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Abstract

Stochastic Network Calculus (SNC) emerged from two branches in the late 90s:
the theory of e�ective bandwidths and its predecessor the Deterministic Network
Calculus (DNC). As such SNC's goal is to analyze queueing networks and support
their design and control.

In contrast to queueing theory, which strives for similar goals, SNC uses in-
equalities to circumvent complex situations, such as stochastic dependencies or
non-Poisson arrivals. Leaving the objective to compute exact distributions behind,
SNC derives stochastic performance bounds. Such a bound would, for example,
guarantee a system's maximal queue length that is violated by a known small prob-
ability only.

This work includes several contributions towards the theory of SNC. They are
sorted into four main contributions:

(1) The �rst chapters give a self-contained introduction to deterministic net-
work calculus and its two branches of stochastic extensions. The focus lies on the
notion of network operations. They allow to derive the performance bounds and
simplifying complex scenarios.

(2) The author created the �rst open-source tool to automate the steps of cal-
culating and optimizing MGF-based performance bounds. The tool automatically
calculates end-to-end performance bounds, via a symbolic approach. In a second
step, this solution is numerically optimized. A modular design allows the user to
implement their own functions, like tra�c models or analysis methods.

(3) The problem of the initial modeling step is addressed with the development
of a statistical network calculus. In many applications the properties of included
elements are mostly unknown. To that end, assumptions about the underlying
processes are made and backed by measurement-based statistical methods. This
thesis presents a way to integrate possible modeling errors into the bounds of SNC.
As a byproduct a dynamic view on the system is obtained that allows SNC to adapt
to non-stationarities.

(4) Probabilistic bounds are fundamentally di�erent from deterministic bounds:
While deterministic bounds hold for all times of the analyzed system, this is not
true for probabilistic bounds. Stochastic bounds, although still valid for every time
t, only hold for one time instance at once. Sample path bounds are only achieved by
using Boole's inequality. This thesis presents an alternative method, by adapting
the theory of extreme values.

(5) A long standing problem of SNC is the construction of stochastic bounds
for a window �ow controller. The corresponding problem for DNC had been solved
over a decade ago, but remained an open problem for SNC. This thesis presents
two methods for a successful application of SNC to the window �ow controller.
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Introduction

�This is most irregular.

We're sorry. It's not our fault.
How many of you are there?

More than 1300, I'm afraid.
Very well, then. Please form an orderly queue.�

- Pyramids, Terry Pratchet.

Queues accompany us all life long. We wait for the tra�c light to change or just
for the elevator to arrive. Other times we realize their existence only when systems
behave sluggish � when we have a �bad connection� or our computer's performance
drops suddenly. In these cases the queueing systems cannot handle their jobs timely
and consequently the queue lengths become too large or processing times too long.
But also short or empty queues can be unwanted, like the order book of a craftsman
or the charge level of an energy storage.

What de�nes a queueing system? In this work a queueing system consists of
arrivals, a bu�er, and a service element. These objects work together as shown in
Figure (a): Arrivals from some source are bu�ered in front of a service element.
The service element, depicted by U , works on these arrivals to produce an output.
In the �gure arrivals are illustrated as a series of distinguishable objects or packets.
In models, as well as in real-world scenarios, this might or might not be true:
Instead of being discretized the arrivals can also be a continuous, in�nitely divisible
medium. The bu�er, in which the arrivals are stored, might be modeled as �nite or
in�nite. Many more generalizations are possible: There might be multiple sources
of arrivals or multiple service elements. Arrivals might be processed in a �rst-in-
�rst-out manner or any other. We can continue this list of possible di�erences
between two queueing systems much longer and yet come to no end. As long as
there are arrivals being stored in a bu�er and a service element to process them,
we can speak of a queueing system.

Queues not only accompany, but also in�uence our daily lives. When we en-
counter a queueing system, we almost immediately ask, �how long will this take?�
or, �how many objects are waiting?� The corresponding answers (or guesses) often
serve as basis for the decisions we make. The more important these decisions are,
the larger is our need for a good analysis of the system.

Together with telephone exchanges also the �rst mathematical theory for queue-
ing systems emerged: In 1909 A.K. Erlang lays the foundation for what is known
today as queueing theory [58, 59]. Since then queueing systems propagated into our
daily routines. Likewise queueing theory evolved [82, 94, 91, 9, 148, 151, 119]
and propagated to many applications, for example tra�c engineering [98] and the
design of production facilities [123, 75]. Queueing theory helps in planning and
analyzing a system's performance. Its results help to maximize performance and
minimize risks.

vii
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Arrival
source

U Departures

Figure (a): A general queueing system.

Communication networks have continuously changed since the early days of
telephony and they will continue to do so. The way we use them and underly-
ing technologies are constantly evolving. And still throughout all these changes
the interest in their behavior never ceased. Quite the opposite: As the presence
of communication networks increases, the wish for reliability on their performance
grows also. With the notion of quality of service the interest for performance guar-
antees in communication networks emerged [27, 140, 18, 120]. Next to the typical
performance of a queueing system, we also want to know how it acts when things
go wrong. These are indeed two di�erent problems, which also require di�erent
modeling. The following example outside of communication networks illustrates
this.

Imagine a football stadium: Before the game starts, the visitors stream to
the stadium. They line up in front of security and ticket inspectors and a non-
negligible portion also queues to buy refreshments. The stadium's operators are of
course interested to provide enough service, that is security personnel, inspectors,
and refreshment booths. Although many visitors come to the stadium, there is no
need to serve all customers simultaneously. First, the visitors tolerate a certain
amount of waiting time and second, all visitors arrive on their own schedule and
hence can be served sequentially. If the operators would drop any of these two
assumptions, they have to massively (and unviably) increase their service.

Things change dramatically, if in the middle of the football match a �re starts
inside the stadium. Now all people need to leave the stadium at the same time.
Further there are strict rules how long the evacuation is allowed to take. In total
this situation is fundamentally di�erent in its conditions and the desired results.

For the �rst part of this example queueing theory �ts well. It is mainly con-
cerned with the equilibrium of a system and its usual metric is the expected length
of queues and delays. However, for an evacuation plan the usual behavior must
not be a satisfying answer. The statement �your average escape time is x minutes�
should be rather unconvincing. Instead people naturally want to know, �how bad
can it get?�

Instead of queueing theory we are inclined to use another model for the second
scenario. It should work under worst-case assumptions. For example, visitors
might move and react rather slowly. Furthermore, this model is interested in how
long it takes to evacuate areas that are far away from exits, instead of taking an
average distance. It will also try to produce the highest possible congestions at the
thinnest bottlenecks. In short: It takes the role of the devil's advocate and goes
with Murphy's law: Anything that can go wrong, will go wrong.

In that sense this model suits naturally the spirit of formal veri�cation and
certi�cation.

The seminal works of R. Cruz start a new analysis that implements this worst-
case view. In 1991 he lays the foundation for the method known today as network
calculus [47, 48]. Its basic idea is to use much simpler descriptions of the involved
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processes: Strict bounds on (maximal) arrivals and (minimal) service replace as-
sumptions on their distributions. This step is of additional importance given a
new insight of that time: Extensive measurements on internet tra�c revealed long
range dependencies and self-similarities [104, 124, 62, 112]. Two properties that
lie in strong contrast to the usual assumptions of queueing theory This leaves the
question in how far results from queueing theory apply to internet tra�c.

In network calculus, however, the description of arrivals and service is not
given explicitly. Instead, they adhere to given speci�cations called arrival curves
and service curves. Elementary manipulation of the arrival and service curve lead
to backlog or delay guarantees. With further e�ort also networks of systems (a
tandem of servers, feedforward networks, feedback loops) and di�erent scheduling
policies (FIFO, EDF, GPS) can be analyzed.

One of network calculus' biggest strengths � the analysis of the worst case �
is at the same time its biggest drawback. This is illustrated again for the evac-
uation example: Assume a detailed analysis concludes that the stadium can be
timely evacuated for most scenarios. However, if all visitors of the western tribune
are on their way to buy refreshments the evacuation cannot be achieved on time.
Even under very generous assumptions on the visitors' needs, this scenario appears
more than unlikely. Situations like these, where sheer possibility meets residual
probability, can render network calculus useless.

Apparently one would like to exclude events that only happen with minuscule
probability. The result can be a vast improvement on the performance bounds,
which must now be understood as soft guarantees: They only hold with a certain,
yet computable, probability. In that, these probabilities resemble con�dence levels
of mathematical statistics. However, the probabilities used in network calculus
typically di�er from the ones used in mathematical statistics by several orders of
magnitude.

The �rst stochastic extensions appeared quickly after network calculus itself
[32, 96]. In these a stochastic description replaces the deterministic arrival and
service curves. Still there is no distribution assumed, as one would do in queueing
theory. Instead, these descriptions are very similar to deterministic curves, but now
only hold �most of the time�. Manipulations of these curves resemble the ones in
pure network calculus and lead to improved bounds. Since these new curves only
hold �most of the time�, the same restriction must hold for the performance bound
too � leading to stochastic performance bounds.

The �eld of stochastic network calculus (SNC) is quite young and as such draws
research questions from di�erent sources:

• Over the last years two separate, yet related, stochastic extensions evolved:
tail-based and MGF-based SNC. They di�er in how they bound the in-
volved stochastic processes. This in turn leads to di�erences, like the scal-
ing of performance bounds in tandem networks [65, 39] or how both ap-
proaches handle stochastic dependencies. Comparing these two branches
to each other will eventually lead to a better foundation and understand-
ing of SNC overall.
• To check SNC results against the insights of queueing theory is an on-
going challenge. Instead of reproducing known results, SNC o�ers a new
approach to hard problems of queueing theory. In scenarios where the
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memoryless assumption is dropped or complex topologies appear SNC
o�ers alternative and elegant solutions.

• SNC appears in a simple formulation and the algebraic steps are quickly
performed. In contrast to that a numerical evaluation is surprisingly com-
plex: Good performance bounds are sensitive to the numerical optimiza-
tion of several parameters. Furthermore, exist di�erent ways to derive
performance bounds for networks of systems. Hence, useful bounds de-
mand the right approach and an optimal choice of parameters. Both steps
are only partially understood by now.

• Some results from deterministic network calculus miss their stochastic
counterparts. For example the analysis of a window �ow controller has
been solved under deterministic bounds over a decade ago. Yet, a corre-
sponding formulation in stochastic network calculus is missing.

• Network calculus almost entirely focuses on communication networks. Ap-
plying network calculus and its stochastic extensions in new environments
will lead to a better theoretical and practical understanding.

The landscape of possible applications for network calculus' is by far not charted,
yet. A hint of what network calculus could be in the future is given by a look on
queueing theory. Originating from modeling a concrete application, namely tele-
phone exchanges, queueing theory evolved into a branch of operational research. As
such it not only adapted to the ever-changing environment of its main application,
but also plays a relevant role in many other �elds today. Network calculus has the
potential to undergo a similar journey.

Thesis Contributions

This thesis contributes to the theory of stochastic network calculus (SNC) in
several ways. For references and related works to each topic see the beginning of
the corresponding chapters.

The thesis' �rst part is a self-contained introduction to deterministic and sto-
chastic network calculus. It di�ers from other introductive texts by putting forward
four operators: the multiplexing and subtraction of �ows, as well as the min-plus
convolution and deconvolution. These network operations form the core of network
calculus in two ways: First, the derivation of performance bounds follows by them;
and second, they enable the reduction of complex topologies to simpler ones. As
such any (stochastic) extension or conversion of network calculus must replicate
these four operations.

Chapter 1 presents the network operations mathematically and gives their in-
terpretations. Afterwards follows a discussion on how networks of service elements
are simpli�ed by these operations. Chapter 1 concludes by proving the deterministic
performance bounds on backlog and delay of a queueing system.

Chapter 2 motivates the two main branches of stochastic extensions to net-
work calculus. How to stochastically bound arrivals and service is introduced and
stochastic versions of the network operations are derived. All of these results are
given for both branches of SNC. Each description concludes with the derivation of
stochastic performance bounds.

The second part of this thesis covers several topics from the area of stochastic
network calculus. All of them share the goal of improving its applicability. A more
detailed description of these topics is given now:
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• There are only a few tools available to automatically derive deterministic
performance bounds with network calculus. For SNC even no tool has
been existent at all. Chapter 3 presents the DISCO Stochastic Network
Calculator, the �rst open source tool for deriving stochastic performance
bounds. Due to the variety of possible arrival models and di�erent strate-
gies to accomplish end-to-end analyses, the software follows a modular
composition. To this end, it allows its users to implement their own ar-
rival models and end-to-end analyses. The network calculator achieves
this by computing the performance bounds on a symbolic level �rst. In a
second step the resulting function is numerically optimized.

• When stochastic network calculus is applied one inevitably makes assump-
tions about the system. Often these assumptions stem from measurements
and a statistical model. However, even extensive measurements cannot
rule out modeling errors. While in many �elds the probability of erring
in the modeling step is of little importance, it becomes non-negligible for
SNC. Typical values for violation probabilities in SNC are of order 10−3,
10−6 or even 10−9, which exceed easily the usual con�dence levels used
within statistical methods. This leads to the problem that any statements
made by SNC become void, if the probability of having used a wrong pa-
rameter is so much higher. However, pushing the con�dence level to higher
values must result in a more pessimistic view on the system. Chapter 4
presents a method to combine possible modeling errors with SNC. The
resulting performance bounds take both aspects into account: First, the
possibility of an extreme behavior of the model, and second, the possi-
bility of the model itself being wrong. By this a new level of certainty is
reached, when SNC is applied.

• The backlog bounds of deterministic network calculus are, by de�nition,
never broken. However, stochastic performance bounds are of a di�erent
quality. A stochastic backlog bound holds with a certain probability only.
But it also only holds for a speci�c time t. A simple way to achieve
sample path bounds � meaning bounds that are valid on whole intervals
of time � is by applying the subadditivity of probabilities. Since the size of
backlog of subsequent times are however not stochastically independent,
this method is disputable. Chapter 5 introduces a second method based
on the theory of extreme values. The backlog bounds of both methods
are eventually compared to each other.

