
Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur Verleihung
des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium,
Dr. rer. nat.) genehmigte Dissertation

Signature standard bases over
principal ideal rings

Adrian Popescu

1. Gutachter: Prof. Dr. Gerhard Pfister
2. Gutachter: Prof. Dr. Martin Kreuzer

Vollzug der Promotion: 28 September 2016

D 386

Page

Abstract i

Acknowledgments v

Preface vii

A Standard bases over rings 1

1 Buchberger’s Algorithm 3
A:1.1 Basic definitions and notations . 3
A:1.2 Buchberger’s algorithm blueprint . 7
A:1.3 ALL vs. JUST . 12
A:1.4 Huge coefficients over the integers . 14
A:1.5 Strong pairs in the reduction procedure 16

2 Signature standard bases over the integers 21
A:2.1 Definitions and notations . 21
A:2.2 Criteria: Syzygy, Rewrite and F5C . 25
A:2.3 SigDrops . 35
A:2.4 Timings . 40
A:2.5 Finite rings − Zm . 41

B Depth, Stanley Depth and Hilbert Depth 45

1 Definitions and Notations 49
B:1.1 Cohen−Macaulay Modules . 49
B:1.2 Hilbert Function and Hilbert Polynomial 50

2 Hilbert Depth 55
B:2.1 Hilbert Series and Hilbert Depth . 55
B:2.2 Computational Experiments . 60
B:2.3 The hdepth procedure . 62

3 The Stanley Conjecture 63
B:3.1 The present stay of Stanley’s Conjecture and its impact in Commutative

Algebra . 63
B:3.2 The Stanley Conjecture on intersections of three monomial prime ideals. 65
B:3.3 The Stanley Conjecture for factors of monomial ideals 74
B:3.4 A special case of r = 4 . 77

B:3.5 Proof of Theorem B:3.3.7 . 78

4 Stanley depth of factors of monomial ideals 85
B:4.1 The canonical form of a factor of monomial ideals 86
B:4.2 The canonical form algorithm . 91

C Constructive General Neron Desingularization 95

1 Artin approximation and General Neron Desingularization 99

2 A method to compute a General Neron Desingularization in the frame of
one dimensional local domains 103

3 The implementation in SINGULAR and some examples 115

Appendix 127

Examples used in Part A 129
Examples for ALL vs JUST strategies . 131
Example 18 . 133
Examples for Signature Algorithm . 137

Programming in SINGULAR ’s kernel 141
Introduction . 143
Git, Compilation and Building . 145
Internal structures . 149
Searching functions from the interpreter . 157
Adding new features . 161

ABSTRACT

By using Gröbner bases of ideals of polynomial algebras over a field, many imple-
mented algorithms manage to give exciting examples and counter examples in Com-
mutative Algebra and Algebraic Geometry. Part A of this thesis will focus on extending
the concept of Gröbner bases and Standard bases for polynomial algebras over the ring
of integers and its factors Zm[x]. Moreover we implemented two algorithms for this
case in SINGULAR which use different approaches in detecting useless computations,
the classical Buchberger algorithm and a F5 signature based algorithm.

Part B includes two algorithms that compute the graded Hilbert depth of a graded
module over a polynomial algebra R over a field, as well as the depth and the multi-
graded Stanley depth of a factor of monomial ideals of R. The two algorithms provide
faster computations and examples that lead B. Ichim and A. Zarojanu to a counter ex-
ample of a question of J. Herzog. A. Duval, B. Goeckner, C. Klivans and J. Martin have
recently discovered a counter example for the Stanley Conjecture. We prove in this
thesis that the Stanley Conjecture holds in some special cases.

Part C explores the General Neron Desingularization in the frame of Noetherian
local domains of dimension 1. We have constructed and implemented in SINGULAR and
algorithm that computes a strong Artin Approximation for Cohen−Macaulay local rings
of dimension 1.

Technische Universität Kaiserslautern i

Für Polynomringe über Körpern sind Gröbnerbasen ein wichtiges Hilfsmittel für
Berechnungen in der kommutativen Algebra und der algebraischen Geometrie. Teil A
dieser Dissertation behandelt die Verallgemeinerung des Konzepts der Gröbnerbasis und
Standardbasis für Polynomringen über dem Ring der ganzen Zahlen und seinen Faktor-
ringen. Hierbei haben wir theoretische Aspekte untersucht und eine Vielzahl neuer
Strategien entwickelt. Darauf aufbauend haben wir zwei verschiedene Algorithmen im
Computeralgebrasystem SINGULAR implementiert, die sich durch ihre Kriterien zum
Finden unnötiger Berechnungen grundlegend unterscheiden, den Buchberger Algorith-
mus und den signaturbasierte F5 Algorithmus.

Der Teil B beinhaltet zwei Algorithmen zum Berechnen der graduierten Hilberttiefe
von graduierten Moduln über einer polynomialen Algebra R über einem Körper, sowie
der Tiefe und der multigraduierten Stanleytiefe eines Faktors eines monomialen Ide-
als von R. Die beiden Algorithmen bieten schnellere Berechnungsverfahren, die zu
Beispielen geführt haben, die B. Ichim und A. Zarojanu nutzen konnten ein Gegen-
beispiel für eine Frage von J. Herzog zu finden. Vor Kurzem erst haben A. Duval, B.
Goeckner, C. Klivans und J. Martin ein Gegenbeispiel zur Stanley Vermutung gefunden.
Wir zeigen in dieser Arbeit, dass die Stanley Vermutung in speziellen Fällen richtig ist.

Der Teil C ist der allgemeinen Neron Desingularisierung im Fall von Noetherschen,
lokalen Bereichen der Dimension 1 gewidmet. Hier wurde ein Algorithmus zur Berech-
nung der Artinsche Approximation für lokale Cohen−Macaulay Ringe der Dimension 1
entwickelt.

Technische Universität Kaiserslautern iii

ACKNOWLEDGMENTS

I would like to thank Gerhard Pfister for being much more than a professor;
Christian Eder for always having time for my standard bases questions and for working
on them together; Hans Schönemann for been able to answer all my SINGULAR -related
questions; Wolfram Decker and Christoph Lossen for finding financial support without
which this thesis would not have been possible; Anne Frühbis-Krüger for the help in de-
veloping new strategies used in solving integer related bugs, Jakob Kröker for sending
many bugs regarding the standard bases over rings and to Petra Bäsell for helping me
in any other problem.

I would also like to thank Natalie for spending lots of time correcting my English
mistakes and special thanks to my parents, Adriana and Dorin, who supported and
motivated me.

Danke :)

Technische Universität Kaiserslautern v

PREFACE

This thesis is structured into three parts that approach different branches in
Computer Algebra and Commutative Algebra and Programming in SINGULAR ’s sources.
The preface will provide the reader a brief history of the main concepts used in each of
these parts and an overall description of this papers structure.

PART A − Standard Bases over Rings

The notion of Gröbner bases was first introduced in 1965 by Buchberger in his PhD
thesis [Bu]. Independently, Grauert and Hironaka introduced the notion of standard
bases, a generalization of the Gröbner bases. This concept proves to be useful in a wide
range of fields like Commutative Algebra, Singularity Theory and Algebraic Geometry.
They are used in solving system of polynomial equations, ideal intersection problems
and even resolving Sudoku puzzles. The standard bases serve as a stepping stone of
a relatively new mathematical field: Computer Algebra. Although the main idea of
Buchberger’s algorithm still remains the same, many new strategies and criteria were
developed to speed up the algorithm.

O. Wienand has modified the Gröbner basis algorithm to work well over base rings
that are not necessarily fields and may have zero divisors. The author has extended
Wienand’s implementation of the algorithm in SINGULAR also for local and mixed or-
derings in his Master thesis. Here we review the algorithm and add some strategies to
speed up the computations, especially when working over the integers.

In 2002 Faugère introduced the F5 algorithm. A lot of the computations in Buch-
berger’s algorithm give no new information for the standard basis. The F5 algorithm
provides strategies to detect and eliminate some of these useless computations by using
signatures. A very interesting survey on the F5 algorithms and variants can be found
in [EF]. C. Eder studied and implemented a variant of F5 in SINGULAR . This paper
provides a generalization of this algorithm over rings that are not necessarily fields.

PART B − Depth, Stanley Depth and Hilbert Depth

In 1982, Richard Stanley has conjectured an upper bound for the depth of a multi-
graded module (see [St]). Nowadays this is known as the Stanley Conjecture and it
surprisingly connects two notions: depth − a homological invariant and the Stanley
depth − a combinatorial concept defined by Stanley Decompositions. At a first glance
no connection between these can be established, but after a closer look similarities can

Technische Universität Kaiserslautern vii

be established: if the Stanley depth is 0, then the depth is 0. Rinaldo published an
algorithm that computes the Stanley depth of a quotient of monomial ideals and im-
plemented it in [CoCoA]. After the introduction of the canonical form we were able to
speed up this algorithm (see [AP2]).

The conjecture has been open for more than 30 years and in the last 10 years many
papers prove particular cases of it. However, in 2016 a counterexample was published
in [DuGo]. A survey concerning the Stanley depth has been published by J. Herzog;
before this counterexample was found and contains an overview of most of the known
results up to 2011 (see [H]).

Stanley decompositions prove to be very useful in describing finitely generated
graded algebras, e.g. rings of invariants under some group action (see Sturmfels and
White [SW]), and in applications of the normal form theory for systems of differential
equations with nilpotent linear part (see Murdock and Sanders [MS]). Another aston-
ishing result concerning the Stanley conjecture is the following result from [HSY] stat-
ing that if the conjecture holds for the Stanley-Reisner of a certain simplicial complex
then it is partitionable.

Herzog, Vlădoiu and Zheng proved in [HVZ] that the module structure is already
given by the Hilbert series and therefore the Stanley depth may be computed from this.
Based on this idea, Bruns, Krattenthaler and Uliczka introduced in [BKU] the Hilbert
depth − a similar notion to the Stanley depth. We introduce a first algorithm that
computes the Hilbert depth and implemented it in SINGULAR .

PART C − Constructive General Neron Desingularization

The Implicit Mapping Theorem plays an important role in Singularity Theory and
Analytic Geometry. A Noetherian local ring (R,m) has the Artin Approximation Property
if each finite system of polynomials equations over R has a solution in R iff it has a solution
in the completion R̂. This can be formulated as follows: for every c ∈ N, each solution of
this system ŷ from R̂ can be approximated with a solution y in R modulo mc. M. Artin
proved in 1969 that the algebraic power series over a field has the Artin Approximation
Property (see [Artin1]). In 1986, D. Popescu proved that each excellent Henselian local
ring has this property (see [DP2]) by using the existence of a so-called General Neron
Desingularization. D. Popescu and the author gave an algorithmic proof of the existence
of a General Neron Desingularization in the frame of one dimensional local domains
(see [APDP2]) and implemented this algorithm in SINGULAR . A generalization of this
algorithm was later published by G. Pfister and D. Popescu (see [PfPo2]).

Many applications of the Artin Approximation Property in Singularity theory and
Commutative Algebra have been presented in a series of conferences hosted in Luminy,
Marseilles, France organized by H. Hauser and G. Rond at the beginning of 2015.

viii Adrian Popescu

THE STRUCTURE

In Chapter A:1 we introduce the reader to a series of basic definitions and notations
from the standard bases theory together with the classic Buchberger Algorithm to com-
pute a Gröbner basis. We continue by expanding the above mentioned concepts to the
case when the ground ring is a principal ideal ring that is not a field (as an extension
of O. Wienands PhD Thesis [W]). This chapter also provides a description of several
strategies that will decrease the run time and memory of the algorithm.

Chapter A:2 consists of Faugère’s F5 algorithm, optimized and implemented in
SINGULAR by C. Eder over fields, and a generalization of the strategy for principal
ideal rings. We also describe the difficulties that arise on this approach together with
a couple of ideas that will overcome these obstacles. At the very end we compare the
Buchberger Algorithm with this version of F5 over the ring of integers on some random
examples.

Chapter B:1 introduces the basic definitions and notations used throughout Part B
and explores in details concepts like the depth of a module, Hilbert Series and Stanley
and Hilbert decomposition.

Chapter B:2 consists of a procedure that computes the Hilbert depth of a mod-
ule. This is the first in a line of algorithms that recently appeared in order to compute
hdepth. This chapter was published in the Journal of Symbolic Computation [AP2].

In Chapter B:3 we take an in depth look of the Stanley Conjecture. After a short
introduction of the conjecture, we present some new results in which the conjecture
holds. This chapter was partially published in several papers (see [AP1], [AP3] and
[APDP1]).

Chapter B:4 introduces the new notion of canonical form that is later used to op-
timize Rinaldo’s algorithm for the Stanley depth computation. This chapter was pub-
lished in Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie
([AP3]).

Part C starts with a small introduction on Artin Approximation and the General
Neron Desingularization. It also contains an algorithmic proof in the case of Noethe-
rian local domains of dimension 1. The algorithm for this case was implemented in
SINGULAR . This part has also been published (see [APDP2]).

At the very end the Appendix contains several important examples used throughout
the thesis together with a part exploring the source code of SINGULAR on page 143.

Technische Universität Kaiserslautern ix

PART A

STANDARD BASES OVER RINGS

Technische Universität Kaiserslautern 1

CHAPTER A:1

BUCHBERGER’S ALGORITHM

In this chapter we introduce the basic notions for standard bases and the additional
strategies needed when the polynomial algebra is defined over a ring that is not neces-
sarily a field.

A:1.1 Basic definitions and notations

DEFINITION A:1.1.1.
Let Mon(x1, . . . , xn) be the set of monomials in n ∈ N variables x1, . . . , xn. We denote

by x the set of all variables and for α = (α1, . . . , αn) ∈ Nn we set xα := xα1
1 · . . . · xαnn .

A monomial ordering < is a total ordering on Mon(x) satisfying the following prop-
erty

xα < xβ =⇒ xγ · xα < xγ · xβ for all α, β, γ ∈ Nn.

A monomial ordering is called global if 1 = x0 ≤ xα for all α ∈ Nn.
A monomial ordering is called local if 1 = x0 ≥ xα for all α ∈ Nn.
A monomial ordering is called mixed if there is α, β ∈ Nn such that xα < 1 < xβ.

DEFINITION A:1.1.2.
Let < be a monomial ordering on Mon(x), R be a ring and f ∈ R[x] := R[x1, . . . , xn]

a polynomial. We can write f in a unique way

f =
L∑
i=1

ci · xα
(i)

,

0 6= ci ∈ R and α(i) ∈ Nn for 1 ≤ i ≤ L such that xα(1)
< . . . < xα

(L). We define

◦ the length of f denoted by `(f) = L,

◦ the leading term denoted by LT(f) = cL · xα
(L),

◦ the leading coefficient denoted by LC(f) = cL,

◦ the leading monomial denoted by LM(f) = xα
(L),

◦ the tail of f denoted by tail(f) = f − LT(f),

Technische Universität Kaiserslautern 3

◦ the degree of f denoted by deg(f) = max
1≤i≤L

{
α
(i)
1 + . . .+ α(i)

n

}
and

◦ the ecart of f denoted by ecart(f) = deg(f)− deg
(

LT(f)
)
.

In the following we define some common monomial orderings and provide a small
example to see the differences between them.

DEFINITION A:1.1.3.

◦ negative degree reverse lexicographical ordering (called ds in SINGULAR). This
local ordering is defined on R[x] as follows:

xα <ds x
β ⇐⇒

n∑
i=1

αi =: deg(xα) > deg(xβ) or

deg(xα) = deg(xβ) and ∃1 ≤ i ≤ n s.t. αn = βn, . . . , αi+1 = βi+1, αi > βi.
(A:1.1)

◦ negative lexicographical ordering (called ls in SINGULAR). This local ordering
is defined on R[x] as follows:

xα <ls x
β ⇐⇒ ∃ 1 ≤ i ≤ n s.t. α1 = β1, . . . , αi−1 = βi−1, αi > βi. (A:1.2)

◦ degree reverse lexicographical ordering (called dp in SINGULAR). This global
ordering is defined on R[x] as follows:

xα <dp x
β ⇐⇒

n∑
i=1

αi =: deg(xα) < deg(xβ) or

deg(xα) = deg(xβ) and ∃1 ≤ i ≤ n s.t. αn = βn, . . . , αi+1 = βi+1, αi < βi.
(A:1.3)

◦ lexicographical ordering (called lp in SINGULAR). This global ordering is defined
on R[x] as follows:

xα <lp x
β ⇐⇒ ∃ 1 ≤ i ≤ n s.t. α1 = β1, . . . , αi−1 = βi−1, αi < βi. (A:1.4)

◦ weighted orderings. All the above degree orderings can be enhanced by introduc-
ing weights. For a vector w =

(
w1, . . . , wn

)
∈ Zn we define the weighted degree of

xα by
w-deg(xα) = w1α1 + . . .+ wnαn.

4 Adrian Popescu

We define the weighted reverse lexicographic ordering, denoted by wp(w1, . . . , wn),
by replacing deg by w-deg in the Equation A:1.3.

Similarly we define the weighted negative reverse lexicographic ordering, de-
noted by ws(w1, . . . , wn), by changing Equation A:1.1.

EXAMPLE A:1.1.4. Consider f = xyz + x2 + z2 + y ∈ R[x, y, z]. Below we write f in its
unique form for each of the monomial orderings from Definition A:1.1.3.

<dp: xyz + x2 + z2 + y

<lp: x2 + xyz + y + z2

<ls: z2 + y + xyz + x2

<ds: y + x2 + z2 + xyz

We notice that in this example, each of the 4 monomials can be seen as the leading term
depending on the monomial ordering.

REMARK A:1.1.5. Unfortunately, this is not true in general. Consider f = x2 +xy+ y2 ∈
R[x, y]. There is no monomial ordering such that xy is the leading monomial of f .

Proof.
Let < be a monomial ordering. There are two cases:

◦ x < y. In this case multiplying by x, respectively y gives us that LT(f) = y2.

◦ x > y. Similarly, LT(f) = x2.

DEFINITION A:1.1.6.
Let I ⊆ R[x] be an ideal.
The leading ideal of I is L<(I) = 〈{LT(f) | f ∈ I}〉.
The leading monomial ideal of I is LM<(I) = 〈{LM(f) | f ∈ I}〉.
The leading ideal for a set of polynomials S := {f1, . . . , fm} is defined to be the

leading ideal of the ideal generated by S.
From now on, if the monomial ordering is clear from the context, we will only write

L(I) (respectively LM(I)) instead of L<(I) (respectively LM<(I)).

REMARK A:1.1.7. When R is a field it is easy to see that L<(I) = LM<(I) for any ideal
I ⊂ R[x]. This is not true overR[x] ifR is a ring that is not a field. For instance over Z[x],
L<
(
〈2x〉

)
= 〈2x〉 (〈x〉 = LM<

(
〈2x〉

)
. In general L<(I) ⊆ LM<(I), but the converse

does not always hold for rings that are no fields, as shown in the example above. As
one would expect, the leading coefficients play an important role.

Throughout Part A when speaking about rings, we will refer in fact to rings that are
no fields.

Technische Universität Kaiserslautern 5

DEFINITION A:1.1.8 (Standard Bases).
A standard basis of an ideal I ⊂ R[x] with respect to a fixed monomial ordering <

is a finite set S ⊂ I such that L(I) = L(S).
S is a strong standard basis if additionally it satisfies the following property:

∀f ∈ I,∃ g ∈ S such that LT(g) | LT(f).

REMARK A:1.1.9. Note that in the case of fields all standard bases S are strong since
we can always set the leading coefficient of a polynomial g ∈ S to be 1 by multiplying g
with its inverse LC(g)−1. Over rings this is not true, as shown in the following example.

EXAMPLE A:1.1.10. Consider the ideal I = 〈4x, 13x〉 = 〈x〉 over Z[x]. It is easy to see
that S = {4x, 13x} is a standard basis for I. Take f = 2x ∈ I and since 4x nor 13x
divides f , S is not a strong standard basis of I. A strong standard basis for I is S ′ = {x}.

DEFINITION A:1.1.11.
A ring R is a principal ideal ring if each ideal I of R can be generated using a single

element.

DEFINITION A:1.1.12.
Let I ⊂ R be an ideal. The annihilator (or annulator) of I, denoted by Ann(I), is

Ann(I) = {c ∈ R | c ·m = 0,∀m ∈ I} .

For an element c ∈ R, we will shortly denote by Ann(c) = Ann
(
〈c〉
)
.

We extend the previous definitions and notations over modules. Let I = 〈f1, . . . , fs〉

an ideal in R[x] and R[x]s be the free R[x] module
s⊕
i=1

R[x] · εi, where εi is the canonical

basis.

DEFINITION A:1.1.13.
A monomial in the module case is an element of the formm·εi =

(
0, . . . , 0,m, 0, . . . , 0

)
∈ R[x]s where m is a monomial in R[x] and it is located on the i−th component while
all the others components are 0.

DEFINITION A:1.1.14.
A module monomial ordering (or simply called module ordering) is a total order-

ing ≺ on the set of monomials of R[x]s compatible with the monomial ordering < on
R[x], i.e.

◦ mα < mβ =⇒ mα · εi ≺ mβ · εi,

◦ mα · εi ≺ mβ · εj =⇒ mαmγ · εi ≺ mβmγ · εj,

6 Adrian Popescu

for all monomials mα, mβ, mγ in R[x] and for each i, j = 1, . . . , s.

Definition A:1.1.2 simply extends to the module case.
There are 4 canonical ways to naturally extend the ring ordering < to a module

ordering by regarding the components as shown in the example below.

EXAMPLE A:1.1.15 (Module orderings). We define the following module orderings:

◦ ≺(c,<)

mα · εi ≺(c,<) mβ · εj ⇐⇒ i > j or
i = j and mα < mβ.

◦ ≺(C,<)

mα · εi ≺(C,<) mβ · εj ⇐⇒ i < j or
i = j and mα < mβ.

◦ ≺(<,c)

mα · εi ≺(<,c) mβ · εj ⇐⇒ mα < mβ or
mα = mβ and i > j.

◦ ≺(<,C)

mα · εi ≺(<,C) mβ · εj ⇐⇒ mα < mβ or
mα = mβ and i < j.

DEFINITION A:1.1.16 (syzygy).
Let I = 〈f1, . . . , fs〉 be an ideal in R[x]. Consider the map

π :
s⊕
i=1

R[x] · εi // R[x]

εi
� // fi

A syzygy is an element s ∈ kerπ.

A:1.2 Buchberger’s algorithm blueprint

This section presents a simple Buchberger algorithm blueprint for computing stan-
dard bases in polynomial rings over principal ideal rings. For this we introduce some
more basic notions.

In the following, let R be a ring. Usually we will take R to be Z or Zr := Z/rZ where
r ∈ Z is not a prime number. Let f, g ∈ R[x] be two polynomials such that

f = cf ·mf + . . .

Technische Universität Kaiserslautern 7

g = cg ·mg + . . .

with LT(f) = cf ·mf and LT(g) = cg ·mg.

DEFINITION A:1.2.1.
We define several important polynomials used in the strong standard bases theory.

◦ The s−polynomial (or s−pair) of f and g, denoted by

s-poly(f, g) =
lcm(cf , cg) lcm (mf ,mg)

cfmf

· f − lcm(cf , cg) lcm (mf ,mg)

cgmg

· g.

Note that the leading terms will cancel out.

◦ Since R is a principal ideal ring, we have that 〈cf , cg〉 = 〈c〉. Let c = df · cf + dg · cg.
The strong polynomial (or the gcd polynomial, gcd−pair, strong pair) of f and
g denoted by

gcd-poly(f, g) =
df lcm(mf ,mg)

mf

· f +
dg lcm(mf ,mg)

mg

· g.

Notice that LT
(

gcd-poly(f, g)
)

= c · lcm(mf ,mg).

◦ In case of rings with zero divisors, the extended s−polynomial of f denoted by

ext-poly(f) = Ann(cf) · f = Ann(cf) · tail(f).

Note that if LC(f) is not a zero divisor then ext-poly(f) = 0.

REMARK A:1.2.2. Note that in the definition of gcd−pairs df and dg are not uniquely
determined. For instance, 〈3, 5〉 = 〈1〉 and we can consider several df and dg:

2 · 3 + (−1) · 5 = 1
(−3) · 3 + 2 · 5 = 1

7 · 3 + (−4) · 5 = 1

However, it is easy to prove that we can randomly choose one of them, since they
will give dependent polynomials with respect to the s−polynomial. For this, see the
next lemma.

LEMMA A:1.2.3.
Let two polynomials f, g ∈ R[x],

f = cf ·mf + . . . ,

g = cg ·mg + . . . ,

such that 〈c〉 = 〈cf , cg〉. Let df 6= d′f , dg 6= d′g such that

df · cf + dg · cg = c = d′f · cF + d′g · cg.

Denote by P and Q the gcd−polynomial constructed with df ,dg, respectively d′f and d′g.
Then P = Q+ α · s-poly(f, g) for an α ∈ R.

8 Adrian Popescu

Proof.
By definition,

s-poly(f, g) =
L

cf
· lcm(mf ,mg)

mf

· f − L

cg
· lcm(mf ,mg)

mg

· g,

where L = lcm(cf , cg),

P = df ·
lcm(mf ,mg)

mf

· f + dg ·
lcm(mf ,mg)

mg

· g,

and

Q = d′f ·
lcm(mf ,mg)

mf

· f + d′g ·
lcm(mf ,mg)

mg

· g.

One can easily see that

P −Q = (df − d′f) ·
lcm(mf ,mg)

mf

· f + (dg − d′g) ·
lcm(mf ,mg)

mg

· g.

Using the choice of df , d′f , dg and d′g, we know that

(df − d′f) · cf = −(dg − d′g) · cg,

and therefore
df − d′f
L

cf

= −
dg − d′g
L

cg

=: α.

This is the α we needed and hence we are done.

EXAMPLE A:1.2.4. Consider two polynomials f = 5x3 + 5xy + 3y and g = 3y2 + 2x in
Z10[x, y] and the dp (degree reverse lexicographical) ordering. Then

◦ s-poly(f, g) = 3y2 · f − 5x3 · g = 5xy3 + 9y3,

◦ gcd-poly(f, g) = −y2 · f + 2x3 · g = x3y2 + 4x4 + 5xy3 + 7y3,

◦ ext-poly(f) = 2 · f = 6y and

◦ ext-poly(g) = 0 · g = 0.

REMARK A:1.2.5. Note that if 〈cf , cg〉 = 〈cf〉, then we can take df = 1 and dg = 0.

Therefore gcd-poly (f, g) = m · f , for the monomial m =
lcm(mf ,mg)

mf

. In other words if

one of the leading coefficients divides the other, then the gcd-poly is equal to a multiple
of the initial polynomial and, as we will later see, it brings no new information. We call
such a gcd−polynomial redundant.

Technische Universität Kaiserslautern 9

DEFINITION A:1.2.6.
Let S = {f ∈ R[x] | LM(f) = 1 and LC(f) is a unit in R}. Denote by

R[x]< := S−1R[x].

Note that if < is a global ordering, R[x]< = R[x] and when < is a local or mixed
ordering, R[x]< = R[x]〈x〉.

DEFINITION A:1.2.7.
Let G be the set of all finite subsets G ⊂ R[x]<. The map

NF : R[x]< × G // R[x]

(f,G) � // NF(f | G)

is called a weak normal form if for each f ∈ R[x]< and each finite set of polynomials
G ⊂ R[x]<, the following properties hold:

◦ NF(0 | G) = 0,

◦ if NF(f | G) 6= 0, then LT
(

NF(f | G)
)
6∈ L(G) and

◦ for f 6= 0, there exists a unit u ∈ R[x]< such that either u · f = NF(f | G) or the
remainder r = u · f − NF(f | G) has a standard representation w.r.t. G, that is

r =
∑
g∈G

cg · g, where cg ∈ R,

LM(r) ≥ LM(cg) · LM(g) for all g s.t. cg · g 6= 0.

A weak normal form is simply called a normal form if one can always choose u = 1
in the standard representation.

An algorithm to compute the weak normal form over fields can be found in the
SINGULAR book [GP, Algorithm 1.7.6]. The algorithm will look as below, if the mono-
mial ordering is global.

Algorithm reduce(poly f, ideal G)
Input: f ∈ R[x] and a finite subset G ⊂ R[x] on which we consider a global ordering
Output: h ∈ R[x], a weak normal form of f w.r.t. G

1: h = f ;
2: while exists g ∈ G s.t. LT(g) | LT(h) do
3: h = s-poly(h, g);
4: return h

Note that on line 3 of the algorithm, with each s-poly computation, the leading
monomial of h will decrease. This algorithm only works for global orderings. If the

10 Adrian Popescu

orderings are local or mixed, we need to also consider the ecart of h. This is explained
in Section A:1.5.

The normal form plays an important role in the standard basis computation because
of Buchberger’s Criterion described below.

LEMMA A:1.2.8
(
Buchberger Criterion,[GP, Theorem 1.7.3]

)
.

Let I and ideal in R[x] and a set G = {g1, . . . , gs} ⊂ I. Let NF(·|G) be a weak normal
form on R[x] with respect to G. Then the following are equivalent:

1. G is a standard basis of I

2. NF(f | G) = 0 for all f ∈ I

3. each f ∈ I has a standard representation with respect to G

4. G generates I and NF
(

s-poly(gi, gj) | G
)

= 0 for 1 ≤ i, j ≤ s.

REMARK A:1.2.9. Note that the elements of a standard basis generate not just the lead-
ing ideal but the ideal itself. Therefore, one can view the standard bases as a set of
generators of an ideal with special properties.

We are now ready to show the algorithm’s blueprint.

ALGORITHM A:1.2.10 (Buchberger’s blueprint).
LetR be a principal ideal ring,< a monomial ordering onR[x] and I = 〈f1, . . . , fr〉 ⊂

R[x] be an ideal. The following algorithm returns a strong standard basis S = {g1, . . . , gt}
of I.

1: S = {f1, . . . , fr};
2: L = {s-poly(fi, fj) | i < j} ∪ {gcd-poly(fi, fj) | i < j} ∪ {ext-poly(fi)};
3: while L 6= ∅ do
4: choose h ∈ L and reduce it with S;
5: if h 6= 0 then
6: S = S ∪ {h};
7: L = L ∪ {s-poly(g, h) | g ∈ S} ∪ {gcd-poly(g, h) | g ∈ S} ∪ {ext-poly(h)};
8: return S

The set L will be called the pair list. Through the reduction on line 4 we understand
computing a normal form as in the algorithm described earlier.

REMARK A:1.2.11. When working with a polynomial ring over a field, we just add of the
s−polynomials in line 7 of the algorithm. If R is a ring, the following natural questions
arise:

Technische Universität Kaiserslautern 11

Why do we need extended s−polynomials?

Let I = 〈f〉 ⊂ Z10[x, y] be an ideal, where f = 5x3 + 5xy + 3y and consider the dp

ordering. Algorithm A:1.2.10 without adding the extended s-polynomial yields S = {f}
as a strong standard basis with L(S) = 〈5x3〉. But since I is an ideal and f ∈ I, then
2f ∈ I implying LT(2f) = 6y ∈ L(I) = L(S). Therefore, S should also contain 2f , and
hence the extended s−polynomial of f , ext-poly(f). This is the reason why we need to
add ext-poly(f) in the case of zero divisors.

Why do we need strong / gcd polynomials?

Example A:1.1.10 gives us a quick answer. If we compute the strong standard basis
with Algorithm A:1.2.10 without considering the strong pairs, then we would get S =
〈4x, 13x〉 as a strong standard basis, which is false. If we add gcd-poly (4x, 13x) = x to
S, then we get a correct result. This is the reason why we need to add gcd-poly(f, g)
in the case of rings to obtain a strong standard basis. We need a strong standard basis
since most of the useful properties of a standard basis over fields come from the fact
that it is also a strong standard basis.

In the last couple of years we improved existing strategies, developed and imple-
mented new tricks in ring standard bases computations in the SINGULAR source code.
In the next sections, we present some of them.

A:1.3 ALL vs. JUST

In this section let R = Z. Looking back at Remark A:1.2.5 we see that we do not
always need to construct gcd-polys. D. Lichtblau proved in [Li, Theorem 2] that in
Algorithm A:1.2.10 is in fact enough to take for a pair (g, h) either the s-poly or the
gcd-poly. Note line 7 of the pseudo-code where we add s-poly(g, h) and gcd-poly(g, h)
to the pair list L. Instead of this, if gcd-poly(g, h) is not redundant then we only add
gcd-poly(g, h) and if gcd-poly(g, h) is redundant then we only add s-poly(g, h).

We name the usual strategy in which we consider all pairs by ALL and the one in
which we consider just one pair simply by JUST.

At a first glance fewer pairs could be interpreted as a faster computation and less
used memory. This turns out to be wrong. We have compared the timings of the two
different strategies for random examples.

In most cases, ALL strategy was faster than JUST. We found examples for which ALL
was 38 000 times faster than JUST and examples where JUST was 2 300 times faster
than ALL. In the tables below we present the different timings we obtained for our
examples. All of the timings are represented in milliseconds. The input ideals can be
found in the Appendix on page 131.

12 Adrian Popescu

ALL time JUST time Factor
Example A:1 6 630 251 481 340 38 000
Example A:2 40 63 740 1 600
Example A:3 51 570 6 134 060 119
Example A:4 4 400 522 340 118
Example A:5 250 19 080 76
Example A:6 4 110 271 460 66
Example A:7 56 720 2 676 080 47
Example A:8 190 8 340 44
Example A:9 1 131 470 39 694 950 35
Example A:10 110 3 020 27

Table 1.1: Best examples for ALL strategy

ALL time JUST time Factor
Example B:1 1 696 700 730 2 324
Example B:2 252 950 450 562
Example B:3 4 090 30 136
Example B:4 35 160 500 70
Example B:5 3 690 110 33

Table 1.2: Best examples for JUST strategy

All these examples where randomly generated. We ran the following file in the two
versions of SINGULAR and computed the timings for the two strategies:

system("--ticks -per -sec" ,1000); //sets timer to ms

ring r = integer ,(x,y,z),dp; // defines the ring

ideal i = ...; // defines the ideal

int t = timer; //sets the timer

ideal g = std(i); // computes the standard basis

"Time:",timer -t; // prints the timer difference

As seen in the tables, it is not possible to know from the input whether ALL or JUST
strategy will be faster in computing the standard bases. All the examples we found
where JUST strategy was faster, have as a third generator a pure monomial. But this
seems to be randomly as some examples that are faster with ALL strategy also have as
a third generator a monomial (see Examples A:1, A:4 and A:10 on page 131).

We searched for such examples over finite rings, like Z2100 or Z10200 but we were
unable to find interesting examples over these finite rings. The reason why we found
examples over Z is that here there are no bounds for coefficients. In order to give an
idea of how huge the coefficients can be in the standard bases computation over Z,
we computed Example B:1 over Z10200 with the ALL strategy and got the result after 8

Technische Universität Kaiserslautern 13

seconds; over Z101000 we obtained the result after 648 seconds (10 minutes) and over Z
we got the result after almost 30 hours. One can imagine how big the coefficients are
when computing over Z[x]. This is the main reason why in some cases, the computation
of a standard basis over Z will be slow.

A:1.4 Huge coefficients over the integers

One of the most common problems when computing over Z[x] is that the coefficients
will rapidly increase. If during the algorithm we have two polynomials with big coeffi-
cients, when computing their s−polynomial (or strong polynomials) we multiply them
with the corresponding monomials, and hence the coefficients will become larger. This
will slow down the algorithm and increase the memory usage. In order to keep the
coefficients as small as possible we have implemented some easy tricks.

SINGULAR ’s polynomial reduction procedure reduce(f, g) only reduces f by g if
LT(g) divides LT(f). So, if f and g are equal to

f = 78 234 678 956 783 785 656 788 689 · x13y19 + 987 237 527 429 289 · x5y11

g = 1 024 · x2y10,

then the result of reduce(f, g) will be equal to f . But that is a huge waste of memory
since we could simply use f mod g = x13y19 − 423 · x5y11 afterwards. Not only this
affects the coefficients of f but will also cause smaller coefficients of s-poly(f,−) and
gcd-poly(f,−).

We examined several examples for which SINGULAR hanged before, most of the time
because it ran out of memory, and tested them against the new strategies with positive
results. Despite that, the most interesting one of them (we will refer to this as Example
18 − can be found in the Appendix on page 133), the resulting standard basis was
small enough (9 polynomials with maximum length 3 and 2 digit coefficients) and even
contained a constant. After checking Example 18 we observed that it took a lot of time
until a monomial (or constant) would have entered the partial standard basis (line 6 in
Algorithm A:1.2.10). As before, this gave rise to big coefficients filling the memory up.
With the help of G. Pfister and D. Popescu, we implemented a way to access a constant
(or a monomial) early in the algorithm. This we explain in the following.

ALGORITHM A:1.4.1 (preIntegerCheck).
Let I = 〈f1, . . . , fr〉 be an ideal in Z[x] and < a fixed monomial ordering. We use

the following idea to get access to a constant or a monomial (if it exists) from I. This
is useful when computing over Z because adding this constant to the generating system
of I before starting the standard basis algorithm will keep the coefficients small.

The main idea is described as follows: we want to compute a standard basis over
Z[x]. We will first compute the standard basis over Q[x]. If the result is 1, then we know

14 Adrian Popescu

there is a constant in the ideal and we can get access to it by using some SINGULAR

tricks.

Algorithm preIntegerCheck(ideal I)
1: J = {1, f1, . . . , fr}
2: compute S, a standard basis of I over Q[x]

3: compute the syzygies Z ⊂
r⊕
i=0

Q[x] · εi of J

4: if S = 〈1〉 then
5: search in Z for a syzygy where the 0 component consists of just a constant c · ε0
6: return I ∪ {c}
7: else
8: search in Z for a syzygy where the 0 component consists of just a term c ·m · ε0
9: if such monomial is found then

10: return I ∪ {c ·m}
11: return I

Note that Algorithm A:1.4.1 is very costly and in the case when the algorithm doesn’t
find a constant or monomial, it increases the standard basis run-time without bringing
any new information. However in the other cases, the algorithms run-time will improve
because we have a bound on the coefficients. This is very useful over Z since the biggest
problem proves to be the size of the coefficients that appear during the standard basis
computation.

EXAMPLE A:1.4.2. Let I = 〈x+ 4, xy + 9, x− y + 8〉 be an ideal in Z[x, y]. We compute

the syzygies Z ⊂
3⊕
i=0

Q[x, y] of J = {1, I} =: {1, f1, f2, f3}. The result of syz(J) in

SINGULAR is

_[1]=[7,-x-4,1,x]

_[2]=[y-4,-1,0,1]

_[3]=[x+4,-1]

Indeed,
7 · 1 + (−x− 4) · f1 + 1 · f2 + x · f3 = 0.

Since the standard basis of I over Q[x, y] is 1, it is expected that one of the syzygies
has on the first component a constant − in this case it is the first syzygy. We continue
by computing the standard basis of 〈7, I〉 over Z[x, y].

This was a very easy example. For a more interesting one we refer to the Example
18 found in the Appendix at page 133.

Technische Universität Kaiserslautern 15

A:1.5 Strong pairs in the reduction procedure

During testing, another interesting example came to our attention. Recall the defi-
nition of a normal form A:1.2.7.

Suppose that we want to reduce a polynomial f ∈ R[x] with respect to a set of
polynomials G and assume that we have a local or mixed monomial ordering. The first
try to extend the field case algorithm to the ring case for the local orderings would look
like the following

1: h = f
2: T = G
3: while h 6= 0 and there is a g ∈ T with LT(g)|LT(h) do
4: choose such g with minimal ecart
5: if ecart(g) > ecart(h) then
6: T = T ∪ {h}
7: h = s-poly(h, g)
8: return h

The first obvious thing that had to be changed over rings was in line 3, where instead
of checking the divisibility of the leading monomials, one has to consider the leading
terms. But this is not enough, at least in the case of local and mixed orderings as shown
in Example A:1.5.1.

EXAMPLE A:1.5.1. Let Z[x, y] with the local monomial ordering ds. Consider the ideal

I =
〈
6 + y + x2, 4 + x

〉
.

Then a standard basis of I with respect to ds is

S =
{

2− x+ y + x2, x− 2y − x2 − xy − x3
}
.

The reduce procedure from SINGULAR computes a weak normal form and it would be
expected to see that reduce(4 + x, S) = 0. This was not the case: after running out of
memory SINGULAR crashed. We explain the reason for that in the following.

We print the first steps of the above described algorithm for f = 4+x and G = S. On
the arrows we print the polynomial with which we reduced and we put a box around
the polynomial if we had to reduce with a bigger ecart as in line 6 of the algorithm (and
hence we add it to T).

T =
{

2− x+ y + x2, x− 2y − x2 − xy − x3
}

16 Adrian Popescu

4 + x

2−x+y+x2 // 3x− 2y − 2x2

x−2y−x2−xy+x3 // 4y + x2 + 3xy + 3x3

2−x+y+x2 // x2 + 5xy − 2y2 + 3x3 − 2x2y

x−2y−x2−xy−x3 // 7xy − 2y2 + 4x3 − x2y + x4

x−2y−x2−xy−x3 // 12y2 + 4x3 + 6x2y + 7xy2 + x4 + 7x3

// . . .

(A:1.5)

At the end of the displayed steps, T will be

T =
{

2− x+ y + x2, x− 2y − x2 − xy − x3, 4 + x, 3x− 2y − 2x2
}
.

In order to give an idea of how big the example is, after 100 reduction steps we
obtain:

h100 = −1 166 313 310 086 309 · x4y12 + 444 754 080 892 792 · x3y13 − 2 213 835 453 852 · x2y14
+112 603 082 300 511 · x7y10 − 720 925 840 590 079 · x6y11 + 430 571 412 704 270 · x5y12,

after 200 reduction steps we get

h200 = 3 637 133 524 532 445 205 884 946 278 · x5y26 − 2 575 374 732 708 631 350 945 040 914 · x4y27
+835 831 707 443 157 464 048 106 896 · x3y28 − 1 065 123 810 503 984 516 294 535 627 · x2y29
+173 721 443 393 369 916 682 497 810 · xy30 + 1 798 249 423 092 570 138 839 547 003 · x7y25
−1 198 832 948 728 380 092 559 698 002 · x6y26,

and after 30 seconds

Technische Universität Kaiserslautern 17

h30 sec = 3 913 503 459 539 899 164 871 865 014 196 288 690 571 138 467 618 789 418 184 838 401 337 877 · x7y66
−7 977 092 659 639 617 123 404 184 624 123 573 036 579 747 268 029 770 715 047 606 399 387 680 · x6y67
+53 248 176 383 593 860 383 685 894 608 357 176 403 606 618 276 029 538 211 550 919 072 921 382 · x5y68
−274 849 303 713 564 778 057 611 697 931 914 924 087 132 281 903 387 330 927 889 415 586 742 531 · x4y69

+1 479 142 607 536 352 118 229 469 735 534 158 627 248 215 618 509 941 658 782 249 670 418 449 889 · x3y70
+1 479 142 607 536 352 118 229 469 735 534 158 627 248 215 618 509 941 658 782 249 670 418 449 889 · x2y71
+4 273 779 148 510 141 908 674 250 546 167 872 417 997 942 162 329 880 059 847 103 655 340 794 093 · xy72
−1 917 640 585 348 831 342 301 240 093 900 677 015 082 052 593 613 273 906 209 784 441 919 747 994 · y73
−8 102 746 632 854 636 451 624 398 571 806 695 014 588 968 214 137 281 517 130 672 630 390 · x12y62

+137 341 917 777 610 511 092 869 801 797 066 794 306 699 920 105 225 395 995 610 075 468 198 · x11y63
−540 404 286 129 841 284 758 689 195 319 879 351 691 659 685 294 164 765 559 251 450 330 567 · x10y64
+397 726 261 007 869 923 948 576 228 831 933 897 595 235 015 998 652 517 116 071 021 642 120 · x9y65

+2 356 138 563 161 310 566 373 010 452 267 195 402 915 889 568 716 606 153 637 319 213 421 046 099 · x3y71
−1 917 640 585 348 831 342 301 240 093 900 677 015 082 052 593 613 273 906 209 784 441 919 747 994 · x2y72.

