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Abstract

We propose and analyze a multiscale model for acid-mediated tumor invasion accounting for
stochastic effects on the subcellular level. The setting involves a PDE of reaction-diffusion-taxis
type describing the evolution of the tumor cell density, the movement being directed towards
pH gradients in the local microenvironment, which is coupled to a PDE-SDE system char-
acterizing the dynamics of extracellular and intracellular proton concentrations, respectively.
The global well-posedness of the model is shown and numerical simulations are performed in
order to illustrate the solution behavior.
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1 Introduction

The analytical and numerical theory for stochastic differential equations (SDEs) have strongly
developed since the 1940s, and there are many reference books collecting the main achievements
in the field. Several results have also been obtained for systems of SDEs, including couplings of
forward and backward SDEs and their connections to systems of quasilinear parabolic PDEs, see
e.g., [6, 24, 32]. Stochastic PDEs (SPDEs) have inferred, too, an unprecedented progress during
the last decades, although the mathematical tools are less developed than for SDEs. In contrast,
references concerned with coupled PDE-SDE systems are rather scarce. In [16] the authors con-
sidered a system of a 1D parabolic PDE coupled to an SDE in a half-local way, letting the variable
satisfying the SDE intervene in the PDE only by its expectation. The possibility of a coupling via
compatibility conditions at the mutual interface between the different domains on which a PDE
and an SDE are respectively stated was mentioned as well, however without further dwelling on it.
The emphasis of [16] was on numerics. Models describing gene expression in the zebrafish hindbrain
have been introduced in [41] and involve a system of SPDEs with spatio-temporal noise, coupled
to two SDEs. The one-way coupling therein allows to reduce the complexity of the problem; for
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the numerical simulations the setting was further simplified to avoid the simultaneous noise oc-
currence in the (S)PDEs and (S)ODEs components of the system. Except for the simpler model
in [17] we are not aware of other works handling a genuine coupling between PDEs and SDEs, in
which the SDE holds at each point where the PDE does. To our knowledge models featuring the
interplay between reaction-diffusion-taxis PDEs and SDEs have not been addressed so far, neither
numerically nor analytically. Motivated by a biomedical problem, we propose here such a model
and investigate the existence of solutions to the considered system.

One of the hallmarks of cancer is the upregulation of glycolysis, both in aerobic and hypoxic con-
ditions [12]. Among its most prominent consequences is the extrusion of excess protons, triggering
the acidification of the extracellular region, see e.g. [38]. This seems to confer tumor cells several
advantages: the intracellular region being at the alkaline side of neutrality promotes advancement
through the cell cycle towards mitosis, along with evasion of apoptosis and cytoskeletal remodeling
[5, 39], hence facilitating migration. The invasion into adjacent tissue is further fostered by extra-
cellular matrix (ECM) degradation and induced apoptosis of stroma cells [39]. Several modeling
approaches have been proposed and investigated in order to describe acid-mediated tumor growth
and invasion. Most of them are continuum deterministic settings involving ordinary and/or partial
differential equations, the latter being used whenever spatial effects are accounted for. The PDEs
are mainly of reaction-diffusion type, like the model in [9], which seems to be the first to address
this biological issue in such mathematical framework. Quite a few works followed, concerning the
mathematical analysis of the PDEs involved in the model and some of its extensions and modi-
fications, see e.g., [7, 10, 26, 27, 34]. All these models describe the spatio-temporal interaction
between tumor cells and normal tissue under the influence of extracellular proton dynamics, [27]
also involving the evolution of matrix degrading enzymes. The PDEs are set on the macroscopic
scale of concentrations and cell densities depending on time and space only. Biological evidence
indicates, however, that subcellular processes (including intracellular proton production, buffering,
and transport into the extracellular space) regulate and are in turn influenced by the macroscale
dynamics, see e.g. [21, 37, 39]. This calls for multiscale formulations in which this dependence
is addressed, at least in some of its aspects. Deterministic models connecting subcellular level
dynamics with those on the macroscale have been proposed and analyzed e.g., in [28, 29, 35, 36].
Of these, [28, 35] specifically refer to acid-mediated tumor invasion described by way of pH-taxis.
The latter characterizes the biased motion of cancer cells in the direction of an extracellular pH
gradient [2, 31].

Being inherent to most biological processes, stochasticity is a relevant feature, in particular on the
level of individual cells and also of the subcellular dynamics, see e.g., [8, 21]. Recently we consid-
ered in [17] a two-scale model with nonlocal sample dependence describing the proton dynamics in
a tumor, where the intracellular one is governed by an SDE that is coupled to a reaction-diffusion
equation for the macroscopic concentration of extracellular protons. The models in [13, 14] have
a multiscale character, as well; they couple random ODEs with PDEs of reaction-(cross)diffusion-
taxis type and show the relevance of stochasticity in explaining transiently observed phenomena
like hypocellular gaps between the tumor and the surrounding normal tissue, further infiltrative
growth patterns, or tumor aggressivity depending on cell phenotype switching. In this work we
consider a model connecting the subcellular scale (dynamics of intracellular protons, described by
an SDE) with the macroscopic one (tumor cell density and extracellular proton concentration, each
described by a reaction-diffusion PDE – the one for tumor cells also including pH-taxis).

The paper is organized as follows: In Section 2 we introduce the multiscale model for acid-mediated
cancer migration. Section 3 is dedicated to the statement of the well-posedness result and its proof.
Numerical simulations are presented in Section 4, and in Section 5 we conclude with some com-
ments concerning the results and further issues to be addressed in future research.

Acknowledgment. This research was supported by the DFG, grant SU807/1-1.
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2 Model set up

2.1 Modeling the intracellular proton dynamics on the microscale

We describe the dynamics of intracellular proton concentration by an Itô SDE

dh = (−ψ(p, h) + ϕ(c, h)− δhh) dt+ g(h)dW, (2.1)

where W denotes a standard scalar Wiener process and dW the corresponding Itô differential.
The production of protons by glycolysis is described by the function ϕ, a constant decay rate
δh models the loss of protons by intracellular buffering, while the exchange of protons between
the intra- and extracellular regions is determined by the function ψ. Moreover, the function g
determines the volatility of the random perturbation.

2.2 Evolution of cancer cells and extracellular protons on the macroscale

Intracellular protons are expulsed into the extracellular region through several membrane-based
proton transporters upregulated as a consequence of enhanced glycolysis [33, 39].1 On the macrolevel,
the extracellular protons are transported by diffusion and buffered or uptaken by vasculature. The
invasive capacity of the tumor is influenced by the level of the extracellular proton concentration
and local cancer cell density. Moreover, the movement of malignant cells is biased towards gradi-
ents of the extracellular proton concentration (pH taxis), and the death and growth of cancer cells
also depends on the local cell density and concentration of extracellular protons.
Hence, the evolution of c (density of cancer cells) and p (concentration of extracellular protons) is
governed by the system of reaction-diffusion(-taxis) equations

∂tc = ∇ · (Φ(c, p)∇c)−∇ · (cΨ(c, p)∇p) + γcc

(
1− c

κc

)
− δccp, (2.2a)

∂tp = d∆p+ ψ(p, h)− δpp, (2.2b)

where ∆ denotes the Laplace operator with respect to the spatial variable and ∇ the gradient.
The nonlinear diffusion of tumor cells is described with the aid of the density-dependent coefficient
Φ(c, p), also featuring the dependence on proton concentration available in the peritumoral region
and favoring invasion. The convective effect of proton gradients is described by the taxis term, the
coefficient Ψ(c, p) representing pH-tactic sensitivity. The proliferation of cancer cells is described
by a logistic function, and δc denotes the death rate. The extracellular protons are dissolved in
the domain and transported by diffusion with a constant diffusion coefficient d. The function
ψ determines the proton exchange between the intra- and extracellular regions and the constant
decay rate δp models the loss of protons through buffering and vasculature.
The micro-macro model for acid mediated tumor invasion (2.1)–(2.2) extends the stochastic proton
dynamics model [17] by taking the dynamics of cancer cells into account, thereby also involving
pH-taxis. It is completed with appropriate boundary and initial data, which will be specified in
the following section.

3 Mathematical analysis

3.1 Basic notation and functional spaces

We will use the notation R+
0 := [0,∞). Moreover, ∂t denotes the partial derivative with respect to

time t > 0, and ∆, ∇, and ∇· are, correspondingly, the Laplace, gradient, and divergence operator
with respect to the spacial variable x. The spacial variable belongs to D, where D is a given smooth
spacial domain in Rn for some n ∈ N. On the boundary of D, ∂ν is defined as the derivative with

1e.g., NDCBE (Na+ dependent Cl−-HCO−
3 exchanger), NHE (Na+ and H+ exchanger) and AE (Cl−-HCO−

3 or
anion exchanger) are specific transporters present on the cell membrane
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respect to the outward unit normal. Furthermore, let (W (t))t≥0 be a standard scalar Wiener
process defined on the filtered probability space (Ω,F , (Ft)t≥0 ,P). We assume that (Ft)t≥0 is
the usual completion of the natural filtration of (W (t))t≥0. The corresponding Itô differential is
denoted by dW , and as usual, E denotes the expectation value.
For a Banach space X we denote by Lp((Ω,Ft);X) the Lp-space of measurable functions w.r.t.
the σ-algebra Ft. Moreover, Xk, k ∈ N, represents the product space X × · · · ×X (k-times) with
the usual norm.
To simplify the notation when dealing with purely PDE (SDE) properties which hold P-a.s. in
Ω (a.e. in D), we sometimes drop the dependence upon variable ω (variable x) and write, for
example, c instead of c(·, ω, ·) (c(·, ·, x)). Moreover, for a stochastic process u : [0, T ] × Ω → V ,
with V any space of functions defined for x ∈ D, we write u(t) instead of u(t, ·).

