An Introduction to Mobile Agent Programming
and the Ara System

Holger Peine
Dept. of Computer Science, Wersity of Kaiserslautern

P.O. Box 3049, D-67653 Kaiserslautern, Gergnan
Email: peine@informatik.uni-kl.de

ZRI-Report 1/97



o

, 'An Introduction to Mobile Agent Programming and the Ara System

Holger Reine
University of Kaiserslautern, Germany.

Traditional computer communication is based on sending messages, that is, data to be processedtby an acti
entity at the receing side, such as a client or serprocess. While this model has agk perasive use
throughout today networked world, certain of its drabacks hae moved into the focus of interest with the
massve increase in netwk load caused by the masduiion of the Internet and with the aht of wireless
networks for mobile computers. Communication by datehange requires both parties to remain on-line
during the complete transaction, usually consisting eérse acts of dataxehange; furtheroften lage
amounts of data lva to be mweed across the nebwk to the remote processing entibyly to be discarded

for the lagest part after processing.

Mobile agents are an approach to edlliese and other problems of netked computing in theatce of

limited bandwidth and conneeiy. Instead of repeatedly sending data to be processed by a remote processor
the processor is sent in one act to the remote data for orxetetion. Data and assorted services can be
accessed locally then, and no ongoing connection is needed durixg¢héan. Such a mobile processor
consisting of gecutable code and some form &éeution state, has been termedabile aent.

Mobile agents hae raised considerable interest as\a nencept for netarked computing with potentially
very farreaching implications, and numerous saitev platforms for arious forms of mobile code v&a
recently appeared and are still appearing [CGH95, CMR+96, GRA96, HMD+96, LAN96, LDD95, JRS95,
RAS+97, SBH96], with dferent foci and xploring diverging solutions. Still, the basic idea is quite simple:
Give pograms the ability to mee It seems natural, therefore gaddmobility to the lage and well-deeloped
world of programming, rather than attempt taldb a nev realm of “mobile programming”. Mobility should
be intgrated as comfortably and unintnely as possible withsting programming concepts — algorithms,
languages, programs, and operating systems. This is the basic idea oFtsrﬁsmm [PES97]: A platform
for agents able to mve freely and easily at theinvm choice and without interfering with theixezution,
utilizing various gisting programming languages anee &isting programs, independent of the operating
systems of the participating machines. Complementing this, the systeitiegrécilities for the specific
requirements of mobile agents in real applications, security concerns being the most prominent here.

This report will present Ara and its specific approach to itinerant agemt®lileagents, as tlyeare termed

in Ara), eplain the concepts and features of the system and demonstratedjcare used to program
mobile agents solving realesld problems. Ara is anxample of middlevare, situated between specific
applications (e.g. an airline booking system) and the underlying operating systemidégtbe system-

level facilities to &ecute and mee programs (“agents”), let them interact and access their host system, all
in a portable and secure manrigre actual application (“the reabvk”) is of no interest to the systemytb

1. "Agents for Remote Action”.
Zoologically, an Ara (also called a macaw) is a large, multi-colored genus of parrot as pictured above, a family of
birds renowned for their intelligence and longevity.



programmed in the bewiar of the agents,xpressed usingarious programming languages on top of a
common run-time core. The system should be seen aser bxtkveen visiting agents and the host system,
providing the agents with access to local services and the host with cordraghe agents. And likary
good broler, its poligy is not to interfere and let both parties do thagibess as tlyesee fit, yet wversee that
they play to the rules of honestisiness.

A remark is in order here concerning the maturity and completeness of the Ara system at the time of this
writing. The system is in astt development, meaning that while the basic concepts are szbahld the

system is stiiciently worked out for useful applications (see section 2, "Mobile Agent Applications with
Ara"), mary of the more adanced features are not yet implemented. This will be indicated in the presentation
where appropriate.

The rest of this report is structured as fato The initial section introduces the basic concepts of Ara, such

as languages, agents, mobility and the.likhe second section then demonstratesdmommon problems

of networked computing can be selg using those concepts. This is faledl by a sectionxplaining the

individual features andatilities of Ara as theare presented to the programmiéiese are put to use in a

section vorking out a complete programmingagnple for searching the &ald Wide Web (WWW). A
subsequent section discussing selected aspects of the Ara system architecture deepens the understanding of
the systens capabilities and also shis haw to extend it with further programming languages. The report
concludes with a discussion of Argiaeding diferent approaches to mobile agent systems and futueé de
opments. Three ankres proide a glossary of Ara terms, a glimpse wblging features, and arvervien

of the Ara softvare distrilution.

1. An Overview of Ara

From a \ery high-level point of viev, Ara consists of agents wing between or staying at places, where
they use certain services to do their.jdlhe fundamental concepts of agents, motion, places, and service
access in Ara will bexplained in this section. As agents axpressed in some programming language, the
role of such languages within the Ara system will also be of interest.

1.1  Agents, Languages, and the Ara System

There has been, and no doubt will continue to be, a broad discussion about “what constitutes an agent”, as
opposedto ageneral “program” [FON93, FRG96]. This discussion has been botharsigtand confusing,

and apparently has not yet reached a consenyosid@ fev buzzwords, “autonomous” being the most
prominent among them. Asapoligy, stressing application independence, is not te sidtes in that discus-

sion. Instead, the Ara notion of an agent is simplyvedrirom the more clearly defined notion ahabile

agent. In Ara, a mobile agent is a program with the ability tsvewuring &ecution. That is, besides mobility

there is nothing rnve to a mobile agent. Of course, this could be called an intentionally misleading statement,
since the gry mobility of program code acrossfdifent machines has trulgfreaching consequences for

the design of thexecution system for such code, most notably portability and security concerns. Both
problems of portability and security are fundamental to mobile agent systems, portability being an issue

1. Although, even agents which cannot really move like e.g. stationary servers are subsumed under the term “agent” in
Ara. This is simply because it is convenient to have a common term for all active entities in the system.



because mobile agents should be able twemin heterogeneous nairks, i.e. between machines with
different operating systems and haadgvarchitectures, to be really useful, and security being atistakuse

the agent host dctively hands wer control to a foreign program of basically unkmoefect!. Most
existing mobile agent systems, whilefdifing considerably in practice, use the same basic solution for
portability and security: Thyedo not run the agents on the real machine of progemsanory and operating
system, bt on some virtual one, usually arerpreterand arun-time systemwhich both hides the details

of the host system architecture and confines the actions of the agents to that restirctechent. This
concept of a dedicatederution emironment, preiding a secure and portable set of services to access the
host system and possibly other agents, enables agentgadmh@terogeneous neaivks and permits a fine-
grained control of thexecuting agent without depending on the hadwplatform.

This is also the approach adopted in Ara: Mobile agents are programmed in an interpreted language and
executed within an interpreter for this language, using a special run-time system for agents, cadied the

in Araterms. Hwever, the relation between core and interpreter is characteristic for Ara: Isolate the language-
specific issues (e.g. Wwato capture the Tcl-specific state of an agent programmed in the Tcl programming
language) in the interpretavhile concentrating all language-independent functionality (evgtdoapture

the general state of an agent and use that feingthe agent) in the core. This separation of concernesnak

it possible to emplpsereral interpreters for diérent programming languages together on top of the common,
generic core. The core deals with general agents imiallging its services, e.g. agent interaction, uniformly
available to all agents gardless of their respeet interpreter languages. Although this matter will be treated
more thoroughly in section 5.1, “Processes and Internal Architecture”, it should beedrhark that the
complete Ara system of agents, interpreters and core runs as a single application process on top of an
unmodified host operating system. Figshavs this relation of agents, core, and interpreters for languages
called, B, andc.

<\ mobile C-ogen’r/

\

mobile g2-agent -

cinterpreter

4-interpreter

Ara core I

Fig. 1. Agents, Interpreters and the Core

While Ara stresses the independence of its concepts for mobile agents from specific programming languages,
in practice the choice of languages is not ikahd. At the time of this writing, interpreters for tiiel
[OUS94] andC/C++ [STR90] programming languagesvieabeen adapted to the Ara core, andJiha

1. There is also the reverse problem of the agent’s security against undue actions of the host, e.g. spying on the agent’s
content. There is, however, no general solution for this problem except several individual aspects; see section 6.4,
"Security and Payment” for a discussion of this.



[GJS96] language will be addedeTcl and C/C++ dier considerably in compkity, run-time eficiency

and deelopment gpense. Tcl, a popular scripting languagéersflov development gpense and a compact,
embeddable, and freelyailable interpreterwhich made it the language of choice ofesal mobile code
systems [GRA96, LDD95, JRS95, OUS95]. C/C++, on the other hand, is supgaialimg the wailable
abstractions, the run-timefiefency and the interoperability withxesting software. The reader mayonder

that C is used as an interpreted language here, since C as a typical compiled language is not directly suitable
for interpretation. Havever, it was considered distinctly important to utilize the most widely-used program-
ming language for mobile agentsysay the efort of adopting a ne language and enabling the reuse of an
enormous base of sofare. Accordinglya dedicated interpreter for Gaerdeeloped, specially adapted to
mobile code. This interpreteionks by precompilation to the portaliece bytecode, which is subsequently
interpreted with remarkable performance byNhece interpreter [SD95].

The rationale of interpretationas support for portability and securigspecially the portability of avi

agents execution state (see section 5.4). While there seems to be no viable akamitierpretation when

the full mobile agent functionality is desir@dmpiled gentswere intgrated into the Ara system as a vati

speed alternaté for cases where certain security and portability requirements can be sacrificed. Such com-
piled agents cannot usually weto other machines, as yhgenerally gist in a machine-dependent form

only, and security cannot totally beawanted. In manrespects, heever, they behae like their interpreted
siblings, at a substantially increased speed. Compiled agents are usuallyeehnfipicservices resident in

a local system.

Ara thus ofers the option to choose a programming language, preferablyisting one praen for the
application at hand, instead of requiring all applications coded in one prescribed language, passibly e
specially created. Prerequisite for this is that the desired language interpreter has been adapted to Ara;
however, this adaption is well-defined and straightfard/on the part of Ara (see section 5.6, "Adaption of
Further Programming Languages to Ara").

The programmingxamples in this report will use Tcl most of the time, since it is more concise than C. C
examples will be gien from time to time to aid the distinction between language and concept.

1.2 The lLife of an Agent

What males an Ara agent programfeifent from comentional programs is its characteristic use of functions
provided by the core for agent actions, control and interaction. Aveaagient program in Ara isgocess

i.e. a self-contained awtty with its owvn state and progress. This seems both a natural amtfp& way

for an agent, being supposed to act autonomously after all. Creation and deletion ofvsaméims, respec-
tively agent processes, are among the most basic functi@nedoby the core. Each agent is assigned a
unique, immutable name on creationvMecreated agents wilbecute their program in parallel with other
agents actie on the same system; yh@an clone themsedg, suspend, resume and terminate their operation,
sleep for some time, or be dikise acted upon by other agents vided the necessary access rights. These
agent control functions may be used to form a team of agenksng on a common task.

1. Unless explicitly stated, in the following text “C” is meant to comprise C++ as well.

2. If this should raise concerns about performance, see section 5.1, "Processes and Internal Architecture" for an
explanation of the efficient implementation of processes in Ara.



Although man useful tasks can be performed by a single mobile agent using the functesed ofy the
local host, considerable Ribility and nev kinds of applications areagned byinteraction between agents.
Agents can ,talk” to each other therxchange information, &r and request services from one angther
and @en ngotiate and trade. This concept is also useful for structuring a hargiranent, as highdevel
services can be fafred through ,system” agents, which is more modular aibfiethan ofering the
services through a static function call inéexd.

It can be agued whether agent communication should be remote or restricted to agents at the same place.
Considering that one of the main nwvations for mobile agentsasg to &oid remote communication in the

first place, Ara emphasizes for local agent interaction. This is not to say that agents should be barred from
network access (which depends on the paotitthe host system interde, see section 1.4). Rattibe system
encourages local agent interacfiofihere arearious options for such an interaction scheme, including disk
files, more or less structured shared memory areas (“tuple space”, "blackboard”), direct metsaggee

or special procedure calls, each entailindedént ways of access and addressing. Ara chosariant of
messagexxhange between agents, allng client/serer style interaction. The core pides the concept

of aservice poinfor this. This is a meeting point with a well-kmmo name where agents located at the same
place can interact as clients and sesvAn agent announces the service point, thereby assuming the role of
aserver @ent, whereuportlient agentsmay meet it. A client may also attempt to meet a service point which

has not been announced yet; such an attempt will either block the client until the announcement, or optionally
return a ilure indication. After a successful meeting, a client can submit service requests to the service
point, and the seer can fetch those and reply to them as it sees fit. Each request ésl wittkthe name

of the client agent, and the servmay use that in choosing a ref@r example, a service point might
adwertise access to some data base asrshofig. 2, and clients may submit queries, which are fetched by
seners to be inspected, perhaps preprocessed, billed, or translated before being passed to the database man-
agement system. The query results are then passed back to the client as the reply to the service request.

é@
\;

Database Management System

*XYZ Database Access”
Service Point

R

Fig. 2: Client and Server Agents at a Service Point

1. In spite of this, a simple remote messaging facility between agents at known places will be added for pragmatic
reasons. However, to avoid a tight remote coupling, this messaging facility will not involve itself in any guarantees
against message losses.



Service requests and replies are implemented as messages with content and meaning entirely up to the
participants. May agents can meet at a service point. An agent can play the role of both client and serv
at different service points at the same time.

Agents on the mee are programs running out of the sight and reach of their criéa@ems wise, therefore,

to have a means of setting global limits to their actions, safe-guardmigsaginvanted diects like e.g.
circling through the net in endless loops. The potential danger of agents getting out of control besomes e
clearer when considering the bill certain hosts mightgehaisiting agents for the resources consumed
during their staye.g. &ecution time. The hosts, on the other handeleamn gen stronger interest in setting
limits to visiting agents running on their system, in order tegeoreruse of host resources and to enforce
resource agreements.

For this purpose of resource access limitation, Ara agents are equipped with resource accountikwalled
ancesDepending on the type of resource, anvedlioce may be defined either quantitally, e.g. an allwance

to allocate some amount of memowy qualitatvely, as is the case with an allance to read a certain file
When the agent accesses a resource, the agélntVance is cheadd and possibly updated accordingly by
the system. The system ensures that an agent eanaserstep its allwance. In the simplest case, an agent
is given an initial allavance for its wn perusal at the time of agent creationyéeer, a group of agents
may also share a common alknce, each consuming from it according to thein @olicy. Agents may
inquire about their current all@ance at aptime and may transfer amounts of it among each .otherh
transfers can be used as agamizational measure in a group of cooperating ageuntsalo for trading
resources betweemyers and sellers. Most of the timewwwer, allovances are used by the creator of an
agent to bound its global range of action, and by theuviegesystem to limit the agestlocal resource
accesses. In the latter case, the véogiplace temporarily imposeda@cal allowanceon an arsing agent,
further restricting the agestglobal allowanceset by its creatpas sktched in fig3. Additionally, the agent
itself may specify a desired local allance when mgng to a place (delult for this is the full global
allowance), and the tget place decides what allance to actually concede to the entering agent, or {0 den
access altogethefAnyway, on leaing the place, anlocal allovance is released and the global onesak
effect agin.

Fig. 3: A Place Restricting an Agent by a Local Allowance

1. At the time of this writing, allowances can be specified for CPU time and memory consumption; other resources like
disk space, files, network connections or places visited will follow.



Mobile agents lead a more dangerous life than ordisgationary programs. When wing through a lage
network such as the Internetyer computers with widely diéring uses and policies, connected by links of
all qualities and loads, tiidnave to be prepared to all kinds of accidents happening. Agents may getcblock
on the vay, they may fall a prey to unexpected softare fults, or their current host machine may simply
crash, lrying the agent with it. Some of these dangers can be countered by specific meastires, Is

no general protection amst an agent dying urgectedly on its itinerary

Rather than trying to anticipate all potential alif, Ara ofers a simple means oécoveryfrom such acci-
dents: An agent can createhedpoint i.e. a complete record of its current “interdaitate, at antime in
its execution. Checkpoints are stored on some persistent media (usually a disk) yatahthe used at a
later time to restore the checkpointed agent. On restoration, the agent resumes fr@ut thiate before
the checkpoint. The @ipus application for this scheme is for an agent tedeacheckpoint behind as a
“back-up cop” before undertaking a rigkoperation, e.g. mang to unknevn machines. In thevent of an
accident happening to the agent, it can be restored from the checkpointeaadpedpriate resery mea-
sures. The system will soon prde a fcility to implicitly checkpoint all locallyxsting agents in thevent

of an emegeng shutdaevn. Of course, the checkpointing mechanism may also be used for agents simply
wishing to idle for a longer time atdoresource requirements, or foorking with “canned” agents. Check-
pointing and restoring should be used with care, e.g. restoring an agent which is indees stillaliemote
system would produce tw copies of the same agent, requirimgliit treatment.

Having covered basic agent handling, agent interaction, limitation, angdegcdra’s concept of the one
essential aspect of mobile agents, mobilitgs only casually been treated ap It is time nov to tale a
closer look at that.

1.3 Agent Mobility: Going from Place to Place

Moving a program between computers can medardifit things. In the simplest case, the program code is
transported to its destination site prior to program start, and then run to completion there. It might seem that
calling this a mobile agent systenowd be stretching the notion toarf(note that this could basically be
achieved by carrying a digkte with the program to the destination computer ifithe recering system

is avare of the foreign nature of the program and runs it in an appropnateranent, this qualifies as a
mobile code system at the least. TheaJanguage efronment [GJS96] is arkample for such a mobile

code emironment. From a point of e of mobility, the characteristic property of such mobile code systems

is the restriction that a running program cannovenary further

However, mobile agents frequently need the ability not only to beasionce from their origin to a destination

site, lut to move at their an decision, visiting seeral sites in a g, to fulfill a requirement which cannot

be satisfied by the initial destination site (alone). This might be the case e.g. when collecting information
from several sources, or when the final destination is nowknbeforehand, or when a site has to be left
because it is shutting dm, which is a common situation in mobile computingr uch purposes it is no
longer suficient to simply transport the program code, (re)starting the agent in its initial state, Rether

1. This internal state should be thought of as the complete state of the agent minus its relations to external objects and
resources such as service points, or files. Such objects cannot be warranted to persist until the agent is restored;
consequently, they cannot be included in the checkpoint.



agent needs to carry additional information aboutxpergence sodr — technically speaking, about its
execution state. Mding a running program, i.e. &éi process of code and state, is usually temmigehation
in systems programming

Ara agents can migrate atygpoint in their @ecution, simply by using a special core call, namradgo
in Ara’s Tcl interice:

ara_agent {ara_go moira; puts "Hello, world!"}

This creates a meagent, giing it a Tcl program (enclosed in braces)xe@ite. The agent will first me

to a place namenhoira (a machine name, in this case) and then print the greeting message there. The
ara_go instruction is all the programmer needs towrabout migration — the system ensures that the
agent is meed in whole to the place it indicated and resumedatity where it left df i.e. directly after the

ara_go instruction. The compigty of extracting the complete agent from the local system, getting it to
another machine and reinstalling it there, possibainen a dierent architecture, is thus hidden in a single
instruction, alleving the programmer to concentrate on the application rather than on the technical details
of communication. Furthermore, the act of migration does fexttahe agens flov of execution nor its set

of data, allving the programmer to makhe agent migrate wherex needed, without preparation or rein-
stallation measures, as illustrated in the foitg example:

set previousPlace [ara_here]

foreach place {moira kismet fatum} {
ara_go $place
puts "Hello at $place, I'm coming from $previousPlace!"
set previousPlace $place

}

This agent visits the placesoira , kismet , andfatum in turn, each time printing the place it came
from?. The migrations are embedded in its\flof execution (eforeach loop in this case) without
interfering with it, and all its datapléce andpreviousPlace in this case) remainsvailable
untouchedThis concept of non-interfering migration is terneethogonal migation,in contrast to ariants
which do afect further gecution. Section 6.3, "Mobility" discusses this issue further

Note that while the internal state of avirg agent is transferred unchanged, this is not possible for its
“external state”, i.e. its relations to other system objects and resourcsstiilice points, files, or wings.

