [2009], Hildebrand and Miehe
[2012], Richards et al. [2013], Schmitt et al. [2014a,c, 2015]. The numerical
models allow a closer look on the relations between different phenomena interact-
ing during the microstructure formation. For example Malik et al. [2013] use an
elasto-plastic phase field model to study the effects of grain and twin boundaries on
the martensitic transformation.

For this work a crystal plasticity setting with linear isotropic hardening is in-
troduced which is discussed in detail in Schmitt et al. [2014a]. In this regard,
Chapter 3 states that plasticity and phase transformation can interact in two ways
– through kinetics and through the stresses. The former is well studied in the
literature (e.g. Olson and Cohen [1972]). However, the latter is also important but
often overlooked. Therefore, in the following, the first is explicitly turned off to
isolates the interactions through the stresses.
With the aid of the extended model, first a basic example is considered to gain a
better understanding for the correlations between the different processes on the
microstructure. Subsequently, motivated by the process of cryogenic turning, the
evolution of the phases is studied for a loaded surface. In this context, the impacts
of the plastic deformations and the inheritance of plastic deformations between
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austenite and martensite are focused. For this part the reader is referred to Schmitt
et al. [2015].

5.2.1 Kinematics, Energetic Setting and Constitutive Laws

Experiments have shown that plastic deformations of metallic crystals result from
a relative movement or slip of specific crystal planes caused by shear stress acting
along the planes. These slip planes can be identified with those planes where the
atoms are most closely packed. Analogously, the preferred slip directions are the
directions of closest packing. A slip plane and slip direction form a slip system.

(a) Face centerd cubic (fcc) lattice of austenite. (b) Body centered cubic (bcc) lattice of martensite.

Figure 5.7: Slip planes and slip directions of austenite (a) and martensite (b).

Using the Miller indices, where ⟨. . . ⟩ denote crystographically equivalent di-
rections and {. . . } a class of equivalent planes, the planes of closest packing in the
austenitic fcc lattice are the four octahedral {111}-planes. Each has three slip direc-
tions; corresponding to the closest packed face ⟨110⟩-diagonals, see Figure 5.7(a).
The six {110}-planes are the slip planes of the bcc lattice, where each plane has
two slip directions (the corresponding ⟨111⟩-directions). In Figure 5.7(b) one slip
plane of bcc lattice is depicted exemplary. Hence, in total each of the phases has
twelve primary slip systems. Regarding the notation in this work, γk is the plastic
slip while sk designates the slip direction and nk the normal direction of the slip
plane in the kth slip system. Using these quantities, the global plastic strain εp is
calculated by summing up over the total number of slip systems Nk

εp =
Nk∑

k=1

γk P k, (5.7)

with P k =
1

2
[sk ⊗ nk + nk ⊗ sk] . (5.8)

In Eq. (5.7), the projector P k is the strain (direction) associated with the kth slip
system, see for example Richards et al. [2013]. Despite austenite and martensite
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have different slip systems which differ in sk and nk, the evaluation of Eq. (5.8)
results in identical P k for both phases. Consequently, this setting considers identical
slip systems for austenite (k = 1, 2) and martensite (k = 3, 4), where slip system
k=1 corresponds to k = 3 and k=2 corresponds to k = 4. Due to the limitation to
two dimensions, the number of slip systems per phase is reduced to two. The plastic
strain εp in Eq. (5.7) is part of the linearized total strain tensor, which is the sum
of the elastic strain εe, the transformation-induced eigenstrain ε0 and the plastic
strain εp

ε = εe + ε0 + εp. (5.9)

With the plastic deformation of the material the stress increases which is called
strain hardening or work hardening. For the idealized setting in this work linear
isotropic self-hardening is considered, described for each slip system k by a harden-
ing variable αk. The hardening of the material involves a plastic contribution to the
total energy, the work hardening potential

W h(αk) =
1

2

Nk∑

k=1

Hk α
2
k, (5.10)

with the hardening moduli Hk. Hence, the phase field potential reads

ψ(ε,ϕ,∇ϕ, γk,αk) = W (εe,ϕ) + ψgrad(∇ϕ) + ψsep(ϕ) +W h(αk)

=
1

2

(

ε− ε0(ϕ)− εp) :
[

(ϕ)
(

ε− ε0(ϕ)− εp)]

+
1

2
κgGL||∇ϕ||2 + κs

G

L
f(ϕ) +

1

2

Nk∑

k=1

Hk α
2
k. (5.11)

With the phase field potential in Eq. (5.11), the constitutive relation for the stresses
results in

σ =
∂ψ

∂ε
= (ϕ)

(

ε− ε0(ϕ)− εp) (5.12)

while analogously qk defines the work conjugate to the hardening variable αk

qk = −
∂ψ

∂αk
= −

∂W h

∂αk
= −Hkαk. (5.13)

The resolved shear stress on a slip system, which is also called Schmid stress, is com-
puted with the projector P k

τk = P k : σ = σ : P k. (5.14)

The constituted material behavior is motivated by the rheological model in Fig-
ure 5.8, consisting of an elastic crystal lattice, connected to a dashpot with the
viscosity η in parallel with two slip planes of the kth slip system, where slip γk oc-
curs for τk > τ cr

k . Thus, if the Schmid stress is sufficiently small, the crystal lattice is

67



5 An Enhanced Phase Field Model for Martensitic Transformations

Figure 5.8: Rheological model.

deformed elastically. If the Schmid stress τk exceeds the critical value τ cr
k , there is a

relative movement of the slip planes leading to the stress η γ̇k in the dashpot such
that

τk = τ cr
k + η γ̇k, if τk > τ cr

k . (5.15)

From the requirement in Eq. (5.15), the yield criterion is deduced,

φk = |τk|− τ cr
k > 0. (5.16)

If the yield criterion φk is satisfied by the Schmid stress τk, the kth slip system is
activated. Equation (5.16) considers the absolute value of τk since a slip system
can be activated by both positive and negative τk. The evolution law of the slip γk
in an active slip system is derived from Eq. (5.15). With introducing the Macaulay

brackets

⟨x⟩ =

{

0 x ≤ 0

x x > 0
, (5.17)

it may be written compactly

γ̇k =
1

η
⟨|τk|− τ cr

k (ϕ, qk)⟩ sgn(τk), (5.18)

where

sgn(τk) =

{

+1 if τk > 0

−1 if τk < 0
. (5.19)

The hardening variable αk is assumed to evolve in the same manner

α̇k = |γ̇k|. (5.20)

In Eq. (5.18), τ cr
k depends on qk and the order parameter ϕ. Concerning qk, for this

work a linear dependence is considered

τ cr
k (ϕ, qk) = dcr

k (ϕ)− qk = dcr
k (ϕ) +Hk αk. (5.21)

The dependence of τ cr
k on the order parameter ϕ is necessary since only the slip

systems of the present phase can be activated. This is ensured by the critical driving
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Figure 5.9: Critical driving force for plasticity dcr
k (ϕ).

force for plasticity dcr
k (ϕ). For austenitic material (ϕ = 0), the critical shear stress of

the austenitic phase τ cr
A is taken into account for the austenitic slip systems (k=1, 2).

The critical shear stress of the martensitic phase τ cr
M is set to a sufficiently high value

for the martensitic slip systems (k=3, 4), so that these remain inactive. In the same
manner, for ϕ = ±1, the martensitic yield strength τ cr

M is taken into account for
k=3, 4 and τ cr

A is set to a high value for k=1, 2 by the following relation

dcr
k (ϕ) =

⎧

⎪
⎪⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

a∞
[
τ cr

A

a∞
+ 1 + tanh (a1 ϕ− a2) + 1− tanh (a1 ϕ+ a2)

]

k = 1, 2

(ϕ = 0)

a∞
[
τ cr

M

a∞
+ tanh (a1 ϕ+ a2)− tanh (a1 ϕ− a2)

]

k = 3, 4

(ϕ = ±1)

.

(5.22)

In Eq. (5.22) the coefficents a1 and a2 determine the shape of dcr
k while a∞ is set

to a high value compared to the critical shear stresses. For this investigation the
values a1 = 25, a2 = 15 and a∞ = 50000 MPa are used.