3.2 Problem setting and main result

Motivated by stochastic micro-macro models for acid mediated cancer invasion we consider the
following coupled system of two PDEs

P-a.s.


∂tc = ∇ · (Φ(c, p)∇c)−∇ · (cΨ(c, p)∇p) + f1(c, p) in (0, T )×D,
∂tp = d∆p+ f2(p, h) in (0, T )×D,
∂νc = ∂νp = 0 in (0, T )× ∂D,
c(0) = c0, p(0) = p0 in {0} ×D

(3.1a)

(3.1b)

(3.1c)

(3.1d)

and an Itô SDE

in D

{
dh = f3(c, p, h)dt+ g(h)dW in (0, T )× Ω,

h = h0 in {0} × Ω,

(3.2a)

(3.2b)

where T > 0 and D is a smooth bounded domain in Rn. The diffusion and pH-taxis coefficients are
given by the functions Φ and Ψ, and f1 describes the proliferation and death of cancer cells. The
functions f2 and f3 model the decay, production, and exchange of extra- and intracellular protons,
and g determines the stochastic fluctuations. In model (3.1)-(3.2) the proton concentrations are
normalized w.r.t. their maximum concentrations, i.e. p and h take values within the unit interval
[0, 1]. We make the following assumptions on the problem parameters.

Assumptions 3.1.

1. The coefficient functions Φ,Ψ : R+
0 × [0, 1]→ R+

0 satisfy

Φ,Ψ ∈ C2(R+
0 × [0, 1]),

and there exist some constants K1,K2 ≥ 0 such that

K1 ≤ Φ(c, p) ≤ K2 for all c ≥ 0, 0 ≤ p ≤ 1, (3.3a)

0 ≤ Ψ(c, p) ≤ K2 for all c ≥ 0, 0 ≤ p ≤ 1. (3.3b)

2. The functions f1 : R+
0 × [0, 1] → R, f2 : [0, 1] × [0, 1] → R, f3 : R+

0 × [0, 1] × [0, 1] → R and
g : [0, 1]→ R are (locally) Lipschitz continuous. There exists a constant K3 ≥ 0 such that

f1(c, p) ≤ K3(1 + c) for all c ≥ 0, 0 ≤ p ≤ 1. (3.4)

Further, it holds that

f1(0, p) ≥ 0, ∀ 0 ≤ p ≤ 1, (3.5a)

f2(0, h) ≥ 0, f2(1, h) ≤ 0 ∀ 0 ≤ h ≤ 1, (3.5b)

f3(c, p, 0) ≥ 0, f3(c, p, 1) ≤ 0 ∀ c ≥ 0, 0 ≤ p ≤ 1, (3.5c)

g(0) = 0, g(1) = 0. (3.5d)
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3. The initial data (c0, p0, h0) : Ω×D → R+
0 × [0, 1]× [0, 1] satisfies

(a) (c0, p0) ∈ [L∞((Ω,F0);C1+α(D))]2 for some α ∈ (0, 1);

(b) the compatibility conditions

∂νc0 = ∂νp0 = 0

hold P-a.s. in ∂D;

(c) h0 ∈ Lp((Ω,F0);W β,p(D)) for some p ∈ (2,∞) and β ∈ (0, 1) such that β > n
p .

Remark 3.1. Typical choices for the diffusion and pH-taxis coefficients Φ and Ψ such that con-
ditions (3.3) are satisfied are e.g., (see e.g., [13, 29, 35] and Section 4)

Φ(c, p) =
α̃1 + cp

1 + α̃2cp
, Ψ(c, p) =

κ

(1 + p)2
, (3.6)

where the constants κ, α̃1, α̃2 are positive and such that α̃2 > 1. Thereby, the diffusivity of tumor
cells is enhanced (up to a certain upper limit) by their interactions with an increasingly acidic
environment; this is in line with the actually observed behavior of cells whose motion into the
normal tissue is favorized by the acidity degrading the latter, see e.g., [27, 34] and references
therein.
The subsequent analysis also holds, however, if instead of the condition on Φ(c, p) in (3.3) we
require

K1

1 + c
≤ Φ(c, p) ≤ K2 for all c ≥ 0, 0 ≤ p ≤ 1. (3.7)

A class of functions satisfying such condition is

Φ(c, p) =
α1 + p

α2 + cp
, (3.8)

where the constants α1, α2 are positive and such that α1 ≤ α2. This choice accounts again for a
(limited) enhancement of cancer cell diffusivity by acidity, but here this enhancement is primarily
due to acidity, involving the interactions between cells and protons only to impose a limit on it
(thus we have in this situation a mainly ’acidity-driven’ diffusivity). We will use this choice in
the numerical simulations in Section 4, as it leads to more interesting issues with respect to the
solution patterns.

Definition 3.1. Let Assumptions 3.1 be satisfied. We call (c, p, h) : [0, T ]×Ω×D → R+
0 × [0, 1]×

[0, 1] a solution of (3.1)-(3.2) if:

1. c, p : [0, T ]× Ω→ C1+α(D) are adapted processes;

2. (c, p) ∈ [L∞(Ω;C
1+α

2 ,1+α([0, T ]×D))]2, (∇c,∇p) ∈ [L∞(Ω;C
α
2 ,α([0, T ]×D))]2n;

3. (c, p)(·, ω, ·) ∈ [C1,2((0, T ]×D)]2 P-a.s.;

4. h : [0, T ]× Ω→W β,p(D) is an adapted process;

5. h ∈ C 1
2 ([0, T ];Lp(Ω;W β,p(D)));

6. The PDE system (3.1) is satisfied pathwise (P-a.s.) in the classical (PDE) sense;

7. The SDE (3.2) is satisfied for all x ∈ D, which means that the stochastic integral equation

h(t) =h0 +

∫ t

0

f3(c(s), p(s), h(s)) ds+

∫ t

0

g(h(s)) dW (s) (3.9)

holds P-a.s for all t ∈ [0, T ] and x ∈ D.
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If (c, p, h) is a local solution for all T > 0, then we call it a global solution of (3.1)-(3.2).

Remark 3.2 (Pointwise adaptivity). Conditions 1 and 4 in Definition 3.1 imply that (c, p, h)(·, ·, x)
is an adapted process for all x ∈ D.

Remark 3.3 (Continuity of h). Since p > 2, condition 5 implies that h(·, ω, ·) ∈ Cδ([0, T ];W β,p(D))
for all δ ∈

(
0, 1

2

)
P-a.s. This is a direct consequence of the Kolmogorov’s continuity criterion

(e.g., see [3, Theorem 3.1, p.7] and the subsequent remark). Hence, due to the Sobolev embedding
W β,p(D) ↪→ Cβ−

n
p (D), h(·, ω, ·) ∈ Cδ([0, T ];Cβ−

n
p (D)) for all δ ∈

(
0, 1

2

)
P-a.s.

Now we are ready to state our main result.

Theorem 3.2. Let Assumptions 3.1 be satisfied. Then, there exists a unique global solution (c, p, h)
of problem (3.1)-(3.2) in the sense of Definition 3.1.

3.3 Proof of Theorem 3.2

Remark 3.4 (Notation). In the sequel, Ci, for all indices i, always denotes a non-negative con-
stant. The dependence of such quantity upon the parameters of the problem, i.e.: the space di-
mension n, the domain D, the constants K1,K2,K3, α, β, p and the structure of the coefficient
functions Φ,Ψ, f1, f2, f3 (meaning their norms and the norms of their derivatives on compact sets)
is subsequently not indicated in an explicit way.

In this Section, we prove the global existence result Theorem 3.2. We follow a standard path and
use the Banach fixed point theorem in order to obtain local well-posedness. Prior to that we show
that each solution necessarily satisfies certain a priori estimates. The latter allows us to extend
a local solution to a global one. Finally, we prove that solutions are stable with respect to initial
data on each time interval, which yields the overall uniqueness of solutions.
In order to apply Banach’s fixed point theorem, we need to decouple our system. For this purpose,
we first study the PDE system (3.1) assuming that (c0, p0) and h are given, and then study the
SDE (3.2) for given h0 and (c, p).

Step 1 (Well-posedness for (3.1) with respect to (c, p)). Assume that (c0, p0) satisfies the regularity
and compatibility assumptions (3a) and (3b) from Assumptions 3.1, and that h satisfies condition
5 from Definition 3.1 for some T > 0. As observed in Remark 3.3, such h necessarily satisfies
h(·, ω, ·) ∈ Cδ([0, T ];Cβ−

n
p (D)) for all δ ∈

(
0, 1

2

)
P-a.s., so that h(·, ω, ·) ∈ Cδ,β−

n
p ([0, T ] ×D) for

δ ∈
(
0, 1

2

)
P-a.s.

