
Integrating Security Concerns into
Safety Analysis of Embedded Systems

Using Component Fault Trees

Vom Fachbereich Informatik der
Technischen Universität Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation

von

Dipl.-Inf. Max Steiner

Datum der wissenschaftlichen Aussprache: 29. August 2016

Dekan: Prof. Dr. Klaus Schneider
Erster Berichterstatter: Prof. Dr. Peter Liggesmeyer
Zweiter Berichterstatter: Prof. Dr. Karsten Berns

D 386

II

Zusammenfassung

Nahezu alle neu entwickelten Systeme enthalten heutzutage eingebettete Sys-
teme zur Steuerung von Systemfunktionen. Ein eingebettetes System nimmt
seine Umwelt über Sensoren wahr und interagiert mit ihr mittels Aktoren. Sys-
teme, die ihrer Umwelt durch fehlerhaftes Verhalten Schaden zufügen können,
werden üblicherweise auf ihre Betriebssicherheit (Safety) hin untersucht. Die
Angriffs- oder Datensicherheit (Security) von eingebetteten Systemen wird
meistens überhaupt nicht betrachtet. Durch die neuen Entwicklungen im Be-
reich Industrie 4.0 und Internet of Things werden solche Systeme immer stär-
ker miteinander vernetzt. Dadurch kommen neue Ursachen für Systemausfälle
zum Tragen: Schwachstellen in den Software- und Kommunikationskompo-
nenten können von Angreifern ausgenutzt werden, um einerseits die Kontrolle
über ein System zu erlangen und andererseits durch gezielte Eingriffe das Sys-
tem in einen kritischen Zustand zu bringen, der entweder dem System selbst
oder der Umwelt schadet. Beispiele solcher Schwachstellen und auch erfolgrei-
che Angriffe werden in letzter Zeit immer häufiger bekannt.

Aus diesem Grund muss man bei eingebetteten Systemen bei der Analyse
der Betriebssicherheit (Safety) auch die Datensicherheit (Security) zumindest
soweit berücksichtigen, wie sie Auswirkungen auf Ausfälle von Systemkompo-
nenten haben kann.

Ziel dieser Arbeit ist es, in einem Modell zu beschreiben, wie sich Bedro-
hungen aus Securitysicht auf die Safetyeigenschaft eines Systems auswirken
können. Da aber weiterhin die Betriebssicherheit der Systeme im Vordergrund
steht, wird die Safetyanalyse erweitert, um Bedrohungen der Security mit zu
berücksichtigen, die eine Wirkung auf die Safety des Systems haben können.
Komponentenfehlerbäume eignen sich sehr gut dazu, Ursachen eines Ausfalls
zu untersuchen und Ausfallszenarien zu finden. Ein Komponentenfehlerbaum
eines zu untersuchenden Systems wird um zusätzliche Ereignisse erweitert, die
sich auch durch gezielte Angriffe auslösen lassen. Qualitative und quantitative
Analysen werden erweitert, um die zusätzlichen Securityereignisse zu berück-
sichtigen. Dadurch lassen sich Ursachen für Ausfälle finden, die auf Safety-
und/oder Securityproblemen basieren. Quantitative oder Semi-quantitative

IV

Analysen ermöglichen es, Securitymaßnahmen besser zu bewerten und die
Notwendigkeit solcher zu begründen.

Der Ansatz wurde in mehreren Analysen von Beispielsystemen angewen-
det: Die Sicherheitskette des Off-road Roboters ravon, ein adaptiver Tem-
pomat, ein Smart Farming Szenario und ein Modell einer generischen Infusi-
onspumpe wurden untersucht. Das Ergebnis war bei allen Beispielen, dass da-
durch zusätzliche Ausfallursachen gefunden werden konnten, die in einem klas-
sischen Komponentenfehlerbaum nicht auftauchen würden. Teilweise wurden
auch Ausfallszenarien gefunden, die nur durch einen Angriff ausgelöst werden
können und nicht von Ausfällen von Systemkomponenten anhängig sind. Das
sind besonders kritische Szenarien, die in dieser Form nicht vorkommen soll-
ten und durch eine klassische Analyse nicht gefunden werden. Dadurch zeigt
sich ein Mehrwert des Ansatzes bei einer Sicherheitsanalyse, der sich durch
die Anwendung etablierter Techniken auch mit wenig zusätzlichem Aufwand
erreichen lässt.

Abstract

Nowadays, almost every newly developed system contains embedded systems
for controlling system functions. An embedded system perceives its environ-
ment via sensors, and interacts with it using actuators such as motors. For
systems that might damage their environment by faulty behavior usually a
safety analysis is performed. Security properties of embedded systems are usu-
ally not analyzed at all. New developments in the area of Industry 4.0 and
Internet of Things lead to more and more networking of embedded systems.
Thereby, new causes for system failures emerge: Vulnerabilities in software
and communication components might be exploited by attackers to obtain
control over a system. By targeted actions a system may also be brought into
a critical state in which it might harm itself or its environment. Examples for
such vulnerabilities, and also successful attacks, became known over the last
few years.

For this reason, in embedded systems safety as well as security has to
be analyzed at least as far as it may cause safety critical failures of system
components.

The goal of this thesis is to describe in one model how vulnerabilities
from the security point of view might influence the safety of a system. The
focus lies on safety analysis of systems, so the safety analysis is extended to
encompass security problems that may have an effect on the safety of a system.
Component Fault Trees are very well suited to examine causes of a failure and
to find failure scenarios composed of combinations of faults. A Component
Fault Tree of an analyzed system is extended by additional Basic Events that
may be caused by targeted attacks. Qualitative and quantitative analyses are
extended to take the additional security events into account. Thereby, causes
of failures that are based on safety as well as security problems may be found.
Quantitative or at least semi-quantitative analyses allow to evaluate security
measures more detailed, and to justify the need of such.

The approach was applied to several example systems: The safety chain
of the off-road robot ravon, an adaptive cruise control, a smart farming
scenario, and a model of a generic infusion pump were analyzed. The result of

VI

all example analyses was that additional failure causes were found which would
not have been detected in traditional Component Fault Trees. In the analyses
also failure scenarios were found that are caused solely by attacks, and that are
not depending on failures of system components. These are especially critical
scenarios which should not happen in this way, as they are not found in a
classical safety analysis. Thus the approach shows its additional benefit to a
safety analysis which is achieved by the application of established techniques
with only little additional effort.

Acknowledgements

I would like to take the opportunity to thank everyone who supported me
during the time I worked on this thesis.

First of all, I would like to thank my supervisor Prof. Dr. Peter Liggesmeyer
who made this work possible in the first place. He inspired me to write this
thesis about the combination of safety and security analysis. Special thanks
go to Prof. Dr. Karsten Berns who initially referred me to Prof. Liggesmeyer,
and who agreed to be my second referee on such short notice.

I would also like to thank my past and present colleagues at the chair
Software Engineering: Dependability: Patric Keller for the support during the
early stages and the motivation to write the first publication, Kai Bizik for the
good times in our shared office and the many helpful conversations about our
thesis topics, and Michael Roth who motivated me with his working morale
and his everlasting high spirits to finish the thesis.

Special thanks also go to Thomas Schneider and Caroline Frey for the
continuing support with technical or organizational obstacles and especially
for the organization of the scholarship for the last six months of this work.

I also thank my other colleagues for the good teamwork that lasted for
years.

Contents

Contents . IX

List of Figures . XIII

List of Tables . XVII

1 Introduction . 1
1.1 Motivation . 2
1.2 Problem Statement . 5
1.3 Contribution . 5
1.4 Structure . 6

2 Related Work and Fundamentals . 7
2.1 Safety Analysis Techniques . 8

2.1.1 Fault Tree Analysis (FTA) . 9
2.1.2 Inductive Safety Analysis Techniques 20

2.2 Security Analysis Techniques . 22
2.2.1 Attack Tree Analysis . 24
2.2.2 Threat Modeling . 31

2.3 Combinations of Safety and Security Analysis 34
2.3.1 Integration of FTs and ATs . 35
2.3.2 Security Analysis with Safety Implications 37
2.3.3 Failure Mode, Vulnerabilities and Effects Analysis

(FMVEA) . 39
2.3.4 Other Related Approaches that Combine Safety and

Security Analysis . 41
2.4 Critique of Quantified Security Properties 42
2.5 Conclusion . 43

X CONTENTS

3 A Comprehensive Safety Modeling Approach 45
3.1 Overall Modeling and Analysis Process . 45
3.2 Discussing Different Combinations of Component Fault

Trees (CFTs) and Attack Trees (ATs) . 47
3.2.1 An AT Extended by a CFT . 47
3.2.2 A CFT Extended by an AT. 47
3.2.3 Nested Trees . 48

3.3 Tree Creation Approaches . 48
3.3.1 Combination of two Complete Separate Trees 48
3.3.2 Extension of a Tree . 51

3.4 Development of a Security-enhanced Component Fault
Tree (SeCFT) . 52

3.5 Rules for the Development of an SeCFT . 56

4 The Analysis of Security-enhanced Component Fault Trees 59
4.1 Ratings of Basic Events in SeCFTs . 59

4.1.1 Probabilities . 61
4.1.2 Likelihood . 62
4.1.3 Tuple Rating . 64

4.2 Calculation Rules for SeCFTs . 65
4.2.1 Probabilities . 66
4.2.2 Likelihood . 66
4.2.3 Tuple Rating . 68

4.3 Qualitative Analysis of SeCFTs . 70
4.3.1 Minimal Cut Set Analysis . 70
4.3.2 Importance of Basic Events . 73

4.4 Quantitative Analysis of SeCFTs . 73
4.5 Summary: Analysis Process of SeCFTs . 77

5 Evaluation of the Approach . 79
5.1 Tool Support . 79
5.2 Analysis Example: RAVON . 81

5.2.1 Description RAVON . 81
5.2.2 Analysis . 83
5.2.3 Results . 84

5.3 Analysis Example: Adaptive Cruise Control 89
5.3.1 Description Adaptive Cruise Control 89
5.3.2 Analysis . 90
5.3.3 Results . 91

5.4 Analysis Example: Smart Farming . 95
5.4.1 Description: Smart Farming . 95
5.4.2 Analysis . 99
5.4.3 Results . 99

5.5 Analysis Example: Infusion Pump . 103
5.5.1 Description: Infusion Pump . 103

CONTENTS XI

5.5.2 Analysis . 103
5.5.3 Results . 106

5.6 Conclusion . 107

6 Conclusion . 109

A Appendix . 111
A.1 Evaluation Example: Ravon . 112
A.2 Evaluation Example: Adaptive Cruise Control 115
A.3 Evaluation Example: Smart Farming . 129
A.4 Evaluation Example: Infusion Pump . 137

Abbreviations . 141

Index . 143

References . 145

List of Figures

1.1 An embedded system . 1
1.2 Networked embedded systems . 3

2.1 An example Fault Tree . 10
2.2 A CFT consisting of three subcomponents 12
2.3 A corresponding Reduced Ordered Binary Decision

Diagram (ROBDD) for the example from Fig. 2.1 17
2.4 The cause-effect chain of an Failure Mode and Effects

Analysis (FMEA) . 20
2.5 An example to illustrate the interrelations of the definitions 23
2.6 An example Attack Tree (AT) . 25
2.7 The cause-effect chain of Failure Mode, Vulnerabilities and

Effects Analysis (FMVEA) from [Schmittner 14] 40

3.1 The safety analysis process according to IEC 60300–3–1 46
3.2 The extended safety analysis process . 46
3.3 Combinations of CFTs and ATs. Fig. 3.3b shows the

combination that is used for this thesis. 48
3.4 Nested combinations of CFTs and ATs . 49
3.5 The combination approach of a CFT and an separate AT 50
3.6 The extension of a Fault Tree . 52
3.7 The extension of a Component Fault Tree 53
3.8 The development of a Security-enhanced Component Fault

Tree (SeCFT) . 54
3.9 An attacker component with two possible attacks 56

4.1 An example attacker component . 60
4.2 An example SeCFT consisting of a controller component and

an attacker component . 65

XIV LIST OF FIGURES

4.3 The example from Fig. 4.2 with ratings for safety and security
Basic Events (BEs) . 69

4.4 An SeCFT with highlighted Minimal Cut Sets (MCSs) from
the example in Fig. 4.2 . 72

4.5 The extended analysis process after the SeCFT is created 77

5.1 A screenshot of the prototype tool for the analysis of SeCFTs . . 80
5.2 The ravon robot 2009 at the University of Kaiserslautern 82
5.3 The ravon safety chain . 83
5.4 A CFT of the ravon safety chain . 85
5.5 The Adaptive Cruise Control (ACC) example system 89
5.6 The modeled architecture of the ACC . 90
5.7 A high level CFT of the ACC example system 91
5.8 An overview of the smart farming ecosystem 95
5.9 An overview of the smart farming system components 96
5.10 A high level SeCFT of the smart farming example system 100
5.11 The SeCFT of the attacker component in the smart farming

example system . 101
5.12 A simplified architecture of a generic patient controlled

analgesia pump based on [Arney 09] . 103
5.13 A high-level SeCFT model of the pump model shown in Fig. 5.12104
5.14 The attacker component of the infusion pump analysis 105

A.1 SeCFT: ACC.System . 115
A.2 SeCFT: ACC.Vehicle . 116
A.3 SeCFT: ACC.ACC . 117
A.4 SeCFT: ACC.Brake Interface . 118
A.5 SeCFT: ACC.Control Logic Unit . 119
A.6 SeCFT: ACC.Speedometer . 120
A.7 SeCFT: ACC.Communication System . 121
A.8 SeCFT: ACC.Front Antenna . 122
A.9 SeCFT: ACC.Wheelspeed Sensor . 123
A.10 SeCFT: ACC.Brake Actor . 123
A.11 SeCFT: ACC.Distance Sensor . 123
A.12 SeCFT: SmartFarming.Driving . 129
A.13 SeCFT: SmartFarming.EngineActuatorController 130
A.14 SeCFT: SmartFarming.BreakActuatorController 130
A.15 SeCFT: SmartFarming.SteeringActuatorController 130
A.16 SeCFT: SmartFarming.SpeedController . 131
A.17 SeCFT: SmartFarming.DirectionController 132
A.18 SeCFT: SmartFarming.TractorBus . 132
A.19 SeCFT: SmartFarming.GasPedalSensorController 132
A.20 SeCFT: SmartFarming.BreakPedalSensorController 133
A.21 SeCFT: SmartFarming.SteeringWheelSensorController 133
A.22 SeCFT: SmartFarming.GasPedal . 133

LIST OF FIGURES XV

A.23 SeCFT: SmartFarming.BreakPedal . 134
A.24 SeCFT: SmartFarming.SteeringWheel . 134
A.25 SeCFT: SmartFarming.RemoteControl . 135
A.26 SeCFT: SmartFarming.Attacker . 136
A.27 SeCFT: InfusionPump . 137
A.28 SeCFT: InfusionPump.Alarm . 138
A.29 SeCFT: InfusionPump.PumpDriver . 138
A.30 SeCFT: InfusionPump.ErrorHandler . 138
A.31 SeCFT: InfusionPump.FlowRateMonitor . 139
A.32 SeCFT: InfusionPump.PumpSensors . 139
A.33 SeCFT: InfusionPump.PumpUnit . 139
A.34 SeCFT: InfusionPump.UserInput . 140
A.35 SeCFT: InfusionPump.Attacker . 140

List of Tables

2.1 Importance values for the example BEs . 19
2.2 Examples for values assigned to BEs in ATs from [Schneier 99] . 24
2.3 Operations for conjunction and disjunction for different

attributes . 28
2.4 Parameters used to calculate the outcome of an attack

according to Buldas et al. [Buldas 06] . 29
2.5 Threats and security properties from [Hernan 06] 32
2.6 Descriptions of security properties from [Hernan 06] 33
2.7 Threats affecting data flow diagram elements according

to [Hernan 06] . 33
2.8 Comparison of safety and security risk analysis processes

according to [Eames 99] . 35
2.9 Ratings of attack scenario criteria as used in [Bloomfield 12] . . . 38
2.10 FMVEA elements and their correspondents in

FMEA [Schmittner 14] . 40
2.11 Ratings of the properties necessary to determine the attack

probability according to [Schmittner 14] . 41

3.1 STRIDE maps threats to security properties 55

4.1 MCSs according to type, whereas controller and attacker
refer to the appropriate components . 64

4.2 MCSs according to type, whereas controller and attacker
refer to the appropriate components . 72

4.3 Qualitative importance of BEs . 73
4.4 Conditions for an order of mixed MCSs according to two

tuples (P1, L1) and (P2, L2) . 74
4.5 MCSs from example 1 ordered according to probability and

likelihood . 75
4.6 BEs together with their ratings from the example 75

XVIII LIST OF TABLES

5.1 ravon technical data . 81
5.2 Ratings of the Basic Events in the ravon safety chain 86
5.3 MCSs of size 1 found during a qualitative analysis of the

ravon safety chain . 86
5.4 Most critical MCSs according to the security likelihood of the

ravon safety chain . 87
5.5 Most critical MCSs according to the safety probability of the

ravon safety chain . 88
5.6 Ratings of the Basic Events in the ACC system 92
5.7 MCSs of size 1 found during a qualitative analysis of the ACC . 93
5.8 Most critical MCSs according to the security likelihood of the

ACC. 93
5.9 Most critical MCSs according to the safety probability of the

ACC. 93
5.10 Ratings of the Basic Events in the smart farming scenario 101
5.11 MCSs of size 1 found during a qualitative analysis of the

smart farming scenario . 102
5.12 Most critical MCSs according to the security likelihood and

the safety probability of the smart farming scenario 102
5.13 Ratings of the Basic Events in the infusion pump example 105
5.14 All MCSs including their ratings of the infusion pump scenario . 106

A.1 MCSs of the SeCFT of the ravon safety chain 112
A.2 MCSs of the SeCFT of the Adaptive Cruise Control system 124
A.3 Most critical MCSs according to the safety probability of the

ACC. 127
A.4 MCSs of the SeCFT of the smart farming scenario 134

1

Introduction

Nowadays, almost everything, from a simple toaster to complex humanoid
robots contains embedded systems. An embedded system is able to monitor
its environment using different kinds of sensors, and interacts with it using ac-
tuators such as electric motors. The sensor inputs are evaluated via controller
components that calculate outputs for the actuator components (cf. Fig. 1.1).

Environment

Embedded System

ControllerSensors Actuators

Fig. 1.1. An embedded system

Embedded systems are systems composed of software (controller) and
hardware components (sensors, actuators). For systems that might cause harm
to its environment, or people in its vicinity, due to system failures, tradition-

2 1 Introduction

ally a safety analysis is necessary. By a safety analysis risks can be detected,
and then they can be reduced to an acceptable level by suitable counter-
measures. During the approval process of new systems it has to be ensured
that only acceptable risks for the system’s environment remain in the finished
system.

For a safety analysis of a system there are analysis techniques that are
partly decades old, accordingly widespread, and accepted by industry and re-
searchers. One prominent technique is Fault Tree Analysis (FTA) which this
thesis uses as a basis. Additional to the hardware components, which most
of the techniques were initially developed for, in embedded systems there are
software components that have to be taken into account too. The initially
hardware-specialized analysis techniques were adapted and extended to en-
compass software components too. That was the first big change in safety
analysis.

1.1 Motivation

The newest development in embedded systems is the Internet of Things and
its application to industry under the term Industry 4.0. Embedded systems
are connected to larger networks of systems, mostly via open networks as the
Internet. Such connected embedded systems are often called Cyber-Physical
Systems (CPSs) (cf. Fig. 1.2). Not only newly developed systems are con-
nected but also existing, older systems are retrofitted to be connected to larger
systems. This offers the ability to remotely manage or maintain systems.

But the downside is that most older systems were developed for isolated
conditions where the access control was achieved by physically locking the
system in some kind of box. An authorized technician had a key to that
box, and only then he had complete access to the system. If such devices
are connected to the Internet, it might be that an attacker who can connect
to a device immediately gains complete access to control the system. That
such systems exist show several examples which became known over the last
few years (more about that later). To conclude so far: Networking embedded
systems introduces new vulnerabilities into the systems.

That would be manageable if this fact would be taken into account during
the retrofitting of existing systems, or the development of new systems. The
current safety analyses only take into account failures that result from random
faults, but not targeted manipulations of systems or system components. By
using software components, and at the same time more and more networking
of different systems, new causes for system failures appear: Vulnerabilities
in software components that are accessible via remote connections may be
exploited by attackers to gain control over a system, or to bring it into a
critical system state by targeted actions.

Examples for vulnerabilities, but also successful attacks, became increas-
ingly known over the last few years. Attackers not only attack web servers to

1.1 Motivation 3

Environment

ControllerS A

Communication

ControllerS A

Communication

ControllerS A

Communication

common communication channel

S: Sensors
A: Actuators

Fig. 1.2. Networked embedded systems

obtain information from connected databases as they used to, but now also
control systems of industrial plants, cars, trains, or planes are targets for at-
tacks. Most of the reports about possible attacks refer to security researchers
that found critical vulnerabilities in embedded systems. Those found vulner-
abilities are often not actively exploited because the necessary effort makes
those attack scenarios mostly theoretical.

There are a number of reports about vulnerabilities in embedded systems
that are used to control industrial plants. The widely used control system
Siemens Simatic had a few vulnerabilities that allowed a possible attacker full
access to the system which is used to control whole production cycles (e.g.:
in chemical plants) [Bachfeld 11a, Bachfeld 11b, Schmidt 11, ICS-CERT 11,
Schirrmacher 15, Klick 15].

A presentation at the Chaos Communication Congress 2014 on security in
industrial plants shows that there are a lot of vulnerabilities in such control
systems. But most of them can only be exploited by an attacker with detailed
background knowledge and a considerable amount of effort [Kleinz 14]. A
general overview about security problems of industrial control systems is given
in [Kargl 14].

By the increasing availability of networked devices of the Internet of Things
such attacks become dangerous to private citizens also. A possible attack
on the upcoming smart grid may cripple the supply of electricity or water.
A heating system from the company Vaillant that used controllers from the
company Saia-Burgess was vulnerable to attacks over the Internet that allowed
an attacker full access to the burner control [Stahl 13]. It was possible to shut
off the heating, or overheat it which would cause damage to the whole system.

4 1 Introduction

Other related examples of vulnerabilities with possibly catastrophic conse-
quences are in the medical sector where failing devices may directly influence
life or death of people. Infusion pumps allow attackers to re-program them via
Wireless Local Area Network (WLAN) [Scherschel 15, Bergert 15, Zetter 15].
Other medical devices have hard-coded, never changing, default passwords,
or are running on old operating systems with known vulnerabilities that are
several years old [Pauli 15, ICS-CERT 13].

Beside industrial control systems, more and more cars, and even airplanes
are vulnerable. Hugo Teso gave a presentation at the Hack-in-the-box con-
ference 2013 on how to manipulate the course of a flying airplane using a
smartphone and some preparations [Teso 13].

The growing functionality of a car’s on-board computer also introduces
some critical vulnerabilities. In 2010 security researchers found out that tire
pressure measuring systems could be manipulated [Rouf 10]. By itself this is
not yet safety critical, but it might be possible to convince drivers to stop
their car, or to overwhelm them with false alarms that they ignore real ones.
Checkoway, Koscher et al. did an experimental analysis of modern cars to
show what might happen if an attacker gains access to one of the control sys-
tem components [Koscher 10, Checkoway 11]. They conclude that in general
attackers can influence all of the car’s systems if they gain access to one of
the internal components of a car.

In 2015 publications about vulnerabilities in cars heap up. Some are only
security relevant, but others also have implications on the safety of the car.
The vehicle immobilizer in cars of several brands has a flaw that allows to
circumvent it with only low effort [Verdult 15]. This work was already done
and ready to publish in 2013, but it was held back until 2015 because the
manufacturer enforced a holdback period via court order. This is an example
for the problems with publishing security vulnerabilities. Companies do not
want them published at all because they fear a decrease in reputation.

Other researchers found ways to remotely access the car’s operating sys-
tem. They were able to unlock current model BMWs equipped with the Con-
nectedDrive technology via the mobile phone network [Holland 15], or to send
commands to the on-board computer using a diagnose dongle of a Corvette
via SMS [Foster 15].

Car manufacturers such as General Motors add remote control capabili-
ties via smartphone applications to their cars. Those applications running on
the smartphone can contain new vulnerabilities [Kamkar 15] that allow an
attacker to control the car.

The most recent and most demonstrative example for safety critical vul-
nerabilities is the hack of a Jeep Cherokee [Greenberg 15]. The researchers
Miller and Valasek were able to exploit a vulnerability in the infotainment
system of the Jeep using the mobile network. The flaw in the infotainment
system allowed them to access the CAN bus, and they were able to control
system functions such as acceleration, brake, door locks, and during reverse
drive even the steering.

1.3 Contribution 5

Besides those mentioned vulnerabilities that to my knowledge were not
actively exploited so far, there are some real attacks on running systems.
Maybe the best known attack on an industrial control system was the sabotage
of uranium centrifuges in Iran using the malware Stuxnet [Langner 11].

In 2014 there were reports about an attack in a German steel mill
that resulted in heavy damage to the facility. The reports did not mention
which steel mill was attacked and all operating companies denied the at-
tack [Scherschel 14].

Another example is a pipeline in Turkey that exploded as the consequence
of an attack on the control system of a valve [Robertson 14]. An attack on
the network of an unnamed railroad company in the US disrupted their train
service [Zetter 12].

The problem is not only that current control systems are vulnerable, but
patching known vulnerabilities is harder than in pure software systems. Often
simple update mechanisms are missing [Schneier 14]. A lot of the previously
mentioned vulnerabilities remained untreated for years. What makes this even
worse is that there are search engines such as Shodan1 which simplify the
search for vulnerable control systems significantly.

1.2 Problem Statement

Security flaws in existing systems such as the examples mentioned earlier re-
mained mostly undetected because in a traditional safety analysis such causes
for safety failures are not found. This results from the fact that there are sepa-
rate experts and analysis techniques for safety and security. If a safety expert
analyzes a system according to safety, security is not taken into account, and
vice versa. Control systems are usually analyzed for safety only, not for se-
curity. A current safety analysis only investigates random faults, deliberate
attacks are not taken into account. Countermeasures resulting from a safety
analysis are only implemented to mitigate causes that are the most probable
according to the analysis. Attacks on the other hand may cause events that
otherwise would only come to happen with an extremely low probability which
would not have required countermeasures. Thereby an attack that eventually
would also be easily conducted without requiring much resources could bring
the system into a critical state which might cause substantial damage. For this
reason it is especially important that during the development of new systems
a safety analysis also takes security causes into account.

1.3 Contribution

The goal of this thesis is to describe in a comprehensive model how vulnerabil-
ities of the security of systems can have an effect on the safety of said systems.

1 https://www.shodan.io/

https://www.shodan.io/

6 1 Introduction

To this end Component Fault Trees (CFTs) developed for safety analysis are
extended by additional causes that arise from security problems. In the re-
sulting enhanced CFT the same qualitative analyses can be conducted as in
pure safety CFTs. Additionally, it is investigated to what extend quantitative
analysis techniques for CFTs can be adapted for the enhanced CFTs. By those
analyses that take into account safety as well as security aspects, causes for
failures can be identified that depend on safety as well as security problems.
Quantitative, or at least semi-quantitative, analyses make it possible to esti-
mate security measures and to justify the necessity thereof. The extension of
established analysis methods facilitates the use by experienced safety analysts
that know how to analyze CFTs.

1.4 Structure

This thesis is structured into 6 chapters. Following this introduction, Chap. 2
discusses the state of the art in safety and security analysis. The state of the
art is divided into three parts. The first part (Sect. 2.1) explains safety anal-
ysis techniques starting with FTA and its derivatives, followed by supporting
techniques Failure Mode and Effects Analysis (FMEA) and Hazard and Op-
erability Study (HAZOP) that will be used for this thesis. The second part
(Sect. 2.2) is handling security analysis based on Attack Trees (ATs), followed
by threat modeling techniques that are used to develop the Attack Trees. And
the third part (Sect. 2.3) shows the related work about combining safety and
security analysis. The main contribution is distributed over Chaps. 3 and 4.
It starts with the overall process how to model a system taking additional
security events into account. Then different combinations and approaches for
building the combined trees of Component Fault Trees and Attack Trees are
discussed, and ends with the description of the final modeling approach. Af-
ter modeling the combined trees, in Chap. 4 the extensions to qualitative and
quantitative analysis are shown including a discussion of ratings for events,
and calculation rules. The whole approach is applied to several examples in
Chap. 5. And finally, Chap. 6 concludes the thesis.

2

Related Work and Fundamentals

In the past, most embedded systems used to run in encapsulated environ-
ments. Maintenance actions needed physical access to the system itself to
even connect to it. Access control was implicitly provided by limiting physical
access to the existing maintenance interfaces. Login mechanisms or encrypted
communication were not a high priority.

Nowadays, on the other hand, the majority of embedded systems is con-
nected to a network, so maintenance or monitoring of the systems becomes
easier. If that is done with systems developed without security in mind, at-
tackers with different motivations may threaten the system’s ability to run
according to the specifications. An example for an embedded system with
such vulnerabilities was the Siemens Simatic micro programmable logic con-
troller [ICS-CERT 11].

To avoid such problems, not only safety but also effects of security threats
on safety has to be taken into account during the development of new sys-
tems. The main contribution of this thesis is an approach to integrate security
aspects into safety analysis.

This chapter will first provide an overview about safety analysis (Sect. 2.1)
as well as security analysis (Sect. 2.2), and will later discuss approaches that
include both safety and security aspects (Sect. 2.3).

The focus lies on Fault Trees (FTs) and their derivations because they are
well established and widely accepted by industry and researchers to conduct
safety analyses. The component-oriented Component Fault Trees (CFTs) al-
low to model and analyze complex systems with acceptable effort. They are
an appropriate instrument to analyze interrelationships between faults and to
find combinations of causes that lead to a failure. Therefore, they are very
well suited to include additional causes for failures and their effects on safety
of the system under study.

8 2 Related Work and Fundamentals

2.1 Safety Analysis Techniques
According to [IEC 61508-4 10] a system is safe if it is free from unacceptable
risks. Safety analysis is required to determine whether a system is safe enough
for its intended use.
Definition 1 (Safety) In [IEC 61508-4 10] safety is defined as “freedom
from unacceptable risk”.
Definition 2 (Risk) Risk is defined as the “combination of the probability
of occurrence of harm and the severity of that harm” [IEC 61508-4 10].
Definition 3 (Harm) Harm is defined as “physical injury or damage to the
health of people or damage to property or the environment” [IEC 61508-4 10].

Safety is also related to reliability in the sense that safety of a system
depends on the reliability of safety-related system components.
Definition 4 (Reliability) Reliability is the property of an entity regarding
its qualification to fulfill the reliability requirements during or after given time
periods with given application requirements [DIN 40041 90].

Nicol et al. conducted a survey concerning existing model-based techniques
for evaluating system dependability (respective reliability), and how they are
extended to evaluate system security [Nicol 04]. They conclude that for system
reliability there have been quantitative techniques for a long time, but for
system security quantitative techniques are much less common. Over the years
a lot of techniques to analyze safety were developed. They can be classified into
techniques that find failures by examining the effects of faults on the system
(inductive methods), and techniques that examine failures to find their causes
(deductive methods).
Definition 5 (Fault) A fault is an abnormal condition that may cause a
reduction in, or loss of, the capability of a functional unit to perform a required
function [IEC 61508-4 10]. A fault may be the cause of a failure.
Definition 6 (Failure) A failure is either the termination of the ability of a
functional unit to provide a required function, or operation of a functional unit
in any way other than as required [IEC 61508-4 10]. A failure of a subcompo-
nent can be seen as a fault in the context of the superordinate component or
system.

Some sources also define the term error as the underlying cause of a
fault [Avizienis 04]. Although, there might be some confusion about the use
of that term because of different definitions. This thesis uses the definitions of
IEC 61508 as a reference which only distinguishes between faults and failures.

In the following, the focus lies on deductive methods and Fault Tree Anal-
ysis in particular because it is a technique that is widely used in industry.
Failure Mode and Effects Analysis (FMEA) and Hazard and Operability
Study (HAZOP) are explained as examples for inductive methods that can
be used in combination with Fault Tree Analysis (FTA).

2.1 Safety Analysis Techniques 9

2.1.1 Fault Tree Analysis (FTA)

A method often used in industry for safety and reliability analysis is Fault
Tree Analysis (FTA). FTA was developed in the 1960s in the Bell Labs
(see [Ericson 99] for a history of Fault Trees (FTs)). The US Nuclear Regula-
tory Commission Regulation (NUREG) published an extensive compendium,
the NUREG-0492 Fault Tree Handbook [Vesely 81] that treats FTA in detail.
Later, NASA published a book, the Fault Tree Handbook with Aerospace Ap-
plications [Vesely 02] that deals with the application of FTA to the aerospace
domain. Together, these books provide a comprehensive insight into FTA. The
application of FTA is standardized in international standard [IEC 61025 06]
and German national standard [DIN 25424-1 81, DIN 25424-2 90].

FTA is a deductive method for finding causes and combinations of causes
that lead to system failures. It can be used in early phases of the development
process, when only a few details are known about the system. Then, a pre-
liminary qualitative analysis is possible. This preliminary FT can be used to
make high-level decisions during system development. In later development
stages, when more details are known, the preliminary FT can be extended to
make a quantitative analysis possible. Analyses can cover systems that consist
of hardware and/or software components.

An FT consists basically of events and gates that combine events. There
are three types of events in an FT: Top Events, Basic Events and Intermediate
Events. In standard FTs there are three basic gates: AND, OR, and NOT-gates
that implement their corresponding logic functions. Derived from these basic
gates, standard FTs may also include XOR or N-out-of-M (NooM) gates. But
the NOT gate and the derived gates XOR and NooM should the handled with
care [Andrews 00]:

A NOT-gate implies that working components can contribute to a failure of
the system, and vice versa, a failed component can improve system reliability.
This is counterintuitive for the engineer creating the FT to his perception
of the functionality of systems. Using only AND and OR-gates makes an FT
coherent. Adding additional failures cannot improve the overall reliability.
Most works handling FTs use coherent FTs. Calculations in non-coherent FTs
become much more complex than in coherent FTs. There may be, however,
situations in which gates derived from NOT are necessary to model a particular
circumstance. This is why the NOT-gate will also be defined in this thesis. But
it will be avoided during modeling.

The dependencies between Basic Events (BEs) and Top Event (TE) are
usually represented in a tree structure. The different event types will be de-
fined in the following.

Definition 7 (Top Event (TE)) The system failure modeled in a Fault
Tree is called a Top Event (TE). It is the root of the Fault Tree. Sometimes
it is also called a top level event.

10 2 Related Work and Fundamentals

Definition 8 (Basic Event (BE)) The basic causes for a Top Event are
called Basic Events (BEs). They are the leaves of the Fault Tree.

Definition 9 (Intermediate Event (IE)) If BEs are combined using logic
gates, the result is an Intermediate Event (IE). Intermediate Events are
sometimes separate nodes in the Fault Tree, as in the original definition
from [Vesely 81], or the logic gates have also the function of Intermediate
Events by attaching a label to the gates. In this thesis the term gate will be
used synonymously with Intermediate Event.

Figure 2.1 shows an example FT consisting of three BEs (BE1, BE2, BE3),
one AND-gate (AND1), one OR-gate (OR1) and a TE (Out1). The example is
modeled with the tool ESSaRel [ESSaRel 09] using the following symbols:
Black triangles represent TEs, white boxes are gates (using the European
notation) and white circles depict the BEs. All events should have a label
that is the name of the event.

AND_1

Out_1

BE_1 BE_2 BE_3

&

>= 1 OR_1

Fig. 2.1. An example Fault Tree

In this work CFTs are used, a derivative of FTs. The analyses that are
described here for FTs are also applicable for CFTs [Kaiser 03b].

Component Fault Trees

A Component Fault Tree (CFT) is an extended FT with an additional focus on
system components and reusability of subtrees [Kaiser 02, Kaiser 03b]. A sys-
tem usually consists of several components which by themselves may consist of
nested subcomponents. One CFT models one of these components (that may

2.1 Safety Analysis Techniques 11

also contain subcomponents) following the component hierarchy of the system.
All examples in this work are modeled with the tool ESSaRel [ESSaRel 09].

In Fig. 2.2 an example CFT model is shown. It models a system with three
subcomponents. Figure 2.2a shows the highest hierarchy level of the model.
The components (gray rounded boxes) are interconnected via output ports
(small black boxes) and input ports (small white boxes). The arrows of the
connectors always point from output ports to input ports. The TE (black
triangle) of a component defines an output port. The CFTs in Figs. 2.2b
– 2.2d model the three subcomponents Comp1, Comp2, and Comp3. The CFT
of Comp1 models the same structure as the FT in Fig. 2.1. This shows the
commonalities of FTs and CFTs. The CFTs of Comp2 and Comp3 show some
differences. Figure 2.2c is an example that a CFT allows to model all failure
modes of a component at once. This fact simply leads to more than one TE
and therefore more output ports. And finally Fig. 2.2d shows that a CFT can
have input ports (white triangles). The TE of Comp3 depends on both internal
(BE_1) and external causes (In_1, In_2, In_3).