5.2.2 Local Time Integration Scheme

In order to evaluate the evolution equations (5.18) and (5.20) of the slip and the
hardening, γk and αk are considered as internal history variables while a time inte-
gration scheme is applied on the element level. The algorithm for the time integra-
tion is based on an implicit Euler backward scheme, in form of a predictor corrector

method. The time interval [tn, tn+1] is considered while the variables at t = tn are
known. In the first predictor step, an elastic trial value for the strains is given with
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with εp,tr = εp
n =

Nk∑

k=1
γn,kP k, so the resolved shear stress on all slip systems k can be

calculated for the trial state

σtr = (ϕ)
(

εn+1 − ε0n+1(ϕ)− εp
n

︸ ︷︷ ︸

εtr

)

, (5.23)

τ tr
k = σtr · P k. (5.24)

To keep the equations simple, the time step index n+1 is suppressed for the trial
state quantities. Furthermore, for the following relations sgn(τk,n+1) = sgn(τ tr

k ) is
assumed, which can be shown for a single slip system. A generalization for multiple
slip systems seems reasonable. With the trial state quantities, for each slip system
the yield criterion is checked

φtr
k,n+1 = |τ tr

k |− τ
cr,tr
k (ϕ) = |τ tr

k |− τ
cr,
k,n(ϕ), (5.25)

where αtr
k = αk,n. If φtr

k > 0, k is an active slip system. Applying the update formula
according to the backward Euler method (cf. Eq. (4.66)) on the evolution law in
Eq. (5.18) for γk yields the update formula for active slip systems

γk,n+1 = γk,n +
∆t

η
⟨|τk,n+1|− τ cr

k,n+1⟩
︸ ︷︷ ︸

⟨φk,n+1⟩

sgn(τk,n+1) = γk,n +∆γk,n+1 sgn(τ tr
k ), (5.26)

with
∆γk,n+1 =

∆t

η
⟨φk,n+1⟩. (5.27)

Thus, the time-discrete version of the evolution equation of the hardening vari-
able αk reads

αk,n+1 = αk,n +∆t α̇k,n+1 = αk,n +∆t |γ̇k,n+1| = αk,n +
∆t

η
∆γk,n+1. (5.28)

The unknown ∆γk,n+1 is obtained by a set of linear equations. Therefore, the time
discrete version of Eq. (5.14) is multiplied with sgn(τk,n+1) = sgn(τ tr

k ), which yields
with using Eq. (5.23) and Eq. (5.26)

|τk,n+1| = |τ tr
k |−

Nact∑

l=1

[

P T
k (ϕ)P l sgn(τktr) sgn(τltr)
︸ ︷︷ ︸

Rkl

∆γl,n+1

]

, (5.29)
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where l ∈ {1, ..., Nact} denotes the lth of Nact active slip systems. This is used for
recasting the update formula of the yield function

φk,n+1 = |τk,n+1|
︸ ︷︷ ︸

with Eq. (5.29)

−τ cr
k,n+1

= |τ tr
k |−

Nact∑

l=1

Rkl ∆γl,n+1 −

(

τ cr
k,n +

Nact∑

l=1

Hkl∆γl,n+1

)

φk,n+1 = φtr
k −

Nact∑

l=1

(Rkl +Hkl) ∆γl,n+1,

(5.30)

with the diagonal matrix

Hkl =

⎡

⎢
⎢
⎢
⎢
⎣

H1 0 ... 0

0
. . . 0

...
... 0

. . . 0

0 ... 0 HNk
.

⎤

⎥
⎥
⎥
⎥
⎦

(5.31)

Finally, Eq. (5.30) is inserted into the definition of ∆γk in Eq. (5.27). Since only
active slip systems are taken into account, the Macaulay brackets in Eq. (5.27) are
omitted. This results in a set of linear equations for the ∆γl

Nact∑

l=1

[

δkl +
∆t

η
(Rkl +Hkl)

]

︸ ︷︷ ︸

Akl

∆γl,n+1 =
∆t

η
φtr
k ,

︸ ︷︷ ︸

bk

(5.32)

where δkl denotes the identity tensor. With ∆γk known, the evaluation of Eq. (5.26)
yields the updated γk,n+1, which are subsequently used to compute the values for
the stresses σ and the tangent moduli (ϕ) for the time step t = tn+1

σn+1 = (ϕ)

[

εn+1 −
N∑

k=1

γk,n+1P k

]

, (5.33)

tan
n+1(ϕ) = (ϕ)−

Nact∑

k=1

Nact∑

l=1

[

(ϕ)P k sgn(τ tr
k )

∆t

η
(Akl)

−1 P T
l (ϕ) sgn(τ tr

l )

]

, (5.34)

where the tangential stiffness tan(ϕ) is given by the derivative
∂σn+1

∂εn+1

. For a plastic

update it is considered instead of the elasticity tensor in the element stiffness ma-
trix KIJ,e in Eq. (4.72). While maintaining the convergence of the FE-problem, the

derivative
∂∆γk,n+1

∂ϕn+1
could be neglected which avoids elongated terms in the stiff-

ness matrix. The flowchart in Figure 5.10 visualizes the integration of the crystal
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Figure 5.10: Flowchart of the FE program.
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plastic material law into the overall finite element program. The history variables γk
and αk evolve on the element level while for the evolution of the order parameter ϕ
the global time integration scheme is applied, which is discussed in Section 4.2.2.

5.2.3 Numerical Examples

For the numerical implementation the following slip systems are taken into account,

s1 = s3 =

[

1

0

]

, n1 = n3 =

[

0

1

]

, ⇒ P 1 = P 3 =
1

2

[

0 1

1 0

]

,

s2 = s4 =
1√
2

[

1

1

]

, n2 = n4 =
1√
2

[

−1
1

]

, ⇒ P 2 = P 4 =
1

2

[

−1 0

0 1

]

,

where the corresponding slip directions and slip normals are depicted schemati-
cally in Figure 5.11. The slip systems k = 1 and k = 3 correspond to pure shear,
i.e. compression and tension parallel to the diagonals of the coordinate system in
Figure 5.11. The slip systems k= 2 and k= 4 are associated with simple shear, i.e.
compression parallel to the x-axis and tension parallel to the y-axis of the coordinate
system in Figure 5.11. Furthermore, a yield strength of τ cr

fcc = 100 MPa is considered

✲
✻

y

x (a) k = 1, 3 (b) k = 2, 4

Figure 5.11: Slip normals and slip directions of the considered slip systems.

for the austenitic phase. Since the martensitic yield strength τ cr
bcc is much higher

than the austenitic one, τ cr
bcc is set to a very high value which is not reached in the

numerical simulations. In that way plastic deformations in martensite can only be
caused by inheritance. The viscosity constant η = 10 N s

m2 is used.

Circular Nucleus

In order to get a general idea of the impact of the plastic deformations on the phase
transformation, the initial configuration in Figure 5.4 is used for a crystal plastic
simulation. In Figures 5.12(a)-(e) the resulting microstructure can be seen while

Figures 5.12(f)-(j) depict the accumulated slip
Nk∑

k=1
|γk|, which is a measure for the
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✲✻y x

(a) t=1 ns (b) t=3.5 ns (c) t=7 ns (d) t=18 ns (e) t=34 ns

Microstructure evolution, austenite: green, martensite 1: red, martensite 2: blue.

Nk∑

k=1
|γk|

0 0.1

✲✻y x

(f) t=1 ns (g) t=3.5 ns (h) t=7 ns (i) t=18 ns (j) t=34 ns

Accumulated slip
Nk∑

k=1
|γk|.

Figure 5.12
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|γ1|
0 0.03

✲✻y x

(k) t=1 ns (l) t=3.5 ns

↘

↗
(m) t=7 ns (n) t=18 ns (o) t=34 ns

Absolute value of the slip of the first slip system γ1.

|γ2|
0 0.06

✲✻y x

(p) t=1 ns (q) t=3.5 ns (r) t=7 ns (s) t=18 ns (t) t=34 ns

Absolute value of the slip of the second slip system γ2.

