
Holger Peine
Dept. of Computer Science, University of Kaiserslautern

P.O. Box 3049, D-67653 Kaiserslautern, Germany
Email: peine@informatik.uni-kl.de

ZRI-Report 1/97

1

Holger Peine
University of Kaiserslautern, Germany.

Traditional computer communication is based on sending messages, that is, data to be processed by an active
entity at the receiving side, such as a client or server process. While this model has achieved pervasive use
throughout today’s networked world, certain of its drawbacks have moved into the focus of interest with the
massive increase in network load caused by the mass diffusion of the Internet and with the advent of wireless
networks for mobile computers. Communication by data exchange requires both parties to remain on-line
during the complete transaction, usually consisting of several acts of data exchange; further, often large
amounts of data have to be moved across the network to the remote processing entity, only to be discarded
for the largest part after processing.

Mobile agents are an approach to solve these and other problems of networked computing in the face of
limited bandwidth and connectivity. Instead of repeatedly sending data to be processed by a remote processor,
the processor is sent in one act to the remote data for on-site execution. Data and assorted services can be
accessed locally then, and no ongoing connection is needed during the execution. Such a mobile processor,
consisting of executable code and some form of execution state, has been termed amobile agent.

Mobile agents have raised considerable interest as a new concept for networked computing with potentially
very far-reaching implications, and numerous software platforms for various forms of mobile code have
recently appeared and are still appearing [CGH95, CMR+96, GRA96, HMD+96, LAN96, LDD95, JRS95,
RAS+97, SBH96], with different foci and exploring diverging solutions. Still, the basic idea is quite simple:
Give programs the ability to move. It seems natural, therefore, toadd mobility to the large and well-developed
world of programming, rather than attempt to build a new realm of “mobile programming”. Mobility should
be integrated as comfortably and unintrusively as possible with existing programming concepts — algorithms,
languages, programs, and operating systems. This is the basic idea of the Ara1 system [PES97]: A platform
for agents able to move freely and easily at their own choice and without interfering with their execution,
utilizing various existing programming languages and even existing programs, independent of the operating
systems of the participating machines. Complementing this, the system provides facilities for the specific
requirements of mobile agents in real applications, security concerns being the most prominent here.

This report will present Ara and its specific approach to itinerant agents (ormobile agents, as they are termed
in Ara), explain the concepts and features of the system and demonstrate how they are used to program
mobile agents solving real-world problems. Ara is an example of middleware, situated between specific
applications (e.g. an airline booking system) and the underlying operating system. It provides the system-
level facilities to execute and move programs (“agents”), let them interact and access their host system, all
in a portable and secure manner. The actual application (“the real work”) is of no interest to the system, but

1. ”Agents for Remote Action”.
Zoologically, an Ara (also called a macaw) is a large, multi-colored genus of parrot as pictured above, a family of
birds renowned for their intelligence and longevity.

� � � � � � � � � � � 	 � � � �
 � � 	 �
 � �
 � � � � � � � � � � 	 � � � � � � �
 � � � � � � �
 �

2

programmed in the behavior of the agents, expressed using various programming languages on top of a
common run-time core. The system should be seen as a broker between visiting agents and the host system,
providing the agents with access to local services and the host with control over the agents. And like any
good broker, its policy is not to interfere and let both parties do their business as they see fit, yet oversee that
they play to the rules of honest business.

A remark is in order here concerning the maturity and completeness of the Ara system at the time of this
writing. The system is in active development, meaning that while the basic concepts are resolved and the
system is sufficiently worked out for useful applications (see section 2, "Mobile Agent Applications with
Ara"), many of the more advanced features are not yet implemented. This will be indicated in the presentation
where appropriate.

The rest of this report is structured as follows: The initial section introduces the basic concepts of Ara, such
as languages, agents, mobility and the like. The second section then demonstrates how common problems
of networked computing can be solved using those concepts. This is followed by a section explaining the
individual features and facilities of Ara as they are presented to the programmer. These are put to use in a
section working out a complete programming example for searching the World Wide Web (WWW). A
subsequent section discussing selected aspects of the Ara system architecture deepens the understanding of
the system’s capabilities and also shows how to extend it with further programming languages. The report
concludes with a discussion of Ara regarding different approaches to mobile agent systems and future devel-
opments. Three annexes provide a glossary of Ara terms, a glimpse of evolving features, and an overview
of the Ara software distribution.

��� �������! #"$�&%')(+*#,-�."0/

From a very high-level point of view, Ara consists of agents moving between or staying at places, where
they use certain services to do their job. The fundamental concepts of agents, motion, places, and service
access in Ara will be explained in this section. As agents are expressed in some programming language, the
role of such languages within the Ara system will also be of interest.

13201 46587:9-;=<?>A@CBD9-58E-B8587:<?>3BD9-FG;=H-7I4KJLBNMPO!<Q;=7SR

There has been, and no doubt will continue to be, a broad discussion about “what constitutes an agent”, as
opposed to a general “program” [FON93, FRG96]. This discussion has been both controversial and confusing,
and apparently has not yet reached a consensus beyond a few buzzwords, “autonomous” being the most
prominent among them. Ara’s policy, stressing application independence, is not to take sides in that discus-
sion. Instead, the Ara notion of an agent is simply derived from the more clearly defined notion of amobile
agent1. In Ara, a mobile agent is a program with the ability to move during execution. That is, besides mobility
there is nothing new to a mobile agent. Of course, this could be called an intentionally misleading statement,
since the very mobility of program code across different machines has truly far-reaching consequences for
the design of the execution system for such code, most notably portability and security concerns. Both
problems of portability and security are fundamental to mobile agent systems, portability being an issue

1. Although, even agents which cannot really move like e.g. stationary servers are subsumed under the term “agent” in
Ara. This is simply because it is convenient to have a common term for all active entities in the system.

3

because mobile agents should be able to move in heterogeneous networks, i.e. between machines with
different operating systems and hardware architectures, to be really useful, and security being at stake because
the agent’s host effectively hands over control to a foreign program of basically unknown effect1. Most
existing mobile agent systems, while differing considerably in practice, use the same basic solution for
portability and security: They do not run the agents on the real machine of processor, memory and operating
system, but on some virtual one, usually aninterpreter and arun-time system, which both hides the details
of the host system architecture and confines the actions of the agents to that restricted environment. This
concept of a dedicated execution environment, providing a secure and portable set of services to access the
host system and possibly other agents, enables agents to move in heterogeneous networks and permits a fine-
grained control of the executing agent without depending on the hardware platform.

This is also the approach adopted in Ara: Mobile agents are programmed in an interpreted language and
executed within an interpreter for this language, using a special run-time system for agents, called thecore
in Ara terms. However, the relation between core and interpreter is characteristic for Ara: Isolate the language-
specific issues (e.g. how to capture the Tcl-specific state of an agent programmed in the Tcl programming
language) in the interpreter, while concentrating all language-independent functionality (e.g. how to capture
the general state of an agent and use that for moving the agent) in the core. This separation of concerns makes
it possible to employ several interpreters for different programming languages together on top of the common,
generic core. The core deals with general agents only, making its services, e.g. agent interaction, uniformly
available to all agents regardless of their respective interpreter languages. Although this matter will be treated
more thoroughly in section 5.1, “Processes and Internal Architecture”, it should be remarked here that the
complete Ara system of agents, interpreters and core runs as a single application process on top of an
unmodified host operating system. Fig.1 shows this relation of agents, core, and interpreters for languages
called T , UWV and X .

While Ara stresses the independence of its concepts for mobile agents from specific programming languages,
in practice the choice of languages is not irrelevant. At the time of this writing, interpreters for theTcl
[OUS94] andC/C++ [STR90] programming languages have been adapted to the Ara core, and theJava

1. There is also the reverse problem of the agent´s security against undue actions of the host, e.g. spying on the agent´s
content. There is, however, no general solution for this problem except several individual aspects; see section 6.4,
"Security and Payment" for a discussion of this.

Y Z [\

] ^ _ ` a ^ b

c Z
i
\ d b ^ e ^ b d b ^

f a g [h b c - _ i b \ d

f a g [h b j -
_ i b \ d

j Z [\ d b ^ e ^ b d b ^

k l m n o p] i b \ d q r s \ d b ^ e ^ b d b ^ q _ \ t d u b v a ^ b

4

[GJS96] language will be added next. Tcl and C/C++ differ considerably in complexity, run-time efficiency
and development expense. Tcl, a popular scripting language, offers low development expense and a compact,
embeddable, and freely available interpreter, which made it the language of choice of several mobile code
systems [GRA96, LDD95, JRS95, OUS95]. C/C++, on the other hand, is superior regarding the available
abstractions, the run-time efficiency and the interoperability with existing software. The reader may wonder
that C1 is used as an interpreted language here, since C as a typical compiled language is not directly suitable
for interpretation. However, it was considered distinctly important to utilize the most widely-used program-
ming language for mobile agents, saving the effort of adopting a new language and enabling the reuse of an
enormous base of software. Accordingly, a dedicated interpreter for C was developed, specially adapted to
mobile code. This interpreter works by precompilation to the portableMACE bytecode, which is subsequently
interpreted with remarkable performance by theMACE interpreter [STO95].

The rationale of interpretation was support for portability and security, especially the portability of a live
agent’s execution state (see section 5.4). While there seems to be no viable alternative to interpretation when
the full mobile agent functionality is desired,compiled agents were integrated into the Ara system as a native
speed alternative for cases where certain security and portability requirements can be sacrificed. Such com-
piled agents cannot usually move to other machines, as they generally exist in a machine-dependent form
only, and security cannot totally be warranted. In many respects, however, they behave like their interpreted
siblings, at a substantially increased speed. Compiled agents are usually employed for services resident in
a local system.

Ara thus offers the option to choose a programming language, preferably an existing one proven for the
application at hand, instead of requiring all applications coded in one prescribed language, possibly even
specially created. Prerequisite for this is that the desired language interpreter has been adapted to Ara;
however, this adaption is well-defined and straightforward on the part of Ara (see section 5.6, "Adaption of
Further Programming Languages to Ara").

The programming examples in this report will use Tcl most of the time, since it is more concise than C. C
examples will be given from time to time to aid the distinction between language and concept.

132xw yzH-7{@Q|~}�7I�:}�B89�465D7S9-;

What makes an Ara agent program different from conventional programs is its characteristic use of functions
provided by the core for agent actions, control and interaction. An active agent program in Ara is aprocess,
i.e. a self-contained activity with its own state and progress. This seems both a natural and powerful2 way
for an agent, being supposed to act autonomously after all. Creation and deletion of such new agents, respec-
tively agent processes, are among the most basic functions offered by the core. Each agent is assigned a
unique, immutable name on creation. Newly created agents will execute their program in parallel with other
agents active on the same system; they can clone themselves, suspend, resume and terminate their operation,
sleep for some time, or be likewise acted upon by other agents, provided the necessary access rights. These
agent control functions may be used to form a team of agents working on a common task.

1. Unless explicitly stated, in the following text “C” is meant to comprise C++ as well.

2. If this should raise concerns about performance, see section 5.1, "Processes and Internal Architecture" for an
explanation of the efficient implementation of processes in Ara.

5

Although many useful tasks can be performed by a single mobile agent using the functions offered by the
local host, considerable flexibility and new kinds of applications are gained byinteraction between agents.
Agents can „talk” to each other then, exchange information, offer and request services from one another,
and even negotiate and trade. This concept is also useful for structuring a host environment, as higher-level
services can be offered through „system” agents, which is more modular and flexible than offering the
services through a static function call interface.

It can be argued whether agent communication should be remote or restricted to agents at the same place.
Considering that one of the main motivations for mobile agents was to avoid remote communication in the
first place, Ara emphasizes for local agent interaction. This is not to say that agents should be barred from
network access (which depends on the policy of the host system interface, see section 1.4). Rather, the system
encourages local agent interaction1. There are various options for such an interaction scheme, including disk
files, more or less structured shared memory areas (“tuple space”, ”blackboard“), direct message exchange,
or special procedure calls, each entailing different ways of access and addressing. Ara chose a variant of
message exchange between agents, allowing client/server style interaction. The core provides the concept
of aservice point for this. This is a meeting point with a well-known name where agents located at the same
place can interact as clients and servers. An agent announces the service point, thereby assuming the role of
aserver agent, whereuponclient agents may meet it. A client may also attempt to meet a service point which
has not been announced yet; such an attempt will either block the client until the announcement, or optionally
return a failure indication. After a successful meeting, a client can submit service requests to the service
point, and the server can fetch those and reply to them as it sees fit. Each request is marked with the name
of the client agent, and the server may use that in choosing a reply. For example, a service point might
advertise access to some data base as shown in fig.2, and clients may submit queries, which are fetched by
servers to be inspected, perhaps preprocessed, billed, or translated before being passed to the database man-
agement system. The query results are then passed back to the client as the reply to the service request.

1. In spite of this, a simple remote messaging facility between agents at known places will be added for pragmatic
reasons. However, to avoid a tight remote coupling, this messaging facility will not involve itself in any guarantees
against message losses.

k l m n � p v h [b \ d _ \ t � b ^ � b ^] i b \ d q _ d _ � b ^ � [` b � a [\ d

� � � � � _ d _ g _ q b] ` ` b q q �
� b ^ � [` b � a [\ d

� _ d _ g _ q b � _ \ _ i b f b \ d � � q d b f!

?

?

6

Service requests and replies are implemented as messages with content and meaning entirely up to the
participants. Many agents can meet at a service point. An agent can play the role of both client and server
at different service points at the same time.

Agents on the move are programs running out of the sight and reach of their creator. It seems wise, therefore,
to have a means of setting global limits to their actions, safe-guarding against unwanted effects like e.g.
circling through the net in endless loops. The potential danger of agents getting out of control becomes even
clearer when considering the bill certain hosts might charge visiting agents for the resources consumed
during their stay, e.g. execution time. The hosts, on the other hand, have an even stronger interest in setting
limits to visiting agents running on their system, in order to prevent overuse of host resources and to enforce
resource agreements.

For this purpose of resource access limitation, Ara agents are equipped with resource accounts, calledallow-
ances. Depending on the type of resource, an allowance may be defined either quantitatively, e.g. an allowance
to allocate some amount of memory, or qualitatively, as is the case with an allowance to read a certain file1.
When the agent accesses a resource, the agent’s allowance is checked and possibly updated accordingly by
the system. The system ensures that an agent can never overstep its allowance. In the simplest case, an agent
is given an initial allowance for its own perusal at the time of agent creation; however, a group of agents
may also share a common allowance, each consuming from it according to their own policy. Agents may
inquire about their current allowance at any time and may transfer amounts of it among each other. Such
transfers can be used as an organizational measure in a group of cooperating agents, but also for trading
resources between buyers and sellers. Most of the time, however, allowances are used by the creator of an
agent to bound its global range of action, and by the receiving system to limit the agent’s local resource
accesses. In the latter case, the receiving place temporarily imposes a local allowance on an arriving agent,
further restricting the agent’sglobal allowance set by its creator, as sketched in fig.3. Additionally, the agent
itself may specify a desired local allowance when moving to a place (default for this is the full global
allowance), and the target place decides what allowance to actually concede to the entering agent, or to deny
access altogether. Anyway, on leaving the place, any local allowance is released and the global one takes
effect again.

1. At the time of this writing, allowances can be specified for CPU time and memory consumption; other resources like
disk space, files, network connections or places visited will follow.

k l m n � p] � h _ ` b � b q d ^ [` d [\ i _ \] i b \ d g � _ � a ` _ h] h h a � _ \ ` b

h a ` _ hi h a g _ h

7

Mobile agents lead a more dangerous life than ordinary, stationary programs. When moving through a large
network such as the Internet, over computers with widely differing uses and policies, connected by links of
all qualities and loads, they have to be prepared to all kinds of accidents happening. Agents may get blocked
on the way, they may fall a prey to unexpected software faults, or their current host machine may simply
crash, burying the agent with it. Some of these dangers can be countered by specific measures, but there is
no general protection against an agent dying unexpectedly on its itinerary.

Rather than trying to anticipate all potential pitfalls, Ara offers a simple means ofrecovery from such acci-
dents: An agent can create acheckpoint, i.e. a complete record of its current “internal”1 state, at any time in
its execution. Checkpoints are stored on some persistent media (usually a disk), and they can be used at a
later time to restore the checkpointed agent. On restoration, the agent resumes from the exact state before
the checkpoint. The obvious application for this scheme is for an agent to leave a checkpoint behind as a
“back-up copy” before undertaking a risky operation, e.g. moving to unknown machines. In the event of an
accident happening to the agent, it can be restored from the checkpoint and take appropriate recovery mea-
sures. The system will soon provide a facility to implicitly checkpoint all locally existing agents in the event
of an emergency shutdown. Of course, the checkpointing mechanism may also be used for agents simply
wishing to idle for a longer time at low resource requirements, or for working with “canned” agents. Check-
pointing and restoring should be used with care, e.g. restoring an agent which is indeed still alive on a remote
system would produce two copies of the same agent, requiring explicit treatment.

Having covered basic agent handling, agent interaction, limitation, and recovery, Ara’s concept of the one
essential aspect of mobile agents, mobility, has only casually been treated so far. It is time now to take a
closer look at that.

132x� 46587:9-;!���:�8|~��|~;=O������:|~9-5N}�J��:R ���~B8¡:7{;=�I���~B8¡:7

Moving a program between computers can mean different things. In the simplest case, the program code is
transported to its destination site prior to program start, and then run to completion there. It might seem that
calling this a mobile agent system would be stretching the notion too far (note that this could basically be
achieved by carrying a diskette with the program to the destination computer), but if the receiving system
is aware of the foreign nature of the program and runs it in an appropriate environment, this qualifies as a
mobile code system at the least. The Java language environment [GJS96] is an example for such a mobile
code environment. From a point of view of mobility, the characteristic property of such mobile code systems
is the restriction that a running program cannot move any further.

However, mobile agents frequently need the ability not only to be moved once from their origin to a destination
site, but to move at their own decision, visiting several sites in a row, to fulfill a requirement which cannot
be satisfied by the initial destination site (alone). This might be the case e.g. when collecting information
from several sources, or when the final destination is not known beforehand, or when a site has to be left
because it is shutting down, which is a common situation in mobile computing. For such purposes it is no
longer sufficient to simply transport the program code, (re)starting the agent in its initial state. Rather, the

1. This internal state should be thought of as the complete state of the agent minus its relations to external objects and
resources such as service points, or files. Such objects cannot be warranted to persist until the agent is restored;
consequently, they cannot be included in the checkpoint.

8

agent needs to carry additional information about its experience so far — technically speaking, about its
execution state. Moving a running program, i.e. a live process of code and state, is usually termedmigration
in systems programming1.

Ara agents can migrate at any point in their execution, simply by using a special core call, namedara_go

in Ara’s Tcl interface2:

ara_agent {ara_go moira; puts "Hello, world!"}

This creates a new agent, giving it a Tcl program (enclosed in braces) to execute. The agent will first move
to a place namedmoira (a machine name, in this case) and then print the greeting message there. The
ara_go instruction is all the programmer needs to know about migration — the system ensures that the
agent is moved in whole to the place it indicated and resumed exactly where it left off, i.e. directly after the
ara_go instruction. The complexity of extracting the complete agent from the local system, getting it to
another machine and reinstalling it there, possibly even on a different architecture, is thus hidden in a single
instruction, allowing the programmer to concentrate on the application rather than on the technical details
of communication. Furthermore, the act of migration does not affect the agent’s flow of execution nor its set
of data, allowing the programmer to make the agent migrate whenever needed, without preparation or rein-
stallation measures, as illustrated in the following example:

set previousPlace [ara_here]
foreach place {moira kismet fatum} {

ara_go $place
puts "Hello at $place, I’m coming from $previousPlace!"
set previousPlace $place

}

This agent visits the placesmoira , kismet , andfatum in turn, each time printing the place it came
from3. The migrations are embedded in its flow of execution (aforeach loop in this case) without
interfering with it, and all its data (place and previousPlace in this case) remains available
untouched.This concept of non-interfering migration is termedorthogonal migration, in contrast to variants
which do affect further execution. Section 6.3, "Mobility" discusses this issue further.

