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Abstract

The notion of formal description techniques for timed systems (T-FDTs) has
been introduced in [EDK98a] to provide a unifying framework for description
techniques that are formal and that allow to describe the ongoing behavior of
systems. In this paper we show that three well known temporal logics, MTL,
MTL-f, and CTL*, can be embedded in this framework. Moreover, we pro-
vide evidence that a large number of different kinds of temporal logics can be
considered as T-FDTs.

1 Introduction

Formal description techniques (FDTs) are widely recommended and used tools for the
development and maintenance of software and hardware systems. Nevertheless, there
is usually the problem what FDTs should be used in a specific project. To base such
a selection of suitable FDTs on a more objective foundation our long term objective is
the establishment of an approach to the formal analysis of FDTs. To achieve this goal
the following three tasks have to be performed.

Characterization of the Description Techniques to be investigated

It has to be explained, which conditions allow a description technique to be
considered a formal one. Since an FDT cannot describe arbitrary aspects of
arbitrary classes of systems, this general notion of FDT has to be instantiated
to the application area one is interested in. This means to specify precisely
the general models that can be represented in descriptions written in an FDT.
Thus, the result of the first task is a refinement of the general notion of FDT. It
defines the class of description techniques that are interesting w.r.t. the specific
application domain considered.

*This work was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 501, “Entwicklung grofier Systeme mit generischen Methoden”.
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Definition of Criteria

To investigate concrete FDTs belonging to this class of FDTs, criteria examining
a certain aspect of them have to be defined precisely. This includes the definition,
whether or to which degree a specific FDT satisfies a criterion. Consequently,
the result of this second task is a list of criteria. Since there is a very broad range
of criteria including aspects like the difficulty of learning an FDT, it cannot be
expected, that all of them can be defined formally, even less, that this is done in
a uniform way.

Application of Criteria

To apply the criteria to concrete FDTs, it is necessary at first to embed them
in the result of the first task, i.e. in the definition of the class of FDTs one is
interested in. Next, the criteria have to be applied to these FDTs in the context
of the specific project for which they are intended to be used. The relevance of
the criteria in this context must be given, such that the attributes of the FDTs
can be combined in a useful way. As the result of this step one gets for each
considered concrete FDT a list containing the attributes assigned to this FDT
w.r.t. the applied criteria.

In [EDK98a] we dealt with the first task. There we introduced the notion of formal
description techniques for timed systems, T-FDTs for short. This is intended to be a
unifying framework for a class of description techniques that are formal and allow to
describe timing aspects of systems.

In this paper we want to provide evidence that temporal logics, a widely used and
accepted class of description techniques, are actually T-FDTs. Therefore, we show
that three well known temporal logics, namely MTL [Koy92], MTL-[ [LH95], and
CTL* [Eme90], can be embedded in the framework of T-FDTs. Moreover, we present
the embedding process in such a way that it becomes obvious that probably all kinds
of temporal logics can be interpreted as instantiations of T-FDTs. By this we do not
only provide evidence that T-FDTs can be used as a unifying framework for those
description techniques we are interested in. We also do the first step of the third
task, the application of criteria, for the three considered temporal logics, namely their
embedding in the framework of T-FDTs.

At first we repeat in the following section the definition of T-FDTs and the underlying
models introduced in [EDK98a|. The main part of this paper is Section 3. There we
show how temporal logics in general and MTL, MTL-[, and CTL* in particular can be
embedded in the framework of T-FDTs. We finish with some concluding remarks. The
appendix contains the complete proofs of the three considered temporal logics being

T-FDTs.

2 FDTs for Timed Systems

In this section we define FDTs for timed systems. We only mention the main ideas con-
cerning formality and timing aspects that are necessary to understand the embedding
of the temporal logics in the general framework presented in the following section. For
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a complete and detailed introduction of FDTs for timed systems see [EDK98a]. For
some details it is necessary to have a basic knowledge of category theory. Nevertheless,
we believe that the main ideas can be understood without this.

For a category C let | C | denote its class of objects. For the sake of simplicity we
sometimes omit the bars and write A € C for an object A in C. Analogously, we write
f:A— B € Cfor amorphism f : A — B of C. For an introduction to category
theory see [LanT1].

2.1 Formality

To our opinion a description technique is formal if it provides a formal syntaz and a
formal semantics. The formal syntax is usually given by a formal language providing
sentences that can be built. Formal semantics consists of structures and a so called
satisfaction relation between sentences and structures. This relation between sentences
and structures determines whether a sentence is valid in a structure or not.

These concepts are captured by the notion of institutions, cf. [GB92]. An institution
provides a category SIG of signatures which form the basic vocabulary to describe a
system. Formal syntax and semantics are given by functors Sen and Str from the cate-
gory SIG to sets of sentences and categories of structures over a signature, respectively.
These notions are later used when defining FDTs for timed systems.

2.2 Timing Aspects

We now concentrate on the models needed to describe timing aspects of a system.
These models are based on the notions signature and structure as they are common in
many-sorted first order logic.

2.2.1 Timed Signatures

A signature ¥ = (S, F, P, D) consists of a finite set S of sorts, sets F' and P of function
and predicate symbols, and a set D of declarations f : s — s and p : s, describing the
sorts of the arguments and the range of function and predicate symbols. A signature
morphism o : ¥ — Y consists of three functions ¢ = (og,0r,0p), mapping sorts,
function and predicate symbols compatible with the declarations of ¥ and ¥/. ¥ =
(5‘7 F,P, D) is an enrichment of a signature ¥ if the component-wise union (¥ & i) is
a signature.

Since we want to describe timing aspects we are only interested in a special kind of
signatures, called timed signatures. They provide a distinguished subsignature to rep-
resent the time model used. This subsignature has to introduce at least a distinguished
sort T representing the time domain and a relation symbol < to denote a precedence
between points of time. In addition, since all functions and predicates can depend on
time, we require, that the declaration of each function and relation symbol contains
the sort T'.
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Definition 1 (Timed Signature) A timed signature ¥ = (S, F, P, D) is a signature
which satisfies the following conditions:

1. There exists a distinguished subsignature ¥p C ¥ with ¢ = (St, Fr, Pr, Dr)
called time signature. The complement ¥p = (Sp, Fp, Pp, Dp) with ¥p = ¥\ X7
s called the defined enrichment of Y.

2. There exist a distinguished sort T' € St and a distinguished relation symbol < €
Pr with declaration <:T,T € Dr.

3. Fach function symbol f € Fp and each relation symbol p € Pp has a declaration
f:5,T— sandp:3,T, respectively, where s € Sy, 5 € S, and s € Sp.

Given two timed signatures Y and X' a signature morphism o : ¥ — Y/ is called a
timed signature morphism if it satisfies o(T) = T, 0(<) = <', and oy, : X — Xf,
is a signature morphism itself.

The category of all timed signatures with timed signature morphisms as morphisms is

denoted by TSIG.

If nothing else is stated ¥ and ¥’ always denote timed signatures and o : ¥ — ¥ a
timed signature morphism.

2.2.2 Models for Timed Systems

To represent the various timing aspects of a systems adequately, to our opinion, three
kinds of models are needed. The so called behavior models are the most important ones.
A behavior model represents one single evolution of the functions and predicates, i.e.
of the system that is considered, over time. State models are reductions of a behavior
model. Using a state model we consider the values of functions and predicates at a
specific point of time. The third kind of models, the so called system models, is needed
to express the overall behavior of a system, i.e. a system model is a set of several
behavior models. By this a system model represents the various reactions of a system
to different sequences of inputs.

Behavior Models

To define behavior models we need the definition of structures in a category theoretical
setting. As usual a structure 2 over a signature ¥ consists of a family A = (A, | s € )
of non-empty carrier sets and a mapping ¥ from the function and predicate symbols to
functions and predicates on A compatible with the declarations of ¥. A homomorphism
h between two structures 2,8 over ¥ is a family h = (hs; | s € S) of mappings
hs : A; — Bs that is compatible with the functions and predicates. STR(X) denotes
the category of all structures over ¥ with homomorphisms as morphisms.

For a signature morphism o : ¥ — ¥’ the structures over these signatures are related
by the (contravariant) forgetful functor _|, : STR(X') — STR(X). This functor assigns
to a structure A" € STR(Y') a structure A'|, = A € STR(X) such that the carrier sets
are given by A, = A’U(S) for s € S and the functions and relations by f% = J(f)ml and
p* = o(p)*. A homomorphism A’ : A’ — B’ is mapped to a homomorphism A’|, :
A'|, — B'|, in an obvious way. In the following we denote by Str the contravariant
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functor Str : SiG — CAT! which maps a signature ¥ to STR(X) and a signature
morphism ¢ to the forgetful functor _|o.

Behavior models are structures over timed signatures that interpret the time sort and
the relation symbol on it as a partial ordering.

Definition 2 (Behavior Model) A behavior model B over X is a structure over ¥
where (Br, <®) is a partial ordering.

The category of all behavior models over ¥ as objects and homomorphisms as mor-
phisms is denoted by BEH(X).

The set By will usually be referred to as the set of all time points of B. The restriction
of B to X7, denoted by By, is called the time model of B. The behavior models
over a timed signature ¥ form a subcategory of the category STR(X) of structures.
State Models

To define the state models associated with a behavior model we first have to remove
time from time signatures. Given a timed signature ¥ = Y1 U X the corresponding
state signature Xy = (Ss¢, Fst, Psi, Dst) is defined by: Ss; := Sp, Fs; := Fp, Ps :=
Pp,and Ds; :={f:5—s|(f:5T —-s) e DptU{p:5|(p:5T)€ Dp},

The state models over a state signature are derived from a behavior model by fixing
the point of time.

Definition 3 (State Model) Let B € BEH(X) be a behavior model over ¥, and t €
Br a time point. The state model Bs;, € Str(Xs:) of B at the lime point t is defined

by
1. Bstﬂf = (Bs | ENS SD);
2, [Bsee (E) — f%(g,t) for each f 15— s € Xg and all b € By,

3. pPsut(b) := p®(b,1) for each p:5 € Xs; and all b € Bs.

The category of all state models over ¥ € SSIG as objects and homomorphisms as
morphisms is denoted by STATE(X).

System Models

As system models, i.e. as the representation of the overall behavior of a system, we do
not allow an arbitrary collection of behavior models. Instead we require the behavior
models to have the same carrier sets and the same time model.

Definition 4 (System Model) Let & C BEH(X) be a non-empty set of behavior
models. & is called a system model over ¥ if the following holds for all B, B’ € &:

1. By = B! for all s € Sp,
2. By, = B'|n,.

The class of all system models over ¥ is denoted by SYS(X).

LCAT is the category having categories as objects and functors as morphisms, see [Lan71] for details.
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It is possible to define system homomorphisms between system models using so called
system products, see [EDK98a]. Here we only need system products. A system product
is a special behavior model that compromises the behavior models of a system model
in a single behavior model.

Definition 5 (System Product) Let &S = {B; |1 € [} € SYS(X) be a system model
over ¥ and I an index set. The system product [[s(B; |7 € I) € BEH(X) of & is the
behavior model A € BEH(Y) defined by

1. Als, := Blx,, where B € &,

2. A :=1[(Bis|i€1) forall s € Sp,

3. fAa,t) =[P (@@),t) |1 €1) forall f:5,T —s€Xp,ac As, andt € Ar,
4. p2(a,t) :iff pPi(a(i),t) for alli € I, for allp:5,T € ¥p, @ € A5, and t € Ay,

where a € A, denotes a function o : [ — W{B;, | i € I} with a(i) € B; s for all i € 1.

FDTs for Timed Systems

Combining the idea of formality expressed by institutions with the models introduced
to express timing aspects of a system leads to the definition of the notion of FDTs
for timed systems. For a deeper motivation of the several conditions stated in the
following definition we refer to [EDK98a]. Here we only mention that the coincidence
and isomorphism condition are required for each kind of FDT. They express that
truth is invariant under change of notation (see [GB92|) and under isomorphisms of
structures, respectively. The other three conditions result from the specific timing
models we consider here.

In the following definition SET denotes the category of all sets as objects and mappings
between sets as morphisms. Taking categories themselves as objects and functors as
morphisms, the category CAT is obtained.

Based on a satisfaction relation |= the theory of a set £ of sentences, Th(R£), is defined
as for first order logic.

Definition 6 (FDTs for Timed Systems) An FDT F consists of

1. a non-emply category S1Gx, whose objects are called signatures,

2. a functor Senx : SIGr — SET,

3. a contravariant functor Stry : SIGF — CAT?,

4. a family of relations =z x5 C |Strz(X)| x Senz(X)? called satisfaction relations,

such that the following conditions hold for all A,B € Strz(X), A € Strx(Y), ¢ €
Senr(X), and 0 : ¥ — X' € SIGr:

e coincidence condition: A’ =r 5 Senz(o)() iff Strr(o)(A) Exrs ¢,

2Strictly speaking CAT needs to include ‘large’ categories. As in [GB92] we refer to the ‘hierarchy
of universes’ discussed in [LanT71].
3Instead of (2, ) € Er s we write as usual 2 =7 5 ¢.
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e isomorphism condition: A =B and A Exx ¢ implies B Exrx ¢.
An FDT for timed systems F (T-FDT for short) is an FDT fulfilling

e signature condition: SIGz = TSIGz W SS1G £, where TSIGF C TSIG,
SS1G = C SSIG, and VY € SS1Gx I¥' € TSI1GF ¥ = ¥,

BEH(X f ¥ e TSiG
e structure condition: Strz(X) C (%) Zf c d
STATE(Y) if ¥ € SSIG#

and Strz(o) = Str(o) for all o : ¥ — ¥’ € SiG,

e system product condition: V¥ € TSIGx and each system model {B; |+ € [} C
|Strz(X)] with [[5B; € |Str£(X)| it holds that Th({B; |: € I})=Th([[sB:).

