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Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit der numerischen Modellierung und Analyse

von Kunststoffen, welche unter dem Einfluss eines elektrischen Feldes verformt werden.

Diese Kunststoffe sind als deformierbare Dielektrika bekannt und sind somit verwendbar

als Aktoren, welche elektrische Energie in mechanische Bewegung umsetzten. Außerdem

werden diese Materialien oft als künstliche Muskeln vorgeschlagen, da ihr Spannungs-

und Dehnungsbereich mit dem von natürlichen Muskeln übereinstimmt.

Weitere Inspirationen für die praktische Anwendung lassen sich in der Natur finden,

wie zum Beispiel ein Luftschiff, welches durch fischartige Bewegungen vorangetrieben

wird. Anstatt eines Propellers werden deformierbare Dielektrika an den Rumpfseiten

und an der Heckflosse angebracht, um die Bewegungen eines Fisches durch die Verfor-

mung des Schiffes zu imitieren. Weitere Anwendungsbeispiele sind Linsen mit veränder-

barem Brennpunkt, Lautsprecher, Pumpen, haptische Bildschirme oder Roboter. Auch

die Umkehrung dieser Anwendung ist möglich. Durch das Aufbringen einer mechanischen

Verformung auf das Dielektrikum lässt sich mechanische in elektrische Energie umwan-

deln.

Der Nachteil dieser Technologie resultiert aus den hohen elektrischen Feldern, welche für

die Aktuation erforderlich sind. Beispielsweise werden für haptische Bildschirme Span-

nungen von über 5 kV benötigt, um eine zweckerfüllende Deformation zu erzielen. Des

Weiteren zeigen die Ergebnisse dieser Arbeit, dass elektrische Felder von ca. 28 kV/mm

benötigt werden, um ein Dielektrikum um 30 % zu komprimieren. Hieraus folgt, dass die

Konstruktion von Aktoren aus deformierbaren Dielektrika eine Herausforderung darstellt,

nämlich mit möglichst geringen Spannungen ausreichend große Deformationen zu erzie-

len.

Aus diesem Grund wird ein Verbundwerkstoff vorgeschlagen, welcher aus einer dielek-

trischen Matrix mit Einschlüssen aus Bariumtitanat besteht. Hierzu werden in der vor-

liegenden Arbeit die notwendigen Aspekte für die numerische Simulation eingeführt und
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hergeleitet, um anschließend geeignete Beispiele zu berechnen. Dabei wird insbeson-

dere die Inkompressibilität als auch die elektromechanische Stabilität von Dielektrika in

Betracht gezogen.

Nach einer Einleitung in die Thematik der deformierbaren Dielektrika, werden als Erstes

die Grundlagen der nichtlinearen Kontinuumsmechanik erläutert. Dabei ist die Verein-

fachung der linearen Theorie nicht zielführend, da für die Modellierung der Dielektrika

die Theorie von großen Deformationen benötigt wird. Die konstitutiven Gesetze vom

neo-Hooke- und Yeoh-Typ werden eingeführt und die Spannungen und Materialtangen-

ten aus den entsprechenden Formulierungen der freien Energie abgeleitet. Da für eine

reine Verschiebungsformulierung das volumetrische „Locking“ bei inkompressiblen Mate-

rialien auftritt, wird die Drei-Feld-Formulierung eingeführt, welche die Inkompressibilität

realistisch abbildet.

Als Nächstes werden die Aspekte der Elektrostatik beschrieben. Ausgehend vom Cou-

lombschen Gesetz werden die Definitionen für das elektrische Feld und das Potentialfeld

eingeführt, außerdem das Gaußsche Gesetz und das Modell vom elektrischen Dipol.

Des Weiteren wird der Einfluss von elektrischen Feldern auf ein polarisierbares Material

beschrieben. Hierzu wird das Konzept der Polarisation benötigt, mit dem sich die Kräfte

von elektrischen Feldern auf Dielektrika beschreiben lassen. Als Grundlage für den Ak-

tuationsmechanismus von deformierbaren Dielektrika werden die Anziehungskräfte zwi-

schen den parallelen Platten eines Kondensators im Vakuum betrachtet. Anschließend

wird das Konzept des Maxwell-Spannungstensors mit Bezug zur elektrostatischen Volu-

menlast, welche für die Verformung von Dielektrika verantwortlich ist, eingeführt.

Um die Mechanik mit der Elektrostatik zur Beschreibung von deformierbaren Dielek-

trika zu koppeln, wird die mechanische Impulsbilanz durch das Konzept des Maxwell-

Spannungstensors als Bilanz einer Gesamtspannung aus mechanischem und elektrischem

Anteil umformuliert. Unter der zusätzlichen Verwendung des Satzes von Gauß lässt

sich somit die Gleichgewichtsbilanz für das elektromechanische Problem formulieren.

Diese Gleichungen lassen sich wiederum in die schwache Form für die Referenzkonfig-

uration umformulieren, um für die numerische Implementierung diskretisiert zu werden.

Dabei wird die konsistente Tangentenmatrix, welche im Rahmen des Newton Verfahren

benötigt wird, für die Verschiebungsformulierung hergeleitet. Es wird bewiesen, dass

die Tangentenmatrix symmetrisch ist. Daraus erschließt sich die Abstammung des elek-

tromechanisch gekoppelten Problems aus einer variationellen Formulierung. Zusätzlich

wird die Diskretisierung der Drei-Feld-Formulierung mit Herleitung der entsprechenden

Tangentenmatrix für ein inkompressibles Material beschrieben. Anschließend wird die

Implementierung um Terme für Trägheit und Dämpfung erweitert, um die numerische

Simulation der Dynamik zu ermöglichen.
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In einem dielektrischen Aktor ist die Kompression zwischen den Elektroden durch die

elektromechanische Stabilität begrenzt. Diese Einschränkung beruht auf der quadrati-

schen Abhängigkeit der elektrostatischen Anziehungskraft zwischen den Elektroden bzgl.

des elektrischen Feldes. Dadurch wird das Gleichgewicht des Aktors ab einer gewissen

Kompression instabil. Abhängig vom gewählten mathematischen Materialmodell, wird

der kritische Kompressionspunkt bestimmt. So liegt dieser im Fall eines neo-Hooke-

Modells bei ca. 37 %. Für das Yeoh-Modell ergeben sich zwei kritische Werte, nämlich

31,9 % und 74,3 %, wobei das Gleichgewicht zwischen diesen Punkten instabil ist. Es

sei an dieser Stelle angemerkt, dass die kritischen Punkte vom gewählten Modell ab-

hängen und nicht von den Materialparametern. In dieser Arbeit werden die Grundzüge

der Stabilitätsanalyse hergeleitet. Anschließend werden die Ergebnisse dieser Analyse

mit numerischen Simulationen verglichen. In den Ergebnissen stellt sich heraus, dass im

stabilen Bereich die Kompressionskurven aus der numerischen Simulation mit der Sta-

bilitätsanalyse übereinstimmen. Für den instabilen Bereich lassen sich mit der in dieser

Arbeit verwendeten Methodik keine numerischen Ergebnisse bestimmen, da das Newton

Verfahren in diesem Bereich nicht konvergiert.

Es werden sowohl statische als auch dynamische Simulationsanalysen an einem homoge-

nen Dielektrikum durchgeführt. Als Erstes wird das Beispiel eines eingebetteten dielek-

trischen Aktors berechnet, um den Vorteil der Drei-Feld-Formulierung im quasi inkom-

pressiblen Fall gegenüber der reinen Verschiebungsformulierung zu zeigen. In den Ergeb-

nissen zeigt sich, dass der Ansatz der Drei-Feld-Formulierung zu einer größeren Defor-

mation als in der reinen Verschiebungsformulierung führt. Außerdem ist der Einfluss der

Querkontraktionszahl auf die Kompression für den quasi inkompressiblen Fall geringer als

in der reinen Verschiebungsformulierung. Des Weiteren wird das Beispiel einer rohrför-

migen Pumpe betrachtet, welche aus einem deformierbaren Dielektrikum besteht an dem

mehrere Elektrodenpaare entlang der Rohrlänge angebracht sind. Für die Untersuchung

der Dynamik wird ein Aktor betrachtet, welcher durch Gleich- und Wechselspannung

belastet wird. Dabei werden die Ergebnisse der Simulation mit eindimensionalen ana-

lytischen Berechnungen verglichen, wobei sich eine gute Übereinstimmung herausstellt.

Zusätzlich wird der Pumpenaktor auch unter Berücksichtigung der Dynamik simuliert.

Ein Nachteil von deformierbaren Dielektrika ist die geringe relative Permittivität, welche

zu einer schwachen elektromechanischen Koppelung führt. Da Bariumtitanat eine hohe

relative Permittivität besitzt, wird ein Verbundwerkstoff bestehend aus deformierbarem

Dielektrikum und Bariumtitanat vorgeschlagen, allerdings auf Kosten einer höheren

Steifigkeit, welche durch den Einschluss von Bariumtitanat verursacht wird. Hierzu wer-

den wieder statische und dynamische Berechnungen durchgeführt, um die Vorteile und

Nachteile des Verbundwerkstoffes gegenÃĳber eines homogenen Dielektrikums zu zeigen.

Insbesondere wird auf die Berücksichtigung der Drei-Feld-Formulierung eingegangen, da
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diese für die Modellierung des Verbundwerkstoffes von großer Bedeutung ist. Die Ergeb-

nisse zeigen, dass die Vernachlässigung der Drei-Feld-Formulierung zu volumetrischem

„Locking“ führt. Dadurch prognostiziert die Simulation des Verbundwerkstoffes eine

geringere Kompression als im Fall eines homogenen Dielektrikums. Wird die Drei-Feld-

Formulierung jedoch berücksichtigt, kann der Verbundwerkstoff als vorteilhaft betrachtet

werden, da höhere Kompressionen als im homogenen Fall berechnet werden.



Abstract

The work at hand focuses on the numerical modeling and the analysis of elastomers

which are deformed under the influence of an electric field. These materials are known

as dielectric elastomers (DEs) and are used as actuators in order to transform electric

energy into mechanical displacements. Furthermore, such materials are often proposed as

artificial muscles since the stress and strain range coincides with the extent of biological

muscles.

Further practical applications can be found in nature, as for example an airship that

imitates the movements of a fish for propulsion. Instead of propellers, dielectric elastomer

actuators (DEAs) are attached to the hull and fins of the airship to induce deformations

which are similar to those of a swimming fish. Additional application examples are

lenses with alterable focus, loudspeakers, pumps, haptic displays or robots. The inverse

application is also possible based on a mechanical deformation of the DE in order to

transform mechanical energy into electrical.

The main disadvantage of this technology arises from high electric fields that are neces-

sary for sufficient actuations. In the case of haptic displays, voltages of 5 kV are required

for a reasonable deformation. In addition, the results of this work show that electric

fields of approx. 28 kV/mm are necessary to achieve a compression of 30 %. For this

reason, the improvement of DEAs is important to reduce the required electric fields.

To deal with this drawback, a composite which consists of a DE matrix with inclusions

of barium titanate is proposed. Hence, necessary aspects of the numerical simulation

of those composites as well as DEs are introduced and derived in this work. The per-

formance of DEAs is studied by investigating numerical simulations of benchmark tests.

The most important points are the numerical treatment of quasi incompressibility and

electromechanical stability.

After a short introduction into the topic of DEs, the fundamentals of nonlinear continuum

mechanics are described as these materials are subjected to large deformations. The

constitutive laws of neo-Hooke and Yeoh type are introduced. In addition, mechanical
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stresses and material tangents are derived from the free energy formulations. In the

simulation of nearly incompressible materials, volumetric locking can appear if a pure

displacement formulation is considered. To handle this numerical aspect a three field

formulation is taken into account.

In a next step the fundamentals of electrostatics are outlined. Starting from Coulomb’s

law, the definitions of electric and potential fields, Gauss’s law and the model of the elec-

tric dipole are introduced. Furthermore, the influence of an electric field on polarisable

matter is discussed. To this end, the concept of polarisation is required to describe the

forces of electric fields on polarisable matter. For a better understanding of the actuation

principle of DEAs, the theory of attraction forces between parallel plates of a capacitor

in vacuum is outlined. In addition, the concept of the Maxwell stress tensor related to

electrostatic volume forces, which are responsible for the DE deformation, is introduced.

To couple mechanics with electrostatics for the description of DEs, the linear momentum

balance is reformulated. The total stress is additively composed by a mechanical and

an electric part. Considering Gauss’s law, the total balance of the electromechanical

coupled field problem is established. These equations are recast into the weak form in

the reference configuration and then discretized for the numerical implementation. The

consistent tangent matrix, which is needed in Newton’s method, is derived for the dis-

placement formulation. The symmetry of the matrix is demonstrated, which means that

the electromechanic coupled field problem can be derived from a variational formulation.

In addition, the discretisation of the three field formulation with the development of the

tangent matrix is offered for the modeling of nearly incompressible DEs. Furthermore,

the numerical implementation is extended by inertia and damping terms to enable the

simulation of DE dynamics.

The compression of a DEA is limited by the electromechanical stability. This limitation

is derived from the quadratic dependence of electrostatic attraction forces w.r.t. electric

fields. Therefore, the equilibrium of the actuator becomes unstable by exceeding a critical

compression point. This point depends on the chosen material model to simulate the

behaviour of the DE. In the case of a neo-Hooke model, the critical point is calculated

at a compression of approx. 37 %. If a Yeoh model is selected, two critical points will

be obtained for 31.9 % and 74.3 % compression. Between these two points an unstable

equilibrium region occurs. In this region numerical results are not obtainable since the

Newton method does not converge in the solution process. It should be noted, that the

critical points only depend on the model and not on the material parameters set for the

elastomer. In the present work, the fundamentals of the stability analysis are derived

and numerical results are compared to this analysis. A good accordance is obtained

considering the numerical compression curves and the stability analysis.
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Static and dynamic simulations are performed for homogeneous DEAs. The first example

regards an embedded actuator to demonstrate the necessity of the three field formulation

for quasi incompressibility. The results show larger deformations using the three field

formulation instead of a pure displacement formulation. Additionally, the compression

curves are less sensitive to the Poisson’s ratio in the quasi incompressible regime. The

example of a pump made of DE material bounded by an array of electrode pairs is also

simulated. Furthermore, a DEA under constant and time dependent electric loading is

considered to study the dynamics. These results are compared to analytical 1D solutions

with a good agreement. In addition, simulations of the pump actuator are performed for

the dynamic case.

In a DE the electromechanical coupling is limited based on the reduced relative per-

mittivity of the elastomer. Since barium titanate possesses a high relative permittivity,

a composite is proposed containing barium titanate inclusions in a DE matrix. How-

ever, this composite has an increased stiffness due to the ceramic inclusion. To study

the advantages and disadvantages of the composite in comparison to homogeneous DEs,

numerical simulations are performed for static and dynamic situations. Special atten-

tion is given to the three field formulation, which is important for the modeling of the

composite. According to the results, volumetric locking will appear if the three field for-

mulation is neglected, which leads to incorrect predictions of the compression. Applying

the three field formulation larger compressions of the composite are obtained in contrast

to homogeneous actuators.
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Chapter 1

Introduction

Dielectric elastomers (DEs) are electroactive polymers (EAPs) which constitute the main

component in the dielectric elastomer actuator (DEA) technology. The main practical

application of the DEA technology is in the field of artificial muscles. This is justified

by the similarities of deformation and actuation force range between DEAs and natural

muscles. Furthermore, the response rates are very short since the actuation principle

consists of a direct coupling of an electric signal to a mechanical deformation. The

inspiration for the consideration of DEs as artificial muscles can be found in the human

body or in the observation of animal movements. One of the most interesting examples

is given by a model airship which flies in the air imitating the movements of a fish, see

Fig. 1.1. Instead of a propeller, the airship is equipped with DEAs on the hull and the fin.

Another application example with biological inspiration is the heart. Membranes of DE

material can be used to build pumps by pushing a fluid via contractions and expansions.

Furthermore, the biological eye motivates an alternative for optical systems. Lenses

made of DE material are capable of changing their focal point as they are deformed

according to an input signal, see Fig. 1.2. Besides the imitation of systems found in

nature, DEA can also be considered as substitutes for technical devices. Because of their

fast response speed they are good candidates for loudspeakers. For the same reason,

active vibration control is another interesting field of application. When it comes to

human interaction, they can be also considered for haptic feedback devices or as active

braille displays as shown in Fig. 1.3. But actuation technology is not the only field for DE,

the reverse application is also possible. This means that they can be used as generators

by harvesting energy from movements such as ocean waves or the human body.

Probably the best established technology for converting an electric signal into a mechan-

ical displacement is the electric motor. With the combination of gears and bearings,

large forces and displacements are possible. But this facts also limits the application

1
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Figure 1.1: Airship with DEAs
imitating the movements of a fish
for propulsion. Source: spie.org.

Figure 1.2: Concept of a tunable
lens with DEAs. Source [1].

Figure 1.3: Prototype of a
braille display. The individual
dots are activated by a voltage of

5.68 kV. Source [2].

Figure 1.4: Arm wrestling robot
made of carbon fiber composite
and actuated by rolled DEAs.

Source [3].

of electric motors, since complex deformations become difficult and costly in combina-

tion with these mechanisms. Also piezoceramic actuators are a well known actuation

alternative. In this case an electric signal can be directly transformed into a mechani-

cal displacement with the limitation of small deformations. Even though this limitation

exists, industrial applications can be found as for example in headphones, microphones,

fuel injection systems, pressure and acceleration sensors.

In the last years the interest in EAPs has increased in research and industry. The

main reason for this is that EAPs offer the possibility to perform complex deformations

with a direct coupling of an electric signal to a deformation. Basically they can be

categorised in ionic and electronic. Some examples of ionic EAPs are ionic polymer gels,

electro rheological fluids, carbon nanotubes, etc. Since the deformation mechanism is

based on the diffusion of ions, an electrolyte liquid is required. Therefore this actuators

can only be operated in a wet electrolyte environment but with the advantage of low

actuation electric fields. The DE belongs to the category of electronic EAPs where the

deformation of the material is induced by an electric field in a dry environment. Besides

the DE other elastomers like the ferroelectric, electro-viscoelastic, liquid crystal, etc. also

share the category of electronic EAPs. As opposed to the ionic ones, high electric fields

are necessary for the actuation. This fact motivates further investigations with the goal
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to reduce the electric fields, which is also a topic in the present work. In comparison

to the ionic counterpart, the electronic EAP operates with higher actuation forces (but

still much lesser than a piezoceramic or an electric motor) and is capable of holding a

constant strain under the application of a constant electric voltage.

In the years between 1998 and 2008 Yoseph Bar-Cohen, Roy Kornbluh and Ron Pelrine

et. al. motivated, studied and evaluated the use of DEs for actuation purposes like e.g.

artificial muscles, see [4–13]. An overview of active polymers for robotic applications is

given in [14]. In the year 2005 an arm wrestling contest between a human and an elec-

troactive polymer driven robotic arm took place at the Electroactive Polymer Actuators

and Devices conference in San Diego. Even though the robot lost, DE still promise to

be a technology in the development of artificial muscles. The details of the robot arm

DE actuators which is depicted in Fig. 1.4 can be reviewed in [3].