If a CFT of one component is analyzed by itself, input ports can be seen
as BEs. But if this CFT is analyzed as part of a higher level CFT, the input
ports directly link to other CFTs as if the referenced CFT would be inserted
instead of the input port.

The component-wise construction of CFTs allows easier modeling of large
systems than with FTs. Although the name suggests it, complex CFTs are
not necessarily trees, but they are Directed Acyclic Graphs (DAGs). So, mesh-
like structures are possible but cyclic dependencies have to be avoided. In the
remainder of this thesis, the term tree is also used for CFTs.

The distinction of components allows the independent development of
CFTs. The naming conventions ensure that events from different compo-
nents can be distinguished. In the previous example BE_1 appears in all three
components Comp1, Comp2, and Comp3. They are referred to as Comp1.BE_1,
Comp2.BE_1, and Comp3.BE_1 outside their respective components. Despite
these differences, CFTs are semantically equivalent to FTs, and the same
analyses are possible.

Qualitative Analysis

As a first analysis step, independent of probabilities or other ratings for BEs,
a qualitative analysis may be conducted. It can already be done in early devel-
opment phases using preliminary FTs. Some qualitative analysis techniques
will be described in the following. In every FTA, the first step is to determine
the Minimal Cut Sets (MCSs) for the TE.

Definition 10 (Minimal Cut Set) A Minimal Cut Set (MCS) is a small-
est combination of Basic Events (BEs) which, if they all occur, will cause the
Top Event (TE) to occur [Vesely 81].

12 2 Related Work and Fundamentals

Component_1

Comp1

Component_2

Comp2

Out_1

Component_3 Comp3

(a) An example CFT (Overview).

AND_1

Out_1

BE_1 BE_2 BE_3

&

>= 1 OR_1

(b) An example CFT (Subtree for
Comp1).

BE_1 BE_2 BE_3 BE_4

&AND_1 >= 1 OR_1

& AND_2

Out_2 Out_1

(c) An example CFT (Subtree for
Comp2).

>= 1 OR_1

BE_1

>= 1OR_2 & AND_1

Out_1

In_1In_3 In_2

(d) An example CFT (Subtree for
Comp3).

Fig. 2.2. A CFT consisting of three subcomponents

Strictly speaking, the term Minimal Cut Set is only defined for coher-
ent FTs, thus FTs that do not contain NOT-gates or negated BEs. The more
general term is Prime Implicant (PI) which also includes non-coherent FTs
(see [Rauzy 01] for the mathematical foundations of PIs). PIs appear less com-
monly in failure analysis, because the use of negations in FTs is less intuitive
as discussed earlier in Sect. 2.1.1. In this thesis, the term Minimal Cut Set is

2.1 Safety Analysis Techniques 13

used for minimal failure scenarios because no negated events were modeled.
But still, all aspects of this work also apply to PIs, unless indicated otherwise.

Every MCS represents a minimal failure scenario. In general, an FT con-
tains multiple MCSs corresponding to different failure scenarios. The TE of
an FT can be depicted as the result of the disjunction of all Minimal Cut Sets
MCSi, 1 ≤ i ≤ n, n ∈ N.

TE = MCS1 ∨MCS2 ∨MCS3 ∨ · · · ∨MCSn (2.1)

Whereas, MCSi is a conjunction of Basic Events BEj , 1 ≤ j ≤ m, m ∈ N.

MCSi = BE1 ∧BE2 ∧BE3 ∧ · · · ∧BEm (2.2)

MCSs can be determined using a variety of different algorithms. One of
the most common is the top-down algorithm which is described in [Vesely 81,
Vesely 02]. The FT is translated into Boolean equations. Starting with the
equation for the TE, the Intermediate Events (IEs) are substituted by their
expressions and the equation is expanded until the MCS expression for the
TE is obtained. This step is repeated until all IEs are substituted. At last,
redundancies are removed to obtain the MCSs.

Applied to the example FT depicted in Fig. 2.1, the following steps are
needed: First, these are the Boolean equations for the FT:

Out1 = BE1 ∧OR1 (2.3)

OR1 = BE2 ∨BE3 (2.4)

Equation 2.3 is already in MCS form, so the IE OR1 is substituted with the
right side of equation 2.4 and expanded which yields:

Out1 = BE1 ∧ (BE2 ∨BE3)
= BE1 ∧BE2 ∨BE1 ∧BE3

(2.5)

The MCSs resulting from equation 2.5 are:

MCS1 = {BE1, BE2}
MCS2 = {BE1, BE3}

More sophisticated algorithms can also handle large FTs and calculate
Prime Implicants for non-coherent FTs. In [Rauzy 01] algorithms based on
Binary Decision Diagrams (BDDs) [Bryant 86] to calculate MCSs are de-
scribed.

As mentioned earlier, FTs will most probably have several MCSs. Con-
sidering all of them can be time-consuming in large FTs. An analysis should
focus on the most critical ones. So, it is part of the analysis to determine the
most critical MCSs.

Qualitative rankings of MCSs can be determined according to their con-
tributions to the TE (see [Vesely 81]). MCSs can be ordered according to

14 2 Related Work and Fundamentals

cardinality from small to large. For example, the larger an MCS is, the more
BEs have to occur simultaneously, so that the TE is triggered. From that
follows that the cardinality (or size) of an MCS can be a qualitative measure
for criticality of an MCS. In absence of quantitative data, it can be said that
a greater MCS size correlates with a lower criticality.

Definition 11 (MCS size) The size of an MCS is defined as the number of
events included in the MCS.

The size of MCSs can be used to check design criteria, e.g.: “no single points
of failure allowed” which is equal to “MCSs with size 1 have to be mitigated”.
The set of MCSs can also be used to find BEs that are part of several MCSs. A
BE that is contained in many relevant1 MCSs is more important than one that
is contained in only one MCS. Finding such BEs can be used to determine the
position of countermeasures: With countermeasures against one BE several
MCSs may be mitigated. The decision which BE to counter depends on the
cost-effect balance of the countermeasures. First, BEs from small MCSs (that
are more likely to happen) are selected. From that list a combination of BEs
is selected that counters all required MCSs with the least effort.

In terms of the previous example: Both MCSs have the same size, but BE1
is included in both MCSs. So, a countermeasure against BE1 mitigates both
MCSs at once.

Quantitative Analysis

After finishing the qualitative analysis, a quantitative analysis of FTs may be
conducted. For that purpose probabilities of failure, or failure rates, for BEs
have to be available.

Definition 12 (Failure rate) The failure rate λ(t) of an entity is a relia-
bility parameter. λ(t)× dt is the probability that this entity will fail within the
time interval [t, t + dt] under the condition that it did not fail during time
interval [0, t].

Failure rates usually vary over the lifetime of a system and also depend on
environmental conditions. A common description of failure rates over system
lifetime is the so-called bathtub curve [Klutke 03]. It can be divided into three
intervals: In the beginning there is a “break-in”-period during which the failure
rate decreases because initial bugs are corrected. During the middle period
the failure rate is nearly constant when the system runs under its intended
working conditions. And the last interval is a “wear-out”-period when the
system slowly degrades due to physical stress. For software systems the failure
rate is also generally not constant over the whole lifetime. Whenever a bug
is fixed, the failure rate decreases. If new functionality is introduced, often

1 What relevant MCSs are has to be defined before. Usually MCSs up to a size of
2 or 3 are defined as relevant [Vesely 81].

2.1 Safety Analysis Techniques 15

new bugs emerge, so the failure rate increases. So, the failure rate can only
be constant during a period of time when the software is not changed.

In classic FTs only constant failure rates per hour or per duty cycle are
considered, while time dependent effects are ignored. A constant failure rate
per hour λ leads to exponential failure probability distributions. A constant
failure rate per duty cycle is equivalent to the failure probability. Components
can have standby failure rates and operating failure rates which themselves
are constant.

The quantitative analysis provides more detailed insight in the order of
magnitude of the BE probabilities. Results can be probabilities of the TE or
MCSs. It is used to check compliance to customer or regulatory requirements,
and in case of violated requirements, to decide on which BEs the effort of
countermeasures will be concentrated.

If BEs are connected via logic gates and probabilities are known for all BEs,
the resulting probabilities are calculated as follows. For both the AND and OR-
gates calculation rules for gates with two inputs (equations 2.6 and 2.8), and
n inputs (equations 2.7 and 2.9) are presented. All BEs have to be stochas-
tically independent from each other for these calculations to be correct. The
probability calculation for the NOT-gate is shown in equation 2.10.

AND P (A ∧B) = P (A)× P (B) A,B ∈ BE (2.6)

P

(
n∧
i=1

Xi

)
=

n∏
i=1

P (Xi) i, n ∈ N, Xi ∈ BE (2.7)

OR P (A ∨B) = P (A) + P (B)− P (A)× P (B) A,B ∈ BE (2.8)

P

(
n∨
i=1

Xi

)
= 1−

n∏
i=1

(1− P (Xi)) i, n ∈ N, Xi ∈ BE (2.9)

NOT P (A) = 1− P (A) A ∈ BE (2.10)

There are different possibilities to calculate the failure probability of a TE
(see [Vesely 81]). Provided, the failure probabilities of all MCSs are already
calculated, the failure probability of the TE can be approximated. An upper
bound P ′(TE) for the TE failure probability is gained by summing up the
failure probabilities of all MCSs. The TE results from an OR combination of
all MCSs (see equation 2.1). Equation 2.8 shows the calculation of an OR-gate
with two inputs. If instead the probabilities of the MCSs are simply summed
up without subtracting the probability of the intersection of two MCSs, the
result will always be greater or equal the exact value – in other words, it is
a conservative approximation. For the purpose of this example the following
probability values are arbitrarily chosen:

P (BE1) = 10−5 P (BE2) = 2× 10−3 P (BE3) = 4× 10−2

Applied to the example from Fig. 2.1, the results are:

16 2 Related Work and Fundamentals

P (MCS1) = P (BE1 ∧BE2)
= P (BE1)× P (BE2) (equation 2.6)
= 2× 10−8

P (MCS2) = P (BE1 ∧BE3)
= P (BE1)× P (BE3) (equation 2.6)
= 4× 10−7

P ′(TE) = P (MCS1) + P (MCS2)
= 2× 10−8 + 4× 10−7

= 4.2× 10−7

If an approximation is not enough, the exact probability value can be cal-
culated bottom-up based on the BE probabilities using the rules expressed
in equations 2.6 to 2.10. The bottom-up calculation is now applied to the
example FT:

P (OR1) = P (BE2) + P (BE3)− P (BE2)× P (BE3) (equation 2.8)
= 2× 10−3 + 4× 10−2 − 2× 10−3 × 4× 10−2

= 4.192× 10−2

P (TE) = P (Out1) = P (AND1)
= P (BE1)× P (OR1)
= 10−5 × 4.192× 10−2

= 4.192× 10−7

The results show the difference between the approximation P ′(TE) and the
exact result P (TE).

P ′(TE) = 4.2× 10−7

P (TE) = 4.192× 10−7

There is another, more efficient, method to calculate the exact TE prob-
abilities. The Boolean formula which is depicted by the FT with the BEs as
variables, can be described by a BDD (see [Vesely 02] or [Rauzy 01] for a
more detailed description on BDD algorithms). This BDD is simplified to a
Reduced Ordered Binary Decision Diagram (ROBDD), to reduce calculation
effort. For each BE ei the probability P (ei) is assigned to the true branches,
and 1 − P (ei) is assigned to the false branches of the BDD. For each path
leading to terminal symbol 1, the branch probabilities are multiplied, as they
are combined via AND-gates. The results of all paths leading to terminal sym-
bol 1 are summed up to receive the probability of the TE P (TE). Because
these minimal paths are disjoint, this summation yields the exact result for
this OR-combination of paths.

2.1 Safety Analysis Techniques 17

In Fig. 2.3 an ROBDD for the example with variable order BE1, BE2, BE3
is shown. Solid lines are assigned to true branches, dashed lines to false
branches. There are two paths leading to terminal symbol 1:

Path1 = BE1BE2

Path2 = BE1BE2BE3

The probability is calculated as:

P (Path1) = P (BE1)× P (BE2)
= 10−5 × 2× 10−3

= 2× 10−8

P (Path2) = P (BE1)× (1− P (BE2))× P (BE3)
= 10−5 × (1− 2× 10−3)× 4× 10−2

= 3.992× 10−7

P (TE) = P (Path1) + P (Path2)
= 2× 10−8 + 3.992× 10−7

= 4.192× 10−7

10

BE_1

BE_2

BE_3

Fig. 2.3. A corresponding ROBDD for the example from Fig. 2.1

MCSs are determined to find combinations of faults leading to the sys-
tem failure, or different failure scenarios. The failure probability of a TE
is calculated to check if a system complies with given requirements. If the
TE probability has to be decreased, some countermeasures have to be imple-
mented against BEs. But not all BEs contribute to the TE probability to the

18 2 Related Work and Fundamentals

same degree. According to Vesely et al. only about 10–20% of the BEs con-
tribute significantly to the TE probability [Vesely 02]. An importance analysis
is conducted to find the BEs whose countering has the most effect on the TE
probability.

Importance Measures

There are several different importance measures described in the litera-
ture [van der Borst 01, Vesely 02]. The four most common measures are
Fussell-Vesely (FV) Importance, Risk Reduction Worth (RRW), Risk Achieve-
ment Worth (RAW) and Birnbaum’s Importance Measure (BM).

The FV measure [Fussell 75] calculates the contribution of an event to the
TE. It can be applied to all events in an FT, Basic Events as well as Inter-
mediate Events. It is calculated by summing up the probabilities P (MCSe)
of all MCSs that contain the particular event e and dividing the sum by the
approximation of the TE probability P ′(TE). Whereas me is the number of
MCSs that contain event e, and m the number of all MCSs.

FVe =
∑me

i=1 P (MCSei)
P ′(TE) =

∑me

i=1 P (MCSei
)∑m

j=1 P (MCSj)
(2.11)

The RRW measure calculates the decrease in the TE probability if a given
event is prevented from occurring. First, the TE probability P (TE) is cal-
culated as usual. Then the probability of the event under study is set to 0
and the TE probability is calculated again. For the risk reduction a relative
P (TE)

P (TEe=0) and an absolute measure P (TE)− P (TEe=0) can be calculated.
The RAW is the counterpart to the RRW. It calculates the increase in the

TE probability if a given event is guaranteed to occur. The probability of the
event under study is set to 1 and the TE probability is calculated. As for the
RRW a relative P (TEe=1)

P (TE) and an absolute measure P (TEe=1) − P (TE) can
be calculated.

The last measure is BM. It is a combination of the absolute measures
of RRW and RAW: BM = RRW + RAW. BM is equivalent to a sensitivity
analysis: First, the probability of the event under study is set to 1 and the TE
probability is calculated. Then the probability of the event under study is set
to 0 and the TE probability is calculated again. The difference P (TEe=1) −
P (TEe=0) is Birnbaum’s Importance Measure.

Regarding the previous example (Fig. 2.1) the importance values for the
BEs BE1, BE2, BE3 are shown in Table 2.1. If the BEs are ordered according
to these importance measures, the order is: BE1 > BE3 > BE2. The calcula-
tion effort of the FV measure is the lowest of the presented ones, yet it results
in the same order as the others. This is why the FV measure is the one used
mostly.

2.1 Safety Analysis Techniques 19

Table 2.1. Importance values for the example BEs

Basic event FV RRW RAW BM
abs rel abs rel

BE1 1 4.192× 10−7 ∞ 4.192× 10−2 105 4.192× 10−2

BE2 0.048 0.192× 10−7 1.048 9.581× 10−6 23.855 9.6× 10−6

BE3 0.952 3.992× 10−7 20.96 9.581× 10−6 23.855 9.98× 10−6

Extensions of Fault Trees

One big disadvantage of FTs or CFTs is that they are unable to analyze
sequences of events or timed behavior. It is, however, possible to combine
Markov models with FTs to solve these problems [Vesely 02]. There also exist
several extensions of FTs that introduce new gates that allow modeling of
dynamic behavior. In Parametric Fault Trees (PFTs) identical subtrees can
be replaced by one parameterized subtree to simplify and to reduce the overall
FT [Bobbio 03].

Dynamic Fault Trees (DFTs) allow the modeling of functional or temporal
dependencies between BEs [Bechta Dugan 92]. In this way it is possible to
model prioritized events or sequences of events.

Repairable Fault Trees (RFTs) were developed to model especially repair
processes, consisting of a set of components that can be triggered by failure
events [Codetta-Raiteri 04].

Generalized Fault Trees (GFTs) combine logic gates from FTs, PFTs,
DFTs, and RFTs to a unified model [Codetta-Raiteri 05]. Thereby depen-
dencies, redundancies, symmetries, and repair mechanisms can be modeled
using one modeling technique. For the evaluation the GFTs are transformed
into Generalized Stochastic Petri Nets (GSPNs) and analyzed using the usual
Petri net analysis methods [Marsan 95].

Another technique that combines CFTs and state-based approaches, are
State/Event Fault Trees (SEFTs). Introduced by Kaiser in [Kaiser 03a], they
can be used to model complex behavior of systems consisting of hardware and
software [Steiner 12].

The quantitative analysis of FTs and their derivatives depends on failure
rates or probabilities of occurrences of faults. Sometimes those are hard to
obtain. There are approaches that use value intervals that are easier to es-
timate, instead of fixed numbers to evaluate FTs [Carreras 01]. Förster and
Trapp [Förster 09] developed an FT-based method to cope with the prob-
lem of few or no information about failures early in the development. They
base the analysis on CFTs to model system composition. The uncertainty of
(software) safety probabilities for BEs is modeled with probability distribu-
tions over intervals instead of single probabilities. For calculating an overall
probability distribution every interval is sampled numerously and the overall
probability per sample is calculated.

20 2 Related Work and Fundamentals

To summarize, FTs are an important tool to conduct a safety analysis dur-
ing the development of a system. They can be used to conduct high-level qual-
itative analyses as well as detailed quantitative analyses. With the mentioned
extensions they can also handle state-based behavior of complex systems.

2.1.2 Inductive Safety Analysis Techniques

In standards such as [IEC 61025 06] or [IEC 60300-3-1 05] for Fault Tree Anal-
ysis a combination of inductive and deductive analysis techniques is suggested.
They especially mention FMEA and HAZOP. These two techniques will be
described in short in this section since they are used as supporting techniques
to create the CFTs in this thesis.

Failure Mode and Effects Analysis

Failure Mode and Effects Analysis (FMEA) is a systematic approach to
investigate cause-consequence relationships between component faults (cf.
Definition 5 on p. 8) and system failures (cf. Definition 6 on p. 8). Stan-
dard [IEC 60812 06] describes the basic approach to conduct an FMEA. It is
a widely used inductive analysis technique that can be applied to functions,
interfaces, software, or whole systems [Bowles 01]. A disadvantage is that it
cannot be used to find combinations of faults, only single faults can be found.
Therefore, a subsequent FTA often is used to deduct combinations of causes
for the found failure modes [IEC 61025 06, IEC 60300-3-1 05]. The result of an
FMEA is a table which includes the failure modes of each system component,
and for each failure mode possible causes and effects. Commonly used entries
in this table are according to [IEC 60812 06]: investigated component, failure
mode, description of the failure mode/local effect of the failure mode, possible
cause for the failure, effect at the system level, recommended failure detection
mechanism, recommended mitigation mechanism, and recommended design
changes. The analysis is conducted by a moderated group of domain experts
for all aspects of the product or process.

The system under study is divided into its components, and for each com-
ponent the failure modes are identified. For each failure mode the effect on
the system level and the cause (originating in the component itself or in other
components) are also identified (see Fig. 2.4).

failure cause failure mode failure effect

Fig. 2.4. The cause-effect chain of an FMEA

If a Failure Mode, Effects, and Criticality Analysis (FMECA) is conducted,
an additional risk analysis is done. It consists of:

2.1 Safety Analysis Techniques 21

1. an estimation of the severity (S) of the failure effect on the system or
customer,

2. an estimation of the probability of occurrence (O),
3. an estimation of the probability that the failure is not detected (D),
4. and the calculation of the Risk Priority Number (RPN)
RPN = S ×O ×D ,where S,O,D ∈ {1, 2, . . . , 10}
The risk for the studied system is estimated by ranking the failure modes

according to the RPN. The identified failure modes can be investigated in
more detail by using them as TEs for an FTA.

Hazard and Operability Study

HAZOP is a qualitative technique to find derivations from intended behavior
developed first by the British chemical industry in the 1960s. It is described in
standard [IEC 61882 01]. It has since then been applied to many other fields.
For example Software Hazard Analysis and Resolution in Design (SHARD)
is a derivative for software safety analysis [Pumfrey 99]. Like FMEA it is
a team-based inductive analysis technique that can be applied to systems
consisting of hardware and software. This interdisciplinary team consists of
five to ten persons. HAZOP can be conducted in early development phases as
soon as first drafts of the component design, and the material and data flows
are available. The analysis concentrates on the behavior of the flows between
components rather than failure modes of the components themselves.

A set of guide words is combined with parameters of the flows to find
questions about potential failure modes. Every combination of guide words
and parameters is tested, but not all may make sense. The standard guide
words of HAZOP for process plants are: no, more, less, as well as, part of,
other than, and reverse. For different applications there can be different guide
words. In the SHARD approach the guide words are: omission, commission,
early, late, and value. The effect on the system is investigated for each de-
viation found. For problems that are not safety related, a justification why
the design is acceptable is recorded. Safety problems have to be investigated
further to find possible mitigations. The results are documented in tabular
form [IEC 61882 01].

There are also applications of HAZOP to conduct security analyses. Lano
et al. propose HAZOP guide words for the security analysis of object-oriented
models in the Unified Modeling Language (UML) [Lano 02]. They provide
new guide word interpretations for different UML diagram types, amongst
others state-transition, class, and sequence diagrams. The basic elements of
an analysis of state-transition diagrams are the transitions. For the attributes
of transitions, events, and actions, the guide words are newly interpreted to
take the interaction between software and hardware into account. Deviations
from design intend described by a class diagram are covered by new guide
words. They also developed guide words for sequence diagrams for message
timing, message destination, and message conditions.

22 2 Related Work and Fundamentals

The HAZOP approach can be used during the development of CFTs to
identify input and output ports of components (see also Sect. 2.1.1).

2.2 Security Analysis Techniques

This section deals with security analysis techniques that can be integrated
with the safety analysis techniques described in Sect. 2.1. But before analysis
techniques are discussed, a few definitions are necessary. First, what is security
in the context of this thesis? The following definitions from the ISO/IEC 27000
standard series are used:

Definition 13 (Security) Security is commonly defined as a combination of
confidentiality, integrity, and availability (the C-I-A attributes) [Avizienis 04,
ISO/IEC 27000 09].

Definition 14 (Confidentiality) Confidentiality is the property of a system
that information is not made available or disclosed to unauthorized individu-
als, entities, or processes [ISO/IEC 27000 09].

Definition 15 (Integrity) Integrity is the property of safeguarding the ac-
curacy and completeness of assets, and that assets are not improperly al-
tered [Avizienis 04, ISO/IEC 27000 09].

Definition 16 (Availability) Availability is the property of being accessible
and correctly usable upon demand by an authorized entity [ISO/IEC 27000 09].

Safety was defined in a way that the operation of a system should not endan-
ger its environment (cf. Sect. 2.1). Concerning security the effective direction
is reversed: The environment of a system should not endanger the operation of
the system. Another distinction between safety and security is that safety han-
dles random accidental faults whereas security usually deals with intentional
attacks [Saglietti 06].

In general, complex software-controlled systems will most likely contain
some vulnerabilities. Those vulnerabilities may lead to undesired events which
may compromise assets. Figure 2.5 shows the interrelations between the de-
fined terms below.

Definition 17 (Vulnerability) A vulnerability is a flaw or weakness of an
asset or control that can be exploited by a threat [ISO/IEC 27000 09].

Definition 18 (Asset) An asset can be anything that has value to the orga-
nization [ISO/IEC 27000 09]. Assets can be information, software, hardware,
services, people and their qualifications, skills, and experience, or reputation
and image.

2.2 Security Analysis Techniques 23

Definition 19 (Control/Countermeasure) A control is a means of man-
aging risk, including policies, procedures, guidelines, practices or organiza-
tional structures which can be administrative, technical, management, or legal
in nature [ISO/IEC 27000 09]. It is a mechanism to reduce the effects of vul-
nerabilities. Here they will be called countermeasures.

Definition 20 (Threat) [ISO/IEC 27000 09]: A threat is a potential cause
of an unwanted incident which may result in harm to a system or organization.

Definition 21 (Attack) An attack is an attempt to destroy, expose, alter,
disable, steal, or gain unauthorized access to or make unauthorized use of an
asset [ISO/IEC 27000 09]. In other words, an attack is the exploitation or
execution of a threat by a threat agent.

threat attack

risk

asset

ReputationPeopleServices

HardwareSoftwareInformation

vulnerability

is
 e

xp
lo

ite
d

by

is executed by

countermeasures

Fig. 2.5. An example to illustrate the interrelations of the definitions

Security analysis tries to identify the vulnerabilities of a system that may
lead to compromised assets. An analysis shows what kind of threats may ex-
ploit vulnerabilities and which effects on the system they might have. Result of
a security analysis is a ranked list of vulnerabilities for which countermeasures
have to be implemented.

24 2 Related Work and Fundamentals

The focus in this section lies on security analysis techniques that can be
easily integrated with safety analysis techniques based on Fault Trees (FTs)
or Component Fault Trees (CFTs). The first part is about Attack Trees which
are very similar to FTs. After that, threat modeling, a technique that can be
used to find vulnerabilities in systems, is described.

2.2.1 Attack Tree Analysis

Attack Trees (ATs), sometimes also called Threat Trees [van Lamsweerde 04,
Buldas 06], were introduced 1999 by Bruce Schneier in [Schneier 99]. Derived
from FTs (see Sect. 2.1.1), ATs are a tool to model threats in a structured
way. They represent attacks on a system in a tree structure with the attack
goal as the root (Top Event (TE), see Definition 7 in Sect. 2.1.1), and partial
attacks as sub-nodes (Intermediate Events (IEs), see Definition 9) and leaves
(Basic Events (BEs), see Definition 8). To model combinations of events, as
in FTs, there are AND and OR-gates as IEs. An AND-gate represents all required
steps to reach the attack goal. An OR-gate represents the different alternatives
for reaching the goal. Leaves, respective BEs in FT nomenclature, can be
assigned with either Boolean or continuous values. Examples for values are
shown in Table 2.2.

Table 2.2. Examples for values assigned to BEs in ATs from [Schneier 99]

Boolean values continuous values

possible impossible probability of success of a given attack
likelihood that an attacker will try a given attack

expensive inexpensive cost

Several other authors also use FT-like structures to model attacks in a
security analysis [Brooke 03, Rushdi 04, Rushdi 05, Helmer 02]. Essentially,
they do the same as Schneier with his ATs, they just do not call it that.

Figure 2.6 shows an example AT. The example models a computer sys-
tem that is accessible via Local Area Network (LAN) or Wireless Local Area
Network (WLAN). Additional credentials are necessary for authentication.
Access to the LAN is limited by Media Access Control (MAC) address filters
that only allow access to clients whose MAC address is on a list. Access to the
WLAN is restricted by Wi-Fi Protected Access 2 (WPA2) encryption. The
AT was modeled using the tool ESSaRel as are the FT examples in Sect. 2.1.1.
The BEs e1 to e5 represent the basic attack actions which are combined by
an attacker as modeled in the AT to gain access to the system.

According to Schneier the following steps are required to create an AT and
to conduct an analysis:

1. identify possible attack goals and create one tree per goal

2.2 Security Analysis Techniques 25

&

& &access LAN

e1: find LAN access port

e2: spoof MAC address

access WLAN

gain access to private network

gain access to target system

out: tampering: change controller data

e3: find WLAN

e4: break WPA key

e5: get credentials

>=1

Fig. 2.6. An example Attack Tree (AT)

2. think of all attacks against a goal
3. refine the tree
4. add values (they can change over time)
5. compare and rank attacks

The main problem is to find the attack goals and to assign suitable values
for the attributes. Results of the analysis can be an attribute value of the TE
(attack goal) or a subtree fitting to a certain condition.

To rate the BEs, according to Schneier, knowledge about the potential
attacker has to be taken into account. He mentions three example attacker
types with different properties:

• bored graduate students who would not attempt illegal attacks such as
bribery or blackmail,

• organized crime which is also prepared to attempt expensive attacks and
to go to jail for an attack,

• or terrorists who are even willing to die to achieve the attack goal.

To determine attribute values of BEs, a certain knowledge about the at-
tacker is required (a large intelligence service has greater resources than an
angry neighbor). Examples for the use of ATs to analyze security are an
analysis of the routing protocol of the Internet, the Border Gateway Proto-
col [Convery 02], or an analysis of vulnerabilities in Supervisory Control and
Data Acquisition (SCADA) systems [Byres 04].

Attacker Modeling

In [Vigo 12] the author models attacker capabilities especially for Cyber-
Physical Systems (CPSs). CPSs are systems that consist of sensors, actua-
tors, and controlling components. Usually different system components are

26 2 Related Work and Fundamentals

networked to form a larger system. An example is a wireless sensor network
in which different sensors send their data to one or more control units that
evaluate it and send the data to other systems.

Vigo divides threats to CPSs into physical or cyber threats. The exploita-
tion of physical threats require physical access to the system. Cyber threats
on the other hand require only proximity to the transceivers of the system.

In contrast to other systems an attacker can simply influence the environ-
ment to affect the behavior of a CPS. Broadly distributed systems cannot be
secured physically as well as monolithic systems. Additionally, the communi-
cation channels between system components have to be secured. Especially, a
wireless sensor network can consist of a large number of single components.
To keep costs relatively low, they are usually not tamper-proof which makes
capturing a node easier.

Vigo models an attacker as a set of characteristics comprised of the at-
tacker’s location, capabilities, costs of attack actions, and needed resources.
The paper also lists concrete physical attacks such as: removing a node from
the network, reading/writing memory of a node, revealing content of the local
control program, reprogramming the local control program, starving a node
from energy, and inserting a new node into the network. The first four require
direct physical access to a node, the last ones can be executed from a dis-
tance. Cyber-attacks such as: blocking messages, eavesdropping, or injecting
new messages go against the communication between components (nodes).

A similar model for attackers of wireless sensor networks is described
in [Benenson 08]. They describe attackers by two parameters: presence and
intervention. Presence is the location of the attacker, and intervention rep-
resents his capabilities at that location. By combining these attributes they
create attacker profiles.

Amenaza Technologies, a vendor of an Attack Tree modeling tool, quan-
tify attacks using indicators such as cost of attack, probability of apprehen-
sion, probability of success, or technical difficulty [Ingoldsby 03, Ingoldsby 13].
Then they create different attacker profiles depending on the indicators used
in the AT. Depending on the indicator values they can decide whether an
attacker profile will be a threat to the system.

Attacks are evaluated similar to the calculation of the Risk Priority Num-
ber (RPN) in Failure Mode, Effects, and Criticality Analysis (FMECA) where
weighted values from different properties are used (cf. Sect. 2.1.2).

Qualitative Analysis

As mentioned before, Attack Trees use the same tree structure and the same
logic gates as Fault Trees. Therefore, the same qualitative analyses that de-
pend only on the structure are possible. At first, the Minimal Cut Sets (MCSs)
are determined (refer to Sect. 2.1.1 for a description how to determine MCSs).
An MCS represents all actions that are necessary for an attack scenario to
be successful. The size of an MCS determines its qualitative importance. The

2.2 Security Analysis Techniques 27

smaller the MCS the more important it is to counter that specific MCS. From
the list of MCSs the qualitative importance of BEs can also be determined.
BEs that are part of a larger number of MCSs are more important than BEs
that are only part of a smaller number of MCSs. Refer also to Sect. 2.1.1 for
a description of the qualitative analysis of MCSs in Fault Trees.

Quantitative Analysis

Besides the modeling structure, Schneier also proposed some rules for quan-
titative analyses using ATs [Schneier 99]. Attributes of Intermediate Events
and Top Events are calculated from BEs as in FTs. Schneier gives some exam-
ples for calculation rules: For Boolean attributes the value of a combination
of two events is calculated as defined in equations 2.12 and 2.13 [Schneier 99].

value(AND) =
{

possible , if all child events are possible
impossible , otherwise

(2.12)

value(OR) =
{

impossible , if all child events are impossible
possible , otherwise

(2.13)
For the continuous valued attribute cost he proposes calculations as defined
in equations 2.14 and 2.15.

value(AND) =
∑

(costs of child events) (2.14)

value(OR) = min(costs of child events) (2.15)

Several other researchers since then defined calculation rules for quan-
titative analyses in ATs. Based on Schneier’s definition of ATs, Mauw and
Oostdijk try to formalize ATs in [Mauw 06]. They use a slightly different
nomenclature: An AT defines an attack suite, a collection of possible attacks.
Basic Events are called attack components, the gates are nodes and a bundle is
the equivalent to an MCS. In general, an attack suite is defined as a union of
bundles. Or in other terms: Their ATs consist of a conjunction of MCSs and
they show that every tree can be reduced to such a normalized tree. Mauw
and Oostdijk try to formalize ATs as general as possible. They define general
tree reduction and rearranging rules. For attribute calculation they also define
general rules: For every attribute an operation for conjunction and disjunction
of events has to exist so that attributes for TEs can be calculated. They do
not define a negation operation (see also Sect. 2.1.1 for an explanation why).
Some example operations for different attributes are shown in Table 2.3.

So far, the quantitative evaluations all use relatively crude values. The
following works try to use more precise estimates in the evaluation. Buldas
et al. propose a quantitative analysis by calculating the risk of an attack by
equation 2.16 [Buldas 06]. Where τ is a security threat, Pr[τ] the probability
of τ and Loss[τ] the loss by τ .

28 2 Related Work and Fundamentals

Table 2.3. Operations for conjunction and disjunction for different attributes

attribute domain and operations

cost of the cheapest attack (N, min, +)
maximal damage (N, max, +)
minimum skill required (N, min, max)
possibility of attack (B, ∧, ∨)
special equipment required (B, ∨, ∧)

Risk =
∑
τ

Pr[τ]× Loss[τ] (2.16)

Based on the calculation of the risk, they decide to put a countermeasure
in place if either the risk is too high to be tolerated, or the cost of the measure
is lower than the risk difference. Otherwise a countermeasure would not be
reasonable. According to them, it is usually very hard to come by accurate
probabilities, especially for targeted attacks that only happen once. Even if
there is experienced data, companies are very reluctant on providing them to
others out of fear for the loss of reputation towards their clients.

This might change in Germany in the future because of the “IT-Sicherheits-
gesetz” (IT security law) which was passed in July 2015 [ITSG 15]. According
to that law, providers of critical infrastructure have to report serious attacks
to the BSI2.

On the other hand, there are expert estimates for typical attacks. From
these estimates for basic attacks, they want to determine probabilities of more
complex attacks using ATs. They limit their effort to rational attackers who
only go through with an attack if there is a positive outcome, and if so, they
choose the one with the highest outcome. Therefore, they try to estimate the
possibility of an attack using a cost-benefit calculation from the attacker’s
point of view. Their calculation of the outcome is shown in equation 2.17.
They criticize that in previous works usually only one parameter is used in
the trees and therefore the decision of an attacker to attack is not modeled
very accurate. The attacker’s decision is modeled with the parameters: at-
tacker’s gain, probability of success, probability of getting caught and possible
penalties (listed in Table 2.4).

Outcome = p×Gains− Costs− p× π+ − (1− p)× π− (2.17)

For two nodes with the parameters valuesi = (Costsi, pi, π+
i , π

−
i), and

(i = 1, 2) the following computation rules shown in equations 2.18 and 2.19
are established.

2 Bundesamt für Sicherheit in der Informationstechnik (Federal Office for Informa-
tion Security)

2.2 Security Analysis Techniques 29

Table 2.4. Parameters used to calculate the outcome of an attack according to
Buldas et al. [Buldas 06]

parameter description

p probability that the attack is successful
Gains the attacker’s gain
Costs the costs of the attack (material, bribes, . . .)
π+ penalty if the attack is successful

(penalty × probability to be caught)
π− penalty if the attack is unsuccessful

(penalty × probability to be caught)

values(AND)

=

Costs = Costs1 + Costs2,
p = p1 × p2,
π+ = π+

1 + π+
2 ,

π− = p1(1−p2)(π+
1 +π−

2)+(1−p1)p2(π−
1 +π+

2)+(1−p1)(1−p2)(π−
1 +π−

2)
1−p1p2

(2.18)

values(OR) =
{
values1, if Outcome1 > Outcome2
values2, if Outcome1 ≤ Outcome2

(2.19)

Whereas Outcomei for (i = 1, 2) is calculated according to equation 2.17.
π− is the average penalty if at least one of the child-attacks was not successful.
Costs and penalties of node i can be combined to the value

Expensesi = Costi + pi × π+
i + (1− pi)× π−i

Jürgenson and Willemson do generally the same in [Jürgenson 08]. But
they criticize that the calculations from [Buldas 06] are violating the general
calculation rules from [Mauw 06]. To calculate the value of an OR-gate, the
outcome of both inputs has to be compared for which the gain of each sub-
attack is needed. Because this value is usually not available, Buldas et al.
use the gain of the overall attack which is too high for this calculation. Also,
they only consider the case that only one path of an OR-gate is executed.
But Jürgenson and Willemson claim that in practice several attack paths are
tried as long as they are feasible for the attacker. Therefore Buldas et al.
underestimate the outcome of an attack and by this the attack probability.
In [Jürgenson 08] they propose an improved approach that does not violate
the criteria from [Mauw 06] but with a higher computational complexity. The
computation rule for the outcome in [Buldas 06] is a lower bound for the
maximum outcome as computed by Jürgenson and Willemson.

