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Abstract. To investigate incremental collaborative classifier fusion
techniques, we have developed a comprehensive simulation framework. It
is highly flexible and customizable, and can be adapted to various settings
and scenarios. The toolbox is realized as an extension to the NetLogo
multi-agent based simulation environment using its comprehensive Java-
API. The toolbox has been integrated in two di↵erent environments, one
for demonstration purposes and another, modeled on persons using re-
alistic motion data from Zurich, who are communicating in an ad hoc
fashion using mobile devices.
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1 Introduction

We consider an environment in which agents can classify observations they make.
The nature of this environment as well as the concept represented by an agent is
thereby not fixed to a certain setting, but can be adapted to di↵erent scenarios
(see applications). To classify testing data agents encounter during a simulation,
every agent is associated with a certain knowledge, which essentially encapsulates
an instance of a certain type of classifier.

In machine learning and statistics, classification is the problem of identify-
ing an item to which an observation belongs, taken from a set of categories
(sub-populations). Classification learning is the development of classifications
by machine learning techniques. Classification learning is performed on the ba-
sis of a training set, that is, data containing observations (or instances) whose
category membership is known. This known membership is used a feedback to
direct a convergent learning processes to the right outcomes. Trained classifiers
are statistical functions that use pattern matching to determine a closest match.



Every knowledge instance is initially trained using a set of training data.
The latter may contain an equal amount of data for each class or may be biased
towards certain classes with more training data initially available for certain
classes than for others. The quality of classification can be described by e.g. the
global average of true positive rates for every class.

During our simulations, agents move around in the world either randomly
or following special movement patterns. Whenever two agents meet, they merge
their classifiers based on a certain classifier fusion technique and update their
classification output. The concepts of movement and meeting are thereby purely
abstract and can be realized according to the specific needs of a certain scenario
or research interests. Keeping track of the global average true-positive rate for
every class, it is possible to observe how the classification quality changes in
dependence of the chosen fusion method.

We note that knowledge fusion in general and classifier fusion as a special
example are well studied in Artificial Intelligence (REF) and o↵-the-shelf meth-
ods exist with optimal properties [7]. By contrast, collaborative (incremental)
classifier fusion is a new idea. The di↵erence is that in the former, the entire set
of knowledge instances (trained classifiers) must be simultaneously available; in
the latter, this condition is relaxed. Collaborative fusion is that is a natural gen-
eralization to situations where access to knowledge items is limited by temporal,
geographic or other constraints.

We have developed a simulation framework realized as an extension to the
NetLogo multi-agent based simulation environment [8] using a comprehensive
Java-API. We have applied it in three di↵erent settings to demonstrate the
flexibility and adaptivity of our approach. In all three cases, we used classi-
fiers from the WEKA library. For fusing classifiers, we experimented with the
baseline case of simply exchanging training data as well as advanced classifier
aggregation functions o↵ered by WEKA. As data basis, we used a real-world
environmental audio data set, based on a public dataset from the university of
Rouen, France. Recordings have been performed using a Galaxy S3 smartphone
equipped with Android by means of the Hi-Q MP3 recorder application. The
dataset is composed of 19 classes and audio scenes forming a given class have
been recorded at di↵erent locations. The classifier task is to approximate the
original classification, and our populational learning algorithms aim to achieve
that by incremental fusion [4, 3]. The current work belongs to a series of studies
that started with simple collaborative tasks such as localization [2, 5] and de-
veloped through the study of fully distributed ad-hoc communication systems
[1].

2 Di↵erent Motion Models

2.1 Adaptive, Personalized Multi-modal Urban Mobility in the

Allow Ensembles Simulator

First we used the movement model from the Allow Ensembles simulator [6] for
multi-modal urban mobility (Fig. 1). In this scenario, we assume an urban area



(show on the example of Trento, Italy) where people can use various means of
transportation to travel. These means include walking, cycling, going by car or
taxi, or using public transportation like buses or trains. Whenever persons phys-
ically meet in the streets or share the same bus, classifier fusion is triggered by
the meeting and the persons exchange classification information. What informa-
tion is exchanged and how, it is determined by the respective fusion strategy
tested.

We examined two di↵erent cases. In the first case, the agent population is
divided into groups based on the region (such as residential, industrial, university,
shopping) from where they come. Every member of a group is in turn assigned
an initial training set, which is similarly biased within the same group providing
di↵erent levels of expertise for the considered classes. In the second scenario,
we divided the population based on the respective role of the person in the city
population, e.g. worker, student, homemaker, or child. Results are discussed in
a separate section.