Note that while the internal state of a moving agent is transferred unchanged, this is not possible for its
“external state”, i.e. its relations to other system objects and resources like service points, files, or windows.
Such objects are not mobile and thus have to be left behind when moving to another machine. It would be
theoretically possible to add a software layer to such stationary resources making them appear as mobile,
effectively creating a distributed operating system. However, the complex protocols and tight coupling
involved with this approach do not seem well adapted to the low-bandwidth and heterogeneous networks
targeted by mobile agents.

1. Note, however, that “process migration”, when used in operating systems context, nearly always refers to processes in
tightly-coupled homogeneous systems (e.g. a workstation cluster on a local network) without security and portability
problems. The two concepts are clearly related, but their focus is very different.

2. The same effect could be achieved in C by calling a C functionAra_Go() etc.

3. $place is the value of the variableplace in Tcl syntax;[ara_here] is the result of theara_here command
(which returns the name of local place).

9

Ara agents move betweenplaces, which is both an obvious association to physical location and a concept
of the Ara architecture. Places are virtual locations within an Ara system, which in turn is running on a
certain machine; places could thus be said to refine physical location. More importantly however, an Ara
place establishes a domain of logically related services under a common security policy governing all agents
at that place. Service points, for instance, are always tied to a place and can be accessed only by agents
currently staying at that place. In fact an agent is always staying at some place, except when in the process
of moving between two of them. Places have names which make them uniquely identifiable and which can
be specified as the destination of a migration. In practice, a place might be run by an individual, an organization,
or a company, presenting its services. Fig.4 illustrates the relation of systems, places and service points.

Besides structuring, places also exercise control over the agents they admit. First of all, a place has the
authority to decide whether a specific arriving agent is really admitted, using e.g. the agent’s name for this.
An agent which has been denied access to its desired destination place is made go back to its source place,
there to discover the failure. Thus, places play a central role in the security policy of an Ara system; in fact,
each place can implement its own security policy to a large extent, requiring e.g. that arriving agents be
authenticated (that is, as soon as authentication has been added to Ara) or that they have not passed through
certain mistrusted places before.

Even if a place decides to admit an agent, it may impose a restrictive local allowance on it as described in
section 1.2, limiting its potential actions while staying at the place. In effect, each place may create its own
security domain and decide autonomously which agents to admit under what conditions. When the agent
resumes after completion of the migration and admission procedure, it may check its effective allowance,
discovering to what extent the place has honored its desires. This enables the agent to decide on its own what
to do if it finds the conceded local allowance insufficient, rather than using some fixed negotiation mechanism
built into the migration procedure.

In the current Ara implementation, places are not yet really distinct objects in the system architecture, and
there is no application programming interface for places yet. Instead, there is one implicit default place
provided per system. Accordingly, place names currently reduce more or less to machine names1. The default

1. Actually, a place name currently designates a specific Ara system on a specific machine. See section 3.6, “Mobility”
for how to exploit this.

k l m n ¢ p £ � a � h _ ` b q � [d u � b ^ � [` b � a [\ d q _ \ t] i b \ d q a \ a \ b � � q d b f

] ^ _ q � q d b f

¤ ¥ ¦ § ¨ © ¥ ª « ¨ ¬ ­ ¤ ¥ ¦ § ¨ © ¥ ª « ¨ ¬ ­

® ¯ ° ± ² ³ ´ µ¶ ¯ ° ± ² ³ ´ µ

10

place has a fixed behavior; it admits all arriving agents and does not impose local allowances on them, i.e.
the agent is accepted subject to its global allowance. The next Ara release will restrict this generous policy,
as well as provide the means to create new places with application-specific behavior.

132 · 46¡:¡:7:<C<Q|~9-5N;=H-7{¸¹�:<C;!MPO!<Q;=7:R

So far, the facilities of Ara have been described at the level of (mobile) agents. Apart from that, agents of
course need to perform physical input and output as well, accessing the user interface, the file system, external
applications and the network interface — in short, agents need access to the host system. Certainly the
operating system of the host machine provides just that, but bearing in mind the increased security concerns
inherent in access by mobile agents, such access has to be controllable in a more fine-grained way than is
common with local programs. Additionally, the desired portability of agent programs calls for a somewhat
higher level of access than usual.

In keeping with Ara’s basic idea of adding mobility to existing concepts, the Ara host interface looks basically
similar to the programming interface of common operating systems, restricted and simplified as necessary.
Unfortunately, at the time of this writing, the host interface is still in various stages of development and not
ready for distribution, parts being implemented, and others being designed. Therefore, this section will give
only an overview of the forthcoming host interface as sketched in fig.5.

Ara agents will have access to a hierarchicalfile system with flat files, not much different from the interfaces
of common file systems. The file system will build on that of the underlying operating system, presenting
an enhanced view of it. The main enhancement, besides hiding platform dependencies, will be access control.
Specifically, an agent’s file accesses must be authorized through its allowance, and the accessed volume may
be debited to the allowance again. A file may be visible only from a certain place with a restrictive admission
policy, effectively constituting an access control list, selectively allowing or denying access to specific agents
or classes of agents, e.g. those of a certain origin. Since files are frequently expected to be shared among
agents,concurrent-read/exclusive-write locks on files will be provided for the synchronization of concurrent
accesses. There are applications, e.g. electronic trade, where individual allowances for specific files are issued
or transferred between agents, possibly restricted by volume limits or times of validity. Cryptographic cer-
tification would make such allowances, often called capabilities then, transferable and tradable across agents
and systems.

k l m n º p] i b \ d] ` ` b q q d a d u b » a q d � � q d b f

] ^ _ u a q d [\ d b ^ ¼ _ ` b

µ ½ ¾ µ ¿ À ³ ²³ ± ± ² Á ´ ³ ¾ Á Â À

11

A general concept ofcommunication channels will be provided, both for network access and communication
with local entities (see the external application interface discussed subsequently). Analogously to the file
system, these channels will stay very close to conventional concepts with respect to reading and writing, but
will be enhanced by access control features. Indeed it is expected that the channel interface will be integrated
with the file interface, to utilize the access control facilities available there.

Interfaces from client agents toexternal applications on the local machine will usually be implemented by
proxy agents — stationary, trusted agents dedicated to represent the external application to the agent system.
A proxy agent usually supervises the security of all accesses by the client agent and performs potential
translations between the two partners. If the client agent is trusted with respect to the external application,
and if the application offers a means for external access (e.g. by TCP), the agent may also be allowed to
communicate directly through a communication channel, without an intermediate proxy.

The Ara core provides timing functions in the form of a real time clock and synchronous delays. Asynchronous
timed invocations will follow.

At present, while the host interface is not available yet, agents perform I/O using the standard facilities
coming with their respective language run-time system as a temporary substitute, e.g. Tcl agents use Tcl I/
O commands, and C agents use the functions of the ANSI-C library. While of course being inadequate from
the point of view of security, this substitute is sufficient for all tasks which can be handled using the access
security mechanisms imposed by the underlying operating system on the process containing the Ara system.
Note, however, that blocking I/O operations should be used with care, since currently they may block the
whole operating system process1. Both problems will be resolved in the forthcoming Ara host interface
implementation.

Ã � Ä�*#ÅÆ%ÈÇ' É�.ÊÆ #��ËÌ��Í�Í�Ç'%'ÎÏ/ÐËÑ%'*Ï��ÒÓ(Ô%'ËÑÕ��."0/

While mobile agents are a fairly general concept for networked computing, there are classes of applications
which benefit characteristically from them. Most prominently, these are applications where a significant
amount of data has to be produced (consumed) which is, however, needed (available) far away from its
producer (consumer). The prominent example of the remote consumption case isinformation research: A
client searches for information which is available scattered throughout the stock of one or more remote
servers. Information presentationis the central example for the remote production case, where a server
produces presentation information, e.g. a sophisticated graphical dialogue, needed by a remote client. In
both cases, rather than transporting the data to its remote destination, an agent can be sent to produce respec-
tively consume the data directly at the location of the data, exploiting the ability of mobile agents for com-
puting on site.

Another important area of application is found inmobile computing [FOZ94]. In this domain, the ability of
mobile agents to change their host machine during execution can be exploited to let a computation dynamically
adapt its location to changing conditions, e.g. a mobile unit entering or leaving an area or a host shutting down.

We will now look at these application areas more closely, illustrating how Ara agents could be of help there.

1. Reading from the standard input stream, e.g. a terminal when in interactive mode, does not exhibit this problem.

12

wÌ201 Ö�9-}'�:J×RNBD;=|~�S9�Ø!7S<Q7:B8JL¡:H

An agent wandering through the net, looking around, picking up items of interest to its principal, perhaps
occasionally performing a transaction — this is probably the most intuitive and appealing picture that comes
to mind when thinking of mobile agents. Indeed agents are well-equipped for such tasks. An Ara application
in need of information located at some remote site would send a search agent there, to meet a server agent
managing that information. If the place of the applicable service point is not known beforehand, the search
agent would consult the local directory service1 first. The search agent then goes to the destination place and
meets a server agent at the concerned service point. It proceeds to submit requests to the server, asking for
the desired information and receiving replies. The search agent may perhaps consult more than one service
point, relating and combining the replies. If the retrieved data indicates that it would be worthwhile to extend
or move the search to other machines, the search agent makes a note of this and later goes to look there, or
it creates a clone of itself to treat that other site in parallel — in fact, arbitrarily sophisticated search strategies
can be encoded in the agents. Ara agents benefit from their ability to smoothly migrate and clone when
performing such tasks distributed across the network.

In many cases, the search agent is actually looking for data more specific than the server interface allows to
specify, e.g. the agent might ask for a text file, but is actually interested only in a certain part of it, or even
not interested at all unless the content satisfies a certain condition. A search agent is well prepared to handle
such information filtering, e.g. by parsing a text or relating the information to previous findings. It will later
bring or send back to its principal only the actually desired information, eliminating the transfer of unnecessary
data. This is why mobile search agents are especially effective for searching data with complex and irregular
structure, such as natural language texts or graphical images: They can bring their own data analysis and
filtering methods with them, tailored to and optimized for the specific need, with a gain that increases with
the structural complexity and the size of the data. In contrast, a remote search would be confined to the
comparatively primitive standard filtering methods (if any) offered by servers, such as scanning texts for key
words, and would usually entail the transfer of large amounts of data to the client site to perform the processing
there. When it comes to concrete programming, Ara’s capability of handling various programming languages
proves helpful here, employing, say, a Tcl package for text parsing, while reusing an existing C module for
image processing.

At the time of this writing, a realistically-sized mobile agent application forresearching Usenet news [KAL86,
HOA87] using the Ara system is in development. Usenet is a network of autonomous server nodes, each
storing news articles received from its neighbors and passing them on to the other neighbors. A user is
attached as a client to some local server and may read the server’s stock of news articles, or write an article
of his or her own, which is then included in the server’s stock and propagated along. Articles which have
been in stock at a server for a certain time are automatically discarded to prevent overflowing the server’s
storage. Usenet nodes are autonomous in that each maintains its own stock of articles, propagating and, most
importantly, discarding them according to its own policy, mirroring the preferences of the people in charge
of the server. Usenet information is thus distributed across the whole network, with each node possessing a
specifically local and constantly changing picture of it. This poses a problem when a user needs to access a

1. This will be included in a future release of Ara (see annex B, "What May Be Expected from Ara in the Future?").

13

set of articles only partially in stock at the local server, e.g. when desiring to read all other articles preceding
or referring to a certain interesting article of a current discussion found locally. Some of those other articles
may not (yet) have reached the user’s node, and yet others may have been automatically discarded already.

Fig. 6 illustrates how Ara agents are used to solve this information research problem. Usenet nodes are
equipped with Ara systems providing stationary server agents for access to the local news server. A user at
some node may specify a query for news articles, typically those related to a certain article by topic or explicit
reference, which is used to launch a search agent trying to collect the articles not locally present. The agent
directs its search according to the content of its previous findings, exploiting the format of Usenet articles,
which bear information about their itinerary and references in a header. The agent will track that itinerary,
visiting servers1 on the path in the hope of finding further relevant articles which a server has either not yet
forwarded or not yet discarded. Cross references linking articles will also be exploited by dynamically
creating sub-agents to track those recursively. All search agents will be equipped with a sufficient allowance
for their task and will constantly monitor it to prevent getting lost in the network. At the end of their search,
all agents return to their principal, bringing home the collected articles2; during the search, the principal
does not need to remain on-line. Without mobile agents, searches of this kind would have to be performed
on-line, and large amounts of articles would have to be transferred to the home site and processed there.
Moreover, in practice most Usenet servers are not configured for remote access at all.

As a matter of fact, the presented method of searching Usenet is an instance ofsemantic routing[CGH95],
a concept for distributed information access where a mobile object (e.g. a message or an agent) directs its
path through one or more intermediate relays according to the semantics (i.e. the content or goal) of the
object, approaching the final destination on each step. This is a valuable concept when dealing with infor-
mation the location knowledge of which is distributed itself, providing a flexible and robust method to cope
with the constantly changing structure of the global information space. Mobile agents are well-adapted to
semantic routing thanks to their ability to decide locally about their further plans and itinerary.

1. Technically precise, visiting the Ara system on the server node.

2. Actually, it is not necessary to transport the articles themselves, since Usenet articles are tagged with globally unique
identifications; it is sufficient to collect these identifications and retrieve the corresponding articles at the end of the
search.

k l m n Ù p] i b \ d q � b _ ^ ` u [\ i Ú q b \ b d ¼ a ^ s \ d b ^ b q d [\ i] ^ d [` h b q

14

wÌ2xw Ö�9-}'�:J×RNBD;=|~�S9���JL7:<Q7:9-;=B8;=|~�:9

Reversing the perspective, mobile agents can also be applied to remotely produce information rather than
collect it. Not surprisingly, agents are beneficial wherever large volumes of data are to be produced, or when
the produced data depend on interactive user input, since in both these cases a remote communication solution
would make heavy use of a remote connection, which is dispensable with mobile agents. Both requirements
of volume and interactivity are clearly combined in remote multimedia presentation: Video and audio must
be displayed to a user in real-time, and user input has to be perceived and reacted upon instantly. Obviously
mobile agents, travelling with the data and performing display and input processing at the user’s site, are
superior to any remote communication solution.

In an application scenario, a server publishing multimedia documents (e.g. enriched WWW pages) would
enclose a custom-written agent to present the data on the client site in an arbitrarily specific fashion. Once
a client retrieves and views the document, the presentation agent starts and handles access to the document,
using the client machine’s services and devices in any way it sees fit to present the information, possibly
engaging in user interaction and taking advantage of remote resources behind the scenes. Examples of such
presentations include interactive documents, multimedia documents in custom formats (e.g. CAD data), and
network-aware documents. Once again, it will be helpful if the agent can be programmed in a language
adapted to the specific task. An important practical advantage of using a customized mobile agent for pre-
sentation is the independence from presentation standards (such as HTML [PRI96]) which inevitably lag
noticeably behind the technical possibilities. Regarding the enormous growth of the WWW [BER94] as a
document publishing medium and the demand for multimedia documents, it is no surprise that using some
form of mobile code for document presentation has recently attracted enormous interest, as witnessed e.g.
by the Java language applied in theHotJava [SUN95] web browser and similar tools [ROU96, THB96].
Most of these systems do not provide migration; however, presentation agents usually do not move further
than their target destination, being targeted more specifically towards one site than e.g. information research
agents. Accordingly, mobile code systems without migration are hindered by the lack of this function much
less noticeably in information presentation than in information research applications.

wÌ2x� ���S�8|~�~7{ÛÓ�:RNÜ8E-;=|~9-5

Quite apart from specific applications, mobile agents are a generally useful concept for mobile computing.
As a matter of fact, this consideration has initiated the Ara project, and the use of mobile agents for mobile
computers equipped with wireless links is investigated in the project. Actually, the “mobile” name coincidence
here is not a pun, but hints at a real benefit for mobile computers, since some problems caused by hardware
mobility can be compensated using the “software mobility” provided by mobile agents. However, the most
prominent benefit of mobile agents for mobile computing is rooted in a generally better adaption to interaction

15

over wireless links. Sending an agent avoids many of the problems of the predominant physical medium
between mobile computers which the traditional model of remote message passing falls a prey to, as sketched
in Fig. 7.

Passing messages over a network between computers effectively creates a remote interaction on a logical
connection. This concept, frequently implemented by remote procedure calls, has achieved pervasive use
throughout stationary computing networks, and has accordingly been applied to mobile interaction as well.
However, the appropriateness of message passing relies on some implicit assumptions which become ques-
tionable with mobile computers. As a first point, the presence of an ongoing logical connection between the
participants assumes a relatively reliable underlying communication network to keep it up for a sufficient
time; even more, such a logical connection of course presumes in the first place that the participants themselves
are available for the duration of the interaction. Furthermore, serving stock communication needs like infor-
mation filtering and information presentation by remote data transfer assumes reasonable bandwidth available
as seen in the previous sections. On the whole, remote message interaction assumes a relatively tight coupling
between the machines.

However, none of those assumptions of reliability, availability and bandwidth generally hold for mobile
computing systems. Wireless links, especially wide-area ones, are subject to practically inevitable disruptions,
noise and bandwidth limitations; mobile devices are inherently short of energy due to the limited acceptable
weight of their batteries. This invariably causes frequent and long-lasting switch-offs, reducing availability.
On the whole, mobile units are toolooselycoupled to let remote message passing still appear an appropriate
basis of mobile computer interaction.

Mobile agents, on the other hand, are better prepared to these problems, since they achieve adecoupling of
the interaction partners by eliminating the ongoing remote connection. The agents perform interactions coded
into their program asynchronously and completely local on the destination site, as opposed to a conventional
remote and synchronous dialogue. Of course this is particularly welcome for mobile computers, as it needs
less bandwidth, is less vulnerable to connection problems and does not require the origin device to be available
during the interaction. As a matter of fact, mobile agents take advantage of the available stationary resources
on behalf of the mobile unit by dynamically moving a critical portion of the mobile application to a stationary
site.

Besides this general reduction of dependence on the connection, even up to completely disconnected oper-
ation, mobile agents also provide solutions for problems caused by device mobility itself. Their ability of
dynamically changing their place of execution enables applications like mobile unit substitution andlocation-

k l m n Ý p v a \ \ b ` d [a \ Ú q _ i b a ¼ � b f a d b s \ d b ^ _ ` d [a \ v a \ ` b e d q

Þ
Þ

ß ß ß
à...

á µ ° ° ³ â µ ± ³ ° ° Á À â á Â ã Á ² µ ³ â µ À ¾ °

16

specific adaption. When a mobile unit is geographically moving through a wide-area network, say its user
is walking with it through a city area, it will encounter diverse organizational domains, such as office buildings,
shopping malls, hospitals, public authority buildings, or company premises. Each such domain may offer
specific local services to guest computers entering the area, ranging from display services like directories,
maps, news quotes or product presentations, over interactive services like navigation and inquiries, up to
client components of applications like office automation systems. Mobile agents can be used to deliver the
necessary interface software to entering computers as illustrated in fig.8, automatically adapting them to
local customs and opportunities. Such usage of mobile agents highlights their potential to resolve unexpected
interface or function mismatches between interacting systems, effectively realizing a kind of dynamic, remote
configuration.

Mobile computing networks typically comprise a stationary part of fixed machines connected by wired links,
and a mobile part, using wireless links to mobile devices. As the stationary part provides better availability
and connectivity, it is a straightforward idea to shift some functionality from the mobile to the stationary
network. Ara agents, being able to move dynamically and smoothly, are particularly suitable for such shifting.
Agents staying in the stationary part of the network can act assubstitutes of mobile users or applications
while their principal is not reachable or prefers not to be contacted, as depicted in fig.9 [BBI+93]. A straight-
forward application for such a substitution is e-mail handling: An agent positioned in the stationary network,
on the path to its principal, may screen the latter’s incoming e-mail messages, acknowledge receipt, forward
selectively, and even reply to certain messages autonomously, not unlike a secretary. The principal machine
may safely be switched off meanwhile. The agent may be positioned explicitly by its principal as well as
change its location autonomously, e.g. move when the agent’s current host is about to be switched off or
requests it to leave. If continuing availability during a transient switch-off period is not required, an agent
may also use the checkpointing facility to store itself safely meanwhile, rather than moving to another
machine.