The third part of this thesis is entirely dedicated to window �ow controlled sys-
tems. These kind of systems ensure a deterministic bound on the maximal number
of arrivals present in the inner part of the system. Exceeding arrivals are kept out-
side until the inner part has processed its current workload. Such systems appear
for example in the form of transport protocols in communication systems. There
the core of the communication channel is protected against a large amount of data,
by keeping queueing at the back- and front-ends of the communication. Window
�ow controlled systems basically trade a higher overall delay for a deterministic
guarantee on the backlog inside the inner part.
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Chapter 6 collects and presents deterministic results for window �ow controlled
systems. Special focus lies on the role of subadditivity in the feedback loop. Ana-
lyzing window �ow controlled systems with stochastic network calculus had been a
long standing problem.

Chapter 7 presents two approaches to achieve stochastic performance bounds
in this scenario. Both take advantage of the bivariate formulation of MGF-calculus.
The �rst approach is based on preserving subadditivity. The other approach utilizes
the stochastic behavior of the system by describing the probability of subadditivity
not being available. As the former method is restricted to a class of subadditive
service elements it is called the subadditive case. The latter is denoted the general
case, as it works without assumptions on the involved service elements.
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Introduction to Stochastic Network
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CHAPTER 1

Deterministic Network Calculus

This chapter gives a self-contained introduction to network calculus. It focuses
on results needed for the second and third part of this thesis. For introductions in
a di�erent style see the textbooks of Chang [35], Le Boudec and Thiran [102], or
Jiang [88]. The survey by Fidler [66] also provides a comprehensive overview of
deterministic network calculus.

1.1. Notations

Throughout this thesis time indices often appear as an ordered pair s ≤ t,
where s and t either belong to N0 or R+

0 ; therefore, the following de�nition is made.

Definition 1.1. Let K be a totally ordered set. De�ne the index set Λ(K) as

Λ(K) := {(s, t) ∈ K×K : s ≤ t}.

Elements of Λ(K) are denoted by (s, t).

The usual choice for K is N0 or R+
0 . The former represents a slotted time model.

The latter describes a continuous time model. In Chapter 4 also negative time
indices are allowed and there K = Z. In the following it always holds K ∈ {N0,R+

0 },
if not mentioned otherwise. If there is no risk of confusion, the index set is just
written Λ.

The space domain uses an abstract concept of arrivals. Arrivals represent a
processable quantity like data, packets, or jobs. In other context they might also
be materials, customers, or energy. Arrivals follow a �uid model, i.e., they can be
in�nitely subdivided. This helps to derive subsequent results. The transformation
of results to packetized arrivals is shown for example in Chapter 2 of [35].

Flows are the most usual representation of arrivals. They describe the amount
of arrivals up to a time t ∈ K.

Definition 1.2. A �ow A is a cumulative function

A : K→ R+
0 ∪ {∞}

t 7→ A(t)

with A(0) = 0.
If time is continuous (K = R+

0 ) �ows are considered right-continuous, i.e.,
limt↘sA(t) = A(s). If time is slotted (K = N0), the increments a(t) describe the
arrivals during one time-slot. The relation between the increments (a(t))t∈N0

and

the �ow A is given by A(t) =
∑t
s=0 a(s). The bivariate extension of A is de�ned as

A : Λ→ R+
0

A(s, t) 7→ A(t)−A(s).

2
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Source

Source

Departures

Departures

Figure 1.1. A simple example of a queueing network. The depar-
tures of a queue can form the arrivals at another service element.
Further a service element can have several sources of arrivals.

Due to its interpretation of cumulative arrivals, the function A is increasing, i.e.,
A(s) ≤ A(t) for all (s, t) ∈ Λ. The following sets �x some of the above properties.

Definition 1.3. Let F(K) denote the space of increasing functions on K with
codomain R ∪ {−∞,∞}. The subset F0(K) ⊂ F(K) describes all A ∈ F(K)

with A(0) = 0; further, let F̃(K) denote the space of bivariate functions with

codomain R ∪ {−∞,∞} and F̃+(K) ⊂ F̃(K) be the subset of bivariate functions

that are increasing in their second variable. The subset F̃0(K) ⊂ F̃+(K) describes

all A ∈ F̃+(K) with A(t, t) = 0 for all t ∈ K.

If there is no risk of confusion, the notations F ,F0, F̃ , F̃+, and F̃0 are used. By
de�nition, the set of all possible �ows is a subset of F0. Their bivariate extensions
form a subset of F̃0.

1.2. Network Operations

While arrivals represent some kind of processable quantity, service elements
describe a location at which this quantity is processed. They abstract for exam-
ple routing elements (serving data), processors (jobs), fabricators (materials), or a
counter (customers). Arrivals and service elements might form complex networks
in which

• a service element handles several arrivals and
• processed arrivals serve as input to other service elements.

See also Figure 1.1.
Network calculus' goal is to reduce the complexity of such networks. To this

end, four operators are de�ned. Each of them takes as input two functions that
represent either an arrival or a service element. The result is a new arrival or a new
service element. This simpli�es the network of �ows and service elements; therefore,
they are called network operations. The mathematical introduction is given below.
An interpretation in the context of arrival and service elements follows afterwards.
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u
A B

Figure 1.2. A single �ow A enters a single service element with
constant rate u.

Definition 1.4. The convolution operator ⊗, multiplexing operator ⊕, decon-
volution operator �, and subtraction operator 	, are de�ned as

⊗,⊕,�,	 : F × F → F
A⊗B(t) 7→ inf

0≤s≤t
{A(s) +B(t− s)}

A⊕B(t) 7→ A(t) +B(t)

A�B(t) 7→ sup
0≤s
{A(t+ s)−B(s)}

A	B(t) 7→ A(t)−B(t).

The second and last operator represent the pointwise addition and subtraction
of the involved functions, respectively. The remaining two operators are analogs of
the usual convolution of real functions in the context of min-plus-algebra. In this
algebra minima take the role of the addition and the multiplication is replaced by
the usual addition (see for instance [2] for details on the min-plus algebra).

The following analysis motivates the convolution operator: Assume that a ser-
vice element has constant service rate u and a �ow of arrivals A enters this service
element. Denote the departures as �ow B. Figure 1.2 illustrates this scenario. If no
data is lost or produced inside the service element, the causality-condition B ≤ A
holds; thus, the di�erence between arrivals and departures must exist as backlog
inside the system and is written as b(t) := A(t) − B(t). Lindley's equation [111]
describes the evolution of b by

b(t) = [b(t− 1) + a(t)− u]+.

This equation gives the backlog at time t as the backlog of the previous slot plus
the di�erence of new arrivals and processed data. As no negative backlog can occur
(B ≤ A), the result must be at least zero. By an induction argument, the above
resolves to the explicit form

b(t) = max
0≤s≤t

{A(t)−A(s)− u · (t− s)}.

The convolution operation appears by rewriting the above as

(1.1) B(t) = A(t)− b(t) = min
0≤s≤t

{A(s) + u · (t− s)} = A⊗ U(t),

where U(t) := u · t.
Generalizing Equation (1.1) leads to the de�nition of service curves [49, 51].

Definition 1.5. Assume that a service element has the input-output pair A
and B. The service element provides a service curve U ∈ F0, if

(1.2) B(t) ≥ A⊗ U(t).

The service curve is di�erent from (1.1) in providing more generality and mod-
eling power. It uses a general function U instead of a constant rate service and an
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U1 U2
. . . Un  U1⊗. . .⊗Un

A0 A1 A2 An−1 An A0 An

Figure 1.3. A tandem of n service elements.

inequality instead of an exact description. This allows the construction of service
curves for a variety of service elements.

Example 1.6. The most used service curve is the rate-latency-curve [147]

Uu,T (t) = [ut− T ]+

with rate u and latency T/u. A server with a rate-latency service curve can be
inactive (while being backlogged at the same time) for a period being less than or
equal to T/u. After this latency it works at least with rate u.

However, the de�nition of service curves makes no statement about the max-
imum service. In this example the service element could be dormant during its
latency T/u and then process all accumulated arrivals in one burst. In this case
the burst sizes of the output B would exceed those of the input A.

The convolution operator used in De�nition 1.5 is commutative; indeed, with
the substitution r = t− s it holds
(1.3) inf

0≤s≤t
{A(s) + U(t− s)} = inf

0≤r≤t
{A(t− r) + U(r)}.

In more general scenarios the commutativity is lost, however, for example if
A /∈ F0 or in the bivariate setting (see Section 2.3). The service curve description
is therefore asymmetric. This hints at a fundamental di�erence between arrivals
and service.

A wider interpretation of the system's elements reveals this di�erence: The
service element converts the quantities A and U into a product B, whereat A and
U are handled equally. They di�er, however, in the possibility to save or bu�er
them. Exceeding arrivals are stored in a bu�er to be processed in the future; on the
other hand, exceeding service cannot be stored. Lindley's equation re�ects this in
reducing the backlog only by u, excluding any surplus service of the past. Section
9.1 of the appendix discusses how Equation (1.1) changes when both commodities
can be stored or when the service element processes more than two commodities.

Although the convolution operator appears in De�nition 1.5, its use as a net-
work operation is di�erent. For this let a �ow traverse a tandem of multiple service
elements as in Figure 1.3. This network reduces, with the help of the convolution
operator, to one with only a single service element.

Theorem 1.7 (Concatenation-Theorem). Consider a topology as in Figure 1.3.
The initial arrival is denoted by A0 and each departure Ai of service element i is
fed directly into the next service element i+ 1. If each service element has a service
curve Ui, then the whole system has the service curve U1 ⊗ . . .⊗ Un, i.e.,
(1.4) An ≥ A0 ⊗ U1 ⊗ . . .⊗ Un.

Proof. The proof is a direct application of the convolution operator's asso-
ciativity and monotonicity. It is easy to check that

(A⊗B)⊗ C(t) = A⊗ (B ⊗ C)(t) for all A,B,C ∈ F , t ∈ K,
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A⊗ U(t) ≤ B ⊗ U(t) ≤ B(t) for all A ≤ B, A,B ∈ F , t ∈ K.
Applying both properties to the de�nition of service curves yields

An(t) ≥ An−1 ⊗ Un(t) ≥ (An−2 ⊗ Un−1)⊗ Un(t) ≥ An−2 ⊗ (Un−1 ⊗ Un)(t)

for all t ∈ K. Equation (1.4) follows by induction over n. �

The service curve de�nition connects the convolution operator with a minimum
guarantee on the service. In a worst-case analysis such a bound is needed, as the
trivial null-service leads to no performance of the system at all; similarly, the de-
convolution operator is connected with a maximal bound on the arrivals. If arrivals
were unbounded, one could immediately (and in�nitely) overload the system. In
this case, as with unbounded service elements, no performance guarantees would
be possible.

Definition 1.8. A �ow A has arrival curve A ∈ F0, if it holds

(1.5) A�A(t) ≤ A(t)

for all t ∈ K. This is denoted by A � A.
Since A�A(t) = sups≥0{A(t+ s)−A(s)}, Equation (1.5) restricts the amount

of arrivals on each interval of length t. Hereby it does not matter at which time s
this interval is placed.

Example 1.9. The token bucket model can be expressed in an arrival curve
[47, 4, 100]. In such a model one imagines a bucket of size K is being �lled with
tokens on a rate a. If the bucket is full, no new tokens are added to it. If a source
adheres to the token bucket regulation, it takes a token from the bucket whenever
it wants to send an arrival. If there are no tokens in the bucket, the next arrival is
delayed until the bucket is re�lled. For any interval of length t at mostK+at tokens
can be taken from the bucket: These are at most K tokens at the beginning of the
interval and at most at tokens that are re�lling the bucket during the considered
interval; hence, it holds

A(t+ s)−A(s) ≤ K + at =: A(t)

for all s, t ∈ K. This model restricts the arrivals' burst size by K and their average
rate by a.

In connection with service elements the deconvolution operator becomes a net-
work operation. It delivers an arrival curve for a service element's output.

Theorem 1.10 (Output Bound). Assume that a service element o�ers a service
curve U for a �ow A � A. Denote the output �ow by B as in Figure 1.4. It holds

(1.6) B � A� U.
Proof. The proof follows directly by the de�nitions of service and arrival

curves. Let t ∈ K be arbitrary, then

sup
s≥0
{B(t+ s)−B(s)} ≤ sup

s≥0
{A(t+ s)−A⊗ U(s)}

= sup
s≥0
{ sup

0≤r≤s
{A(t+ s)−A(r)− U(s− r)}}

≤ sup
s≥0
{ sup

0≤r≤s
{A(t+ s− r)− U(s− r)}}

= sup
s′≥0
{A(t+ s′)− U(s′)} = A� U(t).
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U U  U
A � A B B � A� U

Figure 1.4. The output of a system is bounded with the help of
the deconvolution operator.

A1 � A1

A2 � A2

U  U
A1 ⊕A2 � A1 ⊕A2

Figure 1.5. Two �ows with arrival curves are multiplexed into a
single one.

�

For the multiplexing operation ⊕ let two �ows A and B traverse the same part
of a network. For simplicity, assume that they both enter a service element denoted
by U . Instead of viewing them as two �ows, they can be aggregated into the �ow
A⊕B. The multiplexing operation easily extends to their increments (in the case

K = N0) and also to their bivariate extensions F̃0. This is unsurprising, yet its
extension to arrival curves is more interesting.

Theorem 1.11 (Multiplexing). Let A1 � A1 and A2 � A2. The multiplexed
�ow A1 ⊕A2 has the arrival curve A1 ⊕A2.

Proof. It holds

(A1 ⊕A2)� (A1 ⊕A2)(t) ≤ sup
s≥0
{A1(t+ s) +A2(t+ s)−A1(s)−A2(s)}

≤ sup
s≥0
{A1(t+ s)−A1(s)}+ sup

s≥0
{A2(t+ s)−A2(s)}

≤ A1(t) +A2(t).

for all t ∈ K. �

So far, the subtraction operator has no interpretation as network operation.
To this end, consider a service element that serves two �ows under strict priority.
This means that the lower priority �ow only receives service, if the higher priority
�ow is not backlogged. The next theorem connects the subtraction operator with
strict priority scheduling. To do so, a stronger version of service curves is needed.
See the survey of Bouillard et al. [24] for a detailed discussion on service curve
de�nitions.

Definition 1.12. A service element o�ers �ow A a strict service curve U , if
for all times r ∈ K inside a backlogged period [s, t] it holds

B(s, r) ≥ U(r − s).