Fig. 1. Collaborative fusion based on the Allow Ensembles simulator

2.2 Using a Real-world Movement Model From Zrich

In a second case study we have been using a dataset obtained in the 2013 Zurich
festival. The dataset contained GPS positions of users of a smart phone app.
On this basis we estimated pedestrians’ key walking parameters. We obtained
data for average walking speed and average walking/standing times, together
with the respective error terms. The current approach uses these numbers as
averages over the various crowd densities experienced in the dataset, referring
to the fact that in the interesting range (3 - 4,000 pedestrians using the app)
these parameters do not change dramatically over the time.

In this application, we use GIS shape files of the city (the simulation is
thus ready to work for any city, but we only have validated the motion data



for the Zurich example). We represent streets by their segments, and our motion
model consists of navigation along the network defined by the resulting segments.
Pedestrians share a common average walking speed but have individual walking
and staying times, taken from two normal distributions, which are characterized
by the average walking/standing times and their standard errors, respectively.
Pedestrians are always heading towards an adjacent segment and upon reaching
it select next a new adjacent destination segment, but never turn back in a single
step (Figure 2).

Fig. 2. Using the Zurich motion dataset

In each of the two case studies, we applied 8 artificial classes (Figure 3).

Fig. 3. The artificial classes used in the collaborative classifier fusion experiments



3 Classifier Fusion Strategies

Based on the simulation tools above, many di↵erent settings for classifier fusion
can be tested. The following section gives an overview of di↵erent initial settings
and strategies for action when two agents meet.

At the start of each simulation, there is a choice on how to initialize the train-
ing data each agent has available. Currently, there are two options: a random
subset of all training data, or the first k% of the training data for each class.
A random selection can, after enough knowledge exchange, potentially lead to
a complete training set for agents, while the second alternative provides better
control about what information is available at all. Also, the second option pro-
vides a natural hierarchy of experts (i.e. the training data of all agents knowing
less than 70% are subsets of the experts data).

For the actual classifier fusion, we consider the following strategies:

– fusion based on exchange of training data. This strategy can serve as a
baseline for other algorithms. Whenever agents meet, they exchange their
set of training data. Depending on the initialization, this will eventually
lead to either a complete set of training data (for the random method) or a
convergence towards the level of the best informed expert (for the first k%
method). Once the data has been exchanged, classifiers are retrained using
the new set.

– fusion based on classifier models. This strategy involves fusing classifiers
themselves, without resorting to the training data. In the case of the Naive-
Bayes classifier, which specifies a standard deviation and mean for each class,
this involves aggregating those two values. In the simplest case, this could
be done via averaging. More elaborate schemes incorporate weighting to in-
corporate the reliability of a given classifier (e.g. because of a larger set of
training data). In more general terms, given two classifiers C and D fully
described by a set of parameters P and Q, the aim is to provide a function
f : P ⇥ Q ! R, so that the new classifier E incorporates the knowledge of
C and D. Note that this general principal can be applied both to classifiers
of the same type (e.g. two trees, two neural networks) as well as to hetero-
geneous ones. In the latter case, concrete strategies will have to be tailored
to each specific pairing (e.g. Bayes and Tree).

– fusion based on artificial training data. In order to provide a more general
way to fuse two di↵erent types of classifiers while at the same time not re-
lying on storage or exchange of training data, we are proposing yet another
strategy. Based on the trained classifier an agent already has, it is possible
to create random points of the feature space (or guided by some heuristic),
label them via the known classifier and provide those to another agent. The
agent can then incorporate them into its own classifier, either by some incre-
mental learning algorithm or by simply retraining. This method abstracts
from the specific type of classifier, has however the drawback of transmitting
incorrectly labeled data some of the time.



4 Implementation

Classifiers. Classifiers are represented by an instance of the Knowledge class
which o↵ers an interface for training the classifier, obtaining classification re-
sults given some test data, and fusing it with another classifier instance. With
this approach the actual implementation of the classifier is hidden from the
simulation itself making it easily possible to experiment with di↵erent types of
classifiers and classifier fusion methods. Even di↵erent types of classifiers are
possible within the same simulation run. In our current implementation (see ap-
plication scenarios below), we use the WEKA library which o↵ers a wide range
of di↵erent classifiers.

Classifier Fusion. The implementation of the fusion mechanism can be
done in di↵erent ways. In the simplest case, the agents simply exchange their
training data sets and retrain their classifier instances based on the merged
training data. Although this approach does not involve an algorithm fusing the
actual instances of the classifier can be used as a baseline. For some classifiers
like the Naive Bayes for example, the WEKA library already defines methods
for merging. For other classifiers or classifier combinations, it will be necessary
to develop merging algorithms.

Data Basis. Just like the classifiers, the implementation of our toolbox does
not impose any restrictions on the data basis to be used for training and testing.
In our current implementation for example, we use a database of audio files for
which we computed a set of features and stored them in theWEKAARFF format
in order to be compatible with the WEKA classifiers. It would, however, be
easily possible to experiment with di↵erent data sets instead (provided they are
converted to the ARFF format in case WEKA is used). In case of a completely
di↵erent classification framework the simulation can be easily adapted to the
necessary file formats.