Besides improving availability, a representative agent at the border of the stationary network can also save
on transmission costs, which can be substantial over wireless links. To this end, the agent can be used to
condense the data flowing to its principal1. Condensation is used here as a rather general notion, to be further
defined relative to the concrete application; condensation could mean e.g. compression of image data, or, in

1. Analogously to the duality of information production and consumption described at the beginning of this section, a
substitution agent can be used to “inflate” data flowing from its principal as well.

k l m n ä p � b \ t [\ i _ � a ` _ h � b ^ � [` b s \ d b ^ ¼ _ ` b] i b \ d d a _ \ å \ d b ^ [\ i � a g [h b Ú \ [d

17

the case of e-mail processing, handling certain messages autonomously, while forwarding only the rest to
the principal. Transmission costs and delays can be cut further if the agent strives to stay close to its principal
machine, moving along the border of the stationary network while tracking the moving principal. Incidentally,
the mobility notions involved in mobile agents and mobile computers actually meet here.

As a demonstration application in mobile computing, ameeting scheduling system for mobile users will be
realized using Ara, employing mobile agents as substitutes of a human user. The application will offer support
for scheduling meetings with other participants, using mobile agents which strive to best match the meeting
preferences of their human principals, and react autonomously to switch-offs and movements of the mobile
user, e.g. by changing to another host. The application will make economic use of wireless communication
and handle crashes of participating machines. It will offer a graphical user interface and will be tested in
practical operation on mobile computers within the Ara project group.

æ � ��"0/èçé"×*ÏÊ�"0/�êëêì%'��Êëíî*#��ÎÏ ÏÍ�ËÑÒï/���ðèñC Ï/ÐËÑò�"0 ÏÒ

Now that the basic concepts of Ara have been described and put into perspective with applications, the stage
is set to explain how these concepts appear concretely to the mobile agent programmer. This section will
describe the Ara core application programming interfaces for the two languages currently available for Ara,
Tcl and C1. The description will be set at a significantly more practical level than the other sections (except
section 4) of this report. It will not elaborate each and every detail; please turn to the on-line help pages in
the Ara software distribution for further information.

�Ì201 ��7:9-7:JLB8�?Ûï�:9ôó-7:9-;=|~�:9-<��:}�;=H-7I46JÑBNÛï�:JL7{Öõ9-;=7:JL}ÈB8¡:7

Before going right into programming, some preliminaries have to be settled. Ara agents access system
functionality by calls to the core application programming interface (API), a set of functions provided by
the Ara core for use by agents. Technically, these functions are compiled native code contained in each Ara
system, each being accessible from an agent through a calling interface (called astub) in the respective
language, which is part of the language interpreter (see section 5.6). It should be noted here that the overhead
of a core call, although it reminds of an operating system kernel call, is no more than one procedure call

1. Note that theMACE interpreter accepts C++ as well, but at the time of this writing, the Ara core offers a C function
interface only (a C++ class interface will follow in one of the subsequent releases).

k l m n ö p] � a g [h b] i b \ d] ` d [\ i _ q d u b � ÷ g q d [d ÷ d b a ¼ _ � a g [h b Ú \ [d

Þ
à

18

(namely, the stub). The various stubs for the same core function differ in syntax, but not in semantics. The
stubs for use by C agents (remember Ara uses a C interpreter for these) are usually named identical to the
native core functions, e.g. Ara_ServicePointCreate() , since there is a nearly exact correspondence
between stubs and core functions here. The Tcl stubs, on the other hand, have their own names, partly due
to the “object oriented” calling syntax in Tcl (see section 3.5.2 for an example). To distinguish Tcl and C
syntax in the following, C function names are prefixed with Ara_ and suffixed with parentheses like
Ara_Go() , while Tcl command names are prefixed withara_ as inara_go . Compiled agents may use
the core functions directly, without stubs.

Note that the term “C agent” denotes an agent originally written in C and compiled to theMACE bytecode,
which now exists in this interpreted bytecode form only. This should not be confounded with “compiled
agents”, which are usually written in C as well, but exist in native machine code form.

The Ara core assigns internal identifications (“ids”) to all system objects, and applications reference such
objects only through these ids, in order to protect the objects from undue accesses (see section 5.3, “Protec-
tion”)1. In the C interface, the typeAra_Id is provided for object ids. This is the return type of all functions
returning a system object, e.g.Ara_ServicePointCreate() . There is a special value of this type,
ARA_ID_NONE, designating an invalid id and used to indicate an error return from such a function. The
corresponding Tcl commands throw an error (see below) instead of returning a special value, as is the custom
in Tcl.

While it is assumed that the reader has sufficient knowledge of C, one aspect of the Tcl language should be
pointed out here: Tcl’s only data type is the character string; accordingly, when types such asAra_Id are
mentioned in the following, this refers to the C interface, while the Tcl interface uses a corresponding string
representation of the respective type2. For example, the C stub of the core function to restore an agent has
the signature

int Ara_Restore(Ara_Id agent, int mygroup);

expecting an object id and an integer (actually, a boolean value) as a parameter, while returning an integer
as the result. The corresponding Tcl stub, on the other hand, expects and returns only strings, interpreted as
encodings of the various values. Additionally, Tcl allows default parameters, so the Tcl stub corresponding
to the C function above has the signature

ara_restore ?-mygroup? ?<agent id>? 3

where e.g.<agent id> is Tcl’s string representation of the agent’s object id, and the command’s result is
the string encoding of an integer. Note that optional arguments, while syntactically required to appear in the
C stub, are still called “optional” with the understanding that special values (usually0 or ARA_..._NONE)
are used when these arguments are meant to be ignored.

1. Compiled agents, however, may be exempted here — see section 3.9.

2. Please turn to the on-line help pages of the concerned command for the string representation of a specific type.

3. ?...? denotes an optional term in Tcl interface specifications, since the more familiar[...] is already used for
command result substitution in Tcl.

19

A final preliminary remark concerns the error behavior of the API functions. In the C interface, the stubs
exhibit the so-called standard error behavior unless stated differently, i.e. they flag a potential error by a
special return value, usually an integer error code1, which isARA_OK on success andARA_ERRORotherwise.
In the Tcl interface, the corresponding stub throws an error and returns an error message as the
result.This error message can be retrieved in C as well by means of callingAra_GetError() after the
erroneous call. The resulting message is valid only until the next call to an API function (including
Ara_GetError()). This might look as follows:

if (Ara_Go(...) != ARA_OK) {
printf("Cannot go ... due to the following error: %s\n",

Ara_GetError());
}

or, in Tcl, like this:

if [catch {ara_go ...} errmsg] {
puts "Cannot go ... due to the following error: $errmsg"

}

Note that thecatch command is used in Tcl to catch errors thrown during execution, optionally along with
the error message. It is used here to catch any potential errors thrown byara_go . An uncaught error in Tcl
propagates backwards through the calling chain, terminating the current execution if nocatch command
is encountered.

�Ì2xw yzH-7{øù|~J×<Q;!MP;=7:Ü8<

Ara agents are processes, as introduced in section 1.2, “The Life of an Agent”. When the Ara system starts
up, there is one initial process running (the “root” process)2. This is the process which prints the initial
prompt to the terminal when the system is run in interactive mode, and which reads and processes the initial
input. Interactive mode is the default; when the system is started with a file name argument, it runs in non-
interactive (or batch) mode. Input in batch mode comes from the indicated file, and the system terminates
after reaching the end of the file. In interactive mode, on the other hand, input is read from the terminal until
theara_shutdown 3 command is entered. In both modes, the system is also terminated if the root process
terminates. For the purpose of this description, interactive mode is assumed, as this is more instructive.

The root process is a Tcl process, which is more convenient for interactive experimentation than e.g. C. Any
standard Tcl4 command (see [OUS94]) can be typed to the prompt, e.g.

% foreach fruit {orange banana} {
+% puts $fruit
+% }
orange
banana
%

1. ... or a special “null” value of the return type, e.g.ARA_ID_NONE etc.

2. To be precise, there are actually several more processes running, but these are not visible to applications.

3. This command is intended for easy interactive termination only; hence it is not available in batch mode.

4. Tcl version 7.4 at the time of this writing.

20

The user typed aforeach command to the% prompt, which is a loop over a list of values in Tcl, and the
system executed the command, printing out the list elements (as the two lines without a prompt). Note that
a + in the prompt indicates that some enclosing command is not yet typed completely.

By the way, there is another version of the prompt which indicates the process currently connected to the
terminal. Theara_toggle_prompt interactive command is used to alternate between the two prompts:

% ara_toggle_prompt
2213942038,1% puts Hello!
Hello!
2213942038,1% ara_toggle_prompt
%

Here the figure in the prompt is the printed representation of the current process’s object id. This can be
helpful when several processes are connected to the same terminal intermittently.

�Ì2x� úûB8<Q|~¡{4K587:9-;!¸)B89-FD��|~9-5
üôý'üôýÑþ ÿ����������
	����
�������

There is one function to create an agent for each agent implementation language. For the sake of uniformity,
compiled agents are subsumed here as well; they can be thought of as being implemented in “native language”.
A Tcl agent is created from Tcl by theara_agent stub command, giving it a Tcl script argument to execute,
and trailing optional arguments which are passed on to the script as its command line arguments:

ara_agent <script> <arg>* 1

This will create a new agent running in parallel to the other agents in the local system, executing the indicated
Tcl script2. The newly created agent (in the form of its id) is returned as the command’s result.

The agent command might be used like this:

set slave [ara_agent {
 puts "I’m the slave, my argument is [lindex $argv 0]." 3

} \
foo

]
puts "I’m the master, created slave $slave."

This would print something like

I’m the master, created slave 2213942038,5.
I’m the slave, my argument is foo.

where2213942038,5 is the string representation of the newly created agent’s id.

1. s* denotes zero or more repetitions of s.

2. The actual command, like many of the following commands and functions, has some additional option arguments
which are, however, not described here in order to let the central concepts appear more clearly. The full descriptions
can be found in the on-line help pages.

3. This is a Tcl expression resulting in the value of the first argument of the script.

21

Most of the time, agents implemented in a specific language will create only agents of the same language,
but agents of different languages may be freely mixed as well. For instance, there is a C stub function
equivalent to theara_agent command, which a C agent might use to create a Tcl agent:

Ara_Id Ara_CreateTclAgent(char* script, int argc, char* argv[],
Ara_Allowance global, Ara_Allowance local,
int size, flags); 1

Of course both the Tcl stub and its equivalent C stub map to the same native core function behind the scenes.

Analogous to creating Tcl agents, there is another pair of stubs to create C agents. They are

ara_mace_agent <file name> <arg>*
Ara_Id Ara_CreateMaceAgent(char* fileName, int argc, char* argv[],

Ara_Allowance global, Ara_Allowance local,
int size);

Here the indicated file contains theMACE bytecode the new agent is to execute; again the optional arguments
are passed to the agent as command line arguments.

Compiled agents may be created specifying the name of a file and functionf:g which the new agent is to
execute. The functiong is expected to be defined in an object code file with base namef and a platform
dependent file name suffix. Some arbitrary parameter data for the new agent can also specified with the stubs:

ara_comp_agent <function name> [<arg>]
Ara_Id Ara_CreateCompAgent(char* fileAndFunction,

byte* data, int dataLength,
Ara_Allowance global, Ara_Allowance local,
int size);

The specified data is a memory area intended to hold parameter data for the new agent. When further languages
will be added to Ara, these will introduce additional agent creation stubs in the various languages similar to
the above.

It is often convenient for an agent to know its own id. Theara_me function returns just this:

ara_me
Ara_Id Ara_Me();

The agent creation API is completed by the stubs for agent cloning. When cloning, an agent creates a copy
of itself, duplicating its internal execution state2. Both agents return from the stub; however, the result returned
in each case discriminates the two copies: In the original agent, the (id of the) new agent is returned, while
ARA_ID_NONE respectively the empty string is the result in the new agent. The signatures reveal that the
cloning function is named in reminiscence to the fork system call in the Unix operating system:

1. Theflags andsize arguments correspond to optional arguments of theagent command not of interest here; the
optionalAra_Allowance arguments will be explained below.

2. This implies that theexternal execution state isnot duplicated (see section 1.3, “Agent Mobility:Going from Place to
Place” for an explanation of this difference). This is a technical restriction explained in section 5.5, “Cloning and
Checkpointing”, which may be abolished in a future release. So far, it may be mended by the new agent explicitly
recreating the external state, which should be possible to the largest part, because the external environment has not
been changed by the cloning procedure.

22

ara_fork
Ara_Id Ara_Fork(Ara_Allowance global, Ara_Allowance local, int size);

Note, however, that this function is used much less frequently in Ara than in Unix, since the Unix function
is often used to create an actually different process (by subsequent replacement of the new process’s memory
image), which can be achieved more simply in Ara, using an explicit agent creation function.

One final feature of agent creation to be noted here is the treatment of agent allowances. Remember that
each agent has a global and a local allowance limiting its resource consumption during its lifetime and at
the local place. At the time of creation, the allowances of an agent are determined, and there are two ways
to do this: In the first, the new agent is not given a private allowance, but made to share a common allowance
with the creating agent. Such agents sharing a common allowance form an agent group. A group lives on a
common allowance, distributing it among the group members according to their own policy. Shared allow-
ances are the default on agent creation. In contrast, the second way to determine a new agent’s allowance is
to give the agent its own private one. This allowance must be specified explicitly on agent creation, and it is
deducted from the allowance of the creating agent; the latter agent effectively transfers some of its own
allowance (which may come from a private or group allowance) to the new agent. In this case, the new agent
might be viewed as forming a group with only one member. The initial root process is a member of a special
group with unlimited allowance. A private allowance can be specified in C by setting theAra_Allowance

parameters of the creation stubs to non-default values; in Tcl, this is done by giving optional arguments, e.g.

ara_agent ?-la <local allowance>? ?-ga <global all.>? <script> <arg>*

Note that both the global and local allowances of the new agent must be less than or equal to that of the
creating agent, and that the local allowance must of course be less than or equal to the global one. This
concept ensures that the total allowance of an agent does not change by distributing it among various subagents
or partner agents, so that an agent cannot acquire unauthorized allowance by any means.

As a matter of fact, agent groups are a more fundamental concept in Ara than simply joining agents with a
common allowance. Each agent belongs to exactly one group at a time, and the group defines most of the
agent’s reachability in the system. Groups may form a hierarchy: Whenever an agent is created with a private
allowance as described above, the new group becomes a subgroup (or child group) of the creating agent’s
group. An agent has a general “access right” over all agents in its group and in its group’s child groups,
grandchild groups etc. This access right over an agent is not detailed any further, i.e. it entitles its holder to
any operation whatsoever over this agent.

An agent will leave its group when terminating or moving on to another place; in the latter case, it will find
itself the only member of a new isolated group at the new place. When the last member of a group terminates,
the group is implicitly deleted and the group’s residual allowance is returned to its parent group, if that exists.
Note that the current Ara implementation does not provide means to explicitly leave and join a group; this
will be available in the next release.

The set of all agents currently existing in the system can be retrieved using the following stubs:

ara_agents
int Ara_Agents(Ara_Id** buffer, int* bufferLength);

23

üôý'üôý�� ÿ�������������	����������������

An agent may terminate voluntarily at any time by exiting. Agents may also make others terminate by killing
them, provided the necessary access right. In both cases, an integer value may be left behind as the terminated
agent’s result.

ara_exit ?<value>?
void Ara_Exit(int value);

ara_kill <agent> ?<value>?
int Ara_Kill(Ara_Id agent, int value);

A parent agent may retrieve the termination value of another agent by waiting for it; obviously a successful
waiting also indicates that the other agent has indeed terminated. Waiting is possible both for a specific agent,
giving its id, and for any agent at all, which is the default.

ara_wait ?<agent>?
int Ara_Wait(Ara_Id agent, int* processResultPtr);

To end the root process (and thus the whole system) in interactive mode, theara_shutdown short-cut can
be typed to the prompt.

üôý'üôý'ü ÿ����������������� �!�"#�����

Having populated the system with agents, some functions are needed to control their parallel execution. Ara
agents are governed by a simple time sharing process scheduling model where each agent process is one of
three states at a time:Running, ready, orwaiting (also called “blocked”). There is always exactly one running
process; the others are either ready, meaning they will become running as soon as their they receive a share
of execution time, or they are waiting until they are set ready again. The scheduling states are usually managed
implicitly by the core, but there are also functions to change an agent’s state explicitly, provided the executing
agent has the access right over the concerned agent.

In particular, suspending an agent means setting it to the waiting state (if this is the running agent, an
immediate switch of control occurs), whileactivating a waiting agent sets it to the ready state. A running
agent may also set itself to the ready state. This is calledretiring, effectively performing a voluntary, temporary
release of control. The stubs for scheduling read as follows:

ara_suspend ?<agent>? ;# defaults to the running agent
int Ara_Suspend(Ara_Id agent)

ara_activate <agent>
int Ara_Activate(Ara_Id agent);

ara_retire
int Ara_Retire();

24

The core enforces time sharing between the agent processes by preemption1, suspending the running process
whenever its share is used up and setting one of the ready processes running2. It should be noted that once
an application engages in explicit suspending and activating, care must be taken to avoid deadlocks; retiring,
on the other hand, should be harmless.

Note that in the current Ara release, which implements most host accesses by direct operating system calls,
agents performing I/O operations retain exclusive control without intervening scheduling actions until the
operation is completed. Moreover, the time spent in the operation is not debited to the agent’s share of
execution time. Therefore, agents should be careful in performing host access operations of unknown dura-
tion. As mentioned briefly before, the common blocking I/O operation of reading from the standard input
stream does not exhibit this problem, being implemented without retaining control.

�Ì2 · yz|~RG|~9-5

The Ara core provides a simple synchronous real time service. The current time on the system clock may
be inquired, and an agent may suspend its execution for a certain amount of time, which is calledsleeping.
There is no facility as yet for asynchronous timed invocations. Here are the necessary stubs:

ara_now ?-nsec?
long Ara_Now(long* nsecPtr);

ara_sleep <sleeping time in ms>
int Ara_Sleep(int sleepingTimeMs);

�Ì2%$ MP7:J óÌ|~¡:7{�é�:|�9-;=<
üôý &ûýÑþ ÿ�������!������������'�� �()���*���#���

A service point is created when an agentannounces it by assigning it a symbolic name. The announcing
agent thereby assumes the role of theserver agent at this service point, and the service point becomes visible
under this name for meetings at the local place3. An attempt to announce a service point under a name
currently in use at the same place will be refused as an error. On success, the newly created service point is
returned in the form of its id:

ara_announce <name>
Ara_Id Ara_ServicePointAnnounce(char* name);

An agent maymeet a service point at the local place by specifying its name, thereby becoming aclient to it.
If the desired service point has not been announced yet, the meet operation blocks by default until that
happens, but the agent may also use a non-blocking variant which returns an error code in this case. On
success, the (id of the) service point is returned:

1. Compiled agents are an exception to this (see section 3.9).

2. The current implementation schedules ready processes according to a one-level round-robin policy. Scheduling
priorities are expected for a future release.

3. When the directory service becomes available with Ara, an announcement will optionally make the service point
globally visible through this service.

25

ara_meet ?-dontwait? <name>
Ara_Id Ara_ServicePointMeet(char* name, int wait);

An agent can play the role of a client or server at various service points at the same time, meeting or announcing
several of them. A service point can have any number of clients, but only one server, which assumes respon-
sibility for the service point.