To summarize [Buldas 06] and [Jürgenson 08], they both do cost-benefit
calculations from the attacker’s point of view. Together with [Mauw 06], they
propose a formal basis for calculations in attack trees. But they do not mention

30 2 Related Work and Fundamentals

how to obtain the probabilities for an attack to be successful other than by
rough expert estimations. Without those, their approach is not feasible.

Extensions of Attack Trees and Related Techniques

As for FTs, there are extensions of ATs as well. Defense Trees (DTs) extended
ATs with the ability to model countermeasures [Bistarelli 06]. BEs in a DT
are annotated with a set of suitable countermeasures. They model DTs in
Disjunctive Normal Form (DNF) which means DTs depict the set of possible
attacks, or the combination of all MCSs in FT terminology. Their approach
includes qualitative as well as quantitative evaluation of DTs. They use costs
as a measure. Countermeasures are rated by a Return on Investment (ROI)
from the defender’s point of view and a Return on Attack (ROA) from the
attacker’s point of view. Interdependencies between sub-attacks are considered
by rating the MCS/whole attack scenario instead of every BE by itself.

Previously mentioned Generalized Fault Trees (GFTs) (cf. Sect. 2.1.1)
are another example of safety modeling techniques used to model secu-
rity [Codetta-Raiteri 13]. Using GFTs repair and recovery mechanisms, and
dynamic behavior can be modeled. This can lead to more accurate attack
models, and if attack probabilities are available, the model can be calculated
more accurate. But, the ATs based on GFTs are getting more complex. For an
analysis they are transformed into Generalized Stochastic Petri Nets (GSPNs)
and analyzed using the usual Petri net analysis methods [Marsan 95]. There-
fore, they have the same advantages and drawbacks as Petri nets. Analyses
can be very detailed, but the analysis effort increases exponentially with the
size of the model. GFTs still depend on probabilities for attack events which
are difficult to obtain.

There are state-based approaches that allow modeling dynamic behavior
in attacks. Petri Net Attack Modelings (PENETs) [Pudar 09] is an extension
of ATs with dynamic constructs such as time dependencies, or defense and
repair mechanisms. They are analyzed by converting them into an equivalent
Petri net.

In security attack statecharts [Ariss 11] states correspond to successful
steps necessary to execute an attack. Events trigger transitions between the
states. The decisions of an attacker are represented using statechart repre-
sentations of logic gates such as AND, OR, and Priority-AND. It is possible to
model conditional cycles, preconditions, concurrency, or collaboration.

Sheyner et al. describe attack graphs in [Sheyner 02] to analyze networks.
The network is modeled as a finite state machine. Security properties are spec-
ified and state transitions correspond to atomic actions an attacker performs
to violate these properties. The modeled state machines are evaluated using a
model checker to find the most critical attacks, or the ones a defender has to
prevent to counteract attacks. Other metrics for attack graphs are the shortest
path to an attack goal or the number of paths [Idika 10].

2.2 Security Analysis Techniques 31

McDermott models attacks using Petri nets as so-called attack nets
in [McDermott 00]. It is basically a Petri net representation of ATs with the
additional ability to model sequences.

ADversary VIew Security Evaluation (ADVISE) [LeMay 11] is an ap-
proach to generate an executable model, the attack execution graph, that
represents the steps an attacker is likely to take to reach his attack goal. It is
also a state-based model that extends the attack graph concept with attacker
profiles. By executing attack steps, an attacker gains access to system compo-
nents or reaches the goal. The graph also includes the skills and knowledge an
attacker needs to execute an attack step. Attacker profiles are defined which
include the attacker’s attack preferences, attack goals, and attack skills. The
choice which attack steps to take depends on cost, payoff, and probability
of detection, and is calculated by an attack decision function. From an ini-
tial state the path with the most attractive attack steps is calculated which
represents the most likely attack sequence.

State-based approaches are able to create more precise models than ATs,
but they all have the problem of the state space explosion in larger systems.
Therefore they are more suited to model partial aspects of a system in detail
than the whole system. For the overall view of a system ATs are better suited,
and they can be extended by state-based models for more detailed models.

2.2.2 Threat Modeling

The term threat modeling was coined by Microsoft as an “attack-focused anal-
ysis activity used to find security flaws in software” [Dhillon 11]. Threat mod-
eling is effective to find classes of coding issues that stem from architectural
or technology-selection decisions. It is recommended to apply threat modeling
during early development phases, namely the architecture or design phase. The
threat modeling process is described in four steps according to [Dhillon 11]:

1. Creating an annotated data flow diagram
2. Identifying and analyzing threats, guided by the STRIDE approach or a

threat library
3. Assessing technical risks of threats
4. Mitigating threats to reduce risk

From an attacker’s point of view data flows are interaction points with the
system. Attacks especially are directed towards data flows. Data Flow Dia-
grams (DFDs) that are used for threat modeling should be annotated to sim-
plify the following analysis steps. Useful annotations according to [Dhillon 11]
are:

• different privilege levels
• embedded components
• programming languages
• critical security functions

32 2 Related Work and Fundamentals

• network and local data flows
• data flow type (HTTP, SQL, API call, . . .)
• authenticated data flows
• encrypted and/or signed data flows/stores
• sensitive information in data stores
• how sensitive information is intended to flow through the system

DFDs consist of data flows, data stores, processes, interactors, and trust
boundaries [Hernan 06]. Microsoft also provides general rules for the creation
of data flow diagrams for threat modeling:
• there should be no “magic” data sources or sinks
• model all data transports, meaning there should always be a process that

reads and writes data
• similar elements in one trust boundary should be collapsed for simpler

modeling
• components on either side of a trust boundary should not be modeled

simultaneously but separately with the respective other side as an external
interactor
After developing the DFDs, the next step is to identify threats to system

assets. In Microsoft’s Security Development Lifecycle they use the STRIDE
approach [Howard 06, Microsoft 10]. It is an acronym for Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service, Elevation of Priv-
ilege (STRIDE). For each security property there is a specific threat which
is shown in Table 2.5. The individual security properties are described in
Table 2.6.

Table 2.5. Threats and security properties from [Hernan 06]

threat security property

Spoofing authentication
Tampering integrity
Repudiation non-repudiation
Information disclosure confidentiality
Denial of service availability
Elevation of privilege authorization

For the STRIDE approach the system is divided into relevant components,
each component is analyzed, and threats found are mitigated by additional
measures. Table 2.7 shows which DFD elements are susceptible to which se-
curity threats.

For the analysis a security expert goes through the list of components
and checks each for the threats listed in Table 2.7. The analyst has to
find the individual threats fitting to the system in question. This step re-
lies heavily on experience and can never be complete. But there are tools

2.2 Security Analysis Techniques 33

Table 2.6. Descriptions of security properties from [Hernan 06]

property description

confidentiality data is only available to the people with the appropriate
clearance

integrity data and system resources are only changed in appropriate
ways by appropriate people

availability systems are ready when needed and perform acceptably
authentication the identity of users is established
authorization users are explicitly allowed or denied access to resources
non-repudiation users cannot perform an action and later deny performing

it

Table 2.7. Threats affecting data flow diagram elements according to [Hernan 06]

element spoofing tampering repudiation information
disclosure

denial of
service

elevation of
privilege

data flows X X X
data stores X X X
processes X X X X X X
interactors X X

that ease that task. Chapter 22 in Microsoft’s “The Security Development
Lifecycle” [Howard 06] has a number of threat tree patterns for the security
properties of DFD elements. There are pre-built threat trees with design ques-
tions about all elements that help to understand the pattern. Common types
of attacks are listed in libraries such as “Writing Secure Code” by Howard and
LeBlanc [Howard 02] or the “Common Weakness Enumeration [MITRE 14].

The STRIDE taxonomy is general enough to encompass most attacks on
software. But the downside is, to apply it a substantiated knowledge about
software security is required. So, if normal developers should be able to ap-
ply threat modeling to their development process, they need a technique
that requires less security knowledge. A simplification of the analysis is to
focus threat modeling efforts on interactions between elements in the data
flow diagrams. A threat library was developed that, at the time of the pa-
per [Dhillon 11], included around 35 entries which are maintained and up-
dated by security experts. It consists of the minimum considerations that are
required for the systems that are developed by their company. A threat library
can never be complete but it can be a good baseline of actions. Major criteria
for including entries in the threat library are:

• identifiable during design time?
• at least moderate security risk?
• can actionable mitigation guidance be provided?

An entry of the library has the following fields:

34 2 Related Work and Fundamentals

• applicability field to show whether the issue is relevant
• threat description
• examples illustrating implications
• baseline risk with variation based on modeled system
• detailed prescriptive mitigation for the threat

After identifying the threats to the system, the risk resulting from them has
to be assessed. In [Dhillon 11] they only assess the technical risk, business risk
is not assessed because developers usually do not have the necessary knowledge
to do that. They use a number of yes/no questions that are translated into
numerical scores. The scale of these scores is divided into four intervals which
then represent qualitative rankings of “critical”, “high”, “medium”, or “low”.
The qualitative ranking makes it easier for developers to decide whether a
threat has to be mitigated for a particular system.

For each entry in the threat library of [Dhillon 11] there is a description of
mitigation strategies. This way developers do not have to solve the mitigation
problem for known threats every time again.

2.3 Combinations of Safety and Security Analysis

As discussed in Sects. 2.1 and 2.2 there are several approaches that use
Fault Trees (FTs) or derivatives thereof to analyze security. Most of them
aim simply in using the FT method for security analysis, some qualitatively
such as [Schneier 99, Helmer 02, Brooke 03], and some quantitatively such
as [Rushdi 05, Buldas 06, Mauw 06, Jürgenson 08, Codetta-Raiteri 13]. The
aim of this thesis is to analyze the effects security attacks may have on system
safety. The previously mentioned approaches only analyze security on its own.
They do not model interdependencies between security and safety concerns.
In this section existing approaches that try to integrate safety and security
analysis are discussed.

Eames and Moffett investigate how to integrate safety and security on
the requirements specification level [Eames 99]. They argue that to obtain
consistent and complete requirements safety and security requirements have
to be defined simultaneously. A comparison of the safety and the security risk
analysis processes is done and shows that safety and security risk analysis can
be divided into common steps. These commonalities are shown in Table 2.8.
From this they conclude that it is possible in general to do a simultaneous
safety and security risk analysis. This claim can be supported by combined
safety-security analyses using similar or the same techniques for safety and
security, as will be shown by the following approaches. Sommerville argues
that safety and security requirements should not even be treated as special
requirements, but both should be integrated into the requirements engineering
process because they have influence on the whole system [Sommerville 03].
Saglietti sketches an idea to extend FTs with causes from security attacks

2.3 Combinations of Safety and Security Analysis 35

Table 2.8. Comparison of safety and security risk analysis processes according
to [Eames 99]

risk analysis processes
safety security commonalities

functional and technical analysis asset identification system modeling
qualitative analysis qualitative analysis qualitative analysis
quantitative analysis quantitative analysis quantitative analysis
synthesis and conclusions countermeasure evaluation defining requirements

in [Saglietti 06]. A broader overview of the efforts of safety, security and safety-
security co-analysis provides [Paul 15].

In the following, the first approaches are about combinations of FTs and
Attack Trees (ATs) where ATs are attached to FTs as additional causes.
After that, the next approaches handle ratings of security and safety risks in
a combined manner. Next is Failure Mode, Vulnerabilities and Effects Analysis
(FMVEA), an approach comparable to the one in this thesis, but based on
Failure Mode and Effects Analysis (FMEA) instead of Fault Tree Analysis
(FTA). The last section is a short overview over other analysis methods that
combine safety and security analysis.

2.3.1 Integration of FTs and ATs

In this section two approaches that are combinations of FTs and ATs are
shown. In both ATs are attached to FTs as additional causes. The first one
shows the combination of two models, one FT and one AT. The second ap-
proach describes rules for the assignment of ratings and the calculations for
a quantitative evaluation. A related approach is mentioned last, it combines
FTs with Markov processes.

In [Guo 10] the authors describe an approach to identify security-safety
requirements simultaneously, and they apply it as a case study to an off-road
robot. They implement a combination of FTs and ATs as part of the derivation
of security-safety requirements. Based on given functional requirements, a
safety as well as a security analysis is conducted. For both, first an FMEA
and then, based on the results, an FTA is done. They argue that by using
the same techniques the analyses can be combined easier. Between safety and
security terms they define equivalences such as attacker – failure modes and
weaknesses – failure causes. The causal chain of the security FMEA leads from
a security attack to a safety effect. The FTA yields a tree for the safety aspect
and a tree for the security aspect. Those trees have to be merged to gain a
combined tree for the final analysis. The safety tree is searched for events that
match a Top Event (TE) of the security tree, and then the security tree is
attached to this event as a subtree. The problem of matching trees is described
in more detail in Sect. 3.3.1. The analysis results in necessary countermeasures
that have to be built into the system. These countermeasures are gathered as
additional system requirements.

36 2 Related Work and Fundamentals

The article only describes exemplarily the building of the FTs. A detailed
analysis of the resulting trees is not presented. At least a qualitative analysis
is straightforward as the trees are standard FTs which can be analyzed using
Minimal Cut Sets (MCSs) as described in Sect. 2.1.1.

This next approach is about the calculations for a quantitative evalua-
tion of a combination of FTs and ATs. Fovino et al. describe in [Fovino 09]
an approach to integrate ATs and FTs to assess the influence of security-
relevant events on safety TEs. They try to formalize ATs similar to [Mauw 06,
Buldas 06, Jürgenson 08] to be able to calculate ratings for the TE of a com-
bined tree. They call the root of an AT the goal of an attack. They partition
Basic Events (BEs) into assertions and vulnerabilities. Assertions are defined
as conditions under which an attack is possible. Vulnerabilities can be ex-
ploited by an attacker. For vulnerabilities the attributes name, type, descrip-
tion, vulnerability reference, list of affected components, countermeasures list,
severity, likelihood, and resources required are recorded. All possible actions
in the context of the system are called operations. Operations are conjunc-
tions of assertions and vulnerabilities in the tree. Goals of ATs may appear as
events in an FT. ATs and FTs can be integrated at that point via an OR-gate
to which the FT event and the AT goal are connected (similar to [Guo 10]).
Also similar to [Guo 10] they combine two existing trees instead of expanding
one tree (see Sect. 3.3.1 for a discussion of that problem). It is mentioned that
there could also be Intermediate Events (IEs) as side effects of an attack in an
AT that correspond to other events in the FT. These are also merged using
the IE the same way as a goal. They call that combined tree an Extended
Fault Tree (EFT). Under the precondition that probabilities for all events
exist in the EFT, security as well as safety-related, they use the usual rules
of probabilistic Boolean logic to calculate probability of the safety-related TE
of the FT.

The basic idea is very similar to the approach of this thesis, except for
the following main differences: First, they say attack tree probabilities are
difficult to determine, and they use likelihood values. Later they use the cal-
culation rules as if there were probability values for all events. But as they
state before, probabilities for attack trees are mostly unavailable, and there-
fore the calculation rules are merely theoretical. No qualitative analysis of the
EFT is described that in some way takes into account that there are events
of different types (deliberate attacks and random faults).

Boolean logic Driven Markov Processes (BDMPs) have a similar syntax
to FTs and ATs. They are extended by triggers that model dependencies be-
tween events [Bouissou 03] and use AND, OR, and PAND-gates. If the origin of a
trigger is true (the event occurs), the target of the trigger gets activated. Only
activated events may become true. Triggers may activate or deactivate parts
of a tree. Thereby it is possible to model simple dependencies, sequences, de-
tections, reactions, and repair actions. Leaves of the tree (BEs) are modeled
by Markov processes that represent the component’s behavior depending on
activation. BEs can model both failures in operation and failures on demand

2.3 Combinations of Safety and Security Analysis 37

with possible repair actions. BDMPs are able to model the same dependen-
cies as Dynamic Fault Trees (DFTs), Repairable Fault Trees (RFTs), or other
state-based approaches (cf. Sect. 2.1.1). In [Piètre-Cambacédès 10a] the au-
thors add security BEs such as attacker actions, timed security events and
instantaneous security events. If an attacker action is activated, the attacker
attempts an attack step. The timed security event models an event which
influences an attack, but it is not under the attacker’s control. The time
to success for both is exponentially distributed. The instantaneous security
event happens with probability γ directly after activation. Using those events
BDMPs can be used to model complex attack sequences with interdependen-
cies. In this way they are comparable to Defense Trees (DTs), an extension of
ATs including defense mechanisms and countermeasures (cf. Sect. 2.2.1). The
authors also combined safety and security models to model interdependencies
between them [Piètre-Cambacédès 10b]. They are able to model similar struc-
tures as described in [Guo 10] and [Fovino 09] such as adding security events
as additional causes for safety failures. Because of the generalized model they
also can model security failures that depend on safety causes. Results of the
analysis depend on quantitative input data that are difficult to obtain for se-
curity events as mentioned earlier. Qualitative results are the possible failure
sequences.

This approach is very similar to the one in [Fovino 09] and has the same
drawbacks. It depends on attack probabilities respective attack rates to be
useful, and they are hard to obtain. The qualitative results, the failure se-
quences, may be more detailed than in ATs. The usefulness depends on the
required level of detail of an analysis. For an overview of a system, FTs and
ATs are better suited. For more detailed parts of a system the greater effort
of creating Markov Processes may pay off.

The next section will cover some approaches that use qualitative ratings
instead of probability values, and they describe how to obtain the ratings.

2.3.2 Security Analysis with Safety Implications

The approaches of this section are mostly about how to obtain ratings for
security and safety risks in a combined manner. How they obtain the scenarios
they analyze is not in every case described. Some also use FTA to analyze their
examples.

Bloomfield et al. conduct a security analysis of the European Railway
Traffic Management System (ERTMS) including an impact analysis of the
found vulnerabilities on the safety of the system [Bloomfield 12]. Attacks were
rated according to several criteria:

• type of access required to exploit a vulnerability
• level of technical sophistication required to exploit a vulnerability
• type of failure caused by a successful attack
• scale of effect for a successful attack

38 2 Related Work and Fundamentals

• scalability of the attack from the attacker’s perspective
• type of impact caused by a successful attack
• types of mitigation strategies that are possible
• level of difficulty for implementing each mitigation
For each criterion a qualitative rating along the lines of {HIGH,Medium, low}
is used (see Table 2.9).

Table 2.9. Ratings of attack scenario criteria as used in [Bloomfield 12]

minimum
access
required

technical
sophistication

type of
failure

scale of
effect

REMOTE
ACCESS LOW LOSS OF LIFE

GLOBAL,
NATIONAL

Access to
infrastructure,
but not the
system itself Medium Denial of service Regional
physical access to
the system high local

scalability
of the attack

type of
impact

mitigation
strategies

ease of
mitigation

HIGH

SAFETY
CRITICAL,
ECONOMIC HARD

Medium Political Reactive Medium
low psychological preventive easy

They do not try to use a compound rating, but instead they argue that
the different ratings show the trade-offs a decision maker has to deal with.
These ratings can be used to make more informed decisions.

In essence this is a security analysis in which safety implications are taken
into account. The approach is directly inverse to the approach of this the-
sis. After the rating no further analysis is described, neither qualitative nor
quantitative.

Also the same analysis direction as [Bloomfield 12], this approach from
Casals et al. describes a security analysis that takes safety implications into
account [Casals 12]. It is another example of an approach that uses qualitative
ratings for the attack likelihood.

They describe an application of security risk assessment to avionics sys-
tems. As risk needs to be quantified to avoid unnecessary costs, they propose
a quantitative risk assessment framework. Their methodology consists of six
steps:
1. context establishment

2.3 Combinations of Safety and Security Analysis 39

2. preliminary risk assessment
3. vulnerability assessment
4. risk estimation
5. security requirements
6. risk treatment

The interesting step for this thesis is the risk estimation. The attack likeli-
hood is rated using five likelihood levels: frequent, probable, remote, extremely
remote, and extremely improbable. The level is determined by a combination
of ratings for exposure of the asset to threats and attacker capabilities. Values
for exposure and attacker capabilities have to be determined by experts. The
risk, in turn, is determined by a combination of likelihood and safety impact.
For the safety impact they also use five levels: no safety effect, minor, major,
hazardous, and catastrophic [ED-202 10].

The authors use an FT structure to model the combinations of attacks that
lead to the system failure (in this case an aircraft that crashes during take-
off). Just as the authors of [Bloomfield 12], Casals et al. conduct a security
analysis that includes the effects of security attacks on system safety. This
can extend, but not replace, an existing safety analysis. A complete safety
analysis is necessary nevertheless.

Reichenbach et al. also describe a security risk assessment approach that
is extended to include the impact on system safety [Reichenbach 12]. They
propose a combined approach for safety and security analysis to have a more
consistent, less redundant analysis. Based on Threat Vulnerability and Risk
Assessment (TVRA) [ETSI TS 102 165-1 11], they add the Safety Integrity
Level (SIL) to get a rating of an attack that includes the impact on safety.
Factors affecting the risk are time, expertise, knowledge, opportunity, equip-
ment, asset impact, and intensity. The likelihood of an attack is based on the
attack potential value which is based on time, expertise, knowledge, opportu-
nity, and equipment. The impact of an attack depends on asset impact, attack
intensity, and SIL. All these values have to be determined by experts during
the analysis.

This is more a risk estimation approach than an analysis technique. It can
be used after the risks are identified by other methods.

In this section the approaches used extensions of security risk assessment
approaches to also assess the risk on the system under study. They cannot be
used as standalone techniques but they may be used together with techniques
such as FTA or FMEA that provide the failure scenarios. The next section on
the other hand shows an approach that includes the scenario finding as well
as the evaluation of ratings of risks.

2.3.3 Failure Mode, Vulnerabilities and Effects Analysis (FMVEA)

Schmittner et al. extend FMEA (see Sect. 2.1.2) to include vulnerabilities and
attacks as additional causes in the analysis [Schmittner 14]. They describe a

40 2 Related Work and Fundamentals

combined analysis of safety and security based on the FMEA cause-effect
chain. A generic set of security based failure modes called threat modes based
on the STRIDE classification (see Sect. 2.2.2) is proposed. Table 2.10 shows
corresponding FMEA and FMVEA elements. To the cause-effect chain of
FMEA vulnerabilities, threat agent, threat mode, threat effect, and attack
probability are added as additional elements. Figure 2.7 shows the cause-effect
chain of FMVEA. The dashed areas show the security respective safety specific
elements. The gray background indicates that probabilities are determined
for failure causes as well as attacks which are composed of vulnerabilities and
threat agents that exploit them.

Table 2.10. FMVEA elements and their correspondents in FMEA [Schmittner 14]

FMEA elements FMVEA elements

failure cause vulnerability
random event threat agent
failure mode threat mode
failure effect threat effect
failure probability attack probability

&

failure cause failure mode

vulnerability

threat agent
threat mode

effect

severity

probability

criticality

&

safety

security

Fig. 2.7. The cause-effect chain of FMVEA from [Schmittner 14]

Like the approaches from the previous section, Schmittner et al. use a
qualitative rating to describe the attack probability. The attack probability
is calculated as the sum of threat properties and system susceptibility. The

2.3 Combinations of Safety and Security Analysis 41

value of the threat properties is determined by the sum of motivation and
capabilities. System susceptibility is determined by the sum of reachability
and unusualness. Schmittner et al. define scales with three values for all of
these properties. Table 2.11 shows the properties and the corresponding rating
values. The values of the resulting attack probability can then be interpreted

Table 2.11. Ratings of the properties necessary to determine the attack probability
according to [Schmittner 14]

property rating values

threat properties motivation 1 = opportunity target
2 = mildly interested
3 = main target

capabilities 1 = low
2 = medium
3 = high

system susceptibility reachability 1 = no network
2 = private network
3 = public network

unusualness 1 = restricted
2 = commercially available
3 = standard

as low for values 4–6, medium for values 7–9, and high for values 10–12.
This is an approach that could be used in combination to the approach of

this thesis. As with FMEA and FTA where the FMEA is used to find failure
modes that are analyzed further using FTA, FMVEA could be used to find
failure modes (and also some of the causes and effects) which then are analyzed
further using the Security-enhanced Component Fault Trees (SeCFTs) of this
thesis.

2.3.4 Other Related Approaches that Combine Safety and
Security Analysis

In this section other approaches that in some way combine safety and security
analysis are mentioned in a short overview.

In [Roth 13] the approach proposed in this thesis is extended by a security
analysis from the attacker’s point of view using FMECA-like ratings.

[Dobbing 06a, Dobbing 06b] describe a standard that integrates safety and
security on an assurance case level. This standard is based on British Defense
Standard [MoD DS 00-56 07] and Common Criteria [ISO/IEC 15408 12]. It
was developed under the SafSec study of the British Ministry of Defense.
However, it does not claim to be necessarily sufficient for safety or security
certification, but it provides a framework how safety and security standards
can be applied more cost efficient and with reduced risk.

42 2 Related Work and Fundamentals

Großpietsch and Silayeva propose architectural means to achieve safety
and security in [Grosspietsch 04]. They analyze their approach using a Byzan-
tine fault model to integrate security failure models into time-dependent re-
liability analysis using different attacker models. No concrete attacks are an-
alyzed, but the effects of failed elements on the overall system due to attacks
are analyzed.

[Lanotte 03] integrates safety and security analysis based on timed au-
tomata and symbolic model checking.

There exist only a few publications that try to combine FTs and ATs,
despite of the similarities, to combine safety and security analyses. This thesis
proposes an approach that enhances safety analysis to encompass security
risks as additional causes for safety failures. Some researchers are doing the
opposite approach by including safety effects into security analysis. There
is work done on the level of standardization to include security into safety
standards such as [IEC 61508 10]. But mostly security and safety are aspects
of systems that are still analyzed separately and sometimes even in isolation.

2.4 Critique of Quantified Security Properties

In safety analysis it is common to conduct a quantitative analysis if more pre-
cise statements about a system are required. This practice has been tried
to adapt to security analysis. Although quantitative approaches for secu-
rity assessment have been intensively studied, quantification is still in its
infancy [Förster 10].

In [Verendel 09], the author provides a representative overview of works
between 1981 and 2008 containing security models, security metrics, or se-
curity frameworks for a quantitative analysis of system security. A few of
them have been discussed in Sect. 2.2. According to him, the validity of most
methods is unclear, and most of the methods were not successfully used in
a real life analysis. A lot of the works Verendel studied for his survey claims
that quantitative analysis of security is necessary. But that depends on the
correct representation of security with quantitative information. In security
analysis usual assumptions are that security related events are stochastically
independent, that attackers are rational or choose the optimal way, or that
security properties do not change over time. In general, these assumptions are
not correct. Most of the surveyed work on quantification of security is not val-
idated in a repeatable way. Based on the survey, Verendel states that at time
of the paper (2009) security cannot be represented correctly with quantitative
information.

Earlier described approaches such as [Mauw 06, Buldas 06, Jürgenson 08,
Fovino 09, Piètre-Cambacédès 10b] illustrate that finding. They define calcu-
lation rules for probabilities of security events similar to the ones for safety
analysis in FTs, but they do not discuss the fact that such probabilities are

2.5 Conclusion 43

usually not available. Without input values their whole calculation model is
simply theoretical.

According to [Brooke 03], the major benefit of fault tree analysis is the
identification of the relationship of events, not a quantitative evaluation of
security. Quantitative analysis often has no additional value.

2.5 Conclusion

In the beginning of this state of the art, Fault Trees (FTs) are described that
are suited to find and model causes and combinations of causes of failures.
In combination with Failure Mode and Effects Analysis (FMEA) and Hazard
and Operability Study (HAZOP) to find the failure modes, they are a well-
established method in industry to analyze safety. They are also easily extend-
able to add the ability to model dynamic behavior using Markov processes.
The extension to Component Fault Trees (CFTs) allows the component-wise
modeling of larger systems.

The following sections show that Attack Trees (ATs) are a good match for
a combined analysis. Even if they are not perfect to model security in much
detail in their basic form, they can be extended to the needs of a modeler,
just like CFTs. Comparable to safety analysis, ATs can be combined with
Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) or STRIDE to
find vulnerabilities. The approaches that directly provided the possibility to
model dynamic behavior for both safety as well as security, were all more
complicated in both modeling and analysis. Experience shows that CFTs in
industry are hierarchically built. Only if it is necessary, more detailed models
are built. So, using one of the dynamic modeling techniques such as Boolean
logic Driven Markov Processes (BDMPs) to model the whole system creates
much unnecessary overhead.

Also, using much too formal models for security does not help either be-
cause usually the necessary input data is not available. If such data would be
available however, it can also be used without much additional effort in an
AT.

3

A Comprehensive Safety Modeling Approach

In the introduction of this thesis it was established that networked embedded
systems (or sometimes called Cyber-Physical Systems) introduce security vul-
nerabilities into systems that were not present in isolated systems. Embedded
systems mostly are analyzed with regard to safety, but not to security. So
the vulnerabilities newly introduced by networking systems together are not
taken into account.

The idea of this thesis is to augment safety analysis based on Component
Fault Trees (CFTs) by adding security concerns modeled as Attack Trees
(ATs) that have an influence on the safety of the analyzed system. Fault
Trees (FTs) in general, or CFTs in particular here, are a well-known tool
to conduct a safety analysis. ATs are an established technique for security
analysis. The motivation of this approach is to use established techniques
with which engineers are familiar, and to extend these. First ideas of the
proposed approach were described in [Förster 10] and [Roth 13].

In this chapter, the modeling part of the approach will be described. First,
the extensions will be embedded in a usual analysis process for safety critical
systems (Sect. 3.1). After that, different variants are discussed to combine
FTs or rather CFTs with ATs in Sect. 3.2. Section 3.3 shows two approaches
to create a combined tree, and Sect. 3.4 describes the selected approach in
detail.

3.1 Overall Modeling and Analysis Process

Safety analysis using Fault Tree Analysis (FTA) is a process of several steps.
The overall process is the same, independent of the use of FTs or CFTs.

Standards such as [IEC 61025 06] or [IEC 60300-3-1 05] recommend a
combination of inductive and deductive techniques to minimize the poten-
tial of omitted failure modes. Inductive techniques as Failure Mode and
Effects Analysis (FMEA) [IEC 60812 06] or Hazard and Operability Study

46 3 A Comprehensive Safety Modeling Approach

(HAZOP) [IEC 61882 01] can be used to find the Top Events (TEs). Deduc-
tive techniques as FTA [IEC 61025 06] are used to refine the analysis and to
find causes and moreover combinations of causes that lead to the TE. The
resulting tree is used to conduct qualitative and quantitative analyses. Fig-
ure 3.1 shows the general process in three steps. Strictly speaking, a CFT is
not a tree but a Directed Acyclic Graph (DAG). To simplify naming matters
CFTs will also be referred to as “trees” in the course of this thesis.

FMEA, HAZOP

1. find TE
2. deduce causes
 for TE

3. Analysis
(qual./quant.)

FTA, CFT

data flow,
system structure

Fig. 3.1. The safety analysis process according to IEC 60300–3–1

The approach to introduce security aspects into safety analysis proposed
in this thesis is based on CFTs. It extends the process described earlier by
an additional step and modifies the analysis step. Figure 3.2 shows the ex-
tended analysis process. After developing the CFT, it is extended by possible
security attacks as additional causes that also could lead to the safety-related
TE. Those security attacks are found by analyzing data flow and interface
specifications because most attacks are made at communication interfaces (cf.
Sect. 2.2.1). Techniques to find security vulnerabilities that may lead to at-
tacks are STRIDE (cf. Sect. 2.2.2) or Failure Mode, Vulnerabilities and Effects
Analysis (FMVEA) (cf. Sect. 2.3.3).

FMEA, HAZOP

1. find TE
2. deduce causes
 for TE

4. Analysis
(qual./quant.)

FTA, CFT

3. extend CFT

data flow,
system structure

data flow,
interface specification

STRIDE, FMVEA

Fig. 3.2. The extended safety analysis process

3.2 Discussing Different Combinations of CFTs and ATs 47

3.2 Discussing Different Combinations of CFTs and ATs

Before describing the extension of CFTs, this chapter will discuss the issue of
how safety and security concerns can be combined in an analysis. Depending
on the focus of the analysis, two variants for combinations are possible: An
AT as the main tree with additional branches from a CFT, or a CFT as the
main tree with additional AT branches.

If the focus lies on security analysis, the TE will be an attack goal and the
underlying tree will be an AT. In this AT there can be branches of CFTs if
component failures are necessary for an attack to succeed (see Fig. 3.3a).

If, on the other hand, the focus lies on safety analysis, the TE will be a
system failure and the underlying tree will be a CFT. In this CFT, there can
be events that may also be caused by security attacks, hence in such a CFT
there can be branches of ATs (see Fig. 3.3b).

Nesting of both variants is also imaginable (see Fig. 3.4). Both variants
will be described in more detail in the next sections. But first, some definitions
are needed to distinguish events of different types in the combined trees.

Definition 22 (Safety Event) The term safety event is used for a Basic
Event (BE) which occurs due to a random fault in the system [Förster 10].
The BEs in standard CFTs are all safety events.

Definition 23 (Security Event) The term security event is used for a Ba-
sic Event (BE) which is triggered from outside the system by a malicious
attacker (or a random fault) [Förster 10]. The BEs in standard ATs are all
security events.

3.2.1 An AT Extended by a CFT

Figure 3.3a shows an AT with an attached CFT branch. The TE of this
combination is an attack goal that is refined for security analysis. The interface
between the AT and the CFT part is an event that can be caused by a security
event as well as by a safety event. This is basically a normal AT as some attacks
might depend on failures in the targeted system.

This combination variant is aiming at security analysis, and it is not exam-
ined further here because the goal of this thesis is to improve safety analysis.

3.2.2 A CFT Extended by an AT

Figure 3.3b shows a CFT with an AT branch attached to it as additional
cause for the TE. The interface between the CFT and the AT branch is an
event in the CFT that may be caused by a safety event as well as by a security
event. This security event does not have to be the goal of an attack but it
could also be a by-product, or an intermediate step of a more complex attack.
This combination is used for a safety analysis that is extended to also include
security events as causes for the TE, the system failure.

48 3 A Comprehensive Safety Modeling Approach

This will be the type of combination that will be used in the further
course of this thesis. In general, it could also be possible to use the type from
Fig. 3.4b. But this only would be necessary if an aspect of a security event
would have to be analyzed in highest detail.

AT

ATCFT

(a) An AT extended
by a CFT.

CFT

AT CFT

(b) A CFT extended
by an AT.

Fig. 3.3. Combinations of CFTs and ATs. Fig. 3.3b shows the combination that is
used for this thesis.

3.2.3 Nested Trees

To make the list complete, Fig. 3.4a and 3.4b depict combinations of the
previous two (Figs. 3.3a and 3.3b). As mentioned before, combination 3.4b
could be interesting if and only if an attack that is causing a system failure
has to be examined down to the last detail. Combination 3.4a is not pursued
further here based on the same grounds as combination 3.3a. It focuses on
security, in contrast to this thesis which has its focus on safety.

3.3 Tree Creation Approaches

After introducing the different combination variants in Sect. 3.2, this section
is about the development of such a combined tree. In general there are two
variants to generate a combined tree: The first variant is to model a CFT as
well as a separate AT and to find points of intersection to combine the trees.

The second one is to generate a CFT for safety analysis and to extend it
by adding security events as additional causes. In the following, both variants
will be discussed.

3.3.1 Combination of two Complete Separate Trees

The first variant that comes to mind if a combined tree should be generated,
is to create two separate trees and combine them afterwards. Figure 3.5 shows

3.3 Tree Creation Approaches 49

AT

AT

AT

CFT

(a) An AT extended
by a CFT which is
extended by another
AT.

AT

CFT

CFT

CFT

(b) A CFT extended
by an AT which is
extended by another
CFT.

Fig. 3.4. Nested combinations of CFTs and ATs

the combination process for this approach on the basis of a CFT and an AT.
In the first step safety experts build a CFT, and security experts build an AT
using a set of predefined common rules for syntax and semantic. Such rules
are necessary for the next step where the trees are searched for intersections,
namely common events. These common events could be any combination of
events. In Fig. 3.5 the example shows the combination at two Intermediate
Events (IEs) i1 and i2. At the position of these events a new OR-gate (i3)
is inserted between the trees, and the events i1 and i2 and their respective
subtrees are connected to it. That results in a combined tree shown in the
lower part of the figure. In this example an IE is the interface between CFT
and AT. This results in a graph with two TEs. Depending on the viewpoint
of the analysis (safety or security) the appropriate TE is used.