Some of the earliest works about the electromechanical coupling of elastomers can be

found in [15–19]. More than a decade later, an extensive work by Pao [20] was published

in which some theories for the formulation of electromagnetic forces on deformable con-

tinua are compared. Pao [20] mentions in his work the difficulty of validating a theory

because the considered fields are not always measurable in the lab. In the last 15 years

much work has been done to describe and analyse the electromechanical coupling of soft

elastomers from an analytical perspective. These works established the fundaments for

the numerical implementation in the finite element (FE) analysis. Some studies which

treat the electromechanical coupling in DEs from a variational perspective can be found

in [21–23]. A remarkable series of publications has been given by Dorfmann and Ogden

in [24–27]. The first work of this series describes magneto-elasticity while the remain-

ing works are dedicated to the understanding of electro-elasticity. The formulations are

stated in dependency of the deformation gradient and electric field or the deformation

gradient and electric displacement. Also McMeeking et. al. offer a good overview of the

subject applicable for the numerical implementation in the publications [28] and [29]. The

works are based on the theories of [30] and a derivation of the Maxwell stress from an en-

ergy principle is also given. Suo et. al. provide a theoretical background in the works [31]

and [32]. With regard to the numerical implementation and analysis of deformable DEAs

some research should be mentioned. One example is given by Gao et. al. [33] in which

a general numerical implementation is performed. The works of Vu et. al. [34] and [35]

also explain the implementation in the FE context and propose the consideration of the

surrounding space of the actuator by a boundary element and finite element method

coupling (BEM-FEM). The publications of Ask et. al. [36–38] include the modelling of

viscous effects and inverse kinematics. The consideration of quasi-incompressibility has

been treated in works like [38] and [39]. Since DEAs consist of thin elastomer sheets,
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a shell formulation can be proposed as shown in the work of Klinkel et. al. [40]. Addi-

tional research aspects, which have been studied in recent years, are the improvement

of the electric breakdown strength, practical applications, experiments, pre-straining,

energy minimisation, dynamic response and the characterisation of material parameters

in dependency of the deformation. These topics are covered in publications like [41–50].

Finally some PhD theses which are dedicated to the topic of electromechanical coupling

and dielectric elastomers can be reviewed in [51–55]. It should be noted that all the

mentioned works represent a limited selection of existent publications. For the sake of

brevity only those relevant for the present study are cited.

The first purpose of this work is to provide a mathematical description of the elec-

tromechanical coupling which takes place in the DE by the consideration of the Maxwell

stresses. This description is then recast by means of the Galerkin method for a numer-

ical implementation and further investigation with the finite element method (FEM).

Additionally, special attention is given to the fact that DEs are nearly incompressible.

To treat this constraint in the numerical implementation, a three field formulation as

proposed by Simo, Tyler and Pister, see [56], is considered in the constitutive material

law of the DE. In this formulation, the volumetric energy density is decoupled in a first

instance from the deformation through the introduction of a variable which represents

the volume change. Then, by means of the Lagrange multiplier method, the constraint

for the volume change is set to be equal to the Jacobian. The details for the mechan-

ical balance and the material formulation of the DE with the quasi-incompressibility

constraint are outlined in chapter 2.

The concept of the Maxwell stress, which represents the key feature in the electrome-

chanical coupling of the DE, is introduced in the last pages of chapter 3. Previously the

fundamental concepts and equations for the electrostatic balance in vacuum are defined

in this chapter. These concepts are then extended to the electrostatic balance in the

dielectric matter and the constitutive law from the electric point of view is established.

After having introduced the fundamental concepts of the DE from the mechanical and

electric perspective, the electromechanical coupling is described in the first pages of

chapter 4. Afterwards the necessary steps for the numerical implementation are outlined

with the derivation of the tangent matrix and the internal load vector for a displacement

formulation for compressible materials. To include the incompressibility constraint, the

derivation of the internal load vector and the tangent matrix are shown under the consid-

eration of a Q1P0 and a Q2P1 element for the electromechanical coupled problem. The

last part of chapter 4 deals with the extension of the quasi-static problem to the dynamic

case. By the extension numerical studies of DEAs under an electric cyclic loading are

possible.
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Before the numerical studies are presented, an analysis of the stability of DEAs is given in

chapter 5. Because of the quadratic dependence of the Maxwell stress on the electric field,

the compression of the DEA is limited by a critical point at which the equilibrium state

of the DEA turns unstable as the applied electric field is increased. This phenomenon is

studied in an analytical manner and compared with simulations.

The numerical analysis of the DEA is performed in chapter 6. The chapter is subdivided

into studies for the static and the dynamic loading case with the consideration of some

benchmarks. A simple sandwich DEA structure is taken into account to study the

incompressibility and the dynamic behaviour. Furthermore, a practical application of a

pump is motivated with a numerical example.

As mentioned previously, one of the challenges in the conception of EAPs is to increase

the ratio between the deformation and the applied electric field. To make this possible,

it would be desirable for a DE to have a high dielectric constant which would improve

the electromechanical coupling. Since this is not the case for homogeneous materials

the proposed strategy is the insertion of inclusions of materials with a high dielectric

constant in the elastomer at the cost of an increased stiffness. Chapter 7 presents a nu-

merical investigation and optimisation of the proposed material. Basically the sandwich

DEA structure with a spherical inclusion serves as the benchmark in this study. The

investigation is performed on the static and dynamic level taking the influence of the

incompressibility into account.

Chapter 8 closes the work with concluding remarks and suggestions for future research.





Chapter 2

Continuum Mechanics

This chapter provides an overview of the fundamental concepts and equations of nonlinear

continuummechanics. These are necessary for an adequate description of the deformation

of a dielectric elastomer from the mechanical perspective.

The chapter starts with the introduction of the deformation equations and strain mea-

sures. After the introduction of stress measures, balance equations are established in

their strong and weak form in both configurations. Additionally, a three field formu-

lation is given, which is used in the modelling of nearly incompressible materials. The

formulation was proposed first in [56] and considered for finite elasticity in [57] and [58].

It originates from the variational principle of Hu and Washitzu, see [59] and [60]. The last

section of the chapter concerns the constitutive laws by postulating the free Helmholtz

energy densities for four material models. The stress-strain relations and the elasticity

tensors are derived accordingly from these energy formulations.

The theoretical background for this chapter can be found in many textbooks such

as [61–66].

2.1 Nonlinear Kinematics

The finite deformation of a material body is described by a nonlinear mapping function χ

as shown in Fig. 2.1. A material point P with coordinates X in the reference configu-

ration B0 is mapped into the current configuration B. In the current configuration the

point is represented by p with the coordinates x = χ(X, t). The displacement of the ma-

terial point is given by the vector u = x−X. The deformation gradient F is introduced

to describe the deformation of curves on the material body. It enables the mapping of a

tangent vector (line element) of a curve from the reference to the current configuration

7
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Figure 2.1: Nonlinear mapping of the deformation of a material body from reference
to current configuration.

according to

dx = F dX, (2.1)

where the deformation gradient is defined as

F =
∂χ(X, t)

∂X
= Gradx. (2.2)

Furthermore, the determinant of the deformation gradient, known as the Jacobian de-

terminant, is introduced by

J = detF . (2.3)

The Jacobian determinant J serves as a measure of the volume change between both

configurations. For the infinitesimal volume element it follows that

dv = J dV. (2.4)

An infinitesimal surface element dA with the unit normalN is mapped from the reference

to the current configuration according to Nanson’s formula

n da = JF−TN dA. (2.5)

To describe the strain of a material point, appropriate measures are necessary. In this

work the right Cauchy-Green tensor C and the Green-Lagrange tensor G are considered.

They are defined as

C = F TF , G =
1

2
(F TF − I), (2.6)
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with I being the second order identity tensor.

In the case of a nearly incompressible deformation, a multiplicative split of the defor-

mation gradient is appropriate. The deformation gradient F is split into an isochoric

volume preserving part F̂ and a dilatational shape preserving part F vol according to

F = F̂ F vol. (2.7)

With the consideration of F vol = J
1
3 I, the isochoric deformation gradient turns out to

be

F̂ = J−
1
3F . (2.8)

Furthermore, the isochoric right Cauchy-Green strain tensor Ĉ is obtained from (2.6)1
and (2.8) by

Ĉ = J−
2
3C. (2.9)

2.2 Balance Equations

Balance equations are essential to understand the deformation process of a material body

under the influence of forces.

The mass conservation of a material body during a deformation is characterised by

the change of density. For this purpose the Jacobian determinant J can be used since

it describes the volume change of the body, see (2.4). Thus, the density relationship

between the configurations is

ρJ = ρ0, (2.10)

in which ρ0 and ρ are the material body densities in the reference and current configu-

ration, respectively.

The next fundamental equation is the conservation of linear momentum. To understand

this equation, the concept of the mechanical stress has to be introduced. In the cur-

rent configuration, according to Cauchy’s theorem, there exists an unique second order

tensor σ, known as the Cauchy stress, which fulfills the equation

t = σn.1 (2.11)

In this equation, t is the traction vector on a infinitesimal cross sectional surface of

a material body, while n is the outward pointing normal vector to the cross section.
1The original form of the Cauchy stress states that t = σTn. From the balance of linear/angular

momentum it follows that σ = σT , which is already used here. The details can be reviewed in [61], [62]
and [64].
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Taking the angular momentum balance into account it can be shown that σ has to be

a symmetric tensor. The counterpart of σ in the reference configuration is the first

Piola-Kirchhoff stress Q. Accordingly the Cauchy theorem is given in this configuration

by

T = QN (2.12)

with T andN being the traction and normal vector respectively. The relation between σ

and Q is established from the identity

σn da = QN dA. (2.13)

With Nanson’s formula (2.5) the first Piola-Kirchhoff stress turns out to be

Q = JσF−T . (2.14)

Additionally, the second Piola-Kirchhoff stress S is introduced. It is a symmetric tensor

with no clear physical interpretation but, it represents a well established stress measure

in computational mechanics. It is related to Q according to

S = F−1Q. (2.15)

With the introduction of mechanical stress measures, the balance of linear momentum

at a material point with a body load b can be written in the current configuration

divσ + ρb = 0. (2.16)

With proper transformations the linear momentum balance can be pushed forward into

the reference configuration

DivQ+ ρ0b = 0. (2.17)

Equations (2.16) and (2.17) are also known in literature as the strong form of the linear

momentum balance. These equations cannot be discretized for a numerical implementa-

tion in the FEM context. For this purpose the weak form or principle of virtual work is

considered.

Before the weak form is derived, boundary conditions need to be introduced. The bound-

ary of a material body B is denoted by ∂B and is composed by two nonintersecting regions

∂B = ∂Bu ∪ ∂Bσ with ∂Bu ∩ ∂Bσ = ∅. (2.18)

To solve the boundary value problem (BVP), conditions have to be prescribed on both

regions. The first type are known as Dirichlet boundary conditions and prescribe the



2.2. BALANCE EQUATIONS 11

solution field, e.g. u or x, on the corresponding boundary region, thus

u = u on ∂Bu. (2.19)

The second type, known as von Neumann boundary conditions, define quantities associ-

ated to the derivative of the solution field, e.g. the surface traction t, on the boundary,

thus

t = σn = t on ∂Bσ. (2.20)

In the current configuration, the weak form of the BVP defined by (2.16), (2.19) and (2.20)

is obtained by the multiplication of (2.16) with a virtual displacement δu and its inte-

gration over the material body B, thus

δw(u, δu) =

∫
B

[(divσ + ρb) · δu] dv = 0. (2.21)

With the application of the product rule and the divergence theorem the equation can

be modified to

δw(u, δu) =

∫
B
σ : grad δu dv −

∫
∂B
σn · δu da−

∫
B
ρb · δu dv = 0. (2.22)

The Euler-Almansi strain tensor is defined by

g =
1

2
(I − F−TF−1). (2.23)

Thus, the first variation of the tensor is

δg =
1

2
(gradT δu+ grad δu) = sym (grad δu). (2.24)

Since σ is a symmetric tensor, (2.24) can be substituted in (2.22). Furthermore, the von

Neumann boundary condition (2.20) can also be replaced in the equation and on the

boundary ∂Bu the condition δu = 0 is applied, thus the weak form of the BVP is

δw(u, δu) =

∫
B

[σ : δg − ρb · δu] dv −
∫
∂Bσ

t · δu da = 0. (2.25)

In the reference configuration, the statement of the principle of virtual work turns out

to be

δW (u, δu) =

∫
B0

[S : δG− ρ0b · δu] dV −
∫
∂Bσ0

T · δu dA = 0, (2.26)

where δG is the variation of the Green-Lagrange strain tensor and T is the prescribed

traction on the boundary of the body in the reference configuration. It should be noted

that the Dirichlet boundary condition (2.19) has not been included in the weak forms

but is necessary for the solution of the BVP.
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2.2.1 Three Field Formulation

The principle of virtual work represents in general a standard approach in mechanics

when it comes to the solution of unconstrained displacement problems like compressible

materials. For the case of constrained displacement problems, like nearly incompressible

materials, this approach leads to the so called volumetric locking phenomenon which

renders an undisired stiffening of the system. To handle this situation, so called mixed

finite elements are proposed. The methodology of this type of elements arises from a

multi-field variational principle which is not only dependent on the displacement field,

but also on additional fields. In this work the Jacobian-pressure formulation proposed

by Simo, Taylor and Pister, see [56], is considered. In this formulation the free energy

density depends on the displacement u and the additional variables p and θ. Under the

consideration of Ĉ, see (2.9), the Jacobian-pressure formulation is established as

Ψ(u, p, θ) = Ψiso(Ĉ) + Ψvol(θ) + p(J − θ). (2.27)

The first term on the right hand side depends only on the isochoric deformation. The

second one models the energy which does not depend on J as it would be the case in

a displacement formulation, but on an additional variable θ which describes the vol-

ume change. The third term is used to enforce the constraint θ = J by the Lagrange

multiplier p, which is the third field in the formulation. To obtain the weak forms from

the three field formulation the first variations of the free energy density Ψ w.r.t. u, p

and θ are required. These first variations are

DδuΨ(u, p, θ) =

(
JpC−1 + 2

∂Ψiso(Ĉ)

∂C

)
: δG, (2.28)

DδpΨ(u, p, θ) = (J − θ) δp, (2.29)

DδθΨ(u, p, θ) =

(
∂Ψvol(θ)

∂θ
− p
)
δθ. (2.30)

The integration of these equations over the material body B0 gives the internal virtual

work in the reference configuration. Under the consideration of external forces, the weak
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formulations are obtained

δWu =

∫
B0

[(
JpC−1 + 2

∂Ψiso(Ĉ)

∂C

)
: δG− ρ0b · δu

]
dV

−
∫
Bσ0
T · δu dA = 0, (2.31)

δWp =

∫
B0

[(J − θ) δp] dV = 0, (2.32)

δWθ =

∫
B0

[(
∂Ψvol(θ)

∂θ
− p
)
δθ

]
dV = 0. (2.33)

Equation (2.31) represents the weak form which is known from the displacement formula-

tion which has been introduced in (2.26). The difference lies in the second Piola-Kirchhoff

stress S which is split in an isochoric and a volumetric part in (2.31). Thus, the two

parts are

Svol = JpC−1 and Siso = 2
∂Ψiso(Ĉ)

∂C
. (2.34)

The second weak form in (2.32) represents the constraint for θ to be equal to the Jacobian

determinant J while the third weak form in (2.33) renders a constitutive law for p which

can be regarded as the hydrostatic pressure.

2.3 Constitutive Laws

For a complete description of the continuum mechanic problem, the kinematic and bal-

ance equations are not sufficient. A constitutive law is necessary which describes the

mechanical behaviour of a specific material like e.g. steel or rubber. This is realised by

a constitutive equation which provides the relation between the mechanical stresses and

strains.

For a hyperelastic material the existence of a Helmholtz free energy density Ψ is postu-

lated. If Ψ is only dependent on the mechanical strain, it can be considered as a strain

energy or stored energy function. For convenience it is postulated in a form in which

it vanishes in the the reference configuration and increases with the deformation of the

material body. Furthermore, Ψ is independent of the rotational part of the deformation

and only dependent on the stretching part. For this reason, the strain energy function

can be written as a function of C or G.

In the current work, homogeneous and isotropic materials are considered. The second

Piola-Kirchhoff stress, which has been introduced in (2.15), is obtained from the strain

energy function according to

S = 2
∂Ψ

∂C
. (2.35)
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For the isotropic case, the stored energy function Ψ can be formulated in dependency of

the invariants I, II and III of the strain. For the case of the right Cauchy-Green strain,

the second Piola-Kirchhoff becomes

S = 2

[(
∂Ψ

∂IC
+ IC

∂Ψ

∂IIC

)
1− ∂Ψ

∂IIC
C + IIIC

∂Ψ

∂IIIC
C−1

]
. (2.36)

Besides the stress-strain relation, the elasticity tensor D is needed to describe the change

in the stress-strain relation for a nonlinear material. Because of the minor symmetry

of D, which results from the symmetry of S and C, the tensor has only 36 independent

components. If the constitutive law emerges from a free energy function Ψ, the major

symmetry is given and the number of components is reduced to 21. The elasticity tensor

is obtained from the constitutive law via

D = 2
∂S

∂C
. (2.37)

In the derivation of D the partial derivative of C−1 w.r.t. C appears and is mentioned

here
∂C−1

∂C
= −IC−1 , (2.38)

In index notation this fourth order tensor is

∂C−1
AB

∂CCD
= −IC−1ABCD = −1

2
(C−1

ACC
−1
BD + C−1

ADC
−1
BC). (2.39)

2.3.1 Displacement Formulation

In the following, three material models are introduced which depend directly on the

displacement. The respective strain energy densities are provided and the relations for

the stress and elasticity tensors are given.

2.3.1.1 Neo-Hooke

The neo-Hooke model is considered in the mathematical modelling of rubber-like ma-

terials. It is motivated by the statistical theory of the long chain molecular network of

vulcanised rubber. Because of its simplicity, the model is accurate under uniaxial tension

in a strain regime where the strains are under about 40 %, see [67]. For the incompress-

ible case, the mathematical description is based on the first invariant of the strain IC
and the shear modulus G as a material parameter. In the case of compressibility, the

model is extended by the determinant J which describes the change in volume and the

bulk modulus K is introduced as a second material parameter. Furthermore, expansion

and compression limitation conditions can be applied to the model. This implies that
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the strain energy has to go towards infinity if the material is compressed to a vanishing

volume or expanded towards infinity. A model in which these conditions are satisfied

was proposed in [68] and is expressed by

Ψ(IC , J) =
1

2
µ(IC − 3) +

λ

4
(J2 − 1)− λ

2
ln J − µ ln J. (2.40)

Here the Lamé parameters λ and µ are taken into account which are related to the

bulk modulus K and the shear modulus G. By considering (2.35) and (2.36) the second

Piola-Kirchhoff stress is obtained

S =
λ

2
(J2 − 1)C−1 + µ(1−C−1). (2.41)

Furthermore, by using the definition (2.37) one obtains the elasticity tensor

D = λJ2C−1 ⊗C−1 + [2µ− λ(J2 − 1)]IC−1 . (2.42)

2.3.1.2 Neo-Hooke with Volumetric Split

The neo-Hooke model can be modified by an additive split of the strain energy. The

purpose of this split is to separate the volumetric and isochoric parts of the strain energy.

Therefore the isochoric right Cauchy-Green tensor Ĉ, which was introduced in (2.9), and

the dilatation, which is described by J , are considered. In (2.43) the first term on the

right hand side represents the isochoric part of the energy. Comparing to the first term

in the standard neo-Hooke model, see (2.40), IC is replaced by IĈ . With this, the first

term is only affected by pure isochoric deformations. The second one is affected by the

dilatation of the material since it only depends on J . It should be mentioned here that the

second term does not grow to infinity if J approaches 0 but for the nearly incompressible

case it is sufficient, since J ≈ 1. Furthermore, the nearly incompressible behaviour is

established in this model by a high constant K. This means that a slight increase in

volume will lead to a high strain energy,

Ψ(IĈ , J) =
1

2
µ(IĈ − 3) +

1

2
K(J − 1)2 = Ψiso + Ψvol. (2.43)

The second Piola-Kirchhoff stress is obtained with the definition (2.35). Since Ψ is

composed of two parts, S can be obtained in a split form according to

Siso = 2
∂Ψiso

∂C
= µJ−

2
3

(
1− 1

3
ICC−1

)
, (2.44)

Svol = 2
∂Ψvol

∂C
= KJ(J − 1)C−1. (2.45)
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This procedure is also valid for the elasticity tensor, which is additively split in an

isochoric and a volumetric part,

D
iso = 2

∂Siso
∂C

=
2

3
µJ−

2
3

[
IC
(
IC−1 +

1

3
C−1 ⊗C−1

)
− (1⊗C−1 +C−1 ⊗ 1)

]
, (2.46)

D
vol = 2

∂Svol
∂C

= KJ
[
(2J − 1)C−1 ⊗C−1 − 2 (J − 1) IC−1

]
. (2.47)

2.3.1.3 Yeoh

If a rubber-like material is deformed in the large strain domain, it can be observed that

the tangent shear decreases at the beginning and then increases as the strain advances.