üôý &ûý�� ��!�+��,� �-�������,.���/'!���01��0

To make use of a service point, a clientsubmits requests to it, to be replied by the server. The submit operation
will return the reply, thus realizing a form of synchronous interaction, implemented by blocking the client
until the reply. The syntax and semantics of the requests and replies are up to the client and server: From
point of view of the service point, they are simply random arrays of bytes. Requests can be submitted using
these stubs:

<client’s service point> <request>
int Ara_ServicePointSubmit(Ara_Id servicePoint,

char* request, size_t requestLength,
char** replyPtr, size_t* replyLengthPtr);

The syntax of the Tcl stub may seem somewhat peculiar; in fact, this command syntax of naming the object
first, followed by the function to be performed on the object, is called “object oriented” in Tcl, and is
recommended for access to complex objects. Anyway, the stub returns the reply to the request as its result,
provided the server did not reject it (see below), in which case an error is thrown. Note that requests and
replies from Tcl agents are necessarily character strings instead of byte arrays, since Tcl cannot represent
binary data. Additionally, due to the object oriented syntax, a few “request” strings may have actually pre-
defined meaning in Tcl; currently, this is only theleave request explained below in 3.5.4.

The C stubAra_ServicePointSubmit() handles general binary requests and replies, as does the internal
service point implementation1. The reply is returned in the final two parameters, which may be preset to
indicate a memory area intended to receive the reply; this area will be used if its size is sufficient, while a
fresh one will be allocated (and returned in these parameters) otherwise. This feature might be used as follows:

char replyBuffer[1024];
char* reply = replyBuffer;
size_t replyLength = sizeof replyBuffer;

Ara_ServicePointSubmit(servicePoint, "foo", strlen("foo")+1,
&reply, &replyLength);

/* Process data in reply[] */
if (reply != replyBuffer) {

Ara_Free(reply);
}

1. Note that clients should not submit binary data to servers which can handle character strings only and vice versa —
the data would be truncated at the first zero byte otherwise.

26

üôý &ûý'ü 23�*�����������,���� ,.4��5�" 6������7���8.4��/�!���01��0

The requests submitted to a service point are queued there, until the server fetches them. Fetching a request
usually blocks until there is at least one to fetch1, but there is also an option to return an empty request in
that case:

<server’s service point> fetch ?-dontwait?
int Ara_ServicePointFetch(Ara_Id servicePoint, int wait,

 Ara_FetchedRequest* fetchedRequestPtr);

Again, thefetch stub uses the object-oriented syntax. In addition to a reduction of typing, this has the
advantage of introducing command name spaces per object type: Function specifiers like fetch in this
example can be reused for other types than service points without name clashes.

A fetched request as returned by the stubs is implemented as a struct object of typeAra_FetchedRequest

with three components: The request data area, the name2 of the requesting agent, and an identifying token
to be used for replying. In Tcl, these components are represented as a three-element list. The server may use
the requestor’s name as it sees fit, e.g. to decide how much to reply, or whether to reply at all. The following
stubs are used toreply to a service request:

<server’s service point> reply <request token> <reply data string>
int Ara_ServicePointReply(Ara_Id servicePoint,

 char* data, size_t length,
 Ara_ServiceRequestToken token);

If a server decides that it would rather not reply to a specific request, it canreject it.

<server’s service point id> reject <request token>
int Ara_ServicePointReject(Ara_Id servicePoint,

Ara_ServiceRequestToken token);

üôý &ûý 9 .4������!������#����:*;�����<������,���� ,�="���0>�����

A client may end a meeting at a service point byleaving it; a server may cancel its announcement by
renouncing the service point.

<client’s service point> leave
int Ara_ServicePointLeave(Ara_Id servicePoint);

<server’s service point> renounce
int Ara_ServicePointRenounce(Ara_Id servicePoint);

Renouncing a service point is the only method to delete it completely from the system. If the service point
has submitted requests pending, they are implicitly rejected. When an agent terminates while still being a
client or server to some service point(s), it implicitly leaves respectively renounces all these.

1. There is also a facility to fetchall requests currently pending at a service point, which is not shown here to avoid
distraction.

2. At the time of this writing, agent names consist solely of the agent’s id, which makes them unique, but conveys no
further information beyond identity. Names will be extended in a future release to include structured information
about an agent, such as the identity of its principal, a symbolic description, its time of creation etc.

27

There is one final pair of service point operations: Opening and closing. A server mayclose a service point
for new requests, with the effect that any request submitted thereafter will immediately throw an error
indicating that the service point is closed. Any attempt of new clients to meet the service point will be treated
as though the service point would not have been announced yet (i.e. these clients are usually blocked).
Requests which had been pending or fetched, but not yet replied to, however, remain untouched and may
still be fetched respectively replied to as usual. Closing a service point is intended to indicate temporary
overload; later, the server mayopen it again, returning to normal operation. Any service point is initially
open after announcing it.

<server’s service point> close
<server’s service point> open

int Ara_ServicePointClose(Ara_Id servicePoint);
int Ara_ServicePointOpen(Ara_Id servicePoint);

üôý &ûý & ÿ?�����,5�"#�A@>B����,5�"#�

This example shows the most common usage pattern of service points, featuring a client and a server agent
at a service point. The server agent offers a service point namedInventory-Service , and expects requests
for the currently available supply (as a number) of certain items of interest. The server serves such requests
until requested for a pseudo-item namedfinished . The client agent in the example meets this service point,
requests the supply of items namedsmall-objects , and leaves again. Here is the example Tcl code for
the server and the client:

set supply(small-objects) 20
set supply(medium-objects) 8
set supply(large-objects) 3

set sp [ara_announce Inventory-Service]
puts “This is the Inventory server, waiting for requests...”
set request [$sp fetch]; # Request format: {data token client-name}
set item [lindex $request 0]
while {[string compare $item finished]} {

$sp reply [lindex $request 1] $supply($item)
set request [$sp fetch]
set item [lindex $request 0]

}
$sp renounce
puts “Inventory service closed down.”

£ ` h � a ÷ ^ ` b v a t b a ¼ d u b s \ � b \ d a ^ � � b ^ � b ^

28

Running the server and the client as agents at the same place will produce the following output:

This is the Inventory server, waiting for requests...
This is the client, found 8 medium objects in supply.

The reader may guess what would happen if the client executed$sp finished before leaving. To illustrate
the correspondence between the Tcl and C interfaces, here is the same server coded in C:

set sp [ara_meet Inventory-Service]
if {$sp == ““} {

puts “Cannot meet Inventory Service - exiting.”
exit

}
set result [$sp medium-objects]
puts “This is the client, found $result medium objects in supply.”
$sp leave

£ ` h � a ÷ ^ ` b v a t b a ¼ d u b s \ � b \ d a ^ � v h [b \ d

static int GetSupply(char* item)
{ /* Return the number corresponding to item */ }

...
Ara_FetchedRequest request;
char replyString[20];
Ara_Id sp = Ara_ServicePointAnnounce("Inventory-Service");
puts("This is the Inventory service, waiting for requests...");
Ara_ServicePointFetch(sp, 0, &request);
while (strcmp(request.data, "finished")) {

sprintf(replyString, "%d", GetSupply(request.data));
Ara_ServicePointReply(sp, replyString, strlen(replyString)+1,

request.token);
Ara_ServicePointFetch(sp, 0, &request);

}
Ara_ServicePointRenounce(sp);
puts("Inventory service closed down.");

v � a ÷ ^ ` b v a t b a ¼ d u b s \ � b \ d a ^ � � b ^ � b ^

29

�Ì2%C ���S�8|~�~|~;=O

The go operation for migration has been introduced before as the means for an agent to move between places.
While the basic act of moving is as simple as it seemed, some technical issues still have to be explained in
order to utilize all its functions. The full interfaces read as follows:

ara_go ?-la <local allowance at destination>? \
?-ga <global allowance at destination>? \
<destination place name> ?<agent>?

int Ara_Go(Ara_Id agent, Ara_PlaceName destination,
Ara_Allowance local, Ara_Allowance global);

An agent is always staying at a place, and the migration operation will make it move to another place as
named1 in the destination argument. Agent mobility can also be exercised on a single machine by making
agents move between places located on the same machine. Remember, however, that the current Ara imple-
mentation provides only one place per system; as a temporary fix, this can be circumvented by starting several
separate Ara systems on one machine2, each system with its own place. Agents can then move between the
places of these systems within the same machine.

When an agent goes to another place, it must take along an allowance for its expenses there. If the agent has
a private allowance, i.e. it does not share it with a group, it takes this along completely by default. If, however,
the agent shares its allowance with a group, it should indicate on moving how much of the group allowance
it wishes to take along. This is the purpose of the global allowance argument of the migration operation; it
defaults to the group allowance divided by the number of group members. Note that this default results in
the complete allowance in the common case of a singleton group, which is what is usually desired. The agent
leaves its group on migration, and the indicated allowance is deducted from that of the group to become the
agent’s private one.

Remember that agents can also have local allowances valid for their current place only. Therefore, besides
taking along a global allowance as described, the agent may also specify a local allowance on migration, to
be valid at the destination place (default is the full global allowance). At the time of this writing, the local
allowance specified by an arriving agent is always accepted by the receiving place (since there is currently
only one, default place per system, and its policy is to accept all agents and allowances).

There are two restrictions to the migration operation. First, as mentioned before, the external state of an
agent, i.e. its relations to other system objects and resources like service points, files, or windows are not
migrated along with the agent, since those objects depend on the local machine. In particular, a migrating
agent loses its relation to its group. Second, there is a somewhat obscure restriction on migration of agents
programmed in Tcl: They are not allowed to migrate from within Tcl’s traces and asynchronousproc ’s.
This is due to technical reasons and might be abolished in the future, but should not pose a real problem
anyway.

1. The API for place names will be explained in the subsequent section 3.7.

2. Note that the various Ara systems on the same machine have to be started each with its own environment settings to
prevent collisions. This is explained in the installation guide in the Ara software distribution.

30

Finally, the agent argument to the migration operation remains to be explained. This can be used to specify
which agent is to go. Of course this defaults to the running agent, but the migration mechanism in Ara has
been implemented so general as to also allow migrating another agent, asynchronously to its execution,
provided the active agent possesses the access right over the migrated one. This feature may be used e.g as
a building block for emergency measures or load distribution. Note, however, that the concerned agents must
be prepared to such migrations in some form.

�Ì2%D ����BD¡S7FEKB8RN7S<

Place names are not system objects, but application data, in order to allow agents taking them along on
migration. However, their exact format is hidden from the application by a small interface, which is still
expected to grow as place names will become more structured in future system releases.

In C, place names are represented as objects of typeAra_PlaceName. Objects of this type will usually be
obtained from the directory service once it is available, but they also have a character string representation,
which can be used by applications to construct place names1. Conversion betweenAra_PlaceName ’s and
their string representation are performed by these functions:

Ara_PlaceName Ara_PlaceNameCreate(char* initValue);
void Ara_PlaceNamePrint(Ara_PlaceName placeName, char* outputString);

In Tcl, being string based, the string representations must be used directly, and conversions are performed
internally. Note that in CAra_PlaceName ‘s which have been constructed should be deleted after use by
Ara_PlaceNameDelete (see below) to avoid a memory leak.

An agent can find the name of its current, i.e. local, place through the following stubs:

ara_here
Ara_PlaceName Ara_Here();

Place names can be compared for identity, returning a boolean result, by

ara_placename equal <place name> <place name>
int Ara_PlaceNameEqual(Ara_PlaceName, Ara_PlaceName);

The C interface also provides functionsto delete, copy, and assign place names; again, this makes no
sense for Tcl.

The stubs look as follows:

void Ara_PlaceNameDelete(Ara_PlaceName);
Ara_PlaceName Ara_PlaceNameCopy(Ara_PlaceName source);
void Ara_PlaceNameAssign(Ara_PlaceName* dest, Ara_PlaceName source);

1. In the current Ara implementation, providing only one place per system and basically only TCP as a communication
protocol, the string representation of place names ismachine[:port], machine being the DNS name or IP address of
the destination machine, andport being the TCP port of the target Ara system’s default place. Annex B gives a brief
outlook on the expected future format of place names.

31

�Ì2%G ÛïH-7:¡IHûÜD�S|~9-;=|~9-5

An agent may create a checkpoint of its current (internal) state using one of the following stubs:

ara_checkpoint ?-exit ?<exitVal>?? ?-ga <global allow. after restore>?
?-la <local...>?
int Ara_Checkpoint(int* restored, int exit, int exitValue,

 Ara_Allowance global, Ara_Allowance local);

Similar to the forking function of section 3.3.1, this function returns in two different contexts: After creating
the checkpoint, control returns like any normal call. If the agent is ever restored from the that checkpoint
later, it will resume control returning from this function as well, however indicating the fact of restoration
by a different result: The Tcl stub returns1 after a restoration, and0 on normal return; the C stub returns
the same in therestored output variable, and shows standard error behavior for the rest. The checkpoint
is stored as a disk file in a dedicated directory under a name derived from the id of the checkpointed agent.
This file is kept until the checkpoint is discarded. The allowance parameters define the allowance for the
agent after a potential later restoration; the defaults are the same as with migration. Note that this allowance
is stored with the checkpoint, and deducted from the allowance of the checkpointing agent. Finally, it is a
common case that an agent plans to exit immediately after checkpointing itself; the “exit” flag provides just
this, optionally leaving a termination value as usual. This flag is not only a convenience, but the only way
for an agent to store itscomplete allowance in the checkpoint, since any execution continued after checkpoint
creation, no matter how short, would require its own share of the available allowance.

Restoration works by specifying the id of the agent to be restored; the corresponding file is then used to
recreate the checkpointed agent, and the checkpoint file is deleted. The restored agent is placed in its own
isolated group by default, but it may also be received into the restoring agent’s group. The agent to be restored
defaults to the current one. Note that restoring the current agent implies the “termination” of its “present”
incarnation, since that is replaced with the incarnation from the time of checkpointing. The stubs read as
follows:

ara_restore ?-mygroup? ?<agent>?
int Ara_Restore(Ara_Id agent, int mygroup);

When restoring another agent, the Tcl stub returns nothing, while the C stub shows standard error behavior.
Obviously, in the case of restoring the current agent, restoration does not return. Remember that restored
agents cannot expect to find their external state unchanged (this was explained in section 1.2). When restoring
another agent, the application should either make sure that no incarnation of this agent has survived anywhere,
or should be prepared to resolve such collisions.

When checkpoints are no longer needed for potential restorations, they can be explicitly discarded as follows,
deleting the corresponding file:

ara_discard ?<agent>?
int Ara_Discard(Ara_Id agent);

When discarding a checkpoint, the allowance stored with it is recycled by crediting it to the discarding agent’s
allowance. Discarding returns a boolean result indicating whether such a checkpoint had indeed existed.

Both restoring and discarding another agent’s checkpoint do not perform any access right checking in the
current implementation.

32

The most common use of checkpointing is to create a fall-back line whence to recover after a fatal failure.
An agent might use this before going to a “dangerous” place, registering at some “wake-up service” to restore
it unless the registration is cancelled within a certain time:

if {![ara_checkpoint]} {
$wake-up register [ara_me] 100 ;# "Wake me up after 100 time units"
set back [ara_here] ;# The name of the local place
ara_go $away
... ;# Do some dangerous work at $away
ara_go $back
$wake-up cancel [ara_me]

} else {
Oops, did not return in time from $away - start recovery,
e.g. find out if the agent has crashed.
...

}

Another common usage is to guard “dangerous” procedures with checkpoints, under the assumption that
some other agent will restore the failed one:

proc p_guarded {...} {
if {[ara_checkpoint]} {

return "Failed in proc p!"
} else {

p ;# Do the real work
ara_discard

} }

�Ì2%J Ûï�:RNÜ8|~��7:FN4K587:9-;=<

Compiled agents provide a native speed alternative to the standard interpreted Ara agents for cases where
certain security and portability requirements are not strictly necessary. Most prominently, this applies to
agents which are resident and trusted at a site. This is the way to go to extend an Ara system with specific
resident functionality, e.g. a new service, to be offered to visiting agents: The service is coded as a server
agent (in C, presumably), compiled to native code, and a compiled agent is created from this. This can be
performed on demand at run-time when an agent requests that service1. While the core is common to all Ara
systems, the set of stationary server agents is what distinguishes individual sites, potentially ranging from
hand held devices with only a few server agents to corporate installations with hundreds of them.

Compiled agents are different in two respects, apart from their increased execution speed. They cannot
usually migrate, and the security of their execution cannot totally be warranted. With regard to their common
usage as described, these restrictions do not pose a problem. Apart from migration and security, they can be
treated like any other agent: The complete API as introduced in section 3 applies to compiled agents as well.
The lack of migration capability is rooted in the very nature of native code, operating on a specific micro-
processor after all, which precludes a direct transfer to a machine with a heterogeneous architecture. Actually,
migration of compiled agentshas been implemented in an indirect way, by exploiting the source code,

1. Compiled agent creation is implemented using dynamic link editing of the running Ara system.

33

provided it is available1. The source code is transparently moved along with the migrating agent and recom-
piled at each destination. Concerning, however, the security issues raised by compiled agents, some further
explanations are appropriate.

Compiled agents are not executed within an interpreter, but have access to the physical processor, memory,
and operating system. They might write or jump to arbitrary memory locations and perform unpredictable
system calls. It is difficult to enforce (efficient) run-time checks upon them while staying independent of the
operating system and hardware2. For this reason, Ara does not currently perform any run-time checking of
compiled agents. It is, therefore, generally recommended to load compiled agents obtained from trusted
sources only. In the case of a remote source, this means a digitally signed transfer3 from a trusted site. For
compiled agents loaded from the local file system, it must be ensured that this is from a location protected
against access by untrusted agents.

Besides the risk of undue access, another security concern with compiled agents is caused by their exclusive
possession of control once the system enters compiled code. A compiled Ara agent retains control until
voluntarily and synchronously releasing it. This implementation was chosen since an asynchronous, forced
interruption would leave the agent in a machine-dependent state, considerably complicating its further han-
dling, while gaining nothing for normal, interpreted agents. For this reason, compiled agents must be trusted
to return control to the system frequently enough to preserve parallelism among the agents in the same
system. This can be done e.g. by retiring at regular intervals or calling a special function for time slice
checking. An example for this can be found in the system’s internal communication process (see section 5.2).

Finally, the API for compiled agents is slightly different in three syntactical or technical respects from that
used by C agents: First, once they are started, compiled agents are trusted as explained above. This implies
that the security measure of protecting system objects by an indirection through object ids no longer makes
sense. Accordingly, compiled agents usually access system objects directly through memory addresses (i.e.
C pointers): Instead of having one Ara_Id type for all objects, there are separate types such as
Ara_ServicePoint which are returned by object creation functions and expected by object access func-
tions. Special values such asARA_SERVICEPOINT_NONEetc. are used in place ofARA_ID_NONE to designate
null values. Second, within the Ara core, agents are usually called “processes” for historical reasons. This
is mirrored in the naming used in the compiled agent API, e.g. the object type for agents is called
Ara_Process . This difference bears no further significance: Whenever “process” is used as in
Ara_Kill(Ara_Process victim) , it is safe to simply think of an agent. Third, the core function to create
compiled agents has a slightly wider interface than the C stub given in section 3.3.1, allowing to create
processes executing code which already exists in memory in compiled form (instead of loading it from a file):

Ara_Process Ara_CreateCompProcess(Ara_CompCode code, char* functionName,
byte* data, int dataLength,
Ara_Allowance global, Ara_Allowance local,
int size, int flags);

1. The source code is assumed to be contained in a file namedf.c, wheref is the name specified at agent creation (see
section 3.3.1).

2. There are some rather specific approaches to this, e.g. [LSW95, WLA+93] use a modified compiler.

3. Support for this will be added in a future Ara release.

34

Thecode parameter may be used to specify the function to be executed by the new process;functionName

must beNULL then.Ara_CompCode is a type definition forint (*)(byte*, int) .

�Ì201LK 46�~�~�NMïB89-¡:7S<

Allowances have played a role several times before already, as arguments to the agent creation and migration
operations, the details of which have been covered in the respective sections (3.3.1 and 3.6, respectively).
Accordingly, the purpose of allowances to limit an agent’s resource accesses, and their treatment in agent
creation and migration should be clear by now, as well as the concept of global and local allowances. What
remains to be described is the API for explicit access to allowances. It should be remarked here that allowances,
including groups, are a recent concept in Ara, and not complete yet.