Now, system (3.1) is a weakly coupled reaction-diffusion-transport system. The semilinear equation
(3.1b) together with the corresponding boundary and initial conditions can be solved with respect
to p. The latter can then be plugged into equation (3.1a) in order to obtain c. Equations (3.1b) and
(3.1a) are standard semi- and quasilinear parabolic equations, respectively. Equation (3.1a) is in
divergence form. Moreover, the coefficient functions Φ,Ψ, f1, f2 are smooth and both h and (c0, p0)
are Hölder continuous. In this situation, we may apply standard theory of semi- and quasilinear
parabolic PDEs (see [20]) and the regularity result [22, Theorem 1.2], which yield the existence,
for each ω ∈ Ω, of a classical solution (c, p)(·, ω, ·) : [0, T ] × D → R+

0 × [0, 1]. The solution is
unique (also among weak solutions) and satisfies conditions 2 and 3 of Definition 3.1, provided
that c(·, ω, ·) is a priori non-negative and bounded and 0 ≤ p(·, ω, ·) ≤ 1 over [0, T ]×D. The latter
is checked in the subsequent step.

Remark 3.5 (Weak solution). If h is not assumed to belong to some Hölder class and only satisfies
0 ≤ h ≤ 1, the classical theory based on parabolic maximal regularity (see [20] and [1]) yields the
existence of a unique weak solution (c, p) to (3.1). As in the case of a classical solution, uniform
a priori bounds are required.

Step 2 (A priori estimates for (c, p) as solution to (3.1)). Assume that (c0, p0) satisfies the regu-
larity and compatibility conditions (3a) and (3b) from Assumptions 3.1 with

‖c0‖L∞((Ω,F0);C1+α(D)) + ‖p0‖L∞((Ω,F0);C1+α(D)) ≤ R for some R ≥ 0,
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and assume that h ∈ L∞(Ω;L∞((0, T )×D)) for some T > 0 (which ensures that h is measurable
in (0, T ) × D) P-a.s.). Let (c, p, h) be the pathwise (w.r.t. ω ∈ Ω) classical or weak solution (in
the standard PDE sense) to (3.1). The existence and uniqueness of such solution was discussed in
Step 1. Equation (3.1b) is a semilinear parabolic PDE. Due to (3.5b) it follows by the parabolic
comparison principle that

0 ≤ p(t, x) ≤ 1 in [0, T ]×D P-a.s.

Consequently, using that 0 ≤ h ≤ 1 we obtain

‖f2(p, h)‖L∞((0,T )×D) ≤ C1 P-a.s.

Further, the regularity result in [22, Theorem 1.2] and the assumptions on p0 yield that

p ∈ C
1+α

2 ,1+α([0, T ]×D) and ‖p‖
C

1+α
2

,1+α([0,T ]×D)
≤ C2(T,R) P-a.s., (3.10)

∇p ∈ [C
α
2 ,α([0, T ]×D)]n and ‖|∇p|‖

C
α
2
,α([0,T ]×D)

≤ C2(T,R) P-a.s. (3.11)

Estimate (3.11) together with the assumptions on Φ,Ψ, f1, and c0 and the standard results from
[20, Chapter 3, §7] yield that

‖c‖L∞((0,T )×D) ≤ C3(T,R) P-a.s. (3.12)

Moreover, the weak maximum principle implies that

c ≥ 0 a.e. in (0, T )×D P-a.s. (3.13)

Using the assumptions on Φ,Ψ, f1 and c0 and estimates (3.10)-(3.13), we apply once again the
regularity result [22, Theorem 1.2] and thus obtain that

c ∈ C
1+α

2 ,1+α([0, T ]×D) and ‖c‖
C

1+α
2

,1+α([0,T ]×D)
≤ C4(T,R) P-a.s., (3.14)

∇c ∈ [C
α
2 ,α([0, T ]×D)]n and ‖|∇c|‖

C
α
2
,α([0,T ]×D)

≤ C4(T,R) P-a.s. (3.15)

In particular, we have due to (3.11) and (3.15) that

(c, p) ∈ [C([0, T ];C1(D))]2 and ‖c‖C([0,T ];C1(D)) + ‖p‖C([0,T ];C1(D)) ≤ C5(T,R) P-a.s.

(3.16)

Further, standard inner regularity results for quasilinear parabolic PDEs (see [20]) yield that

(c, p)(t) ∈ [C1+ε(D)]2, (3.17)

‖c(t)‖C1+ε(D) + ‖p(t)‖C1+ε(D) ≤ C6(ε, t) P-a.s. for all t ∈ (0, T ] and ε ∈ (0, 1). (3.18)

Remark 3.6. In case of a Hölder continuous h, ε can be taken equal to 1 in (3.18).

Step 3 (Stability of (c, p) as solution to (3.1)). Let (c, p, h) and (c̃, p̃, h̃) be two pathwise (w.r.t.
ω ∈ Ω) classical or weak solutions (in the standard PDE sense) to (3.1) for some T > 0 with initial
data satisfying the regularity and compatibility conditions (3a) and (3b) from Assumptions 3.1
and

‖(c0, p0, c̃0, p̃0)‖[L∞((Ω,F0);C1+α(D))]4 ≤ R for some R ≥ 0,

The difference of (c, p) and (c̃, p̃) satisfies the BVP

∂t(c− c̃) = ∇ · (Φ(c, p)∇c− Φ(c̃, p̃)∇c̃)−∇ · (cΨ(c, p)∇p− c̃Ψ(c̃, p̃)∇p̃) + f1(c, p)− f1(c̃, p̃),
(3.19a)

∂t(p− p̃) = d∆(p− p̃) + f2(p, h)− f2(p̃, h̃), (3.19b)

∂ν(c− c̃) = 0, ∂ν(p− p̃) = 0. (3.19c)
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Multiplying (3.19a) by (c− c̃) and integrating by parts over D yields

1

2

d

dt
‖c− c̃‖2L2(D) =−

∫
D

∇(c− c̃) · (Φ(c, p)∇c− Φ(c̃, p̃)∇c̃)

+

∫
D

∇(c− c̃) · (Ψ(c, p)c∇p−Ψ(c̃, p̃)c̃∇p̃) +

∫
D

(c− c̃) (f1(c, p)− f1(c̃, p̃))

=−
∫
D

Φ(c, p)|∇(c− c̃)|2 +

∫
D

(cΨ(c, p)∇(c− c̃) · ∇(p− p̃))

+

∫
D

(− (Φ(c, p)− Φ(c̃, p̃))∇c̃+ (Ψ(c, p)c−Ψ(c̃, p̃)c̃)∇p̃) · ∇(c− c̃)

+

∫
D

(c− c̃) (f1(c, p)− f1(c̃, p̃)) .

Using the hypotheses on Φ,Ψ, f1 and (3.16), we obtain

1

2

d

dt
‖c− c̃‖2L2(D) +K1‖∇(c− c̃)‖2L2(D)

≤
∫
D

(
|Φ(c, p)− Φ(c̃, p̃)||∇c̃|+ |Ψ(c, p)c−Ψ(c̃, p̃)c̃||∇p̃|

)
|∇(c− c̃)| dx

+

∫
D

|cΨ(c, p)||∇(p− p̃)||∇(c− c̃)| dx+ C7(T,R)
(
‖c− c̃‖2L2(D) + ‖p− p̃‖2L2(D)

)
≤ C8(T,R)

∫
D

(
|c− c̃|+ |p− p̃|

)
|∇(c− c̃)| dx+ C8(T,R)

∫
D

|∇(c− c̃)||∇(p− p̃)| dx

+ C7(T,R)
(
‖c− c̃‖2L2(D) + ‖p− p̃‖2L2(D)

)
≤ 1

2
K1‖c− c̃‖2L2(D) + C9(T,R)

(
‖∇(p− p̃)‖2L2(D) + ‖c− c̃‖2L2(D) + ‖p− p̃‖2L2(D)

)
, (3.20)

where we used Hölder’s and Young’s inequality in the last step.
Multiplying (3.19b) by (p − p̃), integrating by parts over D, and using the assumptions on f2, it
follows that

1

2

d

dt
‖p− p̃‖2L2(D) + d‖∇(p− p̃)‖2L2(D) ≤ C10(T,R)

(
‖p− p̃‖2L2(D) + ‖h− h̃‖2L2(D)

)
. (3.21)

Moreover, if we multiply (3.19b) by ∆(p − p̃) and integrate, we obtain by the assumptions on f2

that

1

2

d

dt
‖∇(p− p̃)‖2L2(D) + d‖∆(p− p̃)‖2L2(D)

=−
∫
D

∆(p− p̃)
(
f2(p, h)− f2(p̃, h̃)

)
dx

≤d
2
‖∆(p− p̃)‖2L2(D) + C11(T,R)

(
‖p− p̃‖2L2(D) + ‖h− h̃‖2L2(D)

)
,

where we used again Hölder’s and Young’s inequality. Consequently, it follows that

d

dt
‖∇(p− p̃)‖2L2(D) ≤ C12(T,R)

(
‖p− p̃‖2L2(D) + ‖h− h̃‖2L2(D)

)
.