It is easily seen that a strict service curve is also a service curve. The converse
is not true in general.

Theorem 1.13 (Leftover Service Curve). Consider the scenario as in Figure
1.6. Consider a strict priority scheduling for the incoming �ows such that their
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An � An
An−1 � An−1

...
Ai � Ai

...

U  [U 	
∑n
j=i+1Aj ]+

Ai

Figure 1.6. Subtraction of high priority �ows from a service element.

priorities are sorted by their index i. If Ai � Ai and the service element provides a
strict service curve U for the aggregate, the service element o�ers the service curve
Ui = [U 	

∑n
j=i+1Aj ]+ for �ow Ai, i.e.,

(1.7) Bi ≥ Ai ⊗ Ui.

Proof. Fix an arbitrary r ∈ K and an index i ∈ {1, . . . , n}. Lets ∈ K be
maximal with

n∑
j=i

Aj(s) =

n∑
j=i

Bj(s).

Such a time s ∈ K always exists since the equation is ful�lled for s = 0 . For all
t ∈ K in the period [s, r] it holds by de�nition of the strict service curve

n∑
j=i+1

Aj(t) +Bi(t) ≥
n∑
j=i

Bj(t) ≥
n∑
j=i

Aj(s) + U(t− s).

With

Bi(t)−Ai(s) ≥
∑
j=i+1

Aj(s)−Aj(t) + U(t− s)

≥ U(t− s)−
∑
j=i+1

Aj(s, t) ≥ U(t− s)−
∑
j=i+1

Aj(t− s)

and Bi(r)−Ai(s) = Bi(s, r) ≥ 0 it follows

Bi(r) ≥ Ai(s) + [U(t− s)−
∑
j=i+1

Aj(t− s)]+

≥ inf
0≤s≤t

{Ai(s) + Ui(t− s)} = Ai ⊗ Ui(t).

Since the time r was chosen arbitrary the above holds for all t ∈ K and Equation
(1.7) follows. �

Remark 1.14. There are leftover service descriptions for other schedulers, such
as FIFO [51], generalized processor sharing [35], and Earliest Deadline First (EDF)
[134], as well. Of particular interest is the EDF scheduler. A classic result of
scheduling theory is Jackson's rule [81]. It states that the EDF policy is optimal
for a single server with respect to minimizing the total latency (for a proof see for
example [99]). Jackson's rule is recoverd by Georgiadis et al. [71] in the context
of communication networks for non-preemptive servers.

The rest of this thesis considers strict priority schedulers only.
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Source

Source

Departures

Departures

(a)

e

U

V

W
·
· e′

A1

A2

(b)

Figure 1.7. The original queueing system (a) and its graph rep-
resentation with initial labels (b).

1.2.1. Networks as Labeled Graphs. The complexity of many networks
can be reduced into much simpler ones with the help of the four network operations.
To this end, a network is represented by a graph with directed, labeled edges E and
labeled nodes N . Each arrival represents an edge (i, j) ∈ N ×N and each service
element represents a node. Multiple edges between the same pair of nodes are
allowed. The head of an edge is equivalent to the service element that serves the
arrival. The tail of the edge is the node the arrivals originate from. If an arrival
enters the network from outside, a dummy node e serves as the corresponding edge's
tail. If an arrival leaves the network, a dummy node e′ serves as the corresponding
edge's head. The labels on the edges are arrival curves A and the nodes' labels
are service curves for the aggregate of incoming �ows. Usually the graph is only
partially labeled. To obtain a fully labeled graph, the four network operations allow
to either

• merge two labeled nodes into a new labeled node, if the aggregated output
of the �rst node equals the aggregated input of the second (convolution
operation),

• merge two labeled edges into a new labeled edge, if they have the same
head (multiplexing operation),

• merge an unlabeled edge and its labeled tail into a new labeled edge, if
the corresponding ingress-edge is labeled (deconvolution operation),

• update a labeled node by canceling a labeled edge, if the head of the edge
is equal to the node (subtraction operation).

Table 1 gives an overview of the four network operations and their interpretation
in networks.

The goal is to transform the graph to a single labeled node with a single labeled
ingress edge. This corresponds to the knowledge of the arrival curve and the (pos-
sibly end-to-end) service curve needed to compute performance bounds. To achieve
this goal a minimal initial labeling is required. It must cover at least the edges with
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Elements
merged

Flow A2 � A2
Service element with service
curve U ′

Operator: ⊕ Operator: �

Flow A1 � A1 Interpretation:

Aggregation of two �ows

Interpretation:

Computation of an arrival
curve for the output B

Result: Flow
A1 ⊕A2 � A1 ⊕A2

Result: Flow B � A1 � U ′

Operator: 	 Operator: ⊗
Service element
with service
curve U

Interpretation:

Calculation of leftover
service after serving arrival
A2

Interpretation:

Convolution of two service
elements into a single one.

Result: Service [U 	A2]+ Result: Service U ⊗ U ′

Table 1. Overview of the network operations.

tail e and all nodes. Otherwise the network could be overloaded by in�nite arrivals
or a service element could o�er no service at all.

Today network calculus is capable of reducing a great variety of graphs to the
single-node-single-edge case (see for example [37, 87, 64, 143, 105, 138, 137]
and the references in [66]). The next examples illustrate di�erent approaches in
performing such a reduction.

G :
· · ·
U

· · ·
V· · · · · ·

A1

A2

Figure 1.8. Network of Example 1.15.

Example 1.15. Consider the graph G given in Figure 1.8. Both service ele-
ments are assumed to provide a strict service curve. The graph can be simpli�ed
by �rst merging both arrivals and then either convolute the two service elements
(G1 in Figure 1.9) or calculate an output bound for the departures of the �rst node
(G′1 in Figure 1.9). The graphs G1 and G′1 describe the system for both arrivals
aggregated and as such, can also be used to calculate performance bounds for only
one of the �ows. The graph G1 describes the end-to-end behavior of the system,
whereas G′1 describes the behavior at the service element V .
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G1 : A1 ⊕A2 U ⊗ V

(a) Convolution after multiplexing.

G′1 : (A1 ⊕A2)� U V

(b) Deconvolution after multiplexing.

Figure 1.9. Resulting graphs for aggregating �rst.

Example 1.16. Another method to reduce G is to subtract one of the �ows � say
A2 � �rst. Afterwards either the convolution or the deconvolution operator can be
applied, leading to the graphs G2 and G′2, respectively. Figures 1.10(a) and 1.10(b)
show the resulting labels for the networks. The graph G2 describes an end-to-end
behavior, whereas G′2 is more suitable for the local analysis at the second node. In
contrast to the previous example, the �ows are considered separately throughout
the whole analysis. This approach proves to be better in general topologies, in
which �ows interfere only locally.

G2 : A1 [U 	A2]+ ⊗ [V 	 (A2 � U)]+

(a) Convolution after subtraction.

G′2 : A1 � [U 	A2]+ [V 	 (A2 � U)]+

(b) Deconvolution after subtraction.

Figure 1.10. Resulting graphs for subtracting �rst.

Example 1.17. Instead of merging one of the edges �rst, one can also start by
a convolution of the two service elements. The resulting node is labeled by U ⊗ V .
The graph G3 in Figure 1.11(a) equals G1; indeed, just the order of aggregation
and convolution was switched. Subtracting a cross�ow from the convoluted service
element, instead, would lead to Figure 1.11(b). This step, however, requires more
caution: Theorem 1.13 only holds for strict service curves but the convolution of
U and V does generally not preserve strictness. Hence, the reduction G′3 is not
achievable without further results. The work of Schmitt et al. [138] describes how
G can still be reduced to G′3.
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G3 : A1 ⊕A2 U ⊗ V

(a) Multiplexing after convolution.

G′3 : A1 [(U ⊗ V )	A2]+

(b) Subtraction after convolution.

Figure 1.11. Resulting graphs for convolving �rst.

The previous examples make it clear that there exist di�erent strategies to
analyze general feedforward networks. The question of how to analyze a (possibly
large) network optimally � or just computationally e�cient � is a topic of current
research [137, 25, 20, 19].

1.3. Performance Bounds

After a labeled graph is successfully reduced, the goal of network calculus is to
derive performance bounds of the system. Two metrics are of main concern here:
the backlog b and the time to traverse the system. The latter is captured by the
de�nition of virtual delay:

d(t) := inf{s ≥ 0 : A(t) ≤ B(t+ s)}.

The notions of arrival curves and service curves lie at the core of the following
central result.

Theorem 1.18 (Fundamental Theorem of Network Calculus). Let A � A be
a �ow entering a service element with service curve U . Then the following perfor-
mance bounds hold

b(t) ≤ sup
0≤r
{A(r)− U(r)} ≤ A� U(0) for all t ∈ K(1.8)

d(t) ≤ inf{s ≥ 0 : A� U(−s) ≤ 0} for all t ∈ K.(1.9)

Remark 1.19. Note that in Equation (1.9) the de�nition of � is implicitly
extended to K = R and K = Z, respectively.

Proof. The proofs for both bounds follow the same three steps. Firstly a
connection between the performance measure and the �ows A and B is established.
In a second step the service curve replaces B. This results in an expression of U
and A only. In a last step the arrival curve replaces A.

For arbitrary t ∈ K and the backlog it holds

b(t) = A(t)−B(t)

≤ A(t)− inf
0≤r≤t

{A(t− r) + U(r)} = sup
0≤r≤t

{A(t)−A(t− r)− U(r)}

≤ sup
0≤r≤t

{A(r)− U(r)} ≤ A� U(0).
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U

A

Delay b

Backlog d

Figure 1.12. The backlog bound equals the vertical deviation be-
tween A and U and the delay bound corresponds to the horizontal
deviation.

To prove the delay bound �x some s ∈ K and assume that there exists a t ∈ K
with d(t) > s. From the de�nition of virtual delay it follows that

0 < A(t)−B(t+ s)

≤ A(t)− inf
0≤r≤t+s

{A(t+ s− r) + U(r)} = sup
0≤r≤t+s

{A(t)−A(t+ s− r)− U(r)}

≤ sup
0≤r≤t+s

{A(r − s)− U(r)} ≤ A� U(−s).

The inversion of the achieved implication reads as

A� U(−s) ≤ 0 ⇒ d(t) ≤ s for all t ∈ K.
Since U lies in F0, the function A� U(−s) is decreasing in s. Choosing s minimal
results in (1.9). �

The expressions on the right-handed side of Equations (1.8) and (1.9) have a
geometric interpretation as well. They describe the maximal vertical and horizontal
distance between A and U , respectively (see Figure 1.12).

The proof for the delay bound appears a bit harder. This is due to �ows and
their curves being de�ned in the space domain, whereas delay is a metric of the
time domain. In fact, one can adapt the above de�nitions such that arrival and
service curves are expressed in the time domain. In that case the delay bound
follows analogously to the above backlog bound and vice versa, see Appendix 9.2
for details.



CHAPTER 2

Stochastic Network Calculus

When systems possess stochastic elements deterministic network calculus can
run into heavy problems. This happens whenever the worst case is de�ned by an
event that is possible, yet not very likely. The next example illustrates this.

Example 2.1. Assume a �ow A has positive, stochastically independent, and
identically distributed (i.i.d.) increments (a(t))t∈N0 with distribution F and de�ne
x+ := inf{x : F (x) = 1} ∈ [0,∞]. Then for every x < x+ and t ∈ N it holds with
positive probability

A(t) ≥ t · x.
Hence, a worst case deterministic arrival curve on such a �ow must ful�llA(t) ≥ tx+

for all t > 0.

The situation of the above example can be in strong contrast to the arrivals'
actual behavior. If the increments are, for example, exponentially distributed with
some parameter λ, it holds x+ =∞ and the only possible arrival curve is

1(t) :=

{
0 if t ≤ 0

∞ if t > 0
.

This �worst case� behavior, however, is never observed. Quite contrary A(t) is �nite
for any t ∈ N and the central limit theorem states A(t) ∼ t/λ. Moreover, for any
t ∈ N and ε > 0 exists a value M such that P(A(t) > M) < ε; i.e., there is always
an upper bound on A(t) that is valid for probabilities arbitrarily close to one. This
clearly shows the gap between the �typical� behavior and the worst case scenario
when stochastic arrivals (or services) are involved.

Another example considers an aggregate of deterministically bounded �ows.
Assume a large number N of �ows that are all bounded separately by a token
bucket arrival curve A(t) ≤ K+at. Assume further that all of these �ows arrive at
the same service element. In a worst case scenario the �ows would �gang up� and
use their entire bucket simultaneously to create a burst of size N ·K. Yet, this kind
of behavior might miss reality. If the tra�c-sources are independent, there is no
reason to assume that they conspire against the system in such a way. In fact the
larger N is the more unlikely this becomes and the results of deterministic network
calculus are less useful than paranoid.

Due to these shortcomings stochastic extensions of network calculus are used.
Instead of obtaining hard bounds, which are never violated, one is satis�ed now with
softer statements. �Softness� means here that bounds can be broken, but only with
(very) small probabilities. However, to achieve full modeling power the network
operations of network calculus must be carried over: multiplexing, subtraction,
convolution and deconvolution. If this is achieved, the result is a stochastic network
calculus.

14
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Today one can roughly distinguish between two stochastic network calculi.
They di�er in how stochastic processes are described: Tailbounds cut o� unwanted
(and unlikely) outcomes, whereas Moment Generating Functions (MGF) are a com-
pact way to describe a distribution as a whole.

This chapter introduces both branches, starting with the tailbounded approach.
For both methods the stochastic verisons of the network operations are proven,
followed by the respective performance bounds on backlog and delay. Further, the
Appendix 10.1 discusses how to transform both calculi into each other.

A considerable portion of network calculus' literature is considered with the
development of stochastic extensions. The beginnings of stochastic network calculus
are marked by the works of Kurose [96], Yaron and Sidi [161], and Chang [33].
Here Yaron and Sidi lay down the basis for the tailbounded approach, whereas
Chang leads the direction towards the MGF-bounded method. The former is further
developed by Cruz [50], Boorstyn et al. [21], Starobinski and Sidi [144], and Yin
et al. [162] to name only a few. The theory of MGF-bounded network calculus
is pushed forward by Kesidis et al. [93], Chang et al. [35, 36], and Fidler [65].
The textbooks of Chang [35] and Jiang [88] are focusing on MGF-calculus and
tailbounded network calculus, respectively. Further [68] gives a good and extensive
overview of the corpus of works in stochastic network calculus.