One can speak of a stiffening effect in the large strain range. To model this effect, Yeoh

proposed a model which is also called reduced polynomial model. For the incompressible

case, this model is a three term expansion of the incompressible neo-Hooke model, which

depends on the first invariant IC , see [69]. For the case of nearly incompressible materials,

the kinematic split of a volumetric and isochoric deformation is considered. The isochoric

terms depend on the isochoric first invariant IĈ and the volumetric part is related to the

Jacobi determinant J . Thus, the Yeoh model can be defined by

Ψ(IĈ , J) =
3∑
i=1

ci(IĈ − 3)i +
3∑

k=1

1

dk
(J − 1)2k. (2.48)

In this model c1 can be regarded as half the initial shear modulus µ. For the sake of

simplicity the volumetric part can be reduced to the first term with 1
d1

being half the

bulk modulus

Ψ(IĈ , J) =
3∑
i=1

ci(IĈ − 3)i +
1

2
K(J − 1)2. (2.49)

Using (2.35) the second Piola-Kirchhoff stress is obtained,

S = 2h1J
− 2

3 1− 2

3
h1J

− 2
3 ICC−1 +KJ(J − 1)C−1, (2.50)

with

h1 = c1 + 2c2(IĈ − 3) + 3c3(IĈ − 3)2. (2.51)

Furthermore, the elasticity tensor is obtained from (2.37). As it can be seen in (2.50),

the second Piola-Kirchhoff stress S for the Yeoh model is composed of three terms. For

a better overview, the elasticity tensor is also split into three parts which correspond to
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the three terms of S, thus

D = D
a +D

b +D
c. (2.52)

This three terms are

D
a = 4h2J

− 4
3 1⊗ 1− 4

3
J−

4
3 (ICh2 + J

2
3h1)C−1 ⊗ 1, (2.53)

D
b = −4

3
J−

2
3 IC

[(
J−

2
3h2 +

h1

IC

)
1⊗C−1

]
+

4

3
J−

2
3 IC

[
1

3
(J−

2
3 IC + h1)C−1 ⊗C−1 + h1IC−1

]
, (2.54)

D
c = 2KJ

[(
J − 1

2

)
C−1 ⊗C−1 − (J − 1)IC−1

]
. (2.55)

2.3.2 Three Field Formulation

As mentioned previously, the consideration of nearly incompressible materials requires a

special treatment which can be solved by use of a three field formulation as introduced

in section 2.2.1. Based on the neo-Hooke with split formulation given in (2.43), the three

field formulation in (2.27) can be rewritten as

Ψ(u, p, θ) =
1

2
µ(IĈ − 3) +

1

2
K(θ − 1)2 + p(J − θ). (2.56)

The first term on the right hand side describes the isochoric part of the energy while the

second term models the volumetric part. The third term serves as the constraint for θ.

Since the isochoric energy parts of (2.56) and (2.43) are identical, the corresponding part

of the second Piola-Kirchhoff stress remains unchanged,

Siso = µJ−
2
3

(
1− 1

3
ICC−1

)
. (2.57)

The volumetric part of the second Piola-Kirchhoff stress is different and turns out to be

Svol = pJC−1. (2.58)

Analogously to the derivation described in section 2.3.1.2, the elasticity tensor is com-

posed by its isochoric and volumetric part,

D
iso =

2

3
µJ−

2
3

[
IC
(
IC−1 +

1

3
C−1 ⊗C−1

)
−
(
1⊗C−1 +C−1 ⊗ 1

)]
, (2.59)

D
vol = pJ

(
C−1 ⊗C−1 − 2IC−1

)
. (2.60)

Here the isochoric part is identical to the one of the neo-Hooke with split formulation,

see (2.46).





Chapter 3

Electrostatics in Dielectric Materials

Electrostatics is the part of physics which studies the phenomena produced by electric

charges at rest. For the explanation and understanding of these macroscopic phenomena,

which are originated at the atomistic level, the concept of point charges is used.

The aim of this chapter is to give an introduction to the electrostatic concepts which are

necessary for the description of DEs. The chapter begins by introducing Coulomb’s and

Gauss’s law in vacuum. Furthermore, the concept of electric and potential fields produced

by charges in vacuum is described. Afterwards the electric dipole is introduced as the

starting point to describe the polarisation. The concept of polarisation is then used to

explain the electrostatic forces which act on matter and are responsible for deformations.

Additionally the electric displacement is introduced to state an electrostatic constitutive

law. To motivate the actuation mechanism of DEAs, a simple analysis of a parallel plate

capacitor in vacuum is performed considering two approaches. The idea is to explain

the forces on the plates of a capacitor in dependency of the electric field. The chapter is

closed by defining the Maxwell stress for vacuum and matter. The relationship between

the stress and the electrostatic volume force is shown. This relationship serves for the

balance description of the electromechanical coupled field problem.

Several books and sources on the topic of electrostatic can be found in literature as in-

troductory material. The concepts and ideas shown in this work are based on [70]. In

addition, the references [30, 71–74] have also been considered as complementary litera-

ture.
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3.1 Electric Fields in Vacuum

Coulomb’s law states, that the force on a test charge Q created by a source charge q is

given by the relationship

FE =
1

4πε0

qQ

|r|3
r. (3.1)

In this equation ε0 is the permittivity of free space and r is the distance vector between

the charges Q and q. As it can be observed in the equation, the force vector acts along

the distance vector r. Furthermore, the sign of both charges is responsible for the force

direction. If both charges have the same sign, the force is repulsive, otherwise it is

attractive.

3

2

1

pdq

B
x

r

x′

dE(x)

Figure 3.1: Electric field at point p created by a charged Body B.

To describe the forces created by a volume charge distribution on a test charge, the

concept of the electric field is introduced. The electric field created by a charged body B
at a point p, see Fig. 3.1, is defined as

E(x) =
1

4πε0

∫
B

γ(x′)

|r|3
r dv, (3.2)

where γ = dq/dv is the charge density of a point with coordinates x′ belonging to B.
The distance between the charge density point γ and the measuring point p is described

by the vector r.

A test charge Q which is located in an electric field E is subjected to a force

FE = QE. (3.3)
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Gauss’s law states that the flux of the electric field E through any closed surface S is

proportional to the total electric charge Qenc enclosed by the given surface according to∮
S
E · n da =

1

ε0
Qenc. (3.4)

In this equation the unit normal vector at an infinitesimal surface da is given with n.

Considering the definition of the charge density, the enclosed charge can be written as

Qenc =

∫
V
γ dv. (3.5)

Substituting (3.5) in (3.4) and under the consideration of the divergence theorem, the

differential form of Gauss’s law is obtained with

divE =
γ

ε0
. (3.6)

One special property of electric fields created by static charges is that they are curl-free.

This means that the rotation vanishes, thus rotE = 0. For this reason it is possible to

define the electric field E as the gradient of a scalar field. This scalar field is known as

the electric potential ϕ and fulfils the relationship

E = −gradϕ, (3.7)

where the negative sign is just a convention. The unit of ϕ is joule per coulomb which is

known as volt. The electric potential field created by a single point charge or monopole q

is given by the equation

ϕ(r) =
1

4πε0

q

|r|
, (3.8)

where r is the distance vector from charge q to a given point in space. It should be

noted, that the electric potential field of a monopole decreases with 1/|r|.

rq+

q−

θ

d

p

Figure 3.2: Scheme of an electric dipole.
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An electric dipole is a set of two point charges with opposite charges, q+ and q−, which

are separated by the distance d, see Fig. 3.2. The electric potential field ϕ of this

arrangement can be obtained via the superposition principle. Under the assumption

that d is considerably smaller than the distance r, the electric potential at point p is

obtained with

ϕ(r) =
1

4πε0

qd cos θ

|r|2
. (3.9)

In comparison to a monopole, the electric potential of a dipole decreases faster with 1/|r|2.
The product qd is known as the magnitude of the dipole moment. The dipole distance

vector d is defined as the vector which points from q− to q+. Thus, the dipole moment

vector can be given by

p = qd. (3.10)

Considering (3.10) in (3.9) one obtains the electric potential as a function of the dipole

moment vector

ϕ(r) =
r · p

4πε0|r|3
. (3.11)

The electric field of the dipole is obtained by the application of (3.7) on (3.9). Considering

polar coordinates |r| and θ, the radial and tangential components are

Er =
2|p| cos θ

4πε0|r|3
, Eθ =

|p| sin θ
4πε0|r|3

. (3.12)

3.2 Electric Fields in Matter

When a neutral atom or molecule is subjected to an electric field, the positive and

negative charges are separated due to Coulomb’s force and dipoles are formed. If the

magnitude of the electric field is rather small, the moment of the dipole p becomes

proportional to the applied electric field E. In the case of a homogeneous field, the

forces on the charges of the dipole cancel each other out and no net force acts on the

dipole. If the electric field is heterogeneous, the forces on the charges of the dipole are

not equal and opposite anymore, see Fig. 3.3. The net force which acts on the dipole is

then defined as

FE = FE
+ + FE

− = qE+ − qE− = q(E+ −E−) = q(∆E). (3.13)

On the infinitesimal length scale the difference of the electric field ∆E on the dipole

charges can be obtained according to

∆E = (gradE)d. (3.14)
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FE
−

d

E+

E−

FE
+

q+

q−

Figure 3.3: Electrostatic forces of a heterogeneous electric field on a dipole.

With the substitution of (3.14) in (3.13) the net force of a heterogeneous electric field

on a dipole yields

FE = (gradE)qd = (gradE)p. (3.15)

Since a continuum body consists of a large number of atoms and molecules, the concept

of an atomistic or molecular dipole can be transferred to the macroscopic scale by the

means of a continuum material body. To facilitate the description on a macroscopic

scale, the concept of polarisation is introduced as the dipole moment per unit volume

P =
p

v
. (3.16)

Multiplying (3.15) with 1/v, the electrostatic volume force of an electric field on dielectric

material is obtained by

fE =
FE

v
= (gradE)P . (3.17)

This expression can be regarded as a physical interpretation of the electrostatic force

which acts on polarisable materials like DEs under the influence of an electric field.

So far, the concept of polarisation has been described very briefly even tough it is an

important factor for the understanding of the deformation of dielectric materials. For

this reason the electrostatic volume force introduced in (3.17) is set aside for the moment

and will be recaptured in section 3.4 where the concept of the Maxwell stress is presented.

As mentioned in the beginning of this section, a dielectric becomes polarised if it is

exposed to an electric field by forming dipoles p on the atomistic and molecular level.

To evaluate the potential field created by these dipoles, (3.11) and (3.16) have to be

considered. With the integration of (3.11) over the polarised volume and the appropriate
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manipulations described in [70] the definition of bound surface and volume charges can

be applied. These definitions are

αb = P · n, γb = −divP . (3.18)

In a dielectric, the electric charges are not able to move as freely as in a conductor.

For this reason, the charges in these materials are considered as bound charges. The

respective surface and volume densities of the bound charges are represented with αb

and γb. For a physical interpretation of these charges, the reader is referred to [70].

By these means, the potential field produced by polarised matter can be obtained in

dependency of the bound charges in the material,

ϕ(r) =
1

4πε0

∮
S

αb
|r|

da+
1

4πε0

∫
V

γb
|r|

dv. (3.19)

Since the potential field is known, the electric field can also be obtained according

to (3.7). The concept of potential and electric polarisation fields attributed to bound

charges can be transferred to external fields. In this case, the free charges with density γf
are held responsible for the creation of the external electric field which is the case for the

conducting electrodes of a capacitor. Under this perspective, the total electric field in a

dielectric, which is composed of the external and the polarisation part, can be attributed

to the sum of bound and free charges. Thus the total volume charge density responsible

for the entire field is

γ = γb + γf . (3.20)

Using Gauss’s law (3.6) and (3.18)2 one obtains that

div (ε0E + P ) = γf , (3.21)

in which the term in parenthesis is defined as the electric displacement in polarisable

matter,

D = ε0E + P . (3.22)

With this, Gauss’s law for dielectric materials is stated by

divD = γf . (3.23)

The last issue wich has to be treated in the theory of polarisable matter is the polaris-

ability of dielectrics. In continuum mechanics, materials are generally characterised in

first place by the stress-strain relation. The most simple relation is the linear, which can

often be applied at small strains. In the same manner the polarisation of a dielectric can
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be related to the electric field under the assumption of smaller fields in a linear way

P = ε0χE. (3.24)

In this equation χ is known as the electric susceptibility. It should be noted that the

polarisation cannot be obtained directly from the applied electric field. The total electric

field depends partially on the applied electric field and on the electric field created by the

polarisation of the material, which is created by the application of an external electric

field. Inserting (3.24) in (3.22) leads to

D = ε0(1 + χ)E = εE. (3.25)

Obviously the electric displacement is proportional to the electric field. The proportion-

ality factor ε is known as the permittivity of the dielectric. The relative permittivity εr is

defined as the relation between the permittivity ε and the permittivity of the free space

ε0. It is related to the susceptibility according to

εr = 1 + χ =
ε

ε0
. (3.26)

3.3 Forces in Parallel Plate Capacitors

This section presents a physical interpretation of the forces which appear in a parallel

plate capacitor as a consequence of the electric field produced by charge distributions.

For this purpose two approaches are given in which the first one is based on Coulomb’s

law while the second one considers the work and energy in the capacitor.

3.3.1 Force Balance Approach

The electric field E created by one plate of a capacitor can be calculated by Gauss’s law.

The surface charge density of a plate is given by α. For a given surface A of the plate

(blue surface in Fig. 3.4) the total charge is QA = αA. The electric field created by the

surface charge distribution is perpendicular to the surface since the components of E,

which are parallel to the surface, cancel each other out. To calculate the electric field,

the surface A is enclosed by a "Gaussian pillbox", see Fig. 3.4. According to Gauss’s law

(3.4), the electric field fulfils the equation∮
S
E · n da =

1

ε0
QA =

αA

ε0
. (3.27)
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E

E

Figure 3.4: Electric field created by
a charged surface (blue) with enclos-

ing "Gaussian pillbox".

α−

α+

E+

E+

E+

E−

E−

E−

(A)

(B)

(C)

Figure 3.5: Electric field created
by a charged parallel plate capac-

itor.

The integration along the lateral faces of the box can be neglected, since the electric field

is perpendicular to the plate. The surface integral along the top and the bottom face is∫
E · n da = 2A|E|. (3.28)

Taking (3.27) and (3.28) delivers the electric field of the charged plate

E =
α

2ε0
n, (3.29)

in which n is the normal unit vector to the charged plate. With the knowledge of E

for a charged plate, the electric field inside a parallel plate capacitor can be calculated.

The scheme of a capacitor is represented in Fig. 3.5. The top and bottom electrodes

are charged with densities α+ and α−. Both plates create the electric fields E+ and E−
which point in the directions shown in Fig. 3.5. The field E+ is created by the top

electrode and E− is created by the bottom one. The magnitude of the field is obtained

with (3.29). Outside of the capacitor (region A and C) the electric fields of both plates

cancel out because of their opposite direction. Inside the capacitor (region B), the fields

of both plates add up, thus the magnitude of the electric field in a parallel plate capacitor

is

|E| = α

ε0
. (3.30)

Now that the electric field is known, the force acting on the plates of the capacitor can

be calculated with (3.3). Since the electric field is discontinuous at the surface charge α,

the average of the electric field at both sides of the surface has to be taken. Furthermore,

a force per unit area is obtained because of the consideration of a charge density. With

this, the force per unit area on the plate of a capacitor is

fE =
1

2
α(Eabove +Ebelow) =

1

2
α(E + 0) =

1

2
αE. (3.31)
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To obtain the force in dependency of ε0 (3.30) is inserted in (3.31), thus

|fE | = 1

2
ε0|E|2. (3.32)

3.3.2 Energy Approach

The attraction force between the parallel plates of a capacitor can also be obtained by

the consideration of the energy of the system. In general, the electrostatic energy of a

system with a charge density γ and electric potential ϕ can be obtained by the volume

integration over the whole system according to

Ψ =
1

2

∫
V
γϕ dv. (3.33)

The charge density γ can be substituted with the consideration of Gauss’s law described

in (3.6), thus

Ψ =
1

2
ε0

∫
V

(divE)ϕ dv. (3.34)

Integration by parts yields

Ψ =
1

2
ε0

[
−
∫
V
E · (gradϕ) dv +

∮
S
ϕE · n da

]
. (3.35)

This equation can be further modified by substituting the gradient of the electric poten-

tial from (3.7) into (3.35), thus

Ψ =
1

2
ε0

(∫
V
|E|2 dv +

∮
S
ϕE · n da

)
. (3.36)

This is the general form to obtain the energy of a charge distribution under the consid-

eration of the electric field and potential created by the charge distribution. It should

be noted that the integration has to be done over a region which encloses the charge

distribution. It is not necessary to enclose the system perfectly, the enclosure can be

larger as long as it contains the system.

In the case of the parallel plate capacitor the surface integral term can be neglected since

the electric field is only present between the plates of the capacitor and therefore does

not pass through the enclosure.

Considering a capacitor with the surface area A and a plate separation distance l, the

energy of the system can be obtained with (3.36) yielding

Ψ =
1

2
ε0|E|2Al. (3.37)
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The workW of an external force FE which separates the plates of the capacitor is stored

as an internal energy of the system, thus

W = Ψ. (3.38)

The external force can be obtained by the partial derivative of the work w.r.t. the sepa-

ration distance of the plates. With (3.37) and (3.38) one obtains

|FE | = ∂W

∂l
=
∂Ψ

∂l
=

1

2
ε0|E|2A. (3.39)

Thus, the force per unit surface is

|fE | = |F
E |
A

=
1

2
ε0|E|2, (3.40)

which agrees with the previously obtained result in (3.32).

3.4 Maxwell Stress and Electrostatic Volume Force

The Maxwell stress was first introduced in the treatise by Maxwell in the mathematical

derivation of electromagnetic forces on electric charges, see [75]. Initially the concept of

the Maxwell stress was developed for forces on charges in vacuum. Afterwards it has

been extended for the evaluation of forces in polarisable matter.

In continuum mechanics the divergence of the Cauchy stress is balanced by mechanical

volume loads like e.g. gravity if surface tractions are neglected. The same idea can also be

applied to the Maxwell stress, whose divergence is balanced by the electrostatic volume

force, see [76] and [77].

The definition of the Maxwell stress is considered here for the electrostatic case which

means that the electrodynamic terms are neglected. Furthermore, two distinctions are

made, namely the vacuum and the dielectric media case. In vacuum the Maxwell stress

is given by

σE = ε0

[
E ⊗E − 1

2
(E ·E)1

]
. (3.41)

As mentioned previously, the volume force is in balance with the divergence of the

Maxwell stress, thus

fE = divσE . (3.42)
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For the application of the divergence operator on the Maxwell stress, the following iden-

tities can be considered,

div(E ⊗E) = (gradE) ·E +E divE, (3.43)

div [(E ·E)1] = 2(gradT E) ·E. (3.44)

Substituting (3.41) in (3.42) and then (3.43) and (3.44) in (3.42) results in

fE = ε0
[
(gradE) ·E +E divE − (gradT E) ·E

]
. (3.45)

The electric field can be expressed as the gradient of a potential field, see (3.7). As a

consequence, the gradient of the electric field is symmetric (gradE = gradT E). With

these considerations, (3.45) is reduced to

fE = ε0(divE)E. (3.46)

Under the contemplation of the differential form of Gauss’s law, see (3.6), the definition

of the electrostatic volume force of a charged body in vacuum yields

fE = γE. (3.47)

By comparison of (3.47) with (3.3) it becomes clear, that the electrostatic volume force

is the force of an electric field on a charge density. In the example of the parallel plate

capacitor in vacuum the Maxwell stress tensor is according to (3.41)

σE =


−1

2ε0E
2 0 0

0 −1
2ε0E

2 0

0 0 1
2ε0E

2

 . (3.48)

The tensor is obtained by assuming a homogeneous electric field E =
[

0 0 E
]T

between the plates of the capacitor. As one can see, the component σE33 which corresponds

to the direction of the electric field is equal to the attraction force of the plates of the

capacitor, see (3.39).