Combining this estimate with (3.20) and (3.21) and taking expectation values yields

d

dt
F (t) ≤ C13(T,R)

(
F (t) + E‖(h− h̃)(t)‖2L2(D)

)
,

where

F (t) :=E
(
‖(c− c̃)(t)‖2L2(D) + ‖(p− p̃)(t)‖2L2(D) + ‖∇(p− p̃)(t)‖2L2(D)

)
.
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Hence, Gronwall’s lemma implies that

E
(
‖(c− c̃)(t)‖2L2(D) + ‖(p− p̃)(t)‖L2(D) + ‖∇(p− p̃)(t)‖2L2(D)

)
≤C14(T,R)E

(
‖(c− c̃)(0)‖2L2(D) + ‖(p− p̃)(0)‖L2(D) + ‖∇(p− p̃)(0)‖2L2(D)

)
+ C14(T,R)

∫ t

0

E‖(h− h̃)(s)‖2L2(D)ds. (3.22)

Step 4 (Adaptivity of (c, p) as solution to (3.1)). We begin with the case when (c0, p0) : Ω →
C1+α(D) is a simple function w.r.t. the σ-algebra F0 and h : [0, T ] × Ω → L2(D) is a simple
càdlàg process for some T > 0. More precisely, the latter means that there exist a partition
0 = t0 < t1 < · · · < tn = T , n ∈ N, of the interval [0, T ], a family of disjoint sets Ωij ∈ Fti , and
functions hij ∈ L∞(D) for j = 1, . . . Ni, 1 ≤ i ≤ n, such that h can be represented in the form

h(t, ω, x) =

n∑
i=1

Ni∑
j=1

hij(x)1[ti,ti+1)(t)1Ωij (ω), (t, ω, x) ∈ [0, T ]× Ω×D, (3.23)

where 1 denotes the indicator function. Let now t ∈ (0, T ) be arbitrary. Then, there exists
1 ≤ l < n such that t ∈ [tl, tl+1), and since (Ft)t∈[0,T ] is a filtration, it follows that

Ωij ∈ Fti ⊂ Ftl , 1 ≤ j ≤ Ni, 1 ≤ i ≤ l.

Building disjoint intersections, we can replace the family {Ωij}1≤j≤Ni,1≤i≤l by a family of pairwise
disjoint sets Om ∈ Fl, 1 ≤ m ≤ Ml, and the family {hij}1≤j≤Ni,1≤i≤l by a family of functions
h̄m ∈ L∞((0, tl+1)×D), 1 ≤ m ≤Ml such that h allows the decomposition

h(s, ω, x) =

Ml∑
m=1

h̄m(s, x)1Om(ω), (s, ω, x) ∈ (0, tl+1)× Ω×D.

Hence, h : Ω→ L∞((0, tl+1)×D) is a simple function w.r.t. the σ-algebra Ft. Since we assumed
that (c0, p0) : Ω→ C1+α(D) is a simple function w.r.t. the σ-algebra F0 ⊂ Ft, it follows that the
corresponding pathwise defined solution (c, p)(t) : Ω→ C1+α(D) to (3.1) is also a simple function
w.r.t. the σ-algebra Ft. Since t ∈ (0, T ) was arbitrary, this implies that (c, p) : [0, T ] × Ω →
C1+α(D) is adapted.
Assume now that (c0, p0) satisfies the regularity and compatibility assumptions (3a) and (3b) from
Assumptions 3.1, and that h satisfies condition 5 from Definition 3.1 for some T > 0. Let (c, p)
be the corresponding classical solution (its existence and uniqueness were established in Step 1).
Then, there exist: a sequence (cn0, pn0)n∈N of simple functions w.r.t the σ-algebra F0 such that

sup
n∈N
‖(cn0, pn0)‖[L∞(Ω;C1+α(D))]2 <∞ and (cn0, pn0) →

n→∞
(c0, p0) in [L2(Ω;L2(D))]2,

and a sequence of simple càdlàg processes (hn)n∈N such that

hn →
n→∞

h in L2((0, T );L2(Ω;L2(D))).

If (cn, pn) denotes the solution corresponding to (cn0, pn0) and hn, then, by the above arguments,
it follows that (cn, pn) : [0, T ]× Ω→ [C1+α(D)]2 is adapted. Due to the estimate (3.22), we have
that

(cn, pn)(t) →
n→∞

(c, p)(t) in [L2(Ω;L2(D))]2 for all t ∈ [0, T ].

Consequently, for each t ∈ [0, T ] there is a subsequence such that (without relabelling)

(cn, pn)(t) →
n→∞

(c, p)(t) in [L2(D)]2 P-a.s. (3.24)
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Moreover, due to the Sobolev interpolation inequality and estimate (3.18) (take ε ∈ (α, 1)), we
conclude with (3.24) that

(cn, pn)(t) →
n→∞

(c, p)(t) in [C1+α(D)]2 P-a.s. for all t ∈ [0, T ].

Therefore, for each t ∈ [0, T ], (c, p)(t) : Ω → [C1+α(D)]2 is measurable w.r.t. the σ-algebra Ft as
it is the limit of a P-a.s. converging sequence of simple functions w.r.t. the σ-algebra Ft. This
means that the process (c, p) : [0, T ]× Ω→ [C1+α(D)]2 is adapted.

Step 5 (Well-posedness for (3.2) w.r.t. h). Assume that (c, p) satisfies conditions 1 and 2 from
Definition 3.1 for some T > 0. Then, (c, p) : [0, T ]×Ω→ [C(D)]2 is a bounded continuous adapted
process. Consequently, (c, p)(·, ·, x) is a bounded continuous adapted process for all x ∈ D. Let
us further assume that h0 satisfies (3c) from Assumptions 3.1. Due to the Sobolev embedding
W β,p(D) ↪→ C(D) for β > n

p , it follows that h0 : Ω → C(D) is measurable w.r.t. the σ-algebra

F0. This implies that h0(·, x) is measurable w.r.t. F0 for all x ∈ D.
We observe next that for every fixed x ∈ D the SDE (3.2) satisfies due to assumptions on f3 and
g the hypotheses of the stochastic invariance criterion (see [30] or [4]) and, consequently, it holds
a priori that

0 ≤ h(·, ·, x) ≤ 1 for all t ∈ [0, T ] P− a.s. (3.25)

Altogether, the classical result on the existence of solutions for an Itô SDE (see, e.g., [25, Theorem
3.1, p. 51]) is applicable in this situation and leads to a pathwise (w.r.t. x ∈ D) defined unique
solution h, such that h(·, ·, x) is a continuous adapted process for all x ∈ D.

Step 6 (A priori estimates for h as solution to the SDE (3.2)). Assume that h0 satisfies (3c) from
Assumptions 3.1, and that (c, p) satisfies conditions 2 and 3 from Definition 3.1 and estimate (3.16)
for some T,R > 0. Moreover, let h fulfil the stochastic integral equation (3.9) for all x ∈ D. In
this part of the proof, we exploit the regularity of h. In order to shorten notations, we introduce
the difference operator

Dx,yu := u(x)− u(y) (3.26)

for each pair (x, y) ∈ D ×D and a function u defined in D. For the difference Dx,yh we obtain

Dx,yh(t) =Dx,yh0 +

∫ t

0

Dx,yf3(c, p, h)(s) ds+

∫ t

0

Dx,yg(h)(s) dW (s). (3.27)

Taking the expectation value and p-th power (p > 2, from the assumptions on h0) in (3.27), it
follows from Hölder’s inequality, a version of the Burkholder-Gundy-Davis inequality [25, Theorem
7.1, p. 39], the assumptions on f3 and g and (3.16) that

E|Dx,yh(t)|p

≤C15E|Dx,yh0|p + C15E
∣∣∣∣∫ t

0

Dx,yf3(c, p, h)(s) ds

∣∣∣∣p + C15E
∣∣∣∣∫ t

0

Dx,yg(h)(s) dW (s)

∣∣∣∣p
≤C15E|Dx,yh0|p + tp−1C15E

∫ t

0

|Dx,yf3(c, p, h)(s)|p ds+ t
p−2

2 C16E
∫ t

0

|Dx,yg(h)(s)|p ds

≤C15E|Dx,yh0|p + tp−1C17(T )

∫ t

0

E|Dx,y(c, p)(s)|p ds+ t
p−2

2 C17(T,R)

∫ t

0

E|Dx,yh(s)|p ds. (3.28)

Applying Gronwall’s lemma yields

E|Dx,yh(t)|p ≤ C18(T,R)E|Dx,yh0|p + C18(T,R)

∫ T

0

∫ t

0

E|Dx,y(c, p)(s)|p dsdt. (3.29)

10



Further, dividing both sides of (3.29) by |x− y|βp+n and integrating over D×D, we arrive at the
estimate