2.1. Network Operations in Tailbounded Network Calculus

Tailbounds are a straightforward way of generalizing arrival and service curves.
The main idea is to de�ne an arrival curve that can be broken by a given probability.
For this two types of functions are needed: envelope functions (or just envelopes)

A : K× R+ → R+
0 ∪ {∞}

(t, ε) 7→ A(t, ε),

and error functions (or just errors)

η : K× R+ → [0, 1]

(t, ε) 7→ η(t, ε).

Envelopes and errors bound arrivals in the following way: The envelope A is in its
�rst variable an arrival curve and describes the �typical� behavior of A. The second
variable of A describes a deviation from this behavior, e.g., by an additive constant
ε. This deviation appears in the error function again: Larger deviations ε should
happen with a smaller probability; hence, η is generally decreasing in ε. The time
t in the error function gives additional �exibility in its de�nition: A deviation by ε
might occur more or less likely depending on the considered interval's length t.

These relations are condensed in the de�nition of tailbounds.

Definition 2.2. A �ow A is tailbounded with envelope function A and error
function η, written shortly A � (A, η), if for all (s, t) ∈ Λ and ε > 0 it holds

(2.1) P(A(s, t) > A(t− s, ε)) ≤ η(t− s, ε).

Example 2.3. Assume that a �ow ful�lls A � Adet. Then A � (Atb, η) with
Atb(t, ε) = Adet(t) and η(t, ε) = 0 for all t ∈ K, ε > 0. Hence, De�nition 2.2
generalizes arrival curves.



2.1. NETWORK OPERATIONS IN TAILBOUNDED NETWORK CALCULUS 16

Several variations of tailbounded arrivals have been developed for stochastic
network calculus [117, 66, 43]. The most important are the following three exam-
ples.

Example 2.4. The exponentially bounded burstiness (EBB) model was estab-
lished by Yaron and Sidi [161]. It uses the envelope A(t − s, ε) = ρ(t − s) + ε for
some �xed rate ρ and the eponymous error η(t−s, ε) = Me−θε with some prefactor
M > 0 and decay θ > 0. The EBB model connects to e�ective bandwidths via
Cherno�'s inequality (see also Section 2.3) [92, 106]. For this de�ne the e�ective
bandwidth of A as the normalized cumulant generating function

E(s, θ) := sup
t∈K

{
1

θs
logE(eθA(t,t+s))

}
for all s ∈ K, θ ∈ R+

0 .

By L'Hôpital's rule and the properties of cumulant and moment generating func-
tions (see Section 2.3 for a de�nition) it holds limθ→0E(s, θ) = E(A(t, t + s)) and
limθ→∞E(s, θ) = x+. Here x+ denotes the right endpoint of the distribution of
A(t, t + s) and the latter equality requires A to be stationary. This means that
E(s, θ) lies between the average rate and peak rate of A. The e�ective bandwidth
can still exist even if x+ =∞. In this case there is no de�ned peak rate.

For the connection to tailbounds assume that E∗(θ) := lim sups→∞E(s, θ) is
�nite. Then it holds

P(A(s, t) > (t− s)E∗(θ)− 1
θ logM + ε) ≤ e−θ(t−s)E

∗(θ)Me−θεE(eθA(s,t)) ≤Me−θε

for all (s, t) ∈ Λ and ε > 0. The �rst step uses Cherno�'s inequality, which states
P(X > x) ≤ e−θxE(eθX). It follows that �ows with existent e�ective bandwidth
have for each θ > 0 , with E(eθA(t,t+s)) < ∞ an EBB envelope
A(t, ε) = tE∗(θ)− 1

θ logM + ε.

Example 2.5. The stochastically bounded burstiness (SBB) model [144, 40]
uses the envelopeA(t−s, ε) = ρ(t−s)+ε and allows the error to be n-fold integrable,
meaning ˆ ∞

ε

· · ·
ˆ ∞
ε︸ ︷︷ ︸

n-times

η(t− s, x)(dx)n <∞.

The error in the EBB model ful�llsˆ ∞
ε

· · ·
ˆ ∞
ε

η(t− s, x)(dx)n =
1

θn
Me−θε

and hence is a special case of the SBB model. The SBB model has more model-
ing power. For example, it can bound fractional Brownian motions (see Example
2.7). Further, Markov-modulated arrivals can be better �tted by the SBB model
compared to the EBB model [144].

Example 2.6. This example is not a tailbound in the sense of (2.1), but is
strongly related to it. A has a generally stochastically bounded burstiness [162], if
there exists an envelope A and error η such that for all t ∈ K it holds

(2.2) P(sup
s≤t
{A(s, t)−A(t− s, ε)} > 0) ≤ η(t, ε).

The di�erence between the above relation and De�nition 2.2 is the supremum inside
the probability. Instead of a pointwise violation probability for each point (s, t) ∈ Λ,
a pathwise violation probability for each t ∈ K is considered. Although, appearing
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as a stronger statement, the bound (2.2) can be constructed from a tailbound of
the form (2.1) (see for example [162]). The kind of tailbounds in this example have
even further modeling power. They can capture for example heavy-tailed arrivals
[86, 70, 162, 107]. Further they achieve backlog bounds easier, as discussed later.

The next two examples present tailbounds with non-linear envelopes.

Example 2.7. Assume that the cumulative arrivals A consist of a constant rate
λ and a fractional Brownian motion WH

t , i.e., A(t) = λt + WH
t [116, 104, 121,

122]. Here H ∈ [0, 1] is the Hurst-parameter of the fractional Brownian motion.
A tailbound can be constructed via its e�ective bandwidth [92, 106] (see also the
construction in [132]) and is an example for a non-linear envelope A. The tailbound
has the form

(2.3) P(A(s, t) > λ(t− s) +
√

log ε−2σ(t− s)H) ≤ ε
with σ being the variance of the fBm. In [132] Equation (2.3) leads to a tailbound
of the gSBB type with envelope and error

A(t, ε) = λt+
√

log ε−2σtH+β , η(t, ε) =
Γ( 1

2β )

2β(− log ε)1/2β
.

Here ε ∈ (0, 1), Γ is the gamma-function, and β ∈ (0, 1−H) is a free parameter.

In this example limt→∞
A(t,ε)
t = λ for each ε, i.e., the arrival's long-term rate

is λ. This actually allows to approximate A by a linear envelope again, which in
turn allows to derive performance bounds (see Theorem 2.22).

Example 2.8. Assume that M �ows have arrival rates ρ. Further, each �ow i
ceases to exist after a random time Xi, where the Xi are independent, exponentially
distributed with parameter λ. A single �ow's cumulatives are

Ai(t) =

{
ρt if t < Xi

ρXi if t ≥ Xi

.

Thus, the expectation of a �ow Ai at time t is

E(Ai(t)) =
ρ

λ
(1− e−λt).

For arbitrary (s, t) ∈ Λ, the aggregate of all M �ows, denoted by A, ful�lls

E(A(s, t)) =
∑
i

E(Ai(t))− E(Ai(s)) =
Mρ

λ
(e−λs − e−λt) ≤ Mρ

λ
(1− e−λ(t−s)).

The last step is a multiplication by eλs ≥ 1.
Applying Markov's inequality results in the tailbound

P(A(s, t) > M(1− e−λ(t−s))ε) ≤ E(A(s, t))

M(1− e−λ(t−s))ε
=

ρ

λε
.

As a last step replace ε with eθε for the EBB-like description

P(A(s, t) > M(1− e−λ(t−s))eθε) ≤ ρ

λ
e−θε

with the non-linear envelope A(t, ε) = M(1− e−λt)eθε. In contrast to the previous
example this envelope has no long-term rate. Instead the convergence
limt→∞A(t, ε) = Meθε holds. This upper bounded envelope factors in the almost
sure �niteness of the arrivals.



2.1. NETWORK OPERATIONS IN TAILBOUNDED NETWORK CALCULUS 18

A1 � (A1, η1)

A2 � (A2, η2)

U  A1 ⊕A2 � (A1 ⊕A2, η1 ⊕ η2) U

Figure 2.1. Tailbounded version of the multiplexing operator.

The network operation of multiplexing carries over to tailbounds (compare
Theorem 1.11).

Theorem 2.9 (Tailbounded Multiplexing). Let Ai � (Ai, ηi) be two tail-
bounded �ows (i = 1, 2). Then A1 ⊕A2 � (A1 ⊕A2, η1 ⊕ η2), where ⊕ denotes the
pointwise addition of A1 and A2, η1 and η2, respectively.

Proof. Choose an arbitrary (t− s) ∈ Λ and ε > 0. If A1(t− s) ≤ A1(t− s, ε)
and A2(t− s) ≤ A1(t− s, ε), then A1(t− s) +A2(t− s) ≤ A1(t− s, ε) +A2(t− s, ε).
Reading the previous implication as probabilities results in

P(A1 ⊕A2(t− s) > A1 ⊕A2(t− s, ε))
≤P(A1(t− s) > A1(t− s, ε)) + P(A2(t− s) > A2(t− s, ε))
≤ η1(t− s, ε) + η2(t− s, ε).

�

Remark 2.10. If the envelopes take a linear form in ε, i.e., Ai(t, ε) = Ãi(t) +ε
(i ∈ {1, 2}), the above can be improved to A1 ⊕A2 � (A1 ⊕A2, η1 ⊗ η2). Here the
convolution is taken with respect to the second variables of η1 and η2. If further
A1 and A2 are stochastically independent, the bound on their aggregate can be
improved to A1 ⊕ A2 � (A1 ⊕ A2, η). Here 1 − η(t, ε) = (1 − η1(t)) ? (1 − η2(t)),
where the ordinary convolution ? is taken with respect to the second variables. This
statement is proven in [162] by Yin et al. (there for the gSBB model).

Similar to stochastic arrival curves there are several stochastic service curve
de�nitions in the literature (for an overview see again [66, 68]). The one used in
this thesis is the most similar to De�nition 2.2.

Definition 2.11. Consider an input-output pair A and B of a service element
and an envelope U . The service element provides a tailbounded service curve U
with error ζ, written shortly (U, ζ), if for all t ∈ K it holds

(2.4) P(B(t) < (A⊗ U(ε))(t)) < ζ(t, ε).

The above convolution reads as inf0≤s≤t{A(s) + U(t− s, ε)}.
A service element often shows stochastic behavior, due to some random cross-

�ow interfering with an otherwise deterministic service guarantee.

Example 2.12. Let time be slotted, i.e., K = N0. Assume that a strict service
element o�ers a constant service rate ρ to two inputs A1 and A2 � (A, η). Fix some
t ∈ N0 and ε > 0 and assume it holds

(2.5) A2(s, t) ≤ A(t− s, ε)
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An � (An, ηn)

...
Ai � (Ai, ηi)

...

U  ([U 	
∑n
j=i+1Aj ]+, ζj)

Ai

Figure 2.2. Tailbounded version of the subtraction operator.

for all s ≤ t. Under Condition (2.5) Theorem 1.13 yields B1(t) ≥ (A1 ⊗ U1(ε))(t).
Transferring this implication to probabilities leads to

P(B1(t) < (A⊗ U(ε))(t)) ≤ P
( ⋃
s≤t

A2(s, t) > A(t− s, ε)
)
,

which continues by applying Boole's inequality to

P(B1(t) < (A⊗ U(ε))(t)) ≤
t∑

s=0

P(A2(s, t) > A(t− s, ε))

≤
t∑

s=0

η(t− s, ε) =

t∑
s=0

η(s, ε).

Hence the service element o�ers the service curve (U1, ζ) with

U1(t, ε) = [ρt − A(t, ε)]+ and ζ(t, ε) =
∑t
s=0 η(s, ε). The error ζ converges in

t, if A2 � (A, η) has SBB as in Example 2.5. Furthermore the step of applying
Boole's inequality is skipped, if one has a gSBB envelope as in Example 2.6.

The network operation 	 is a straightforward generalization of the above ex-
ample.

Theorem 2.13 (Tailbounded Leftover Service). Let K = N0. Assume that
a service element o�ers a strict service curve U to the arrivals Ai � (Ai, ηi)
(i = 1, . . . , n) and the incoming �ows' priorities are sorted by their index i. Then
the service element o�ers to �ow Aj a service curve (Uj , ζj), with

Uj(t, ε) = [U(t)−
n∑

i=j+1

Ai(t, ε)]+, ζj(t, ε) =

n∑
i=j+1

t∑
s=0

ηi(s, ε).

Remark 2.14. This theorem uses a deterministic strict service curve. A similar
theorem can also be formulated for a tailbounded version of strict service curves.

Remark 2.15. In Example 2.12 and the above theorem appears the summa-
tion of error functions:

∑t
s=0 η(s, ε). In general one wants error functions to be

summable, i.e.,
t∑

s=0

η(s, ε) ≤
∞∑
s=0

η(s, ε) <∞.

A summable error function is important, as it allows to analyze systems independent
of time t. This means it does not matter how far (into the future) a system is
analyzed, as one still achieves �nite bounds. Such a property is favored, especially
for stationary systems. Remark 2.19 after the next theorem provides a method to
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A � (A, η) (U, ζ) U  B � (A� U, η̄ ⊕ ζ) U
B

Figure 2.3. Tailbounded version of the deconvolution operator.

achieve summable error functions. It relies on the structure of linear arrival curves
A. For the error of tailbounded service curves the situation is more complex �
yet still tractable. Eventually, Chapter 7 presents a scenario for which no known
method exists to achieve summable error functions.

Theorem 2.16 (Tailbounded Output Bound). Let A � (A, η) with
A(t, ε) = ρt + ε arrive at a service element with service (U, ζ). Denote the out-
put by B. Then B � (A � U, η̄ ⊕ ζ), where η̄ depends on η and is de�ned in the
proof.

Proof. Fix some (s, t) ∈ Λ, ε > 0 and assume for a while that

A(r, t) ≤ A(t− r, ε) for all r ≤ s(2.6)

B(s) ≥ A⊗ U(ε)(s).(2.7)

By these assumptions A has arrival curve A(ε) on [0, s] and the service element
o�ers the service curve U(ε) at s in the deterministic sense. Theorem 1.10 yields
B(s, t) ≤ A(ε)� U(ε)(t− s).