Such objects are not mobile and thugehtp be left behind when mimg to another machine. Itomld be
theoretically possible to add a sofire layer to such stationary resources making them appear as mobile,
effectively creating a distrilited operating system. Wever, the complg protocols and tight coupling
involved with this approach do not seem well adapted to thédéndwidth and heterogeneous netks
taigeted by mobile agents.

1. Note, however, that “process migration”, when used in operating systems context, nearly always refers to processes in
tightly-coupled homogeneous systems (e.g. a workstation cluster on a local network) without security and portability
problems. The two concepts are clearly related, but their focus is very different.

2. The same effect could be achieved in C by calling a C fundtianGo() etc.

3. $place is the value of the variabfdace in Tcl syntax;ara_here] is the result of thara_here command
(which returns the name of local place).



Ara agents mee betweerplaces which is both an allous association to gkical location and a concept

of the Ara architecture. Places are virtual locations within an Ara system, which in turn is running on a
certain machine; places could thus be said to refigsigdad location. More importantly @ver, an Ara

place establishes a domain of logically related services under a common secuyitygrelining all agents

at that place. Service points, for instance, anays tied to a place and can be accessed only by agents
currently staying at that place. lact an agent iswahys staying at some placegcept when in the process

of moving between tw of them. Places kka names which makthem uniquely identifiable and which can

be specified as the destination of a migration. In practice, a place might be run byidnahdin oganization,

or a compay, presenting its services. Figjillustrates the relation of systems, places and service points.

B’s place

Service Po’r

Ara system I

Fig. 4: Two Places with Service Points and Agents on one System

Besides structuring, places alseercise control wer the agents tlyeadmit. First of all, a place has the
authority to decide whether a specificdng agent is really admitted, using e.g. the agamime for this.

An agent which has been denied access to its desired destination place is made go back to its source place,
there to disceer the &ilure. Thus, places play a central role in the securityyofian Ara system; irett,

each place can implement it&/no security polig to a lage etent, requiring e.g. that aving agents be
authenticated (that is, as soon as authentication has been added to Ara) or t@aéthet passed through

certain mistrusted places before.

Even if a place decides to admit an agent, it may impose a restimtal allevance on it as described in
section 1.2, limiting its potential actions while staying at the placefdnteéach place may create iv8ro

security domain and decide autonomously which agents to admit under what conditions. When the agent
resumes after completion of the migration and admission procedure, it may chefgciigeedllovance,
discovering to what gtent the place has honored its desires. This enables the agent to decidemwhab

to do if it finds the conceded local allance insufcient, rather than using somedngotiation mechanism

built into the migration procedure.

In the current Ara implementation, places are not yet really distinct objects in the system architecture, and
there is no application programming intexé for places yet. Instead, there is one impliciaulefplace
provided per system. Accordinglglace names currently reduce more or less to machine hathesleault

1. Actually, a place name currently designates a specific Ara system on a specific machine. See section 3.6, “Mobility”
for how to exploit this.



place has a fed behsior; it admits all arnving agents and does not impose localvedinoces on them, i.e.
the agent is accepted subject to its globalalce. The nd Ara release will restrict this generous pyglic
as well as prade the means to createamelaces with application-specific befiar.

1.4 Accessing the Host System

So far, the fcilities of Ara hae been described at thevdd of (mobile) agents. Apart from that, agents of
course need to performysical input and output as well, accessing the userauerthe file systemxesrnal
applications and the netrk interfaice — in short, agents need access to the host system. Certainly the
operating system of the host machinevjdes just that, ot bearing in mind the increased security concerns
inherent in access by mobile agents, such access has to be controllable in a more fine-ayatimad e/
common with local programs. Additionallthe desired portability of agent programs calls for a sdrat
higher level of access than usual.

In keeping with Aras basic idea of adding mobility tgisting concepts, the Ara host intece looks basically
similar to the programming intex€e of common operating systems, restricted and simplified as necessary
Unfortunately at the time of this writing, the host intack is still in @rious stages of gelopment and not
ready for distrilation, parts being implemented, and others being designed. Therefore, this sectiwe will gi
only an aerview of the forthcoming host intea€e as sétched in fig5.

@

Ara host interface

external
application

Fig. 5: Agent Access to the Host System

Ara agents will hee access to a hierarchidié systenwith flat files, not much diérent from the inteeices

of common file systems. The file system wilild on that of the underlying operating system, presenting

an enhanced weof it. The main enhancement, besides hiding platform dependencies, will be access control.
Specifically an agens file accesses must be authorized through itwatioe, and the accessedume may

be debited to the alleance agin. A file may be visible only from a certain place with a restgadmission

policy, effectively constituting an access control list, selemdii alloving or derying access to specific agents

or classes of agents, e.g. those of a certain origin. Since files are frequpetied to be shared among
agentsconcurrent-rea@xclusive-write locks on files will be praded for the synchronization of concurrent
accesses. There are applications, e.g. electronic trade, wheidliatiallovances for specific files are issued

or transferred between agents, possibly restrictealyne limits or times of alidity. Cryptographic cer-
tification would male such allawvances, often called capabilities then, transferable and tradable across agents
and systems.

10



A general concept @ommunicationttannelswill be provided, both for netark access and communication
with local entities (see thexternal application inteafce discussed subsequently). Analogously to the file
system, these channels will stagry close to corentional concepts with respect to reading and writing, b
will be enhanced by access control features. Indeedkpeceed that the channel intecg will be intgrated
with the file inter&ce, to utilize the access contratifities available there.

Interfaces from client agents &ternal applicationon the local machine will usually be implemented by
proxy agents — stationgriyusted agents dedicated to representttermal application to the agent system.

A proxy agent usually supervises the security of all accesses by the client agent and performs potential
translations between the dvpartners. If the client agent is trusted with respect toxtegral application,

and if the application &drs a means forxéernal access (e.g. by TCP), the agent may also beeallto
communicate directly through a communication channel, without an intermediate proxy

The Ara core pragides timing functions in the form of areal time clock and synchronous delays. Asynchronous
timed invocations will follaw.

At present, while the host intade is not ailable yet, agents perform 1/O using the standadilifies

coming with their respeat? language run-time system as a temporary substitute, e.g. Tcl agents use Tcl I/
O commands, and C agents use the functions of the ANSI-C libvhile of course being inadequate from

the point of viev of security this substitute is sfi€ient for all tasks which can be handled using the access
security mechanisms imposed by the underlying operating system on the process containing the Ara system.
Note, havever, that blocking 1/0O operations should be used with care, since currentlynteblock the

whole operating system procésBoth problems will be resodd in the forthcoming Ara host intarfe
implementation.

2. Mobile Agent Applications with Ara

While mobile agents are aifly general concept for netwked computing, there are classes of applications

which benefit characteristically from them. Most prominertigse are applications where a significant
amount of data has to be produced (consumed) whichusvhp needed (ailable) fir avay from its

producer (consumer). The prominerample of the remote consumption casmisrmation eseach: A

client searches for information which igaflable scattered throughout the stock of one or more remote
seners. Information pesentationis the central xample for the remote production case, where aeserv
produces presentation information, e.g. a sophisticated graphical dialogue, needed by a remote client. In
both cases, rather than transporting the data to its remote destination, an agent can be sent to produce respec-
tively consume the data directly at the location of the dapdgiting the ability of mobile agents for com-

puting on site.

Another important area of application is foundriobile computingFOZ94]. In this domain, the ability of
mobile agents to change their host machine duxkagudion can bexploited to let a computation dynamically
adaptits location to changing conditions, e.g. a mobile unit enteringyordesan area or a host shuttingao

We will now look at these application areas more clgsklstrating hav Ara agents could be of help there.

1. Reading from the standard input stream, e.g. a terminal when in interactive mode, does not exhibit this problem.

11



2.1 Information Research

An agent vandering through the net, looking around, picking up items of interest to its principal, perhaps
occasionally performing a transaction — this is probably the most\mtaitid appealing picture that comes

to mind when thinking of mobile agents. Indeed agents are well-equipped for such tasks. An Ara application
in need of information located at some remote siald/send a search agent there, to meet &isagent
managing that information. If the place of the applicable service point is nehkmeforehand, the search
agent vould consult the local directory servidest. The search agent then goes to the destination place and
meets a selr agent at the concerned service point. It proceeds to submit requests toethasédng for

the desired information and regeig replies. The search agent may perhaps consult more than one service
point, relating and combining the replies. If the re®data indicates that iowld be vorthwhile to etend

or move the search to other machines, the search agemssmatote of this and later goes to look there, or

it creates a clone of itself to treat that other site in parallel -acidrbitrarily sophisticated search stgite

can be encoded in the agents. Ara agents benefit from their ability to smoothly migrate and clone when
performing such tasks distuted across the nebnk.

In mary cases, the search agent is actually looking for data more specific than ¢éhénserfice allovs to

specify e.g. the agent might ask for attéle, but is actually interested only in a certain part of it,\vare

not interested at all unless the content satisfies a certain condition. A search agent is well prepared to handle
such information filtering, e.g. by parsing &tter relating the information to preus findings. It will later

bring or send back toits principal only the actually desired information, eliminating the transfer of unnecessary
data. This is wiamobile search agents are especiaflgaive for searching data with comgland irrgular
structure, such as natural languages@r graphical images: The&an bring their wn data analysis and
filtering methods with them, tailored to and optimized for the specific need, watin &¢hgt increases with

the structural compldéty and the size of the data. In contrast, a remote seavaldwe confined to the
comparatiely primitive standard filtering methods (ifygroffered by serers, such as scanningtefor key

words, and wuld usually entail the transfer of¢ggramounts of data to the client site to perform the processing
there. When it comes to concrete programming,sfgapability of handlingarious programming languages
proves helpful here, empjing, say a Tcl package for ¢ parsing, while reusing arxisting C module for

image processing.

Atthe time of this writing, a realistically-sized mobile agent applicatioref@arching Usenetwe [KALS86,

HOAB87] using the Ara system is in\Hopment. Usenet is a nedvk of autonomous segv nodes, each

storing nevs articles receied from its neighbors and passing them on to the other neighbors. A user is
attached as a client to some local seand may read the seris stock of ne's articles, or write an article

of his or her wn, which is then included in the sens stock and propated along. Articles which ka

been in stock at a sewfor a certain time are automatically discarded togureorerfloving the serer’s

storage. Usenet nodes are autonomous in that each maintaims st®ok of articles, propatjing and, most
importantly discarding them according to it&/o policy, mirroring the preferences of the people in gkar

of the serer. Usenet information is thus distuted across the whole neirk, with each node possessing a
specifically local and constantly changing picture of it. This poses a problem when a user needs to access a

1. This will be included in a future release of Ara (see annex B, "What May Be Expected from Ara in the Future?").

12



set of articles only partially in stock at the local serg.g. when desiring to read all other articles preceding
or referring to a certain interesting article of a current discussion found Id8aihye of those other articles
may not (yet) hee reached the usemode, and yet others mawhdeen automatically discarded already

Fig. 6: Agents Searching Usenet for Interesting Articles

Fig. 6 illustrates hav Ara agents are used to selthis information research problem. Usenet nodes are
equipped with Ara systems ptiding stationary seer agents for access to the locaveeerer. A user at
some node may specify a query fowsarticles, typically those related to a certain article by topixpicit
reference, which is used to launch a search agent trying to collect the articles not locally present. The agent
directs its search according to the content of itgipus findings, gploiting the format of Usenet articles,
which bear information about their itinerary and references in a héddeagent will track that itinergry
visiting senerst on the path in the hope of finding further velet articles which a seev has either not yet
forwarded or not yet discarded. Cross references linking articles will alspph®ted by dynamically
creating sub-agents to track those reselgi All search agents will be equipped with afisignt allovance

for their task and will constantly monitor it to peat getting lost in the netwk. At the end of their search,

all agents return to their principal, bringing home the collected afidesing the search, the principal
does not need to remain on-lineithdut mobile agents, searches of this kirabid have to be performed
on-line, and lage amounts of articlesomld hare to be transferred to the home site and processed there.
Moreover, in practice most Usenet serg are not configured for remote access at all.

As a matter ofdct, the presented method of searching Usenet is an instaser@anfitic outing[CGH95],

a concept for distrited information access where a mobile object (e.g. a message or an agent) directs its
path through one or more intermediate relays according to the semantics (i.e. the content or goal) of the
object, approaching the final destination on each step. Thisaisi@le concept when dealing with infor-
mation the location krnwaledge of which is distrilted itself, proiding a flexible and rolist method to cope

with the constantly changing structure of the global information space. Mobile agents are well-adapted to
semantic routing thanks to their ability to decide locally about their further plans and itinerary

1. Technically precise, visiting the Ara system on the server node.

2. Actually, it is not necessary to transport the articles themselves, since Usenet articles are tagged with globally unique
identifications; it is sufficient to collect these identifications and retrieve the corresponding articles at the end of the
search.

13



2.2 Information Presentation

Reversing the perspegt, mobile agents can also be applied to remotely produce information rather than
collect it. Not surprisinglyagents are beneficial wheee lage volumes of data are to be produced, or when

the produced data depend on intekatiser input, since in both these cases a remote communication solution
would male heay use of a remote connection, which is dispensable with mobile agents. Both requirements
of volume and interactity are clearly combined in remote multimedia presentatiaied/and audio must

be displayed to a user in real-time, and user input has to bevedraaid reacted upon instantBhviously

mobile agents, tkeelling with the data and performing display and input processing at the gie’are
superior to ayp remote communication solution.

In an application scenario, a ser\publishing multimedia documents (e.g. enriched WWW pagesidw
enclose a custom-written agent to present the data on the client site in an arbitrarily sysbaific Once

a client retriges and viers the document, the presentation agent starts and handles access to the document,
using the client maching’services and dizes in ay way it sees fit to present the information, possibly
en@ging in user interaction and taking adtage of remote resources behind the scenes. Examples of such
presentations include interagidocuments, multimedia documents in custom formats (e.g. CAD data), and
network-avare documents. Once &g, it will be helpful if the agent can be programmed in a language
adapted to the specific task. An important practicahathge of using a customized mobile agent for pre-
sentation is the independence from presentation standards (such as HTML [PRI96]) wiitiahlyniag
noticeably behind the technical possibilitiesg&eling the enormous grth of the WWW [BER94] as a
document publishing medium and the demand for multimedia documents, it is no surprise that using some
form of mobile code for document presentation has recently attracted enormous interest, as withessed e.g.
by the Jaa language applied in thdotJava [SUN95] web bravser and similar tools [RU96, THB96].

Most of these systems do not ypide migration; havever, presentation agents usually do novméurther

than their taget destination, being geted more specificallywards one site than e.g. information research
agents. Accordinglymobile code systems without migration are hindered by the lack of this function much
less noticeably in information presentation than in information research applications.

23 Mobile Computing

Quite apart from specific applications, mobile agents are a generally useful concept for mobile computing.
As a matter ofdct, this consideration has initiated the Ara project, and the use of mobile agents for mobile
computers equipped with wireless links igastigated in the project. Actuallthe “mobile” name coincidence

here is not a punub hints at a real benefit for mobile computers, since some problems caused ardardw
mobility can be compensated using the “saft@vmobility” pravided by mobile agents. Maver, the most
prominent benefit of mobile agents for mobile computing is rooted in a generally better adaption to interaction

14



over wireless links. Sending an agembids man of the problems of the predominantypltal medium
between mobile computers which the traditional model of remote message palissangry to, as sktched
in Fig. 7.

?
DR?
L
= $ $‘ el
message passing mobile agents

Fig. 7: Connection Usage of Remote Interaction Concepts

Passing messagesear a netwrk between computersfettively creates a remote interaction on a logical
connection. This concept, frequently implemented by remote procedure calls, hascpbisasive use
throughout stationary computing netiks, and has accordingly been applied to mobile interaction as well.
However, the appropriateness of message passing relies on some implicit assumptions which become ques-
tionable with mobile computers. As a first point, the presence of an ongoing logical connection between the
participants assumes a relaly reliable underlying communication netik to keep it up for a stitient

time; esen more, such alogical connection of course presumes in the first place that the participanteghemselv
are &ailable for the duration of the interaction. Furthermore, serving stock communication neéu®iik

mation filtering and information presentation by remote data transfer assumes reasonable baadlatidich a

as seen in the prmus sections. On the whole, remote message interaction assumesedy ¢iigitit coupling
between the machines.

However, none of those assumptions of reliabjligyailability and bandwidth generally hold for mobile
computing systems. Méless links, especially wide-area ones, are subject to practicailaivle disruptions,
noise and bandwidth limitations; mobilevitees are inherently short of eggrdue to the limited acceptable
weight of their batteries. Thisvariably causes frequent and long-lasting switdb;@éducing @ailability.

On the whole, mobile units are tmwselycoupledto let remote message passing still appear an appropriate
basis of mobile computer interaction.

Mobile agents, on the other hand, are better prepared to these problems, giachithe adecouplingof

the interaction partners by eliminating the ongoing remote connection. The agents perform interactions coded
into their program asynchronously and completely local on the destination site, as opposeddotimnah

remote and synchronous dialogue. Of course this is particularly welcome for mobile computers, as it needs
less bandwidth, is less vulnerable to connection problems and does not require thevicigto de gailable

during the interaction. As a matter atf, mobile agents taladwantage of thewailable stationary resources

on behalf of the mobile unit by dynamically wiog a critical portion of the mobile application to a stationary

site.

Besides this general reduction of dependence on the connewgarygto completely disconnected oper-
ation, mobile agents also pide solutions for problems caused byide mobility itself. Their ability of
dynamically changing their place ofexution enables applicationsdiknobile unit substitution atalcation-

15



specific adaptionWhen a mobile unit is geographically wrg through a wide-area netwk, say its user
is walking with it through a city area, it will encountevelise oganizational domains, such afoé kuildings,
shopping malls, hospitals, public authorityildings, or compay premises. Each such domain mafeof
specific local services to guest computers entering the area, ranging from display seevitiescliries,
maps, ne/s quotes or product presentationgerointeractie services lik navrigation and inquiries, up to
client components of applicationsdilofice automation systems. Mobile agents can be used v@dtie
necessary intesite softvare to entering computers as illustrated in8igautomatically adapting them to
local customs and opportunities. Such usage of mobile agents highlights their potential éaurespbcted
interface or function mismatches between interacting systefastiedly realizing a kind of dynamic, remote
configuration.

Fig. 8: Sending a Local Service Interface Agent to an Entering Mobile Unit

Mobile computing netarks typically comprise a stationary part o&fikmachines connected by wired links,
and a mobile part, using wireless links to mobileiges. As the stationary part pides better ailability

and connectity, it is a straightfonard idea to shift some functionality from the mobile to the stationary
network. Ara agents, being able to wecdynamically and smoothlgre particularly suitable for such shifting.
Agents staying in the stationary part of the r@knvcan act asubstitutes of mobile useor applications
while their principal is not reachable or prefers not to be contacted, as depictefl [BBt+93]. A straight-
forward application for such a substitution is e-mail handling: An agent positioned in the stationarnetw
on the path to its principal, may screen the latt®coming e-mail messages, acktexge receipt, forard
selectvely, and @en reply to certain messages autonomoumliunlike a secretarylhe principal machine
may safely be switched fafneanwhile. The agent may be positionaglieitly by its principal as well as
change its location autonomouséyg. mee when the agent’current host is about to be switchetiayf
requests it to lee. If continuing mailability during a transient switch{operiod is not required, an agent
may also use the checkpointingcility to store itself safely meanwhile, rather thanving to another
machine.