Remember that at the time of this writing, allowances are defined for execution time and memory consumption
only; other resources like disk space, system objects created (i.e. agents, service points, network connections
etc.) or visited places will follow. An agent caninquire its own (and others’, access rights provided) current
local and global allowance at any time; this might be used to choose between actions of differing resource
requirements, or to check whether the local place has indeed honored the local allowance desired on entering
it. The stubs look as follows:

ara_get_allowance ?<agent>?
int Ara_GetAllowance(Ara_Allowance* global, Ara_Allowance* local,

 Ara_Id agent);

Ara_Allowance is a C struct containing the individual allowances for execution time and memory as integer
members, while the Tcl representation of allowances is a two-element list of these numbers. The
ara_get_allowance stub returns the global and local allowance as a list of two such allowances.

Not surprisingly, it is not possible to arbitrarily set an allowance, a security measure to prevent tampering
by greedy agents. There is, however, an operation totransfer some allowance from one agent to another,
provided the necessary access right. The transferred “amount” is added to the receiving agent’s allowance,
and may be deducted from the source agent’s allowance1. This ensures that allowances can be distributed
among agents, yet the total sum of all allowances cannot be increased. Note that the direction of the transfer
can be reversed, corresponding to giving and taking. Allowance transfers are mostly intended for cooperating
agents (re)distributing resources among each other, and agents running out of resources having additional
allowance transferred to them (e.g. from a system service contacting their home site). Other uses of allow-
ances, however, are conceivable as well, e.g. as objects of trade between agents. The offer for a remote service
might be bundled together with an allowance sufficient to cover the travel and carry out the access, to make
the offering comparable independent of the expenses involved with its use.

When transferring allowances between two agents, it is important to discriminate between transfers with
respect to the local, global, or both variants of it. As a general prerequisite, the transferred amount is deducted
from the source agent’s allowance, so the latter must be sufficient to cover the transfer. This assured, transfers
of purely global allowances are performed without further questions. Transfers of local allowances, on the
other hand, additionally require that both agents are located at the same place, in order to preserve the total

1. The exact semantics of such a “transfer” depends on the type of resource, e.g. on whether the allowance is qualitative
or quantitative.

35

local allowances issued by this place; further, the amount transferred must stay within the bounds of the
recipient’s global allowance. Note that a transfer of purely local allowance does not change the global allow-
ances of either source or recipient agent; a simultaneous transfer of both variants may be used for this. Here
are the stubs for allowance transfer; the source agent defaults to the current one:

ara_transfer_allowance ?-la <local allowance>? ?-ga <glob. allowance>?\
<recipient agent> ?<source agent>?

int Ara_TransferAllowance(Ara_Allowance global, Ara_Allowance local,
 Ara_Id sourceAgent, Ara_Id recipientAgent);

As mentioned before in the allowance discussion of the agent creation and migration operations, agents are
implicitly assigned a group at creation time, possibly sharing a common allowance. At the time of this
writing, there are no operations to explicitly leave1 or enter a group. Presently, an agent can find the size,
i.e. the number of members of its own (or another agent’s, access right provided) group as follows:

ara_groupsize ?<agent>?
int Ara_GroupSize(Ara_Id agent);

At the time of this writing, there is no facility for agents to catch allowance exhaustion; instead, agents having
exhausted their allowance will be terminated by the system. This should not be a severe problem, since an
agent can, of course, inquire about its current allowance at any time and direct its actions according to that.
In a future release, agents will be able to register arbitrary code to be executed asynchronously when resources
run low, to take appropriate measures to avoid being terminated, such as leaving the system or having addi-
tional allowance transferred to it.

�Ì201�1 O#Oû9-B8RN|~¡{��7:RN�:J O

Languages with explicit memory management need a facility to dynamically obtain raw memory from the
system. C is an example for such a language, while Tcl is not. As memory consumption must be accounted
to the consuming agent’s allowance, all dynamic memory allocations must be performed through dedicated
core functions. The C API provides stubs for the two classical memory management functions, allocation
and deletion of a memory block:

void* Ara_Alloc(size_t size);
void Ara_Free(void* p);

As usual, memory blocks allocated byAra_Alloc() must be freed usingAra_Free() in order to reuse
that memory. Unfreed memory will be freed implicitly on agent termination. Note that while languages
without explicit memory management do not (have to) use these stubs, their memory consumption is
accounted nevertheless, since in that case the interpreter uses the concerned core functions implicitly.

�Ì201 w Ö�9-Ü8E-;!B89-FQPîE-;=Ü8E-;

As explained in section 1.4, “Accessing the Host System”, currently Ara does not yet provide I/O functions
of its own, and allows applications to use their own native I/O facilities instead. For instance, a Tcl agent
may read from a file as usual by

1. Remember that a migrating agent implicitly leaves its group (behind).

36

set file [open myfile]
read $file
close $file

while a C agent would use the familiar

FILE* fp = fopen("myfile", "r");
fread(buffer, size, n, fp);
flose(fp);

The implications of this arrangement have also been mentioned in section 1.4. Actually, one I/O Ara function
does exist already, namely that for reading a line of characters from the standard input stream (usually a
terminal). Its stubs are as follows:

gets stdin # i.e. standard Tcl’s ‘gets’ command serves as the stub
char* Ara_Gets(char* buffer, int bufferLength);

RD� �+çé"×*ÏÊÆ" /�êëêë%'��ÊTSVU&/�êëÍ�Ç'

Having looked at the Ara programming features in some detail, it will also be helpful to see the complete
picture, that is, an actual application in full source code1. In the limited space available, this section will
present a small demonstration application, featuring a mobile agent to search the World Wide Web for
“interesting” documents. The agent will visit sites, examine their data, collect results, and continue its itinerary
according to its findings. In terms of section 2.1, this is a typical information research application.

The strategy of the search agent is to move along the hyperlinks found in interesting documents, in the hope
that these might lead to other interesting documents, as is often the case given the roughly content-based
topology of the web. The search continues until a predetermined allowance of resources has been consumed,
or until there are no more interesting links to be examined. As the result of its search, the agent brings a list
of the URLs (i.e. web addresses [BMM94]) of all discovered documents back to its home place. To provide
access to the documents of a site, a stationary server agent is employed which provides a service point acting
as a document retrieval service: When presented with the URL of a document, it will reply with the contents
of this document. Conceptually, this server is a functionally restricted proxy agent (in terms of section 1.4)
of the local web server demon; however, to keep the example short enough, the presented server agent
accesses the documents directly through the file system, rather than through conversation with a web server.

The question remains of how to define what exactly makes a document “interesting” in terms of this search.
Incidentally, the agent is to search for documents about mobile agent technology. Many sophisticated con-
ditions are conceivable to delimit the desired content, but rather than digressing into text analysis here, it
shall suffice for the sake of illustration that the document contain the string “mobile agent”.

·Ï201 yzH-7WO#�:¡:E-RN7S9-;!MP7:J=ó-7:J-4K587:9-;

Being stationary, the server is implemented as a compiled agent for improved performance; the implemen-
tation shown here is written in C. The Ara software distribution also contains an equivalent implementation
in Tcl for the sake of comparison. Basically, the server announces a service point named “Document Retrieval

1. The source code is also contained in the Ara software distribution.

37

Service”, and then fetches requests for documents in a loop until termination. Each request is expected to
have the format of a path name of a document file in the server’s local file system, and the contents of the
corresponding file are read and returned to the client as a reply. This results in the following overall structure:

The full source code is now presented in detail. The server is implemented as a main functionServer_Main ,
which serves as the top-level functionf of the underlying compiled agent upon agent creation (see section
3.3.1, “Agent Creation”). As is common in C, the source code begins with some inclusions of needed inter-
faces; note in particular the inclusion ofara.h , the Ara core API for compiled agents. The main function
commences with the definition of three macros required by Ara for handling the function’s state (see section
5.4 and the documentation in the Ara software distribution), which are not of further interest here, as they
are defined to be empty.

#include <stdio.h>
#include <string.h>
#include <ara.h>

int Server_Main (data, dataLength)
byte* data;
int dataLength;

{
define Ara_ParcelLocalState(process)
define Ara_UnparcelLocalState(process)
define Ara_CleanupLocalState

After defining the needed local variables, another Ara state handling macro follows which marks the beginning
of the function’s code. The server initializes itself by determining the path prefix of the documents it wishes
to provide for client access. All such documents are assumed to reside in the file system subtree rooted at
this prefix, and any document file name requested by clients will be interpreted as relative to the prefix.
Incidentally, the prefix in this example is chosen as the directory the server was started from, to allow for
easy experimentation with different prefixes. The initialization is completed by announcing the service point
for delivering the documents, whereupon the server enters the loop to wait for document requests.

serviceP = Ara_ServicePointAnnounce("Document Retrieval Service");
do {

Ara_ServicePointFetch(serviceP, ARA_SERVICEPOINT_WAIT, &request));
normalizedPathName = Parse document file name from request.data;
length = size of document file;
replyBuffer = Ara_Alloc(length);
fread(from file named normalizedPathName, into replyBuffer);
Ara_ServicePointReply(serviceP, replyBuffer, length, request.token);
Ara_Free(replyBuffer);

} while not finished;
Ara_ServicePointRenounce(serviceP);

£ a e X h b � b h � d ^ ÷ ` d ÷ ^ b a ¼ d u b � a ` ÷ f b \ d � b ^ � b ^

38

define EMERGENCY_STRING "Out of memory"
char prefix[1024];
char* normalizedPathName;
Ara_ServicePoint servicePoint;
Ara_FetchedRequest request;
char requestBuffer[1024];
char* replyBuffer;
FILE* stream;
int length = 0;

Ara_DeclAndCheckSwitch1;

getcwd(prefix,sizeof prefix);
strcat(prefix,”/”);
server = Ara_ServicePointAnnounce("Document Retrieval Service");

do {

Each pass through the loop begins with fetching a request from the service point; the server uses the blocking
variant of fetching in order to wait until at least one request is available. The macro enclosing the core call
for fetching is part of the state handling again. Requests are fetched using anAra_FetchedRequest struct
object, which also refers to a memory area to receive the request data. This area may optionally be initialized
with one prepared by the server for this purpose, as is shown here with therequestBuffer . In any case,
theAra_FetchedRequest will contain the request data on return from fetching, and the prepared memory,
if specified, is used, provided it was large enough; otherwise, a fresh area will have been allocated. After
fetching, a memory buffer to hold the physical path name of the requested document is allocated.

request.data = requestBuffer;
request.length = sizeof requestBuffer;
Ara_SwitchCall1(Ara_ServicePointFetch(servicePoint,

ARA_SERVICEPOINT_WAIT, &request));
normalizedPathName = Ara_Alloc(request.length+strlen(prefix)+1);

Now the path name buffer is filled with the requested file name, appended to the subtree prefix described
above. If the request data space had indeed been freshly allocated during fetching, it may be deleted now.
The path name is subjected to some parsing, and it is checked that it still bears the prefix after that; this is a
security measure explained with the parsing function below. Now the requested document file can be opened,
and it is read in whole into a freshly allocated buffer. A trailing zero byte is appended to make the data easily
handled as a character string in the case of a text file.

39

if (normalizedPathName != NULL) {
sprintf(normalizedPathName,"%s%s", prefix, request.data);
if (request.data != requestBuffer) {

Ara_Free(request.data);
}

 if (ParseFileName(normalizedPathName) != NULL
&& !strncmp(normalizedPathName, prefix, strlen(prefix))) {

if ((stream = fopen(normalizedPathName, "r")) != NULL) {
fseek(stream,0L,2);

 length = ftell(stream);
 fseek(stream,0L,0);
 if (length < strlen(normalizedPathName)+80) {

 replyBuffer = Ara_Alloc(strlen(normalizedPathName)+81);
} else {

 replyBuffer = Ara_Alloc(length+1);
}
if(replyBuffer == NULL) {

replyBuffer = EMERGENCY_STRING;
} else if (!fread(replyBuffer,1,length,stream)) {

sprintf(replyBuffer,"Error while reading file %s",
 normalizedPathName);

}
 replyBuffer[length] = ’\0’;
length += 1;
fclose(stream);

If all went well, the reply data is now assembled in thereplyBuffer . If, on the other hand, errors occurred
in accessing the file, an error message is stored in thereplyBuffer instead as follows:

} else {
 replyBuffer = Ara_Alloc(strlen(normalizedPathName)+80);
 if(replyBuffer == NULL) {

replyBuffer = EMERGENCY_STRING;
 } else {

 sprintf(replyBuffer,
"Illegal operation: File %s does not exist",
normalizedPathName);

 }

40

 length = strlen(replyBuffer);
}

} else {
replyBuffer = Ara_Alloc(strlen(normalizedPathName)+80);
if(replyBuffer == NULL) {
 replyBuffer = EMERGENCY_STRING;
} else {
 sprintf(replyBuffer, "Illegal operation: Permission denied");

}
length = strlen(replyBuffer);

}
} else {
 replyBuffer = EMERGENCY_STRING;
 length = strlen(replyBuffer);
}

The processing of a request is completed by passing the retrieved data as a reply to the service point, and
freeing all buffers.

Ara_ServicePointReply(server, replyBuffer, length, request.token);
Ara_Free(normalizedPathName;
if(!strcmp(replyBuffer, EMERGENCY_STRING)) {

Ara_Free(replyBuffer);
}

The server will now begin the next pass through the loop, until it terminates. In this example, the server agent
can be terminated by submitting a special request “exit” to the service point. This is only for convenient
experimentation; a real server would presumably not let itself be terminated by a client, but would rather
decide this on its own based on additional conditions, or be terminated by some superior controlling agent.
Upon termination, the service point is renounced, and the main function ends with some macro undefinitions
corresponding to those at the beginning.

} while(strcmp(request.data, "exit"));

Ara_ServicePointRenounce(servicePoint);
return 0;

undef Ara_DeleteLocalState
undef Ara_UnparcelLocalState
undef Ara_ParcelLocalState
}

The last item to report of the server is the auxiliary function used for file name parsing. This function removes
any pseudo-directories named.. from a path name by “performing” their effect on the rest of the path. This
is a security measure on the server’s side, since only files in the file system subtree designated for client
access are to be exposed. A malicious client could try to subvert this restriction by inserting.. into the file
name, effectively reaching out of the designated subtree. This is the source code of the function:

41

static char* ParseFileName(pathName)
char* pathName;

{
char* help;
int i, j;
while (help = strstr(pathName, "//")) != NULL) {

j = help - pathName-1;
while(j >= 0 && pathName[j] != ‘/’) {

 j --;
}
if(j == -1) { Ara_Free(pathName);

return NULL;
}
for(i=help-pathName+3; i<=strlen(pathName); i ++, j++) {

pathName[j] = pathName[i];
}

}
return pathName;

}

·Ï2xw yzH-7{M?7SBDJ�¡:H�465D7S9-;

The search agent is implemented in Tcl, which is a language well adapted to text processing, e.g. through
regular expression handling. Roughly, the agent works through a list of URL references to documents to be
searched, moving to each document’s site, and retrieving its content from the local document retrieval service
(see former section). Each retrieved document, provided it turns out to be interesting as described above, is
searched then for hyperlinks referencing further documents, and all such references are added to the work
list for later inspection. Additionally, all references to interesting documents are collected, and this collection
is printed as the search result upon returning to the home site. At regular intervals, the residual allowance is
checked if it is still sufficient to continue the search. The overall structure of the agent thus looks like this:

Initialize and ask the user for an initial list ofurlsToVisit to start the search at
SearchWeb:

while (there are urlsToVisit and AllowanceSufficient) {
ara_go site of next document
set servicePoint [ara_meet "Document Retrieval Service"]
while (there areurlsToVisit at this site and AllowanceSufficient) {

set document [$servicePoint path of next URL]
if ($document contains "mobile agent") {

Collect this URL
SearchDocument $document , extracting URLs and adding them tourlsToVisit

}
}
$servicePoint leave

}
ara_go $home
PrintResult

£ a e X h b � b h � d ^ ÷ ` d ÷ ^ b a ¼ d u b � a ` ÷ f b \ d � b _ ^ ` u] i b \ d

42

The full source code of the agent’s main program begins with the initialization of the global variables, the
purpose of which is explained in the source code comments. Most important isurlsToVisit , the general
list of references still to be searched. At the beginning of the program, this list is filled with some document
URLs typed in by the user; simple site names may also be typed here, which are interpreted as references
to the top-level document at that site.

set filesRead "" ;# contains all files already read
set document "" ;# the content of the currentFile
set urlsToVisit "" ;# list of files (site/path) still to read
set currentSite "";# name/adress of the Site currently worked at
set currentFile "";# file (incl. path) currently examined
set filesHere "" ;# files found on this site which are still to be

examined; files contain the path without site
set home [ara_here];# the site to return to after work (the start site)
set sufficientTime 0 ;# flag indicating after returning home whether

execution time was sufficient
set sufficientMemory 0 ;# the same for memory

puts "Please enter the machine(s) or URL(s) to start the search at:"
while {[gets stdin next]} {

if {[regexp -nocase {http://} $next]} {
Assume that $next is a URL to start the search at.
regexp {http://(.*)} $next dummy next

} else {
Assume that $next is a machine to be searched; start at its index
document.
set next "$next/index.html”

}
lappend urlsToVisit $next

After initialization, the web search is started. The agent is instructed to search for documents matching the
(most simple) regular expression “mobile agent”, and to finish the search early if its residual allowance of
CPU time ever falls below 5 seconds, or if its memory allowance falls below 100 KB. After returning home,
the results are printed, and the user is notified if the agent had to finish early, as opposed to completely
covering all reachable documents.

SearchWeb {5 100k} "mobile agent"
ara_go $home
PrintResult
if { !$sufficientMemory} {

puts "Gone out of memory allowance"
puts "Total allowance left: [ara_get_allowance]"

}
if { !$sufficientTime} {

puts "Gone out of time allowance”
puts "Total allowance left: [ara_get_allowance]"

}
exit

43

Since the agent will return when its allowance runs low, it should be started with sufficient allowance in the
first place, the exact amount of which will of course depend on the size of the web to be searched.

The heart of the search agent is theSearchWeb procedure, basically consisting of two nested loops. The
outer loop processes the general list of URLs still to be examined, usually located at various remote sites.
Once moved to a specific site of these, the agent meets the local document retrieval service, and retrieves
and searches all known documents located at this site. Note also that before each loop entry, the agent checks
its residual local allowance to leave in time before this runs low. In the example here, the agent returns home
in such a case.

proc SearchWeb {minAllowanceNeeded} {
global document
global filesHere
global filesRead
global currentSite
global currentFile
global urlsToVisit
global sufficientTime
global sufficientMemory

while { ([llength $urlsToVisit] > 0)
&& [AllowanceSufficient $minAllowanceNeeded]} {

set next [lindex $urlsToVisit 0]
set urlsToVisit [lreplace $urlsToVisit 0 0]
next: the next site/path/file to be visited

regexp {([^/]*)(.*)} $next dummy currentSite currentFile
the file (incl. path) and the site are extracted
lappend filesRead [ParseFileName "$currentSite$currentFile”]
mark the file as read

if {![catch {ara_go $currentSite}]} {
successfully changed to the current site

puts "Search agent [ara_me] arrived at $currentSite”

lappend filesHere $currentFile

set servicePoint [ara_meet "Document Retrieval Service”]

while { [llength $filesHere]
&& [AllowanceSufficient $minAllowanceNeeded]} {

there is still a file at this site not examined, and there are
enough resources left to examine at least one file

set currentFile [lindex $filesHere 0]
set filesHere [lreplace $filesHere 0 0]

44

At this point, a specific document, identified by its path name stored incurrentFile , has been chosen for
examination. The search agent retrieves the content of this document by requesting it from the service point
of the retrieval service. If the document could be retrieved, it will be examined and searched further:

set document [$servicePoint $currentFile]
lappend filesRead "$currentSite$currentFile”
if { $document != "Illegal operation: File does not exist” &&

$document != "Illegal operation: Permission denied” &&
 $document != "Out of memory”} {

SearchDocument $searchExpr
} else {

puts "\”$currentFile\”: $document”
}
unset document

The variable holding the document content is explicitly deleted (unset) after processing the document. This
is a typical optimization measure prior to a migration, in order to avoid taking along data which is not really
needed any more. If this deletion were omitted, the variable would be implicitly deleted by later overwriting
it with the content of the next retrieved document; this, however, might not happen until after the next
migration.