After less than minute we obtain polynomials whose coefficients are already one
page long.

Together with Christian Eder and Anne Frühbis-Krüger we developed the following
strategy. In line 6 of Algorithm A:1.5.2, instead of adding just the reducer h, we also
add all the gcd-polys of h with g ∈ T .

Looking back at the reductions presented in Equation A:1.5 we see that already at
the first step, one had to reduce with a bigger ecart and we added 4 + x to T . Now we
also have to add gcd-poly(4+x, 2−x+y+x2) and gcd-poly(4+x, x−2y−x2−xy−x3).
Luckily in this case none of the pairs gives us something new. In the second step we also
reduced with a bigger ecart and we have to add to T the new polys

gcd-poly(3x− 2y − 2x2, 4 + x) = x+ 2y + 3x2

and gcd-poly(3x− 2y − 2x2, 2− x+ y + x2) = x− 2y − x2 − xy − x3 (it is already in T).
Below we print again the reduction of 4 + x with S from Equation A:1.5 with this new
strategy. With the dashed lines we display the new changes:

T =
{

2− x+ y + x2, x− 2y − x2 − xy − x3
}
,

18 Adrian Popescu

4 + x

2−x+y+x2 // 3x− 2y − 2x2

x−2y−x2−xy+x3 // 4y + x2 + 3xy + 3x3

2−x+y+x2 // x2 + 5xy − 2y2 + 3x3 − 2x2y

x+2y+3x2 // 3xy − 2y2 − 2x2y

3x−2y−2x2 // 0

T = T ∪
{
x+ 2y + 3x2

}
(A:1.6)

At the end of the reduction

T =
{

2− x+ y + x2, x− 2y − x2 − xy − x3, 4 + x, 3x− 2y + 3x2, x+ 2y + 3x2
}
.

ALGORITHM A:1.5.2.
So, it is clear now that this is the improved algorithm of reduction over a principal

ideal ring with a local / mixed ordering.

Algorithm reduce(poly f , ideal G)
Input: f ∈ R[x] and a finite subset G ⊂ R[x]
Output: h ∈ R[x], a weak normal form of f w.r.t. G

1: h = f
2: T = G
3: while h 6= 0 and there is a g ∈ T with LT(g)|LT(h) do
4: choose such g with minimal ecart
5: if ecart(g) > ecart(h) then
6: T = T ∪ {h} ∪ {gcd-poly(h, Ti) | Ti ∈ T}
7: h = s-poly(h, g)
8: return h

Technische Universität Kaiserslautern 19

CHAPTER A:2

SIGNATURE STANDARD BASES OVER THE INTEGERS

This chapter is a joint work with Christian Eder. Here we extend a variant of the
F5 Algorithm (see [F]) by first considering the field case as a foundation and then
generalizing it for rings.

Looking at Buchberger’s Algorithm for computing Gröbner bases in Algorithm A:1.2.10,
we see that one computes many s-polynomials and not all of these bring new informa-
tion to our standard basis. In fact, just a small percentage of these computations will
end with a non-zero polynomial. F5 uses several criteria to detect some of these useless
computation. To be more specific, this criteria detects if some s−polynomial will reduce
to 0 before computing. The idea proves to be very useful because it doesn’t just avoid
constructing new s−polynomials but also prevents the reduction to 0 of these useless
pairs − which is a very time consuming process.

Christian Eder has successfully implemented in SINGULAR a variant of F5 for fields
by using the Syzygy Criterion, Rewrite Criterion and F5C (see [EP]).

The following sections consist of the problems that arise over principal ideal rings
and their resolution. At the end the resulted algorithm proves to be not as optimal as in
the field case, but we still managed to find some interesting examples.

Throughout this chapter we have to think of the F5 algorithm as being the Gröbner
basis algorithm presented in Algorithm A:1.2.10 to which we add signatures for each
polynomial in the computation.

A:2.1 Definitions and notations

Faugère had the idea (see [F]) to add to each polynomial a so-called signature − a
module monomial − in order to detect irrelevant s−polynomials before even construct-
ing them. This will theoretically increase the memory usage (with the size of a module
monomial for each polynomial occurring in the computations), but the running time
will decrease in most of the field examples.

As before, let R be a ring, R[x] the polynomial ring in n variables x1, . . . , xn shortly
denoted by x and I = 〈f1, . . . , fm〉 a finitely generated ideal in R[x]. Let R[x]m be the
free module generated by ε1, . . . , εm and π the projection

π : R[x]m // R[x]

εi
� // fi

(A:2.1)

Technische Universität Kaiserslautern 21

REMARK A:2.1.1.

1. For each element f in I, there is a element F ∈ R[x]m such that π(F) = f . This is

easily proven by taking the linear combination f =
m∑
i=1

pi · fi and lifting it to get

F =
m∑
i=1

pi · εi. Note that F is not necessarily unique, since f can be represented

in multiple linear combinations.

2. The elements of ker(π) are syzygies of I.

In this chapter we use as the module ordering ≺:= (C,<) (see Example A:1.1.15)
for a global monomial ordering < on R[x]. We extend the module ordering ≺ to module
monomials with coefficients:

c1 · xα1 ≺ c2 · xα2 ⇐⇒ xα1 ≺ xα2 or
xα1 = xα2 and |c1| < |c2|,

where by |c| we denote the absolute value for c ∈ R.
Our purpose is to compute a Gröbner basis for I.

DEFINITION A:2.1.2 (Signatures).
Let f ∈ R[x] be a polynomial that appears in the Gröbner basis algorithm (Algorithm

A:1.2.10). We enhance f by giving it a signature, denoted by sig(f). This is a module
monomial with coefficient defined as follows:

• for an input polynomial fi, we set

sig(fi) = 1 · εi,

• for a s−polynomial of f, g ∈ R[x] denoted by

p := s-poly(f, g) = cfmf · f − cgmg · g,

where cf , cg ∈ R and mf ,mg are monomials in R[x] corresponding to the s-poly
computation, we define the signature as

sig(p) = LT≺(cfmf · sig(f)− cgmg · sig(g)),

• we define it similarly for the gcd−polynomials.

The details concerning the signature of the extended s−polynomials will follow in
Section A:2.5. For now, let us consider R = Z.

In the following example we consider Buchberger’s blueprint (Algorithm A:1.2.10)
while adding these signature. It is very important for the termination and future criteria

22 Adrian Popescu

to consider each time the polynomial with the smallest signature w.r.t. ≺. In fact, we
assume that at each step, the partial standard basis is a standard basis up to the current
signature. This means that if we added to our partial standard basis S a polynomial fi,
all polynomials p with sig(p) ≺ sig(fi) will reduce to 0 with respect to S. In other words,
the signature of each newly added polynomial to the standard basis will be greater (or
equal) to the previous one. This is crucial for the criteria, without which the algorithm
will significantly slow down. We revisit this subject in Section A:2.3.

When working with signatures, the first problem that arises is in the reduction step.
We defined the signature for the initial elements, the s−polynomials and the gcd−
polynomials. Because of the need to have increasing signature, the reduce procedure
from Algorithm A:1.5.2 will have to be updated.

ALGORITHM A:2.1.3 (reduce procedure for signature algorithm).
Let f ∈ R[x] be a polynomial with signature sig(f) and the set G = {g1, . . . , gs} ⊂

R[x] with the corresponding signatures sig(G) = {sig(g1), . . . , sig(gs)}. Then the reduc-
tion procedure of f with respect to G is the following:

Algorithm reduce(poly f, ideal G)
1: h = f ;
2: sig(h) = sig(f);
3: while exists g ∈ G s.t. LT(g) | LT(h) do
4: find c ∈ R and the monomial m ∈ R[x] such that s-poly(h, g) = h− cm · g;
5: if sig(h) � cm · sig(g) then
6: h = s-poly(h, g);
7: return h;

It is trivial to see that c and m from lines 4 and 5 are equal to c =
LC(h)

LC(g)
respectively

m =
LM(h)

LM(g)
.

REMARK A:2.1.4. Note that we only allow the reductions that preserve the signature of
the pair h. If the reduction changes the signature, then either the signature vanishes or
we have a decrease in signature contradicting our assumption. We explain this in detail.

Firstly, on line 5 of the algorithm we do not allow reductions if sig(h) ≺ cm · sig(g).
This is a consequence of the fact that we need to have the partial standard basis a
standard basis up to the current signature. Assume that we have an unreduced element
p. At this point we know that S is a standard basis up to sig(p). During the reduction

process we find a g ∈ G such that LT(g) | LT(p) and sig(p) ≺ LT(p)

LT(g)
· sig(g). If we

allow this reduction than we would add to the partial standard basis the polynomial

pred := p− LT(p)

LT(g)
· g with a signature sig(pred) � sig(p). We add the new s−polynomials

Technische Universität Kaiserslautern 23

and gcd−polynomials (with signature greater or equal than sig(p′)). It may happen that
there is already in the pair list L an earlier element s with sig(p) � sig(s) ≺ sig(p′).
If we cannot reduce this element it would be added to the partial standard basis and
contradict the assumption of our algorithm − that the signature of the new element has
to be greater or equal than the signature of the previous element.

Secondly, it may happen that the signatures on line 5 are equal. Then the signatures
will cancel out and our new element will not have a proper signature. We call this a
sigdrop.

The first idea we had to overcome this second case was instead of considering just
the leading term of the module element (i.e. the signature) we have stored the whole
module element. We have implemented this strategy in SINGULAR and we noticed that
this strategy proves to be ineffective. For once, it is used much more memory − instead
of saving just the leading term, we save the whole module element (which can be
arbitrary big). Moreover, as in the previous case, the assumption of the partial standard
basis being a standard basis up to the current signature would be violated. Indeed, let
the module element corresponding to h be

H := cm · sig(g) + c1m1 · εi + . . . ∈ R[x]m

and the module element corresponding to g be

G := sig(g) + c2m2 · εj + . . . ∈ R[x]m.

Then the module element corresponding to the reduced h, denoted by h′ = h− c · g, is

H ′ = c2cm2m · εj + c1m1 · εi +

Assume now that sig(h′) = c2cm2m ·εj ≺ sig(h) and we add h′ to the partial standard
basis and build the s−pairs. The next element that will be added to S (or even this one)
may have a smaller signature as the previous one, contradicting our assumption.

We show what happens in the first couple of steps in Example A:2.1.5.

EXAMPLE A:2.1.5. Let I = 〈5y2, 6xy + 4y2 + 2x〉 ⊂ Z[x, y]. We illustrate how the first
4 polynomials are added to the partial standard basis. The first step is to add the
polynomial f1 to the partial standard basis S:

f1 = 5y2 sig(f1) = ε1 .

In the next step we add f2

f2 = 6xy + 4y2 + 2x sig(f2) = ε2 .

At this point we have to add to the pair list L s-poly(f1, f2) and gcd-poly(f1, f2) :

s-poly(f1, f2) = −6 · f1 + 5y · f2 , sig = 5y · ε2
gcd-poly(f1, f2) = −1 · f1 + y · f2 , sig = y · ε2

24 Adrian Popescu

Since the signature of the gcd−polynomial is smaller, gcd-poly(f1, f2) will be consid-
ered in the next step:

f3 := gcd-poly(f1, f2) = xy2 + 4y3 + 2xy sig(f3) = y · ε2 .

Hence we have to add s-poly(f3, f1), gcd-poly(f3, f1), s-poly(f3, f2) and gcd-poly(f3, f2)
to the pair list L. Since both of the gcd−polynomials are redundant we only need to
add the polynomials below to the pair list:

s-poly(f3, f1) = 5 · f3 − x · f1 , sig = 5yε2
s-poly(f3, f2) = 6 · f3 − y · f2 , sig = 6y · ε2 − y · ε2 = 5y · ε2

(A:2.2)

At this point the pair list L contains three pairs, all having the same signature 5y · ε2.
In fact all three polynomials are equal to 20y3 + 10xy and therefore it doesn’t actually
matter which we consider first. After we reduce it with f1, we add it to the partial
standard basis:

f4 := s-poly(f2, f3) = 10xy sig(f4) = 5y · ε2 .

REMARK A:2.1.6. When working over a field, the signature of a s−polynomial
s-poly(f, g) is set to be max {cfmf · sig(f), cgmg · sig(g)}. Unfortunately, this isn’t true
over rings (see Equation A:2.2 from Example A:2.1.5). The reason is that over fields we
do not need coefficients in the signature since we can always set the leading coefficient
to be 1 by multiplying with it’s inverse.

A:2.2 Criteria: Syzygy, Rewrite and F5C

This section contains several criteria used over fields in SINGULAR ’s source code and
how we can extend them to rings.

A very useful criteria over fields is the syzygy criterion. This will take advantage
of the already zero−reductions and delete further pairs. The proof over fields extends
automatically over rings. The difficult problem over rings is to assure that the partial
standard basis is a standard basis up to the current signature. We show the difficulty in
Example A:2.2.19.

LEMMA A:2.2.1
(
Syzygy Criterion

)
.

Assume that in Algorithm A:2.1.3 we have reduced a polynomial s to 0 with
sig(s) = cm · εi 6= 0. Let f a polynomial from the pair set L with sig(f) � sig(s). If
sig(s) | sig(f), then f will reduce to 0.

Technische Universität Kaiserslautern 25

Proof.
Since sig(s) | sig(f) it implies sig(f) = cm · sig(s). Denote the modules elements

corresponding to s and f by S = sig(s) + . . . respectively F = sig(f) + . . . and let the
module element P := F − cm · S with LT(P) ≺ sig(f). Because the partial standard
basis is a standard basis up to sig(f) and since LT(P) is strictly smaller than sig(f),
we know that π(P) will reduce to 0 via the partial standard basis. Since S is a syzygy,
π(P) = π(F − cm · S) = π(F) = f . Therefore we proved that f reduces to 0.

REMARK A:2.2.2. Note that we can use the Syzygy Criterion when building the
s−polynomial or the gcd−polynomial. We can first compute it’s signature and if we
find a syzygy that divides this signature, then we can delete the pair.

REMARK A:2.2.3. The Syzygy Criterion proves to be very useful, as we already know
some initial syzygies. Assume in our partial standard basis we have two elements f1 and
f2, with sig(f1) = ε1 and sig(f2) = ε2. In this case a natural syzygy is LT(f1) · ε2. This is
because π(f1 · ε2 − f2 · ε1) = f1 · f2 − f2 · f1 = 0.

In general, if the polynomials fi have the signatures sig(fi) = εi for 1 ≤ i ≤ n, then
we can add to the initial syzygies the following set

{LT(fj) · εk | j = 1, . . . , n− 1 and j < k ≤ n} .

We explain this in the following example.

EXAMPLE A:2.2.4. This example represents a continuation of Example A:2.1.5. Denote
by Syz the set consisting in the leading terms of the found syzygies. At this point we
have the initial syzygy (see Remark A:2.2.3):

Syz =
{

5y2 · ε2
}
.

Recall the first steps from Example A:2.1.5:

f1 = 5y2 sig(f1) = ε1
f2 = 6xy + 4y2 + 2x sig(f2) = ε2
f3 := gcd-poly(f1, f2) = xy2 + 4y3 + 2xy sig(f3) = y · ε2
f4 := s-poly(f2, f3) = 10xy sig(f4) = 5y · ε2

We previously added f4 and the pair list L consists in the new s-poly(f4, fi) and
gcd-poly(f4, fi) for i = 1, 2, 3:

gcd-poly(f4, f2) = −2 · f2 + f4 , sig = 5y · ε2
s-poly(f4, f1) = −10xy · f1 + 5y2 · f4 , sig = 25y3 · ε2
s-poly(f4, f2) = −5 · f2 + 3 · f4 , sig = 15y · ε2
s-poly(f4, f3) = −10 · f3 + y · f4 , sig = 5y2 · ε2

The first element deleted with the syzygy criterion is s-poly(f4, f1), since it has signa-
ture sig = 25y3 ·ε2 and we have one syzygy with the leading term dividing the signature.
In this case the s-poly(f4, f1) is trivially already 0.

26 Adrian Popescu

However, we cannot delete s-poly(f4, f3) that has signature sig = 5y2 · ε2 because we
in the proof we needed that the syzygy’s signature is strictly smaller than the signature
of the considered pair.

The pair with the smallest signature in the pair list is gcd-poly(f4, f2) and hence we
add it to the partial standard basis:

f5 := gcd-poly(f2, f4) = −2xy − 8y2 − 4x sig(f5) = 5y · ε2 .

With f5 being added to the partial standard basis, we have to add the corresponding
new pairs to the pair list:

gcd-poly(f1, f5) = x · f1 + 2y · f5 , sig = 10y2 · ε2
s-poly(f1, f5) = 2x · f1 + 5y · f5 , sig = 25y2 · ε2
s-poly(f2, f5) = f2 + 3 · f5 , sig = 15y · ε2
s-poly(f3, f5) = 2 · f3 + y · f5 , sig = 5y2 · ε2
s-poly(f4, f5) = f4 + 5 · f5 , sig = 30y · ε2

Note that we can already delete gcd-poly(f1, f5) and s-poly(f1, f5) because of the
syzygy criterion.

For the next step, we consider the pair with smallest signature in L. In our case
15y · ε2 and after we reduce it with f1, we add it to the partial standard basis.

f6 := s-poly(f2, f5) = −10x sig(f5) = 15y · ε2 .

Note that all the new pairs will be deleted by the syzygy criterion:

gcd-poly(f2, f6) = 2 · f2 + y · f6 , sig = 15y2 · ε2
s-poly(f1, f6) = 10x · f1 + 5y2 · f6 , sig = 75y3 · ε2
s-poly(f2, f6) = 5 · f2 + 3y · f6 , sig = 45y2 · ε2
s-poly(f3, f6) = 10 · f3 + y2 · f6 , sig = 15y3 · ε2
s-poly(f4, f6) = f4 + y · f6 , sig = 15y2 · ε2
s-poly(f5, f6) = −5 · f5 + y · f6 , sig = 15y2 · ε2

Now the pair list consists of:

L = {s-poly(f3, f5), s-poly(f4, f5), s-poly(f2, f4), s-poly(f3, f4)} .

But all of these will reduce to 0.

REMARK A:2.2.5. Over fields, it can be easily proven that each signature appears only
once, i.e. if there are two pairs having the same signature, then we can randomly
pick one of them. This is not true over rings, as shown in Example A:2.2.4: f4 and
f5 have the same signature. We need f5 in our standard basis. In this case f5 is the
gcd−polynomial of f4 and f2. One suspects that this may happen just for the gcd−pairs.
The next examples illustrates that this is false. Also completely independent pairs can
have the same signature over integers.

Technische Universität Kaiserslautern 27

EXAMPLE A:2.2.6. Let I = 〈4x4, 4x3 + 2x2 + 4x〉 ⊂ Z[x] be an ideal. These are all poly-
nomials added to S in the signature based algorithm:

f1 = 4x4 sig = ε1
f2 = 4x3 + 2x2 + 4x sig = ε2
f3 = s-poly(f1, f2) = 2x3 + 4x2 sig = x · ε2
f4 = s-poly(f2, f3) = 6x2 − 4x sig = 2x · ε2
f5 = s-poly(f1, f3) = −4x2 − 8x sig = 2x2 · ε2
f6 = s-poly(f3, f4) = −16x2 sig = 2x2 · ε2
f7 = s-poly(f2, f4) = −10x2 − 4x sig = 2x2 · ε2
f8 = gcd-poly(f4, f5) = 2x2 − 12x sig = 2x2 · ε2
f9 = s-poly(f2, f4) = −14x2 − 12x sig = 4x2 · ε2
f10 = gcd-poly(f4, f9) = −2x2 − 20x sig = 4x2 · ε2
f11 = s-poly(f4, f5) = −32x sig = 6x2 · ε2

Note that f5, f6, f7 and f8 have the same signature.
After we complete reduce the standard basis we obtain G = {2x2 − 12x, 32x} =

{f8,−f11} and see that the standard basis consists just of the s-poly and gcd-poly of the
same two polynomials. This is unusual and shows once again that we need both pairs
in the signature based algorithm even if they may have the same signature.

A method for the F5 algorithm that we can extend with ease to the ring case is the
F5C strategy developed by Eder and Perry in [EP]. This is a step in the incremental
approach in computing standard basis when using the position over terms ordering
(C,<). We present this in the following algorithm.

ALGORITHM A:2.2.7 (F5C).
Let I = 〈f1, . . . , fn〉 ⊂ R[x] be an ideal. We can compute a standard basis S of I

incrementally by using this algorithm.

Algorithm F5C(f1, . . . , fn)
1: S = {f1, ext-poly(f1)}; //partial standard basis
2: L = ∅; //pair list
3: i=2;
4: while i < n do
5: L = {s-poly(fi, g) | g ∈ S} ∪ {gcd-poly(fi, g) | g ∈ S} ∪ {ext-poly(fi)};
6: compute the standard basis of S ∪ {fi} by starting F5 with the pair-set L;
7: completely reduce S without considering signatures;
8: i = i+ 1;
9: return G;

By completely reduce it is understood that we only consider those elements from
the standard basis whose leading terms are not divisible by other leading terms (i.e.

28 Adrian Popescu

a minimal standard basis is computed). As stated before the signatures block some
of the reductions and for instance we may obtain at the end of F5 the following two
polynomials: 10x2y and 2xy with some signatures that will block the zero-reduction. It
is clear that the first one brings no new information for the standard basis.

Because of line 7, many polynomials will be deleted from S and therefore fewer
pairs will be considered in the next loop of the algorithm.

We continue by explaining the algorithm in detail. After computing the standard
basis S on line 6 with F5, we reduce it to Sred without considering the signatures. After
this step the old signatures become unusable and therefore we need to reset them.

Assume that we are in the i−th loop of the algorithm. Denote the previous S from
line 5 by Si−1 = {g1, . . . , gn}. Then we would add fi to Si−1 and compute a signature
standard basis of Si−1 ∪ {fi} by adding just the pairs as seen in line 5. At the end of this
computation the current partial standard basis will be Si = {g1, . . . , gn, fi, h1, . . . , hs}.
After the reduction from line 7, Sred

i = {g′1, . . . , g′t} and we set S = Sred
i with the reseted

signatures sig(g′i) = εi.
We show how the strategy works in the following example.

EXAMPLE A:2.2.8. We continue with an enhanced version of Example A:2.2.6. We add
to the ideal I the polynomial 14x5 + 3x, and we compute the standard basis of

I =
〈
4x4, 4x3 + 2x2 + 4x, 14x5 + 3x

〉
= 〈F1, F2, F3〉 .

This new element gets a new signature ε3, and hence the order of the polynomials
from Example A:2.2.6 will remain unmodified. Next we show the differences caused by
F5C. We print a table with the standard basis S and the pair list L. On the left column
is the next step without F5C and on the right side we can see the benefits of F5C.

without F5C with F5C

S

f1 = F1 = 4x4 sig = ε1
f2 = F2 = 4x3 + 2x2 + 4x sig = ε2
f3 = 2x3 + 4x2 sig = x · ε2
f4 = 6x2 − 4x sig = 2x · ε2
f5 = −4x2 − 8x sig = 2x2 · ε2
f6 = −16x2 sig = 2x2 · ε2
f7 = −10x2 − 4x sig = 2x2 · ε2
f8 = 2x2 − 12x sig = 2x2 · ε2
f9 = −14x2 − 12x sig = 4x2 · ε2
f10 = −2x2 − 20x sig = 4x2 · ε2
f11 = −32x sig = 6x2 · ε2
f12 = F3 = 14x5 + 3x sig = ε3

f1 = 2x2 − 12x sig = ε1
f2 = −32x sig = ε2
f3 = F3 = 14x5 + 3x sig = ε3

Technische Universität Kaiserslautern 29

From this we can immediately see the advantages of F5C even for such a small
example. Instead of adding 11 s−polynomials and 7 gcd−polynomials to the pair set L
we only add 2 s-poly and 1 gcd-poly.

REMARK A:2.2.9. Looking back at Example A:2.2.8 we see another advantage of the
F5C: better syzygies are added.

In the run without F5C, after adding F3 to our standard basis, we have the initial
syzygies:

Syzno F5C =
{

4x4 · ε2, 4x4 · ε3, 4x3 · ε3
}
,

and in the variant with F5C we obtain

Syzwith F5C =
{

2x2 · ε2, 2x2 · ε3, 32x · ε3
}
.

One can immediately see that Syzwith F5C are better since they delete more pairs than
Syzno F5C.

An easy trick in optimizing F5 over rings that we have implemented is the following.

LEMMA A:2.2.10
(
Gcd Pair Replace

)
.

Assume that in the F5 algorithm we consider a pair p with signature sig(p). Let S =
{f1, . . . , fs} be the partial standard basis up to this step. If there exists a polynomial
f ∈ S such that gcd-poly(p, f) has signature equal to sig(p), then we can replace p with
gcd-poly(p, f).

Proof.
First of all, note that if such an fi exists and we would add p to S, then gcd-poly(p, fi)

would be the pair considered in the next step in the algorithm because it has the same
signature as p. Since gcd-poly(p, f) has the same signature as p, then gcd-poly(p, f) =
p− cm · f , for c ∈ R and m a monomial in R[x].

Next we prove that all s−polynomials and gcd−polynomials q between p and an-
other element g ∈ S can be reduced using gcd-poly(p, f) to 0. Then q could be written
as

q := cpmp · p− cgmg · g.

But we can also consider the pair between g and gcd-poly(p, f) of the form

q′ := cpmp · gcd-poly(p, f)− cgmg · g = cpmp · (p− cm · f)− cgmg · g = q − cpcmpm · f.

Note that it is obvious that we can consider only q′.

This idea can be integrated in the reduction procedure for the signature based algo-
rithm F5 (Algorithm A:2.1.3).

30 Adrian Popescu

ALGORITHM A:2.2.11.
The following procedure will search if for a polynomial p there exists f ∈ S as in

Lemma A:2.2.10.

Algorithm sbaCheckGcdReplace(poly p, ideal S)
1: for f ∈ S do
2: if sig

(
gcd-poly(p, f)

)
= sig(p) then

3: return gcd-poly(p, f)
4: return p

Now the reduction procedure for the signature algorithm (Algorithm A:2.1.3) can
be updated to the following.

◦ On the first line, we replace f by sbaCheckGcdReplace(f , S)

◦ Before returning h, (i.e. no more reductions found), we replace h by
sbaCheckGcdReplace(h,S), and if this is a new polynomial, try again the reduction
procedure.

In fact, we can add to the reduction procedure the strategy presented in Section
A:1.4 where pure monomials were used to shorten the coefficients of polynomials. Be-
cause we are working with signatures, we only allow the reductions where the signature
will not change.

The following example illustrates the benefits of the strategy presented in Lemma
A:2.2.10.

EXAMPLE A:2.2.12. Let I = 〈28y2, 16x2 + 7xy〉 =: {F1, F2} ⊂ Z[x, y] be an ideal. The
box contains the element that vanishes during the run of the algorithm with the strategy
from Lemma A:2.2.10 enabled.

f1 = F1 = 28y2 sig = ε1
f2 = F2 = 16x2 + 7xy sig = ε2
f3 = gcd-poly(f1, f2) = 4x2y2 + 14xy3 sig = 2y2 · ε2
f4 = s-poly(f1, f2) = 21xy3 sig = 7y2 · ε2
f5 = gcd-poly(f4, f1) = −7xy3 sig = 7y2 · ε2
f6 = s-poly(f1, f3) = 14xy3 sig = 14y2 · ε2
f7 = gcd-poly(f4, f3) = x2y3 sig = 7xy2 · ε2
f8 = gcd-poly(f2, f6) = −2x2y3 sig = 14xy2 · ε2
f9 = gcd-poly(f4, f2) = −x2y3 sig = 21xy2 · ε2

In this case the only element that can be replaced is f4, and therefore all pairs with f4
are irrelevant. This is a small example, in larger examples the benefits of this approach
by shortening the pair list L and the partial standard basis S are more obvious. This
example also illustrates the main disadvantage in working with signatures: when using

Technische Universität Kaiserslautern 31

the normal Buchberger Algorithm, instead of f7, f8, f9 we would simply have f7, but
with the F5 Algorithm, we cannot reduce f8 with f7. If we allow this reduction the
result would look like

f8 + 2 · f7

with signature 28xy2 · ε2, and hence the signature would increase, contradicting our
assumption. For the same reason we cannot reduce f9 with f7.

REMARK A:2.2.13. An idea that comes in mind to avoid adding irrelevant elements to
the partial standard bases such as f8, f9 in the previous example would be to reduce
always reduce them without considering the signature.

Another important criteria that deletes useless pairs in the field case is the Rewrite
Criterion. In this we use the signature of the polynomial that have been already added
to the partial standard basis. The proof in the field case can be found in [EP].

LEMMA A:2.2.14
(
Rewrite Criterion

)
.

Let S = {f1, . . . , fs} be a partial signature standard basis and p := s-poly(fi, fj).
Assume that there exists a fk ∈ S such that sig(fk) | sig(p) and i, j ≤ k. Then p contains
no new information since we can rewrite it using the actual standard basis. In other words,
we can delete this pair from L.

The proof uses the fact that the signature of a s−polynomial s-poly(f, g) is either a
multiple of sig(f) or a multiple of sig(g). But over rings, as seen in Remark A:2.1.6, this
does not hold, and will cause the deletion of critical pairs needed by the algorithm as
shown in the following example.

EXAMPLE A:2.2.15. Let I = 〈8y2, 4x2y + 5y3 + 7y2 + 9x〉 be an ideal in Z[x, y] with the
dp ordering. Assume that we use the Rewrite Criterion also over rings. In the following
we show each polynomial that is added to the standard basis.

f1 = 8y2 sig = ε1
f2 = 4x2y + 5y3 + 7y2 + 9x sig = ε2
f3 = gcd-poly

(
s-poly(f1, f2), f1

)
= 2y4 + 14y3 + 18xy sig = 2y · ε2

f4 = s-poly(f3, f1) = 72xy sig = 8y · ε2
f5 = gcd-poly

(
s-poly(f2, f4), f1

)
= −2y3 − 126y2 − 162x sig = 8xy · ε2

f6 = s-poly(f1, f5) = −648x sig = 32xy · ε2
f7 = gcd-poly

(
s-poly(f2, f3), f3

)
= −y6 + 28x2y3 + 5y5 + 36x3y + 27xy3 sig = 4x2y · ε2

The next critical pair that should go in the standard basis would be

f8 = s-poly(f2, f5) = 5y5 − 252x2y2 + 7y4 − 324x3 + 9xy2 sig = 16x3y · ε2,

32 Adrian Popescu

but this is deleted by the Rewrite Criterion: sig(f7) | sig(f8), 2 < 7 and 5 < 7; and
therefore leads to an incorrect standard basis, instead of the correct one:

648 · x,
8 · y2,
72 · xy,
2 · y3 + 126 · y2 + 162 · x,
4 · x2y + 5 · y3 + 7 · y2 + 9 · x,
y5 − 324 · x3 − 315 · xy2 − 3 969 · y3 − 5 103 · xy.

Because of the deleted polynomial, we cannot reconstruct the last polynomial, which
would be gcd-poly(f8, f3) with sig = 16x3y · ε2.

Unfortunately we were unable to develop a version of Rewrite Criterion that would
correctly function over rings.

We are now ready to continue the idea from Remark A:2.1.4 concerning the sigdrop.
When working over a field, Rewrite Criterion deletes the pairs before they would come
into a situation where the signature would vanish. Therefore in the case of fields, there
are no signature drops.

REMARK A:2.2.16. Recall that in the field case, all the polynomials and signature have
the leading coefficient 1.

In fact, the field version of the Rewrite Criterion is the following:
Let fi, fj ∈ S be two polynomials in the partial standard basis, mi = LM(fi), mj =

LM(fj), L = lcm(mi,mj) such that

s-poly(fi, fj) =
L

mi

· fi −
L

mj

· fj =: λi · fi − λj · fj.

If there is an fk with k ≥ i, j such that sig(fk) | λi · sig(fi) or sig(fk) | λj · sig(fj), then
we can delete s-poly(fi, fj).

LEMMA A:2.2.17.
Over fields, the signature of a s−polynomial will never vanish.

Proof.
Assume we have a s−polynomial for which the signature vanishes. Using the nota-

tion from the previous remark,

s-poly(fi, fj) = λi · fi − λj · fj,

and
λi · sig(fi) = λj · fj.

Assume that sig(fi) ≺ sig(fj) (i.e. i < j). Then we can apply the Rewrite Criterion for
fi and delete the pair.

Technische Universität Kaiserslautern 33

In the ring case this does not hold, as the following easy example reveals.

EXAMPLE A:2.2.18 (Vanishing signature). Consider the ideal generated by
F1 = 7x2y + 2x and F2 = 8xy2 + 5xy + 2y2. In the following we print the next 10
steps of the algorithm.

f1 = F1 = 8xy2 + 5xy + 2y2 sig = ε1
f2 = F2 = 7x2y + 2x sig = ε2
f3 = gcd-poly(f1, f2) = −x2y2 − 5x2y − 2xy2 + 2xy sig = y · ε2
f4 = gcd-poly

(
s-poly(f2, f1), f1

)
= 2xy2 + 26xy + 4y2 + 10x sig = 8y · ε2

f5 = s-poly(f4, f1) = 99xy + 14y2 + 40x sig = 32y · ε2
f6 = gcd-poly(f4, f5) = xy2 + 14y3 − 1234xy − 196y2 − 490x sig = 32y2 · ε2
f7 = s-poly(f4, f5) = 28y3 − 2494xy − 396y2 − 990x sig = 64y2 · ε2
f8 = s-poly(f3, f4) = 16x2y + 10x2 + 4xy sig = 8xy · ε2
f9 = gcd-poly

(
gcd-polyred(f4, f2), f2

)
= −x2y + 30x2 − 186xy − 28y2 − 94x sig = 24xy · ε2

The next element that we would add to S is

f10 = gcd-poly(f5, f2) = x2y + 14xy2 + 40x2 − 28x

with sig = 32xy · ε2. But, when building the pair

s-poly(f10, f6) = x · f6 − y · f10

we see that x · sig(f6) = 32xy2 · ε2 = y · sig(f10). Therefore the signature vanishes and
we have to stop the algorithm.

The example below represents another case when we have to terminate the algo-
rithm.

EXAMPLE A:2.2.19 (Decreasing Signature). Consider over Z[x, y] the ideal I generated
by F1 = 5x2y + 8y2 and F2 = 6x3 + 7xy + y. In the following we print the first 8 steps in
the algorithm.

f1 = F1 = 5x2y + 8y2 sig = ε1
f2 = F2 = 6x3 + 7xy + y sig = ε2
f3 = gcd-poly(f1, f2) = x3y − xy2 + y2 sig = y · ε2
f4 = s-poly(f1, f2) = −13xy2 + 5y2 sig = 5y · ε2
f5 = gcd-poly(f1, f4) = −x2y2 + 10xy2 + 40y3 sig = 10xy · ε2
f6 = gcd-poly

(
s-poly(f1, f4), f4

)
= −xy2 + 104y3 + 10y2 sig = 25xy · ε2

f7 = s-poly(f1, f5) = 50xy2 + 208y3 sig = 50xy · ε2
f8 = s-poly(f4, f5) = 125xy2 + 520y3 sig = 125xy · ε2

When we try to add f8 to our standard basis, by trying to build gcd-poly(f7, f8) we
notice that the signature decreases:

34 Adrian Popescu

gcd-poly(f7, f8) = −2 · f7 + f8 = 25xy2 + 104y3,

sig
(

gcd-poly(f7, f8)
)

= 25xy · ε2 ≺ 125xy · ε2 = sig(f8).

This decreasing signature, from now on referred to as a sigdrop, will cause us to end
the algorithm, because we would contradict the assumption that the partial standard
basis is a standard basis up to the current signature.

A:2.3 SigDrops

In the previous section we have seen that over rings, sigdrops occur and that they
lead to the termination of the algorithm since otherwise it could return an incorrect
result. This section describes what can be done after a sigdrop occurs.

We give a trivial example that happens often in a signature standard basis compu-
tation over rings. Assume that we added to S a polynomial fp := s-poly(fi, fj) with
signature sig(fp) and that in the next step we consider the same polynomial with the
same signature but from a different pair s-poly(fk, fl) = fp. We do not want to add
the same polynomial with the same signature in the partial standard basis, but using
the reduction procedure shown in Algorithm A:2.1.3, we see that we cannot reduce
s-poly(fk, fl) by fp since they have the same signature and it would vanish causing a
sigdrop. A solution to this would be to also let reduction when the signatures are equal
and whenever we have sigdrops (caused by vanishing signature as in Example A:2.2.18
or a decreased signature as in Example A:2.2.19), we reduce the polynomial with the
reduction procedure from the normal Buchberger Algorithm without considering the
signatures. If after this reduction the polynomial is 0, we can continue with the algo-
rithm − since it was an irrelevant element. However, if after the reduction the element
is still non zero, then we have to terminate the algorithm.

After these sigdrops, we have to restart the algorithm with the partial standard basis
but with reinitialized new signatures. As we saw sigdrops can happen either in the
reduction step or when building the s−polynomials and gcd−polynomials.

Consider that we run the signature based algorithm for the input ideal
I1 = {F1, . . . , Fm}.

Having the F5C strategy in mind, the partial standard basis S1 will look

S1 =

f1 sig = ε1
f2 sig = ε2
· · ·
fs sig = εs
fs+1 sig = c1m1 · εs
fs+2 sig = c2m2 · εs
· · ·
fs+t sig = ctmt · εs

Technische Universität Kaiserslautern 35

Assume for the moment that the sigdrop was caused in the easier case − in the re-
duction step− and that after trying to reduce the polynomial fs+t+1 without considering
signatures, it still remains nonzero.

Looking at F5C (or using the idea behind the incremental computation) it is clear
that fs = Fu ∈ I1.

A natural way to continue after this sigdrop is to start again the algorithm with the
new input I2 = {f1, . . . , fs+t+1, Fu+1, . . . , Fm} with new signatures as in F5C and delete
most of the elements in the pair list L1 − since the signatures will change and we will
have to also recompute the signatures of the pairs. The only pairs from L1 that we do
not delete are the unused initial polynomials Fu+1, . . . , Fm. These elements have to go
again as initial elements.

REMARK A:2.3.1. Note that we can already add f1, . . . , fs−1 to the partial standard basis
S2 since in the previous run all of the pairs between them were either added to S1 or
reduced to 0. This holds due to our module ordering (C,<) − all the remaining pairs
in L1 have the signature non zero on the s component, and hence it originally had to
come from a pair with fs.

Now we assume that the sigdrop was caused in a pair computation p (s-poly or
gcd-poly) between the newly added polynomial fs+t and an fi from the partial standard
basis. In this case, we have to add to I2 also p.

The hard step is to choose an ordering for the elements of I2. This ordering affects
the new signatures of the polynomials. If we sort them simply by increasing ring mono-
mial ordering, as one normally does at a beginning of the signature algorithm, then it
may be possible that we would get to the same sigdrop, and hence the algorithm will
be stuck in an infinite loop. We show in detail such an example.

EXAMPLE A:2.3.2. Consider the ideal I generated by F1 = 5y3 + 8y2 + 6y and
F2 = 8x2y+ 9x2 in Z[x, y] with the dp ordering. We print the first steps in the following.

f1 = F1 = 5y3 + 8y2 + 6y sig = ε1
f2 = F2 = 8x2y + 9x2 sig = ε2
f3 = gcd-poly(f1, f2) = x2y3 − 6x2y2 − 18x2y sig = 2y2 · ε2
f4 = s-poly(f1, f2) = −19x2y2 + 54x2 sig = 5y2 · ε2
f5 = gcd-poly

(
s-poly(f1, f3), f2

)
= 2x2y2 − 51x2y sig = 10y2 · ε2

f6 = gcd-poly
(

s-poly(f2, f3), f2
)

= −x2y2 − 81x2y sig = 15y2 · ε2
f7 = s-poly(f2, f4) = 171x2y + 432x2 sig = 40y2 · ε2
f8 = s-poly(f2, f5) = −213x2y sig = 40y2 · ε2

The next element considered is

gcd-poly(f4, f5) = −x2y2 − 459x2y + 54x2
∣∣ sig = 95y2 · ε2.

We would like to reduce this by f6 to −378x2y + 54x2 which has signature 80y2 · ε2.
This would cause a sigdrop since the signature decreased. After reducing as much as we

36 Adrian Popescu

can with the reduction procedure without signatures, we obtain f9 := −165x2y + 54x2.
Then we have to terminate the algorithm, add this polynomial and after sorting S1 by
the monomial ordering we start the next run with

I2 =

f1 = 5y3 + 8y2 + 6y sig = ε1

f2 = 8x2y + 9x2 sig = ε2

f8 = 213x2y sig = ε3

f9 = 165x2y − 54x2 sig = ε4

f7 = 171x2y + 432x2 sig = ε5

f6 = x2y2 + 81x2y sig = ε6

f5 = 2x2y2 − 51x2y sig = ε7

f4 = 19x2y2 − 54x2 sig = ε8

f3 = x2y3 − 6x2y2 − 18x2y sig = ε9

Using the strategy described in Remark A:2.3.1, f1 can be automatically added to
S2.

One can immediately see that in the second run we would build exactly the same
pairs as in the first run because of the incremental approach (we would first compute a
standard basis for the first two elements). Hence this would result in an infinite loop:
the second run will end with the exact same sigdrop and so will the further ones.

From this example, we can immediately see what the problem that causes this infi-
nite loop is. We have to put the element that caused the sigdrop on the first position
(after the elements that will be automatically added to the partial standard basis as
described in Remark A:2.3.1). If we do this, the algorithm will end with the correct
standard basis: the first run will be the exactly the same, but we start the second run
with:

I2 =

f1 = 5y3 + 8y2 + 6y sig = ε1

f9 = 165x2y − 54x2 sig = ε2

f2 = 8x2y + 9x2 sig = ε3

f3 = x2y3 − 6x2y2 − 18x2y sig = ε4

f4 = −19x2y2 + 54x2 sig = ε5

f5 = 2x2y2 − 51x2y sig = ε6

f6 = −x2y2 − 81x2y sig = ε7

f7 = 171x2y + 432x2 sig = ε8

f8 = −213x2y sig = ε9

We print what happens in the second run in the following:

Technische Universität Kaiserslautern 37

g1 = f1 = 5y3 + 8y2 + 6y sig = ε1
g2 = f9 = 165x2y − 54x2 sig = ε2
g3 = s-poly(g1, g2) = −318x2y2 − 198x2y sig = y2 · ε2
g4 = gcd-poly(g1, g2) = 3x2y2 − 4 230x2y sig = 14y2 · ε2
g5 = s-poly(g2, g3) = −16 614x2y sig = 55y2 · ε2
g6 = gcd-poly(g5, g2) = 3x2y − 70 686x2 sig = 715y2 · ε2
g7 = s-poly(g5, g2) = −299 052x2 sig = 3 025y2 · ε2
g8 = gcd-poly(g3, g1) = −x2y3 + 620x2y2 + 17 954 244x2 sig = 2y3 · ε2
g9 = gcd-poly(g6, g1) = x2y3 − 8 468x2y2 − 141 372x2 sig = 28y3 · ε2

At this point we are done with elements with signature on the second component,
so we can apply F5C and obtain

h1 = g7 = 299 052x2 sig = ε1
h2 = g1 = 5y3 + 8y2 + 6y sig = ε2
h3 = g6 = 3x2y − 70 686x2 sig = ε3
h4 = gred8 = x2y3 − 620x2y2 − 11 124x2 sig = ε4
h5 = gcd-poly(f2, h3) = −x2y + 212 067x2 sig = ε5
h6 = s-poly(h3, h5) = 266 463x2 sig = 3 · ε5
h7 = gcd-poly(h1, h6) = 1 917x2 sig = 165 · ε5

At this point we are done with elements that have the signature in the third compo-
nent, so we can apply F5C. We end with

s1 = h7 = 1 917x2 sig = ε1
s2 = h2 = 5y3 + 8y2 + 6y sig = ε2
s3 = hred5 = x2y − 1 197x2 sig = ε3

All the others polynomials that we have to consider, f3, . . . , f8, will reduce to 0 with
respect to S = {s1, s2, s3}. So, the signature based algorithm will end with the correct
standard basis. In this example we needed two runs of the algorithm to complete the
algorithm.