Now, similar to Example 2.12, the probability that assumption (2.6) or (2.7)
does not hold is bounded by

P(B(s, t) > A(ε)� U(ε)(t− s)) ≤ P((2.6) or (2.7) does not hold)

≤P
( ⋃
r≤s

A(r, t) > A(t− r, ε)
)

+ P(B(s) > A⊗ U(ε)(s))

≤P
( ⋃
r≤s

A(r, t) > A(t− r, ε)
)

+ ζ(t, ε).

For K = N0 the above probability is treated as in Example 2.12 and
η̄(t, ε) =

∑t
r=0 η(r, ε). For K = R+

0 , however, a direct application of Boole's in-
equality is not possible. Instead the interval [0, s] must be discretized �rst.

To this end, denote by (Ti)i∈I a countable partition of the interval [0, s], i.e.,
for all i 6= j it holds Ti ∩ Tj = ∅ and

⋃
i∈I Ti = [0, s]. Further let

si,u := sup{r | r ∈ Ti}, si,l := inf{r | r ∈ Ti}

be the right and left endpoints of Ti, respectively.
Now the event {

⋃
r≤sA(r, t) > A(t− r, ε)} can be written as

A(t) > inf
0≤r≤s

{A(r) +A(t− r, ε)} = min
i∈I

inf
r∈Ti
{A(r) +A(t− r, ε)}

≥ min
i∈I
{A(si,l) +A(t− si,u, ε)},
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where A and A are increasing in the time variable. Eventually, Boole's inequality
applies and �nishes the proof:

P(
⋃
r≤s

A(r, t) > A(t− r, ε)) ≤ P(
⋃
i∈I
A(t− si,u, ε)−A(si,l, t) < 0)

≤
∑
i∈I

P(A(si,l, t) > A(t− si,u, ε))

=
∑
i∈I

P(A(si,l, t) > A(t− si,l, ε− ρ(si,u − si,l)))

≤
∑
i∈I

η(t− si,l, ε− ρ(si,u − si,l)) =: η̄(t, ε̄).

�

Remark 2.17. A particular useful discretization is a partition into intervals
of equal lengths, say τ . In this work such an equidistant partitioning is called
canonical.

Remark 2.18. The discretization-step of the above proof relies on the enve-
lope's linearity to perform the transformation

A(t− si,u, ε) = A(t− si,l, ε− ρ(si,u − si,l)) = A(t− si,l, ε′).

Yet, Example 2.7 and 2.8 present non-linear envelopes.
Rizk and Fidler [132] approximate the original envelope by an envelope of the

form ρt+ ε and the transformation works as before.
For the envelope A(t, ε) = M(1− e−λt)eθε of Example 2.8 it holds

A(t− si,u, ε) = A(t− si,l, ε)
1− e−λ(t−si,u)

1− e−λ(t−si,l)
= A(t− si,l, ε′),

where ε′ = ε+ 1/λ(log(1− e−λ(t−si,u))− log(1− e−λ(t−si,l))).
Crucial for the above arguments is that ε′ < ε and ε′ < ε holds. As the allowed

deviation from the arrival curve decreases, the corresponding violation probabilities
increase. In both cases a larger di�erence of si,u to si,l leads to larger violation
probabilities of the respective terms. This reveals a tradeo� between a partition's
cardinality and the lengths of its sets. An exhaustive study of how to �nd a good
or optimal partition has not been addressed, yet.

Remark 2.19. As stated in Remark 2.15, it is bene�cial to have
supt≥0 η̄(t, ε̄) < ∞. However, if one uses the tailbounds as constructed by ef-
fective bandwidths (see Example 2.4), the resulting error function η̄ is unbounded
in t. To avoid this, the envelope A(t, ε) = ρt + ε (for some ρ > 0) is relaxed by
a slack rate δ > 0. This results in a slightly worse arrival curve A, but also in
smaller violation probabilities. To accomplish �nite error probabilities one replaces
the original A(t, ε) in the above theorem by A(t, ε+δt). Indeed, if A � (A, η), then
it holds also

P(A(s, t) > ρ(t− s) + ε+ δ(t− s)) ≤ η(t− s, ε+ δ(t− s)).

Repeating the proof of Theorem 2.16 leads to a violation probability

η̄(t, ε̄) =
∑
i∈I

η(t− si,l, ε− (ρ+ δ)(si,u − si,l) + δ(t− si,l)).
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(U1, ζ1) (U2, ζ2)  (U, ζ)
A0 A1 A2 A0 A2

Figure 2.4. The concatenation theorem for two tailbounded ser-
vice elements.

Since the errors decrease in their second variable, the sum is convergent. For
example in the EBB model with canonical discretization of size τ the error η̄ ful�lls

η̄(t, ε̄)
t→∞−−−→Me−θε(e−θρτ − e−θτ(ρ+δ))−1.

This construction uses again the linear form of the envelope A. For the non-
linear envelope of Example 2.8 the envelope A(t, ε) = M(1 − e−λt)eθε is modi�ed
to

P(A(s, t) > M(1− e−λt)eθ(ε+δt)) ≤ ρ

λ
e−θε+δt

and η̄(t, ε̄) converges for t→∞.

The last of the network operations to be shown is the concatenation property
realized by the operator ⊗. A concatenation property for tailbounds has been
subject of intense research [6, 31, 106]. The search for service descriptions that
ful�ll the concatenation and produce �nite errors ended with the work of Ciucu
et al. [40]. The main idea is presented now for the special case K = N0. For
continuous time a partitioning step is needed similar to the one in the theorem
before.

Like for arrivals' tailbounds the main idea is to introduce a slack rate δ. To
this end, the service curve must have a linear structure in ε. Hence, consider the
tailbounded service curve

P(B(t) < A⊗ [U − ε]+(t)) < ζ(t, ε),

where the convolution reads

A⊗ [U − ε]+(t) = min
0≤s≤t

{A(s) + [U(t− s)− ε]+}

for some U ∈ F . This is a special case of De�nition 2.11 with U(t, ε) := [U(t)−ε]+.
The relaxation by δ is de�ned by U−δ(t) := U(t)− δt.

Theorem 2.20 (Tailbounded Convolution). Assume that two service elements
in tandem have tailbounded service curves (U1, ζ1) and (U2, ζ2), respectively (see
Figure 2.4). Then the whole system o�ers a service curve (U, ζ) with

U(t, ε) = [U1 ⊗ U2,−δ(t)− ε]+, ζ(t, ε) = ζ2(t, ·)⊗ ζ̄1(t, ·)(ε)

and

ζ̄1(t, ε) =

t∑
s=0

ζ1(s, ε+ δ(t− s)).

Proof. Fix some t ∈ N0, δ > 0, and ε1, ε2, ε such that ε1 + ε2 = ε. Assume
that

A1(s) ≥ A⊗ [U1 − ε1 − δ(t− s)]+(s) for all s ≤ t(2.8)

A2(t) ≥ A1 ⊗ [U2 − ε2]+(t),(2.9)
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holds. Then it follows

A2(t) ≥ min
0≤s≤t

{A1(s) + [U2(t− s)− ε2]+}

≥ min
0≤s≤t

{ min
0≤r≤s

{A(r) + [U1(s− r)− ε1 − δ(t− s)]+ + [U2(t− s)− ε2]+}

≥ min
0≤r≤s≤t

{A(r) + [U1(s− r) + U2(t− s)− ε− δ(t− s)]+}

= A⊗ [U1 ⊗ U2,−δ − ε]+(t).

Moving this implication to probabilities yields

P(A(t) < A2 ⊗ U(t, ε))

≤P(Condition (2.9) does not hold) + P(Condition (2.8) does not hold)

≤ ζ2(t, ε2) +

t∑
s=0

ζ1(s, ε1 + δ(t− s)).

Since this bound holds for all ε1 + ε2 = ε one has

P(A(t) < A2 ⊗ U(t, ε)) ≤ inf
0≤ε′≤ε

{ζ2(t, ε− ε′) + ζ̄1(t, ε′)} = ζ2(t, ·)⊗ ζ̄1(t, ·)(ε).

�

Example 2.21. Assume that the two service elements are tailbounded for some
Ui(t, ε) = [U1(t)− ε]+ with EBB errors:

ζi(t, ε) = Mie
−θiε.

Then

sup
t≥0

ζ(t, ε) = sup
t≥0

t∑
s=0

ζ1(s, ε+ δ(t− s)) = M1e
−θ1ε

∞∑
s′=0

e−θ1δs
′

= M1e
−θ1ε(1− e−θ1δ)−1 <∞

as wanted.

With Theorem 2.20 the construction of a tailbounded network calculus is �n-
ished. In order to apply this calculus to a queueing system, all left to do is to prove
the respective performance bounds.

2.2. Performance Bounds in Tailbounded Network Calculus

This section derives stochastic performance bounds and is hence analog to Sec-
tion 1.3. The main idea of the next theorem � a tailbounded version of Theorem
1.18 � is the following: After formulating a suitable set of assumptions the re-
sults of deterministic network calculus are applied. Afterwards one considers the
probability that the assumptions are not ful�lled.

Theorem 2.22 (Performance Guarantees with Tailbounds). Consider the ar-
rivals A � (A, η) with A(t, ε) = ρt+ ε and assume that A enters a service element
with service curve (U, ζ). Denote the output of the service element by B. Then for
all t ≥ 0 and ε > 0 the performance bounds

P(b(t) > A(ε)� U(ε)(0)) ≤ η̄(t, ε̄) + ζ(t, ε)(2.10)

P(d(t) > inf{s ≥ 0 : A(ε)� U(ε)(−s) ≤ 0}) ≤ η̄(t, ε̄) + ζ(t, ε)(2.11)

hold, where η̄ depends on η.
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Proof. Under the two assumptions

A(s, t) ≤ A(t− s, ε) for all s ≤ t(2.12)

B(t) ≥ A⊗ U(ε)(t)(2.13)

the arrivals and the service element are deterministically bounded. Theorem 1.18
gives

b(t) ≤ A(ε)� U(ε)(0)

d(t) ≤ inf{s ≥ 0 : A(ε)� U(ε)(−s) ≤ 0}.
Moving to the complementary events yields for the backlog bound

P(b(t) >A(ε)� U(ε)(0)) ≤ P((2.12) or (2.13) does not hold)

≤ P
( ⋃
s≤t

A(s, t) > A(t− s, ε)
)

+ P(B(t) > A⊗ U(ε)(t))

≤ P
( ⋃
s≤t

A(s, t) > A(t− s, ε)
)

+ ζ(t, ε).

The same discretization technique as in Theorem 2.16 delivers eventually

P
( ⋃
s≤t

A(s, t) > A(t− s, ε)
)
≤
∑
i∈I

η(t− si,l, ε− ρ(si,u − si,l)) =: η̄(t, ε̄).

The proof for the delay bounds works the same way. �

Remark 2.23. The parameter ε in the assumptions (2.12) and (2.13) does not
need to be the same. By choosing di�erent values one can optimize the performance
bounds. An optimization along this way had not been performed in the literature,
yet.

This closes the introduction to tailbounded network calculus.

2.3. Network Operations in MGF-Based Network Calculus

The most common way to achieve tailbounds on some random variable X are
moment-bounds. Markov's inequality is an example for such a bound. It states

P(X > x) ≤ E(X)

x
for a positive random variable and all x > 0. The idea of MGF-based network
calculus is to work with such moment-bounds directly � without introducing er-
ror functions. A particular useful bound is Cherno�'s inequality. It results from
Markov's inequality by taking exponents:

P(eθX > eθx) ≤ e−θxE(eθX) = e−θxφX(θ),

where φX(θ) is the moment generating function (MGF) of X at θ.
In the previous section the arrivals and service descriptions are � as in determin-

istic calculus � interval-valid. This is best seen in the arrival curve A(s, t) ≤ A(t−s)
and its tailbounded version

P(A(s, t) > A(t− s, ε)) ≤ η(t− s, ε).
From an arrival curve's perspective, there is no di�erence in considering A(s, t) or
arrivals in some other interval, like A(s + r, t + r). Possible di�erences in their
distribution are hence not captured. With its bivariate formulation MGF-based
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calculus can (theoretically) also take non-stationarities into account. This possi-
bility was recently exploited in the work of Becker and Fidler [17] (see also the
remarks to De�nition 2.28). As seen later this potential bivariate formulation is
discarded when bounding the MGFs of an arrival or service.

Nevertheless, the MGF-based network calculus is based upon a bivariate for-
mulation [35] and with respect to that di�ers to tailbounded approaches already.
This is best seen in Chapter 6. This bivariate formulation demands a rede�nition
of a service element as well as the operators ⊗ and �.

Definition 2.24. A service element is a dynamic U -server, if for any input-
output pair A and B it holds

B(t) ≥ A⊗ U(0, t) for all t ∈ K.

The bivariate convolution used here is de�ned as follows.

Definition 2.25. The bivariate convolution operator ⊗ and bivariate decon-
volution operator � are de�ned by

⊗ : F̃ × F̃ → F̃
A⊗B(s, t) 7→ inf

s≤r≤t
{A(s, r) +B(r, t)},

� : F̃ × F̃ → F̃
A�B(s, t) 7→ sup

0≤r≤s
{A(r, t)−B(r, s)}.

The bivariate convolution is � in contrast to the univariate convolution �
not commutative. The univariate convolution recurs, if A(s, t) = A(t − s) and
B(s, t) = B(t−s) hold for all (s, t) ∈ Λ. Indeed, in this case A⊗B(s, t) = A⊗B(t−s)
and the univariate convolution is the restriction of the bivariate convolution to a
subset of F̃ .

However, the univariate deconvolution does not recur in such a way from the
bivariate deconvolution. Its form is rather motivated by the bivariate version of
the fundamental theorem of network calculus. Indeed, applying the same steps as
in Theorem 1.18 leads to

b(t) ≤ sup
0≤r≤t

{A(r, t)− U(r, t)} = A� U(t, t).(2.14)

The choice of Cherno�'s inequality under the possible moment-bounds is jus-
ti�ed by its properties when combined with the network operations. The following
result [33, 35, 65] is central for MGF-based calculus.