Besides impreing availability, a representate agent at the border of the stationary ekwcan also se

on transmission costs, which can be substantied wireless links. @ this end, the agent can be used to
condensghe data flving to its principat. Condensation is used here as a rather general notion, to be further
defined relatie to the concrete application; condensation could mean e.g. compression of imageidata, or

1. Analogously to the duality of information production and consumption described at the beginning of this section, a
substitution agent can be used iaflate” data flowing fromits principal as well.

16



the case of e-mail processing, handling certain messages autongmmilslyorwarding only the rest to
the principal. Tansmission costs and delays can be cut further if the ageasdtristay close to its principal
machine, meing along the border of the stationary netiwwhile tracking the mang principal. Incidentally
the mobility notions imolved in mobile agents and mobile computers actually meet here.

Fig. 9: A Mobile Agent Acting as the Substitute of a Mobile Unit

As a demonstration application in mobile computingeseting sleedulingsystem for mobile users will be
realized using Ara, empjing mobile agents as substitutes of a human Tikerapplication will der support
for scheduling meetings with other participants, using mobile agents whiehtetbhest match the meeting
preferences of their human principals, and react autonomously to swk@mndfmeements of the mobile
user e.g. by changing to another host. The application willaredonomic use of wireless communication
and handle crashes of participating machines. It wilrad graphical user interfe and will be tested in
practical operation on mobile computers within the Ara project group.

3. Ara Programming Concepts and Features

Now that the basic concepts of Aravkdbeen described and put into perspeatiith applications, the stage
is set to gplain hav these concepts appear concretely to the mobile agent progranimsesection will
describe the Ara core application programming ia$ for the tewlanguages currentlyailable for Ara,
Tcland &. The description will be set at a significantly more practiea ldhan the other sectionsc{ept
section 4) of this report. It will not elaborate each aratyedetail; please turn to the on-line help pages in
the Ara softvare distrilution for further information.

3.1 General Conventions of the Ara Core Interface

Before going right into programming, some preliminariegehim be settled. Ara agents access system
functionality by calls to the core application programming iatf(API), a set of functions pfided by

the Ara core for use by agentgchnically these functions are compiled watcode contained in each Ara
system, each being accessible from an agent through a callingéetéchlled atul in the respecte
language, which is part of the language interpreter (see section 5.6). It should be noted here/¢nhett: o
of a core call, although it reminds of an operating systemek call, is no more than one procedure call

1. Note that théIACE interpreter accepts C++ as well, but at the time of this writing, the Ara core offers a C function
interface only (a C++ class interface will follow in one of the subsequent releases).

17



(namely the stub). Thearious stubs for the same core flioie differ in syntax, but not in semantics. The
stubs for use by C agents (remember Ara uses a C interpreter fQrateeasually named identical to the
native core functions, e.ghra_ServicePointCreate() , since there is a nearlyact correspondence
between stubs and core functions here. The Tcl stubs, on the other hanthelraovn names, partly due
to the “object oriented” calling syntax in Tcl (see section 3.5.2 foxample). D distinguish Tcl and C
syntax in the follaing, C function names are predtk with Ara_ and sufixed with parentheses &k
Ara_Go() , while Tcl command names are prefixwithara_ as inara_go . Compiled agents may use
the core functions directlyvithout stubs.

Note that the term “C agent” denotes an agent originally written in C and compiledadsebytecode,
which nav exists in this interpreted bytecode form anhis should not be confounded with “compiled
agents”, which are usually written in C as wellf bxist in natve machine code form.

The Ara core assigns internal identifications (“ids”) to all system objects, and applications reference such
objects only through these ids, in order to protect the objects from undue accesses (see section 5.3, “Protec-
tion”)L. In the C interdice, the typara_Id is provided for object ids. This is the return type of all functions
returning a system object, e.gra_ServicePointCreate() . There is a specialalue of this type,
ARA_ID_NONE designating an iralid id and used to indicate an error return from such a function. The
corresponding Tcl commands thran error (see balg instead of returning a specialue, as is the custom

in Tcl.

While it is assumed that the reader hafigeht knavledge of C, one aspect of the Tcl language should be
pointed out here: Td' only data type is the character string; accordjrghen types such @sa_Id are
mentioned in the folling, this refers to the C intexde, while the Tcl inteaice uses a corresponding string
representation of the respe/etityp@. For example, the C stub of the core function to restore an agent has
the signature

int Ara_Restore(Ara_Id agent, int mygroup);

expecting an object id and an igtr (actuallya boolean alue) as a parametevhile returning an intger

as the result. The corresponding Tcl stub, on the other hgmet;te and returns only strings, interpreted as
encodings of thearious alues. AdditionallyTcl allows defwult parameters, so the Tcl stub corresponding
to the C function abe has the signature

ara_restore ?-mygroup? ?<agent id>? 3

where e.g<agentid> is Tcl's string representation of the agsrmibject id, and the commasdesult is
the string encoding of an imfer Note that optional guments, while syntactically required to appear in the
C stub, are still called “optional” with the understanding that speaiaés (usuallyp or ARA_..._NONE )

are used when theseggaments are meant to be ignored.

1. Compiled agents, however, may be exempted here — see section 3.9.
2. Please turn to the on-line help pages of the concerned command for the string representation of a specific type.

3.7?..?7 denotes an optional term in Tcl interface specifications, since the more fdmiliar is already used for
command result substitution in Tcl.

18



A final preliminary remark concerns the error babaof the API functions. In the C intexde, the stubs
exhibit the so-called standard error beioa unless stated ddrently, i.e. the flag a potential error by a
special returnalue, usually an intger error codk which isARA_OKon success ankRA_ERRORtherwise.

In the Tcl interfce, the corresponding stub tlweoan error and returns an error message as the
result. This error message can be reteiéd in C as well by means of callinga_GetError() after the
erroneous call. The resulting message dlidvonly until the ngt call to an API function (including
Ara_GetError() ). This might look as follos:

if (Ara_Go(...) '= ARA_OK) {
printf("Cannot go ... due to the following error: %s\n",
Ara_GetError());

}
or, in Tcl, like this:

if [catch {ara_go ...} errmsg] {
puts "Cannot go ... due to the following error: $errmsg"”

}

Note that theatch command is used in Tcl to catch errors Wmaluring &ecution, optionally along with
the error message. It is used here to catglpatential errors thmen byara_go . An uncaught error in Tcl
propagtes backards through the calling chain, terminating the currgatetion if nocatch command
is encountered.

3.2 The First Steps

Ara agents are processes, as introduced in section 1.2, “The Life of an Agent”. When the Ara system starts
up, there is one initial process running (the “root” pro@esTsi)is is the process which prints the initial
prompt to the terminal when the system is run in intaractiode, and which reads and processes the initial
input. Interactre mode is the dafilt; when the system is started with a file namgerment, it runs in non-
interactve (or batch) mode. Input in batch mode comes from the indicated file, and the system terminates
after reaching the end of the file. In interaetmode, on the other hand, input is read from the terminal until
theara_shutdown 3 command is entered. In both modes, the system is also terminated if the root process
terminates. 6r the purpose of this description, interaetmode is assumed, as this is more instrecti

The root process is a Tcl process, which is morgaruant for interactie experimentation than e.g. C. fn
standard Té command (see [OUS94]) can be typed to the prompt, e.g.

% foreach fruit {orange banana} {
+% puts $fruit

+% }

orange

banana

%

1. ... or a special “null” value of the return type, &RA_ID_NONEetc.

2. To be precise, there are actually several more processes running, but these are not visible to applications.
3. This command is intended for easy interactive termination only; hence it is not available in batch mode.

4. Tcl version 7.4 at the time of this writing.

19



The user typed foreach command to th@sprompt, which is a loopver a list of alues in Tcl, and the
system gecuted the command, printing out the list elements (as théres without a prompt). Note that
a+ in the prompt indicates that some enclosing command is not yet typed completely

By the way, there is anotherersion of the prompt which indicates the process currently connected to the
terminal. Theara_toggle_prompt interactve command is used to alternate between teptompts:

% ara_toggle_prompt
2213942038,1% puts Hello!

Hello!

2213942038,1% ara_toggle prompt
%

Here the figure in the prompt is the printed representation of the current pamgest id. This can be
helpful when seeral processes are connected to the same terminal intermittently

3.3 Basic Agent Handling

3.3.1 Agent Creation

There is one function to create an agent for each agent implementation langudiye skk of uniformity
compiled agents are subsumed here as wejicdrebe thought of as being implemented in \redinguage”.
A Tclagent is created from Tcl by thea_agent stub command, ging it a Tcl script ggument to recute,
and trailing optional guments which are passed on to the script as its commanddimaents:

ara_agent <script> <arg>* 1

This will create a ng agent running in parallel to the other agents in the local systepyteng the indicated
Tcl scriptz. The navly created agent (in the form of its id) is returned as the comsaeslilt.

The agent command might be usea flikis:

set slave [ ara_agent {
puts "I'm the slave, my argument is [lindex $argv 0]."

1

foo

]

puts "I'm the master, created slave $slave."
This would print something li&

I'm the master, created slave 2213942038,5.
I'm the slave, my argument is foo.

where2213942038,5 is the string representation of themhecreated agerd’id.

1. & denotes zero or more repetitions of s.

2. The actual command, like many of the following commands and functions, has some additional option arguments
which are, however, not described here in order to let the central concepts appear more clearly. The full descriptions
can be found in the on-line help pages.

3. This is a Tcl expression resulting in the value of the first argument of the script.

20



Most of the time, agents implemented in a specific language will create only agents of the same language,
but agents of dierent languages may be freely mikas well. Br instance, there is a C stub function
equialent to theara_agent command, which a C agent might use to create a Tcl agent:

Ara_Id  Ara_CreateTclAgent(char* script, int argc, char* argv[],
Ara_Allowance global, Ara_Allowance local,
int size, flags); 1

Of course both the Tcl stub and its eglént C stub map to the same watore function behind the scenes.
Analogous to creating Tcl agents, there is another pair of stubs to create C aggrdse The

ara_mace_agent <file name> <arg>*

Ara_ld Ara_CreateMaceAgent(char* fileName, int argc, char* argv]],
Ara_Allowance global, Ara_Allowance local,
int size);

Here the indicated file contains thia\CE bytecode the meagent is toxecute; agin the optional guments
are passed to the agent as command lipenaents.

Compiled agents may be created specifying the name of a file and fungtieinich the nes agent is to
execute. The functiog is expected to be defined in an object code file with base iiand a platform
dependent file name $ixt Some arbitrary parameter data for theviagent can also specified with the stubs:

ara_comp_agent <function name> [<arg>]

Ara_ld Ara_CreateCompAgent(char* fileAndFunction,
byte* data, int dataLength,
Ara_Allowance global, Ara_Allowance local,
int size);

The specified data is a memory area intended to hold parameter data farabemne \When further languages
will be added to Ara, these will introduce additional agent creation stubs iaribas/languages similar to
the abee.

It is often comenient for an agent to knoits ovn id. Theara_me function returns just this:

ara_me
Ara_ld Ara_Me();

The agent creation API is completed by the stubs for agent cloning. When cloning, an agent cregtes a cop
of itself, duplicating its internakecution statg Both agents return from the stubwwewer, the result returned

in each case discriminates theotaopies: In the original agent, the (id of theyragent is returned, while
ARA_ID_NONErespectiely the empty string is the result in theamnagent. The signaturesveal that the

cloning function is named in reminiscence to the fork system call in the Unix operating system:

1. Theflags andsize arguments correspond to optional arguments odgfemt command not of interest here; the
optionalAra_Allowance arguments will be explained below.

2. This implies that thexternalexecution state isotduplicated (see section 1.3, “Agent Mobilit¢going from Place to
Place” for an explanation of this difference). This is a technical restriction explained in section 5.5, “Cloning and
Checkpointing”, which may be abolished in a future release. So far, it may be mended by the new agent explicitly
recreating the external state, which should be possible to the largest part, because the external environment has not
been changed by the cloning procedure.

21



ara_fork
Ara_ld Ara_Fork(Ara_Allowance global, Ara_Allowance local, int size);

Note, havever, that this function is used much less frequently in Ara than in Unix, since the Unix function
is often used to create an actuallyetiént process (by subsequent replacement of therecess memory
image), which can be ackiesd more simply in Ara, using amgicit agent creation function.

One final feature of agent creation to be noted here is the treatment of agesm@d®. Remember that
each agent has a global and a locamadlace limiting its resource consumption during its lifetime and at
the local place. At the time of creation, the wlmces of an agent are determined, and there aredws

to do this: In the first, the meagent is not gien a prvate allavance, it made to share a common alénce
with the creating agent. Such agents sharing a commaveale form an agent group. A growek on a
common allwance, distrititing it among the group members according to their policy. Shared allav-
ances are the dailt on agent creation. In contrast, the secoay tw determine a meagents allovance is

to give the agent itsvan private one. This allsance must be specifieg@icitly on agent creation, and it is
deducted from the alNeance of the creating agent; the latter agefeicayely transfers some of itsavm
allowance (which may come from ayate or group all@ance) to the ne agent. In this case, thevmegent
might be vieved as forming a group with only one memfére initial root process is a member of a special
group with unlimited allwance. A pwate allavance can be specified in C by settingAhe Allowance
parameters of the creation stubs to noradiéfalues; in Tcl, this is done bywviig optional aguments, e.g.

ara_agent ?-la <local allowance>? ?-ga <global all.>? <script> <arg>*

Note that both the global and local alEnces of the me agent must be less than or equal to that of the
creating agent, and that the local addmce must of course be less than or equal to the global one. This
concept ensures that the total aidmce of an agent does not change by digirip itamong arious subagents

or partner agents, so that an agent cannot acquire unauthorizeahaltoby ayp means.

As a matter ofdct, agent groups are a more fundamental concept in Ara than simply joining agents with a
common allavance. Each agent belongs t@etly one group at a time, and the group defines most of the
agents reachability in the system. Groups may form a hieyaiinen&er an agent is created with avaitie
allowance as described at® the ne/ group becomes a subgroup (or child group) of the creating agent
group. An agent has a general “access rigl€r @ll agents in its group and in its grauphild groups,
grandchild groups etc. This access righgroan agent is not detailedyafurther, i.e. it entitles its holder to
ary operation whatsaer over this agent.

An agent will leae its group when terminating or ring on to another place; in the latter case, it will find
itself the only member of a masolated group at the weplace. When the last member of a group terminates,
the group is implicitly deleted and the grasi@sidual allvance is returned to its parent group, if thasts.
Note that the current Ara implementation does notigdeomeans toxplicitly leave and join a group; this
will be available in the n& release.

The set of all agents currentlxisting in the system can be retgel using the follaing stubs:

ara_agents
int Ara_Agents(Ara_ld** buffer, int* bufferLength);

22



3.3.2 Agent Termination

An agent may terminateiuntarily at ag time by &iting. Agents may also malothers terminate by killing
them, preided the necessary access right. In both cases, geiintdue may be left behind as the terminated
agents result.

ara_exit ?<value>?
void Ara_Exit(int value);

ara_kill <agent> ?<value>?
int Ara_Kill(Ara_Id agent, int value);

A parent agent may retkie the terminationalue of another agent byating for it; otviously a successful
waiting also indicates that the other agent has indeed terminaiihg/is possible both for a specific agent,
giving its id, and for apagent at all, which is the daefit.

ara_wait ?<agent>?
int Ara_Wait(Ara_ld agent, int* processResultPtr);

To end the root process (and thus the whole system) in interantide, thera_shutdown short-cut can
be typed to the prompt.

3.3.3 Agent Scheduling

Having populated the system with agents, some functions are needed to control their gacaitedre Ara

agents are g@rned by a simple time sharing process scheduling model where each agent process is one of
three states at a timRunningready orwaiting (also called “blockd”). There is alays &actly one running

process; the others are either readganing thg will become running as soon as theintheceve a share

of execution time, or theare vaiting until they are set ready a@n. The scheduling states are usually managed
implicitly by the core, bit there are also functions to change an agstute eplicitly, provided the gecuting

agent has the access righienthe concerned agent.

In particular suspendingan agent means setting it to thaitmg state (if this is the running agent, an
immediate switch of control occurs), whietivatinga waiting agent sets it to the ready state. A running
agentmay also setitself to the ready state. This is celieidg, effectively performing agluntary temporary
release of control. The stubs for scheduling read aswsilo

ara_suspend ?<agent>? ;# defaults to the running agent
int Ara_Suspend(Ara_Id agent)

ara_activate <agent>
int Ara_Activate(Ara_ld agent);

ara_retire
int Ara_Retire();

23



The core enforces time sharing between the agent processes by preesysipending the running process
whenever its share is used up and setting one of the ready processesQrumsinrngd be noted that once
an application erages in gplicit suspending and agtting, care must be tak to aoid deadlocks; retiring,
on the other hand, should be harmless.

Note that in the current Ara release, which implements most host accesses by direct operating system calls,
agents performing I/O operations retaktlasive control without interening scheduling actions until the
operation is completed. Moregr, the time spent in the operation is not debited to the agshdre of
execution time. Therefore, agents should be careful in performing host access operationsvarf glkao

tion. As mentioned briefly before, the common blocking I/O operation of reading from the standard input
stream does nokhibit this problem, being implemented without retaining control.

3.4 Timing

The Ara core praides a simple synchronous real time service. The current time on the system clock may
be inquired, and an agent may suspendxisugion for a certain amount of time, which is caliékping
There is nodcility as yet for asynchronous timedacations. Here are the necessary stubs:

ara_now ?-nsec?
long Ara_Now(long* nsecPtr);

ara_sleep <sleeping time in ms>
int Ara_Sleep(int sleepingTimeMs);

3.5 Service Points

3.5.1 Announcing and Meeting

A service point is created when an agambouncest by assigning it a symbolic name. The announcing
agent thereby assumes the role ofsthiweragent at this service point, and the service point becomes visible
under this name for meetings at the local ﬁaém attempt to announce a service point under a hame
currently in use at the same place will be refused as an @m@uccess, the wly created service point is
returned in the form of its id:

ara_announce <name>
Ara_ld Ara_ServicePointAnnounce(char* name);

An agent mayneeta service point at the local place by specifying its name, thereby becoatiegt & it.

If the desired service point has not been announced yet, the meet operation bloclsulbyaligf that
happens, Wt the agent may also use a non-blockiagant which returns an error code in this case. On
success, the (id of the) service point is returned:

1. Compiled agents are an exception to this (see section 3.9).

2. The current implementation schedules ready processes according to a one-level round-robin policy. Scheduling
priorities are expected for a future release.

3. When the directory service becomes available with Ara, an announcement will optionally make the service point
globally visible through this service.

24



ara_meet ?-dontwait? <name>
Ara_ld Ara_ServicePointMeet(char* name, int wait);

Anagentcan play the role of a client or gt \arious service points at the same time, meeting or announcing
several of them. A service point canvesary number of clients, it only one semr, which assumes respon-
sibility for the service point.

3.5.2  Submitting Requests

To male use of a service point, a clisabmits equestso it, to be replied by the seawThe submit operation

will return the replythus realizing a form of synchronous interaction, implemented by blocking the client
until the reply The syntax and semantics of the requests and replies are up to the client emdrssrv

point of viev of the service point, tiyeare simply random arrays of bytes. Requests can be submitted using
these stubs:

<client’s service point> <request>

int Ara_ServicePointSubmit(Ara_Id servicePoint,
char* request, size_t requestLength,
char** replyPtr, size_t* replyLengthPtr);

The syntax of the Tcl stub may seem sam&t peculiar; indct, this command syntax of naming the object

first, followed by the function to be performed on the object, is called “object oriented” in Tcl, and is
recommended for access to comphbjects. Agway, the stub returns the reply to the request as its result,
provided the serr did not reject it (see beld, in which case an error is thwa. Note that requests and

replies from Tcl agents are necessarily character strings instead of byte arrays, since Tcl cannot represent
binary data. Additionallydue to the object oriented syntax, & feequest” strings may lva actually pre-

defined meaning in Tcl; currentlihis is only théeave requesteplained belav in 3.5.4.