5 Results

5.1 The Trento case study

In the Trento urban scenario, we are comparing two di↵erent scenarios:

1. (i) agents have initial knowledge based on their role (worker, student, etc.)
2. (ii) agents have initial knowledge based on their geographic position

Furthermore, for each of those cases, we look at the exchange of training
data vs. the parameter based fusion of the classifiers themselves. In both cases,
data has been classified using a NaiveBayes classifier provided by WEKA, and
training data has been assigned randomly. However, for the two di↵erent fusion
methods, the same random seed has been used, so the initial distribution is the
same for both fusion algorithms. The following results have been obtained.



Role based knowledge. Figure 4 shows the initial distribution for scenario 1
(role based); Figures 5 left and right, respectively, show the true positive rate
of classifiers for each class after a virtual day has elapsed for fusion based on
training data and parameter based classifier fusion. As can be seen, the exchange
of training data works better for all classes in general. This is to be expected,
because this method grows the training data set for all agents, resulting in a
more and more complete set as the day moves on. However, parameter based
classifier fusion performs reasonably well if there already is some initial useful
knowledge to build on (see for example classes one, four and seven). A second
interesting e↵ect: the number of interactions matters a lot more in the case of
parameter based fusion. In both scenarios, the class of agents least interacting
are homemakers (based on their profile, they leave their home to bring children
to school or go shopping). As visible from Figure 5 (left side), the exchange of
training data is less sensitive to a small number of interactions; this is probably
the case because of the cumulative e↵ect of size increases in training data sets.

Fig. 4. Knowledge by role, random initial distrubution for each role (worker, children,
students,homemakers). Figures show the average positive classification rate.

Fig. 5. Knowledge by role after 1 day. Left: training data exchange. Right: parameter
fusion. While perfect classification is never achieved, in some categories and some roles
the ideal situation is well approximated (especially on the left panel).



Geography based knowledge. Figure 6 shows the initial distribution for
scenario 2, where initial training data is based on geographic information. Figures
7 left and right, respectively, once again show final true positive rates after a
virtual day has elapsed.

Once again, the baseline fusion of training data outperforms the classifier fu-
sion approach. However, other than in the role-based scenario discussed above,
a strong initial knowledge of classes does not automatically yield a better per-
formance for parameter based classifier fusion here. This is due to the reduced
”mingling” of agents in this scenario. While role based agents (workers, students,
etc.) can come from many di↵erent areas of origin and have many di↵erent desti-
nations, in the geography based scenario, such diversity is reduced. For instance,
workers tend to live close to their area of work, and thus many interactions will
actually draw from the same set of training data.

Fig. 6. Knowledge by region, random initial distribution for each region (residential,
industrial, shopping, university).

Fig. 7. Knowledge by region after 1 day. Left: training data exchange. Right: parameter
fusion. Again, while perfect classification is never achieved, in some categories and some
regions this ideal situation is approximated (especially on the left panel).



5.2 The Zurich case study

The Zurich case study uses real motion data in a statistical simulation. Its basis
is the daily recording of pedestrian’s motion speed and its variance during the
2013 Zurich city festival.

Fig. 8. Moving time (left) and its variance (right) in the Zurich motion dataset. The
simulation uses the average values; note that the actual motion speed of the crowd is
uneven and motion comes to a full halt at a given point of time (when the fireworks
are on). Left: green - average moving time; blue - average time between standing; red
- average standing time. Right: variances of the same.

Sample walking data are presented on Figure 8. The motion model is based
on a ”mean field” approximation of the pedestrian population, hence we use
the averages for walking speed 0,5 m/s, standing length 55s (std 100) and time
between standing 40s (std 65), respectively. We take these as fixed external
parameters in our simulations to test the internal parameters of the fusion algo-
rithm. Simulated pedestrian motion is generated from a Gaussian distribution
with a mean and variance as above.

With the motion model realized, we find that about half of all agents are
immobile at any given time, about 20% never move, and another 20% never
stand still (those values seem intuitive for anyone having visited a street festival).
These facts will be significant when evaluating simulation results.

On Figure 9, the available classifications are shown in the same histogram as
above; the histogram comes from the top panel of the Zurich simulation interface.

In a comparison of the Trento and Zurich models, that is, the original large-
scale collaborative learning simulation model with the merged ”super model” of
Zurich shows that learning and convergence take place in both but in the Zurich
case in an understandably slower rate as there are pedestrians that never meet
and therefore do not enter (or can be improved) by knowledge fusion.



Fig. 9. Initial random (left) and evolved (right) classifications in the Zurich example.
Figures show the average positive classification rate. Evolved classifications shown after
2,000 time steps (scaled for 200 minutes).
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