Theorem 2.26 (MGFs of Min-Plus Operators). Let X, Y be two stochastic
processes indexed by Λ; further, assume that X and Y are non-increasing in their
�rst variable and stochastically independent. Then

φX�Y (s,t)(θ) ≤
∑
i∈I

φX(si,l,t)(θ)φY (si,u,s)(−θ),(2.15)

φX⊗Y (s,t)(−θ) ≤
∑
i∈I

φX(s,si,l)(−θ)φY (si,u,t)(−θ)(2.16)

hold for all (s, t) ∈ Λ and θ > 0 such that the above MGFs exist. Here si,l and
si,u are the left and right endpoints of a partition (Ti)i∈I of [0, s] (see the proof of
Theorem 2.22).
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Proof. Fix some θ > 0 and (s, t) ∈ Λ such that the MGFs in (2.15) exist.
Consider some partition of [0, s] as in the proof of Theorem 2.22. Then it holds

φX�Y (s,t)(θ) = E(eθ sup0≤r≤s{X(r,t)−Y (r,s)}) = E( sup
0≤r≤s

{eθX(r,t)−θY (r,s)})

= E(max
i∈I

sup
r∈Ti
{eθX(r,t)−θY (r,s)}) ≤ E(max

i∈I
{eθX(si,l,t)−θY (si,u,s)})(2.17)

≤
∑
i∈I

E(eθX(si,l,t)e−θY (si,u,s)).

The expectations appearing in the sum can be split due to X and Y being indepen-
dent. This concludes the proof of (2.15). Inequality (2.16) is proven in the same
way. �

Remark 2.27. The above theorem works for expressions of the form A�U(t, s)
with (s, t) ∈ Λ also. Indeed the relation of the variables s and t to each other is of
no importance for the proof.

Instead of dealing with the MGFs of A and U directly, they are bounded to
simplify further calculations.

Definition 2.28. A �ow A is MGF-bounded by a function f for some θ > 0, if

φA(s,t)(θ) = E(eθA(s,t)) ≤ eθf(t−s,θ)

holds for all (s, t) ∈ Λ.

Definition 2.29. A dynamic U -server is MGF-bounded by a function f for
some θ > 0, if

φU(s,t)(−θ) = E(e−θU(s,t)) ≤ eθf(t−s,θ)

holds for all (s, t) ∈ Λ.

Remark 2.30. As stated before, the possibility to bound E(eθA(s,t)) and
E(eθA(s+r,t+r)) di�erently is not utilized here.

Example 2.31. The server with constant rate c is MGF-bounded; indeed, for
any interval (s, t] it holds E(e−θU(s,t)) = e−θc·(t−s).

Example 2.32. Let K = N0 and assume that the increments are described by
i.i.d. random variables Xt. Then φA(s,t)(θ) =

∏t
r=s+1 φXr (θ) = (φXr (θ))

t−s. As a
special case let Xt be exponentially distributed with parameter λ. Then its MGF
is λ

λ−θ for all θ < λ and φA(s,t)(θ) = ( λ
λ−θ )t−s.

Example 2.4 presents a way to construct tailbounded arrival curves from ef-
fective bandwidths, via moment generating functions. This reveals a connection
between both methods for bounding arrivals (or service). See Appendix 10.1 for
how to transform tailbounds into MGF-bounds and vice versa.

Remark 2.33. This thesis focuses on linear f(t, θ) = θρ(θ)t+θσ(θ) that de�ne
the σ(θ), ρ(θ)-calculus and use the notations

A � (σ, ρ) :⇔ φA(s,t)(θ) ≤ eθσ(θ)+θρ(θ)(t−s)

U � (σ, ρ) :⇔ φU(s,t)(−θ) ≤ eθσ(θ)+θρ(θ)(t−s).

The θ in this notation is omitted. This should not be confounded with the
(σ, ρ)-calculus of Chang [35], which is a formulation of deterministic network cal-
culus.
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The following lemma reformulates Theorem 2.26 by adding MGF-bounds. It is
also central in the derivation of performance bounds in the following section.

Lemma 2.34. Fix some θ > 0. Let A � (σA, ρA) and U � (σU , ρU ) be stochas-
tically independent. For all (s, t) ∈ Λ and canonical discretizations of [0, s] with
length τ it holds

φA�U(s,t)(θ) ≤ eθ(σA(θ)+σU (θ))+θρA(θ)τeθρA(θ)(t−s)

s
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))kτ(2.18)

= eθ(σA(θ)+σU (θ))−θρU (θ)τeθρU (θ)(s−t)

s
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))(t−kτ),(2.19)

if the above MGFs exist.
Under the same assumptions it holds for slotted time

φA�U(s,t)(θ) ≤ eθ(σA(θ)+σU (θ))eθρA(θ)(t−s)
s∑
r=0

eθ(ρA(θ)+ρU (θ))r

= eθ(σA(θ)+σU (θ))eθρU (θ)(s−t)
s∑
r=0

eθ(ρA(θ)+ρU (θ))(t−r).

Proof. From Theorem 2.26 it follows

φA�U(s,t)(θ) ≤
∑
i∈I

E(eθA(si,l,t))E(e−θU(si,u,s))

≤ eθ(σA(θ)+σU (θ))
∑
i∈I

eθρA(θ)(t−si,l)eθρU (θ)(s−si,u)

= eθ(σA(θ)+σU (θ))eθρA(θ)(t−s)
∑
i∈I

eθ(ρA(θ)+ρU (θ))(s−si,u)+θρA(θ)(si,u−si,l)

= eθ(σA(θ)+σU (θ)+ρA(θ)τ)eθρA(θ)(t−s)

s
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))kτ .

The equality to (2.19) is achieved by factoring out eθ(ρA(θ)+ρU (θ))(s−t−τ) and
reindexing the sum.

For the special case of slotted time set τ = 1 in the canonical discretization and
with A(si,l) = limr↗si,u A(r) the supremum in (2.17) is discretized to a maximum
over the integers. Hence, Theorem 2.26 simpli�es to

φA�U(s,t)(θ) ≤
s∑

k=0

E(eθA(k,t))E(e−θU(k,s)).

The rest of the proof follows as before. �

Under the assumption of stochastic independence Cherno�'s inequality and
MGF-bounds lead to a full network calculus. To show this the network operations
⊕,⊗,	, and � must be transferred.

Theorem 2.35 (MGF-Multiplexing). Fix some θ > 0. Consider two �ows
A1 � (σ1, ρ1) and A2 � (σ2, ρ2). If A1 and A2 are stochastically independent,

A1 ⊕A2 � (σ1 + σ2, ρ1 + ρ2).
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A1 � (σ1, ρ1)

A2 � (σ2, ρ2)

U  A1 ⊕A2 � (σ1 + σ2, ρ1 + ρ2) U

Figure 2.5. MGF-bounded version of the multiplexing operator.

(σU , ρU ) (σV , ρV )  (σU + σV +K, ρU ∨ ρV )

Figure 2.6. MGF-bounded version of the convolution operation.

Proof. The moment generating function of a sum of independent random
variables is the product of their moment generating functions. Hence, it holds

φA1+A2(s,t)(θ) = φA1(s,t)(θ)φA2(s,t)(θ) ≤ eθ(σ1(θ)+ρ1(θ)(t−s))eθ(σ2(θ)+ρ2(θ)(t−s))

for all (s, t) ∈ Λ. �

A �ow's MGF-bound holds for all θ with θ < θ∗ ∈ [0,∞]. Hence, if �ows
A1 and A2 provide di�erent θ∗A1

and θ∗A2
, the bound for the aggregate holds only

for θ < θ∗A1
∧ θ∗A2

. Similar considerations hold for the following three network
operations.

Theorem 2.36 (MGF-Convolution). Fix some θ > 0. Assume that two service
elements U � (σU , ρU ) and V � (σV , ρV ) are stochastically independent. If U and
V are decreasing in their �rst variable, it holds

U ⊗ V � (σU + σV +K, ρU ∨ ρV )

for some constant K dependent on θ, ρU , ρV .

Proof. The proof uses a canonical discretization of the interval [s, t] with
length τ . By the same steps as in Lemma 2.34 it follows that

φU⊗V (s,t)(−θ) ≤
∑
i∈I

eθ(σU (θ)+ρU (θ)(si,l−s))eθ(σV (θ)+ρV (θ)(t−si,u))(2.20)

=eθ(σU (θ)+σV (θ))eθρU (θ)(t−s)e−θρUτ
∑
i∈I

eθ(ρV (θ)−ρU (θ))(t−si,u).

If ρU (θ) ≥ ρV (θ), the constant K is given by

K := e−θρU (θ)τ
∑
i∈I

eθ(ρV (θ)−ρU (θ))(t−si,u).

If ρV (θ) ≥ ρU (θ), one factors out eθρV (θ)(t−s)e−θρV (θ)τ in (2.20) instead and the
constant becomes K := e−θρV (θ)τ

∑
i∈I e

θ(ρV (θ)−ρU (θ))(s−si,l). �

Theorem 2.37 (MGF-Leftover-Serivce). Fix some θ > 0. Assume that
Ai � (σi, ρi) for all i = 1, . . . , n and a service element U � (σU , ρU ) for the
aggregate. Let the �ows be indexed by their priority at U such that a higher index
corresponds to a higher priority. If A1, . . . , An, U are stochastically independent,
the system is a dynamic Ui-server for a particular �ow Ai with
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An � (σn, ρn)

...
Ai � (σi, ρi)

...

U  (σU +
∑
σj , ρU +

∑
ρj)

Ai

Figure 2.7. MGF-bounded version of the subtraction operator.

Ui(s, t) := U(s, t)−
n∑

j=i+1

Aj(s, t)

and

(2.21) Ui � (σU +

n∑
j=i+1

σj , ρU +

n∑
j=i+1

ρj).

Proof. Fix some arbitrary t ∈ K and index i ∈ {1, . . . , n}. As the system is a
dynamic U -server for the aggregate, it holds

n∑
j=i

Bj(t) ≥
n∑
j=i

Aj ⊗ U(0, t) = inf
0≤s≤t

{
n∑
j=i

Aj(0, s) + U(s, t)}.

Following

Bi(t) ≥ inf
0≤s≤t

{Ai(0, s) + U(s, t) +

n∑
j=i+1

Aj(0, s)−Bj(t)}

≥ inf
0≤s≤t

{Ai(0, s) + U(s, t) +

n∑
j=i+1

Aj(s)−Aj(t)} = Ai ⊗ Ui(0, t).

It is left to show that Ui ful�lls Equation (2.21). Let (s, t) ∈ Λ be arbitrary
and θ such that the following MGF exist. Due to the independence of the involved
random variables it holds

φUi(s,t)(−θ) = φU(s,t)(−θ)
n∏

j=i+1

φ−Aj(s,t)(−θ) = φU(s,t)(−θ)
n∏

j=i+1

φAj(s,t)(θ)

≤ eθσU (θ)+θρU (θ)(t−s)
n∏

j=i+1

eθσj(θ)+θρj(θ)(t−s)

= eθ(σU (θ)+
∑n
j=i+1 σj)+θ(ρU (θ)+

∑n
j=i+1 ρj(θ))(t−s).

�

Theorem 2.38 (MGF-Output-Bound). Fix some θ > 0. Assume that a �ow
A � (σA, ρA) enters service element U � (σU , ρU ) and U is decreasing in its �rst
variable. If A and U are stochastically independent and ρA(θ) ≤ −ρU (θ), it holds

B � (σA + σU +K, ρA),(2.22)

where K is a constant depending on ρA(θ), ρU (θ), θ.
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A � (σA, ρA) U U  B � (σA + σU +K, ρA) U
B

Figure 2.8. MGF-bounded version of the deconvolution operator.

Proof. From the de�nition of the dynamic U -server it follows

B(s, t) = B(t)−B(s) ≤ A(t)−A⊗ U(0, s) = sup
0≤r≤s

{A(r, t)− U(r, s)}

= A� U(s, t)

Lemma 2.34 applies and leads to

φB(s,t)(θ) ≤ φA�U(s,t)(θ)

= eθ(σA(θ)+σU (θ)+ρA(θ)τ)eθρA(θ)(t−s)

s
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))kτ

≤ eθ(σA(θ)+σU (θ)+ρA(θ)τ)eθρA(θ)(t−s)(1− eθτ(ρA(θ)+ρU (θ)))−1

for some canonical discretization with length τ . De�ning

K = eθρA(θ)τ (1− eθτ(ρA(θ)+ρU (θ)))−1

�nishes the proof. �

2.4. Performance Bounds in MGF-Based Network Calculus

Combining MGF-bounds with Lemma 2.34 yields stochastic performance bounds.

Theorem 2.39 (Performance Guarantees with MGF-Bounds). Fix some θ > 0.
Assume that A � (σA, ρA) and a service U � (σU , ρU ) that is decreasing in its
�rst variable with U ≥ 0. If A and U are stochastically independent, then the
performance bounds

P(b(t) > N) ≤ e−θNeθ(σA(θ)+σU (θ)+ρA(θ)τ)

t
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))kτ(2.23)

P(d(t) > T ) ≤ eθρU (θ)T eθ(σA(θ)+σU (θ)+ρU (θ)τ)

t
τ−1∑
k=0

eθ(ρA(θ)+ρU (θ))(t−kτ)(2.24)

hold for all t ≥ 0. The free parameter τ > 0 is the width of the canonical discretiza-
tion of t (of t+ T in (2.24)).

Proof. The proof is similar to the previous one. From Equation (2.14) follows
the implication

b(t) > N ⇒ A� U(t, t) > N.

Moving to probabilities and applying Cherno�'s inequality leads to

P(b(t) > N) ≤ P(A� U(t, t) > N) ≤ e−θNE(eθA�U(t,t)).

Lemma 2.34 applies to this expression and leads to (2.23).
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To achieve (2.24) the steps of deriving delay bounds must be transferred to
the bivariate setting (compare Theorem 1.18). To that end, �x some T ∈ K and
assume that there is a t ∈ K such that d(t) > T . Then it follows

0 < A(0, t)−B(t+ T ) ≤ A(0, t)−A⊗ U(0, t+ T )

= sup
0≤r≤t

{A(r, t)− U(r, T + t)} ∨ sup
t<r≤t+T

{A(r, t)− U(r, T + t)}.