The C stulra_ServicePointSubmit() handles general binary requests and replies, as does the internal
service point impIementatiénThe reply is returned in the finaldwparameters, which may be preset to
indicate a memory area intended to reedhe reply; this area will be used if its size idisight, while a

fresh one will be allocated (and returned in these parameters) otherwise. This feature might be usest as follo

char replyBuffer[1024];
char* reply = replyBuffer;
size_t replyLength = sizeof replyBuffer;

Ara_ServicePointSubmit(servicePoint, "foo", strlen("foo")+1,
&reply, &replyLength);
/* Process data in reply[] */
if (reply != replyBuffer) {
Ara_Free( reply);
}

1. Note that clients should not submit binary data to servers which can handle character strings only and vice versa —
the data would be truncated at the first zero byte otherwise.

25



3.5.3 Fetching and Replying to Requests

The requests submitted to a service point are queued there, until #rdetemesthem. Fetching a request
usually blocks until there is at least one to fétdt there is also an option to return an empty request in
that case:

<server’s service point> fetch ?-dontwait?
int Ara_ServicePointFetch(Ara_ld servicePoint, int wait,
Ara_FetchedRequest* fetchedRequestPtr);

Again, thefetch stub uses the object-oriented syntax. In addition to a reduction of typing, this has the
adwantage of introducing command name spaces per object type: Function specdifetsHik in this
example can be reused for other types than service points without name clashes.

A fetched request as returned by the stubs is implemented as a struct objechcf typehedRequest

with three components: The request data area, the?rafrtree requesting agent, and an identifyingetok
to be used for replying. In Tcl, these components are represented as a three-element liserfhaysase
the requestos name as it sees fit, e.g. to decide hauch to replyor whether to reply at all. The folling
stubs are used teplyto a service request:

<server's service point> reply <request token> <reply data string>

int Ara_ServicePointReply(Ara_Ild servicePoint,
char* data, size_t length,
Ara_ServiceRequestToken token);

If a sener decides that it @uld rather not reply to a specific request, it igactit.

<server’s service point id> reject <request token>
int Ara_ServicePointReject(Ara_ld servicePoint,
Ara_ServiceRequestToken token);

3.54 Renouncing, Leaving and Closing

A client may end a meeting at a service pointldavingit; a serer may cancel its announcement by
renouncinghe service point.

<client’s service point> leave
int Ara_ServicePointLeave(Ara_ld servicePoint);

<server’s service point> renounce
int Ara_ServicePointRenounce(Ara_Id servicePoint);

Renouncing a service point is the only method to delete it completely from the system. If the service point
has submitted requests pendingythee implicitly rejected. When an agent terminates while still being a
client or serer to some service point(s), it implicitly le=s respectiely renounces all these.

1. There is also a facility to fetdl requests currently pending at a service point, which is not shown here to avoid
distraction

2. At the time of this writing, agent names consist solely of the agent’s id, which makes them unique, but conveys no
further information beyond identity. Names will be extended in a future release to include structured information
about an agent, such as the identity of its principal, a symbolic description, its time of creation etc.

26



There is one final pair of service point operations: Opening and closing. ek seayclosea service point

for new requests, with the fefct that ag request submitted thereafter will immediately tran error
indicating that the service point is closedyfttempt of n& clients to meet the service point will be treated

as though the service poinuld not hae been announced yet (i.e. these clients are usuallydalpck
Requests which had been pending or fetchetnbt yet replied to, lweever, remain untouched and may

still be fetched respewtly replied to as usual. Closing a service point is intended to indicate temporary
overload; laterthe serer mayopenit again, returning to normal operation. YAservice point is initially

open after announcing it.

<server’s service point> close
<server’s service point> open

int Ara_ServicePointClose(Ara_Ild servicePoint);
int Ara_ServicePointOpen(Ara_ld servicePoint);

3.5.5 A Simple Example

This exkample shars the most common usage pattern of service points, featuring a client aner agent
at a service point. The senagent ders a service point namétentory-Service , and epects requests
for the currently gailable supply (as a number) of certain items of interest. Therssgwes such requests
until requested for a pseudo-item narfigidhed . The client agent in thexample meets this service point,
requests the supply of items nansedhll-objects , and leaes agin. Here is thexample Tcl code for
the serer and the client:

set supply(small-objects) 20
set supply(medium-objects) 8
set supply(large-objects) 3

set sp [ara_announce Inventory-Service]
puts “This is the Inventory server, waiting for requests...”
set request [$sp fetch]; # Request format: {data token client-name}
set item [lindex $request 0]
while {[string compare $item finished]} {
$sp reply [lindex $request 1] $supply($item)
set request [$sp fetch]
set item [lindex $request 0]
}
$sp renounce
puts “Inventory service closed down.”

Tcl Source Code of the Inventory Server

27



set sp [ara_meet Inventory-Service]

it ($sp ==} {
puts “Cannot meet Inventory Service - exiting.”
exit

}

set result [$sp medium-objects]
puts “This is the client, found $result medium objects in supply.”
$sp leave

Tcl Source Code of the Inventory Client

Running the serr and the client as agents at the same place will produce theitiglloutput:

This is the Inventory server, waiting for requests...
This is the client, found 8 medium objects in supply.

The reader may guess whaiwld happen if the clienkecutedssp finished before leaing. To illustrate
the correspondence between the Tcl and C atteH, here is the same s#rgoded in C:

static int GetSupply(char* item)
{ /* Return the number corresponding to item */ }

Ara_FetchedRequest request;

char replyString[20];

Ara_ld sp = Ara_ServicePointAnnounce("Inventory-Service");

puts("This is the Inventory service, waiting for requests...");

Ara_ServicePointFetch(sp, 0, &request);

while (strcmp(request.data, "finished")) {
sprintf(replyString, "%d", GetSupply(request.data));
Ara_ServicePointReply(sp, replyString, strlen(replyString)+1,

request.token);

Ara_ServicePointFetch( sp, 0, &request);

}

Ara_ServicePointRenounce( sp);

puts("Inventory service closed down.");

C Source Code of the Inventory Server

28



3.6 Mobility

The go operation for migration has been introduced before as the means for an agenbtetween places.
While the basic act of nwing is as simple as it seemed, some technical issues sélthide gplained in
order to utilize all its functions. The full intexfes read as folies:

ara_go ?-la <local allowance at destination>? \
?-ga <global allowance at destination>? \
<destination place name> ?<agent>?

int Ara_Go( Ara_ld agent, Ara_PlaceName destination,
Ara_Allowance local, Ara_Allowance global);

An agent is alays staying at a place, and the migration operation willeniiakore to another place as
named in the destination gument. Agent mobility can also bregcised on a single machine by making
agents mee between places located on the same machine. Remémberer, that the current Ara imple-
mentation preides only one place per system; as a temporary fix, this can be cineignby starting seral
separate Ara systems on one machirach system with itsam place. Agents can then meobetween the
places of these systems within the same machine.

When an agent goes to another place, it mustaédng an alance for its gpenses there. If the agent has

a private allavance, i.e. it does not share it with a group, iétatkis along completely by @deiit. If, havever,

the agent shares its allance with a group, it should indicate onwvimg hov much of the group aleance

it wishes to tak along. This is the purpose of the globahadloce agument of the migration operation; it
defaults to the group alleance dvided by the number of group members. Note that thisuitefesults in

the complete allwance in the common case of a singleton group, which is what is usually desired. The agent
leaves its group on migration, and the indicatedvedlioce is deducted from that of the group to become the
agents private one.

Remember that agents can alseehical allevances alid for their current place onlifherefore, besides
taking along a global awance as described, the agent may also specify a locahalle on migration, to

be \alid at the destination place (deft is the full global allwance). At the time of this writing, the local
allowance specified by an ariig agent is alays accepted by the recigig place (since there is currently
only one, dedult place per system, and its pglis to accept all agents and allEnces).

There are tw restrictions to the migration operation. First, as mentioned beforextdraad state of an
agent, i.e. its relations to other system objects and resoureeselikice points, files, or winads are not
migrated along with the agent, since those objects depend on the local machine. In particigieating
agent loses its relation to its group. Second, there is ardmhebscure restriction on migration of agents
programmed in Tcl: Theare not allawved to migrate from within Td' traces and asynchronqusc ’s.
This is due to technical reasons and might be abolished in the futtishduld not pose a real problem
anyway.

1. The API for place names will be explained in the subsequent section 3.7.

2. Note that the various Ara systems on the same machine have to be started each with its own environment settings to
prevent collisions. This is explained in the installation guide in the Ara software distribution.

29



Finally, the agent gument to the migration operation remains toXmaned. This can be used to specify
which agent is to go. Of course this delts to the running agenttithe migration mechanism in Ara has
been implemented so general as to alsovaftdgrating another agent, asynchronously to Xescation,
provided the actie agent possesses the access rigintthe migrated one. This feature may be used e.g as
a luilding block for emegeny measures or load disttition. Note, hwever, that the concerned agents must
be prepared to such migrations in some form.

3.7 Place Names

Place names are not system objeats,dpplication data, in order to allcagents taking them along on
migration. Havever, their exact format is hidden from the application by a small iataf which is still
expected to grne as place names will become more structured in future system releases.

In C, place names are represented as objects oAtgpBlaceName. Objects of this type will usually be
obtained from the directory service once itvailable, lut they also hae a character string representation,
which can be used by applications to construct place fa@esversion betweeara_PlaceName 's and
their string representation are performed by these functions:

Ara_PlaceName Ara_PlaceNameCreate(char* initValue);
void Ara_PlaceNamePrint(Ara_PlaceName placeName, char* outputString);

In Tcl, being string based, the string representations must be used daedttorersions are performed
internally Note that in CAra_PlaceName ‘s which haie been constructed should be deleted after use by
Ara_PlaceNameDelete  (see belw) to asoid a memory leak.

An agent can find the name of its current, i.e. local, place through theifglstubs:

ara_here
Ara_PlaceName Ara_Here();

Place names can be compared for idemtitiurning a boolean result, by

ara_placename equal <place name> <place name>
int Ara_PlaceNameEqual(Ara_PlaceName, Ara_PlaceName);

The C interéce also pnades functiongo delete, cop and assign place namesaay this maks no
sense for Tcl.

The stubs look as fols:

void Ara_PlaceNameDelete(Ara_PlaceName);
Ara_PlaceName Ara_PlaceNameCopy(Ara_PlaceName source);
void Ara_PlaceNameAssign(Ara_PlaceName* dest, Ara_PlaceName source);

1. In the current Ara implementation, providing only one place per system and basically only TCP as a communication
protocol, the string representation of place namesashing:port], machinebeing the DNS name or IP address of
the destination machine, apdrt being the TCP port of the target Ara system’s default place. Annex B gives a brief
outlook on the expected future format of place names.

30



3.8 Checkpointing
An agent may create a checkpoint of its current (internal) state using one of twinfpktubs:

ara_checkpoint ?-exit ?<exitVal>?? ?-ga <global allow. after restore>?
?-la <local...>?
int Ara_Checkpoint(int* restored, int exit, int exitValue,

Ara_Allowance global, Ara_Allowance local);

Similar to the forking function of section 3.3.1, this function returns indifferent contets: After creating
the checkpoint, control returns dikary normal call. If the agent isver restored from the that checkpoint
later, it will resume control returning from this function as wellweeer indicating thedct of restoration
by a diferent result: The Tcl stub returmsafter a restoration, armlon normal return; the C stub returns
the same in theestored  output\ariable, and shws standard error bebiar for the rest. The checkpoint
is stored as a disk file in a dedicated directory under a nanvedléom the id of the checkpointed agent.
This file is lept until the checkpoint is discarded. Thewliace parameters define the athmce for the
agent after a potential later restoration; thewdk$ are the same as with migration. Note that thisvalice

is stored with the checkpoint, and deducted from thevalae of the checkpointing agent. Finaityis a
common case that an agent plansdbimmmediately after checkpointing itself; thexig flag provides just
this, optionally leging a termination &lue as usual. This flag is not only awemence, bt the only vay
for an agent to store itbmpleteallowance in the checkpoint, sinceyaaecution continued after checkpoint
creation, no matter moshort, vould require its wn share of thewailable allavance.

Restoration wrks by specifying the id of the agent to be restored; the corresponding file is then used to
recreate the checkpointed agent, and the checkpoint file is deleted. The restored agent is plaeed in its 0
isolated group by dafilt, kut it may also be reced into the restoring agestjroup. The agent to be restored
defaults to the current one. Note that restoring the current agent implies the “termination” of its “present”
incarnation, since that is replaced with the incarnation from the time of checkpointing. The stubs read as
follows:

ara_restore ?-mygroup? ?<agent>?
int Ara_Restore(Ara_Id agent, int mygroup);

When restoring another agent, the Tcl stub returns nothing, while the C siusbstlindard error beliar.
Obviously, in the case of restoring the current agent, restoration does not return. Remember that restored
agents cannokpect to find theirgernal state unchanged (thiaswxplained in section 1.2). When restoring
another agent, the application should eitherensake that no incarnation of this agent has gedvrywhere,

or should be prepared to reselsuch collisions.

When checkpoints are no longer needed for potential restorationsatibe eplicitly discarded as folls,
deleting the corresponding file:

ara_discard ?<agent>?
int Ara_Discard(Ara_Id agent);

When discarding a checkpoint, the alince stored with it is rgcled by crediting it to the discarding agent’
allowance. Discarding returns a boolean result indicating whether such a checkpoint hadxistieegd e

Both restoring and discarding another ageokieckpoint do not performyaaccess right checking in the
current implementation.

31



The most common use of checkpointing is to creagdl-ddck line whence to reger after adtal failure.
An agent might use this before going to a “dangerous” plagisieeing at some “ake-up service” to restore
it unless the mgistration is cancelled within a certain time:

if {![ara_checkpoint]} {
$wake-up register [ara_me] 100 ;# "Wake me up after 100 time units"
set back [ara_here] ;# The name of the local place
ara_go $away
... ;# Do some dangerous work at $away
ara_go $back
$wake-up cancel [ara_me]
}else {
# Oops, did not return in time from $away - start recovery,
# e.g. find out if the agent has crashed.

}

Another common usage is to guard “dangerous” procedures with checkpoints, under the assumption that
some other agent will restore ttaléd one:

proc p_guarded {...} {
if {[ara_checkpoint]} {
return "Failed in proc p!"
}else {
p ;# Do the real work
ara_discard

3.9 Compiled Agents

Compiled agents pwide a natre speed alternat to the standard interpreted Ara agents for cases where
certain security and portability requirements are not strictly neceddasy prominentlythis applies to
agents which are resident and trusted at a site. This isahéovgo to gtend an Ara system with specific
resident functionalitye.g. a ne service, to be ééred to visiting agents: The service is coded as aserv
agent (in C, presumably), compiled to matcode, and a compiled agent is created from this. This can be
performed on demand at run-time when an agent requests that satiide the core is common to all Ara
systems, the set of stationary sgragents is what distinguishes widual sites, potentially ranging from
hand held dé@ces with only a fe sener agents to corporate installations with hundreds of them.

Compiled agents are &Bfent in two respects, apart from their increasedaaition speed. Tlyecannot

usually migrate, and the security of theieeution cannot totally beawranted. Wh regard to their common

usage as described, these restrictions do not pose a problem. Apart from migration angtsecaatybe

treated lile ary other agent: The complete API as introduced in section 3 applies to compiled agents as well.
The lack of migration capability is rooted in thery nature of nate code, operating on a specific micro-
processor after all, which precludes a direct transfer to a machine with a heterogeneous architecture. Actually
migration of compiled agentsas been implemented in an indirecayy by eploiting the source code,

1. Compiled agent creation is implemented using dynamic link editing of the running Ara system.

32



provided it is aailable!. The source code is transparentlyembalong with the migrating agent and recom-
piled at each destination. Concerningwieer, the security issues raised by compiled agents, some further
explanations are appropriate.

Compiled agents are notexuted within an interpretdmt have access to the psical processpmemory

and operating system. Thenight write or jump to arbitrary memory locations and perform unpredictable
system calls. It is difcult to enforce (dicient) run-time checks upon them while staying independent of the
operating system and hardw#. For this reason, Ara does not currently perform am-time checking of
compiled agents. It is, therefore, generally recommended to load compiled agents obtained from trusted
sources onlyin the case of a remote source, this means a digitally signed tPdnsfer trusted site.d¥
compiled agents loaded from the local file system, it must be ensured that this is from a location protected
agpinst access by untrusted agents.

Besides the risk of undue access, another security concern with compiled agents is causeddysiveir e
possession of control once the system enters compiled code. A compiled Ara agent retains control until
voluntarily and synchronously releasing it. This implementatias @hosen since an asynchronous, forced
interruption would leave the agent in a machine-dependent state, considerably complicating its further han-
dling, while gaining nothing for normal, interpreted agent: this reason, compiled agents must be trusted

to return control to the system frequently enough to presgavallelism among the agents in the same
system. This can be done e.g. by retiring gula intenals or calling a special function for time slice
checking. An gample for this can be found in the systeiternal communication process (see section 5.2).

Finally, the API for compiled agents is slightly féifent in three syntactical or technical respects from that
used by C agents: First, onceyttage started, compiled agents are trustecplsi@ed abwe. This implies

that the security measure of protecting system objects by an indirection through object ids no loagier mak
sense. Accordingly}compiled agents usually access system objects directly through memory addresses (i.e.
C pointers): Instead of kieng one Ara_Ild type for all objects, there are separate types such as
Ara_ServicePoint which are returned by object creation functions aqmbeted by object access func-
tions. Specialalues such asRA_SERVICEPOINT_NONEtc. are used in placeARA_ID_NONERo designate

null values. Second, within the Ara core, agents are usually called “processes” for historical reasons. This
is mirrored in the naming used in the compiled agent API, e.g. the object type for agents is called
Ara_Process . This diference bears no further significance: Whene“process” is used as in
Ara_Kill(Ara_Processvictim) , itis safe to simply think of an agent. Third, the core function to create
compiled agents has a slightly wider ingex than the C stubwgin in section 3.3.1, allang to create
processesecuting code which alreadyists in memory in compiled form (instead of loading it from a file):

Ara_Process Ara_CreateCompProcess( Ara_CompCode code, char* functionName,
byte* data, int datalLength,
Ara_Allowance global, Ara_Allowance local,
int size, int flags);

1. The source code is assumed to be contained in a file rfasnadheref is the name specified at agent creation (see
section 3.3.1).

2. There are some rather specific approaches to this, e.g. [LSW95, WLA+93] use a modified compiler.
3. Support for this will be added in a future Ara release.

33



Thecode parameter may be used to specify the function tadeuged by the meprocessfunctionName
must beNULL then.Ara_CompCode is a type definition foint (*)(byte*, int)

3.10 Allowances

Allowances hee played a role seral times before alreadys aguments to the agent creation and migration
operations, the details of whichvgabeen ceered in the respewt sections (3.3.1 and 3.6, respeaalij).
Accordingly, the purpose of alleances to limit an agestresource accesses, and their treatment in agent
creation and migration should be clear bynas well as the concept of global and localvedinces. What
remainsto be described is the API frplicit access to allwances. It should be remadkhere that all@ances,
including groups, are a recent concept in Ara, and not complete yet.