Figure 5.12: Simulation results for considering crystal plasticity.
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plastic deformation. The comparison of the microstructures in Figures 5.12(a)-(e)
with the results in Figures 5.6, where an elastic material law is applied, shows that
crystal plastic deformations influence the phase transformation. Particularly the
initial evolution in Figures 5.12(b)-(c) illustrates a slower growth of the martensitic
phase. Figure 5.12(f) reveals a plastic zone, which has been formed around the
nucleus due to the eigenstrain within the martensite. The plastic deformation
seems to constrain the phase transformation. In this context, the plot of the elastic
energy Eel as a function of simulation time in Figure 5.13 is considered. The elastic
simulation corresponds to the orange curve and the crystal plastic simulation to the
purple one. The plastic zone, which is built around the nucleus, dissipates energy
such that the purple curve is initially clearly below the orange curve. The dissipated
energy is not available for the phase transformation, which is consequently delayed.
Hence, when the martensitic plate starts to evolve, the purple curve of the crystal
plastic simulation increases less than the orange curve. Furthermore, the orange

Figure 5.13: Evolution of the elastic energy for the elastic simulation in Figure 5.6 (orange
curve) and the crystal plastic simulation in Figure 5.12 (purple curve).

curve of the elastic simulation has a peak when the martensite 1 plate has grown
through the matrix. Subsequently, it increases again when the second variant forms
(see Figure 5.6(c)). Finally, the orange curve decreases when the variant 1 plate
broadens, eliminating the martensite 2 formations, until a purely martensite 1
matrix remains.
For the crystal plastic simulation the variant 1 plate does not grow through the
matrix. Instead, variant 2 martensite is built around the martensite 1 plate, which
leads, due to the eigenstrain, to a continuously increasing purple curve. Eventually,
the variant 1 plate is framed by martensite 2.

In order to understand the mechanisms leading to the differences of the crys-
tal plastic simulation compared to the elastic simulation in Figure 5.6, the
individual slip systems are considered in Figure 5.12. In Figures 5.12(k)-(o) the
absolute value of the slip of the first slip system k=1 is depicted which corresponds
to pure shear, i.e. tension and compression parallel to the horizontal and vertical
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directions, respectively. In the same way the shear part of the eigenstrain in
Eq. (5.3) corresponds to a pure shear loading. Thus, Figure 5.12(k) shows that
initially the highest slip arises at the tips of the martensitic plate. In the following
time steps the plate evolves in vertical direction. As a result the eigenstrain within
the plate activates the slip system k = 1 at the boundary of the matrix opposed
to the plate tips. This small strip of high plastic deformation, which can be seen
in Figures 5.12(m) (marked by arrows), leads to a strain-induced nucleation of
variant 2 martensite, cf. Figure 5.12(d). Since the eigenstrain direction and the
plastic strain direction of the slip system coincide, the growing martensite activates
the slip system k = 1 in its surroundings. This results in a further nucleation of
variant 2 martensite next to the martensite 1 plate.

The evolution of the norm of slip of the second slip system k = 2 can be seen
in Figures 5.12(p)- (t). The slip is higher than for slip system k=1. Figure 5.12(p)
shows the slip system k = 2 activated around the martensitic nucleus. The shear
part of the eigenstrain in the martensite 1 plate in Figure 5.12 corresponds to
compression in the plate direction and tension perpendicular to the plate direction.
The plots show the norm of the slip, thus, there is no distinction between expansion
and compression visible, which explains the radial activation of slip system k = 2.
Yet, there is less slip in plate direction. The volumetric part of the eigenstrain ε0vol
reduces the compression in plate direction, which results from the shear part ε012 and
analogously increases the tension perpendicular to the plate direction. Therefore,
the activation of the slip system k=2 in Figure 5.12(p) is not rotationally symmetric
about the nucleus.
When the martensite plate starts to grow through the ring-shaped slip of sys-
tem k = 2, the slip system is activated at the sides of the plate tip. This leads to
the two lines of plasticity in direction of the growing plate which can be seen in
Figures 5.12(r)-(t). The slip activated by the martensitic plate demonstrates the
correlations between plasticity and the phase transformation. Additional numerical
examples, e.g. the microstructure evolution for two nuclei of different martensitic
variants, can be found in Schmitt et al. [2014a].

Thus, strong interactions between the martensitic transformation and crystal
plasticity are observed since the phase transformation leads to slip while on the
other hand martensite is triggered by plastic deformations. Furthermore, the plastic
deformations influence the formation of the martensitic phase since additional
energy is dissipated. In a next step the phase transformation in a crystal plastic
material is studied at a loaded surface, which is motivated by the turning process.

A Loaded Surface

In Aurich et al. [2014], the surface hardening during cryogenic turning of
metastable austenitic steel is investigated. Concerning the load, which is induced
by the turning tool, the authors find mainly the component perpendicular to the

77



5 An Enhanced Phase Field Model for Martensitic Transformations

y
✻

x✲

⏐
⏐
O

⏐
⏐
O

⏐
⏐
O↓↓↓ q(si, t)

s1s2... s10

load curve for section si
with i = 1, 2, .., 10
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10(i− 1) 10i 10+10i 20+10i

Figure 5.14: Left: Load curve of the ith surface section. Right: Boundary conditions for the
initially austenitic (green) workpiece.

surface to be crucial for the martensitic transformation. This motivates the numer-
ical setup of the following examples, proposed in Schmitt et al. [2015]: On an
initially purely austenitic workpiece, which is fixed at the lower boundary in vertical
direction, a compressive moving surface load qi(t) is applied for t ∈ [0, 120] ns,
see Figure 5.14. Therefore, the surface is divided into ten sections si. The load qi(t)
on the ith section is plotted as a function of time in Figure 5.14 on the left-hand
side. The left- and right-hand boundaries of the computation domain are stress
free. For the simulations in this section, the computation domain is discretized
by 300 × 300 uniform elements. This finer discretization is chosen to properly
resolve the complex resulting microstructures.

First, for both phases elastic material behavior is assumed, without account-
ing for plastic deformations. The resulting evolution of the phases can be seen in
Figures 5.15(a)-(e). The applied load leads to stress-assisted nucleation of marten-
site (since no plastic deformations are considered). The loaded part of the surface
is compressed in vertical direction inducing tensile stresses in the free part of the
surface. Between the compressed and the stretched part of the surface high positive
shear stress arises, corresponding to the eigenshear in the first martensite variant,
which is consequently built, see Figure 5.15(a). In the following, it can be observed
that the formation of the first variant follows the loading. With locally decreasing
compressive stress, the first variant degenerates, too. The total deformation of the
specimen can be reduced by the formation of the second martensitic variant, as
the eigenshear is considered with negative sign in Eq. (5.3). After the load has
traveled across the entire surface at t = 120 ns, the workpiece is purely martensitic,
where vertical plates of both variants have formed (see Figure 5.15(d)). Yet, these
plates vanish subsequently and two continuous martensitic phases remain (see
Figure 5.15(e)). This state is energetically favorable for the system. As there is only
a single interface, the contribution of the gradient term ψgrad is low and the absence
of austenite yields ψsep = 0 for all points of the system. However, compared to the
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Elastic
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x
✲

✻

(a) t=10 ns (b) t=25 ns (c) t=60 ns (d) t=130 ns (e) t=275 ns

No inheritance of plasticity

y

x
✲

✻

(f) t=10 ns (g) t=25 ns (h) t=60 ns (i) t=130 ns (j) t=175 ns

Inheritance of plasticity

y

x
✲

✻

(k) t=10 ns (l) t=25 ns (m) t=60 ns (n) t=130 ns (o) t=175 ns

Figure 5.15: Evolution of a microstructure for a loaded surface (green: austenite, red:
martensite 1, blue: martensite 2); magnitude and position of the traveling
load indicated by arrows. (a)- (e): Austenite: elastic, martensite: elastic. (f)-
(j): Austenite: crystal plastic, martensite: elastic. (k)- (o): Austenite: crystal
plastic, martensite: elastic.

microstructures that are observed in austenitic steels, the result is far from reality.

Since the martensitic yield strength is much higher than the austenitic one,
in Schmitt et al. [2013b] the authors consider plastic deformations only for austen-
ite, while martensite is modeled as an elastic material. Here, this material behavior
results in the evolution of microstructure depicted in Figures 5.15(f)- (j). The
comparison with the purely elastic simulation above reveals the formation of some
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Figure 5.16: (a), (c), Accumulated slip
Nk∑

k=1
|γk|. (b), (d), Evolution of microstructure (green:

austenite, red: martensite 1, blue: martensite 2).

additional deformation induced martensitic plates. Furthermore, on the left-hand
side of the final microstructure in Figure 5.15(j), a small stripe of the second
variant remains which is stabilized by the plastic deformations in the transition
zone between the phases. But generally there is little difference to the purely elastic
simulation. Though, plasticity is only considered for the austenitic phase, such that
plastic deformations cannot be inherited to martensite. Due to the phase transition,
dislocations in the austenitic phase are wiped out by this kind of material behavior.