As the latter supremum is less than or equal to zero, it can be discarded. This
leads to the implication

d(t) > T ⇒ (−U)� (−A)(t, t+ T ) > 0.

Moving this statement to probabilities and applying Cherno�'s inequality leads to

P(d(t) > T ) ≤ P((−U)� (−A)(t, t+ T ) < 0) ≤ E(eθ(−U)�(−A)(t,t+T )).

Note that U � (σU , ρU ) if and only if −U � (σU , ρU ) and A � (σA, ρA) if and only
if −A � (σA, ρA). Hence, Lemma 2.34 applies and leads to Equation (2.24). �

Remark 2.40. For slotted time the second part of Lemma 2.34 applies and
yields

P(b(t) > N) ≤ e−θNeθ(σA(θ)+σU (θ))
t∑

s=0

eθ(ρA(θ)+ρU (θ))s,(2.25)

P(d(t) > T ) ≤ eθρU (θ)T eθ(σA(θ)+σU (θ))
t+T∑
s=0

eθ(ρA(θ)+ρU (θ))s.(2.26)

In slotted time U does not need to decrease in its �rst variable, as a discretization
is not needed. This is of particular importance, as there are cases in which U is
not decreasing in its �rst variable. An example is the leftover service description
resulting from Theorem 2.37.

This concludes the construction of an MGF-based network calculus. Results
for the cases in which the involved processes are not stochastically independent
is deliberately left out at this place. They are given in the next chapter, where
end-to-end performance bounds are considered.
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CHAPTER 3

The Problem of End-to-End Analysis

Subsection 1.2.1 shows how network operations reduce general feedforward net-
works. The previous chapter reconstructed these network operations in a stochastic
setting; hence, a reduction of networks also becomes possible in SNC. Doing so in
practice requires some care. Further, the results of this analysis are involved func-
tions of several variables. Only after a subsequent, non-trivial optimization, one
can obtain useful results.

The special case of tandems, as presented in Figure 3.1, was analyzed in the
SNC-literature: Fidler considers such tandems in [65] under the assumption of
stochastic independence between the �ows. The MGF-based approach delivers
stochastic delay bounds that scale with O(n). Here n is the number of nodes
traversed. The same scaling behavior appears in deterministic network calculus
[102]. Ciucu et al. use a tailbounded approach for tandem networks in [39].
The tailbounded approach has the advantage that the assumption of stochastic
independence can be dropped. The bounds in [39] scale with O(n log n). Further,
[30] provides a lower delay bound for tandem networks that scales with Θ(n log n).
This is not in contrast with the work of Fidler [65], as the results in [30] do not
presume stochastic independence of the �ows.

This chapter ties in with the above results and aims at performance bounds
in general feedforward networks. To this end, the method used in [65], together
with a way to perform MGF-calculus with stochastically dependent processes, is
presented. Afterwards an algorithm is derived that either �nds service descriptions
in feedforward networks or identi�es the underlying graph as cyclic. This algorithm
uses the network operations� and	 only. Indeed, these are su�cient for a complete
reduction of acyclic graphs; however, the convolution operation ⊗ usually improves
global bounds signi�cantly. A simple modi�cation of the introduced algorithm
allows to take advantage of the convolution operation.

Section 3.3 describes the DISCO Stochastic Network Calculator [14] � an open-
source tool that implements the aforementioned algorithm. None of the other cur-
rently existing tools for deterministic network calculus [135, 78, 152, 136, 26]
extends to the stochastic domain. The Stochastic Network Calculator is so far the
only available tool that implements SNC.

3.1. MGF-bounded Analysis of Tandems

Assume for the rest of this chapter that K = N0.
The simplest feedforward network is a tandem that is traversed by the �ow

of interest (see Figure 3.1). Theorem 1.7 solves this scenario within deterministic
network calculus. For the analysis of stochastically independent, MGF-bounded
service elements, Theorem 2.36 could be applied; however, in such an iterative
application a series of constants K would arise. These constants lead to loose

33
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A1 U1

Ax,1

U2

Ax,2

. . . Un

Ax,n

A2 A3 An An+1

(a) Tandem with per-server cross�ows.

U1

U1

U2

U2

. . .

. . .
Un

Un

Ax

A
U1 U2

. . . Un

(b) Tandem with end-to-end cross�ow.

Figure 3.1. Two tandems with cross�ows.

bounds, especially when ρU1
(θ) ≈ ρU2

(θ). One can avoid the constants completely,
if the arrivals bounds are distributed over the service bounds. To that end, the MGF
is bounded after deconvolving the arrivals A with the system's service U1⊗. . .⊗Un.
This is an immediate consequence of Theorem 3 in [65].

Theorem 3.1 (End-to-End Performance in MGF-Calculus). Fix some θ > 0
and consider a sequence of two service elements as in Theorem 2.36 and Figure
2.6; further, let A � (σA, ρA) be an arrival to this tandem. Let A, U , and V be
stochastically independent. Under the stability condition ρA(θ) < −ρU (θ)∧−ρV (θ),
it holds

(3.1) φA�(U⊗V )(s,t)(θ) ≤ eρA(θ)(t−s) eθ(σA(θ)+σU (θ)+σV (θ))

(1− eθ(ρU (θ)+ρA(θ)))(1− eθ(ρV (θ)+ρA(θ)))

for all (s, t) ∈ Λ. If U ⊗ V (s, t) ≥ 0 for all (s, t) ∈ Λ, Equation (3.1) extends to all
pairs s, t ∈ N0 × N0.

Remark 3.2. The expression φA�U(s,t)(θ) is the key ingredient in any MGF-
based performance bound with arrivals A and service U . See also the proof of
Theorem 2.39.

Proof. First, �x some (s, t) ∈ Λ. Expanding the deconvolution leads to

(3.2) A� (U ⊗ V )(s, t) = max
0≤r1≤r2≤s

{A(r1, t)− U(r1, r2)− V (r2, t)}.
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Together with E(X ∨ Y ) ≤ E(X) + E(Y ) this gives

φA�(U⊗V )(s,t)(θ)

≤
s∑

r1=0

φA(r1,t)(θ)

s∑
r2=r1

φU(r1,,r2)(−θ)φV (r2,s)(−θ)

≤ eθ(σA(θ)+σU (θ)+σV (θ))
s∑

r1=0

eθρA(θ)(t−r1)
s∑

r2=r1

eθρU (θ)(r2−r1)+θρV (θ)(s−r2)

= eθ(σA(θ)+σU (θ)+σV (θ))eθρA(θ)(t−s)

·
s∑

r1=0

s∑
r2=r1

eθ(ρU (θ)+ρA(θ))(r2−r1)+θ(ρV (θ)+ρA(θ))(s−r2)

≤ eθ(σA(θ)+σU (θ)+σV (θ))eθρA(θ)(t−s)

·
∞∑
r′1=0

∞∑
r′2=0

eθ(ρU (θ)+ρA(θ))r′1+θ(ρV (θ)+ρA(θ))r′2

=
eθ(σA(θ)+σU (θ)+σV (θ))eθρA(θ)(t−s)

(1− eθ(ρU (θ)+ρA(θ)))(1− eθ(ρV +ρA(θ)))
.

For the case s > t and the assumption U ⊗ V ≥ 0, the maximum in (3.2) can be
limited to

A� (U ⊗ V )(s, t) = max
0≤r1≤t

{A(r1, t)− U ⊗ V (r1, s)}.

Similar steps as before lead to

φA�(U⊗V )(s,t)(θ)

≤
t∑

r1=0

s∑
r2=r1

φA(r1,t)(θ)φU(r1,r2)(−θ)φV (r2,s)(−θ)

≤ eθ(σA(θ)+σU (θ)+σV (θ))

·
t∑

r1=0

s∑
r2=r1

eθ(ρU (θ)+ρA(θ)(r2−r1)+θ(ρV (θ)+ρA(θ))(s−r2)+ρA(θ)(t−s)

≤ eθ(σA(θ)+σU (θ)+σV (θ))eθρA(θ)(t−s)

(1− eθ(ρU (θ)+ρA(θ)))−1(1− eθ(ρV (θ)+ρA(θ)))−1
.

�

Remark 3.3. The MGF-bounds of U1 ⊗U2 and A� (U1 ⊗U2) do not depend
on the ordering of the two service elements; hence, from a performance bound
perspective it is irrelevant in which sequence they are traversed.

Hölder's inequality is central for the analysis of stochastically dependent pro-
cesses.

Theorem 3.4 (Hölder's Inequality). Let X and Y be two positive, real-valued
random variables. Then it holds

E(XY ) ≤ E(Xp)
1/pE(Xq)

1/q

for all Hölder parameters 1
p + 1

q = 1 (p, q > 1).
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Proof. A proof can, for example, be found in [63]. �

The network operations (Theorems 2.35-2.38) and the MGF performance bounds
(Theorem 2.39 and 3.1) can be generalized with the help of Hölder's inequality. In-
stead of proving each theorem again, only the convolution result is given. The other
network operations follow in the same way.

Theorem 3.5 (General MGF-Convolution). Fix some θ > 0 and 1
p + 1

q = 1. If

U � (σU (pθ), ρU (pθ)) and V � (σV (qθ), ρV (qθ)) with ρU (pθ) 6= ρV (qθ), then

U ⊗ V � (σU (pθ)− σV (qθ) +K, ρU (pθ) ∨ ρV (qθ)),

where K depends on θ,ρU ,ρV , and the Hölder parameters.

Proof. Hölder's inequality replaces the assumption of stochastic indepen-
dence; hence, the MGF of the convolution U ⊗ V is bounded by

φU⊗V (s,t)(−θ) ≤
t∑

r=0

φU(s,r)(−pθ)
1/pφV (r,t)(−qθ)

1/q.

Under the assumption ρU (pθ) > ρV (qθ), the MGF-bounds lead to

φU⊗V (s,t)(−θ) ≤
t∑

r=0

(epθ(σU (pθ)+ρU (pθ)(r−s)))
1/p(eqθ(σV (qθ)+ρV (qθ)(t−r)))

1/q

= eθ(σU (pθ)+σV (qθ))eθρU (pθ)(t−s)
t∑

r=0

eθ(ρV (qθ)−ρU (pθ))(t−r)

≤ eθ(σU (pθ)+σV (qθ))eθρU (pθ)(t−s)(1− eθρV (qθ)−θρU (pθ))−1

= eθ(σU (pθ)+σV (qθ))eθρU (pθ)(t−s)K.

If ρV (qθ) > ρU (pθ), the constant reads K = (1− eθρU (pθ)−θρV (qθ))−1 instead. �

3.2. An Algorithmic Approach to Feedforward Networks

This section presents an algorithm to analyze feedforward networks with the
help of MGF-calculus. As in Section 1.2, networks are considered as a graph with
labeled edges and nodes. The labels are (σ, ρ)-bounds on the arrivals and service
elements, respectively. The goal is to reduce the graph to a single labeled node and
a single labeled �ow. The initial information on the network consists of bounds on
the ingress arrivals and the service elements; further, the �ows' priorities at each
node are given.

The following notations are introduced to describe the graph and its labels: The
graph is de�ned by a set of nodes N and I routes Ri = (ri,1, . . . ri,li) ⊂ N li together
with priorities Pi ∈ (R+

0 )li for each i = 1, . . . , I. Here pi,k denotes the priority of
the i-th route at its k-th hop. At each node the priorities are well-de�ned, i.e.,
can be totally ordered. The initial arrival into the network is labeled and denoted
by Ai,ri,1 � (σAi , ρAi). The arrivals on subsequent hops of a route i are denoted
by Ai,ri,2 , Ai,ri,3 , . . . and are initially unlabeled. The set of edges is constructed

from the routes via E =
⋃I
i=1

⋃li
k=1(ri,k−1, ri,k). Each service element j ∈ N is a

dynamic Uj-server for the aggregate {(i, k) ∈ E : k = j} of its respective arrivals
and is initially labeled with Uj � (σUj , ρUj ). As each node o�ers a strict priority
scheduling, the incoming arrival with the highest priority sees a dynamic Uj-server;
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Figure 3.2. An example network with routes R1 = (2, 3),
R2 = (1), R3 = (2, 3), R4 = (1, 2), P1 = (10, 5), P2 = (5),
P3 = (8, 4), P4 = (7, 6). The graph is drawn in the following
way: When two �ows enter the same node, the incoming edge of
the �ow with the higher priority is drawn above the other �ow's
edge.

further, the arrivals of route i see a dynamic Ui,j-server at service element j. As
the graph is considered to be acyclic, it follows that each route visits any node at
most once. Hence, the notation Ui,j is well de�ned.

Figure 3.2 gives an example of a network's graph (N , E), as well as its routes
Ri with their priority vectors Pi.

The algorithm for computing performance bounds uses a stack S containing
nodes from N . A service element enters the stack, when all its incoming edges are
labeled, i.e., an MGF-bound is known for each arriving �ow.

Example 3.6. In Figure 3.2 the algorithm initializes S by pushing node U1.
After the stack is updated, the �rst service element of S is popped to compute
leftover and output descriptions. In the example element U1 is popped and the
leftover operation (Theorem 2.37) gives

U4,1 = U1 � (σU1
, ρU1

)

U2,1 = U1 	A4,1 � (σU1
+ σA4

, ρU1
+ ρA4

).

Inserting these into the output operation (Theorem 2.38) gives the new labels

A4,2 � (σU1
+ σA4

+K1,4, ρA4
)

A2,e′ � (σU1
+ σA4

+ σA2
+K1,2, ρA2

).

After computing these bounds, all ingress edges of node U2 are labeled and U2 is
pushed into S. In the next step the algorithm pops U2 and calculates labels for
A1,3, A3,3, and A4,e′ . This, in turn, allows U3 to be pushed. In a last step (by
popping U3 immediately again), the last service descriptions and output bounds
are calculated. The result is a fully labeled network.

In general one is interested in a particular �ow as it traverses a sequence of one
or several service elements. This �ow is called the �ow of interest. The sequence
of service elements it traverses is called the service of interest. Assume for a while
that the service of interest consists of a single service element. The above algorithm
always terminates by emptying its stack S. At this point either of two results is
achieved: 1) the �ow of interest is labeled and a service description for the �ow of
interest is given or 2) the labeling is incomplete. It is easy to see that the algorithm
terminates in the former way, if the network is acyclic.
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Consider the network operations 	 and � as one elementary operation. Then
the runtime of the algorithm is bounded by |N | · I. This runtime is attained by a
tandem network of |N | nodes and I, where each �ow traverses the full tandem (see
Figure 3.1 (b) for an example).