This approach for the development of a combined tree has the advantage
that if an analysis of either safety or security already exists, it could be reused
under certain circumstances (provided the rules for constructing the trees are
the same). Also, conducting two separate analyses in detail might lead to
fewer omitted causes.

But it also has its disadvantages: The construction of the trees depends on
two different views. In a CFT for a safety analysis failures are modeled as TEs
whereas in an AT for security analysis attack goals are modeled. Attack goals
can be different from failures because attackers may not want to crash the
system but to gain access to it. Also, if the system is modeled modularly in
a CFT, the AT is modeled for the whole system, similar to a traditional FT.
This can lead to matching problems, as different parts of the AT can match to
different components. Common events can also be events that have the same

50 3 A Comprehensive Safety Modeling Approach

Attack Tree
(Security)

Component Fault Tree
(Safety)

search for
common events

combined tree

Safety Experts

common rules for
syntax and semantics

Security Experts

d e

&&

≥1

a b

c≥1

&

3 4

&

≥1

1 2

CFT

&

a b

c≥1

d e

&

≥1

AT

≥1

&

&≥1

1 2 3 4

i1 i2

i1 i2

i3

safety relevant part

Fig. 3.5. The combination approach of a CFT and an separate AT

effect on the system but are named different. This is why naming conventions
are especially important for this approach. These problems prevent a simple
automatic merge of the trees because even same names not necessarily mean
same semantics. So it can be difficult to find common events in the trees
without manually going through the whole tree with both safety and security
experts present. If only one analysis perspective (safety or security) is needed,
this approach creates an unnecessary overhead. On the other hand, if the

3.3 Tree Creation Approaches 51

system requires both perspectives, this approach may be beneficial to the
completeness of the analyses.

3.3.2 Extension of a Tree

The second approach is the extension of an existing tree. An example is shown
in Fig. 3.6 (FT version) and 3.7 (CFT version). Most of the time an analysis
is either concerning security or safety. So it is not required nor desired to
analyze both aspects completely because of the additional effort. The shown
example is about the extension of an FT respective CFT for a safety analysis
that includes security events as additional causes. An FT/CFT is extended
by branches of an AT. In the first step of this approach safety experts build
an FT/CFT (left side of Figs. 3.6 and 3.7). This FT/CFT is the basis of the
next step, when security experts search through the tree and identify events
that could additionally be caused by security events (circled AND-gate/IE i1).
To do that, additional information about the system is needed. Information
about the data flow in the system and between the system and its environment
is useful for security analysis because communication interfaces are preferred
targets for an attack. This is why the specifications for the communication
interfaces are also helpful at this stage.

In a traditional FT one would do the following: In place of the identified
events, an OR-gate (i2) is inserted into the tree and the former event i1 and
the newly found security event a are attached to it (right side of Fig. 3.6).

In a CFT however, the security event a (the vulnerability) should be mod-
eled as an input port and the actual attack in a separate component (see
Fig. 3.7). This separate component models the attacker that includes all rele-
vant security events. These security events are accessible for other components
via the output ports of the attacker component. So instead of a security event,
an input port (sec_in1) is attached to the OR-gate (i2) (see Fig. 3.7).

In a first iteration of the combined tree the tree is finished now (right side
of Fig. 3.6 or 3.7). If more detailed information about the new security event is
needed, the attacker component can be refined just like any other component.
For each TE, respective output port, of the attacker component an AT can
be developed that describes the attack in more detail. Also, additional input
ports are imaginable if the attack requires failures from other components
(compare Fig. 3.4b).

The advantage of this approach is that the analysis team concentrates on
the aspect that is important for them (in this case safety), and tries to find
all possible causes for the TE. Only one aspect (either security or safety)
is analyzed completely, so there is less analysis effort than for two complete
analyses as in Sect. 3.3.1. Usually a system is either security critical, like
databases, or safety critical, like embedded systems that control machines. So
in practice only one aspect is interesting as analysis objective for a specific
system.

52 3 A Comprehensive Safety Modeling Approach

Security Experts

Safety Experts

&

≥1

1 2

3 4

extended FT

& a

≥1

can be extended
further if needed

&

&≥1

1 2 3 4

FT
Fault Tree
(Safety) identify security

critical events

i1 i2

i1

data flow, communication interfaces

Fig. 3.6. The extension of a Fault Tree

3.4 Development of a Security-enhanced Component
Fault Tree (SeCFT)

As stated earlier, the objective of this thesis is to improve safety analysis.
Therefore, the second combination variant (Sect. 3.3.2) is the technique of
choice. Figure 3.8 shows the development process of an SeCFT. First, a CFT
is created by safety experts for the system or component failures under con-
sideration. During the development of a CFT, some rules have to be obeyed.
They are recalled in Sect. 3.5. The failure modes (TEs) of the CFT can be
found using FMEA or HAZOP as supporting techniques (cf. Sect. 2.1.2) and
a description of the system structure including data flows. When that CFT
is finished so far, it is searched for events that may additionally be caused by
security events (e.g. intentional manipulation of the system). This step can
also be intertwined with the creation of the initial CFT. In the example IE i1
is identified as an event that may be caused by an attacker (circled AND-gate).

Often, those events appear at interfaces to the system environment or
between components. So, these interfaces should receive special consideration.
Possible points to attack a system are (this list is not necessarily complete):

3.4 Development of a SeCFT 53

Cattacker

a1 a2

a_out1 a_out2

Security Experts

Safety Experts

&

≥1

1 2

3 4

&

≥1

Component Fault Tree
(Safety)

identify security
critical events

&

&≥1

1 2 3 4

i1 i2

i1

data flow, communication interfaces

sec_in1

can be extended
further if needed

extended CFT

Fig. 3.7. The extension of a Component Fault Tree

• interfaces between system components and the environment (e.g. mal-
formed data can be injected at sensor or actuator interfaces),

• communication channels that run through the system environment (mean-
ing the channel is potentially accessible from the environment),

• and the software/hardware of the system components themselves (chang-
ing the behavior of the system itself).

From the attacker’s point of view, the first two are usually the most promising
points because they are accessible relatively easy from the system’s environ-
ment. Spoofing or denial of service attacks can be aimed at sensors to bring the
system in a vulnerable or dangerous state. An example could be a robot that
uses infrared range finders to avoid obstacles. If the range finder is blinded by
an infrared laser pointer, the robot might either ignore an existing obstacle or
imagine a non-existing one. In both situations the robot might damage itself
or its environment.

54 3 A Comprehensive Safety Modeling Approach

Security Experts

Safety Experts

identify security
critical events

data flow,
interface
description,
STRIDE
classification

FMECA

data flow,
system structure

top events for
fault trees

CFT
(Safety)

a1 a2

a_out1 a_out2

can be extended
further if needed

Attacker

&

&≥1

1 2 3 4

i1

&

≥1

1 2

3 4

&

≥1 i2

i1

a1

SeCFT

Fig. 3.8. The development of a Security-enhanced Component Fault Tree (SeCFT)

Communication channels that run through the environment (wired and
radio signals alike) are susceptible to denial of service (jamming) or spoofing
attacks (sending malicious signals). Denial of service attacks have the same
effects as random faults of the communication. That means, this type should
have already been handled by a traditional safety analysis. But it also could
be the case that the probability of a random fault of the communication was
determined as so low that no countermeasures were implemented. If attacks
however would have been taken into account, the countermeasures would be
necessary to avoid a deliberately caused failure.

Attacks on software/hardware level of a component are the ones which can
have the most effects because the system behavior can change in an unforeseen
manner. However, such attacks on the software are more difficult because
they require unrestricted access to the software which usually requires either
a previous attack on the communication or another way of access. Hardware
attacks on the other hand are a special case, they require physical access to the
system which can raise the necessary effort to high levels. Hardware attacks
are also the ones that have almost unrestricted effects on the system, and they
can hardly be detected unless they are foreseen during system development.

3.4 Development of a SeCFT 55

Having identified potential points of attacks by analyzing information such
as data flow or interface descriptions together with the CFT, the next step is
to find out which attack types are possible at those locations. Known attacks
are collected in online databases such as the Open Web Application Security
Project [OWASP 15] or vulnerability databases provided by several Computer
Emergency Response Teams (CERT). The STRIDE classification is a tool to
identify attacks (cf. Sect. 2.2.2). Table 3.1 shows the categories of the STRIDE
classification.

Table 3.1. STRIDE maps threats to security properties

Threats Security properties

Spoofing Authentication
Tampering Integrity
Repudiation Non-repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

With potential points of attack in mind, an analyst searches the CFT from
TE to BEs for events that can be triggered by an attack. For each event in
question the STRIDE categories are checked to determine which attack types
are possible.

No events should be left out from the beginning, unless the causes for that
are documented in the tree or in a separate document that is linked to the
tree. If an event is found that can also be caused by an attack, the tree is
extended by an OR-gate to which the previous subtree and the new security
cause are attached (see Fig. 3.8). The security causes are modeled as input
ports which are connected to an attacker component (see Fig. 3.9) in which
the actual security events are located.

In terms of CFTs the attacker would then be a new component which is
interacting with the system. From a semantic view point this makes sense be-
cause the attacks are not part of the system components as they could be seen
if they would be modeled as BEs in the components. The input port mod-
els the vulnerability, and the attacker component models the actual attack.
Modeling the attacker as a separate component therefore fits to the compo-
nent concept of CFTs [Kaiser 03b] and to the security model where an attack
exploits a vulnerability. Also, this eases necessary changes if new attacks are
known because the only changes in the CFT of the system are new input ports
and additional attacks in the attacker component.

The attacker component as shown in Fig. 3.9 can simply be a CFT with
as many output ports as there are different attacks. The attacks themselves
can be modeled simply as BEs (a1) or be refined as an AT (a2).

56 3 A Comprehensive Safety Modeling Approach

Cattacker

a1

a_out1 a_out2

&

a2.2 a2.3

a2.1 ≥1

a2

Fig. 3.9. An attacker component with two possible attacks

It is also imaginable that there is more than one attacker component mod-
eled. If so, they can interact just like CFT components. This analysis process
was also described in a paper for a workshop at the SafeComp conference
2013 [Steiner 13a].

The modeling process can be summarized as follows:

1. create a CFT
2. search for points of attacks/vulnerabilities
3. identify the types of vulnerabilities
4. develop ATs to model the attacks

3.5 Rules for the Development of an SeCFT

For the development of an SeCFT the same rules apply as defined in [Kaiser 06]
for CFTs. Precondition for a quantitative analysis is that all input ports of
a component are connected. Otherwise necessary information is missing if a
component depends on external inputs. Also, BEs should be independent from
each other because of the same reasons they should be in FTs (cf. [Vesely 81]).
Kaiser defined some rules for the creation of CFTs:

• only one edge can lead to a target, more than one edge is forbidden
• but one or more edges can start from the same point
• if a target should have more than one input, a gate has to be used to join

the edges
• directed cycles are not allowed
• a component cannot contain itself as a subcomponent

3.5 Rules for the Development of an SeCFT 57

Also, he stated that small and self-contained subcomponents are preferred
for later reuse. Therefore only BEs that really belong to the current component
should be added there. For BEs that are in fact external causes, an input port
should be added and the actual event should be placed in another component
(thus the external attacker component mentioned earlier).

4

The Analysis of Security-enhanced Component
Fault Trees

In Chap. 3 the modeling approach for an analysis with Security-enhanced
Component Fault Trees (SeCFTs) is described. This chapter deals with the
analysis of such SeCFTs. Qualitative and quantitative analysis methods will
be described. The analysis process is also handled in [Steiner 15].

To be able to conduct a quantitative analysis, a comprehensive rating of
all the events in an SeCFT has to be present. For that purpose different
rating schemes for the security events of the SeCFTs are introduced, and
it is discussed how they can be integrated with the safety rating schemes
stemming from a Component Fault Tree (CFT). Using a comprehensive rating
for all events the individual impact of an attack on the occurrence of the Top
Event (TE) can be determined.

This chapter is built-up as follows: First, different rating schemes that
can be included in an SeCFT are discussed. There are probabilities for safety
events, likelihood values for security events, and a combination of both to be
able to rate Minimal Cut Sets (MCSs) according to safety and security.

Then, calculations rules for the different rating schemes are described.
Calculation rules used in CFTs for probabilities are recalled, new rules for
likelihood values are discussed, and they are applied to the tuple rating that
is composed of probabilities and likelihood.

After that the application of the established rules for qualitative and quan-
titative analysis is dealt with.

In the end the whole analysis process is summarized, and some ideas how
to decide on countermeasures are devised.

4.1 Ratings of Basic Events in SeCFTs

In a CFT several ratings can be assigned to elements. Usually, ratings are
assigned to Basic Events (BEs). Ratings of MCSs are calculated from the
ratings of their corresponding BEs. The rating of a TE is calculated by the

60 4 The Analysis of Security-enhanced Component Fault Trees

combination of all BEs or less accurate, but more conservative, from the sum
of the ratings of all MCSs.

In CFTs BEs are typically rated using probabilities or reliability values
(see also Sect. 2.1.1). These are used to calculate the respective values for
MCSs and the TE.

The modular composition of CFTs (one CFT per system component) al-
lows for the calculation of ratings for subcomponents of a larger system and
for later reuse of these values. This can be done if a CFT is not depending
on inputs from other CFTs. Then, MCSs as well as other ratings can be cal-
culated for the output ports respective the TEs of the CFT. Especially for
basic components that are used in several systems this makes sense, and it
can reduce the analysis effort [Kaiser 06]. Measures for the contribution of
components to the overall system can also be calculated.

In an Attack Tree (AT) the same basic elements exist as in a CFT. Either
Boolean or continuous values can be assigned to BEs. As Boolean values
value pairs such as possible – impossible or expensive – not expensive are
used. Continuous values for BEs can be costs to execute an attack, probability
of success of a given attack, or probability that an attack is actually conducted.
The latter probability however is problematic as a rating for BEs in an AT
(cf. Sect. 2.2.1).

Figure 4.1 shows an example of an attacker component with two output
ports out1 and out2. For the output port out2 it is basically an AT which
consists of 4 gates and 5 BEs. Two MCSs are present which represent two
different attack scenarios: {e1, e2, e5} and {e3, e4, e5}.

&

& &

out1: tampering: change output value too high

e6: tampering: change output value too high

access LAN

e1: find LAN access port

e2: spoof MAC address

access WLAN

gain access to private network

gain access to target system

out2: tampering: change controller data

e3: find WLAN

e4: break WPA key

e5: get credentials

>=1

Fig. 4.1. An example attacker component

If an attack is consisting of several actions an attacker has to perform, like
the ones for output port out2 in the example, these actions are not stochas-
tically independent in general. The usual assumption is if an attacker plans
to attack a given system, and that attack requires him to execute different

4.1 Ratings of Basic Events in SeCFTs 61

actions (security events, sub-attacks), it is most likely that he will at least
try all sub-attacks that are necessary to reach his goal (an attacker acts ra-
tional [Buldas 06]). In terms of the given example this means if an attacker
chooses to try BE e1 and he succeeds, he most probably will also try e2 and
e5. In general this means, in an AT the events contained in an MCS are not
independent from each other.

Therefore, it can make more sense to assign a probability to a whole MCS
which represents the attack, instead of the BEs. The other rating values (other
than probabilities) can be calculated for the MCSs from their respective BEs.

A first result from a safety analysis based on SeCFTs is the set of MCSs, as
they are all combinations of BEs that lead to the analyzed system failure – the
failure scenarios. To decide which of these combinations have to be mitigated
to reach a certain safety level, this set of MCSs has to be prioritized. And
of course to decide whether a system is complying to a given safety level
from a standard or another requirement, the TE rating of the CFT has to be
calculated.

Depending on available data, different rating schemes can be used. They
will be described in the next sections.

4.1.1 Probabilities

Probabilities of occurrence, just like they are used in CFTs, are the first thing
that comes to mind when thinking about ratings for BEs in SeCFTs. If those
would be available for all events in the SeCFT – safety as well as security
– in a comparable accuracy, a probability of occurrence for the TE and all
MCSs could be easily calculated (see also [Mauw 06, Buldas 06, Fovino 09]).
For safety events this comes naturally because often there are tables with
failure probabilities for different system components. Of course, for software
components they are more difficult to find than for hardware components.
There exist some approaches that try to handle this fact by using easier to
estimate probability intervals instead of single probability values [Carreras 01,
Förster 09]. But probabilities for security events lead to several problems:
The probability of occurrence for a security event corresponds directly to
the combination of the probability that an attacker conducts an attack and
the probability that this attack is successful. A probability that an attack is
successful could be determined from expert knowledge and experienced data
just like failure probabilities (cf. Sect. 2.2.1). But even the success probability
is difficult to determine. There is only a small portion of the data about
successful attacks available. Most successful attacks are not published because
companies fear the loss of trust of their customers (cf. Sect. 2.2.1).

The bigger problem is the probability that an attacker actually conducts
an attack. First, this probability depends on different aspects: the attacker’s
motivation, experience, availability of assets/money/knowledge, and accessi-
bility of the system. And second of all, if this attack requires several distinct

62 4 The Analysis of Security-enhanced Component Fault Trees

actions that are modeled as separate security events, these events are not in-
dependent, as it would be required for most calculation algorithms for CFTs.
Some estimate of the attack frequency of specific systems can be obtained by
measuring the frequency of attacks to honey pots that are built to mimic real,
vulnerable systems [Wilhoit 13].

There are some approaches that try to deal with the uncertainty of
probabilities for some events of a CFT which can also be applied to an
SeCFT. One approach is to derive a pseudo-probability from security indi-
cators [Förster 10]. Together with other available probabilities, a probability
for the TE can be calculated. This approach has the advantage that the same
calculation rules can be applied as if there would be probabilities available for
all BEs. But there are also some problems: Security attacks that are part of
a larger compound attack directly depend on each other and therefore do not
fulfill the independence criterion for probabilities in CFTs. Also, it is impor-
tant to find the correct order of magnitude for the probabilities of security
events, otherwise the resulting probability can deviate in a matter that makes
the whole analysis obsolete. And last but not least, the numerical results from
such an analysis suggest a level of accuracy that can be misleading.

Another approach is to do a random-sampling instead of using precise
values (cf. Sect. 2.1.1). For every BE a probability interval is chosen instead
of a precise probability. The stochastic distribution of probabilities in those
intervals can be chosen as well (it should be uniform, if nothing is known
about the BE). By randomly sampling values from the probability intervals
of the BEs the TE probability of the TE is calculated for a large number of
times, thus resulting in the probability distribution of the TE. This method
is described in detail in [Förster 09].

To summarize, probabilities of the required accuracy for safety events are
relatively easy to obtain. But for security events they are either not as accurate
as the ones for safety events and therefore not directly comparable, or they
are not independent from each other, so the usual calculation algorithms do
not work. The next sections show different approaches that avoid problems
that arise with probabilities for security events.

4.1.2 Likelihood

Instead of trying to assign probabilities to security events, it is a better idea
to use a more coarse scale with only a few discrete values. [IEC 61025 06]
states for Fault Tree Analysis (FTA) that in case when probabilities can-
not be assigned to BEs, a “descriptive likelihood of occurrence” can be used
with values such as: highly probable, very probable, medium probability, remote
probability, etc. Different standards use different numbers of distinct values,
e.g. [ED-202 10] considers five levels: extremely improbable, extremely remote,
remote, probable, and frequent [Casals 12]. This likelihood can be used to rate
security events in an SeCFT. Assigning more precise numerical values would
only add fictitious precision which can be misleading in the interpretation of

4.1 Ratings of Basic Events in SeCFTs 63

the results as mentioned earlier in Sect. 4.1.1. This also has to be kept in
mind when calculating values for combinations of events that are rated with
likelihood values.

The values of that likelihood are determined from several indicators such
as: attack cost, attack resources, attacker motivation, accessibility, or attacker
type. For a first step a three-step scale is proposed which can be easily extended
if required. The scale represents the likelihood of a security event to occur.
To each value a numerical value is assigned for easier comparisons. From this
follows that the likelihood would be mapped to integer values from the interval
[1,m] with m ∈ N the number of discrete values. In case of the IEC 61025
scale this means highly probable := 4 and remote probability := 1. A high
rating corresponds with a high likelihood of occurrence and a low rating with
a low one. The number of different values depends on the granularity of the
used security indicators. If almost nothing is known about an attack, a three-
step scale is sufficient. But if more detailed indicators are available, it makes
sense to expand the scale. For example if six levels of accessibility can be
distinguished for a system, the likelihood derived from that should have also
6 levels (e.g.: remote via Internet, remote via local wired network, remote
via local wireless network, easy physical access (no access restrictions), hard
physical access (security doors), no access). The methodology is independent
of the number of likelihood steps.

The used likelihood scale as well as the origin of the values has to be
defined before the analysis. A possible method is to calculate the likelihood in
a similar way as the Risk Priority Number (RPN) of a Failure Mode, Effects,
and Criticality Analysis (FMECA) (cf. Sect. 2.1.2).

The attack scenarios are rated by security experts according to known
indicators. A predefined rating scheme is required for each indicator for a
consistent rating. The relative importance of each indicator should be deter-
mined in advance. As it is difficult to achieve consensus among experts, it
is generally recommended to restrict rating schemes to rather coarse scales.
As mentioned before, it should only be as detailed as there is distinct data
available. The value vi of each indicator i can be determined on a scale from
1 to n, where 1 indicates a small likelihood that the attack is carried out
according to indicator i, and n indicates a high likelihood. For example, po-
tential damage or risk of attack is typically rated as low, medium, or high,
thus n = 3. The relative importance of each indicator results in an influence
factor fi ∈ R+ which has to be determined for each indicator. The influence
factor depends also on the type of attacker. Depending on his resources, capa-
bilities, motives, and his preparedness to take risks, the factor is increased or
decreased. For each attacker type taken into account a set of influence factors
has to be created. An overall likelihood for an attack could then be calculated
as L =

∑
i vi× fi where i is the index of the indicator [Förster 10]. An exam-

ple for this approach is the rating used in Failure Mode, Vulnerabilities and
Effects Analysis (FMVEA) (cf. Sect. 2.3.3)

64 4 The Analysis of Security-enhanced Component Fault Trees

A possibility to achieve a common rating between safety and security
events, other than probabilities, is to use the likelihood for both safety and
security events. The advantage of this approach is that values for all BEs
can be determined relatively easy, and comparisons of likelihood are easily
performed. The disadvantage is that the accuracy coming from rating safety
events with probabilities is lost.

To use the advantages of both, probabilities for safety events and likeli-
hood for security events, the next section will describe an approach using a
combination of both probability and likelihood.

4.1.3 Tuple Rating

In Sect. 4.1.1 it was established that rating BEs with probabilities is the
preferred way for safety events. Section 4.1.2 concluded that for security events
a rating with likelihoods is more feasible.

Hence in an SeCFT there can be both likelihoods and probabilities for
different events. When MCSs are determined in a tree that includes safety as
well as security events, there can be three types of MCSs as defined in the
following:

Definition 24 (Safety MCS) A safety Minimal Cut Set contains only safety
events (cf. Definition 22 on p. 47).

Definition 25 (Security MCS) A security Minimal Cut Set contains only
security events (cf. Definition 23 on p. 47).

Definition 26 (Mixed MCS) A mixed Minimal Cut Set contains safety
events as well as security events.

The TE will most certainly depend on safety as well as security events.
Therefore a combination of both probabilities and likelihood is needed to
calculate ratings for MCSs and TEs. Figure 4.2 shows an example SeCFT that
uses the attacker component from Fig. 4.1. For the TE controller value
too high there are MCSs of all three types in this example (see Table 4.1).

Table 4.1. MCSs according to type, whereas controller and attacker refer to the
appropriate components

MCS type Basic Events

safety MCS: {controller.e1}
security MCSs: {attacker.e1, attacker.e2, attacker.e5},

{attacker.e3, attacker.e4, attacker.e5}
mixed MCS: {attacker.e6, controller.e2}

4.2 Calculation Rules for SeCFTs 65

Controller
c.out: controller value too high (TE)
c.in1: sensor input too high
c.in2: change controller behavior
c.e1: wrong controller behavior
c.e2: no mitigation/error handling
 behavior present

Attacker
a.out1: tampering: change output value too high
a.out2: tampering: change controller data
a.e1: find LAN access port
a.e2: spoof MAC address
a.e3: find WLAN
a.e4: break WPA key
a.e5: get credentials
a.e6: tampering: change output value too high

out

&

& &

controller

attacker

controller

attacker

controller value too high

>=1&

>=1

in2

e1
in1

e2

>=1 e5

e4e3e2e1

out1 out2

e6

Fig. 4.2. An example SeCFT consisting of a controller component and an attacker
component

Events in a safety MCS are rated with probabilities. Therefore the overall
rating of a safety MCS is also a probability. Events in a security MCS are rated
with likelihoods. So the overall rating of a security MCS is also a likelihood. In
a mixed MCS however, there are both probabilities and likelihoods. As they
are not directly comparable, the rating of a mixed MCS is a tuple consisting of
the overall probability of all included safety events and the overall likelihood
of all included security events. For TEs in an SeCFT, the same holds as for
mixed MCSs.

The next section will introduce the extensions for the calculation rules
needed for an SeCFT to handle the tuples of probabilities and likelihoods.

4.2 Calculation Rules for SeCFTs

In this section the rules how to perform the calculations needed to rate MCSs
and TEs are described. The partitioning of this section is the same as the sec-
tion before. First, the rules for calculating probabilities are recollected. Then,
new rules to calculate likelihood results of AND and OR-gates are discussed,
and at last the rules are adapted to the tuples needed in SeCFTs.

66 4 The Analysis of Security-enhanced Component Fault Trees

4.2.1 Probabilities

For the calculation of the probabilities at least calculation rules for the gates
AND, OR, and NOT are required. Other gates such as XOR or voter gates can be
constructed from these three basic gates. Their calculation rules result from
them accordingly.

For recollection, the calculation rules for the gates AND, and OR will follow.
The outcome of an AND-gate with two independent input events A,B, or more
general n independent input events Xi, is calculated as follows:

P (A ∧B) = P (A)× P (B) (4.1)

P

(
n∧
i=1

Xi

)
=

n∏
i=1

P (Xi) , i, n ∈ N (4.2)

The outcome of an OR-gate with two independent input events A,B, or
more general n independent input events Xi, is calculated as follows:

P (A ∨B) = P (A) + P (B)− P (A)× P (B) (4.3)

P

(
n∨
i=1

Xi

)
= 1−

n∏
i=1

(1− P (Xi)) , i, n ∈ N (4.4)

As already discussed in Sect. 2.1.1 the NOT-gate will be avoided in SeCFT
models. The calculation of probabilities for the basic gates is discussed in
detail in Sect. 2.1.1. In Sect. 4.1 it was established that it is not feasible to
use probabilities for security events. On the other hand, if probabilities exist
for safety events, it is recommended to use them in an analysis.

Using these probabilities a partial quantitative analysis can be performed.
Resulting probabilities can be calculated for MCSs and TEs if events without
probability values are ignored. This means that only safety events are taken
into account for the calculation of a resulting probability. Thereby an upper
bound for the probability of MCSs is calculated.

4.2.2 Likelihood

Likelihood was defined as a qualitative probability for the occurrence of a
security event. Security events are in most cases attacks conducted by an
attacker. The following definitions for combinations are used:
Definition 27 (Likelihood AND-gate) All subordinate events have to occur
in order that the combined event occurs. Therefore, the event with the lowest
likelihood determines the likelihood L of the combined event.

L

(
n∧
i=1

Xi

)
=

n
min
i=1

[L(Xi)] , i, n ∈ N (4.5)

4.2 Calculation Rules for SeCFTs 67

Another calculation can be derived from the calculation for the probability
of an AND-gate (cf. Sect. 4.2.1). Values P (Xi) are from the interval [0, 1].
Equation 4.2 holds for those values. The values L(Xi) are from the integer
interval [1,m], where m ∈ N is the maximum likelihood value defined. Values
L(Xi) can be transformed from interval [1,m] to interval

[1
m ,

m
m

]
by dividing

by m. For m → ∞ follows 1
m → 0. In that new interval

[1
m , 1

]
, the same

functions that are used for the probability calculations can be used. For n
independent input events Xi, the likelihood of an AND-gate is calculated as
follows:

L′

(
n∧
i=1

Xi

)
=

n∏
i=1

L(Xi)
m

, i, n,m ∈ N (4.6)

The result of the AND-gate can only have the precision of the inputs. So,
it has to be transformed back to the integer interval [1,m]. This is done by
multiplying the result L′ with m and rounding up. Rounding up ensures that
no underestimation occurs.

L(x) = dm× L′(x)e ,m ∈ N (4.7)

In comparison to this calculation, the minimum function from Definition 27
is a worst-case estimation.

The OR-gate can be defined along the same lines. The first idea assumed
that if an attacker can choose which attack to perform, he would choose the
most profitable or easiest one, and ignore the other ones [Steiner 15]. Then the
outcome of an OR-gate can be calculated using the maximum likelihood value
of all inputs. But then one might underestimate the likelihood of an attack
because it does not take into account that several attackers might attack at
the same time.

Definition 28 (Likelihood OR-gate) At least one of the subordinate events
has to occur in order that the combined event occurs. An attacker will most
likely choose the event with the highest likelihood. But more than one attacker
may attack at the same time. This equation only takes into account single
attackers that always only choose one attack path:

L

(
n∨
i=1

Xi

)
= nmax

i=1
[L(Xi)] , i, n ∈ N (4.8)

If more than one attacker or attackers that try several paths at once should
be taken into account, the following calculation should be used. It is again
derived from the probability calculation, and it depends on the transformation
of the value interval described for the AND-gate.

L′

(
n∨
i=1

Xi

)
= 1−

n∏
i=1

(1− L(Xi)
m

) , i, n,m ∈ N (4.9)

68 4 The Analysis of Security-enhanced Component Fault Trees

And again the result L′(x) is transformed back to the value interval [1,m]
by equation 4.7. This might result in values greater than m which is the max-
imum value. This together with equation 4.9 results in

L(x) = min (dm× L′(x)e,m) ,m ∈ N (4.10)

for the likelihood outcome of an OR-gate.

The likelihood is propagated through the SeCFT like the probabilities: All
events without a likelihood are ignored. It is expected that every safety event
has a probability, and every security event has a likelihood assigned to them.
For the calculation of a resulting likelihood only the security events are taken
into account.

4.2.3 Tuple Rating

Following the calculation rules for probabilities (Sect. 4.2.1) and likelihood
(Sect. 4.2.2), rules how to handle the combination of both in terms of the
tuples described in Sect. 4.1.3 are defined. To do that all ratings of BEs are
interpreted as tuples (P,L), where P is a probability and L a likelihood. For
safety events esaf there is no likelihood leading to (Pesaf

,−) with an undefined
Lesaf

, and for security events esec there is no probability value leading to
(−, Lesec) with an undefined Pesec . Undefined values will be ignored in the
calculation of the rating.

This has to be explained further: The alternative to undefined values,
would be values that do not influence the order between the events. To achieve
this, an identity element or neutral element for all possible gate-operations
would be needed. This would mean in terms of probabilities, a value is needed
which is the identity element for addition and multiplication. Such a value
does not exist because the identity element for the addition is 0, and the
identity element for the multiplication is 1. The same problem arises for the
likelihood operations. These values exclude each other, so no value is selected,
and the undefined values are ignored during the calculation.

The tuple elements of a combination of events by logic gates are calculated
independent of each other according to the rules established in Sects. 4.2.1
and 4.2.2. Figure 4.3 shows the SeCFT from earlier with ratings for all BEs,
safety as well as security. Likelihood in this example is a three-level scale of
{low, medium, high} with corresponding values of {1,2,3}. Now, it will be
shown exemplarily how to calculate the tuple ratings of the MCSs and the
TE.

The ratings of the four MCSs result in the following:

4.2 Calculation Rules for SeCFTs 69

Controller
c.out: controller value too high (TE)
c.in1: sensor input too high
c.in2: change controller behavior
c.e1: wrong controller behavior
c.e2: no mitigation/error handling
 behavior present

Attacker
a.out1: tampering: change output value too high
a.out2: tampering: change controller data
a.e1: find LAN access port
a.e2: spoof MAC address
a.e3: find WLAN
a.e4: break WPA key
a.e5: get credentials
a.e6: tampering: change output value too high

out

&

& &

controller

attacker

controller

attacker

controller value too high

>=1&

>=1

in2

e1

in1

e2

>=1 e5

e4e3e2e1

out1 out2

e6

10-910-7

low(1)

low(1)

low(1)medium(2) high(3) high(3)

Fig. 4.3. The example from Fig. 4.2 with ratings for safety and security BEs

MCS1 : {c.e1}
P (MCS1) = P (c.e1) = 10−9

L1(MCS1) = undefined

}
(10−9,−)

MCS2 : {a.e1, a.e2, a.e5}
P (MCS2) = undefined
L(MCS2) = min(L(a.e1), L(a.e2), L(a.e5))

= min(2, 3, 1) = 1

 (−, 1)

MCS3 : {a.e3, a.e4, a.e5}
P (MCS3) = undefined
L(MCS3) = min(L(a.e3), L(a.e4), L(a.e5))

= min(3, 1, 1) = 1

 (−, 1)

MCS4 : {a.e6, c.e2}
P (MCS4) = P (c.e2) = 10−7

L(MCS4) = L(a.e6) = 1

}
(10−7, 1)

The rating of the TE can be calculated from a disjunction of all MCSs:

70 4 The Analysis of Security-enhanced Component Fault Trees

P (TE) = 1− (1− P (MCS1))(1− (MCS4))
= 10−9 + 10−7 − 10−16 = 1.009999999× 10−7

L′(TE) = 1− (1− L(MCS2)
3)(1− L(MCS3)

3)(1− L(MCS4)
3)

= 1− (1− 1
3)(1− 1

3)(1− 1
3) = 0.7

L(TE) = min (d3× 0.7e, 3) = 3

 (1.01× 10−7, 3)

The calculation of the TE using the maximum function would result in
an overall likelihood of 1 in comparison to 3 from the sum calculation. For
smaller scales such as the one used in the example the sum calculation of the
OR-gate tends to overestimate the likelihood. So it can be useful to additionally
calculate the maximum of the involved likelihood values to get a notion of the
possible range of likelihoods. The undefined values P (MCS2), P (MCS3) and
L(MCS1) are ignored in this calculation. How these tuple ratings are used in
a quantitative analysis of an SeCFT will be described in Sect. 4.4.

4.3 Qualitative Analysis of SeCFTs

The most important activity of a qualitative analysis in CFTs and SeCFTs
is the determination of MCSs. They describe minimal failure scenarios of the
system. MCSs also are used to derive a coarse classification of the criticality
of failure scenarios and BEs, and they allow to make statements about the
general endangerment of the analyzed system (see also Sect. 2.1.1). MCSs are
also an important starting point for a following quantitative analysis. Based
on the MCSs a basic importance analysis of BEs and MCSs can be conducted.

In Sect. 2.1.1 the qualitative analysis of traditional Fault Trees (FTs)
(or CFTs) is described. This section deals with necessary extensions of the
qualitative analysis to cope with additional security events in the SeCFT. The
first step is again the determination of the MCSs. The interpretation of an
MCS is the same as in CFTs: A minimal safety failure scenario (but possibly
depending also on security attacks). As mentioned earlier in Sect. 2.1.1 a CFT
(and therefore an SeCFT as well) can be transformed into a set of MCSs that
represents all failure scenarios which are relevant for the system. In general,
a tree contains multiple MCSs corresponding to different failure scenarios.

4.3.1 Minimal Cut Set Analysis

An analysis of MCSs of an SeCFT differs from the analysis of a traditional
CFT in a few points. The first step is to calculate the MCSs per TE. The sec-
ond step is to sort the MCSs according to their size. The result of a qualitative
analysis is an ordered list of MCSs.

As discussed in detail in Sects. 4.1 and 4.2, ratings of safety and security
events cannot be compared directly. Therefore it makes sense to sort the MCSs
according to safety events and security events. Then, one receives three lists
of MCSs:

4.3 Qualitative Analysis of SeCFTs 71

1. safety MCSs (cf. Definition 24)
2. security MCSs (cf. Definition 25)
3. mixed MCSs (cf. Definition 26)

Safety MCSs are analyzed as usual: A qualitative analysis starts with an
ordering according to the size of the MCS (Definition 11 in Sect. 2.1.1). The
smaller an MCS is, the more critically it should be analyzed. This is explained
by the fact that all events in an MCS have to occur, so that the TE occurs and
the system fails. The lesser events have to occur, the more the TE depends
on individual events. So events in smaller MCSs deserve more attention in an
analysis. An especially critical case is an MCS with only one event – a single
point of failure which itself can directly lead to the system failure.

Security MCSs are a more special case: In this case a system failure only
depends on external influences and does not depend on failures of internal
system components. But here also holds that smaller MCSs are more critical
than larger ones. Pure security MCSs are not more critical per se than pure
safety MCSs, but the uncertainty of the modeling of an attack is relatively
high. Depending on the threat scenario and the attacker type the likelihood
value changes over time. Necessary tools become better available and cheaper
over time which can make an attack more probable in the future. Also, the
attacker type, the attacker’s motivation and capabilities can and will change
over time – potentially to the disadvantage of the system. This is why pure
security MCSs should be avoided by adding suited countermeasures which
convert security MCSs to mixed MCSs.