In general two problems may appear. The first issue that can arise is that if we would
not allow all the reductions, we would add a lot of useless polynomials and build pairs
between them. If we would not allow sigdrops in the reduction step, and just reduce
when the signature remains the same, then one easily can find examples where we
actually have the real standard basis in the partial standard basis, but we cannot reduce
all the pairs.

The second issue that may appear is that after a sigdrop, we put the element that
caused it at the beginning. It may happen that some pairs with this element would
reduce with an element that we had in the previous loop in the partial standard basis,
but now it appears later and hence we do not have access to them yet.

In the following we display some examples. On the first column the standard basis is
displayed (computed with std from SINGULAR) and the next columns will correspond

38 Adrian Popescu

to the different signature algorithm runs. The symbol “
√

” signifies that the polynomial
has been added to the partial standard basis in the signature based algorithm and a dot
“.” if we added to S an element with the same leading monomial but different coefficient
(for instance 13x2 + 2xy instead of x2 − y).

EXAMPLE A:2.3.3. For the previous example this is how the table looks like:

Run 1 Run 2

1 917x2 ..
√

5y3 + 8y2 + 6y
√ √

x2y − 1 197x2
√

EXAMPLE A:2.3.4. Let I = 〈10xy2 + 9y, 5x2y + x2 + 9xy〉 ⊂ Z[x, y] be an ideal. The
standard basis of I computed with the command std in SINGULAR is S = {s1, . . . , s5},
where

s1 = 18xy + 162y2 − 81y
s2 = 2x2 + 63xy + 81y
s3 = 810y3 − 405y2 − 81y
s4 = xy2 + 3564y3 + 9xy − 1701y2 − 396y
s5 = x2y − 2916y3 − 7x2 − 225xy + 1458y2

With the signature based algorithm we find 5 sigdrops, so we have to run it 6 times.
The corresponding table is

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

18xy + . . .
√

.
√

2x2 + . . .
√

...
√
..... ..

√
. ..
√
...

810y3 +
√ √ √

xy2 +
√

.
√ √

x2y +
√

.
√

.....
√

..
√

Note that in the first run, we already had 4 out of 5 polynomials in the partial
standard basis. But because of a sigdrop, we had to restart. Without this sigdrop, in
the next 2 steps we would have been able to find also the last polynomial 810y3 +
Because of this we had to restart and each time we added bigger polynomials to S. We
needed to do 5 extra runs to find the correct standard basis.

Also note that in Run 4, after the polynomial 2x2 + . . . has been added, we still add
polynomials of the form 2 · cx2 + . . . to the partial standard basis because we are not
able to reduce them (due to signatures).

These problems happen quite often and a technique to overcome this is to combine
the signature algorithm with the normal Buchberger Algorithm: we let the signature

Technische Universität Kaiserslautern 39

algorithm to run up to maximal N times, and afterwards we use the normal standard
basis algorithm on the intermediate result in order to obtain a Gröbner basis.

A:2.4 Timings

This section contains some of the most interesting examples over Z that finish faster
with the signatures algorithm compared to the normal algorithm. For all these exam-
ples we set N = 1, i.e. after the first sigdrop we use the Buchberger Algorithm. The
input ideals for these examples can be found in the Appendix at page 137. These ex-
amples were randomly generated. The first column contains the time needed by the
classical standard basis algorithm implemented in SINGULAR (STD) and the second
column holds the timing for signature based algorithm (SBA). The times are displayed
in milliseconds.

STD Time SBA Time Factor
Example C:1 10 430 600 17
Example C:2 19 390 100 193
Example C:3 48 250 400 120
Example C:4 83 470 20 4 173
Example C:5 22 702 640 5 958 520 4
Example C:6 112 230 570 196
Example C:7 3 828 960 48 700 78
Example C:8 76 230 30 2 541
Example C:9 403 480 5 030 80
Example C:10 9 393 780 10 360 906
Example C:11 21 792 210 34 640 629
Example C:12 1 904 710 170 11 204
Example C:13 21 198 950 129 420 163
Example C:14 1 563 870 92 490 16
Example C:15 43 520 140 310
Example C:16 854 240 119 980 7
Example C:17 10 684 360 185 090 57

The above timings where computed by using the following script in SINGULAR :
system("--ticks -per -sec" ,1000); //sets timer to ms

ring r = integer ,(x,y,z),dp;

ideal i = ...;

int tstd = timer; //will store the timing for std

ideal std_i = std(i);

tstd = timer - tstd;

int tsba = timer; //will store the timing for sba

ideal sba_i = sba(i,1,0);

tsba = timer - tsba;

40 Adrian Popescu

In these examples SBA proves to perform much better. The reason for this is that
until the sigdrop, we get access to a polynomial that without signatures will take much
more pairs to obtain. After the sigdrop we continue with STD.

However, in the case when we set N = 1 (just one SBA run is allowed), most exam-
ples will finish almost equally fast for the two algorithms. If we set N > 1, then SBA
will become much slower than the STD algorithm for reasons illustrated in Example
A:2.3.4.

A:2.5 Finite rings − Zm

In the previous sections we have considered R = Z. The strategies, however, hold
for Zm, for a m ∈ N, as well, provided we set also the signature for an extended
s−polynomial. There are two different natural ways to define them.

The first one would be to consider them as completely new elements and assign
them a new signature.

DEFINITION A:2.5.1.
For each extended s−polynomial of a polynomial f we enlarge our module with one

more component εm+1 and we set

sig
(

ext-poly(f)
)

= 1 · εm+1.

The second one, takes into consideration the definition of a extended s−polynomial.

DEFINITION A:2.5.2.
We set the signature of an extended s−polynomial of a polynomial f = cf ·mf + . . .

by
sig
(

ext-poly(f)
)

= Ann(cf) · sig(f).

Over Zm[x] we will often have sigdrops since we take also coefficients in signatures
in consideration, this signature may become 0 as the next example shows. Because of
this, the algorithm does not perform well for ideals in Zm[x].

EXAMPLE A:2.5.3. Let R = Z6[x], f = 3x with sig(f) = 3x · ε2 and g = 4x3 + 3x with
sig(g) = x · ε2. We want to compute sig

(
s-poly(f, g)

)
. Then

s-poly(f, g) = 4x2 · f − 3 · g = 3x,

and therefore

sig
(

s-poly(f, g)
)

= LT(4x2 · 3x · ε2 + 3 · x · ε2) = LT(3x · ε2) = 3x · ε2.

Technische Universität Kaiserslautern 41

Note that signature of the s−polynomial has dropped (since the coefficient of x3 was
12 ≡ 0 mod 6) and this would cause the algorithm to end.

For both definitions (Definition A:2.5.1 and Definition A:2.5.2) one can find exam-
ples where the vanishing signature or a decreasing signature cause a sigdrop ending the
algorithm.

EXAMPLE A:2.5.4. In this example we use Definition A:2.5.2. Let
I = 〈x5, x4 + x3 + 5x2 + 3x〉 ⊂ Z6[x] be an ideal. We show in the following the first
4 steps of the algorithm.

f1 = x5 sig = ε1
f2 = x4 + x3 + 5x2 + 3x sig = ε2
f3 = s-poly(f1, f2) = 4x3 + 4x2 + 3x sig = x · ε2
f4 = ext-poly(f3) = 3x sig = 3x · ε2

Since Ann(4) = 3, ext-poly(f3) = 3 · f3 = 3x with sig = 3x · ε2.
When we try to add the s−polynomial between f4 and f3,

s-poly
(
f4, f3

)
= 4x2 · f4 − 3 · f3,

we see that the signature is LT(12x3·ε2−3x·ε2) = 3x·ε2, since the first bigger term would
vanish since we are working over Z6[x]. However, this will not lead to the termination of
the algorithm despite the decreasing signature, because sig

(
s-poly(f3, f4)

)
= 3x · ε2 =

sig(f4), which was the current signature. The algorithm continues by adding the last
polynomial to the standard basis:

f5 = s-poly(f2, f3) = x2 sig = x2 · ε2,

EXAMPLE A:2.5.5. If we compute the above example with the definition of the signature
of an extended s−polynomial as in Definition A:2.5.1, then we obtain a sigdrop, causing
the termination of the algorithm:

f1 = x5 sig = ε1
f2 = x4 + x3 + 5x2 + 3x sig = ε2
f3 = s-poly(f1, f2) = 4x3 + 4x2 + 3x sig = x · ε2

We add to the pair list L, the extended s−polynomial ext-poly(f3) with signature ε3,
so this element will be considered after all the other pairs.

The next element that will be added to S is

f4 = s-poly(f2, f3) = x2 sig = x2 · ε2,
In the next step we consider after the reduction s-poly(f1, f3) = 5x3 + 4x2 with

sig = x3 · ε2. Using the strategy presented in Lemma A:2.2.10, we replace this with
gcd-poly

(
s-poly(f1, f3), f3

)
= x3 + 3x with sig = x3 · ε2. After reducing it with f4, we

obtain the polynomial 3x with no signature, causing the algorithm to terminate.

42 Adrian Popescu

Technische Universität Kaiserslautern 43

PART B

DEPTH, STANLEY DEPTH AND HILBERT

DEPTH

Technische Universität Kaiserslautern 45

INTRODUCTION

PART B starts recalling some preliminaries on Cohen−Macaulay Modules, Hilbert
Functions and Hilbert Polynomials. Chapter 2 introduces the multigraded Stanley depth
and the graded Hilbert depth (shortly sdepthn and hdepth1) presenting also the Stan-
ley Conjecture. Afterwards we present an implemented algorithm in SINGULAR that
computes the Hilbert Depth published in Journal Symbolic Computation ([AP2]). Sev-
eral computational experiments are included. In particular, these show that if R =
K[x1, . . . , x6], for a field K, and m = 〈x1, . . . , x6〉, then hdepth1(R ⊕ m) = 4 > 3 =
hdepth1(m) (see Remark B:2.2.4). This hints that it might holds also sdepthn(R⊕m) >
sdepthn(m), which is a negative solution for a question of J. Herzog. This is indeed the
case as it was stated by B. Ichim and A. Zarojanu in [IZ].

Chapter 3 starts recalling some cases when the multigraded Stanley Conjecture holds
obtained by D. Popescu, A. Zarojanu and Y.H. Shen ([DP5], [PZ],[DP6], [Sh]) in the
frame of monomial squarefree ideals. Unfortunately, the multigraded Stanley Conjec-
ture does not hold in general as [DuGo] shows (see here Example B:3.1.8). The com-
puter algebra system NORMALIZ ([BIS]) uses the multigraded Stanley decomposition to
compute the Hilbert Series. The case when the multigraded Stanley Conjecture fails
makes difficult to find the best multigraded Stanley decomposition and so the compu-
tation by NORMALIZ is harder.

Theorem B:3.2.13 (see [AP1]) shows that the Stanley Conjecture holds for intersec-
tions of three monomial prime ideals. The proof uses a special decomposition extended
later by others (see [DP7], [HPV]) under the name of splitting of variables and used for
example in [RTU] and [Ta].

Let J (I ⊂ R = K[x1, . . . , xn] be monomial square free ideals generated by mono-

mials of degree ≥ d. Then depth
I

J
≥ d. If among the minimal set of monomial genera-

tors of I there exist at most 3 squarefree monomials of degree d and sdepthn
I

J
= d+ 1

we show that depth
I

J
≤ d+ 1 (see Theorem B:3.1.7).

Let G(I), G(J) be the sets of minimal monomial generators of I, respectively J ,
where J (I ⊂ R and di, i ∈ {1, . . . , n} the maximum degree of xi which appears
in a monomial from G(I) ∪ G(J). We say that I/J is in the canonical form if for any
i ∈ {1, . . . , n} and t < di, there exist a monomial from G(I) ∪ G(J) of degree t in
xi. In Chapter 4 we introduced a factor of monomial ideals I/J associated to I/J −
the canonical form. We have sdepthn I/J = sdepthn I/J by [IKM, Proposition 5.1] (see
here Proposition B:4.0.1) and depthn I/J = depthn I/J by Theorem B:4.1.11. Using the
canonical form, we were able to extend Rinaldo’s Stanley depth algorithm to optimize

Technische Universität Kaiserslautern 47

the computation of depth and sdepth of I/J using its canonical form. Example B:4.1.13
shows that the algorithm is much quicker than the other known ones.

48 Adrian Popescu

CHAPTER B:1

DEFINITIONS AND NOTATIONS

In this chapter we give the definitions and notations that we use throughout this
part. We also try to present examples to better understand notions like Stanley and
Hilbert depth.

B:1.1 Cohen−Macaulay Modules

In this section we present some connections between the Hilbert functions and
Cohen−Macaulay rings.

DEFINITION B:1.1.1.
We say that an ideal Q ⊂ R is primary if x · y ∈ Q, then x ∈ Q or yn ∈ Q for a

certain n ∈ N. If Q is a primary ideal, then the radical of Q is necessarily a prime ideal
P , and this ideal is called the associated prime ideal of Q. In this situation, Q is said to
be P−primary.

DEFINITION B:1.1.2.
An R−module M is flat if the tensor product functor M ⊗R − is exact. For example

the projective modules, in particular the free ones, are flat modules.

DEFINITION B:1.1.3.
Let R be a ring and M a R−module. A sequence x := x1, . . . , xn, xi ∈ R ∀i is called

a M−regular sequence if

◦ xi is not a zero divisor in
M

(x1, . . . , xi−1)
for i = 1, . . . , n

◦ M

xM
6= 0.

In this case n is called the length of x.

REMARK B:1.1.4. If R is a polynomial ring over a field then a regular sequence x of R
is the algebraic analogue of the geometric notion of the complete intersection. More
precisely, R/(x) defines a complete intersection if and only if x is regular.

Technische Universität Kaiserslautern 49

DEFINITION B:1.1.5.
Let (R,m) be a Noetherian local ring with m the maximal ideal. The length of a

maximal M−regular sequence x := x1, . . . , xn, for xi ∈ m ∀i is called the depth of M .

REMARK B:1.1.6. If M is a finite R−module then one can define depth by using some
notions from Homological Algebra [BH, Theorem 1.2.5]:

depthM = inf

{
n

∣∣∣∣ Extn
(
R

m
,M

)
6= 0

}
PROPOSITION B:1.1.7

(
[BH, Propositions 1.2.12, 1.2.13]

)
.

Let (R,m) be a local Noetherian ring and M a finite generated R−module. Then
depthM ≤ dimM . Moreover, depthM ≤ dim R/P for all P ∈ AssM .

DEFINITION B:1.1.8.
Let (R,m) be a local Noetherian ring, and M a R−module. M is called Cohen −

Macaulay module if dimM = depthM or if M = 0.
A Noetherian ringR is called a Cohen−Macaulay ring if (R,m) is Cohen−Macaulay

for any maximal ideal m ∈ Max(R).

B:1.2 Hilbert Function and Hilbert Polynomial

The Hilbert function of a graded module associates to an integer n the dimension
of the n−th graded part of a given module. For sufficiently large n, the values of this
function can be given by a polynomial, the Hilbert polynomial. To show this, we use the
Hilbert−Poincaré series, a formal power series in t with coefficients being values of the
Hilbert function.

Throughout this chapter let K be a field.

DEFINITION B:1.2.1.
A graded ring R is a ring together with a direct sum decomposition

R =
⊕
i≥0

Ri,

where the Ri are abelian groups satisfying RiRj ⊂ Ri+j for any i, j ≥ 0.
A graded K−algebra is a K−algebra which is a graded ring such that Ri is a

K−vector space for all i ≥ 0 and R0 = K.
The Ri are called the homogeneous components and the elements of Ri are called

homogeneous element of degree i.
A R−module M , together with a direct sum decomposition

M =
⊕
i≥0

Mi

50 Adrian Popescu

into abelian groups is called a graded R−module if RiMj ⊂ Mi+j for all i ≥ 0 and
j ∈ Z.

LetM =
⊕
i≥0

Mi be a gradedR−module and defineM(d) :=
⊕
i∈Z

M(d)i withM(d)i :=

Md+i. Then M(d) is a graded R−module and it is called the d−th shift of M .
A submodule N ⊂ M is called a graded submodule if it is generated by ho-

mogeneous elements, or equivalently, if N is graded with the induced grading, i.e.

N =
⊕
i∈Z

(Mi ∩N).

Let R =
⊕
i≥0

Ri be a graded ring, M =
⊕
i∈Z

Mi and N =
⊕
i∈Z

Ni be two graded

R−modules. A homomorphism ϕ : M → N is called graded of degree d if ϕ(Mi) ⊂ Ni+d

for all i. If ϕ is graded of degree zero, we call ϕ just graded.

DEFINITION B:1.2.2.
Let R =

⊕
i≥0

Ri be a Noetherian graded K−algebra and let M =
⊕
i∈Z

Mi be a finitely

generated graded R−module.
The Hilbert function HM : Z −→ Z of M is defined by

HM(n) := dimK(Mn).

The Hilbert-Poincaré series HPM of M is defined by

HPM(t) :=
∑
i∈Z

HM(i) · ti ∈ Z JtK
[
t−1
]
.

Note that the definition of HM and HPM depend only on the graded structure of M .
Hence if ϕ : R′ −→ R is a graded K−algebra map, then it does not matter whether we
consider M as a R−module or as a R′−module.

The next results are proven in [BH, Chapter 4].

LEMMA B:1.2.3.
Let R =

⊕
i≥0

Ri be a Noetherian graded K−algebra and let M be a finitely generated

graded R−module.

1. Let N ⊂M be a graded submodule. Then

HM(n) = HN(n) + HM/N(n)

for all n. In particular HPM(t) = HPN(t) + HPM/N(t).

2. Let d be an integer. Then
HM(d)(n) = HM(n+ d)

for all n. In particular HPM(d)(t) = t−d · HPM(t).

Technische Universität Kaiserslautern 51

3. Let d be a non-negative integer, let f ∈ Rd and let ϕ : M(−d) −→ M be defined by
ϕ(m) := f ·m. Then Ker(ϕ) and Coker(ϕ) are graded R/〈f〉−module with the induced
gradings and

HM(n)− HM(n− d) = HCoker(ϕ)(n)− HKer(ϕ)(n− d)

for all n. In particular HPM(t)− td · HPM(t) = HPCoker(ϕ)(t)− td · HPKer(ϕ)(t).

THEOREM B:1.2.4.
Let R =

⊕
i≥0

Ri be a graded K−algebra and assume that R is generated, as K−algebra,

by x1, . . . , xr ∈ R1. Then for any finitely generated graded R−module M =
⊕
i≥0

Mi,

HPM(t) =
Q(t)

(1− t)r
, for some Q(t) ∈ Z[t]. (B:1.1)

With the notations of Theorem B:1.2.4, canceling all common factors from the equa-
tion (B:1.1) we obtain

HPM(t) =
G(t)

(1− t)s
, 0 ≤ s ≤ r, G(t) =

d∑
i=0

git
i ∈ Z[t], (B:1.2)

such that gd 6= 0 and G(1) 6= 0, that is s is the pole order of HPM(t).

THEOREM B:1.2.5.
Let R be a polynomial ring over a field and M 6= 0 be a finite graded R−module of

dimension d. Assume that M is Cohen−Macaulay. Let GM(t) be as in Equation (B:1.2),

GM(t) =
∑
i

git
i. Then gi ≥ 0 for all i.

DEFINITION B:1.2.6.
Let R =

⊕
i≥0

Ri be a Noetherian graded K−algebra, and let M =
⊕
i≥0

Mi be a finitely

generated graded R−module.

◦ The polynomials Q(t) and G(t) defined in (B:1.1) and (B:1.2) are called the first
and the second Hilbert series of M .

◦ Let d be the degree of the second Hilbert series G(t) and let s be the pole order of
the Hilbert-Poincaré series HPM(t) at t = 1. Then

PM(n) :=
d∑
i=0

gi ·
(
s− 1 + n− i

s− 1

)
∈ Q[n], (B:1.3)

where
(
n
k

)
= 0 for k < 0, is called the Hilbert polynomial of M .

52 Adrian Popescu

DEFINITION B:1.2.7.
Recall Equation (B:1.2). We define the multiplicity of the module M as

e(M) = G(1).

One can prove that e(M) > 0
(

see [BH]
)
.

DEFINITION B:1.2.8.
Let R be a ring and M be a R−module. The dimension of M is defined by dimM =

dim
R

Ann(M)
.

The length of M , denoted by `(M), is defined to be the largest number n such
that there exists a chain of submodules of length n, i.e. N0 (N1 (. . . (Nn, for Ni

submodules of M .

REMARK B:1.2.9. Note that in the case of the Hilbert function definition (Definition
B:1.2.2), Mn were seen as K−vector spaces and then `(Mn) is the dimension of the
vectorial space Mn over K.

DEFINITION B:1.2.10.
An associated prime of a module M over a ring R is a prime ideal of R of the form

AnnR z for some nonzero z ∈ M . The set of all associated prime ideals is denoted by
AssM .

THEOREM B:1.2.11
(
Hilbert’s Theorem

)
.

Let M be a finite graded R−module of dimension d. Then HPM(n) is of polynomial
type of degree d− 1.

REMARK B:1.2.12. Theorem B:1.2.11 tells us that the s from (B:1.2) is in fact dimM :

HPM(t) =
G(t)

(1− t)dimM
.

Recall that e(M) = G(1) > 0.

PROPOSITION B:1.2.13.
With the above assumptions, PM is a polynomial in n with rational coefficients, of

degree s − 1, and satisfies PM(n) = HM(n) for n ≥ d. Moreover, there exists ai ∈ Z such
that

PM(n) =
s−1∑
i=0

ai ·
(
n

i

)
=

as−1
(s− 1)!

· ns−1 + lower terms in n,

where as−1 = G(1) > 0.

Technische Universität Kaiserslautern 53

CHAPTER B:2

HILBERT DEPTH

B:2.1 Hilbert Series and Hilbert Depth

The results of this chapter are published in [AP2].
Let K be a field and R = K[x1 . . . , xn] be the polynomial algebra over K in n vari-

ables. On R consider the following two grading structures:

• the Z−grading in which each xi has degree 1 and

• the multigraded structure, i.e. the Zn−grading, in which each xi has degree the
i−th vector ei of the canonical basis.

DEFINITION B:2.1.1.
After Bruns-Krattenthaler-Uliczka [BKU] (see also [Sh]), a Hilbert decomposition

of a Z−graded R−module M is a finite family

H = (Ri, si)i∈I

in which si ∈ Z and Ri is a Z−graded K−algebra retract of R for each i ∈ I such that

M ∼=
⊕
i∈I

Ri(−si)

as a graded K−vector space.

The Hilbert depth ofH denoted by hdepth1H is the depth of theR−module
⊕
i∈I

Ri(−si).

The Hilbert depth of M is defined as

hdepth1(M) = max{hdepth1H | H is a Hilbert decomposition of M}.

We set hdepth1(0) =∞.
It is known that hdepth1(M) ≥ depth(M) (see [BKU]).

DEFINITION B:2.1.2.
A Laurent series in Z Jt, t−1K is called positive if it has only non-negative coefficients.

Technische Universität Kaiserslautern 55

THEOREM B:2.1.3
(
Uliczka [Uli]

)
.

hdepth1(M) = max{e | (1− t)e HPM(t) is positive}, where HPM(t) is the Hilbert −
Poincaré series of M .

If M is a multigraded Zn−module, then one can define hdepthn(M) as above by
considering the Zn−grading instead of the standard one. There exists an algorithm for
computing the hdepthn of a finitely generated multigraded module M over the standard
multigraded polynomial ringK[x1, . . . , xn] in Ichim and Moyano-Fernández’s paper [IM]
(see also [IZ]).

The main purpose of this chapter is to provide an algorithm to compute
hdepth1(M), where M is a graded R−module (see Algorithm B:2.1.7). We mention
that later another such algorithm appeared in [BMU] and containing ours at the refer-
ences.

DEFINITION B:2.1.4.
A Stanley decomposition (see [St]) of a Z−graded (resp. Zn−graded) R−module

M is a finite family
D = (Ri, ui)i∈I

in which ui are homogeneous elements of M and Ri is a graded (resp. Zn−graded)
K−algebra retract of R for each i ∈ I such that Ri ∩ Ann(ui) = 0 and

M =
⊕
i∈I

Riui

as a graded K−vector space.

The Stanley depth of D denoted by sdepthD is the depth of the R−module
⊕
i∈I

Riui.

The Stanley depth of M is defined as

sdepth(M) = max{sdepthD | D is a Stanley decomposition of M}.

We set sdepth(0) =∞.
The Stanley Conjecture claims that sdepth(M) ≥ depth(M).

We talk about sdepth1(M) and sdepthn(M) if we consider the Z−grading respec-
tively the Zn−grading of M . The Hilbert depth of M is greater than the Stanley depth
of M and can be strictly greater (an example can be found in [BKU]).

Herzog posed the following question (see also [BGS, Problem 1.67]):

Is sdepthn(R⊕m) = sdepthn(m), where m is the maximal ideal in R?

Since we implemented an algorithm to compute hdepth1, we have tested whether
hdepth1(R⊕m) = hdepth1(m) and as a consequence when sdepthn(R⊕m) = sdepthn(m).

Proposition B:2.2.6 says that Herzog’s question holds for n ∈ {1, . . . , 5, 7, 9, 11}, but
Remark B:2.2.4 says that for n = 6 it holds hdepth1(R ⊕ m) > hdepth1m, which is a

56 Adrian Popescu

sign that in this case sdepthn(R⊕m) > sdepthnm and so Herzog’s question could have
a negative answer for n = 6. This is indeed the case as it was shown later by Ichim and
Zarojanu in [IZ].

We introduce an algorithm which computes hdepth1 (Algorithm B:2.1.7) and prove
its correctness (Theorem B:2.1.8). In the next section we provide some examples and
some results related to [BGS, Problem 1.67].

REMARK B:2.1.5. The algorithm presented in this section is based on Theorem B:2.1.3
and at a first glance it might look trivial. The difficulty lies in the fact that it is not clear
how many coefficients of the infinite Laurent series have to be checked for positivity.
This paper provides a bound up to which it suffices to check.

The algorithm which we construct requires the module M as the input. In fact we
only need the polynomial G(t) from Equation (B:1.2) and the dimension of M .

DEFINITION B:2.1.6.

Let p(t) =
∞∑
i=0

ai · ti ∈ Z JtK be a formal power series. By jetj(p) we understand the

polynomial till order j, jetj(p) =

j∑
i=0

ai · ti.

ALGORITHM B:2.1.7.
We now present the algorithm that computes the hdepth1 of a Z−graded module

M. The algorithm uses the following procedures which can easily be constructed in any
computer algebra system:

◦ inverse(poly p, int bound): computes the inverse of a power series p till the
order bound,

◦ hilbconstruct(module M): computes the second Hilbert series of the module M - a
way to do this in SINGULAR is to use the already built-in function
hilb(module M, 2) which returns the list of coefficients of the second Hilbert
series and construct the series,

◦ positive(poly f): returns 1 if f has all the coefficients non-negative and 0 else,

◦ sumcoef(poly f): returns the sum of the coefficients of f,

◦ jet(poly p, int j): returns the jetj p. This procedure is already implemented
in SINGULAR and

◦ dim(module M): returns the dimension of M. This procedure is already imple-
mented in SINGULAR .

Technische Universität Kaiserslautern 57

Below we give the algorithm hdepth(poly g, int dim__M). Hence in order to com-
pute hdepth1 M, one considers g(t) = hilbconstruct(M) and
dim__M = dim(M).

Algorithm hdepth1 (poly g, int dim M)
Input:
◦ a polynomial g(t) ∈ Z[t] (equal to the second Hilbert series)
◦ an integer dim M = dimM

Output:
◦ hdepth1M

1: if positive(g) = 1 then
2: return dim M;
3: poly f = g;
4: int c, d, β;
5: β = deg(g);
6: for d = dim M to d = 0 do
7: d = d− 1;
8: f = jet(g·inverse((1− t)dim M−d, β));
9: if positive(f) = 1 then

10: return d;
11: c = sumcoef(f);
12: if c < 0 then
13: while c < 0 do
14: β = β + 1;
15: f = jet(g · inverse((1− t)dim M−d, β));
16: c = sumcoef(f);

THEOREM B:2.1.8.
Given a Z−graded module M , Algorithm B:2.1.7 correctly computes

max {n | (1− t)n · HPM(t) is positive } (B:2.1)

where HPM(t) =
G(t)

(1− t)dimM
is the Hilbert-Poincaré series of M . Hence, by Theorem

B:2.1.3, the algorithm computes the Hilbert depth of a module M for g = G(t) and
dim M= dimM .

Proof.
Note that G(1) is the multiplicity of the module M and hence G(1) > 0.
Assume that M 6= 0. Denote the bound β at the end of the loop where d = i by βi.

In order to prove this theorem one has to show the following two claims:

◦ the maximum from (B:2.1) does not exceed dimM ,

58 Adrian Popescu

◦ after the bound βi degree, the coefficients are non-negative.

For the first part consider G(t) =

g∑
µ=0

aµ · tµ. Note that

(1− t)dimM+1 ·HPM(t) = (1− t) ·G(t) = a0 + (a1− a0) · t+ . . .+ (ag− ag−1) · tg− ag · tg+1.

If all coefficients would be non-negative, we would obtain

0 ≥ ag ≥ ag−1 ≥ ag−2 ≥ . . . ≥ a2 ≥ a1 ≥ a0 ≥ 0

which implies that G(t) = 0. This will lead to a contradiction with M 6= 0. The same
holds for (1− t)dimM+α ·HPM(t) by considering (1− t)dimM+α−1 ·HPM(t) instead of G(t),
where α ≥ 0. Thus the maximum from (B:2.1) is smaller or equal than dimM .

Note that if G(t) already has all the coefficients non-negative, then the algorithm
stops by returning dimM , and the result is correct since in this case hdepth1M = dimM .

For the second part we need to show that at each step i the coefficient of the term

of order βi in
G(t)

(1− t)dimM−i is non-negative and the coefficients of the terms of higher

order are increasing (and hence non-negative). Apply induction on i. For the first step,

d = dimM − 1, f =
G(t)

(1− t)
and all the coefficients of the terms of order ≥ βdimM−1 =

degG(t) are equal to the sum of the coefficients G(1) > 0. For the general step i,

assume that at the beginning of loop d = i, we started with
G(t)

(1− t)dimM−i =
∞∑
µ=0

bµ · tµ

which satisfied all the desired properties by induction: the bound βi was increased (if

required), such that the coefficient sum ci :=

βi∑
µ=0

bµ > 0 and all coefficients of higher

order terms are non-negative, i.e. bµ ≥ 0 for µ ≥ βi−1. We now consider the next step,
d = i − 1, and compute the new f as in line 9 of the algorithm. In order to check that
the coefficients of the terms of order higher than the bound βi are non-negative. We
have:

G(t)

(1− t)dimM−(i−1) =

= jetβi︷ ︸︸ ︷
b0 + (b0 + b1) · t+ . . .+

(
βi∑
µ=0

bµ

)
︸ ︷︷ ︸

ci>0

·tβi +(ci + bβi+1) · tβi+1 + . . .

By induction, 0 < bβi ≤ bβi+1 ≤ bβi+2 ≤ . . . and since ci > 0 we obtain ci + bβi+ν > 0
for ν ≥ 0.

The termination of the algorithm is trivial since we know that in the last loop we

would consider
G(t)

(1− t)dimM
= HPM(t) which is positive by the definition, and hence it

will return hdepth1M = 0.

Technische Universität Kaiserslautern 59

REMARK B:2.1.9. The maximum from the statement of [Uli, Theorem 3.2] (see here
Theorem B:2.1.3) is always smaller than dimM . This was not shown in Uliczka’s proof
and it has to be proved in Theorem B:2.1.8.

B:2.2 Computational Experiments

The following examples illustrate the usage of the implementation of the algorithm
in SINGULAR , which can be found in the Section B:2.3. Note that in the outputs we
print exactly the jet we considered in our computations followed by “+...”.

EXAMPLE B:2.2.1. Let I = (x) ∩ (y1, . . . , y5) be an ideal in Q[x, y1, . . . , y5]. In order
to compute hdepth1(I) we type the following in SINGULAR after loading the library
hdepth.lib.

ring R=0,(x,y(1..5)),ds;

ideal i=intersect(x,ideal(y(1..5)));

module m=i;

"dim M = ",dim(m);

// dim M = 5

hdepth(hilbconstruct(m), dim(m));

// G(t)= 1+t-4t2+6t3-4t4+t5

// G(t)/(1-t)^ 1 = 1+2t-2t2+4t3+t5 +...

// G(t)/(1-t)^ 2 = 1+3t+t2+5t3+5t4+6t5 +...

// hdepth= 3

EXAMPLE B:2.2.2. Consider a module M for which HPM(t) =
2− 3t− 2t2 + 2t3 + 4t4

(1− t)dimM
.

Denote by dim__M the dimension of M .

ring R = 0, t, ds;

poly g = 2-3*t-2*t^2+2*t^3+4*t^4;

hdepth(g, dim__M);

// G(t)= 2-3t-2t2+2t3+4t4

// G(t)/(1-t)^ 1 = 2-t-3t2-t3+3t4+3t5 +...

// G(t)/(1-t)^ 2 = 2+t-2t2-3t3+3t5 +...

// G(t)/(1-t)^ 3 = 2+3t+t2-2t3-2t4+t5 +...

// G(t)/(1-t)^ 4 = 2+5t+6t2+4t3+2t4+3t5 +...

Hence, it results hdepth1M = dimM − 4.
As seen in the proof, we had to increase our bound if the coefficient sum was ≤ 0.

Note that in this example, the coefficient sum of jet4

(
G(t)

(1− t)

)
is zero and thus we

increase the bound to 5 (the coefficient sum of the jet5 will be equal to 3 > 0).

60 Adrian Popescu

EXAMPLE B:2.2.3. Consider R = K[x1, . . . , xn] for n ∈ {4, 5, . . . , 19} and m the maximal
ideal. We computed hdepth1m, hdepth1(R ⊕ m), . . ., hdepth1(R

6 ⊕ m) and
hdepth1(R

100 ⊕m). We obtain the following results:

n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
hdepth1(m) 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10
hdepth1(R⊕m) 2 3 4 4 5 5 6 6 7 8 8 9 9 10 11 11
hdepth1(R

2 ⊕m) 3 3 4 4 5 6 6 7 8 8 9 10 10 11 11 12
hdepth1(R

3 ⊕m) 3 3 4 5 5 6 7 7 8 9 9 10 10 11 12 12
hdepth1(R

4 ⊕m) 3 3 4 5 6 6 7 8 8 9 9 10 11 11 12 12
hdepth1(R

5 ⊕m) 3 4 4 5 6 6 7 8 8 9 10 10 11 11 12 13
hdepth1(R

6 ⊕m) 3 4 4 5 6 7 7 8 8 9 10 10 11 11 12 13
hdepth1(R

100 ⊕m) 3 4 5 6 7 8 8 9 10 11 11 12 13 13 14 15

Figure 2.1: hdepth1(R
i ⊕m) computations

REMARK B:2.2.4. Note that for n = 6 we have hdepth1(R ⊕m) = 4 > 3 = hdepth1m.
This is a sign that in this case sdepthn(R ⊕m) > sdepthn(m) and so Herzog’s question
could have a negative answer for n = 6. The difference hdepth1(R ⊕m) − hdepth1(m)
can be greater than 1 as one can see for n = 18.

Note that hdepth1(R
s⊕m)−hdepth1m increases when s and n increase. For example

hdepth1(R
100 ⊕m)− hdepth1(m) = 5 for s = 100 and n = 19.

LEMMA B:2.2.5.
Let n ∈ N be such that hdepth1m = hdepth1(R⊕m). Then

sdepthnm = sdepthn(R⊕m).

Proof.
By [BKU] and [BiHo] we have hdepth1m =

⌈n
2

⌉
= sdepthnm. It is enough to see

that the following inequalities hold:

hdepth1m = sdepthnm ≤ sdepthn(R⊕m) ≤ hdepthn(R⊕m) ≤ hdepth1(R⊕m).

PROPOSITION B:2.2.6.
If n ∈ {1, . . . , 5, 7, 9, 11} then sdepthnm = sdepthn(R ⊕m), that is Herzog’s question

has a positive answer.

Technische Universität Kaiserslautern 61

Proof.
Note that hdepth1m = hdepth1(R⊕m) for n as above and apply Lemma B:2.2.5.

B:2.3 The hdepth procedure

As stated before, Algorithm B:2.1.7 was implemented as a procedure for the com-
puter algebra system SINGULAR [Singular]. This procedure was used in order to obtain
the results from Figure B:2.2.3. The additional procedures which have been used were
defined in Algorithm B:2.1.7. In addition, we printed some information which we find
useful for understanding the algorithm.

proc hdepth(poly g, int dim__M)

{

int d;

ring T = 0,t,ds;

"G(t)=",g;

if(positiv(g)==1)

return("hdepth=",dim__M);

poly f=g;

number ag;

int c1 , bound;

bound = deg(g);

for(d = dim__M; d>=0; d--)

{

f = jet(g*inverse((1-t)^(dim__M -d),bound) , bound);

if(positiv(f) == 1)

{

"G(t)/(1-t)^",dim__M -d,"=",f,"+...";

"hdepth=",d;

return ();

}

c1=sumcoef(f);

if(c1 <=0)

{

while(c1 <0)

{

bound = bound + 1;

f = jet(g*inverse((1-t)^(dim__M -d),bound), bound);

c1 = sumcoef(f);

}

"G(t)/(1-t)^",dim__M -d,"=",g,"+...";

}

}

}

62 Adrian Popescu

CHAPTER B:3

THE STANLEY CONJECTURE

B:3.1 The present stay of Stanley’s Conjecture and its impact in Com-
mutative Algebra

For more than 30 years the Stanley Conjecture was a dream for many people working
in combinatorics and commutative algebra. Many people believed that this conjecture
holds and tried to prove directly some of its consequences. For example in this way a
lower bound of depth given by Lyubeznik [Ly] was extended by Herzog et al. [HPV] for
sdepth.

Some numerical upper bounds of sdepth give also upper bounds of depth, which are
independent of char K. More precisely, let S = K[x1, . . . , xn], n ∈ N, be a polynomial
ring over a field K and I) J two squarefree monomial ideals of S. Then denote by
ρj(I \ J) for the number of all squarefree monomials of degrees j in I \ J .

THEOREM B:3.1.1
(
[DP6, Theorem 1.3]

)
.

Assume that depthS(I/J) ≥ t, where t ∈ Z such that d ≤ t < n. If

ρt+1(I \ J) < αt :=
t−d∑
i=0

(−1)t−d+iρd+i(I \ J), then depthS(I/J) = t independently of

the characteristic of K.

An extension is given below.

THEOREM B:3.1.2
(
Shen [Sh, Theorem 2.4]

)
.

Assume that depthS(I/J) ≥ t, where t is an integer such that d ≤ t < n. If for some

k with d + 1 ≤ k ≤ t + 1 it holds ρk(I \ J) <
k−1∑
j=d

(−1)k−j+1

(
t+ 1− j
k − j

)
ρj(I \ J), then

depthS(I/J) = t independently of the characteristic of K.

Shen’s proof is very short, based on a strong tool, namely the Hilbert depth consid-
ered by Bruns-Krattenhaler-Uliczka [BKU] (see also [Uli], [IM]) that was introduced in
Section B:2.1.

Let r be the number of the squarefree monomials of degrees d of I and B (resp. C)
be the set of the squarefree monomials of degrees d+1 (resp. d+2) of I \J . Set s = |B|,

Technische Universität Kaiserslautern 63

q = |C|. Theorems B:3.1.1 and B:3.1.2 lead to the following:

THEOREM B:3.1.3
(
D. Popescu, [DP2]

)
.

If s > q + r then depthS I/J ≤ d+ 1.

THEOREM B:3.1.4
(
Shen, [Sh]

)
.

If s < 2r then depthS I/J ≤ d+ 1.

If r > s then Theorem B:3.1.1 says that depthS I/J = d, namely the minimum
possible.

THEOREM B:3.1.5
(
D. Popescu, [DP5, Theorem 4.3]

)
.

If sdepthS I/J = d, then depthS I/J = d, that is Stanley’s Conjecture holds in this
case.

The next step in proving Stanley’s Conjecture is the following weaker case.

CONJECTURE B:3.1.6.
Suppose that I ⊂ S is minimally generated by some squarefree monomials f1, . . . , fk of

degrees d, and a set H of squarefree monomials of degrees ≥ d+ 1. If sdepthS I/J = d+ 1,
then depthS I/J ≤ d+ 1.

A partial answer is the following theorem which is the subject of Section B:3.3.

THEOREM B:3.1.7
(
A. Popescu and D. Popescu [APDP1, Theorem 0.6]

)
.

Let C be the set of the squarefree monomials of degree d+2 of I \J . Conjecture B:3.1.6
holds in each of the following two cases:

1. r ≤ 3,

2. r = 4, E = ∅ and there exists c ∈ C such that supp c 6⊂
4⋃
i=1

supp fi.

However, Conjecture B:3.1.6 is false in general as shows an example similar to the
one given in [DuGo].

EXAMPLE B:3.1.8 (Stanley Conjecture Counterexample). Let n = 6, r = 5, E = ∅,
I = (yt, yz, xy, xu, xv) ⊂ K[x, y, z, t, u, v], J = (ytv, xtv, yzv, xtu). Then

sdepthS I/J < depthS I/J.

We should point out that the examples from [DuGo] do not say that Stanley’s Conjec-
ture is false in the frame of ideals. On the other hand, as we saw, there exist many cases
in which Stanley’s Conjecture holds. We should mention also that Katthän proved in

64 Adrian Popescu

[Ka] that if J is an ideal (not necessarily squarefree) generated by at most 6 generators
then Stanley’s Conjecture holds for S/J .

Why is important to know the cases when Stanley’s Conjecture holds? We recall that if
this is the case for the Stanley-Reisner of a certain simplicial complex then this is par-
titionable (see [HSY]). Another reason is explained in [BIS]. More precisely, the com-
puter algebra system NORMALIZ uses Stanley decompositions to compute the Hilbert
series. Thus if Stanley’s Conjecture holds, then we have an idea about how “good”
could this decomposition be, i.e. how big could its sdepth be. We should recall that
here we speak about multigraded Stanley’s Conjecture which sometime could fail, but
the graded Stanley’s Conjecture always holds (see [BKU, Theorem 2.5]). The fact that
multigraded Stanley’s Conjecture fails sometimes implies that it is harder to find the
best existing multigraded Stanley decomposition in order to compute the multigraded
Hilbert series.