Hence, in a next step, the inheritance of plastic deformations between austenite and
martensite is taken into account. For both phases crystal plastic material behavior
is considered while the martensitic yield limit is set to a very high value and the
martensitic slip systems are not activated. Yet, the plastic deformations can be
inherited from austenite to martensite. The approach is motivated by considering
a dislocation in the austenitic phase, which is supposed to not vanish due to the
transformation to martensite. This leads to a dislocation in the martensitic phase,
which is inherited from the austenite. The microstructure resulting from the
moving compressive surface load can be seen in Figures 5.15(k)-(o). Compared
to the above simulations, additional martensitic plates are formed. These have
been triggered by plastic deformations, i.e. deformation-induced martensite is
built. When the load has traveled across the surface a complicated microstructure,
consisting of martensitic plates of both variants and retained austenite, has been
created. These results are in qualitative agreement with experimentally observed
structures in metastable austenitic steels.

Focusing on the first time steps, a reason for the formation of the microstruc-
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ture is revealed by comparing the crystal plastic simulations with and without
the inheritance of the plastic deformation in Figure 5.16. In Figure 5.16(a), the
absolute value of the slip is summed up over all slip systems for t = 6 ns for the
purely crystal plastic simulation. Under the compressive load in vertical direction
the slip systems are activated on the left edge of the workpiece, which is thus
plastically deformed. Figure 5.16(b) shows, that these plastic deformations lead to
a martensitic plate, growing in direction of the plastically deformed region. The
continuing evolution can be seen in Figures 5.15(k) -(o). This additional plate does
not appear in Figure 5.16(d), where the plastic deformation cannot be inherited
to the martensitic phase. In that case the plasticity is wiped out when martensite
builds. The plastic deformation is much smaller and hence the additional plate
is not induced. The comparison of Figure 5.16(b) and Figure 5.16(d) shows
for the same time step a higher martensite content for the purely crystal plastic
simulation. The eigenstrain within a plate of martensite causes plastic deformations
in the surrounding austenitic matrix. This, in turn, induces martensite leading to
the autocatalytic effect, which accelerates the martensitic formation. The lower
martensite content in Figure 5.16(d) results from the elimination of the plastic
deformation by the martensitic evolution. Analogously, in Figures 5.15(f)-(j) the
autocatalytic effect is very small. These observations clearly show that martensite is
triggered by the plastic deformation, which is in good agreement with the findings
in Olson and Cohen [1972].

Another fact, which is interesting to note in Figure 5.16, concerns the habit
plane normal directions. The compressive surface load deforms the specimen
inhomogeneously. The habit plane normal directions according to Eq. (3.2) hold
for a homogeneously deformed or undeformed specimen. The blue martensite 2
structure in Figure 5.16(d), which is induced in some distance to the applied
load where the local deformations are small, forms approximately in accordance
with nϵ

2−. The red martensite 1 plate, which is built in the deformed part of the
matrix, does not match the indicated habit normal direction nϵ

1+. There is pure
austenite below the loaded surface, which contributes, due to its lower stiffness, to
a locally higher deformation.
On the other hand, the martensite 1 plate of the purely crystal simulation in
Figure 5.16(b) meets the habit plane normal direction. Obviously, the plastically
deformed microstructure forms in such a way that in the surroundings of the plate
less inhomogeneous deformations occurs. Due to the additional martensite plate,
which is indicated with a circle in Figure 5.16(b), the load acts on a composite
of both, martensite and austenite. Furthermore, the hardening in the austenite
increases its stiffness.

The purely crystal plastic results exhibit another feature in comparison to the
above simulations regarding the final equilibrium configuration of the system. For
the elastic material behavior in Figures 5.15(a)- (e) and for not considering the
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inheritance of the plastic deformations in Figures 5.15(f)- (j), the microstructures
still evolve after the load is removed. Both finally end up in a purely martensitic
matrix, consisting of two bulk phases. In that way the gradient and the separation
part of the energy in the phase field potential ψ in Eq. (5.11) are minimal. For
the crystal plastic simulation, the microstructure depicted in Figure 5.15(n) does
hardly change when the load is removed. This can be seen in Figure 5.17(a)
where Egrad =

∫

V ψ
grad dv is plotted as a function of simulation time for the three

simulations in Figures 5.15(a)-(o). Since ψgrad is a function of the gradient ∇ϕ of

(a) Egrad/F0 (b) F/F0

Figure 5.17: Evolution of (a) the global gradient energy Egrad and (b) the total global en-
ergy F referring to the global energy of the initial configuration F0.

the order parameter, Egrad is a measure for the interface regions of the system. For
the elastic simulation, the evolution of Egrad is depicted as an orange line in Fig-
ure 5.17(a). Under the applied load the martensitic phase forms and is moving with
the surface load. The maximal value of Egrad is reached approximately at t=130 ns,
in accordance with the martensitic plates appearing in Figure 5.15(d). When the
plates vanish, Egrad decreases and the microstructure depicted Figure 5.15(j) is
formed. While Egrad remains temporarily constant at the value related to the two
interfaces, the vertical martensite 2 plate narrows. Subsequently, the vertical plate
vanishes which leads to a further decrease in Egrad until eventually only a single
M-M-interface remains (see Figure 5.15(e)).
The results in Figures 5.15(a)-(e) for the elastic simulation (orange curve in
Figure 5.17(a)) and the simulation without considering the inheritance of the
plastic deformation (purple curve in Figure 5.17(a)) have little differences. Hence,
the orange and the purple curve in Figure 5.17(a) are similar. Due to the few plates,
which are additionally induced by the plastic deformations in Figures 5.15(f)- (j)
the purple curve is in parts slightly above the orange curve. The microstructures
keep evolving after the load is removed at t= 120 ns and both end up in a purely
martensitic workpiece. The additional interface in Figure 5.15(j) compared to
Figure 5.15(e) leads to the purple curve lying above the orange curve for t > 120 ns.
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Only for the black curve, which corresponds to the purely crystal plastic simulation,
the interface region increases during the simulation time. The plastic deformations
lead to the nucleation of deformation-induced martensite activating the autocat-
alytic effect. Furthermore, Figure 5.17(a) shows that for this example the plastic
deformations accelerate the martensite formation as the black curve increases fast.
When the load is removed at t = 120 ns, the energy Egrad remains constant at
a comparably high value since the microstructure consists of several martensitic
plates of both martensite variants and retained austenite. The irreversibilty of
the plastic deformations seems to freeze this microstructure although the global
gradient energy Egrad remains at a high value.

This draws the attention to the evolution of the global total energy F =
∫

ψ dv
of the system which can be seen in Figure 5.17(b). For this example, the gradient
energy and the separation energy in the total energy F are small compared to the
global elastic energy and the hardening potential. Thus, for all simulations the
global total energy is initially increasing, corresponding to the growing load applied
at the left edge of the workpiece surface (s1 in Figure 5.14). The local surface
load leads to high deformations. The first peak in F in Figure 5.17(b) arises for
t = 20 ns, when the sections s1 and s2 are fully loaded. For 20 < t < 30 ns, the load
is held constant in the second section s2 while it is reduced in section s1. Thus, the
workpiece is less deformed and the total energy F decreases. The second peak in F
is obtained for all three curves when the traveling surface load reaches its maximal
magnitude at t = 100 ns at the right edge of the workpiece, i.e. sections s9 and s10
are fully loaded. When the load is removed at t=120 ns, the global total energy F
decreases for the orange and the purple curve, i.e. for the elastic and the plastic
simulation without considering the inheritance of the plastic simulation. Both result
in a purely martensitic workpiece. This configuration minimizes the separation part
and the gradient part of the phase field potential ψ and additionally compensates
the eigenstrain on the macro level.

The black curve from the purely crystal plastic simulation evolves in a differ-
ent way. It initially increases under the applied load. The first peak is reached
at a much higher level than for the other two simulations. This is due to the
high plastic deformations, which additionally increase the hardening potential.
The autocatalytic nucleation of new martensitic plates is accompanied by the
transformation-induced eigenstrain, increasing the elastic part of F until the second
peak is reached at an even higher level. For 100 < t < 120 ns, the global total energy
decreases with the decreasing load. Yet, when the load is completely removed at
t = 120 ns, the microstructure and thus the total energy F remain constant. For
considering plastic deformations, the moving compressive surface load leads to a
complicated microstructure of different martensitic plates of both phases including
retained austenite which yields a high value for the global total energy F . Due to
the irreversibility of the plastic deformations, this microstructure renders stationary.
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Compared to the other two simulations, the resulting microstructure of the purely
crystal plastic simulation is more realistic for metastable austenitic steels. Thus,
plastic deformations, which can be inherited between the phases, play a decisive
role in the microstructure evolution.