Remember that at the time of this writing, elé;mces are defined fotecution time and memory consumption
only; other resources kikdisk space, system objects created (i.e. agents, service pointskreemnections
etc.) or visited places will folle. An agent camquireits avn (and others’, access rights yided) current
local and global alwance at aptime; this might be used to choose between actionsfefidif resource
requirements, or to check whether the local place has indeed honored the laeaicdIdesired on entering
it. The stubs look as folles:

ara_get_allowance ?<agent>?
int Ara_GetAllowance(Ara_Allowance* global, Ara_Allowance* local,
Ara_ld agent);

Ara_Allowance isa C struct containing the initiual allovances forgecution time and memory as igtr
members, while the Tcl representation of wHoces is a tarelement list of these numbers. The
ara_get_allowance stub returns the global and local alince as a list of twsuch allavances.

Not surprisingly it is not possible to arbitrarily set an aliance, a security measure toymet tampering

by greedy agents. There is,wever, an operation teransfersome allavance from one agent to another
provided the necessary access right. The transferred “amount” is added to Wiegegents allovance,

and may be deducted from the source agemlb/vancé. This ensures that all@ances can be distrkbed
among agents, yet the total sum of allaloces cannot be increased. Note that the direction of the transfer
can be reersed, corresponding to/gig and taking. Allavance transfers are mostly intended for cooperating
agents (re)distrilting resources among each ottaard agents running out of resourcegiigadditional
allowance transferred to them (e.g. from a system service contacting their home site). Other uses of allo
ances, hoever, are conceable as well, e.g. as objects of trade between agents.fEhfooh remote service
might be lundled together with an all@nce sufcient to cover the trael and carry out the access, to mak

the ofering comparable independent of thepenses imolved with its use.

When transferring allwances between twagents, it is important to discriminate between transfers with
respect to the local, global, or botiriants of it. As a general prerequisite, the transferred amount is deducted
from the source agestallovance, so the latter must befstiént to cover the transfeimhis assured, transfers

of purely global allevances are performed without further questioman3ters of local allwances, on the
other hand, additionally require that both agents are located at the same place, in order &tpectstal

1. The exact semantics of such a “transfer” depends on the type of resource, e.g. on whether the allowance is qualitative
or quantitative.

34



local allovances issued by this place; furthiiile amount transferred must stay within the bounds of the
recipients global allevance. Note that a transfer of purely local@loce does not change the globahailo
ances of either source or recipient agent; a simultaneous transfer odbattissimay be used for this. Here
are the stubs for alleance transfer; the source agentdédt to the current one:

ara_transfer_allowance ?-la <local allowance>? ?-ga <glob. allowance>?\
<recipient agent> ?<source agent>?

int Ara_TransferAllowance(Ara_Allowance global, Ara_Allowance local,
Ara_ld sourceAgent, Ara_ld recipientAgent);

As mentioned before in the alance discussion of the agent creation and migration operations, agents are
implicitly assigned a group at creation time, possibly sharing a commaoraalte. At the time of this
writing, there are no operations tepéicitly leave! or enter a group. Presentin agent can find the size,

i.e. the number of members of itso (or another agemst’ access right pvided) group as follas:

ara_groupsize ?<agent>?
int Ara_GroupSize(Ara_ld agent);

At the time of this writing, there is nadility for agents to catch all@ance &haustion; instead, agents/dreg
exhausted their allsance will be terminated by the system. This should not beesesproblem, since an
agent can, of course, inquire about its currentaice at aptime and direct its actions according to that.
Inafuture release, agents will be able tpser arbitrary code to be&ecuted asynchronously when resources
run low, to tale appropriate measures toal being terminated, such asvewsy the system or ing addi-
tional allaovance transferred to it.

3.11 Dynamic Memory

Languages withxglicit memory management needazifity to dynamically obtain k& memory from the
system. C is anxample for such a language, while Tcl is not. As memory consumption must be accounted
to the consuming agestallovance, all dynamic memory allocations must be performed through dedicated
core functions. The C API pviades stubs for the twclassical memory management functions, allocation
and deletion of a memory block:

void* Ara_Alloc(size_t size);
void Ara_Free(void* p);

As usual, memory blocks allocated Ara_Alloc() must be freed usingra_Free()  in order to reuse

that memoryUnfreed memory will be freed implicitly on agent termination. Note that while languages
without eplicit memory management do not {leato) use these stubs, their memory consumption is
accounted neertheless, since in that case the interpreter uses the concerned core functions implicitly

3.12 Input and Output

As explained in section 1.4Atcessing the Host System”, currently Ara does not yetigeed/O functions
of its ovn, and allavs applications to use theiwa native I/O facilities instead. &1 instance, a Tcl agent
may read from a file as usual by

1. Remember that a migrating agent implicitly leaves its group (behind).

35



set file [open myfile]
read $file
close $file

while a C agent wuld use thedmiliar

FILE* fp = fopen("myfile", "r");
fread(buffer, size, n, fp);
flose(fp);

The implications of this arrangement/halso been mentioned in section 1.4. Actyalhe 1/0 Ara function
does eist already namely that for reading a line of characters from the standard input stream (usually a
terminal). Its stubs are as fols:

gets stdin # i.e. standard Tcl's ‘gets’ command serves as the stub
char* Ara_Gets(char* buffer, int bufferLength);

4. A Programming Example

Having looked at the Ara programming features in some detail, it will also be helpful to see the complete
picture, that is, an actual application in full source ¢otiethe limited spacevailable, this section will
present a small demonstration application, featuring a mobile agent to searcbrktheNitle Web for
“interesting” documents. The agent will visit sitesgeine their data, collect results, and continue its itinerary
according to its findings. In terms of section 2.1, this is a typical information research application.

The stratgy of the search agent is to wecalong the yperlinks found in interesting documents, in the hope
that these might lead to other interesting documents, as is often theveamsthgiroughly content-based
topology of the webThe search continues until a predeterminedvalice of resources has been consumed,
or until there are no more interesting links to kameined. As the result of its search, the agent brings a list
of the URLSs (i.e. web addresses [BMM94]) of all dige@d documents back to its home placepivide
access to the documents of a site, a stationargrsagent is empied which preides a service point acting

as a document retrial service: When presented with the URL of a document, it will reply with the contents
of this document. Conceptuallis serer is a functionally restricted proxy agent (in terms of section 1.4)
of the local web seer demon; haever, to keep the xample short enough, the presented eseagent
accesses the documents directly through the file system, rather than througghatmm with a web sesv

The question remains of Wwdo define whatxactly males a document “interesting” in terms of this search.
Incidentally the agent is to search for documents about mobile agent techndiEyysophisticated con-
ditions are conceable to delimit the desired contenutlvather than digressing intaxteanalysis here, it
shall sufice for the sa& of illustration that the document contain the string “mobile agent”.

4.1 The Document Server Agent

Being stationarythe serer is implemented as a compiled agent for inapdoperformance; the implemen-
tation shavn here is written in C. The Ara sofine distrilution also contains an egaient implementation
in Tcl for the sak of comparison. Basicallthe serer announces a service point named “Document Ratrie

1. The source code is also contained in the Ara software distribution.

36



Service”, and then fetches requests for documents in a loop until termination. Each reqyestési ¢éo
have the format of a path name of a document file in theesenocal file system, and the contents of the
corresponding file are read and returned to the client as aTayesults in the folleing overall structure:

serviceP = Ara_ServicePointAnnounce("Document Retrieval Service");

do {
Ara_ServicePointFetch( serviceP, ARA_SERVICEPOINT_WAIT, &request));
normalizedPathName = Parse document file namefn request.data;
length = size of document file
replyBuffer = Ara_Alloc(length);
fread(  from file namecdhormalizedPathName, into replyBuffer);
Ara_ServicePointReply( serviceP, replyBuffer, length, request.token);
Ara_Free(replyBuffer);

} while not finished

Ara_ServicePointRenounce( serviceP);

Top-level Structure of the Document Server

The full source code is mopresented in detail. The senis implemented as a main functi®erver_Main

which seres as the top-lel functionf of the underlying compiled agent upon agent creation (see section
3.3.1, ‘Agent Creation”). As is common in C, the source codgnsewith some inclusions of needed inter-
faces; note in particular the inclusionash.h , the Ara core API for compiled agents. The main function
commences with the definition of three macros required by Ara for handling the funstee’ (see section

5.4 and the documentation in the Ara saiftevdistrilution), which are not of further interest here, ay the
are defined to be empty

#include <stdio.h>
#include <string.h>
#include <ara.h>

int Server_Main (data, datal.ength)
byte* data;
int dataLength;

{

# define Ara_ParcelLocalState(process)
# define Ara_UnparcelLocalState(process)
# define Ara_CleanupLocalState

After defining the needed locanables, another Ara state handling macrovedlavhich marks the lggnning

of the functions code. The seev initializes itself by determining the path prefix of the documents it wishes

to provide for client access. All such documents are assumed to reside in the file system subtree rooted at
this prefix, and andocument file name requested by clients will be interpreted aveelatthe prefix.
Incidentally the prefix in this xxample is chosen as the directory the semas started from, to allofor

easy &perimentation with dferent prefixes. The initialization is completed by announcing the service point

for delivering the documents, whereupon the seenters the loop toait for document requests.

37



# define EMERGENCY_STRING "Out of memory"
char prefix[1024];
char* normalizedPathName;
Ara_ServicePoint servicePoint;
Ara_FetchedRequest request;
char requestBuffer[1024];
char* replyBuffer;
FILE* stream;
int length = 0;

Ara_DeclAndCheckSwitchl;

getcwd(prefix,sizeof prefix);
strcat(prefix,”/”);
server = Ara_ServicePointAnnounce("Document Retrieval Service");

do {

Each pass through the loogjres with fetching a request from the service point; thesserses the blocking
variant of fetching in order toait until at least one request igadable. The macro enclosing the core call
for fetching is part of the state handlingaagy Requests are fetched usinghaan FetchedRequest  struct
object, which also refers to a memory area to vedbie request data. This area may optionally be initialized
with one prepared by the senfor this purpose, as is simo here with theequestBuffer . In ary case,
theAra_FetchedRequest  will contain the request data on return from fetching, and the prepared memory
if specified, is used, pvaded it was lage enough; otherwise, a fresh area willdhheen allocated. After
fetching, a memoryudfer to hold the pysical path name of the requested document is allocated.

request.data = requestBuffer;
request.length = sizeof requestBuffer;
Ara_SwitchCall1(Ara_ServicePointFetch(servicePoint,

ARA_SERVICEPOINT_WAIT, &request));
normalizedPathName = Ara_Alloc(request.length+strlen(prefix)+1);

Now the path nameuffer is filled with the requested file name, appended to the subtree prefix described
above. If the request data space had indeed been freshly allocated during fetching, it may be deleted no
The path name is subjected to some parsing, and it isexdhéut it still bears the prefix after that; this is a
security measureplained with the parsing function beloNow the requested document file can be opened,
and it is read in whole into a freshly allocatedfér. A trailing zero byte is appended to reake data easily
handled as a character string in the case oftdilke.

38



if (normalizedPathName != NULL) {
sprintf(normalizedPathName,"%s%s", prefix, request.data);
if (request.data != requestBuffer) {
Ara_Free(request.data);
}
if ( ParseFileName(normalizedPathName) != NULL
&& Istrncmp(normalizedPathName, prefix, strlen(prefix))) {
if ( (stream = fopen(normalizedPathName, "r")) = NULL) {
fseek(stream,0L,2);
length = ftell(stream);
fseek(stream,0L,0);
if (length < strlen(normalizedPathName)+80) {

replyBuffer = Ara_Alloc(strlen(normalizedPathName)+81);
}else {

replyBuffer = Ara_Alloc(length+1);
}
if( replyBuffer == NULL) {
replyBuffer = EMERGENCY_STRING;
} else if (fread(replyBuffer,1,length,stream)) {
sprintf(replyBuffer,"Error while reading file %s",
normalizedPathName);

}
replyBuffer[length] = \0’;
length +=1;
fclose(stream);

If all went well, the reply data is moassembled in theplyBuffer . If, on the other hand, errors occurred
in accessing the file, an error message is stored ieflyBuffer instead as follws:

}else {
replyBuffer = Ara_Alloc(strlen(normalizedPathName)+80);
if( replyBuffer == NULL) {
replyBuffer = EMERGENCY_STRING;
}else {
sprintf( replyBuffer,
"lllegal operation: File %s does not exist",
normalizedPathName);

39



length = strlen(replyBuffer);
}
}else {
replyBuffer = Ara_Alloc(strlen(normalizedPathName)+80);
if( replyBuffer == NULL) {
replyBuffer = EMERGENCY_STRING;

}else {
sprintf(replyBuffer, "lllegal operation: Permission denied");
}
length = strlen(replyBuffer);
}
}else {

replyBuffer = EMERGENCY_STRING;
length = strlen(replyBuffer);

}

The processing of a request is completed by passing thevedtdata as a reply to the service point, and
freeing all luffers.

Ara_ServicePointReply(server, replyBuffer, length, request.token);

Ara_Free(normalizedPathName;

if( !stremp(replyBuffer, EMERGENCY_STRING)) {
Ara_Free(replyBuffer);

}

The serer will now begin the ne&t pass through the loop, until it terminates. In themaple, the seer agent

can be terminated by submitting a special request’‘® the service point. This is only for cegnient
experimentation; a real seswwould presumably not let itself be terminated by a cliemtwould rather

decide this on itswn based on additional conditions, or be terminated by some superior controlling agent.
Upon termination, the service point is renounced, and the main function ends with some macro undefinitions
corresponding to those at thegb®ing.

} while(stremp(request.data, "exit"));

Ara_ServicePointRenounce(servicePoint);
return O;

# undef Ara_DeleteLocalState
# undef Ara_UnparcelLocalState
# undef Ara_ParcelLocalState

}

The last item to report of the senis the auxiliary function used for file name parsing. This functionvesno

ary pseudo-directories named from a path name by “performing” theifeft on the rest of the path. This

is a security measure on the sty side, since only files in the file system subtree designated for client
access are to be@osed. A malicious client could try to sugot this restriction by inserting into the file
name, gectively reaching out of the designated subtree. This is the source code of the function:

40



static char* ParseFileName( pathName)
char* pathName;
{
char* help;
inti, j;
while (help = strstr( pathName, "//")) = NULL) {
j = help - pathName-1;
while(j >= 0 && pathName[j] I= /") {
)=

}
if(j==-1){ Ara_Free( pathName);
return NULL,;
}
for(i=help-pathName+3; i<=strlen( pathName); i ++, j+4) {
pathName[j] = pathName[i];
}
}
return pathName;

}

4.2 The Search Agent

The search agent is implemented in Tcl, which is a language well adaptetipmtessing, e.g. through
regular expression handling. Roughlthe agent wrks through a list of URL references to documents to be
searched, mong to each documesstsite, and retrigng its content from the local document retekservice

(see former section). Each reteel document, praded it turns out to be interesting as describedabis
searched then foryperlinks referencing further documents, and all such references are added dokthe w
list for later inspection. Additionallall references to interesting documents are collected, and this collection
is printed as the search result upon returning to the home sitguldrantenals, the residual aleance is
checled if it is still suficient to continue the search. Theeaall structure of the agent thus look=likis:

Initialize and ask the user for an initial list oflsToVisit to start the seah at
SearchWeb:
while ( there are urlsToVisit and AllowanceSufficient) {
ara_go site of n&t document
set servicePoint [ara_meet "Document Retrieval Service"]

while ( there are urlsToVisit at this site andhllowanceSufficient) {
set document [$servicePoint path of net URL
if ($document contains"mobile agent") {

Collect this URL
SearchDocument $document , extracting URLs and adding themuolsToVisit
}
}
$servicePoint leave
}
ara_go $home
PrintResult

Top-level Structure of the Document Search Agent

41



The full source code of the agenthain program lggns with the initialization of the globahviables, the

purpose of which isxplained in the source code comments. Most importantssoVisit  , the general

list of references still to be searched. At thgibeing of the program, this list is filled with some document

URLs typed in by the user; simple site names may also be typed here, which are interpreted as references
to the top-leel document at that site.

set filesRead ;# contains all files already read
set document ;# the content of the currentFile
set urlsToVisit # list of files (site/path) still to read
set currentSite "";# name/adress of the Site currently worked at
set currentFile "™;# file (incl. path) currently examined
set filesHere "™ ;# files found on this site which are still to be
# examined; files contain the path without site
set home [ara_here];# the site to return to after work (the start site)
set sufficientTime 0 ;# flag indicating after returning home whether
# execution time was sufficient
set sufficientMemory 0 ;# the same for memory

puts "Please enter the machine(s) or URL(S) to start the search at:"
while {[gets stdin next]} {
if {[regexp -nocase {http://} $next]} {
# Assume that $next is a URL to start the search at.
regexp {http://(.*)} $next dummy next
}else {
# Assume that $next is a machine to be searched; start at its index
# document.
set next "$next/index.htm|”

}

lappend urlsToVisit $next

After initialization, the web search is started. The agent is instructed to search for documents matching the
(most simple) rgular expression “mobile agent”, and to finish the search early if its residualeaite of

CPU time eer falls belav 5 seconds, or if its memory allance &lls belav 100 KB. After returning home,

the results are printed, and the user is notified if the agent had to finishasaslyposed to completely
covering all reachable documents.

SearchWeb {5 100k} "mobile agent"
ara_go $home
PrintResult
if { 1$sufficientMemory} {
puts "Gone out of memory allowance"
puts "Total allowance left: [ara_get_allowance]"
}
if { 1$sufficientTime} {
puts "Gone out of time allowance”
puts "Total allowance left: [ara_get_allowance]"

}

exit

42



Since the agent will return when its alance runs h, it should be started with didient allovance in the
first place, thexact amount of which will of course depend on the size of the web to be searched.

The heart of the search agent is $earchweb procedure, basically consisting ofawested loops. The
outer loop processes the general list of URLSs still toXaenined, usually located ahsous remote sites.
Once meed to a specific site of these, the agent meets the local documenakseiwice, and retres

and searches all kmm documents located at this site. Note also that before each logplenagent checks

its residual local alance to leze in time before this runswo In the @&ample here, the agent returns home
in such a case.

proc SearchWeb {minAllowanceNeeded} {
global document
global filesHere
global filesRead
global currentSite
global currentFile
global urlsToVisit
global sufficientTime
global sufficientMemory

while { ([llength $urlsToVisit] > 0)
&& [AllowanceSufficient $minAllowanceNeeded]} {
set next [lindex $urlsToVisit 0]
set urlsToVisit [Ireplace $urlsToVisit 0 0]
# next: the next site/path/file to be visited

regexp {(["T*)(.*)} $next dummy currentSite currentFile

# the file (incl. path) and the site are extracted

lappend filesRead [ParseFileName "$currentSite$currentFile”]
# mark the file as read

if {I[catch {ara_go $currentSite}]} {
# successfully changed to the current site

puts "Search agent [ara_me] arrived at $currentSite”
lappend filesHere $currentFile
set servicePoint [ara_meet "Document Retrieval Service”]
while { [llength $filesHere]
&& [AllowanceSufficient $minAllowanceNeeded]} {
# there is still a file at this site not examined, and there are

# enough resources left to examine at least one file

set currentFile [lindex $filesHere 0]
set filesHere [Ireplace $filesHere 0 0]

43



At this point, a specific document, identified by its path name storedrémtFile  , has been chosen for
examination. The search agent retgs the content of this document by requesting it from the service point
of the retri@al service. If the document could be rated, it will be &amined and searched further:

set document [$servicePoint $currentFile]
lappend filesRead "$currentSite$currentFile”
if { $document != "lllegal operation: File does not exist” &&
$document != "lllegal operation: Permission denied” &&
$document != "Out of memory”} {
SearchDocument $searchExpr
}else {
puts "\"$currentFile\": $document”

}

unset document

The variable holding the document contentipleitly deleted (inset ) after processing the document. This
is a typical optimization measure prior to a migration, in ordevaaaaking along data which is not really
needed anmore. If this deletion were omitted, thariable would be implicitly deleted by laterverwriting

it with the content of the me retrieved document; this, kaever, might not happen until after thexte
migration.