3 Temporal Logics as T-FDTs

In this section we provide evidence that the description techniques usually called tem-
poral logics belong to the class of T-FDTs. Temporal logics are widely used and
accepted description techniques for the specification of systems where timing aspects
are important. Temporal logics are special cases of modal logics where the relation on
the set of possible worlds is required to be a partial ordering.

From the way T-FDTs are defined it could be expected that temporal logics fit nicely
into this framework. Since there exists a large variety of different temporal logics it is
not possible to prove this for each single temporal logic. In the following we show that
three well known representatives are actually T-FDTs, namely MTL [Koy92], MTL- [
[LH95], and CTL* [Eme90|. During the presentations of the embedding process we
explain why we believe that this process can easily be transferred to other temporal
logics. This is an experience we made by adopting the proof for MTL, the temporal
logic we have considered at first, to CTL* and MTL- [. Moreover, the three selected
temporal logics cover many different aspects. This is emphasized in 3.1 where all three
temporal logics are briefly introduced.

To show that a description technique F is a T-FDT it is necessary to instantiate the
definition of a T-FDT. This means to provide definitions of the categories of signatures
SS1G 7 and TSIG £, the functors Senr and Strz, and the family of satisfaction relations
Erx. It has to be justified that this characterization as a T-FDT corresponds to
the original definition of F. Furthermore, it has to be proven that the conditions
of Definition 6 for FDTs in general and for T-FDTs in particular are satisfied. The
instantiations are presented in 3.2 and the proofs are outlined in 3.3. The full and
detailed proofs can be found in the appendix.

3.1 Imtroduction into MTL, MTL- [, and CTL*

Metric Temporal Logic (MTL) is a propositional temporal logic introduced by Koymans
in [Koy92|. After that many authors have used this term to denote temporal logics using
temporal operators with time bounds (see e.g. [AH90]). In contrast to the traditional
temporal operators MTL provides so called bounded operators to express quantitative
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timing properties. While for example the formula @l only states that eventually
will become true and that up to this time point ¢ is valid, the formula pl{<; 1) requires
additionally that ¢ has to become valid within the next 7 time units. In the next
sections we follow mainly the original approach of Koymans, but from the large set of
possible temporal operators we consider only the future operator U (until). Based on
it the other future temporal operators can be defined in the usual way. Therefore this
restriction is not a substantial one. Adding the past operator S (since) is conceptually
not difficult, but would blow up the proofs.

MTL-[, introduced by Lakhneche and Hooman in [LH95], is an extension of MTL that
allows the specification of properties aboul duration of system’s states [LH95]. The
term ", for example, represents the entire time the formula ¢ is valid during the
next r time units. Then the formula ["¢ < 11 expresses the property that this time
does not exceeds eleven time units. In contrast to MTL, MTL-[ also allows existential
quantification over variables ranging over real numbers. Thus, MTL-[ is that what
Emerson calls an interpreted First-order temporal logic [Eme90]. Another well known
description technique that allows to express properties about durations is the duration
caleculus [CHRI1, HCI1]. In [LH95] it is proven that every formula of the duration
calculus can be translated into an equivalent MTL-| formula. Furthermore, in [LH95]
it is shown that MTL-[ is more expressive than the duration calculus.

As MTL, the Computational Tree Logic (CTL*), introduced by Emerson in [Eme90] is
a propositional temporal logic. While MTL and MTL-[ provide a linear time model
CTL* is based on a branching one. Furthermore, CTL* provides no means to express
quantitative timing properties. We follow mainly [Eme90| but use the same basic
operators for the propositional part as for MTL and MTL-[. Furthermore, we consider
only the universal path-quantifier A and omit the existential one, E, which can be
defined in the usual way using A, viz. Ep = ~A—¢. Both changes are syntactical ones
and do not alter CTL* substantially. They are made in order to simplify the proof
that CTL* is a T-FDT. In the following we expect the reader to be familiar with the
considered temporal logics.

3.2 Instantiating the Categories and the Functors

According to the definition of a T-FDT the following entities have to be instantiated
for each temporal logic F:

o the category SIG, i.e. the categories TS1G# and SSIG £,

e the functor Senz : SIGr — SET,

e the functor Strr: S1IGF — CAT, and

e the family of satisfaction relations =5 #C |Strz(X)| x Seng(X).

We refer to all three temporal logics by TL.
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3.2.1 Instantiation of SIGr

With regard to the signature condition of Definition 6 it is naturally to define T'SIG 7y,
as a subcategory of TSIG by requiring additional conditions on timed signatures and
on the signature morphisms contributing to TSIG 7.

We have made the experience that the sorts as well as the function and predicate
symbols of a signature in TSIG 7y, can be classified into three groups. The first group
is summed up in a time signature Yp. It consists of all entities needed to define
the time model of the temporal logic and is different for each temporal logic. The
other two groups are special enrichments of such a signature and belong to the defined
enrichment ¥p. The first kind of enrichment is the so called propositional enrichment.
It provides the entities for the definition of the basic (untimed) propositional calculus,
which can be defined in the same way for all three temporal logics. The entities of
the second, so called term enrichment are used for the construction of special terms
needed by a temporal logic. In the case of MTL-[ this term enrichment is needed to
construct duration and first-order terms. Concerning MTL we use the term enrichment
to construct the terms that can occur as indices of the until operator. While ¥ and
the propositional enrichment have to be non-empty, the term enrichment can be empty

(see e.g. the definition of CTL*).

Time Signatures

Since all three temporal logics use different time models they differ in their time sig-
natures.

MTL as defined by Koymans provides an abstract linear time model allowing to handle
quantitative temporal properties by measuring the distance between two time points.
Therefore, in addition to the sort 7" and the predicate symbol < we need a function
symbol d to express this distance. Furthermore, the range of d has to be determined
using a sort A. To express later in the definition of Stryrp, i.e. in the definition of
the MTL behavior models, the conditions on the domain associated with A the two
function symbols + and 0 are needed additionally.

Definition 7 (MTL Time Signature) A time signature Xr = (St, Fr, Pr, Dr) is
an MTL time signature if it fulfills the following conditions:

.ST:{T,A} .FT:{d,—I-,O} .PT:{<}
e Dr={d:T.T - A;+: AJA = A;0:— A< T T}

The time model of MTL-[ is a specialization of the abstract MTL time model. In the
case of MTL-[ the domains associated on the one hand with the time points and on
the other hand with the metrical space are both the nonnegative reals R>,. Therefore,
the sort A and the symbols d,+,0 for stating properties of the domain associated
with A are not needed in MTL-[. As an extension of MTL time signatures in MTL-[
the length of the interval that is considered can be bounded. To express this length
a function symbol ¢ is needed ranging over the domain assigned to the sort L. We
need an additional sort because the range assigned to L contains in addition to the
nonnegative reals also a new element co. This element is needed to express unbounded
intervals.
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Definition 8 (MTL-[ Time Signature) A time signature St = (St, Fr, Pr, Dr) is
an MTL-[ time signature if it fulfills the following condilions:
o Sp={T,L} o ' = {6} o Pr={<} e Dr={6:— L;<: T, T}

CTL* provides a branching time model with the only restriction that all branches have
to start at a common time point. To express this later in the definition of Strorrs only
the additional function symbol 0, representing this starting point, is needed.

Definition 9 (CTL* Time Signature) A time signature Xp = (St, Fr, Pr, Dr) is
a CTL* time signature if it fulfills the following conditions:
o Sy ={T} o Fp ={0} o Pr={<} e Dr={0:->T;<:T,T}

Propositional Enrichment

Each timed signature of each considered temporal logic has to contain a propositional
enrichment. It consists of the sort B, the two function symbols frue and false, and
a finite set PL = {p1,... ,p,} of function symbols, so called propositional letters (or
observables). Such observables are usually used to model conditions that can change
over time, e.g. an observable occupied can represent the situation whether a person is
in a particular room or not. Based on these entities we define later the functor Stryp,
so that the interpretation of them results in the usual boolean structure.

Definition 10 (Propositional Enrichment) Let X7 be a time signature. A propo-
sitional enrichment ¥p = (Sp, Fp, Pp, Dp) of X1 is given by
e Sp = {B} o Fp = {lrue, false} W PL with PL = {py,... ,p,} forn € N
.Pp:® .Dp:{fT—>B|f€FP}

Note, that for the sake of minimality it would be sufficient to require only one of the
two function symbols true or false to be in Fp. Furthermore, we want to point out
that within our framework it is not possible to introduce true and false as predicate
symbols with the declaration true, false : T'. Defining them this way would result in
0-ary predicate symbols when constructing the corresponding state signature which are
not allowed.

Term Enrichment

Concerning CTL* all components needed for the definition of the CTL* specific timed
signatures are introduced so far. In the case of the two metrical temporal logics a
further term enrichment is needed. For MTL this is a set Frp.,,, of function symbols
to construct the terms that can occur as indices of the until-operator U as for example
in the formula ¢ U4y, 14,90. Here, t; + t5 is the index term of U.

Definition 11 (MTL Term Enrichment) Let Y1 be an MTL time signature. An

MTL term entichment of Y7 is an enrichment SYMTL = (Sqm, Frerm, Preems D Term)
defined by:

e Srm =10 o From ={f1,--- s fu},meN

® Proym =10 ¢ Dy = {f : A* T - A | f € Fropm, k € N}
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Since MTL-/ allows only nonnegative real numbers and the infinity-symbol oo to occur
in the index of the until operator & or the since operator S, e.g. U<, or S4y91, we do
not need a similar term enrichment for the indices in MTL-[. Nevertheless, MTL-[ is
a first-order temporal logic that allows to compute values over the time domain and to
relate them to one another. To construct these terms and formulae a term enrichment

EAT/Zi_f is needed. For example in the MTL-[-formula ff(4)p(y) < g(z) we have that

f(4), g(z), and ff(4) p(y) are such terms that when evaluated represent values over the
time domain. In this example f and ¢ are term function symbols, x and y are term
variables, and p and < are term relation symbols.

Definition 12 (MTL-[ Term Enrichment) Let Y1 be an MTL-[ time signature.
An MTL-[ term entrichment of ¥ is an enrichment

MTL-
ETermf = (STETTYH FTerm7 PTerm, DTerm) deﬁned by
o STerm = {R}
o Fropn = Var W Func, where Var and Func are sets of term variables and term

function symbols, respectively.

® Pr.. is a sel of term relation symbols.

L] DTerm = DVM ) DFunc & DRel with DVM = {l’ T — R|l’ € VCLT’}, Dpum = {f :
RFT — R| f € Fropm,k >0}, and Dpoy = {p: B*,T | p € Preym,k > 1}

Timed Signatures

Summing up the three groups of entities for each temporal logic leads to the following
definition of the classes of timed signatures. The union of the signatures and enrich-
ments is done component wise.

Definition 13 (Timed signatures) A timed signature ¥ = (S, F, P, D) is a timed
signature of the corresponding temporal logic if it is the disjoint union of the mentioned
componenls.

1. MTL: an MTL time signature SMTL a propositional enrichment Yp, and an
MTL term enrichment XML .

Term’

2. MTL-[: an MTL-[ time signature E?TL_I, a propositional enrichment Yp, and
an MTL-[ term enrichment pMIL

Term

3. CTL*: a CTL* time signature SSTY" and a propositional enrichment Yp.

Based on the timed signatures we can now define the corresponding subcategories of
TS1G. In addition to the restrictions stated in Definition 1 we require for the morphisms
of each category that they leave the boolean function symbols true and false unchanged.

Definition 14 (Categories TSIG vz, TSIG yr7yp, TSIG o712) The category with MTL/
MTL-[ /CTL* timed signatures as objects and the corresponding signature morphisms
oY — Y with o(false) = false and o(lrue) = true as morphisms is the category

TS1G prr/TS1G 7Ly /TSIG O 7L
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State Signatures SSIG 7y,

Since the main purpose of a temporal logic is to describe how the behavior of a system
evolves over time all three considered temporal logics do not support to refer directly
to single states. Therefore, the category SSIGry is for all three temporal logics the
empty category. We expect that this can be done for all temporal logics when showing
that they are T-FDTs. Consequently we have S1G 7, = TSIG 7.

3.2.2 Instantiation of Sirr

Since we require SSIG 77, to be the empty category we have to define the functor Stryg,
only for the timed signatures. With regard to the structure condition of Definition 6 we
define Stryy as a restriction of the functor Str. The interpretation of the propositional
enrichment is the same for all three temporal logics.

Definition 15 (Propositional Behavior Model) Let ¥ be a timed signature that
can be split into three disjoint parts ¥ = YXp W Xp W X, where X is a time signature,
Y p a propositional enrichment of X7, and X, an enrichment of ¥p. A behavior model
A= (A, %) over ¥, A € Beh(Y), is a propositional behavior model over ¥ if it fulfills

the following conditions

1. Ap = {TRUE, FALSE}
2.Vt € Ay : (true®(t) = TRUE and false*(t) = FALSE)

The notion rigid, defined below, is used to simplify the remaining conditions, especially
those required for the interpretation of the symbols of the term enrichments. Informally
spoken, a function or predicate is called rigid if it is invariant under time. For instance
the interpretation of the symbols of the term enrichments are usually required to be
rigid. This means that for example the usual arithmetic operations +, —, *, / have to be
time independent and have to compute always the same result for the same (non-time)
arguments.

