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Abstract

This work presents a framework for the computation of complex geometries containing intersections of multiple
patches with Reissner–Mindlin shell elements. The main objective is to provide an isogeometric finite element im-
plementation which neither requires drilling rotation stabilization, nor user interaction to quantify the number of
rotational degrees of freedom for every node. For this purpose, the following set of methods is presented. Control
points with corresponding physical location are assigned to one common node for the finite element solution. A nodal
basis system in every control point is defined, which ensures an exact interpolation of the director vector throughout
the whole domain. A distinction criterion for the automatic quantification of rotational degrees of freedom for every
node is presented. An isogeometric Reissner–Mindlin shell formulation is enhanced to handle geometries with kinks
and allowing for arbitrary intersections of patches. The parametrization of adjacent patches along the interface has
to be conforming. The shell formulation is derived from the continuum theory and uses a rotational update scheme
for the current director vector. The nonlinear kinematic allows the computation of large deformations and large ro-
tations. Two concepts for the description of rotations are presented. The first one uses an interpolation which is
commonly used in standard Lagrange-based shell element formulations. The second scheme uses a more elaborate
concept proposed by the authors in prior work, which increases the accuracy for arbitrary curved geometries. Numer-
ical examples show the high accuracy and robustness of both concepts. The applicability of the proposed framework
is demonstrated.

Keywords: Isogeometric analysis, Geometrical nonlinear Reissner–Mindlin shell, NURBS, Interpolation of
rotations, Treatment of kinks, Shell not requiring drilling rotation stabilization

1. Introduction

Reissner–Mindlin shell elements are the prevailing discretization technique for the computation of complex surface-
oriented structures. Most common finite element analysis packages provide shell formulations based on the Reissner–
Mindlin shell theory. Several ways for the derivations of shell theories exist, see [1]. The well-known contributions
of Simo et al. [2, 3, 4, 5] introduce a Reissner–Mindlin shell formulation, which is derived from the continuum the-
ory. These papers form the fundament of [6] and of this contribution, which propose an isogeometric rotation-based
Reissner–Mindlin shell formulation. In smooth areas the rotational state of Reissner–Mindlin shells is described by
two rotations, which are aligned to the local geometry. No stiffness against rotations around the normal vector arises.
All classical shell theories require C1-continuous surfaces and thus strictly speaking do not cover geometries with
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kinks. Although precluded from a theoretical point of view, geometries with kinks and sharp folds are an important
area of application in engineering practice. In [3] it is proposed to use two nodal rotations in smooth areas and three
global rotations for nodes on kinks. Stiffness against three rotations arises merely from the intersection of surfaces,
which is the case at kinks or for faceted surfaces. If stiffness against one rotation is very low or even zero, numerical
problems arise. This can be prevented by a classification of nodes – located in smooth areas or on kinks. However,
there is no general criterion for this distinction, which necessitates a manual classification. Alternatively, some kind
of drilling rotation stabilization can be used. All kinds of shell formulations using C0-continuous Lagrange basis
functions – independent of the derivation of the shell theory – suffer from this problem. For an excellent overview of
existing shell theories and details about the aforementioned numerical issues see [1].

The possibilities offered by the introduction of isogeometric analysis by Hughes et al. [7] have the potential to
change this situation fundamentally. The exact description of the geometry with NURBS allows an automatic and
appropriate treatment of both smooth regions and kinks. In the meantime several NURBS-based isogeometric shell
formulations have been published. An isogeometric Kirchhoff–Love shell is proposed by Kiendl et al. [8]. Benson
et al. [9] use a rotation-free shell [10] in regular regions and a Reissner–Mindlin shell [11] in regions with geometric
discontinuities. The rotation-based Reissner–Mindlin shell formulation proposed by the authors [6] uses a new concept
for the interpolation of the director vector adapted to the characteristics of NURBS surfaces. The computation of
multi-patch geometries with kinks with a linearized version of this shell formulation is discussed in [12]. The work
of Echter et al. [13] uses a difference vector formulation with transverse shear deformations instead of rotations as
degrees of freedom. A solid-shell with two different methods to tackle locking phenomena is proposed in [14]. In
addition to that, there are several isogeometric shell formulations which use other geometry descriptions, see e.g. [15]
and [16].

Despite the presence of several shell formulations, until now, no parameter-free approach to treat shell models with
kinks has been presented in an isogeometric framework. The works of Benson et al. [11, 9] – implemented into the
commercial FEA code LS-DYNA – rely on drilling rotation stabilization, which renders results dependent on drilling
rotation stabilization factors. The Kirchhoff–Love shell formulation of Kiendl et al. [8] uses a penalty-like method to
impede hinging behavior at C0-continuous patch intersections, called bending strip method [17]. Its results depend on
a penalty factor and in [9] it is shown, that the bending strip method needs aligned derivatives at intersections to work
properly. To the authors’ knowledge, currently no other isogeometric shell formulation does discuss the computation
of geometries with kinks.

Based on the aforementioned the new aspects and the main contributions of this paper are the following.

(i) A nonlinear Reissner–Mindlin shell theory for large deformations and finite rotations is presented. The geome-
try is described with the shell mid-surface and an inextensible director vector. Thus, no thickness strains arise.
Green–Lagrange strains are used as a measure for the strains and require the interpolation of the director vector,
its derivatives and variations thereof. Basing on the previous publication [6] two methods for the interpolation
of the current director vector and the other mentioned quantities are presented. The variation of the director
vector is expressed as a function of the variation of nodal rotations.

(ii) Methods for the interpolation of the director vector and its variations in the presence of kinks are presented. The
higher continuity of NURBS allows to neither hurt the orthogonality nor the continuity. Basically two sets of
nodal basis systems are used. One set is defined patch wise and is able to interpolate the director vector exactly.
Within the patches the director field is at least C1-continuous, whereas it is discontinuous between patches. An
additional globally valid set of nodal basis system is used to define unique rotation axes for every node present
in the finite element solution.

(iii) The method to compute exact nodal basis systems presented in [6] is extended to multi-patch geometries. The
nodal basis systems are computed patch by patch. A basis system for every control point is attained. If more
than one control point is assigned to one finite element node – which is in general the case at patch intersections
– one unique basis system for the node under consideration has to be chosen.

(iv) A unique criterion for the classification of nodes – in nodes on kinks and nodes in smooth regions – is provided.
To the authors knowledge this work presents the first formulation which is able to make this classification
automatically. The physical problem is computed in a way that neither user intervention, nor drilling rotation
stabilization or penalty methods are required.

(v) The developed shell formulations, the method for the computation of nodal basis systems and the classification
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criterion are tested with the help of several test problems. A basic numerical example provides a threshold
value for the newly established classification criterion. Benchmarks for multi-patch geometries with kinks test
the linear and nonlinear behavior of the proposed shell formulations. Computations of geometries with kinks in
the large rotation regime using the two proposed methods are compared to existing formulations.

2. NURBS-based isogeometric analysis

The presented approach uses bivariate NURBS surface patches to describe the geometry. Complex geometries
consist in general of several patches; the total number of patches is referred to as np. The notation follows [6] and
is extended to the needs of multi-patch analysis. Details about the basics of NURBS can be found in [18]. If not
specified differently Greek indices range from 1 to 2 and Latin indices from 1 to 3. The set of nk

1 × nk
2 control points

Bk
i j =

[
xi jk, yi jk, zi jk,wi jk

]T
=

[
X(i, j,k)

wi jk

]
i = 1, . . . , nk

1 j = 1, . . . , nk
2 (1)

together with the two open knot vectors

Ξk
α =

{
ξα1 , ξ

α
2 , · · · , ξ

α
nk
α+pk

α+1

}
α = 1, 2 (2)

defines the patch k with order pk
1 and pk

2 in the first and second parametric direction. The tensor product multiplication
of two knot spans [

ξ1
i , ξ

1
i+1

]
×

[
ξ2

j , ξ
2
j+1

]
i = pk

1 + 1, . . . , nk
1 j = pk

2 + 1, . . . , nk
2 (3)

defines an element e for the finite element discretization. Elements with an area of zero, which arise due to repeated
values in the knot vector, are treated as regular elements. These zero-sized elements are detected on element level and
consequently the computation of their element matrices is skipped. Every patch has its own control points Bk

i j and
there is no connection of the patches in the CAD input data. Thus, control points with corresponding locations

X(i, j,k) = X(i1, j1,k1) i = 1, . . . , nk
1 j = 1, . . . , nk

2 k = 1, . . . , np (4)

are assigned to the same node XI = X(i1, j1,k1) for the finite element analysis. Despite being merged to one finite element
node, every control point retains its individual weight for the computation of the basis functions in (8). The index I is
specified by the surjective and non-bijective function

I = f (i, j, k) . (5)

The inverse relation
(i, j, k) = g(I, e) (6)

is injective on every element e. Thus, summation over I can be used, and it is assured, that the weight wi jk of the
correct control point is used in (8). The number of specified basis functions having influence on an arbitrary element
is defined by nk

en =
(
pk

1 + 1
) (

pk
2 + 1

)
. The basis functions for the description of the physical surface X of a specified

patch k

X
(
ξ1, ξ2, k

)
=

nk
en∑

I=1

NI

(
ξ1, ξ2, k

)
XI , (7)

as well as for the approximation of finite element fields, are computed with

NI

(
ξ1, ξ2, k

)
=

N pk
1

i

(
ξ1

)
N pk

2
j

(
ξ2

)
wi jk

W
(
ξ1, ξ2, k

) . (8)

The denominator reads

W
(
ξ1, ξ2, k

)
=

nk
1∑

i=1

nk
2∑

j=1

N pk
1

i

(
ξ1

)
N pk

2
j

(
ξ2

)
wi jk (9)
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with the univariate basis functions of B-Splines defined by the Cox-de Boor formula

p = 0 : N0
i (ξ) =

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

p > 0 : N p
i (ξ) =

ξ − ξi

ξi+p − ξi
N p−1

i (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1

i+1 (ξ) ,

(10)

where the discrete values of the knots ξi with i = 1, . . . , nk
α + pk

α + 1 are taken from the appropriate knot vector Ξk
α.