In order to reduce multiple visits to therrentSite  , the agentxamines all candidate documents located
there before mang on to another site, no matter in what sequengetthe been added tolsToVisit

Note, havever, that multiple visits cannot be completelypaled in the case where the agent learns of the
existence of a candidate document only aftevin@ visited that documerst’site. The references to local
files are thus transferred framisToVisit to filesHere

while {[set further \
[Isearch $urlsToVisit "$currentSite/*”]] >= 0} {
regexp "$currentSite\(.*)” [lindex $urlsToVisit $further] \
dummy file
set urlsToVisit [Ireplace $urlsToVisit $further $further]
lappend filesHere $file

}
} ;# filesHere

When there are no more documentsvkndo be searched at the local site, the agenesefor the né site,
and continues its loop until all referencesdnbeen processed:

$servicePoint leave
puts "Search agent [ara_me] leaves $currentSite”
}else {
puts "Search agent cannot go to $currentSite”
};#ifgo
} ;# while urlsToVisit
}

Processing an indidual document is performed by tlsearchDocument procedure. Thisxracts all
hyperlink references from the document, and each reference, local or remote, is transformed into a normal
form: Thehttp://  protocol specification is remaed!, as well as aninterspersed ,/../ or// . Local

44



references are transformed into absolute path names, while global vaestwlditional site name added
at the front. Note that local references are not added to the gersraVisit list, but collected in the
local filesHere  list, as &pected by the&earchweb procedure in its &brt to search local files before
remote ones.

proc SearchDocument{searchExpr} {
global document
global filesHere
global filesRead
global currentSite
global currentFile
global urlsToVisit

if {!I[regexp $searchExpr $document]} {
return

}

if {![GetTitle]} {
puts "\"$currentFile\": lllegal format: No HTML-<TITLE>"
return

}

if {!I[regexp {(/+.*N([M]*)} $currentFile dummy path]} {
set path /
}

# Initialises path as the path of the currentFile

while {[regexp -nocase \
"<A( M\N)+HREF( M\n)*=( MRV A<V M \n)*>"\
$document dummy dummy dummy dummy reference]} {
# while a new reference is found in the currentFile

regsub -nocase \
"<A( M\N)+HREF( M\n)*=( MR A<V An)*>" \
$document "™ document
# deleting the reference in document

set url [regexp -nocase "http://$currentSite” $reference help]
if {$url || '[regexp -nocase {http://} $reference help]} {
# it is a reference to this site (search for http-references only)

if {$url} {
# extracting the reference (including the complete path)
regexp -nocase "http://$currentSite\(.*\)” $reference help \
reference

1. For the sak of simplicity the client searches only for HTML documents accessible by the HTTP protocoMing. ha
URLSs bejinning withhttp:// ).

45



}

if {![regexp {*/} $reference dummy] } {
set reference $path/$reference

}

# the path is added to the new reference if it is a relative one
set reference [ParseFileName $reference]

if {[Isearch $filesRead \
[ParseFileName "$currentSite/$reference”]] < 0 &&
[Isearch $filesHere $reference] <0} {
lappend filesHere $reference
}
# if the new file has not been read before it is appended to the
# list filesHere

}else {
# it is a reference to a remote site

regexp {[N:]*://(.*)} $reference dummy reference
set reference [ParseFileName $reference]
# format of reference is now site/path/file
if {{Isearch $filesRead $reference] < 0 &&
[Isearch $urlsToVisit $reference] < 0} {
lappend urlsToVisit $reference
}
}
} ;# while
}

The search agent is completed by four auxiliary procedures for printing out the table of collected document
references, parsing a file name, collecting the title of an HTML document, and checking whether the residual
allowance of the agent is still Sigient. Note that file name parsing is performed here not for reasons of
security as in the seer agent, bt to arrize at a unique representation for each URL, in order t@epte
multiple searches of one document referenced grakequialent, lut not identical URLs. The source

code of the procedures folls here:

proc PrintResult {} {
global table
foreach title [array names table] {
puts "Title: $title”
puts "Files: http://$table($title)”
puts "
}
}

proc ParseFileName {file} {
while {[expr [regsub -all {\./} $file / file] \
+ [regsub -all {//} $file / file] \

46



+ [regsub -all {{[M]H)A\.7} $file / file]] } {}
return $file

}

proc GetTitle {} {
global document
global table
global currentFile
global currentSite
if {[regexp -nocase {<TITLE>(["<]*)</TITLE>} $document dummy title]} {

Enter the reference leading to this document into the table of document references. Note that this table
associates document titles withst of references, since there might beesal copies of the same document

at different locations, and the table is to list all of them. iy @se, tw documents bearing the same title

are assumed to be identical.

lappend table($title) [ParseFileName $currentSite/$currentFile]
return 1

}

return O;

}

proc AllowanceSufficient {minAllowanceNeeded} {
global sufficientTime
global sufficientMemory

set sufficientTime [expr [expr [lindex \
[lindex [ara_get_allowance] 1] 0] == -1] || \
[expr [lindex [lindex [ara_get_allowance] 1] 0] >\
[lindex $minAllowanceNeeded O]]]

set sufficientMemory [expr [expr [lindex \
[lindex [ara_get_allowance] 1] 1] ==-1] || \
[expr [lindex [lindex[ara_get_allowance] 1] 1]>\
[lindex $minAllowanceNeeded 1]]]
return [expr $sufficientMemory && $sufficientTime]

}

47



5. Ara System Architecture and Implementation

This section ®plains selected internal concepts of the Ara system which are use#ihtdegper insights
into its rationale and capabilities, and also to combine it withstdtware components. The material pre-
sented here is anfef for the technically interested readart not required for using the system, or under-
standing the prdous sections.

5.1 Processes and Internal Architecture

Section 1 already introduced some basic concepts of the Ara architecture, namely agents, interpreters, and
the core. Agents run within interpreters for their respegtrogramming language, controlled and sdrv

by the common system core. Itis a fundamental principle of Areetuée agents as autonomous, concurrent
processes. This supports their independent and possibly asynchmeecuttoa, preides fleible control,

and fcilitates mutual protection. As the system needs to control the agents in a rather fine-grained manner
it does not rely on the comparatly heay-weight process abstractions and rgklti coarse control usually
provided by the host operating system. Furthermore, common process implementationg,ligéttioe
heavy-weight, tend to be particularly platform-specific. Instead, the Ara coveleoits @vn process abstrac-

tion as the basis for agent implementatiornithil such arAra process there is usually some interpreter
running, processing the program of a mobile agent; from point wfei¢he core, haever, all processes

are treated uniformly

The core geerns the agent processes, and mediates their interaction and host system access. Basic functions,
such as migration, are pfided to the agents by the core, while higlegel services are tdred by serer

agents. While mobile agents are interpreted for reasons of portability and setatibyary agents may

also be compiled, as discussed in section 3.9. Examples occur ameggtém mycessesin addition to

the agents visible at the applicationdk the Ara system also empoprocesses for certain internal purposes,

in order to modularize the architecture. If such system processes are statimayaaye compiled. The

process structure thus supports architecture moduylavitiyout harming performance inyasignificant

way'. An example for this is the communication process, which handles themeitwerface of the host

system. System processevédapecial permissions and may directly access the host operating system,
bypassing the core. As the process implementation is internal to the Ara system, the complete ensemble of

1. See the subsequent discussion on thread implementation.

48



agents, interpreters and core runs as a single application process on top of an unmodified host operating
system, which considerablgdilitates porting to specific platforms. Fif) depicts this basic architecture
of the Ara system as a refinement of fig.

\ mobile B—ogen’r/

\

system process

mobile g2-agenf]
(compiled)

=
Binterpreter

a-interpreter

Ara core I
host operating system I

Fig. 10: Ara System Architecture

Ara processes

Ara processes are implemented asviuitial threads of control within a common address spasereided

by the host operating system. The core containsfimeet threads packagesexuting the threads concur-
rently in a non-preempite way. Synchronization primities such as messages and semaphores areyeohplo

for internal purposes; application agentsyleer, are presented hightavel facilities such as service points.

The common address spacewabdighly eficient process management and interaction. Manethanks

to the non-preempte process scheduling, there is no need for synchronization in the core and in the inter-
preters, further benefiting performance.

The reader may ka noticed an apparent contradiction between theeatb@scription of process scheduling
as non-preempte, and the statement of section 3.358,e€nt Scheduling” that the core enforces time sharing
between the agents by preemption. This seeming contradiction isecsahen discriminating between
processes, whichxecute machine code at the processeelleand interpreted agents, which interpret a
program at the Ianguagalkiz. From point of viev of the agent,>@cution is preempte, since control may
be withdravn from the agent betweenyatwo primitive instructions in its program. This is implemented by
a core function for time slice sweMance, which is called by the interpreter out of the ageatich at some
regular intenal. This function performs aoluntary i.e. non-preempte process switch whewer it finds

the agens time slice ghausted. This concept ptides the preemption required for theeution of untrusted
mobile agents, without introducing the complications of asynchronous processatonte

1. Note that the interpreted agents are completely protected from each other nevertheless (see section 5.3, “Protection”).

2. In the case of compiled agents, the level of interpretation does not exist, and scheduling is indeed non-preemptive
even from point of view of the agent.

49



As the time slice suanillance function is called at ag@lar intenal, this interal also utilized to seevas the
time quantum for the logical clock gerning the timing servicexplained in section 3.4.

5.2 The Communication Process

The communication process (“comm-process”) is the most prominent system process, handlin@tke netw
interface of the host system for the purpose of agent migration. It accepts outbound agents in the form of a
linearized byte array (“agent parcels”) and sends them to the comm-process at the gesteétion site.
Corversely it receves inbound parcels and passes them on to the core to recreaiaghagient from them.

The comme-process can handle aumber of inbound and outbound parcels in parallel by intengahe
individual transmissions. This accounts for transmissions to or from sites withaladwidth conneatity

without harming the throughput on high-speed connections.

The comm-processaits in blocled state while there are no ongoing parcel transmissions. Remembering
the discussion in section 3.3.&dent Scheduling” on blocking I/O operations, as soon as there y@re an
transmissions the comme-process starts polling the set of them in a loop interspersedligithime slice

checks (and implied potential releases of control) until all transmissions are finished, whereupon it will block
indefinitely a@in. This scheme realizes netk 1/O in parallel with other processeseeuting, without
consuming system resources while no transmissions are in progress.

Agent parcels are transmitted as a single, unidirectional datatdami the source to the destination site
comm-process. The transmission may be asgkedged, if the concrete transport protocol supports thts, b

this is not required. At the time of this writing, the comm-process uses TCP as its only transport protocol,
with an optional gtevay to the AX.25 radio transmission protocdHowever, further protocols such as
SMTP (e-mail) [CRO82] or HTTP [BFF96] will be added, and it is planned to let the comm-process choose
a protocol for each parcel transmission adapted to the current ceoitpegptovided there is more than one
alternatve route to the destination placeadable.

53 Protection

Mobile agentsxecuting within an Ara system are protected from each,@bés the core, in order to pemt
malfunctioning or malicious agents fronmysmg or tampering outside theiwa boundaryProtection in this

general contd means control of the data read and written andxterreal functions called by an agent;
higherlevel issues of object access authorization, such as entering a place, or fetching requests from a service
point, are treated specifically

Since mobile agents are interpreted, and since an interpreteusly has complete controver the inter-
preted program, protection can be agbikindependent of hardne fcilities like privileged processor
modes or page protection. Concerning the functions called, protectiosial since gery call has to pass
through a stub defined by the interpretdrich can be trusted to be correct since it is out of the ageath.
Regarding data access, on the other hand, protection isyadhiteough an address space concept: Bang

from operating systems terminolqglye set of data visible to an agent might bevgikas the agestaddress
space — both if the dataists in the form of a randomly addressable memory area (as in C), or in the form
of a set of unordered symbolianables (as in Tcl or ¥a). The interpreter ensures that each agent has direct

1. This is used for experimentation within the Ara project, and is not included in the Ara software distribution.

50



access to itsvon address space onliyhile core functions must be used to interact with other agents and the
core. The core itself and its objects, such as (other) agents and service xistriat®de the agents’ spaces
in “real” memory

Confining access to an agentvn address space isvidl in the case of»&lusively symbolic ariables
(since each interpreter maintains itenoset of these). If, on the other hand, the interpreted languags allo
random memory accesses, the interpreter musidea virtual memory image to the program, using some
kind of address checking and translation. WhecE interpreter for the C language is ammple for this.

In ary case, agents need a means to name core objetisgeoutside the agestaddress space. The object
ids already mentioned in section 3 yide this means, in addition to their purpose of uniquely naming the
core objects. Object ids V& a representation in the ageringuage (e.g. a string in Tcl) which can be
viewed as an opaque “pointer” into core space. When a core function is called by an ggernaobjects

are supplied in the form of ids, which are mapped to their objects by the stub for this function, using an
object table maintained by the core.algthis is reminiscent of operating systems such as Unix, where
applications nameeknel objects such as files indirectly through ids, though not usually globally unique
ones. The stubs also performydnterpreterspecific parameter checking, such as checking addresses for
containment in the programaddress space. This mapping and checkorl ivas been placed in the stubs
rather than in the core functions themsshin order towid unnecessary avk when a core function is
called from a trusted contg e.g. from the core itself.

5.4 Saving and Restoring the State of a Process

At the heart of mobile agent implementation in Ara is a mechanismedtsastate of a process and restore
it after transportation to another site. Agkined in section 1.3Agent Mobility: Going from Place to
Place”, Ara agents can wm without interfering with their>ecution, i.e. thg continue from the same
execution state in their program asyhead reached when Mag the source system. This “orthogonal”
migration implies that theineecution state has to bgtected from the source system and reinstalled into
the destination system as illustrated in figy.

other_place -
/ som/e_ ace \ / nice_place \

while...
if ...

nice_place go nice_place

meet partner

/

A 4
Ara system I > Ara system I
—>

Fig. 11: Orthogonal Migration between Ara Systems

51



Such an ®traction and reinstallation is a delicate procedure, the more so when the participating machines
have different architectures, since theeeution state of a process generakigts in a machine-dependent
format, such as assuming a specifaraviength or byte ordemm Ara, the state of an agent is transformed

into a portable form prior to mng. This transformation isatilitated by the Ara system architecture: An
agents state is composed of the state of its specific interpreter on the one hand, and the state of its underlying
general Ara process in the core on the other hand. The core performs the portable transformation of the Ara
part on its wn, whereas it uses a dedicated function defined by the interpreter (“upcall”) for the other part.
This function may bild its implementation on a number of utility functionfeoéd by the core, pwiding

the transformation of common data types into a portable form, as well as a general concept to transform the
states on the indidual levels of a procedure call hieragchn the run-time stack (see be&)o The run-time
overhead of the complete transformation into the portable form (remembering section 5.2, this is called
parcelling a process) basically depends on the cotityplef the program state at the time of migration, and

on the general comptity of the interpretes state representation.

Interpreters for most interpreted languages are implemented in a procedural language (in C, most of the
time). In procedural languages, thezeution state of a running program is to gdapart contained in the
programs run-time stack at a\g@n instant. This causes a problem with the normal implementation of
interpreters when trying towaand restore the interpreted progmmecution state in a portableayy since

the normal interpreter implementation intertwines that state with the interpretertime stack, and the

latter is irvariably machine-dependent. There are basicaltyalternatve solutions to this problem: Either
re-implement lage parts of the interpretecompletely replacing the use of the run-time stack bywa ne
schemé, or continue as before during normakeution, lit transform the run-time stack into a portable
representation when statevgeay or restoring is needed.

The primary design considerations of Aratheme for sing and restoring»ecution states werefifient
overall execution and stitient generality as to be applicable toy asoftware implemented in C, while
keeping that application so straightf@md that it can be easilxiended to unknen software (e.g. inter-
preters for additional languages) without understanding its inteotkivgs. for these reasons, Ara adopted
the latter of the ab@ alternaties, a portable transformation of the current run-time stack at migration time.
The deised scheme consists of an annotation of the source codevanaimfierpreter implemented in C,
which requires only a tightly localizdinderstanding of the source, can be automated tgepart, and
adds no measurable penalty to normaogition speed. This alks additional language interpreters to be
adapted to the Ara core with reasonabferef The adaption procedure has been appliedistofthe Tcl
interprete? and theMACE interpreterand is currently being applied to thedénterpreter

1. This usually involves some explicit substitute for the run-time stack, as is done e.g. in a stack machine.
2. In nearly all cases, limited to one C function.

3. For the purpose of validation, an automatic saving and immediate restoring of the prograwesftsinglgprogram
step can be arranged. The modified Tcl interpreter passes this validation for the complete official Tcl test suite
without an effect on its function.

52



5.5 Cloning and Checkpointing

Both cloning and checkpointingvolves saing the state of ave process and restoring the process from

this — cloning “restores” a cgmof the saed process immediatelywhile checkpointing defers restoration

until explicitly demanded. The problem of\gag and restoring a processtate, hwever, has been sobd

to implement migration in the first place. It should come as no surprise, therefore, that the implementations
of cloning and checkpointing are mostly based on the migration implementatiact,ltheir realization

was remarkably simple bylling back on migration: In a sense, a process cloning itself is realized as a
process migrating to the local placet being duplicated on avél. Analogouslycheckpointing is imple-
mented lile a process “migrating to the disk”.

There is, havever, one dravback with this implementation. Since processes migratiray drom the local
system lege behind theirxdernal state (see section 1.8gént Mobility: Going from Place to Place”), this
also applies to processes created by cloning and those restored from a cheabpthintc&se of cloning

this is unfortunate, since the objects of the prosexternal state stillx@dst unchanged after cloning, so that
cutting the clones relations to them is not really necesséris possible that the cloning implementation
will be extended accordingly in a future release. The case with checkpointinfei®if havever, since

the objects of the procesgkternal state might indeed change arbitrarily between checkpointing and resto-
ration, so there is no point in trying to presetiie aternal state.

5.6 Adaption of Further Programming Languages to Ara

One of the central mathtions for the separation of language interpreter and system core in the Ara architecture
was the possibility to later add further agent programming languagesy aetm useful. d this end, the
language interpreter must be adapted to Araitous respects. This adaptionested in figl2, is well-
defined and straightforavd on the part of Ara.

interpreter

B

upcalls

time slice

Ara core

Fig. 12: Adapting a Language Interpreter to the Ara Core

In contrast to the interpreted agent, the interpreter itself is conceptually a part of the Ara system, is trusted,
and supports the core in its tasks pertaining to the interpreted agent. The duties of an interpreter in this respect
include the definition of calling intea€es, i.e. stubs, in its programming language for the functions imported
from the core, and cearsely to preide functions for interpreter management (“upcalls”) to the core. The

53



work of the stubs is maostly a matter of data formatemsions and similar intea€e translations; in particular

they must map between object ids for core objects and the objects thesyse\described in section 5.3,
“Protection”. Rgarding the interpreter upcalls, the functions for the portable stidecion and restoration
described in section 5.4 are the most prominent here; others include system and interpreter creation and
deletion, and a function to start the interpretation. A general requirement for the interpreter is to satisfy
demands for dynamic memory arising during the interpretaticlugvely by the memory management
functions preided by the core (the same as called by the stubs of section 3.11). This ensurgsitbatany
consumption on behalf of the interpreted agent is properly accounted tontsradéo Furthethe interpreter

must possibly pnade a virtual memory image as described in section 5.3. Finth#lyinterpreter has to
assist the core in preemption, performingular calls to the core function for time slice siltance, as
described in section 5.1, “Processes and Internal Architecture”.