In order to reduce multiple visits to thecurrentSite , the agent examines all candidate documents located
there before moving on to another site, no matter in what sequence they had been added tourlsToVisit .
Note, however, that multiple visits cannot be completely avoided in the case where the agent learns of the
existence of a candidate document only after having visited that document’s site. The references to local
files are thus transferred fromurlsToVisit to filesHere :

while {[set further \
[lsearch $urlsToVisit "$currentSite/*”]] >= 0} {

regexp "$currentSite\(.*)” [lindex $urlsToVisit $further] \
 dummy file

set urlsToVisit [lreplace $urlsToVisit $further $further]
lappend filesHere $file

}
} ;# filesHere

When there are no more documents known to be searched at the local site, the agent leaves for the next site,
and continues its loop until all references have been processed:

$servicePoint leave
puts "Search agent [ara_me] leaves $currentSite”

} else {
puts "Search agent cannot go to $currentSite”

} ;# if go
} ;# while urlsToVisit

}

Processing an individual document is performed by theSearchDocument procedure. This extracts all
hyperlink references from the document, and each reference, local or remote, is transformed into a normal
form: Thehttp:// protocol specification is removed1, as well as any interspersed// , /../ or /./ . Local

45

references are transformed into absolute path names, while global ones have an additional site name added
at the front. Note that local references are not added to the generalurlsToVisit list, but collected in the
local filesHere list, as expected by theSearchWeb procedure in its effort to search local files before
remote ones.

proc SearchDocument{searchExpr} {
global document
global filesHere
global filesRead
global currentSite
global currentFile
global urlsToVisit

if {![regexp $searchExpr $document]} {
return

}
if {![GetTitle]} {

puts "\”$currentFile\”: Illegal format: No HTML-<TITLE>”
return

}

if {![regexp {(/+.*/)([^/]*)} $currentFile dummy path]} {
set path /

}
Initialises path as the path of the currentFile

while {[regexp -nocase \
"<A(|\t|\n)+HREF(|\t|\n)*=(|\t|\n)*\”(\[^<\]*)\”(|\t|\n)*>” \

$document dummy dummy dummy dummy reference]} {
while a new reference is found in the currentFile

regsub -nocase \
"<A(|\t|\n)+HREF(|\t|\n)*=(|\t|\n)*\”(\[^<\]*)\”(|\t|\n)*>” \

$document "" document
deleting the reference in document

set url [regexp -nocase "http://$currentSite” $reference help]
if {$url || ![regexp -nocase {http://} $reference help]} {

it is a reference to this site (search for http-references only)

if {$url} {
extracting the reference (including the complete path)
regexp -nocase "http://$currentSite\(.*\)” $reference help \

reference

1. For the sake of simplicity, the client searches only for HTML documents accessible by the HTTP protocol (i.e. having

URLs beginning withhttp://).

46

}

if {![regexp {^/} $reference dummy] } {
set reference $path/$reference

}
the path is added to the new reference if it is a relative one

set reference [ParseFileName $reference]

if {[lsearch $filesRead \
[ParseFileName "$currentSite/$reference”]] < 0 &&

 [lsearch $filesHere $reference] <0} {
lappend filesHere $reference

}
if the new file has not been read before it is appended to the
list filesHere

} else {
it is a reference to a remote site

regexp {[^:]*://(.*)} $reference dummy reference
set reference [ParseFileName $reference]
format of reference is now site/path/file
if {[lsearch $filesRead $reference] < 0 &&

 [lsearch $urlsToVisit $reference] < 0} {
lappend urlsToVisit $reference

}
}

} ;# while
}

The search agent is completed by four auxiliary procedures for printing out the table of collected document
references, parsing a file name, collecting the title of an HTML document, and checking whether the residual
allowance of the agent is still sufficient. Note that file name parsing is performed here not for reasons of
security, as in the server agent, but to arrive at a unique representation for each URL, in order to prevent
multiple searches of one document referenced by several equivalent, but not identical URLs. The source
code of the procedures follows here:

proc PrintResult {} {
global table
foreach title [array names table] {

puts "Title: $title”
puts "Files: http://$table($title)”
puts ""

}
}

proc ParseFileName {file} {
while {[expr [regsub -all {/\./} $file / file] \

+ [regsub -all {//} $file / file] \

47

+ [regsub -all {([^/]+)/\.\./} $file / file]] } {}
return $file

}

proc GetTitle {} {
global document
global table
global currentFile
global currentSite
if {[regexp -nocase {<TITLE>([^<]*)</TITLE>} $document dummy title]} {

Enter the reference leading to this document into the table of document references. Note that this table
associates document titles with alist of references, since there might be several copies of the same document
at different locations, and the table is to list all of them. In any case, two documents bearing the same title
are assumed to be identical.

lappend table($title) [ParseFileName $currentSite/$currentFile]
return 1

}
return 0;

}

proc AllowanceSufficient {minAllowanceNeeded} {
global sufficientTime
global sufficientMemory

set sufficientTime [expr [expr [lindex \
[lindex [ara_get_allowance] 1] 0] == -1] || \

[expr [lindex [lindex [ara_get_allowance] 1] 0] > \
[lindex $minAllowanceNeeded 0]]]

set sufficientMemory [expr [expr [lindex \
[lindex [ara_get_allowance] 1] 1] == -1] || \

 [expr [lindex [lindex [ara_get_allowance] 1] 1] > \
 [lindex $minAllowanceNeeded 1]]]

return [expr $sufficientMemory && $sufficientTime]
}

48

YD� ��"0/[Z]\ÌÒùËÑ Ïê �."×Î#Õ�%'ËÑ ÏÎÏËÑò�"0 /���ð_^�êëÍ�Ç' #êë Ï��ËÑ/ÐËL%È*Ï�

This section explains selected internal concepts of the Ara system which are useful to gain deeper insights
into its rationale and capabilities, and also to combine it with new software components. The material pre-
sented here is an offer for the technically interested reader, but not required for using the system, or under-
standing the previous sections.

$Ì201 ��J=�:¡:7:<C<Q7:<�BD9-FGÖõ9-;=7:J09-B8�P4KJL¡:H-|�;=7:¡:;=E-JL7

Section 1 already introduced some basic concepts of the Ara architecture, namely agents, interpreters, and
the core. Agents run within interpreters for their respective programming language, controlled and served
by the common system core. It is a fundamental principle of Ara to execute agents as autonomous, concurrent
processes. This supports their independent and possibly asynchronous execution, provides flexible control,
and facilitates mutual protection. As the system needs to control the agents in a rather fine-grained manner,
it does not rely on the comparatively heavy-weight process abstractions and relatively coarse control usually
provided by the host operating system. Furthermore, common process implementations, be they light or
heavy-weight, tend to be particularly platform-specific. Instead, the Ara core provides its own process abstrac-
tion as the basis for agent implementation. Within such anAra process, there is usually some interpreter
running, processing the program of a mobile agent; from point of view of the core, however, all processes
are treated uniformly.

The core governs the agent processes, and mediates their interaction and host system access. Basic functions,
such as migration, are provided to the agents by the core, while higher-level services are offered by server
agents. While mobile agents are interpreted for reasons of portability and security, stationary agents may
also be compiled, as discussed in section 3.9. Examples occur among thesystem processes: In addition to
the agents visible at the application level, the Ara system also employs processes for certain internal purposes,
in order to modularize the architecture. If such system processes are stationary, they are compiled. The
process structure thus supports architecture modularity, without harming performance in any significant
way1. An example for this is the communication process, which handles the network interface of the host
system. System processes have special permissions and may directly access the host operating system,
bypassing the core. As the process implementation is internal to the Ara system, the complete ensemble of

1. See the subsequent discussion on thread implementation.

49

agents, interpreters and core runs as a single application process on top of an unmodified host operating
system, which considerably facilitates porting to specific platforms. Fig.10 depicts this basic architecture
of the Ara system as a refinement of fig.1.

Ara processes are implemented as individual threads of control within a common address space1, as provided
by the host operating system. The core contains an efficient threads package, executing the threads concur-
rently in a non-preemptive way. Synchronization primitives such as messages and semaphores are employed
for internal purposes; application agents, however, are presented higher-level facilities such as service points.
The common address space allows highly efficient process management and interaction. Moreover, thanks
to the non-preemptive process scheduling, there is no need for synchronization in the core and in the inter-
preters, further benefiting performance.

The reader may have noticed an apparent contradiction between the above description of process scheduling
as non-preemptive, and the statement of section 3.3.3, “Agent Scheduling” that the core enforces time sharing
between the agents by preemption. This seeming contradiction is resolved when discriminating between
processes, which execute machine code at the processor level, and interpreted agents, which interpret a
program at the language level2. From point of view of the agent, execution is preemptive, since control may
be withdrawn from the agent between any two primitive instructions in its program. This is implemented by
a core function for time slice surveillance, which is called by the interpreter out of the agent’s reach at some
regular interval. This function performs a voluntary, i.e. non-preemptive process switch whenever it finds
the agent’s time slice exhausted. This concept provides the preemption required for the execution of untrusted
mobile agents, without introducing the complications of asynchronous processor contexts.

1. Note that the interpreted agents are completely protected from each other nevertheless (see section 5.3, “Protection”).

2. In the case of compiled agents, the level of interpretation does not exist, and scheduling is indeed non-preemptive
even from point of view of the agent.

q � q d b f e ^ a ` b q q
` ` a f e [h b t a

u a q d a e b ^ _ d [\ i q � q d b f

] ^ _ ` a ^ b

Y Z [\ d b ^ e ^ b d b ^

f a g [h b Y -
_ i b \ d

f a g [h b j X _ i b \ d
j Z [\ d b ^ e ^ b d b ^

k l m n o b p] ^ _ � � q d b f] ^ ` u [d b ` d ÷ ^ b

] ^ _ e ^ a ` b q q b q

50

As the time slice surveillance function is called at a regular interval, this interval also utilized to serve as the
time quantum for the logical clock governing the timing service explained in section 3.4.

$Ì2xw yzH-7{ÛÓ�:RGRIE-9-|~¡SBD;=|~�:9 � J=�:¡:7:<C<

The communication process (“comm-process”) is the most prominent system process, handling the network
interface of the host system for the purpose of agent migration. It accepts outbound agents in the form of a
linearized byte array (“agent parcels”) and sends them to the comm-process at the parcel’s destination site.
Conversely, it receives inbound parcels and passes them on to the core to recreate the living agent from them.
The comm-process can handle any number of inbound and outbound parcels in parallel by interleaving the
individual transmissions. This accounts for transmissions to or from sites with low-bandwidth connectivity
without harming the throughput on high-speed connections.

The comm-process waits in blocked state while there are no ongoing parcel transmissions. Remembering
the discussion in section 3.3.3, “Agent Scheduling” on blocking I/O operations, as soon as there are any
transmissions the comm-process starts polling the set of them in a loop interspersed with explicit time slice
checks (and implied potential releases of control) until all transmissions are finished, whereupon it will block
indefinitely again. This scheme realizes network I/O in parallel with other processes executing, without
consuming system resources while no transmissions are in progress.

Agent parcels are transmitted as a single, unidirectional data packet from the source to the destination site
comm-process. The transmission may be acknowledged, if the concrete transport protocol supports this, but
this is not required. At the time of this writing, the comm-process uses TCP as its only transport protocol,
with an optional gateway to the AX.25 radio transmission protocol1. However, further protocols such as
SMTP (e-mail) [CRO82] or HTTP [BFF96] will be added, and it is planned to let the comm-process choose
a protocol for each parcel transmission adapted to the current connectivity, provided there is more than one
alternative route to the destination place available.

$Ì2x� ��J=�:;=7:¡:;=|��:9

Mobile agents executing within an Ara system are protected from each other, as is the core, in order to prevent
malfunctioning or malicious agents from spying or tampering outside their own boundary. Protection in this
general context means control of the data read and written and the external functions called by an agent;
higher-level issues of object access authorization, such as entering a place, or fetching requests from a service
point, are treated specifically.

Since mobile agents are interpreted, and since an interpreter obviously has complete control over the inter-
preted program, protection can be achieved independent of hardware facilities like privileged processor
modes or page protection. Concerning the functions called, protection is trivial, since every call has to pass
through a stub defined by the interpreter, which can be trusted to be correct since it is out of the agent’s reach.
Regarding data access, on the other hand, protection is achieved through an address space concept: Borrowing
from operating systems terminology, the set of data visible to an agent might be viewed as the agent’s address
space — both if the data exists in the form of a randomly addressable memory area (as in C), or in the form
of a set of unordered symbolic variables (as in Tcl or Java). The interpreter ensures that each agent has direct

1. This is used for experimentation within the Ara project, and is not included in the Ara software distribution.

51

access to its own address space only, while core functions must be used to interact with other agents and the
core. The core itself and its objects, such as (other) agents and service points, exist outside the agents’ spaces
in “real” memory.

Confining access to an agent’s own address space is trivial in the case of exclusively symbolic variables
(since each interpreter maintains its own set of these). If, on the other hand, the interpreted language allows
random memory accesses, the interpreter must provide a virtual memory image to the program, using some
kind of address checking and translation. TheMACE interpreter for the C language is an example for this.

In any case, agents need a means to name core objects existing outside the agent’s address space. The object
ids already mentioned in section 3 provide this means, in addition to their purpose of uniquely naming the
core objects. Object ids have a representation in the agent’s language (e.g. a string in Tcl) which can be
viewed as an opaque “pointer” into core space. When a core function is called by an agent, argument objects
are supplied in the form of ids, which are mapped to their objects by the stub for this function, using an
object table maintained by the core. Again this is reminiscent of operating systems such as Unix, where
applications name kernel objects such as files indirectly through ids, though not usually globally unique
ones. The stubs also perform any interpreter-specific parameter checking, such as checking addresses for
containment in the program’s address space. This mapping and checking work has been placed in the stubs
rather than in the core functions themselves in order to avoid unnecessary work when a core function is
called from a trusted context, e.g. from the core itself.

$Ì2 · MPB óÌ|~9-5NB89-FNØû7:<Q;=�:J0|�9-5N;=H-7IMP;=BD;=7{�:}�BN��J��:¡S7:<Q<

At the heart of mobile agent implementation in Ara is a mechanism to save the state of a process and restore
it after transportation to another site. As explained in section 1.3, “Agent Mobility: Going from Place to
Place”, Ara agents can move without interfering with their execution, i.e. they continue from the same
execution state in their program as they had reached when leaving the source system. This “orthogonal”
migration implies that their execution state has to be extracted from the source system and reinstalled into
the destination system as illustrated in fig.11.

while...

if ...

go nice_place

meet partner

some_place

] ^ _ q � q d b f] ^ _ q � q d b f

while...

if ...

go nice_place

meet partner

nice_place
other_place

k l m n o o p c ^ d u a i a \ _ h � [i ^ _ d [a \ g b d � b b \] ^ _ � � q d b f q

52

Such an extraction and reinstallation is a delicate procedure, the more so when the participating machines
have different architectures, since the execution state of a process generally exists in a machine-dependent
format, such as assuming a specific word length or byte order. In Ara, the state of an agent is transformed
into a portable form prior to moving. This transformation is facilitated by the Ara system architecture: An
agent’s state is composed of the state of its specific interpreter on the one hand, and the state of its underlying
general Ara process in the core on the other hand. The core performs the portable transformation of the Ara
part on its own, whereas it uses a dedicated function defined by the interpreter (“upcall”) for the other part.
This function may build its implementation on a number of utility functions offered by the core, providing
the transformation of common data types into a portable form, as well as a general concept to transform the
states on the individual levels of a procedure call hierarchy on the run-time stack (see below). The run-time
overhead of the complete transformation into the portable form (remembering section 5.2, this is called
parcelling a process) basically depends on the complexity of the program state at the time of migration, and
on the general complexity of the interpreter’s state representation.

Interpreters for most interpreted languages are implemented in a procedural language (in C, most of the
time). In procedural languages, the execution state of a running program is to a large part contained in the
program’s run-time stack at a given instant. This causes a problem with the normal implementation of
interpreters when trying to save and restore the interpreted program’s execution state in a portable way, since
the normal interpreter implementation intertwines that state with the interpreter’s run-time stack, and the
latter is invariably machine-dependent. There are basically two alternative solutions to this problem: Either
re-implement large parts of the interpreter, completely replacing the use of the run-time stack by a new
scheme1, or continue as before during normal execution, but transform the run-time stack into a portable
representation when state saving or restoring is needed.

The primary design considerations of Ara’s scheme for saving and restoring execution states were efficient
overall execution and sufficient generality as to be applicable to any software implemented in C, while
keeping that application so straightforward that it can be easily extended to unknown software (e.g. inter-
preters for additional languages) without understanding its internal workings. For these reasons, Ara adopted
the latter of the above alternatives, a portable transformation of the current run-time stack at migration time.
The devised scheme consists of an annotation of the source code of a given interpreter implemented in C,
which requires only a tightly localized2 understanding of the source, can be automated to a large part, and
adds no measurable penalty to normal execution speed. This allows additional language interpreters to be
adapted to the Ara core with reasonable effort. The adaption procedure has been applied so far to the Tcl
interpreter3 and theMACE interpreter, and is currently being applied to the Java interpreter.

1. This usually involves some explicit substitute for the run-time stack, as is done e.g. in a stack machine.

2. In nearly all cases, limited to one C function.

3. For the purpose of validation, an automatic saving and immediate restoring of the program afterevery single program
step can be arranged. The modified Tcl interpreter passes this validation for the complete official Tcl test suite
without an effect on its function.

53

$Ì2%$ Ûï�~�:9-|�9-5NB89-FNÛÓH-7:¡IHûÜ8�:|~9-;=|~9-5

Both cloning and checkpointing involves saving the state of a live process and restoring the process from
this — cloning “restores” a copy of the saved process immediately, while checkpointing defers restoration
until explicitly demanded. The problem of saving and restoring a process’s state, however, has been solved
to implement migration in the first place. It should come as no surprise, therefore, that the implementations
of cloning and checkpointing are mostly based on the migration implementation. In fact, their realization
was remarkably simple by falling back on migration: In a sense, a process cloning itself is realized as a
process migrating to the local place, but being duplicated on arrival. Analogously, checkpointing is imple-
mented like a process “migrating to the disk”.

There is, however, one drawback with this implementation. Since processes migrating away from the local
system leave behind their external state (see section 1.3, “Agent Mobility: Going from Place to Place”), this
also applies to processes created by cloning and those restored from a checkpoint. For the case of cloning
this is unfortunate, since the objects of the process’s external state still exist unchanged after cloning, so that
cutting the clone’s relations to them is not really necessary. It is possible that the cloning implementation
will be extended accordingly in a future release. The case with checkpointing is different, however, since
the objects of the process’s external state might indeed change arbitrarily between checkpointing and resto-
ration, so there is no point in trying to preserve the external state.

$Ì2%C 46F8B¹Ü8;=|~�:9 �:}�øùE-J0;=H-7:J-��J��S58JÑB8RNRN|�9-5N@QB89-58E-BD587:<�;=�{4KJÑB

One of the central motivations for the separation of language interpreter and system core in the Ara architecture
was the possibility to later add further agent programming languages as they seem useful. To this end, the
language interpreter must be adapted to Ara in various respects. This adaption, sketched in fig.12, is well-
defined and straightforward on the part of Ara.