E
∫
D×D

|Dx,yh(t)|p

|x− y|βp+n
dxdy ≤C18(T,R)E

∫
D×D

|Dx,yh0|p

|x− y|βp+n
dxdy

+ C18(T,R)E
∫ T

0

∫ t

0

∫
D×D

|Dx,y(c, p)(s)|p

|x− y|βp+n
dxdy dsdt. (3.30)

Combining (3.16), the assumptions on h0, and the Sobolev embedding C1(D) ↪→W β,p(D) (recall
that β ∈ (0, 1)), we conclude from (3.30) that

E
∫
D×D

|Dx,yh(t)|p

|x− y|βp+n
dxdy ≤ C19(T,R) (3.31)

for all t ∈ [0, T ]. Since 0 ≤ h ≤ 1, (3.31) yields (recall the definition of the Sobolev-Slobodeckij
norm for W β,p(D)) that

‖h(t)‖Lp(Ω;Wβ,p(D)) ≤ C20(T,R) (3.32)

for all t ∈ [0, T ]. Similarly, we have for the difference Dx,y(h(t) − h(s)) for 0 ≤ s < t ≤ T that it
satisfies the stochastic integral equation

Dx,y(h(t)− h(s)) =

∫ t

s

Dx,yf3(c, p, h)(s) ds+

∫ t

s

Dx,yg(h)(s) dW (s). (3.33)

Using (3.31) and once again Hölder’s inequality, a version of the Burkholder-Gundy-Davis inequal-
ity [25, Theorem 7.1, p. 39], the assumptions on f3 and g, and (3.16), we obtain from (3.33) by
calculations similar to above that

E
∫
D×D

|Dx,y(h(t)− h(s))|p

|x− y|βp+n
dxdy ≤ (t− s)

p
2C21(T,R). (3.34)

Combining (3.32) and (3.34), we arrive at

‖h‖
C

1
2 ([0,T ];Lp(Ω;Wβ,p(D)))

≤ C22(T,R). (3.35)

Step 7 (Adaptivity of h as solution to (3.2)). Assume that h0 satisfies (3c) from Assumptions
3.1, and that (c, p) satisfies conditions 1 and 2 from Definition 3.1 for some T > 0. Let h be the
pathwise (w.r.t. x ∈ D) defined solution of the SDE (3.2) (the existence and uniqueness of such
solution was discussed in Step 5). For each x ∈ D and t ∈ (0, T ], the random variable h(t, ·, x) can
be approximated using the standard Euler-Maruyama scheme (see, e.g., [19, Chapter 9 §1]):

tni := i
t

n
, i = 0, . . . , n,

hni+1 := hni + f2(c(tni ), p(tni ), hni )(tni+1 − tni ) + g(hni )(W (tni+1)−W (tni )), i = 0, . . . , n− 1,

hn(t) := hnn.

Since this scheme does not guarantee that 0 ≤ hni ≤ 1 holds, we extend the coefficients f3 and g
for h ∈ (−∞, 0) ∪ (1,∞):

f3(c, p, h) := f3(c, p, 0) for all h < 0, f3(c, p, h) := f3(c, p, 1) for all h > 1, (3.36)

g(h) := 0 for all h < 0, g(h) := 0 for all h > 1. (3.37)

Then, f3 : [0, ‖c‖L∞((0,T )×Ω×D)] × [0, 1] × R → R and g : R → R are Lipschitz continuous and

bounded. Hence, the corresponding Nemytskii operators preserve the spaces Lp((Ω,Ft);W β,p(D))
for all t ≥ 0. Due to the assumptions on (c, p) and the Sobolev embedding C1(D) ↪→W β,p(D) (as
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β ∈ (0, 1)), we have that (c, p)(t) ∈ [Lp((Ω,Ft);W β,p(D))]2 for all t ∈ [0, T ]. Using the assumptions
on h0 and the fact that W (tni+1)−W (tni ) is measurable w.r.t. the σ-algebra Ftni+1

, we thus obtain
by induction that

hn(t) ∈ Lp((Ω,Ft);W β,p(D)) for all n ∈ N and t ∈ [0, T ]. (3.38)

Moreover, as in the continuous-time case, one obtains by calculations similar to those in Step 6
that the following discrete version of estimate (3.32) holds:

‖hn(t)‖Lp(Ω;Wβ,p(D)) ≤ C20(T ) for all t ∈ [0, T ]. (3.39)

Since Lp(Ω;W β,p(D)) is reflexive, there exists for each t ∈ [0, T ] a subsequence which converges
weakly in Lp(Ω;W β,p(D)), and, thus, also weakly in L2(Ω×D) (as p > 2). Further, owing to the
standard convergence result (see, e.g., [19, Chapter 10, Theorem 10.2.2]),

E(hn(t, ·, x)− h(t, ·, x))2 ≤ C23(T )n−1 →
n→∞

0 for all t ∈ [0, T ] and x ∈ D. (3.40)

Integrating (3.40) over D, we conclude that

hn(t) →
n→∞

h(t) in L2(Ω×D) for all t ∈ [0, T ].

Since strong and weak limits coincide, we conclude that (without relabelling the subsequence) it
holds that

hn(t) ⇀
n→∞

h(t) in Lp(Ω;W β,p(D)) for all t ∈ [0, T ]. (3.41)

Finally, as weak convergence preserves measurability in Bochner spaces of functions with values
in a separable Banach space (and W β,p(D) is separable since p ∈ (2,∞)), (3.38) and (3.41) yield
that h : [0, T ]× Ω→W β,p(D) is an adapted process.

Step 8 (Stability for h as solution to the SDE (3.2)). Assume that h0, h̃0 satisfy (3c) from As-
sumptions 3.1, and that (c, p), (c̃, p̃) satisfy conditions 2 and 3 from Definition 3.1 and estimate
(3.16) for some T,R > 0. Let h and h̃ be the corresponding solutions of the SDE (3.2), i.e. they
satisfy the stochastic integral equation (3.9). For the difference of h and h̃ we obtain

(h− h̃)(t) =(h− h̃)(0) +

∫ t

0

(f3(c, p, h)− f3(c̃, p̃, h̃)) ds+

∫ t

0

(g(h)− g(h̃)) dW (s).

By Hölder’s inequality, Itô’s identity (see, e.g., [25, Theorem I.7.2] for p = 2), and the assumptions
on f3 and g it follows that

E|(h− h̃)(t)|2

≤2E

(
|(h− h̃)(0)|2 +

∣∣∣∣∫ t

0

(f3(c, p, h)− f3(c̃, p̃, h̃))(s) ds

∣∣∣∣2 +

∣∣∣∣∫ t

0

(g(h)− g(h̃))(s) dW (s)

∣∣∣∣2
)

≤2E|(h− h̃)(0)|2 + 2tE
∫ t

0

|(f3(c, p, h)− f3(c̃, p̃, h̃))(s)|2 ds+ 2E
∫ t

0

|(g(h)− g(h̃))(s)|2 ds

≤2E|(h− h̃)(0)|2 + C24(T )

∫ t

0

E
(
|(c− c̃)(s)|2 + |(p− p̃)(s)|2

)
ds+ C24(T )

∫ t

0

E|(h− h̃)(s)|2 ds.

(3.42)

Applying the Gronwall lemma to (3.42) and integrating over D, we arrive at the estimate

E‖(h− h̃)(t)‖2L2(D)

≤C25(T )E‖(h− h̃)(0)‖2L2(D) + C25(T )

∫ t

0

∫ s

0

E
(
‖(c− c̃)(τ)‖2L2(D) + ‖(p− p̃)(τ)‖2L2(D)

)
dτ ds

≤C25(T )E‖(h− h̃)(0)‖2L2(D) + C26(T )

∫ t

0

E
(
‖(c− c̃)(s)‖2L2(D) + ‖(p− p̃)(s)‖2L2(D)

)
ds. (3.43)
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Step 9 (Global existence for (3.1)-(3.2)). We begin with a local existence proof for the system
(3.1)-(3.2). Let the initial data (c0, p0, h0) satisfy Assumptions 3.1 with

‖(c0, p0)‖[L∞((Ω,F0);C1+α(D))]2 ≤ R for some R ≥ 0.

In order to construct a corresponding local solution, we use the Banach fixed point argument. To
this end, we define the following metric space for an arbitrary T > 0:

X[0, T ] :=
{
h : [0, T ]× Ω×D → [0, 1] s.t. h : [0, T ]× Ω→ L2(D) is adapted,

h ∈ C 1
2 ([0, T ];Lp(Ω;W β,p(D))), ‖h‖

C
1
2 ([0,T ];Lp(Ω;Wβ,p(D)))

≤ C22(T,R), h(0) = h0

}
with a constant C22(T,R) as in estimate (3.35). We assume X[0, T ] to be equipped with the metric
induced by the standard norm in the Banach space C([0, T ];L2(Ω;L2(D))).

Lemma 3.3. X[0, T ] is a complete metric space.