In principle, ay interpreted programming language can be adapted to Arazel giterpreter must be
extended by mechanisms to sethe described functions. The makpense in the adaption of a concrete
interpreter is usually spent in the implementation of the skitaction and restoration, the conyatg of
which directly depends on the comxitg of the state representation in this interpreféhile space does
not permit to detail a real language adaption here, it is insteuctiook at anxemplary adaption of an ad-
hoc interpreter for someydanguage. The Ara sofewe distrilution contains the source code for suchya to
interpreter adapted to Ara. Note that programmers adapting language interpreter to the Ara core will
need to use additional core functionsgeeding the application functionsvesed in section 3 Ara Pro-
gramming Concepts and Featuresit hformation on these, please turn to the safendistrilution , where
they are collected in a declaration file.

6. The Hows and Whys of Mobile Agents

The field of mobile agents is a young one, with ynarore or less»perimental systems appearing (see
section “References”) ank@oring the merits of dierging solutions. It seems appropriate, therefore, to
conclude this report with aiethoughts on some current issues of debate in mobile agent technology —
naturally with a special look on the Ara systenegy nav and then. At the lginning, there is a most
fundamental question.

6.1 Why Mobile Agents at all?

Theoretically mobile agents do not priole ary new functionality aver coventional message communica-
tion. A host could preide a remote access intece to the operations otherwise designated for locally visiting
agents, such that wmapplication could run at its home site, accessing the functions of that remote host by
means of messag&ahange, e.g. by RPC. Wever, while such a scheme could indeed produce aviiha
which is functionally equialent to the corresponding mobile agent solution, tigisraent misses the point.

The actual parer of the mobile agent concept lies in the non-functional properties iveredoomputation

with, such as performance, resourdicifngy, robustness, and ease of use. Mobile agent applications can
perform better at processing significant quantities of remote dagagahenak more dicient use of com-
munication bandwidth, and thare more robst agiinst machine and connectiail@ires; section 2, “Mobile
Agent Applications with Ara” illustrated this, so thataeples will not be repeated here.

54



Viewed more abstractlyhere is a tension between the desire toigeoa flible, general seer interfice

and the need to perform comypkeervice requestsfefiently. A simple and clean intex€e is more fhdble,

since comple requests can be satisfied by combination of simpler ones and a certain amount of postpro-
cessing; havever, the work of combination and postprocessing must be performed at the client site, demanding
increased remote communication. A rich seimterfice, on the other handiaads this problem by serving

even compl& requests by dedicated sergide functions; heever, in practice it is not feasible to anticipate

all such functions potentially desired by clientseiwynore, man seners simply cannot bexpected to
provide a reasonably fkéle interface. lbr example, remote information retvial by mobile agents may be
functionally eguralent to remote database accessyever, the llk of the information aailable world-

wide does notxst in structured databases at all. Mobile agents can release this tension effedtiecly

make the serer exhibit exactly the function desired by the concrete application.

In addition to these non-functionaljixlearly measurable aaintages, mobile agents may alsovprben-
eficial as a general conceptin the design of adtd applications, as proposed in [HCK95]. Mardividual
problems solgd by mobile agents could also be sdhby diferent means, e.g. morevperful protocols,
sophisticated cachingx&ended serer functionality and richer parametrization. Wever, from a softvare
engineering point of vie, one uniform concept seems clearly preferaktr @ number of ingidual solu-
tions.

The potential elgance of mobile agent programming slsovhen comparing the application programser’

view of a remote interaction through mobile agents with a message-based scheme: The latter is often com-
plicated by the need to decompose the desired remote action into a number of messages, each of which must
be sent separatelgnd maydil separatelyall of which must be handled by the application. Mobile agents,

on the other hand, tral in one atomic act, and are not subject to padilre during the interaction.

Aside from the technical merits, it is rather datiént question to what&ent service praders will be

willing to let mobile agents enter their premises. Quite apart from host security concerns, which may be
resohed technicallyproviders might be reluctant to share contrediohav their services will be used with
mobile agent manatturers. Only time will tell he realistic this concern will be, andwatrongly customers

will demand mobile agent support on the other handcBncerns about the resources consumed by unso-
licited visiting agents, see the payment discussion in section 6.4.

6.2 Languages

Although \arious realizations of mobile code in some formwehaeen knen for a significant time J#&L87,
STG90, SDY94], the have been quite specific andveanot had a major impact. The idea of mobile agents
as a general netwked computing concept haaiged momentum only recentiyjost prominently through
the Telescript language [WHI94, GEM95] and, in a more specific ggritee Jaa language efironment
[GJS96]. Both these systems are centered around tixein@v programming language for mobile code or
agents, and it is not surprising that the language, referred to as arkemegramming language”, is
frequently seen as the central issue of mobile agent technology

While it is certainly lgitimate to ask what kind of programming languageild be best suited txpress
mobile agents, focussing too much on the language might unnecessarily impedeativemeéwnt of the
concept. Firstlythe intgration with a specific, “mobile” programming language, with W& anerits and
shortcomings, easily blurs the borders between language and mabifigcessarily obscuring the concept.

55



Secondlythe adoption of a melanguage constitutes a considerable hurdle in practice, requiringkilks
and tools and hindering the interoperation witisténg software. This critique of mobile programming
languages might be countered with ttguanent that the inggation, while ingitably “obscuring” the borders
between the intrated concepts, as well as requiring additional adoptipense, does indeed yield a sig-
nificant benefit in programming. M@ver, it is instructive in this respect to draan analogy from the field
of corventional distrilbited computing to mobile agents. During the rise of digteithcomputing throughout
the 1980s, a considerable number of disted programming languages [e.g. BLAS8ALBO] appeared,
integrating distrilution concepts as language prives. Although seeral of them reached a remarkable
maturity, none has been able to spread significantly; instead, libraries and run-time systéairsgpais-
tribution functionality [e.g. OMG96] hee achie@ed perasive usage. The reasons for this are manifaid, b
a primary one is certainly thadt that distribtion handling is not intertwined so intimately with the local
processing as to require language suppeny strongly, relative to the disadantages of changing the lan-
guage. Considering that with mobile agents, mobility tends tacigen less frequently than, sdgPC

in corventional distrilited programming (remember that replacirgensve remote interactionas one of
the initial motvations of mobile agents), this reasoning applies enore to mobile programming languages.

This is wty Ara tales the approach of prigdling mobile agent functionality in the language-independent
system core, with the language-specific interpreters adding basically only aacmtezfween the core and

the agents. The price for thisXiility is a certain restriction andrerhead in agent interaction; forample,

shared wriables cannot be used as a means of communication between agents, since the implementation of
a \ariable is specific to its language.

Most nascent mobile agent platforms originate from a specific programming language [CHT95, CMR+96,
GRA96, HMD+96, LAN96, LI96, PED96, RAS+97, SBH96ytmary have declared language indepen-
dence a goal. Heever, only very fav implementations [e.g. JRS95] actualljenfmore than one language

at the time of this writing. It is remarkable in this respect thaheéhe seminal dlescript system — a
prototypical &ample of the intgration of language and system — has recently been suggested by its creator
to play the role of one of geral language @ironments on top of a common platform [WHI96].

Quite apart from programming the agents’ actions, the term “agent language” is sometimes also applied to
the language interacting agents use for mutual communication. In contrast to programming languages, there
is no set of agreed basic functionality for such languages. It is clear thaapyitations could ierage

off a structure for informationxehange, bt it is a current issue of research to finavpdul, yet general

patterns of agent communication (see [MLF95] for aangple). Ara, in particulaleaves the choice of
communication language openfasfng only a general data@éhange mechanismoFthe time being, com-
municating agents may set up a customized interaction scheme on top of this betweendbgehsit is
concevable that such a concept will be igtated into the system core at a later time.

1. Parallelism, as opposed to distribution, constitutes an instructive counter example: Parallelizing languages and
compilers are well-established in high-performance computing. This can be attributed to the fact that parallelism
appears and can be realistically exploited in a more fine-grained form than distribution.

56



6.3  Mobility

Mobility has been common in disttited systems in mgrforms, both mobile data and, soni®t less
frequent, mobile processes. Distribd object systems and distribd operating systems in particulavéa
strived to preide farreaching mobility of all kinds of system objectsyvérds the ultimate goal of complete
“location transpareng, i.e. the property of an object that itsygital location is neither discernible nor
important. In particularthis involves system-wide, global objects such as data objects, locks, groups, com-
munication channels etc. It might bgyaed that a mobile agent platform should include all these as well,
to provide maximum programming ceenience.

However, the taget domain of mobile agents is characteristicallfed#nt from that of distrilted operating
systems, as the latter cannot help in practice to assume @kefweasonable bandwidth anghdability

to male their distrilnted data structuresork. Mobile agents, on the other hand, argatad especially at
wide-area netarks with lov bandwidth and intermittenvailability, which tend to mak global functions
(i.e. those spanning more than one node) unwieldy to use. Apart from this pragrfetodd, there is also
a conceptual mismatch between the goal of global functions te lne&tion iwisible and the principle of
mobile agents ta@licitly move between locations. This is rooted in théedént underlying netark assump-
tions agin: To put it shortly hiding distances can onlyork if the netverk is good enough; otherwise it is
sensible to admit the distance and deal with it. Accordinigéyglobal functions in a mobile agent system
should be &pt to a minimum, as also awbated in [TSC95].

As a result, the Ara design has been reluctant to include global functions besides agent migratien; higher
level global services should rather hélbon top of migrating agents, benefiting from theirustness and
flexibility. Since the ingtable orerhead imolved in sending a mobile agent is not justified for certaiy v

simple instances of communication, for pragmatic reasons a simple remote communéazzlitynis
expected to be added as the only other global function besides migration.

Playing a protal role as described, the concept of migration deseseme additional discussion. While
mobile code systems can certainly be useful without migration (e.gvéhadguage afronment does not
directly provide migration), such systems do not lend thenesekasily to tasks spanning/eml nodes,
such as distrilited information retrieal and semantic routing (see section 2.1, “Information Researadn”). F
systems which do support migration, in practice there is a choice betweatidmaties concerning the
agent gecution state to be naed: Either mwe only the global data of the agent program, restarting it at the
destination site on these data (&3, HMD+96, JRS95, LAN96, LDD95, LI196, SBH96], or &athe current
execution contet along as well, resuming the program from this canf&EM95, GRA96, CMR+96,
PED96, RAS+97]; the latter had been termed orthogonal migration in section 1.3. Theseidwts of
migration are theoretically equlent, because in the first case, tkecation contet can be encoded in the
data part, achiegng a behgior which is at least functionally eqailent to the second, orthogonal case.
Concretelya copy of the program could be sent to the destination, along with some data describing its current
application-leel state. A fresh cgopof the agent will then start at the destination site, using the accgimgan
data to restore the application state to that before the sending, and resume from there. In pvestaze, ho
such encoding and decoding of statesilt cause considerablgfat to the agent programmer once the
program gets lagier. Even more, theerall control flav of the application programauld be dominated by
the presence of migration, intendag application functionality with mobile agent functionality

57



It is tempting to dismiss orthogonal migration on the grounds that it requires additional implementation
expense in the agent platform, and that it can be emulatedaginCertainly emulation is manageable for
stock &amples, bt it would be short-sighted to leathat problem to all potential later applications, rather
than solving it once and for all in the platform. This is/na realizes orthogonal migration: An Ara agent
can migrate at antime by calling the concerned Ara core function; the systdraas the agent from the
local structures then, transforms its complete state into a portable form and ships this. Ving 3stem
performs an iverse operation, recreating the agentxiactly the samexacution contet, i.e. directly after
the migration call. Migration is thus independent or orthogonal to progeacaion. This concepatilitates
application deelopment considerahlas well as the adaption ofisting software. Orthogonal migration
might also be termed “addig”, since it cleanly adds migration to the programmgzdlbox, without hin-
dering other tools such as structured programming or encapsulation. From point of the application
programmerthis pravides mobility in the simplest and yet mostwyaoful way.

Note that orthogonal migration, while ring thecompletecurrent state, does not force a migrating agent
to hurden itself with unnecessary load in the case where it does not gdoager about certain parts of its
state. In this case, umnted data can simply be deleted prior to migration, and an unnecessarilyxcomple
execution contet can be simplified by proceeding to a simpler cxirivefore actually migrating.

As an aside, orthogonal migration is sometimes called “transparent” instead, suggesting that the act of
migration is “not noticeable” from point of wieof the program state and controMidAra rather opted for
“orthogonal”, since “transparent” is usually resahfor actions not noticeabéd all to their initiator (as

with “transparent redirection”), which does not seem appropriate for migration as an intentionally initiated
action. Tuly transparent migration does occur in disttdal operating systems managing a homogeneous
cluster of processors, where computing processes arednfietween the processors for reasons of load
distribution without noticing this; that, lever, is quite diferent from migration as mobile agents usually
perform it.

To give due credit, Ara concept of migration is clearly inspired bsidscript [GEM95], in particular the
name of the corresponding operation (“do”)

6.4 Security and Payment

Security is a central issue with mobile agents, and, consequertlgeen treatedvszal times in this report,

too. As a matter ofdfct, the focus has been on the security of the host sys&instagndue actions of a
visiting agent. This is understandable, since mobile coddtaindy calls up the vision of viruses, and it is
necessarysince host system operators must feel reasonably secure befavélthémit ary mobile agents
However, host security is not a problem in itself, since the actions of an agent can be arbitrarily restricted,
e.g. by interpretation. The problem is rather one of pdiicstrile the right balance between restriction and
empaverment of the agent.

1. The name of “meet”, the operation to perform a rendez-vous between agents at the same place, is also credited to
Telescript. Note, however, that the details of interaction in Telescript and Ara are very different. Telescript uses
method calls across agents, while Ara effectively employs message exchange to account for agents implemented in
different languages. Both concepts are synchronous, though.

2. While total security would certainly be preferable, the dangers must be weighted against the benefits, and it seems
plausible that a certain level of danger will be tolerated, as it is widely the case with networking in general.

58



In contrast to host securijtthe security of the agenta@gst undue actions of the host is a fundamental
problem. Since a program is in thenm of its processor by iteew nature, the host has nearly complete
control over the agent. In particulaihe host can inspect the agsmitogram at will, can read and write its
data more or less arbitrarilgnd can alter the programeeution in ag way it chooses. Some of these
problems cannot be s@g by technical means (such asying an agens code), while others can be saty

but require considerablegenses, or impose undesirable restrictions.

When in the paer of an untrusted host, in a certain sense the agent cannot trust itself. In general, protection
of an agent agjnst its host must therefore be arranged with the help of a third party trusted by the agent and
out of control of the host in question. The mostiobs candidate for this is the agesniome system; in

cases where this is not feasible, unrelated third parties might play this role to gpees gdevided there

is no wide-spread “conspingitagainst this agent. Protecting the agsietbde aginst tampering by the host

is an &ample for this: The code may be digitally signed by the home systemyenydsgstem receing

the agent mayaexrify that the code @s not manipulated by the sending systeim contrast to the code,
protecting an ager#t'data aginst tampering or $fing is not possible in gene?aJ— once agin, arything
accessible to the agentis accessible to the host as well. In partimitarggeste idea of an agent ligining

with its host @er the price of some serviceould fall a pre to this problem — the host could apprehend

the agens bagaining stratgy by inspection of its program, and adjust itsdoehaior to arrive at the worst
acceptable result from point of vighe agent. Apapplication which requires pacy of the agent will hae

to consider this lack of protection.

In particular this applies to applicationsvolving electronic currenctransfers. Currerycschemes where

the \alue delery is constituted by the disclosure of a certain piece of data are not suitable for secure
transactions between agent and host, since the disclosure cannot be controlled by the agent. Still, it is an
attractize idea to equip mobile agents withualget of some suitable electronic curretapurchase services

on the spot. Such currgnmay be used in particular to compensate a host system for the resources consumed
by the agent during its staictually, the concept of alleances in Ara has been introduced not only for the
purpose of bounding an agen&penses, as it is presently usegt #lso with the intention of accounting

and billing thosexpense?, and the use of electronic currgndll be investicated in the Ara project. Kever,

itis not necessarily true that in the long run, serviceigess would only admit an agent to their host machine

if the agent is willing to pay for its stayhe situation is not too dérent from todays relation between
providers and their remote clients: &vtodayproviders spend considerabbgpenses to run sesvmachines

to publish information and services, and the mere act of publishing, though consuming significant resources,
is free for clients. Matters are féifent, havever, concerning the &déred services themsels, as opposed to

the mere publication. There may indeed be a potential for electronietsbeke, populated by mobile agents.

1. This method would exclude self-modifying code, but that appears to be a tolerable restriction.

2. Data which the agent collected on previously visited sites, but does not need before reaching a trusted site, constitutes
an exception to this. Such data can be protected by public key cryptography, using the public key of the trusted site.

3. Actually, the consumed resources are accounted even in the present implementation for internal purposes, although
there is no billing yet.

59



Annex A: Glossary of Ara Terms

Cross references to other terms in the glossary are prinitatida when occurring in descriptions.

Access Right

Agent

Allowance

Checkpoint

Client

Operations on agents, such as terminating them, requirgdhetimg agent to pos-
sess the access righter the concerned agent. An agent possesses the access right
over all agents of itswan group and of ag child groupsthereof.

A mobile agent is a program with the ability towveaduring &ecution, while pre-
serving its identity and stateoFthe sak of uniformity even programs which do not
really more are subsumed under this teAgents bear a globally uniqgue immutable
name. Each agent is the (possibly single) member ofj@up at a time, which bears
an allowancelimiting its resource accesses. Agents atecated as parallglro-
cessesusually by annterpreter.

An allowance is a @ctor of permissions foravious system resources, suchikes f
CPU time, or disk space. The elements of suckcéov constitute quantitag per-
missions (e.g. for CPU time) or qualitaiones (e.g. for netwk domains to where
connection is allwed). Each agent is equipped with a globalvadince for its life
time and may be further restricted by a localwa#ioce while staying at a certain
place An agent shares both its global and localvedioce with the other member
agents of itgroup.

A record of the completmternal stateof an agent at some time. The concerned
agent may be restored from the checkpoint, to resumeetsigon from this state.

An agent which hameta rvice point The client may submit equesto the &r-
vice pointin order to recee areplyto therequestAn agent may play the role of cli-
ent andserverat maiy service pointat a time.

Compiled Agent An agent which is compiled to nati machine code andecuted directlyas opposed

Core

External State

to beinginterpreted Compiled agents must be absolutely trustiy, since thg are
able to subert the security measures of the system. Compiled agents cannot usually
migrate, except in certain cases where their source codeaitadle.

The central part of an Ara system, implementing the basic concepts sagdnts
allowancesservice pointsmigration etc. Ary access from an application agent to

the host system or to another agent is mediated by the core for reasons of security and
portability. The core treats agent independently of their programming language, using
assistance from the languageerpreters for language-specific tasks.

The relations of an agent taternal objects, such as other agesésyice pointsor
files. These relations cannot be presdracrossnigration or chedkpointing as such
external objects cannot beawanted to st where the agent completesritgyration
or when it is restored fromcedkpoint

60



Fetch

Group

Inferaction

Intfernal State

Interpreter

Meeting

Migration

Mobility

Plaoce

A servermay fetchrequestsubmitted to aervice pointFetched requests are tagged
with the name of the requestitjent. The fetch operation optionallyaits until
there are anrequestsubmitted.

A group comprises a set of agents with a comaltowance Newly created agents
join the group of their creator by @efit, kut they may also be created to form ame
separate group, called a child of the creatgrbup. A child group recads a share of
its parents allowanceand returns (what is left of) this when it becomes empiynag

An id is a globally unique and immutable machine-generated identification of an Ara
core object. Currentjyagentsandservice pointdear ids. Agents use ids to name
objects as guments to operations on them.