A Loaded Surface with Fixed Vertical Boundaries

In the previous example the vertical boundaries of the specimen are stress free.
However, relating the computation domain to a part of a workpiece which is
surrounded by material, motivates a numerical setup where the vertical boundaries
are constrained, see Figure 5.18(a) with the load function q(si, t) given in Fig-
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Figure 5.18: Evolution of microstructure (green: austenite, red: martensite 1, blue: marten-
site 2), magnitude and position of the traveling load indicated by arrows.

ure 5.14. The corresponding simulation results are shown in Figures 5.18(b)- (d).
As observed in the above example, martensite 1 is formed under the load, see
Figure 5.18(b). However, the fixed vertical boundaries constrain the deformations
such that a different microstructure forms. For this example, negative shear stresses
arise behind the load, inducing the second variant martensite in the unloaded part
of the surface. This is depicted in Figure 5.18(c), where also the autocatalytic
effect can be observed. Figure 5.18(d) shows the final microstructure after the
load has traveled over the specimen. Compared to the microstructure of the above
simulation in Figure 5.15(n), generally less martensite is built since the specimen is
less deformed. Mainly variant 2 martensite is formed, where the martensite content
decreases with increasing distance to the surface.
The microstructure in Figure 5.18(d) is compared to an experimentally obtained
specimen. Aurich et al. [2014] investigate the volume fraction of martensite as
a function of depth for a cryogenic turned (feed rate 0.35 mm

rev ) austenitic steel
(AISI 347) using X-ray diffraction. The resulting values are depicted by the black
crosses in Figure 5.19, showing the martensite content with increasing distance
to the surface. Starting from the workpiece surface, the volume fraction of
α′-martensite of initially 9 % increases with distance to the surface and reaches the
maximal value of 37 % below the surface. Subsequently, the volume fraction of
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Figure 5.19: Volume fraction of martensite as a function of distance to the surface. Experi-
mental values are taken from Aurich et al. [2014].

martensite decreases with the depth of the workpiece. This is qualitatively in accor-
dance with Figure 5.18(d), where the considered part of the computation domain is
indicated with a black box. By this way, the microstructure, which is formed under
the influence of the vertical boundaries, is not taken into account. In Figure 5.19
each point of the purple curve results from the sum of both martensite variants of
the corresponding row of nodes in the black box in Figure 5.18(d), divided by the
number of nodes of a row in the black box. As well as the experimental values, the
values of the simulation are additionally averaged height for the orange curve. In
accordance with the experimentally obtained curve the martensite content of the
simulated structure in Figure 5.18(d) is initially increasing with increasing distance
to the workpiece surface. It attains its maximal value below the surface and
decreases in the following until the martensite content equals zero in the lower part
of the computation domain. Hence, the proposed model captures many features
of the martensitic transformation, when plasticity is considered in the discussed way.

Concluding the results concerning a loaded surface, plastic deformations have
to be taken into account to model the deformation-induced martensitic transfor-
mation. Additionally, the plastic deformations are inherited between the phases.
In accordance with results from literature and experimental studies, it is observed
that plastic deformations lead to the nucleation of martensite and additionally
contribute to the autocatalytic formation of further martensitic plates. In this
context, the microstructure, which was obtained by the crystal plastic simulation
renders stationary after the load is removed. Furthermore, the results coincide
qualitatively with an experimentally obtained structure.

Another feature, which is observed on the microlevel of metastable austenitic
steels, are microcracks. Therefore, in the following a damage variable is taken into
account.
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5.3 A Combined Phase Field Approach for Martensitic

Transformations and Damage Evolution

On the microscale of austenitic stainless steel, microcracks are observed, interacting
with the phase transformation. In conjunction with damage and fatigue behavior,
martensite mainly forms at the crack tip, see e.g. Khan and Ahmed [1996],
Stolarz et al. [2001], Nebel and Eifler [2003], Roth et al. [2009], Skorupski et al.
[2014]. This influences the crack propagation due to the eigenstrain acting in the
martensitic phase. On the other hand, the formation of the martensitic phase is
affected by crack growth. To get a deeper insight into these interactions, the model
for martensitic transformations is combined with a phase field model for fracture
according to Schmitt et al. [2014b]. A short introduction is given on linear elastic
fracture mechanics in Section 5.3.1. After the discussion of the model equations in
Section 5.3.2, the influence of the crack on the phase transition and vice versa is
studied with some numerical examples in Section 5.3.3.

5.3.1 Some Comments on Linear Elastic Fracture Mechanics

Before the combined model for martensitic transformation a damage evolution is
introduced, some comments on linear elastic fracture mechanics should be given.
A comprehensive textbook on this topic is e.g. Gross and Seelig [2007] while the
relevant information referring to the phase field model for brittle fracture, which
is applied below, are summarized in Kuhn [2013]. Here only the most important
issues are briefly discussed.

Concerning the crack loading, three different modes are defined and illus-
trated in Figure 5.20. For this work, mode I – corresponding to symmetric crack
opening – is used. Mode II and mode III consider sliding and tearing of the crack
faces, respectively.

Figure 5.20: Crack opening modes.
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Close to the crack tip, there is the process zone, where the irreversible dam-
age takes place. If the process zone is sufficiently small the cracking can be
described in the context of continuum mechanics. This applies for metallic ma-
terials including metastable austenitic steels. Additionally, linear elastic material
behavior is assumed. Inelastic material behavior such as plastic deformations is
neglected in this context for the sake of simplicity.

5.3.2 A Combined Phase Field Model

Francfort and Marigo [1998] introduced a continuum fracture model as a vari-
ational formulation of brittle fracture, where the total energy is minimized with
respect to the crack geometry and the displacement field. The regularized approxi-
mation of the model, i.e. a phase field model for fracture, facilitates the numerical
implementation. In this regard, phase field models for fracture are introduced
e.g. by Bourdin [2007], Bourdin et al. [2008], Kuhn and Müller [2010], Miehe
et al. [2010]. An extensive overview on this topic is given in Kuhn [2013]. The
consideration of crystalline damage and martensitic transformations is studied in
Suiker and Turteltaub [2006]. The authors propose a thermomechanical model,
where the volume fractions of the phases and the damaged volume are taken into
account. In Garion and Skoczen [2003] the authors use a combined model for
phase transformation and damage to examine the evolution of the volume fractions
of both, martensite and damage, which are related to the plastic strain at cryogenic
temperatures. Xu et al. [2010] apply a combined phase field approach, where a
damage variable is coupled with a phase field for ferroelectrics.

In the following, a similar ansatz is used: A combined phase field potential is
formulated, which for unbroken material resembles the phase field potential for
martensitic transformations in Eq. (5.6). Since the eigenstrain in the martensitic
phase induces both, compressive and tensile stresses, the sign of the local volume
change is considered and the compressive part is not affected by the crack field,
according to Amor et al. [2009], Kuhn and Müller [2009], Kuhn et al. [2013],
Schlüter et al. [2014]. An alternative approach, which allows cracks to grow
only in tension, is proposed in Hofacker and Miehe [2012], based on a spectral
decomposition of the strain tensor ε. A further possibility proposed by Strobl and
Seelig [2015] takes the direction of the crack into account.