Definition 16 (Rigid) Let ¥ be a timed signature and A € Str(¥) a structure over
Y. Further let f and p be a function and predicate symbol of ¥p, respectively, with the
declaration f: Sy,...,5,, T — S andp:5,...,5,,T,n>0, m>0.

2 s rigid iff Vi, U € Ar,Va € As, x ... x As, : fHa,t) = fHa,t').

pt is rigid iff Vi,t' € Ap, Va € As, X ... x As,, : (a,t) € p* iff (a,t') € p*.

Based on propositional behavior models we now define for each temporal logic a specific
category of behavior models.

Definition 17 (MTL Behavior Model) Let ¥ € SiGyry, be an MTL timed signa-
ture. A propositional behavior model A = (A, *), A € Str(Y), is called an MTL
behavior model over ¥ if it fulfills the following conditions:

1.Vf € Fropm [ is rigid.
2. (Ar,<¥) is a total ordering.
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3. d¥ is surjective.
4. VLU e A o ALY =02 iff t=1t o BA(1,t")=d*,1)
o ift <* U <* " then d¥(1,t") = +¥(d¥(t,1 ) A1)
5.96,8.6"€ Ax: o +%(8,8) = +%(8,5) . +9‘ (6,0%) =
o +%(8,+X(&, ") = +¥(+%(4,4),6")
o +2(6,8) = +%(8,8") ~ &' = §"
o +%(8,8") =0~ 6 =0% and §' = 0%
o 35 € Ap : +2(6,6) =6 or +%(6,8) = &

The category with MTL behavior models over an MTL timed signature ¥ as objects
and the corresponding homomorphisms as morphisms is denoted by BEH 7z (X).

Condition 1 requires all functions symbols of the term enrichment to be rigid. Concern-
ing the time model the conditions are directly taken from [Koy92]. At first, Koymans
requires that (Ar, <?) is a total ordering. According to [Koy92] the surjectivity of d
is demanded to gel a nice correspondence between T and A, i.e. between Ar and Aa.
Condition 4 demands the usual conditions of a metric apart from the replacement of the
triangular inequality by a conditional equality. Condition 5 requires several properties
of the function —I—QL, e.g. that it is commutative and associative.

The relations <%, >% and >% are derived from <* as usual. Furthermore we use the

relations <%, <% =% C A x Ax. <% is defined by: § <* § :iff 36" : §' = §+26". The
relations <% and =% are derived from <% as usual.

Definition 18 (MTL- [ Behavior Model) Let ¥ € SIG yrp be an MTL-[ timed
signature. A propositional behavior model A = (A, ), A € Str(X), is called an
MTL-[ behavior model over ¥ if it fulfills the following conditions:

AT = RZOJ AR = R, and AL = RZO W {OO}
<% is the usual ordering on R.

The elements of Frep,, and Pre,.,, are rigid.

T o~

finite variability:

Vp € Fp, Vt € R there is a finite partition [to, 1), [t1,12),. .. ,[tn 1:1n), n €N,
by =1, to =0, of [0,1) with Vi,0 < i < n (¥ € [titix1) : p*(t) = TRUE) or
(VI € [ti,tig1) : p*(1) = FALSE))

The category with MTL-[ behavior models over an MTL-[ timed signature ¥ as objects
and the corresponding homomorphisms leaving the carrier sels invariant, i.e. Vs €

{T,R,L} ¥r € As: hy(r) =1, as morphisms is denoted by BEHMTL-[(E)-

Similar to MTL we require the structures in Strypz.p(¥) to interpret the symbols of
the term enrichment rigidly. The rest of the conditions dealing with the time model
mainly determine the domains assigned to the sorts. Additionally, the finite variability
condition excludes zeno behavior models in StrMTL_f(E) and 1s important for the inte-
grability of boolean formulae (see [LH95]). The restriction concerning the morphisms
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is necessary since MTL-[ fixes the carrier sets to be exactly those sets stated in the
definition and nothing else; even isomorphic carrier sets are not allowed.

To define the time model of CTL* formally we use the following terms. Let (5, <) be
a partial ordering. s € S is the minimal element of S iff Vs’ € S : s’ #£s~s <. A
subset ' C S of S is a path of (S, <) iff (C,<'), <'=< N(C x C), is a total ordering.
D is a fullpath of (S5, <) if it is a mazimal path,ie. Vs € S\ D,3d € D:s £ dNd £ s.
Let 2l be a behavior model. Then dsucc : Ay — 247 the function assigning the set of
all direct successors of a time point ¢ to ¢, is defined by dsucc(t) = {¢'|t' > t A =31" :
LA <2y

Definition 19 (CTL* Behavior Model) Let ¥ € SiGers be a CTL* limed sig-
nature. A propositional behavior model A = (A, ), A € Str(¥) is called a CTL*
behavior model over ¥ if it fulfills the following conditions:

1. (A, <*) is a partial ordering.

2. 0% is the minimal element of Ar.

3. For every fullpath C of (Ar,<¥): (C,<?* N(C x ) is isomorphic to (N, <M).
. dsuce(t) £ 0 for allt € Ar.

5. VUt £~ dsuce(t) N dsuce(t’) =0

PV

The category with CTL* behavior models over a CTL* timed signature Y. as objects
and the corresponding homomorphisms as morphisms is denoted by BEH cpp(X).

Since a CTL* timed signature does not contain a term enrichment all conditions deal
with the time model. Condition 2 requires a common start point for all branches.
Condition 3 determines the time model of a single branch. Conditions 4 and 5 restrict
the way in which the time model can branch.

For each CTL* behavior model 2 € Strori(X) we use FP(2) to denote the class of all
fullpaths of (A7, <?). Since every fullpath in FP(2) is isomorphic to N according to
the previous definition we use the convention that = = (to,¢1,%2,...) € FP(2) denotes
a fullpath and that z* denotes the i-th suffix path (¢;,#;41,...) of z. Note, that for each
fullpath = € FP(2) we have t, = 0%. The suffiz closure FP,. () of FP(2) is given
by y € FP..() iff 3z € FP(2) and 3i € N with y = 2'. We refer to the elements of
FPs () as tracks (of A). hd(y) denotes the first element of a track y.

Based on these categories of behavior models and the general functor Sir for each of
the three temporal logics the functor Stryy is defined as follows:

Definition 20 (Functor Stryr) The functor Stryr: SiGrr, — CAT is given by
Strrr(Y) := BEH7(X) and Strop(o) := Str(o).

That this is actually a well defined functor is shown by the proof of the structure
condition (see Theorem 38). The problem is the assignment Strrz(o) := Str(o). By
this we assign to a signature morphism o : ¥ — ¥/ the forgetful functor |, : Str(¥') —
Str(X). That this is well defined we have to show that given a TL behavior model 2’
over ¥/, i.e. A" € Stry(Y') = BEHp(Y'), then also 2 := |, is a TL behavior model
over ¥, i.e. A € Strr(Y) = BEH74(X). Otherwise, we can not assign |, to o by the
functor Stryy,.
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3.2.3 Instantiation of Senr

Concerning the objects for all three temporal logics the functor Senpy can easily be
defined based on the usual syntax definitions given for the temporal logics. To em-
phasize the common principal construction of sentences of temporal logics we split the
object part of the definition of Senyy into four parts. We expect that for almost all
temporal logics these four parts can be identified.

o A functor Termyp specifying special terms that are not considered as sentences
on their own, but are needed to construct the set of sentences. Usually this
functor is based on the term enrichment of a timed signature.

o A set I'ry, of so called connector symbols that allow the combination of sentences
to more complex ones.

o A functor AtSen py, specifying the set of the so called atomic sentences. An atomic
sentence is a sentence that contains no connector symbol.

o A functor Senyy specifying the set of all sentences. Senypp is always defined
recursively starting with the atomic sentences and using the connector symbols
to build more complex sentences.

The morphism part of the functor Sen 7, extends in all cases the underlying signature
morphism in a natural way. Since this construction is very similar for all three temporal
logics we present the morphism part only for MTL.

In the following we give the definitions of these four parts for each temporal logic
separately.

MTL

At first we introduce a functor Term 1, specifying the so called index terms that can be
used as indices of the operator &/. These terms are not considered as sentences on their
own but are necessary to construct the set of connector symbols I'yr77, 5 associated with
a signature. Usually these terms are “small” terms, i.e. typical examples are constants
7 or the addition of two constants, 7 + 7. Nevertheless, more complex terms are
possible.

Since all functions assigned to function symbols of the term enrichment are required to
be rigid the time sort is omitted in the following definition. This means that in an index
term a function symbol of the term enrichment is used with an arity that is one less
than the arity given in the declaration of the term enrichment. Instead of having for
example the connector symbol U,y with Viy, 1 : 7(41) = 7(%2) the connector symbol
U, 1s used.

Definition 21 (Functor Term 7, Index Terms)
The functor Termyrr, : SIGyTL, — SET is given by:
Termyrr(X) is the least set fulfilling the following conditions:

1. f € Termuyrr(X) for all f € Frepm with f: T — A € Dryer,

2. if ty,... oty € Termuyrp() and f € From with f 2 A*T — A € Dy then
f(tl, e ,tk) € TermMTL(E).
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¢ € Termyrr(Y) is called an index term over .
On the morphisms of S1Gyr, we define Termyry as follows. Lel o : X — Y be a

signature morphism. For t € Termyrr(X) we define Termyrr(o) @ Termyrn(Y) —
Termyrr(X') by:

1odft=fwith f: T — A€ Drpepm then Termyrr(o)(f) :=o(f)

2.4ft= f(t1,...tn),n > 1 then
Termyrr(o)(f(ty ... tn)) = o(f)( Termyrr(o)(t1), ..., Termyrr(o)(tn))

The set of the connector symbols consists of the implication symbol — for the proposi-
tional basis and the temporal operator U extended with index terms. To focus on the
main ideas, especially when proving the conditions required for a T-FDT in the next
section, we consider here only the future part of MTL. As already mentioned adding
the past operator § is conceptually not difficult, but would blow up the proofs. In the
case of MTL-[ we consider the operator S, too.

Definition 22 (Connector Symbols) Let ¥ € S1G y7y be an MTL-signature. The
alphabet T yrr s of connector symbols over ¥ is given by:
Pyrps = {2} U{Uec| ~ € {<, =, =}, c € Termuyri(2)}.

The set of the atomic sentences corresponds with the function symbols of the proposi-
tional enrichment.

Definition 23 (Atomic Sentences) The functor AtSenyrr : SiGyr, — SET is
given by AtSenyr(X) := Fp.

On the morphisms of S1Gyry, we define AtSenyrr as follows. Let o @ X — X' €
SIGuTr be a signature morphism. For ¢ € AtSenyri(X) we define AtSenyri(o) :

AtSenyri(Y) — AtSenyrr(Y') by AtSenyri(o)(¢) == o(y).

The functor Senp;rr is now the natural extension of AtSenyrp using the set of con-
nector symbols.

Definition 24 (Sentences) The functor Senyry : SIGyrr, — SET is given by:
Senyrr(X) is the least set fulfilling the following conditions:

1. AtSenMTL(E) Q SenMTL(E),

2. ’Lf 99,@/) € SenMTL(E) and @ € FMTL,E then @ D ?7/J € SenMTL(E).
On the morphisms of SI1G yrr, we define Senyrr as follows. Let o : Y — X' be a signa-
ture morphism. For ¢ € Senyrr(X) we define Senyrr(o) @ Senyrn(X) — Senyrn(X)
by:

1. if ¢ € AtSenyrr(X) then Senyrr(o)(p) := AtSenyrir(o)(p),

2. if ¢ = b1 — g then Senyrr(o)(¥1 — ) = Senyrr(o)(¥1) — Senyrr(o)(a),

3. if o = vilhacthy, ~ €{=<,=,=},c € Termyrr(X) then
SenMTL(U)(¢1u~c¢2) = SenMTL(U)(¢1)u~TermMTL(a)(c)SenMTL(U)(77/}2)-
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MTL-[

In the case of MTL-[ so called duration terms are needed to express duration proper-
ties. Basic duration terms are the real numbers R and the term variables Var of an
MTL-[ term enrichment. Besides the usual recursively constructed terms using the
term function symbols of an MTL-[ term enrichment MTL-[ provides duration terms
of the form [ where 7 is a duration term and ¢ an MTL-[ sentence, i.e. a common
formula. As defined later in Definition 34 [7 ¢ represents the time ¢ is valid during
the next 7 time units.

Analogously to MTL we omit in a duration term the time argument. Since MTL-[
sentences are needed to construct duration terms of the form [7 ¢ we have already to
refer to the functor Sen . defined below.

Definition 25 (Duration Terms) The functor Termyrpy @ SlGyrpy — SET is
given by:
TermMTL_f(E) is the least set fulfilling the following conditions:

1. R g TeTmMTL—f(E);
2. Var C Termyrry(¥),

3. ifty,.. ., € TermMTL_f(E) and g € Frepm, with g : R*, T — R € Dy, then also
g(tl, [ tk) € TeTmJWTL—f(E);

4 if p € Senyrpy(X) and t € Termyrp(X) then also ftcp € Termyrr(2).