In the context of dielectric polarisable materials, the Maxwell stress is defined differ-

ently. Depending on the physical assumptions, several possibilities exist. In this work,

the concept of the Kelvin polarisation force density is taken into account. Other possi-

bilities include the Kortweg-Helmholz force density which is based on energy and work

contemplations. According to the Kelvin polarisation force, see [78], the Maxwell stress
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for polarisable material is defined with

σE = E ⊗D − 1

2
ε0(E ·E)1. (3.49)

The volume force is obtained by the divergence of the stress, see (3.42). To simplify the

divergence, the identities (3.43) and (3.44) can be considered. The first one is modified

by the introduction of D resulting in

div (E ⊗D) = (gradE) ·D +E divD. (3.50)

Computing the divergence of the Maxwell stress under this considerations, the force per

unit volume turns out to be

fE = (gradE) ·D +E divD − ε0(gradT E) ·E. (3.51)

The second term on the right hand side can be modified by considering (3.23). Further-

more, the definition of the electric displacement, see (3.22), can be introduced in (3.51),

thus

fE = (gradE) · (ε0E + P ) + γfE − ε0(gradT E) ·E. (3.52)

The right hand side of the equation can be expanded,

fE = ε0(gradE)E + gradE · P + γfE − ε0(gradT E) ·E. (3.53)

Since the gradient of the electric field is symmetric due to the existence of the electric

potential ϕ, the first and the third term on the right hand side cancel out. This means

that the electrostatic volume force in a dielectric material is

fE = (gradE)P + γfE. (3.54)

The first term on the right hand side is in agreement with (3.17), where the electrostatic

volume force is physically interpreted as the force of an inhomogeneous electric field on

a dipole density. The second term corresponds to the force on a free charge density as

previously shown in (3.47). It should be mentioned that the Kelvin force only considers

the forces of the macroscopic electric field on the dipoles. As the material is polarised,

microscopic electric fields are formed additionally to the external electric field. The

interaction of these microscopic fields with neighboring dipoles is neglected in the concept

of the Kelvin force density presented here, see [78] for details.



Chapter 4

Numerical Implementation

The focus of the present chapter lies on the numerical implementation of the electrome-

chanical coupled field problem for DEAs. It is performed in a standard manner known

for the finite element method in which the weak forms of the balance equations are

discretised with finite elements by means of the isoparametric concept. This chapter

aims at obtaining the tangent matrix for different formulations. This matrix serves in

the solution of the nonlinear FE problem which is performed with the Newton-Raphson

method, introduced in section 4.1. After the introduction the implementation details

for the quasi-static case are outlined in section 4.2 which is then extended to dynamic

simulations in section 4.3.

4.1 The Newton-Raphson Method

The nonlinear FEM is characterised by the fact that a nonlinear system of equations has

to be solved to obtain the solution vector u. Usually the system is formed by an internal

residual vector R(u) and a loading vector P which is constant for the case of dead loads.

In general P is scaled by a parameter λ to obtain convergence of the method. Thus the

nonlinear system of equations has the form

G(u, λ) = R(u)− λP = 0. (4.1)

To solve (4.1) in a numerical procedure a Taylor expansion is performed which is obtained

as

G(u(k+1), λ) = G(u(k), λ) +DG(u(k), λ)∆u+O(∆u2). (4.2)

In this equation, the second term on the right hand side is known as the directional

derivative or linearisation of G at the point u(k). It provides the matrix K known as

31
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the tangent matrix. Neglecting the higher order terms in (4.2) and with the condition

G(u(k+1), λ) = 0, (4.3)

the linear system

K∆u(k) = −G(k) (4.4)

has to be solved to obtain ∆u(k). Thus, the algorithm of the Newton-Raphson method

can be formulated as follows.

1: Initialise solution u(k) = u(0)

2: Compute G(u(k), λ) and K(u(k))

3: Solve K∆u(k) = −G(k)

4: Compute u(k+1) = u(k) + ∆u(k)

5: Test convergence ||G(u(k+1), λ)||

< TOL→ STOP

> TOL→ k = k + 1,GOTO Step 2

For the 1D case the algorithm can be represented schematically as shown in Fig. 4.1.

Here the nonlinear equation G(u, λ), see (4.1), has been normalised. Thus R̂(u)− λ = 0

has to be solved obtaining the solution u∗.

∆u2

uu(0) u(1) u(3) u∗

R̂(u)

∆u1

∂R̂(u)
∂u

∣∣∣
u1

u(2)

λ

λ

∆u0

Figure 4.1: Representation of the Newton-Raphson method for the 1D case.

The main advantage of the method is the quadratic convergence of the scheme in the

vicinity of the solution leading to a reduced number of iterations. As a disadvantage it
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should be mentioned that the computation of K and the solution of (4.4) are in general

time consuming.

4.2 Quasi-Static Implementation

In this section the required concepts for the implementation of the coupled field problem

for the quasi-static case are outlined. In order to gradually increase the complexity

the concepts of the displacement formulation case are presented at first. With this,

the implementation for the simulation for a DEA is executable but it is restricted to

compressible materials. As a next step the displacement formulation is replaced by the

three field formulation to treat the incompressibility constraint which is typical for DEs.

By this means the necessary ingredients are introduced which allow the understanding

of the advanced elements for quasi-incompressibility. The procedure is to start with the

mechanical case and then adapt it to the coupled field problem.

4.2.1 Displacement Formulation

So far, the fundamental equations and derivations of the mechanical and electrostatic

phenomena have been contemplated separately in the previous chapters 2 and 3.

The balance of linear momentum of a material point in continuum mater has been

introduced in (2.16). Furthermore, mechanical loads are omitted since the focus of

the present work is on the electromechanical coupling of electric fields with mechanical

deformations. For this reason body forces b are neglected. The only considered load in the

framework is the electrostatic volume load fE which is introduced in (3.17) as the force

of an electric field on polarisable material. Hence, the linear momentum balance of the

electromechanical coupled field problem can be written down in the current configuration

with

divσ + fE = 0. (4.5)

In section 3.4 the electrostatic volume force is related to the Maxwell stress via the

divergence operator, see (3.42). With this, the previous expression (4.5) is rewritten to

yield

div (σ + σE) = div τ = 0. (4.6)

Under this perspective, the electromechanical coupling can be described as a balance of

a total stress τ which is composed additively by the Cauchy stress σ and the Maxwell

stress σE . The nature of the stresses are mechanical and electric, respectively.
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In the present work the algorithmic implementation is performed in the reference con-

figuration. Thus, the weak form of the linear momentum balance (4.6) needs to be

formulated in this configuration. This is realised by the pull-back of τ into the reference

configuration and transforming it into a symmetric total second Piola-Kirchhoff stress

T0 = S0 + SE0 . (4.7)

The details of the pull-back are not outlined here but can be found in [79]. The mechan-

ical second Piola-Kirchhoff stress S0 depends on the mechanical constitutive relation

which is introduced in (2.35). Different alternatives are proposed in sections 2.3.1.1,

2.3.1.2 and 2.3.1.3. The Maxwell stress is pulled back in the reference configuration

according to

SE0 =
(
C−1E0

)
⊗D0 −

1

2
ε0J

[
E0 ·

(
C−1E0

)]
C−1, (4.8)

in which C is the right Cauchy-Green tensor introduced in (2.6) and J is the determinant

of the deformation gradient, see (2.3). The electric field (3.7) is defined for the current

configuration and can be pulled back by use of its definition and the chain rule according

to

E0 = −Gradϕ = F TE. (4.9)

It can be regarded as the electric counterpart of a mechanical strain measure which is

defined as the gradient of the displacement field. In a similar way, the electric displace-

ment introduced in (3.25) can be seen as the electric counterpart of the Cauchy stress.

With Nanson’s formula, see (2.5), the pulled back version of the electric displacement is

obtained,

D0 = JF−1D. (4.10)

The same idea is also applicable for the polarisation vector,

P0 = JF−1P . (4.11)

In (3.24) the linear relationship between the polarisation and the electric field, which can

be regarded as the electric constitutive law for polarisable matter, has been introduced.

This law can also be derived from an electric energy per unit volume h according to [79]

with

P = −ρ ∂h
∂E

. (4.12)

The electric energy h can also be formulated in the reference configuration by the density

change with

h0 = ρJh (4.13)
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Assuming that the electric energy in the reference configuration is

h0 =
1

2
ε0χE ·E, (4.14)

the electric constitutive law for polarisable matter can be obtained with (4.12), (4.13)

and (4.14). Thus

P =
ε0χ

J
E. (4.15)

In comparison to (3.24) the polarisation now also depends on the change of the material

density. Substituting (4.15) in (3.22) delivers the electric displacement which now is also

dependent on the material density change,

D = ε0

(
1 +

χ

J

)
E. (4.16)

With the definition of the stresses in the reference configuration, the necessary steps

to obtain the formulation of the weak form can be performed. Neglecting additional

external volume forces, the weak form of the mechanical balance is established by

Wmech =

∫
B0

(S0 + SE0 ) : δG dV =

∫
B0
T0 : δG dV = 0, (4.17)

where δG is a virtual Green-Lagrange strain tensor.

The second balance law for the electromechanical coupled field problem in the current

configuration is established by Gauss’s law for dielectric materials described in (3.23).

With the assumption that the charges in a dielectric are all bound (γf = 0), the law of

Gauss is defined in the reference configuration by

DivD0 = 0. (4.18)

Neglecting surface charges, the local balance of the electric displacement is transformed

to the weak form

Welec =

∫
B0
D0 · δE0 dV = 0, (4.19)

where δE0 is a virtual electric field.

At this point the weak formulations represented in (4.17) and (4.19) can be discretized

for the numerical implementation. The method used here is the standard discretization

technique with shape functions known from the FE method by means of the isoparametric

concept. In the electromechanical coupled field problem both, the displacement u and

the electric potential ϕ, are discretized with the shape functions NI . On the element
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level the discretization is

u =

N∑
I=1

NIuI , ϕ =

N∑
I=1

NIϕI . (4.20)

The underbar in the previous and subsequent equations denotes the matrix notation. It

is used to express discretised quantities and equations. The same concept is also applied

to the virtual displacements and the virtual electric potential,

δu =

N∑
I=1

NIδuI , δϕ =

N∑
I=1

NIδϕI . (4.21)

It should be noted that I is the index of the element node for an element with N nodes.

After having established the discretisation of the field, the tensors δG and δE0 can be

recast into the discrete version. First their relation to the field is mentioned. Namely,

δG = sym (F TGrad δu) =
1

2
(F T δF + δF TF ) with Grad δu = δF , (4.22)

in which F is the deformation gradient introduced in (2.2), and for the electric field

δE0 = −Grad δϕ. (4.23)

Considering (4.22), the discretisation of the virtual displacement (4.21) and the applica-

tion of the gradient on the discretized field the discrete version of δG is obtained,

δG =
[
δG11 δG22 δG33 2δG12 2δG23 2δG31

]T
=

N∑
I=1

B0
IδuI . (4.24)

The B-matrix which contains the derivatives of the shape functions is computed by

B0
I =



F11NI,1 F21NI,1 F31NI,1

F12NI,2 F22NI,2 F32NI,2

F13NI,3 F23NI,3 F33NI,3

F11NI,2 + F12NI,1 F21NI,2 + F22NI,1 F31NI,2 + F32NI,1

F12NI,3 + F13NI,2 F22NI,3 + F23NI,2 F32NI,3 + F33NI,2

F11NI,3 + F13NI,1 F21NI,3 + F23NI,1 F31NI,3 + F33NI,1


, (4.25)

and the virtual displacement is represented by

δuI =
[
δu1I δu2I δu3I

]T
. (4.26)

Here the Voigt notation has been introduced which simplifies the representation of sym-

metric tensors. Thus the second order tensor δG can be expressed by a vector in its
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discretised version δG. The same procedure can also be applied to (4.23) with consider-

ation of the discrete version of the virtual electric potential. This results in

δE0 =
[
δE01 δE02 δE03

]T
= −

N∑
I=1

B̃
0

IδϕI . (4.27)

In this case the B-matrix differs from the previous one. Here, only the derivatives of the

shape functions in the coordinate directions are necessary,

B̃
0

I =
[
NI,1 NI,2 NI,3

]T
. (4.28)

Additionally, the total stress T0 and the electric displacement D0 are written in matrix

notation. Finally the internal residual vector for the mechanical and the electric part

can be formulated for each node of the element via

Rm
I (uI , ϕI) = −

∫
Be0
B0
I
T
T 0 dV (4.29)

with

T 0 =
[
T011 T022 T033 T012 T023 T013

]T
(4.30)

and

ReI(uI , ϕI) = −
∫
Be0
B̃

0

I

T
D0 dV (4.31)

with

D0 =
[
D01 D02 D03

]T
. (4.32)

Because of the nonlinear nature of the coupled field problem considered here (large defor-

mations and nonlinear constitutive relations), it is solved iteratively in the framework of

the Newton-Raphson method. In each iteration step, the tangent of the residual function

is needed. One possibility would be the computation of a numerical tangent by a consid-

erably small perturbation in the residual function. The other possibility is the deduction

of the consistent tangent in an analytical form which usually leads to a higher conver-

gence rate than the numerical tangent. In a coupled field problem a monolithic tangent

matrix is obtained by the derivation of the residuals w.r.t. the fields considered in the

problem. In the case of the electromechanical coupling, the residuals (4.29) and (4.31)

are derived w.r.t. uJ and ϕJ to yield the matrix

KIJ =

[
Kmm

IJ Kme
IJ

Kem
IJ Kee

IJ

]
, (4.33)
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with

Kmm
IJ = −∂R

m
I

∂uJ
, Kme

IJ = −∂R
m
I

∂ϕJ
, Kem

IJ = −
∂ReI
∂uJ

, Kee
IJ = −

∂ReI
∂ϕJ

. (4.34)

The full tangent matrixK for the element is assembled using the matricesKIJ according

to the arrangement of the solution vector in the considered FE solver. The indices I and

J address the nodes of the element.

In the next pages the submatrices presented in (4.34) will be derived in detail to present

the constitution of the consistent tangent.

4.2.1.1 Submatrix Kmm

In the first submatrix Kmm
IJ the mechanical residual is derived w.r.t. the displacement.

With the application of the product rule, it can be written as

Kmm
IJ = −∂R

m
I

∂uJ
=

∂

∂uJ

∫
Be0
B0
I
T
T 0 dV =

∫
Be0

∂B0
I
T

∂uJ
T 0 dV +

∫
Be0
B0
I
T ∂T 0

∂uJ
dV. (4.35)

Here, the first term is known as the geometric tangent which is required for problems

with large deformations,

∫
Be0

∂B0
I
T

∂uJ
T 0 dV =

∫
Be0
GIJI dV, (4.36)

in which

GIJ =
[
NI,1 NI,2 NI,3

]
T011 T012 T013

T021 T022 T023

T031 T032 T033



NJ,1

NJ,2

NJ,3

 . (4.37)

The matrix I is the fourth order identity tensor in matrix notation. Thus it reduces

to the usual identity matrix. In the second term of (4.35) the total stress is derived

w.r.t. the displacement. This part of the tangent depends on the constitutive law of the

material. To obtain the derivatives of the stress tensors w.r.t. the right Cauchy-Green

tensor as defined in chapter 2, the chain rule is applied leading to the expression∫
Be0
B0
I
T ∂T 0

∂uJ
dV = 2

∫
Be0
B0
I
T ∂T 0

∂C
B0
J dV = 2

∫
Be0
B0
I
T
(
∂S0

∂C
+
∂SE0
∂C

)
B0
J dV. (4.38)

The second B-matrix originates from the discretization of G,

G =

N∑
J=1

B0
JuJ → ∂G

∂uJ
= B0

J . (4.39)
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Finally, the complete submatrix can be written as

Kmm
IJ = 2

∫
Be0
B0
I
T
(
∂S0

∂C
+
∂SE0
∂C

)
B0
J dV +

∫
Be0
GIJI dV. (4.40)

As mentioned previously, the first term of the matrix depends on the chosen mechanical

constitutive law and the derivative of the Maxwell stress w.r.t. the Green-Lagrange strain.

Depending on the selected mechanical material model, the derivatives found in 2.3.1 and

2.3.2 can be substituted into (4.40). The details of the second derivative are outlined in

the appendix A.1.

4.2.1.2 Submatrix Kme

In the second submatrix Kme
IJ the mechanical residual is derived w.r.t. the electric po-

tential,

Kme
IJ = −∂R

m
I

∂ϕJ
=

∂

∂ϕJ

∫
Be0
B0
I
T

(S0 + SE0 ) dV. (4.41)

In this case, only the Maxwell stress depends on the electric potential. The derivative

w.r.t. the electric field can be reformulated by application of the chain rule according to

∂SE0
∂ϕJ

=
∂SE0
∂E0

∂E0

∂ϕJ
. (4.42)

Considering the discretization of the electric field, the second factor on the right hand

side of (4.42) turns out to be

E0 = −
N∑
J=1

B̃
0

JϕJ → ∂E0

∂ϕJ
= −B̃

0

J . (4.43)

After substituting (4.43) and (4.42) in (4.41) the first coupling part of the tangent matrix

is obtained,

Kme
IJ = −

∫
Be0
B0
I
T ∂SE0
∂E0

B̃
0

J dV. (4.44)

The derivative of the Maxwell stress w.r.t. the electric field is outlined in the appendix A.2.

4.2.1.3 Submatrix Kem

The second coupling part of the tangent matrix Kem
IJ is obtained by differentiation of

the electric residual w.r.t. the displacement,

Kem
IJ = −

∂ReI
∂uJ

=
∂

∂uJ

∫
Be0
B̃

0

I

T
D0 dV. (4.45)
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Since the B-matrix corresponding to the discretization of the electric field is indepen-

dent of the displacement, only the derivative of the electric displacement w.r.t. the dis-

placement has to be considered. With the application of the chain rule and (4.39) the

derivative turns out to be
∂D0

∂uJ
= 2

∂D0

∂C
B0
J . (4.46)

Substituting 4.46 in 4.45 the submatrix can be written down as

Kem
IJ = 2

∫
Be0
B̃

0

I

T ∂D0

∂C
B0
J dV. (4.47)

The derivative of the electric displacement w.r.t. the right Cauchy-Green tensor can be

found in the appendix A.3.

4.2.1.4 Submatrix Kee

The last submatrix Kee
IJ is the pure electric part of the tangent which consists of the

derivation of the electric residual w.r.t. the electric potential,

Kee
IJ = −

∂ReI
∂ϕJ

=
∂

∂ϕJ

∫
Be0
B̃

0

I

T
D0 dV. (4.48)

The B-matrix in this equation is independent of the electric potential. The only derivative

which has to be considered is the derivative of the electric displacement w.r.t. the electric

potential. As in the previous cases, the chain rule is applied and (4.43) is considered,

∂D0

∂ϕJ
=
∂D0

∂E0

∂E0

∂ϕJ
= −∂D0

∂E0

B̃
0

J . (4.49)

Thus, the last submatrix of the consistent tangent is

Kee
IJ = −

∫
Be0
B̃

0

I

T ∂D0

∂E0

B̃
0

J dV. (4.50)

The derivative of the electric displacement w.r.t. the electric field is outlined in the

appendix A.4.