Mixed MCSs on the other hand can be managed better than security
MCSs: For the occurrence of the TE all events of a mixed MCS have to
occur which means regular safety events have to occur. These occurrences of
safety events can be managed with the usual methods such as redundancy or
monitoring. The probability for a mixed MCS to cause the TE has an upper
bound: the probability of the contained safety events. This way the criticality
of security events can be mitigated by safety events with low probability. The
probability of statistically independent safety events is multiplied to obtain
the probability of the TE (cf. Sect. 4.2.1). That means, the more statistically
independent safety events an MCS contains, the lesser probable it is to cause
the TE. With this in mind, adding more events to an MCS increases the safety
of the system without knowing the exact probabilities.

Figure 4.4 shows the example SeCFT with highlighted MCSs. MCS1 is
a safety MCS, MCS2 and MCS3 are security MCSs, and MCS4 is a mixed
MCS (see Table 4.2).

To summarize the qualitative analysis of MCSs: There are three types of
MCSs which differ in the level of controllability of their BEs. Controllability
in this context means how much a failure scenario (MCS) depends on faults of
the system as opposed to external factors as for example attacks. In descending
order according to their controllability these are: safety MCSs, mixed MCSs
and security MCSs. Resulting from that, additionally to MCSs containing only

72 4 The Analysis of Security-enhanced Component Fault Trees

Table 4.2. MCSs according to type, whereas controller and attacker refer to the
appropriate components

MCS number Basic Events MCS type

MCS1 {controller.e1} safety MCS
MCS4 {attacker.e6, controller.e2} mixed MCS
MCS2 {attacker.e1, attacker.e2, attacker.e5}, security MCSs
MCS3 {attacker.e3, attacker.e4, attacker.e5}

one event (single points of failure) also plain security MCSs should be avoided
by adding more (safety) BEs. Also, the more MCSs exist in a given SeCFT,

out

e1

&

in1

e2

in2

e6

out1

&

e5

&

e1 e2

&

e3 e4

out2

MCS1

MCS2

MCS3

MCS4

controller

attacker

>= 1

>= 1

>= 1

Fig. 4.4. An SeCFT with highlighted MCSs from the example in Fig. 4.2

4.4 Quantitative Analysis of SeCFTs 73

the more opportunities for the TE exist which indicates a higher vulnerability
of the system with respect to this TE.

4.3.2 Importance of Basic Events

Another goal of an analysis is to determine the importance of BEs. The im-
portance shows how much of an impact a BE has on a TE. BEs that are
part of more than one MCS are more important than the ones that are only
part of one MCS. But the size of MCSs is also a factor. BEs in smaller MCSs
are more important than the ones in larger MCSs. More accurate importance
analysis is possible within a quantitative analysis. Referred to the example, if
the importance of BEs within MCSs of the same size is compared, this results
in the order of importance shown in Table 4.3.

Table 4.3. Qualitative importance of BEs

MCS size basic events (in descending order of importance)

1 c.e1
2 {c.e2, a.e6}
3 a.e5 > {a.e1, a.e2, a.e3, a.e4}

4.4 Quantitative Analysis of SeCFTs

A quantitative analysis is conducted if more accurate statements about the
system safety are necessary than the results from a qualitative analysis which
are mainly the determination and preliminary ordering of MCSs. Further anal-
ysis of the MCSs brings more insight into the contribution of single failure
scenarios (MCSs) to the vulnerability of the system. Systems have to fulfill
customer requirements or to comply with certain standards which may include
minimum sizes of MCSs or maximum values for system failure probabilities.
A quantitative analysis therefore has several goals [Vesely 81, IEC 61025 06]:

• to determine the rating of the TE under consideration to compare it to
the given requirements from standards or customers,

• to determine ratings of the individual MCSs to determine the MCS that
has the biggest contribution to the TE (the most probable failure scenario),

• and derived from the previous ones: to determine where countermeasures
would have the most effect.

A quantitative analysis of an SeCFT starts with a quantitative evaluation
of its MCSs. The first step here is to assign probabilities to safety events and
likelihoods to security events. During the assignment of likelihood values to

74 4 The Analysis of Security-enhanced Component Fault Trees

security events it should be kept in mind that those security events belonging
to the same MCS can influence each other.

After the determination of the MCSs there are two possibilities to order
them: According to size and type (see qualitative analysis in Sect. 4.3) or
according to type and ratings (probability and likelihood). An ordering sim-
ply according to the ratings is not possible for all MCSs in general because
of the incomparability of probabilities and likelihoods (see also Sect. 4.1).
For each MCS a tuple rating (P,L) is calculated according to the rules de-
scribed in Sect. 4.2.3. For probabilities this means the value for the MCS is
the product of all probabilities of the contained events. (Under the precondi-
tion that all events are independent which is usually given for safety events.)
For the likelihood of an MCS the minimum of all likelihoods of the included
events is determined. This approach was previously described in [Steiner 13a]
and [Steiner 15].

Each type of MCSs can be ordered by itself. To compare two Minimal Cut
Sets MCS1 and MCS2 with tuple ratings (P1, L1) and (P2, L2) Table 4.4 is
used. The table defines a partial order for MCSs.

Table 4.4. Conditions for an order of mixed MCSs according to two tuples (P1, L1)
and (P2, L2)

P1 < P2 P1 = P2 P1 > P2

L1 < L2 MCS1 < MCS2 MCS1 < MCS2 undefined
L1 = L2 MCS1 < MCS2 MCS1 = MCS2 MCS1 > MCS2

L1 > L2 undefined MCS1 > MCS2 MCS1 > MCS2

The two states named undefined have to be analyzed further. To order
two MCSs that fall into these states, the ordering has to be prioritized either
according to probability or to likelihood. The resulting ordered list of MCSs re-
flects the relative criticality of the represented failure scenarios. Higher ratings
here correspond to a higher criticality and vice versa. To find out if the system
complies with the given requirements, the list of MCSs is filtered according
to the requirements (e.g.: “show me all MCSs with size ≤ 2”, “P > 10−7” or
“L ≥ medium”). The results then are the failure scenarios that require coun-
termeasures. Table 4.5 shows the MCSs from the example ordered according
to probability and likelihood with the values for the tuple rating calculated
in Sect. 4.2.3.

As mentioned earlier, requirements can define boundary values for MCSs
in size or rating, but usually the main requirement is a boundary value for the
rating of the TEs: “The system shall not fail with a probability more than . . . ”
The TE probability can be calculated either as the sum of the probabilities of
all MCSs if only AND and OR-gates are used. This defines an upper boundary
for the probability P ′(TE) (see equation 4.11 and also Sect. 2.1.1).

4.4 Quantitative Analysis of SeCFTs 75

Table 4.5. MCSs from example 1 ordered according to probability and likelihood

MCS number tuple rating (P,L)

MCS4 (10−7, 1)
MCS1 (10−9,−)
MCS2 (−, 1)
MCS3 (−, 1)

P (TE) ≤ P ′(TE) =
n∑
i=1

P (MCSi) , i, n ∈ N, n number of MCSs (4.11)

The other variant is to calculate P (TE) using the Binary Decision Diagram
(BDD) algorithm described in Sect. 2.1.1 which returns the exact probability
value. To adapt the BDD algorithm to SeCFTs only the BEs with an assigned
probability value are considered for the calculation as already discussed in
Sect. 4.2.3.

The likelihood L(TE) of the TE is calculated from the likelihoods of all
MCSs as defined in equation 4.9 and 4.10 in Sect. 4.2.2:

L′

(
n∨
i=1

Xi

)
= 1−

n∏
i=1

(1− L(Xi)
m

) , i, n,m ∈ N

L(x) = min (dm× L′(x)e,m) ,m ∈ N

A simpler estimation of the TE likelihood can be obtained by just summing
the likelihood values of all MCSs.

Table 4.6 shows again the chosen values for probabilities and likelihood
in the example. Concerning the example, the rating of the TE results in the

Table 4.6. BEs together with their ratings from the example

Basic Event tuple rating (P,L)

c.e1 (10−9,−)
c.e2 (10−7,−)
a.e1 (−, 2)
a.e2 (−, 3)
a.e3 (−, 3)
a.e4 (−, 1)
a.e5 (−, 1)
a.e6 (−, 1)

following:

76 4 The Analysis of Security-enhanced Component Fault Trees

P ′(TE) = 10−9 + 10−7 = 1.01× 10−7

P (TE) = 1.009999999× 10−7

L(TE) = 3

For all BEs an importance value can be calculated corresponding to the
Fussell-Vesely (FV) importance. As with all the other calculations so far,
the importance will be calculated separate for probability and likelihood. To
recall, the FV importance of an event e is calculated as:

FVe =
∑me

i=1 P (MCSei
)∑m

j=1 P (MCSj)

WhereasMCSe are the MCSs that contain event e, me is the number thereof,
and m the number of all MCSs. A similar value can be calculated for the
likelihood:

FVLe =
∑me

i=1 L(MCSei
)∑m

j=1 L(MCSj)

Using these importance values for probabilities and likelihood, the events can
be identified that have the most impact on the rating of the TE. This knowl-
edge is used to decide where is the system countermeasures should be imple-
mented.

As to the nature of MCSs, their probabilities can be reduced in two ways:
either by reducing the probability of a single event (or more), or by adding
more events. The likelihood decreases if a new event with a lower likelihood
is added, or the minimum likelihood is decreased. Adding more events should
also decrease the criticality of an MCS, but does not directly affect the likeli-
hood value.

The decision for or against a countermeasure for a certain MCS can also
be based on partially available data. For example an MCS that includes at
least one extremely improbable event can be given a low priority even if not
all probabilities of BEs are known. As probabilities of independent BEs are
multiplied in order to calculate the MCS probability, the probability of the
event with the lowest probability in an MCS defines an upper bound for the
MCS probability.

P (MCSi) ≤ P (eij) ,∀eij ∈MCSi, i, j ∈ N (4.12)

If for the analysis of the security events indicators as attack cost or attacker
type are used, those can also be used to prioritize MCSs: Known attack costs
can be used as lower bounds of attacks, and systems can be designed to
withstand only some attacker types.

With the proposed extensions of established techniques qualitative analy-
ses of SeCFTs are possible taking into account safety as well as security causes
of system failures.

4.5 Summary: Analysis Process of SeCFTs 77

4.5 Summary: Analysis Process of SeCFTs

This section will summarize the complete analysis process to give an overview
of all required tasks. In Fig. 4.5 the analysis process is shown after the tree is
created.

sorted list of MCS

examine critical MCS

find countermeasures

minimal cut sets

qualitative analysisquantitative analysis

assign values to events
safety -> probabilities
security -> likelihood

&

≥1

1 2

3 4

&

≥1 i2

i1

a1

a1 a2

a_out1 a_out2

SECFT

Attacker

Fig. 4.5. The extended analysis process after the SeCFT is created

The analysis process can be divided into two parts. First, the MCSs are
determined which serve as a basis for a qualitative and a quantitative analysis.
In the qualitative analysis (right side of the figure) the MCSs are prioritized
according to type and size to find the most critical ones. For the quantitative
analysis (left side of the figure) values are assigned to all BEs, probabilities
to safety events and likelihoods to security events. From these values the re-
sulting ratings of the MCSs and the TEs are calculated. The ratings of the
MCSs and TEs now can be compared to the requirements. If the require-
ments are met, the analysis is finished here, and it can serve as evidence for
meeting the requirements. If not, a further analysis is done to find out where
and how the system has to be improved. Using the ratings, the MCSs can
be prioritized. The MCSs are sorted according to type and either size, prob-
ability or likelihood. Thereby the most critical MCSs (the ones that either
directly violate the requirements or contribute substantially to it) are iden-

78 4 The Analysis of Security-enhanced Component Fault Trees

tified. Against these most critical MCSs countermeasures have to be found.
After the implementation of those countermeasures the SeCFTs are extended
to incorporate them and a new analysis begins with the new SeCFTs to check
if the countermeasures have the desired effect.

5

Evaluation of the Approach

In the following chapter the analyses of the systems that were conducted
during the course of this work within different projects are presented. The
first on is an analysis of the robot ravon, followed by an adaptive cruise
control, a smart farming scenario, and an automatic infusion pump.

As the analyses of the examples were conducted during the development
of the method, they reflect the particular development stages (cf. Sect. 3.3.2).
The first analysis of ravon was modeled similar to a Fault Tree (FT). The
whole tree was modeled in one component, and the attacks were modeled
as additional Basic Events (BEs). The second example, the adaptive cruise
control, was modeled with separate components, but the attacks were still
additional BEs. The last two examples, the smart farming scenario and the
infusion pump, show the last iteration of the modeling process. The systems
were modeled with different components, vulnerabilities were inserted as input
ports, and the attacks were modeled in a separate attacker component.

The following section describes the workflow that was followed to conduct
the analyses of the systems using Security-enhanced Component Fault Trees
(SeCFTs).

5.1 Tool Support

The example systems were modeled using the CFT modeling tool ESSaRel
in version 5.0.2 [ESSaRel 09]. Safety Basic Events are rated with a probabil-
ity just like they would be in a Component Fault Tree (CFT) analysis. The
distinction between safety BEs and security BEs is done via the description
field of the BEs. For that purpose security BEs are marked in the description
with the tag [sec]. Security BEs are rated with a likelihood value. This like-
lihood is also put into the description field, from where it can be read later in
the analysis. From the viewpoint of ESSaRel the SeCFTs do not differ from
standard CFTs, except that not all BEs have a probability value assigned to
them. Thereby, it is possible to use ESSaRel to calculate the Minimal Cut

80 5 Evaluation of the Approach

Sets (MCSs) for the desired Top Event. The resulting MCSs can be exported
into an XML file which can be used for further analysis. Based on the ex-
ported list of MCSs, the first analyses were conducted manually using Excel
respective LibreOffice Calc.

To simplify this second step, a small prototype tool was developed that
uses the exported list of MCSs and the ESSaRel model to calculate the safety
and security ratings for MCSs and Top Events. The tool requires the XML
file containing the MCSs and the folder containing the ESSaRel model. This
data is imported and all ratings are calculated. The tool returns a sorted list
of the MCSs according to either size and type, safety probabilities, or secu-
rity likelihoods. With that the most critical MCSs depending on the system
requirements can be determined. Figure 5.1 shows a screenshot of the tool
prototype.

Fig. 5.1. A screenshot of the prototype tool for the analysis of SeCFTs

As this tool is a prototype with only a minimum of functionality, there are
some restrictions in the usage. The tool cannot handle more than one proxy of
a component, and the name of a proxy has to be the same as the name of the
instantiated component. This is because ESSaRel does save the BEs included
in an MCS using the proxy name, but the model of the component is saved
under the component name. To merge the MCS information with the ratings
of the BEs, the tool has to map proxy names to component names. The value
of the description field also has to be in very strict bounds for the security

5.2 Analysis Example: RAVON 81

BEs. The tag [sec] has to be the first string value in the description, followed
by either a space character or a comma and the rating of the security BE.
This rating in the current version can be one of [low], [medium], or [high]
in exactly that notation. Other values can also the used in theory, but they
would have to be implemented in the code of the tool.

5.2 Analysis Example: RAVON

The first analysis using the approach of this thesis was done during the BMBF1

funded project ViERforES2. In the next sections first the demonstrator ravon
is described, and afterwards the analysis and the results are presented.

5.2.1 Description RAVON

ravon is a mobile robot developed by the Robotics Research Lab at the
University of Kaiserslautern3 to research off-road navigation of autonomous
vehicles [Armbrust 09, Schäfer 11]. Using different sensor systems it is able to
perceive its environment. Figure 5.2 shows the robot outside the university
during a presentation. The technical data is summarized in Table 5.1.

Table 5.1. ravon technical data

Length 2.35 m
Width 1.4 m
Height 1.8 m (highest point: GPS antenna)
Weight 750 kg
Power Supply 8 sealed lead batteries (12 V, 55 A h each)
Operation Time about 4 h
Drive four wheel drive with four independent electric motors
Steering front and rear wheel steering via linear motors
Velocity 10 km h−1 max.
Controller 2 Motorola 56F803 DSPs
Computer 4 Industrial PCs
Floor Clearance 0.3 m
Wheel Diameter 0.75 m
Max. Slope 100 % (at 7 km h−1)

Laser scanners in the front and the back measure distance and detect ob-
stacles. Two horizontally mounted 2D laser scanners are used for short range

1 Bundesministerium für Bildung und Forschung (Federal Ministry of Education
and Research)

2 Virtuelle und Erweiterte Realität für höchste Sicherheit und Zuverlässigkeit
Eingebetteter Systeme (ViERforES), http://www.vivera.org/ViERforES/ (ac-
cessed 2015-11-09)

3 http://agrosy.informatik.uni-kl.de (accessed 2015-11-09)

http://www.vivera.org/ViERforES/
http://agrosy.informatik.uni-kl.de

82 5 Evaluation of the Approach

Fig. 5.2. The ravon robot 2009 at the University of Kaiserslautern

obstacle detection. In the front of the robot two stereo camera systems are
installed for mid-range obstacle detection (up to 20 m) and for far-range ter-
rain classification (up to 40 m). In addition to the cameras a 3D laser scanner
is used for better detection of obstacles in distances up to 15 m. Two spring-
mounted bumpers in the front and the back are used for tactile detection of
dense vegetation and act as emergency stop triggers.

The different sensor inputs are merged and evaluated in the control soft-
ware. The control software is realized using the behavior-based control ar-
chitecture iB2C [Proetzsch 10]. Depending on the evaluated sensor data it is
decided if an obstacle is lying in the planned way of the robot, and if so,
evasion behaviors make sure that the obstacle is not hit.

ravon is driven by four battery-powered electric wheel hub motors bring-
ing it to a maximum velocity of 10 km h−1. Its total mass of 750 kg brings
up a potential risk of serious damage to itself and the environment including
injuries in collisions with humans. It is therefore imperative that the system
is analyzed for residual risks and to check if the built-in safeguards are suffi-
cient. Unfavorable environmental conditions could lead to a non-detection of
an obstacle by one or more sensors. As a last resort, if the sensors did not
detect an obstacle, a safety chain has been implemented. It stops the robot
immediately in case the bumper sensors are triggered. Figure 5.3 shows the
structure of the safety chain implemented in ravon.

5.2 Analysis Example: RAVON 83

DSP5 DSP4MC(F)

2

1

MC(R)

Bumper
RelayEMS

Wireless
EMS

Fig. 5.3. The ravon safety chain

The four motors are controlled by one motor controller each. The con-
trollers for the front wheels are in the same box (MC(F)), as are the ones for
the rear wheels (MC(R)). The motor controllers monitor the safety chain (con-
nection 1 in Fig. 5.3). In case of a fault of the controllers, they also can inter-
rupt the safety chain themselves. In case of an interruption of the safety chain
the wheel motors are decelerated, and the holding brake blocks the wheels
to prevent inadvertent movement. Two Digital Signal Processors (DSPs) are
responsible for the steering. Additionally they monitor the safety chain and
stop the steering motors in case of an interruption. In the front and the back
of the robot the aforementioned bumpers are installed. On the outside of each
bumper a safety edge is mounted that can interrupt the safety chain if too
much pressure is applied to it. Both safety edges are connected to a bumper
relay (connection 2 in Fig. 5.3) that switches the safety chain.

A human operator that is present during test drives also has the possibility
to trigger an emergency stop via remote control (wireless EMS) or a button on
the robot itself (EMS) which also interrupts the safety chain. Any interruption
of the safety chain immediately stops all motors and should therefore prevent
harm to the system or its environment.

5.2.2 Analysis

Because the safety chain implemented in ravon is the last resort if the other
sensors did not detect an obstacle, it is one of the most critical systems and
was therefore chosen as an analysis example. The analysis of this example
is the first application of the method described in Sect. 3.3.2. The system
was modeled in one single component, comparable to a Fault Tree. Possible
attacks were modeled as Basic Events. They were not refined further as this
was not necessary for the modeled level of abstraction. Potential refinements
would have been directly in that tree. In Fig. 5.4 the extended CFT is shown
as an overview. The modeled failure scenario is that ravon cannot come to
a complete stop in front of an obstacle and therefore causes damage to the
obstacle or to ravon itself. In the figure safety events are unfilled circles,
whereas attacks are depicted as filled circles that are additionally marked

84 5 Evaluation of the Approach

with [sec] in the description. The tree can be divided into two parts: On the
left side below the topmost OR-gate (safety chain does not decelerate Ravon
sufficiently) the causes emanating from the motor controllers (MC initiate no
emergency stop) are analyzed. Three classes of faults at the motor controllers
are considered: faults in the control software of the controllers, wrong parame-
ters for the brake maneuver, or not initiating the emergency stop because the
corresponding signal is not interpreted correctly. For all three of those there
is a possibility of random faults or targeted attacks as the cause.

The right subtree refers to the interruption (or lack thereof) of the safety
chain (safety chain is not interrupted). The safety chain is divided in three
parts that all have to fail together for the system to fail. An emergency stop
button (EMS does not interrupt SC), a wireless emergency stop button (wire-
less EMS does not interrupt SC), and the bumper relay which is triggered by
the safety edges on the bumpers (bumper relay does not interrupt SC) all have
to fail so that the safety chain is not interrupted in case of an emergency. The
emergency stop button could be not reachable, or the button could not be
pressed due to mechanical or electrical reasons that could be caused by ran-
dom faults or sabotage. The wireless emergency stop button is modeled as
sender and receiver that could be sabotaged or fail randomly. Additionally,
an attacker could jam the radio signal to hinder an emergency stop trigger.
The bumper relay does not switch if it has a defect, it is bypassed, or the
safety edges do not send the switching signal.

Plausible orders of magnitude were chosen for the probabilities of safety
events. For emergency stop buttons there exist device specifications that state
a failure probability of 1×10−7. Based on that the values for the other system
components, for which no values were available, were estimated. The security
ratings in this model were chosen from a scale of three steps {low, medium,
high}. The difficulty of all considered attacks depends directly on the level of
access to the system. So the rating depends on the level of access an attacker
has to the system. Direct physical access leads to a low likelihood because
this is generally the most difficult to achieve. Access to the wireless sender of
the wireless emergency stop button is rated with medium, and jamming the
radio signal is rated with high, because this attack can be conducted without
direct access to the system from a distance. There are 21 Basic Events (BEs),
11 thereof are safety BEs and 10 security BEs. The ratings of all considered
BEs are listed in Table 5.2.

5.2.3 Results

During the qualitative analysis of the SeCFT of the safety chain of ravon
126 Minimal Cut Sets (MCSs) were found. Table A.1 in Appendix A.1 shows
all found MCSs in the order in which they were calculated by ESSaRel. The 6
MCSs shown in Table 5.3 have a size of 1 and are ordered according to their
type. They are single points of failure in this model and should be analyzed
further. The remaining 120 MCSs have a size of 3.

5.2 Analysis Example: RAVON 85

br
ak

e
pa

ra
m

et
er

s
ch

an
ge

d
[s

ec
][l

ow
]

M
C

so
ftw

ar
e

m
an

ip
ul

at
ed

[s
ec

][l
ow

]M
C

en
ab

lin
g

in
pu

t b
yp

as
se

d
[s

ec
][l

ow
]

M
C

so
ftw

ar
e

fa
ul

t

M
C

ha
s

sh
or

t c
irc

ui
t a

t e
na

bl
in

g
in

pu
t

w
ro

ng
 p

ar
am

et
er

s
fo

r b
ra

ke
s

>
=

 1
M

C
in

iti
at

e
no

 e
m

er
ge

nc
y

st
op

>
=

 1
sa

fe
ty

 c
ha

in
 d

oe
s

no
t d

ec
el

er
at

e
Ra

vo
n

su
ffi

ci
en

tly

Ra
vo

n
do

es
 n

ot
 s

to
p

in
 fr

on
t o

f t
he

 o
bs

ta
cl

e

>
=

 1

bu
m

pe
r r

el
ay

 d
oe

s
no

t i
nt

er
ru

pt
 S

C
>

=
 1

EM
S

do
es

 n
ot

 in
te

rr
up

t S
C

&
sa

fe
ty

 c
ha

in
 is

 n
ot

 in
te

rr
up

te
d >
=

 1w
ire

le
ss

 E
M

S
do

es
 n

ot
 in

te
rr

up
t S

C

sa
fe

ty
ed

ge
is

no
tp

re
ss

ed

w
EM

S
si

gn
al

 ja
m

m
ed

[s
ec

][h
ig

h]

w
EM

S
se

nd
er

 n
ot

 w
or

ki
ng

EM
S

bu
tt

on
no

tr
ea

ch
ab

le

bu
m

pe
r r

el
ay

 n
ot

 w
or

ki
ng

w
EM

S
re

ce
iv

er
no

tw
or

ki
ng

w
EM

S
re

ce
iv

er
 b

yp
as

se
d

[s
ec

][l
ow

]

sa
fe

ty
 e

dg
e

by
pa

ss
ed

[s
ec

][m
ed

iu
m

]

w
EM

S
se

nd
er

 b
at

te
ry

 e
m

pt
y

EM
S

bu
tt

on
 b

yp
as

se
d

[s
ec

][l
ow

]EM
S

bu
tt

on
no

tw
or

ki
ng

w
EM

S
se

nd
er

 s
ab

ot
ag

ed
[s

ec
][m

ed
iu

m
]

bu
m

pe
r r

el
ay

 b
yp

as
se

d
[s

ec
][l

ow
]

sa
fe

ty
 e

dg
e

no
t w

or
ki

ng

EM
S

bu
tt

on
 c

ov
er

ed
/s

tu
ck

[s
ec

][l
ow

]

Fig. 5.4. A CFT of the ravon safety chain

86 5 Evaluation of the Approach

Table 5.2. Ratings of the Basic Events in the ravon safety chain

Component.Basic event Rating Type

SafetyChain.brake parameters changed low security
SafetyChain.bumper relay bypassed low security
SafetyChain.bumper relay not working 1E-07 safety
SafetyChain.EMS button bypassed low security
SafetyChain.EMS button covered/stuck low security
SafetyChain.EMS button not reachable 1E-05 safety
SafetyChain.EMS button not working 1E-07 safety
SafetyChain.MC enabling input bypassed low security
SafetyChain.MC has short circuit at enabling input 1E-05 safety
SafetyChain.MC software fault 1E-07 safety
SafetyChain.MC software manipulated low security
SafetyChain.safety edge bypassed medium security
SafetyChain.safety edge is not pressed 1E-05 safety
SafetyChain.safety edge not working 1E-07 safety
SafetyChain.wEMS receiver bypassed low security
SafetyChain.wEMS receiver not working 1E-07 safety
SafetyChain.wEMS sender battery empty 1E-05 safety
SafetyChain.wEMS sender not working 1E-07 safety
SafetyChain.wEMS sender sabotaged medium security
SafetyChain.wEMS signal jammed high security
SafetyChain.wrong parameters for brakes 1E-05 safety

Table 5.3. MCSs of size 1 found during a qualitative analysis of the ravon safety
chain

MCS ID Basic Event Type

2 SafetyChain.brake parameters changed security
3 SafetyChain.MC software manipulated security
5 SafetyChain.MC enabling input bypassed security
1 SafetyChain.wrong parameters for brakes safety
4 SafetyChain.MC software fault safety
6 SafetyChain.MC has short circuit at enabling input safety

Overall, there are 21 safety MCSs and 90 mixed MCSs. 15 of all MCSs
are security MCSs that would not have been found without the consideration
of attacks as additional causes for failures. The security MCSs should receive
special attention, as their occurrence only depends on the actions of an at-
tacker. The later quantitative analysis showed that their likelihood is low. So
countermeasures only have to be taken if MCSs of size 1 have to be avoided
at all cost.

A following quantitative analysis yields a rating of the Top Event Ravon
does not stop in front of the obstacle of (1.8× 10−4, high). The relative large
number of security MCSs explains the high likelihood for the security part
of the SeCFT. The most critical MCSs according to the security likelihood
and the safety probability of this system were determined. Table 5.4 shows
the MCSs with likelihood values of high. As can be seen in the table, those
are mixed MCSs, and their safety probabilities are very low. Thus it appears

5.2 Analysis Example: RAVON 87

that these MCSs are not critical despite their high security likelihood, because
they contain safety events with a very low probability of occurrence.

Table 5.4. Most critical MCSs according to the security likelihood of the ravon
safety chain

MCS ID Type Rating Basic Events

55 mixed (1E-10, high) SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed
SafetyChain.wEMS signal jammed

104 mixed (1E-12, high) SafetyChain.EMS button not reachable
SafetyChain.wEMS signal jammed
SafetyChain.safety edge not working

103 mixed (1E-12, high) SafetyChain.EMS button not reachable
SafetyChain.wEMS signal jammed
SafetyChain.bumper relay not working

59 mixed (1E-12, high) SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed
SafetyChain.wEMS signal jammed

108 mixed (1E-14, high) SafetyChain.EMS button not working
SafetyChain.wEMS signal jammed
SafetyChain.safety edge not working

107 mixed (1E-14, high) SafetyChain.EMS button not working
SafetyChain.wEMS signal jammed
SafetyChain.bumper relay not working

Table 5.5 shows the most critical MCSs with a probability of at least
1× 10−5. Those failure scenarios would also have been found using standard
CFTs. As the table shows, the system has no failure scenarios with a higher
probability than 1× 10−5.

The analysis of the ravon safety chain using SeCFTs shows that there
are security MCSs in the system which may directly cause the system failure.
Those security MCSs would not have been found in a classical Fault Tree
Analysis (FTA) using CFTs. Some of these attack scenarios also consist of only
one security event. Depending on the requirements for the system, those have
to be avoided or at least argued that they are not critical. The quantitative
analysis rated those single event security MCSs with a low likelihood. So, as
long as the grounds on which they were rated do not change, they can be seen
as non-critical MCSs.

88 5 Evaluation of the Approach

Table 5.5. Most critical MCSs according to the safety probability of the ravon
safety chain

MCS ID Type Rating Basic Events

1 safety (1E-05, –) SafetyChain.wrong parameters for brakes
6 safety (1E-05, –) SafetyChain.MC has short circuit at enabling input
8 mixed (1E-05, medium) SafetyChain.wEMS sender sabotaged

SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed

57 mixed (1E-05, medium) SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed
SafetyChain.wEMS signal jammed

63 mixed (1E-05, low) SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed
SafetyChain.wEMS receiver bypassed

15 mixed (1E-05, low) SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed

75 mixed (1E-05, low) SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed
SafetyChain.wEMS receiver bypassed

83 mixed (1E-05, low) SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed
SafetyChain.wEMS signal jammed

79 mixed (1E-05, low) SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed
SafetyChain.wEMS signal jammed

29 mixed (1E-05, low) SafetyChain.wEMS sender battery empty
SafetyChain.EMS button bypassed
SafetyChain.bumper relay bypassed

21 mixed (1E-05, low) SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed

24 mixed (1E-05, low) SafetyChain.wEMS sender battery empty
SafetyChain.EMS button bypassed
SafetyChain.safety edge bypassed

19 mixed (1E-05, low) SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed

30 mixed (1E-05, low) SafetyChain.wEMS sender battery empty
SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed

26 mixed (1E-05, low) SafetyChain.wEMS sender battery empty
SafetyChain.EMS button covered/stuck
SafetyChain.safety edge bypassed

49 mixed (1E-05, low) SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed
SafetyChain.wEMS receiver bypassed

71 mixed (1E-05, low) SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed
SafetyChain.wEMS receiver bypassed

67 mixed (1E-05, low) SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed
SafetyChain.wEMS signal jammed

5.3 Analysis Example: Adaptive Cruise Control 89

5.3 Analysis Example: Adaptive Cruise Control

This second example describes the modeling of an Adaptive Cruise Control
(ACC) of a car. The ACC example was created during the BMBF4 funded
project ViERforES II5. It was used in [Steiner 13a] to illustrate the modeling
approach of this thesis.

5.3.1 Description Adaptive Cruise Control

In the considered system vehicles are to drive in a platoon with other vehicles.
A defined distance should be kept between the vehicles. A vehicle sends its
measured distances to both leading and following vehicles, and its velocity to
the following vehicle. Figure 5.5 shows a schematic of the system with two
cars.

VB VA

distance to VA

current velocity

distance to VB

wheel speed wheel speed

distance

Fig. 5.5. The ACC example system

The used system architecture is shown in Fig. 5.6. Components not used in
the analysis scenario are painted in gray. It is based on the system described
in [Spang 10]. Four wheel speed sensors provide the own current speed of the
vehicle to the speedometer. The distance to the other vehicle is provided by
front and rear distance sensors. Each vehicle receives the measured velocity
and distance values from the leading vehicle by an antenna component. Dis-
tance values and foreign velocities are used by the communication system
which provides them to the control logic unit. From the distance and the
velocity the new target velocity is calculated by the ACC component which
then increases or decreases the vehicle speed. The received distance and the
measured one are fused in the communication system. The received velocity
is used as is.

4 Bundesministerium für Bildung und Forschung (Federal Ministry of Education
and Research)

5 Virtuelle und Erweiterte Realität für höchste Sicherheit und Zuverlässigkeit
Eingebetteter Systeme – Zweite Phase (ViERforES II), http://www.vivera.org/
ViERforES/ (accessed 2015-11-09)

http://www.vivera.org/ViERforES/
http://www.vivera.org/ViERforES/

90 5 Evaluation of the Approach

sensors vehicle control

wheel speed

front right

front left

rear left

rear right

distance

rear

front

antenna
receiver

rear

front
sp

e
e
d
o
m

e
te

r
co

m
m

u
n

ica
tio

n
 sy

ste
m

co
n
tro

l lo
g
ic u

n
it

actuators

antenna
transmitter

rear

front

vehicle
speed

throttle

brake

interface

brake

acceleration

acc

distance to VA

distance to VB

dist to VA

vel to VA

dist to VB

current velocity

d
ist to

 V
A

v
e
l to

 V
A

Fig. 5.6. The modeled architecture of the ACC

5.3.2 Analysis

The analyzed scenario is: There are two vehicles in a platoon, a leading vehicle
VA and a following vehicle VB . Due to a failure in the ACC system VB is too
fast and crashes against VA.

The components of this example system were modeled as separate CFTs.
Attacks were added as additional Basic Events (BEs) in the respective CFTs.
Comparable to the previous example, the attacks were not refined further
than one BE. This modeling example illustrates an intermediate stage of the
development of SeCFTs in between the modeling as FTs as in the first example
in Sect. 5.2, and the final SeCFTs as in the following examples in Sects. 5.4
and 5.5.

In Fig. 5.7 one can see the high level overview of the CFT model of the
ACC. An enlarged version including all subtrees can be found in Appendix A.2
in Figs. A.1 to A.11. The CFTs for the ACC system are built along the
system components and their composition. Accordingly, there is one CFT
per component and different nesting levels. In the highest level CFT shown
in Fig. 5.7 directly below the Top Event crash with VA is the brake CFT,
followed by the vehicle CFT in which all control tasks are handled, and at
the bottom there are the sensor CFTs. The vehicle CFT contains the CFTs

5.3 Analysis Example: Adaptive Cruise Control 91

for speedometer, the actual ACC, and the communication system. Thereby
the CFTs are built according to the data flow from sensors to actuators using
an overall number of 10 components, whereas the wheel speed sensor CFT is
instantiated four times. Possible attacks on the vehicle sensors and the wireless
communication were considered as well as the more theoretical attacks to
manipulate vehicle components directly.

crash_with_VA

Brake_Actor Brake_Actor

Vehicle Vehicle

Front_Antenna

Front_Antenna

Front_Distance_Sensor

Front_Distance_Sensor

FL_Wheelspeed_Sensor

FL_Wheelspeed_Sensor

FR_Wheelspeed_Sensor

FR_Wheelspeed_Sensor

RR_Wheelspeed_Sensor

RR_Wheelspeed_Sensor

RL_Wheelspeed_Sensor

RL_Wheelspeed_Sensor

Fig. 5.7. A high level CFT of the ACC example system

The values for the safety events for the quantitative analysis are taken
from [Spang 10]. Security events were rated using an estimation for difficulty
of access to the system and difficulty of conducting the attack (high difficulty
results in a low rating). The final rating is the average of both values. There
are 39 Basic Events (BEs) in all CFTs, thereof 13 safety BEs and 26 security
BEs. The ratings of all considered BEs are listed in Table 5.6.

5.3.3 Results

In a qualitative analysis of the SeCFT for the Top Event crash with VA 124
separate MCSs were found. Table A.2 in Appendix A.2 shows all found MCSs
in the order in which they were calculated by ESSaRel. In Table 5.7 the 14
MCSs of size of 1 are shown. They are single points of failure in this model
and should be analyzed further. The remaining 110 MCSs have a size of 2.

Overall, there are 28 safety MCSs and 54 mixed MCSs. 42 of all MCSs
are security MCSs that would not have been found without the consideration
of attacks as additional causes for failures. The security MCSs, especially as
there are a lot of them in this system, should receive special attention, as their
occurrence only depends on the actions of an attacker.