The derivative
∂

∂ξ
N p

i =
p

ξi+p − ξi
N p−1

i −
p

ξi+p+1 − ξi+1
N p−1

i+1 (11)

of the univariate B-Spline basis functions is needed to compute the derivative of the NURBS basis functions

∂

∂ξα
NI

(
ξ1, ξ2, k

)
= wi jk

W ∂
∂ξα

(
N pk

1
i N pk

2
j

)
− ∂

∂ξα
(W) N pk

1
i N pk

2
j

W2 , (12)

where the dependence of W and N p
i on the parameters ξα and the patch k is not displayed, but self-evident. The

number of elements per patch nk
el =

(
nk

1 − pk
1

) (
nk

2 − pk
2

)
sums up to the total number of elements nel =

∑np

k=1 nk
el, which

includes the zero-sized elements arising at repeated knots. The total number of control points nnp =
∑np

k=1 nk
np with

nk
np = nk

1 × nk
2 contains every instance of corresponding control points.

3. Reissner–Mindlin shell formulation

The proposed Reissner–Mindlin shell formulation uses a rotational update of the inextensible director vector field
to precisely describe large rotations. Large deformations can be treated as the strains are described by Green–Lagrange
strains. The second Piola–Kirchhoff stress tensor is the complimentary measure for the stresses. The derivation bases
on the direct approach proposed by Simo and Fox [2] and is given in detail in [6]. The variational formulation is pure
displacement based and no measures against locking are considered.

A physical point on the domain in the reference, respective current configuration is given by

Φ
(
ξi
)

= X (ξα) + ξ3D (ξα)

φ
(
ξi
)

= x (ξα) + ξ3d (ξα) ,
(13)

where X (ξα) and x (ξα) are the position vectors on the shell mid-surface. The thickness coordinate ξ3 is in the range
−h/2 ≤ ξ3 ≤ h/2, where h is the shell thickness. The reference director vector D (ξα) is collinear to the normal
vector N and ‖D (ξα) ‖ = 1 is defined to hold. An orthogonal rotation with the rotation tensor R ∈ S O (3) to determine
the current director vector d = RD ensures the inextensibility of the shell.

The Green–Lagrange strains are fractionized into resulting shell strains

εαβ =
1
2

(
x,α · x,β − X,α · X,β

)
καβ =

1
2

(
x,α · d,β + x,β · d,α − X,α · D,β − X,β · D,α

)
γα = x,α · d − X,α · D

(14)

neglecting terms containing squares of ξ3. The subscript comma denotes a derivation with respect to the parametric
coordinates ξα. The membrane strains εαβ , the curvatures καβ and the shear strains γα are arranged to the vector

ε =
[
ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2

]T (15)
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in Voigt notation. Accordingly the work-conjugate stress resultants

σ =
[
n11, n22, n12,m11,m22,m12, q1, q2

]T
(16)

of the second Piola–Kirchhoff stress tensor are arranged listing membrane forces, bending moments and shear forces.
The weak form of the equilibrium

G (v, δv) =

∫
Ω0

δεTσ dA −
∫

Ω0

δvT p̄ dA −
∫

Γt

δvT t̄ ds = 0 (17)

accounts for static Neumann conditions t̄ on the boundary Γt and conservative surface loads p̄ on the reference mid-
surface. The independent displacement vector v = [u,ω]T consists of displacements u and rotational parameters ω.
The variation of the shell strains δε arising in (17) results in the components

δεαβ =
1
2

(
δx,α · x,β + δx,β · x,α

)
δκαβ =

1
2

(
δx,α · d,β + δx,β · d,α + δd,α · x,β + δd,β · x,α

)
δγα = δx,α · d + δd · x,α ,

(18)

which are arranged akin to (15). The solution of (17) with the Newton–Raphson scheme requires the linearization

L [G (v, δv)] = G + D G · ∆v (19)

with
D G (v, δv) · ∆v =

∫
B0

δεT
C∆ε + ∆δεTσ dV . (20)

The matrix
C =

∂σ

∂ε
(21)

depends on the chosen material law. The linearized shell strains ∆ε are obtained by replacing the operator δ with ∆

in (18). The second variation ∆δε has the components

∆δεαβ =
1
2

(
δx,α · ∆x,β + δx,β · ∆x,α

)
∆δκαβ =

1
2

(
δx,α · ∆d,β + δx,β · ∆d,α + δd,α · ∆x,β + δd,β · ∆x,α

+ x,α · ∆δd,β + x,β · ∆δd,α
)

∆δγα = δx,α · ∆d + δd · ∆x,α + x,α · ∆δd .

(22)

4. Isogeometric discretization

The main focus of this contribution is the treatment of geometries with kinks. This affects only the interpolation
of the director vectors dh and the variations δdh and ∆δdh thereof, which are examined in Sec. 7 in detail. The
discretization of all other quantities is not affected and in exact accordance to the shell formulation presented in [6].
Thus, the general discretization is only briefly sketched in the following. For all details including the linearization of
the weak form we refer to [6].

The shell middle surface

X =

nen∑
I=1

NIXI xh =

nen∑
I=1

NIxI (23)

is interpolated with the NURBS basis functions NI defined in (8). Approximations are denoted by an superscript h
in the following. The derivatives of the NURBS basis functions defined in (12) are with respect to the parametric
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coordinates ξα. The presented shell formulation uses local Cartesian basis systems ti in the integration points to
simplify the implementation of constitutive models. The Jacobian

J =

 X,ξ1 · t1 X,ξ1 · t2

X,ξ2 · t1 X,ξ2 · t2

 (24)

transforms the derivatives  NI,1

NI,2

 = J−1
 NI,ξ1

NI,ξ2

 (25)

from convective basis systems to local Cartesian basis systems. The derivatives

X,α =

nen∑
I=1

NI,αXI xh
,α =

nen∑
I=1

NI,αxI (26)

of the shell middle surface are thus with respect to the local Cartesian basis systems. The interpolated Green–Lagrange
strains εh are attained by inserting the interpolated current director vector dh and xh in (14). Akin the variation of the
Green–Lagrange strains δεh arises by inserting the variation of the current location vector

δxh =

nen∑
I=1

NIδuI δxh
,α =

nen∑
I=1

NI,αδuI (27)

and the variated current director vector δdh in (18). The BI matrix

BI =



NI,1xhT
,1 0

NI,2xhT
,2 0

NI,1xhT
,2 + NI,2xhT

,1 0
NI,1dhT

,1 b̂hT
11I

NI,2dhT
,2 b̂hT

22I
NI,2dhT

,1 + NI,1dhT
,2 b̂hT

12I + b̂hT
21I

NI,1dhT NIbhT
1I

NI,2dhT NIbhT
2I


(28)

relates the variation of the strains

δεh =

nen∑
I=1

BI

[
δuI

δβI

]
(29)

to the variation of the nodal deformation vectors δuI and the variation of nodal rotations δβI . The quantities b̂h
αβI ,

bh
αI , the interpolation of the current director vector dh and the nodal rotations βI are defined in Sec. 7. The element

stiffness matrix
Ke

IK =

∫
Ω0

(
BT

I CBK + GIK

)
dΩ (30)

requires the computation of the initial stress stiffness part GIK of the element stiffness matrix, which is derived in [6].
The element residual vector is defined by

fe
I =

∫
Ω0

BT
I σdΩ − fe,ext

I . (31)

Finally, the finite element approximation of the linearized weak form (19) reads

L [G (v, δv)] =

nel⋃
e=1

nen∑
I=1

nen∑
K=1

(
fe

I + Ke
IK∆vK

)
= f + Kṽ , (32)

where f is the global residuum vector, K the global stiffness matrix and ṽ collects the global deformations and rota-
tions.
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5. Computation of nodal basis systems for multi-patch geometries

The interpolation of the director vector D needed for the description of the domain (13) and the interpolation of
rotations require the definition of nodal basis systems. Patches which contain a kink along a line with C0-continuity
have to be split up into pieces along that line, as the director field has to be discontinuous in these regions. To avoid
the classification if a kink occurs or not, patches are split up generally along lines of C0-continuity. The necessary
operations are trivial and given in [18]. No additional computational effort for the solution of the equilibrium equations
turns up as the newly created control points are merged to one finite element node. To make use of the continuity of
NURBS the nodal basis systems have to be chosen in a way that

Dh = Ah
3 =

nen∑
I=1

NIA
(i, j,k)
3 ≡ N (33)

holds and the resulting interpolated basis systems Ah
i are orthonormal, where the basis vectors Ah

α can be chosen to
simplify the imposition of boundary conditions or simply according to the lamina coordinate system proposed in [19].
A method to compute these nodal basis systems A(i, j,k)

i for single patch geometries is proposed in [6]. This method is
extended to multi-patch geometries in the following.