With the presented derivatives, all parts of the consistent tangent matrix and the residual

vector are available. In the situation of a 3D implementation, the displacement u is given

by 3 components in each node. The electric potential ϕ represents one additional degree

of freedom. Thus, the part of the tangent matrix, solution vector, and internal residual
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which correspond to a node are

KIJ =


[
Kmm

IJ

]
3×3

[
Kme

IJ

]
3×1[

Kem
IJ

]
1×3

Kee
IJ


4×4

, ∆uI =


∆u1I

∆u2I

∆u3I

∆ϕI


4×1

,

RI =

[Rm
I

]
3×1

ReI


4×1

. (4.51)

The consideration of a 3D brick element with 8 nodes and linear shape functions would

deliver the the following system of equations which corresponds to the element,
K11 . . . K18
...

. . .
...

K81 . . . K88


32×32


∆u1
...

∆u8


32×1

=


R1
...

R8


32×1

. (4.52)

The global system of equations is then assembled according to the connectivity of the

elements and solved in each Newton-Raphson iteration until the global residual reaches

the convergence criterium.

As a last and important remark it should be mentioned that the tangent matrix KIJ

is symmetric. This means that the electromechanical balance equations can be derived

from a potential functional. However, when comparing (4.44) and (4.47) the equality

can not bee seen directly. It becomes obvious that if

∂SE0
∂E0

= −2
∂D0

∂C

T

, (4.53)

the tangent matrix will be symmetric since

Kme
IJ = Kem

IJ
T . (4.54)

The proof that condition (4.53) is true is shown in appendix A.5.

4.2.2 Three Field Formulation

In section 2.2.1 an alternative to the standard displacement formulation has been intro-

duced because dielectric elastomers are nearly incompressible materials and thus, volu-

metric locking effects can appear. As mentioned, the incorporation of additional field

variables in the free energy under the consideration of constraints offers an alternative
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which deals with quasi-incompressibility in a more elegant way. Therefore the numer-

ical outline for the implementation of the three field formulation in the finite element

method is presented. To this end so called mixed elements are formulated, which take

into account the additional field variables introduced in the free energy formulation. In

this work two discretization schemes are used, namely the Q1P0 and the Q2P1 element.

Details about the numerical efficiency of theese elements can be reviewed in [80]. Addi-

tional literature about quasi-incompressible elements and the study of volumetric locking

can be found e. g. in [81–86].

The implementation is as follows: The linearisations of the weak forms introduced in

section 2.2.1 are presented. Afterwards the linearisations and the weak forms are dis-

cretised delivering the consistent tangent matrix and internal residual vector for the

mechanical part. Subsequently the Q1P0 and the Q2P1 elements are discussed with the

application to the electromechanical coupled field situation.

It should be noted, that the implementation procedure differs from the one presented in

section 4.2.1 since the discretisation is performed on the weak form and the corresponding

linearisations. In section 4.2.1 the weak form is discretised and the internal load vector

is obtained. Afterwards it is derived w.r.t. the discrete degrees of freedom to obtain the

tangent matrix. For the electromechanical coupled field problem study in this work the

consideration of both implementation procedures leads to the same tangent matrix. For

this reason both options are taken into account.

The weak forms which state the equilibrium in the three field formulation are intro-

duced in the equations (2.31) to (2.33). To obtain the tangent matrix for the itera-

tive Newton-Raphson scheme, the linearisation of the weak forms w.r.t. the three field

variables u, p and θ is required. The linearisation is performed with the concept of the

Gateaux-derivative. If a function f(x) is linearised at the point x, it can be written

according to

f(x+ ∆u) ≈ f(x) + D∆u. (4.55)

The second term on the right hand side is known as the Gateaux-derivative and is defined

as

D∆u =
d
dε
f(x+ ε∆u)|ε=0 =

∂f

∂x

∣∣∣∣∣
x

·∆u. (4.56)
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Considering this, the weak forms (2.31) - (2.33) are linearised w.r.t. the field variables

under the assumption of external dead loads. The nontrivial linearisations are:

D∆uδWu =

∫
B0

Grad∆u(Svol0 + Siso0 ) : Gradδu dV

+ 2

∫
B0
δG :

(
∂Svol0

∂C
+
∂Siso0

∂C

)
∆G dV, (4.57)

D∆pδWu =

∫
B0
J∆pC−1 : δG dV, (4.58)

D∆uδWp =

∫
B0
JC−1 : ∆G δp dV, (4.59)

D∆θδWp =−
∫
B0

∆θ δp dV, (4.60)

D∆pδWθ =−
∫
B0

∆p δθ dV, (4.61)

D∆θδWθ =

∫
B0

∂2Ψvol

∂θ2
∆θ δθ dV. (4.62)

Now the weak forms (2.31) - (2.33) and the linearisations (4.57) - (4.62) can be dis-

cretized. Therefore, the isoparametric concept is considered where the three fields are

approximated by shape functions. The virtual fields are approximated by

δu =

N∑
I=1

NIδuI , δG =

N∑
I=1

B0
IδuI , δp =

N∑
I=1

Np
I δpI , δθ =

N∑
I=1

N θ
I δθI . (4.63)

The solution fields are discretized in the same manner. Thus,

∆u =
N∑
J=1

NJ∆uJ , ∆G =
N∑
J=1

B0
J∆uJ ,

∆p =
N∑
J=1

Np
J∆pJ , ∆θ =

N∑
J=1

N θ
J∆θJ . (4.64)

With the transformation of the second Piola-Kirchhoff stresses into the matrix notation

and the application of (4.63) on the weak forms (2.31) - (2.33), the internal residual

vectors are obtained,

Ru
I (uI , pI , θI) = −

∫
Be0
B0
I
T

(Siso0 + Svol0 ) dV, (4.65)

RpI(uI , pI , θI) = −
∫
Be0

(J − θ)Np
I dV, (4.66)

RθI(uI , pI , θI) = −
∫
Be0

(
∂Ψvol

∂θ
− p
)
N θ
I dV. (4.67)
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Considering now the discretisations in (4.63) and (4.64) and applying them on the lin-

earisations (4.57) - (4.62) with the appropriate transformations, the components of the

tangent matrix are obtained,

Kuu
IJ = 2

∫
Be0
B0
I
T
(
∂Svol0

∂C
+
∂Siso0

∂C

)
B0
J dV +

∫
Be0
GIJI dV, (4.68)

Kup
IJ =

∫
Be0
JB0

I
T
C−1Np

J dV, (4.69)

Kpu
IJ =

∫
Be0
JNp

IC
−TB0

J dV, (4.70)

Kpθ
IJ = −

∫
Be0
Np
IN

θ
J dV, (4.71)

Kθp
IJ = −

∫
Be0
N θ
IN

p
J dV, (4.72)

Kθθ
IJ =

∫
Be0

∂Ψ2
vol

∂θ2
N θ
IN

θ
J dV. (4.73)

For a given node of a 3D element the corresponding elements of the tangent matrix,

solution and residual vector become,

KIJ =


[
Kuu

IJ

]
3×3

[
Kup

IJ

]
3×1

[
0
]

3×1[
Kpu

IJ

]
1×3

0 Kpθ
IJ[

0
]

1×3
Kθp
IJ Kθθ

IJ


5×5

, ∆uI =



∆u1I

∆u2I

∆u3I

∆pI

∆θI


5×1

,

RI =


[
Ru
I

]
3×1

RpI

RθI


5×1

. (4.74)

An appropriate element type needs to be selected. The order of the shape functions

for each solution field can be chosen independently. For the hexahedral case, the family

of QkPk−1 elements has been established in literature, see [80]. In this family of ele-

ments, the shape functions for the displacements are by one order higher than the shape

functions of the remaining fields. The most simple is the Q1P0 element where p and θ are

interpolated with constant functions while u is interpolated with linear ones. The next

one on the order refinement scale is the Q2P1 element. The reason for the restriction on

the choice of the order of the shape functions comes from the Ladyzenskaya-Babuška-

Brezzi (LBB) condition mentioned in [87]. If the discretisation satisfies the LBB condition

the numerical solution is unique, robust and converges with optimal order. Numerical

examples which reinforce this statement in a heuristic manner can be found in [88] and

[89]. The mathematical proof is given in [87].



4.2. QUASI-STATIC IMPLEMENTATION 45

4.2.3 The Q1P0 Element

As a starting point the Q1P0 element is selected since the shape functions are of lower

order and thus, the interpolation is simpler. Even though it does not satisfy the LBB

condition according to [80], it is still a good candidate for the numerical implementation

as shown in the benchmarks of the present work even though spurious modes can appear,

see [80]. The shape functions of p and θ are constant while the displacement u is

interpolated with linear shape functions which means that p and θ are discontinuous

between the elements. One advantage of the Q1P0 element is the possibility of static

condensation. Considering the system of equations (4.74), the variables ∆p and ∆θ

can be condensed by eliminating the proper degrees of freedom. This gives a modified

system which has to be solved just for ∆u. The modified tangent matrix after the static

condensation is,

Ksc
IJ =

[
Kuu

IJ +KθθKpθ−2
Kup

I K
pu
J

]
. (4.75)

The residual after the static condensation becomes,

Rsc
I =

[
Ru
I + (KθθKpθ−2

Rp −Kpθ−1
Rθ)Kup

I

]
. (4.76)

Since only the displacement needs to be solved after the static condensation, the Q1P0

element behaves as a pure displacement element in the global assembly. In the element

implementation routine, the additional degrees of freedom p and θ have to be updated

in each Newton step according to,

∆p = KθθKpθ−2
Kup

I ∆uI +Kpθ−1
Rθ −KθθKpθ−2

Rp (4.77)

and

∆θ = Kθθ−1
(Rθ −Kpθ∆p). (4.78)

The updated p and θ are then evaluated in the residuals (4.66) and (4.67). The slight

drawback in the Q1P0 element is the fact that locally matrices need to be inverted.

4.2.3.1 The Q1P0 Element for Electromechanical Coupling

The previous description considered only a mechanical element without the electric part

of the coupled problem. To implement the Q1P0 element in the electromechanical cou-

pling, proper modifications have to be made. The two field variables p and θ which were

introduced in the three field formulation have a purely mechanical nature. For this rea-

son, the modification from a displacement formulation to the three field formulation for
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the electromechanical coupling only affects the purely mechanical parts of the residual

and the tangent matrix.

The nodal residual vectorRI of the coupled field problem in the displacement formulation

is outlined in (4.51). For the modification, the mechanical part of the residual Rm
I has

to be replaced by the static condensed residual in (4.76). After this substitution, the Ru
I

of (4.76) also has to be modified to consider the Maxwell stress. In a purely mechanical

context (4.65) is considered as Ru
I . For the electromechanical coupled case this has to be

extended by inserting the Maxwell stress as an additional contribution in the mechanical

equilibrium, thus

Ru
I (uI , pI , θI) =

∫
Be0
B0
I
T

(Siso0 + Svol0 + SE0 ) dV. (4.79)

The second modification regards the tangent matrix and follows the same procedure. In

the coupled field tangent matrix described in (4.51), the purely mechanical part Kmm
IJ

has to replaced with the static condensed tangent matrix introduced in (4.75). Here,

the Maxwell stress has not been considered yet. For this reason the term Kuu
IJ in (4.75)

needs to be adjusted. For the mechanical case it is described in (4.68). In this equation,

the Maxwell stress has to be introduced. The material term has to be modified to

2

∫
Be0
B0
I
T
(
∂Svol0

∂C
+
∂Siso0

∂C
+
∂SE0
∂C

)
B0
J dV. (4.80)

In the geometric part of (4.68) the addition of the mechanical stresses Siso0 , Svol0 and

the Maxwell stress SE is considered as the total stress for the geometric stiffness GIJ ,

see (4.37).

4.2.4 The Q2P1 Element

In the Q2P1 formulation the displacement u is approximated with quadratic shape func-

tions while p and θ are approximated linearly. For this interpolation a hexahedral element

with 27 nodes can be considered. The quadratic interpolation of the displacement vector

u is performed with the use of these 27 nodes. Since p and θ are interpolated linearly,

only the 8 vertex nodes of the hexahedral element are considered for these fields. In the

3D case this results in the necessity of 5 degrees of freedom (dof’s) for the 8 nodes on the

vertices. For the remaining nodes only 3 dof’s are needed per node. In a finite element

program the number of dof’s is generally prescribed to be the same on all nodes. This

means that 135 dof’s are available in the 27 nodes hexahedral element, but only 97 are

actually necessary in the 3D Q2P1 interpolation. This requires special attention which

will be outlined in the next sentences. First of all it should be clear, that in (4.63) and
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(4.64), N = 27 for δu, δG, ∆u and ∆G. For δp, δθ, ∆p and ∆θ which are interpo-

lated only on the vertices of the hexahedral element, the value is N = 8. This means

in the consideration of the residuals that I = 1, ..., 27 in (4.65) and I = 1, ..., 8 in (4.66)

and (4.67). For the 3D case the displacement residual in (4.65) has 3 components which

means that the residual vector of the element has 81 components. The residuals in (4.66)

and (4.67) are scalars, thus the total number of components in the element residual vec-

tor is 8 for each one. The submatrix in (4.68) is a 3 × 3 matrix. The ranges of the

indices are I = 1, ..., 27 and J = 1, ..., 27. Therefore the number of components in the

element tangent matrix is 81× 81. The submatrix in (4.69) is a 3× 1 matrix. Here, the

ranges of the indices are I = 1, ..., 27 and J = 1, ..., 8, meaning that the total number

of components is 81 × 8. The next submatrix in (4.70) is the transpose of the previous

matrix which implies a total number of components of 8×81. The remaining submatrices

(4.71) - (4.73) are scalars with ranges I = 1, ..., 8 and J = 1, ..., 8, thus the number of

components of each submatrix is 8× 8.

The structure of the complete element tangent matrix and internal residual vector is

shown in (4.81) and (4.82). The node numbering starts with the numbers 1 to 8 for the

nodes on the vertices of the hexahedral element and 9 to 27 for the remaining nodes. For

this reason the structure of the tangent matrix and residual vector changes after the row

and column 40.

K =



Kuu
1,1 Kup

1,1 0 . . . Kuu
1,8 Kup

1,8 0 Kuu
1,9 0 0 . . . Kuu

1,27 0 0

Kpu
1,1 0 Kpθ

1,1 . . . Kpu
1,8 0 Kpθ

1,8 Kpu
1,9 0 0 . . . Kpu

1,27 0 0

0 Kθp
1,1 Kθθ

1,1 . . . 0 Kθp
1,8 Kθθ

1,8 0 0 0 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

Kuu
8,1 Kup

8,1 0 . . . Kuu
8,8 Kup

8,8 0 Kuu
8,9 0 0 . . . Kuu

8,27 0 0

Kpu
8,1 0 Kpθ

8,1 . . . Kpu
8,8 0 Kpθ

8,8 Kpu
8,9 0 0 . . . Kpu

8,27 0 0

0 Kθp
8,1 Kθθ

8,1 . . . 0 Kθp
8,8 Kθθ

8,8 0 0 0 . . . 0 0 0

Kuu
9,1 Kup

9,1 0 . . . Kuu
9,8 Kup

9,8 0 Kuu
9,9 0 0 . . . Kuu

9,27 0 0

0 0 0 . . . 0 0 0 0 1 0 . . . 0 0 0

0 0 0 . . . 0 0 0 0 0 1 . . . 0 0 0
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...

Kuu
27,1 K

up
27,1 0 . . . Kuu

27,8 K
up
27,8 0 Kuu

27,9 0 0 . . . Kuu
27,27 0 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 1 0

0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 1



(4.81)

R =
[
Ru

1 Rp1 Rθ1 . . . Ru
8 Rp8 Rθ8 Ru

9 0 0 . . . Ru
27 0 0

]T
(4.82)

The last point, which has to be addressed concerning the assembly of the tangent matrix

and residual vector, is the treatment of the unused dof’s p and θ on the nodes 9 to 27.
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The considered option is to force these dof’s to vanish in each element. This is realised

by setting the value of 1 on the diagonal of the tangent matrix which are affected by

these dof’s. In the internal residual vector, the corresponding values are set to 0. This

creates an equation for each unused dof which sets its value to 0. In the assembly of the

global tangent matrix and residual vector the unused dof’s overlap at the corresponding

parts. Thus the solution of 0 is still enforced at these dof’s.

As a final remark, it should be mentioned, that static condensation in not possible in

the Q2P1 element. Since p and θ are continuous, adjacent elements share the same value

for these dof’s. Therefore they can not be treated as internal element variables any-

more. This fact also needs to be considered carefully when dealing with inhomogeneous

problems, where jumps in p and θ may occur from a physical point of view. Numerical

examples of the Q2P1 element implementation can be reviewed in [90].

4.2.4.1 The Q2P1 Element for Electromechanical Coupling

The implementation of the Q2P1 element has certain similarities and differences with

respect to the implementation of the Q1P0 element. The extension of the Q2P1 element

interpolation towards electromechanical coupling is straightforward. The number of dof’s

is extended by one on each node of the hexahedral element to include the electric potential

ϕ which is discretised with quadratic shape functions. This extension results in a system

for each node, which has the following structure

KIJ =



[
Kuu

IJ

]
3×3

[
Kup

IJ

]
3×1

[
0
]

3×1

[
Kme

IJ

]
3×1[

Kpu
IJ

]
1×3

0 Kpθ
IJ 0[

0
]

1×3
Kθp
IJ Kθθ

IJ 0[
Kem

IJ

]
1×3

0 0 Kee
IJ


6×6

, ∆uI =



∆u1I

∆u2I

∆u3I

∆pI

∆θI

∆ϕI


6×1

,

RI =



[
Ru
I

]
3×1

RpI

RθI

ReI


6×1

. (4.83)

The implementation of the Maxwell stress and its derivative w.r.t. the right Cauchy-

Green strain has to be realised in the same manner as described in 4.2.3.1. This affects the

internal residual vector Ru
I and the tangent submatrixKuu

IJ in (4.83). In the assembly of

the nodal matrices and vectors to the complete system of the element, the same strategies

as described in 4.2.4 are applicable. This concerns the rows and columns of the system
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which correspond to p and θ for the nodal values N = 9, ..., 27. For the unused dof’s the

same method is applied by setting the value 1 in the corresponding part of the tangent

matrix und setting the value to 0 in the internal residual vector.

4.3 Extension to Dynamics

The purpose of this section is to review the concepts for solving mechanical time depen-

dent initial boundary value problems. These concepts are then adapted to the coupled

field implementation as performed in [91]. Thus enabling the consideration of dynamic

effects in the DEA simulation.

4.3.1 The Residual Vector for the Dynamic Case

If dynamic effects are to be considered in the numerical simulation of a mechanical

problem, the inertia appears as an additional force on the the system. This force is

proportional to the acceleration of the body in which the proportionality factor is the

mass. Additionally, damping effects can also be considered in the sense of a force which

is proportional to the velocity of a material point. This factor is known as the damping

coefficient d. With the consideration of these two effects, the internal residual vector

known from the static analysis, see (4.29) or (4.65), is extended by two additional terms,

which address these effects. In a reference configuration formulation the internal residual

vector would be described as

RI(uI) =

∫
Be0
B0
I
T
S0 dV +

∫
Be0
NIρ0a dV +

∫
Be0
NId0v dV, (4.84)

in which ρ0 and d0 are the mass density and damping coefficient per unit volume in

the reference configuration. Now that the two field variables a and v are introduced to

describe the acceleration and the velocity, they have to be discretised. This can be done

with the same spacial concept as in the displacement discretisation by the use of shape

functions NJ . Thus, the discrete versions of the acceleration and velocity are

a =

N∑
J=1

NJaJ , v =

N∑
J=1

NJvJ . (4.85)

By substituting the discretisation (4.85) into (4.84) the internal residual can be written

in the form

RI(uI) = Rstat
I (uI) +

N∑
J=1

M IJaJ +

N∑
J=1

DIJvJ . (4.86)
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The first term on the right hand side is the internal residual vector known from quasi-

static considerations. The matrices, which appear in the second and third term, are

known as the mass and damping matrix which possess a block diagonal structure

Rstat
I =

∫
Be0
B0
I
T
S0 dV, M IJ =

∫
Be0
ρ0NINJ1 dV, DIJ =

∫
Be0
d0NINJ1 dV. (4.87)

The field variables a and v have been introduced as independent solution fields in the

problem. Since they are dependent on the displacement u by the time parameter, a

proper time integration algorithm has to be chosen, which involves the time variable t as

a stepping parameter. Besides the boundary values, initial conditions are also required

for the solution process.