The Combined Phase Field Potential

For the regularization of the energy of fracture, a damage variable s is introduced
to describe the crack situation, where s = 1 indicates unbroken material, and s = 0
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indicates fracture. The combined phase field energy expression π is given as follows

π = (s2 + ς)ψs + ψns
︸ ︷︷ ︸

πbulk

+
Gs

4Ls
(1− s)2 + Gs Ls|∇s|2

︸ ︷︷ ︸

πcrack

. (5.35)

In Eq. (5.35), π consists of two parts, the bulk energy πbulk and the fracture en-
ergy πcrack. In the bulk energy, ψs and ψns account for the phase field potential
of the undamaged solid subjected to martensitic transformations, where only ψs is
coupled with the damage variable s. The constant ς with 0 < ς ≪ 1 is introduced
to retain a residual stiffness if s = 0. Thus, for undamaged material (s = 1), the
bulk energy πbulk equals the phase field potential for martensitic transformations
ψ = ψs + ψns. If there is a crack (s = 0), only the residual stiffness ς and the
uncoupled part ψns remain. The second part of Eq. (5.35) represents the fracture
energy πcrack, which depends on the damage variable s and its gradient ∇s. Analo-
gously to the model proposed in Chapter 4, the width of the transition zone between
undamaged and broken material is controlled by the parameter Ls. The second pa-
rameter Gs stands for the crack resistance. Furthermore, the temporal evolution of
the damage variable s is assumed to be proportional to the variational derivative of
the combined phase field potential π with respect to s, which results in the TDGL

βsṡ = −
δπ

δs
= −

[

2 sψs −
Gs

2Ls
(1− s)− 2Gs Ls ∆s

]

, (5.36)

where the mobility parameter βs scales the kinetics of the fracture process. The
evolution equation (5.36) allows the damage variable to develop freely such that
a crack is able to heal when the load decreases. Therefore, the irreversibility of a
crack has to be taken into account by an additional formulation. Here, the rate of
the damage variable is enforced be non-positive, i.e. ṡ ≤ 0, which is proposed e.g.
by Miehe et al. [2010].

Modifications of the Phase Field Potential for Martensitic Transformations

In order to couple the phase field potential for martensitic transformations ψ in
Eq. (5.6) with the regularized energy of fracture some modifications are necessary.
The first point concerns the Landau polynomial p(ϕ) of the separation potential in
Eq. (5.1), which has unequal minima: The local minimum p(ϕ) = 1 for ϕ = 0
(austenite) and the global minima p(ϕ) = 0 for ϕ = ±1 (both martensite variants).
This leads to difficulties for the combination with the damage model. Due to its
higher separation energy, a crack in the austenitic phase would be more likely than
in martensite. Therefore, the separation potential is split into

p(ϕ) = d(ϕ) + g(ϕ) (5.37)
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with

d(ϕ) =
Gϕ2 (1− ϕ2)

2

3Γ2 − 1
, and g(ϕ) = p(ϕ)− d(ϕ). (5.38)

A plot of the three functions can be seen in Figure 5.21. The parameter G is deter-
mined such that the energy barrier ∆ed of d(ϕ) corresponds to ∆ep of p(ϕ) which

leads with ϕmaxp = argmax
ϕ∈[−1,1]

p(ϕ) = ±Γ and ϕmaxd = argmax
ϕ∈[−1,1]

d(ϕ) =

√
3

3
to

∆ep = p(ϕmaxp)− p(0)
!
= ∆ed = d(ϕmaxd)− d(0)

(Γ− 1)3

3Γ2 − 1
− 1 =

4G

27 (3Γ2 − 1)
− 0

" G =
27

4

(
(

Γ2 − 1
)3 −

(

3Γ2 − 1
)
)

.

(5.39)

By introducing the functions d(ϕ) and g(ϕ), the separation potential ψsep can be
written as

ψsep = ψsep
eq + ψsep

diff = κsep
G

L
d(ϕ) + κsep

G

L
g(ϕ), (5.40)

where only ψsep
eq is coupled with the damage variable.

Figure 5.21: Landau polynomial p(ϕ) (black curve) is split into a triple well function d(ϕ)
(purple curve) and the function g(ϕ) (orange curve).

The second modification of ψ is related to the elastic energy density W . The
martensitic eigenstrain ε0, which considers a positive volume change and a lattice
shear, leads to both tensile and compressive stresses in the bulk material. In order
to achieve realistic fracture behavior in compression, the elastic energy W is split
up into a volumetric W vol and a deviatoric part W dev. Thus, the sign of the local
volume change can be taken into account according to Amor et al. [2009], Kuhn
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and Müller [2009], Kuhn et al. [2013], Schlüter et al. [2014],

W = W vol− +W vol+ +W dev. (5.41)

With defining

tr−(ε− ε0(ϕ)) =

⎧

⎪
⎨

⎪
⎩

tr(ε− ε0(ϕ)) if tr(ε− ε0(ϕ)) < 0

0 else
, (5.42)

tr+(ε− ε0(ϕ)) =

⎧

⎪
⎨

⎪
⎩

tr(ε− ε0(ϕ)) if tr(ε− ε0(ϕ)) ≥ 0

0 else
, (5.43)

the parts of the elastic energy read

W vol− =
K(ϕ)

2
tr−(ε− ε0(ϕ))2,

W vol+ =
K(ϕ)

2
tr+(ε− ε0(ϕ))2

(5.44)

and
W dev = µ(ϕ)

[

e− e0(ϕ)
]

:
[

e− e0(ϕ)
]

. (5.45)

In Eq. (5.45), the deviatoric parts of the linearized strain tensor ε and the eigenstrain
tensor ε0 are adapted for the two-dimensional problem

e = ε−
tr(ε)
2

1, and e0(ϕ) = ε0(ϕ)−
tr(ε0(ϕ))

2
1, (5.46)

where 1 denotes the two-dimensional identity tensor. For the decomposition of W
in Eq. (5.41) isotropic material properties are required. Therefore, starting from the
effective Lamé parameters in Eq. (4.79) the effective bulk moduli KA, KM and the
effective shear moduli µA, µM of the phases are calculated from A, M. Hence,
the overall moduli can be written according to Eq. (5.3) in dependence of the order
parameter ϕ

K(ϕ) = KA + ϕ2 (KM −KA), and µ(ϕ) = µA + ϕ2 (µM − µA). (5.47)

With Eqs. (5.40), (5.41), the phase field potential for martensitic transformations ψ
can be split up in the following way

ψ =ψs + ψns,

ψs =W vol+ +W dev + ψsep
eq + ψgrad,

ψns =W vol− + ψsep
diff.

(5.48)

90



5.3 A Combined Phase Field Approach

In Eq. (5.35), ψns is not coupled with the damage variable s. In that way, the elastic
energy associated to the negative volume change W vol− cannot be minimized by
creating cracks which leads to asymmetric results in tension and compression. This
distinction is necessary since the eigenstrain in martensite leads to compression
even if only tensile load is applied. Additionally, the interaction of the unequal
minima in ψsep

diff with the crack energy πcrack is prevented. A coupling of ψsep
diff with the

damage variable would lead to unphysical results.

Consequently, the evolution equation of the order parameter ϕ for the com-
bined model is given by the variational derivative of the combined phase field
potential π with respect to the order parameter ϕ, i.e.

βϕ̇ = −
δπ

δϕ

= −(s2 + ς)
δψs

δϕ
−
δψns

δϕ

= −(s2+ς)
[
∂

∂ϕ

(

W vol++W dev)+κsep
G

L

∂d

∂ϕ
−κgradGL∆ϕ

]

−
∂W vol−

∂ϕ
−κsep

G

L

∂g

∂ϕ
.

(5.49)
Thus, the martensitic phase evolves in dependence of the damage variable s, con-
sidering the influence of crack propagation on the martensitic transformation.

Field Equations

The set of field equations of the combined problem is completed by the evolution
equation for the damage variable s in Eq. (5.36), the evolution equation for the
order parameter ϕ in Eq. (5.49) and the equilibrium condition in Eq. (4.45). The
boundary conditions in Eqs. (4.47)- (4.49) are expanded by the relation for the
damage variable s

ξ∗s = 0 on ∂V with ξs · n = ξs
∗. (5.50)

The micro stresses ξs in Eq. (5.50) are defined according to Section 4.1.2 with

ξs =
∂π

∂∇s
= 2Gs Ls ∇s.

In the equilibrium condition, the Cauchy stress tensor σ is given by consider-
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ing the combined phase field potential π in the constitutive relation

σ =
∂π

∂ε

= K(ϕ) tr−(ε− ε0(ϕ))1+ (ς + s2)

[

K(ϕ)tr+(ε− ε0(ϕ))1+ 2µ(ϕ)
(

e− e0(ϕ)
)
]

.

(5.51)
As well as in Section 4.2 the coupled system of field equations is solved using finite
elements.

Numerical Implementation

The combined phase field model is implemented into the finite element code
FEAP where the nodal degrees of freedom are the displacements u, the order
parameter ϕ and the damage variable s. The numerical realization corresponds to
the procedure in Section 4.2.2. Thus, here only the additional equations related to
the combination with the damage model are discussed.