Proof. Since C
1
2 ([0, T ];Lp(Ω;W β,p(D))) ↪→ C([0, T ];L2(Ω;L2(D))), the C

1
2 ([0, T ];Lp(Ω;W β,p(D)))-

balls are closed in C([0, T ];L2(Ω;L2(D))). On the other hand, if {hn}n∈N ⊂ X[0, T ] is a Cauchy
sequence, it converges to some h ∈ C([0, T ];L2(Ω;L2(D))) since the latter is a Banach space.
Hence, hn(t) →

n→∞
h(t) in L2(Ω;L2(D)) for all t ∈ [0, T ]. Since L2-convergence preserves mea-

surably, h : [0, T ] × Ω → L2(D) is an adapted process. Altogether, it follows that X[0, T ] is
complete.

We also make use of the following set:

V[0, T ] :=
{

(c, p) : [0, T ]× Ω×D → R+
0 × [0, 1] s.t. (c, p) satisfies properties 1 – 3 in Definition 3.1,

‖(c, p)‖
[L∞(Ω;C

1+α
2

,1+α([0,T ]×D))]2
, ‖(∇c,∇p)‖

[L∞(Ω;C
α
2
,α([0,T ]×D))]2n

≤ C4(T,R),

(c, p)(0) = (c0, p0)
}
,

with the constants C2(T,R) and C4(T,R) as in estimates (3.10)-(3.11) and (3.14)-(3.15), respec-
tively. The results obtained in the preceding steps yield that the solution operators for (3.1) (h
given) and (3.2) ((c, p) given):

θ1 : X[0, T ]→ V[0, T ], h 7→ (c, p),

θ2 : V[0, T ]→ X[0, T ], (c, p) 7→ h

are well-defined and continuous. Let us now define

θ : X[0, T ]→ X[0, T ] θ := θ2 ◦ θ1.

Combining (3.22) and (3.43), we obtain that

sup
s∈[0,t]

E‖(θ(h)− θ(h̃))(s)‖2L2(D) ≤C27(T,R)

∫ t

0

∫ s

0

E‖(h− h̃)(τ)‖2L2(D) dτds

≤t2C27(T,R) sup
s∈[0,t]

E‖(θ(h)− θ(h̃))(s)‖2L2(D)

for all h, h̃ ∈ X[0, T ] and t ∈ [0, T ]. Consequently, θ is a contraction in X[0, t(T,R)] for

t(T,R) := (C27(T,R))−
1
2 > 0.

Applying the Banach fixed point theorem to θ in X[0, t(T,R)], we obtain the existence of a unique
fixed point h ∈ X[0, t(T,R)]. Putting (c, p) := θ1(h), we regain the remaining two solution compo-
nents. By its construction, (c, p, h) is the unique solution (in terms of Definition 3.1) of the system
(3.1)-(3.2) in [0, t(T,R)]× Ω×D.
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Observe that the particular choice of the ’starting time’ was not essential for what we obtained
heretofore. Indeed, all previous results remain valid if we replace the interval [0, T ] by [t0, t0 + T ]
for any t0 > 0 and consider the ’shifted’ in time filtration (Ft+t0)t≥0 instead of the original one. It
is also clear from the above steps that if a solution defined for t ∈ [0, t0] for some t0 is prolonged
by a solution defined for [t0, t1] for some t1 > t0, both solutions being understood in terms of
Definition 3.1, then the resulting solution on [0, t1] is also a solution in terms Definition 3.1. We
now use these considerations in order to construct a solution which exists globally. Let T,R > 0
be arbitrary and set

R0 := max{C2(T,R), C4(T,R)},
t0 := t(T,R0).

By the definition of C2 and C4, it follows that a priori

‖(c, p)(t)‖[L∞(Ω;C1+α(D))]2 ≤ R0 for all t ∈ [0, T ].

Using the result on local existence just obtained above, we can therefore construct a solution on
[0, T ] by combining local solutions defined on [0, t0], [t0, 2t0], and so forth until the whole interval
[0, T ] is covered. Since R was arbitrary, we can obtain a solution defined for all t ≥ 0 by defining
it on [0, T ], [T, 2T ], etc.

Step 10 (Stability and uniqueness of solutions to (3.1)-(3.2) with respect to initial data). Let
(c, p, h) and (c̃, p̃, h̃) be solutions to system (3.1)-(3.2) with

‖(c, p, c̃, p̃)(0)‖[L∞((Ω,F0);C1+α(D))]4 ≤ R for some R ≥ 0,

Then, estimates (3.22) and (3.43) hold. Adding them together and using the Gronwall inequality,
we obtain the following Lipschitz-type estimate:

sup
t∈[0,T ]

E
(
‖(c− c̃)(t)‖2L2(D) + ‖(p− p̃)(t)‖L2(D) + ‖∇(p− p̃)(t)‖2L2(D) + ‖(h− h̃)(t)‖2L2(D)

)
≤C28(T,R)E

(
‖(c− c̃)(0)‖2L2(D) + ‖(p− p̃)(0)‖L2(D) + ‖∇(p− p̃)(t)‖2L2(D) + ‖(h− h̃)(0)‖2L2(D)

)
.

(3.44)

The uniqueness of solutions to (3.1)-(3.2) is a direct consequence of (3.44). This completes the
proof of Theorem 3.2.

4 Numerical simulations

Let D := [0, r1] × [0, r2]; ri > 0, i = 1, 2, and Mx and My be the number of nodes in the
partitions of the x− and the y−axis of D, respectively. Thus we have δx := r1

Mx
, δy := r2

My
.

The spatial grid points at which the solution to our problem will be computed are represented
as (xk, yj), k ∈ {0, . . . ,Mx}, j ∈ {0, . . . ,My}, xk := kδx, yj := jδy. Also, let the time interval
I := [0, T ] with T > 0 be divided into a number of Nτ subintervals with τ := T

Nτ
and the temporal

grid points (tn), n ∈ {0, . . . , Nτ}, with tn := nτ . The numerical grid parameters actually used in
the simulations are collected in Table 1.
Before describing the discretization scheme we provide the initial conditions and explicit forms of
the functions and coefficients in (3.1), (3.2) used for the numerical simulations. The former are
illustrated in Figure 1, both for the 1D and the 2D cases. The proton concentrations and tumor
cell density are scaled, thus the units are arbitrary.
The parameters chosen for the 1D and 2D simulations are given in Table 2 and are provided in
their non-dimensional form. For all figures in this section we use the following color coding:

• 1D simulations:
blue, solid line with filled dots (-o-o-o-): cancer cell density c;
green, solid line with plus signs (−+−+−): extracellular proton concentration p;
red, solid line with asterisks (–?–?–): intracellular proton concentration h.
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Numerical parameters (4.2), (4.3) (4.1)
Parameter 1D 2D 1D

N (# time steps) 8000 1500 5000
M (# Monte Carlo simulations) 1000 1000 1000

τ (temporal step size) 0.1 0.1 0.1
δx (spatial step size along x) 0.01 0.01 0.01
Mx (grid resolution along x) 301 41 301
δy (spatial step size along y) - 0.01 -
My (grid resolution along y) - 41 -

Table 1: Numerical parameters

• 2D simulations:
solid curves (—) indicate the level sets of cancer cell density c;
filled regions indicate level sets of extracellular proton concentration p. The values corre-
sponding to these level sets are indicated by the color bars adjacent on the right side to the
2D plots (see Figure 1b).

(a) Initial conditions 1D (b) Initial conditions 2D

Figure 1: Initial conditions in 1D and 2D.

Concerning the set of functions and coefficients involved in the PDE-SDE system, we first choose
some satisfying the conditions for which the well-posedness proof in Section 3 works:

f1(c, p) := γ
f1
c(1− c)− k4cp, k4 ≥ 0

f2(p, h) := γ
f2
p(1− ρp) + k1h− k2p, k2 ≥ k1

f3(c, p, h) := γ
f3
ch(1− h) + k2p− k1h− k3(1 + c)h, k3 ≥ k2

g(h) := γ
g
h(1− h)

Φ(c, p) := γ
Φ

α1 + p

α2 + cp

Ψ(c, p) := γΨ

1

(1 + p)2

(4.1)

It can be easily checked that these functions satisfy the Assumptions 3.1 (with the condition on Φ
in (3.3) replaced by (3.7)).
The results of the 1D simulations are plotted in Figure 2; it shows different time snapshots of the
same solution sample path. Figure 3 depicts the numerical mean for 1000 trajectories. Notice
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Growth and decay parameters
Phenomenological relevance value in (4.2), (4.3) value in (4.1)

γ
f1

rate constant for cancer proliferation 0.009 0.09

γ
f2

rate constant for extracellular protons 0.4 36.8

ρ constant within the logistic term of p - 1
36.8

γ
f3

rate constant for intracellular protons 1 0.08

γg noise intensity for intracellular proton dynamics 3 0.03

Migration parameters
Phenomenological relevance value in (4.2), (4.3) value in (4.1)

γ
D

diffusion coefficient for protons 0.0001 0.0001

γ
Φ

diffusion coefficient for cancer cells 0.00005 0.00005
γΨ pH-taxis coefficient 0.02 0.002
k1 conversion rate from h to p 0.07 0.06
k2 conversion rate from p to h 0.01 0.07
k3 rate of decay of h due to c - 0.06
k4 rate of decay of c due to interaction with p - 0.01
α1 constant within the diffusion coefficient Φ (4.1) 1 1
α2 constant within the diffusion coefficient Φ (4.1) 4 4