¢ € Termyppg(X) is called a duration term over Y.
On the morphisms of S1G yrrp.p we define Termyrry as follows. Let o : ¥ — X be a sig-
nature morphism. For ¢ € Termyrp(X) we define Termyrrp (o) @ Termpyppp(3) —

Term yppp () by:

1. if ¢ € R then TermMTL_f(a)(go) =,

2. if p € Var then Termyrrp(0)(p) == o(p),
3. if o= f(t1,...tn),n > 1 then
Termyrpp(0)(f(trs - 5 t0)) = o(f)(Termurrrp(o)(tr), . -, Termpyrrp(0)(tn)),

4. if o= ft Y then TermMTL_f(a)(ft Y) = fTermMTL‘f(U)(t) Sen yrrpp(0) ().

Besides the common logical connectives =, V, and 3 and the classical indexed temporal
operators ¢ and S, MTL-[ also provides the operator C. This operator allows to
combine two time periods and by this the formulation of a compositional proof rule
(see [LH95] for details). The satisfaction relation |=ypy g s is later defined so that a
formula ¢1Cyp2 holds if the future can be divided into two periods: a first period that
satisfies 1 and a second one satisfying ;.

Definition 26 (Connector Symbols) Let ¥ € S1Gypp be an MTL-[ timed signa-
ture. The alphabel Uyrrp s of connector symbols is given by
Uyrrg s = {=V,C3U{Tz|z € Var}U{Uz;, S«r|m € RyoU{oo U {U=r, S=;[7 € R0}
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As usual for first order temporal logics the set of basic formulae, i.e. the atomic sen-
tences in our framework, associated with an MTL-[ timed signature ¥ consist of the
set of observables Fp of the propositional enrichment of ¥ and the expressions using
relation symbols and duration terms as their arguments. The final set of sentences are
defined recursively as usual.

Definition 27 (Atomic Sentences) The functor AtSenyppy @ SIGygp — SET is
given by AtSenJWTL—f(E) = FP U {r(tla"' 7tk)|r € PTerm with r : Rk7T S DRelati S
TeTmJWTL—f(E)}-

Definition 28 (Sentences) The functor Senyry.g: S1Gyrpp — SET is given by:
Senyrrp(X) is the least set fulfilling the following conditions:

1. AtSGnMTL_f(E) g SenMTL-f(E);
2. if p € Senpppp(X) and © € {=} U {3z |z € Var} then ©p € Senyp(¥),

3. if p,b € Senyppp(X) and © € Uyppyp s \ ({-F U {3z | 2 € Var}) then o © ¢ €
SenMTL-f(E)'

CTL*

In the case of CTL* the timed signatures provide no symbols to construct special terms.
Therefore, only the connector symbols and the two functors AtSen oy and Sen crpx
have to be defined. In contrast to the two metrical temporal logics the set of connector
symbols of CTL* is independent of a specific signature.

Definition 29 (Connector Symbols) Let ¥ € SiG oy be a CTL*-timed signature.
The alphabet T orr+ of connector symbols is given by U'crp := {— A, X, U}.

Definition 30 (Atomic Sentences) The functor AtSencrrr : SIGerp» — SET is
given by AtSen cri+(X) := Fp.

In conformity with [Eme90] we inductively define besides the functor Sen or+ an addi-
tional functor PSen cpy» @ SIG o+ — SET. Sencrr+(X) is the language associated with
a CTL*-signature and contains the so called state formulae. PSencrp+(X) consists of
the so called path formulae. They are only needed to construct state formulae but do
not contribute directly to the set of CTL* sentences. The difference between these
two groups of formulae results from the way in which a formula is interpreted: a state
formula over single stales, represented by a specific time point of a CTL*-structure,
and a path formula over paths of a CTL*-structure, see Definition 36.

Definition 31 (Sentences) The functors Sencrp @ S1G et — SET and PSencrpx :
SI1G or» — SET are given by:
Sencrir(X) and PSencrp+(X) are the least sets fulfilling the following conditions:

1. AtSengTL*(E) Q SenCTL*(E),

2. Zf P1, P2 € SGHOTL*(E) then ©1 — P2 € SGHOTL*(E),

3. ’Lfl/) € PSGnCTL*(E) then A@/} € SenCTL*(E),
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4. SencTL*(E) - PS@”CTL*(E);
5. if 1,19 € PSencorp(X) then ooy — 1y € PSencrp=(X),
6. if 1,9 € PSencrp(X) then Xy € PSencrp+(X) and ¢1Upg € PSencrp+(X).

Note, that PSencrp+(0) restricted to state formulae, i.e. to Sen oz (¥), coincides with
Sen GTL*(U)-

3.2.4 Instantiation of =y

Analogously to the previous instantiations there is a scheme for the specification of the
family of satisfaction relations which is valid for all three temporal logics considered
here. Again, we are convinced that this scheme can be transferred to other temporal
logics, too.

If there are special terms as in the case of MTL and MTL-[ we first have to define
their meaning w.r.t. a given behavior model. This means, given a set T of terms and
a behavior model 2 = (A, —%) we have to define an interpretation Jo : Ax x T — A.
The actual satisfaction relations are defined in two steps. At first an additional satis-
faction relation |=;; is introduced. This relation interprets a sentence w.r.t. a given
behavior model and a specific time point. Based on this, there are two different ap-
proaches for defining =7y, i.e. the interpretation of a sentence under a given behavior
model. The first approach, called the floating version, requires a sentence to be valid
under |=,; at all time points. This is the way MTL is defined. The second approach,
called the anchored version, demands the validity of a sentence under |=,, at a dis-
tinguished time point, usually the starting point of a behavior model. This is the way
MTL-[ and CTL* are defined.

Since each temporal logic has its specific features we have to consider each temporal
logic separately.

MTL
The interpretation of the index terms is defined as usual. Note that for the interpreta-
tion of the terms we have to add again the omitted time argument.

Definition 32 (Interpretation 37%) Lel ¥ € SiG 7y be an MTL timed signalure
and A € Stryri(X) an MTL behavior model over ¥. 2 induces the interpretation
’JQA{ITL : Ar x Termyrr(Y) — Aa defined as follows. Let t € Ar be an arbitrary time
point.

1. if f € Termyrr(X) with [T — A € Drepp then IYTE(L, f) := [2(1)
2. 4f f(s1,...,8%) € Termyrr(X), k > 1, then
IMTEL, f(s1y..ys8)) = fROYTE(, 1), ... IMTE(L, s8), 1)
The definition of the interpretation of the MTL-sentences is the usual one.

Definition 33 (Satisfaction Relation Ey7rx) Let ¥ € SIGyry be an MTL timed
signature, A € Stryrp(X) an MTL behavior model, and t € Ar a time point.

lEurry € |Strurn(Y)| xAr x Senyri(X) is defined by (we use infix notation, i.e.
(1) |EmrLs ¢ iff (At 0) € Eyurry )
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2. () |Eures ¢ = ¥ iff (U t)|Fures ¥ or (U )| Hayrs @

3. (Ql,t)H:MTL’g QOUNC’Q/) Zﬁ Ht/,t/ Zg[ t,dﬂ(t/,t) NQ[ jg[(c) (Ql, t/)H:MTL,E 77/J and
Vi 1 <A Ay (Ql, t”)H:MTL,E 0, ~ € {4’ -, :}

EurnsC [Stryrn(X)| x Senyri(X) is defined as follows:
A |:MTL,E © Zﬁ Vie Ay : (Ql,t)H:MTL’g ©

MTL-

Due tofthe special feature of MTL-[ allowing to integrate over sentences (i.e. formulae),
the definition of the interpretation of the terms is more complicated than for MTL.
Corresponding to [ILH95] we define for each sentence ¢ and each behavior model A a
function f:ﬁ[ : R>0 =+ R0 whose value is 1 at a time point ¢ if and only if ¢ is evaluated

to TRUE at t by 2, i.e.

0 otherwise

fgl(t) — { Lif (Qlat)H:MTL-f,E ¥

In the following the meaning of the term [ ¢ is defined by means of the Riemann
integral of the function associated with . It is required that the Dirichlet condition
is satisfied for f:ﬁ[ We refer to [LH95] for a deeper discussion of the relations between
the Dirichlet condition, the Riemann integrability, and the finite variability condition
required for MTL-| behavior models.

In the following definitions +, — denote the usual operations and <, < the usual rela-
tions on R.

Definition 34 (Interpretation ’JQ]‘[/ITL'[) Let ¥ € SI1G yrpp be an MTL-[ timed sig-

nature and A € Stryyppp(X) an MTL-[ behavior model over ¥.. 2 induces an interpre-

tation 'JQEITLJ t A X TermMTL_f(E) — R defined as follows. Let t € Ar be an arbitrary

time point.
1. if r € R then ngfTL_f(t,r) =r
2. if x € Var then ’JSEITLJ(t, z) = z%(1)
3. Zf S1y... 55k € TermJWTL—f(E) and g € FTerm with g: Rk7T — R € DTerm then

Iy (g, s)) = g2 T (s, 3T (1) 1)
MTL-f
LHj‘Z‘ (t:7) fg(t’) dt’" if f:ﬁ[ salisfies the Dirichlet condi-
~MTL- r .
4. Ty f(tvf @) = lion and 'JQ{ITLI(t,T) >0
0 otherwise

For the definition of the satisfaction relation we need the following two notions. Let
¥ be an MTL-| timed signature. The concatenation of two MTL-| behavior models
A1, Ay € BEH 7y (X) with y|s,,,,, = Aa|s,,,, is the MTL-[ behavior model 2,2, €
BEH yypp.(¥) with
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* QllQl2|ETerm = Q'l1|ETerm L 5“2[1“2[2 — 5‘2[1 —I_ 59[2

o Vpe PL:pM1%(1) = { P

p*i(t) 0<t< s
PR (t— %) M <t < M4 5%

Let 7 € R be a real number and = € Var a variable. The variant ] € BEHMTL-[(Z>
of A w.r.t. 7 and x is given by

o Alls\(o} = Als\(ay o VieR: 2¥%(l) =1

Definition 35 (Satisfaction Relation) Let X € SiGyrpp be an MTL-[ timed sig-
nature, A € StT’MTL_f(E) an MTL-[ behavior model, and t € Ar a time point.

The relation |=yrrps C [Stryrrp(3)] X Ar X Sen () is defined by (we use infiz
notation, i.e. (A, t)|=yrry s iff (A t9) € lFmrys )-

10.

11.

S S b o~

(1) [Farrry s true and (U, )|y s false
\V/p € FD . (Q'l7t)||:MTL—f,E P Zﬁp%(t) = TRDVE (mdt < 5"2[

MTL-f MTI-f

NWEmrry s m(s1, o osk) iff (T 7 (Es1), -0, Ty 7 (L, 8%)51) € r
)”:MTL_f,E o iff (let)”?éMTL-f,E ¥

NEMTEs s 01V o2 i (L D[EmTiy s @1 or (U D)[EmTiy s 2
N wrrgs PUrth iff I € Ryt </ < L+ g T (1,7)

(L) Fyry s and
Vi" € Ryo, t <" <t (A, t”)H:MTL-f,E ©

(L O |EmrLys pU=P ff (A1 + jgffTL_f(t, T))H:MTL-f,‘? Y and
MTL-

\V/tl € Rzo,t S 1’ <i+ jg[ (t, T) . (Ql, t/)H:JWTL—f,Z 2

Ee S .

o~

L) FEmrry,s ¢S<rt iff It' € Ry, max(0,¢ — jgj\{

(2L, t/>||:MTL-f,E ¢ and
Vi e Rzo, U<t <t: (2[7 t”)H:MTL-f,E @

T )y <t <t

() rrrry s S=rtb iff (2 max(0,t = Tg " (t,7)))|Farrry s ¢ and
VU € Root =0y (1) St <t (A1) ariys ¢
(L) |FEmrrg,s w1Cp2 tff there exist behavior models A, and ™Ay over X with

A=A, RAs, ™ > ¢, (U, t)|Furry s 1,
and (s, O)HZMTL-f,z ¥2
(1) |Farrry s Jep dff there exists a value T € R with (A7, t)|Fprry s ¢

FEurr s C |Strayrpp (X)) < Senyrpp(X) is defined as follows:

it |=MTL_f,E @ aff (2, O)HZMTL_f,z ¥
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CTL*

In contrast to the previous two metrical temporal logics no interpretation of special
terms has to be defined for CTL*. But, due to the way the sentences are defined in
CTL* we have to split the satisfaction relation |Fcrr+ s into two relations:

¢ |=tr«x for the interpretation of a state formula

° ||:%TL*7E for the interpretation of a path formula

Definition 36 (Satisfaction Relation) Let ¥ € SiGers be a CTL* limed signa-
ture, A € Stror+(X) a CTL* behavior model, t € Ap a time point, and x € FPs.(A) a
track over . The relations ||:50TL*7E C |Strerp ()| x Ap x Sencrr(E), ||:%TL*7E C
|Strori<(X)] X F Pse(A) x PSencri+(X) are defined by (we use infix notations with the

sentences on the right side of the relation symbols):

Vpe Fp: (Ql7t)||:SOTL*,Ep iff p*(t) = TRUE

(let)“:SOTL*,E w1 — w2 iff (let)H:SOTL*,E P2 or (let)”#SOTL*,E ®1

LD |FEETLs 2 AV iff for all y € FP.(A), hd(y) =1, (Ql,y)|:%TL*7E P

if v € Sencrrr(X) then (Ql,;l;)H:%TL*E O iff () |ESrns s and hd(x) =1

(2L, 51/’)||:%TL*,2 Y1 — g iff (2, $)||:%TL*,2 Pa or (2, l’)H?géTL*,z ¥y

(le x)H:]é’TL*,E X iff (Ql, xl)HZZéTL*,z (0

(lex)H:%TL*,E Y1Ushy off Ja (QL, xi)H:%TL*,E Yy and Vj,5 <i: (Ql, xj)H:%TL*,E (0N

Ecori 2 C |Strep(X)| x Sencris(X) is defined as follows:

NS S e o~

Al=crr s ¢ iff (2, Og[)H:SOTL*,E @

3.3 Proofs of the Conditions

For all three considered temporal logics most of the proofs of the T-FDT specific
conditions are straightforward. The signature condition and the structure condition
concerning the object part of Strry are direct consequences of the definitions of S1Grz,
and Strrr(X) because in both cases we consider a subcategory of TSIG and Beh(X),
respectively. Moreover, the only system products in Strpr(X) are the ones consisting
of only one behavior. For these system products the system product condition is triv-
ially fulfilled. Technically this restriction of the system products is manifested by the
condition that the sort assigned to the (boolean) sort B is fixed to { TRUE, FALSE }.
Nevertheless, it is possible to consider for example the model class Mod(y) of a sen-
tence .