Staring points are the weak forms of the field equations, where Eq. (4.51)
still applies. With the arbitrary test functions δϕ and δs, the weak forms of the
evolution equations of the order parameter ϕ in Eq. (5.49) and the damage variable
in Eq. (5.36) read

−
∫

V

δϕβϕ̇ dv −
∫

V

(s2 + ς)∇δs · ξ dv −
∫

V

δϕ
∂π

∂ϕ
dv = 0 (5.52)

and
−
∫

V

δsβsṡ dv −
∫

V

∇δs · ξs dv −
∫

V

δs
∂π

∂s
dv = 0. (5.53)

With the discretization concerning the damage variable s

sh =
nel∑

I=1

NI ŝI , ∇sh =
nel∑

I=1

Bs
I ŝI , where Bs

I =

[

NI,x

NI,y

]

, (5.54)
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together with Eqs. (4.53), (4.56), (4.58) inserted into the weak forms, the element
residuals of node I are deduced to

Ru

I,e = −
∫

Ωe

(Bu

I )
T σ dv, (5.55)

Rϕ
I,e = −

∫

Ωe

NIβϕ̇ dv −
∫

Ωe

(Bϕ
I )

T (s2 + ς) ξ dv −
∫

Ωe

NI
∂π

∂ϕ
dv, (5.56)

Rs
I,e = −

∫

Ωe

NIβsṡ dv −
∫

Ωe

(Bs
I)

T
ξs dv −

∫

Ωe

NI
∂π

∂s
dv, (5.57)

depending on the nodal degrees of freedom

d̂J =

⎡

⎢
⎣

ûJ

ϕ̂J

ŝJ

⎤

⎥
⎦ . (5.58)

According to Section 4.2.2 the entries of the symmetric element stiffness ma-
trix KIJ,e are given by

KIJ,e = −
∂RI,e

∂d̂J

=

⎡

⎢
⎣

Kuu

IJ,e Kuϕ
IJ,e Kus

IJ,e

Kϕu
IJ,e Kϕϕ

IJ,e Kϕs
IJ,e

Ksu
IJ,e Ksϕ

IJ,e Kss
IJ,e

⎤

⎥
⎦ . (5.59)

With using

σ̃s =
∂K

∂ϕ
tr−
(

ε− ε0(ϕ)
)

1

+ (ς + s2)

[
∂K

∂ϕ
tr+(ε− ε0(ϕ))1+ 2

∂µ

∂ϕ

(

e− e0(ϕ)
)
]

,

σ0
s = K(ϕ)

∂

∂ϕ

[

tr−(ε− ε0(ϕ))
]

1

+ (ς + s2)

[

K
∂

∂ϕ

[

tr+(ε− ε0(ϕ))
]

1+ 2µ
∂

∂ϕ

(

e− e0(ϕ)
)
]

,

(5.60)
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the entries of KIJ,e read

Kuu

IJ,e =

∫

Ωe

(Bu

I )
T ∂σ

∂ε
Bu

J dv

Kuϕ
IJ,e =

∫

Ωe

(Bu

I )
T (σ̃s + σ0

s

)

NJ dv

Kϕu
IJ,e =

∫

Ωe

NJ

(

σ̃s + σ0
s

)

Bu

I dv

Kus
IJ,e =

∫

Ωe

(Bu

I )
T ∂σ

∂s
NJ dv

Ksu
IJ,e =

∫

Ωe

NJ
∂σ

∂s
Bu

I dv

Kϕϕ
IJ,e =

∫

Ωe

(s2 + ς) κgradGL (Bϕ
I )

T
Bϕ

J dv +
∫

Ωe

NI
∂2π

∂ϕ2
NJ dv

Kϕs
IJ,e = Ksϕ

IJ,e =

∫

Ωe

NI
∂

∂s

∂π

∂ϕ
NJ + 2s (Bs

I)
T ξNJ dv

Kss
IJ,e

∫

Ωe

[

2GsLs (Bs
I)

T
Bs

J +NI
∂2π

∂s2
NJ

]

dv.

(5.61)

The entries of the element damping matrix DIJ,e are given with

DIJ,e = −
∂RI,e

∂ˆ̇dJ

=

∫

Ωe

⎡

⎢
⎣

0 0 0

0 βNINJ 0

0 0 βsNINJ

⎤

⎥
⎦dv. (5.62)

The derivatives which are used in Eqs. (5.56 )-(5.61) are evaluated in the ap-
pendix A.

Also, the irreversibility of cracking is implemented on the element level. As
proposed in Kuhn [2013] the constraint ṡ ≤ 0 is enforced numerically

if sI,n+1 ≤ sI,n → sI,n+1 := sI,n (5.63)

by modifying the element system matrix Se and the residuals Re correspondingly.

5.3.3 Numerical Examples

For the numerical realization the mobility constant β = 0.2 Ns
m2 of the phase field

model for martensitic transformation in Eq. (5.36) is slightly reduced in comparison
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Figure 5.22: (a) Initial configuration: Austenitic (green) specimen with pre-existing crack
under mode I loading. (b), (c) Crack formation for an austenitic specimen.

to the previous calculations. This value is one fifth of the mobility constant for
damage βs = 1.0 Ns

m2 , which is, in turn, sufficiently small to model quasi-static
crack growth. Hence, the mobility constants β, βs are chosen such that the phase
transformation is five times faster than the crack velocity. Furthermore, for the crack
resistance Gs = 0.2 J

m2 and for the width of the transition zone between broken and
unbroken material Ls = 5 nm are taken into account. The initial configuration for
the following examples can be seen in Figure 5.22(a): An austenitic specimen with
a pre-existing crack under mode I loading.
For comparison, in a first example the martensitic transformation is suppressed by
imposing Dirichlet (boundary) conditions ϕ = 0 on the order parameter ϕ in the
bulk. The resulting contour plots can be seen in Figures 5.22(b),(c), where in the
following elements with s < 0.1 are suppressed. Under the applied load the crack
starts to grow and propagates straight through the austenitic matrix. This result is
expectable since the material of the specimen is homogeneous and the crack tip
loading is of mode I type.

✲
✻
y

x
(a) t=118 ns

2ε012=γ

(b) t=133 ns

✻
nϵ

1−

(c) t=154 ns (d) t=164 ns

Figure 5.23: Austenitic specimen (green) with pre-existing crack under mode I loading: Evo-
lution of the martensitic phases (martensite 1: red, martensite 2: blue).

Subsequently, an initially austenitic specimen subjected to the martensitic transfor-
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σyy in MPa σyy in MPa
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✲
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(a) t=118 ns,
pure austenite

(b) t=118 ns,
pure austenit

(c) t=118 ns,
with martensite

(d) t=118 ns,
with martensite

Figure 5.24: (a), (c) Contour plots of σyy-components. (b), (d) Corresponding microstruc-
ture for the austenitic specimen in Figure 5.22 and specimen subjected to phase
transformation in Figure 5.23, respectively.

mation is examined. The resulting microstructure is shown in Figures 5.23(a)-(d).
Under mode I loading, martensite 1 forms at the crack tip (cf. Figure 5.23(a)), in
agreement with experimental studies, e.g. Khan and Ahmed [1996], Roth et al.
[2009]. In the following time steps, the martensitic phase grows in a plate-like
shape through the matrix, which enables the plate to be sheared according to the
eigenstrain. Due to the crack at the left-hand end of the plate this deformation
is hardly constrained by the surrounding matrix. Hence, the habit plane normal
direction is not in accordance with nϵ

1+ , nϵ
1− because these are calculated for a

martensitic inclusion within the austenite. The direction A-M-interface rather
meets the shear angle of the eigenshear γ = 2ε012 ≈ 11.46◦. This is indicated in
Figure 5.23(b).
Concerning the damage process, a different crack pattern is observed compared to
the simulation results in Figure 5.22 of the austenitic specimen. Thus, the formation
of martensite influences the crack evolution. Figure 5.24(a) and Figure (c) show
the distribution of the normal stress component in vertical direction σyy for both
simulations after a few time steps, where tensile stresses are shown in red, com-
pressive stresses in blue. The stress distribution for the purely austenitic specimen
in Figure 5.24(a) is expected since high tensile normal stresses in vertical direction
arise at the crack tip. However, the eigenstrain within the martensite at the crack
tip leads to an asymmetric stress field in Figure 5.24(c). The distribution of high
tensile stresses at the crack tip seems to be "sheared" which induces compressive
stress in vertical direction at the upper left and tensile stresses in vertical direction
at the lower right corner of the specimen. Consequentially, the crack does not
propagate straight through the specimen but bifurcates. The lower crack part
initially forms at the phase boundary (see Figure 5.23(b)). In experimental studies,
cracks propagating along austenite-austenite grain boundaries are reported e.g.
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by Stolarz et al. [2001]. For boundary orientations, which deviate strongly from
the current crack propagation direction, Stolarz and coworkers find a temporal
crack stopping. For this example, the interface between the phases exhibits a
strong curvature. However, the expansion of the martensitic phase enables the
crack to grow in the martensite without changes in direction. This explains why,
the crack does not start to propagate until the martensitic phase has grown to a
certain extend. In Figure 5.23(c) the martensitic plate has broadened and the lower
crack branch propagates perpendicular to the plate direction. The formation of an
additional plate of the first martensitic variant enables the upper crack to grow
within martensite. Since this plate evolves within the austenitic phase, the habit
plane normal direction nϵ

1− is met, leading to a kink where the two plates join.
Furthermore, Figure 5.23(c) shows that the upper crack direction is perpendicular
to the additional martensitic plate.