Table 2: Simulation parameters (1D and 2D)

Figure 2: Time snapshots of a sample solution in the case of a 1D domain. Blue line: cancer cell
density c; green line: extracellular proton concentration p, red line: intracellular proton concen-
tration h. Choice of functions and coefficients as in (4.1).

the advancement of the tumor front from the original tumor site (on the left side of the interval)
into the spatial domain. The choice (4.1) leads to an almost constant profile of extracellular
proton concentration, while the intracellular proton concentration exhibits oscillations due to the
stochastic effects, however only infers a higher variation (increase) at the front of the tumor wave,
after which it stabilizes again.
This less interesting dynamics is due to the choice of functions in (4.1), however other choices are
possible as well -although for them the proof in Section 3 no longer holds. An alternative proof,
however, could possibly allow for more general forms (we will provide more comments on this issue
in Section 5).
In the following we propose different functions and coefficients which account in a more pronounced
way for the nonlinearity of couplings in the system and which lead to more realistic tumor patterns.
Thereby, we also allow the functions fi (i = 1, 2, 3) to depend on all variables c, p, and h, while
the volatility coefficient g in the SDE for intracellular protons can depend (beside h) also on c, to
model the direct effect of tumor cell density on the perturbations inferred by h.
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Figure 3: Time snapshots of the numerical mean in the case of a 1D domain. Blue line: can-
cer cell density c; green line: extracellular proton concentration p, red line: intracellular proton
concentration h. Choice of functions and coefficients as in (4.1).

f1(c, p, h) =
γ
f1

0.1 + h
c(a1(p)− c),

f2(c, p, h) = γ
f2

(
− p(p− a2(h))(b2(c)− p)(p− c2(c))(d1(c)− p) + (k1h− k2p)J(c)

)
f3(c, p, h) = γ

f3

(
h(h− a3)(b3(p)− h)(h− c3(p)) + (k2p− k1h)J(c)

)
g(c, h) = γgJ(c)h

J(c) = 0.06
( (c+ b4)(a4(p)− c)

0.01 + c4

)
+ 0.02.

(4.2)

The proliferation rate of tumor cells is inversely related to the concentration of intracellular protons,
and the carrying capacity is reduced by the peritumoral acidity, which both motivate the choice
of f1. Moreover, we use a function J to weight the proton transport across the cell membrane
(modeled by the last terms in f2 and f3) in such a way that the latter is enhanced during the
proliferative regime of tumor cells. This is in line with biological evidence of increased glycolytic
activity during the mitotic phase. The first (higher order polynomial) terms in f2 and f3 are chosen
in order to ensure some multistable dynamics (with 4 or 5 steady states) for p and h, respectively.
Figure 4 shows the qualitative behavior of J as a function of c.

Figure 4: Qualitative behavior of J as a function of c.

The following choices are made for the coefficients in (4.2):

a1(p) :=
1

0.5 + p
, a2(h) := max(0.2,

2h

1 + h
), b2(c) := 0.7c, c2(c) := 0.8c,

d1(c) := 0.99c, a3 := 0.25, b3(p) := min(0.5p, 0.35), c3(p) := p,

a4(p) := a1(p), b4 := 0.008, α1 := 1, α2 = 4.

The involved constants can be found in Table 2.
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We use an Euler-Maruyama scheme ([19], Chapter 10) for discretizing the intracellular proton
dynamics equation (3.2). Letting

Jnk,j := J(cnk,j), cnk,j := c(tn, xk, yj),

pnk,j := p(tn, xk, yj), hnk,j := h(tn, xk, yj),

f+
3 (cnk,j , p

n
k,j , h

n
k,j) := (a3 + b3 + c3)(hnk,j)

3 + a3b3c3h
n
k,j + k2J

n
k,jp

n
k,j ,

f−3 (cnk,j , p
n
k,j , h

n
k,j , h

n+1
k,j ) := hn+1

k,j

(
(hnk,j)

3 + (a3b3 + c3b3 + a3c3)hnk,j + k1J
n
k,jh

n+1
k,j

)
we get for (xk, yj) the following discretization:

hn+1
k,j = hnk,j + τ

[
f3(cnk,j , p

n
k,j , h

n
k,j , h

n+1
k,j )

]
+
√
τg(hnk,j , c

n
k,j)ξ

= hnk,j + τ
[
f+

3 (cnk,j , p
n
k,j , h

n
k,j)− f−3 (cnk,j , p

n
k,j , h

n
k,j , h

n+1
k,j ) +

√
τg(hnk,j , c

n
k,j)ξ

⇒ hn+1
k,j =

hnk,j + τ
[
f+

3 (cnk,j , p
n
k,j , h

n
k,j)
]

+
√
τγξJ

n
k,jh

n
k,jξ

1 + τ
[
(hnk,j)

3 + (a3b3 + c3b3 + a3c3)hnk,j + k1Jnk,j

]
The Euler-Maruyama discretization ensures convergence of order 1

2 for τ < 1, while the non-
standard way of expressing the negative terms implicitly ensures positivity of the approximated
solutions. Apart from this, if hnk,j ≤ 0 at any given spatial point (xk, yj) we set hn+1

k,j = 0 at that
point.

For the extracellular proton dynamics we use an implicit finite difference scheme, wherein the
diffusion term is discretized implicitly.
Letting

f+(cnk,j , p
n
k,j , h

n+1
k,j ) := (a2 + b2 + c2)(pnk,j)

3 + a2b2c2p
n
k,j + k1J

n
k,jh

n+1
k,j ,

f−(cnk,j , p
n
k,j , p

n+1
k,j ) := pn+1

k,j

(
(pnk,j)

3 + (a2b2 + c2b2 + a2c2)pnk,j + k2J
n
k,j

)
,

f+
2 (cnk,j , p

n
k,j , h

n+1
k,j ) := d2f

+ + pnk,jf
−,

f−2 (cnk,j , p
n
k,j , p

n+1
k,j , h

n+1
k,j ) := d2f

− + pn+1
k,j f

+.

we get for (xk, yj) the following discretization for the extracellular proton dynamics:

pn+1
k,j = pnk,j + τ [f+

2 − f
−
2 ] +

τγ
D

δ2
x

(pn+1
k−1,j + pn+1

k+1,j − 2pn+1
k,j ) +

τγ
D

δ2
y

(pn+1
k,j−1 + pn+1

k,j+1 − 2pn+1
k,j ).

For the cancer cell population dynamics (first equation in (3.1)) we use an IMEX finite difference
scheme, wherein an implicit central finite difference scheme is used to discretize the diffusion terms
while the taxis and reaction terms are discretized explicitly. Letting

f1,n
k,j := f1(cnk,j , p

n+1
k,j , h

n+1
k,j ),

Φnk,j := Φ(cnk,j , p
n+1
k,j ), Ψn

k,j := Ψ(cnk,j , p
n+1
k,j ).
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(a) Sample solution 192.

(b) Sample solution 432.

(c) Sample solution 829.

Figure 5: Time snapshots of three different sample solutions (out of 1000 simulations) in a 1D
domain. Blue: cancer cell density, green: extracellular proton concentration, red: intracellular
proton concentration. Choice of functions and coefficients as in (4.2).

we get for (xk, yj) the following discretization:

cn+1
k,j = cne,k,j + τ [f1,n

k,j ]

+
γΦτ

δ2
x

(Φnk−1,jc
n+1
k−1,j + Φnk+1,jc

n+1
k+1,j − 2Φnk,jc

n+1
k,j )

+
γΦτ

δ2
y

(Φnk,j−1c
n+1
k,j−1 + Φnk,j−1c

n+1
k,j+1 − 2Φnk,jc

n+1
k,j )

− γ
Ψ
τ

2δ2
x

[(Ψn
k−1,j + Ψn

k,j)(h
n
k−1,j − hnk,j) + (Ψn

k+1,j + Ψn
k,j)(h

n
k+1,j − hnk,j)]

− γ
Ψ
τ

2δ2
y

[(Ψn
k,j−1 + Ψn

k,j)(h
n
k,j−1 − hnk,j) + (Ψn

k,j+1 + Ψn
k,j)(h

n
k,j+1 − hnk,j)]

Figure 5 shows 3 out of 1000 randomly chosen sample paths, each sample path being a solution
of (3.1) whose coefficient functions take the explicit form given in (4.2). Figure 6 depicts the
expectation solution for (3.1). The expected value was numerically computed by averaging over
1000 sample solutions.
The plots show the more or less strong aggregation of tumor cells at different time points, in
regions with high extracellular and low intracellular proton concentrations. This is mainly due to
the pH-taxis and the proton exchange through the cell membranes. The weighting of the latter by
the function J leads to stronger oscillations in the dynamics of h, thus triggering the formation
of cell aggregates. Although the solution infers very steep increasing and high densities of cells in
the aggregates, it does not seem to infer blow-up. Instead, several such high-density aggregates
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Figure 6: Time snapshots of the numerical mean in a 1D domain. Choice of functions and coeffi-
cients as in (4.2).

form and the solution remains bounded. This is, however, merely what simulations suggest; a
mathematical proof of this conjecture seems to be currently out of reach. Since the observed
peaks occur at different time and space points, the expectation curves in Figure 6 maintain some
wiggly shapes, hinting on rather irregular patterns for the cancer cells, where high density regions
alternate in a quick succession with hypocellular patches.