Agentsusually interact locallyby meetingat aservice point There will also be a
facility to pass messages between remote agents in a fatsienvof Ara.

The completexecution state of an agenkoept itsexternal state This comprises the
agents data, code, ancecution contet.

A mobile agent isxecuted within an interpreter for its programming language, for
reasons of security and portabilidn Ara system may contain interpreters for-se
eral languages on top of the comnuame. Besides »ecuting the code of the inter-
preted agent, an interpreter must be adapted toaedan order to support it in the
portable and secureecution of the agent. Currentiyterpreters for the Tcl and C/
C++ languages hva been adapted to the Acare, and an adaption of Jais on the
way.

An agent may meet service pointat the locaplace under its symbolic nhame to
become &lient at thisservice pointThe meet operation optionallyaits until such a
service poinexists. Aclient may leae the service point agn, resolving its relation
to theservice point

Migration is an act of aste motion of anxecuting agent from onglaceto another
while preserving the compleieternal stateof the agent. In particulaits execution
context is presered, i.e. the agent resumes directly after the migration statement in
its program. The agestéxternal statecannot be preseed. A migrating agent tals
along someallowanceand leaes its group behind, forming amgroup at the desti-
nation. It is possible to makanother agent migrate;wever, this agent should be
prepared to maksense of this.

Agentsare the only mobile objects in Ara. Mobility therefore appears in the form of
agentmigration.

A place is a virtual location within an Ara system. An agentisyd either staying
at some place anigrating between tw of them. A place establishes a domain of
logically related services under a common security p@aerning all agents at that

61



Process

Reject

Reply

Request

Root Agent

Server

Service Point

System Process

place, by deciding on the admission of an agent attemptinggtate to this place,
possibly imposing a localllowanceon that agent for the time of its st@®faces bear
globally unique names. The current Ara implementatiorniges only one place per
system, admitting anmigrating agent without restrictions.

Agents running on an Ara system are@ited as quasi-parallel processes, scheduled
using a time-slicing scheme which is preengptt the leel of program instructions,
but non-preemptie at the leel of processor instructions. The current scheduling pol-
icy is round robin without priorities. Processes are implemented usaxg thfead
package in theore.

A servermayrejectarequessubmitted by &lientinstead ofeplyingto it. Rejection
will cause theclient s requestsubmission todil.

A message of arbitrary format returned as the answerdquesty aserver The
servermay alsaejecttherequesinstead of replying.

A message of arbitrary format submitted tseavice poinby aclient The submis-
sion operation will either return thieplyto the request or r@jection

The initial agent running when an Ara system starts up. In the current implementa-
tion, the root agentxecutes Tcl code read from the input stream (a terminal in inter-
active mode), and termination of the root agent terminates the system.

An agent which has createdervice pointThe serer mayfetch requestsubmitted
to theservice pointandreplyto orrejectthem. The semrr may delete theesvice

point at aty time, which implies closing it angtjectingall requestsvhich had been
submitted, kit not yetrepliedto. An agent may play the role of senandclient at

mary service pointat a time.

A service point is a meeting point for agents under a unique symbolic nawié; pro
ing synchronous agent interaction. A service point hassengeragent and arbi-
trarily mary client agents. A service point may be temporarily closed and reopened
by theserver affecting its behaor concerning attempts toeetor submitrequests
Closed service points appear notiseent tomeetattempts, andequestsubmission
attempts areejected Requestalready submitted,ut not yetrepliedto are not
affected by closing. A service point isaalys tied to gplace

Various tasks within the Ara system are performegrogessesvith special pwi-
leges, e.g. to access the host operating system without mediation throwginethe
Such system processes are usuadiypiled Apart from this, the are treated as gn
otherprocesshy thecore.

62



Annex B: What May Be Expected from Ara in the Future?

The Ara system is in the midst ofvddopment, and besides completion of those features describhedted
as unfinished in this xg¢ further concepts wilbaend the system. The follang outlook names some fields
where vork is in progress or scheduled talme

The most prominent meconcept will be a secure and portaltdest interfacethis was discussed in sec-
tion 1.4. This will include multiple places with uséefinable security policies, andiending the
allowance concept to all types of resources.

The paver of a mobile agent as conceded by a sjeledst system crucially depends on the agent’
identity. Rather than trusting the identity of airig agents on goodhith, a securauthentication
scheme will be added to agent migration, optionally authenticating the agent as required. Encryption of
moving agents to prent eaesdropping and spdofy will also be dfered. Standard publice¢ cryp-
tograply will be applied for these purposes.

In a realistically sized netwk, mobile agents cannot kmdhe places of potential rel@nce to their
task in adance. Adirectoryservice will be preided for this, mapping services to places. The directory
will be integrated with the service point concept by optionally publishing a service aartie and
location on creation.

Further transporprotocolsbesides na TCR, such as SMTP and HTTRill be added as transport
options for migration. A side-ffct of this is that place nhames will become more structured, which is
additionally furthered by allging more than one place per Ara system. A place name will be a list of
URLs, one for each communication protocol by means of which the place can be reached.

The nev interpreted programming languadgeva offers interesting concepts for mobile code andyanjo

rapidly increasing importance in nedvked programming. The va interpreter will therefore be
adapted to the Ara core, as a third language besides C and Tcl, supporting mobile agents programmed
in Java.

Tools for working with Ara agents will be deloped, such as a visual monjtardeligger and a
WWW-based agent launcher

World Wide Wb support will be added to Ara, both at the user and the systein fer instance, the
system will be equipped with be a user irded through a web brser and sergr agents will preide
web access to application agents.

A simple interagent remotenessging facility will be provided.

Any future deelopments in Ara will be published on thdicifil WorldWide Web page for the Ara system,
to be found under the addréstp://www.uni-kl.de/AG-Nehmer/Ara/ . Further questions about the
system can be directed by e-maibta@informatik.uni-kl.de or by paper mail to the author under
the following address:

Holger Peine

University of Kaiserslautern
P.O.Box 3049

D-67653 Kaiserslautern
Germary

63



Annex C: The Ara Software Distribution

Caveat:The included Ara softare is \ersion 1.0alpha, which is a snapshoetadluring deelopment. This
means that the system is useful as it standanhry advanced features are still missing. No specitalref
to optimize the run-time performanceveabeen made yet. Asvedys with softvare in this stage of gel-
opment, the presence of errors must berakto account. Heever, the author constantly stas to impree
the system and welcomesyasuggestions andulg reports.

The Ara softvare is implemented in the C programming language and has been podedus ersions
of the Unix operating system (Solaris, SunOS, and Linuxdis§pecifically the distrilution 1.0a contains
the following:

 Installation and configuration notes

e The complete source code tree, together withenfidds to liild the system from this

« Some simplexample programs (including all described in thid)}te

» Documentation, containing
- Hypertet help pages in HTML about the Ara shell and auxiliary tools, and all API features.
- The Tcl manual, both as ‘man’ pages and HTML.

- Some notes on current security breaches, adding further languages to Ara, and compiled agents.

Acknowledgments

The author wishes taxpress his gratitude to Peter Buhl@hose support and ideas coniitdd to getting
the Ara project on the track, and whoel®ped the lov-level threads package used in the Ara coreptstén
Stolpmann, the author of th@ACE system [SD95]; to Markus Scherewho adapted the Tcl interpreter to
Ara [SCH95]; and to Christianaliwel, who helped with mgrodds and ends around the project.

References

[BAL9O] BAL, H. et al. (1990)Orca: A Languae for Distrituted PpcessingSIGPLAN Notices 25(5):17-24 (May).
[BER94] BERNERS-LEE, Tet al. (1994)The WrldWide Weh, Communications of the@M, August, 37(8):76-82.
[BBI+93] BADRINATH, B.R., BAKRE, A., IMIELINSKI, T. and MARANTZ, R. (1993)Handling Mobile Clients: A

Case for Indiect Inteaction. Proc. of the 4th \Wkshop on Wirkstation Operating Systems (Napa, California,
Oct. 14-15), IEEE Computer Society Press, pp. 91-97.

[BFF96] BERNERS-LEE, T, FIELDING, R. and FRSTYK, H. (1996) Hypertet Transfer Potocol -- HTTP/1.0,
Internet RFC 1945, http://ds.internic.net/rfc/rfc1945.txt.

[BMM94] BERNERS-LEE, T, MASINTER, M. and MCCAHILL, M. (1994)Uniform Resoure Locatos (URL),
Internet RFC 1738, http://ds.internic.net/rfc/rfc1738.txt.

[BLA87] BLACK, A. et al. (1987)Distribution and Abstact Types in Emeald, IEEE Transactions on Soft@ve Engineer-
ing, SE-13(1):65-76 (January).

1. It is possible that an improved version of the software will have been released by the time of this publication; please
check the Ara WWW pages for this.

64



[CGHO5]

[CHT95]
[CMR+96]

[CRO82]

[FAL87]

[FOZ94]

[FON93]

[FRGY6]

[GEMY5]

[GJIS96]

[GOY95]

[GRA96]

[HCK94]

[HMD+96]

[HOAS87]

[JRS95]

[KALS6]

[LAN96]

CHESS, D., GRSOF, B. and HARRISON, C (1995tinerant Agents for Mobile Computindresearch Report
RC-20010, IBM Th. J. \&tson Research Center
http://www research.ibm.com:8080/main-cgi-bin/gunzip_papetS/172.ps.gz

CHEVALIER, P-Y. and THOMSEN, B. (1995Mobile Service Agnts http://wwwecrc.de/research/dc/msal.

CONDICT, M., MILOJICIC, D., REYNOLDS, Fand BOLINGER, D. (1996)owards a Vérid-Wide Civiliza-
tion of Objectsto appear in Proc. of the 7ttCM SIGOPS European dkshop, September 9-11th, Connemara,
Ireland. http://wwwosf.og/RI/DMO/WebOs.ps.

CROCKER, D.H. (1982)Standad for the rmat of ARR Internet &t Messges Internet RFC 822,
http://ds.internic.net/rfc/rfc822.txt.

FALCONE, J.R. (1987)A Programmable Interface Langga for Heteogeneous Distribted System#&CM
Transactions on Computer Systems 5(4), November.

FORMAN, G. and ZAHORAN, J. (1994) The Challengs of Mobile Computindechnical Report CSE-93-11-
03, Uniersity of Washington, USA.

FONER, L. (1993) What’s an Agnt, Anyway? A Sociacal Case StugMIT Media Lab Agents Memo 93-
01, Massachusetts Institute afchnology Cambridge (MA), USA.
http://fonerwvww.media.mit.edu/people/foner/Julia/

FRANKLIN, S. and GRAESSER, A(1996) Is it an Agnt, or just a Pagram?: A Bixonomy for Atonomous
Agents Institute for Intelligent Systems, Umrsity of Memphis (TN), USA.
http://wwwmsci.memphis.edu/~franklin/AgentProg.html.

GENERAL MAGIC, Inc. (1995)The Elescript Languge Refeence Sunryvale (CA), USA.
http://cnn.genmagic.comélescript/ TDE/TDEDOCS_HTML/telescript.html

GOSLING, J., J@, B. and STEELE, G.(1996)The Ava Languge SpecificationMountain \few(CA), USA.
http://java.sun.com/doc/language_specification.html

GOLDSZMIDT, G. and YEMINI, Y (1995) Distributed Mangement by Delgating Mobile Agnts,Proc. of the
15th International Conference on Distribd Computing Systemsakicouer, Canada, June.
http://www.cs.columbia.edu/~german/papers/icdcs95.ps.Z

GRAY, R. (1996) Agent-Tcl: A Flible and Secur Mobile Agnt systemProc. of the 4th annual Tcl/Tkonk-
shop (ed. by M. Diekhans and M. Roseman),, Miyntergy, CA, USA.
http://www.cs.dartmouth.edu/~agent/papers/tcl96.ps.Z

HARRISON, C., CHESS, D. and KERSHEKWBM, A. (1994) Mobile Agnts - Ae Thg a Good Idea?
Research Report RC-19887, IBM Th. Jatébn Research Center
http://www research.ibm.com/xw-d953-mobag-ps.

HYLTON, J., MANHEIMER, K., DRAKE, FE WARSAW, B., MASSE, R., and AN ROSSUM, G. (1996)
Knowbot Pogramming: System support for mobilgeats Proceedings of the Fifth IEEE Internationad\k¢
shop on Object Orientation in Operating Systems, Oct. 27-28, Sealt|¢)SA.
http://the-tech.mit.edu/~jeremy/a00s.ps.gz

HORTON, M.R. and AIAMS, R. (1987) Standad for intechange of USENET mesges Internet RFC 1036,
AT&T Bell Laboratories and Center for Seismic Studies, Decerhlter//ds.internic.net/rfc/rfc1036.txt.

JOHANSEN, D., @n RENESSE, R. and SCHNEIDER,B= (1995) An Introduction to the ACOMA Distrib-
uted Systenilechnical Report 95-23, Dept. of Computer Scienceyésaity of Tomsg, Nonay.
http://www.cs.uit.no/Lokalt/Rapporter/Reports/9523.html.

KANTOR, B. and LAPSLEYP (1986) Network Nevs Tansfer Potocol Internet RFC 977, U.C. San D
and U.C. Berkley, Februaryhttp://ds.internic.net/rfc/rfc977.txt.

LANGE, D. (1996) Programming Mobile Agnts in &va - A White Bper, IBM Corp.
http://www.ibm.co.jp/trl/aglets/whitepapétm

65



[LDD95]

[L196]

[LSWO5]

[MLF95]

[OMG96]

[0US94]
[OUS95]

[PED96]

[PES97]

[PRI96]

[RAS+97]

[ROU96]

[SBHO6]

[SCHY5]

[STGI0]

[STO94]

[STOY5]

[STRO0]

LINGNAU, A. DROBNIK, O. and DOMEL, P(1995) An HTTP-based Inéstructue for Mobile Agnts,Proc.
of the 4th International WWW Conference, DecemBeston (MA), USA.
http://mwww3.0ig/pub/Conferences/ WWW4dpers/150/.

LI, W. (1996) Java--Go: ltinerative Computing UsingaVa.
http://ptolemyeecs.berley.edu/~wli/group/jga2go/jaa-to-go.html.

LUCCO, S., SHARPO. and VAHBE, R. (1995) Omniwae: A Univesal Substate for Vb piogramming Proc.
of the 4th International WWW Conference, DecemBeston (MA), USA.
http://mwww3.01g/ pub/Conferences/WWW4/165/.

MAYFIELD, J., LABROU, Y. and FININ, T (1995) Desideata for Agent Communication Langgas,Proc. of
the AAAI Symposium on Information Gathering from Heterogeneous, DiseétbEnironments, AAAI-95
Spring Symposium, Stanford Weirsity Stanford (CA). March 27-29, 1995.
http://www.cs.umbc.edu/kgml/papers/desiderata-acl/root.html.

OBJECT MANAGEMENT GROUP (1996) CORBA 2.0 specificationrOMG document ptc/96-03-04,
http://www.omg.og/docs/ptc/96-03-04.ps.

OUSTERHOUT J. K. (1994) Tcl and the Tkdolkit, Addison-V¢sle/, Reading (MA), USA.

OUSTERHOUTJ. K. (1995) Scripts and Agnts: The N& Softwae High Gound Keynote address at the 1995
USENIX winter conference. http://playground.sun.com/~ouster/agent.2up.ps.

PERRETS. and DU, A. (1996) Mobile Assistant Figramming for Hicient Information Access on the
WWW Proc. of the 5th WWW Conference, May 6-10, 1996j< France.
http://www5conf.inria.fr/fich_html/papers/P42/@wien.html.

PEINE, H. and SDLPMANN, T. (1997) The Achitecture of the Aa Platform for Mobile Agnts

in Kurt Rothermel, Radu Popescu-Zeletin (eds.): Proc. of the First Internationah®p on Mobile Agents
MA’97 (Berlin, Germaw), April 7-8th. Lecture Notes in Computer Science No. 1219, Springibag/
http://www.uni-kl.de/AG-Nehmer/Ara/Doc/architecture.ps.gz.

PRICE, R. (ed.) (1996pProposed ISO/IEC International Standafior HTML, Proposal of the JTC1 joint techni-
cal committee shared by the Internationag@dization for Standardization (ISO) and the International Electro-
technical Commission (IEC). http://www3.oig/pub/WWW/MarkUp/JTC1-SC29/@vview.html.

RANGANATHAN, M., ACHARYA, A., SHARMA, S., and SALZ, J. (1997)Network-Avare Mobile Po-
grams Dept. of Computer Science, Wersity of Maryland, MD, USA. @ appear in USENIX'97.
http://www.cs.umd.edu/~acha/papers/usenix97-submitted.html

ROUAIX, F. (1996) A Web Navigator with Applets in Canityoc. of the 5th WWW Conference, May 6-10,
1996, Rris, France. http://www5conf.inria.fr/fich_html/papers/P4H®@iev.html.

STRASSER, M., BUMANN, J. and HOHL, F(1996) Mole — A &va Based Mobile At SystenProc. of the
2nd ECOOP \Wrkshop on Mobile Object Systems, Ueisity of Linz, Austria, July 8-9.
http://www.informatik.uni-stuttgrt.de/ipvr/vs/Publications/1996-stras€drps.gz

SCHERER, M. (1995Fin Laufzeitsystem fiir mobile égten diploma thesis, Department of Computer Sci-
ence, Uniersity of Kaiserslautern, German

STAMOS, J.W and GIFFORD, K. (1990) Remote EvaluatigpACM Transactions on Programming Lan-
guages and Systems 12(4):537-565, October

STOYENKO, A.D. (1994) SUPRA-RPC: SUbpgram RiIRAmetes in Remote RPrcedue Calls Software —
Practice and Experience, 24(1):27-49, January

STOLPMANN, T. (1995) MACE - Eine abstakte Mashine als Basis mobiler Anwendwergdiploma thesis,
Department of Computer Science, Umsity of Kaiserslautern, GermarGerman tet and English summary at
http://www.uni-kl.de/AG-Nehmer/Ara/mace.html.

STROUSTRUR, B. (1990) The C++ Piogramming Languge, 2nd ed., Addison-¥&lg/, Reading (MA), USA.

66



[SUNOS5]

[THB96]

[TSCY5]

[WHI94]

[WHI96]

[WLA+93]

SUN MICROSYSTEMS, Inc. (1995)rheHotJava Bowser
http://java.sun.com/jea.sun.com/Hotda/index.html.

THISTLEWAITE, P. and BALL, S. (1996) Active FORMsProc. of the 5th WWW Conference, May 6-10, 1996,
Paris, France. http://mww5conf.inria.fr/fich_html/papers/P4@®@ien.html.

TSCHUDIN, C. (1995)Messengrs and Object-Oriented A&gts Position paper for thearkshop “Objects and
Agents” at the 8th European Conference on Object-Oriented Programming, Aarhus, Denmark.
http://cuiwwwunige.ch/OSG/Wek/Agents/christian.ps.gz.

WHITE, J. (1994) Telescript Echnolagy: The Bundation for the Electnic Marletplace General Magic, Inc.,
Mountain View (CA), USA.

WHITE, J. (1996) A Common Agnt Platform position paper for the Joint WWW Consortium / OM®r/
shop on Distribited Objects and Mobile Code, June 24-25, Boston, MA, USA.
http://www.genmagic.com/internet/cap/w3c-papém.

WAHBE, R., LUCCO, S., ANDERSON,. tnd GRAHAM, S.L. (1993fficient Softwae-Based &ult Isola-
tion, Proc. of the 14th 8M Symposium on Operating Systems Principles, Decemiséwille (NC), USA.

67