4.3.2 Solution with Time Discretisation

In the solution process of a dynamic problem the time parameter t is introduced into the

solution procedure. This enables the relationship between a, v and u by the derivative

w.r.t. the time t according to

v = u̇, a = v̇. (4.88)

In the numerical context the time parameter is discretised in steps ∆t = tn+1 − tn. The
time step, in which the initial conditions are prescribed, is represented by t0. In each

time step the balance of momentum has to be fulfilled according to

M a+Dv +Rstat(u) = P , (4.89)

where P represents the external force vector. This could be an initial force which just acts

on the first time step t0 to put the system in motion or it could be a time dependent force

acting during the complete dynamic process. Generally, u0 and v0 are given as initial

conditions. To obtain a0, the balance of linear momentum (4.89) has to be considered.

This gives the initial acceleration by

a0 = M−1
[
−Dv0 −Rstat(u0) + P 0

]
. (4.90)

Starting at the initial time step, the integration scheme has to solve the balance of

momentum in each time step successively. To perform this, a variety of algorithms

can be considered which can roughly be classified into explicit and implicit schemes.

The explicit schemes are characterised by the fact that the variables of the solution are

written as a function of the previous time step tn. This simplifies the implementation

process but at the cost of instabilities in the integration scheme with larger time steps.

In implicit schemes the variables of the solution are written as a function of the previous
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time step tn and the actual time step tn+1. The implementation is more complex, but

in general larger time steps are admissible for stable solutions. One frequently used time

integration algorithm for second order differential equations in structural mechanics is

the Newmark method. It is characterised by the time discretisation of the displacement

and velocity according to

un+1 = un + ∆tvn + ∆t2
[(

1

2
− β

)
an + βan+1

]
, (4.91)

vn+1 = vn + ∆t
[
(1− γ)an + γan+1

]
. (4.92)

The parameters 0 ≤ β ≤ 0.5 and 0 ≤ γ ≤ 1 serve as algorithmic parameters, which

control the behaviour of the algorithm. Of these two parameters, β is mainly responsible

for the stability. In the case of β = 0 the time integration scheme becomes an explicit

one. Furthermore, values of β < 0.25 should be avoided since the algorithm becomes

only conditionally stable in this setting.

In every time step of the integration scheme the nonlinear system of equations given

in (4.89) has to be solved. With the neglection of external loads, the residual in (4.86)

has to converge towards zero in the actual time step, which means that

Rn+1 = Rstat
n+1 +M an+1 +Dvn+1 = 0. (4.93)

Because of the nonlinear nature of the problem, the derivative of the residual w.r.t. the

displacement, which defines the tangent matrix, is necessary. Since the residual (4.86) is

formulated in dependency of u, v and a, the chain rule can be applied,

K =
∂Rn+1

∂un+1

+
∂Rn+1

∂vn+1

∂vn+1

∂un+1

+
∂Rn+1

∂an+1

∂an+1

∂un+1

. (4.94)

Under a closer examination of (4.94) the following identities emerge in the equation,

∂Rn+1

∂un+1

=
∂Rstat

n+1

∂un+1

= Kstat,
∂Rn+1

∂vn+1

= D,
∂Rn+1

∂an+1

= M . (4.95)

The two remaining partial derivatives in (4.94) depend on the considered time discretiza-

tion. For the Newmark algorithm, in which the time discretisation is performed according

to (4.91) and (4.92), the derivatives are

∂vn+1

∂un+1

=
γ

β∆t
,

∂an+1

∂un+1

=
1

β∆t2
. (4.96)
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Substituting (4.95) and (4.96) into (4.94) states the tangent matrix of the dynamic

problem as an extension of the tangent of the static problem,

K = Kstat +
γ

β∆t
D +

1

β∆t2
M . (4.97)

Besides the tangent matrix known from nonlinear statics, the mass and the damping

matrix have to be added. Both matrices are multiplied by a factor which depends on the

time step size and the parameters β and γ.

4.3.3 Implementation of the Dynamic Parts into the Coupled Field
Problem

So far, the dynamics aspects have only been contemplated from the mechanical point of

view. When it comes to the coupling of dynamic deformations with electrostatics, the

term electrostatics is strictly speaking not appropriate anymore. Obviously, the electric

field will be time dependent as a consequence of the coupling with dynamic deforma-

tions. Since the oscillation frequencies of a DEA remain in the range of mechanical ones,

electrodynamic effects will not occur and for this reason the electrostatic assumption

remains valid. For this reason, the extension of the numerical implementation towards

dynamic considerations only affects the mechanical part of the coupled field problem.

With this, the extension is a straightforward task. Considering the displacement for-

mulation in 4.2.1, the mechanical residual in (4.29) is modified by adding the mass and

damping terms mentioned in (4.84),

Rm
I (uI , ϕI) =

∫
Be0
B0
I
T
T 0 dV +

∫
Be0
NIρ0a dV +

∫
Be0
NId0v dV. (4.98)

The residual in (4.31) remains unmodified. In the tangent matrix (4.33) only the sub-

matrix Kmm
IJ has to be extended. This means that (4.40) is modified into

Kmm
IJ = 2

∫
Be0
B0
I
T
(
∂S

∂C
+
∂SE

∂C

)
B0
J dV (4.99)

+

∫
Be0
GIJI dV +

γ

β∆t
DIJ +

1

β∆t2
M IJ . (4.100)

The extension procedure outlined here is also applicable to the mixed element formula-

tions Q1P0 and Q2P1. Starting from the residual vectors and tangent matrices mentioned

in 4.2.3.1 and 4.2.4.1 the same modifications as described in (4.98) and (4.99) can be

performed on the mechanical parts.



Chapter 5

Stability of Incompressible DEAs

After having described the methodology of the numerical implementation in the previous

chapter, the evaluation of the implementation with specific benchmarks would be the

next step. But before this evaluation is performed, the topic of the stability of DEAs is

addressed here.

Considering (3.40) reveals that the attraction force which acts on the electrodes of a

parallel plate capacitor depends quadratically on the electric field. The electric field is

inversely proportional to the separation distance between the electrodes. Considering

a DEA which consists of a deformable parallel plate capacitor in which the potential

difference is kept constant, it becomes clear that halving the separation distance of the

electrodes will increase the attraction force on the electrodes by a factor 4. In simple

words, the attraction force between the electrodes of a deformable parallel plate capacitor

is inversely proportional to the square of the electrodes separation distance.

In a DEA, or a parallel plate capacitor with dielectric, the attraction force of the elec-

trodes is equilibrated by the elastic forces of the deformed dielectric. If an elastomer is

subjected to compression during an uniaxial test, it can be observed that the increase of

the reaction force is lower than the increase of the attraction force between the electrodes

for a given deformation. So if the attraction forces of the electrodes increases faster than

the equilibrating elastic reaction forces of the elastomer, a point will be reached during

the compression of the DEA where the elastic forces can not equilibrate the attraction

forces anymore. This point is defined as the critical point at which the stability of the

DEA switches from stable to unstable.

The scope of the present chapter is to present a stability analysis for a parallel plate

DEA under the consideration of a neo-Hooke and Yeoh material model. The analysis is

performed in 1D with the assumption of perfect incompressibility. The last section of

53
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the chapter offers a comparison of the 1D equilibrium solution derived in this chapter

with numerical solutions which are performed according to the implementation described

in chapter 4. Additional literature regarding the investigation of the stability and elec-

tromechanical failure of DEAs can be found in [92–97].

5.1 Equilibrium of DEAs

λ3L3 λ2L2

∆ϕ

λ1L1

Figure 5.1: Geometry of a deformed DEA under electrostatic loading.

As mentioned in (4.6), the electromechanical coupling in a DEA is contemplated as a

balance between the mechanical Cauchy stress σ and the electrostatic Maxwell stress σe.

The sum of both stresses form the total stress τ which is in equilibrium with the external

mechanical volume loads. In Fig. 5.1 a simple electrostatic loading of a DEA hexahedron

is depicted. In the undeformed state, the DEA geometry has the edge length Li. If a po-

tential difference ∆ϕ is applied on the electrodes, the edges are deformed to lengths λiLi.

For a loading as described, in which external mechanical forces are not considered, the

normal components of the total stress vanish,

τi = σi + σei = 0, (5.1)

for i = 1, 2, 3. The normal components σi of σ are

σi = λiΨ,i + p. (5.2)

The normal stretches are described by λi while p stands for the hydrostatic pressure.

The free energy which is defined by the material model is denoted by Ψ. The derivative

w.r.t. the normal stretch is represented by a comma, thus Ψ,i = ∂Ψ/∂λi. The definition

of the Maxwell stress for polarisable matter has been introduced in chapter 3.4. The

normal components for the given loading situation are,

σe3 =
(2ε− ε0)

2λ2
3

E2, σe1 = σe2 = −ε0E
2

2λ2
3

. (5.3)
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The permittivity of vacuum and the absolute permittivity of the dielectric are described

by ε0 and ε. The nominal electric field is defined via E = ∆ϕ/L3. After the substitution

of (5.2) and (5.3) in (5.1) the hydrostatic pressure p can be factored out. With the

elimination of p in the components of the total stress which are transversal to the electric

field (i = 1, 2) one obtains

λ1Ψ,1 = λ2Ψ,2. (5.4)

Furthermore, p can be substituted from the component τ1 or τ2 in τ3. Substituting τ1

in τ3 the following relation is obtained,

εE2λ−2
3 + λ3Ψ,3 − λ1Ψ,1 = 0. (5.5)

The assumption of incompressibility is made here. For this case, the stretches of the

DEA fulfill the relation

λ1λ2λ3 = 1. (5.6)

With the material model (Ψ), the undeformed geometry of the DEA (Li) and the elec-

trostatic loading (∆ϕ), the remaining unknowns to be solved for are the stretches λi.

These can be obtained from the system of equations (5.4) - (5.6), thus the deformation

of the DEA can be determined.

5.1.1 Specific Material Models

To solve the system (5.4) - (5.6) a material model has to be defined which could be e.g.

the neo-Hooke or the Yeoh model. In the incompressible Neo-Hooke model, the strain

energy is defined by the first invariant of the right Cauchy-Green tensor according to

Ψnh =
µ

2
(I1 − 3). (5.7)

The Lamé parameter µ represents the shear modulus. The first invariant is defined by

the stretches according to

I1 = λ2
1 + λ2

2 + λ2
3. (5.8)

With the substitution of Ψnh in (5.4) and the consideration of the incompressibility

constraint (5.6), the transversal stretches can be obtained in relation to the stretch in

loading direction,

λ1 = λ2 = λ
− 1

2
3 . (5.9)
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The substitution of the kinematic relation (5.9) in (5.5) leads to the 1D equilibrium

equation of the incompressible neo-hookean DEA,

E2 =
µ

ε
(λ3 − λ4

3). (5.10)

For a given nominal electric field E, the vertical compression stretch λ3 can be obtained

by this equation.

The incompressible Yeoh model is the second model which is considered in this chapter.

It is defined in a similar manner as the neo-Hooke model but with two additional terms

of second and third order. Therefore three parameters c1, c2 and c3 are necessary. The

free energy is defined by

Ψye = c1(I1 − 3) + c2(I1 − 3)2 + c3(I1 − 3)3. (5.11)

The kinematic relation (5.9) is also valid for the Yeoh model. Substituting (5.9) and (5.11)

in (5.5) provides the 1D equilibrium equation for the Yeoh DEA,

E2 =
2

ε
(λ3 − λ4

3)h1, (5.12)

with

h1 = c1 + 2c2(I1 − 3) + 3c3(I3 − 3)2. (5.13)

At first glance this equation appears very similar to the neo-Hookean (5.10), but the fac-

tor h1 increases the order since it is dependent on the stretches λi by the first invariant I1.

5.2 Stability of DEAs

The higher order of the 1D equilibrium solutions of the neo-Hooke and Yeoh DEA, de-

scribed in eq. (5.10) and (5.12), suggests the existence of more than one solution for

the equilibrium state. So far, no considerations have been made regarding the structural

stability of the DEA depicted in Fig. 5.1. In [98] a stability analysis is performed consid-

ering the Lagrange multiplier method. In this analysis, (5.5) is regarded as a function of

the stretches λi with the constraints (5.4) and (5.6). The main result of the mentioned

analysis is the critical nominal electric field Ec(λ3). If the nominal electric field from the

equilibrium solution is less than the critical nominal electric field for a given deformation

state λ3, the equilibrium is stable. In the case of the neo-Hooke DEA, the critical electric

field is given by

E2
c =

µ

ε
(λ4

3 +
λ3

2
). (5.14)
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For the Yeoh model it is

E2
c = (2λ4

3 + λ3)
h1

ε
+ 4(λ3

3 − 1)
h2

ε
, (5.15)

with

h2 = c2 + 3c3(I1 − 3). (5.16)

A straightforward approach for a stability analysis is the derivation of the total stress τ3

w.r.t. the strain λ3. If the derivative is positive or negative, the equilibrium state is stable

or unstable respectively. At a critical stretch, where the equilibrium changes stability, the

derivative vanishes. The total stress in the electric field direction for the DEA modelled

by the neo-Hooke constitutive law is

τ3 = εE2 + µ(λ4
3 − λ3) = 0. (5.17)

At a critical critical stretch the derivative has to vanish, thus

∂τ3

∂λ3
= µ(4λ3

3 − 1)
!

= 0. (5.18)

This cubic polynomial function has only one real root which is

λc3 = 4−
1
3 ≈ 0.630. (5.19)

At stretches λ3 > λc3 the derivative is positive while for λ3 < λc3 it becomes nega-

tive. Physically speaking, this means that the nominal electric field can be increased

from E = 0 where λ3 = 1 until the stretch λc3 ≈ 0.630 is reached. If E is increased fur-

ther, the equilibrium switches to unstable resulting in a collapse of the DEA structure.

In reality an electric breakdown will occur in the unstable region but this phenomenon is

not considered in the scope of the present work. An electric breakdown means that the

insulating property of the DEA fails, thus resulting in a shortcut in the electric power

source.

The same steps regarding the stability analysis can also be carried out for the Yeoh

DEA. Because of the additional terms of higher order in the Yeoh equilibrium solution,

the analytical derivation is more tedious and is omitted here for the sake of brevity. In

this case two critical stretches exist:

λc3 ≈ 0.257 and λc3 ≈ 0.681. (5.20)

Interestingly the Yeoh model offers two critical points. The derivative is positive in the

regions λ3 > 0.681 and λ3 < 0.257. In between the behaviour is unstable. Thus for

an increasing nominal electric field the equilibrium will remain stable until the stretch
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λ3 = 0.681 is reached. After a further increase of E, the DEA structure will bifurcate

into an equilibrium state in the second region taking a stretch which corresponds to

the equilibrium solution of the given E. Decreasing the electric field at this point will

reduce the stretch until λ3 = 0.257 is reached, a further decrease of E will produce a

structural bifurcation to the equilibrium state in the first region. In this analysis the

electric breakdown has been neglected. So it should be pointed out, that an electric

breakdown will probably occur while the structure switches from the first stable region

into the second one while E is increased.

Taking a look at (5.18) another interesting observation emerges. The critical stretches

for a DEA are independent of the material parameters. Only the form of the material

function Ψ determines the critical points for the DEA. For this reason the selection of

a proper constitutive law is of high importance when it comes to stability analysis of

DEAs.

5.3 Operational Curves of DEAs

The purpose of this section is to compare the 1D equilibrium solutions introduced pre-

viously with numerical simulations. Since the geometry of the DEA in Fig. 5.1 is rather

simple, a discretisation with one finite element is sufficient for the numerical analysis. A

brick element of 8 nodes with linear shape functions is considered. The element is imple-

mented with a displacement formulation according to 4.2.1. The constitutive neo-Hooke

and Yeoh laws are implemented by the means of 2.3.1.1 and 2.3.1.3. It also should be

noted that this benchmark serves as a first check for the numerical implementation.

The dimension of the element are set to L1 = L2 = L3 = 10mm. The potential dif-

ference is applied by setting the electric degree of freedom ϕ = 0 on the four bottom

nodes and ϕ > 0 on the four top nodes of the element. The potential ϕ is increased

linearly on the top nodes in loading steps of 290 V. For the given geometry this results

in a nominal electric field E0
2 which is increased in steps of 29V/mm. The material

parameter for the neo-Hooke model is set to µ = 73 kPa. In the Yeoh model the pa-

rameters are c1 = 1
2µ = 36.5 kPa, c2 = −0.1c1 and c3 = 0.01c1. In both cases εr = 4.7 is

used. Since the models of the numerical simulation are compressible and are compared to

a 1D analytical incompressible result, a perfect coincidence is not expected. For compar-

ison purposes the Poisson’s ratios are set to three different values, namely ν = 0.3, 0.4

and 0.49.
2In this work the nominal electric field E0 is always given in scalar notation for the reason that it

has only one non-vanishing component which is perpendicular to the charged surfaces of the actuator.
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Figure 5.2: Stability and equilibrium curves of a DEA with neo-Hooke model.
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Figure 5.3: Stability and equilibrium curves of a DEA with Yeoh model.

The results of the simulations for both models are depicted in Figs. 5.2 and 5.3. Also the

curves of the analytical 1D equilibrium solution E (red curve) and the critical electric field

Ec (black curve) are shown. The remaining curves (blue, green and magenta) represent

the results of the simulation. The subplots Fig. 5.2.(b) and 5.3.(b) depict a zoom in the

stable equilibrium region. In the case of the Yeoh model, only the first stable region is

zoomed.

The first observation is the influence of the value of ν on the operational curve. An

increase of ν towards a value of 0.5 leads to a better approximation of the numerical

solution w.r.t. the incompressible analytical solution. It also can be observed that a

lower Poisson’s ratio ν leads to higher stretches for a given electric field. If the material is

more compressible, the stretch increases. The second observation concerns the stability

of the DEA. As the electric field is increased during the numerical simulation, direct

solutions can only be obtained in the stable regions. As the stretch reaches the critical

point (intersection of the black and red curve) the Newton procedure stops to converge

in the simulation. This means that the instability of the DEA is rendered by the loss of
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convergence in the Newton procedure. To obtain an equilibrium solution in the unstable

region, a special treatment will be necessary. A suggestion is an arc length procedure for

the coupled field problem.



Chapter 6

Benchmarks with Homogeneous

Materials

The present chapter deals with the numerical analysis of DEs and the implementation

scheme shown in chapter 4. To start with simple examples, the chapter is restricted

to homogeneous DE materials. For this purpose, appropriate geometries for DEAs are

chosen and the material parameters are set to specific values. The chapter is subdivided

in two main sections to study the quasi-static and the dynamic situations separately.

For the dynamic examples, the numerical implementation has been extended according

to section 4.3.

6.1 Quasi-Static Analysis

In this section, two benchmarks are considered. The first example studies the effects

of the incompressibility constraint on a simplified geometry. The second benchmark

provides an application example which consists of a DE tube acting as a fluid pump.