For every patch k a separate system of equations is established and solved. Ah
mn is the component n of the basis

vector Ah
m. According to the tuple terminology defined in Sec. 2, A(i, j,k)

mn denotes the component n of the basis vector m
at the control point Bk

i j. For operations on patch level the function f (i, j, k) is not bijective in general, which prohibits
a summation over I. In all integration points r ranging from 1 to

nk
gp =

(
max

(
pk

1, pk
2

)
+ 1

)2
× nk

el (34)

the equations

Ah
mn (r) =

nk
1∑

i=1

nk
2∑

j=1

NI (r) A(i, j,k)
mn (35)

are established and collected line by line into one system of equations

Āh
mn = N̄kĀk

mn (36)

for every combination of m and n. The matrix N̄k is independent of m and n and contains the basis functions NI (r)
arranged in nk

gp rows and nk
np columns. The vector Āh

mn =
[
Ah

mn (r)
]

with r = 1, . . . , nk
gp is known and contains the

component n of the basis vector Ah
m at the integration point r. The unknown vector

Āk
mn =

[(
A(i, j,k)

mn

)
q

]
, (37)

where q = 1, . . . , nk
np is a bijective function of the triple (i, j, k), contains the component n of the vector m of the nodal

basis system at control point Bk
i j. In [6] it is shown, that a unique solution to (36) exists. Solving the system with the

normal equation results in
Āk

mn =
(
N̄T

k N̄k

)−1
N̄T

k Āh
mn , (38)

which can be computed with standard solvers using multiple right hand sides to determine all nine components of the
nodal basis systems. Finally, the nodal basis systems can be assembled from the solution of (38)

A(i, j,k)
m =

[
Āk

mn (q)
]
n=1,2,3

(39)

and used for the interpolation of the director vector (46) and the interpolated basis systems (52).

Remark 1. This method is called Calculation of exact basis systems in [6], as a unique solution to (36) can always
be found. This solution satisfies (38). Due to numerical reasons N ≡ Dh is not fulfilled exactly but only close to the
provided numerical precision. See [20] for the underlying mathematics. However, we use the term exactly to describe
the interpolation of the director vector.
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6. Differentiation between smooth and non-smooth nodes

In common Lagrange-based finite element shell formulations with C0-continuity between individual elements
no well-defined distinction between nodes requiring three rotational degrees of freedom and those having none or
negligible stiffness normal to the shell mid-surface is possible. Thus, nodes have to be classified by the user or drilling
rotation stabilization has to be used. The concept proposed in Sec. 5 to compute nodal basis systems in combination
with the higher inter-element continuity offered by the NURBS geometry description allows the definition of a unique
criterion to distinguish between control points requiring six degrees of freedom and those having no rotational stiffness
normal to the shell surface.

Kinks in NURBS geometries can only occur in C0-continuous regions. On patch boundaries discontinuity prevails
as open knot vectors are used. By using common finite element nodes for control points with corresponding locations,
the geometry gets C0-continuous at patch intersections. Patches with C0-lines inside the domain have to be split up as
described in Sec. 5.

Remark 2. Additional kinks can occur, if pk
α control points coincide inside a patch of order pk

α. With these coinciding
control points C0-continuous points inside patches may occur. In these points the normal vector with respect to the
shell surface is not defined. Thus using the normal vector instead of the director vector is not possible in these points.
However, in the neighborhood of these points the director vector field cannot be exact. Those points only occur if the
location of control points is modified manually and should be avoided on the design level.

All control points Bk
i j with

X(i, j,k) = X(i1, j1,k1) i = 1, . . . , nk
1 j = 1, . . . , nk

2 k = 1, . . . , np (40)

are assigned to the same node XI for the finite element analysis as the control point Bk1
i1 j1

with I = f (i1, j1, k1), see
Sec. 2. Accordingly, the vector of triples

gI =
{
(i, j, k) |X(i, j,k) = X(i1, j1,k1); i = 1, . . . , nk

1; j = 1, . . . , nk
2; k = 1, . . . , np

}
(41)

contains all #gI triples (i, j, k) that are assigned to finite element node I, where #gI is the cardinality of the vector gI .
All nodes I which have only one triple (i, j, k) assigned to them (#gI = 1) are classified as smooth nodes. Thus, the
reference global nodal basis system ÃiI is defined to be

ÃiI = A(i, j,k)
i . (42)

All finite element nodes I with a cardinality #gI ≥ 2 require a distinction of cases. If

]
(
AgI (l)

3 ,AgI (1)
3

)
≤ cangle ∀ l = 1, . . . , #gI (43)

with the tolerance of angle cangle holds, then node I is classified as smooth and

ÃiI = AgI (l)
i (44)

has to be chosen with a distinct value l ∈ {1, . . . , #gI}. If (43) does not hold, then node I is classified as a node on
kink. In this case the reference global nodal basis system is not required, respectively ÃiI can be chosen arbitrary.
Depending on boundary conditions, a global Cartesian system ÃiI = ei or one of the nodal basis systems

ÃiI = AgI (l)
i l ∈ {1, . . . , #gI} (45)

of the set of control points can be chosen. A reasonable value for the limit angle cangle is suggested in Sec. 8.1 with
the help of a simple numerical example. The classification of nodes is needed in Sec. 7.3 to choose the appropriate
equation for the transformation matrices T3I , respectively MI .
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7. Concepts for the interpolation of director vectors and description of rotations

The main concern of this contribution lies in the treatment of the director vector and its variation with a special
focus on non-smooth transitions between patches. The two presented concepts rely on a rotational formulation for
the current director vector. The approach of computing the current director vector with difference vectors as proposed
in [13] is not covered here. To introduce appropriate concepts for the description of rotations and director vectors at
kinks, at first two possible concepts for the interpolation of the director vector in regular, smooth regions are sketched.
Then the common treatment of kinks in standard C0-Lagrange shell formulations is briefly summarized to show the
shortcomings of current formulations. Consistent extensions to handle geometries with kinks are provided for both
proposed concepts for the interpolation of the director vector. They emanate from the segregation of the interpolation
of the director and the interpolation of the rotations and thus combine the advantages of both traditional concepts.

7.1. Interpolation of the director vector and its variation
The reference director D introduced in (13) to describe the initial and the deformed domain is generally interpo-

lated by

Dh =

nen∑
I=1

NIDI , (46)

where NI are the NURBS basis functions defined in (8). The discrete nodal directors DI will be defined later on in
Sec. 7.3. The derivations with respect to the local Cartesian system

Dh
,α =

nen∑
I=1

NI,αDI (47)

are computed with the derivatives of the NURBS basis functions defined in (25). In the following AiI and aiI are
discrete nodal basis systems in the reference configuration and in the current configuration. In rotational shell formu-
lations the current director vector is computed by an orthogonal rotation d = RD. In general several strategies for the
computation of the current rotational state Ri are possible, see detailed discussions in [21, 22]. Multiplicative update
schemes

Ri = R (∆ω) Ri−1 (48)

as proposed in [4] yield a non-symmetric global stiffness matrix K, see [22]. Here, an additive update method using a
vector-like parametrization of rotations as proposed by [23] is used. This ensures the symmetry of the global stiffness
matrix, simplifies the implementation and needs less storage. The axial vector of the rotation is updated according to

ωi = ωi−1 + ∆ω , (49)

where ωi−1 is the value from the last iteration step and ∆ω is the increment of the last iteration. The rotation tensor

R = 1 +
sinω
ω
Ω +

1 − cosω
ω2 Ω2 (50)

with

Ω = skewω =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ω = ‖ω‖ (51)

is computed with the Rodrigues’ formula using the updated rotation vector ωi. As (50) is singular for ω = k · 2π
with k = 1, 2, . . ., a combined strategy proposed by [22] has to be used for finite rotations. After each load step a
multiplicative update is conducted to preclude singularities. Within the iterations of each load step the additive update
ensures the symmetry of the global stiffness matrix. For a more recent overview on the treatment of finite rotations,
see [24]. Depending on whether interpolated values ωh or nodal values ωI are inserted into (50) the interpolated
rotation tensor Rh or nodal rotation tensors RI arise. Analogously current basis systems are computed by

ah
i = RhAh

i Ah
i =

nen∑
I=1

NIAiI , (52)

respective aiI = RIAiI .
When d and its variation δd need to be interpolated, in general two possibilities arise.
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Concept a) Interpolation after rotation. The first possibility is to rotate each discrete value DI with its corresponding
rotation tensor RI and interpolate afterwards. This results in

dh =

nen∑
I=1

NIdI dh
,α =

nen∑
I=1

NI,αdI dI = RIDI (53)

for the interpolation of the current director vector and for its derivation. The variation of the shell strains requires the
variation of the current director vector, whose interpolation is akin to (53) defined as

δdh =

nen∑
I=1

NIδdI δdh
,α =

nen∑
I=1

NI,αδdI (54)

with δdI = TIδβI . In smooth areas the two virtual nodal rotations δβαI are defined around the two vectors aαI = RIAαI

of the current nodal basis system. The matrix TI is a function of the current nodal director vector dI , the vectors aαI

and the rotations βI .