In order to separate the influence of the crack on the phase transformation,
in Figure 5.25 the evolution of the phases is shown for a setup where the crack
resistance Gs is set to a very high value, which prevents crack growth. In this
simulation the crack does not propagate and the additional martensitic plate is not
induced. Instead a single continuous martensite 1 plate forms. Thus, the crack
influences the phase transformation.

✲
✻
y

x
(a) t=130 ns (b) t=142 ns (c) t=152 ns (d) t=159 ns

Figure 5.25: Austenitic specimen (green) with pre-existing crack under mode I loading with
Gs →∞: Evolution of the martensitic phases (martensite 1: red, martensite 2:
blue).

Concerning the microstructure evolution in Figure 5.23(c), the second variant
builds next to the variant 1 plate. This microstructure reduces the total deformation
of the specimen: The variant 1 plate is sheared according to the eigenshear ε012,
which has a positive sign. This is compensated by the negative sign of ε012 of the
second variant. Some time steps later, in Figure 5.23(d), additional cracks arise in
the transition zone of a A-M-interface and a M-M-interface. Considering the phase
field potential for martensitic transformations in Eq. (5.35), the contributions of
the gradient energy density ψgrad and the separation energy density ψsep are high
in the transition zone. These can be reduced by the crack propagating in the phase
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boundary.

In summary, the martensitic formation influences the crack propagation and
vice versa. The eigenstrain within the martensite strongly affects the process on the
microscale. In the simulation results in Figure 5.23, the cracks appear exclusively
in the martensitic phase, partially perpendicular to the plate direction and partially
in the transition zones. This coincides with the features of the micrograph in
Figure 3.6, which shows cracks arising in martensitic plates in an austenitic matrix;
see also enlarged views in Figure 5.26. Thus, the simulation results can be related
to experimental observations.

(a) (b)

Figure 5.26: Enlarged views of Figure 3.6, Marder et al. [1970]. Cracks arise (a) perpendic-
ular to the plate direction, (b) in the transition zone.

The model contributes to a better understanding of the complicated interac-
tions between the phase transformation and damage. For future work, the
implementation of the model with using the Landau polynomial f(ϕ1,ϕ2) of
Eq. (4.43) could be interesting. The use of p(ϕ), which is considered here, leads to a
higher interface energy for a M-M-interface (see Section 5.1). Considering f(ϕ1,ϕ2)
instead, may lead to different behavior concerning the crack in the M-M-transition
zone.
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In order to contribute to a better understanding of the complex interactions, which
take place on the microscale of metastable austenitic steels during the manufactur-
ing process of cryogenic turning, a phase field model for martensitic transformations
has been developed in this work.

6.1 Conclusion

First, a general approach to calibrate the mobility parameter by using information
from atomistic simulation of pure iron was given. This scale transition allows
studying the martensitic transformation on a scale, which cannot be accessed by
MD simulations. In this context additionally a temperature dependent phase field
potential for pure iron was introduced.

With the material properties of metastable austenites taken into account, the
consideration of the volumetric eigenstrain and multiple martensitic orientation
variants were found to be crucial when modeling the martensitic transformation.
The simulations showed the martensite growing in a plate-like shape, which is an
important – experimentally observed – feature of the martensitic transformation.
Furthermore, the influence of external loads was studied and found it is strongly
determined by the eigenstrain within the martensite. In this regard, investigating
the habit plane normal directions was a helpful tool. When these are met, the
invariant plane strain condition is satisfied.

In the second part of this thesis the elastic phase field model was enhanced
by a crystal plasticity scheme and by a damage variable, increasing the compu-
tational effort. Hence, another numerically more efficient possibility to consider
two martensite variants with a single order parameter was introduced. However,
since the single order parameter leads to higher interface energy, the comparison
of both approaches revealed different results for M-M-interfaces. Nevertheless, the
computational savings are significant. Therefore, this approach was applied for the
enhanced model in a first step.

By considering a crystal plasticity scheme within the phase field model, plas-
tic deformations could be taken into account which dissipate additional energy and
thus influence the martensitic transformation. The numerical simulations confirmed
that the phase transformation causes slip. Also, martensite was triggered by plastic
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deformations. Motivated by the turning process, the phase transformation in a
crystal plastic material was studied at a loaded surface. In this context it was found
that the plastic deformations are inherited from austenite to the martensite. In
accordance with results from literature and experimental studies it was observed
that the plastic deformations lead to an autocatalytic formation of martensitic
plates. After the loading process the workpiece had a complicated microstructure,
consisting of martensitic plates of both variants and retained austenite, which
rendered stationary after the loading process. Furthermore, the results qualitatively
and quantitatively coincided with an experimentally obtained structure.

Finally, the model for martensitic transformations was combined with a phase
field model for fracture, which revealed a strong influence of a crack on the phase
transformation and vice versa. In accordance with the previous results the process
was affected by the eigenstrain in the martensite. The features of the resulting
microstructure coincided with a micrograph where the cracks arise only within the
martensite – either between the plates or perpendicular to the plate direction.

Generally, the phase field model for martensitic transformations is a useful
tool to understand the interacting mechanisms which take place on the microscale
of metastable austenitic steels since the model reflects the physics. In summary,

• it could be understood that the twinned plates of martensite form in order to
minimize the total deformation;

(a) Bhadeshia [2015] (b) Simulation results,
Chapter 4

• the autocatalytic effect could be related to plastic deformations;

(c) Schematic representation
of the autocatalytic effect

(d) Simulation results,
Section 5.2
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• concerning the interactions with microcracks the model reflects the experimen-
tally observed features.

(e) Marder et al. [1970] (f) Simulation results,
Section 5.3

6.2 Outlook

For future work, the consideration of further alloying elements for the MD sim-
ulations would enable the approximation of the material parameters of steel.
Furthermore, starting from the temperature dependent phase field potential, which
was derived in this work, the temperature could be considered as an additional
degree of freedom within the finite element scheme. Therefore, the system of
coupled field equations is extended by the heat equation. This approach allows
studying the influence of the temperature on the phase transition, e.g. the cooling
during the cryogenic turning.

Concerning the evolution of the martensitic phase, an extension to three di-
mensions would provide additional insights. The limitation to two dimensions
restricts the nucleation and the propagation of martensite. Moreover, three dimen-
sional numerical results facilitate the verification with experiments. Yet, the larger
computational effort should be compensated by more efficient numerical strategies,
e.g. by a GPU accelerated implementation.

Since plastic deformations play a decisive role for the phase transformation
the correlations between these two phenomena should be part of future work. So
far, the coupling between phase transformation and plasticity is considered only
through the stresses. In this regard, the interactions through the kinetics should be
investigated as well.

Eventually, for the combined model, a closer look on the model parameter Gs,
which stands for the crack resistance, could be beneficial. Until now, for both phases
the same crack resistance is taken into account. For future work, experimentally
obtained values might be used for each phase.
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Appendix A: Derivatives Concerning the Numerical Implementation

In the following, the derivatives which are used in Eqs. (5.56)-(5.61) are evalu-
ated. With
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the derivatives are given with
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For the evaluation of
∂2π

∂ϕ2
in Eq. (A.3) the second order derivatives

∂2

∂ϕ2
ε0(ϕ),

∂2

∂ϕ2
K(ϕ),

∂2

∂ϕ2
µ(ϕ) are negligibly small.
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