B:3.2 The Stanley Conjecture on intersections of three monomial prime
ideals.

This section contains results published in [AP1]. These ideas were often used in pa-
pers like [HPV], [RTU] and [Ta]. Let S = K[x1, . . . , xn], I be an ideal in
K[x1, . . . , xr] = S ′ and J be an ideal in K[xr+1, . . . , xn] = S ′′, where 1 < r < n. The
following two lemmas are elementary, their proofs being suggested by [Vi, Theorem
2.2.21] and [PQ, Lemma 4.1]. We include these for the sake of our completeness.

LEMMA B:3.2.1.
With the notations as above, the following equality holds:

depthS(IS ∩ JS) = depthS′(I) + depthS′′(J).

Proof.
Let us consider the following exact sequence of S-modules:

0→ S

IS ∩ JS
→ S

IS
⊕ S

JS
→ S

IS + JS
→ 0.

By [Vi, Theorem 2.2.21] it follows that

depthS

(
S

IS + JS

)
= depthS′

(
S ′

I

)
+ depthS′′

(
S ′′

J

)
.

But since depth(S/IS) = depthS′(S
′/I) + (n − r) and depth(S/JS) = depthS′′(S

′′/J) +

r, we obtain depth

(
S

IS
⊕ S

JS

)
> depth

(
S

IS + JS

)
. Applying Depth Lemma to the

Technische Universität Kaiserslautern 65

above exact sequence yields

depthS

(
S

IS ∩ JS

)
= depthS

(
S

IS + JS

)
+ 1 = depthS′

(
S ′

I

)
+ depthS′′

(
S ′′

J

)
+ 1.

We are done since

depthS (IS ∩ JS) = depthS

(
S

IS + JS

)
+ 2 = depthS′(I) + depthS′′(J).

The following result is analogous to [Ra, Theorem 3.1].

LEMMA B:3.2.2.
With the notations from the previous lemma, the following inequality yields:

sdepthS(IS ∩ JS) ≥ sdepthS′(I) + sdepthS′′(J).

Proof.
Let M(I) be the monomials from the ideal I and consider two polynomials

f ∈ M(I) and g ∈ M(J). The correspondence (f, g) 7→ f · g defines an injective map
ϕ :M(I)×M(J)→M(IS ∩ JS). If w ∈ M(IS ∩ JS), then w = f · g for some mono-
mials f ∈ S ′ and g ∈ S ′′; hence f · g ∈ IS, therefore f ∈ IS ∩ S ′ = I since the variables
of g are free over S/IS. Similarly we obtain g ∈ J , and so ϕ becomes surjective since
w = ϕ(f, g).

Let D′ be a Stanley decomposition of I,

D′ : I =
s⊕
i=1

uiK[Zi],

with sdepthS′(D′) = sdepthS′(I), and let D′′ be a Stanley decomposition of J

D′′ : J =
t⊕

j=1

vjK[Ti],

with sdepthS′′(D′′) = sdepthS′′(J). D′ and D′′ induce a Stanley decomposition over
IS ∩ JS because ϕ is bijective:

D̃ : IS ∩ JS =
t⊕

j=1

s⊕
i=1

uivjK[Zi ∪ Tj].

Therefore,

sdepthS(IS ∩ JS) ≥ sdepthS(D̃) = mini,j(|Zi|+ |Tj|) ≥ mini |Zi|+ minj |Tj| =
= sdepthS′(D′) + sdepthS′′(D′′) = sdepthS′(I) + sdepthS′′(J).

66 Adrian Popescu

REMARK B:3.2.3. The inequality of the above lemma can be strict as happens in the
case when n = 4, r = 2, I = (x1, x2), J = (x3, x4). Indeed, then sdepthS′(I) = 1,
sdepthS′′(J) = 1, and sdepthS(IS ∩ JS) = 3 > 2 = sdepthS′(I) + sdepthS′′(J), as shows
the Stanley decomposition

IS ∩ JS = x1x3K[x1, x3, x4]⊕ x1x4K[x1, x2, x4]⊕
x2x3K[x1, x2, x3]⊕ x2x4K[x2, x3, x4]⊕ x1x2x3x4S.

THEOREM B:3.2.4.
Let ri ∈ N such that 0 = r0 < r1 < r2 < . . . < rs = n and S = K[x1, . . . , xn]. Denote

by P1 = (x1, . . . , xr1), P2 = (xr1+1, . . . , xr2), . . . , Ps = (xrs−1+1, . . . , xrs) and I =
s⋂
i=1

Pi.

Then,
sdepth (I) ≥ depth (I) = s.

In particular Stanley’s Conjecture holds in this case.

Proof.

Denote by Si = K[xri−1+1, . . . , xri]. Since depthSi

(
Si

Pi ∩ Si

)
= 0 we obtain

depthSi(Pi ∩ Si) = 1. By Lemma B:3.2.1 and recurrence we obtain depth(I) = s. Apply-
ing Lemma B:3.2.2, by recurrence and [Sh] it results that

sdepthS (I) ≥
s∑
i=1

sdepthSi(Pi ∩ Si) =
s∑
i=1

⌈
ri − ri−1

2

⌉
≥ s,

where dae is the lowest integer number greater or equal to a ∈ R.

REMARK B:3.2.5. If s = 2, then Ishaq [Is, Corollary 2.9, 2.10] proved that

sdepth(I) =

⌈
n+ 1

2

⌉
if either n is odd, or n is even but r1 is odd, and

n

2
≤ sdepth(I) ≤ n

2
+ 1 if n and r1 are even.

We need the following two lemmas:

LEMMA B:3.2.6
(
[PQ, Lemma 4.3]

)
.

Let S = K[x1, . . . , xn] and consider the ideals Q = (x1, . . . , xt) and Q′ = (xr+1, . . . , xn)
where 1 ≤ r ≤ t < n. Then

sdepth(Q ∩Q′) ≥
⌈r

2

⌉
+

⌈
n− t

2

⌉
.

LEMMA B:3.2.7
(
[HVZ, Lemma 3.6]

)
.

Let I ⊂ S = K[x1, . . . , xn] be an ideal and S ′ = S[xn+1, . . . , xt], where t > n. Then,

sdepthS′(IS
′) = sdepthS(I) + (t− n).

Technische Universität Kaiserslautern 67

PROPOSITION B:3.2.8.
Let P1,P2,P3 be three non-zero monomial prime ideals of S not included one in the

other such that
3∑
i=1

Pi = (x1, . . . , xn). Let I=P1 ∩ P2 ∩ P3.. Then

depth (I) =

{
3, if Pi 6⊂ Pj + Pk for any different i, j, k ∈ {1, 2, 3}
n+ 2−max{ht(Pi + Pj), ht(Pi + Pk)}, if Pi ⊂ Pj + Pk .

Proof.
Consider the following exact sequence of S-modules:

0→ S

P1 ∩ P2

→ S

P1

⊕ S

P2

→ S

P1 + P2

→ 0. (B:3.1)

We have

depth

(
S

P1 + P2

)
= n− ht(P1 + P2)

and

depth

(
S

P1

⊕ S

P2

)
= min

{
depth

(
S

P1

)
, depth

(
S

P2

)}
= n−max {ht(P1), ht(P2)} .

By hypotheses we know that ht(P1 + P2) > max{ht(P1), ht(P2)} and hence
n− ht(P1 + P2) < n−max{ht(P1), ht(P2)}. This leads to depth(S

P1+P2
) < depth(S

P1
⊕ S

P2
)

and by applying Depth Lemma to B:3.1 we obtain

depth(
S

P1 ∩ P2

) = n− ht(P1 + P2) + 1.

There are two cases:
Case 1: Pi 6⊂ Pj + Pk for any different i, j, k ∈ {1, 2, 3}.

Let us consider the following two exact sequences of S-modules:

0→ S

I
→ S

P1 ∩ P2

⊕ S

P3

→ S

P3 + (P1 ∩ P2)
→ 0, (B:3.2)

0→ S

(P1 + P3) ∩ (P2 + P3)
→ S

(P1 + P3)
⊕ S

(P2 + P3)
→ S

P1 + P2 + P3

→ 0. (B:3.3)

By the hypothesis of this case, we have depth(S
P1+P3

) > 0 and depth(S
P2+P3

) > 0. Ap-

plying Depth Lemma to (B:3.3) we obtain depth

(
S

(P1 + P3) ∩ (P2 + P3)

)
= 1 because

P1 + P2 + P3 is the maximal ideal. But (P1 + P3)∩ (P2 + P3) = P3 + (P1 ∩ P2) and there-

fore depth

(
S

P3 + (P1 ∩ P2)

)
= 1. Using again the hypothesis of this case in (B:3.2) we

can say that depth

(
S

P3

)
> 1 and depth

(
S

P1 ∩ P2

)
> 1. By Depth Lemma applied to

68 Adrian Popescu

(B:3.2) we have depth(S/I) = 2. Thus depth (I) = 3.
Case 2: There exist different i, j, k ∈ {1, 2, 3} such that Pi ⊂ Pj + Pk.

After a possible renumbering of (Pi)1≤i≤3 we may suppose that P1 ⊂ P2 + P3. Note
that P1 = P1 ∩ P2 + P1 ∩ P3. Consider the next exact sequence of S-modules:

0→ S

I
→ S

(P1 ∩ P2)
⊕ S

P1 ∩ P3

→ S

P1

→ 0. (B:3.4)

Note that depth

(
S

P1 ∩ P2

)
and depth

(
S

P1 ∩ P3

)
are smaller or equal than dim

(
S

P1

)
(see [BH]). We prove that

depth

(
S

I

)
= min

{
depth

(
S

P1 ∩ P2

)
, depth

(
S

P1 ∩ P3

)}
.

If

dim

(
S

P1

)
> min

{
depth

(
S

P1 ∩ P2

)
, depth

(
S

P1 ∩ P3

)}
n− ht(P1) n+ 1−max {ht(P1 + P2), ht(P1 + P3)}

then we are done by Depth Lemma applied to (B:3.4).
Otherwise, n−ht(P1) = n+1−max{ht(P1+P2), ht(P1+P3)} and applying again Depth

Lemma we obtain that depth
(
S
I

)
≥ min

{
depth

(
S

P1∩P2

)
, depth

(
S

P1∩P3

)}
, the inequality

being equality since

depth

(
S

I

)
≤ dim

(
S

P1

)
= n− ht(P1) = min

{
depth

(
S

P1 ∩ P2

)
, depth

(
S

P1 ∩ P3

)}
.

Thus we have proved that

depth(S/I) = n+ 1−max{ht(P1 + P2), ht(P1 + P3)}

and so
depth (I) = n+ 2−max{ht(P1 + P2), ht(P1 + P3)}.

The next lemma presents a decomposition of the above I as a direct sum of its linear
subspaces. These subspaces are “simpler” monomial ideals, for which we already know
“good” Stanley decompositions. Substituting them in the above direct sum we get some
special Stanley decompositions where it is easier to lower bound their Stanley depth.

We may suppose after a possible renumbering of variables that P1 = (x1, . . . , xr). Let
us denote the following:

Technische Universität Kaiserslautern 69

b2 − the number of variables from {xi|1 ≤ i ≤ r} for which xi ∈ P2,
b3 − the number of variables from {xi|1 ≤ i ≤ r} for which xi ∈ P3,
b1 − the number of variables from {xi|1 ≤ i ≤ r} for which xi ∈ P2 ∪ P3,
a23 − the number of variables from {xi|1 ≤ i ≤ r} for which xi ∈ P2 \ P3,
a32 − the number of variables from {xi|1 ≤ i ≤ r} for which xi ∈ P3 \ P2,
c − the number of variables from {xi|r + 1 ≤ i ≤ n} for which xi ∈ P2 ∩ P3,

A =
⌈a32

2

⌉
+

⌈
ht(P2)− b2

2

⌉
+ n− a32 − ht(P2),

B =
⌈a23

2

⌉
+

⌈
ht(P3)− b3

2

⌉
+ n− a23 − ht(P3),

C =

⌈
r − b1

2

⌉
+

⌈
ht(P2)− b2 − c

2

⌉
+

⌈
ht(P3)− b3 − c

2

⌉
,

S ′ = K
[
{xi|1 ≤ i ≤ r, xi 6∈ P3}

]
,

S ′′ = K
[
{xi|1 ≤ i ≤ r, xi 6∈ P2}

]
,

S̃ = K
[
{xi|1 ≤ i ≤ r, xi 6∈ P2 + P3}, xr+1, . . . , xn

]
.

LEMMA B:3.2.9.
Let S = K[x1, . . . , xn], P1,P2,P3 be three non-zero monomial prime ideals not included

one in the other such that
3∑
i=1

Pi = (x1, . . . , xn) and I = P1 ∩ P2 ∩ P3. The next sum is a

direct sum of linear subspaces of I:

I = I1 ⊕ I2 ⊕ I3 ⊕ I4,

where:

I1 =
(
I ∩K[x1, . . . , xr]

)
S,

I2 = (P2 ∩ S ′)S ′[xr+1, . . . , xn] ∩
(
P3 ∩ S ′[xr+1, . . . , xn]

)
,

I3 = (P3 ∩ S ′′)S ′′[xr+1, . . . , xn] ∩
(
P2 ∩ S ′′[xr+1, . . . , xn]

)
,

I4 = I ∩ S̃.

Proof.
Note that I ⊇ I1 + I2 + I3 + I4 is obvious because every Ii ⊆ I. Conversely, let a be a

monomial from I. If a 6∈ I1, then we have the next three disjoint cases:
Case 1. a 6∈

(
P2 ∩K[x1, . . . , xr]

)
S but a ∈

(
P3 ∩K[x1, . . . , xr]

)
S.

Let a = uv, where u ∈ K[x1, . . . , xr] and v ∈ K[xr+1, . . . , xn] monomials. From the
hypothesis of this case we get that u 6∈

(
P2 ∩K[x1, . . . , xr]

)
. But P2 is a prime ideal, so

it follows that v ∈ P2, which leads us to a ∈ I3.

70 Adrian Popescu

Case 2. a ∈
(
P2 ∩K[x1, . . . , xr]

)
S but a 6∈

(
P3 ∩K[x1, . . . , xr]

)
S.

This case is similar with Case 1.
Case 3. a 6∈

(
P2 ∩K[x1, . . . , xr]

)
S and a 6∈

(
P3 ∩K[x1, . . . , xr]

)
S.

Let a = uv, where u ∈ K[x1, . . . , xr] and v ∈ K[xr+1, . . . , xn] monomials. From the
hypothesis of this case we get that u 6∈ P2 ∩ K[x1, . . . , xr] and u 6∈ P3 ∩ K[x1, . . . , xr].
Thus v ∈ P2 ∩ P3 ∩ K[xr+1, . . . , xn] because P2 and P3 are prime ideals. Hence a ∈ I4
since u ∈ P1.

Because the cases are disjoint we have obtained that the sum I = I1 + I2 + I3 + I4 is
direct.

PROPOSITION B:3.2.10.
Let P1, P2, P3 be three non-zero prime monomial ideals of S such that there exists no

inclusion between any two of them,
3∑
i=1

Pi = (x1, . . . , xn) and set I = P1 ∩ P2 ∩ P3. With

the above notations we have:

sdepth (I) ≥
{

min{A,B,C}, if Pi 6⊂ Pj + Pk for any different i, j, k ∈ {1, 2, 3}
min{A,B}, if P1 ⊂ P2 + P3.

The proof follows from Lemma B:3.2.9, but first we explain the idea in the following
example:

EXAMPLE B:3.2.11. Let S = K[x1, x2, x3, x4] , P1 = (x1, x2), P2 = (x2, x3, x4) and
P3 = (x1, x3). Then I = P1 ∩P2 ∩P3 = (x1x2, x1x3, x1x4, x2x3) and the following Stanley
decomposition of I is given by Lemma B:3.2.9:

I = (x1x2) K[x1, x2, x3, x4]⊕ (x2x3) K[x2, x3, x4]⊕ (x1x3, x1x4) K[x1, x3, x4].

Note that the last term of Lemma B:3.2.9 does not appear in this example since
P1 ⊂ P2 + P3. We see that the first and the third term in the sum are principal ide-
als. Therefore sdepth

(
(x1x2)K[x1, x2, x3, x4]

)
= 4 and sdepth

(
(x2x3)K[x2, x3, x4]

)
= 3.

As for the third term we use Lemma B:3.2.6, so

sdepth
(
(x1) ∩ (x3, x4) K[x1, x3, x4]

)
=

⌈
1

2

⌉
+

⌈
2

2

⌉
= 2.

Thus sdepth (I) ≥ min{4, 2, 3} = 2. The same statement follows from
Proposition B:3.2.10 because in this case b2 = 1, b3 = 1, b1 = 2, a23 = 1, a32 = 1,
c = 1, A = 2 and B = 3. Therefore sdepth(I) ≥ min{A,B} = 2. Note that depth (I) = 2
by Proposition B:3.2.8. Therefore Stanley’s Conjecture holds for this example.

Technische Universität Kaiserslautern 71

Proof of Proposition B:3.2.10.
From Lemma B:3.2.9 we have the direct sum of spaces I = I1 ⊕ I2 ⊕ I3 ⊕ I4 where:

I1 =
(
I ∩K[x1, . . . , xr]

)
S,

I2 = (P2 ∩ S ′)S ′[xr+1, . . . , xn] ∩
(
P3 ∩ S ′[xr+1, . . . , xn]

)
,

I3 = (P3 ∩ S ′′)S ′′[xr+1, . . . , xn] ∩
(
P2 ∩ S ′′[xr+1, . . . , xn]

)
,

I4 = I ∩ S̃.

Then sdepth (I) ≥ min
1≤i≤4

sdepth(Ii). Note that sdepthS (I1) is greater or equal than

the number of free variables which is n− r = dim(S/P1) ≥ sdepth (I) by [Artin1] (so I1
can be always omitted for sdepth computation). By Lemma B:3.2.2 we have

sdepthS′[xr+1,...,xn] (I2) ≥ sdepthS′(P2 ∩ S ′) + sdepthK[xr+1,...,xn]

(
P3 ∩K[xr+1, . . . , xn]

)
=

=
(⌈

a23
2

⌉
+ r − b3 − a23

)
+
(⌈

ht(P3)−b3
2

⌉
+ (n− r)− (ht(P3)− b3)

)
=
⌈a23

2

⌉
+

⌈
ht(P3)− b3

2

⌉
+ n− a23 − ht(P3) =

= B,

by also applying [Sh](see [Ci]). Similarly we get

sdepthS′′[xr+1,...,xn] (I3) ≥
⌈a32

2

⌉
+

⌈
ht(P2)− b2

2

⌉
+ n− a32 − ht(P2) = A.

Finally,

sdepthS̃ (I4) ≥
⌈
r − b1

2

⌉
+ sdepthK[xr+1,...,xn]

(
P2 ∩ P3 ∩K[xr+1, . . . , xn]

)
.

There are two cases:
Case 1. If Pi 6⊂ Pj + Pk for any different i, j, k ∈ {1, 2, 3}
Note that P2 ∩ K[xr+1, . . . , xn] 6⊂ P3 ∩ K[xr+1, . . . , xn] (otherwise it would result

that P2 ⊂ P1 + P3, contradicting the hypothesis of this case). In the same idea P3 ∩
K[xr+1, . . . , xn] 6⊂ P2∩K[xr+1, . . . , xn]. By applying Lemma B:3.2.6 for r = ht(P2)−b2−c
and n− t = ht(P3)− b3 − c we get

sdepthK[xr+1,...,xn]

(
P2 ∩ P3 ∩K[xr+1, . . . , xn]

)
≥
⌈

ht(P2)− b2 − c
2

⌉
+

⌈
ht(P3)− b3 − c

2

⌉
.

Note that there are no free variables above. Therefore

sdepthS̃ (I4) ≥
⌈
r − b1

2

⌉
+

⌈
ht(P2)− b2 − c

2

⌉
+

⌈
ht(P3)− b3 − c

2

⌉
= C.

Consequently, it follows
sdepth (I) ≥ min{A,B,C}.

72 Adrian Popescu

Case 2. If P1 ⊂ P2 + P3

Note that in this case S̃ = K[xr+1, . . . , xn] and P1∩ S̃ = 0. Thus I4 does not appear in
the Stanley decomposition of I given by Lemma B:3.2.9. Hence sdepth (I) ≥ min{A,B}.

If one Ii = 0, we consider in both cases that its corresponding integer from {A,B,C}
will not appear in the sdepth formula.

REMARK B:3.2.12. In the notations and hypotheses of Proposition B:3.2.10, let
Ŝ = S[xn+1, . . . , xt] for some t > n. Then

sdepthŜ (IŜ) ≥
{

min{A,B,C}+ (t− n), if Pi 6⊂ Pj + Pk for any different i, j, k
min{A,B}+ (t− n), if P1 ⊂ P2 + P3,

by the Lemma B:3.2.7 and the Proposition B:3.2.10.

THEOREM B:3.2.13.
Let P1, P2 and P3 be three non-zero prime monomial ideals of S not included one in

the other and set I = P1 ∩ P2 ∩ P3. Then,

sdepth (I) ≥ depth (I).

Proof.

By [HVZ] it is enough to suppose the case when
3∑
i=1

Pi = (x1, . . . , xn). As in

Proposition B:3.2.8 and Proposition B:3.2.10 there are two cases:
Case 1. If Pi 6⊂ Pj + Pk for any different i, j, k ∈ {1, 2, 3}.
By Propositions B:3.2.8 and B:3.2.10 we have depth(I) = 3 and

sdepth (I) ≥ min{A,B,C}. We have to prove that A ≥ 3, B ≥ 3 and C ≥ 3.
By hypothesis of Case 1 we have n ≥ 3 and A ≥ d1

2
e+ d1

2
e+ 1 = 3. Similarly we get

B ≥ 3. Also it follows C ≥ d1
2
e+ d1

2
e+ d1

2
e = 3. Therefore, sdepth (I) ≥ depth(I).

Case 2. There exist different 1 ≤ i ≤ j ≤ k ≤ 3 such that Pi ⊂ Pj + Pk.
After a possible renumbering of (Pi)1≤i≤3 we may suppose that P1 ⊂ P2 + P3. In this

case depth(I) = n + 2 −max{ht(P1 + P2), ht(P1 + P3)} and sdepth (I) ≥ min{A,B} by
Propositions B:3.2.8 and B:3.2.10. Since P1 ⊂ P2 + P3 we have

a32 + ht(P2) = ht(P1 + P2).

As the Pi’s are not included one in the other we get⌈a32
2

⌉
+

⌈
ht(P2)− b2

2

⌉
+ n− (a32 + ht(P2)) ≥ 1 + 1 + n− ht(P1 + P2),

thus A ≥ depth(I). Similarly it will result that B ≥ depth(I).
In conclusion we proved that

sdepth (I) ≥ depth (I).

Technische Universität Kaiserslautern 73

Next we express the integers A, B, C only in terms of heights of Pi, thus indepen-
dently of the numbering of the variables.

PROPOSITION B:3.2.14.
With the notations above, the following holds:

A =

⌈
3n− ht(P1 + P2)− ht(P2 + P3)− ht(P2)

2

⌉
+

⌈
ht(P1 + P2)− ht(P1)

2

⌉
,

B =

⌈
3n− ht(P1 + P3)− ht(P2 + P3)− ht(P3)

2

⌉
+

⌈
ht(P1 + P3)− ht(P1)

2

⌉
,

C =

⌈
n− ht(P2 + P3)

2

⌉
+

⌈
n− ht(P1 + P3)

2

⌉
+

⌈
n− ht(P1 + P2)

2

⌉
.

Proof.
By definition we have

r = ht(P1),
b2 = ht(P1) + ht(P2)− ht(P1 + P2),
b3 = ht(P1) + ht(P3)− ht(P1 + P3),
b1 = ht(P1) + ht(P2 + P3)− n,
a23 = ht(P1 + P3) + ht(P2 + P3)− ht(P3)− n,
a32 = ht(P1 + P2) + ht(P2 + P3)− ht(P2)− n,
c = ht(P1 + P2) + ht(P1 + P3)− ht(P1)− n,

and it is enough to replace them into the definition of A,B and C.

B:3.3 The Stanley Conjecture for factors of monomial ideals

The results of this section are published in [APDP1].
Let I) J be two squarefree monomial ideals of S. We assume that I is generated

by squarefree monomials f1, . . . , fr of degrees d for some d ∈ N and a set of squarefree
monomials E of degree ≥ d + 1. We may suppose that either J = 0, or is generated
by some squarefree monomials of degrees ≥ d + 1. B (resp. C) denotes the set of the
squarefree monomials of degrees d+ 1 (resp. d+ 2) of I \ J .

LEMMA B:3.3.1.
Let J ⊂ I be square free monomial ideals and j ∈ [n] be such that (J : xj) 6= (I : xj).

Then depthS
(I : xj)

(J : xj)
≥ depthS

I

J
.

74 Adrian Popescu

Proof.
We have

pdS
I

J
≥ pdSxj

(
I

J

)
⊗ Sxj = pdSxj

(
(I : xj)

(J : xj)

)
⊗ Sxj = pdS

(
(I : xj)

(J : xj)

)
the last equality holds since xj does not appear among the generators of (I : xj) and
(J : xj). Now it is enough to apply the Auslander-Buchsbaum Theorem.

LEMMA B:3.3.2.
Let t ∈ [n]. Suppose that I 6= J + I ∩ (xt) and depthS

I

J + I ∩ (xt)
= d. If

depthS I/J ≥ d+ 1 then depthS I/J = d+ 1.

Proof.
In the following exact sequence

0 −→ I : xt
J : xt

xt−−−→ I

J
−→ I

J + I ∩ (xt)
−→ 0

the first term has depth d+1 by the Depth Lemma. We are done by applying the previous
lemma.

Let wij be the least common multiple of fi and fj and set W to be the set of all
wij ∈ B.

LEMMA B:3.3.3.
If d = 1 and B ⊂ E ∪W then depthS I/J = 1.

Proof.
First suppose that E = ∅ and assume that I = (x1, . . . , xr). Set S ′ = K[x1, . . . , xr],

I ′ = I ∩ S ′, J ′ = J ∩ S ′. By hypothesis B ⊂ S ′ and it follows that (xr+1, . . . , xn)I ⊂ J ,
leading to the equality depthS I = depthS′ I

′ = 1. But depthS J ≥ 2, if J 6= 0, and so
depthS I/J = 1 by the Depth Lemma.

Now, suppose that E 6= ∅. In the following exact sequence

0 −→ (x1, . . . , xr)

J ∩ (x1, . . . , xr)
−→ I

J
−→ I

(J, x1, . . . , xr)
−→ 0

the first term has depth 1 as above and the last term has depth ≥ d + 1 since it is
generated by squarefree monomials of degrees ≥ 2 from E. Again the Depth Lemma
gives depthS I/J = 1.

LEMMA B:3.3.4.
Suppose that I ⊂ S is generated by some squarefree monomials f1, ...fr of degree

d. Assume that for all b ∈ B all divisors of b of degree d are among {f1, . . . , fr}. Then
depthS I/J = d.

Technische Universität Kaiserslautern 75

Proof.
We prove by induction on d ≥ 1. If d = 1 then apply the previous lemma. Assume

that d > 1. We may suppose that n ∈ supp f1. (I : xn) is an extension of a squarefree
monomial ideal I ′ of S ′ = K[x1, . . . , xn−1] which is generated in degree≥ d−1. Similarly
(J : xn) is generated by a squarefree monomial ideal J ′ of S ′. Note that the generators of
I ′ of degree d− 1 have the form f ′i = fi/xn for fi ∈ (xn), and the squarefree monomials
B′ of degrees d from I ′ \ J ′ have the form b′ = b/xn for some b ∈ (B ∩ (xn)). Certainly
we must consider also the case when fj 6∈ (xn). If xnfj ∈ J then fj ∈ (J : xn) is not
in B′. Otherwise, fj = (xnfj)/xn ∈ B′. Note that all divisors of degree d − 1 of each
b′ ∈ B′ are among f ′i . By induction hypothesis we have depthS′ I

′/J ′ = d − 1 and so
depthS(I : xn)/(J : xn) = d. Now it is enough to apply Lemma B:3.3.1.

An obstruction to improve Lemma B:3.3.3 and the above lemma is given by the
following example.

EXAMPLE B:3.3.5. Let n = 5, d = 2, r = 5, I = (x1x2, x1x3, x2x3, x1x4, x3x5),
J = (x1x2x5, x1x4x5, x2x3x4, x3x4x5) and B = {x1x2x3, x1x2x4, x1x3x4, x1x3x5, x2x3x5}.
We have depthS I/J = 3 because depthS S/J = 3, depthS S/I = 2 and with the help of
Depth Lemma. Note that each b ∈ B is the least common multiple of two generators of
I, but for example b = x1x2x4 has x2x4 6∈ I as a divisor of degree 2.

Let C3 be the set of all c ∈ C having all divisors from B \E in W . In particular each
monomial of C3 is the least common multiple of three of fi. The converse is not true as
shows the following example.

EXAMPLE B:3.3.6. Let n = 4, d = 2, r = 3, f1 = x1x2, f2 = x2x3, f3 = x3x4,
I = (f1, f2, f3) and J = 0. Then c = x1x2x3x4 is the least common multiple of f1, f2, f3
but has a divisor b = x1x2x4 ∈ B which is not the least common multiple of two fi.

The next theorem is the key result of this section; the proof of it will be presented
later in this chapter. The main reason that this proof works for r ≤ 3 but not for r = 4
is that in the first case |C3| ≤ 1 but in the second one we may have |C3| = 4, which
makes the things harder. However, for r ≥ 5 will appear a new problem since we may
have B ⊂ W and s ≥ 2r (for example when r = 5, d = 2 we may have s = 10 = 2r).
We remind that by Theorem B:3.1.4 we had to check Stanley’s Conjecture only when
s ≥ 2r.

THEOREM B:3.3.7.
Conjecture B:3.1.6 holds for r ≤ 3, the case r = 1 being given in [PZ].

EXAMPLE B:3.3.8. Let n = 5, f1 = x1x2, f2 = x1x3, f3 = x1x4, a = x2x3x5, E = {a},
I = (f1, f2, f3, a), J = (x4a). We have w12 = f1x3, w13 = f1x4, w23 = f2x4. Set c = w12x4,
c1 = w12x5, c2 = w23x5, c3 = w13x5. Then C = {c, c1, c2, c3} and B \ E = B ∩ (∪i[fi, ci]).

76 Adrian Popescu

Thus s = 7, q = 4, r = 3. It is easy to see that sdepthS I/J = 3. Indeed, note that
c1 is the only c′ ∈ C which is multiple of a. Suppose that there exists a partition P on
PI/J with sdepth 4. Then we have necessarily in P the interval [a, c1]. If P contains the
interval [f1, c] then it must contain also the intervals [f2, c2] and so [f3, c3], but then w13 ∈
[f1, c] ∩ [f3, c3], that is the union is not disjoint. If P contains the interval [f1, c3] then
P contains either [f3, c], [f2, c2], or [f2, c], [f3, c2], in both cases the intersection of these
two intervals contains w23, which is false. By Theorem B:3.3.7 we get depthS I/J ≤ 3,
this inequality being in fact an equality.

B:3.4 A special case of r = 4

THEOREM B:3.4.1.
Suppose that I ⊂ S is minimally generated by some squarefree monomials {f1, . . . , fr}

of degrees d such that there exists c ∈ C such that supp c 6⊂
r⋃
i=1

supp fi. If Conjecture

B:3.1.6 holds for r′ < r and sdepthS I/J = d+ 1, then depthS I/J ≤ d+ 1.

Proof.
By [PZ, Lemma 2.1] we may assume that C ⊂ (W). By hypothesis, choose t ∈ supp c

such that t 6∈ ∪i∈[r] supp fi. We may suppose that B ∩ (xt) = {xtf1, . . . xtfe} for some
e ≤ r. Set It = I ∩ (xt), Jt = J ∩ (xt) and Ut = It/Jt. Then Bt generates It.

First assume that sdepthS Ut ≤ d + 1. It follows that depthS Ut ≤ d + 1 by [DP2,
Theorem 4.3]. But Ut ∼= (I : xt)/(J : xt) and so depthS Ut ≥ depthS I/J by Lemma
B:3.3.1, which is enough.

Now assume that Ut has sdepth ≥ d+1. Let PUt be a partition on Ut with sdepth d+2
and let [bi, ci] be the disjoint intervals starting with bi = xtfi, i ∈ [e]. We have ci = xtwiki
for some 1 ≤ ki ≤ r, ki 6= i because C ⊂ (W). Note that xtfki ∈ B and so ki ≤ e. We
consider the intervals [fi, ci]. These intervals contain xtfi and wiki. If wiki = wjkj for
i 6= j then we get ci = cj which is false. Thus these intervals are disjoint.

Let Ie be the ideal generated by fj for e < j ≤ r and B \ (∪ei=1[fi, ci]). Set Je = Ie ∩ J
and Ue = Ie/Je. Note that ci 6∈ Ie for any i ∈ [e]. In the following exact sequence

0→ Ie/Je → I/J → I/J + Ie → 0

the last term has a partition of sdepth d + 2 given by the intervals [fi, ci] for 1 ≤ i ≤ e.
It follows that Ie 6= Je because sdepthS I/J = d + 1. Then sdepthS Ie/Je ≤ d + 1 using
[Ra, Lemma 2.2] and so depthS Ie/Je ≤ d+ 1 by Theorem B:3.3.7 applied for k < r. But
the last term of the above sequence has depth > d because xt does not annihilate fi for
i ∈ [e]. With the Depth Lemma we get depthS I/J ≤ d+ 1.

EXAMPLE B:3.4.2. Let n = 5, r = 4, f1 = x2x3, f2 = x1x2, f3 = x3x4, f4 = x3x5
and J = (x1x2x4x5). We have w12 = x1x2x3, w13 = x2x3x4, w14 = x2x3x5, w34 =

Technische Universität Kaiserslautern 77

x3x4x5, w23 = x1x2x3x4, w24 = x1x2x3x5, C2 = {w23, w24}, C = C2 ∪ {x1w34, x2x3x4x5},
Ĩ1 = {x1f3, x1f4, f2} ⊃ J , Ĩ4 = {f3, x4f2} ⊃ J and B∩(x1) = {x1f3, x1f4, x4f2, x5f2, w12},
B ∩ (x4) = {w13, w14, w34, x4f2, x1f3}. Note that sdepthS U1 ≤ d + 1 = 3, sdepthS U4 ≤ 3
because |B ∩ (x1)| = |B ∩ (x4)| = 5 > |C ∩ (x1)| + 1 = |C ∩ (x4)| + 1 = 4. Thus
depthS U1 = depthS U4 ≤ 3 and so we get depthS I/J ≤ 3 using two different t.

THEOREM B:3.4.3.
Suppose that I ⊂ S is minimally generated by four squarefree monomials {f1, . . . , f4}

of degrees d such that there exists c ∈ C such that supp c 6⊂
4⋃
i=1

supp fi.

If sdepthS I/J = d+ 1 then depthS I/J ≤ d+ 1.

Proof.
Apply Theorem B:3.4.1, since Conjecture B:3.1.6 holds for r < 4 by Theorem B:3.3.7.

B:3.5 Proof of Theorem B:3.3.7

Suppose that E 6= ∅ and s ≤ q + r. For b = f1xi ∈ B set Ib = (f2, . . . , fr, B \ {b}),
Jb = J ∩ Ib. If sdepthS Ib/Jb ≥ d + 2 then let Pb be a partition on Ib/Jb with sdepth
d+ 2. We may choose Pb such that each interval starting with a squarefree monomial of
degree d, d + 1 ends with a monomial of C. In Pb we have some intervals [fk, fkxikxjk],
1 < k ≤ r and for all b′ ∈ [B \ {b, f2xi2 , f2xj2 , . . . , frxir , frxjr}] an interval [b′, cb′]. We
define h : [[{f2, . . . , fr}∪B] \ {b, f2xi2 , f2xj2 , . . . , frxir , frxjr}]→ C by fk → fkxikxjk and
b′ → cb′. Then h is an injection and | Imh| = s− r ≤ q (if s = r+ q then h is a bijection).
Let g be the map Imh → [[B ∪ {f2, . . . , fr}] \ {b, f2xi2 , f2xj2 , . . . , frxir , frxjr}] given by
fkxikxjk → fk and h(b′) → b′. We may suppose that all intervals of Pb starting with a
monomial v of degree ≥ d+ 2 have the form [v, v].

LEMMA B:3.5.1.
Suppose that the following conditions hold:

1. r = 2, s ≤ q + 2.

2. C ⊂
(
(f1) ∩ (f2)

)
∪
(
(E) ∩ (f1, f2)

)
∪

 ⋃
a,a′∈E
a6=a′

(a) ∩ (a′)

,

3. sdepthS Ib/Jb ≥ d+ 2 for b ∈ (f1) \ (f2).

Then either sdepthS I/J ≥ d+2, or there exists a nonzero ideal I ′ (I generated by a subset
of {f1, f2}∪B such that sdepthS I

′/J ′ ≤ d+ 1 for J ′ = J ∩ I ′ and depthS I/(J, I
′) ≥ d+ 1.

78 Adrian Popescu

Proof.
Since sdepthS Ib/Jb ≥ d + 2 we consider h, g as above for a partition Pb with sdepth

d + 2 of Ib/Jb. We have an interval [f2, c
′
2] in Pb. Suppose that B ∩ [f2, c

′
2] = {u, u′}. By

Theorem B:3.1.4 s ≥ 4 and so there exists a1 ∈ B \ {b, u, u′} such that c1 = h(a1).
By recurrence choose if possible ap+1 to be a divisor from B of cp which is not in
{b, u, u′, a1, . . . , ap} and set cp = h(ap), p ≥ 1. This construction ends at step p = e
if all divisors from B of ce−1 are in {b, u, u′, a1, . . . , ae−1}. Suppose that av, 1 ≤ v < e− 1
divides ce−1. Then changing in Pb the intervals [ak, ck], v ≤ k ≤ e − 1 with the intervals
[av, ce−1], [ak+1, ck], v ≤ k ≤ e−2 we see that the new ce−1 is the old ce−2. If this new ce−1
has a divisor ae which is not in {b, u, u′, a1, . . . , ae−1} then we continue our procedure
with ce = h(ae) and so on. After several such steps we arrive at step p = t when one of
the following situations holds:

1. all divisors from B of any cp, 1 ≤ p < t are among {a1, . . . , at−1},

2. ct−1 ∈ (u, u′), all its divisors from B are in {a1, . . . , at−1, u, u′}, all divisors from
B of any cp, 1 ≤ p < t− 1 are among {a1, . . . , at−2}, but no cp, 1 ≤ p < t is in (b),

3. ct−1 ∈ (b), but no cp, 1 ≤ p < t− 1 is in (b).

In the first case, set T = {a1, . . . , at−1}, G = B \ T and I ′1 = (f1, G), I ′2 = (f2, G),
I ′12 = (f1, f2, G), I ′′ = (G), J ′1 = I ′1 ∩ J , J ′2 = I ′2 ∩ J , J ′12 = I ′12 ∩ J , J ′′ = I ′′ ∩ J . Note that
I ′′ 6= 0 because b ∈ I ′′. Consider the following exact sequence

0→ I ′12/J
′
12 → I/J → I/(J, I ′12)→ 0.

If T ∩ (f1, f2) = ∅ then the last term has depth ≥ d + 1 and sdepth ≥ d + 2 using the
restriction of Pb to (T) since h(b) /∈ I ′12 , for all b ∈ T . When the first term has sdepth
≥ d+ 2 then by [Ra, Lemma 2.2] the middle term has sdepth ≥ d+ 2 which is enough.

If T ∩ (f1) = ∅, but let us say av ∈ (f2) for some 1 ≤ v < t, then in the following
exact sequence

0→ I ′1/J
′
1 → I/J → I/(J, I ′1)→ 0

the last term has sdepth ≥ d + 2 since h(b) /∈ I ′1 and we may substitute the interval
[av, cv] from the restriction of Pb by [f2, cv], the second monomial from [f2, cv] ∩B being
also in T . As above we get either sdepthS I/J ≥ d + 2, or sdepthS I

′
1/J

′
1 ≤ d + 1,

depthS I/(J, I
′
1) ≥ d + 1. Similarly, we do when T ∩ (f2) = ∅ but let us say av ∈ (f1) for

some 1 ≤ v < t.
Now, suppose that av1 ∈ (f1) and av2 ∈ (f2) for some 1 ≤ v1 < t, 1 ≤ v2 < t. We may

assume that one from cv1 , cv2 is not in (w12), let us say cv1 6∈ (w12). Indeed, if w12 6∈ B
then necessary v1 6= v2, otherwise av1 = av2 = w12 ∈ B. Thus cv1 6= cv2 and so one of
cvi 6∈ (w12). If w12 ∈ B and cv1 = xjw12 for some j 6∈ suppw12, then let us say av1 = xjf1
and we have xjf2 = av for some 1 ≤ v < t by our hypothesis 1). If cv ∈ (w12) then
cv = cv1, which is false. If av1 = w12 then again we have xjf2 = av, for some 1 ≤ v < t
and cv 6∈ (w12) because otherwise cv = cv1. Take v2 = v.

Technische Universität Kaiserslautern 79

In the following exact sequence

0→ I ′′/J ′′ → I/J → I/(J, I ′′)→ 0

the last term has sdepth ≥ d+ 2 the last term has sdepth ≥ d+ 2 since we may replace
the intervals [av1 , cv1], [av2 , cv2] of the restriction of Pb to (T) with the disjoint intervals
[f1, cv1], [f2, cv2]. Also the last term has depth ≥ d+ 2 because in the exact sequence

0→ (f2)/(J, I
′′) ∩ (f2)→ I/(J, I ′′)→ I/(J, I ′′, f2)→ 0

the ends terms have depth ≥ d + 1 since cv1 6∈ (f2), otherwise cv1 ∈ (w12), which
is false. As above we get either sdepthS I/J ≥ d + 2, or sdepthS I

′′/J ′′ ≤ d + 1,
depthS I/(J, I

′′) ≥ d+ 1.
In the second case, note that c′2 6= ct−1 because h is injective. Then suppose that

u|ct−1, but u′ is not a divisor of any cp, 1 ≤ p < t. If at−1 ∈ (f2) then change in Pb the
interval [at−1, ct−1] by [f2, ct−1]. If av, 1 ≤ v < t is the second divisor of ct−1 from B∩(f2),
change in Pb the intervals [ap, cp], v ≤ p < t by [av, ct−1], [ap+1, cp], v ≤ p < t − 1 we
see that now av, u divide the new cv. Changing in Pb the intervals [av, cv], [f2, c

′
2] with

[f2, cv], [u′, c′2], we may proceed as above using I ′1 and T ′ = T ∪ {u}.
In the third case, let ct−1 = bxi. If at−1 = f1xi then changing in Pb the interval

[at−1, ct−1] by [f1, ct−1] we get a partition on I/J with sdepth d+2. If f1xi ∈ {a1, . . . , at−2},
let us say f1xi = av, 1 ≤ v < t − 1 then we may replace in Pb the intervals [ak, ck],
v ≤ k ≤ t − 1 with the intervals [av, ct−1], [ak+1, ck], v ≤ k ≤ t − 2. Now we see that we
have in Pb the interval [av, cv] and switching it with the interval [f1, cv] we get a partition
with sdepth ≥ d+ 2 for I/J .