The proofs of the morphism part of the structure condition as well as the coincidence
and isomorphism condition are the most difficult tasks. Nevertheless, the proofs have
the same structure for all three temporal logics. Therefore the proofs concerning CTL*
and MTL-f, which were the second and third temporal logic we considered, could
be performed more easily and more quickly than the proofs concerning MTL. Only
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some technical details had to be changed. We expect that the proof skeletons can be
transferred to further temporal logics, too.

In the following sections we present the proof skeletons for the three conditions. The
complete and detailed proofs for each of the three temporal logics can be found in the
appendix.

In this section ¥ and ¥’ are always TL timed signatures and ¢ : ¥ — ¥/ is a timed
signature morphism.

3.3.1 Proof of the Structure Condition

The structure condition determines several properties of the functor Stry;. Concerning
the object part of Strrz the condition Strr(X) C Beh(X)is a direct consequence of the
way Strpy is defined. That Strpy, fulfills additionally the condition for the morphism
part, i.e. Strrr(o) = Str(c), is not obvious. As already mentioned in the remark made
on the Definition 20 the main task is to show that Stry; is a well defined functor.

To prove this we have to show that given a structure 2’ € Stry,(Y') and a signature
morphism o : ¥ — ¥/ then also the structure 2 = 2’|, is a TL behavior model over X,
ie A € Strrg(X). If this property is fulfilled by Strpy, we say that Stryy is closed under
signature morphisms. If the functor Strry is not closed under signature morphisms it
cannot behave as Str.

To prove this closure property we need a so called signature invariance lemma which
is also needed to prove the coincidence condition. It states that the time signature and
the propositional enrichment of a TL timed signature are invariant under signature
morphisms. The general version of this lemma is:

Lemma 37 (Signature Invariance) A limed signalure morphism o : ¥ — ¥’ €
SIG 1L, has the following properties. (We use the primed versions of the symbols to
denote the elements of ¥'.)

o(Y¥7) =%, i.e. o VfeFr:o(f)=1Ff e Vpe Pr:o(p)=p
o Vsc Sr:o(s)=4¢

o(Xp)=Yp, ie. o o(B)=PH o o(true) = true
o o(false) = false e o(PL)C PL’

This lemma guarantees a kind of syntactical invariance. It is now possible to derive
from this lemma the following Structure Closure Theorem. This theorem states the
property we need to show that Stryp is a well defined functor and that the structure
condition holds. Its general version is as follows.

Theorem 38 (Structure Closure) Let 2" € Str(X') be a structure over X' and A =
A\, A€ Str(X), a structure over X. Then A’ is a TL behavior model over ¥’ if and
only if A is a TL behavior model over ¥, i.e.

A e SIGTL(E) z[le’ € SIGTL(E/)
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A direct consequence of this theorem is the following corollary stating that the do-
main, functions, and predicates assigned to the time signatures and the propositional
enrichment excluding those assigned to the function symbols of PL are the same. This
corollary is used to show the coincidence condition.

Corollary 39 Let A" € SiGy(Y) be a TL behavior model over ¥’ and A = A'|,,
A € SiGr(Y), a TL behavior model over ¥. Then the following holds:

o Vs Sr:A,=Al, o‘v’feFT:fm:f’m’ o‘v’pEPT:pQ[:p’g[/
o Ag = A, o true? = true? ° false‘m = falsegl/

3.3.2 Proof of the Coincidence Condition

To prove the coincidence condition for a temporal logic two properties are needed. The
first one, stated by the term coincidence lemma is needed if special terms are used
by a temporal logic. It expresses the corresponding coincidence condition w.r.t. these
special terms. By this, it represents a first part of the semantical invariance required
by the coincidence condition.

In this lemma and in Lemma 44 which is the corresponding one of the proof of the
isomorphism condition Term g : S1Gr;, — SET is the functor specifying the terms in
TL and 3" is the interpretation of these terms induced by a TL behavior model £I.
Furthermore, in this section 2" € Str 7 (Y') is always an arbitrary TL behavior model
over ¥/ and A = A’|, is its reduct according to o.

Lemma 40 (Term Coincidence) For all terms ¢ € Termpr(X) and all time points

t € Arp(= A%) it holds:
’JQT[L(t, c) = jgif,L(t, Termrr(o)(c))

This lemma is proven by induction over the structure of ¢ € Term ().
The second lemma guarantees a corresponding version of the coincidence condition for
the satisfaction relation |=;:

Lemma 41 (||=,,-coincidence) Lett € Ap(= Al) be an arbitrary time point. Then
the following is valid for all sentences ¢ € Senr(X):

(A, DlErss Senri(a) (@) dff (Strro(o) @), DlErs ¢

This lemma is proven by induction over the structure of the sentence ¢ € Sen 7 (X)
and by using Corollary 39 and Lemma 40.

Based on Lemma 41 it is now quite easy to show that the coincidence condition is
satisfied by T1L, i.e. the following theorem holds:

Theorem 42 (Coincidence) For all sentences ¢ € Senpr(X) over ¥ it holds:
A s Senru(o)(e) iff Stroo(o)(A) Erus ¢

Besides the mentioned lemmata further lemmata depending on specific features of a
TL can be necessary to complete the proof of the coincidence condition. For example
in the case of CTL* it is necessary to consider the fact that the satisfaction relation
= oz« 1s split into two satisfaction relations.
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3.3.3 Proof of the Isomorphism Condition

The scheme of the proof of the isomorphism condition consists essentially of three
properties. As in the previous sections we present here only the general versions of the
lemmata and the final theorem. Their instantiations and proofs of each of the three
considered temporal logics can be found in the appendix. Moreover, technical details
are only considered in the appendix.

In this section A, B € Strrr(X) are always arbitrary isomorphic TL behavior models
over ¥, i.e. A= B. h = (hs|s € S) always denotes an isomorphism between 2 and *B.
The three lemmata are special versions of the isomorphism condition considering the
boolean part of a TL behavior model (Lemma 43), the terms of a temporal logic
(Lemma 44), and the satisfaction relation |=;; » (Lemma 45). Since Lemma 43 con-
cerns only the propositional enrichment of a time signature we can proof this lemma
for all three temporal logics together.

Lemma 43 (Boolean Isomorphism) [t holds:

1. hg(FALSE) = FALSE and hg(TRUE) = TRUE

2.Vt € Ap ¥p € Fp: p2(t) = TRUE iff p®(he(t)) = TRUE
Proof:

ad 1.: Since 2 and B are propositional behavior models we have
according to Definition 15

Vie € Ag: false®(1%) = FALSE (i)

Vi € Br: false®(t*) = FALSE (ii)
Since h 1s a homomorphism we have:

Vi € Arp: hB(falseg[(t“)) = false%(hT(t”‘)) (iii)

It follows for each t* € Ar with ¢* := hp(t%):
hp(false®(17)) & hB(FALSE) and

ha(false®(1%)) W false®(hy(1%)) = false®(t") Y FALSE
~ hg(FALSE) = FALSE

Since hp is bijective on { TRUFE, FALSE} it follows hg(TRUE) = TRUE.
ad 2.: Case A) p*(t) = TRUE:

p2(hr(1)) " "™ hp(p(t)) = hg( TRUE) = TRUE
Case B) g[(if) FALSE:

pB(hr (1) " "™ hp(p(t)) = he(FALSE) £ FALSE

q.e.d.

Lemma 44 (Term Isomorphism) For all terms ¢ € Termyy(X) and all time points
t € Ag it holds:
T (h(t), ¢) = h(3" (L, )

This lemma is proven by induction over the structure of c.
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Lemma 45 (|=; y-Isomorphism) For all time points t € Ar and all sentences p €
Seny, it holds:

(Qlat)”:TL,z‘P Zﬁ(%ah(t))“:n,z@
This lemma is proven by induction over the structure of ¢ and by using Lemmata 43

and 44.
Using Lemma 45 it is quite easy to prove that the isomorphism condition itself holds.

Theorem 46 (Isomorphism) For all sentences p € Senyy, it holds:

Az e ilf BlEms ¢
This completes the proof that the three considered temporal logics are actually T-
FDTs. We want to state again, that we are confident that the instantiation process
as well as the presented proof schemes can be transferred to a large number of further

temporal logics, too. Moreover, we believe that the main ideas can also be used to
show for other classes of description techniques that they are T-FDTs.

3.4 Justification of the Characterization

In the introduction of Section 3 we mentioned three tasks to be done to show that a
specific description technique is a T-FDT:

e instantiation of the definition of a T-FDT
e proof of the conditions required of a T-FDT

e justification that the characterization as a T-FDT corresponds to the original
definition of the description technique

Up to now we have dealt with the first two tasks. Both have been performed formally.
Concerning the third task we only want to provide some informal arguments why we are
convinced that our characterization of the three considered temporal logics as T-FDT's
corresponds to their original definitions.

Looking at the original definitions of the temporal logics in the cited papers one can
easily see that these definitions are given in a very similar way compared with our
T-FDT characterization. For all three temporal logics the original definition is divided
into two parts: syntax and semantics. The syntax part corresponds exactly to the
definition of the functor Sen ;. The semantics part comprises the functor Str g7, and
the family of satisfaction relations Err5. Especially the definitions of Senr;, and
E 71 are nearly copies of the corresponding original definitions.

The main, but nevertheless small differences between the original and the T-FDT
definitions are the following ones. We explicitly introduce signatures which is not the
case in the original papers. We embed what is often called underlying computational or
semantical model in the definition of the functor Strr;. Note that Koymans as well as
Emerson use the term structure for defining the semantic model nearly in the same way
we use this term. In addition to all three original definitions we consider morphisms
between the objects of the several classes contributing to a T-FD'T.

Summing up, we can state that the main parts of the original definitions have been
copied. Only slight modifications concerning terminology have been made which to
our opinion do not change the essence of the considered temporal logics.
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4 Related Work

We want to discuss briefly two fields of work related to the topics considered in this
paper. The first one deals with our long term objective, the formal analysis of de-
scription techniques. The second point of the discussion addresses other approaches
investigating and classifying temporal logics.

A similar approach to investigate FDTs is considered in [AR97|, where a pattern for
analyzing a formal specification activity is presented. Notions such as e.g. end product,
formal model, and rationale are introduced and applied to formal methods. This is
done in the framework of institutions, too. Compared to this work, we intended to be
more formal and hence more precise when defining what constitutes an FDT and the
models we consider. Also, in [AR97] methodological aspects are considered, whereas
we restricted ourselves to characterize FDTs for timed systems more precisely.

In [Bro96] several models, as e.g. data models or system—component models, are pre-
sented. The models are oriented towards components of distributed systems. The
mathematical model of ongoing behavior is based on streams of messages exchanged
between the components. In contrast, our definitions are more oriented towards se-
quences of states. Although these approaches are interchangeable to some extent, the
technical expositions are different. As a second point, [Bro96] aims at a comprehensive
set of mathematical models as a formal foundation of software engineering, whereas we
are interested in the formal analysis of T-FDTs.

In [BCN95] the emphasis of the analysis is on tools for real-time software specification.
The authors describe the evolution and the state of the art of such tools. They classify
description techniques in operational, descriptive, or dual ones and analyze a large
number of description techniques according to several aspects. In contrast to our
approach this analysis is not based on a formal basis and a common framework.
Concerning temporal logics Emerson introduces in [Eme90] not only CTL*, but he
also provides some informal classification of temporal logics. He considers six pairs
of attributes: propositional versus first-order, global versus compositional, branching
versus linear time, points versus intervals, discrete versus continuous, and past versus
future.

In [AH90] Alur and Henzinger present a framework which allows to analyze and classify
real-time logics according to their complexity and expressiveness. Especially, expres-
siveness is an aspect we also want to investigate by several appropriate criteria. In
[AH91] the same authors give a survey of logic- and automata-based description tech-
niques. They present a semantical framework for real-time systems and summarize
several results about expressive power, algorithmic finite state verification, and deduc-
tive verification. Whereas in contrast to the classification of Emerson the approaches
of Alur and Henzinger are also formal, they are mainly intended to analyze temporal
logics, especially their expressiveness. Our approach is intended to cover a larger class
of description techniques and to analyze a larger class of aspects.
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5 Concluding Remarks

We have shown that the three well known temporal logics MTL, MTL-[, and CTL*
fit well into the general framework of formal description techniques for timed systems.
Furthermore, we have presented a general scheme for the instantiation as well as for the
proofs of the several conditions that have to be fulfilled by each T-FDT. This general
scheme and its relatively easy instantiation for the three considered temporal logics
provide evidence that at least a large number, presumably all temporal logics can be
embedded in the framework provided by T-FDTs.