A following quantitative analysis yields a rating for the Top Event crash
with VA of (0.05, high). The system has a very high failure probability, so
further analysis is necessary to find the most critical MCSs to find coun-
termeasures to minimize the failure probability. The relative large number of

92 5 Evaluation of the Approach

Table 5.6. Ratings of the Basic Events in the ACC system

Component.Basic event Rating Type

ACC.tampering deceleration value too low low security
Brake Actor.Brake reacts not as expected 1E-05 safety
Brake Actor.spoofing a too low value low security
Brake Interface.tampering brake disabled/deceleration value too low low security
Brake Interface.tampering distance VA too high low security
Brake Interface.tampering own velocity too low low security
Brake Interface.tampering velocity VA too high low security
Communication System.tampering distance value too high low security
Communication System.tampering too high velocity value low security
Control Logic Unit.tampering distance value too high low security
Control Logic Unit.tampering output brake disabled low security
Control Logic Unit.tampering own velocity too low low security
Control Logic Unit.tampering velocity VA value too high low security
FL Wheelspeed Sensor.denial of service low security
FL Wheelspeed Sensor.Noise in Sensor Magnet Field 1E-05 safety
FL Wheelspeed Sensor.Sensor malfunction 1E-05 safety
FL Wheelspeed Sensor.Spoofing sensor values low security
FR Wheelspeed Sensor.denial of service low security
FR Wheelspeed Sensor.Noise in Sensor Magnet Field 1E-05 safety
FR Wheelspeed Sensor.Sensor malfunction 1E-05 safety
FR Wheelspeed Sensor.Spoofing sensor values low security
Front Antenna.Received distance to VA is too high 0.017 safety
Front Antenna.Received velocity of VA too high 0.015 safety
Front Antenna.Spoofing of a distance signal medium security
Front Antenna.Spoofing velocity too high medium security
Front Antenna.Tampering Distance Signal to a too high value high security
Front Antenna.Tampering Velocity too high value high security
Front Distance Sensor.Assumed sonic velocity too high 2E-05 safety
Front Distance Sensor.denial of service high security
Front Distance Sensor.Echo time too high 0.001 safety
Front Distance Sensor.Spoofing sensor values medium security
RL Wheelspeed Sensor.denial of service low security
RL Wheelspeed Sensor.Noise in Sensor Magnet Field 1E-05 safety
RL Wheelspeed Sensor.Sensor malfunction 1E-05 safety
RL Wheelspeed Sensor.Spoofing sensor values low security
RR Wheelspeed Sensor.denial of service low security
RR Wheelspeed Sensor.Noise in Sensor Magnet Field 1E-05 safety
RR Wheelspeed Sensor.Sensor malfunction 1E-05 safety
RR Wheelspeed Sensor.Spoofing sensor values low security
Speedometer.tampering velocity too low value low security

security MCSs explains the high likelihood for the security part of the SeCFT.
The most critical MCSs according to the security likelihood and the safety
probability of this system were determined. Table 5.8 shows the MCSs with
likelihood values of high. MCS114 (a single event MCS) and MCS6 are se-
curity MCSs that are rated with a high likelihood of occurrence. MCS120
and MCS8 also have a high safety probability. Therefore they are critical
from both security and safety points of view. Countermeasures against these
failure scenarios have to be found. These should introduce new safety Basic
Events into MCS114 and MCS6 to transform them to mixed MCSs that are
not only depending on the actions of an attacker, and reduce the probabilities
of all MCSs to an acceptable level.

Table 5.9 shows the MCSs with a probability of at greater than 1× 10−5.
There are additional 49 MCS with a probability of 1× 10−5 which are shown

5.3 Analysis Example: Adaptive Cruise Control 93

Table 5.7. MCSs of size 1 found during a qualitative analysis of the ACC

MCS ID Type Basic Event

3 security Brake Interface.tampering brake disabled/deceleration value too low
4 security Control Logic Unit.tampering output brake disabled
105 security Brake Actor.spoofing a too low value
107 security ACC.tampering deceleration value too low
108 security Brake Interface.tampering distance VA too high
109 security Brake Interface.tampering own velocity too low
110 security Brake Interface.tampering velocity VA too high
111 security Speedometer.tampering velocity too low value
112 security Communication System.tampering distance value too high
113 security Communication System.tampering too high velocity value
114 security Front Antenna.Tampering Velocity too high value
115 security Front Antenna.Spoofing velocity too high
106 safety Brake Actor.Brake reacts not as expected
116 safety Front Antenna.Received velocity of VA too high

Table 5.8. Most critical MCSs according to the security likelihood of the ACC

MCS ID Type Rating Basic Events

114 security (– , high) Front Antenna.Tampering Velocity too high value
6 security (– , high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.denial of service
120 mixed (0.017, high) Front Antenna.Received distance to VA is too high

Front Distance Sensor.denial of service
8 mixed (0.001, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Echo time too high
7 mixed (2E-05, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Assumed sonic velocity too high

in Appendix A.2 in Table A.3. These MCSs would also have been found in a
classical FTA using CFTs. Depending on the requirements for the system the
probabilities of those MCSs should be lowered to an acceptable level. They
should be dealt with accordingly.

Table 5.9. Most critical MCSs according to the safety probability of the ACC

MCS Type Rating Basic Events

120 mixed (0.017, high) Front Antenna.Received distance to VA is too high
Front Distance Sensor.denial of service

119 mixed (0.017, medium) Front Antenna.Received distance to VA is too high
Front Distance Sensor.Spoofing sensor values

116 safety (0.015, –) Front Antenna.Received velocity of VA too high
8 mixed (0.001, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Echo time too high
122 mixed (0.001, medium) Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Echo time too high
7 mixed (2E-05, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Assumed sonic velocity too high
121 mixed (2E-05, medium) Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Assumed sonic velocity too high
124 safety (1.7E-05, –) Front Antenna.Received distance to VA is too high

Front Distance Sensor.Echo time too high

94 5 Evaluation of the Approach

The analysis of the Adaptive Cruise Control system using SeCFTs shows
that there are security MCSs in the system which may directly cause the sys-
tem failure. The qualitative analysis shows that the system contains attack
scenarios that are single points of failure. The followed quantitative analysis
even shows that those attack scenarios are very likely to happen. The detailed
results show that the velocity value coming from the front antenna is critical
because it can be tampered with easily, and it can be measured wrong with a
high probability. It is even a single point of failure and can lead to a crash of
two vehicles. The other value in the front antenna component, the distance to
the other car, is not as critical as the velocity because it is measured addition-
ally by the own car. But it is shown that both values can be manipulated by
an attacker, and there are no countermeasures in the shown system design.

5.4 Analysis Example: Smart Farming 95

5.4 Analysis Example: Smart Farming

The third application example of the approach was an analysis of a smart
farming system. It was also created during the course of the project ViERforES
II6, same as the previous example. In [Steiner 13b], a technical report for the
project, it was used to test the whole approach from modeling to analysis.

5.4.1 Description: Smart Farming

The system under study is a living lab called smart farming from the Fraun-
hofer IESE7. It is used to show how the work with agricultural machines can
be automated and linked to sensors and remote services. In the system there
are different vehicles (Harvester, Mower, and Tractor), sensors (cameras, GPS,
and weather sensors), implements for the tractor, and mobile devices for re-
mote control and planning. In Fig. 5.8 the components of the smart farming
ecosystem are shown.

Ecosystem

Applications

+ Farm Management System

Users / Stakeholders

+ Farmer
+ Legal Authority
+ Obstacle
+ Operator
+ Person
+ Standardization Body

Platforms / Infrastructures

+ Context Broker
+ FloRLP
+ IND2UCE Android
+ Policy Management Point
+ Weather Data

Vehicles

+ Harvester
+ Husky Robot
+ Mower
+ Virtual Tractor

Mobile

+ Growers Notebook
+ Harvesting
+ Remote Control

Implements

+ Hayrake

+ Camera Tracking
+ GPS Tracking
+ Weather Sensors

Sensors

Fig. 5.8. An overview of the smart farming ecosystem

From the safety point of view the tractor and its remote control are es-
pecially interesting, because tractors are heavy machines moving around that

6 Virtuelle und Erweiterte Realität für höchste Sicherheit und Zuverlässigkeit
Eingebetteter Systeme – Zweite Phase (ViERforES II), http://www.vivera.org/
ViERforES/ (accessed 2015-11-09)

7 http://www.iese.fraunhofer.de/de/presse/press_archive/press_2013/PM_
2013_06_050313_cebit.html (accessed 2015-11-09)

http://www.vivera.org/ViERforES/
http://www.vivera.org/ViERforES/
http://www.iese.fraunhofer.de/de/presse/press_archive/press_2013/PM_2013_06_050313_cebit.html
http://www.iese.fraunhofer.de/de/presse/press_archive/press_2013/PM_2013_06_050313_cebit.html

96 5 Evaluation of the Approach

may harm other machines or people. In the smart farming scenario the trac-
tor drives a predefined trajectory over the field which avoids known stationary
obstacles and the field’s boundaries. Using the remote control it can be driven
manually. The combination of automated tractor and remote control is ana-
lyzed using the SeCFT approach of this thesis.

First, the considered system components are described. Figure 5.9 shows
an overview of the system components of the tractor and their interconnec-
tions. The hardware components of the sensors and actuators are not present
in the model, the model ends at the respective controllers. There are four
groups of components: sensors, logic components, actuators, and buses. The
ones that are not used for the analysis are also mentioned for a complete
overview, but they are set in brackets in the description and in gray in the
figure.

sensor
controller

logic
controller

actuator
controller

tractor bus

ISOBUS

pedal

steering wheel

wheel speed

remote control
driving

light switch

hitch

GPS

implement

break

steering

engine

transmission

light

hitch

implement

implement

task

virtual
terminal

tractor

direction

speed

Fig. 5.9. An overview of the smart farming system components

Sensors:

Steering Wheel Sensor Controller: The steering wheel sensor controller col-
lects the current rotation angle of the steering wheel and provides this infor-
mation for further processing.
Pedal Sensor Controller: The pedal sensor controller collects information
about the pedal position.

5.4 Analysis Example: Smart Farming 97

Wheel Speed Sensor Controller: The wheel speed sensor controller determines
the current turning speed of the tractor’s wheels.

Remote Control Driving Sensor Controller: The remote control driving sensor
controller receives and processes control commands for steering, pedal, light,
and hitch from a remote control system. It creates the corresponding sensor
controller messages for the command as if it was generated from the actual
sensor controller.

(GPS Sensor Controller): The GPS sensor controller determines the current
position of the tractor based on GPS data.

(Implement Sensor Controller): The implement sensor controller is the soft-
ware unit in the implement to monitor a physical sensor and send sensor data
messages via the bus.

(Light Switch Sensor Controller): The light switch sensor controller deter-
mines the current position of the tractor’s headlight and turn indication
switches.

(Hitch Switch Sensor Controller): The hitch switch sensor controller detects
the current position of the switch in the tractor to control the position of the
hitch.

Logic:

Speed Controller: The speed controller serves as the main computing software
unit to control the tractor’s current driving speed. It processes the gas and
break position data, computes required engine rotational speed and break
pressure, and sends according control commands to the actuators.

Direction Controller: The direction controller serves as the main computing
software unit to control the tractor’s current direction. It processes steering
wheel position data, computes the required wheel rotation angle, and creates
and sends steering commands to the steering actuator controller.

(Tractor Controller): The tractor controller serves as the central computing
unit for the tractor behavior. It takes sensor input signals and based on this
computes control commands that it sends to actuator controllers. Thereby it
also performs analyses to ensure correct and safe behavior of the tractor. Ad-
ditionally it serves as the interface between the tractor bus and the ISOBUS.

(Virtual Terminal): The virtual terminal is the software control unit for the
tractor’s main graphical user interface. It visualizes tractor and control oper-
ational data as well as interfaces for the user to control the tractor and the
implement. It also allows the user to create tasks.

98 5 Evaluation of the Approach

(Task Controller): The task controller executes predefined tasks created with
a farm management system or with the tractor display. It executes these
commands by triggering the single actions a task consists of, based on timing
or sensor data, such as the current position. To trigger the single actions, it
creates control messages that are sent to the implement or tractor controller.
It also logs farming activities and transfers the data to the farm management
for later analysis.

(Implement Controller): The implement controller is the central computing
software unit in the implement. It processes sensor data, computes an im-
plement behavior, and creates and sends according control commands to the
corresponding actuators.

Actuators:

Steering Actuator Controller: The steering actuator controller changes the
angle of the tractors front wheels according to the direction controller’s com-
mand.

Break Actuator Controller: The break actuator controller adjusts the break
pressure according to the commands given by the speed controller.

Engine Actuator Controller: The engine actuator controller adjusts the en-
gine’s rotational speed.

(Transmission Actuator Controller): The transmission actuator controller is
responsible to set the tractor’s gear.

(Light Actuator Controller): The light actuator controller turns the tractor’s
headlights and turn indicator lights on or off.

(Hitch Actuator Controller): The hitch actuator controller is responsible for
raising or lowering the hitch, and to physically connect the hitch to the tractor.

(Implement Actuator Controller): The implement actuator controller is re-
sponsible for moving the implement depending on the type of implement.

Buses:

Tractor Bus: The tractor bus is the channel for the communication between
the controller components within the tractor.

(ISOBUS): The ISOBUS is the channel for communication between the trac-
tor and the implement.

5.4 Analysis Example: Smart Farming 99

5.4.2 Analysis

The analyzed failure scenario in the smart farming example is that a tractor
is hitting an obstacle in its path due to non-responding steering or too high
speed. The tractor is either driven by someone on the driver’s seat or via a
remote control.

As stated before, this analysis was the first one that completely follows
the modeling approach described in Sect. 3.4. For each system component
a separate CFT was modeled. Potential vulnerabilities were considered as
additional input ports of the respective components. The actual attacks are
modeled in a separate attacker component.

Figure 5.10 shows the highest level SeCFT of the modeled system. An
enlarged version including all subtrees can be found in Appendix A.3 in
Figs. A.12 to A.26. The SeCFT shown in Fig. 5.10 is built in layers. For
the tractor to crash into an obstacle, it has either to drive too fast, so that it
cannot brake in time, or to steer in the wrong direction, so that the obstacle
is hit. The SeCFT is modeled along the signal flow coming from the controls
via the tractor bus to the actuators. Only the control elements are modeled
as possible points of attack. In theory all other components could also be
considered as points of attack. But such attacks would require fundamental
changes in the physical systems which means great effort on one hand, and a
high chance to be detected on the other. Therefore, they were not considered
in this model. Besides, the analysis was about showing the additional risks
of a connected vehicle with a possibility for remote control. The attacker was
modeled as one that wants to harm the owner of the tractor with a minimal
risk of detection. In total, the model consists of 13 system components and
one attacker component.

The attacker component was kept simple in this example. How the attacks
could be conducted in detail is only modeled as a next step if the analysis
results in attacks that highly influence the safety of the system. For that step
a security expert would be necessary. The attacker component modeled for
this example is shown in Fig. 5.11.

Table 5.10 shows all 23 Basic Events (BEs) in the scenario. 17 safety BEs
and 6 security BEs were identified. The ratings for safety BEs are probabilities
of occurrence, for security BEs it is a three-valued scale high – medium – low
representing a likelihood of occurrence. The probability of failure of the engine
and break controllers were assumed to be in the range of Safety Integrity Level
(SIL) 4. The other values were estimated accordingly. The likelihood values of
the security BEs were estimated depending on the difficulty of accessing the
necessary system components.

5.4.3 Results

In a qualitative analysis of the SeCFT for the Top Event Tractor deviates from
its planned trajectory and damages an object or hurts a person 20 Minimal Cut

100 5 Evaluation of the Approach

Tractor deviates from its planned trajectory and damages an object or hurts a person

>= 1 Tractor drives too fast or steers in the wrong direction

BreakActuatorController

BreakActuatorController

EngineActuatorController

EngineActuatorController

SteeringActuatorController

SteeringActuatorController

SpeedControllerSpeedController DirectionControllerDirectionController

TractorBus
TractorBus

GasPedalSensorController

GasPedalSensorController

BreakPedalSensorController

BreakPedalSensorController

SteeringWheelSensorController

SteeringWheelSensorController

GasPedal

GasPedal

BreakPedal

BreakPedal

RemoteControl

RemoteControl

SteeringWheel

SteeringWheel

Attacker

Attacker

Fig. 5.10. A high level SeCFT of the smart farming example system

Sets (MCSs) were found. Table A.4 in Appendix A.3 shows all found MCSs in
the order in which they were calculated by ESSaRel. 13 MCSs contained only
one BE, 4 contained two BEs and 3 contained three BEs. The MCSs of size 1
are shown in Table 5.11. Those single points of failure are especially critical
and should be avoided by altering the system to add countermeasures which
result in more BEs in those MCSs.

The classification according to safety and security events results in 16
safety MCSs, 1 security MCS, and 3 mixed MCSs. The found security MCS
describes a failure scenario that would not have been found without the con-
sideration of attacks as additional causes for failures.

5.4 Analysis Example: Smart Farming 101

Attacker sets low break value

[sec] Attacker sets wrong steering angle

[sec]

Attacker sets high gas value

[sec]

Hardware manipulation

[sec]

&
&

&

&

Attacker hijacks remote control
[sec] [medium]

Attacker sets low break value
[sec] [high] Attacker sets wrong steering angle

[sec] [high]
Attacker sets high gas value
[sec] [high]

Hardware manipulation
[sec] [low]

Attacker gains hardware access
[sec] [low]

Fig. 5.11. The SeCFT of the attacker component in the smart farming example
system

Table 5.10. Ratings of the Basic Events in the smart farming scenario

Component.Basic event Rating Type

Attacker.Attacker gains hardware access low security
Attacker.Attacker hijacks remote control medium security
Attacker.Attacker sets high gas value high security
Attacker.Attacker sets low break value high security
Attacker.Attacker sets wrong steering angle high security
Attacker.Hardware manipulation low security
BreakActuatorController.Calculated break pressure value too low 1E-09 safety
BreakPedal.Pedal pressure too low 5E-08 safety
BreakPedalSensorController.Wrong interpretation of sensor input 1E-08 safety
DirectionController.Calculated steering angle wrong 2E-07 safety
EngineActuatorController.Calculated rotational speed value too high 2E-09 safety
GasPedal.Pedal pressure too high 5E-08 safety
GasPedalSensorController.Wrong interpretation of sensor input 1E-08 safety
RemoteControl.Remote control active 0.04 safety
RemoteControl.Remote control sets high gas value 1E-06 safety
RemoteControl.Remote control sets low break value 1E-06 safety
RemoteControl.Remote control sets wrong steering angle 1E-06 safety
SpeedController.CalculateBreakage value too low 2E-07 safety
SpeedController.CalculateRotations value too high 2E-07 safety
SteeringActuatorController.Calculated steering angle wrong 2E-08 safety
SteeringWheel.Steering wheel position wrong 5E-08 safety
SteeringWheelSensorController.Wrong interpretation of sensor input 1E-08 safety
TractorBus.Bus delay 5E-09 safety

A following quantitative analysis yields a rating for the Top Event Tractor
deviates from its planned trajectory and damages an object or hurts a person
of (0.11, high). The high probability and likelihood requires measures to ei-
ther lower the probability or likelihood. The most critical MCSs according to
the security likelihood and the safety probability of this system were deter-
mined. The highest likelihood values in this analysis are medium, but their
combination yields a high value for the Top Event. The results from the qual-

102 5 Evaluation of the Approach

Table 5.11. MCSs of size 1 found during a qualitative analysis of the smart farming
scenario

MCS ID Basic Event Type

8 safety DirectionController.Calculated steering angle wrong
9 safety SteeringWheelSensorController.Wrong interpretation of sensor input
10 safety SteeringWheel.Steering wheel position wrong
11 safety EngineActuatorController.Calculated rotational speed value too high
12 safety SpeedController.CalculateRotations value too high
13 safety TractorBus.Bus delay
14 safety GasPedalSensorController.Wrong interpretation of sensor input
15 safety GasPedal.Pedal pressure too high
16 safety BreakActuatorController.Calculated break pressure value too low
17 safety SpeedController.CalculateBreakage value too low
18 safety BreakPedalSensorController.Wrong interpretation of sensor input
19 safety BreakPedal.Pedal pressure too low
20 safety SteeringActuatorController.Calculated steering angle wrong

itative analysis show that there are 4 MCSs which contain security events.
One even consists of only security events (MCS7). This is not that critical
as it was rated with low. But the other three MCSs (MCS2,MCS3,MCS4)
have a medium security likelihood and a high safety probability (0.04). Ta-
ble 5.12 shows the MCSs with the highest likelihood values. In this example,
they are also the MCSs with the highest safety probabilities. The probabilities
of these MCSs are so high that measures should be implemented to reduce
the risk. The remote control is usually only a problem if it is not monitored.
So it should only be activated if someone actively watches the machine. That
someone could deactivate the remote control in case of a problem. By imple-
menting a measure that monitors the remote control for unauthorized access
the risk of a successful attack could also be reduced.

Table 5.12. Most critical MCSs according to the security likelihood and the safety
probability of the smart farming scenario

MCS ID Type Rating Basic Events

2 mixed (0.04, medium) RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets high gas value

3 mixed (0.04, medium) RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets low break value

4 mixed (0.04, medium) RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets wrong steering angle

This example shows that the additional consideration of security during
safety analysis finds additional causes for system failures that were not found
before. In this case, a fifth of the MCSs (4 out of 20) are containing security
events which would not have been considered in a classical safety analysis.

5.5 Analysis Example: Infusion Pump 103

5.5 Analysis Example: Infusion Pump

The last example is an analysis of a generic model of an automatic infusion
pump which was enriched by a known vulnerability of an existing infusion
pump. The analysis was conducted during the project Embedded Multi-Core
systems for Mixed Criticality applications in dynamic and changeable real-
time environments8 (EMC2) and is used to illustrate the analysis method
in [Steiner 15].

5.5.1 Description: Infusion Pump

Basis of the analysis is a model of a generic patient controlled analgesia pump
developed at the University of Pennsylvania [Arney 09]. This complex model
was simplified, and a subsystem of it was analyzed. Figure 5.12 shows a high-
level view of the architecture of a generic patient controlled analgesia pump
with all modeled components. The simplified model used for this analysis con-
sists of a PumpUnit that receives inputs from a user (a patient or hospital
staff) and controls a PumpDriver which executes the actual pumping task.
The PumpUnit is monitored by a FlowRateMonitor that raises an alarm if
the delivery rate of the pump exceeds predefined limits. During the year 2015
several vulnerabilities of real infusion pumps in use became known. The secu-
rity part of the analysis is inspired by the security flaw of the infusion pump
Hospira PCA3 that was published in [Scherschel 15].

UserInput PumpUnit

PumpSensors FlowRateMonitor

PumpDriver

ErrorHandler Alarm

Fig. 5.12. A simplified architecture of a generic patient controlled analgesia pump
based on [Arney 09]

5.5.2 Analysis

The analyzed scenario is that an automatic infusion pump delivers a wrong
dosage of a drug, and no alarm is raised at the same time. A dosage too
high might lead to poisoning of the patient. A dosage too low on the other
hand might lead to increased pain, or a general deterioration of the patient’s
condition. Figure 5.13 shows the high-level SeCFT of the pump model. In
Appendix A.4 the SeCFTs of the subcomponents (Figs. A.27 to A.35) can be
found. For all of the 7 considered components from Fig. 5.12 one SeCFT was

8 http://www.artemis-emc2.eu/ (accessed 2015-11-09)

http://www.artemis-emc2.eu/

104 5 Evaluation of the Approach

built. Potential vulnerabilities were added as input ports like in the previous
example. The structure of the SeCFTs is according to the data flow of the
pump model.

ErrorHandler

PumpDriver

PumpSensors PumpUnit

UserInput

&

FlowRateMonitor

wrong dosage + no alarm

Attacker

Alarm

Fig. 5.13. A high-level SeCFT model of the pump model shown in Fig. 5.12

An additional attacker component was created that models the following
attack scenario (see Fig. 5.14): The attacker gains access to the Ethernet con-
nector of the infusion pump and logs into the pump operating system (a Linux
derivative) via Telnet. In the previously named Hospira infusion pump there
was no authentication of the Telnet access, so an attacker could directly log
in with root privileges. Having root privileges on the pump operating system,
the attacker has the possibility for any action imaginable. For example, an
attacker might disable the alarms or change settings such as flow rates.

5.5 Analysis Example: Infusion Pump 105

[physical] access the ethernet interface of the pump
[sec],[high]

access telnet service of the pump
[sec] [high]

&
get root access of the pumps OS

change flow rate settings (flow rate monitor)

[sec]

disable alarm trigger

[sec]

change flow rate settings (pump unit)

[sec]

disable alarm

[sec]

Fig. 5.14. The attacker component of the infusion pump analysis

Table 5.13 shows all 10 Basic Events (BEs) in the scenario. 8 safety BEs
and 2 security BEs were identified. Suitable ratings for all BEs were chosen.
The required Safety Integrity Level for the individual components was esti-
mated and used as order of magnitude for the rating of the safety BEs. The
rating of the security BEs was chosen due to the simplicity of the physical
access (to attach an Ethernet cable) and Telnet access (no authentication nec-
essary to get root access). The likelihood for the security BEs in this example
is on a three-level scale of {low, medium, high}.

Table 5.13. Ratings of the Basic Events in the infusion pump example

Component.Basic event Rating Type

Alarm.alarm fails 1E-07 safety
Attacker.[physical] access the Ethernet interface of the pump high security
Attacker.access telnet service of the pump high security
ErrorHandler.error handler fails 1E-07 safety
FlowRateMonitor.flow rate monitor fails 1E-07 safety
PumpDriver.pump driver fails 1E-08 safety
PumpSensors.sensors provide wrong values 1E-07 safety
PumpUnit.check of user input fails 1E-07 safety
PumpUnit.pump unit sets wrong values 1E-07 safety
UserInput.user sets wrong values 1E-06 safety

106 5 Evaluation of the Approach

5.5.3 Results

A qualitative analysis of the infusion pump example concerning the Top Event
wrong dosage + no alarm results in 7 Minimal Cut Sets (MCSs). Of those 7
MCSs 6 are safety MCSs, and one is a security MCS. In this example there
are no mixed MCSs. One MCS contains only one Basic Event (BE), and the
other 6 contain two BEs. All MCSs are shown in Table 5.14 with their type
and ratings.

Table 5.14. All MCSs including their ratings of the infusion pump scenario

MCS ID Type Rating Basic Events

1 safety (1E-07, –) PumpUnit.pump unit sets wrong values
2 security (– , high) Attacker.[physical] access the Ethernet interface of the pump

Attacker.access telnet service of the pump
3 safety (1E-13, –) UserInput.user sets wrong values

PumpUnit.check of user input fails
4 safety (1E-15, –) PumpDriver.pump driver fails

Alarm.alarm fails
5 safety (1E-15, –) PumpDriver.pump driver fails

ErrorHandler.error handler fails
6 safety (1E-15, –) PumpDriver.pump driver fails

FlowRateMonitor.flow rate monitor fails
7 safety (1E-15, –) PumpDriver.pump driver fails

PumpSensors.sensors provide wrong values

This simple model is an example for systems that have security flaws that
would not have been considered in classical CFTs, but will lead to a failure
if an attack is conducted (MCS2). A subsequent quantitative analysis shows
that the safety MCSs are not very critical as the failure probabilities are all
below or equal to 1 × 10−7. But the single security MCS was rated with a
likelihood of high. This leads to a rating for the Top Event wrong dosage + no
alarm of (1×10−7, high). The security MCS with the high likelihood requires
countermeasures to either lower the likelihood, or to introduce safety events
with a reasonably low probability into the MCS. Thereby the failure scenario
does not only depend on actions of an attacker, but also on the failure of a
countermeasure which can be controlled.

5.6 Conclusion 107

5.6 Conclusion

The examples in this chapter show that with a little more effort in comparison
to CFTs, additional security causes for system failures can be found with
SeCFTs. The initial analysis even can be conducted by analysts that are safety
experts with little expertise in security analysis. Only if attacks have to be
analyzed in more detail, a security expert should be present for the analysis.
Because the safety analysis using SeCFTs is based on CFTs, a qualitative
analysis can find all failure scenarios that would have been found with CFTs.
Additional failure scenarios can be found that only depend on security Basic
Events (BEs) and such that are caused by safety as well as security BEs. These
scenarios would not have been found in an analysis using only CFTs. The
quantitative analysis can give further insight on the criticality of a Minimal
Cut Set (MCS). Even security MCSs consisting of only one BE might be
not critical, based on the likelihood value, as long as the grounds for the
determination of the likelihood rating do not change. The analysis of the
ravon safety chain is an example for that. So a quantitative analysis may
safe resources that would have been spent otherwise.

In the analyzed example systems only likelihood values from a scale of
{low, medium, high} were used. This is because no more precise or experi-
enced data were available to the author. If such data exists for an analyzed
system, it is reasonable that more fine-grained scales would be used. The cal-
culations and analyses of this thesis are kept general enough to handle scales
of different granularity. The minimalistic tool used to support the analyses,
however, would have to be adapted.

6

Conclusion

This thesis has presented the extension of safety analysis based on Component
Fault Trees (CFTs) by failure causes from a security point of view. The still
existing separation of the viewpoints of safety and security analysis has shown
in numerous examples that it is not suitable for the current and coming net-
worked embedded systems (Cyber-Physical Systems). In most cases during
the development of embedded systems only a safety analysis is conducted,
security concerns are not even addressed. A complete security analysis on the
other hand would mean substantial additional effort, and would produce an
unnecessary overhead for most embedded systems. This is why in this thesis
an existing safety analysis technique was extended so that no complete sepa-
rate security analysis is necessary. Only security concerns that might lead to
safety issues are analyzed. Therefore, the additional effort is minimized.

The extended safety analysis using Security-enhanced Component Fault
Trees (SeCFTs) is based on safety analysis using CFTs and extended by parts
of Attack Trees (ATs). In doing so, the scalability and modularity of CFTs is
used. The qualitative analysis of SeCFTs does not differ significantly from the
one of CFTs. The calculation of Minimal Cut Sets (MCSs) and the classifica-
tion according to size can be done using the same tools as for CFTs. Only the
classification according to the type of the MCSs (safety, security, or mixed)
is added. In the quantitative analysis the ratings of MCSs and Top Events
are calculated separately for safety probability and security likelihood. The
security events are deliberately not rated using probabilities, because these
cannot be determined with the same accuracy as for the safety events. If such
probabilities would be available, however, they could be used in the analysis.
But still then they should be separated from the safety probabilities because
security probabilities may change whereas the safety probabilities may most
likely not. To avoid misunderstandings about the accuracy of the values of
the security likelihood, instead a more coarse scale is used. This results in
a tuple of safety probabilities and security likelihoods as the rating for the
MCSs and the Top Events. Failure scenarios are evaluated depending on their
type. Safety MCSs are handled just as they would in classical CFTs, the risk

110 6 Conclusion

of mixed MCSs can be estimated by the probability value as a worst case,
and security MCSs can at least be compared to each other to find the most
critical ones. Having these prioritizations the application of countermeasures
can also be prioritized, so they do not have to be used across-the-board. By
the extension of established methods for modeling and analysis, SeCFTs can
be applied by safety experts with only little learning effort. Security experts
are only necessary for the eventual deeper analysis of critical attacks.

The approach was applied in several analyses of example systems, the
safety chain of the off-road robot ravon, an Adaptive Cruise Control system,
a smart farming scenario, and a generic infusion pump. The result in all exam-
ples was that by using SeCFTs additional failure causes could be found that
would not have been found using classical CFTs. In all of the analyzed ex-
amples whole failure scenarios were found which only depended on actions of
an attacker, not on failures of system components. These cases should receive
extra consideration because they would not have been found in a classical
safety analysis. Thereby the additional value of the approach using SeCFTs
for safety analysis is shown, and the improvement can be achieved with little
extra effort.

Concluding it can be said that with the application of Security-enhanced
Component Fault Trees instead of Component Fault Trees the safety of net-
worked embedded systems which are becoming more popular every day can
be improved.