In contrast to the interpreted agent, the interpreter itself is conceptually a part of the Ara system, is trusted,
and supports the core in its tasks pertaining to the interpreted agent. The duties of an interpreter in this respect
include the definition of calling interfaces, i.e. stubs, in its programming language for the functions imported
from the core, and conversely to provide functions for interpreter management (“upcalls”) to the core. The

k l m n o � p] t _ e d [\ i _ � _ \ i ÷ _ i b s \ d b ^ e ^ b d b ^ d a d u b] ^ _ v a ^ b

[\ d b ^ e ^ b d b ^

d [f b q h [` b
] ^ _ ` a ^ b

f b f a ^ �
q d ÷ g q ÷ e ` _ h h q

54

work of the stubs is mostly a matter of data format conversions and similar interface translations; in particular,
they must map between object ids for core objects and the objects themselves, as described in section 5.3,
“Protection”. Regarding the interpreter upcalls, the functions for the portable state extraction and restoration
described in section 5.4 are the most prominent here; others include system and interpreter creation and
deletion, and a function to start the interpretation. A general requirement for the interpreter is to satisfy
demands for dynamic memory arising during the interpretation exclusively by the memory management
functions provided by the core (the same as called by the stubs of section 3.11). This ensures that any memory
consumption on behalf of the interpreted agent is properly accounted to its allowance. Further, the interpreter
must possibly provide a virtual memory image as described in section 5.3. Finally, the interpreter has to
assist the core in preemption, performing regular calls to the core function for time slice surveillance, as
described in section 5.1, “Processes and Internal Architecture”.

In principle, any interpreted programming language can be adapted to Ara: A given interpreter must be
extended by mechanisms to serve the described functions. The main expense in the adaption of a concrete
interpreter is usually spent in the implementation of the state extraction and restoration, the complexity of
which directly depends on the complexity of the state representation in this interpreter. While space does
not permit to detail a real language adaption here, it is instructive to look at an exemplary adaption of an ad-
hoc interpreter for some toy language. The Ara software distribution contains the source code for such a toy
interpreter adapted to Ara. Note that programmers adapting a new language interpreter to the Ara core will
need to use additional core functions, exceeding the application functions covered in section 3, “Ara Pro-
gramming Concepts and Features”. For information on these, please turn to the software distribution , where
they are collected in a declaration file.

dD� e Õ� gfD*)(ÔÒï/���ð[h ÕN\SÒï*#,DÄ�*#ÅÆ%ÈÇ' É�.ÊÆ #��ËÑÒ

The field of mobile agents is a young one, with many more or less experimental systems appearing (see
section “References”) and exploring the merits of diverging solutions. It seems appropriate, therefore, to
conclude this report with a few thoughts on some current issues of debate in mobile agent technology —
naturally, with a special look on the Ara system every now and then. At the beginning, there is a most
fundamental question.

CÌ201 i�H O ���:�8|~�~7{4K587:9-;=<�BD;!B8�~�kj

Theoretically, mobile agents do not provide any new functionality over conventional message communica-
tion. A host could provide a remote access interface to the operations otherwise designated for locally visiting
agents, such that any application could run at its home site, accessing the functions of that remote host by
means of message exchange, e.g. by RPC. However, while such a scheme could indeed produce a behavior
which is functionally equivalent to the corresponding mobile agent solution, this argument misses the point.
The actual power of the mobile agent concept lies in the non-functional properties it endows a computation
with, such as performance, resource efficiency, robustness, and ease of use. Mobile agent applications can
perform better at processing significant quantities of remote data, they can make more efficient use of com-
munication bandwidth, and they are more robust against machine and connection failures; section 2, “Mobile
Agent Applications with Ara” illustrated this, so that examples will not be repeated here.

55

Viewed more abstractly, there is a tension between the desire to provide a flexible, general server interface
and the need to perform complex service requests efficiently. A simple and clean interface is more flexible,
since complex requests can be satisfied by combination of simpler ones and a certain amount of postpro-
cessing; however, the work of combination and postprocessing must be performed at the client site, demanding
increased remote communication. A rich server interface, on the other hand, avoids this problem by serving
even complex requests by dedicated server-side functions; however, in practice it is not feasible to anticipate
all such functions potentially desired by clients. Even more, many servers simply cannot be expected to
provide a reasonably flexible interface. For example, remote information retrieval by mobile agents may be
functionally equivalent to remote database access; however, the bulk of the information available world-
wide does not exist in structured databases at all. Mobile agents can release this tension, as they effectively
make the server exhibit exactly the function desired by the concrete application.

In addition to these non-functional, but clearly measurable advantages, mobile agents may also prove ben-
eficial as a general concept in the design of networked applications, as proposed in [HCK95]. Many individual
problems solved by mobile agents could also be solved by different means, e.g. more powerful protocols,
sophisticated caching, extended server functionality, and richer parametrization. However, from a software
engineering point of view, one uniform concept seems clearly preferable over a number of individual solu-
tions.

The potential elegance of mobile agent programming shows when comparing the application programmer’s
view of a remote interaction through mobile agents with a message-based scheme: The latter is often com-
plicated by the need to decompose the desired remote action into a number of messages, each of which must
be sent separately, and may fail separately, all of which must be handled by the application. Mobile agents,
on the other hand, travel in one atomic act, and are not subject to partial failure during the interaction.

Aside from the technical merits, it is rather a different question to what extent service providers will be
willing to let mobile agents enter their premises. Quite apart from host security concerns, which may be
resolved technically, providers might be reluctant to share control over how their services will be used with
mobile agent manufacturers. Only time will tell how realistic this concern will be, and how strongly customers
will demand mobile agent support on the other hand. For concerns about the resources consumed by unso-
licited visiting agents, see the payment discussion in section 6.4.

CÌ2xw @CB89-5DE-B8587:<

Although various realizations of mobile code in some form have been known for a significant time [FAL87,
STG90, STO94], they have been quite specific and have not had a major impact. The idea of mobile agents
as a general networked computing concept has gained momentum only recently, most prominently through
the Telescript language [WHI94, GEM95] and, in a more specific context, the Java language environment
[GJS96]. Both these systems are centered around their own new programming language for mobile code or
agents, and it is not surprising that the language, referred to as a “network programming language”, is
frequently seen as the central issue of mobile agent technology.

While it is certainly legitimate to ask what kind of programming language would be best suited to express
mobile agents, focussing too much on the language might unnecessarily impede the advancement of the
concept. Firstly, the integration with a specific, “mobile” programming language, with its own merits and
shortcomings, easily blurs the borders between language and mobility, unnecessarily obscuring the concept.

56

Secondly, the adoption of a new language constitutes a considerable hurdle in practice, requiring new skills
and tools and hindering the interoperation with existing software. This critique of mobile programming
languages might be countered with the argument that the integration, while inevitably “obscuring” the borders
between the integrated concepts, as well as requiring additional adoption expense, does indeed yield a sig-
nificant benefit in programming. However, it is instructive in this respect to draw an analogy from the field
of conventional distributed computing to mobile agents. During the rise of distributed computing throughout
the 1980s, a considerable number of distributed programming languages [e.g. BLA87, BAL90] appeared,
integrating distribution concepts as language primitives. Although several of them reached a remarkable
maturity, none has been able to spread significantly; instead, libraries and run-time systems providing dis-
tribution functionality [e.g. OMG96] have achieved pervasive usage. The reasons for this are manifold, but
a primary one is certainly the fact that distribution handling is not intertwined so intimately with the local
processing as to require language support very strongly1, relative to the disadvantages of changing the lan-
guage. Considering that with mobile agents, mobility tends to surface even less frequently than, say, RPC
in conventional distributed programming (remember that replacing expensive remote interaction was one of
the initial motivations of mobile agents), this reasoning applies even more to mobile programming languages.

This is why Ara takes the approach of providing mobile agent functionality in the language-independent
system core, with the language-specific interpreters adding basically only an interface between the core and
the agents. The price for this flexibility is a certain restriction and overhead in agent interaction; for example,
shared variables cannot be used as a means of communication between agents, since the implementation of
a variable is specific to its language.

Most nascent mobile agent platforms originate from a specific programming language [CHT95, CMR+96,
GRA96, HMD+96, LAN96, LI96, PED96, RAS+97, SBH96], but many have declared language indepen-
dence a goal. However, only very few implementations [e.g. JRS95] actually offer more than one language
at the time of this writing. It is remarkable in this respect that even the seminal Telescript system — a
prototypical example of the integration of language and system — has recently been suggested by its creator
to play the role of one of several language environments on top of a common platform [WHI96].

Quite apart from programming the agents’ actions, the term “agent language” is sometimes also applied to
the language interacting agents use for mutual communication. In contrast to programming languages, there
is no set of agreed basic functionality for such languages. It is clear that many applications could leverage
off a structure for information exchange, but it is a current issue of research to find powerful, yet general
patterns of agent communication (see [MLF95] for an example). Ara, in particular, leaves the choice of
communication language open, offering only a general data exchange mechanism. For the time being, com-
municating agents may set up a customized interaction scheme on top of this between themselves, but it is
conceivable that such a concept will be integrated into the system core at a later time.

1. Parallelism, as opposed to distribution, constitutes an instructive counter example: Parallelizing languages and
compilers are well-established in high-performance computing. This can be attributed to the fact that parallelism
appears and can be realistically exploited in a more fine-grained form than distribution.

57

CÌ2x� ���S�8|~�~|~;=O

Mobility has been common in distributed systems in many forms, both mobile data and, somewhat less
frequent, mobile processes. Distributed object systems and distributed operating systems in particular have
strived to provide far-reaching mobility of all kinds of system objects, towards the ultimate goal of complete
“location transparency”, i.e. the property of an object that its physical location is neither discernible nor
important. In particular, this involves system-wide, global objects such as data objects, locks, groups, com-
munication channels etc. It might be argued that a mobile agent platform should include all these as well,
to provide maximum programming convenience.

However, the target domain of mobile agents is characteristically different from that of distributed operating
systems, as the latter cannot help in practice to assume a network of reasonable bandwidth and availability
to make their distributed data structures work. Mobile agents, on the other hand, are targeted especially at
wide-area networks with low bandwidth and intermittent availability, which tend to make global functions
(i.e. those spanning more than one node) unwieldy to use. Apart from this pragmatic difference, there is also
a conceptual mismatch between the goal of global functions to make location invisible and the principle of
mobile agents to explicitly move between locations. This is rooted in the different underlying network assump-
tions again: To put it shortly, hiding distances can only work if the network is good enough; otherwise it is
sensible to admit the distance and deal with it. Accordingly, the global functions in a mobile agent system
should be kept to a minimum, as also advocated in [TSC95].

As a result, the Ara design has been reluctant to include global functions besides agent migration; higher-
level global services should rather be built on top of migrating agents, benefiting from their robustness and
flexibility . Since the inevitable overhead involved in sending a mobile agent is not justified for certain very
simple instances of communication, for pragmatic reasons a simple remote communication facility is
expected to be added as the only other global function besides migration.

Playing a pivotal role as described, the concept of migration deserves some additional discussion. While
mobile code systems can certainly be useful without migration (e.g. the Java language environment does not
directly provide migration), such systems do not lend themselves easily to tasks spanning several nodes,
such as distributed information retrieval and semantic routing (see section 2.1, “Information Research”). For
systems which do support migration, in practice there is a choice between two alternatives concerning the
agent execution state to be moved: Either move only the global data of the agent program, restarting it at the
destination site on these data [GOY95, HMD+96, JRS95, LAN96, LDD95, LI96, SBH96], or take the current
execution context along as well, resuming the program from this context [GEM95, GRA96, CMR+96,
PED96, RAS+97]; the latter had been termed orthogonal migration in section 1.3. These two variants of
migration are theoretically equivalent, because in the first case, the execution context can be encoded in the
data part, achieving a behavior which is at least functionally equivalent to the second, orthogonal case.
Concretely, a copy of the program could be sent to the destination, along with some data describing its current
application-level state. A fresh copy of the agent will then start at the destination site, using the accompanying
data to restore the application state to that before the sending, and resume from there. In practice, however,
such encoding and decoding of states would cause considerable effort to the agent programmer once the
program gets larger. Even more, the overall control flow of the application program would be dominated by
the presence of migration, interleaving application functionality with mobile agent functionality.

58

It is tempting to dismiss orthogonal migration on the grounds that it requires additional implementation
expense in the agent platform, and that it can be emulated anyway. Certainly emulation is manageable for
stock examples, but it would be short-sighted to leave that problem to all potential later applications, rather
than solving it once and for all in the platform. This is why Ara realizes orthogonal migration: An Ara agent
can migrate at any time by calling the concerned Ara core function; the system extracts the agent from the
local structures then, transforms its complete state into a portable form and ships this. The receiving system
performs an inverse operation, recreating the agent in exactly the same execution context, i.e. directly after
the migration call. Migration is thus independent or orthogonal to program execution. This concept facilitates
application development considerably, as well as the adaption of existing software. Orthogonal migration
might also be termed “additive”, since it cleanly adds migration to the programmer’s toolbox, without hin-
dering other tools such as structured programming or encapsulation. From point of view of the application
programmer, this provides mobility in the simplest and yet most powerful way.

Note that orthogonal migration, while moving thecomplete current state, does not force a migrating agent
to burden itself with unnecessary load in the case where it does not care any longer about certain parts of its
state. In this case, unwanted data can simply be deleted prior to migration, and an unnecessarily complex
execution context can be simplified by proceeding to a simpler context before actually migrating.

As an aside, orthogonal migration is sometimes called “transparent” instead, suggesting that the act of
migration is “not noticeable” from point of view of the program state and control flow. Ara rather opted for
“orthogonal”, since “transparent” is usually reserved for actions not noticeableat all to their initiator (as
with “transparent redirection”), which does not seem appropriate for migration as an intentionally initiated
action. Truly transparent migration does occur in distributed operating systems managing a homogeneous
cluster of processors, where computing processes are moved between the processors for reasons of load
distribution without noticing this; that, however, is quite different from migration as mobile agents usually
perform it.

To give due credit, Ara’s concept of migration is clearly inspired by Telescript [GEM95], in particular the
name of the corresponding operation (“go”)1.

CÌ2 · MP7:¡SE-J0|~;=O B89-FN�éB8O!RN7S9-;

Security is a central issue with mobile agents, and, consequently, has been treated several times in this report,
too. As a matter of fact, the focus has been on the security of the host system against undue actions of a
visiting agent. This is understandable, since mobile code inevitably calls up the vision of viruses, and it is
necessary, since host system operators must feel reasonably secure before they will admit any mobile agents2.
However, host security is not a problem in itself, since the actions of an agent can be arbitrarily restricted,
e.g. by interpretation. The problem is rather one of policy, to strike the right balance between restriction and
empowerment of the agent.

1. The name of “meet”, the operation to perform a rendez-vous between agents at the same place, is also credited to
Telescript. Note, however, that the details of interaction in Telescript and Ara are very different. Telescript uses
method calls across agents, while Ara effectively employs message exchange to account for agents implemented in
different languages. Both concepts are synchronous, though.

2. While total security would certainly be preferable, the dangers must be weighted against the benefits, and it seems
plausible that a certain level of danger will be tolerated, as it is widely the case with networking in general.

59

In contrast to host security, the security of the agent against undue actions of the host is a fundamental
problem. Since a program is in the power of its processor by its very nature, the host has nearly complete
control over the agent. In particular, the host can inspect the agent’s program at will, can read and write its
data more or less arbitrarily, and can alter the program execution in any way it chooses. Some of these
problems cannot be solved by technical means (such as copying an agent’s code), while others can be solved,
but require considerable expenses, or impose undesirable restrictions.

When in the power of an untrusted host, in a certain sense the agent cannot trust itself. In general, protection
of an agent against its host must therefore be arranged with the help of a third party trusted by the agent and
out of control of the host in question. The most obvious candidate for this is the agent’s home system; in
cases where this is not feasible, unrelated third parties might play this role to some degree, provided there
is no wide-spread “conspiracy” against this agent. Protecting the agent’s code against tampering by the host
is an example for this: The code may be digitally signed by the home system, and every system receiving
the agent may verify that the code was not manipulated by the sending system1. In contrast to the code,
protecting an agent’s data against tampering or spying is not possible in general2 — once again, anything
accessible to the agent is accessible to the host as well. In particular, the suggestive idea of an agent bargaining
with its host over the price of some service would fall a prey to this problem — the host could apprehend
the agent’s bargaining strategy by inspection of its program, and adjust its own behavior to arrive at the worst
acceptable result from point of view the agent. Any application which requires privacy of the agent will have
to consider this lack of protection.

In particular, this applies to applications involving electronic currency transfers. Currency schemes where
the value delivery is constituted by the disclosure of a certain piece of data are not suitable for secure
transactions between agent and host, since the disclosure cannot be controlled by the agent. Still, it is an
attractive idea to equip mobile agents with a budget of some suitable electronic currency to purchase services
on the spot. Such currency may be used in particular to compensate a host system for the resources consumed
by the agent during its stay. Actually, the concept of allowances in Ara has been introduced not only for the
purpose of bounding an agent’s expenses, as it is presently used, but also with the intention of accounting
and billing those expenses3, and the use of electronic currency will be investigated in the Ara project. However,
it is not necessarily true that in the long run, service providers would only admit an agent to their host machine
if the agent is willing to pay for its stay. The situation is not too different from today’s relation between
providers and their remote clients: Even today, providers spend considerable expenses to run server machines
to publish information and services, and the mere act of publishing, though consuming significant resources,
is free for clients. Matters are different, however, concerning the offered services themselves, as opposed to
the mere publication. There may indeed be a potential for electronic markets here, populated by mobile agents.

1. This method would exclude self-modifying code, but that appears to be a tolerable restriction.

2. Data which the agent collected on previously visited sites, but does not need before reaching a trusted site, constitutes
an exception to this. Such data can be protected by public key cryptography, using the public key of the trusted site.

3. Actually, the consumed resources are accounted even in the present implementation for internal purposes, although
there is no billing yet.

60

469-9-7ml�4.� �î���:<Q<QB8J O �:}�4KJÑBGy 7:J×RN<

Cross references to other terms in the glossary are printed initalics when occurring in descriptions.

n�o�o�p�qrqts�u vNwVx
Operations on agents, such as terminating them, require the executing agent to pos-
sess the access right over the concerned agent. An agent possesses the access right
over all agents of its own group and of any child groups thereof.

n�vNp�yzx
A mobile agent is a program with the ability to move during execution, while pre-
serving its identity and state. For the sake of uniformity, even programs which do not
really move are subsumed under this term.Agents bear a globally unique immutable
name. Each agent is the (possibly single) member of onegroup at a time, which bears
an allowance limiting its resource accesses. Agents are executed as parallelpro-
cesses, usually by aninterpreter.

n�{ { |*}�~Iymo�p
An allowance is a vector of permissions for various system resources, such as files,
CPU time, or disk space. The elements of such a vector constitute quantitative per-
missions (e.g. for CPU time) or qualitative ones (e.g. for network domains to where
connection is allowed). Each agent is equipped with a global allowance for its life
time and may be further restricted by a local allowance while staying at a certain
place. An agent shares both its global and local allowance with the other member
agents of itsgroup.

� wmp�o����I|�u yVx
A record of the completeinternal state of an agent at some time. The concerned
agent may be restored from the checkpoint, to resume its execution from this state.

� { u p�yzx
An agent which hasmet a service point. The client may submit arequest to the ser-
vice point in order to receive areply to therequest. An agent may play the role of cli-
ent andserver at many service points at a time.

� |����Iu { p���n�vNp�yzx
An agent which is compiled to native machine code and executed directly, as opposed
to beinginterpreted. Compiled agents must be absolutely trustworthy, since they are
able to subvert the security measures of the system. Compiled agents cannot usually
migrate, except in certain cases where their source code is available.

� |��-p
The central part of an Ara system, implementing the basic concepts such asagents,
allowances, service points, migration etc. Any access from an application agent to
the host system or to another agent is mediated by the core for reasons of security and
portability. The core treats agent independently of their programming language, using
assistance from the languageinterpreters for language-specific tasks.

�3��x�p���ym~I{���x�~mx�p
The relations of an agent to external objects, such as other agents,service points, or
files. These relations cannot be preserved acrossmigration or checkpointing, as such
external objects cannot be warranted to exist where the agent completes itsmigration
or when it is restored from acheckpoint.

61

�Lp4x�o�w
A server may fetchrequests submitted to aservice point. Fetched requests are tagged
with the name of the requestingclient. The fetch operation optionally waits until
there are any requests submitted.

� ��|��m�
A group comprises a set of agents with a commonallowance. Newly created agents
join the group of their creator by default, but they may also be created to form a new,
separate group, called a child of the creator’s group. A child group receives a share of
its parent’s allowance and returns (what is left of) this when it becomes empty again.