Thus we may assume that f1xi /∈ {a1, ..., at−1}. Suppose that f1xi 6∈ {u, u′}. Then
set at = f1xi, cp = h(ap), p ≥ t and choose ap+1 6∈ {b, u, u′, at, . . . , ap} to be a divisor of
B of cp, p ≥ t. If ap = av for v < t, p > t then again change in Pb the intervals [ak, ck],
v ≤ k ≤ p − 1 with the intervals [av, cp−1], [ak+1, ck], v ≤ k ≤ p − 2. We have in Pb an
interval [f1xi, ct−1] and switching it to [f1, ct−1] we get a partition with sdepth ≥ d+2 for
I/J . Thus we may suppose that ap+1 6∈ {b, u, u′, a1, . . . , ap}. If the procedure stops at step
p = t1 because all the divisors from B of {ct, . . . ct1−1} are among T1 = {at, . . . , at1−1}
then we do as above with T1 instead T .

If let us say f1xi = u′ = w12 and at−1 ∈ (f2) then replace in Pb the intervals [f2, c
′
2],

[at−1, ct−1] with [f2, ct−1],[u, c′2]. Take for at the former u which is now not in [f2, c
′
2] and

proceed as above. If f1xi = u′ = w12 but at−1 ∈ (E) then there exists another divisor ã of
ct−1 from B ∩ (f2) different of w12. If ã ∈ [f2, c

′
2] then we get h(at−1) = ct−1 = c′2 = h(f2),

which is false. Thus we may set at = ã, ct = h(at) and proceed as above. If the
procedure stops at step p = t1 because all the divisors from B of {ct, . . . ct1−1} are among
T1 = {at, . . . , at1−1} then we do as above with T1 instead T . If ct−1 ∈ (u, u′), but no cp,
t ≤ p < t1 is in (b), then we proceed as in case 2) taking T ′1 = T1∪{u}, or T ′1 = T1∪{u′}.

If ct1−1 = bxj we continue as above with at1 = f1xj. After several such steps we
must arrive in the case p = tl when all divisors from B of ctl−1 are already among
Tl = {atl−1

, . . . , atl−1}, or T ′l = Tl ∪ {u}, or T ′l = Tl ∪ {u′}. Finally, using Tl as T , or T ′l as
T ′ above we are done.

80 Adrian Popescu

LEMMA B:3.5.2.
Suppose that the following conditions hold:

1. r = 3, s ≤ q + 3,

2. C ⊂

 3⋃
i,j=1
i 6=j

(fi) ∩ (fj)

 ∪ ((E) ∩ (f1, f2, f3)
)
∪

 ⋃
a,a′∈E
a6=a′

(a) ∩ (a′)

,

3. There exists b ∈ (f1) \ (f2, f3) such that sdepthS Ib/Jb ≥ d+ 2.

Then either sdepthS I/J ≥ d+2, or there exists a nonzero ideal I ′ (I generated by a subset
of {f1, f2, f3}∪B such that sdepthS I

′/J ′ ≤ d+1 for J ′ = J∩I ′ and depthS I/(J, I
′) ≥ d+1.

Proof.
Consider h, g as above for a partition Pb with sdepth d + 2 of Ib/Jb which exists by

(3). We have two intervals [f2, c
′
2], [f3, c

′
3]in Pb. Suppose that B ∩ [fi, c

′
i] = {ui, u′i},

1 < i ≤ 3 . By Theorem B:3.1.4 s ≥ 6 and there exists a1 ∈ B \ {b, u2, u′2, u3, u′3} such
that c1 = h(a1). By recurrence choose if possible ap+1 to be a divisor from B of cp which
is not in {b, u2, u′2, u3, u′3, a1, . . . , ap} and set cp = h(ap), p ≥ 1. This construction ends at
step p = e if all divisors from B of ce−1 are in {b, u2, u′2, u3, u′3, a1, . . . , ae−1}. Suppose that
av, 1 ≤ v < e − 1 divides ce−1. Then changing in Pb the intervals [ap, cp], v ≤ p ≤ e − 1
with the intervals [av, ce−1], [ap+1, cp], v ≤ p ≤ e − 2 we see that the new ce−1 is the old
ce−2. If this new ce−1 has a divisor ae which is not in {b, u2, u′2, u3, u′3, a1, . . . , ae−1} then
we continue our procedure with ce = h(ae) and so on. After several such steps we arrive
at step p = t when one of the following situations holds:

1. all divisors from B of any cp, 1 ≤ p < t are among {a1, . . . , at−1},

2. ct−1 ∈ (u2, u
′
2, u3, u

′
3), all its divisors from B are in {a1, . . . , at−1, u2, u′2, u3, u′3}, all

divisors from B of any cp, 1 ≤ p < t − 1 are among {a1, . . . , at−2}, but no cp,
1 ≤ p < t is in (b),

3. ct−1 ∈ (b), but no cp, 1 ≤ p < t− 1 is in (b).

In the first case, set T = {a1, . . . , at−1}, G = B \ T and for k = (k1, . . . , km),
1 ≤ k1 < . . . < km ≤ 3, 0 ≤ m ≤ 3 set I ′k = (fk1 , . . . , fkm , G), J ′k = I ′k ∩ J , and
I ′0 = (G), J ′0 = I ′0 ∩ J for m = 0. Note that I ′0 6= 0 because b ∈ I ′0. Consider the following
exact sequence

0→ I ′k/J
′
k → I/J → I/(J, I ′k)→ 0.

If T ∩(f1, f2, f3) = ∅ then the last term of the above exact sequence given for k = (1, 2, 3)
has depth ≥ d + 1 and sdepth ≥ d + 2 using the restriction of Pb to (T) since h(b) /∈ I ′k,
for all b ∈ T . When the first term has sdepth ≥ d + 2 then by [Ra, Lemma 2.2] the
middle term has sdepth ≥ d+ 2 which is enough.

Technische Universität Kaiserslautern 81

Suppose that T ∩ (fki) = ∅ if and only if i ∈ [m], for some 0 ≤ m < 3 and set
k = (1, . . . ,m). We show that in the following exact sequence

0→ I ′k/J
′
k → I/J → I/(J, I ′k)→ 0

the last term has sdepth ≥ d+2. For all m < i ≤ 3 we find cvi ∈ (fi) for some 1 ≤ vi < t.
We claim that we may choose vi such that for all i 6= j, m < i, j ≤ 3 we have vi 6= vj and
one from cvi , cvj is not in (wij). Indeed, this is trivial for m = 2. Suppose that m < 2.
If wij 6∈ B then necessary vi 6= vj, otherwise avi = avj = wij ∈ B. Contradiction! If
wij ∈ B then suppose that cvi = xzwij. Then we see that there exists 1 ≤ vj < t such
that avj = xzfj. If cvj ∈ (wij) then we have cvj = xzwij = cvi, which is false. Thus
cvj 6∈ (wij).

Therefore in the worst case, that is m = 0, we may choose cv1 6∈ (w12), cv2 6∈ (w23). If
cv1 ∈ (w13) then we may also choose cv3 6∈ (w13). In the case when cv1 6∈ (w13), choose
any cv3 ∈ (f3). We conclude that the possible intervals [fi, cvi], i ∈ [3] are disjoint. Next
we change the intervals [avi , cvi], m < i ≤ 3 from the restriction of Pb to (T) by [fi, cvi],
the second monomial from [fi, cvi] ∩ B being also in T . Set k = (1, 2, 3). Also I/(J, I ′k)
has depth ≥ d+ 1 because in the exact sequence

0→ (f3)/(f3) ∩ (J, I ′k)→ I/(J, I ′k)→ I/(J, I ′k, f3)→ 0

the last term has has depth ≥ d + 2 since cv2 6∈ (w23) and if cv1 ∈ (f3) then cv1 ∈
(w13) but we may find a b′ ∈ (B ∩ (f1)) \ (f3) and we may proceed as in the proof of
Lemma B:3.5.1. As above we get either sdepthS I/J ≥ d + 2, or sdepthS I

′
1/J

′
1 ≤ d + 1,

depthS I/(J, I
′
1) ≥ d+ 1.

In the second case, note that c′2, c
′
3 6= ct−1 because h is injective. Then suppose that

u2|ct−1, but u′2 is not a divisor of any cp, 1 ≤ p < t. Also suppose for a moment that
ct−1 6∈ (u3, u

′
3). If at−1 ∈ (f2) then change in Pb the interval [at−1, ct−1] by [f2, ct−1]. If av2,

1 ≤ v2 < t is the second divisor of ct−1 from B ∩ (f2), change in Pb the intervals [ap, cp],
v2 ≤ p < t by [av2 , ct−1], [ap+1, cp], v2 ≤ p < t− 1 we see that now av2 , u2 divide the new
cv2 . Change in Pb the intervals [av2 , cv2], [f2, c

′
2] with [f2, cv2], [u′2, c

′
2], we may proceed as

above using I ′k for k = (1), or k = (13) and T ′ = T ∪ {u2}.
If ct−1 is a multiple of u2 and u3 then it is a multiple of w23 and we may suppose

u2 = u3 = w23, the other u′2, u
′
3 cannot divide ct−1. Then ct−1 have other two divisors

from B one av2 from (f2), the other av3 from (f3). If v2 = t − 1 we change as above
[at−1, ct−1] by [f2, ct−1]. If v2 < t − 1 change in Pb the intervals [ap, cp], v2 ≤ p < t
by [av2 , ct−1], [ap+1, cp], v2 ≤ p < t − 1 and we see that now av2 , w23 divide the new
cv2 . Change in Pb the intervals [av2 , cv2], [av3 , cv3] by [f2, cv2], [f3, cv3]. Note that the
second monomial of B ∩ [f3, cv3] is also in T . As above we may proceed with I1, and
T ′ = T ∪ {w23}.

In the third case, let ct−1 = bxi. If at−1 = f1xi then changing in Pb the interval
[at−1, ct−1] by [f1, ct−1] we get a partition on I/J with sdepth d+2. If f1xi ∈ {a1, . . . , at−2},
let us say f1xi = av, 1 ≤ v < t − 1 then we may replace in Pb the intervals [ak, ck], v ≤
k ≤ t− 1 with the intervals [av, ct−1], [ak+1, ck], v ≤ k ≤ t− 2. Now we see that we have

82 Adrian Popescu

in Pb the interval [av, cv] and switching it with the interval [f1, cv] we get a partition with
sdepth ≥ d+ 2 for I/J .

Thus we may assume that f1xi /∈ {a1, ..., at−1}. Suppose that f1xi 6∈ {u2, u′2, u3, u′3}.
Then set at = f1xi, cp = h(ap), p ≥ t and choose ap+1 6∈ {b, u2, u′2, u3, u′3, at, . . . , ap} to
be a divisor from B of cp, p ≥ t. If ap = av for v < t, p > t then again change in Pb
the intervals [ak, ck], v ≤ k ≤ p − 1 with the intervals [av, cp−1], [ak+1, ck], v ≤ k ≤ p − 2.
We have in Pb an interval [f1xi, ct−1] and switching it to [f1, ct−1] we get a partition with
sdepth ≥ d + 2 for I/J . Thus we may suppose that ap+1 6∈ {b, u2, u′2, u3, u′3, a1, . . . , ap}.
If the procedure stops at step p = t1 because all the divisors from B of {ct, . . . ct1−1} are
among T1 = {at, . . . , at1−1} then we do as above with T1 instead T .

If let us say f1xi = u′2 = w12 and at−1 ∈ (f2) then replace in Pb the intervals [f2, c
′
2],

[at−1, ct−1] with [f2, ct−1],[u2, c′2]. Take for at the former u2 which is now not in [f2, c
′
2]

and proceed as above. If f1xi = u′2 = w12 but at−1 ∈ (f3) then ct−1 is the least common
multiple of f1, f2, f3. If ct−1 ∈ C3 then b = w13, which is false by (3). Otherwise, ct−1
is also the least common multiple of two fi (see Example B:3.3.5), but in this case it
has at least four divisors from B and so we may find one at 6∈ {b, u2, u′2, u3, u′3}. If
f1xi = u′2 = w12 but at−1 ∈ (E) then there exists another divisor ã from B∩(f2) different
of w12. If ã ∈ [f2, c

′
2] (i.e. ã = u2) then we get h(at−1) = ct−1 = c′2 = h(f2), which is false.

If ã ∈ (f3) we get as above b ∈ (f3), which is again false. Thus h is defined on ã and we
may set at = ã, ct = h(at) and proceed as above. If the procedure stops at step p = t1
because all the divisors from B of {ct, . . . ct1−1} are among T1 = {at, . . . , at1−1} then we
do as above with T1 instead T . If ct−1 ∈ (u2, u

′
2), but no cp, t ≤ p < t1 is in (b), then we

proceed as in case 2) taking T ′1 = T1 ∪ {u2}, or T ′1 = T1 ∪ {u′2}.
If ct1−1 = bxj we continue as above with at1 = f1xj. After several such steps we

must arrive in the case p = tl when all divisors from B of ctl−1 are already among
Tl = {atl−1

, . . . , atl−1}, or T ′l = Tl ∪ {u2}, or T ′l = Tl ∪ {u′2}, or T ′l = Tl ∪ {u3}, or
T ′l = Tl ∪ {u′3}. Finally, using Tl as T , or T ′l as T ′ above we are done.

Proof of Theorem B:3.3.7.
By Theorem B:3.1.3 we may suppose that s ≤ q+r. Apply induction on |E|. If E = ∅

we may apply [PZ]. Actually, in this case it is enough to apply as below Lemma [PZ,
Lemma 2.1]. Suppose that |E| > 0 and B ∩ (f1, . . . , fr) 6= ∅, r = 2, 3, otherwise we get
depthS I/J ≤ d + 1. Moreover, we see that C 6⊂ C3 because |C3| ≤ 1 and if q = 1 then
we get s < 2r which gives depthS I/J ≤ d + 1 by Theorem B:3.1.4. Let c ∈ C \ C3.
Then there exists b ∈ B dividing c which is not the least common multiple of two fi.
Renumbering x we may suppose that b ∈ (f1) \ (f2) if r = 2, or b ∈ (f1) \ (f2, f3) if r = 3.

We may assume that C ⊂ (f1, . . . , fr, B). Apply induction on r ≤ 3. Using the main
result of [PZ] and induction hypothesis on |E| and r apply [PZ, Lemma 2.1]. Thus we
may suppose that C ⊂

(
(f1) ∩ (f2)

)
∪
(
(E) ∩ (f1, f2

)
) ∪
(
∪a,a′∈E,a 6=a′ (a) ∩ (a′)

)
, if r = 2,

or C ⊂
(
∪i,j∈[3],i 6=j (fi) ∩ (fj)

)
∪
(
(E) ∩ (f1, f2, f3)

)
∪
(
∪a,a′∈E,a 6=a′ (a) ∩ (a′)

)
if r = 3.

Set I ′b = (f2, fr, B \ {b}), J ′b = I ′b ∩ J . Clearly b 6∈ I ′b and so in the following exact
sequence

0→ I ′b/J
′
b → I/J → I/(J, I ′b)→ 0

Technische Universität Kaiserslautern 83

the last term has depth ≥ d + 1. If the first term has sdepth ≤ d + 1 then it has depth
≥ d + 2 by induction hypothesis on r, case r = 1 being done in [PZ]. Thus we may
suppose that sdepthS I

′
b/J

′
b ≥ d + 2 and we may apply Lemmas B:3.5.1 and B:3.5.2.

Then we get either sdepthS I/J ≥ d + 2 contradicting our assumption, or there exists a
nonzero ideal I ′ (I generated by a subset G of B, or by G and a subset of {f1, f2, f3}
such that sdepthS I

′/J ′ ≤ d+1 for J ′ = J∩I ′ and depthS I/(J, I
′) ≥ d+1. In the last case

we see that depthS I
′/J ′ ≤ d+ 1 by induction hypothesis on r and so depthS I/J ≤ d+ 1

by the Depth Lemma applied to the following exact sequence

0→ I ′/J ′ → I/J → I/(J, I ′)→ 0.

84 Adrian Popescu

CHAPTER B:4

STANLEY DEPTH OF FACTORS OF MONOMIAL IDEALS

The results of this chapter are published in [AP3].
Let K be a field and S = K[x1, . . . , xn] be the polynomial ring over K in n variables.

Let I) J be two squarefree monomial ideals of S.
Suppose that I is generated by squarefree monomials of degrees ≥ d for some posi-

tive integer d. We may assume either that J = 0, or J is generated in degrees ≥ d + 1
after a multigraded isomorphism. We have depthS I ≥ d by [HVZ, Proposition 3.1].
Depth of I/J is a homological invariant and depends on the characteristic of the field
K. The Stanley decompositions of S/J corresponds bijectively to partitions into inter-
vals of the simplicial complex whose Stanley-Reisner ring is S/J . If Stanley’s Conjecture
holds then the simplicial complexes are partitionable (see [HSY]). Using this idea an
equivalent definition of Stanley’s depth of I/J was given in [HVZ].

Let PI\J be the poset of all squarefree monomials of I \ J with the order given by
the divisibility. Let P be a partition of PI\J in intervals [u, v] = {w ∈ PI\J : u|w,w|v},
let us say PI\J = ∪i[ui, vi], the union being disjoint. Define sdepthP = mini deg vi. Then
sdepthS I/J = maxP sdepthP, where P runs in the set of all partitions of PI\J (see
[HVZ], [Sw]).

In [IKM], Ichim et. al. studied the sdepth and depth of the factor I/J under polar-
ization and reduced the Stanley’s Conjecture to the case when the ideals are monomial
squarefree. This is one of the best results from the last years concerning Stanley’s depth.
It is worth to mention that this result is not very useful for computing sdepth since it
introduces many new variables that will slow down the algorithm.

Another result of [IKM] that helps in the sdepth computing is the following proposi-
tion, which extends [Ci, Lemma 1.1], [IsQu, Lemma 2.1].

PROPOSITION B:4.0.1
(
[IKM, Proposition 5.1]

)
.

Let k ∈ N and I ′′, J ′′ be the monomial ideals obtained from I, J in the following way:

each generator whose degree in xn is at least k is multiplied by xn and all other
generators are left unchanged.

Then sdepthS I/J = sdepthS I
′′/J ′′.

Inspired by this proposition we introduced a canonical form of a factor I/J of mono-
mial ideals (see Definition B:4.1.3) and we showed easily that sdepth is invariant under
taking the canonical form (see Theorem B:4.1.7). This leads us to the idea to study also

Technische Universität Kaiserslautern 85

the depth case (see Theorem B:4.1.11). Theorem B:4.1.12 says that Stanley’s Conjec-
ture holds for a factor of monomial ideals if and only if it holds for its canonical form.
As a side result, in the depth (respectively sdepth) computation algorithm for I/J, one
can first compute the canonical form and use the algorithm on this new much more
simpler module.

In Example B:4.1.13 we conclude that the depth and sdepth algorithms are faster
when considering the canonical form: using COCOA[CoCoA], SINGULAR[Singular] and
Rinaldo’s sdepth computation algorithm [Ri] we see a small decrease in the depth case
timing, but in the sdepth case the runtime is massively reduced.

Proposition B:4.0.1 and Corollary B:4.1.10 follow from [OY, Theorem 5.2]. How-
ever, our proofs of Lemma B:4.1.9 and Corollary B:4.1.10 are completely different from
those appeared in the quoted paper.

B:4.1 The canonical form of a factor of monomial ideals

Let R = K[x1, . . . , xn−1] be the polynomial K-algebra over a field K and S := R[xn].
Consider J (I ⊂ R two monomial ideals and denote by G(I), respectively G(J), the
minimal (monomial) system of generators of I, respectively J .

DEFINITION B:4.1.1.

The power xrn enters in a monomial u if xrn | u and xr+1
n - u.

We say that I is of type (k1, . . . , ks) with respect to xn if xkin are all the powers of xn
which enter in a monomial of G(I) for i ∈ [s] and 1 ≤ k1 < . . . < ks.

I is in the canonical form with respect to xn if I is of type (1, . . . , s) for some s ∈ N.
We simply say that I is the canonical form if it is in the canonical form with respect

to all variables x1, . . . , xn.

REMARK B:4.1.2. Suppose that I is of type (k1, . . . , ks) with respect to xn. It is easy to
obtain the canonical form I ′ of I with respect to xn: replace xkin by xin whenever xkin enters
in a generators of G(I). Applying by recurrence this procedure for other variables we
get the canonical form of I, that is with respect to all variables. Note that a squarefree
monomial ideal is of type (1) with respect to each xi and it is in the canonical form with
respect to xi, so in this case I ′ = I.

We extend the above definition for a factor of monomial ideals.

DEFINITION B:4.1.3.
Let J (I ⊂ S be two monomial ideals. We say that I/J is of type (k1, . . . , ks) with

respect to xn if xkin are all the powers of xn which enter in a monomial of G(I) ∪ G(J)
for i ∈ [s] and 1 ≤ k1 < . . . < ks.

86 Adrian Popescu

All the terminology presented in Definition B:4.1.1 will extend automatically to the
factor case. Thus we may speak about the canonical form I/J of I/J.

REMARK B:4.1.4. In order to compute the canonical form with respect to xn of the
(k1, . . . , ks)−type factor I/J, one will replace xkin by xin whenever xkin enters a generator
of G(I) ∪G(J).

EXAMPLE B:4.1.5. We present some examples where we compute the canonical form of
a monomial ideal, respectively a factor of two monomial ideals.

1. Consider S = Q[x, y] and the monomial ideal I = (x4, x3y7). Then the canonical
form of I is I ′ = (x2, xy).

2. Consider S = Q[x, y, z], I = (x10y5, x4yz7, z7y3) and
J = (x10y20z2, x3y4z13, x9y2z7).

The canonical form of I/J is I/J =
(x4y5, x2yz2, y3z2)

(x4y6z, xy4z3, x3y2z2)
.

The canonical form of a factor of monomial ideals I/J is not usually the factor of the
canonical forms of I and J as shows the following example.

EXAMPLE B:4.1.6. Let S = Q[x, y], I = (x4, y10, x2y7) and J = (x20, y30) be two ideals.
The canonical form of I is I ′ = (x2, y2, xy) and the canonical form of J is J ′ = (x, y).

Then J ′ 6⊂ I ′. But the canonical form of the factor I/J is I/J =
(x2, y2, xy)

(x3, y3)
.

Using Proposition B:4.0.1, we see that the Stanley depth of a monomial ideal does
not change when considering its canonical form.

THEOREM B:4.1.7.
Let I, J be monomial ideals in S and I/J the canonical form of I/J. Then

sdepthS I/J = sdepthS I/J.

The proof follows by inductively applying the following lemma.

LEMMA B:4.1.8.
Suppose that I/J is of type (k1, . . . , ks) with respect to xn and kj + 1 < kj+1 for some

0 ≤ j < s (we set k0 = 0). Let G(I ′) (resp. G(J ′)) be the set of monomials obtained from
G(I) (resp. G(J)) by substituting xkin by xki−1n for i > j whenever xkin enters in a monomial
of G(I) (resp. G(J)). Let I ′ and J ′ be the ideals generated by G(I ′) and G(J ′). Then

sdepthS I/J = sdepthS I
′/J ′.

Technische Universität Kaiserslautern 87

The proof of Lemma B:4.1.8 follows from the proof of [IKM, Proposition 5.1] (see
here Proposition B:4.0.1).

Next we focus on the depth I/J and depth I/J.

LEMMA B:4.1.9.
Let I0 ⊂ I1 ⊂ . . . ⊂ Ie ⊂ R, J ⊂ S, U0 ⊂ U1 ⊂ . . . ⊂ Ue ⊂ R, V ⊂ S be some graded

ideals of S, respectively R, such that Ui ⊂ Ii for 0 ≤ i ≤ e, Ie ⊂ J , V ⊂ J and Ue ⊂ V .

Consider Tk =
e∑
i=0

xinIiS + xknJ and Wk =
e∑
i=0

xinUiS + xknV for k > e. Then depthS
Tk
Wk

is

constant for all k > e.

Proof.

Consider the following linear subspaces of S: I :=
e∑
i=0

xinIi and U :=
e∑
i=0

xinUi. Note

that I and U are not ideals in S.
If I = U , then the claim follows easily from the next chain of isomorphisms

Tk
Wk

∼=
xknJ

xknJ ∩ (I + xknV)S
∼=

xknJ

xkn(I + V)S
∼=

J

(I + V)S
for all k > e, and hence depthS

Tk
Wk

is constant for all k > e.
Assume now that I 6= U and consider the following exact sequence

0→ J

V

·xkn−−→ Tk
Wk

→ Tk
Wk + xknJ

→ 0,

where the last term we denote by Hk. Note that Hk
∼=

IS

IS ∩ (U + xknJ)S
and IS ∩

(U + xknJ)S = US + xknIS. Since xknHk = 0, Hk is a S/(xkn)−module. Then depthS Hk =
depthS/(xkn)Hk = depthRHk because the graded maximal ideal m of R generates a zero

dimensional ideal in S/(xkn). But Hk over R is isomorphic with
⊕k−1i=0 Ii

⊕k−1i=0Ui
∼=

k−1⊕
i=0

Ii
Ui

, where

Ii = Ie and Ui = Ue for e < i < k. It follows that t := depthS Hk = mini

{
depthR

Ii
Ui

}
.

If depthS
J

V
= 0, then the Depth Lemma gives us depthS

Tk
Wk

= t = 0 for all k > e

and hence we are done. Therefore we may suppose that depthS
J

V
> 0. Note that t > 0

implies depthS
Tk
Wk

> 0 by the Depth Lemma since otherwise depthS
Tk
Wk

= depthS
J

V
=

0, which is false. Next we will split the proof in two cases.
◦ Case t = 0.
Let F =

{
i ∈ {0, . . . , e}

∣∣ depthR Ii/Ui = 0
}

and Li ⊂ Ii be the graded ideal containing
Ui such that Li/Ui ∼= H0

m(Ii/Ui).

88 Adrian Popescu

If i ∈ F and there exists u ∈ (L∩V)\Ui then (ms, xkn)xinu ⊂ Wk for some s ∈ N, that

is depthS
Tk
Wk

= 0 for all k > e.

Now consider the case when Li∩V = Ui for all i ∈ F . If i ∈ F then note that Li ⊂ Lj

for i < j ≤ e. Set V ′ = V +LeS, U ′ = U +
∑
i∈F

xinLi and W ′
k := U ′S + xknV

′ = U ′S + xknV

because xknLeS ⊂ U ′S. Consider the following exact sequence

0→ W ′
k

Wk

→ Tk
Wk

→ Tk
W ′
k

→ 0.

For the last term we have H0
m(Ij/U ′j) = 0, 0 ≤ j ≤ e and so the new t > 0, which is

our next case. Thus we get depthS
Tk
W ′
k

> 0 is constant for k > e. The first term is

isomorphic to
U ′S

U ′S ∩Wk

. But U ′S ∩Wk = US + (U ′S ∩ xknV) because US ⊂ U ′S. Since

U ′S ∩ (xknS) = xkn(Ue + Le)S and Ue ⊂ V it follows that

U ′S ∩ xknV = xknUS + (xknLeS ∩ xknV S) = xknUS.

Consequently, the first term from the above exact sequence is isomorphic with
U ′S

US
.

Note that the annihilator of the element induced by some u ∈ Le \ V in U ′S/US contains

a power of m and so depthS
U ′S

US
≤ 1. The inequality is equality since xn is regular on

U ′S/US. By the Depth Lemma we get depthS
Tk
Wk

= 1 for all k > e.

◦ Case t > 0.
If depthR

J

V
≤ t = depthS Hk then the Depth Lemma gives us again the claim, i.e.

depthS
Tk
Wk

= depthS
J

V
for all k > e.

Assume that depthS
J

V
> t. Apply induction on t, the initial step t = 0 being done in

the first case. Suppose that t > 0. Then depthS
J

V
> t > 0 implies that depthS

J

V
≥ 2

and so we may find a homogeneous polynomial f ∈ m that is regular on
J

V
. Moreover

we may find f to be regular also on all
Ii
Ui

, i ≤ e. Then f is regular on
Tk
Wk

. Set

V ′′ := V + fJ and U ′′i := Ui + fIi for all i ≤ e and set W ′′
k :=

e∑
i=0

xinU
′′
i S + xknV

′′. By

Nakayama’s Lemma we get U ′′ 6= U , and therefore depthR
I

U ′′
= t− 1 and by induction

hypothesis it results that depthS
Tk
Wk

= 1 + depthS
Tk
W ′′
k

= constant for all k > e.

Technische Universität Kaiserslautern 89

Finally, note that we may pass from the first case to the second one and conversely.
In this way U increases at each step. By Noetherianity at last we may arrive in finite
steps to the case I = U , which was solved at the beginning.

The next corollary is in fact [IKM, Proposition 5.1] (see Proposition B:4.0.1) for
depth. It follows easily from Lemma B:4.1.9 but also from [OY, Proposition 5.2] (see
also [Y, Sections 2, 3].

COROLLARY B:4.1.10.
Let e ∈ N, I and J monomial ideals in S := K[x1, . . . , xn]. Consider I ′ and J ′ be the

monomial ideals obtained from I and J in the following way: each generator whose degree
in xn ≥ e is multiplied by xn and all the other generators are left unchanged. Then

depthS I/J = depthS I
′/J ′.

This leads us to the equivalent result of Theorem B:4.1.7 for depth.

THEOREM B:4.1.11.
Let I and J be two monomial ideals in S and I/J the canonical form of I/J. Then

depthS I/J = depthS I/J.

Proof.
Assume that I/J is of type (k1, . . . , ks) with respect to xn and obviously I/J is of type

(1, 2, . . . , s) with respect to xn. Starting with I/J, we apply Corollary B:4.1.10 till we
obtain an I′1/J ′1 of type (k1, k1 + 1, . . . , k1 + s − 1) having the same depth as I/J. We
repeat the process until we get I′s/J ′s of type (k1, k2, . . . , ks) with respect to xn with the
unchanged depth. Now we iterate and take the next variable. At the very end the claim
will follow.

Theorem B:4.1.7 and Theorem B:4.1.11 give us the following theorem:

THEOREM B:4.1.12.
The Stanley conjecture holds for a factor of monomial ideals I/J if and only if it holds

for its canonical form I/J.

Using Theorem B:4.1.11, instead of computing the depth or the sdepth of I/J, J (
I ⊂ S, we can compute it for the simpler module I/J.

EXAMPLE B:4.1.13. We present the different timings for the depth and sdepth compu-
tation algorithms with and without extracting the canonical form. SINGULAR[Singular]
was used in the depth computations while COCOA [CoCoA] and Rinaldo’s paper[Ri]
were used for the Stanley depth computation.

90 Adrian Popescu

1. Consider the ideals from Example B:4.1.5(2).

Timing for sdepth I/J computation: 22s.

Timing for sdepth I/J computation: 74 ms.

2. Consider R = Q[x, y, z] and I = (x100yz, x50yz50, x50y50z). Then the canonical form
is I ′ = (x2yz, xyz2, xy2z).

Timing for sdepth I computation: 13m 3s.

Timing for sdepth I ′ computation: 21 ms.

Notice that the difference in timings is very large. Therefore using the canonical
form in the sdepth computation is a very important optimization step. On the
other side, the depth computation is immediate in both cases. In the last example,
the timing difference can be seen.

3. Consider R = Q[x, y, z, t, v, a1, . . . , a5],

I = (v4x12z73, v87t21y13, x43y18z72t28, vxy, vyz, vzt, vtx, a70001 , a4132),

J = (v5x13z74, v88t22y14, x44y19z73t29, v2x2y2, v2y2z2, v2z2t2, v2t2x2).

Timing for depth I/J computation: 16m 11s.

Timing for depth I/J computation: 11m.

B:4.2 The canonical form algorithm

We sketch the simple idea of the algorithm which computes the canonical form of a
monomial ideal I. This can easily be extended to compute the canonical form of I/J by
simple applying it for G(I)∪G(J) and afterwards extracting the generators correspond-
ing to I and J . This was used in Example B:4.1.13.

The algorithm is based on Remark B:4.1.4: for each variable xi we build the list gp
in which we save the pair (g, p), were p is chosen such that xpi enters the g−generator
of the monomial ideal I. This list will be sorted by the powers p as in the following
example

EXAMPLE B:4.2.1. Consider the ideal I := (x13, x4y7, y7z10) ⊂ Q[x, y, z]. Then for each
variable we will obtain a different gp as shown below:

◦ For the first variable x, gp is equal to 2 4 1 13 . Therefore I is of type (4, 13)
with respect to x. Hence, in order to obtain the canonical form with respect to
x, one has to divide the second generator by x4−1 = x3 and the first generator by
x13−2 = x11. After these computation we will get I1 = (x2, xy7, y7z10). Note that I1
is in the canonical form w.r.t. x.

Technische Universität Kaiserslautern 91

◦ For the second variable y, gp is equal to 3 7 2 7 . Similar as above, one
has to divide the second and the third generator by y6, and hence it results I2 =
(x2, xy, yz10). Again, I2 is in the canonical form w.r.t. y and x.

◦ For the last variable z, gp is equal to 3 10 . We divide the third generator of I2
by z9 and we get our final result I ′ = (x2, xy, yz)., which is in the canonical form
with respect to all variables.

Based on the above idea, we construct two procedures: putIn and canonical − the
first one constructing the list gp, and the second one computing the canonical form of
a monomial ideal. The proof of correctness and termination is trivial. The procedures
were written in the SINGULAR language.

proc putIn(intvec v, int power , int nrgen)

{

if(size(v) == 1)

{

v[1] = nrgen;

v[2] = power;

return(v);

}

int i,j;

if(power <= v[2])

{

for(j = size(v)+2; j >=3; j--)

{

v[j] = v[j-2];

}

v[1] = nrgen;

v[2] = power;

return(v);

}

if(power >= v[size(v)])

{

v[size(v)+1] = nrgen;

v[size(v)+1] = power;

return(v);

}

for(j = size(v) + 2; (j>=4) && (power < v[j-2]); j = j-2)

{

v[j] = v[j-2];

v[j-1] = v[j-3];

}

v[j] = power;

v[j-1] = nrgen;

return(v);

}

92 Adrian Popescu

proc canonical(ideal I){

int i,j,k;

intvec gp;

ideal m;

intvec v;

v = 0:nvars(basering);

for(i = 1; i<= nvars(basering); i++)

{

gp = 0;

v[i] = 1;

for(j = 1; j<=size(I); j++)

{

if(deg(I[j],v) >= 1)

{

gp = putIn(gp ,deg(I[j],v),j);

}

}

k = 0;

if(size(gp) == 2)

{

I[gp[1]] = I[gp [1]]/(var(i)^(gp[2]-1));

}

else

{

for(j = 1; j<=size(gp) -2;)

{

k++;

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

j = j+2;

while ((j<=size(gp) -2) && (gp[j-1] == gp[j+1]))

{

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

j = j + 2;

}

}

if(j == size(gp) -1)

{

if(gp[j-1] == gp[j+1])

{

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

}

else

{

k++;

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

}

}

}

v[i] = 0;

}

return(I);

}

Technische Universität Kaiserslautern 93

PART C

CONSTRUCTIVE GENERAL NERON

DESINGULARIZATION

Technische Universität Kaiserslautern 95

INTRODUCTION

PART C starts with a small introduction on Artin Approximation and the General
Neron Desingularization. We give an algorithmic proof of this desingularization in the
case of Noetherian local domains of dimension 1, u : A → A′ is a regular morphism,
B is a finite type A−algebra and v : B → A′ an A−morphism. Thus we find a smooth
A−algebra C such that v factors through C (see Theorem C:2.0.2), that is a General
Neron Desingularization of B, v. The idea is nicely presented in 3 steps in the introduc-
tion of [PfPo2] and we recall it here below:

In step 1 we reduce the problem to the case when HB/A ∩ A 6= 0, HB/A being the
ideal defining the nonsmooth locus of B over A. Let 0 6= d ∈ HB/A ∩ A. This means
geometrically that SpecBd → SpecAd is smooth. In the second step we construct a
smooth A-algebra D, A ⊂ D ⊂ A′ and an A-morphism v′ : B → D/d3D such that v ≡ v′

modulo d3A′. If A′ is the completion Â of A we can use D = A. The third step resolves
the singularity. If B = A[Y]/I, Y = (Y1, . . . , Yn) then we can find f = (f1, . . . , fr),
r ≤ n a system of polynomials from I, and an r × r-minor M of the Jacobian matrix(
∂fi
∂Yj

)
such that d ≡ MN modulo I for some N ∈

(
(f) : I

)
, where (f) denotes the

ideal generated by the system f . Then v′(MN) = ds for some s ∈ 1 + dD. Assume

that M = det

(
∂fi
∂Yj

)
1≤i,j≤r

. Let H be the matrix obtained by adding to
(
∂f

∂Y

)
the

boarder block (0|Idn−r) and let G′ be the adjoined matrix of H and G = NG′. Consider
in D[Y, T], T = (T1, . . . , Tn) the ideal J =

(
(f, s(Y − y′)− dG(y′)T) : d2

)
, where y′ ∈ Dn

is lifting v′(Y). Then C is a suitable localization of the B ⊗A D-algebra D[Y, T]/(I, J)
and v extends to C by v(T) = t = (1/d2)H(y′)

(
v(Y)− y′

)
.

Consider the following example. Let A = Qx, A′ = C JxK, B =
A[Y1, Y2]

(Y 2
1 + Y 2

2)
and

a ∈ C a transcendental element over Q, ū ∈ C JxK \ Cx and u = a + x6ū. Let v
be given by v(Y1) = xu, v(Y2) = xiu, where i =

√
−1. In step 1 we change B by

B1 = A[Y1, Y2, Y3]/I, I = (Y 2
1 + Y 2

2 , x − 2Y1Y3) and extend v by v(Y3) = 1/(2u). We
have 4Y 2

1 Y
2
3 ∈ HB/A which implies d = x2 ∈ HB/A ∩ A. We define D = A[a, a−1, i] and

v′(Y) = y′ = (xa, xia, 1/(2a)). This is step two.
To understand step 3 we simplify the example taking B = A[Y1, Y2]/(Y1Y2 − x2),

u = 1 + x6ū and v given by v(Y1) = xu, v(Y2) = x/u. Then d = x ∈ HB/A,

D = A, y′1 = x = y′2. We obtain H =

(
Y2 Y1
0 1

)
, G = G′ =

(
1 −Y1
0 Y2

)
, N = 1 and

J =
(
(Y1Y2 − x2, Y1 − x− xT1 + x2T2, Y2 − x− x2T2) : x2

)
. This leads to

J = (xT1T2 − x2T 2
2 + T1, Y1 − x− xT1 + x2T2, Y2 − x− x2T2)

Technische Universität Kaiserslautern 97

and we obtain that C ∼=
(

A[T1, T2]

(xT1T2 − x2T 2
2 + T1)

)
1+xT2

∼=
(
A[T2]

)
1+xT2

is a smooth A-

algebra.
The implementation of our algorithm is done in several examples of Chapter 3.
Now let (A,m) be a Noetherian local ring of dimension 1, A′ = Â, B a finite type

A−algebra and c ∈ N. Suppose that A is Henselian and the completion map A → Â is
regular. If A is a discrete valuation ring, then Greenberg [Gr] showed that there exists
a linear map ν : N → N such that for each A-morphism v : B → A/mν(c) there exists
an A-morphism v′ : B → A such that v′ ≡ v modulo mc, that is A has the strong Artin
Approximation Property (see [PfPo1],[DP2]).

Our Corollary C:2.0.20 shows that if A is Cohen−Macaulay and the Jacobian locus
of B is not too small, then there exists a linear map as in Greenberg’s case of the form
c→ 2e+ c, where e depends on the polynomial system of equations defining B.

98 Adrian Popescu

CHAPTER C:1

ARTIN APPROXIMATION AND GENERAL NERON DESINGULARIZATION

This chapter is based on the common work of the author together with D. Popescu,
[APDP2]. We first introduce a couple of definitions needed in the next sections.

DEFINITION C:1.0.1.
A ring morphism u : A → A′ of Noetherian rings has regular fibers if for all prime

ideals P ∈ SpecA the ring A′/PA′ is a regular ring, i.e. its localizations are regular local
rings.

It has geometrically regular fibers if for all prime ideals P ∈ SpecA and all finite
field extensions K of the fraction field of A/P the ring K ⊗A/P A′/PA′ is regular.

A flat morphism of Noetherian rings u is regular if its fibers are geometrically regu-
lar.

DEFINITION C:1.0.2.
A local ring (A,m) is Henselian if the Implicit Function Theorem (C:1.0.3) holds in

A.
A Henselian Noetherian local ring A is excellent if the completion map A → Â is

regular.

THEOREM C:1.0.3
(
Implicit Function Theorem

)
.

Let F ∈ A Jx1, . . . , xn, yK such that F (x1, . . . , xn, 0) ∈ 〈x1, . . . , xn〉 and
∂F

∂y
(x1, . . . , xn, 0) 6∈ 〈x1, . . . , xn〉. Then there exists a unique

y(x1, . . . , xn) ∈ 〈x1, . . . , xn〉A Jx1, . . . , xnK

such that
F
(
x1, . . . , xn, y(x1, . . . , xn)

)
= 0.

DEFINITION C:1.0.4.
A Noetherian local ring (A,m) has the Artin approximation property if every finite

system of polynomial equations over A has a solution in A if and only if has a solution
in the completion Â of A.

In fact A has the Artin approximation property if and only if every finite system f of
polynomial equations overA in Y = (Y1, . . . , Yn) has its solutions inA dense with respect
to the m-adic topology in the set of its solutions in Â; that is, for every solution ŷ of f in
Â and every positive integer c there exists a solution y in A such that y ≡ ŷ modulo mcÂ.

Technische Universität Kaiserslautern 99

DEFINITION C:1.0.5.
Let K be a field. We denote by K 〈x〉, where x = x1, . . . , xn, the algebraic power

series ring over K, i.e. the algebraic closure of the polynomial ring K[x] in the formal
power series ring K JxK.

M. Artin showed in [Artin1] that the algebraic power series over a field has the
property of Artin approximation. He also set in [Artin2] several conjectures, one of
them is solved in the following theorem.

THEOREM C:1.0.6
(
[DP2, Theorem 1.3]

)
.

An excellent Henselian local ring has the property of Artin approximation property.

The proof is based on the existence of the so-called General Neron Desingularization,
that is the following theorem generalizes the Neron Desingularization [Ne], [Artin1].

THEOREM C:1.0.7
(
General Neron Desingularization, Popescu [DP1], [DP2], [DP3],

Swan [Sw]
)
.

Let u : A → A′ be a regular morphism of Noetherian rings and B a finite type A-
algebra. Then any A-morphism v : B → A′ factors through a smooth A-algebra C, that is
v is a composite A-morphism B → C → A′.

REMARK C:1.0.8. Using this theorem we get an easy proof of Theorem C:1.0.6. Indeed,
let f be a finite system of polynomial equations over A in Y = (Y1, . . . , Yn) and ŷ a
solution of f in Â. Set B = A[Y]/(f) and let the morphism

v : B // Â

Y � // ŷ.

By Theorem C:1.0.7, v factors through a smooth A-algebra C, that is v is a com-
posite A-morphism B → C → A′. Thus changing B by C we may reduce the problem
to the case when B is smooth over A. Then 1 ∈

(
(g) : I

)
M for some polynomials

g = (g1, . . . , gr) from (f) and a r × r-minor M of the Jacobian matrix
(
∂g

∂Y

)
. Thus

g(ŷ) = 0 and M(ŷ) is invertible. By the Implicit Function Theorem there exists y ∈ A
such that y ≡ ŷ modulo mÂ.