Concept b) Rotation after interpolation. The second possibility is to compute the reference director vector in every
integration point and rotate this vector with a rotation tensor Rh defined at the integration point. Rh is computed
using (50) and (51) with the interpolated rotations ωh. The resulting current director vector and its derivation are
defined as

dh = RhDh dh
,α = Rh

,αDh + RhDh
,α , (55)

where the inextensibility condition ‖dh‖ = ‖Dh‖ is exactly fulfilled in every integration point. The consistent variation
of the first equation of (55) results in

δdh = Tδβh , (56)

where the matrix T is defined at the integration points and is a function of the interpolated current director vector
dh = ah

3, the vectors ah
α of the interpolated, orthonormal basis systems and the interpolated rotations βh. Subsequently,

the variation of the rotations is interpolated with

δβh =

nen∑
I=1

NIMIδβI , (57)

where the matrix MI accomplishes a transformation of the nodal rotations δβI , which are defined around the nodal
basis systems aαI , to rotations around the interpolated basis vectors ah

α. The derivation of δdh is more involved and
reads

δdh
,α = T,α

nen∑
I=1

NIMIδβI + T
nen∑
I=1

(
NI,αMI + NIMI,α

)
δβI . (58)

All required matrices are given in Sec. 7.3.

Remark 3. In NURBS-based isogeometric analysis it is also possible to use the normal vector N with regard to the
shell mid-surface instead of the interpolated reference director vector Dh. Additional studies conducted by the authors
do not show significant improvements over the interpolation with exactly calculated nodal basis systems. To avoid the
need to compute the second spatial derivatives within the assembly of the stiffness matrix here the reference director
is used. Furthermore numerical problems on points with C0-continuity within patches are avoided, see remark 2.

7.2. Concepts for C0-Lagrange shell elements for geometries with kinks
Shell formulations based on traditional C0-Lagrange basis functions use commonly concept a), where the rotated

nodal director vectors are interpolated. In [4] it is noted, that although other concepts were tested to be slightly
superior, this concept is sufficiently accurate for the description of rotations in shell formulations with linear Lagrange
basis functions. An important choice for C0-Lagrange elements is the definition of nodal directors DI , see a detailed
discussion in [1]. Using common global directors at each node while preserving the orthogonality between surface
and director vector is only possible for C1-continuous surfaces. Thus, two common concepts are used to circumvent
the need for C1-continuity, violating either continuity or orthogonality. Figs. 1 and 2 illustrate both concepts.
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Figure 1: Unique global nodal basis systems for C0-Lagrange shell elements.

Figure 2: Element wise defined nodal basis systems for C0-Lagrange shell elements.

a1) Unique global director vectors. For the modeling of smooth surfaces global nodal directors DI are chosen com-
monly as normalized algebraic average of all neighboring elements. All discontinuities – no matter if they arise from
the faceting of smooth surfaces or from intentionally modeled kinks – are treated the same way as if C1-continuity
would prevail. When a node is located at a kink the orthogonality of the director vector is violated in general, see
Fig. 1. Drilling degrees of freedom can be avoided with this concept as nodal rotations are defined around unique
nodal basis systems.

a2) Element wise defined director vectors. For geometries containing kinks and complex intersections of several shell
mid-surfaces it is desirable to avoid the determination of a common director vector. By using nodal directors which
are defined individually for every element, the violation of the orthogonality of the director vector can be completely
avoided. But this leads to a summation of rotations around differing nodal basis systems for one control point when
computing faceted geometries or geometries with kinks, see Fig. 2. At smooth transitions the nodal basis systems
have to be aligned, which is not possible in general, e.g. at intersections of three patches in one point, see Fig. 3. A
third rotational – also called drilling – degree of freedom is introduced at kinks to couple rotations consistently. The
stiffness against this additional rotation is caused by the intersection of the surfaces in different angles. Depending
on the geometrical situation drilling rotation stiffness can be small in comparison to the two main rotational stiffness
and thus numerical problems arise. This is usually avoided by adding artificial stiffness against drilling rotations
(drilling rotation stabilization). The usage of element wise directors with three rotational degrees of freedom for all
nodes in combination with drilling rotation stabilization is common in industrial applications [1]. Thus, the need for
a manual classification of nodes is avoided. But the numerical results are influenced by the choice of drilling rotation
stabilization parameters.

7.3. Concepts for isogeometric shell elements for geometries with kinks
The higher continuity of NURBS-based isogeometric analysis offers new possibilities to treat geometries with

kinks more appropriate. Between the individual patches no continuity is at hand as each patch is defined with its
own set of control points. By coupling the deformations of control points with corresponding locations C0-continuity
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Figure 3: Intersection of three patches at one point: Orthonormal basis systems computed from the parametric derivatives in the four vertices of
each patch. A choice where all basis systems are aligned is not possible.

of deformations is ensured. The possibilities offered by the high continuity of NURBS are fully exploited with the
proposed concepts, as transitions between patches can be uniquely classified (see Sec. 6) to be smooth or non-smooth
and then accordingly treated. In the following both concepts for the interpolation of the current director vector are
consistently extended to handle geometries with kinks. Fig. 4 illustrates the usage of two distinct sets of nodal basis
systems, which is a decisive part of these extensions.

Figure 4: Proposed concept for isogeometric shell elements: Patch wise defined nodal basis system (left) for the interpolation of the director and
global defined nodal basis system (right) for the interpolation of rotations.

Concept a) Interpolation after rotation. A consistent treatment of kinks is possible with the patch wise defined nodal
basis systems A(i, j,k)

m computed in Sec. 5. Within each patch at least C1-continuity has to prevail. If this holds, the
application of concept a2) described in Sec. 7.2 produces a continuous interpolation of the director vector within each
patch and a discontinuous interpolation on kinks. Thus, the orthogonality of the director vector is ensured. The nodal
directors

DI = A(i, j,k)
3 (59)

are attained with (i, j, k) = g (I, e) for every node I of element e. Thus the standard interpolation of the reference
director vector

Dh =

nen∑
I=1

NIDI (60)

can be used and N = Dh holds, where N is the normal vector with respect to the mid-surface. The variated nodal
director vectors δdI required in (54) are computed with

δdI = TIδβI = WT
I HIT3IδβI , (61)
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where the matrices WI = skew dI and

HI = 1 +
1 − cosω

ω2 Ω +
ω − sinω

ω3 Ω2 (62)

are discussed in detail in [25]. For (62) the definitions of (51) are used with nodal values ωI . The increment of the
rotation vector needed for the update of the rotation matrix RI given in (49) is computed by

∆ωI = T3I∆βI . (63)

Depending on the classification of the node I (see Sec. 6) the matrix T3I is defined as:

• Nodes on kinks are assigned three rotational degrees of freedom to allow a consistent coupling of rotations.
As long as the angle of the kink does not approach zero, stiffness against drilling rotations is provided by the
intersection of the surfaces. Here the axial vector of the rotation δωI is kept as rotational parameter. Thus no
transformation is necessary and the matrix

T3I = 1 (64)

is defined as a 3 × 3 unity matrix. This results in three nodal rotations δβiI around a global Cartesian basis
system.

• Smooth nodes require only two rotational degrees of freedom. Stiffness against drilling rotations does not arise.
Thus the transformation matrix T3I is defined as

T3I =
[̃
a1I ã2I

]
, (65)

where the vectors ãαI = RIÃαI are computed from the global nodal basis system ÃαI for node I. Two nodal
rotations δβαI arise.

With the nodal values of δdh given in (61) at hand the quantities b̂h
αβI and bh

αI required in (28) can be computed by

b̂h
αβI = NI,αTT

I xh
,β (66)

and
bh
αI = TT

I xh
,α . (67)

For the linearization and the resulting initial stress stiffness matrix GIK we refer to [26].

Remark 4. The presented method for concept a) differs only in one small point from the standard procedure applied
in common C0 Lagrange shell formulations. The director vector is interpolated with patch wise defined nodal vectors,
whereas the rotations are described around globally defined nodal basis systems. This small alteration allows the
usage of an arbitrary parametrization of neighboring patches. The parametric directions do not have to match, which
simplifies meshing dramatically in comparison to standard Lagrange-based shell formulations.