���
An id is a globally unique and immutable machine-generated identification of an Ara
core object. Currently, agents andservice points bear ids. Agents use ids to name
objects as arguments to operations on them.

��yVx�p���~Io4x�u |�y
Agents usually interact locally, by meeting at aservice point. There will also be a
facility to pass messages between remote agents in a future version of Ara.

��yVx�p���ym~I{���x�~mx�p
The complete execution state of an agent, except itsexternal state. This comprises the
agent’s data, code, and execution context.

��yVx�p����I��p�x�p��
A mobile agent is executed within an interpreter for its programming language, for
reasons of security and portability. An Ara system may contain interpreters for sev-
eral languages on top of the commoncore. Besides executing the code of the inter-
preted agent, an interpreter must be adapted to thecore in order to support it in the
portable and secure execution of the agent. Currently, interpreters for the Tcl and C/
C++ languages have been adapted to the Aracore, and an adaption of Java is on the
way.

�Ap�p�x�u ymv
An agent may meet aservice point at the localplace under its symbolic name to
become aclient at thisservice point. The meet operation optionally waits until such a
service point exists. Aclient may leave the service point again, resolving its relation
to theservice point.

�Au vN��~]x�u |�y
Migration is an act of active motion of an executing agent from oneplace to another,
while preserving the completeinternal state of the agent. In particular, its execution
context is preserved, i.e. the agent resumes directly after the migration statement in
its program. The agent’s external state cannot be preserved. A migrating agent takes
along someallowance and leaves its group behind, forming a new group at the desti-
nation. It is possible to make another agent migrate; however, this agent should be
prepared to make sense of this.

�A|��Iu { u x��
Agents are the only mobile objects in Ara. Mobility therefore appears in the form of
agentmigration.

�
{ ~Io�p
A place is a virtual location within an Ara system. An agent is always either staying
at some place ormigrating between two of them. A place establishes a domain of
logically related services under a common security policy governing all agents at that

62

place, by deciding on the admission of an agent attempting tomigrate to this place,
possibly imposing a localallowance on that agent for the time of its stay. Places bear
globally unique names. The current Ara implementation provides only one place per
system, admitting any migrating agent without restrictions.

�
��|�o�p4q�q
Agents running on an Ara system are executed as quasi-parallel processes, scheduled
using a time-slicing scheme which is preemptive at the level of program instructions,
but non-preemptive at the level of processor instructions. The current scheduling pol-
icy is round robin without priorities. Processes are implemented using a fast thread
package in thecore.

s�p���p�o4x
A server mayreject arequest submitted by aclient instead ofreplying to it. Rejection
will cause theclient’s request submission to fail.

s�p��I{ �
A message of arbitrary format returned as the answer to arequest by aserver. The
server may alsoreject therequest instead of replying.

s�p��I�mp4q�x
A message of arbitrary format submitted to aservice point by aclient. The submis-
sion operation will either return thereply to the request or arejection.

s�|�|�x]n�vNp�yVx
The initial agent running when an Ara system starts up. In the current implementa-
tion, the root agent executes Tcl code read from the input stream (a terminal in inter-
active mode), and termination of the root agent terminates the system.

�*p��¡ mp��
An agent which has created aservice point. The server mayfetch requests submitted
to theservice point andreply to or reject them. The server may delete the service
point at any time, which implies closing it andrejecting all requests which had been
submitted, but not yetreplied to. An agent may play the role of server andclient at
many service points at a time.

�*p��¡ �u o�p8�V|�u yVx
A service point is a meeting point for agents under a unique symbolic name, provid-
ing synchronous agent interaction. A service point has oneserver agent and arbi-
trarily many client agents. A service point may be temporarily closed and reopened
by theserver, affecting its behavior concerning attempts tomeet or submitrequests:
Closed service points appear non-existent tomeet attempts, andrequest submission
attempts arerejected. Requests already submitted, but not yetreplied to are not
affected by closing. A service point is always tied to aplace.

�¢�Vq�x�p��£�
��|�o�p4q�q
Various tasks within the Ara system are performed byprocesses with special privi-
leges, e.g. to access the host operating system without mediation through thecore.
Such system processes are usuallycompiled. Apart from this, they are treated as any
otherprocess by thecore.

63

469-9-7ml�ú��¤i�H-BD;û��B8O ú!7W¥�lÌÜ87:¡:;=7:FG}õJ��SR 4KJLBN|~9 ;=H-7Iø E-;=E-JL7¦j

The Ara system is in the midst of development, and besides completion of those features described, but noted
as unfinished in this text, further concepts will extend the system. The following outlook names some fields
where work is in progress or scheduled to begin.

• The most prominent new concept will be a secure and portablehost interface; this was discussed in sec-
tion 1.4. This will include multiple places with user-definable security policies, and extending the
allowance concept to all types of resources.

• The power of a mobile agent as conceded by a specific host system crucially depends on the agent’s
identity. Rather than trusting the identity of arriving agents on good faith, a secureauthentication
scheme will be added to agent migration, optionally authenticating the agent as required. Encryption of
moving agents to prevent eavesdropping and spoofing will also be offered. Standard public-key cryp-
tography will be applied for these purposes.

• In a realistically sized network, mobile agents cannot know the places of potential relevance to their
task in advance. Adirectory service will be provided for this, mapping services to places. The directory
will be integrated with the service point concept by optionally publishing a service point’s name and
location on creation.

• Further transportprotocols besides raw TCP, such as SMTP and HTTP, will be added as transport
options for migration. A side-effect of this is that place names will become more structured, which is
additionally furthered by allowing more than one place per Ara system. A place name will be a list of
URLs, one for each communication protocol by means of which the place can be reached.

• The new interpreted programming languageJava offers interesting concepts for mobile code and enjoys
rapidly increasing importance in networked programming. The Java interpreter will therefore be
adapted to the Ara core, as a third language besides C and Tcl, supporting mobile agents programmed
in Java.

• Tools for working with Ara agents will be developed, such as a visual monitor, a debugger, and a
WWW-based agent launcher.

• World Wide Web support will be added to Ara, both at the user and the system level. For instance, the
system will be equipped with be a user interface through a web browser, and server agents will provide
web access to application agents.

• A simple inter-agent remotemessaging facility will be provided.

Any future developments in Ara will be published on the official WorldWide Web page for the Ara system,
to be found under the addresshttp://www.uni-kl.de/AG-Nehmer/Ara/ . Further questions about the
system can be directed by e-mail toara@informatik.uni-kl.de or by paper mail to the author under
the following address:

Holger Peine
University of Kaiserslautern
P.O.Box 3049
D-67653 Kaiserslautern
Germany

64

469-9-7ml�Û � yzH-7{4KJÑBGM?�:}�;�MïB8JL7WO#|~<Q;=J0|��DE-;=|��:9

Caveat: The included Ara software is version 1.0alpha, which is a snapshot taken during development1. This
means that the system is useful as it stands, but many advanced features are still missing. No special efforts
to optimize the run-time performance have been made yet. As always with software in this stage of devel-
opment, the presence of errors must be taken into account. However, the author constantly strives to improve
the system and welcomes any suggestions and bug reports.

The Ara software is implemented in the C programming language and has been ported to various versions
of the Unix operating system (Solaris, SunOS, and Linux) so far. Specifically, the distribution 1.0a contains
the following:

• Installation and configuration notes

• The complete source code tree, together with make files to build the system from this

• Some simple example programs (including all described in this text)

• Documentation, containing

- Hypertext help pages in HTML about the Ara shell and auxiliary tools, and all API features.

- The Tcl manual, both as ‘man’ pages and HTML.

- Some notes on current security breaches, adding further languages to Ara, and compiled agents.

46¡IH!9-�NM��~7:F858RN7:9-;=<

The author wishes to express his gratitude to Peter Buhler, whose support and ideas contributed to getting
the Ara project on the track, and who developed the low-level threads package used in the Ara core; to Torsten
Stolpmann, the author of theMACE system [STO95]; to Markus Scherer, who adapted the Tcl interpreter to
Ara [SCH95]; and to Christian Tauwel, who helped with many odds and ends around the project.

Øû7:}�7:JL7:9-¡:7:<

[BAL90] BAL, H. et al. (1990)Orca: A Language for Distributed Processing, SIGPLAN Notices 25(5):17-24 (May).

[BER94] BERNERS-LEE, T. et al. (1994)The WorldWide Web, Communications of the ACM, August, 37(8):76-82.

[BBI+93] BADRINATH, B.R., BAKRE, A., IMIELINSKI, T. and MARANTZ, R. (1993)Handling Mobile Clients: A
Case for Indirect Interaction. Proc. of the 4th Workshop on Workstation Operating Systems (Napa, California,
Oct. 14-15), IEEE Computer Society Press, pp. 91-97.

[BFF96] BERNERS-LEE, T., FIELDING, R. and FRYSTYK, H. (1996) Hypertext Transfer Protocol -- HTTP/1.0,
Internet RFC 1945, http://ds.internic.net/rfc/rfc1945.txt.

[BMM94] BERNERS-LEE, T., MASINTER, M. and MCCAHILL, M. (1994)Uniform Resource Locators (URL),
Internet RFC 1738, http://ds.internic.net/rfc/rfc1738.txt.

[BLA87] BLACK, A. et al. (1987)Distribution and Abstract Types in Emerald, IEEE Transactions on Software Engineer-
ing, SE-13(1):65-76 (January).

1. It is possible that an improved version of the software will have been released by the time of this publication; please
check the Ara WWW pages for this.

65

[CGH95] CHESS, D., GROSOF, B. and HARRISON, C (1995)Itinerant Agents for Mobile Computing, Research Report
RC-20010, IBM Th. J. Watson Research Center.
http://www.research.ibm.com:8080/main-cgi-bin/gunzip_paper.pl?/PS/172.ps.gz

[CHT95] CHEVALIER, P.-Y. and THOMSEN, B. (1995)Mobile Service Agents, http://www.ecrc.de/research/dc/msa/.

[CMR+96] CONDICT, M., MILOJICIC, D., REYNOLDS, F. and BOLINGER, D. (1996)Towards a World-Wide Civiliza-
tion of Objects, to appear in Proc. of the 7th ACM SIGOPS European Workshop, September 9-11th, Connemara,
Ireland. http://www.osf.org/RI/DMO/WebOs.ps.

[CRO82] CROCKER, D.H. (1982)Standard for the Format of ARPA Internet Text Messages, Internet RFC 822,
http://ds.internic.net/rfc/rfc822.txt.

[FAL87] FALCONE, J.R. (1987)A Programmable Interface Language for Heterogeneous Distributed Systems,ACM
Transactions on Computer Systems 5(4), November.

[FOZ94] FORMAN, G. and ZAHORJAN, J. (1994) The Challenges of Mobile Computing, Technical Report CSE-93-11-
03, University of Washington, USA.

[FON93] FONER, L. (1993) What’s an Agent, Anyway? A Sociological Case Study, MIT Media Lab Agents Memo 93-
01, Massachusetts Institute of Technology, Cambridge (MA), USA.
http://foner.www.media.mit.edu/people/foner/Julia/

[FRG96] FRANKLIN, S. and GRAESSER, A.(1996) Is it an Agent, or just a Program?: A Taxonomy for Autonomous
Agents, Institute for Intelligent Systems, University of Memphis (TN), USA.
http://www.msci.memphis.edu/~franklin/AgentProg.html.

[GEM95] GENERAL MAGIC, Inc. (1995)The Telescript Language Reference, Sunnyvale (CA), USA.
http://cnn.genmagic.com/Telescript/TDE/TDEDOCS_HTML/telescript.html

[GJS96] GOSLING, J., JOY, B. and STEELE, G.(1996)The Java Language Specification, Mountain View(CA), USA.
http://java.sun.com/doc/language_specification.html

[GOY95] GOLDSZMIDT, G. and YEMINI, Y. (1995) Distributed Management by Delegating Mobile Agents,Proc. of the
15th International Conference on Distributed Computing Systems, Vancouver, Canada, June.
http://www.cs.columbia.edu/~german/papers/icdcs95.ps.Z

[GRA96] GRAY, R. (1996)Agent-Tcl: A Flexible and Secure Mobile Agent system, Proc. of the 4th annual Tcl/Tk work-
shop (ed. by M. Diekhans and M. Roseman), July, Monterey, CA, USA.
http://www.cs.dartmouth.edu/~agent/papers/tcl96.ps.Z

[HCK94] HARRISON, C., CHESS, D. and KERSHENBAUM, A. (1994) Mobile Agents - Are They a Good Idea?,
Research Report RC-19887, IBM Th. J. Watson Research Center.
http://www.research.ibm.com/xw-d953-mobag-ps.

[HMD+96] HYLTON, J., MANHEIMER, K., DRAKE, F., WARSAW, B., MASSE, R., and VAN ROSSUM, G. (1996)
Knowbot Programming: System support for mobile agents, Proceedings of the Fifth IEEE International Work-
shop on Object Orientation in Operating Systems, Oct. 27-28, Seattle, WA, USA.
http://the-tech.mit.edu/~jeremy/iwooos.ps.gz

[HOA87] HORTON, M.R. and ADAMS, R. (1987)Standard for interchange of USENET messages, Internet RFC 1036,
AT&T Bell Laboratories and Center for Seismic Studies, December. http://ds.internic.net/rfc/rfc1036.txt.

[JRS95] JOHANSEN, D., van RENESSE, R. and SCHNEIDER, F. B. (1995) An Introduction to the TACOMA Distrib-
uted System, Technical Report 95-23, Dept. of Computer Science, University of Tromsø, Norway.
http://www.cs.uit.no/Lokalt/Rapporter/Reports/9523.html.

[KAL86] KANTOR, B. and LAPSLEY, P. (1986) Network News Transfer Protocol, Internet RFC 977, U.C. San Diego
and U.C. Berkeley, February. http://ds.internic.net/rfc/rfc977.txt.

[LAN96] LANGE, D. (1996) Programming Mobile Agents in Java - A White Paper, IBM Corp.
http://www.ibm.co.jp/trl/aglets/whitepaper.htm

66

[LDD95] LINGNAU, A. DROBNIK, O. and DÖMEL, P. (1995) An HTTP-based Infrastructure for Mobile Agents,Proc.
of the 4th International WWW Conference, December, Boston (MA), USA.
http://www.w3.org/pub/Conferences/WWW4/Papers/150/.

[LI96] LI, W. (1996) Java-To-Go: Itinerative Computing Using Java.
http://ptolemy.eecs.berkeley.edu/~wli/group/java2go/java-to-go.html.

[LSW95] LUCCO, S., SHARP, O. and WAHBE, R. (1995)Omniware: A Universal Substrate for Web programming, Proc.
of the 4th International WWW Conference, December, Boston (MA), USA.
http://www.w3.org/ pub/Conferences/WWW4/165/.

[MLF95] MAYFIELD, J., LABROU, Y. and FININ, T. (1995) Desiderata for Agent Communication Languages,Proc. of
the AAAI Symposium on Information Gathering from Heterogeneous, Distributed Environments, AAAI-95
Spring Symposium, Stanford University, Stanford (CA). March 27-29, 1995.
http://www.cs.umbc.edu/kqml/papers/desiderata-acl/root.html.

[OMG96] OBJECT MANAGEMENT GROUP (1996) CORBA 2.0 specification, OMG document ptc/96-03-04,
http://www.omg.org/docs/ptc/96-03-04.ps.

[OUS94] OUSTERHOUT, J. K. (1994) Tcl and the Tk Toolkit, Addison-Wesley, Reading (MA), USA.

[OUS95] OUSTERHOUT, J. K. (1995) Scripts and Agents: The New Software High Ground, Keynote address at the 1995
USENIX winter conference. http://playground.sun.com/~ouster/agent.2up.ps.

[PED96] PERRET, S. and DUDA, A. (1996) Mobile Assistant Programming for Efficient Information Access on the
WWW, Proc. of the 5th WWW Conference, May 6-10, 1996, Paris, France.
http://www5conf.inria.fr/fich_html/papers/P42/Overview.html.

[PES97] PEINE, H. and STOLPMANN, T. (1997) The Architecture of the Ara Platform for Mobile Agents,
in Kurt Rothermel, Radu Popescu-Zeletin (eds.): Proc. of the First International Workshop on Mobile Agents
MA’97 (Berlin, Germany), April 7-8th. Lecture Notes in Computer Science No. 1219, Springer Verlag.
http://www.uni-kl.de/AG-Nehmer/Ara/Doc/architecture.ps.gz.

[PRI96] PRICE, R. (ed.) (1996)Proposed ISO/IEC International Standard for HTML, Proposal of the JTC1 joint techni-
cal committee shared by the International Organization for Standardization (ISO) and the International Electro-
technical Commission (IEC). http://www.w3.org/pub/WWW/MarkUp/JTC1-SC29/Overview.html.

[RAS+97] RANGANATHAN, M., ACHARYA, A., SHARMA, S., and SALTZ, J. (1997)Network-Aware Mobile Pro-
grams, Dept. of Computer Science, University of Maryland, MD, USA. To appear in USENIX’97.
http://www.cs.umd.edu/~acha/papers/usenix97-submitted.html

[ROU96] ROUAIX, F. (1996) A Web Navigator with Applets in Caml,Proc. of the 5th WWW Conference, May 6-10,
1996, Paris, France. http://www5conf.inria.fr/fich_html/papers/P41/Overview.html.

[SBH96] STRASSER, M., BAUMANN, J. and HOHL, F. (1996) Mole – A Java Based Mobile Agent System, Proc. of the
2nd ECOOP Workshop on Mobile Object Systems, University of Linz, Austria, July 8-9.
http://www.informatik.uni-stuttgart.de/ipvr/vs/Publications/1996-strasser-01.ps.gz

[SCH95] SCHERER, M. (1995)Ein Laufzeitsystem für mobile Agenten, diploma thesis, Department of Computer Sci-
ence, University of Kaiserslautern, Germany.

[STG90] STAMOS, J.W. and GIFFORD, W.K. (1990) Remote Evaluation, ACM Transactions on Programming Lan-
guages and Systems 12(4):537-565, October.

[STO94] STOYENKO, A.D. (1994) SUPRA-RPC: SUbprogram PaRAmeters in Remote Procedure Calls, Software –
Practice and Experience, 24(1):27-49, January.

[STO95] STOLPMANN, T. (1995) MACE - Eine abstrakte Maschine als Basis mobiler Anwendungen, diploma thesis,
Department of Computer Science, University of Kaiserslautern, Germany. German text and English summary at
http://www.uni-kl.de/AG-Nehmer/Ara/mace.html.

[STR90] STROUSTRUP, B. (1990) The C++ Programming Language, 2nd ed., Addison-Wesley, Reading (MA), USA.

67

[SUN95] SUN MICROSYSTEMS, Inc. (1995)TheHotJava Browser,
http://java.sun.com/java.sun.com/HotJava/index.html.

[THB96] THISTLEWAITE, P. and BALL, S. (1996) Active FORMs,Proc. of the 5th WWW Conference, May 6-10, 1996,
Paris, France. http://www5conf.inria.fr/fich_html/papers/P40/Overview.html.

[TSC95] TSCHUDIN, C. (1995)Messengers and Object-Oriented Agents, Position paper for the workshop “Objects and
Agents” at the 8th European Conference on Object-Oriented Programming, Aarhus, Denmark.
http://cuiwww.unige.ch/OSG/Vitek/Agents/christian.ps.gz.

[WHI94] WHITE, J. (1994) Telescript Technology: The Foundation for the Electronic Marketplace, General Magic, Inc.,
Mountain View (CA), USA.

[WHI96] WHITE, J. (1996) A Common Agent Platform, position paper for the Joint WWW Consortium / OMG Work-
shop on Distributed Objects and Mobile Code, June 24-25, Boston, MA, USA.
http://www.genmagic.com/internet/cap/w3c-paper.htm.

[WLA+93] WAHBE, R., LUCCO, S., ANDERSON, T. and GRAHAM, S.L. (1993)Efficient Software-Based Fault Isola-
tion, Proc. of the 14th ACM Symposium on Operating Systems Principles, December, Ashville (NC), USA.