A

Appendix

112 A Appendix

A.1 Evaluation Example: Ravon

Table A.1. MCSs of the SeCFT of the ravon safety chain

ID contained Basic Events ID contained Basic Events

1 SafetyChain.wrong parameters for brakes 30 SafetyChain.wEMS sender battery empty
2 SafetyChain.brake parameters changed SafetyChain.EMS button covered/stuck
3 SafetyChain.MC software manipulated SafetyChain.bumper relay bypassed
4 SafetyChain.MC software fault 31 SafetyChain.wEMS sender sabotaged
5 SafetyChain.MC enabling input bypassed SafetyChain.EMS button not reachable
6 SafetyChain.MC has short circuit at enabling input SafetyChain.bumper relay not working
7 SafetyChain.wEMS sender sabotaged 32 SafetyChain.wEMS sender sabotaged

SafetyChain.EMS button not reachable SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

8 SafetyChain.wEMS sender sabotaged 33 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not reachable SafetyChain.EMS button not working
SafetyChain.safety edge bypassed SafetyChain.bumper relay not working

9 SafetyChain.wEMS sender sabotaged 34 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not working SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

10 SafetyChain.wEMS sender sabotaged 35 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button not working SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed SafetyChain.bumper relay not working

11 SafetyChain.wEMS sender battery empty 36 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button not reachable SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

12 SafetyChain.wEMS sender battery empty 37 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button not reachable SafetyChain.EMS button not working
SafetyChain.safety edge bypassed SafetyChain.bumper relay not working

13 SafetyChain.wEMS sender battery empty 38 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button not working SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

14 SafetyChain.wEMS sender battery empty 39 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not working SafetyChain.EMS button bypassed
SafetyChain.safety edge bypassed SafetyChain.bumper relay not working

15 SafetyChain.wEMS sender sabotaged 40 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not reachable SafetyChain.EMS button bypassed
SafetyChain.bumper relay bypassed SafetyChain.safety edge not working

16 SafetyChain.wEMS sender sabotaged 41 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not working SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed SafetyChain.bumper relay not working

17 SafetyChain.wEMS sender battery empty 42 SafetyChain.wEMS sender sabotaged
SafetyChain.EMS button not reachable SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed SafetyChain.safety edge not working

18 SafetyChain.wEMS sender battery empty 43 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button not working SafetyChain.EMS button bypassed
SafetyChain.bumper relay bypassed SafetyChain.bumper relay not working

19 SafetyChain.wEMS sender sabotaged 44 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button bypassed SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

20 SafetyChain.wEMS sender sabotaged 45 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button bypassed SafetyChain.EMS button covered/stuck
SafetyChain.safety edge bypassed SafetyChain.bumper relay not working

21 SafetyChain.wEMS sender sabotaged 46 SafetyChain.wEMS sender battery empty
SafetyChain.EMS button covered/stuck SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed SafetyChain.safety edge not working

22 SafetyChain.wEMS sender sabotaged 47 SafetyChain.EMS button not reachable
SafetyChain.EMS button covered/stuck SafetyChain.safety edge is not pressed
SafetyChain.safety edge bypassed SafetyChain.wEMS receiver bypassed

23 SafetyChain.wEMS sender battery empty 48 SafetyChain.EMS button not reachable
SafetyChain.EMS button bypassed SafetyChain.safety edge is not pressed
SafetyChain.safety edge is not pressed SafetyChain.wEMS sender not working

24 SafetyChain.wEMS sender battery empty 49 SafetyChain.EMS button not reachable
SafetyChain.EMS button bypassed SafetyChain.safety edge bypassed
SafetyChain.safety edge bypassed SafetyChain.wEMS receiver bypassed

25 SafetyChain.wEMS sender battery empty 50 SafetyChain.EMS button not reachable
SafetyChain.EMS button covered/stuck SafetyChain.safety edge bypassed
SafetyChain.safety edge is not pressed SafetyChain.wEMS sender not working

26 SafetyChain.wEMS sender battery empty 51 SafetyChain.EMS button not working
SafetyChain.EMS button covered/stuck SafetyChain.safety edge is not pressed
SafetyChain.safety edge bypassed SafetyChain.wEMS receiver bypassed

27 SafetyChain.wEMS sender sabotaged 52 SafetyChain.EMS button not working
SafetyChain.EMS button bypassed SafetyChain.safety edge is not pressed
SafetyChain.bumper relay bypassed SafetyChain.wEMS sender not working

28 SafetyChain.wEMS sender sabotaged 53 SafetyChain.EMS button not working
SafetyChain.EMS button covered/stuck SafetyChain.safety edge bypassed
SafetyChain.bumper relay bypassed SafetyChain.wEMS receiver bypassed

29 SafetyChain.wEMS sender battery empty 54 SafetyChain.EMS button not working
SafetyChain.EMS button bypassed SafetyChain.safety edge bypassed
SafetyChain.bumper relay bypassed SafetyChain.wEMS sender not working

A.1 Evaluation Example: Ravon 113

ID contained Basic Events ID contained Basic Events

55 SafetyChain.EMS button not reachable 82 SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed SafetyChain.safety edge bypassed
SafetyChain.wEMS signal jammed SafetyChain.wEMS receiver not working

56 SafetyChain.EMS button not reachable 83 SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed SafetyChain.safety edge is not pressed
SafetyChain.wEMS receiver not working SafetyChain.wEMS signal jammed

57 SafetyChain.EMS button not reachable 84 SafetyChain.EMS button covered/stuck
SafetyChain.safety edge bypassed SafetyChain.safety edge is not pressed
SafetyChain.wEMS signal jammed SafetyChain.wEMS receiver not working

58 SafetyChain.EMS button not reachable 85 SafetyChain.EMS button covered/stuck
SafetyChain.safety edge bypassed SafetyChain.safety edge bypassed
SafetyChain.wEMS receiver not working SafetyChain.wEMS signal jammed

59 SafetyChain.EMS button not working 86 SafetyChain.EMS button covered/stuck
SafetyChain.safety edge is not pressed SafetyChain.safety edge bypassed
SafetyChain.wEMS signal jammed SafetyChain.wEMS receiver not working

60 SafetyChain.EMS button not working 87 SafetyChain.EMS button bypassed
SafetyChain.safety edge is not pressed SafetyChain.bumper relay bypassed
SafetyChain.wEMS receiver not working SafetyChain.wEMS receiver bypassed

61 SafetyChain.EMS button not working 88 SafetyChain.EMS button bypassed
SafetyChain.safety edge bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS signal jammed SafetyChain.wEMS sender not working

62 SafetyChain.EMS button not working 89 SafetyChain.EMS button covered/stuck
SafetyChain.safety edge bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS receiver not working SafetyChain.wEMS receiver bypassed

63 SafetyChain.EMS button not reachable 90 SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS receiver bypassed SafetyChain.wEMS sender not working

64 SafetyChain.EMS button not reachable 91 SafetyChain.EMS button bypassed
SafetyChain.bumper relay bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS sender not working SafetyChain.wEMS signal jammed

65 SafetyChain.EMS button not working 92 SafetyChain.EMS button bypassed
SafetyChain.bumper relay bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS receiver bypassed SafetyChain.wEMS receiver not working

66 SafetyChain.EMS button not working 93 SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS sender not working SafetyChain.wEMS signal jammed

67 SafetyChain.EMS button not reachable 94 SafetyChain.EMS button covered/stuck
SafetyChain.bumper relay bypassed SafetyChain.bumper relay bypassed
SafetyChain.wEMS signal jammed SafetyChain.wEMS receiver not working

68 SafetyChain.EMS button not reachable 95 SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed SafetyChain.wEMS receiver bypassed
SafetyChain.wEMS receiver not working SafetyChain.bumper relay not working

69 SafetyChain.EMS button not working 96 SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed SafetyChain.wEMS receiver bypassed
SafetyChain.wEMS signal jammed SafetyChain.safety edge not working

70 SafetyChain.EMS button not working 97 SafetyChain.EMS button not reachable
SafetyChain.bumper relay bypassed SafetyChain.wEMS sender not working
SafetyChain.wEMS receiver not working SafetyChain.bumper relay not working

71 SafetyChain.EMS button bypassed 98 SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed SafetyChain.wEMS sender not working
SafetyChain.wEMS receiver bypassed SafetyChain.safety edge not working

72 SafetyChain.EMS button bypassed 99 SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed SafetyChain.wEMS receiver bypassed
SafetyChain.wEMS sender not working SafetyChain.bumper relay not working

73 SafetyChain.EMS button bypassed 100 SafetyChain.EMS button not working
SafetyChain.safety edge bypassed SafetyChain.wEMS receiver bypassed
SafetyChain.wEMS receiver bypassed SafetyChain.safety edge not working

74 SafetyChain.EMS button bypassed 101 SafetyChain.EMS button not working
SafetyChain.safety edge bypassed SafetyChain.wEMS sender not working
SafetyChain.wEMS sender not working SafetyChain.bumper relay not working

75 SafetyChain.EMS button covered/stuck 102 SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed SafetyChain.wEMS sender not working
SafetyChain.wEMS receiver bypassed SafetyChain.safety edge not working

76 SafetyChain.EMS button covered/stuck 103 SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed SafetyChain.wEMS signal jammed
SafetyChain.wEMS sender not working SafetyChain.bumper relay not working

77 SafetyChain.EMS button covered/stuck 104 SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed SafetyChain.wEMS signal jammed
SafetyChain.wEMS receiver bypassed SafetyChain.safety edge not working

78 SafetyChain.EMS button covered/stuck 105 SafetyChain.EMS button not reachable
SafetyChain.safety edge bypassed SafetyChain.wEMS receiver not working
SafetyChain.wEMS sender not working SafetyChain.bumper relay not working

79 SafetyChain.EMS button bypassed 106 SafetyChain.EMS button not reachable
SafetyChain.safety edge is not pressed SafetyChain.wEMS receiver not working
SafetyChain.wEMS signal jammed SafetyChain.safety edge not working

80 SafetyChain.EMS button bypassed 107 SafetyChain.EMS button not working
SafetyChain.safety edge is not pressed SafetyChain.wEMS signal jammed
SafetyChain.wEMS receiver not working SafetyChain.bumper relay not working

81 SafetyChain.EMS button bypassed 108 SafetyChain.EMS button not working
SafetyChain.safety edge bypassed SafetyChain.wEMS signal jammed
SafetyChain.wEMS signal jammed SafetyChain.safety edge not working

114 A Appendix

ID contained Basic Events

109 SafetyChain.EMS button not working
SafetyChain.wEMS receiver not working
SafetyChain.bumper relay not working

110 SafetyChain.EMS button not working
SafetyChain.wEMS receiver not working
SafetyChain.safety edge not working

111 SafetyChain.EMS button bypassed
SafetyChain.wEMS receiver bypassed
SafetyChain.bumper relay not working

112 SafetyChain.EMS button bypassed
SafetyChain.wEMS receiver bypassed
SafetyChain.safety edge not working

113 SafetyChain.EMS button bypassed
SafetyChain.wEMS sender not working
SafetyChain.bumper relay not working

114 SafetyChain.EMS button bypassed
SafetyChain.wEMS sender not working
SafetyChain.safety edge not working

115 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS receiver bypassed
SafetyChain.bumper relay not working

116 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS receiver bypassed
SafetyChain.safety edge not working

117 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS sender not working
SafetyChain.bumper relay not working

118 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS sender not working
SafetyChain.safety edge not working

119 SafetyChain.EMS button bypassed
SafetyChain.wEMS signal jammed
SafetyChain.bumper relay not working

120 SafetyChain.EMS button bypassed
SafetyChain.wEMS signal jammed
SafetyChain.safety edge not working

121 SafetyChain.EMS button bypassed
SafetyChain.wEMS receiver not working
SafetyChain.bumper relay not working

122 SafetyChain.EMS button bypassed
SafetyChain.wEMS receiver not working
SafetyChain.safety edge not working

123 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS signal jammed
SafetyChain.bumper relay not working

124 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS signal jammed
SafetyChain.safety edge not working

125 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS receiver not working
SafetyChain.bumper relay not working

126 SafetyChain.EMS button covered/stuck
SafetyChain.wEMS receiver not working
SafetyChain.safety edge not working

A.2 Evaluation Example: Adaptive Cruise Control 115

A.2 Evaluation Example: Adaptive Cruise Control

cr
as
h_
w
ith
_V
A

Br
ak
e_
Ac
to
r

Br
ak
e_
Ac
to
r

Ve
hi
cl
e

Ve
hi
cl
e

Fr
on
t_
An
te
nn
a

Fr
on
t_
An
te
nn
a

Fr
on
t_
D
ist
an
ce
_S
en
so
r

Fr
on
t_
D
ist
an
ce
_S
en
so
r

FL
_W

he
el
sp
ee
d_
Se
ns
or

FL
_W

he
el
sp
ee
d_
Se
ns
or

FR
_W

he
el
sp
ee
d_
Se
ns
or

FR
_W

he
el
sp
ee
d_
Se
ns
or

RR
_W

he
el
sp
ee
d_
Se
ns
or

RR
_W

he
el
sp
ee
d_
Se
ns
or

RL
_W

he
el
sp
ee
d_
Se
ns
or

RL
_W

he
el
sp
ee
d_
Se
ns
or

Fig. A.1. SeCFT: ACC.System

116 A Appendix

O
ut

pu
t_

D
ec

el
er

at
io

n_
va

lu
e_

to
o_

lo
w

RL
_w

s_
to

o_
lo

w

FR
_w

s_
to

o_
lo

w
m

ea
su

re
d_

di
st

an
ce

_t
oo

_h
ig

h
RR

_w
s_

to
o_

lo
w

Re
ce

iv
ed

_d
ist

an
ce

_t
oo

_h
ig

h

Re
ce

iv
ed

_v
el

oc
ity

_t
oo

_h
ig

h

FL
_w

s_
to

o_
lo

w

AC
C

AC
C

Sp
ee

do
m

et
er

Sp
ee

do
m

et
er

Co
m

m
un

ic
at

io
n_

Sy
st

em
Co

m
m

un
ic

at
io

n
Sy

st
em

Fig. A.2. SeCFT: ACC.Vehicle

A.2 Evaluation Example: Adaptive Cruise Control 117

O
ut

pu
t_

D
ec

el
er

at
io

n_
va

lu
e_

to
o_

lo
w

ve
lo

ci
ty

_o
f_

VA
_t

oo
_h

ig
h

di
st

an
ce

_t
o_

VA
_t

oo
_h

ig
h

ow
n_

ve
lo

ci
ty

_t
oo

_lo
w

Co
nt

ro
l_L

og
ic

_U
ni

t
Co

nt
ro

l L
og

ic
 U

ni
t

Br
ak

e_
In

te
rfa

ce
Br

ak
e

In
te

rfa
ce

>
=

 1

ta
m

pe
rin

g_
de

ce
le

ra
tio

n_
va

lu
e_

to
o_

lo
w

[s
ec

],[
lo

w
]

Fig. A.3. SeCFT: ACC.ACC

118 A Appendix

O
ut

pu
t_

D
ec

el
er

at
io

n_
va

lu
e_

to
o_

lo
w

ve
lo

ci
ty

_o
f_

VA
_t

oo
_h

ig
h

ow
n_

ve
lo

ci
ty

_t
oo

_lo
w

Br
ak

e_
m

ist
ak

en
ly

_d
isa

bl
ed

di
st

an
ce

_t
o_

VA
_t

oo
_h

ig
h

>
=

 1

>
=

 1

ta
m

pe
rin

g_
br

ak
e_

di
sa

bl
ed

/d
ec

el
er

at
io

n_
de

ce
le

ra
tio

n_
va

lu
e_

to
o_

lo
w

[s
ec

],[
lo

w
]

ta
m

pe
rin

g_
ow

n_
ve

lo
ci

ty
_t

oo
_lo

w
[s

ec
],[

lo
w

]

ta
m

pe
rin

g_
di

st
an

ce
_V

A_
to

o_
hi

gh
[s

ec
],[

lo
w

]

ta
m

pe
rin

g_
ve

lo
ci

ty
_V

A_
to

o_
hi

gh
[s

ec
],[

lo
w

]

Fig. A.4. SeCFT: ACC.Brake Interface

A.2 Evaluation Example: Adaptive Cruise Control 119

Br
ak

e_
m

ist
ak

en
ly

_d
isa

bl
ed

di
st

an
ce

_t
o_

VA
_t

oo
_h

ig
h

ow
n_

ve
lo

ci
ty

_t
oo

_lo
w

ve
lo

ci
ty

_o
f_

VA
_is

_t
oo

_h
ig

h

>
=

 1

&

ta
m

pe
rin

g_
ow

n_
ve

lo
ci

ty
_t

oo
_lo

w
[s

ec
],[

lo
w

]

>
=

 1

ta
m

pe
rin

g_
di

st
an

ce
_v

al
ue

_t
oo

_h
ig

h
[s

ec
],[

lo
w

]

ta
m

pe
rin

g_
ve

lo
ci

ty
_V

A_
va

lu
e_

to
o_

hi
gh

[s
ec

],[
lo

w
]

>
=

 1

ta
m

pe
rin

g_
ou

tp
ut

_b
ra

ke
_d

isa
bl

ed
[s

ec
],[

lo
w

]

Fig. A.5. SeCFT: ACC.Control Logic Unit

120 A Appendix

ow
n_

ve
lo

ci
ty

_t
oo

_lo
w

RR
_w

s_
to

o_
lo

w
FL

_w
s_

to
o_

lo
w

FR
_w

s_
to

o_
lo

w
RL

_w
s_

to
o_

lo
w

>
=

 1

ta
m

pe
rin

g_
ve

lo
ci

ty
_t

oo
_lo

w
_v

al
ue

[s
ec

],[
lo

w
]

M
oo

N

Fig. A.6. SeCFT: ACC.Speedometer

A.2 Evaluation Example: Adaptive Cruise Control 121

di
st

an
ce

_t
o_

VA
_t

oo
_h

ig
h

ve
lo

ci
ty

_o
f_

VA
_t

oo
_h

ig
h

re
ce

iv
ed

_v
el

oc
ity

_t
oo

_h
ig

h

m
ea

su
re

d_
di

st
an

ce
_t

oo
_h

ig
h

re
ce

iv
ed

_d
ist

an
ce

_t
oo

_h
ig

h

&
ta

m
pe

rin
g_

to
o_

hi
gh

_v
el

oc
ity

_v
al

ue
[s

ec
],[

lo
w

]

>
=

 1

ta
m

pe
rin

g_
di

st
an

ce
_v

al
ue

_t
oo

_h
ig

h
[s

ec
],[

lo
w

]

>
=

 1

Fig. A.7. SeCFT: ACC.Communication System

122 A Appendix

di
st

an
ce

_t
oo

_h
ig

h
ve

lo
ci

ty
_t

oo
_h

ig
h

>
=

 1
>

=
 1

Re
ce

iv
ed

_v
el

oc
ity

_o
f_

VA
_t

oo
_h

ig
h

Sp
oo

fin
g_

ve
lo

ci
ty

_t
oo

_h
ig

h
[s

ec
],[

m
ed

iu
m

]

Ta
m

pe
rin

g_
Ve

lo
ci

ty
_t

oo
_h

ig
h_

va
lu

e
[s

ec
],[

hi
gh

]
Sp

oo
fin

g_
of

_a
_d

ist
an

ce
_s

ig
na

l
[s

ec
],[

m
ed

iu
m

]

Ta
m

pe
rin

g_
D

ist
an

ce
_S

ig
na

l_t
o_

a_
to

o_
hi

gh
_v

al
ue

[s
ec

],[
hi

gh
]

Re
ce

iv
ed

_d
ist

an
ce

_t
o_

VA
_is

_t
oo

_h
ig

h

Fig. A.8. SeCFT: ACC.Front Antenna

A.2 Evaluation Example: Adaptive Cruise Control 123

measured_ws_too_low

>= 1

Sensor_malfunction

Noise_in_Sensor_Magnet_Field

Spoofing_sensor_values
[sec],[low]

denial_of_service
[sec],[low]

Fig. A.9. SeCFT: ACC.Wheelspeed Sensor

Deceleration_too_low

Input_Deceleration_value_too_low

Brake_reacts_not_as_expected

>= 1

spoofing_a_too_low_value
[sec],[low]

Fig. A.10. SeCFT: ACC.Brake Actor

distance_too_high

>= 1

Assumed_sonic_velocity_too_high

Echo_time_too_high

denial_of_service
[sec],[high]

Spoofing_sensor_values
[sec],[medium]

Fig. A.11. SeCFT: ACC.Distance Sensor

124 A Appendix

Table A.2. MCSs of the SeCFT of the Adaptive Cruise Control system

ID contained Basic Events

1 Control Logic Unit.tampering own velocity too low
Control Logic Unit.tampering distance value too high

2 Control Logic Unit.tampering own velocity too low
Control Logic Unit.tampering velocity VA value too high

3 Brake Interface.tampering brake disabled/deceleration value too low
4 Control Logic Unit.tampering output brake disabled
5 Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Spoofing sensor values
6 Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.denial of service
7 Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Assumed sonic velocity too high
8 Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Echo time too high
9 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

FL Wheelspeed Sensor.Noise in Sensor Magnet Field
10 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

FL Wheelspeed Sensor.denial of service
11 FR Wheelspeed Sensor.denial of service

FL Wheelspeed Sensor.Noise in Sensor Magnet Field
12 FR Wheelspeed Sensor.denial of service

FL Wheelspeed Sensor.denial of service
13 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

FL Wheelspeed Sensor.Spoofing sensor values
14 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

FL Wheelspeed Sensor.Sensor malfunction
15 FR Wheelspeed Sensor.denial of service

FL Wheelspeed Sensor.Spoofing sensor values
16 FR Wheelspeed Sensor.denial of service

FL Wheelspeed Sensor.Sensor malfunction
17 FR Wheelspeed Sensor.Spoofing sensor values

FL Wheelspeed Sensor.Noise in Sensor Magnet Field
18 FR Wheelspeed Sensor.Spoofing sensor values

FL Wheelspeed Sensor.denial of service
19 FR Wheelspeed Sensor.Sensor malfunction

FL Wheelspeed Sensor.Noise in Sensor Magnet Field
20 FR Wheelspeed Sensor.Sensor malfunction

FL Wheelspeed Sensor.denial of service
21 FR Wheelspeed Sensor.Spoofing sensor values

FL Wheelspeed Sensor.Spoofing sensor values
22 FR Wheelspeed Sensor.Spoofing sensor values

FL Wheelspeed Sensor.Sensor malfunction
23 FR Wheelspeed Sensor.Sensor malfunction

FL Wheelspeed Sensor.Spoofing sensor values
24 FR Wheelspeed Sensor.Sensor malfunction

FL Wheelspeed Sensor.Sensor malfunction
25 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
26 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.denial of service
27 FR Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
28 FR Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.denial of service
29 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.Spoofing sensor values
30 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.Sensor malfunction
31 FR Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.Spoofing sensor values
32 FR Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.Sensor malfunction
33 FR Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
34 FR Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.denial of service
35 FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
36 FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.denial of service
37 FR Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Spoofing sensor values
38 FR Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Sensor malfunction
39 FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.Spoofing sensor values
40 FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.Sensor malfunction
41 FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RR Wheelspeed Sensor.Noise in Sensor Magnet Field

A.2 Evaluation Example: Adaptive Cruise Control 125

ID contained Basic Events

42 FR Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.denial of service

43 FR Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

44 FR Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.denial of service

45 FR Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Spoofing sensor values

46 FR Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Sensor malfunction

47 FR Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Spoofing sensor values

48 FR Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Sensor malfunction

49 FR Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

50 FR Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.denial of service

51 FR Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

52 FR Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.denial of service

53 FR Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Spoofing sensor values

54 FR Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Sensor malfunction

55 FR Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Spoofing sensor values

56 FR Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Sensor malfunction

57 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

58 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RL Wheelspeed Sensor.denial of service

59 FL Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

60 FL Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.denial of service

61 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RL Wheelspeed Sensor.Spoofing sensor values

62 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RL Wheelspeed Sensor.Sensor malfunction

63 FL Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.Spoofing sensor values

64 FL Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.Sensor malfunction

65 FL Wheelspeed Sensor.Spoofing sensor values
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

66 FL Wheelspeed Sensor.Spoofing sensor values
RL Wheelspeed Sensor.denial of service

67 FL Wheelspeed Sensor.Sensor malfunction
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

68 FL Wheelspeed Sensor.Sensor malfunction
RL Wheelspeed Sensor.denial of service

69 FL Wheelspeed Sensor.Spoofing sensor values
RL Wheelspeed Sensor.Spoofing sensor values

70 FL Wheelspeed Sensor.Spoofing sensor values
RL Wheelspeed Sensor.Sensor malfunction

71 FL Wheelspeed Sensor.Sensor malfunction
RL Wheelspeed Sensor.Spoofing sensor values

72 FL Wheelspeed Sensor.Sensor malfunction
RL Wheelspeed Sensor.Sensor malfunction

73 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

74 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.denial of service

75 FL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

76 FL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.denial of service

77 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Spoofing sensor values

78 FL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Sensor malfunction

79 FL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Spoofing sensor values

80 FL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Sensor malfunction

81 FL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

126 A Appendix

ID contained Basic Events

82 FL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.denial of service

83 FL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

84 FL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.denial of service

85 FL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Spoofing sensor values

86 FL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Sensor malfunction

87 FL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Spoofing sensor values

88 FL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Sensor malfunction

89 RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

90 RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.denial of service

91 RL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

92 RL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.denial of service

93 RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Spoofing sensor values

94 RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Sensor malfunction

95 RL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Spoofing sensor values

96 RL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Sensor malfunction

97 RL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

98 RL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.denial of service

99 RL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

100 RL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.denial of service

101 RL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Spoofing sensor values

102 RL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Sensor malfunction

103 RL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Spoofing sensor values

104 RL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.Sensor malfunction

105 Brake Actor.spoofing a too low value
106 Brake Actor.Brake reacts not as expected
107 ACC.tampering deceleration value too low
108 Brake Interface.tampering distance VA too high
109 Brake Interface.tampering own velocity too low
110 Brake Interface.tampering velocity VA too high
111 Speedometer.tampering velocity too low value
112 Communication System.tampering distance value too high
113 Communication System.tampering too high velocity value
114 Front Antenna.Tampering Velocity too high value
115 Front Antenna.Spoofing velocity too high
116 Front Antenna.Received velocity of VA too high
117 Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Spoofing sensor values
118 Front Antenna.Spoofing of a distance signal

Front Distance Sensor.denial of service
119 Front Antenna.Received distance to VA is too high

Front Distance Sensor.Spoofing sensor values
120 Front Antenna.Received distance to VA is too high

Front Distance Sensor.denial of service
121 Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Assumed sonic velocity too high
122 Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Echo time too high
123 Front Antenna.Received distance to VA is too high

Front Distance Sensor.Assumed sonic velocity too high
124 Front Antenna.Received distance to VA is too high

Front Distance Sensor.Echo time too high

A.2 Evaluation Example: Adaptive Cruise Control 127

Table A.3. Most critical MCSs according to the safety probability of the ACC

MCS ID Type Rating Basic Events

120 mixed (0.017, high) Front Antenna.Received distance to VA is too high
Front Distance Sensor.denial of service

119 mixed (0.017, medium) Front Antenna.Received distance to VA is too high
Front Distance Sensor.Spoofing sensor values

116 safety (0.015, –) Front Antenna.Received velocity of VA too high
8 mixed (0.001, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Echo time too high
122 mixed (0.001, medium) Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Echo time too high
7 mixed (2E-05, high) Front Antenna.Tampering Distance Signal to a too high value

Front Distance Sensor.Assumed sonic velocity too high
121 mixed (2E-05, medium) Front Antenna.Spoofing of a distance signal

Front Distance Sensor.Assumed sonic velocity too high
124 safety (1.7E-05, –) Front Antenna.Received distance to VA is too high

Front Distance Sensor.Echo time too high
106 safety (1E-05, –) Brake Actor.Brake reacts not as expected
48 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service

RR Wheelspeed Sensor.Sensor malfunction
81 mixed (1E-05, low) FL Wheelspeed Sensor.Spoofing sensor values

RR Wheelspeed Sensor.Noise in Sensor Magnet Field
45 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RR Wheelspeed Sensor.Spoofing sensor values
80 mixed (1E-05, low) FL Wheelspeed Sensor.denial of service

RR Wheelspeed Sensor.Sensor malfunction
49 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values

RR Wheelspeed Sensor.Noise in Sensor Magnet Field
52 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction

RR Wheelspeed Sensor.denial of service
84 mixed (1E-05, low) FL Wheelspeed Sensor.Sensor malfunction

RR Wheelspeed Sensor.denial of service
87 mixed (1E-05, low) FL Wheelspeed Sensor.Sensor malfunction

RR Wheelspeed Sensor.Spoofing sensor values
39 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.Spoofing sensor values
38 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Sensor malfunction
43 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service

RR Wheelspeed Sensor.Noise in Sensor Magnet Field
42 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RR Wheelspeed Sensor.denial of service
86 mixed (1E-05, low) FL Wheelspeed Sensor.Spoofing sensor values

RR Wheelspeed Sensor.Sensor malfunction
64 mixed (1E-05, low) FL Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.Sensor malfunction
71 mixed (1E-05, low) FL Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.Spoofing sensor values
61 mixed (1E-05, low) FL Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.Spoofing sensor values
68 mixed (1E-05, low) FL Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.denial of service
70 mixed (1E-05, low) FL Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Sensor malfunction
65 mixed (1E-05, low) FL Wheelspeed Sensor.Spoofing sensor values

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
59 mixed (1E-05, low) FL Wheelspeed Sensor.denial of service

RL Wheelspeed Sensor.Noise in Sensor Magnet Field
55 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction

RR Wheelspeed Sensor.Spoofing sensor values
54 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values

RR Wheelspeed Sensor.Sensor malfunction
77 mixed (1E-05, low) FL Wheelspeed Sensor.Noise in Sensor Magnet Field

RR Wheelspeed Sensor.Spoofing sensor values
58 mixed (1E-05, low) FL Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.denial of service
74 mixed (1E-05, low) FL Wheelspeed Sensor.Noise in Sensor Magnet Field

RR Wheelspeed Sensor.denial of service
75 mixed (1E-05, low) FL Wheelspeed Sensor.denial of service

RR Wheelspeed Sensor.Noise in Sensor Magnet Field
36 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction

RL Wheelspeed Sensor.denial of service
103 mixed (1E-05, low) RL Wheelspeed Sensor.Sensor malfunction

RR Wheelspeed Sensor.Spoofing sensor values
16 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service

FL Wheelspeed Sensor.Sensor malfunction
97 mixed (1E-05, low) RL Wheelspeed Sensor.Spoofing sensor values

RR Wheelspeed Sensor.Noise in Sensor Magnet Field
26 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field

RL Wheelspeed Sensor.denial of service
96 mixed (1E-05, low) RL Wheelspeed Sensor.denial of service

RR Wheelspeed Sensor.Sensor malfunction

128 A Appendix

MCS ID Type Rating Basic Events

100 mixed (1E-05, low) RL Wheelspeed Sensor.Sensor malfunction
RR Wheelspeed Sensor.denial of service

102 mixed (1E-05, low) RL Wheelspeed Sensor.Spoofing sensor values
RR Wheelspeed Sensor.Sensor malfunction

20 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction
FL Wheelspeed Sensor.denial of service

22 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values
FL Wheelspeed Sensor.Sensor malfunction

17 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values
FL Wheelspeed Sensor.Noise in Sensor Magnet Field

27 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

33 mixed (1E-05, low) FR Wheelspeed Sensor.Spoofing sensor values
RL Wheelspeed Sensor.Noise in Sensor Magnet Field

32 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service
RL Wheelspeed Sensor.Sensor malfunction

90 mixed (1E-05, low) RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.denial of service

23 mixed (1E-05, low) FR Wheelspeed Sensor.Sensor malfunction
FL Wheelspeed Sensor.Spoofing sensor values

10 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field
FL Wheelspeed Sensor.denial of service

11 mixed (1E-05, low) FR Wheelspeed Sensor.denial of service
FL Wheelspeed Sensor.Noise in Sensor Magnet Field

13 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field
FL Wheelspeed Sensor.Spoofing sensor values

29 mixed (1E-05, low) FR Wheelspeed Sensor.Noise in Sensor Magnet Field
RL Wheelspeed Sensor.Spoofing sensor values

91 mixed (1E-05, low) RL Wheelspeed Sensor.denial of service
RR Wheelspeed Sensor.Noise in Sensor Magnet Field

93 mixed (1E-05, low) RL Wheelspeed Sensor.Noise in Sensor Magnet Field
RR Wheelspeed Sensor.Spoofing sensor values

A.3 Evaluation Example: Smart Farming 129

A.3 Evaluation Example: Smart Farming

Tractor deviates from its planned trajectory and damages an object or hurts a person

>= 1 Tractor drives too fast or steers in the wrong direction

BreakActuatorController

BreakActuatorController

EngineActuatorController

EngineActuatorController

SteeringActuatorController

SteeringActuatorController

SpeedControllerSpeedController DirectionControllerDirectionController

TractorBus
TractorBus

GasPedalSensorController

GasPedalSensorController

BreakPedalSensorController

BreakPedalSensorController

SteeringWheelSensorController

SteeringWheelSensorController

GasPedal

GasPedal

BreakPedal

BreakPedal

RemoteControl

RemoteControl

SteeringWheel

SteeringWheel

Attacker

Attacker

Fig. A.12. SeCFT: SmartFarming.Driving

130 A Appendix

Calculated rotational speed value too high

>= 1

Acceleration too high

Rotational speed value too high

Fig. A.13. SeCFT: SmartFarming.EngineActuatorController

Calculated break pressure value too low

>= 1

Break value too low

Break pressure value too low

Fig. A.14. SeCFT: SmartFarming.BreakActuatorController

Steering angle wrong

Steering angle wrong

Calculated steering angle wrong

>= 1

Fig. A.15. SeCFT: SmartFarming.SteeringActuatorController

A.3 Evaluation Example: Smart Farming 131

Ca
lc

ul
at

eB
re

ak
ag

e
va

lu
e

to
o

lo
w

>
=

 1

Ca
lc

ul
at

eR
ot

at
io

ns
 v

al
ue

 to
o

hi
gh

>
=

 1

Br
ea

k
pr

es
su

re
 to

o
lo

w
Ro

ta
tio

na
l s

pe
ed

 v
al

ue
 to

o
hi

gh

Br
ea

k
se

ns
or

 v
al

ue
 to

o
lo

w

Re
m

ot
e

co
nt

ro
l s

et
s

lo
w

 b
re

ak
 v

al
ue

G
as

 s
en

so
r v

al
ue

 to
o

hi
gh

Re
m

ot
e

co
nt

ro
l s

et
s

hi
gh

 g
as

 v
al

ue

Fig. A.16. SeCFT: SmartFarming.SpeedController

132 A Appendix

Steering angle wrong

Steering wheel sensor value wrong

Remote control sets wrong steering angle

>= 1

Calculated steering angle wrong

Fig. A.17. SeCFT: SmartFarming.DirectionController

Gas value too high Break value too low

Break sensor value too low

Gas sensor value too high

Wrong steering angle

Wrong steering angle

>= 1 >= 1

Bus delay

>= 1

Fig. A.18. SeCFT: SmartFarming.TractorBus

Sensor value too high

Pedal pressure too high

>= 1

Wrong interpretation of sensor input

Fig. A.19. SeCFT: SmartFarming.GasPedalSensorController

A.3 Evaluation Example: Smart Farming 133

Sensor value too low

Pedal Pressure too low

>= 1

Wrong interpretation of sensor input

Fig. A.20. SeCFT: SmartFarming.BreakPedalSensorController

Sensor value wrong

Steering wheel position wrong

Wrong interpretation of sensor input

>= 1

Fig. A.21. SeCFT: SmartFarming.SteeringWheelSensorController

Pedal pressure too high

Hardware manipulation

[sec]

>= 1

Pedal pressure too high

Fig. A.22. SeCFT: SmartFarming.GasPedal

134 A Appendix

Pedal pressure too low

Hardware manipulation

[sec]

>= 1

Pedal pressure too low

Fig. A.23. SeCFT: SmartFarming.BreakPedal

Steering wheel position wrong

Hardware manipulation

[sec]

>= 1

Steering wheel position wrong

Fig. A.24. SeCFT: SmartFarming.SteeringWheel

Table A.4. MCSs of the SeCFT of the smart farming scenario

MCS ID contained Basic Events

1 RemoteControl.Remote control active
RemoteControl.Remote control sets high gas value

2 RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets high gas value

3 RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets low break value

4 RemoteControl.Remote control active
Attacker.Attacker hijacks remote control
Attacker.Attacker sets wrong steering angle

5 RemoteControl.Remote control active
RemoteControl.Remote control sets low break value

6 RemoteControl.Remote control active
RemoteControl.Remote control sets wrong steering angle

7 Attacker.Hardware manipulation
Attacker.Attacker gains hardware access

8 DirectionController.Calculated steering angle wrong
9 SteeringWheelSensorController.Wrong interpretation of sensor input
10 SteeringWheel.Steering wheel position wrong
11 EngineActuatorController.Calculated rotational speed value too high
12 SpeedController.CalculateRotations value too high
13 TractorBus.Bus delay
14 GasPedalSensorController.Wrong interpretation of sensor input
15 GasPedal.Pedal pressure too high
16 BreakActuatorController.Calculated break pressure value too low
17 SpeedController.CalculateBreakage value too low
18 BreakPedalSensorController.Wrong interpretation of sensor input
19 BreakPedal.Pedal pressure too low
20 SteeringActuatorController.Calculated steering angle wrong

A.3 Evaluation Example: Smart Farming 135

Re
m

ot
e

co
nt

ro
l s

et
s

lo
w

 b
re

ak
 v

al
ue

Re
m

ot
e

co
nt

ro
l s

et
s

hi
gh

 g
as

 v
al

ue
Re

m
ot

e
co

nt
ro

l s
et

s
w

ro
ng

 s
te

er
in

g
an

gl
e

At
ta

ck
er

 s
et

s
hi

gh
 g

as
 v

al
ue

[s
ec

]

At
ta

ck
er

 s
et

s
lo

w
 b

re
ak

 v
al

ue
[s

ec
]

At
ta

ck
er

 s
et

s
w

ro
ng

 s
te

er
in

g
an

gl
e

[s
ec

]

>
=

 1
Re

m
ot

e
co

nt
ro

l s
et

s
hi

gh
 g

as
 v

al
ue

>
=

 1
Re

m
ot

e
co

nt
ro

l s
et

s
lo

w
 b

re
ak

 v
al

ue

>
=

 1

&

&

&

Re
m

ot
e

co
nt

ro
l s

et
s

w
ro

ng
 s

te
er

in
g

an
gl

e

Re
m

ot
e

co
nt

ro
l s

et
s

lo
w

 b
re

ak
 v

al
ue

Re
m

ot
e

co
nt

ro
l s

et
s

hi
gh

 g
as

 v
al

ue

Re
m

ot
e

co
nt

ro
l a

ct
iv

e

Fig. A.25. SeCFT: SmartFarming.RemoteControl

136 A Appendix

At
ta

ck
er

 s
et

s
lo

w
 b

re
ak

 v
al

ue

[s
ec

]
At

ta
ck

er
 s

et
s

w
ro

ng
 s

te
er

in
g

an
gl

e

[s
ec

]

At
ta

ck
er

 s
et

s
hi

gh
 g

as
 v

al
ue

[s
ec

]

H
ar

dw
ar

e
m

an
ip

ul
at

io
n

[s
ec

]

&
&

&

&

At
ta

ck
er

 h
ija

ck
s

re
m

ot
e

co
nt

ro
l

[s
ec

] [
m

ed
iu

m
]

At
ta

ck
er

 s
et

s
lo

w
 b

re
ak

 v
al

ue
[s

ec
] [

hi
gh

]
At

ta
ck

er
 s

et
s

w
ro

ng
 s

te
er

in
g

an
gl

e
[s

ec
] [

hi
gh

]
At

ta
ck

er
 s

et
s

hi
gh

 g
as

 v
al

ue
[s

ec
] [

hi
gh

]H
ar

dw
ar

e
m

an
ip

ul
at

io
n

[s
ec

] [
lo

w
]

At
ta

ck
er

 g
ai

ns
 h

ar
dw

ar
e

ac
ce

ss
[s

ec
] [

lo
w

]

Fig. A.26. SeCFT: SmartFarming.Attacker

A.4 Evaluation Example: Infusion Pump 137

A.4 Evaluation Example: Infusion Pump

ErrorHandler

PumpDriver

PumpSensors PumpUnit

UserInput

&

FlowRateMonitor

wrong dosage + no alarm

Attacker

Alarm

Fig. A.27. SeCFT: InfusionPump

138 A Appendix

>= 1

alarm fails

no alarm raised

no alarm triggered

attacker disables alarm

[sec]

Fig. A.28. SeCFT: InfusionPump.Alarm

wrong dosage

pump unit sets wrong values

>= 1
pump driver has wrong value settings

pump driver fails

Fig. A.29. SeCFT: InfusionPump.PumpDriver

>= 1

error handler fails

no alarm triggered

attacker disables alarm trigger

[sec]

no alarm state sent from flow rate monitor

Fig. A.30. SeCFT: InfusionPump.ErrorHandler

A.4 Evaluation Example: Infusion Pump 139

flow rate monitor fails

>= 1

no alarm state reported

attacker changes values

[sec]

wrong values from sensors

wrong value set by user

Fig. A.31. SeCFT: InfusionPump.FlowRateMonitor

sensors provide wrong values

sensors provide wrong values

Fig. A.32. SeCFT: InfusionPump.PumpSensors

>= 1

pump unit sets wrong values

wrong settings

wrong user input

attacker changes settings

[sec]&

check of user input fails

Fig. A.33. SeCFT: InfusionPump.PumpUnit

140 A Appendix

wrong value settings

user sets wrong values

Fig. A.34. SeCFT: InfusionPump.UserInput

[physical] access the ethernet interface of the pump
[sec],[high]

access telnet service of the pump
[sec] [high]

&
get root access of the pumps OS

change flow rate settings (flow rate monitor)

[sec]

disable alarm trigger

[sec]

change flow rate settings (pump unit)

[sec]

disable alarm

[sec]

Fig. A.35. SeCFT: InfusionPump.Attacker

B

Abbreviations

ACC Adaptive Cruise Control . 89
ADVISE ADversary VIew Security Evaluation.31
AT Attack Tree . 109
BDD Binary Decision Diagram . 75
BDMP Boolean logic Driven Markov Process 43
BE Basic Event. .79
BM Birnbaum’s Importance Measure . 18
CFT Component Fault Tree . 109
CPS Cyber-Physical System . 25
DAG Directed Acyclic Graph . 46
DFD Data Flow Diagram. .31
DFT Dynamic Fault Tree . 37
DNF Disjunctive Normal Form . 30
DSP Digital Signal Processor. .83
DT Defense Tree .37
EFT Extended Fault Tree . 36
ERTMS European Railway Traffic Management System.37
FMEA Failure Mode and Effects Analysis . 45
FMECA Failure Mode, Effects, and Criticality Analysis 63
FMVEA Failure Mode, Vulnerabilities and Effects Analysis63
FTA Fault Tree Analysis . 87
FT Fault Tree . 79
FV Fussell-Vesely . 76
GFT Generalized Fault Tree . 30
GSPN Generalized Stochastic Petri Net . 30
HAZOP Hazard and Operability Study . 45
IE Intermediate Event . 49
LAN Local Area Network . 24
MAC Media Access Control . 24
MCS Minimal Cut Set. .109

142 B Abbreviations

NUREG US Nuclear Regulatory Commission Regulation 9
PENET Petri Net Attack Modeling . 30
PFT Parametric Fault Tree . 19
PI Prime Implicant . 12
RAW Risk Achievement Worth. .18
RFT Repairable Fault Tree . 37
ROA Return on Attack . 30
ROBDD Reduced Ordered Binary Decision Diagram 16
ROI Return on Investment. .30
RPN Risk Priority Number . 63
RRW Risk Reduction Worth . 18
SCADA Supervisory Control and Data Acquisition 25
SeCFT Security-enhanced Component Fault Tree 109
SEFT State/Event Fault Tree . 19
SHARD Software Hazard Analysis and Resolution in Design 21
SIL Safety Integrity Level . 99
STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,

Denial of Service, Elevation of Privilege 32
TE Top Event . 59
TVRA Threat Vulnerability and Risk Assessment 39
UML Unified Modeling Language . 21
WLAN Wireless Local Area Network . 24
WPA2 Wi-Fi Protected Access 2 . 24

Index

Asset, 22
Attack, 23
Availability, 22

Confidentiality, 22
Control, see Countermeasure
Countermeasure, 23

Event
Basic Event, 9
Intermediate Event, 10
Safety Event, 47
Security Event, 47
Top Event, 9

Failure, 8
Failure Rate, 14
Fault, 8

Harm, 8

Integrity, 22

Likelihood
AND-gate, 66

OR-gate, 67

Minimal Cut Set, 11
Minimal Cut Set size, 14
Mixed Minimal Cut Set, 64
Safety Minimal Cut Set, 64
Security Minimal Cut Set, 64

Probability
AND-gate, 66
OR-gate, 66

Reliability, 8
Risk, 8

Safety, 8
Security, 22

Threat, 23

Vulnerability, 22

143

References

[Andrews 00] J. D. Andrews. To Not or Not to Not. In 18th International
System Safety Conference, Fort Worth Texas, Radisson Plaza, Sep 2000.