Concept b) Rotation after interpolation. A consistent treatment of kinks is ensured by using a C0-continuous descrip-
tion of rotations with the global nodal basis systems ÃiI and an interpolation of director vectors, which is discontin-
uous to preserve the orthogonality. Using concept b) to interpolate the current director vector allows the usage of
two independent interpolations, one for the reference director vector (46) and another one for the rotations (57). Both
interpolations use the same basis functions and thus initially exhibit the same continuity as the geometry. The nodal
basis systems A(i, j,k)

m interpolate the normal vector with respect to the mid-surface exactly using (59) and (60). The
smoothness of the geometry is replicated as desired. To achieve a consistent coupling of the rotations, intersecting
patches use common rotational degrees of freedom δβI with one arbitrary common global nodal basis system ÃiI for
each set of corresponding control points. Thus, C0-continuity for the variation of the axial vector of the rotations

δωh = T3δβ
h = T3

nen∑
I=1

NIMIδβI (68)
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is attained and the rotations β are consistently coupled under consideration of the differing orientations of nodal basis
systems. The matrix

T3 =
[
ah

1 ah
2

]
with ah

α = RAh
α = R

nen∑
I=1

A(i, j,k)
α (69)

contains the interpolated current basis systems, around which the rotations δβα in the integration points are defined.
The updates of the rotation matrices R and RI are conducted according to (49) with the increment of the rotation
vector in the integration point and the increment of the nodal rotation vector

∆ωh = T3

nen∑
I=1

NIMI∆βI

∆ωI = T3I∆βI .

(70)

Depending on the classification of the node I (see Sec. 6), the matrix MI and its derivatives are defined as:

• Nodes on kinks need three rotational degrees of freedom to describe the rotations consistently. The three nodal
rotations ∆βiI are transformed with the matrix

MI =

[
ah

1 · ã1I ah
1 · ã2I ah

1 · ã3I

ah
2 · ã1I ah

2 · ã2I ah
2 · ã3I

]
(71)

from the current global nodal basis system ãiI = RIÃiI to the current interpolated basis system ah
i in the integra-

tion point. Virtual rotations around the normal vector in the integration point do not cause stiffness and can thus
simply be omitted. The transformation matrix (71) allows the use of arbitrary basis systems for control points
on kinks. The derivative of MI is

MI,α =

[
ah

1,α · ã1I ah
1,α · ã2I ah

1,α · ã3I

ah
2,α · ã1I ah

2,α · ã2I ah
2,α · ã3I

]
. (72)

• Nodes in smooth regions require only two rotational degrees of freedom. Stiffness against drilling rotations
does not arise. In this case the matrix

MI =

[
ah

1 · ã1I ah
1 · ã2I

ah
2 · ã1I ah

2 · ã2I

]
(73)

transforms two nodal rotations ∆βαI from the current global nodal basis system ãiI to the current interpolated
basis system ah

i at the integration point. Here the nodal basis systems have to be chosen aligned to the physcial
domain, as computed in Sec. 5, since only two rotations are considered. The derivative of MI is

MI,α =

[
ah

1,α · ã1I ah
1,α · ã2I

ah
2,α · ã1I ah

2,α · ã2I

]
. (74)

The variation of the current director vector (56) and its derivation (58) require furthermore the defintion of the matrix
T and its derivation

T = WT HT3 T,α = WT
,αHT3 + WT H,αT3 + WT HT3,α (75)

with W = skew d and T3 given in (69). The derivatives of these matrices are straightforward and thus omitted. The
derivation of

H = 1 +
1 − cosω

ω2 Ω +
ω − sinω

ω3 Ω2 (76)

is more involved and reads

H,α = h1Ω + h2Ω,α + h3Ω
2 + h4

(
Ω,αΩ +ΩΩ,α

)
h1 = ω,α

ω sinω − 2 (1 − cosω)
ω3 h2 =

1 − cosω
ω2

h3 = ω,α
3 sinω − ω cosω − 2ω

ω4 h4 =
ω − sinω

ω3 .

(77)
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Finally the quantities
b̂h
αβI = T̂T

I,αxh
,β T̂I,α = T,αMI NI + T

(
NI,αMI + NIMI,α

)
(78)

and
bh
αI = MT

I TT xh
,α (79)

required in (28) can be computed. For more details including the complete derivation and linearization as well as for
the resulting initial stress stiffness matrix GIK we refer to [6].

Remark 5. The transformation matrix proposed in [6] contains a statical condensation, which may cause numer-
ical problems for strongly curved elements in coarse meshes. Here this transformation is omitted, as the resulting
deformations are almost identical.

7.4. Remark on varying results between both proposed concepts
The numerical examples in Sec. 8 show that the converged deformations computed with both concepts slightly

differ for nonlinear computations, whereas they are equivalent for linear computations. The reasons for this behavior
shall be investigated in the following with the help of the formulae provided above. Concept a) relies on rotations
defined around nodal basis systems. Nodes on kinks are assigned three global rotations. In the linear case HI = 1 holds
and thus the third column of WT

I HIT3I reads a3I × a3I = 0. Stiffness arises only against rotations around the two local
rotational axes aαI . In the nonlinear case the third column of WT

I HIT3I has non-zero entries. Thus, stiffness against
rotations around all three nodal basis vectors arises, although the integration points are located in smooth regions. In
concept b), the rotations are described around interpolated basis systems in the integration points. The rotations of
the nodes are just needed as common rotational axes. Integration points are always in smooth regions and thus two
rotations are sufficient in the integration points. The transformation matrix MI ensures that only the rotations suitable
to the basis system in the integration point under consideration are inherited from nodes which are located on kinks
and require three rotations. The matrix T = WT HT3 has only two columns. Thus, only stiffness against rotations
around the two local rotational axes aαI can arise. However, for all computed examples the difference between the
converged deformations for the two proposed concepts is very small, especially in comparison to the effects of other
simplifications.

8. Numerical examples

The capability of the presented shell formulations for the computation of single patch domains is shown in [6].
There the convergence behavior is tested with linear and nonlinear computations of common benchmark examples and
with a newly defined benchmark with strong changes in curvature. A comparison between computations with con-
cept a) and concept b) for the description of rotations is given. The converged deformations computed with very fine
discretizations are equivalent in each case for all presented examples. Differences occur in the convergence behavior
of deformation results, i.e. the decrease of the deformation error for mesh refinement respectively order elevation.
For weakly curved shells and shells with constant curvatures only marginal differences in deformation results occur,
and the convergence behavior is similar for both concepts. However, for arbitrarily curved shells concept b) proved
to yield superior deformation results for coarse meshes as well as superior convergence behavior in comparison to
concept a). Only concept b) yields correct convergence behavior for order elevation with k-refinement. The superior
performance of concept b) is due to its following properties, see [6]. The exact interpolation of the reference director
vector and the subsequent rotation of this vector ensure a correct interpolation of the kinematic assumptions even for
the coarsest mesh. Differing orientations between interpolated basis systems and nodal basis systems are taken into
account for the interpolation of rotations.

The numerical examples in the following focus on the treatment of multi-patch domains with kinks and sharp
folds. The first numerical example has the intention to find an indicative limit angle for the distinction between smooth
patch transitions and kinks. The plane gravity loaded L-shaped plate tests the behavior of the shell formulations at
smooth intersections with a change in the derivatives. The channel section beam under point load shows the ability
of the formulations to capture large rotations and to transfer rotations at the intersections consistently. Reference
computations with the isogeometric shell elements of the commercial finite element code LS-DYNA are provided.
Complex intersections are tested with the pyramid under surface load. The partly clamped hyperbolic paraboloid with
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Figure 5: Simple shallow truss structure: System sketch.

stiffeners combines a curved geometry with complex intersections. With the free form surface with arbitrary curvature
and kink the quality of the deformation results for geometries with large and arbitrary curvature in combination with
kinks is compared between the two concepts. The complex geometry of this example allows to study the influence
of the limit intersection angle in the linear and nonlinear case. All computations are performed with a St. Venant–
Kirchhoff material model. For the post-processing of the numerical examples parts of the integrated design-through-
analysis workflow proposed in [8, 27] are used.