The main purpose of this part is to give an algorithmic proof of Theorem C:1.0.7
when A,A′ are one dimensional Noetherian local domains and A ⊃ Q. This is published
in [APDP2]. An extension of our algorithm can be found in [PfPo2]. We may take the
same General Neron Desingularization for v, v′ : B → A′ if they are closed enough as
Examples C:2.0.3 and C:2.0.9 show. This remark was basic in [DP8, Theorem 10]. The
last section of this chapter computes the General Neron Desingularization in several
examples. We should point that the General Neron Desingularization is not unique and
it is better to speak above about a General Neron Desingularization.

100 Adrian Popescu

DEFINITION C:1.0.9.
A Noetherian local ring (A,m) has the strong Artin approximation property if for

every finite system of polynomial equations f in Y = (Y1, . . . , Yn) over A there exists a
map ν : N→ N with the following property

If y′ ∈ An satisfies f(y′) ≡ 0 modulo mν(c), c ∈ N, then there exists a solution
y ∈ An of f with y ≡ y′ modulo mc.

M. Greenberg [Gr] proved that excellent Henselian discrete valuation rings have
the strong Artin approximation property and ν is linear in this case. M. Artin [Artin1]
showed that the algebraic power series ring over a field has also the strong Artin ap-
proximation property. In [PfPo1] (see also [KMPPR]) it states that Noetherian complete
local rings have the strong Artin approximation property and it follows that A has the
strong Artin approximation property if it has the Artin approximation property. Thus
Theorem C:1.0.6 gives that excellent Henselian local rings have the strong Artin ap-
proximation property. An easy proof of this fact is given in [DP2, 4.5] using Theorem
C:1.0.7 and ultrapower methods.

When A′ is the completion of a Cohen-Macaulay local ring A of dimension 1 we
show that we may have a linear Artin function as it happens in the Greenberg’s case
(see C:2.0.19). More precisely, the Artin function is given by c 7→ 2e + c, where e
depends from the polynomial system of equations defining B. Later this result was
extended in [PfPo2] in the case of non Cohen-Macaulay local rings of one dimension. If
dimA > 1 then ν may be not linear as shows [Ro].

Technische Universität Kaiserslautern 101

CHAPTER C:2

A METHOD TO COMPUTE A GENERAL NERON DESINGULARIZATION IN THE

FRAME OF ONE DIMENSIONAL LOCAL DOMAINS

Let u : A → A′ be a flat morphism of Noetherian local domains of dimension 1.
Suppose that A ⊃ Q and the maximal ideal m of A generates the maximal ideal of A′.
Then u is regular morphism. Moreover, we suppose that there exist canonical inclusions
k = A/m→ A, k′ = A′/mA′ → A′ such that u(k) ⊂ k′.

Let B = A[Y]/I, Y = (Y1, . . . , Yn). If f = (f1, . . . , fr), r ≤ n is a system of polynomials
from I then we can define the ideal ∆f generated by all r × r−minors of the Jacobian

matrix
(
∂fi
∂Yj

)
. After Elkik [El], let HB/A be the radical of the ideal

∑
f

(
(f) : I

)
∆fB,

where the sum is taken over all systems of polynomials f from I with r ≤ n. Then
BP , P ∈ SpecB is essentially smooth over A if and only if P 6⊃ HB/A by the Jacobian
criterion for smoothness. Thus HB/A measures the non smooth locus of B over A.

DEFINITION C:2.0.1.
B is standard smooth over A if there exists f in I as above such that

1 ∈
(
(f) : I

)
∆fB.

The aim of this chapter is to give an easy algorithmic proof of the following theorem.

THEOREM C:2.0.2.
Any A-morphism v : B → A′ factors through a standard smooth A-algebra B′.

If A is essentially of finite type over Q, then the ideal HB/A can be computed in
SINGULAR by following its definition but it is easier to describe only the ideal∑

f

(
(f) : I

)
∆fB defined above. This is the case considered in our algorithmic part,

let us say A ∼= k[x]/F for some variables x = (x1, . . . xt), and the completion of A′ is KJxK/F
for some field extension k ⊂ K. When v is defined by polynomials y from K[x] then
our problem is easy. Let L be the field obtained by adjoining to k all coefficients of y.
Then R = L[x]/F is a subring of A′ containing Im v which is essentially smooth over A.
Then we may take B′ as a standard smooth A-algebra such that R is a localization of
B′. Consequently we suppose usually that y is not polynomial defined and moreover L
is not a finite type field extension of k.

We may suppose that v(HB/A) 6= 0. Indeed, if v(HB/A) = 0 then v induces an A-
morphism v′ : B′ = B/HB/A → A′ and we may change (B, v) by (B′, v′). Applying this

Technische Universität Kaiserslautern 103

trick several times we reduce to the case v(HB/A) 6= 0. However the fraction field of
Im v is essentially smooth over A by separability, that is HIm v/AA

′ 6= 0 and in the worst
case our trick will change B by Im v after several steps.

Choose P ′ ∈ ∆f

(
(f) : I

)
\ I for some system of polynomials f = (f1, . . . , fr) from

I and d′ ∈
(
v(P ′)A′

)
∩ A, d′ 6= 0. Moreover we may choose P ′ to be from M

(
(f) : I

)
where M is a r × r−minor of

(
∂f

∂Y

)
. Then d′ = v(P ′)z ∈

(
v(HB/A)

)
∩ A for some

z ∈ A′. Set B1 = B[Z]/(fr+1), where fr+1 = −d′ + P ′Z and let v1 : B1 → A′ be the map
of B-algebras given by Z → z. It follows that d′ ∈

(
(f, fr+1) : (I, fr+1)

)
and d′ ∈ ∆f ,

d′ ∈ ∆fr+1. Then d = d′2 ≡ P modulo (I, fr+1) for P = P ′2Z2 ∈ HB1/A. For the reduction

change B by B1 and the Jacobian matrix J =

(
∂f

∂Y

)
will be now the new J given by(

J 0
∗ P ′

)
. Note that d ∈ HB/A ∩ A.

EXAMPLE C:2.0.3. Let a1, a2 ∈ C be two elements algebraically independent over Q and

ρ a root of the polynomial T 2 + T + 1 in C. Then k′ =
Q(a1, a2)[a3]

(a23 + a3 + 1)
∼= Q(ρ, a1, a2). Let

A =

(
Q[x1, x2]

(x31 − x22)

)
(x1,x2)

and B =
A[Y1, Y2, Y3]

(Y 3
1 − Y 3

2)
, A′ =

k′ Jx1, x2K
(x31 − x22)

and the map v defined as

v : B // A′

Y1
� // a1x2

Y2
� // a1a3x2

Y3
� // a1

30∑
i=0

xi1
i!

+ a2x2

50∑
i=31

xi1
i!

This is an easy example. Indeed, let v′′ : B′′ = A
[
a3, a1x2, v(Y3)

]
→ A′ be the

inclusion. We have Im v ⊂ B′′ ∼=
A[T, Y1, Y3]

(T 2 + T + 1)
and B′′2a3+1

∼=
(
A[T, Y1, Y3]

(T 2 + T + 1)

)
2T+1

is

a smooth A-algebra, which could be taken as a General Neron Desingularization of B.
Applying our algorithm we will get more complicated General Neron Desingularizations
but useful for an illustration of our construction.

Then Im v, the new B will be
B

Ker v
, where the kernel is generated by the following

polynomial:

ker[1]=Y1^2+Y1*Y2+Y2^2

Next we choose f = Y 2
1 +Y1Y2 +Y 2

2 and we have M = 2Y2 +Y1 and 1 ∈
(
(f) : I

)
and

hence P ′ = Y1 + 2Y2. Therefore v(P ′) = (2a1a3 + a1) · x2 and d′ = x2, z =
1

2a1a3 + a1
.

Therefore d = d′2 = x22.

104 Adrian Popescu

To be able to construct Q
[

1

2a1a3 + a1

]
[x] in SINGULAR we add a new variable a and

we factorize with the corresponding polynomial 2a1a3 · a + a1 · a− 1. We consider a as

a new parameter from k′ ⊂ A′. Then we replace B by B1 =
B[Y4]

(−d′ + P ′Y4)
and extend

v to a map v1 : B1 → A′ given by Y4 7→ a. Changing B by B1 we may assume that
d ∈ HB/A ∩ A.

EXAMPLE C:2.0.4. Note that we could use B instead Im v. In this case we choose
f = Y 3

1 − Y 3
2 and take M = 3Y 2

2 and 1 ∈
(
(f) : I

)
. Therefore we obtain P ′ = 3Y 2

2 ,
d′ = x22, d = x42 and the next computations are harder as we will see in the Examples
C:2.0.16 and C:3.0.3.

REMARK C:2.0.5. We would like to work above with A′′ =
C Jx1, x2K
(x31 − x22)

instead of A′, v

being given by v(Y2) = a1ρx2. But this is hard since we cannot work in SINGULAR with
an infinite set of parameters. We have two choices. If the definition of v involves only
a finite set of parameters then we proceed as Example C:2.0.3 using some A′ ⊃ Im v.
Otherwise, we will see later that in the computation of the General Neron Desingular-
ization we may use only a finite number of the coefficients of the formal power series
defining v(Y) and so this computation works in SINGULAR.

REMARK C:2.0.6. As one may observe, the algorithm could compute also in the case
when A′ is not a domain, but there exist P ∈M

(
(f) : I

)
as above and a regular element

d ∈ m with d ≡ P modulo I. If A is Cohen-Macaulay we may reduce to the case when
there exists a regular element d ∈ HB/A ∩ A. However, it is hard usually to reduce to
the case when d ≡ P modulo I for some P ∈ M

(
(f) : I

)
. Sometimes this is possible as

shows the following example.

EXAMPLE C:2.0.7. Let a1, a2 ∈ C be two elements algebraically independent over Q.

Consider A =

(
Q[x1, x2, x3]

(x32 − x23, x31 − x23)

)
(x1,x2,x3)

and B =
A[Y1, Y2, Y3]

(Y 3
1 − Y 3

2)
, K ′ =

Q(a1, a2)[a3]

(a23 − a1a2)
,

A′ =
K ′ Jx1, x2, x3K

(x32 − x23, x31 − x23)
and the map v defined as

v : B // A′

Y1
� // a3x1

Y2
� // a3x2

Y3
� // a1

30∑
i=0

xi3
i!

+ a2

50∑
i=31

xi3
i!

Then Im v, the new B, will be
B

Ker v
, where the kernel is generated by six polyno-

mials:

Technische Universität Kaiserslautern 105

ker[1]=x2*Y1-x1*Y2

ker[2]=Y1^3-Y2^3

ker[3]=x1*Y1^2-x2*Y2^2

ker[4]=x1^2*Y1-x2^2*Y2

ker[5]=x1*x2^2*Y2-x3^2*Y1

ker[6]=x1^2*x2*Y2^2-x3^2*Y1^2

Next we choose f = x2Y1 − x1Y2 and we have M = −x1. We may take
N = −x23 ∈

(
(f) : I

)
and P ′ = x1x

2
3. Note that x1 − x2 is a zero divisor in A but

d′ = P ′ is regular in A. In this example we may take d = d′ = P ′ = P .

REMARK C:2.0.8. Replacing B by Im v can be a hard goal if A′ is a factor of the power
series ring over C in some variables x and v(Y) is defined by formal power series whose
coefficients form an infinite field extension F of Q. If v(Y) are polynomials in x as in
Examples C:2.0.3 and C:2.0.7 then it is trivial to find a General Neron Desingularization
of B as we explained already in the last ideas presented in the previous chapter. For
instance in Example C:2.0.7, B′ could be a localization of K ′ ⊗Q A. Thus Examples
C:2.0.3 and C:2.0.7 have no real importance, they being useful only for an illustration
of our algorithm. This is the reason that in the next examples the field L obtained by
adjoining to k all coefficients of y, will be an infinite type field extension of k and v(Y)
are not all polynomials in x.

However, this will complicate the algorithm because we are not able to tell to the
computer who v(Y) is and so how to obtain d′. We may choose an element a ∈ m and
find a minimal c ∈ N such that ac ∈

(
v(M)

)
+
(
a2c
)

(this is possible because dimA = 1).
Set d′ = ac. It follows that d′ ∈

(
v(M)

)
+(d′2) ⊂

(
v(M)

)
+(d′4) ⊂ . . . and so d′ ∈

(
v(M)

)
,

that is d′ = v(M)z for some z ∈ A′. Certainly we cannot find precisely z but later it is
enough to know just a kind of truncation of it modulo d′6.

EXAMPLE C:2.0.9. Let ai ∈ C, i ∈ N be elements algebraically independent over Q and ρ

a root of the polynomial T 2 + T + 1 in C. Let A =

(
Q[x1, x2]

(x31 − x22)

)
(x1,x2)

,

B =
A[Y1, Y2, Y3]

(Y 2
1 + Y1Y2 + Y 2

2)
, A′ =

C Jx1, x2K
(x31 − x22)

and the map v defined as

v : B // A′

Y1
� // a1

(
x2 +

∑
i≥7

aix
i
2

)

Y2
� // a1a3

(
x2 +

∑
i≥7

aix
i
2

)

Y3
� // a1

9∑
i=0

xi1
i!

+ x2

∞∑
i=10

ai−8
xi1
i!

106 Adrian Popescu

As in Example C:2.0.3 we may take d′ = x2, d = d′2 and a. Our algorithm follows
the same path as in Examples C:2.0.3, C:2.0.15 and C:3.0.2 providing the same General
Neron Desingularization. This time we cannot find an easy General Neron Desingular-
ization as in the first part of Example C:2.0.3.

EXAMPLE C:2.0.10. Let A =
Q[x1, x2](x1,x2)

(x21 − x32)
and A′ =

C Jx1, x2K
(x21 − x32)

. Then the inclusion

A ⊂ A′ is regular. Let θi =
∞∑
j=0

αijx
j
2 + x1

∞∑
j=0

βijx
j
2 ∈ C Jx1, x2K for i = 3, 4 with αi0 = 1

and y1 =
θ33
θ24

, y2 =
θ24
θ3

, y3 = x2θ3, y4 = x2θ4. Let f1 = Y 2
3 − x22Y1Y2, f2 = Y 2

4 − x2Y2Y3 be

polynomials in A[Y], Y = (Y1, . . . , Y4) and set B = A[Y]/f, f = (f1, f2).
If R is a domain and u ∈ R is such that Y 2 − u ∈ R[Y] has no solutions in

Q(R) then it is easy to see that R[Y]/(Y 2 − u) is a domain too. In our case we
obtain that R = A[Y1, Y2, Y3]/(f1) and B = R[Y4]/(f2) are domains too. Then the
map v : B → A′ given by Y 7→ y = (y1, . . . , y4) is injective if we suppose that
θ3, θ4 are algebraically independent over A. This follows since B is a domain and
dimB = tr degQ(A)Q(B) = tr degQ(A)Q(Im v) = 2 = dim Im v. Moreover we assume that
the fields Li = Q

(
(αij, βij)j

)
, i = 3, 4 have infinite transcendental degree over Q. The Ja-

cobian matrix
(
∂f

∂Y

)
have a 2×2−minorM = det

(
∂fi
∂Yj

)
1≤i≤2
3≤j≤4

= 4Y3Y4 6∈ (f). Note that

v(M) = x22y5, where y5 =
1

4θ3θ4
. Then we may take B1 = B[Y5]/(f3), f3 = −x22 + MY5

and v1 given by Y5 7→ y5. Clearly, P = M2Y 2
5 ∈ HB1/A and 0 6= d = x42 = v1(P) ∈ A.

Thus we may suppose that there exists f = (f1, . . . , fr), r ≤ n a system of polyno-

mials from I, a r × r−minor M of the Jacobian matrix
(
∂fi
∂Yj

)
and N ∈

(
(f) : I

)
such

that 0 6= d ≡ MN modulo I. Set Ā = A/(d3), Ā′ = A′/d3A′, ū = Ā ⊗A u, B̄ = B/d3B,
v̄ = Ā⊗A v. Clearly, ū is a regular morphism of Artinian local rings.

REMARK C:2.0.11. The whole proof could work with Ā = A/d2u for any u ∈ m. We
prefer to take u = d as is done in [DP2] and [DP4] but we could choose u 6= d, u ∈ m\m2

for easy computations.

By [GD, 19, 7.1.5] for every field extension L/k there exists a flat complete Noethe-
rian local Ā-algebra Ã, unique up to an isomorphism, such that mÃ is the maximal ideal
of Ã and Ã/mÃ ∼= L. It follows that Ã is Artinian. On the other hand, we may con-
sider the localization AL of L⊗k Ā in m(L⊗k Ā) which is Artinian and so complete. By
uniqueness we see that AL ∼= Ã. Set k′ = A′/mA′. It follows that Ā′ ∼= Ak′. Note that AL
is essentially smooth over A by base change and Ā′ is a filtered union of sub-Ā-algebras
AL with L/k finite type field sub extensions of k′/k.

Technische Universität Kaiserslautern 107

Let v be given by Y → y ∈ A′n. Choose L/k a finite type field extension such that
AL contains the residue class ȳ ∈ Ā′n induced by y. In fact ȳ is a vector of polynomials
in the generators of m with the coefficients cν in k′ and we may take L = k

(
(cν)ν

)
.

Then v̄ factors through AL. Assume that k
[
(cν)ν

] ∼= k
[
(Uν)ν

]
/J̄ for some new variables

U and a prime ideal J̄ ⊂ k[U]. We have HL/k 6= 0 because L/k is separable. Then we

may assume that there exist ω = (ω1, . . . , ωp) in J̄ such that ρ = det

(
∂ωi
∂Uν

)
i,ν∈[p]

6= 0

and a nonzero polynomial τ ∈
(
(ω) : J̄

)
\ J̄ . Thus L is a fraction ring of the smooth

k-algebra
(
k[U]/(ω)

)
ρτ

. Note that ω, ρ, τ can be considered in A because k ⊂ A and
cν ∈ A′ because k′ ⊂ A′.

Then v̄ factors through a smooth Ā-algebra C ∼=
(
Ā[U]/(ω)

)
ρτγ

for some polynomial
γ which is not in m

(
Ā[U]/(ω)

)
ρτ

.

LEMMA C:2.0.12.
There exists a smooth A-algebra D such that v̄ factors through D̄ = Ā⊗A D.

Proof.
By our assumptions u(k) ⊂ k′. Set D =

(
A[U]/(ω)

)
ρτγ

and w : D → A′ be the map
given by Uν → cν . We have C ∼= Ā ⊗A D. Certainly, v̄ factors through w̄ = Ā ⊗A w but
in general v does not factor through w.

REMARK C:2.0.13. If A′ = Â then Ā ∼= Ā′ and we may take D = A.

REMARK C:2.0.14. Suppose that k ⊂ A but L 6⊂ A′ and so k′ 6⊂ A′. Then

D =

(
A[U,Z]

(ω − d3Z

)
ρτγ

, Z = (Zν) is a smooth A-algebra and D̄ ∼= C[Z]. Since v̄ factors

through a map C → Ā′ given by U 7→ λ + d3A′ for some λ in A′ we see that ω(λ) ≡ 0
modulo d3, that is ω(λ) = d3z for some z in A′. Let w : D → A′ be the A-morphism
given by (U,Z) 7→ (λ, z). Certainly, v̄ factors through w̄ = Ā⊗A w but in general v does
not factor through w. If also k 6⊂ A then the construction of D goes as above but using
a lifting of ω, τ, γ from k[U] to A[U]. In both cases we may use D as it follows.

EXAMPLE C:2.0.15. We reconsider Example C:2.0.3. We already know that d = x22. The
algorithm gives us the following output:

This is C:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 a x1 x2

// block 2 : ordering C

// quotient ring from ideal

_[1]=3*a1*a+2*a3+1

108 Adrian Popescu

_[2]=a3^2+a3+1

_[3]=x1^3-x2^2

_[4]=x2^6

This is D:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 a x1 x2

// block 2 : ordering C

// quotient ring from ideal

_[1]=3*a1*a+2*a3+1

_[2]=a3^2+a3+1

_[3]=x1^3-x2^2

Indeed,

C =
Ā[a1, a3, a]

(3a1a+ 2a3 + 1, a23 + a3 + 1, x62)

and

D =
A[a1, a3, a]

(3a1a+ 2a3 + 1, a23 + a3 + 1)
.

Note that the 3a1a+ 2a3 + 1 comes from the standard basis computation of the ideal
(2a1a3a+ a1a− 1, a23 + a3 + 1) and in D we have a3, a1, 2a3 + 1 invertible.

EXAMPLE C:2.0.16. Now we reconsider Example C:2.0.4. We know that d = x42. The
algorithm gives us the following output:

This is C:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 a x1 x2

// block 2 : ordering C

// quotient ring from ideal

_[1]=a3^2+a3+1

_[2]=x1^3-x2^2

_[3]=a1^2*a-a3

_[4]=x2^12

This is D:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 a x1 x2

Technische Universität Kaiserslautern 109

// block 2 : ordering C

// quotient ring from ideal

_[1]=a3^2+a3+1

_[2]=x1^3-x2^2

_[3]=a1^2*a-a3

Indeed,

C =
Ā[a1, a3, a]

(a23 + a3 + 1, a21a− a3, x122)

and

D =
A[a1, a3, a]

(a23 + a3 + 1, a21a− a3)
.

Note that a3, a1 are invertible in D.

EXAMPLE C:2.0.17. In the case of Example C:2.0.7 we obtain the following output:

This is C:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 x1 x2 x3

// block 2 : ordering C

// quotient ring from ideal

_[1]=x2^3-x3^2

_[2]=x1^3-x3^2

_[3]=x3^8

This is D:

// characteristic : 0

// number of vars : 5

// block 1 : ordering dp

// : names a1 a3 x1 x2 x3

// block 2 : ordering C

// quotient ring from ideal

_[1]=x2^3-x3^2

_[2]=x1^3-x3^2

Indeed this is the case since we have d = x1x
2
3 and hence

C =
Ā[a1, a3]

(x83)

and
D = A[a1, a3].

110 Adrian Popescu

EXAMPLE C:2.0.18. In Example C:2.0.10 we consider a1, a2 algebraically independent
over Q and set θ′3 = 1 + a1x2 and θ′4 = 1 + a2x

2
2. Suppose that θ′i ≡ θi modulo x122 .

We have y3 = x2θ3, y4 = x2θ4, y1 =
θ33
θ24

, y2 =
θ24
θ3

, y5 =
1

4θ3θ4
. Choose y′i, i ∈ [5]

polynomials with degrees ≤ 11 in x2 and linear in x1 such that y′i ≡ yi mod(x21, x
12
2).

We get y′1 ≡ y1 = θ33/θ
2
4 ≡ θ′33/θ

′2
4 mod(x21, x

12
2) and similarly for y′i, i > 1. Here we

use the fact that θ−24 =
e∑
j=1

(1− θ24)
j for some e � 0 because 1 − θ24 is nilpotent in the

ring Ā[a1, a2, a3, a4]. Thus the coefficients of y′i, i ∈ [5] belong to the field L obtained
by adjoining to Q the coefficients of θ′3, θ

′
4. Note that in this case L = Q

(
Q[a1, . . . , a4]

)
.

Then we obtain the following output:

This is C:

// characteristic : 0

// number of vars : 4

// block 1 : ordering dp

// : names a1 a2 x1 x2

// block 2 : ordering C

// quotient ring from ideal

_[1]=x2^3-x1^2

_[2]=x1^8

This is D:

// characteristic : 0

// number of vars : 4

// block 1 : ordering dp

// : names a1 a2 x1 x2

// block 2 : ordering C

// quotient ring from ideal

_[1]=x2^3-x1^2

Thus C =
Ā[a1, . . . , a4]

(x122)
∼= Ā[a1, . . . , a4] which is smooth over Ā. Then D is a local-

ization of A[a1, . . . , a4], where θ′3, θ
′
4 must be invertible.

Back to our proof note that the composite map B̄ → C → D̄ is given by Y → y′+d3D
for some y′ ∈ Dn. Thus I(y′) ≡ 0 modulo d3D. Since v̄ factors through w̄ we see that
w̄(y′+ d3D) = ȳ. Set ỹ = w(y′). We get y− ỹ ∈ d3A′n, let us say y− ỹ = d2ε for ε ∈ dA′n.

We have d ≡ P modulo I and so P (y′) ≡ d modulo d3 in D because I(y′) ≡ 0 modulo
d3D. Thus P (y′) = ds for a certain s ∈ D with s ≡ 1 modulo d. Assume that P = NM
for some N ∈

(
(f) : I

)
. Recall from beginning of Chapter C:2 that the new M is now

the old one multiplied with P ′ and the new N is the old one multiplied with Z2. Let H

be the n× n−matrix obtained adding down to
(
∂f

∂Y

)
as a border the block

(
0 | Idn−r

)
.

Technische Universität Kaiserslautern 111

Let G′ be the adjoint matrix of H and G = NG′. We have

GH = HG = NM Idn = P Idn

and so
dsIdn = P (y′)Idn = G(y′)H(y′).

Then t := H(y′)ε ∈ dA′n satisfies

G(y′)t = P (y′)ε = dsε

and so
s(y − ỹ) = dw

(
G(y′)

)
t.

Let
h = s(Y − y′)− dG(y′)T, (C:2.1)

where T = (T1, . . . , Tn) are new variables. The kernel of the map ϕ : D[Y, T]→ A′ given
by Y → y, T → t contains h. Since

s(Y − y′) ≡ dG(y′)T modulo h

and
f(Y)− f(y′) ≡

∑
j

∂f

∂Yj
(y′)(Yj − y′j)

modulo higher order terms in Yj − y′j by Taylor’s formula we see that for p = maxi deg fi
we have

spf(Y)− spf(y′) ≡
∑
j

sp−1d
∂f

∂Yj
(y′)Gj(y

′)Tj + d2Q = sp−1dP (y′)T + d2Q (C:2.2)

modulo h where Q ∈ T 2D[T]r. This is because (∂f/∂Y)G = (P Idr|0). We have f(y′) =
d2b for some b ∈ dDr. Then

gi = spbi + spTi +Qi, i ∈ [r] (C:2.3)

is in the kernel of ϕ because d2ϕ(g) = d2g(t) ∈
(
h(y, t), f(y)

)
= (0).

Set E =
D[Y, T]

(I, g, h)
and let ψ : E → A′ be the map induced by ϕ. Clearly, v factors

through ψ because v is the composed map B → B ⊗A D ∼= D[Y]/I → E
ψ−→ A′.

Note that the r × r−minor s′ of (∂g/∂T) given by the first r−variables T is from
srp + (T) ⊂ 1 + (d, T)D[Y, T] because Q ∈ (T)2. Then U =

(
D[Y, T]/(h, g)

)
ss′

is smooth
over D. We claim that I ⊂ (h, g)D[Y, T]ss′s′′ for some other s′′ ∈ 1 + (d, T)D[Y, T].
Indeed, we have PI ⊂ (h, g)D[Y, T]s and so P

(
y′ + s−1dG(y′)T

)
I ⊂ (h, g)D[Y, T]s.

Since P
(
y′ + s−1dG(y′)T

)
∈ P (y′) + d(T) we get P

(
y′ + s−1dG(y′)T

)
= ds′′ for some

s′′ ∈ 1+(d, T)D[Y, T]. It follows that s′′I ⊂ (h, g)D[Y, T]ss′ because d is regular in U , the

112 Adrian Popescu

map D → U being flat, and so I ⊂ (h, g)D[Y, T]ss′s′′. Thus Ess′s′′ ∼= Us′′ is a B-algebra
which is also standard smooth over D and A.

As w(s) ≡ 1 modulo d and w(s′), w(s′′) ≡ 1 modulo (d, t), d, t ∈ mA′ we see that
w(s), w(s′), w(s′′) are invertible because A′ is local and ψ (thus v) factors through the
standard smooth A-algebra Ess′s′′.

Let (A,m) be a Cohen-Macaulay local ring (for example a reduced ring) of dimension
1, A′ = Â the completion of A, B = A[Y]/I, Y = (Y1, . . . , Yn) a finite type A−algebra
and c, e ∈ N. Suppose that there exist f = (f1, . . . , fr) in I, a r × r−minor M of the

Jacobian matrix
(
∂f

∂Y

)
, N ∈

(
(f) : I

)
and an A-morphism v : B → A/m2e+c such that(

v(MN)
)
⊃ me/m2e+c.

THEOREM C:2.0.19.
Then there exists an A-morphism v′ : B → Â such that v′ ≡ v modulo mc, that is

v′(Y + I) ≡ v(Y + I) modulo mc.

Proof.
We note that the proof of Theorem C:2.0.2 can work somehow in this case. Let

y′ ∈ An be an element inducing v(Y + I). Then

me ⊂
(
(MN)(y′)

)
+m2e+c ⊂

(
(MN)(y′)

)
+m3e+2c ⊂ . . .

by hypothesis. It follows that me ⊂
(
(MN)(y′)

)
. Since A is Cohen-Macaulay we see

that me contains a regular element of A and so (MN)(y′) must be regular too.
Set d = (MN)(y′). Next we follow the proof of Theorem C:2.0.2 with D = A, s = 1,

P = MN and H, G such that .

dIdn = P (y′)Idn = G(y′)H(y′).

Let
h = Y − y′ − dG(y′)T,

where T = (T1, . . . , Tn) are new variables. We have

f(Y)− f(y′) ≡ dP (y′)T + d2Q

modulo h where Q ∈ T 2A[T]r. But f(y′) ∈ m2e+cAr ⊂ d2mcAr and we get f(y′) = d2b
for some b ∈ mcAr. Set gi = bi + Ti + Qi, i ∈ [r] and E = A[Y, T]/(I, h, g). We have an
A-morphism β : E → A/mc given by (Y, T) → (y′, 0) because I(y′) ≡ 0 modulo m2e+c,
h(y′, 0) = 0 and g(0) = b ∈ mcAr.

As in the proof of Theorem C:2.0.2 we have Es′s′′ ∼= Us′′, where U =

(
A[Y, T]

(g, h)

)
s′

.

This isomorphism follows because d is regular in A and so in U . Consequently, Es′s′′
is smooth over A. Note that β extends to a map β′ : Es′s′′ → A/mc. By the Implicit

Technische Universität Kaiserslautern 113

Function Theorem β′ can be lifted to a map w : Es′s′′ → Â which coincides with β′

modulo mc. It follows that the composite map v′, B → Es′s′′
w−→ Â works.

COROLLARY C:2.0.20.
In the assumptions of the above theorem, suppose that (A,m) is excellent Henselian.

Then there exists an A-morphism v′′ : B → A such that v′′ ≡ v modulo mc, that is
v′′(Y + I) ≡ v(Y + I) modulo mc.

Proof.
An excellent Henselian local ring (A,m) has the property of Artin approximation

by [DP2], that is the solutions in A of a system of polynomial equations f over A are
dense in the set of the solutions of f in Â. By Theorem C:2.0.19 we get an A-morphism
v′ : B → Â such that v′ ≡ v modulo mc. Then there exists an A-morphism v′′ : B → A
such that v′′ ≡ v′ ≡ v modulo mc by the property of Artin approximation.

THEOREM C:2.0.21.
Let (A,m) be a Cohen-Macaulay local ring of dimension one, B = A[Y]/I, Y =

(Y1, . . . , Yn) a finite type A-algebra, e ∈ N and f = (f1, . . . , fr) a system of polynomials
from I. Suppose that A is excellent Henselian and there exist a r × r-minor M of the

Jacobian matrix
(
∂f

∂Y

)
, N ∈

(
(f) : I

)
and y′ ∈ An such that I(y′) ≡ 0 modulo me and(

(NM)(y′)
)
⊃ me. Then the following statements are equivalent:

1. there exists y′′ ∈ An such that I(y′′) ≡ 0 modulo m3e and y′′ ≡ y′ modulo me,

2. there exists y ∈ An such that I(y) = 0 and y ≡ y′ modulo me.

For the proof apply the above corollary and Theorem C:2.0.19.

114 Adrian Popescu

CHAPTER C:3

THE IMPLEMENTATION IN SINGULAR AND SOME EXAMPLES

EXAMPLE C:3.0.1. We would like to compute Example C:2.0.3 in SINGULAR using
GND.lib. We quickly recall the example.

Let a1, a2 ∈ C be two elements algebraically independent over Q and ρ a root of the

polynomial T 2 + T + 1 in C. Then k′ =
Q(a1, a2)[a3]

(a23 + a3 + 1)
∼= Q(ρ, a1, a2).

Let A =

(
Q[x1, x2]

(x31 − x22)

)
(x1,x2)

, B =
A[Y1, Y2, Y3]

(Y 3
1 − Y 3

2)
, A′ =

k′ Jx1, x2K
(x31 − x22)

and the map v defined as

v : B // A′

Y1
� // a1x2

Y2
� // a1a3x2

Y3
� // a1

30∑
i=0

xi1
i!

+ a2x2

50∑
i=31

xi1
i!

In order to compute this we type the following lines in the SINGULAR terminal.

LIB "GND.lib"; //load the library

ring All = 0,(a1 ,a2 ,a3 ,x1 ,x2 ,Y1 ,Y2 ,Y3),dp; // define the ring

int nra = 3; // number of a’s

int nrx = 2; // number of x’s

int nry = 3; // number of Y’s

ideal xid = x1^3-x2^2; // define the ideal from A

ideal yid = Y1^3-Y2^3; // define the ideal from B

ideal aid = a3^2+a3+1; // define the ideal from k’

poly y;

int i;

for(i=0;i <=30;i++)

{

y = y + a1*x1^i/factorial(i);

}

for(i=31;i <=50;i++)

{

y = y + a2*x2*x1^i/factorial(i);

}

ideal f = a1*x2,a1*a3*x2,y; // define the map v

desingularization(All , nra ,nrx ,nry ,xid ,yid ,aid ,f,"debug");

Technische Universität Kaiserslautern 115

EXAMPLE C:3.0.2. We continue on the idea of Examples C:2.0.3, C:2.0.15. The bor-
dered matrix H defined above is equal to

H =


2Y1 + Y2 Y1 + 2Y2 0 0

0 0 1 0
1 0 0 0
Y4 2Y4 0 Y1 + 2Y2


and hence G = N ·G′ is equal to

G = Y 2
4 ·


0 0 Y 2

1 + 4Y1Y2 + 4Y 2
2 0

Y1 + 2Y2 0 −2Y 2
1 − 5Y1Y2 − 2Y 2

2 0
0 Y 2

1 + 4Y1Y2 + 4Y 2
2 0 0

−2Y4 0 3Y1Y4 Y1 + 2Y2


and s = 1. This is obvious in our case since y′ = y and always d = P (y) because I(y) = 0
and d ≡ P modulo I. Using the definition of h in Equation C:2.1, we get that

h1 = Y1 − (x42) · T3 − (a1x2),

h2 = Y2 −
x32

2a1a3 + a1
· T1 +

a3x
4
2 + 2x42

2a3 + 1
· T3 − (a1a3x2),

h3 = Y3 − (x42) · T2 −
(

1

6!
a1x

6
1 +

1

5!
a1x

5
1 +

1

4!
a1x

4
1 +

1

3!
a1x

3
1 +

1

2
a1x

2
1+

a1x1 + a1) ,

h4 = Y4 +
2x22

(2a1a3 + a1)
3 · T1 −

3x32
a21 (2a3 + 1)3

· T3 −
x32

2a1a3 + a1
· T4 +

1

2a1a3 + a1
.

From Equation C:2.2 we get that

Q1 =
x22

(2a1a3 + a1)
2 · T

2
1 −

3x32
a1 (2a3 + 1)2

· T1T3 +
3a23x

4
2 + 3a3x

4
2 + 3x42

(2a3 + 1)2
· T 2

3 ,

Q2 = − 4x2

(2a1a3 + a1)
4 · T

2
1 +

12x22
a31 (2a3 + 1)4

· T1T3 −
9x32

a21 (2a3 + 1)4
· T 2

3 +

2x22
(2a1a3 + a1)

2 · T1T4 −
3x32

a1 (2a3 + 1)2
· T3T4

and therefore following the definition of g in Equation C:2.3 we have

g1 = Q1 + T1 + (a21a
2
3 + a21a3 + a21),

g2 = Q2 + T2.

We print now the algorithm’s debug output using the line codes from Example
C:3.0.1.

This is the bordered matrix H:

2*Y1+Y2,Y1+2*Y2,0,0,

116 Adrian Popescu

0, 0, 1,0,

1, 0, 0,0,

Z, 2*Z, 0,Y1+2*Y2

This is G:

0, 0, G[1,3], 0,

Y1*Y4^2+2*Y2*Y4^2,0, G[2,3], 0,

0, G[3,2],0, 0,

-2*Y4^3, 0, 3*Y1*Y4^3,Y1*Y4^2+2*Y2*Y4^2

G[1,3]=Y1^2*Y4^2+4*Y1*Y2*Y4^2+4*Y2^2*Y4^2

G[2,3]=-2*Y1^2*Y4^2-5*Y1*Y2*Y4^2-2*Y2^2*Y4^2

G[3,2]=Y1^2*Y4^2+4*Y1*Y2*Y4^2+4*Y2^2*Y4^2

s = 1

h =

_[1]=Y1+(-x2^4)*T3+(-a1*x2)

_[2]=Y2+(-x2^3)/(2*a1*a3+a1)*T1+(a3*x2^4+2*x2^4)/(2*a3+1)*T3+

(-a1*a3*x2)

_[3]=Y3+(-x2^4)*T2+(-a1*x1^6-6*a1*x1^5-30*a1*x1^4-120*a1*x1^3

-360*a1*x1^2-720*a1*x1-720*a1)/720

_[4]=Y4+(2*x2^2)/(8*a1^3*a3^3+12*a1^3*a3^2+6*a1^3*a3+a1^3)*T1+

(-3*x2^3)/(8*a1^2*a3^3+12*a1^2*a3^2+6*a1^2*a3+a1^2)*T3+

(-x2^3)/(2*a1*a3+a1)*T4-1/(2*a1*a3+a1)

m = 2

QT =

_[1]=(x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1^2+

(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T1*T3+

(3*a3^2*x2^4+3*a3*x2^4+3*x2^4)/(4*a3^2+4*a3+1)*T3^2

_[2]=(-4*x2)/(16*a1^4*a3^4+32*a1^4*a3^3+24*a1^4*a3^2+8*a1^4*a3+a1^4)

*T1^2+(12*x2^2)/(16*a1^3*a3^4+32*a1^3*a3^3+24*a1^3*a3^2+8*a1^3*a3

+a1^3)*T1*T3+(-9*x2^3)/(16*a1^2*a3^4+32*a1^2*a3^3+24*a1^2*a3^2

+8*a1^2*a3+a1^2)*T3^2+(2*x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1*T4

+(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T3*T4

f =

f[1]=Y1^2+Y1*Y2+Y2^2

f[2]=Y1*Y4+2*Y2*Y4+(-x2^2)

g =

_[1]=(x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1^2+(-3*x2^3)/(4*a1*a3^2+

4*a1*a3+a1)*T1*T3+(3*a3^2*x2^4+3*a3*x2^4+3*x2^4)/(4*a3^2+4*a3+1)*T3^2

Technische Universität Kaiserslautern 117

+T1+(a1^2*a3^2+a1^2*a3+a1^2)

_[2]=(-4*x2)/(16*a1^4*a3^4+32*a1^4*a3^3+24*a1^4*a3^2+8*a1^4*a3+a1^4)

*T1^2+(12*x2^2)/(16*a1^3*a3^4+32*a1^3*a3^3+24*a1^3*a3^2+8*a1^3*

a3+a1^3)*T1*T3+(-9*x2^3)/(16*a1^2*a3^4+32*a1^2*a3^3+24*a1^2*a3^2

+8*a1^2*a3+a1^2)*T3^2+(2*x2^2)/(4*a1^2*a3^2+4*a1^2*a3+a1^2)*T1*T4

+(-3*x2^3)/(4*a1*a3^2+4*a1*a3+a1)*T3*T4+T2

Thus the General Neron Desingularization is a localization ofD[Y, T]/(h, g) ∼= D[T]/(g).

EXAMPLE C:3.0.3. In the case of Example C:2.0.4 and C:2.0.16 we obtain that the bor-
dered matrix

H =


3Y 2

1 −3Y 2
2 0 0

0 0 1 0
1 0 0 0
0 −6Y2Y4 0 −3Y 2

2


and hence G = N ·G′ is equal to

G = Y 2
4 ·


0 0 9Y 4

2 0
−3Y 2

2 0 −3Y 2
1 Y

2
2 0

0 9Y 4
2 0 0

6Y2Y4 0 −18Y 2
1 Y2Y4 −3Y 2

2


and s = 1. Using the definition of h in Equation C:2.1, we get that

h1 = Y1 − (x82) · T3 + (−a1x2) ,

h2 = Y2 +
x62

3a21a
2
3

· T1 −
x82
a23
· T3 − (a1a3x2) ,

h3 = Y3 − (x82) · T2 −
(

1

12!
a1x

12
1 +

1

11!
a1x

11
1 +

1

10!
a1x

10
1 +

1

9!
a1x

9
1 +

1

8!
a1x

8
1

+
1

7!
a1x

7
1 +

1

6!
a1x

6
1 +

1

5!
a1x

5
1 +

1

4!
a1x

4
1 +

1

3!
a1x

3
1 +

1

2
a1x

2
1 + a1x1 + a1

)
,

h4 = Y4 +
2x52

9a51a
5
3

· T1 −
2x72

3a31a
5
3

· T3 +
x62

3a21a
2
3

· T4 +
1

3a21a
2
3

.

From Equation C:2.2 we get that

Q1 =
x102

27a61a
6
3

· T 3
1 −

x122
3a41a

6
3

· T 2
1 T3 +

x142
a21a

6
3

· T1T 2
3 +

a63x
16
2 − x162
a63

· T 3
3−

x52
3a31a

3
3

· T 2
1 +

2x72
a1a33

· T1T3 +
3a1a

3
3x

9
2 − 3a1x

9
2

a33
· T 2

3 ,

Q2 =
2ax92

27a91a
9
3

· T 3
1 −

2x112
3a175a93

· T 2
1 T3 +

2x132
a51a

9
3

· T1T 2
3 −

2x152
a31a

9
3

· T 3
3 +

x102
9a61a

6
3

· T 2
1 T4 −

2x122
3a41a

6
3

· T1T3T4 +
x142
a21a

6
3

· T 2
3 T4 −

x42
3a61a

6
3

· T 2
1 +

2x62
a41a

6
3

· T1T3 −
3x82
a21a

6
3

· T 2
3 −

2x52
3a31a

3
3

· T1T4 +
2x72
a1a33

· T3T4

118 Adrian Popescu

and therefore following the definition of g in Equation C:2.3 we have

g1 = Q1 + T1,
g2 = Q2 + T2

To obtain this with SINGULAR , we use the same code lines as in Example C:3.0.1,
but we change the last one with

desingularization(All , nra ,nrx ,nry ,xid ,yid ,aid ,f,"injective","debug");

Doing this, the algorithm will not compute the kernel because of the “injective” argu-
ment.

EXAMPLE C:3.0.4. We do now the same computations for Examples C:2.0.7 and C:2.0.17.
The bordered matrix H is equal to

H =


x2 −x1 0 0
0 0 1 0
1 0 0 0
0 0 0 −x1x23


and hence G = N ·G′ is equal to

G = Y 2
4 ·


0 0 x21x

4
3 0

−x1x43 0 x1x2x
4
3 0

0 x21x
4
3 0 0

0 0 0 −x1x23


and s = 1. Using the definition of h in Equation C:2.1, we get that

h1 = Y1 + (x31x
6
3) · T3 − (a3x1),

h2 = Y2 − (x21x
6
3) · T1 + (x21x2x

6
3) · T3 − (a3x2),

h3 = Y3 + (x31x
6
3) · T2 −

(
1

7!
a1x

7
3 +

1

6!
a1x

6
3 +

1

5!
a1x

5
3

+
1

4!
a1x

4
3 +

1

3!
a1x

3
3 +

1

2!
a1x

2
3 + a1x3 + a1

)
,

h4 = Y4 + (x21x
4
3) · T4 + 1.