That this framework is not only suitable for temporal logics but also for other kinds of
description techniques is shown in [EDK98b]|. In this paper we consider abstract state
machines (ASM) [Gur95, Gur97], a description technique completely different than
temporal logics, and show that ASM can be embedded in the framework of T-FDTs,
too.

The embedding of such description techniques is also the first step of the third task in
our approach to the formal analysis of FDTs, i.e. the application of criteria. Currently
we are formulating criteria for this analysis and applying them to the description tech-
niques we have already proven to be T-FDTs. An initial set of criteria investigating
such different aspects as expressiveness, properties of the time model, and composi-
tionality exists. We have made the experience that for the criteria established up to
now our framework of T-FDTs is quite adequate.

In the future we want to enlarge this set of criteria, embed further description tech-
niques in the framework of T-FDTs, and apply the criteria to all these T-FDTs.
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A Proofs for MTL

In this section we present the complete and detailed proofs that the structure, coin-
cidence, and isomorphism condition holds for the temporal logic MTL defined as a

T-FDT in Section 3.2.

A.1 Proof of the Structure Condition

As stated in the presentation of the general scheme the main task is to show that
A := A, is an MTL behavior model over ¥ if 2" is an MTL behavior model over
Y. We first show the instantiation of Lemma 37, i.e. the signature invariance of MTL
timed signatures under MTL timed signature morphisms.

Lemma 47 (MTL Signature Invariance) Let ¥, %' € SiGyrr, be MTL timed sig-
natures and o : ¥ — X' € S1Gyr, an MTL timed signature morphism. Then o has the
following properties. (We use the primed versions of the symbols to denote the elements

of ¥'.)

[ J
2
=

I

T, o(A)y=A,o(d)=d, c(0) =0, o(+) =+, (<) =<
e 0(B) = B, o(true) = true, o(false) = false, o(PL) C PI

Proof:

o(<) =<' and o(T) = T is already required for each timed signature morphism by
Definition 1 and o(true) = true and o(false) = false by Definition 14.

Since o has to map the sorts, function and predicate symbols such that the mapping
is compatible with the declarations of ¥ and ¥’ and since oy, : ¥7 — X/ has to be
a signature morphism itself (see Definition 1) we can deduce from o(7T') = T" directly
o(A) = A" and then o(B) = B’. The mapping of the function symbols o(f) = f,
f € {d,+,0} and of the propositional letters, i.e. ¢( PL) C PL’ is also a consequence of
the compatibility property of o. q.e.d.

We can now prove the MTL version of the structure closure theorem:

Theorem 48 (MTL Structure Closure) Let XY € SiGyr, be MTL timed sig-
natures and o : ¥ — X' € S1Gyrr an MTL timed signature morphism. Let further
A" € Str(X') be a structure over X' and A = A|,, A € Str(X), a structure over X.
Then A" is an MTL behavior model over X' if and only if A is an MTL behavior model

over X, i.e.

A € SIGMTL(E) z[le' € SIGMTL(E/)

Proof:

To show that a structure B is an MTL behavior model we have to show that the
conditions of the Definitions 15 and 17 are satisfied.

According to the definition of the forgetful functor |0 we have for all carrier sets A, =
Afj(s), s € S, and for all functions and relations symbols f € F'u P: f* = o(f)¥.
Since o is an MTL timed signature morphism we have according to Lemma 47 o(s) = '

fors e {T,A, B} and o(f) = f'for f € {d,0,+, <, true, false}. 1t follows A; = A;(s) =
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A, s e {T,A, B} and f=o(f)¥ = f’g[/ for f € {d,0,+, <, true, false}. This means
that all carrier sets and all functions and relations are equal for 2l and 2'. Consequently,
the conditions of the Definitions 15 and 17 are valid for 2 if and only if they are valid
for A" q.e.d.

The proof of the MTL structure closure theorem already includes the proof of the MTL
version of Corollary 39.

Corollary 49 Let 3,Y' € S1G 1, be MTL ltimed signatures and o : ¥ — X' € SIG pry,
an MTL timed signature morphism. Let A" € S1Gyrr(Y') be an MTL behavior model
over ¥ and A = A'|,, A € SiGyri(Y), an MTL behavior model over . Then the
following holds:

o Vs {T,A,BY: A, = A, o er{d() ¥, <} FRE
o true® = true¥ o false® = false®

A.2 Proof of the Coincidence Condition

The main parts of the proof of the coincidence condition are the two lemmata stating a
corresponding property for the interpretation of the index terms and for the satisfaction
relation |Eurry.

Lemma 50 (MTL Term Coincidence) Let ¥, %' € SiGyr be MTL timed signa-
tures and o : ¥ — X' € S1Gypr, an MTL timed signature morphism, A" € Stryrp(X')
an MTL behavior model and A = A'|oc. Then the following equation is valid for all
terms ¢ € Termuyrr(X) and all time points t € Ap(= AlL)

39 M, ¢) = T H(t, Termprri(o)(c))

Proof:
Let t € Ap Cor. 49 A%, be an arbitrary time point.
By induction over the structure of ¢ € Termyr(X):
base case: ¢ = fwith f: T — A € Doy
~ Def 32 Def. |o ’ Def 32 A
33t ¢) ot A =" ()™ () 3@t a(f))
ef. 21 o
=" 3T, Termyri(o)(f))

?

induction step: ¢ = f(ty,...,t,)

L [l 1)
t

tn)
Def 32 $ ~ ~
L U, 0,0

PLI (@), S ).
- o(/)¥ (OXTH (¢, Termuyr(o)(th)), ..., I (¢, Termurs(o)(tn)), 1)
DL ULy o ) Termagra(o)(i)... . Termgra(o) ()

Def. ~
L2 3MTLG Termpr(0)(f(th, - . . 1 10))) q.e.d.
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Lemma 51 (|=urry -coincidence) Let ¥, € SiGyrr be MTL timed signatures
and o : ¥ — ¥ € SiGyrr an MTL timed signature morphism, A" € Stryr(X') an

MTL behavior model and A = A|o. Let t € Ay (= A%, be an arbitrary time point.
Then the following is valid for all sentences p € Senpyrr(X):

(A, O)=mres Senyri(o)(e) iff (Stryre(o)(A), H)|EmTLs @

Proof:
Let t € A7 be an arbitrary time point.
By induction over the structure of ¢ € Senyr(X):

base case: ¢ = p, p € Fp:

(Strurr(o) (), V) |Eurrs piff (Ao, t)|Eurrs p (Def. Stryri(o))
iff (2, t)|=mrs p (2 =2Ao)

i p2(1) = TRUE (Def. 33)

iff o(p)* (1) = TRUE (Def. |o)

lff (Qllat)H:MTL,E’ J(p) (Def 33)

)

iff (Qllat)H:MTL,E’ SenMTL(J)(p) (Def 24+23
induction step:
(i) ¢ =1 = pa
(A, ) |Furee Senpri(o)(e1 — ¢2)
iff (Qllat)H:MTL,E’ SenMTL(O')(ng) — SenMTL(J)(gog) (Def 24)
iff (Qllat)H:MTL,E’ SenMTL(O')(QDQ) or (Qllat)H#MTL-f,E’ SenMTL(O')(ng) (Def 33)
it (Stryri(o)(A), ) |Emrrs @2 or (Stryri(o)(A), )Fyrrys @1 (ind. hyp.)
i (StrMTL(U)(Ql/);t)H:MTL,E ©1 — P2 (Def 33)
(i) = prllucpa, ~€ {<,=, >}, ¢ € Termypr(X):
@, ) l=mrrz Senapri(o)(prlleces)

it (2, D)= mres Senmri(o)(91)Un Term e (o) () Sen ML) (02) (Def. 24)
llcf Ht/, t/Z/g{ t, t/N/g[ t—I—lg[ j%TL(t, TeTmMTL(O')(C)) . (Ql/, t/) “:MTL,E’ P2
and V1" 1< <Y (WA =Ly e (Def. 33)

iff 3¢ >3t~ AT () (A ) Ty @0

and V" ¢t <H " <2 (AL ) vy @1 (Lem. 48, 50, and Ar = A7)
i 3,8 >2 e ~2 23T (L e)

(Straro(o) (@), 1) |=mrLse @

and V", 1 <% <2 (W) = mTs e (ind. hyp.)
it (Stryri(o)(A), V)|EurLs oillecpr (Def. 33)
q.e.d.

Theorem 52 (MTL Coincidence) For MTL defined as a T-FDT the coincidence
condition holds, i.e. for all ¥,%" € S1Gyrr, 0+ ¥ — ¥ € SiGyrr, A € Stryrn(Y),
and ¢ € Senyrr(X) it holds:

A =mres Senyri(o)(e) ff Stryur(o)(A) Eurrs ¢
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Proof:
Ql/ |:MTL,E’ SenMTL( )( ) llcf \V/t € A/ ( )H:MTL,Z' SenMTL(J)(go) (Def 33)
iff Vit € AT( t?“MTL(O')(Ql/),t)H:JWTL’g © (Lem 51)
llaf StT’JWTL(O')( ) IZJWTLE 2 (Def 33)
q.e.d.

A.3 Proof of the Isomorphism Condition

To prove the isomorphism condition three lemmata are needed. Lemma 43 states
properties of isomorphic structures concerning the propositional part and has already
been proven in Section 3.3.3. Lemma 53 states that interpretations of index terms are
invariant w.r.t. isomorphisms. Lemma 54 guarantees the corresponding isomorphism
condition for the satisfaction relation |Euy7ry -

Lemma 53 (MTL Term Isomorphism) Let ¥ € SiGy7;, be an MTL timed sig-
nature, A, B € Stryrr(X) isomorphic MTL behavior models over ¥, i.e. A = B,
and h = (hs|s € S) an isomorphism between A and B. Then for all index terms
¢ € Termyrr(X) and all time points t € Ar it holds:

I (hr(t), ) = ha(3y (L, ¢))

Proof:
Let t € A7 be an arbitrary time point.
By induction over the structure of ¢ € Termyr(X):
base case: c=f, [:T — A€ Droppy -
~ Def. 32 h homom Def. 32 ~
35 (hr(t), f) 7= fP(he(t)) ha(f2(t)) =" ha(3Y™ (L, 1))

induction step: ¢ = f(t1,... ,t,) € Termuyr(X)

M (hp(t),e) = FMTE(hp(t), f(ty, ... 1))

| O™ (hr (1), 1), ..., W (b (1), ), hr (1))

L B (ha (I 1)), o ha (YT 1), R (1)

fohomome g (FRIMTE 1), L MR 4,),1)
(3
(

LI t))

q.e.d.
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Lemma 54 (|Furry -Isomorphism) Let ¥ € SiGypy, be an MTL timed signature,
A8 € Stryr(X) isomorphic MTL behavior models over ¥, i.e. A = B, and h =
(hs|s € S) an isomorphism between A and B. Then for all time points t € Ap and all

sentences @ € Senpry it holds:

LD EmrLs ¢ df (B, k(1)) FuTLs ¢

Proof:
By induction over the structure of ¢ € Senyrp:

Let t € Ay be an arbitrary time point of MTL behavior model .
base case: ¢ = p,p € Fp:
(Ql, t)H:MTL,E p iff pg[(t) = TRUE
iff p®(he(t)) = TRUE
iff (B, hr(t))|=mrs p
induction step:
(i) =1 = 2
L) |EMrLs ©1 = @2
iff (A, t)[FEmrrs w1 or (A1) |Fures @2
iff (B, hr(t))|FEurLs 1 or (B, hr(t))[EyurLs ¢2
iff (B, hr(t))|Fures ©1 = 92
(11) p = 991[/{,%992, (NE {-<, =, F}), cEc TermMTL(E):
(A, ) |EmrLy ©1ldacpr
it 3ty € Ap, 'y >2 1 d3 (1, 1) ~* IYTE(L ¢):
(A, ty)|FmrLy 2 and
\V/t;/l € AT,t Sg[ tz <$2[ t;l: (Ql, t;/l)”:MTL,Z Y1
it 3ty € Ap, 'y 21 d¥ (1, 1) ~* IYTE(L ¢):
(B, hr(ty))|FEmres 2 and
\V/tg € AT,t §Q[ tz <$2[ t/AS (%, hT(tZl))||:MTL,Z ©1
it 3ty € Ar, 'y 2L ha(d® (1, 1) ~® ha(IYTE(L, €)):
(B, hr(ty))[FEmrrs @2 and
\V/t% € AT,t g.‘l[ tg <‘Q[ t/A: (%, hT(tlf/‘))H:MTL’g ©1
if 3y € A, 'y 24 ha(d®(Hy, 1)) ~® UL (hr(t), ¢)):
(B, hr(ty))[FEmrrs @2 and
\V/tgl € AT,t §g[ tg <$2[ t/A: (%, hT(tlf/‘))H:MTL’g ©1

i 30, € Ag, 1y =¥ 1, (e (1)), hr(1)) ~® SYTHhr(1), 0)):

(B, hr(ty))|EmTLs w2 and
Vi, € Ap, b <P <t (B he(U) Evrs o1

iff 3ty € Br,ty 2 h(t), d®(tg, hr(t)) ~® T (hr (1), c):

(°B,ts)|FmTLy 2 and
Vi € Br, (1) <% 1 <® 1 (B, 1) |Ewms ¢

(Def. 33)
(Lem. 43)
(Def. 33)

(Def. 33)

(ind. hyp.)
(Def. 33)

(Def. 33)

(ind. hyp.)