8.1. Basic numerical example: Simple shallow truss structure
With the help of the shallow truss structure depicted in Fig. 5 an indicative value for the angle of tolerance cangle

is proposed. The study of this shallow structure with a varied height allows the investigation of the transition between
shallow structures with kink and smooth structures. A limit intersection angle for the classification of treatment as
smooth transition (two rotational degrees of freedom) or as transition with kink (three rotational degrees of freedom)
has to be found. For intersection angles approaching zero the condition of the stiffness matrix deteriorates, as the
stiffness against the third rotational degree of freedom is generated by the intersection of the surfaces. However,
the treatment of an intersection – although with small intersection angle – as smooth does not represent the correct
physical behavior and is thus erroneous. A structure composed of two plane patches is chosen, as in this case minimal
stiffness against drilling rotations arises. The Young’s modulus is 2.1 · 105 with a Poisson’s ratio ν = 0.3. The
load py = 1.0 is applied as a line load over the whole apex. All degrees of freedom are held at both clamped ends.
Computations are linear. The height of the structure is varied between h = 0.001 and h = 1.0. The resulting angle α
is computed by

α = arctan (h/10) + arctan (h/7) (80)

and thus takes values between 0.01391 ◦ and 13.8407 ◦. The deformations of point A at the apex are compared. The
ratio between the maximum and the minimum diagonal entry is used as an estimate for the condition of the stiffness
matrix. Fig. 7 provides the associated error of the calculation as smooth transition relative to the mechanical correct
calculation with drilling degrees of freedom using the same discretization. In Figs. 8 and 9 corresponding results
are given for an h-refinement study with order p = 4. The results of both studies are akin, thus the conclusion is
valid for both kinds of refinement. The condition estimate for calculations with six degrees of freedom at the apex
grows exponentially for a decreasing intersection angle, whereas the deformation error decreases exponentially. The
condition of calculations with five degrees of freedoms stays more or less constant. For constant intersection angles
the condition deteriorates and the error decreases with rising order of NURBS respective mesh refinement. Depending
on the desired accuracy a limit intersection angle between 1 ◦ and 3 ◦ seems to be reasonable. The authors suggest
using a value of 2 ◦. It should be mentioned, that for this example computing a kink with an angle α = 2 ◦ as if it
would be smooth, leads only to a very small relative error in the range of 10−4 with respect to computations using
the correct classification. This alteration of the results is negligible in comparison to the effects of drilling rotation
stabilization. A broader set of different examples should be considered to attain a generally valid limit intersection
angle. The proposed value of 2 ◦ is intended to be a rough indicative value.
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Figure 6: Simple shallow truss structure: Condition estimate for k-refinement and 20 × 2 elements.

Figure 7: Simple shallow truss structure: Error of deformation at point A for calculations with five degrees of freedom at the intersection for
k-refinement and 20 × 2 elements.

Figure 8: Simple shallow truss structure: Condition estimate for h-refinement with NURBS basis functions of order p = 4.
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Figure 9: Simple shallow truss structure: Error of deformation at point A for calculations with five degrees of freedom at the intersection for
h-refinement with NURBS basis functions of order p = 4.

simply supported

detroppus ylp
mis

simply supported
detroppus ylpmis

free

eerf

x

y

z

Figure 10: L-shaped plate: System sketch and coarsest mesh.

8.2. Gravity-loaded L-shaped plate

The concept of using two distinct sets of nodal basis system is depicted with the L-shaped plate loaded by gravity
proposed in [9]. The geometry and the boundary condition are given in Fig. 10. The Young’s modulus is 200 · 109

with a Poisson’s ratio ν = 0.3 . The shell thickness is t = 0.01 . The outer four edges are simply supported, while
the two inward edges which intersect at the nook are free. An area load in negative z-direction of pz = 784.532 is
applied, which is equal to the gravity load in [9]. The domain is modeled with two NURBS patches, which are C0-
continuous along the shared edge. Thus, the first derivatives are discontinuous. Lamina basis systems computed from
the first derivatives are used to determine the nodal basis systems. Thus, the nodal basis systems are not orthogonal
with respect to the shared edge. The global nodal basis systems displayed in Fig. 11 provide unique rotational axes
for all nodes. In Fig. 12 the patch wise nodal basis systems are plotted for both patches. The abrupt change in the
first derivatives along the edge is reflected in differing nodal basis systems for the two control points associated to
nodes along the connection line. The algorithm proposed in Sec. 6 automatically chooses two rotational degrees
of freedom for the interface nodes. A convergence study for the deformation of the nook in z-direction is given in
Fig. 13. The computations with NURBS basis function of order two, four and six are conducted with concept b) for
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Figure 11: L-shaped plate: Global nodal basis systems.

Figure 12: L-shaped plate: Patch wise nodal basis systems.

Figure 13: L-shaped plate: Convergence study for the z-displacement at the nook.
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the description of rotations. However, results attained with concept a) are almost not distinguishable as the domain is
plane. Numerical Gauss integration is performed according to [28] with

ceil (p/2) + 1 (81)

per parametric direction. The reference computations extracted from [9] are of order two and use the same number
of integration points. The displacement 3.29195 × 10−3 of a computation with 64 × 64 elements of 6th order is used
as converged value. The results in Fig. 13 show the excellent convergence behavior of the proposed formulation,
especially for higher NURBS orders. This example shows that the proposed concept of two distinct sets of nodal basis
systems abolishes the need for aligned parametrizations of neighboring patches at smooth interfaces. In standard
Lagrange shell analysis with element wise nodal basis systems, the parametrizations have to be aligned, which is a
severe restriction, see Sec. 7.2. To allow the computation of complex intersections, e.g. the pyramid in Sec. 8.4,
usually drilling rotation stabilization has to be utilized.

8.3. Channel section beam under point load
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Figure 14: Channel section beam: System sketch.

The ability of the proposed formulation to handle multi-patch geometries with kinks is shown with the help of the
channel section beam proposed in [26]. The cantilevered beam is clamped at one side and a point load F is applied
at the intersection of web and upper flange at the other side. A system sketch including the center line model of the
cross-section is provided in Fig. 14. The length of the beam is l = 900 cm. The Young’s modulus is E = 21000 kN/cm2

and the Poisson’s ratio is ν = 0.3. The wall thickness is s = 1.0 cm for the web and t = 1.6 cm for the flanges.
The discretization of the coarsest mesh is chosen 18 × 1 for the flanges and 18 × 3 for the web. h-refinement is
conducted by equal subdivision of all initial elements. The order is elevated using k-refinement. The control points
on the intersection edges are automatically assigned three rotational degrees of freedom by the classification criteria
introduced in Sec. 6. All other control points require only two rotational degrees of freedom. The convergence
behavior is studied for linear as well as for nonlinear kinematics with large deformations and large rotations in the
following. The reference Lagrange-based Reissner–Mindlin shell element formulation [29] is of order p = 1 and
describes rotations similar to concept a). However, due to the lack of geometric information, the nodes have to
be classified manually. Computations with the isogeometric Reissner–Mindlin shell element of Benson et al. [11]
implemented in the commercial code LS-DYNA serve as a further reference. A current development version from
January 2014 was used for the calculations. Here the classification of nodes is avoided by using three global rotations
for every control point in combination with drilling rotation stabilization.

In the linear case a force F = 1 kN is applied. In Fig. 15 the vertical deformations ∆z of the loaded control point
are plotted. They are normalized to ∆z = −1.483700 cm. This result is attained with the proposed shell formulation
using 360 × 100 elements of order p = 6 and is used as a converged result in the following. The results of the present
formulation do not differ perceivably between the two concepts for the description of rotations, as all patches are
plane. Thus, only one curve is plotted for every order of the present formulation. In Fig. 16 the error with respect
to the converged value is given in a double-logarithmic diagram to show the behavior for fine meshes. The results
clearly show proper convergence behavior of the proposed formulation for h-refinement and for order elevation. The
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Figure 15: Channel section beam: Normalized deformation for linear computations with F = 1 kN.
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Figure 16: Channel section beam: Error of deformation for linear computations with F = 1 kN (legend see Fig. 15).
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Figure 17: Channel section beam: Deformation for nonlinear computations with F = 15 kN.
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4.3939e-3

-2.1706e+2

Figure 18: Channel section beam: Initial and deformed geometry for a load F = 15 kN with z-displacement as isosurface computed with 72 × 20
elements of 2nd order using concept b).

reference computations with the Lagrange-based shell formulation converge to the same value. For the reference
isogeometric Reissner–Mindlin shell in LS-DYNA two curves are plotted, as the deformation convergence behavior
slightly depends on the choice of the drilling rotation stabilization parameter DRCPRM. The converged deformation
has the same value as for the proposed shell formulation. It has to be noted, that all formulations yield very good
results (≥ 99.4 % of the converged deformation) even for the coarsest mesh.

In the nonlinear case a force F = 15 kN is applied in 30 uniform load steps. The vertical deformations are plotted
in Fig. 17. Here the converged values for 360×100 elements of 4th order differ between the two proposed concepts for
the description of the rotations. Concept a) results in a slightly smaller deformation ∆z = −209.05 cm in comparison to
∆z = −210.16 cm for concept b). In Fig. 18 a plot of the initial and the deformed system illustrates the magnitude of the
deformations and rotations. The reference Lagrange shell converges naturally against the same value as the proposed
isogeometric shell with concept a). The computations in LS-DYNA were performed with the preset value for the
drilling rotation stabilization parameter (DRCPRM=1). The converged deformation ∆z = −212.98 cm under the load
is slightly larger than the converged deformations computed with the proposed shell formulations. It is computed
with 360 × 100 elements of 2nd order and with reduced integration (INT=0). The differences between the three
converged displacements – concept a) yields 0.53 % smaller and LS-DYNA yields 1.34 % larger deformations than
concept b) – are very small taken into account that the problem is highly nonlinear and features large displacements
and rotations. An explanation for the difference in converged displacements between both proposed concepts can be
found in Sec. 7.4.