6.1.1 Embedded DE Block

The purpose of this benchmark is to show the volumetric locking effect for the DE

electromechanical coupled problem. To this end, a cubic geometry as shown in Fig. 6.1,

is considered. The boundary conditions are given in the cross section view depicted in

Fig. 6.2. The normal displacements on the four lateral and the bottom face of the cube

are constrained. With these conditions the DE block can be considered as perfectly

embedded without friction. The top electrode only covers a quarter of the upper surface.

61
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b

p

a

∆ϕ

Figure 6.1: DEA with a
partial top electrode.
a = 10 mm, b = 5 mm.

∆ϕ

Figure 6.2: Cross section with
boundary conditions of the embedded

DEA.

As a potential difference is applied on the electrode pair, the DE is compressed under

the top electrode. With the given boundary conditions and under the consideration

of a nearly incompressible material, it is expected for the DE material to be displaced

outwards at the top surface where it is not covered by the electrode.

The cube geometry is discretized with 10 elements in each space direction resulting in

1000 volume elements. The dimensions given in Fig. 6.1 are a = 10mm and b = 5mm.

The electric potential difference is applied on the electrode pair in 100 steps increasing

linearly from 0 to 50 kV which leads to a maximum nominal electric field of 5 kV/mm. To

observe the locking effect in this benchmark, the results using the displacement formu-

lation are compared with those of the three field formulation. The first calculation uses

the neo-Hooke model defined in 2.3.1.1 while the formulation of the second simulation

can be found in 2.3.2. The respective discretisations are given in 4.2.1 and 4.2.3. The

material parameters for both formulations are µ = 73 kPa and εr = 4.7. To study the

effects of the incompressibility constraint, the Poisson’s ratio ν is varied from 0.49 to

0.4999.

The compression of the cube in vertical direction at the point p of Fig. 6.1 as a function of

the applied electric field is depicted in Fig. 6.3. The compression curves of the displace-

ment formulation are represented in red and the disadvantage of the formulation becomes

obvious. As the value of ν approaches 0.5 for incompressibility, volumetric locking takes

place which leads to a lower compression for a given electric field. In the case of the

three field formulation (blue compression curves) the locking effect almost disappears.

Even though the value of ν is varied, the difference for the three field formulation is

considerably smaller than for the displacement formulation.

A second comparison of both formulations is made in Figs. 6.4.(a) and 6.4.(b) with
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Figure 6.3: Vertical compression of the embedded DEA at point p.

a scaling factor of 10. The Poisson’s ratio is set to ν = 0.4999, rendering quasi-

incompressibility and the potential difference on the electrodes is ∆ϕ = 50 kV. The

deformed geometry of the DE block for the displacement formulation case is depicted

in Fig. 6.4.(a). A considerably small deformation is observed in the region of the top

electrode. Furthermore, on the diagonally opposite region of the top electrode a small

downward displacement is apparent. This displacement is similar to the one under the

top electrode and can be regarded as an artificial locking effect. The deformation for the

three field formulation case is represented in Fig. 6.4.(b). In comparison to the displace-

ment formulation case, the deformation under the upper electrode region is considerably

larger. Furthermore, in the region next to the top electrode the DE material is displaced

in upward direction. This seems to be more physical than the deformation given in

Fig. 6.4.(a).

(a) Displacement formulation (b) Three field formulation

Figure 6.4: Deformation of the embedded DEA (10x magnification)



64 CHAPTER 6. BENCHMARKS WITH HOMOGENEOUS MATERIALS

6.1.2 DE Tube Pump

This example provides a motivation for a practical application. Since DEs are flexible

materials, a deformable tube acting as a fluid pump is an interesting setup. This could

be realised by a cylindrical tube made of DE material and an array of electrode rings

along the longitude of the DE tube. Thus the actuation mechanism of the DE tube pump

is similar to the one of a peristaltic pump.

The geometry of a short DE tube is presented in Fig. 6.5, where the dimensions are given

in mm. Three pairs of electrodes, each with a length of 10mm, are arranged on the inner

and outer wall of the tube. An electric potential difference can be applied on the inner

and outer electrode of each pair independently. As known from the previous examples,

the application of a potential difference on the electrodes produces a compression of the

material. This creates an increase of the diameter of the tube at the activated electrode

pair.
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Figure 6.5: Geometry of a cylindrical DE tube with dimensions in mm which is
activated by three pairs of electrodes.

Because of symmetry conditions, a quarter of the tube geometry with the corresponding

boundary conditions is sufficient for the numerical simulation. The geometry is meshed

using 3400 volumetric brick elements with linear shape functions. The neo-Hookean

material model is considered as described in section 2.3.1.1 with a discretisation according

to section 4.2.1. The parameters for the material model are µ = 73 kPa, ν = 0.49 and

εr = 4.7. The corresponding boundary conditions are depicted in Fig. 6.6. On the

symmetry plane, the tangential displacements are constrained. Furthermore, the axial

displacements on both ends of the simulation domain are constrained to suppress an

elongation of the tube.
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ϕ = 0

ϕ = ϕ(t)

Figure 6.6: Electric and
displacement boundary
conditions of the DE tube.

t
5 10 15

ϕmax

ϕ
ϕ1 ϕ2 ϕ3

Figure 6.7: Time plot of the electric potential
applied on the outer electrodes of the DE tube.

The electric loading of the tube is imposed by the application of a potential difference on

the electrode pairs. To pump a fluid through the tube, time shifted signals, as depicted

in Fig. 6.7, are needed. In this case, a linear increasing and decreasing signal is applied

on each electrode pair. The time shift between the electrodes is 5 s. In the numerical

simulation, the time is discretized in steps of 0.1 s which results in 150 time steps for a

time range of 15 s. The maximal applied electric potential difference is ϕmax = 25 kV.

(a) t = 0 s (b) t = 5 s

(c) t = 10 s (d) t = 15 s

Figure 6.8: Deformation of the DE tube at different time steps (10x magnification).

The results of the electric potential are given on the deformed geometry as shown in

Fig. 6.8. For a proper visualisation, a scaling factor of 10 has been applied to the defor-

mations. The plots show the situations at the initial time step 0 s (a) and the time steps

where each electrode pair reaches ϕmax = 25 kV at 5 s (b), 10 s (c) and 15 s (d). Under

these circumstances a fluid can be pushed through the DE tube. It should be mentioned,

that the given electric signals are just a suggestion to show the working mechanism of



66 CHAPTER 6. BENCHMARKS WITH HOMOGENEOUS MATERIALS

the DE tube pump. Depending on the practical situation, the electric signals would

probably be replaced by a sinusoidal activation with time offsets which are optimised for

the tube geometry and the medium to be pumped.

6.2 Dynamic Analysis

In this section the numerical implementation is extended by inertia and damping terms

according to the description of section 4.3. For the sake of simplicity, a DE hexahedron

is considered as a first benchmark which is sufficient to show basic dynamic effects. Two

loading cases are considered in this example, namely a constant and a time dependent

electric field. The second benchmark consists of the DE tube pump, which was already

introduced in 6.1.2. However, a material density is set for the DE which leads to a

dynamic reaction of the tube during the simulation.

6.2.1 DE Hexahedron

The benchmarks presented in this section concern the effects of inertia on the DE. For

comparison purposes, the examples are based on a 1D analytical analysis presented

in [99]. In all subsequent examples, one finite element is considered for the simulations.

An electric potential difference is applied on the top and bottom face of the element as

shown in Fig. 6.9. The dimensions of the element are set to a = 10mm and b = 2mm

which coincide with the dimensions of the work [99]. The constitutive model is the three

field formulation from section 2.3.2 with the Q1P0 discretisation offered in section 4.2.3

and the extension by dynamic features shown in section 4.3. To compare the simula-

tion with the 1D analytical analysis, the material parameters are set to µ = 67.1 kPa,

ρ = 1200 kg/m3 and κr = 7. The Poisson’s ratio is set to ν = 0.4999 to approximate

incompressibility since it is assumed for the analysis in [99].

a

∆ϕ

a

b

Figure 6.9: Geometry of the DE hexahedron. a = 10mm, b = 2mm.
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6.2.1.1 Time Independent Electric Loading

In the first test, a constant electric potential difference ∆ϕ is applied. In the same

manner as a spring-mass system oscillates after the application of a constant force, the DE

hexahedron oscillates after the application of a constant ∆ϕ. The potential differences,

which are applied on the electrodes, correspond to the nominal electric fields E0 given

in [99]. These are E0 = 12, 18 and 21.27 kV/mm.
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Figure 6.10: Vertical stretch of the DE hexahedron activated with a constant electric
field.

The vertical stretches of the numerical solutions in comparison to the analytical 1D

solutions w.r.t. time are represented in Fig. 6.10. The element oscillates around the equi-

librium point of the static case with an amplitude which depends on the applied potential

difference (nominal electric field). Also the nonlinearity of DEs becomes visible, since the

frequency of the oscillation depends on the applied electric field. For an increasing nom-

inal electric field E0 the oscillation amplitude increases while the oscillation frequency

decreases. A good agreement between the numerical and the analytical 1D solution is

observed. However, slight differences are observable for the highest loading case in the

second oscillation. A possible explanation for this is that the time integration schemes

differ. The numerical solution was obtained with a Newmark time integrator while the

1D solution was computed with a standard time integrator of the software Matlab R©.

As mentioned previously, the incompressibility is only approximated in the numerical

simulation. Obviously this also leads to small differences in the solutions.
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6.2.1.2 Time Dependent Electric Loading

In the second example the potential difference is changed from constant to time depen-

dent. This time dependent potential difference ∆ϕ is applied on the element using a

sinusoidal nominal electric field E0 = Ea sinωt with a constant amplitude Ea and a

excitation frequency f = ω
2π . For comparison, the same amplitude and the same fre-

quencies as in [99] are applied to the finite element. The amplitude of the electric field

is Ea = 18.5 kV/mm and the frequencies are f = 335 and 410Hz.
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Figure 6.11: Vertical stretch of the DE hexahedron activated by a time dependent
electric field. Numerical solution in comparison to 1D solution of [99].

The results of these oscillations for the numerical and the 1D case can be seen in Fig. 6.11.

Again, a good agreement between the different approaches is found, especially at the

beginning. Differences for both frequecies appear with increasing time. The reasons

for these differences are the same as in the previous example. The time integrations

schemes for both solutions are different and perfect incompressibility is compared with

quasi-incompressibility. It should also be noted, that the amplitudes of the oscillations

fluctuate strongly. This is due to the fact, that the selected frequencies are close to the

natural frequency of the structure and will be analysed in the next example.

In the last example, the excitation frequency f is varied. Several time dependent simu-

lations comparable to the previous example are performed covering the frequency range

from 1 to 1000 Hz with 1 Hz increments. Since the so-called dynamic blow-up, see [99],

occurs in this frequency range, the damping parameter has to be set to a non-zero

value. The reason for this is that the oscillation amplitude of the DE hexahedron reaches

high values in the region of the natural frequency which results in an unstable numer-

ical solution. Three different damping parameters are considered, namely d = 105, 106

and 107 kg/sm3.
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Figure 6.12: Vertical stretch of the DE hexahedron with damping activated by a time
dependent electric field. f = 400 Hz, d = 105.

As it can be seen in Fig. 6.12, the oscillation amplitude of the DE hexahedron with

damping is irregular. The hexahedron is excited with a frequency f = 400 Hz which is

very close to the natural frequency and the damping d = 105 kg/sm3 is the lowest one

of the studied cases. After a certain amount of time, the amplitude of the oscillations

stabilises. The time which is necessary for the amplitude to become steady depends on d

and f . In the presented case the amplitude is almost constant after 50 ms. Since this

case is an extreme situation, it is assumed for all frequencies and damping parameters

that the oscillations are steady after one half of the simulation time at the given time

span.

With this methodology, the steady state oscillation amplitude for every frequency and

damping case is obtained independently. After the normalisation of the amplitude by

relating it to the edge length b of the hexahedron, the frequency response curves are

obtained for each damping case. The results of the response are depicted in Fig. 6.13.

The response of the DE hexahedron becomes more pronounced with the reduction of d.

The frequency with the strongest blow-up effect is ∼ 400 Hz. Also at the frequencies

of ∼ 140, 200, 850 Hz this effect is also observed in a lower intensity. As the parameter d

increases, the amplifications at the blow-up frequencies are reduced or even vanish, see

the example at 850 Hz with a damping of d = 106 kg/sm3.
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Figure 6.13: Frequency dependence of the amplitude of the DE hexahedron for dif-
ferent damping parameters.

6.2.2 Dynamic DE Tube Pump

To consider the dynamic effects in a practical application, the DE tube pump which has

been described in 6.1.2 is considered as a benchmark. In contrast to the quasi-static

study, only the first electrode on the left side, see Fig. 6.14, is modelled. The idea is to

observe the effects of inertia on the DE tube in the sense of a wave propagation which

occurs due to a spontaneous contraction of the tube wall at the electrode pair.
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Figure 6.14: Geometry with dimensions in mm of a cylindrical DE tube which is
activated by one pair of electrodes.
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As in the static benchmark, only a quarter of the tube is modelled with 3400 elements.

The element formulation is again the three field formulation. The material parameters,

constitutive model and finite element discretisation are the same as in the previous DE

tube example, see section 6.1.2. Damping is neglected and the material density is set

to ρ = 1200 kg/m3. A constant electric potential difference of ∆ϕ = 20 kV is applied on

the electrodes resulting in a constant electric field of 20 kV/mm.

Symmetry boundary conditions are applied as shown in Fig. 6.6. The left end of the

simulation domain is clamped by constraining the displacements in axial direction. For

the right end, two cases are considered, namely the same restriction as at the left side or

no restriction at all. Furthermore, the time interval is discretised in steps of ∆t = 10−5 s

with a total number of 2000 steps.
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Figure 6.15: Radial displacement of the points P and Q of the DE tube activated by
a constant electric field.

Under the applied boundary conditions, oscillations and wave propagation are induced in

the tube. To evaluate the vibration of the tube, the radial displacements at the points P

and Q, see Fig. 6.14, are plotted w.r.t. time in Fig. 6.15 for both boundary condition

situations respectively.

In both cases, the time for the propagation of the wave is analysed. The point Q (blue

curve) starts to oscillate after a time of ∼ 2ms. Wave interference is also detected in the

plots since the oscillations in the excitation point P are not constant. In both compu-

tations, the oscillations at point P are more regular at the beginning of the simulation

and more irregular with increasing time. The last observation considers the difference of

the plots for the two applied boundary condition situations. In the case of the free right

end, see Fig. 6.15.(b), the oscillation amplitude at Point Q increases slower than in the

case of the clamped right end, see Fig. 6.15.(a).
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To finalise the analysis, the deformed meshes of the DE tube are depicted for the clamped

and free right end situation, see Fig. 6.16 and Fig. 6.17. For a better visualisation, a

deformation scaling factor of 10 is used.

(a) t = 0 ms (b) t = 3 ms (c) t = 6 ms

(d) t = 9 ms (e) t = 12 ms (f) t = 15 ms

Figure 6.16: Deformation of the dynamic DE tube with clamped right end at different
time steps (10X magnification).

(a) t = 0 ms (b) t = 3 ms (c) t = 6 ms

(d) t = 9 ms (e) t = 12 ms (f) t = 15 ms

Figure 6.17: Deformation of the dynamic DE tube with unconstrained right end at
different time steps (10x magnification).



Chapter 7

Microstructural Optimization

As mentioned in chapter 1, one of the technical difficulties of DEs is the extremely high

electric field which is necessary to achieve large deformations. The material parameter

responsible for this drawback is the relative permittivity εr which is considerably low

in these materials and thus leading to a weak electromechanical coupling. A straight

forward solution to this issue would be the consideration of an alternative material with

a high value of εr as e.g. ceramics like barium titanate. However, in ceramics the stiffness

is high, so large deformations are not possible. For this reason, the combination of both

materials is suggested as a composite microstructure consisting of a DE matrix with

ceramic inclusions.

The purpose of the present chapter is to offer a basic numerical analysis in which a

representative volume element (RVE) is used as a benchmark. The RVE consists of a

DE cube with a spherical inclusion made of ceramic material. The parameters for the

material correspond to barium titanate. The chapter is divided into two main sections

which treat the quasi-static and the dynamic analysis separately. Additional literature

about DE composites can be found in [100–105].

7.1 Quasi-Static Analysis

In this section the numerical analysis is restricted to the quasi-static case. The numerical

implementation for the study is performed according to chapter 4. The discretisation

with standard displacement elements of the RVE with a constant inclusion radius serves

as the starting point for the analysis. Afterwards the element type is modified to the more

advanced Q1P0 element and the influence of the diameter of the inclusion is investigated.

73
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7.1.1 RVE with Spherical Inclusion of Constant Radius - Displacement
Formulation

In this simulation the effect of a spherical material inclusion in a DE matrix is studied.

The inclusion is located in the center of the RVE geometry and the electric boundary

condition consists of a potential difference ∆ϕ applied between the top and bottom

surface of the RVE. As in the previous chapter, the simulations are performed in 3D.

A scheme of the RVE geometry with the electric boundary conditions can be seen in

Fig. 7.1. The diameter of the inclusion is kept constant with d = 10µm and the edge

length of the RVE is given by a = 20µm.

a d

a

∆ϕ

Figure 7.1: RVE scheme of the microstructure of a heterogeneous DE consisting of a
spherical inclusions (red) in an DE matrix (blue).

Since the solution of the example is symmetric, only a quarter of the geometry is necessary

for the finite element meshing, see Fig. 7.2. The mesh is composed of 896 brick elements

with 8 nodes per element and linear interpolation. The total number of nodes is 1750

with 4 dof’s per node. The element technology is given by the displacement formulation

according to section 4.2.1. The constitutive material laws are the neo-Hooke and the

Yeoh model which have been introduced in section 2.3.1.1 and 2.3.1.3. The neo-Hooke

parameters of the DE are µ = 73 kPa, ν = 0.49 and εr = 4.7. The ceramic inclusion is

simulated with the parameters µ = 25.7MPa, ν = 0.3 and εr = 1700. The parameters for

the implementation with the Yeoh model are associated with the neo-Hooke parameters

according to the relations,

c1 =
1

2
µ, c2 = −0.1c1, c3 = 0.01c1, K =

2µ(1 + ν)

3(1− 2ν)
. (7.1)

Thus, the Yeoh parameters are c1 = 36.5 kPa, c2 = −3.65 kPa, c3 = 0.365 kPa and

K = 3625.67 kPa.
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Figure 7.2: Discretised geome-
try of the RVE for heterogeneous

DE materials.

Figure 7.3: Deformation of the
RVE activated by an nominal elec-
tric field of E0 = 25 kV/mm. Neo-

Hookean material model.

The normal displacements on the symmetry planes are constrained. On the remaining

outer faces of the geometry the normal displacements of the nodes on a face are con-

strained to be equal. This is performed to be consistent with periodic boundary condition

which would be applied on the RVE at the micro-scale level. The boundary condition

for the electric loading is applied with a potential difference ∆ϕ which is incremented

linearly in steps of 6V as long as the Newton-Raphson iterations converge to the equi-

librium solution. With the application of ∆ϕ = 500V (E0 = 25 kV/mm) as the electric

loading boundary condition, the RVE is deformed as depicted in Fig. 7.3 for the case of

the neo-Hooke model. The outline in Fig. 7.3 represents the undeformed geometry. The

contour plot shows the distribution of the electric potential in the structure. One can

see, that the spherical inclusion remains nearly undeformed in comparison to the DE

matrix. Furthermore, the electric potential ϕ remains relatively constant with a value

of ∼ 250V in the inclusion. With this distribution of ϕ the electric field E is higher in

the region between the inclusion and the electrodes in comparison to the homogeneous

situation.