(h homom.)

(Lem. 53)

(h homom.)

(t'y = ho(t'y), t% = hr (1), h isomorph.)

iff (B, hr(1))|Emrry ©1lacpr

(Def. 33)
q.e.d.
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Theorem 55 (MTL Isomorphism) For MTL defined as a T-FDT the isomorphism
condition holds, i.e. for all ¥ € SIG prr, A, B € Stryr(X) it holds:

Q[ =% and Ql |:MTL,E 2 then ‘B |:MTL,E 2

Proof:

2A |:MTL,E © it Vi e AT : (Ql7t)||:MTL,E © (Def 33)
ift Vi€ Ap - (B, he(D)|FMTLs @ (hr is bijective and Lem. 54)
iff ‘B |:MTL,Z 2 (Def 33)

q.e.d.
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B Proofs for MTL-f

In this section we present the complete and detailed proofs that the structure, coin-
cidence, and isomorphism condition holds for the temporal logic MTL-| defined as a
T-FDT in Section 3.2.

B.1 Proof of the Structure Condition
Analogously to MTL we follow the general proof scheme presented in Section 3.3.1.

Lemma 56 (MTL-| Signature Invariance) Let ¥, X' € SIG yrrr. be MTL-[ timed
signatures and o : ¥ — X' € SIGyrpy an MTL-[ timed signature morphism. Then o

has the following properties. (We use the primed versions of the symbols to denote the
elements of ¥'.)

e o(T)=T'o(L)=L",o(§) =0, o(<)=<
¢ o(B) = B, o(true) = true, o(false) = false, o(PL) C PI/

Proof:

o(<) =<' and o(T) = T" is already required for each timed signature morphism by
Definition 1 and o(true) = true and o(false) = false by Definition 14. Since oy, :
Y — Y! has to be a signature morphism itself (see Definition 1) we can deduce from
o(T)=T"directly o(L) = L' and o(§) = 4"

Since ¢ has to map the sorts, function, and predicate symbols so that the mapping is

compatible with the declarations of ¥ and ¥’ we conclude o(B) = B’ and from this
o(PL) C PL. q.e.d.

Theorem 57 (MTL-[ Structure Closure) Let ¥,Y € SIG iy be MTL-[ timed
signatures and o : ¥ — X' € SIGyrpy an MTL-[ timed signalure morphism. Lel
Jurther A" € Str(X') be a structure over ¥ and A =A'|,, A € Str(X), a structure over
Y. Then A is an MTL-[ behavior model over X' if and only if A is an MTL-[ behavior
model over Y3, i.e.

€ S1CG yrpy (B) iff A € S1G g ()

Proof:

To show that a structure B is an MTL-[ behavior model we have to show that the
conditions of the Definitions 15 and 18 are satisfied.

Since o maps sorts to sorts we can conclude from Lemma 56 o(R) = R'. Analogously to
the proof of the MTL structure closure theorem we derive A, = Al,, s € {T, L, R, B},
true® = true®’, and false® = false'g[/. Hence, the conditions of Definition 15 and the
first condition of Definition 18 are satisfied by 2 iff they are satisfied by 2'.

Because of o(PL) C PL' (Lemma 56) the finite variability condition of Definition 18 is
only satisfied by 2 iff it is satisfied by 2'.

The remaining condition of Definition 18, the rigidness requirement for all functions and
predicates assigned to the symbols of an MTL-[ term enrichment is a direct consequence



B PROOFS FOR MTL-| 37

of the properties of the morphism o and the forgetful functor |o. We have for all

[ € Freem, p € Prepm: o(f) € FTerlm7 o(p) € Prerm: fQ[ =o(f) /7 and p (p)‘Z["
Hence, f% and p® are rigid iff o(f)% and o(p) are rigid. q.e.d.

The proof of the MTL-[ structure closure theorem already includes the proof of the
MTL-[ version of Corollary 39.

Corollary 58 Let ¥,¥' € SIG 7 be MTL-[ timed signatures and o : ¥ — X' €
SIG yTL-p an MTL-[ timed signature morphism. Let A’ € S1G 7 (X') be an MTL-[
behavior model over X' and A = A'|,, A € SIG 77 p(X), an MTL-[ behavior model
over Y. Then the following holds:

¢ VSE{T,R,L,B}:AS:A;, o <A— <"§2[, ° 52[:5/9['

!
o true® = true¥ o false® = false®

B.2 Proof of the Coincidence Condition

As already mentioned the definitions of the duration terms and of the MTL-[ sentences
are mutually recursive. To be formally correct we have to consider duration terms
and MTL-[ sentences together. But in order to keep the proof clear and manageable
we consider both, terms and sentences, separately in two lemmata which is also in
accordance with the general scheme. Therefore, we assume for the proof of the MTL-[
term coincidence lemma that the “:MTL-f,Z -coincidence lemma is already shown and
vice versa. Although this seems to be a circular reasoning, this is not the case when
combining both proofs together in a single induction proof.

To be more concrete we need the |= mTI-f,s -coincidence lemma to proof the following
lemma which itself is used in the proof of Lemma 60. The following lemma states
a coincidence condition for the functions le associated with a sentence ¢ w.r.t. an

MTL—f behavior model 2.

Lemma 59 Let XY € SIG yrrp be MTL-[ timed signatures and o : ¥ — X' €
SIG yrr-p an MTL-[ timed signature morphism, A’ € Stryrrp(X') an MTL-[ behavior
model and A = A'|o. Then the following is valid for all sentences ¢ € Senyrp(X):

f fse”MTLf )(»)

Proof:
Let ¢ be an arbitrary time point. Note Ap
these functions (see page 20) we have

Cor. 58 Al,. According to the definition of

0 otherwise

1 if (LD |Emrr s
f?(t):{ if (A1)l MTL-[ % ¥

and .
e (1) = Lif (A )=y, Senmrip(0)(9)
SenMTLf )@ ) 0 otherwise
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Since Lemma 61 states

(&, O)|Ewmrrp s Senyrip(o)(@) HF (Stryrp (o) (), ) IEmry s ¢

with R := Stryrppp(o)(A') we conclude fgl = fSenMTLf( YOr q.e.d.

Lemma 60 (MTL-| Term Coincidence) Let ¥,%' € SIG yrrrp be MTL-[ timed
signatures and o : ¥ — X' € SlGyrpy an MTL-[ timed signature morphism, A’ €
Stryrpp(X') an MTL-[ behavior model and A = U'|c. Then the following equation s
valid for all terms ¢ € Term ypp (X)) and all time points t € Ar(= Af.).

,JMTLf( ) JMTLf(t’ TermMTL.f(U)(C))

Proof:
By induction over the structure of ¢ € Term pqy4(¥):

base case:
(i) ceR: A ,
J t, Termyrprp(o)(c))
(il) ¢=z,z € Var: ’JMTLf( t,c) Def. 24 22(1)
L o))
I (1,0 (2))

Def. 25 JQ{I,T”(t, Termyrrp(o)(c))

MTL Def. 34
T(t,e) PL™ e

t,c and

MTLf( Def_25 NMTLI( C) Def:.34c
3

J

Def_. 34

induction step:
(i) ¢ = g(s1,... , Sp):

MTLf(t’g(Sh__, k)

Def. 34 ggl(jgj\{nf(t 51), - JMTLI(t sk), 1)
LI (g (93 (15, 3E T (15, 0)
ind._hyp~

o(g)* (3MTH 1, Te,ﬁmMTL_f(J)(t,sl)) 3 (1 Termagr p(0)(1 1)), 1)

Def. 34 MTL
L o f(

Def. 25 MTL f(

t,a(g)(Termyrrp(o)(s1), ... Termyqpy(o)(sk)))
t TermMTL_f(J)(g(sl, ey SE)))

MT” (t, Termprrr,(0)(c))
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(IV) Cc = fT Y, @ € SenJWTL—f(E)a T € Tev"mMTL_f(E):

MTL f ([T
MTL-J
f:+3m (&) f:j[(t')dt' if f‘zl satisfies the Dirichlet condition and
Def. 34 ~MTL-f
o J (tv T) >0
0 otherwise

f(t TermMTLf Ay T .
f (t")dt" if f7 satisfies the D. cond. and

ind._hyp. ,.VMTL
. Jov f(t, Term . g(o)(7)) =2 0

0 otherwise
t—}-jMTLf(t TermMTLf
j;f fSE”MTLf )( /)dt/
Lem. 59 fSenMTLf (0)(¢) satisfies the D. cond.

and Jm, f(t, TermMTL_f(U)(T)) >0

0 otherwise

Def:. 34 fJMTLf / fTe’”mMTLf

SenMTLf( )( )

Def. 25 MTL-f

Tov (t, TermMTLf f ©))

q.e.d.

Lemma 61 (|=p71.x -coincidence) Let X, %" € SIG ypp be MTL-[ timed signa-
tures, o : X — X' € SIGyppp an MTL-[ timed signature morphism, A’ € Str v (X7)
an MTL-[ behavior model and A = W'|o. Let t € Ar (= AL) be an arbitrary time

point. Then the following is valid for all sentences p € Senyrrp(X) :

&, OlEmrry, s Senyriy(0)(@) ff (Stryrop (o)), DlEmrry s ¢

Proof:
By induction over the structure of ¢ € Sen yrp(¥)

base case:
(i) ¢ =p, p € Fp: analogously to the proof of Lemma 51.
(i1) ¢ =7r(s1,...,8k), T € Prepm, i € TermMTL_f(E):

R O)Emrry,s Senyrrp(o)(r(se, ... 5 81))

iff (2, t)H_MTLf s o(r )(TermMTLf(Sl) 3K Te?"mMTL-f(Sk)) (Def. 28)
iff (”MTL (t Termpyrrr (1)), - - ’JQ{I,TLI(t, Term yppp(sk)),t) € o(r)* (Def. 35)
ff ('Jgf[ (t Termpyrrr (1)), - - ’J%TLf(t, Term yppp(sk)),t) € r (Def. |o)
(3" 1, s0), .., 35 1, sk),t) € r? (Lem. 60)
iff (2,¢)|=prog,n r(sl, ee s SE) (Def. 35)
ff (Ao, V) Fmrry s risy, ... sk) (Def. 2A)
£ (Straerp (o) (), ) Emry s (515 - 58) (Def. Strarrr.g)
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induction step:
(iii) the cases ¢ = —p;0 = @1 V @230 = 1092, 0 € {U<7 U=, 5<7,5=;} are proven
analogously to the corresponding cases in the proof of Lemma 51.
(iv) ¢ = Jzep:
To show this case we need the following fact: if A = 2'|o then also
/A =A% lo (1)
To show | we have to consider only the value x:

T m I
2% = r and %@l = O'(LE)Q[ a(@) = p,

(A1) H:MTL-f,E/ SenMTL_f(U)(Elxgo)

iff (A, )= prrp,s 3o (@) Senyrpp(o)(¢) (Def. 28)
iff there exists r € R with (Q'l/;(x)7t)||:lWTL—f,E/ Sen yrpp(a)() (Def. 35)
iff there exists r € R with (QI’Z(I)|J, OlEmrrps (ind. hyp.)
iff there exists r € R with (47, 1) |=yrryc @ (1)
iff (2, 1)|=prry s Foe (Def. 35)
iff (Strarrr-p (o) (), )= prry,s Jzw (Def. 2L, Strarrr.g)
(V) @ =@iCo
Here we need the obvious fact: A" = 212, iff A'|o = A |oUL|o (1)

R ) = mrp,e Senyrpp(o)(01Cp2)
iff (', 4)[=prop, s Senyri-p(0)(@1)CSenyrrp(0)(p2) (Def. 28)
iff there exists A, 2, with A’ = AAL, o ()% > 1
(Q’llht)H:MTL-f,E’ SenMTL-f(O-)(SOI) and

(215, O)HZMTL-f,E' Se”MTL-f(U)(%) (Def. 35)

iff there exists Ay, Ay with A = A1 ™Ay, 6™ > ¢
(Qllvt)H:MTL-f,E p1 and (QL%O)H:MTL-[,E P2 (ind. hyp., 1)
iff (2,1)[=prrp,s p1Cep2 (Def. 35)
iff (Stryrrp (o) (), )= prrp s ©1C0s (Def. &L, Stryrrrg)
q.e.d.

Theorem 62 (MTL-[ Coincidence) For MTL-[ defined as a T-FDT the coinci-
dence condition holds, i.e. for all ¥, € SiGyppy, 0+ ¥ — X' € SiGyqpy, A €
Stryrrp(X'), and ¢ € Senyrrpy(X) it holds:

A |:MTL-f,z/ SenMTL-f(U)(SO) uof StT‘MTL-f(U)(QV) |:MTL-f,2 ¥

Proof:

A |:MTL_f,z/ SenMTL-f(U)(99) iff (Qllao)||:MTL_f,z' SenMTL-f(U)(‘P) (Def. 35)
lﬂ (StT'MTL_f(O')(QlI), O)HZMTL—I,E QO (Lem 61)
iff StTJWTL—f(J)(Ql/) |:1WTL—I,Z 2 (Def 35)

q.e.d.