From Equation C:2.2 we obtain

Q1 = 0,
Q2 = 0

and therefore following the definition of g in Equation C:2.3 we have

g1 = T1
g2 = T2.

To compute this with the SINGULAR library we type the following in the terminal:

Technische Universität Kaiserslautern 119

ring All = 0,(a1 ,a2 ,a3 ,x1 ,x2 ,x3 ,Y1 ,Y2 ,Y3),dp;

int nra = 3;

int nrx = 3;

int nry = 3;

ideal xid = x2^3-x3^2,x1^3-x3^2;

ideal yid = Y1^3-Y2^3;

ideal aid = a3^2-a1*a2;

poly y;

int i;

for(i=0;i <=30;i++)

{

y = y + a1*x3^i/factorial(i);

}

for(i=31;i <=50;i++)

{

y = y + a2*x3^i/factorial(i);

}

ideal f = a3*x1,a3*x2,y;

desingularization(All , nra ,nrx ,nry ,xid ,yid ,aid ,f,"debug");

The algorithm’s output is as expected:

This is the nice bordered matrix H:

(x2),(-x1),0,0,

0, 0, 1,0,

1, 0, 0,0,

0, 0, 0,(-x1*x3^2)

This is G:

0, 0, (x1^2*x3^4)*Y4^2, 0,

(-x1*x3^4)*Y4^2,0, (x1*x2*x3^4)*Y4^2,0,

0, (x1^2*x3^4)*Y4^2,0, 0,

0, 0, 0, (-x1*x3^2)*Y4^2

s = 1

h =

h[1]=Y1+(x1^3*x3^6)*T3+(-a3*x1)

h[2]=Y2+(-x1^2*x3^6)*T1+(x1^2*x2*x3^6)*T3+(-a3*x2)

h[3]=Y3+(x1^3*x3^6)*T2+(-a1*x3^7-7*a1*x3^6-42*a1*x3^5-210*a1*x3^4

-840*a1*x3^3-2520*a1*x3^2-5040*a1*x3-5040*a1)/5040

h[4]=Y4+(-x1^2*x3^4)*T4+1

m = 1

QT =

QT[1]=0

QT[2]=0

120 Adrian Popescu

f =

f[1]=(x2)*Y1+(-x1)*Y2

f[2]=(x1*x3^2)*Y4+(-x1*x3^2)

g

_[1]=T1

_[2]=T2

Thus the General Neron Desingularization is a localization of D[Y, T3, T4]/(h) ∼=
D[T3, T4].

EXAMPLE C:3.0.5. We do now the same computations for Example C:2.0.18. In this
example, the computations are much more complicated. The output is unfortunately
too big but we will try our best to describe the result.

The bordered matrix H is equal to

H =


0 x2 · Y3 x2 · Y2 −2 · Y4 0

x21 · Y2 x21 · Y1 −2 · Y3 0 0
0 1 0 0 0
1 0 0 0 0
0 0 4Y4Y5 4Y3Y5 4Y3Y4


and hence G = N ·G′ is equal to

G = Y 2
5 ·


0 0 0 16Y 2

3 Y
2
4 0

0 0 16Y 2
3 Y

2
4 0 0

0 −8Y3Y
2
4 8x21 · Y1Y3Y 2

4 8x21 · Y2Y3Y 2
4 0

−8Y 2
3 Y4 −4x2 · Y2Y3Y4 G[4, 3] 4x21x2 · Y 2

2 Y3Y4 0
8Y 2

3 Y5 x2 · Y2Y3Y5 + 2Y 2
4 Y5 G[5, 3] G[5, 4] 4Y3Y4

 ,

where
G[4, 3] = 4x21x2 · Y1Y2Y3Y4 + 2x2 · Y 3

3 Y4,
G[5, 3] = −4x21x2 · Y1Y2Y3Y5 − 2x2 · Y 3

3 Y5 − 2x21 · Y1Y 2
4 Y5 and

G[5, 4] = −4x21x2 · Y 2
2 Y3Y5 − 2x21 · Y2Y 2

4 Y5

and

s = a81a
2
2x

12
2 − 2a51a

4
2x

13
2 + a21a

6
2x

14
2 − 2a61a

3
2x

12
2 + 2a31a

5
2x

13
2 − a41a42x122 + 2a1a

6
2x

13
2 +

2a81a2x
10
2 − 4a51a

3
2x

11
2 + 4a21a

5
2x

12
2 − 4a61a

2
2x

10
2 + 4a31a

4
2x

11
2 + a62x

12
2 + 2a1a

5
2x

11
2 +

a81x
8
2 − 2a51a

2
2x

9
2 + 3a21a

4
2x

10
2 − 2a61a2x

8
2 + 2a31a

3
2x

9
2 + a41a

2
2x

8
2 − 2a41a2x

6
2+

2a1a
3
2x

7
2 + 2a21a

2
2x

6
2 + 2a32x

6
2 − 2a41x

4
2 + 2a1a

2
2x

5
2 + 2a21a2x

4
2 + 1

Using the definition of h in Equation C:2.1, we get that
h1
h2
h3
h4
h5

 = s ·


Y1 − y′1
Y2 − y′2
Y3 − y′3
Y4 − y′4
Y5 − y′5

− x42G(y′) ·


T1
T2
T3
T4
T5

 ,

Technische Universität Kaiserslautern 121

where

y′1 = −18a21a
5
2x

12
2 + 5a31a

4
2x

11
2 + 7a62x

12
2 − 18a1a

5
2x

11
2 + 15a21a

4
2x

10
2 − 4a31a

3
2x

9
2−

6a52x
10
2 + 15a1a

4
2x

9
2 − 12a21a

3
2x

8
2 + 3a31a

2
2x

7
2 + 5a42x

8
2 − 12a1a

3
2x

7
2 + 9a21a

2
2x

6
2−

2a31a2x
5
2 − 4a32x

6
2 + 9a1a

2
2x

5
2 − 6a21a2x

4
2 + a31x

3
2 + 3a22x

4
2 − 6a1a2x

3
2 + 3a21x

2
2−

2a2x
2
2 + 3a1x2 + 1

y′2 = a121 x
12
2 + 2a101 a2x

12
2 − a111 x112 + a81a

2
2x

12
2 − 2a91a2x

11
2 + a101 x

10
2 − a71a22x112 +

2a81a2x
10
2 − a91x92 + a61a

2
2x

10
2 − 2a71a2x

9
2 + a81x

8
2 − a51a22x92 + 2a61a2x

8
2 − a71x72+

a41a
2
2x

8
2 − 2a51a2x

7
2 + a61x

6
2 − a31a22x72 + 2a41a2x

6
2 − a51x52 + a21a

2
2x

6
2 − 2a31a2x

5
2+

a41x
4
2 − a1a22x52 + 2a21a2x

4
2 − a31x32 + a22x

4
2 − 2a1a2x

3
2 + a21x

2
2 + 2a2x

2
2 − a1x2+

1
y′3 = a1x

2
2 + x2

y′4 = a2x
3
2 + x2

y′5 =
a22
4
x42 −

a31 + a1a2
4

x32 +
a21 − a2

4
x22 −

a1
4
x2 +

1

4
.

However, the output is too big to be printed. Following the idea in the above exam-
ples, we compute Q and g. This is even bigger than h so we print the numerators and
denominators of the coefficients just till degree 10 in the xi’s. However in some cases
even the terms till degree 10 will be too many to write down and hence we will print
just the first terms and “. . .” .

As a small remark, Q3 contains also terms in degree 3 in the Ti but the numerator
of the coefficients have power greater than 10 and therefore they do not appear in our
short-cutting.

Q1 =
3a21x

2
1x

8
2−2a1x21x72+4a2x21x

8
2+x

2
1x

6
2

4a1a22x
5
2+8a1a2x32+4a1x2+4a22x

4
2+8a2x22+4

· T1T4 −
x62

4a22x
4
2+8a2x22+4

· T 2
1

+
−a41x102 +a31x

9
2−2a21a2x102 −a21x82+2a1a2x92+a1x

7
2−a22x102 −2a2x82−x62

4a1a22x
5
2+8a1a2x32+4a1x2+4a22x

4
2+8a2x22+4

· T1T2

+
−5a41x102 +4a31x

9
2−12a21a2x102 −3a21x82+8a1a2x92+2a1x72−6a22x102 −4a2x82−x62

16a21a
2
2x

6
2+32a21a2x

4
2+16a21x

2
2+32a1a22x

5
2+64a1a2x32+32a1x2+16a22x

4
2+32a2x22+16

· T 2
2

+
a21x

2
1x

8
2+2a21x

10
2 +2a1x21x

7
2+4a1x92+x

2
1x

6
2+2x82

4a1a22x
5
2+8a1a2x32+4a1x2+4a22x

4
2+8a2x22+4

· T1T3

+
a1x21x

7
2−2a1x92+2a2x21x

8
2−4a2x102 +x21x

6
2−2x82

8a21a
2
2x

6
2+16a21a2x

4
2+8a21x

2
2+16a1a22x

5
2+32a1a2x32+16a1x2+8a22x

4
2+16a2x22+8

· T2T3

+
−x41x62+4x21x

8
2−4x102

16a21a
2
2x

6
2+32a21a2x

4
2+16a21x

2
2+32a1a22x

5
2+64a1a2x32+32a1x2+16a22x

4
2+32a2x22+16

· T 2
3

+
6a21x

2
1x

8
2−3a1x21x72+6a2x21x

8
2+x

2
1x

6
2

8a21a
2
2x

6
2+16a21a2x

4
2+8a21x

2
2+16a1a22x

5
2+32a1a2x32+16a1x2+8a22x

4
2+16a2x22+8

· T2T4

+
−x41x62+2x21x

8
2

8a21a
2
2x

6
2+16a21a2x

4
2+8a21x

2
2+16a1a22x

5
2+32a1a2x32+16a1x2+8a22x

4
2+16a2x22+8

· T3T4

122 Adrian Popescu

+
−x41x62

16a21a
2
2x

6
2+32a21a2x

4
2+16a21x

2
2+32a1a22x

5
2+64a1a2x32+32a1x2+16a22x

4
2+32a2x22+16

· T 2
4

Q2 =
−x62

4a21x
2
2+8a1x2+4

· T 2
2 +

3a21x
2
1x

8
2+3a1x21x

7
2−2a2x21x82+x21x62

2a21x
2
2+4a1x2+2

· T2T3 +
−x41x62

4a21x
2
2+8a1x2+4

· T 2
3

+
a21x

2
1x

8
2−a1x21x72+2a2x21x

8
2+x

2
1x

6
2

2a21x
2
2+4a1x2+2

· T2T4 +
−x41x62+2x21x

8
2

2a21x
2
2+4a1x2+2

· T3T4 +
−x41x62

4a21x
2
2+8a1x2+4

· T 2
4

Q3 =
2a31x

9
2−4a21a2x102 −2a21x82+2a1a2x92+2a1x72−2a2x82−2x62

4a1a32x
7
2+12a1a22x

5
2+12a1a2x32+4a1x2+4a32x

6
2+12a22x

4
2+12a2x22+4

· T1T2

+
7a31x

9
2−28a21a2x102 −7a21x82+21a1a2x92+7a1x72−21a22x102 −21a2x82−7x62

...+48a21x
2
2+48a1a32x

7
2+144a1a22x

5
2+144a1a2x32+48a1x2+16a32x

6
2+48a22x

4
2+48a2x22+16

· T 2
2

+
2a21x

2
1x

8
2+2a21x

10
2 +4a1x21x

7
2+4a1x92−2a2x21x82−2a2x102 +2x21x

6
2+2x82

4a1a32x
7
2+12a1a22x

5
2+12a1a2x32+4a1x2+4a32x

6
2+12a22x

4
2+12a2x22+4

· T1T3

+
7a21x

2
1x

8
2+4a21x

10
2 +14a1x21x

7
2+8a1x92+7a2x21x

8
2+4a2x102 +7x21x

6
2+4x82

...+24a21x
2
2+24a1a32x

7
2+72a1a22x

5
2+72a1a2x32+24a1x2+8a32x

6
2+24a22x

4
2+24a2x22+8

· T2T3

+
−7x41x62−8x21x82−4x102

...+48a21x
2
2+48a1a32x

7
2+144a1a22x

5
2+144a1a2x32+48a1x2+16a32x

6
2+48a22x

4
2+48a2x22+16

· T 2
3

+
6a21x

2
1x

8
2−4a1x21x72+6a2x21x

8
2+2x21x

6
2

4a1a32x
7
2+12a1a22x

5
2+12a1a2x32+4a1x2+4a32x

6
2+12a22x

4
2+12a2x22+4

· T1T4

+
21a21x

2
1x

8
2−14a1x21x72+35a2x21x

8
2+7x21x

6
2

...+24a21x
2
2+24a1a32x

7
2+72a1a22x

5
2+72a1a2x32+24a1x2+8a32x

6
2+24a22x

4
2+24a2x22+8

· T2T4

+
−7x41x62−4x21x82

...+24a21x
2
2+24a1a32x

7
2+72a1a22x

5
2+72a1a2x32+24a1x2+8a32x

6
2+24a22x

4
2+24a2x22+8

· T3T4

+
−7x41x62

...+48a21x
2
2+48a1a32x

7
2+144a1a22x

5
2+144a1a2x32+48a1x2+16a32x

6
2+48a22x

4
2+48a2x22+16

· T 2
4

+
a41x

10
2 −a21a2x102 −a22x102 +a2x82−x62

4a32x
6
2+12a22x

4
2+12a2x22+4

· T 2
1 +

−x62

2a22x
4
2+4a2x22+2

· T1T5

+
−3a22x102 −6a2x82−3x62

4a21a
2
2x

6
2+8a21a2x

4
2+4a21x

2
2+8a1a22x

5
2+16a1a2x32+8a1x2+4a22x

4
2+8a2x22+4

· T2T5

+
9a21x

2
1x

8
2+6a21x

10
2 +9a1x21x

7
2+6a1x92+3x21x

6
2+2x82

4a21a
2
2x

6
2+8a21a2x

4
2+4a21x

2
2+8a1a22x

5
2+16a1a2x32+8a1x2+4a22x

4
2+8a2x22+4

· T3T5

+
3a21x

2
1x

8
2−3a1x21x72+12a2x21x

8
2+3x21x

6
2

4a21a
2
2x

6
2+8a21a2x

4
2+4a21x

2
2+8a1a22x

5
2+16a1a2x32+8a1x2+4a22x

4
2+8a2x22+4

· T4T5

Technische Universität Kaiserslautern 123

The denominators of the coefficients from Q are invertible in D because they follow
from θ′3 and θ′4 which are invertible in D. Thus Q ∈ D[T1, . . . , T5]. Having Qi we obtain
gi:

g1 = Q1+
(
...−6a41x42+30a31a

3
2x

9
2+45a21a

4
2x

10
2 +6a21a

2
2x

6
2+6a21a2x

4
2+6a1a32x

7
2+6a1a22x

5
2+6a32x

6
2+1
)
·T1

g2 = Q2+
(
...−6a41x42+30a31a

3
2x

9
2+45a21a

4
2x

10
2 +6a21a

2
2x

6
2+6a21a2x

4
2+6a1a32x

7
2+6a1a22x

5
2+6a32x

6
2+1
)
·T2

+
(
...+6a61x

4
2−30a51a32x92−45a41a42x102 −6a41a22x62−6a41a2x42−6a31a32x72−6a31a22x52−6a21a32x62−a21

)
g3 = Q3+

(
...−6a41x42+30a31a

3
2x

9
2+45a21a

4
2x

10
2 +6a21a

2
2x

6
2+6a21a2x

4
2+6a1a32x

7
2+6a1a22x

5
2+6a32x

6
2+1
)
·T3

+
(
...+24a21a

5
2x

10
2 +18a21a

4
2x

8
2+a

2
1a

2
2x

4
2+a

2
1a2x

2
2+12a1a52x

9
2+a1a

3
2x

5
2+a1a

2
2x

3
2+6a62x

10
2 +a32x

4
2

)
.

The General Neron Desingularization is a localization of D[Y, T]/(h, g). To compute
this example with our SINGULAR library, we will need a function

invp(poly p, int bound,string param,string variab)

which computes computes the inverse of p till order bound in Q(param)[variab].
The input for this example is the following:
ring All = 0,(a1 ,a2 ,x1 ,x2 ,Y1 ,Y2 ,Y3 ,Y4),dp;

int nra = 2;

int nrx = 2;

int nry = 4;

ideal xid = x1^2-x2^3;

ideal yid = Y3^2-x1^2*Y1*Y2,Y4^2-x2*Y2*Y3;

ideal aid = 0;

poly y1 ,y2 ,y3 ,y4;

y3 = 1+a1*x2;

y4 = 1+a2*x2^2;

string as ,xs;

if(nra != 0)

{

as = string(var (1));

for(int i=2;i<=nra;i++)

{

as = as+","+string(var(i));

}

}

if(nrx !=0)

{

xs = string(var(nra +1));

for(int i=nra+2;i<=nra+nrx;i++)

{

xs = xs+","+string(var(i));

}

}

y1 = y3^3* invp(y4^2,12,as ,xs);

y2 = y4^2* invp(y3 ,12,as ,xs);

y3 = x2*y3;

y4 = x2*y4;

ideal f = y1,y2,y3,y4;

desingularization(All , nra ,nrx ,nry ,xid ,yid ,aid ,f,"injective","debug");

124 Adrian Popescu

REMARK C:3.0.6. If we restrict our present algorithm to the case when A′ is the comple-
tion of A then we might get a faster algorithm using the idea of the proof of Theorem
C:2.0.19. This algorithm could be useful in the arc frame.

Technische Universität Kaiserslautern 125

APPENDIX

Technische Universität Kaiserslautern 127

EXAMPLES USED IN PART A

Technische Universität Kaiserslautern 129

EXAMPLES FOR ALL VS JUST STRATEGIES

In the following tables we print the ideals corresponding to the examples presented
when comparing the ALL vs JUST timings in Section A:1.3.

Generators for ideal

Example A:1
17 · x2y,
22 · y3z + 3 · x2z2 + 28 · y2z2 + 9 · yz2 + 83 · x2 + 13 · yz,
66 · y3z + 63 · xyz2 + 85 · z3

Example A:2
27 · xyz + 13 · x2 + 89 · y2 + 42 · xz,
35 · x3 + 68 · xy,
44 · x3 + 13 · y3 + 81 · y2z + 4 · yz2

Example A:3
98 · x3y + 45 · yz3,
16 · xy3 + 50 · x2y + 45 · y2 + 82 · z2,
9 · x3y + 49 · x2yz + 61 · y2z + 52 · z3

Example A:4
25 · y3,
60 · y3 + 12 · xyz + 54 · y2z + 98 · yz2 + 35 · x2 + 88 · xy + 19 · z2,
87 · x2y + 96 · x2

Example A:5
76 · y2z + 61 · y2 + 51 · yz + 19 · z2,
31 · x3 + 3 · xy2 + 70 · y2z,
84 · x3 + 30 · x2z + 44 · xz

Example A:6
19 · x3 + 2 · xy + 29 · y2,
9 · xy2 + 42 · y3 + 2 · yz2,
54 · xy2 + 83 · x2z + 98 · xy + 78 · yz

Example A:7
72 · x3y + 50 · x2yz,
64 · x3z + 30 · x2yz + 74 · x3 + 38 · xy2 + 74 · z3,
76 · x2y2 + 13 · y2 + 40 · z2

Example A:8
27 · xz3 + 87 · y2z + 3 · z2,
67 · x3z + 42 · y3z + 67 · x2y + 90 · yz2 + 73 · xy,
38 · x3y + 69 · x2yz

Example A:9
21 · x3y + 18 · x3z + 45 · x2yz + 100 · xy2z + 43 · yz,
85 · x2y + 93 · xy2,
14 · y2z2 + 6 · x2y + 91 · z2

Example A:10
69 · y2,
47 · x3y + 82 · xyz2 + 74 · yz3 + 55 · xyz + 96 · xz2 + 46 · x2,
16 · xy2z + 17 · z4 + 36 · yz2

Table 3.1: Examples for ALL Strategy

Technische Universität Kaiserslautern 131

Generators for ideal

Example B:1

6 · x3z + 29 · x2z + 42 · xy,
x3z + 47 · x2yz + 28 · xz2 + 46 · x2,
96 · z3

Example B:2

9 · x2y2 + 51 · x3z + 10 · z3 + 28 · x2 + 7 · y2,
43 · x3y + 3 · x2z2 + 86 · xyz2 + 24 · z4 + 67 · x2z + 68 · yz2 + 27 · xy,
23 · xz2

Example B:3

50 · xz3 + 49 · yz2 + 15 · z2,
2 · x3y + 16 · y3z + 74 · y3 + 53 · x2,
4 · xy2

Example B:4

57 · xyz2 + 32 · y3 + 26 · yz2 + 24 · z2,
27 · y4 + 33 · y3z + 94 · z2,
52 · x2z

Example B:5

91 · y4 + 20 · x3z + 34 · x2,
38 · xyz2 + 18 · x3 + 95 · x2z + 82 · yz,
98 · y3

Table 3.2: Examples for JUST Strategy

132 Adrian Popescu

EXAMPLE 18

Here we enter the details of Example 18 presented in Section A:1.4. This example
used to run out of memory causing the crash of SINGULAR . With the newly implemented
strategies over Z[x], the example finishes instantly.

We consider over Z[x, y, z] the dp ordering and the ideal I generated by the following
70 polynomials f1, . . . , f70.

f1 = 42 · x3z + y2z − yz + 11 · y
f2 = y3z2 − y2z2 + 11 · y2z + 484

f3 = y4z − y3z − 10648 · x3 + 11 · y3 − 44 · y2 + 44 · y
f4 = x3yz2 − 2

f5 = 11 · x3y2z + 484 · x3 + 2 · y2 − 2 · y
f6 = 117128 · x6 − 121 · x3y3 + 968 · x3y2 − 968 · x3y + 2 · y4 − 4 · y3 + 2 · y2
f7 = 121 · x6z3 + yz − z + 11

f8 = 2178 · x2y2z3 − 1452 · x2yz3 + 15972 · x2yz2
f9 = 1452 · x2y3z2 − 1452 · x2y2z2 + 7986 · x2y2z
f10 = −726 · x3y2z2 + 484 · x3yz2 + y4z2 − 5324 · x3yz − y3z2 + 22 · y3z − 11 · y2z

+121 · y2
f11 = 2904 · x2y3z2 − 2178 · x2y2z2 + 23958 · x2y2z + 351384 · x2
f12 = 726 · x2y4z − 726 · x2y3z + 7730448 · x5 + 31944 · x2y2 − 31944 · x2y
f13 = −968 · x3y3z + 726 · x3y2z − 2 · y5z − 7986 · x3y2 + 4 · y4z + 21296 · x3y

−22 · y4 − 2 · y3z − 10648 · x3 + 110 · y3 − 132 · y2 + 44 · y
f14 = 95832 · x2y2z2 − 63888 · x2yz2 + 702768 · x2yz
f15 = 63888 · x2y3z − 63888 · x2y2z + 351384 · x2y2
f16 = −5 · y6z2 + 9 · y5z2 − 88 · y5z − 4 · y4z2 + 253 · y4z − 363 · y4 − 264 · y3z

+968 · y3 + 88 · y2z − 484 · y2
f17 = 726 · x5z3 − 6 · x2y2z3 + 3 · x2yz3 − 33 · x2yz2
f18 = 726 · x5yz2 − 3 · x2y3z2 + 3 · x2y2z2
f19 = −242 · x6z2 + 3 · x3y2z2 − x3yz2 + 22 · x3yz
f20 = −9 · x2y3z4 + 6 · x2y2z4 − 66 · x2y2z3
f21 = −6 · x2y4z3 + 6 · x2y3z3 − 33 · x2y3z2
f22 = 4 · x3y3z3 − 2 · x3y2z3 + 33 · x3y2z2
f23 = −12 · x2y4z3 + 9 · x2y3z3 − 31944 · x5z2 − 99 · x2y3z2 + 264 · x2y2z2 − 132 · x2yz2
f24 = −3 · x2y5z2 + 3 · x2y4z2 − 63888 · x5yz
f25 = 7 · x3y4z2 − 5 · x3y3z2 + 66 · x3y3z − 176 · x3y2z + 88 · x3yz
f26 = 15972 · x5yz2 − 66 · x2y3z2 + 33 · x2y2z2 − 363 · x2y2z − 15972 · x2
f27 = −33 · x2y4z + 33 · x2y3z − 351384 · x5 − 1452 · x2y2 + 1452 · x2y

Technische Universität Kaiserslautern 133

f28 = −5324 · x6yz + 11 · x3y2z + 121 · x3y2 − 968 · x3y + 484 · x3 − 4 · y3 + 6 · y2 − 2 · y
f29 = −99 · x2y4z3 + 66 · x2y3z3 − 726 · x2y3z2 − 4356 · x2y2z2 + 2904 · x2yz2

−31944 · x2yz
f30 = −66 · x2y5z2 + 66 · x2y4z2 − 363 · x2y4z − 2904 · x2y3z + 2904 · x2y2z

−15972 · x2y2
f31 = −11 · x3y4z2 + 22 · x3y3z2 − 8 · y4z + 12 · y3z − 44 · y3 − 4 · y2z + 22 · y2
f32 = −132 · x2y5z2 + 99 · x2y4z2 − 702768 · x5yz − 1089 · x2y4z − 2904 · x2y3z

+2904 · x2y2z − 47916 · x2y2
f33 = −33 · x2y6z + 33 · x2y5z − 351384 · x5y2 − 1452 · x2y4 + 1452 · x2y3
f34 = 22 · x3y5z − 11 · x3y4z + 363 · x3y4 − 968 · x3y3 + 484 · x3y2 − 4 · y5 + 6 · y4

−2 · y3
f35 = 33 · x5y2z3 − 1452 · x5z2 + 12 · x2y2z2 − 6 · x2yz2
f36 = −33 · x5y3z2 − 2904 · x5yz
f37 = −33 · x6y2z2 − 8 · x3y2z + 4 · x3yz
f38 = −263538 · x5y2z + 726 · x2y4z − 363 · x2y3z − 7730448 · x5 + 3993 · x2y3

−31944 · x2y2 + 31944 · x2y
f39 = −170069856 · x8 + 87846 · x5y3 − 1405536 · x5y2 + 363 · x2y5 + 1405536 · x5y

−3267 · x2y4 + 5808 · x2y3 − 2904 · x2y2
f40 = 87846 · x6y2 − 468512 · x6y + 363 · x3y4 + 234256 · x6 − 4235 · x3y3 + 5808 · x3y2

−8 · y5 − 1936 · x3y + 20 · y4 − 16 · y3 + 4 · y2
f41 = −2108304 · x5y2z2 + 1089 · x2y5z2 + 1405536 · x5yz2 − 9438 · x2y4z2

−15460896 · x5yz + 7986 · x2y4z + 14520 · x2y3z2
−63888 · x2y3z − 5808 · x2y2z2 + 63888 · x2y2z

f42 = −1405536 · x5y3z + 726 · x2y6z + 1405536 · x5y2z − 6534 · x2y5z − 7730448 · x5y2
+3993 · x2y5 + 11616 · x2y4z − 31944 · x2y4 − 5808 · x2y3z + 31944 · x2y3

f43 = 726 · x3y5z − 4598 · x3y4z + 3993 · x3y4 + 5808 · x3y3z − 16 · y6z − 21296 · x3y3
−1936 · x3y2z + 40 · y5z + 10648 · x3y2 − 88 · y5 − 32 · y4z + 132 · y4 + 8 · y3z
−44 · y3

f44 = −2811072 · x5y3z + 1452 · x2y6z + 2108304 · x5y2z − 12705 · x2y5z − 11595672 · x5y2
+11979 · x2y5 + 20328 · x2y4z − 127776 · x2y4 − 8712 · x2y3z + 111804 · x2y3

f45 = −702768 · x5y4 + 363 · x2y7 + 702768 · x5y3 − 3267 · x2y6 + 5808 · x2y5 − 2904 · x2y4
f46 = 363 · x3y6 − 2299 · x3y5 + 2904 · x3y4 − 8 · y7 − 968 · x3y3 + 20 · y6 − 16 · y5 + 4 · y4
f47 = −702768 · x8z2 − 726 · x5y3z2 + 2904 · x5y2z2 + 24 · x2y4z2 − 36 · x2y3z2

+12 · x2y2z2
f48 = −1405536 · x8yz + 726 · x5y4z − 5808 · x5y3z + 5808 · x5y2z
f49 = 726 · x6y3z − 3872 · x6y2z + 1936 · x6yz − 16 · x3y4z + 24 · x3y3z − 8 · x3y2z
f50 = −15460896 · x8yz − 3993 · x5y4z + 31944 · x5y2z + 264 · x2y5z − 527076 · x5y2

−396 · x2y4z + 1452 · x2y4 + 132 · x2y3z − 726 · x2y3
f51 = −7730448 · x8y2 + 3993 · x5y5 − 31944 · x5y4 + 31944 · x5y3
f52 = 3993 · x6y4 − 21296 · x6y3 + 10648 · x6y2 − 88 · x3y5 + 132 · x3y4 − 44 · x3y3
f53 = −1452 · x5yz4 + 726 · x5z4 − 7986 · x5z3 + 726 · x2z2
f54 = 87846 · x8z3 − 726 · x5y2z3 + 726 · x5yz3 + 726 · x2yz − 726 · x2z
f55 = 726 · x6yz3 − 363 · x6z3 + 3993 · x6z2 − 242 · x3z + y2z − 2 · yz + 11 · y + z − 11

f56 = −2178 · x5y2z5 + 1452 · x5yz5 − 15972 · x5yz4

134 Adrian Popescu

f57 = −1452 · x5y3z4 + 1452 · x5y2z4 − 7986 · x5y2z3
f58 = 1089 · x6y2z4 − 726 · x6yz4 + 7986 · x6yz3 + y3z2 − 3 · y2z2 + 11 · y2z + 2 · yz2

−22 · yz
f59 = −2904 · x5y3z4 + 2178 · x5y2z4 − 23958 · x5y2z3 + 63888 · x5yz3 − 31944 · x5z3

−31944 · x2z
f60 = −726 · x5y4z3 + 726 · x5y3z3 − 11595672 · x8z2 − 31944 · x2y + 31944 · x2
f61 = 1452 · x6y3z3 − 1089 · x6y2z3 + 11979 · x6y2z2 − 31944 · x6yz2 + 15972 · x6z2

+3 · y4z − 6 · y3z + 33 · y3 + 3 · y2z − 121 · y2 + 132 · y − 44

f62 = −726 · x8z5 + 3 · x2yz3
f63 = −363 · x8yz4 + 3 · x2y2z2 − 3 · x2yz2
f64 = 363 · x9z4 − x3yz2 − x3z2
f65 = −15972 · x8yz4 − 2904 · x5yz3 + 1452 · x5z3 + 33 · x2y2z2 + 1452 · x2z
f66 = 3993 · x8y2z3 + 527076 · x8z2 + 33 · x2y3z − 33 · x2y2z + 1452 · x2y − 1452 · x2
f67 = 7986 · x9yz3 + 1452 · x6yz2 − 726 · x6z2 + 11 · x3y2z − 22 · x3yz + 4 · y2 − 6 · y + 2

f68 = 263538 · x8y2z3 − 1405536 · x8yz3 + 702768 · x8z3 − 5808 · x5y3z3 + 8712 · x5y2z3
−2904 · x5yz3 + 702768 · x5z − 363 · x2y3z + 2904 · x2y2z − 2904 · x2yz

f69 = 255104784 · x11z2 − 131769 · x8y3z2 + 1054152 · x8y2z2 − 1054152 · x8yz2
+702768 · x5y − 363 · x2y4 − 702768 · x5 + 3267 · x2y3 − 5808 · x2y2 + 2904 · x2y

f70 = −131769 · x9y2z2 + 702768 · x9yz2 − 351384 · x9z2 + 2904 · x6y3z2 − 4356 · x6y2z2
+1452 · x6yz2 − 363 · x3y3 + 2299 · x3y2 − 2904 · x3y + 8 · y4 + 968 · x3 − 20 · y3
+16 · y2 − 4 · y

Despite of how complicated the ideal I seems to be, its standard basis consists of few
small polynomials. We print below the result using SINGULAR .

ring r = integer ,(x,y,z),dp;

ideal I = ...;

std(I);

//>_[1]=18

//>_[2]=6z-12

//>_[3]=2y-4

//>_[4]=2 z2+4z+8

//>_[5]=yz+z+3

//>_[6]=3x2z -15x2

//>_[7]= x2y+3x2z+x2

//>_[8]=x3+10z

//>_[9]=x2z2 -4x2z -11x2

Using the new strategy described in Algorithm A:1.4.1, we compute the standard
basis over Q[x, y, z] and see that it is equal to 〈1〉. Hence the ideal contains a constant.
Using SINGULAR ’s syzygy procedure syz, we are not lucky enough to already get ac-
cess to 18, but a multiple of it: 6 133 248. This seems to be a big number, but if we
add this constant to the generators of I the computations will drastically speed up the
computations.

We show how 6 133 248 can be generated using f1, . . . , f70.

Technische Universität Kaiserslautern 135

6 133 248 = (−231913440x6z + 9838752x3y − 4599936x3z + 69696y) · f1+
(−1584y3 + 13464y2 + 12672y)·f2+

(−115956720x6z + 1756920x3y − 1724976x3z − 40409160x3 + 52272y + 200376)·f3+
(−38652240x3y3 + 38652240x3y2 + 154608960x3 + 1149984y2 + 4983264y + 3066624)·f4+

(−2551047840x6z + 38652240x3y − 37949472x3z − 889001520x3 + 574992y + 2779128)·f5+
(−159720x3y2 − 159720x3y − 319440x3 − 2376y2 − 10296y − 12672)·f10+

(−79860x4 + 110xy3 + 110xy2 + 220xy − 2508x)·f11+
(26136)·f13+

(3630x4y2 + 3630x4y + 7260x4 + 54xy2 + 154xy + 96x)·f14+
(1540xy + 517x)·f15+

(−792)·f16+
(425920x)·f18+

(−115956720x3y2 − 115956720x3y − 231913440x3 − 1724976y2 − 7474896y − 4599936)·f19+
(−1756920x4 + 2420xy3 + 2420xy2 + 4840xy − 132616x)·f26+

(851840x)·f27+
(287496)·f28+

(−38720x)·f38

136 Adrian Popescu

EXAMPLES FOR SIGNATURE ALGORITHM

These are the ideals presented in Section A:2.4: Timings when comparing the up-
dated version of the implemented Gröbner basis algorithm over Z[x] in SINGULAR (std)
with the extended variant of the F5 algorithm over the integers (sba).

These ideals are considered over Z[x, y] with the dp ordering.

Generators for ideal

Example C:1
95 · y3,
54 · x2y + 33 · xy2 + 26 · xz + 91 · z2,
55 · x3 + 69 · y2

Example C:2
55 · y2z + 7 · x2 + 26 · xy,
50 · x3 + 35 · x2z + 52 · y2,
81 · z3

Example C:3
14 · x3 + 57 · xy,
72 · y3 + 12 · xy,
27 · x2z + 43 · y2z + 69 · z2

Example C:4
2 · x2z + 67 · y2z + 24 · z2,
3 · x3,
55 · y3 + 67 · x2 + 85 · xy

Example C:5
352 · x2y + 670 · y3 + 273 · yz,
718 · x3,
961 · y2z + 283 · xz2 + 723 · y2 + 401 · yz

Example C:6
19 · xy2 + x2z + 51 · y2z + 87 · xz2 + 5 · x2 + 36 · y2,
12 · x2z,
98 · yz2 + 30 · xy + 36 · z2

Example C:7
507 · xy2 + 308 · xz,
108 · x3 + 801 · y3,
197 · x2z + 382 · y2z + 689 · xz + 464 · z2

Table 3.3: Examples for the Signature Based Algorithm

Technische Universität Kaiserslautern 137

Generators for ideal

Example C:8
334 · yz2,
900 · x3 + 396 · xy2 + 599 · y2,
157 · x2z + 562 · xyz + 72 · xy + 799 · z2

Example C:9
556 · xy2 + 362 · y2z + 141 · y2,
295 · x2y + 303 · x2,
335 · x3 + 590 · xy2 + 541 · z2

Example C:10
366 · xy2 + 920 · y3,
921 · y2z + 131 · xz2 + 888 · z2,
224 · x2z + 281 · xy + 23 · yz

Example C:11
97 · xy2 + 647 · y3 + 715 · z2,
694 · x2y + 65 · xy + 536 · y2,
85 · y3 + 267 · x2z

Example C:12
112 · y2z + 104 · x2 + 241 · xz,
662 · x2y + 773 · xy2,
225 · x2z + 683 · y2z + 790 · z2

Example C:13
959 · y3 + 397 · yz,
915 · x2z + 953 · y2z + 346 · xz2 + 431 · xy + 909 · z2,
504 · x3

Example C:14
887 · x3,
793 · xy2 + 589 · x2z + 474 · xz + 366 · yz,
265 · xy2 + 20 · xz2 + 449 · y2

Example C:15
83 · x3 + 809 · x2y + 58 · xz,
68 · xy2 + 783 · z2,
367 · x2z + 539 · xz2 + 336 · yz

Example C:16
306 · x2z + 330 · xz2 + 611 · z2,
572 · xy2 + 494 · y2,
361 · x2y + 95 · xyz + 578 · xz

Example C:17
976 · x2y + 713 · x2z + 512 · z2,
369 · y3 + 326 · x2z,
145 · xy2 + 585 · xz + 884 · yz

Table 3.4: Examples for the Signature Based Algorithm

138 Adrian Popescu

Technische Universität Kaiserslautern 139

PROGRAMMING IN SINGULAR ’S KERNEL

Technische Universität Kaiserslautern 141

INTRODUCTION

SINGULAR is a computer algebra system for polynomial computations that has been
developed to help the users in various fields of mathematics like algebraic geometry,
singularity theory and commutative algebra. It is a free software (GNU Public license)
and it was supported by Deutsche Forschungsgemeinschaft (DFG), Stiftung Rheinland-
Pfalz for Innovation and Volkswagen Stiftung.

The idea of SINGULAR began in 1984 when computing invariants of ideals and mod-
ules in local rings (like Milnor, Tjurina numbers and dimensions) was needed to answer
the following question: Do there exist non-quasi homogeneous and complete intersection
singularities with exact Poincaré complex? The first step was to create a polynomial ring
environment and implement a Gröbner basis algorithm to make use of its properties.
This first version was written in basic on a 8-bit ZX Spectrum machine. Shortly after,
these where implemented for Atari using Modula-2 language and SINGULAR was born.
In 1993 the code was rewritten in C-language.

In the first version of SINGULAR (1997), one could compute multivariate polyno-
mial factorization, gcd, syzygies and resolutions. In the following year, version 1.2 was
released with faster algorithms, procedures for primary decompositions and normal-
ization. Version 1.3 was again optimized, numerical data types and algorithms were
added and one could compute moduli of space curves. SINGULAR 2.0 was released in
the early 2000’s and the textbook A Singular Introduction to Commutative Algebra was
published as both an introduction to the software and to commutative algebra. The
book has many examples on how to use computer algebra techniques in algebraic ge-
ometry, commutative algebra and more. In 2004 at the International Symposium on
Symbolic and Algebraic Computation (ISSAC), the SINGULAR team was awarded the
Richard D. Jenks Memorial Prize for Excellence in Software Engineering for Computer
Algebra. A couple of years later, a second enhanced edition of the Textbook was pub-
lished containing more examples and accompanied by the release of SINGULAR 3.0,
where non-commutative computations were possible together with absolute factoriza-
tion and dynamic modules.

In the past 30+ years many developers worked on improving the algorithms, adding
features and building new libraries. At the moment the source code contains 9 663 files
(in total more than 1 million code lines) and 145 libraries and it can get really hard to
start working in the sources.

This part will provide the reader with some basic guidelines into programming in
SINGULAR ’s kernel, especially the part of the kernel specialized in the standard bases
computation (the so-called GBEngine).

Technische Universität Kaiserslautern 143

THE STRUCTURE

The first chapter consists of the requirements needed to program in SINGULAR ’s ker-
nel and explains some very basic concepts like git, compiling and building SINGULAR .

The second chapter introduces the main structures in the sources like polynomials
and ideals and lists the main related procedures pertaining to these concepts, e.g adding
two polynomials, searching for constants in ideals, etc.

The third chapter explores the connection between the SINGULAR language is and
the internal structures.

The last chapter describes the adding of new structures and features to SINGULAR

while providing several examples.

144 Adrian Popescu

GIT, COMPILATION AND BUILDING

This section introduces the reader to the building of SINGULAR from the source files.
A more detailed tutorial can be found on the Singular’s GitHub Wiki page. This is by no
means a Git tutorial, the purpose is to obtain some insight into the methods and tools
used to develop SINGULAR .

In order to maintain a software as vast as SINGULAR , a large number of developers
is required and it is vital that everybody works on the latest version. A problem may
occur when two persons (say DevA and DevB) work on the same file in parallel. This
leads to two versions of the file (say fileA and fileB). If the two developers wish to make
their changes public, the the following scenario may happen: DevA will replace the old
file with fileA. DevB will be unable to do the same since in this way DevA’s changes will
be lost. Hence DevB will have to change fileA manually.

Git is a free (version control) software that helps in this process. If the same lines
of code were modified, a conflict appears and the code needs to be reviewed by one of
the developers. Otherwise the merge is done automatically. In addition to this git also
provides the entire history of commits in order to help identifying the commit to blame
when tests fail. A web version of Git with graphic interface, community and other useful
tools can be found on GitHub.

In order to install SINGULAR on a Linux machine, certain prerequisites are needed.
The complete list of software that one needs to install can be found at
github.com/Singular/Sources/wiki/Step-by-Step-Installation-Instructions-for-Singular ,
but the main ones are:

◦ git − version control,

◦ gcc − C++ compiler,

◦ automake − tool for generating compliant makefiles,

◦ autoconf − automatic configure script builder,

◦ make − utility for directing compilation,

◦ readline,

◦ GMP − multiprecission integer library (https://gmplib.org/)

◦ NTL− high-performance C++ library providing data structures and algorithms for
manipulating arbitrary length integers, vectors, matrices, and polynomials over
the integers and over finite fields.

Technische Universität Kaiserslautern 145

https://github.com/Singular/Sources/wiki/Step-by-Step-Installation-Instructions-for-Singular
https://gmplib.org/

SINGULAR can be found as a Git repository at https://github.com/Singular/Sources.
In order to implement some changes, first one needs to clone the repository locally, for
example in the Tutorial folder. This can be done by using the following command line
in the Linux terminal:

git clone https :// github.com/Singular/Sources Tutorial

and generate the configure script using

cd Tutorial

./ autogen.sh

The most common way to configure and build SINGULAR is to run

./ configure

make

Now the program binary can be found in Tutorial/Singular/Singular.
Sometimes a debug version is required − it is slightly slower, but sets debug flags

and therefore in case of a segmentation fault one can identify the file and line number
where it crashed using the debugger gdb’s backtrace command bt.

One can build a debug version by typing

./ configure --enable -debug --disable -optimizationflags

make

Since building SINGULAR is time consuming, it is recommended to use different
folders for the various versions. Otherwise, the rebuilt of the entire software instead
of only parts of it will be required. In the following example we configure and build
SINGULAR in another folder, say Tutorial/Folder.

cd Tutorial

#creates a new folder

mkdir Folder

#changes the current working directory

cd Folder

#configures using the sources in Tutorial

../ configure

#builds Singular in parallel using 3 processors

make -j3

This newly build version of Singular can be found as the path
Tutorial/Folder/Singular/Singular.