[Ariss 11] Omar El Ariss, Dianxiang Xu. Modeling Security Attacks with
Statecharts. In Proceedings of the joint ACM SIGSOFT conference – QoSA
and ACM SIGSOFT symposium – ISARCS on Quality of software architec-
tures – QoSA and architecting critical systems – ISARCS, QoSA-ISARCS
’11, pp. 123–132. ACM, 2011.

[Armbrust 09] Christopher Armbrust, Tim Braun, Tobias Föhst, Mar-
tin Proetzsch, Alexander Renner, Bernd-Helge Schäfer, Karsten Berns.
RAVON — The Robust Autonomous Vehicle for Off-road Navigation. In
Proceedings of the IARP International Workshop on Robotics for Risky In-
terventions and Environmental Surveillance 2009 (RISE 2009), Brussels,
Belgium, Jan 12–14 2009. IARP.

[Arney 09] David Arney, Raoul Jetley, Yi Zhang, Paul Jones, Oleg Sokolsky,
Insup Lee, Arnab Ray. The Generic Patient Controlled Analgesia Pump
Model. http://rtg.cis.upenn.edu/gip.php3, 2009. (accessed 2015-10-
23).

[Avizienis 04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Com-
puting. IEEE Transactions on Dependable and Secure Computing, 1(1):11–
33, Jan-Mar 2004.

[Bachfeld 11a] Daniel Bachfeld. Siemens schließt Lücken in Automa-
tisierungssystemen. http://heise.de/-1259623, 2011. (accessed 2015-
10-23).

[Bachfeld 11b] Daniel Bachfeld. Weitere Siemens-Industriesteuerungen für
Angriffe anfällig. http://heise.de/-1274912, 2011. (accessed 2015-10-
23).

[Bechta Dugan 92] J. Bechta Dugan, Salvatore J. Bavuso, M.A. Boyd. Dy-
namic fault-tree models for fault-tolerant computer systems. Reliability,
IEEE Transactions on, 41(3):363–377, Sep 1992.

http://rtg.cis.upenn.edu/gip.php3
http://heise.de/-1259623
http://heise.de/-1274912

146 REFERENCES

[Benenson 08] Zinaida Benenson, Peter M Cholewinski, Felix C Freiling. Vul-
nerabilities and attacks in wireless sensor networks. Wireless Sensors Net-
works Security, Cryptology & Information Security Series (CIS), pp. 22–43,
2008.

[Bergert 15] Denise Bergert, Axel Kannenberg. Weitere Sicherheitslücke in
Hospira-Infusionspumpen. http://heise.de/-2682272, 2015. (accessed
2015-10-23).

[Bistarelli 06] Stefano Bistarelli, Fabio Fioravanti, Pamela Peretti. Defense
trees for economic evaluation of security investments. In Availability, Reli-
ability and Security, 2006. ARES 2006. The First International Conference
on, pp. 8 pp.–, Apr 2006.

[Bloomfield 12] Richard Bloomfield, Robin Bloomfield, Ilir Gashi, Robert
Stroud. How Secure Is ERTMS? In Frank Ortmeier, Peter Daniel (Hrsg.),
Computer Safety, Reliability, and Security , Lecture Notes in Computer
Science Bd. 7613. Springer Berlin Heidelberg, 2012.

[Bobbio 03] Andrea Bobbio, Giuliana Franceschinis, Rossano Gaeta, Luigi
Portinale. Parametric fault tree for the dependability analysis of redun-
dant systems and its high-level Petri net semantics. Software Engineering,
IEEE Transactions on, 29(3):270–287, Mar 2003.

[Bouissou 03] Marc Bouissou, Jean-Louis Bon. A new formalism that com-
bines advantages of fault-trees and Markov models: Boolean logic driven
Markov processes. Reliability Engineering & System Safety, 82(2):149 –
163, 2003.

[Bowles 01] John B. Bowles, Chi Wan. Software Failure Modes and Effects
Analysis For a Small Embedded Control System. In 2001 Proceedings An-
nual Reliability and Maintainability Symposium. IEEE, 2001.

[Brooke 03] Phillip J. Brooke, Richard F. Paige. Fault trees for security sys-
tem design and analysis. Computers & Security, 33:256–264, 2003.

[Bryant 86] R.E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. Computers, IEEE Transactions on, C-35(8):677–691, Aug 1986.

[Buldas 06] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, Jan
Willemson. Rational Choice of Security Measures Via Multi-parameter
Attack Trees. In Critical Information Infrastructures Security, 2006.

[Byres 04] Eric J. Byres, Matthew Franz, Darrin Miller. The Use of Attack
Trees in Assessing Vulnerabilities in SCADA Systems. In IEEE Interna-
tional Infrastructure Survivability Workshop, 2004.

[Carreras 01] C. Carreras, I. D. Walker. Interval Methods for Fault-Tree Anal-
yses in Robotics. IEEE Transactions on Reliability, 50(1):3–11, Mar 2001.

[Casals 12] Silvia Gil Casals, Philippe Owezarski, Gilles Descargues. Risk
Assessment for Airworthiness Security. In Frank Ortmeier, Peter Daniel
(Hrsg.), Computer Safety, Reliability, and Security , Lecture Notes in Com-
puter Science Bd. 7612. Springer Berlin Heidelberg, 2012.

[Checkoway 11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny
Anderson, Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, Tadayoshi Kohno et al. Comprehensive Experimental

http://heise.de/-2682272

REFERENCES 147

Analyses of Automotive Attack Surfaces. In USENIX Security Symposium,
2011.

[Codetta-Raiteri 04] D. Codetta-Raiteri, G. Franceschinis, M. Iacono, V. Vit-
torini. Repairable fault tree for the automatic evaluation of repair policies.
In Dependable Systems and Networks, 2004 International Conference on,
pp. 659–668, Jun 2004.

[Codetta-Raiteri 05] D Codetta-Raiteri. Extended Fault Trees Analysis sup-
ported by Stochastic Petri Nets. Dissertation, Università di Torino, Nov
2005.

[Codetta-Raiteri 13] Daniele Codetta-Raiteri. Generalized Fault-Trees: from
reliability to security. In International Workshop on Quantitative Aspects
in Security Assurance (QASA), 2013.

[Convery 02] S. Convery, D. Cook, M. Franz. An Attack Tree for the Border
Gateway Protocol. Technischer Bericht, Cisco, 2002.

[Dhillon 11] Danny Dhillon. Developer-Driven Threat Modeling: Lessons
Learned in the Trenches. IEEE Security and Privacy, 9:41–47, 2011.

[DIN 25424-1 81] DIN 25424: Fehlerbaumanalyse Teil 1: Methode und Bildze-
ichen, Sep 1981.

[DIN 25424-2 90] DIN 25424: Fehlerbaumanalyse Teil 2: Handrechenver-
fahren zur Auswertung eines Fehlerbaumes, Apr 1990.

[DIN 40041 90] DIN 40041: Zuverlässigkeit - Begriffe, Dec 1990.
[Dobbing 06a] Brian Dobbing, Samantha Lautieri. SafSec: Integration of

Safety & Security Certification - Methodology: Guidance Material. Tech-
nischer Bericht, Praxis High Integrity Systems, 2006.

[Dobbing 06b] Brian Dobbing, Samantha Lautieri. SafSec: Integration of
Safety & Security Certification - Methodology: Standard. Technischer
Bericht, Praxis High Integrity Systems, 2006.

[Eames 99] David Peter Eames, Jonathan Moffett. The Integration of Safety
and Security Requirements. In Computer Safety, Reliability and Security,
1999.

[ED-202 10] ED-202: Airworthiness security process specification, 2010.
[Ericson 99] Clifton A. Ericson. Fault Tree Analysis - A History. In Pro-

ceedings of The 17th International System Safety Conference, The Boeing
Company, Seattle, Washington, 1999.

[ESSaRel 09] Embedded System Safety and Reliability Analyzer (ESSaRel).
http://www.essarel.de, 2009. (accessed 2015-10-23).

[ETSI TS 102 165-1 11] ETSI TS 102 165-1: TISPANMethods and Protocols;
Method and proforma for Threat, Risk, Vulnerability Analysis, 2011.

[Foster 15] Ian Foster, Andrew Prudhomme, Karl Koscher, Stefan Savage.
Fast and Vulnerable: A Story of Telematic Failures. In Proceedings of the
9th USENIX Conference on Offensive Technologies, pp. 15–15. USENIX
Association, 2015.

[Fovino 09] Igor Nai Fovino, Marcelo Masera, Alessio De Cian. Integrating
cyber attacks within fault trees. Reliability Engineering and System Safety,
94:1394–1402, 2009.

http://www.essarel.de

148 REFERENCES

[Fussell 75] J.B. Fussell. How to Hand-Calculate System Reliability and
Safety Characteristics. Reliability, IEEE Transactions on, R-24(3):169–174,
1975.

[Förster 09] Marc Förster, Mario Trapp. Fault tree analysis of software-
controlled component systems based on second-order probabilities. In IS-
SRE 2009 proceedings, 2009.

[Förster 10] Marc Förster, Reinhard Schwarz, Max Steiner. Integration of
Modular Safety and Security Models for the Analysis of the Impact of Secu-
rity on Safety. Technischer Bericht 078.10/E, Fraunhofer IESE, Technische
Universität Kaiserslautern, Kaiserslautern, Germany, 2010.

[Greenberg 15] Andy Greenberg. Hackers Remotely Kill a Jeep on
the Highway – With Me in It. http://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/, 2015. (accessed 2015-10-23).

[Grosspietsch 04] Karl-Erwin Grosspietsch, Tanya A. Silayeva. A Combined
Safety/Security Approach for Co-Operative Distributed Systems. In Pro-
ceedings of the 18th International Parallel and Distributed Processing Sym-
posium (IPDPS’04), 2004.

[Guo 10] Zhengsheng Guo, Dirk Zeckzer, Peter Liggesmeyer, Oliver Mäckel.
Identification of Security-Safety Requirements for the Outdoor Robot
RAVON Using Safety Analysis Techniques. In Software Engineering Ad-
vances (ICSEA), 2010 Fifth International Conference on, pp. 508–513,
2010.

[Helmer 02] Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les
Miller, Robyn Lutz. A Software Fault Tree Approach to Requirements Anal-
ysis of an Intrusion Detection System. Requirements Engineering Journal,
7(4):207–220, 2002.

[Hernan 06] Shawn Hernan, Scott Lambert, Tomasz Ostwald, Adam
Shostack. Uncover Security Design Flaws Using The STRIDE Approach.
MSDN Magazine, Nov 2006.

[Holland 15] Martin Holland. ConnectedDrive: Der BMW-Hack im Detail.
http://heise.de/-2540786, 2015. (accessed 2015-10-23).

[Howard 02] Michael Howard, David E. Leblanc. Writing Secure Code. Mi-
crosoft Press, Redmond, WA, USA, Ausgabe 2nd, 2002.

[Howard 06] Michael Howard, Steve Lipner. The Security Development Life-
cycle: A Process for Developing Demonstrably More Secure Software. Mi-
crosoft Press, 2006.

[ICS-CERT 11] ICS-CERT. Alert (ICS-ALERT-11-161-01) - Siemens S7-
1200 PLC Vulnerabilities. https://ics-cert.us-cert.gov/alerts/
ICS-ALERT-11-161-01, Jun 2011. (accessed 2015-09-17).

[ICS-CERT 13] ICS-CERT. Alert (ICS-ALERT-13-164-01) - Medical De-
vices Hard-Coded Passwords. https://ics-cert.us-cert.gov/alerts/
ICS-ALERT-13-164-01, Jun 2013. (accessed 2015-10-23).

[Idika 10] Nwokedi Idika, Bharat Bhargava. Extending Attack Graph-based
Security Metrics and Aggregating Their Application. IEEE Transactions
on Dependable and Secure Computing, 2010.

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://heise.de/-2540786
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-11-161-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-11-161-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-13-164-01
https://ics-cert.us-cert.gov/alerts/ICS-ALERT-13-164-01

REFERENCES 149

[IEC 60300-3-1 05] IEC 60300-3-1: Dependability management - Part 3-1: Ap-
plication guide; Analysis techniques for dependability; Guide on methodol-
ogy, May 2005.

[IEC 60812 06] IEC 60812: Analysis techniques for system reliability - Proce-
dure for Failure Mode and Effects Analysis (FMEA), Jan 2006.

[IEC 61025 06] IEC 61025: Fault tree Analysis (FTA), Dec 2006.
[IEC 61508-4 10] IEC 61508-4: Functional safety of electrical / electronic /

programmable electronic safety-related systems - Part 4: Definitions and
abbreviations, Apr 2010.

[IEC 61508 10] IEC 61508: Functional safety of electrical / electronic / pro-
grammable electronic safety-related systems, 2010.

[IEC 61882 01] IEC 61882: Hazard and operability studies (HAZOP studies)
- Application guide, May 2001.

[Ingoldsby 03] Terrance R Ingoldsby. Understanding Risks Through At-
tack Tree Analysis. Amenaza Technologies Ltd. Copyright, 2003. http:
//amenaza.com/downloads/docs/Methodology.pdf.

[Ingoldsby 13] Terrance R Ingoldsby. Attack tree-based threat risk analy-
sis. Amenaza Technologies Ltd. Copyright, 2013. https://amenaza.com/
downloads/docs/AttackTreeThreatRiskAnalysis.pdf.

[ISO/IEC 15408 12] ISO/IEC 15408 Common Criteria for Information Tech-
nology Security Evaluation, Sep 2012.

[ISO/IEC 27000 09] DIN ISO/IEC 27000 Information technology - Security
techniques - Information security management systems - Overview and vo-
cabulary, May 2009.

[ITSG 15] Gesetz zur Erhöhung der Sicherheit informationstechnischer Sys-
teme (IT-Sicherheitsgesetz). "http://www.bgbl.de/xaver/bgbl/start.
xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s1324.pdf", Jul
2015. (accessed 2015-10-23).

[Jürgenson 08] Aivo Jürgenson, Jan Willemson. Computing Exact Outcomes
of Multi-parameter Attack Trees. In On the Move to Meaningful Internet
Systems, 2008.

[Kaiser 02] Bernhard Kaiser. Integration von Sicherheits- und Zuverläs-
sigkeitsmodellen in den Entwicklungsprozess Eingebetteter Systeme. Tech-
nischer Bericht, Hasso-Plattner Institut für Softwaretechnik an der Univer-
sität Potsdam, 2002.

[Kaiser 03a] Bernhard Kaiser. A Fault-Tree Semantics to model Software-
Controlled Systems. Technischer Bericht, Hasso-Plattner Institute for Soft-
ware Systems Engineering at the University of Potsdam, 2003.

[Kaiser 03b] Bernhard Kaiser, Peter Liggesmeyer, Oliver Mäckel. A New
Component Concept for Fault Trees. In 8th Australian Workshop on Safety
Critical Systems and Software, Canberra, Oct 2003.

[Kaiser 06] Bernhard Kaiser. State/Event Fault Trees: A Safety and Reli-
ability Analysis Technique for Software-Controlled Systems. Dissertation,
Technische Universität Kaiserslautern, 2006.

http://amenaza.com/downloads/docs/Methodology.pdf
http://amenaza.com/downloads/docs/Methodology.pdf
https://amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
https://amenaza.com/downloads/docs/AttackTreeThreatRiskAnalysis.pdf
http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s1324.pdf
http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s1324.pdf

150 REFERENCES

[Kamkar 15] Samy Kamkar. Drive It Like You Hacked It: New Attacks and
Tools to Wirelessly Steal Cars. In DEF CON 23, 2015.

[Kargl 14] Frank Kargl, Rens W. van der Heijden, Hartmut König, Alfonso
Valdes, Marc C. Dacier. Insights on the Security and Dependability of
Industrial Control Systems. Security Privacy, IEEE, 12(6):75–78, Nov 2014.

[Kleinz 14] Torsten Kleinz, Hajo Schulz. 31C3: Wie man ein Chemiewerk
hackt. http://heise.de/-2507259, 2014. (accessed 2015-10-23).

[Klick 15] Johannes Klick, Stephan Lau, Daniel Marzin, Jan-Ole Malchow,
Volker Roth. Internet-facing PLCs - A New Back Orifice. In Blackhat USA
2015,, 2015.

[Klutke 03] G.A. Klutke, P.C. Kiessler, M.A. Wortman. A critical look at
the bathtub curve. Reliability, IEEE Transactions on, 52(1):125–129, Mar
2003.

[Koscher 10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Pa-
tel, Tadayoshi Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor,
Danny Anderson, Hovav Shacham, Stefan Savage. Experimental Security
Analysis of a Modern Automobile. In 2010 IEEE Symposium on Security
and Privacy, 2010.

[Langner 11] Ralph Langner. Stuxnet: Dissecting a Cyberwarfare Weapon.
Security Privacy, IEEE, 9(3):49–51, May 2011.

[Lano 02] Kevin Lano, David Clark, Kelly Androutsopoulos. Safety and Se-
curity Analysis of Object-Oriented Models. In Safecomp, 2002.

[Lanotte 03] Ruggero Lanotte. An automaton-theoretic approach to safety and
security in real-time systems. Dissertation, Università degli Studi di Pisa,
2003.

[LeMay 11] E. LeMay, M.D. Ford, K. Keefe, W.H. Sanders, C. Muehrcke.
Model-based Security Metrics Using ADversary VIew Security Evaluation
(ADVISE). In Quantitative Evaluation of Systems (QEST), 2011 Eighth
International Conference on, pp. 191–200, Sep 2011.

[Marsan 95] Marco A. Marsan, Gianfranco Balbo, Gianni Conte, Susanna Do-
natelli, Giuliana Franceschinis. Modelling with Generalized Stochastic Petri
Nets. John Wiley & Sons, Inc., 1995.

[Mauw 06] Sjouke Mauw, Martijn Oostdijk. Foundations of Attack Trees. In
Information Security and Cryptology - ICISC 2005, 2006.

[McDermott 00] J. P. McDermott. Attack Net Penetration Testing. In Pro-
ceedings of the 2000 Workshop on New Security Paradigms, NSPW ’00, pp.
15–21, New York, NY, USA, 2000. ACM.

[Microsoft 10] Microsoft. Security Development Lifecycle. 2010.
[MITRE 14] MITRE. Common Weakness Enumeration. http://cwe.mitre.

org, 2014. (accessed 2015-10-23).
[MoD DS 00-56 07] Defence Standard 00-56, Safety Management Require-

ments for Defence Systems, Jun 2007.
[Nicol 04] David M. Nicol, William H. Sanders, Kishor S. Trivedi. Model-

Based Evaluation: From Dependability to Security. IEEE Transactions on
Dependable and Secure Computing, 1(1):48–65, Jan-Mar 2004.

http://heise.de/-2507259
http://cwe.mitre.org
http://cwe.mitre.org

REFERENCES 151

[OWASP 15] Open Web Application Security Project (OWASP). https://
www.owasp.org/, 2015. (accessed 2015-10-18).

[Paul 15] Stephane Paul, Laurent Rioux. Over 20 Years of Research in Cyber-
security and Safety Engineering: a short Bibliography. In 6th International
Conference on Safety and Security Engineering (SAFE), 2015.

[Pauli 15] Darren Pauli. Thousands of ’directly hackable’ hospital devices ex-
posed online. http://www.theregister.co.uk/2015/09/29/thousands_
of_directly_hackable_hospital_devices_found_exposed/, 2015. (ac-
cessed 2015-10-23).

[Piètre-Cambacédès 10a] Ludovic Piètre-Cambacédès, Marc Bouissou. At-
tack and Defense Modeling with BDMP. In Igor Kotenko, Victor Skormin
(Hrsg.), Computer Network Security , Lecture Notes in Computer Science
Bd. 6258, pp. 86–101. Springer Berlin Heidelberg, 2010.

[Piètre-Cambacédès 10b] Ludovic Piètre-Cambacédès, Marc Bouissou. Mod-
eling safety and security interdependencies with BDMP (Boolean logic
Driven Markov Processes). In Systems Man and Cybernetics (SMC), 2010
IEEE International Conference on, pp. 2852–2861, Oct 2010.

[Proetzsch 10] Martin Proetzsch, Tobias Luksch, Karsten Berns. Develop-
ment of Complex Robotic Systems Using the Behavior-Based Control Ar-
chitecture iB2C. Robotics and Autonomous Systems, 58(1):46–67, Jan 2010.

[Pudar 09] Srdjan Pudar, G. Manimaran, Chen-Ching Liu. PENET: A prac-
tical method and tool for integrated modeling of security attacks and coun-
termeasures. Computers & Security, 28(8):754 – 771, 2009.

[Pumfrey 99] David John Pumfrey. The Principled Design of Computer Sys-
tem Safety Analyses. Dissertation, University of York, 1999.

[Rauzy 01] Antoine Rauzy. Mathematical Foundations of Minimal Cutsets.
IEEE Transactions on Reliability, 50(4):389–396, Dec 2001.

[Reichenbach 12] F. Reichenbach, J. Endresen, M.M.R. Chowdhury,
J. Rossebo. A Pragmatic Approach on Combined Safety and Security Risk
Analysis. In Software Reliability Engineering Workshops (ISSREW), 2012
IEEE 23rd International Symposium on, pp. 239–244, Nov 2012.

[Robertson 14] Jordan Robertson, Michael A. Riley. Mys-
terious ’08 Turkey Pipeline Blast Opened New Cyber-
war. http://www.bloomberg.com/news/articles/2014-12-10/
mysterious-08-turkey-pipeline-blast-opened-new-cyberwar, 2014.
(accessed 2015-10-23).

[Roth 13] Michael Roth, Max Steiner, Peter Liggesmeyer. Ein Ansatz zur
integrierten Sicherheitsanalyse komplexer Systeme. In Wolfgang A. Ha-
lang (Hrsg.), Kommunikation unter Echtzeitbedingungen, Informatik ak-
tuell. Springer Berlin Heidelberg, 2013.

[Rouf 10] Ishtiaq Rouf, Rob Miller, Hossen Mustafa, travis Taylor, Sangho
Oh, Wanyuan Xu, Marco Gruteser, Wade Trappe, Ivan Seskar. Security
and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure
Monitoring Case Study. Technischer Bericht, Dept. of CSE, Univ. of South

https://www.owasp.org/
https://www.owasp.org/
http://www.theregister.co.uk/2015/09/29/thousands_of_directly_hackable_hospital_devices_found_exposed/
http://www.theregister.co.uk/2015/09/29/thousands_of_directly_hackable_hospital_devices_found_exposed/
http://www.bloomberg.com/news/articles/2014-12-10/mysterious-08-turkey-pipeline-blast-opened-new-cyberwar
http://www.bloomberg.com/news/articles/2014-12-10/mysterious-08-turkey-pipeline-blast-opened-new-cyberwar

152 REFERENCES

Carolina, Columbia, SC USA and WINLAB, Rutgers Univ. Pscataway, NJ
USA, 2010.

[Rushdi 04] Ali M. Rushdi, Omar M. Ba-Rukab. A Doubly-Stochastic Fault-
Tree Assessment of the Probabilities of Security Breaches in Computer
Systems. In Saudi Science Conference, 2004.

[Rushdi 05] Ali M. Rushdi, Omar M. Ba-Rukab. Fault.-tree modelling of
computer system security. International Journal of Computer Mathematics,
82:805–819, 2005.

[Saglietti 06] Francesca Saglietti. Interaktion zwischen funktionaler Sicherheit
und Datensicherheit. In Sicherheit - Schutz und Zuverlässigkeit (Sicher-
heit 2006), Lecture Notes in Informatics, pp. 373–383, Magedeburg, 2006.
Gesellschaft für Informatik.

[Scherschel 14] Fabian Scherschel. BSI-Sicherheitsbericht: Erfolgreiche
Cyber-Attacke auf deutsches Stahlwerk. http://heise.de/-2498990,
2014. (accessed 2015-10-23).

[Scherschel 15] Fabian Scherschel. Root-Shell im Krankenhaus: Hospira-
Infusionspumpe mit Telnet-Lücke. http://heise.de/-2633529, 2015. (ac-
cessed 2015-10-23).

[Schirrmacher 15] Dennis Schirrmacher. Scada-Sicherheit: Siemens-PLC wird
zum Einbruchswerkzeug. http://heise.de/-2774812, 2015. (accessed
2015-10-23).

[Schmidt 11] Jürgen Schmidt. Siemens bezieht Stellung zu den "SCADA-
Affen". http://heise.de/-1318547, 2011. (accessed 2015-10-23).

[Schmittner 14] Christoph Schmittner, Thomas Gruber, Peter Puschner, Er-
win Schoitsch. Security Application of Failure Mode and Effect Analysis
(FMEA). In Andrea Bondavalli, Felicita Di Giandomenico (Hrsg.), Com-
puter Safety, Reliability, and Security , Lecture Notes in Computer Science
Bd. 8666, pp. 310–325. Springer International Publishing, 2014.

[Schneier 14] Bruce Schneier. The Internet of Things Is Wildly Insecure -
And Often Unpatchable. https://www.schneier.com/essays/archives/
2014/01/the_internet_of_thin.html, 2014. (accessed 2015-10-23).

[Schneier 99] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal, Dec 1999.
[Schäfer 11] Bernd Helge Schäfer. Robot Control Design Schemata and their

Application in Off-road Robotics. Dissertation, TU Kaiserslautern, 2011.
[Sheyner 02] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann,

Jeannette M. Wing. Automated Generation and Analysis of Attack Graphs.
In Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on, pp.
273–284, 2002.

[Sommerville 03] Ian Sommerville. An Integrated Approach to Dependabil-
ity Requirements Engineering. In Proceedings of the 11th Safety-Critical
Systems Symposium, 2003.

[Spang 10] Silke Spang, Rasmus Adler, Tanvir Hussain, Robert Eschbach.
Scrutinizing the impact of security on safety on an Communicating vehicle
platoon. Technischer Bericht, Fraunhofer IESE, 2010.

http://heise.de/-2498990
http://heise.de/-2633529
http://heise.de/-2774812
http://heise.de/-1318547
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html

REFERENCES 153

[Stahl 13] Louis-F. Stahl, Ronald Eikenberg. Kritisches Sicherheitsupdate
für 200.000 Industriesteuerungen. http://heise.de/-1934787, 2013. (ac-
cessed 2015-10-23).

[Steiner 12] Max Steiner, Patric Keller, Peter Liggesmeyer. Modeling the Ef-
fects of Software on Safety and Reliability in Complex Embedded Systems.
In Frank Ortmeier, Peter Daniel (Hrsg.), Computer Safety, Reliability, and
Security, Bd. 7613, pp. 454–465. Springer Berlin Heidelberg, 2012. Pro-
ceedings of the 3rd International Workshop in Digital Engineering.

[Steiner 13a] Max Steiner, Peter Liggesmeyer. Combination of Safety and
Security Analysis - Finding Security Problems that Threaten the Safety
of a System. In Matthieu ROY (Hrsg.), Proceedings of Workshop DECS
(ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical
Systems) of the 32nd International Conference on Computer Safety, Relia-
bility and Security, 2013.

[Steiner 13b] Max Steiner, Adrien Mouaffo, Davide Taibi. Empirische
Evaluierung der Analysetechniken dokumentiert. Technischer Bericht, Uni-
versity of Kaiserslautern, 2013. Meilensteinbericht zum Arbeitspaket 6.3.2,
Meilenstein 30.

[Steiner 15] Max Steiner, Peter Liggesmeyer. Qualitative and Quantitative
Analysis of CFTs Taking Security Causes into Account. In Floor Koorn-
neef, Coen van Gulijk (Hrsg.), Computer Safety, Reliability, and Security ,
Lecture Notes in Computer Science Bd. 9338, pp. 109–120. Springer Inter-
national Publishing, 2015.

[Teso 13] Hugo Teso. Aircraft Hacking: Practical Aero Series. http:
//conference.hitb.org/hitbsecconf2013ams/hugo-teso/, 2013. (ac-
cessed 2015-10-23).

[van der Borst 01] M van der Borst, H Schoonakker. An overview of {PSA}
importance measures. Reliability Engineering & System Safety, 72(3):241–
245, 2001.

[van Lamsweerde 04] Axel van Lamsweerde. Elaborating Security Require-
ments by Construction of Intentional Anti-Models. In International Con-
ference on Software Engineering, 2004.

[Verdult 15] Roel Verdult, Flavio D. Garcia, Barıs Ege. Dismantling Megamos
Crypto: Wirelessly Lockpicking a Vehicle Immobilizer. In 24nd USENIX
Security Symposium, 2015.

[Verendel 09] Vilhelm Verendel. Quantified security is a weak hypothesis: a
critical survey of results and assumptions. In NSPW ’09: Proceedings of
the 2009 workshop on New security paradigms workshop, pp. 37–50, New
York, NY, USA, 2009. ACM.

[Vesely 02] William Vesely. Fault Tree Handbook with Aerospace Applications.
NASA, 2002.

[Vesely 81] W.E. Vesely, F.F. Goldberg, N.H. Roberts, D.F. Haasl. Fault Tree
Handbook. U.S. Nuclear Regulatory Commission, 1981.

http://heise.de/-1934787
http://conference.hitb.org/hitbsecconf2013ams/hugo-teso/
http://conference.hitb.org/hitbsecconf2013ams/hugo-teso/

154 REFERENCES

[Vigo 12] Roberto Vigo. The Cyber-Physical Attacker. In Frank Ortmeier,
Peter Daniel (Hrsg.), Computer Safety, Reliability, and Security, Bd. 7613,
pp. 347–356. Springer Berlin Heidelberg, 2012.

[Wilhoit 13] Kyle Wilhoit. Who’s Really Attacking Your ICS Equipment?
Trend Micro Incorporated, 2013.

[Zetter 12] Kim Zetter. Hackers Breached Railway Network, Disrupted Ser-
vice. http://www.wired.com/2012/01/railyway-hack/, 2012. (accessed
2015-10-23).

[Zetter 15] Kim Zetter. Hacker Can Send Fatal Dose to
Hospital Drug Pumps. http://www.wired.com/2015/06/
hackers-can-send-fatal-doses-hospital-drug-pumps/, 2015. (ac-
cessed 2015-10-23).

http://www.wired.com/2012/01/railyway-hack/
http://www.wired.com/2015/06/hackers-can-send-fatal-doses-hospital-drug-pumps/
http://www.wired.com/2015/06/hackers-can-send-fatal-doses-hospital-drug-pumps/

Max Steiner
Curriculum Vitae

Name Max Philipp Steiner

Higher Education
2003 – 2009 Study of Computer Science at the University of Kaiserslautern

Diploma Thesis, Integrating Reinforcement Learning into
Behaviour-Based Control of Bipedal Robots.

04/2009 Diplom Informatik (Dipl.-Inf.), University of Kaiserslautern,
Kaiserslautern.

08/2009 –
01/2016

PhD Student at University of Kaiserslautern at the Chair of
Software Engineering: Dependability

Work Experience
08/2009 –
01/2016

Researcher, University of Kaiserslautern, Chair of Software
Engineering: Dependability, Area of research: safety and security
analysis of embedded systems.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Contribution
	1.4 Structure

	2 Related Work and Fundamentals
	2.1 Safety Analysis Techniques
	2.1.1 Fault Tree Analysis (FTA)
	2.1.2 Inductive Safety Analysis Techniques

	2.2 Security Analysis Techniques
	2.2.1 Attack Tree Analysis
	2.2.2 Threat Modeling

	2.3 Combinations of Safety and Security Analysis
	2.3.1 Integration of FTs and ATs
	2.3.2 Security Analysis with Safety Implications
	2.3.3 Failure Mode, Vulnerabilities and Effects Analysis (FMVEA)
	2.3.4 Other Related Approaches that Combine Safety and Security Analysis

	2.4 Critique of Quantified Security Properties
	2.5 Conclusion

	3 A Comprehensive Safety Modeling Approach
	3.1 Overall Modeling and Analysis Process
	3.2 Discussing Different Combinations of CFTs and ATs
	3.2.1 An AT Extended by a CFT
	3.2.2 A CFT Extended by an AT
	3.2.3 Nested Trees

	3.3 Tree Creation Approaches
	3.3.1 Combination of two Complete Separate Trees
	3.3.2 Extension of a Tree

	3.4 Development of a SeCFT
	3.5 Rules for the Development of an SeCFT

	4 The Analysis of Security-enhanced Component Fault Trees
	4.1 Ratings of Basic Events in SeCFTs
	4.1.1 Probabilities
	4.1.2 Likelihood
	4.1.3 Tuple Rating

	4.2 Calculation Rules for SeCFTs
	4.2.1 Probabilities
	4.2.2 Likelihood
	4.2.3 Tuple Rating

	4.3 Qualitative Analysis of SeCFTs
	4.3.1 Minimal Cut Set Analysis
	4.3.2 Importance of Basic Events

	4.4 Quantitative Analysis of SeCFTs
	4.5 Summary: Analysis Process of SeCFTs

	5 Evaluation of the Approach
	5.1 Tool Support
	5.2 Analysis Example: RAVON
	5.2.1 Description RAVON
	5.2.2 Analysis
	5.2.3 Results

	5.3 Analysis Example: Adaptive Cruise Control
	5.3.1 Description Adaptive Cruise Control
	5.3.2 Analysis
	5.3.3 Results

	5.4 Analysis Example: Smart Farming
	5.4.1 Description: Smart Farming
	5.4.2 Analysis
	5.4.3 Results

	5.5 Analysis Example: Infusion Pump
	5.5.1 Description: Infusion Pump
	5.5.2 Analysis
	5.5.3 Results

	5.6 Conclusion

	6 Conclusion
	A Appendix
	A.1 Evaluation Example: Ravon
	A.2 Evaluation Example: Adaptive Cruise Control
	A.3 Evaluation Example: Smart Farming
	A.4 Evaluation Example: Infusion Pump

	Abbreviations
	Index
	References