8.4. Pyramid under surface load

Complex intersections of multiple patches – both smooth and with kinks – are tested with the proposed pyramid.
A sketch of the geometry is given in Fig. 19. All necessary dimensions to construct the nine patches of the pyramid
are provided in Fig. 20. The three faces are modeled by three patches each to avoid the usage of degenerated patches.
The base of the pyramid is fully clamped. The height of the pyramid is 5.0 with a wall thickness t = 0.1 . A Young’s
modulus E = 2.1 · 104 and a Poisson’s ratio ν = 0.3 are used. The pale shaded front face of the pyramid is loaded
with an outward normal surface load n = 1.0 , whereas the two darker shaded back faces are loaded with an inward
normal surface load n = −1.0 . The coarsest mesh uses one element per patch. These nine initial elements are
subdivided in both parametric directions with the subdivision factor used in Fig. 21 as abscissa. The finest mesh
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Figure 19: Pyramid: System sketch with coarsest mesh.

x

y

Figure 20: Pyramid: top view of the geometry modeled with nine patches.

Figure 21: Pyramid: Tip displacement for nonlinear computations.
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computed thus consists of nine patches with 64 × 64 elements each, summing up to 36864 elements. The order of
the NURBS basis functions is elevated using k-refinement. The control points located on the patch intersections with
kinks are automatically assigned six degrees of freedom. All other control points, including those at the smooth patch
intersection within the faces, use only five degrees of freedom, as no stiffness against drilling rotations arises there.
The computation of this geometry with conventional shell elements requires the usage of drilling rotation stabilization,
see Sec. 7.2.

Linear computations of the problem setup showed – in agreement to the results of Sec. 8.3 – no perceivable
differences between computations with concept a) and concept b). The tip displacement of geometrically nonlinear
computations is plotted in Fig. 21. The displacement uy = −0.0301409, obtained with 36864 elements of 4th order
using concept b), is used for a normalization of the displacements. For the same mesh concept a) yields slightly
smaller deformations uy = −0.0301390. The computations with concept b) show good convergence behavior for
h-refinement, as well as for k-refinement. This is not entirely true for concept a). Computations with order p = 2 and
p = 3 show comparable and good behavior. But computations with order p = 4 need much more elements to reach the
same level of accuracy than with concept b). For a subdivision factor of 2 and 4 no equilibrium state could be found
with concept a). With rising order of NURBS the stability and the accuracy of concept a) decreases. The current
configuration is curved and thus, the results differ between both concepts, with concept b) yielding superior results.
This behavior is in accordance to the numerical examples published by the authors in [6]. Nevertheless, computations
with concept a) using low orders of NURBS are competitive as the formation of the stiffness matrix is less expensive.

8.5. Partly clamped hyperbolic paraboloid with stiffeners

x
y

z

cl
am
pe
d

A

Figure 22: Hyperbolic paraboloid: System sketch with coarsest mesh.

The hyperbolic paraboloid described by NURBS was firstly used in [14]. With additional stiffeners an example
is created, which combines curved geometries and kinks. The geometry is simple and easy to construct. The main
surface is described by the function

z = x2 − y2 (x, y) ∈ [−0.5; 0.5] (82)

with a shell thickness t = 0.04 . The two stiffeners are described by

y = ±0.25 z = x2 − 0.0625 − 0.1u x ∈ [−0.5; 0.5] (83)

with the surface parameter u ∈ [0; 1]. The thickness of the stiffeners is chosen s = 0.01 . A Young’s modulus E =

2.1 · 104 and a Poisson’s ratio ν = 0.3 are used. The surface is loaded with an area load in z-direction qz = −0.9 . Both
the surface and the stiffener are clamped at x = −0.5 . A sketch of the system including the coarsest mesh is provided
in Fig. 22. The twelve initial elements are subdivided in both parametric directions with the subdivision factor used
in Fig. 24 as abscissa. The distinction criterion automatically determines the nodes requiring three rotational degrees
of freedom, although those nodes are not located on the kink, as can be seen in Fig 23. Computations are performed
with NURBS of order p = 2 and p = 4, where the order is elevated by k-refinement. The initial symmetric geometry
is completely discretized to allow the occurrence of asymmetric equilibrium states.
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Figure 23: Hyperbolic paraboloid: Initial mesh with control points displayed. Nodes requiring three rotational degrees of freedom are marked with
a red filled circle.

Figure 24: Hyperbolic paraboloid: Deflection of point A in z-direction.

1.1410e-2

-1.7422e-1

Figure 25: Hyperbolic paraboloid: Undeformed mesh (not all elements displayed for clarity) and deformed mesh with bending moment m22 as
isosurface for p = 4 with a refinement factor 64 using concept b).

25



The applied load yields large deformations and large rotations. This is illustrated in Fig. 25, where the initial mesh
is given in comparison to the deformed mesh without elevation. In addition the moment m22 is plotted as isosurface
onto the deformed mesh. The rather thin stiffeners buckle locally under the applied load, which impairs the equilibrium
iteration. Nevertheless, almost all computed discretizations are able to compute the system in one load step. The
deflection of point A in z-direction is plotted in Fig. 24. The results of both concepts are very similar and show very
good convergence behavior for h- and for k-refinement. For a refinement factor 64 and order p = 4 concept a) results
in a slightly smaller deformation than concept b) (−0.198602 vs. −0.198649). The number of iterations needed is
always in the same range with no concept being superior to the other. The deformation converge behavior of this
problem setup is seriously influenced by the formation of local buckles. This fact is illustrated in Fig. 26 with plots
of the deformed structure for four meshes of 4th order computed with concept a). The deformations are superelevated
by factor 2 and the deformations in y-direction (normal with respect to the initial configuration of the stiffeners) are
plotted as isosurface. For the first mesh, with a refinement factor 2, the deformation plot given in Fig. 26a reveals

4.7826e-2

-4.7826e-2

(a) p = 4, refinement factor 2 (b) p = 4, refinement factor 4

(c) p = 4, refinement factor 8 (d) p = 4, refinement factor 64

Figure 26: Hyperbolic paraboloid: Plot of deformed structure with superelevation factor 2. Colored isosurfaces represent y-deformation (view from
below, lower right side is the clamped side).
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two inward buckles. The deformation plot for a refinement factor 4 in Fig. 26b shows still two buckles with larger
amplitude. The next subdivision step given in Fig. 26c yields a jump into the next eigenform, having one outward
buckle at the clamped side and three subsequent inward buckles. Computations with a subdivision factor 16 show the
same buckles, but with larger amplitudes. The plots for subdivision factors 16, 32 and 64 are not distinguishable from
each other by the eye. Thus, only the finest one is provided in Fig. 26d. The difference between the two concepts is
very low for this numerical example, which has constant curvature.

8.6. Free form surface with arbitrary curvature and kink

All numerical examples presented above are flat or have a rather small and constant curvature in the reference
configuration. Thus, a free form surface with strongly changing curvature and a kink is proposed. It consists of two
patches that are smooth within but joined with a kink. The angle of the kink is not constant but changes from 90 ◦

to almost 0 ◦ along the joint. This example allows a comparison of the deformation behavior between both proposed
concepts for arbitrary curvatures. Furthermore, the influence of the limit intersection angle cangle can be studied due
to the angle of the kink approaching 0 ◦. The example is an extension of the free form surface proposed in [6], which
was designed to test the proper treatment of rotations. The data needed to construct the geometry is given in Appendix
A. The lower edge (z = 0) is fully clamped, all other edges are free. The upper edge of patch 1 is loaded with a line
load py = 10. The wall thickness is t = 0.1, the Young’s modulus is E = 1.2 · 106 and the Poisson ratio is ν = 0.3 . A
system sketch is provided in Fig. 27. For NURBS basis functions with orders p = 3 to p = 5 h-refinement studies are
performed. All elements of the coarsest mesh displayed in Fig. 27 are subdivided in both parametric directions. The
subdivision factor is used as abscissa in Figs. 28 and 29.

y
x

z

py

A

Figure 27: Free form surface with arbitrary curvature and kink: System sketch and coarsest mesh.

The deformation results for linear computations are given in Fig. 28. They are normalized to a value ∆yA =

0.60002. This value is computed with a subdivision factor 64, which results in 73728 elements. The order of the
basis functions is p = 4 and concept b) is used. Both concepts converge against the same deformation. For an order
p = 3 the deformations computed with both concpets are very similar. Concept a) entails slightly better results than
concept b). For orders of p = 4 and p = 5 the situation is different. Here concept a) obviously overestimates the
deformations for subdivision factors of 8 and 16, whereas the deformations of concept b) are not distinguishable by
the eye from the converged solution. The results of concept a) deteriorate with rising order of the NURBS basis
functions. This behavior is in accordance to the findings of [6]. All computations plotted in Fig. 28 are performed
with a limit intersection angle cangle = 2 ◦. The angle of the kink goes below 2 ◦ along the common edge. Thus, for
fine meshes, depending on the value of cangle, a small number of control points on the kinks is classified wrongly as
smooth nodes. Tab. 1 provides deformation results for different values of cangle for a subdivision factor 64 and order
p = 4. For the smallest value all control points along the kink are classified correctly as nodes on kink. The deviation
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of results for cangle = 2 ◦ from those for cangle = 0.05 ◦ is in the range of 10−5 for both concepts. Thus, in the linear
case the choice of cangle has negligible influence.
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Figure 28: Free form surface with arbitrary curvature and kink: Deformation for linear computations.

cangle smooth nodes y-deformation of point A
on the kink concept a) concept b)

2 ◦ 3 0.60004559 0.60002578
0.2 ◦ 1 0.60003666 0.60001975

0.05 ◦ 0 0.60003562 0.60001974

Table 1: Free form surface with arbitrary curvature and kink: Influence of the limit intersection angle for linear computations for a subdivision
factor 64 and order p = 4.