The repository can be viewed as a tree, the main branch is called spielwiese. In order
to modify it, a copy needs to be downloaded into the local machine and merged again
to the main branch sometimes in the future. Note that this branch could have evolved
in the meantime. To avoid name confusion a new branch say (Changes) starting from
the old one needs to be created. One can do this by typing

git checkout -b Changes

After the changes are commited (can be several commits, call them (C1), (C2), . . . ,
(Cn)), the tree would look like this:

146 Adrian Popescu

https://github.com/Singular/Sources

spielwiese : · · · ////// • //////

//

////// · · ·

Changes : C1 // C2 // · · · // Cn

Assume that currently you are working with two repositories (or remotes):

• singular − this is the official SINGULAR repository

• user − this is the cloned repository containing the two branches: spielwiese and
Changes

Then, the file Tutorial/.git/config will look like the following:

[remote "singular"]

fetch = +refs/heads/*:refs/remotes/origin/*

url = git@github.com:Singular/Sources.git

[remote "user"]

fetch = +refs/heads/*:refs/remotes/origin/*

url = git@github.com:git_user_name/Sources.git

One can make the changes public by using the push command − this will merge the
changes and upload them to your git account:

git push user Changes

In order to merge the local changes and make them public one needs to do the
following:

#get the updates of all repositories

git remote update

#changes the current working branch

git checkout Changes

#updates the spielwiese branch

git pull singular spielwiese

#uploads the current branch

git push user Changes

Another useful command worth mentioning is git grep. This searches in the entire
repository for instances where the exact same text appears. In the example below, we
use it to search for the definition of mora − the function that computes standard bases
in the case of local and mixed orderings.

cd Tutorial

git grep mora

and see that it is defined in kernel/GBEngine/kstd1.cc. However, most text editors
have better ways to find location of a procedure or definition: vim has ctags and emacs

has etags.
Assume that an error occurred when we ran the debug version of Singular located

at Tutorial/debug/Singular/Singular for the input file Desktop/test. In order to fix
this segmentation fault we need to use a debugger like gdb as in the following example:

Technische Universität Kaiserslautern 147

starts debugging the binary

gdb Tutorial/debug/Singular/Singular

#run the program using as input the test file

r ~/ Desktop/test

When it breaks at the segmentation fault that caused SINGULAR to crash, one can
backtrace to find the cause of this error by typing bt. Adding breakpoints is useful when
debugging:

creates a breakpoint in file GBEngine/kutil.cc. line 413

b kutil.cc:413

creates a breakpoint at each call to the function redRing

b redRing

After a breakpoint, one can type the following:

step (or s) will go to the next line of code, will step in functions as well
next (or n) will execute the next line of code, will not enter functions
finish (or fin) will continue till the end of the current function
continue (or c) will continue till the next breakpoint

148 Adrian Popescu

INTERNAL STRUCTURES

Polynomials

The most used structure in SINGULAR is the polynomial. The source code contains
several representations for polynomials, depending on the purpose.

A main assumption for the occurring polynomials is that they are very sparse, i.e.
most monomials have the coefficient set to 0. For instance, for the univariate polynomial
x100 + 1, instead of representing it as an array

(1, 0 . . . , 0, 1),

where the i−th position holds the coefficient of xi+1, one can save it as a list that
contains both the coefficient and the exponents.

The poly structure

As mentioned above, there are several different structures for storing polynomials.
The poly structure is the most used and it is optimized for the standard basis compu-
tations. For these computations we need to have fast access to the leading term, and
the most used polynomial operations are the leading term comparison and divisibility.
The structure consists of linked monomials that are ordered with respect to the chosen
monomial ordering. Therefore, if the monomial ordering is unknown, then we cannot
construct polynomials. This is the reason why in SINGULAR we always define a ring with
a monomial ordering. The poly structure is sparse distributive

Let R be a ring together with a monomial ordering < on Mon(x1, . . . , xn) and
f = c1 · m1 + c2 · m2 + . . . + cl · ml ∈ R[x1, . . . , xn] a polynomial, with the coefficients
ci ∈ R and the ordered monomials mi < mi+1. Then poly will save f as

c1 m1 c2 m2 · · · cl ml NULL

EXAMPLE. Consider f = 3x2 + 5xy − y + 2 ∈ R[x, y] with the dp ordering. Then f
will be internally represented as

3 x2 5 xy −1 y 2 1 NULL

Technische Universität Kaiserslautern 149

Note that by changing the monomial ordering to ls, f will be stored as

2 1 −1 y 5 xy 3 x2 NULL

REMARK.
Note that the poly structure is ring dependent.

The CanonicalForm structure

In factory, a standalone library for factorizing multivariate polynomials, the main
polynomial operation is multiplication. Therefore, another structure used to store poly-
nomials arises: CanonicalForm. This is a sparse recursive structure where the polyno-
mials in R[x1, . . . , xn] are seen recursively as polynomials in R[x1, . . . , xn−1][xn].

EXAMPLE. Take the same example as before: f = 3x2 + 5xy − y + 2 ∈ R[x, y] with
the dp ordering. Then f = (5x − 1) · y1 + (3x2 + 2) · y0 ∈ R[x][y], and hence f will be
stored as a CanonicalForm

y1 //

��

y0

��
x1

��

// x0

��

x2

��

// x0

��
5 −1 3 2

Note that this representation does not depend on the monomial ordering, but on the
order of the variables. For instance, if we consider f ∈ R[y, x], then the Canonical Form
will look like

x2 //

��

x1

��

// x0

��
y0

��

y1

��

y1

��

// y0

��
3 5 −1 2

We will go more into detail in the poly structure. For a more in depth overview and
differences between the two structures see Hans Schönemann’s work [BS] and [S1].

150 Adrian Popescu

Back to polys

In the following we will take a closer look at the poly structure since it was the one
used in the implementations mentioned throughout this thesis.

The definition of the poly structure can be found in the sources files in
libpolys/polys/monomials/monomials.h. The main procedures for polys can be found
in the p_polys.h and p_polys.cc located in the same folder as the previous one. Note
that a poly does not know in which ring it exists. The reason for this is memory: if in
each monomial we would save the ring, then a lot of memory would have been used.
This also means that for each polynomial operation we need to name the ring. For
Example the function header that adds two polynomials p, q in the ring r looks like

poly p_Add_q(poly p, poly q, const ring r);

For the current ring, named currRing, one can use the macro pAdd(p,q) instead of
p_Add_q(p,q,currRing). Most of these function usually delete the input polynomials
and the reason can be understood by reviewing the following scenario: Let p, q, s, t be
four polynomials and call pAdd(pAdd(p,q),pAdd(s,t)) in order to compute the sum
p+ q + s+ t. The second and third pAdd’s will return two polynomials, and since these
polynomials will not be deleted, a memory leak will occur.

In order to keep the original polynomiaos, one needs to add two copies of them
by using pAdd(pCopy(p),pCopy(q)) and these copies will be deleted instead of the
originals.

There exist however several polynomial operations that do not delete the arguments.
Returning to the poly structure, the definition of the structure looks like this:

next coef exp

pointer to the next poly (monomial)

pointer to coefficient

short exponent vector

In the short exponent vector we will squeeze the exponents vector. For more details
see O. Bachmann and H. Schönemann’s paper [BS] or the sources files
/libpolys/polys/monomials/p_polys.cc at the documentation for the function
p_GetShortExpVector that stores the short exponent vector.

REMARK.
The poly structure defined for polynomials f ∈ R[x] can be extended for module

elements F = (f1, . . . , fm) ∈ R[x]m. Let ε1, . . . , εm be the canonical basis of the free
module. We write F = f1 · ε1 + . . .+ fm · εm. In the short exponents vector we will also

Technische Universität Kaiserslautern 151

save the component of the monomial. If the element is a polynomial, we will set it’s
component by default to 0.

Here are the basic functions when working with polynomials.

pNew() ◦ allocates space for a new polynomial
pInit() ◦ initializes a new polynomial, and sets everything to 0
pOne() ◦ returns a polynomial equal to 1 in currRing
pISet(long i) ◦ returns a polynomial p=i in currRing
pNSet(number n) ◦ returns a polynomial p=n in currRing
pWrite(poly p) ◦ prints the polynomial p in the current ring
pSetCoeff(poly p,number n) ◦ sets the leading coefficient of p to n
pGetCoeff(poly p) ◦ returns the leading coefficient of p
pGetComp(poly p) ◦ returns the component of p
pSetComp(poly p,int c) ◦ sets the component of p to c
pHead(poly p) ◦ returns a copy of the leading term of p
pCopy(poly p) ◦ returns a copy of p
pNext(poly p) ◦ returns the next monomial in p
pLmDelete(poly p) ◦ deletes the leading term of p
pLmDeleteAndNext(poly p) ◦ deletes the leading term and returns the next monomial
pLmCmp(poly p,poly q) ◦ compares LM(p) with LM(q), returns

-1 if LM(p) < LM(q)
0 if LM(p) = LM(q)
1 if LM(p) > LM(q)

pLtCmp(poly p,poly q) ◦ compares LT(p) with LT(q) with the
absolute value of the coefficients

pLmDivisibleBy(poly p,poly q) ◦ return True if LM(q) | LM(p)
pLmShortDivisibleBy(p,q) ◦ fast pre-test for divisibility, returns p does not divide q

or q may be divisible by p
pNeg(poly p) ◦ returns -p
ppMult nn(poly p,number n) ◦ returns n·p, does not destroy p
pMult nn(poly p,number n) ◦ returns n·p, deletes p
ppMult mm(poly p,poly m) ◦ returns for a monomial m, m·p, does not destroy p
pMult mm(poly p,poly m) ◦ returns for a monomial m, m·p, deletes p
pMult(poly p, poly q) ◦ returns p·q, deletes p and q
ppMult qq(poly p,poly q) ◦ returns p·q, does not deletes p,q
pMinus mm Mult qq(p, m, q) ◦ returns p-m·q, destroys p
pPlus mm Mult qq(p, m, q) ◦ returns p+m·q, destroys p
pAdd(poly p, poly q) ◦ returns the sum p+q, deletes p and q
pSub(poly p,poly q) ◦ returns p-q, deletes p,q
pPower(poly p, int i) ◦ returns the i-th power of p
pIsConstant(poly p) ◦ returns True if p is constant

152 Adrian Popescu

pIsUnit(poly p) ◦ returns True if p is constant and it is a unit in currRing
pLcm(poly a,poly b,poly m) ◦ saves lcm(LM(p),LM(q)) in m
pDiff(poly p, int k) ◦ returns the partial differentiate of a by the

k-th variable, does not destroy p

Table 3.5: Polynomial related procedures

Ideals

Another important structure in SINGULAR is the ideal. It is stored as an array of poly-
nomials (polyset) and it can store modules because the polynomials may have non-zero
components as we seen above. The ideals structure share the same internal structure
with matrices and maps. It is defined in libpolys/polys/simpleideals.h and looks
like

struct sip_sideal

{

poly* m;

long rank;

int nrows;

int ncols;

}

The pointer m will point to a chunk of memory of size nrows · ncols · size(poly).
Note that some of the polynomials m[0], . . . ,m[ncols− 1] may be null.

Note that in SINGULAR the ideal structure is a set of polynomials that can be inter-
preted as a generating set or standard basis depending on the context. Ideals, modules,
matrices and maps are build the same at the C−level despite that they have different
types in the interpreter.

For an ideal, nrow = 1, ncol ≥ 0 is the number of generators of the ideal, and
rank = 1. For the module everything remains the same as for ideals, except the rank ≥
1.

It is easy to see that this would be also an effective structure to store a matrix when
nrow ≥ 1. However, in the following we will restrict ourselves to ideals and modules.

The structure ideal is a pointer to sip_sideal. The following table contains some
basic ideal operations that can be used in the sources of singular. The definitions can be
found in simpleideals.cc. The more advanced procedures, like intersection, syzygy
computation can be found in ideals.cc. As in the polynomial case, the name of the
functions for the ideals start with id_... and it also needs the ring as input. As before,
some of these functions can be called with id... and will use the current ring as input.

Technische Universität Kaiserslautern 153

idInit(int s,int k) ◦ returns an initialized ideal of size s and rank k
id Delete(ideal* h,ring r) ◦ deletes the ideal h from r
idSkipZeroes(ideal h) ◦ gives h the minimal possible size

(deletes the Null entries)
idElem(ideal h) ◦ returns the number of non zero elements
IDELEMS(ideal h) ◦ returns the total number of elements
id Copy(ideal h,ring r) ◦ returns a copy of h in r
id CopyFirstK (ideal h,int k,ring r) ◦ returns a copy of the first k elements
id SimpleAdd(ideal h1, h2,ring r) ◦ adds two ideals without simplifying the result
id Add(ideal h1, h2,ring r) ◦ adds two ideals skipping double elements

and searching also for units
id RankFreeModule(ideal h,ring r) ◦ returns the rank of h
id FreeModule(int i, ring r) ◦ returns the free module of rank i in r
id PosConstant(ideal h, ring r) ◦ returns position of generator with leading term

a constant or -1 if no such generator was found
id Head(ideal h,ring r) ◦ returns the ideal of the leading terms of h
id MaxIdeal(int i,ring r) ◦ returns the i-th power of the maximum ideal
id Transp(ideal M,ring r) ◦ returns the transpose of the module M
id Mult (ideal h1,h2,ring r) ◦ returns h1· h2, at least one of the ideals

has to have rank 1
id Homogen(ideal h, int i,ring r) ◦ returns the homogenized h w.r.t. the i-th variable
id Jet(ideal h,int i,ring r) ◦ returns the i-th jet of the elements of h
id Subst(ideal h,int i,poly p,ring r) ◦ returns h, where the i-th variable

was substituted by p
idPrint(ideal h) ◦ prints h in currRing (works only in the debug

version and should be avoided)
ipPrint MA ◦ prints the ideal
idInsertPoly (ideal h, poly p) ◦ adds p to h if p 6= 0
idIs0 (ideal h) ◦ returns True if h is the 0 ideal
idMinBase (ideal h) ◦ returns a minimal set of generators of h

using standard basis
idSect(ideal h1,ideal h2) ◦ returns the intersection of h1 with h2
idSyzygies ◦ returns the syzygies of the input
idQuot ◦ returns the quotient of the input

Table 3.6: Ideal related procedures

154 Adrian Popescu

Strategy

The next structure plays an important role in the standard bases algorithm. It stores
the status of a Gröbner basis computation: partial standard basis, the pair list and
several special routines. It is present in most of the Gröbner basis related functions as
an argument called strat.

We start by briefly describing the sTObject class. The class stores the polynomials
used in the reductions and it is a foundation for the class used for the L−pairs. The main
members are poly p − the polynomial, poly sig − the signature in case of a signature
based algorithm, unsigned long sevSig − the short exponent vector for the signature,
int ecart − the ecart of the polynomial and long FDeg − the degree. TObject is a
pointer to this class.

The class sLObject starts from sTObject and adds the things needed by the pair list.
We shortly present the main members: unsigned long sev− the short exponent vector
for the polynomial p, poly p1,p2 − the polynomials that generated this pair, poly lcm

− the least common multiple of the leading terms of p1 and p2 used in many criteria.
LObject is a pointer to this class.

Since SINGULAR has many reduction procedures, many orderings for the pair list
among others, we save all the used procedures also in the strategy class skStrategy.
The following table contains the main members of the class.

LObject P pointer to the current pair that is considered
ideal Shdl stores the partial standard basis as an ideal
polyset S stores the partial standard basis as polyset (part of Shdl)
int sl last used index in S
int smax size of S
LSet L the pair list
int Ll last used index in L (the current index since we consider

pairs from the end of L)
int Lmax size of L
LSet B an intermediate pair list for the Buchberger algorithm

in each loop we add the new pair in B, apply
several criteria and finally add them into L

int Bl, Bmax similar as Ll and Lmax
TSet T the polynomials used in the reduction procedures
int tl, tmax similar as Ll and Lmax

Technische Universität Kaiserslautern 155

unsigned long* sevS stores the short exponents vectors for elements from S
unsigned long* sevT stores the short exponents vectors for elements from T
int (*red)(LObject, kStrategy) pointer to the used reduction procedure
void (*initEcart)(TObject) pointer to the function that sets the ecart, length

and degree
int(*posInT)(TSet T, LObject) positioning of a new LObject in T, used for ordering T
int(*posInL)(LSet L, LObject,...) positioning of a new LObject in L used for ordering L
void(*enterS)(LObject,kstrategy) pointer to the procedure that adds an element to S
TObject* R[] array of pointers to T
int S 2 R[] S 2 R[i] yields the Tobject which corresponds to S[i]

When working with the signature based algorithms, we add these members to the
strategy class:

polyset syz the syzygies (used in the Syzygy Criterion from F5)
polyset sig the signatures (used in F5 algorithms)
unsigned long* sevSyz stores the short exponents vectors for elements from syz
unsigned long* sevSig stores the short exponents vectors for elements from sig
int *posInLSba position function used in the F5C strategy for signatures
bool sigdrop True if we have found a sigdrop, False else

The interpreter structure leftv

This structure links the SINGULAR language with the C++ language from it’s source
files. leftv is used in the next two chapters and it is a pointer to sleftv. This contains
the members that one would expect:

int rtyp stores what type of data it is. A full correspondence can be
found in table.h

Singular Type C++ Type
int INT CMD
poly POLY CMD
ideal IDEAL CMD
module MODULE CMD
ring RING CMD
... ...

void* data points to the data in the memory
leftv next points to the next entry (for example in a list of polys)

We only included the members needed in the following section. A complete list can
be found in the file subexpr.h.

156 Adrian Popescu

SEARCHING FUNCTIONS FROM THE INTERPRETER

This section explores the path the data takes from the SINGULAR terminal to the
C/C++ files that store the internal structures. The connection between SINGULAR ’s
interpreter and the kernel is made by two files: table.h and iparith.cc. table.h

unveils the connection between the procedures called in the SINGULAR language and
the kernel. For instance for the std command that computes the standard basis looks
like this:

{D(jjSTD), STD_CMD , IDEAL_CMD , IDEAL_CMD , ALLOW_PLURAL | ALLOW_RING},

{D(jjSTD), STD_CMD , MODUL_CMD , MODUL_CMD , ALLOW_PLURAL | ALLOW_RING},

The first column displays the name of the procedure, the second the command, the
third column the type of the result, the forth the type of the input, and on the last
column the context: whether it is allowed in the non commutative case (Plural) or in
rings that are not fields.

The std command corresponds to the first row when the input consists of ideals and
on the second row when it consists of modules. Note that in this case, both call the
same function: jjSTD. The definition of this function can be found in iparith.cc. It
extracts the input data (the input ideal or module) and call kStd − the main procedure
for standard bases computation.

The next example illustrates what happens when we add two polynomials in the
interpreter.

D(jjPLUS_P), ’+’,POLY_CMD ,POLY_CMD ,POLY_CMD ,ALLOW_PLURAL|ALLOW_RING

This part from table.h is responsible for adding two polynomials and the procedure
jjPLUS_P is called. Here is the definition of jjPLUS_P as in iparith.cc:

static BOOLEAN jjPLUS_P(leftv res , leftv u, leftv v)

{

res ->data = (char *)(pAdd((poly)u->CopyD(POLY_CMD) , (poly)v->CopyD(

POLY_CMD)));

return jjPLUSMINUS_Gen(res ,u,v);

}

The result is stored in res, while u and v are the first, respectively second arguments
of the “+” command. Note that we used the pAdd function and as seen earlier, the
function deletes its arguments. This is why we first copy the input using CopyD. In this
case jjPLUSMINUS_Gen will do nothing since it is used for lists of polynomials as seen in
the following example:

Technische Universität Kaiserslautern 157

ring r = 0,(x,y),dp;

list p = x,y;

list q = x2 ,y;

p[1..2]+q[1..2];

//>x+x2 2y

An example worth analyzing in depth is the standard basis algorithm. The part
responsible for the standard bases algorithms is located in the folder kernel/GBEngine.
The main files are:

kstd1.cc handles the local and mixed case of the standard basis and
contains also several reduction procedures

kstd2.cc handles the global case of standard basis and
contains several reduction procedures

kutil.h defines the class for TObjects and LObjects
kutil.cc contains many functions including different positioning, adding new

pairs and initializing parts of the used strategy
kspoly.cc defines functions needed for the computation of a new s−polynomial

or reduction steps
kInline.h defines TObjects and LObjects related functions

Earlier we saw that when the command std is called in SINGULAR , we linked it to
jjSTD defined in the file iparith.cc. Here, after extracting the input from the leftv

structure, we run the function kStd. This is the main standard basis function and it
is defined in kstd1.cc. kStd takes as input the ideals F and Q, where F is the input
ideal and Q is the quotient ideal in the case of a quotient ring (qring), the weights in
case of a weighted ordering and several flags. In kStd a new strategy is defined, where
we set some flags like the homogeneity of the input and check for example whether the
ordering is a lexicographic ordering or not. If the monomial ordering is a global one, bba
(Buchberger algorithm) defined in kstd2.cc is called. Otherwise mora (Mora algorithm
− the generalization of Buchberger for local cases considering the ecart) defined in
kstd1.cc.

The next step in both functions is setting the strategy. This is denoted by the object
strat of kStrategy type as seen in the earlier section.

initBuchMoraPos sets the positioning functions for the set T and L
initBuchMoraCrit sets the used criteria
initBba / initMora sets the reduction procedures, enterS and initEcart
initBuchMora initializes the sets S, L and T and

adds the input as initial pairs to L

Then, as in Buchbergers algorithm, we loop till the set L is empty and take the last
element from the pair list (since it is the smallest element with respect to the chosen
pair ordering). P will point to this pair. Usually we compute for the pairs the so-called

158 Adrian Popescu

short s−polynomial, namely the leading term of the normal s−polynomial, used since
it consumes less memory. If P is a short s−polynomial, we need to build the normal one
and we start by reducing and tail reducing it with the set T.

If it can be reduced to 0, then simply delete this pair and continue with the next loop.
However, if we obtained a non zero polynomial, we have to add the s−polynomials to
the pair list L when working over fields (enterpairs) or add the corresponding strong
polynomials, s−pairs and the extended polynomial (superenterpairs) to L when com-
puting over rings. Next, add the element to the reduction set T and to the partial
standard basis S. In the case of fields, we first add the new pairs to the set B and after
applying several criteria on the set B, we add it to L.

At the end we do a complete reduction and delete the sets L,T and at the end of kStd
we delete the strategy.

Technische Universität Kaiserslautern 159

ADDING NEW FEATURES

The easiest way to add something in SINGULAR is by adding it in the extra.cc

file. This can be found in the Singular folder of the source files and uses SINGULAR ’s
command system:

system("name_of_function", input_of_function);

When this function is called, it first tests if the first argument is equal to the string
“name_of_function” by means of an if statement and if so, runs the code through there.

This is useful since one can use the internal structures in SINGULAR interpreter. We
provide a couple of very easy examples just to show how this works. First of all in
extra.cc there are two functions: jjSYSTEM and jjEXTENDED_SYSTEM. The first one
only accepts documented functions, while in the second one, experimental functions
can also be added. So the new function blueprint would be this block added in the
jjEXTENDED_SYSTEM function.

/* ======== new functions feature ======== */

if(strcmp(sys_cmd ,"test")==0)

{

// your code in here

return FALSE;

}

else

EXAMPLE. This example illustrates the adding of a function that takes a string as
input and prints it. Name this instance with test1 and the input is stored in leftv h.
Then we have to add these lines of code:

// checks if the argument is non -empty and if it is of string type

if ((h!=NULL) && (h->Typ()== STRING_CMD))

{

// define a new string as the content of the input

char *str = (char *)h->Data();

PrintS("This is the string:"); // prints the string

Print(str); // prints str

PrintLn (); // prints a new line

}

Now we have to rebuild the sources via make. We will display SINGULAR ’s output with
a >> symbol. If we type now in SINGULAR the following is displayed

system("test1","Example");

>> This is the string: Example

We can extend the function for polynomials, ideals and rings by adding the following
at the end of extra.cc:

Technische Universität Kaiserslautern 161

/* ======== new functions feature ======== */

if(strcmp(sys_cmd ,"test1")==0)

{

if ((h!=NULL) && (h->Typ()== STRING_CMD))

{

char *str = (char *)h->Data();

PrintS("This is the string:"); Print(str);PrintLn ();

}

if ((h!=NULL) && (h->Typ()== POLY_CMD))

{

poly p = (poly)h->Data();

PrintS("This is the poly: "); pWrite(p);

}

if ((h!=NULL) && (h->Typ()== IDEAL_CMD))

{

ideal I = (ideal)h->Data();

PrintS("This is the ideal:");PrintLn ();

for(int j=0;j<IDELEMS(I);j++)

{

PrintS("I[%i]",j+1);pWrite(I->m[j]);

}

}

if ((h!=NULL) && (h->Typ()== RING_CMD))

{

ring R = (ring)h->Data();

PrintS("This is the ring:");PrintLn ();

rWrite(R);PrintLn ();

}

return FALSE;

}

else

After rebuilding, we can do the following in SINGULAR :

system("test1","Example");

>> This is the string: Example

ring r = integer ,(x,y),dp;

system("test1",r);

>>This is the ring:

>>// coeff. ring is : Integers

>>// number of vars : 2

>>// block 1 : ordering dp

>>// : names x y

poly f = x2+y;

system("test1",f);

>>This is the poly: x2+y

ideal i = 4,13x,7x2;

system("test1",i);

>>This is the ideal:

>>I[1]4

>>I[2]13x

>>I[3]7x2

162 Adrian Popescu

The next function takes to polynomials p, q as input and returns the sum, difference
and product between them.

EXAMPLE. This feature will be added in the jjEXTENDED_SYSTEM in extra.cc. note
that we use pCopy since the functions pAdd, pSub and pMult delete the input polynomi-
als.

/* ======== new functions feature ======== */

if(strcmp(sys_cmd ,"test2")==0)

{

if ((h!=NULL) && (h->Typ()== POLY_CMD))

{

poly p = (poly)h->Data();

h = h->next;

if ((h!=NULL) && (h->Typ()== POLY_CMD))

{

poly q = (poly)h->Data();

PrintS("Sum = ");pWrite(pAdd(pCopy(p),pCopy(q)));

PrintS("Sub = ");pWrite(pSub(pCopy(p),pCopy(q)));

PrintS("Mult = ");pWrite(pMult(pCopy(p),pCopy(q)));

}

}

return FALSE;

}

else

After rebuilding we can do the following in SINGULAR :

ring r = 0,(x,y),dp;

poly f = x2+y;

poly g = 3x-y;

system("test2",f,g);

>> Sum = x2+3x

>> Sub = x2 -3x+2y

>> Mult = 3x3 -x2y+3xy -y2

EXAMPLE. Recall that in Part A we explained Algorithm A:1.4.1 (preIntegerCheck),
that takes the ideal I as input and returns a constant (or monomial) that can be gen-
erated with I, if such constant (or monomial) exists. We implemented this function
in SINGULAR and, in order to use it from SINGULAR ’s terminal, we need to add the
following block:

if(strcmp(sys_cmd ,"test3")==0)

{

if ((h!=NULL) && (h->Typ()== IDEAL_CMD))

{

ideal I = (ideal)h->Data();

res ->rtyp=POLY_CMD ;

res ->data=(void*) preIntegerCheck(I,NULL);

}

return FALSE;

}

else

Technische Universität Kaiserslautern 163

The output is saved in the variable leftv res. In this case it is a polynomial contain-
ing the returned value of the algorithm preIntegerCheck. After rebuilding SINGULAR ,
we can type:

ring r = integer ,(x,y),dp;

ideal i = 4x+16,2x+y,y+13;

def p = system("test3",i);

p;

>> 42

i = i[1],i[2];

def p = system("test3",i);

p;

>> 0

In the first case, 42 ∈ i since 42 = i[1]−2 · i[2]+2 · i[3]. In the second case no constant
/ monomial was found in the ideal i.

Another method to add new features to SINGULAR is by building a dynamic module.
The functions written in these modules will work like a function from a SINGULAR library
(type proc). This is done by using the command iiAddCproc which builds the SINGULAR

procedure from these C functions. Writing a function in C/C++ directly to sources will
speed up the computation time since converting the data from the interpreter to the
kernel takes time.

Adding a new datatype to the SINGULAR language may prove to be challanging since
the interpreter will have to be changed in multipl places. However, there exists a tool,
Blackbox, that does these changes automatically. It consists by registering the data
name and related procedures like initialization, deletion, copying, print and operations.
For more details see [S2].

164 Adrian Popescu

Technische Universität Kaiserslautern 165

REFERENCES

[CoCoA] J. Abbott, A. M. Bigatti, CoCoALib: a C++ library for doing Computations
in Commutative Algebra, available at http://cocoa.dima.unige.it/cocoalib.

[Artin1] M. Artin, Algebraic approximation of structures over complete local rings,
Publ. Math. IHES, 36, (1969), 23-58.

[Artin2] M. Artin, Constructions technques for algebraic spaces, Actes Congres. Intern.
Math., (1970), 419-423.

[BS] O. Bachmann and H. Schönemann, Monomial representations for Gröbner
bases computations, ISSAC ’98, (1998), 309-316.

[BGS] A.M. Bigatti, P. Gimenez, E. Sáenz-de-Cabezón, Monomial Ideals, Computa-
tions and Applications, Springer, (2013).

[BiHo] C. Biro, D.M. Howard, M.T. Keller, W.T. Trotter, S.J. Young, Interval parti-
tions and Stanley depth, J. Combin. Theory, Ser. A, 117, (2010), 475-482.

[BH] W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised edition. Cambridge
University Press, (1998).

[BIS] W. Bruns, B. Ichim, C. Söger, The power of pyramid decomposition in Nor-
maliz, J. Symb. Comp., 54, (2016), 513-536.

[BKU] W. Bruns, C. Krattenthaler, J. Uliczka, Stanley decompositions and Hilbert
depth in the Koszul complex, J. Commutative Alg., 2, (2010), 327-357.

[BMU] W. Bruns, J. Moyano-Fernández, J. Uliczka, Hilbert regularity of ZZ-graded
modules over polynomial rings, (2013), arXiv:AC/1308.2917.

[Bu] B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal, PhD thesis, Uni-
versity of Innsbruck, (1965).

[Ci] M. Cimpoeas, Stanley depth of complete intersection monomial ideals, Bull.
Math. Soc. Sc. Math. Roumanie 51(99), (2008), 205-211.

[Singular] W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 4-1-3
— A computer algebra system for polynomial computations, available at
www.singular.uni-kl.de, (2016).

Technische Universität Kaiserslautern 167

http://cocoa.dima.unige.it/cocoalib
https://arxiv.org/abs/1308.2917
http://www.singular.uni-kl.de

[DuGo] A. Duval, B. Goeckner, C. Klivans, J. Martin, A non-partitionable Cohen-
Macaulay simplicial complex, Adv. Math., 299, (2016), 381-395.

[E] C. Eder, Signature-based algorithms to compute standard bases, PhD thesis,
University of Kaiserslautern, (2012).

[EF] C. Eder, J.-C. Faugère, A survey on signature-based Gröbner basis computa-
tions, arXiv:AC/1404.1774, (2014).

[EP] C. Eder, J. Perry, F5C: A variant of Faugères F5 algorithm with reduced
Gröbner bases, J. of Symb. Comp., 45, 12, (2010), 1442-1458.

[EPP] C. Eder, G. Pfister, A. Popescu New Strategies for Standard Bases over Z,
(2016), arXiv:AC/1609.04257.

[El] R. Elkik, Solutions d’equations a coefficients dans un anneaux henselien, Ann.
Sci. Ecole Normale Sup., 6, (1973), 553-604.

[F] J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without
reduction to zero F5, ISSAC 2002, (2002), 75-82.

[G] H. Grauert, Über die Deformation isolierter Singularitäten analytischer Men-
gen, Inventiones Mathematicae, 15, (1972), 171-198.

[Gr] M. Greenberg, Rational points in henselian discrete valuation rings, Publ.
Math. IHES, 31, (1966), 59-64.

[GP] G.-M. Greuel, G. Pfister, A SINGULAR Introduction to Commutative Algebra,
Springer-Verlag, (2008).

[GD] A. Grothedieck, J. Dieudonne, Elements de geometrie algebrique, IV, Part 1,
Publ. Math. IHES, (1966).

[H] J. Herzog, A Survey on Stanley Depth, Lecture Notes in Mathematics,
Springer-Verlag, (2013).

[HPV] J. Herzog, D. Popescu, M. Vlădoiu, Stanley depth and size of a monomial
ideal, Proc. Amer. Math. Soc., 140, (2012), 493-504.

[HSY] J. Herzog, A. Soleyman Jahann, S. Yassemi, Stanley decompositions and
partitionable simplicial complexes, J. Alg. Comb., 27, (2008), 113-125.

[HVZ] J. Herzog, M. Vlădoiu, X. Zheng, How to compute the Stanley depth of a
monomial ideal, J. Algebra, 322, (2009), 3151-3169.

[Hi] H. Hironaka, Resolution of Singularities of an Algebraic Variety over a Field
of Characteristic Zero, Annals of Mathematics, 79, (1964).

168 Adrian Popescu

http://arxiv.org/abs/1404.1774
https://arxiv.org/abs/1609.04257

[IKM] B. Ichim, L. Katthän, J. J. Moyano-Fernández, The behaviour of Stanley
depth under polarization, J. Comb. Theory, Series A, 135, (2015), 332-347.

[IM] B. Ichim, J. J. Moyano-Fernández, How to compute the multigraded Hilbert
depth of a module, Math. Nachr. 287, No. 11-12, (2014), 1274-1287,
arXiv:AC/1209.0084v3.

[IZ] B. Ichim, A. Zarojanu, An algorithm for computing the multigraded Hilbert
depth of a module, Experimental Mathematics, 23:3, (2014), 322-331,
arXiv:AC/1304.7215v3.

[Is] M. Ishaq, Upper bounds for the Stanley depth, Comm. in Alg., 40, (2012),
87-97.

[IsQu] M. Ishaq, M. I. Qureshi, Upper and lower bounds for the Stanley depth of
certain classes of monomial ideals and their residue class rings, Comm. in
Alg., Volume 41, (2013), 1107-1116.

[Ka] L. Katthän, Stanley depth and simplicial spanning trees, J. of Algebraic Com-
binatorics, 42, (2015), 507-536.

[KMPPR] H. Kurke, T. Mostowski, G. Pfister, D. Popescu, M. Roczen, Die Approxima-
tionseigenschaft lokaler Ringe, Springer Lect. Notes in Math., 634, Springer-
Verlag, Berlin-New York, (1978).

[Li] D. Lichtblau, Effective computation of strong Gröbner bases over Euclidean
domains, Illinois J. of Math. 56(1), (2012), 177-194.

[Ly] G. Lyubeznik, On the Arithmetical Rank of Monomial ideals, J. of Algebra
112, (1988), 86-89.

[MS] J. Murdock, J. Sanders, A new transvectant algorithm for nilpotent normal
forms, J. of Diff. Eq., 238(1), (2007), 234-256.

[Ne] A. Neron, Modeles minimaux des varietes abeliennes sur les corps locaux et
globaux, Publ. Math. IHES, 21, (1964).

[OY] R. Okazaki, K. Yanagawa, Alexander duality and Stanley depth of multi-
graded modules, J. of Algebra 340, (2011), 35-52.

[PfPo1] G. Pfister, D. Popescu, Die strenge Approximationseigenschaft lokaler Ringe,
Inventiones Math., 30, (1975),145-174.

[PfPo2] G. Pfister, D. Popescu, Constructive General Neron Desingularization
for one dimensional local rings, to appear in J. of Symb. Comp.,
arXiv:AC/1512.08435.

Technische Universität Kaiserslautern 169

http://arxiv.org/abs/1209.0084
http://arxiv.org/abs/1304.7215
http://arxiv.org/abs/1512.08435

[AP1] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math.
Roumanie, 53(101), (2010), 363-372, arXiv:AC/1008.2924v2.

[AP2] A. Popescu, An algorithm to compute the Hilbert depth , J. of Symb. Comput.,
66, (2015), 1-7, arXiv:AC/1307.6084v3.

[AP3] A. Popescu, Depth and Stanley depth of the canonical form of a factor of
monomial ideals, Bull. Math. Soc. Sc. Math. Roumanie, 57(105), (2014),
207-216, arXiv:AC/1402.5826v3

[APDP1] A. Popescu, D. Popescu, Four generated, squarefree, monomial ideals ,
in “Bridging Algebra, Geometry, and Topology”, Editors Denis Ibadula,
Willem Veys, Springer Proceed. in Math., and Statistics, 96, (2014), 231-
248, arXiv:AC/1309.4986v5.

[APDP2] A. Popescu, D. Popescu, A method to compute the General Neron Desingular-
ization in the frame of one dimensional local domains, to appear in Singular-
ities and Computer Algebra - Festschrift for Gert-Martin Greuel, On the occa-
sion of his 70th birthday, Editors W. Decker, G. Pfister, M. Schulze, Springer
Monograph.

[DP1] D. Popescu, General Neron Desingularization, Nagoya Math. J., 100, (1985),
97-126.

[DP2] D. Popescu, General Neron Desingularization and approximation, Nagoya
Math. J., 104, (1986), 85-115.

[DP3] D. Popescu, Letter to the Editor. General Neron Desingularization and approx-
imation, Nagoya Math. J., 118, (1990), 45-53.

[DP4] D. Popescu, Artin Approximation, in “Handbook of Algebra”, vol. 2, Ed. M.
Hazewinkel, Elsevier, (2000), 321-355.

[DP5] D. Popescu, Depth of factors of square free monomial ideals, Proceedings of
AMS 142, (2014), 1965-1972, arXiv:AC/1110.1963v5.

[DP6] D. Popescu, Upper bounds of depth of monomial ideals, J. Commutative Al-
gebra, 5, (2013), 323-327, arXiv:AC/1206.3977.

[DP7] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals,
Comm. in Alg. 41, (2010), 4351-4362.

[DP8] D. Popescu, Around General Neron Desingularization, J. of Alg. and its Appl.,
16,(2017).

[PQ] D. Popescu, I. Qureshi, Computing the Stanley depth, J. Algebra, 323,
(2010), 2943-2959.

170 Adrian Popescu

https://arxiv.org/abs/1008.2924
https://arxiv.org/abs/1307.6084
https://arxiv.org/abs/1402.5826
https://arxiv.org/abs/1309.4986
https://arxiv.org/abs/1110.1963
https://arxiv.org/abs/1206.3977

[PZ] D. Popescu, A. Zarojanu, Three generated, squarefree, monomial ideals,
Bull. Math. Soc. Sci. Math. Roumanie, 58(106), (2015), no 3, 359-368,
arXiv:AC/1307.8292v6.

[Ra] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra,
38, (2010), 773-784.

[RTU] G. Restuccia, Z. Tang, R. Utano, Stanley Conjecture on monomial ideals of
mixed products, J. Comm. Alg., 7, (2015), 77-85.

[Ri] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals,
Le Matematiche, Vol. LXIII, (2008), 243-256.

[Ro] G. Rond, Sur la linearite de la fonction de Artin, Ann. Sci. Ecole Norm. Sup.,
(4), 38, (2005), 979-988.

[S1] H. Schönemann, Polynomials in Factory and Singular, Nikolaus-Konferenz
Aachen, (1999).

[S2] H. Schönemann, Extending Singular with new types and algorithms, Inter-
national Congress on Mathematical Software (ICMS), (2016).

[Sh] Y.H. Shen, Lexsegment ideals of Hilbert depth 1, (2012), available at
arXiv:AC/1208.1822v1.

[St] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent.
Math., 68, (1982), 175-193.

[SW] B. Sturmfels, N. White, Stanley decompositions of the bracket ring, Math.
Scand., 67, (1990), 183-189.

[Sw] R. Swan, Neron-Popescu desingularization, in “Algebra and Geometry”, Ed.
M. Kang, International Press, Cambridge, (1998), 135-192.

[Ta] Z. Tang, Stanley depth of certain Stanley-Reisner rings, J. Algebra, 409,
(2014), 430-443.

[Uli] J. Uliczka, Remarks on Hilbert series of graded modules over polynomial rings,
Manuscripta Math., 132 (2010), 159-168.

[Vi] R. H. Villarreal, Monomial Algebras, Marcel Dekker Inc., New York, (2001).

[W] O. Wienand, Algorithms for Symbolic Computation and their Applications -
Standard Bases over Rings and Rank Tests in Statistics, PhD thesis, University
of Kaiserslautern, (2011).

[Y] K. Yanagawa, Sliding functor and polarization functor for multigraded mod-
ules, Cummunications in Algebra, 40, (2012), 1151-1166.

Technische Universität Kaiserslautern 171

https://arxiv.org/abs/1307.8292
https://arxiv.org/abs/1208.1822

WISSENSCHAFTLICHER WERDEGANG

2008 Abitur, Colegiul Naţional Sfântul Sava, Bukarest, Rumänien

2008 - 2011 Bachelor im Mathematik, Universität Bukarest, Rumänien

2008 - 2011 Level 1: Zertifikat für Lehramt, Universität Bukarest, Rumänien

2011 - 2013 Master im Mathematik, Technische Universität Kaiserslautern

2013 - 2016 Promotion im Mathematik , Technische Universität Kaiserslautern

CURRICULUM VITAE

2008 Abitur, Colegiul Naţional Sfântul Sava, Bucharest, Romania

2008 - 2011 Bachelor in Mathematics, University of Bucharest, Romania

2008 - 2011 Certification for teaching (I), University of Bucharest, Romania

2011 - 2013 Master in Mathematics, University of Kaiserslautern, Germany

2013 - 2016 PhD in Mathematics , University of Kaiserslautern, Germany

Technische Universität Kaiserslautern 173

174 Adrian Popescu

Technische Universität Kaiserslautern 175

	Abstract
	Acknowledgments
	Preface
	A Standard bases over rings
	Buchberger's Algorithm
	Basic definitions and notations
	Buchberger's algorithm blueprint
	ALL vs. JUST
	Huge coefficients over the integers
	Strong pairs in the reduction procedure

	Signature standard bases over the integers
	Definitions and notations
	Criteria: Syzygy, Rewrite and F5C
	SigDrops
	Timings
	Finite rings - Zm

	B Depth, Stanley Depth and Hilbert Depth
	Definitions and Notations
	Cohen-Macaulay Modules
	Hilbert Function and Hilbert Polynomial

	Hilbert Depth
	Hilbert Series and Hilbert Depth
	Computational Experiments
	The hdepth procedure

	The Stanley Conjecture
	The present stay of Stanley's Conjecture and its impact in Commutative Algebra
	The Stanley Conjecture on intersections of three monomial prime ideals.
	The Stanley Conjecture for factors of monomial ideals
	A special case of r=4
	Proof of Theorem B:3.3.7

	Stanley depth of factors of monomial ideals
	The canonical form of a factor of monomial ideals
	The canonical form algorithm

	C Constructive General Neron Desingularization
	Artin approximation and General Neron Desingularization
	A method to compute a General Neron Desingularization in the frame of one dimensional local domains
	The implementation in Singular and some examples

	Appendix
	Examples used in Part A
	Examples used in Part A
	Examples for ALL vs JUST strategies
	Example 18
	Examples for Signature Algorithm

	Programming in Singular 's kernel
	Programming in Singular 's kernel
	Introduction
	Git, Compilation and Building
	Internal structures
	Searching functions from the interpreter
	Adding new features