Figure 7 shows 2D simulations for several different sample paths illustrating various patterns
both for the tumor cells and the extracellular protons. Since the 1D simulations have been run
independently of the 2D ones the sample paths do not correspond and cannot be identified; therefore
we show also different time points of the sample solutions than in the 1D case, as we focus on the
mentioned patterns. Notice also in this case the sample-to-sample path variability in the solution
behavior at the same time points: this applies to the tumor spatial extent, to the pattern (with
different localizations of the cell aggregates and different regions of acidity), and to the effective
levels of cell density and extracellular proton concentration. The model predicts very heterogeneous
tumors, with alternating hyper- and hypocellular regions, with usually higher acidity near the cell
aggregates. While time goes on the tumor spread becomes increasingly infiltrative, exhibiting an
irregular shape with islands of cells apparently having no connection to the rest of the tumor.
Computing the expectation by averaging over 500 sample solutions in 2D allows to assess the aver-
age patterns of cancer cell density and extracellular proton concentration. Several time snapshots
are shown in Figure 8, which confirms the biologically well known fact that the highest acidity
level is located at the sites with highest tumor cell density.

Next we consider the situation with so-called nonlocal coupling, meaning that the effect of intracel-
lular protons on the dynamics of their extracellular counterparts and on the cancer cell evolution is
described not directly by the stochastic process h, but via its expectation E(h). This approach has
also been considered in a simpler framework in [17], where -relying on [18]- we called it nonlocal
sample dependence. In this nonlocal framework we consider again the system (3.1)-(3.2) whose
coefficient functions take the explicit forms given in (4.2), with the exception of the functions f1

and f2 taking the following form:

f1(c, p, h) = γ
f1
c(a1(p)− c)

( 1

0.1 + E(h)

)
,

f2(c, p, h) = γ
f2

(
− p(p− a2(h))(b2(c)− p)(p− c2(c))(d1(c)− p) + (k1E(h)− k2p)J(c)

)
,

(4.3)

where the constants are as given in (4.2). Figure 9 shows a sample path of the solution, while Figure
10 illustrates the expectation, numerically computed by averaging over 1000 sample solutions. In
the nonlocal case the sample paths have a very similar appearance (from path to path), exhibiting-
as expected- much smoother curves for h and c than in the previous case accounting for the full
stochasticity of h. They all have in common the steep profile of the tumor front, with a rather
large accumulation of cell mass at the front side (due to the pH-taxis), followed by smaller local
maxima for which the nonlinear diffusion and the proton dynamics play a larger role. The wave of
cancer cells eventually invades the whole available space. As in the previous case, for later times we
observe cell accumulation in strongly localized, high density aggregates; this is again mainly due
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(a) Sample solution 289.

(b) Sample solution 314.

(c) Sample solution 427.

Figure 7: Time snapshots of three different sample solutions to (3.1)-(3.2) in a 2D domain. Func-
tions and coefficients as in (4.2).

Figure 8: Time snapshots of the numerical mean in a 2D domain. Functions and coefficients as in
(4.2).
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Figure 9: Time snapshots of the sample solution 432 in the case of nonlocal coupling and for a 1D
domain. Functions f3 and g as in (4.2), f1 and f2 as in (4.3).

Figure 10: Time snapshots of the numerical mean in the case of nonlocal coupling and for a 1D
domain. Functions f3 and g as in (4.2), f1 and f2 as in (4.3).

to the pH-taxis, but the shape of the involved functions and coefficients (with the multistability
caused by f2 and f3 and the dependence on J(c)) also plays a role.

2D simulations in the nonlocal case are presented in Figure 11 showing the expectations (for c
and p) computed by averaging over 500 sample paths of the solution. As previously in the 2D
plots, in order to save computational time the spatial components are each in a smaller interval
than in the 1D case. The cell and acidity patterns form quite fast, exhibiting a transient behavior
as triggered by the multistability introduced via (4.2) and (4.3). Thus, Figure 11 illustrates an
initially compact tumor in a highly acidic environment, advancing gradually and changing thereby
the proton concentration from high levels at the tumor core towards lower levels surrounded by
higher acidity. The acidity distribution is then inverted, as the protons fill the further extending
tumor region and the cells change their phenotype from migrating to proliferating or vice versa2.
Eventually, the tumor cells form ’islands’ of very high densities, which usually are highly acidic;
however, smaller, less acidic, and apparently disconnected aggregates are possible as well. The
very fast accumulation of extremely dense cell aggregates might suggest blow-up of the solution
to the nonlocal equations considered here, however -as before- a proof confirming or refuting this
conjecture is not available.

5 Discussion

In this work we proposed a micro-macro model for acid-mediated tumor invasion which couples
the subcellular scale with the cell population level. It accounts for stochastic effects on the lower
scale and for pH-taxis on the macrolevel. For the highly nonlinear SDE-PDE system we proved in
Theorem 3.2 the global well-posedness and non-negativity of solutions. The boundedness of one
solution component (tumor cell density) in a more general setting is still open. The numerical
simulations suggest blow-up for certain choices of the functions and coefficients involved in (3.1)-
(3.2). Furthermore, we asked these to satisfy Assumptions 3.1, which are rather restrictive and not
fulfilled e.g., by (4.2) or (4.3), for which the more interesting dynamics has been observed, in line

2according to the choice of functions and coefficients in (4.2) and (4.3) and in line with the go-or-grow dichotomy
stating that migration and proliferation are mutually exclusive, see e.g., [11, 15, 40]
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Figure 11: Time snapshots of the numerical mean in the case of nonlocal coupling and for a 2D
domain. Functions f3 and g as in (4.2), f1 and f2 as in (4.3).

with known biological facts. The mathematical model introduced here has a much larger versatility
than the proof in Section 3 affords, therefore we also performed the numerical simulations for those
more general functions and put in evidence the decisive role played by pH-taxis and stochasticity
in reproducing realistic infiltrative growth patterns of acid-mediated tumor invasion.
Alternative proofs relying on more advanced fixed point theorems (as in the deterministic frame-
work) would require compactness arguments which cannot just be translated from the deterministic
to the stochastic case. A common approach to well-posedness of parabolic SPDEs relies on some
monotonicity properties of the elliptic operator (see e.g., [23] and references therein), however such
properties are often not satisfied when dealing with strongly coupled, highly nonlinear systems.
Another well studied approach -still within the context of stochastic evolution equations in Hilbert
spaces- relies on the theory of semigroups (see e.g., [3]) and requires, too, rather strong smoothness
assumptions about the involved operators; in particular, it is not clear how to apply it for SDE-
PDE systems including nonlinear diffusion and taxis effects. In [14] we applied such method to
a larger system involving nonlinear diffusion and pH-taxis, however coupling PDEs with an ODE
and a random ODE; the proof was quite involved, but ensured global well-posedness under the
conditions imposed on the coefficients. When only weaker assumptions can be made about the
functions and coefficients of the system to be studied in this or related stochastic settings then
-as mentioned- an approach relying on compactness and a priori estimates (as in the deterministic
framework) would be desirable, since it allows to approximate the highly complex problem at hand
with a less complicated one. A first step in this direction has been done in [42].

The model introduced here was motivated by the problem of tumor growth and spread, which
led to many challenging deterministic mathematical models, of which we already mentioned a few
in the introduction. Extending such models to account for stochastic effects is justified by the
necessity to characterize (at least some of) the uncertainties inherent to each living system. As
shown by our simulations, there is a large variability between the tumor cell and acidity patterns
obtained for different sample paths of the solution. Assuming that each patient has a single tumor
(i.e., no metastases) this translates into a substantial interpatient variability, for which a deter-
ministic counterpart of this model is not able to account for. Our stochastic model, however, is
able to reproduce3 the often observed highly infiltrative, irregular patterns of cancer. Although
in average the predicted shape of the tumor is more regular, with advancing time the margins of
the neoplastic tissue become more and more fractal, as illustrated in Figure 8. Indeed, the cell
aggregates (as far as they occur) are formed at different spatial points and at different times; they
also have different sizes, and they seem to be distributed over the entire considered spatial domain.

3in the absence of appropriate data at least qualitatively
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Another related issue to be considered is the effect of tumor cells and acidity on the normal tissue,
as the latter acts both as support and hindrance for the tumor cells invading their surroundings.
Moreover, it is degraded by the cancer cells (actually by the acidity they cause) but can also be
remodeled by them. Including these effects increases the level of detail, but also the complexity of
the models. The so-called haptotaxis (motion directed towards the tissue gradient) leads even in
the deterministic framework to serious challenges both from an analytical and a numerical point
of view, the more so in a multiscale setting (see e.g., [43, 44] and [29, 36], respectively). Its math-
ematical investigation in a stochastic context (PDE-ODE-SDE setting) is still to be addressed.
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