A nonlinear convergence study is given in Fig. 29. The same load as in the linear case is applied in one load step.
The deformation convergence behavior of concept b) is, akin to the linear case, very good. All computations show
good convergence in the Newton–Raphson equilibrium iteration with a limit intersection angle cangle = 2 ◦, and in each
case 11 iterations are sufficient. The choice of cangle has only minor influence for concept b), see the right column of
Tab. 2. The numerical stability is not affected, even for very small values of cangle. The results for concept a) converge
against a slightly larger value for the deformation of point A. See Sec. 7.4 for an explanation. Computations with order
p = 3 show slightly inferior deformation convergence behavior, but here also 11 iterations in the Newton–Raphson
iteration suffice, and cangle = 2 ◦ can be used. Computations with concept a) and higher orders reveal a different
picture. For an order p = 4 computations with a subdivision factor 4 do not converge. For a subdivision factor of
64 the limit intersection angle has to be increased to prevent numerical instabilities. A value cangle = 10 ◦ has been
used. Computations with concept a) and order p = 5 do not converge at all in one load step for cangle = 2 ◦. With two
load steps and cangle = 10 ◦ equilibrium could be established, but due to the incorrect treatment of control points on
the kink as smooth the resulting deformations largely deviate from the results for 3rd and 4th order. Thus, the results
are not displayed in Fig. 29. For concept a) the choice of the limit intersection angle cangle has significant influence
on the stability of the Newton–Raphson iteration, see Tab. 2. For a subdivision factor 32 and 4th order basis functions
divergence occurred for cangle = 0.5 ◦.

For this example concept b) is less sensitive to small values of cangle than concept a). The reason for this difference
is as follows. In concept a) stiffness against drilling rotations arises only due to the intersection of the patches at the
kink. Thus for a very small intersection angle almost no stiffness against drilling rotations arises, which entails a bad
condition of the stiffness matrix. In concept b) stiffness against drilling rotations also arises due to the curvature of the
elements, which adjoin the kink. If the vector ah

3 of the interpolated basis system in the integration point deviates from
the nodal basis vector ã3I of the node on the kink, than the matrix MI defined in (71) ensures numerical stability also
for intersection angles approaching zero. This example clearly shows that for geometries with larger and changing
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curvature concept b) is superior to concept a) in terms of robustness and accuracy.
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Figure 29: Free form surface with arbitrary curvature and kink: Deformation for nonlinear computations.

cangle smooth nodes y-deformation of point A
on the kink concept a) concept b)

2 ◦ 2 0.41096483 0.40756868
1 ◦ 1 0.41094670 0.40756555

0.5 ◦ 0 divergence 0.40756441

Table 2: Free form surface with arbitrary curvature and kink: Influence of the limit intersection angle for nonlinear computations for a subdivision
factor 32 and order p = 4.

9. Conclusion

A framework for the automated computation of complex geometries with an isogeometric Reissner–Mindlin shell
has been presented. In demanding numerical examples the high accuracy and robustness of the shell formulation for
large deformations and rotations has been shown. Both presented concepts for the description of rotations showed
comparable results for the presented examples. Prior work of the authors [6] asserted, that the accuracy of computa-
tions of geometries with changing or strong curvature highly benefits from employing concept b), while for plane or
lightly curved geometries concept a) suffices. These findings also hold true for geometries with kinks and intersec-
tions. Furthermore, the easy applicability of the complete framework has been shown. The usage of drilling rotation
stabilization can completely be avoided by the combination of all proposed methods. The distinction criterion pro-
posed in Sec. 6 requires an empirical threshold parameter, which has to be chosen by the user at this time. Future work
might find a generally valid value to avoid user interaction. The decisive ingredients for the complete framework are:

• A method for the computation of nodal basis systems which are able to interpolate the director vector exactly
even in the proximity of kinks. The nodal basis systems also serve as unique rotational axes for the nodal
rotational degrees of freedom.

• A distinction criterion for an automatic classification of nodes into nodes on kinks and nodes in smooth re-
gions. Accordingly, the number of rotational degrees of freedom is assigned to ensure on the one side a proper
transmission of rotations at kinks and at the other side a proper condition of the stiffness matrix.

• A Reissner–Mindlin shell formulation which is able to handle complex geometries including kinks and allows
the intersection of patches with arbitrary parametrization. Both provided concepts for the description of rota-
tions fulfill these criteria.
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These facts allow finite element programs based on the proposed framework to make full use of the advantages of
NURBS-based isogeometric analysis. The existing information of the exact geometry can be used inside the numerical
simulation kernel to attain more realistic results. Especially in large deformation and stability analysis the omission
of drilling rotation stabilization renders results more precise and reliable.

Future work might be concerned with enriching the proposed formulation with methods to compute non-conform-
ing meshes and trimmed NURBS surfaces. Suitable methods for these objectives are presented in [30], respec-
tively [31]. With these additional ingredients arbitrary real-world NURBS models could be computed without alter-
ation of the mesh.
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Appendix A. Geometry of the free form surface with arbitrary curvature and kink

The free form surface with arbitrary curvature and kink used in Section 8.6 consists of two patches with changing
curvature. Both patches are Gordon–Coons surfaces. Thus, each patch is constructed uniquely from its four boundary
B-Spline curves. In Tab. A.1 the control points for all boundary curves are given. As w = 1 holds for all control points
B-Spline surfaces are formed. The knot vector

Ξ =

[
0, 0, 0, 0,

1
3
,

2
3
, 1, 1, 1, 1

]
(A.1)

is identical for all curves. The order of the B-Spline basis functions is p = 3 and the number of control points is n = 6.
Thus, the coarsest mesh consists of 3 × 3 elements for each patch.

Patch 1 top bottom left right
Control points 0,0,15 0,0,0 0,0,0 11,0,0
(x,y,z) 11

9 , 2
3 ,15 5,0,0 0,0,5 11,0, 8

3
11
3 , 2,15 5,5,0 0,2,7 11, 2

9 , 62
9

22
3 ,4,15 10,5,0 0,2,10 11, 17

9 , 101
9

88
9 , 16

3 ,15 10,0,0 0,0,12 11, 13
3 , 41

3
11,6,15 11,0,0 0,0,15 11,6,15

Patch 2 top bottom left right
Control points 11,6,15 11,0,0 11,0,0 20,3,0
(x,y,z) 12.8,4.8,15 11,3,0 11,0, 8

3 20,2,3
14.6,3.6,15 12,5,0 11, 2

9 , 62
9 20,4,7

16.4,2.4,15 15,5,0 11, 17
9 , 101

9 20,8,10
18.2,1.2,15 17,2,0 11, 13

3 , 41
3 20,4,13

20,0,15 20,3,0 11,6,15 20,0,15

Table A.1: Control points of the boundary curves.
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[8] J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Meth. Appl. Mech.
Engrg. 198 (2009) 3902–3914.

[9] D. J. Benson, S. Hartmann, Y. Bazilevs, M.-C. Hsu, T. J. R. Hughes, Blended isogeometric shells, Comput. Meth. Appl. Mech. Engrg. 255
(2013) 133–146.

[10] D. J. Benson, Y. Bazilevs, M.-C. Hsu, T. J. R. Hughes, A large deformation, rotation-free, isogeometric shell, Comput. Meth. Appl. Mech.
Engrg. 200 (2011) 1367–1378.

[11] D. J. Benson, Y. Bazilevs, M.-C. Hsu, T. J. R. Hughes, Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Meth. Appl. Mech.
Engrg. 199 (2010) 276–289.

[12] W. Dornisch, S. Klinkel, The interpolation of the director vector for isogeometric Reissner-Mindlin shell analysis, in: J. Eberhardsteiner
(Ed.), Proc. 6th European Congress on Computational Methods in Applied Sciences and Engineering, e-Book Full Papers, Vienna (Austria),
pp. 4556–4565.

[13] R. Echter, B. Oesterle, M. Bischoff, A hierarchic family of isogeometric shell finite elements, Comput. Meth. Appl. Mech. Engrg. 254 (2013)
170–180.

[14] R. Bouclier, T. Elguedj, A. Combescure, Efficient isogeometric NURBS-based solid-shell elements: Mixed formulation and B-method,
Comput. Meth. Appl. Mech. Engrg. 267 (2013) 86–110.
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