B PROOFS FOR MTL-| 41

B.3 Proof of the Isomorphism Condition

In the case of MTL-[ the isomorphism condition is trivially fulfilled. The reason are
the restrictions we impose on the homomorphisms of BEHMTL-](E) in Definition 18.
Since we require there for all carrier sets A,, s € {T, R, L}, that the homomorphism A
have to be the identities on these carrier sets, two structures 2,8 € BEHMTL-[(E) are
isomorphic if and only if they are equal.
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C Proofs for CTL*

In this section we present the complete and detailed proofs that the structure, coinci-
dence, and isomorphism condition holds for the temporal logic CTL* defined as T-FDT
in Section 3.2.

C.1 Proof of the Structure Condition

As for the other two considered temporal logics the proof of the structure condition is
a direct instantiation of the proof scheme presented in Section 3.3.1.

Lemma 63 (CTL* Signature Invariance) Let ¥, Y € SIG oy be CTL* timed sig-
natures and o : ¥ — X' € S1G o1+ a CTL* timed signature morphism. Then o has the
following properties. (We use the primed versions of the symbols to denote the elements

of ¥'.)
e o(T)=T'0(0)=0, o(<) =<
e o(B) = B, o(true) = true, o(false) = false, o(PL) C PI’

Proof:
Analogously to the proofs of the other two temporal logics these properties are direct
consequences of the Definitions 1 and 13 and of the compatibility property of o. q.e.d.

Theorem 64 (CTL* Structure Closure) Let ¥, %' € SiGorps be CTL* timed sig-
natures and o : ¥ — X' € SiGerpr a CTL* timed signature morphism. Lel further
A" € Str(X') be a structure over ¥’ and A = A|,, A € Str(X), a structure over X.
Then A’ is a CTL* behavior model over ¥/ if and only if A is a CTL* behavior model
over X, t.e.

A € SIGCTL*(E) Zﬁ A e SIGCTL*(EI)

Proof:

To show that a structure B is a CTL* behavior model we have to show that the
conditions of the Definitions 15 and 19 are satisfied.

According to the definition of the forgetful functor |o we have Ap = AQ(T), Ap = A;(B),

and for all functions and relations [ € F' W P: f* = o(f)*
From Lemma 63 we can conclude Ap = A%, Ag = A%, and f% = o(f)¥ = f"g[/ for
f € {0, <, true, false}. This means that all carrier sets and all functions and relations

are equal for 2 and 2. Consequently, the conditions of the Definitions 15 and 19 are
valid for 2 if and only if they are valid for ' q.e.d.

!

The following corollary includes an additional property concerning the fullpaths.

Corollary 65 Let ¥,%" € SiGeorps be CTL* timed signatures and o : ¥ — Y/ €
SIG o a CTL* timed signature morphism. Let A" € S1G or+(X') be a CTL* behavior
model over X' and A = A |,, A € SiGor+(X), a CTL* behavior model over ¥. Then
the following holds:
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° AT:A/T/ ° AT:AITf ° 0.‘2[:0/,‘2[’ o <$2[: </sz[/
A = frue? o false™ = false™ o ['P(A)= FP(A)

e lrue

Proof:
We only have to proof the property FP(2) = FP(’). The other properties are shown

in the proof of Theorem 64.

def. L . def. + I . U
We have Ar "Ll ALy L% AL and <2 oLl o(<)¥ "= ¥

It follows: (Ar,<*) = (A%, <"QU) and finally: FP() = FP(A') q.e.d.

C.2 Proof of the Coincidence Condition

The proofs of the coincidence and isomorphism condition for CTL* mainly correspond
to the general scheme. The differences are that no terms have to be considered, in-
stead we have to deal with the fact that there are two additional satisfaction relations
|F&rres and |E¢rpes . This results in two additional lemmata: Lemma 66 for the
coincidence condition and Lemma 69 for the isomorphism condition.

Lemma 66 Let X, Y € SiGorrs be CTL* timed signatures, o : ¥ — Y/ € SIGorr+ a
CTL* timed signature morphism, A" € Strop+(X') a CTL* behavior model over Y/,
¢ € Sencrr(X) a sentence over ¥, t € Ap a time point, and x € FP,.(A) a track with

t=hd(z).
If
(A ) Eerre s Sencrr=(0) () iff (Str(a)(A), 1) |Ferrs ¢
then also
(Ql/7$)||:gTL*,E' PSencris(o)(e) iﬁ(Str(a)(Ql'),:v)H:%TL*@ 4
Proof:

According to Corollary 65 we have Ap = A%, and FP, () = FP,.(A').

(A, 2)[EGrre s PSencrrs (o) ()
iff (2, z) H:Zé’TL*,Z’ Sencri=(0)(p)

(PSGHCTL*(O')(@/)) = SenCTL*(O')(L/J) for 77/J € SGNCTL*(E))

iff (A, 1)[=grpe s Sencrrs(o)(p) and t = hd(x) (Def. 36)
iff (Str(o)(A),1)|Forxx ¢ and t = hd(x) (premise)
iff (Str(o)(), z)|Ferr s @ (Def. 36)
q.e.d.

Lemma 67 (|Fcrr+x-coincidence) Lel ¥, %' € SiGers be CTL* limed signatures
and o : ¥ — ¥ € SiGerrs a CTL* timed signature morphism, A" € Strorp=(Y') a
CTL* behavior model and A = W'|o. Let t € Ar (= A%) be an arbitrary time point
and x € FPy.(A) an arbitrary track. Then the following is valid for all ¢ € Sen gy (YD)
and all ¥ € PSencr+(X):

(Qllat)H:sOTL*,E’ Sencrir(o)(p) iff (StrCTL*(U)(Ql/)at)H:SCTL*,E ' (1)
(A, 2)[FCrps s PSencrir (o) () iff (Streris (o) (), o) |Forrs s ¥ (2)
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Proof:
By induction over ¢ € Sencri+(X) and ¢ € PSencrr+(Y).
Remember that Ar = A%, and F P () = F P (') according to Corollary 65.

base case:
(i) for (1): ¢ =p, p € Fp:
(Strore (o)), Dl=Erpe x p M (Ao, ) =Grre s P (Def. Strorix)
T (2, )= o p (@ = o)
iff p*(t) = TRUE (Def. 36)
iff o(p)® (1) = TRUE (Def. |o)
it (2, )|=Erpe z o(p) (Def. 36)
iff (Ql/, t)H:SCTL*,E' Sen OTL* (U)(p) (Def 31+30)

(ii) for (2): v =p, p € Fp:

Together with Lemma 66 we can conclude from (i) the base case for (2).

induction step:
(iil) @ = @1 = Y2, @1, 92 € Sencrp(X):
(Qllvt)H:SOTL*,E' Sencri(0)(p1 — ¥2)
if (A, ) [Egrre s Sencrr(o)(p1) = Sencrix(0)(p2) (Def. 31)
T (9 1) |ty 57 Senoir(0)(2) or (X, 1) Befur sy Senonis (o)1) (Det. 36)
it (Strores(o)(A), D) |Etrre s w2 or (Stror (o)), 1) ez @1 (ind. hyp.)
ift (Strore(0)(A), D)lEGTr 5 01 = @2 (Def. 36)
(iv) o = A, ¢ € PSencri+(X):
&, D) =erpe s Sencrir (o)(AY)
iff (Ql',t)|:50TL*7E, APSencrix(o)(v) (Def. 31)
iff for all y € FPy(A'),t = hd(y) : (A, y)|Ferpe s PSencrir(a)(¢)  (Def. 36)
iff for all y € FP,(A),t = hd(y) : (A, y)|FCrpe s PSencri=(o)(y)  (Cor. 65)
)
)

)
iff for all y € FP.(A),t = hd(y) : (Strore=(o)(A), y)|=err-5 ¥ (ind. hyp.
iff (StT’CTL*(O')(Ql/), t)HZSCTL*,E AdJ (Def 36
(V) ¥ =th1 = by, Y1, 0 € PSencrp(2):
analogously to (iii) for Sen cpp(X)
(Vl) LZJ = X'g/)l, 77/J1 € PSenCTL*(E):
(=, $)||:%TL*,E' PSencrp=(o)(Xyn)

il (Q[/7$)|:2’TL*,E' XPSencrir (o) (1) (Def. 31)
il (Ql’,xl)|:%TL*7E, PSencrir (o) (1) (Def. 36)
it (Streors(o)(24), l’l)HZ%TL*,z (o (ind. hyp.)
i (St‘f’ CTL*(O')(Q[’), x)H:%TL*,E XLZJl (Def 36)
(Vll)@/) = ?7/J1U77/J2, 77/J1,77/J2 € PSenCTL*(E):
analogously to (vi) q.e.d.

Theorem 68 (CTL* Coincidence) For CTL* defined as a T-FDT the coincidence
condition holds, i.e. for all ¥, %' € SiGer, 0: X — X' € SiGerps, A € Stror<(Y),
and ¢ € Sencrp(X) it holds:

A =crr s Sencrps(0)(@) iff Strer(0)(A') Ecrrrx ¢
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Proof:
Q[I |:OTL*,E' SenCTL*(J)(cp) il (Q[I, 0?2[') |:SCTL*,E’ SenCTL*(U)(L,o) (Def 36)
iff (StTCTL*(J)(Ql’),OQ[)||:50TL*7E @ (Lem. 67, Cor. 65)
i St?“OTL*(U)(Ql/) |:GTL*,E 2 (Def 36)
q.e.d.

C.3 Proof of the Isomorphism Condition

For the following lemma we extend an isomorphism hp : Ay — Br to tracks, i.e. to
hp @ FP.(A) — FP,.(B) by hp(z) = (hr(to), hr(t1),...) if @ = ({o,t1,...). Note,
that hr(z) is a path of B, because t; <¥ t,4q iff hr(t;) <® hr(tiy1),i > 0.

Lemma 69 Let ¥ € SiGerp, A,B € Streop(X) with A =B and h an isomorphism
between A and B, ¢ € Sencrr(X), t € Ap, and x € FP,. () with t = hd(x).
If

(let)H:SOTL*,E @ iff (%7 hT(t))H:SCTL*,E ¥

then also
(2L, x)H:%TL*,E @ iff (B, hT(I))H:%TL*,E ¥
Proof:
(&, 2)|=Crpe s 0 1T (A 1)|=8rpe 5 ¢ and £ = hd(z) (Def. 36)
iff (%B,1)|=grrex e and t = hd(x) (premise)
iff (B, 2)|=Crpe s @ (Def. 36)
q.e.d.

Lemma 70 (|Fcrr+s-Isomorphism) Let ¥ € SiGerys be a CTL* timed signature
and A, B € Strorir(X) isomorphic CTL* behavior models over ¥, i.e. A = B, and
h = (hs|s € S) an isomorphism between A and B. Then for all lime points t € Ar, all
tracks v € FP. (), all ¢ € Sencri+, and all ¢ € PSen crrx it holds:

(let)H:sOTL*,E e iff (%7 hT(t))H:SOTL*,E ¥ (3)
(2L, x)H:]é’TL*,Z ¥ iff (B, hT(x))H:Z()}’TL*,E (& (4)
Proof:
By induction over ¢ € Sencrrx and b € PSencrpgx+.
base case:
(i) for (3): ¢y =p,p € Fp:
iff p®(hr(t)) = TRUE (Lem. 43)
iff (B, hT(t))H:%TL*,E p (Def. 36)

(ii) for (4): v =p,p € Fp:

Together with Lemma 69 we conclude from (i) the base case for (4).
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induction step:
(iii) © = w1 = w2, p1,p2 € Sencrr+(X):
(let)“:sOTL*,E Y1 — P2
iff (let)||7/:SC’TL*,E ¥1 O (let>“:SOTL*,E P2
iff (B, hr(1)|Ferre s ¢1 or (B, hr(l))|[Ferr s ¢2
iff (B, hT(t))|:sCTL*,E Y1 — ¥2
(iv) ¢ = AY, ¢ € PSencrp+(Y):
(A, D) |Ferpe s AV
iff (Ql,:z:)H:%TL*; Y for all © € FP,.(A),t = hd(x)
iff (‘B,hT(;v))H:%TL*’E ¢ for all hr(z) € FP,.(°B),
hd(hr(z)) = hp(t)
iff (B, hr(t))|Ferp. s AY
(V) ¥ =1 = by, 1,902 € PSencris(X):
analogously to (iii) for PSen oz (¥)
(vi) ¥ = Xthy, 1 € PSencr=(Y):
(&, 2)[EGrLe 2 X
iff (2, JUI)HZ%TL*,E 1
iff (B, hT(‘Tl))H:]éTL*,E 1
ift (B, hr(z))[Ferpe s X
(Vll) 77/) = 77/)1U77/)2, 77/)1,77/& € PSGnCTL*(E)i

analogously to (vi)
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(Def. 36)

(ind. hyp.)
(Def. 36)

(Def. 36)

(ind. hyp.)
(Def. 36)

(Def. 36)

(ind. hyp.)
(Def. 36)

q.e.d.

Theorem 71 (CTL* Isomorphism) For CTL* defined as a T-FDT the isomor-
phism condition holds, i.e. for all ¥ € S1Gorr+, A, B € Streorp+(X) it holds:

91 =% and Ql IZCTL*,E 2 then ‘B |:CTL*,E 2

Proof:

Acrps ¢ iff (A, 0%)|Egrpe s @ (Def. 36)
iff (B, hT(OQ[))“:SOTL*,E ¥ (Lem. 70)
iff (°B, 0%)|:50TL*7E © (hr(0%) = 0%, since h is an isomorphism)
iff ‘B IZC’TL*,E 2 (Def 36)

q.e.d.