The growth of the displacement of the top face of the RVE for an increasing ∆ϕ is shown

in Fig. 7.4. The vertical compression −uz/a (uz is the vertical displacement of the top

electrode) is plotted as a function of the nominal electric field ∆ϕ/a. For comparison

purposes the operational curves of the homogeneous RVE are also given. The curves in

Fig. 7.4 predict a stiffer behaviour of the heterogeneous RVE which is opposed to the

intention of increasing the compression through a heterogeneous microstructure. The

second observation is with regard to the range of the compression and the applied electric

field. For the homogeneous case, the ranges are slightly higher than for the heterogeneous

ones. The explanation for this is the previously mentioned increase in the electric field in



76 CHAPTER 7. MICROSTRUCTURAL OPTIMIZATION

the region between the inclusion and the electrodes which leads to an instability in these

regions. The proposition to handle the undesired stiffening of the heterogeneous RVE

consists in the consideration of more advanced element technologies. For this purpose

the mixed formulation introduced in section 4.2.3 should be applied and analysed.
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Figure 7.4: Compression curves of homogeneous and heterogeneous RVEs. Neo-Hooke
and Yeoh material models.

7.1.2 RVE with Spherical Inclusion of Constant Radius - Three Field
Formulation

This simulation is a modification of the previous one in which the free energy formulation

and the element technology are enhanced. This is performed to handle the volumetric

locking which occurs in the numerical analysis of quasi-incompressible materials. In

the given example the loading and boundary conditions of the previous benchmark are

used. The mesh is depicted in Fig. 7.2. To have comparable free energy formulations

a modified neo-Hooke model is considered in the displacement element. The details of

the formulation can be found in section 2.3.1.2. The enhanced Q1P0 element is based

on the descriptions presented in section 4.2.3 with the free energy model introduced in

section 2.3.2.

The discretisation of the geometry with displacement elements is realised by linear and

quadratic shape functions. The corresponding number of elements, nodes and number of

degrees of freedom are reported in Table 7.1. It should be noted that the internal vari-

ables p and θ are taken into account as degrees of freedom in the Q1P0 discretisation.

This is why the DOF value of the Q1P0 discretisation is higher than the one of the linear
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displacement even tough the number of nodes is equal, see Table 7.1.

Discretisation Elements Nodes DOF
Displacement - Linear 896 1750 7000
Displacement - Quadratic 896 10206 40824
Three field - Q1P0 896 1750 8792

Table 7.1: Parameters of RVE discretisation.

The operational curves of the proposed discretisations are shown in Fig. 7.5. Further-

more, the curve for the homogeneous case from the previous section is depicted. The

volumetric locking of the heterogeneous RVE becomes obvious. One can see, that an

increment of the number of degrees of freedom by discretisation with quadratic elements

leads to higher RVE compression (reduction of stiffness). Furthermore, the mesh com-

posed of Q1P0 elements predicts a slightly larger compression. It should be pointed out,

that the computational effort of a mesh with Q1P0 elements is considerably lower than

the one with quadratic displacement elements, see Table 7.1. With the observation of

these results it can be concluded, that special attention has to be given to the volumetric

locking when it comes to the microstructural modelling of nearly incompressible DEs. If

this issue is neglected, the results predicts a stiffening due to microstructural optimiza-

tion instead of a softening. A direct but costly approach to overcome this problem is the

increase of degrees of freedom either by h or p-refinement. A more elegant and cheaper

approach is the use of mixed elements like the Q1P0 element.
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7.1.3 RVE with Spherical Inclusion of Variable Radius

In the previous examples, the radius of the spherical inclusion has been kept constant

since the focus of the analysis was to study the influence of the element technology. In

a next step in this study, the diameter of the inclusion is varied. For this purpose linear

displacement and Q1P0 elements are considered in the discretisation of the RVE. The

free energy formulations for the displacement elements are the neo-Hooke and the Yeoh

model described in section 2.3.1.1 and 2.3.1.3. The three field energy formulation which

is considered for the Q1P0 element is not modified. The material parameters and bound-

ary conditions remain the same as in the two previous examples. The electric loading

steps ∆ϕ also remain unmodified. The diameter of the inclusion is varied from d = 0

to 20µm which is the maximum diameter where the inclusion sphere is tangent to the

boundary of the RVE.

The results of the analysis are depicted in Fig. 7.6. The horizontal axis corresponds to

the diameter of the inclusion with 100 % beeing the maximal diameter. The vertical axis

represents the vertical compression of the RVE as the ratio between the displacement of

the top electrode and the initial height of the cube. Each curve represents the influence of

the inclusion diameter for a given nominal electric field E0. For a better understanding,

only 4 curves are depicted. The curves correspond to fields of 9, 18, 24 and 27 kV/mm.

Figure 7.6.(a) and 7.6.(b) show the results for the neo-Hooke case. According to this

analysis and for ν = 0.49, an increase of the inclusion diameter leads initially to a slight

decrease of the vertical compression which is followed by an increase. If the Poisson’s

ratio is increased towards incompressibility (ν = 0.4999) the decrease of the vertical

compression is more pronounced.

The Yeoh model which is depicted in Figs. 7.6.(c) and 7.6.(d) shows the same effects con-

cerning the influence of the Poisson’s ratio on the vertical compression for an increasing

inclusion diameter.

Both material models show the effects of the volumetric locking which is more accentu-

ated as the value of ν approaches 0.5. According to these results, the incorporation of a

stiff material with a high relative permittivity εr cannot be recommended since it leads

to a decrease of the the compression for larger inclusion diameters. For a correct analysis

of the influence of the inclusion diameter, mixed elements need to be taken into account.

According to the last analysis, in which the RVE geometry is discretised with Q1P0

elements, the prediction is that an inclusion will lead to an increase of the compression

of the RVE. The curves are shown in Figs. 7.6.(e) and 7.6.(f).
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In all examples it can be observed that the maximal diameter is reduced as the applied

electric field increases. This is due to the instability which is taking place in the region

between the spherical inclusion and the electrodes on the RVE. The details of this phe-

nomenon, which is rendered in the numerical analysis by the loss of convergence in the

Newton iteration, are described in the last paragraph of section 7.1.1.
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(a) Neo-Hooke. Linear displacement. ν = 0.49
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(b) Neo-Hooke. Linear displacement. ν = 0.4999
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(c) Yeoh. Linear displacement. ν = 0.49
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(d) Yeoh. Linear displacement. ν = 0.4999
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(e) Three field formulation. Q1P0. ν = 0.49
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(f) Three field formulation. Q1P0. ν = 0.4999

Figure 7.6: Influence of inclusion diameter on vertical compression of heterogeneous
RVEs for different material models, element discretisations and Poisson’s ratios.
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7.2 Dynamic Analysis

This section is concerned with the analysis of the RVE under the effects of inertia. There-

fore, the numerical implementation used in the quasi-static analysis has been extended

by the means of section 4.3. The analysis is performed considering time independent and

time dependent electric loadings.

7.2.1 RVE with Spherical Inclusion and Time Independent Electric
Loading

In this simulation, the microstructural RVE of the static analysis is considered, see

Fig. 7.1. The geometry is discretized in the same manner as before, see Fig. 7.2. The

shape of the RVE is a cube with an edge length a = 20µm. For the spherical inclusion,

three diameters are considered, namely d = 5, 10 and 15µm, which correspond to 25, 50

and 75 % of the maximum diameter. The simulations are performed applying the three

field formulation. The material parameters are the ones from section 7.1.1 which have

been used for the static analysis as well. The densities which are necessary for the dy-

namic simulation are ρ = 960 kg/m3 for the elastomer matrix and ρ = 6020 kg/m3 for the

spherical inclusion. They correspond to the VHB 4910 tape and barium titanate respec-

tively. The loading of the RVE structure is performed by applying a constant potential

difference on the top and bottom faces of the cube thus creating a constant nominal

electric field. The considered nominal electric fields are E0 = 10, 15, 20 and 25 kV/mm.

The vertical compression as a function of time is depicted in Fig. 7.7 for constant nominal

electric fields. Each curve represents a different inclusion diameter. The homogeneous

case is also depicted in each subplot. As in the static case, where the Q1P0 element was

studied, the consideration of a material inclusion leads to an increase of compression. In

the dynamic case this is observed as the increase of the oscillation amplitudes at larger

inclusion diameters. Furthermore, the natural oscillation frequency of the RVE is also

increased as the diameter of the inclusion becomes larger. At the higher electric fields the

larger diameter values could not be considered, see Figs. 7.7.(c) and 7.7.(d). As in the

static analysis, this limitation originates from the stability of the RVE which has been

discussed before. In the dynamic simulation the Newton iterations did not converge after

a certain amount of time steps.

A second analysis of the dynamic behaviour of the RVE can be performed comparing the

dynamic case with the quasi-static simulations. For this purpose, the parameters of the
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(c) E0 = 20[kV/mm]
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Figure 7.7: Influence of the inclusion diameter of the RVE on the oscillation behaviour
for different nominal electric fields. Time independent electric loading.

previous analysis are taken into account. The only modification w.r.t. the previous anal-

ysis is the number of electric loading cases. For each inclusion diameter the nominal elec-

tric field which is applied on the RVE is varied from E0 = 0 kV/mm to E0 = 300 kV/mm

in 100 steps. Thus 100 dynamic simulations are performed for each diameter.

In this setting the RVE oscillates with a constant amplitude as observed in Fig. 7.7. The

comparison between the amplitude and the compression of the RVE in the quasi-static

case is depicted in Fig. 7.8. For all the considered inclusion cases it can be observed,

that the compression of the dynamic case is of double the value of the static case. This

means that the time dependent compression of an oscillating DEA can be regarded as

the superposition of a constant compression corresponding to the static case and an oscil-

lating compression with an amplitude equal to the constant compression. Furthermore,

the stretches which are achieved during the oscillations go beyond the critical stretches

known from the static stability analysis of chapter 5. In the homogeneous case, shown in

Fig. 7.8.(a), the maximum stretch is approximately 0.5 even though the stability analysis

predicts a maximum stretch of 0.37. This observation has also been made in [99]. All the

plots represented in Fig. 7.8 indicate that the maximum nominal electric field which can
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be applied for the dynamic case is limited by the end of the dynamic curves. It is not

possible to find a dynamic solution after a further increment of the applied electric field

beyond this point. This is rendered by the loss of convergence in the Newton iteration

(instability). It should be mentioned, that a dynamic stability analysis could also be

performed, but this is beyond the scope of the present work.
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Figure 7.8: Comparison of the compression of the RVE for the static and dynamic
case at different inclusion diameters.

7.2.2 RVE with Spherical Inclusion and Time Dependent Electric Load-
ing

To complete the study of the RVE in the same manner as performed with the homo-

geneous DE, see 6.2.1.2, a time dependent loading is applied as the electric boundary

condition on the RVE. The geometry of the RVE and its discretisation remain the same

as in the previous benchmarks of this chapter. The material parameters of the DE ma-

trix are µ = 20.7 kPa, ν = 0.4999, εr = 4.7, ρ = 960 kg/m3 and d = 5 · 108 kg/sm3.

The spherical ceramic inclusion is defined by the parameters µ = 25.77GPa, ν = 0.3,

εr = 1700, ρ = 6020 kg/m3 and d = 5 · 108 kg/sm3. Because of the very high oscilla-

tion amplitudes which occur at blowup frequency ranges, damping is necessary to obtain
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stable numerical solutions. The displacement boundary conditions remain the same as

described in 7.1.1. The RVE geometry is fixed at the center of the sphere. The electric

potential is set to ϕ = 0 at the bottom nodes of the RVE mesh while it is time dependent

on the top nodes in a sinusoidal manner. This means that the RVE is subjected to an

nominal electric field as in section 6.2.1.2. To observe the influence of different electric

fields two loading cases are considered. To this effect, the amplitudes of the electric

potential on the top electrode are set to ϕa = 200V and ϕa = 235V. Thus, the ampli-

tudes of the nominal electric fields are Ea = 10 kV/mm and Ea = 11.75 kV/mm. The

frequency range is varied from f = 10 to 200 kHz with a resolution of ∆f = 1 kHz. The

time discretisation is done in steps of ∆t = 10−8 s with a total number of 20000, which

is sufficient to obtain a damped solutions.

The response of the RVE for the given excitation frequency range can be seen in Fig. 7.9.

The normalised amplitude is defined as the amplitude of the vertical stretch w.r.t. the

undeformed height of the RVE. The inclusion diameter is set to values which correspond

to 40 % and 50 % of the maximum diameter for comparison. The response curve of a

homogeneous RVE is also taken into account for reference. The first observation corre-

sponds to the influence of the inclusion diameter. It is observed, that an increase of the

diameter leads to higher deformations or amplitudes. Furthermore, an increase in E0

produces an increase of the amplitudes which is inferred by comparing Fig. 7.9.(a) to

Fig. 7.9.(b). The last observation is with regard to the peak in the frequency sweep.

In the range from 80 to 90 kHz the amplitudes reach their highest levels. Depending

on the inclusion diameter the peak frequency varies. For larger inclusions, higher peaks

are obtained. This originates from the modification of the average value of the material

parameters of the RVE. Since the volume ratio of the inclusion changes with different

diameters, so do the average material properties as well.
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Figure 7.9: Frequency dependence of the oscillation amplitude of the RVE at
different inclusion diameters and nominal electric field amplitudes with damping

parameter d = 5 · 108 [kg/sm3].





Chapter 8

Conclusion and Outlook

In the work at hand a numerical investigation of DEs has been performed. Because

of their large deformation range and quasi-incompressibility, the fundamentals of non-

linear mechanics and the three field formulation were introduced in first place. For the

comprehension of electric aspects of DEs the theory of electrostatics has been outlined

afterwards. Starting from the Coulomb forces of electric fields on electric charges the

theory was developed to the electrostatic forces which act on polarisable matter resulting

in the electrostatic volume force and the Maxwell stress tensor. In the description of

the numerical implementation the electromechanical coupling for compressible DEs has

been treated at first. Subsequently the implementation has been modified to treat the

quasi-incompressibility of the material and also inertia effects. The electromechanical

stability has been outlined as a further aspect. During the incremental compression

with an increasing electric field the equilibrium of the actuator can become unstable at

a strain which depends on the chosen constitutive material model. This phenomenon

was studied in [98] and the numerical results of the implementation in this work were

compared with this study. Several benchmarks have been performed to investigate the

quasi-incompressibility and the dynamics of DEAs. The volumetric locking effect has

been demonstrated and simulation results of DEA dynamics have been compared with

analytical studies. Furthermore, a tube pump made of DE material has been simulated

for the static and dynamic case. A microstructure consisting of a piezoceramic spherical

inclusion in a DE matrix has been proposed and analysed to reduce the magnitude of

the electric field which deforms the dielectric. The influence of the inclusion radius and

the material incompressibility has been evaluated for the static and dynamic case.

The implementation of the electromechanical coupling has been realised in a monolithic

manner with a consistent tangent matrix. This matrix has turned out symmetric even

though the derivations for the obtention of the tangent matrix has started from the
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mechanical momentum balance and Gauss’s law. Thus the electromechanical balance

can be derived from a variational principle, see [106]. The incompressibility constraint,

the mass inertia and the damping term have been implemented in the pure mechanical

parts of the tangent matrix and the internal residual vector. The numerical results

of the implementation have been compared to analytical results with good agreement

for simulations of static and dynamic case. The stability analysis has agreed with the

numerical results by the non convergence of the Newton iterations in the solution process

when reaching the unstable equilibrium region. The volumetric locking effect has been

observed for the cases of homogeneous and heterogeneous DEAs. In the second case

the neglection of the incompressibility predicted a reduction of the compression of the

DE for an increasing inclusion diameter. If the incompressibility is considered in the

simulation of the microstructure, e.g. a RVE with a spherical inclusion, the prediction

is opposed to the previous one, which means that an increasing inclusion diameter leads

to a larger compression of the DEA. This indicates the microstructural optimisation of

DEs with ceramic materials of high relative permittivity and the consideration of the

incompressibility constraint. It should be pointed out that the radius of the inclusion

is limited by the electromechanical stability of the elastomer. If the radius is too large,

the high electric field in the region between the inclusion and the electrodes will lead

to an unstable equilibrium. With regard to the dynamic studies, a blow up effect could

be observed in which the oscillation amplitudes become very large at specific excitation

frequencies. The effect can be considered as a nonlinear resonance effect.

The study of the DE microstructure in this work has been limited to the variation of

the radius of inclusion. Further research could be realised by considering alternative

inclusion geometries and orientations. The arrangement of multiple inclusions could also

be studied. Also special attention could be given to the interface between the inclusion

and the matrix which has been considered as ideal in this work. Since debonding could

occur, appropriate interface elements would be necessary to model the phenomenon. As

mentioned previously, numerical solutions were not obtained in the unstable compression

regions. With a modified solution process, e.g. the arc length method, solutions could be

obtained in these regions and the switching between stable regions for material models

with more than one stable region could be computed. More investigation could also

be realised by simulating different kinds of DEAs to support the development of the

actuators. In previous research works like e.g. [36] and [37], the viscosity of the elastomer

was included in the modelling. Further phenomenological aspects of elastomers would

also be interesting for a better approximation of the numerical simulations to reality.

The electrodes of the actuators have been neglected so far and the surrounding space

could also be considered, as it was the case in [35].



Appendix A

Derivatives and Symmetry in

electromechanical Coupling

This appendix is intended to present the derivatives which are typical in the electrome-

chanical coupled field problem. The focus lies on the derivatives of the Maxwell stress

tensor and the electric displacement vector which are generally not given in standard

literature. Furthermore, the symmetry of the tangent matrix is demonstrated.

The derivations are performed in index notation. In the derivation process the product

rule is frequently applied in which the following two derivates are needed:

∂C−1
AB

∂CCD
= −IC−1ABCD = −1

2
(C−1

ACC
−1
BD + C−1

ADC
−1
BC), (A.1)

∂J
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=

1

2
JC−1

AB. (A.2)

A.1 Maxwell Stress w.r.t. Right Cauchy-Green Strain
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∂SE0IJ
∂CPQ

= ε0E0KE0M (
∂(J + χ)

∂CPQ
C−1
IKC

−1
JM + (J + χ)

∂C−1
IK

∂CPQ
C−1
JM

+(J + χ)C−1
IK

∂C−1
JM

∂CPQ
− 1

2
(
∂J

∂CPQ
C−1
KMC

−1
IJ

+J
∂C−1

KM

∂CPQ
C−1
IJ + JC−1

KM

∂C−1
IJ

∂CPQ
)) (A.7)

∂SE0IJ
∂CPQ

= ε0E0KE0M (
1

2
JC−1

PQC
−1
IKC

−1
JM

+(J + χ)(−1

2
(C−1

IP C
−1
KQ + C−1

IQC
−1
KP ))C−1

JM

+(J + χ)C−1
IK(−1

2
(C−1

JPC
−1
MQ + C−1

JQC
−1
MP ))

−1

2
(
1

2
JC−1

PQC
−1
KMC

−1
IJ

+J(−1

2
(C−1

KPC
−1
MQ + C−1

KQC
−1
MP ))C−1

IJ

+JC−1
KM (−1

2
(C−1

IP C
−1
JQ + C−1

IQC
−1
JP )))) (A.8)

A.2 Maxwell Stress w.r.t. Electric Field
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A.3 Electric Displacement w.r.t. Right Cauchy-Green Strain
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A.4 Electric Displacement w.r.t. Electric Field
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A.5 Symmetry Condition for the Electromechanical Cou-

pled Tangent Matrix

The symmetry condition given in (4.53) can be written in index notation according to

∂SE0IJ
∂E0P

= −2
∂D0P

∂CIJ
. (A.22)

Special attention has to be given to the fact that tensors of third order are compared

which are implemented as matrices by using the Voigt notation. This means that a

transposition in the Voigt notation results in an exchange of the indices IJ with P in the

index notation. The right hand side of (A.22) can be rewritten by the means of (A.18)

with

− 2
∂D0P
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= D0JC

−1
IP +D0IC

−1
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J

(J + χ)
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The indices of the tensor C−1
IJ can be interchanged since it is symmetric. Comparing

(A.23) with (A.14) shows that condition (A.22) is true.
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