The algorithm needs to track any arising stochastic dependencies. In Example
3.6 �ows A4,1 and A2,1 are stochastically independent, �ows A4,2 and A2,e′ , however,
are not. Both of them have been served by the same service element. In this way
stochastic dependencies grow deeper into the network by each hop. The presented
algorithm discovers and stores these dependencies for each �ow or service object
(see next section). Any step involving an Ai,j and a Uk,l such that the intersection
of their corresponding dependency-vectors is nonempty introduces a new pair of
Hölder parameters. Hence, the result of this algorithm leads to functions of multiple
Hölder parameters.

When the service of interest consists of several service elements, a simple (yet
loose) end-to-end delay bound is

P(di(t) > T ) ≤
li∑
k=1

P
(
di,ri,k >

T
li

)
.

Here di,ri,k denotes the delay at the k-th node of �ow i. A better end-to-end delay
bound is achieved by using the convolution theorem, as presented in the previous
section.

3.3. The DISCO Stochastic Network Calculator

This section presents the DISCO Stochastic Network Calculator [14]. It is the
�rst � and so far only � publicly available tool that automatizes the steps needed to
calculate a stochastic performance bound. It uses the above algorithm in its �rst
step. In a second step the program searches for a near optimal choice of Hölder
parameters and θ.

To serve the needs of an evolving theory, the DISCO SNC aims to be easily
extendable by its user. The DISCO SNC allows researchers to implement their
own methods, e.g., a strategy to compute end-to-end delays or a heuristic for a
numerical optimization of free parameters. To this end, the DISCO SNC follows a
modular approach, in which the core (the SNC object) relates the modules to each
other. Figure 3.3 shows these modules.

In its �rst step the DISCO SNC works on a symbolic level. This allows to
separate analysis techniques (as discussed in Section 1.2) from the step of numerical
optimization. As a result, the user can switch strategies for the analysis or the
numerical optimization independently and does not need to concern about the
core's code.

The di�erent modules and their objects are presented in detail now. The entire
code can be found online [10].

3.3.1. The SNC Class, the Core of DISCO SNC. (→ Code Snippet 1)
The class SNC contains the main-method. It starts and prepares the GUI; further,
it serves as an interface to the classes Network, Analysis, and Optimizer. Al-
ternatively, the implemented methods can be used directly in the main-method to
construct a network and perform calculations on it.
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Figure 3.3. relation of the DISCO SNC components.

The class SNC, further, contains a list of �ows and vertices (the building blocks
of the network) and a GUI element. It provides methods to load, save, manipulate,
and analyze networks. The latter is performed by an AnalysisType-object. For
the numerical optimization of the resulting functions, an OptimizationType-object
is used.

3.3.2. The Network-class. (→ Code Snippet 2) All information of a given
scenario is stored in service elements and �ows with their routing through and
priorities at the service elements. To save and load a scenario, this information is
bundled in the network-class. In addition to topological information the network-
class contains a HashMap of Hoelders. These represent Hölder-parameters that
occur in the analysis of a scenario.

Network.java also contains HashMap-objects of flows and vertices (see the
next two subsections); further, it contains methods, such as addFlow, to manipulate
the network.

3.3.3. Flows and Arrivals. (→ Code Snippet 5) Each flow object represents
and contains the information of a �ow through the entire network. It contains
three ArrayList-objects: vertices, priorities, and the arrivals. The former
two give the route of a �ow by the sequence of crossed vertices together with the
priority at each service element. The latter is a description of arrival bounds for
each hop of a �ow, i.e., the labels in the corresponding graph.

Objects of the Arrival-class (→ Code Snippet 4) are closely related to flow-
objects. An arrival-object contains two Set<Integer>-objects to store the Hölder-
parameters that are of relevance for evaluating the corresponding arrival-bound. It
contains, further, methods to perform the two network operations ⊕ and �. The
former takes two arrival-objects as input, the latter an arrival- and a service-
object.

Two other members of an arrival-object are sigma and rho of type
FunctionIF. One can think of these objects as functions in the mathematical
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Code Snippet 1 Members and methods of SNC.java

public class SNC {

//Members

private static HashMap<Integer, Flow> flows;

private static HashMap<Integer, Vertex> vertices;

private static GUI gui;

...

//Main-Method

public static void main(String[] args) throws Exception{

SNC snc = new SNC();

vertices = Network.getVertices();

flows = Network.getFlows();

gui = new GUI(snc);

SwingUtilities.invokeLater(gui);

}

//Methods

//Loading, saving, and manipulations of networks

public void loadNetwork(File file){...}

public void saveNetwork(File file){...}

public boolean removeFlow(Flow flow) {...}

public int addFlow(Flow flow){...}

//Analysis of Network (symbolic)

public Arrival analyzeNetwork(Flow flow, Vertex vertex, SNC.AnalysisType

analyzer, AbstractAnalysis.Boundtype boundtype){...}

//Calculation of Performance Bounds (numeric)

public double calculateBound(Flow flow, Vertex vertex,...,

SNC.AnalysisType analyzer, SNC.OptimizationType optimizer,...){...}

...

sense. Indeed, FunctionIF's most important method is to take one or more pa-
rameters and evaluate a mathematical function at these parameters. For example
AddedFunctions.java (→ Code Snippet 3) has two FunctionIF-objects � called
atom-functions. When the getValue-method is called, it evaluates both atom-
functions and returns the sum of it. To this end, AddedFunctions.java basically
serves the purpose of + in the expression f(θ) + g(θ), where f and g are the atom-
functions. The FunctionIF-interface makes the symbolic computation of perfor-
mance bounds possible. In the context of arrivals, the FunctionIF sigma and
rho serve the corresponding roles in the MGF-bounds (σ, ρ). For details see the
evaluate-method in Code Snippet 4.

3.3.4. Vertex and Service. (→ Code Snippet 6) The relation between
vertex and service is similar to the one between flow and arrival. A vertex
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Code Snippet 2 Members and methods of Network.java

public class Network {

//Members

...

private static HashMap<Integer,Flow> flows = new HashMap<Integer,

Flow>(0);

private static HashMap<Integer,Vertex> vertices = new HashMap<Integer,

Vertex>(0);

private static HashMap<Integer,Hoelder> hoelders = new HashMap<Integer,

Hoelder>(0);

//Methods

public static void addVertex(Service service, String alias){...}

public static void addFlow(ArrayList<Integer> route, int priority){...}

...

Code Snippet 3 AddedFunctions.java.

public class AddedFunctions implements FunctionIF {

//Members

private FunctionIF first;

private FunctionIF second;

...

//Methods

@Override

public double getValue(double theta, HashMap<Integer, Hoelder>

parameters)... {

...

//Constructs the parameter-arrays that serve as input for the

atom-functions

HashMap<Integer, Hoelder> given1 = new HashMap<Integer, Hoelder>();

HashMap<Integer, Hoelder> given2 = new HashMap<Integer, Hoelder>();

//Multiplies the Hölder-coefficients to theta, if needed

double theta1 = (hoelder == null) ? theta : theta*hoelder.getPValue();

double theta2 = (hoelder == null) ? theta : theta*hoelder.getQValue();

return first.getValue(theta1, given1) + second.getValue(theta2,

given2);

}

contains information about the original service of a service element before calcu-
lating any leftover service guarantees. A vertex has members priorities and
incoming. Both are HashMap-objects. They contain information about the in-
coming �ows at the vertex and their priorities. The incoming arrivals are either
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Code Snippet 4 Members and methods of Arrival.java

public class Arrival ... {

//Members

...

private FunctionIF rho;

private FunctionIF sigma;

private Set<Integer> Arrivaldependencies;

private Set<Integer> Servicedependencies;

//Methods

public double evaluate(double theta, HashMap<Integer, Hoelder>

sigmaparameters, HashMap<Integer, Hoelder> rhoparameters, int n, int

m) ... {

double value;

try{

value = Math.exp(theta*sigma.getValue(theta, sigmaparameters) +

theta*rho.getValue(theta, rhoparameters)*(n-m));

}

...

return value;

}

public Arrival multiplex(Arrival arrival1, Arrival arrival2){

Arrival arrival;

//Independent case

...

FunctionIF givensigma = new

AddedFunctions(arrival1.getSigma(),arrival2.getSigma(),true);

FunctionIF givenrho = new AddedFunctions(arrival1.getRho(),

arrival2.getRho(), true);

arrival = new Arrival(givensigma, givenrho);

//Keeps track of stochastic dependencies

arrival.addArrivalDependency(arrival1.getArrivaldependencies());

arrival.addArrivalDependency(arrival2.getArrivaldependencies());

arrival.addServiceDependency(arrival2.getServicedependencies());

arrival.addServiceDependency(arrival1.getServicedependencies());

return arrival;

}

public Arrival output(Arrival arrival, Service service){

Arrival output;

FunctionIF givensigma = new AddedFunctions(new

AddedFunctions(arrival.getSigma(),service.getSigma(),true),new

BFunction(...),true);

FunctionIF givenrho = arrival.getRho();

output = new Arrival(givensigma, givenrho);

//Keeps track of stochastic dependencies

...

return output;

}

...
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Code Snippet 5 Members and methods of Flow.java

public class Flow ... {

//Members

private ArrayList<Integer> vertices;

private ArrayList<Arrival> arrivals;

private ArrayList<Integer> priorities;

...

//Methods

public void learnArrival(Arrival arrival){

arrivals.set(established_arrivals, arrival);

established_arrivals++;

}

public void setInitialArrival(Arrival arrival){

arrivals.add(0, arrival);

arrivals.get(0).addArrivalDependency(flow_ID);

established_arrivals = 1;

}

...

established or unknown. In this context being established means that the vertex

knows an MGF bound of an arrival or, stated di�erently, the corresponding edge is
labeled.

The member service contains the MGF-bound for the service element in form
of FunctionIF-objects. The service-class is very similar to the arrival-class in
its structure. It provides methods to perform the network operations ⊗ and 	.
Each of them has a new service-object as output.

The serve-method is the most important one of a vertex-object. It executes
the two network operations 	 and � at the service node. Afterwards, the served
�ow is removed from the list of incoming �ows. Iterating this method results in
a successive computation of left-over service for each incoming �ow and an MGF-
bound for each outgoing �ow.

3.3.5. Analysis. (→ Code Snippet 7) The analysis-class performs symbolic
operations exclusively. It is an abstract class with the task to derive a stochastic
performance bound at a node of interest for the �ow of interest. This bound is
either a backlog, delay, or an output bound and is given algebraically. The abstract
class is presented in Code Snippet 7 and consists mainly of the analyze-method.

The result of analyze is an object of type Arrival. This is because a per-
formance bound as in Theorem 2.39 can be expressed via two functions ρ and σ
again.

The algorithm of the previous section is implemented in the SimpleAnalysis-
class. It extends the AbstractAnalysis-class. Code Snippet 8 presents how the
stack S of the previous section is implemented. The analysis of the network is � in
principle � just a manipulation of functions on a symbolic level. Hence, this step
requires no signi�cant computational e�ort compared to the numerical optimization
of free parameters.
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Code Snippet 6 Members and methods of Vertex.java

public class Vertex ... {

//Members

...

private Service service;

private HashMap<Integer, Integer> priorities;

private int highest_priority;

private HashMap<Integer, Arrival> incoming;

//Methods

public void learnArrival(int flow_id, Arrival arrival) throws Exception{

...

incoming.put(flow_id, arrival);

...

}

public Arrival serve() throws Exception{

...

//Calculates the output bound

Arrival arrival = incoming.get(prioritized_flow_id);

Arrival output = arrival.output(arrival, service);

//Calculates the leftover service

service = service.leftover(arrival, service);

//Removes the served flow from the arrival-list

priorities.remove(prioritized_flow_id);

incoming.remove(prioritized_flow_id);

...

return output;

}

...

Code Snippet 7 Members and methods of AbstractAnalysis.java

public abstract class AbstractAnalysis {

//Members

protected HashMap<Integer, Vertex> vertices;

protected HashMap<Integer, Flow> flows;

protected int flow_of_interest;

protected int vertex_of_interest;

public enum Boundtype{

BACKLOG, DELAY, OUTPUT, END_TO_END_DELAY

};

protected Boundtype boundtype;

//Methods

public abstract Arrival analyze() throws Exceptions;
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Code Snippet 8 analyze-method of SimpleAnalysis.java

public class SimpleAnalysis extends AbstractAnalysis {

//Members

private Stack<Vertex> can_serve;

//Methods

public Arrival analyze() throws Exceptions{

//Initializes the stack of vertices, for which all arrivals are known

for(Map.Entry<Integer, Vertex> entry : vertices.entrySet()){

if(entry.getValue().canServe()) can_serve.push(entry.getValue());

} ...

Vertex current_vertex;

Arrival bound = new Arrival();

boolean successful = false;

//Successively serves the flows until the FoI and SoI is characterized

while(!can_serve.isEmpty()){

//Setup of service and flow

current_vertex = can_serve.pop();

int flowID = current_vertex.whoHasPriority();

Vertex next_vertex =

vertices.get(flows.get(flowID).getNextVertexID());

//Checks for the current vertex and flow being the SoI and the FoI,

respectively

if(current_vertex.getVertexID() == vertex_of_interest && flowID ==

flow_of_interest){

bound = calculateBound(flows.get(flowID).getLastArrival(),

current_vertex.getService());

successful = true;

break;

}

//Calculates the output and sets the service in the vertex to the

next leftover service

Arrival output = current_vertex.serve(); ...

flows.get(flowID).learnArrival(output); ...

next_vertex.learnArrival(flowID, output);

//will push the next vertex, if it knows all its arrivals

if(next_vertex.canServe()) {

can_serve.push(next_vertex);

} ...

//will push the current vertex, if it has more flows to serve

if(current_vertex.canServe()) can_serve.push(current_vertex);

}

//Checks for the FoI and the SoI being calculated

if(successful == false) throw new DeadlockException("Flow of Interest

or Arrival of Interest can't be calculated.

Non-feedforward-Network?");

return bound;

}

}
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Code Snippet 9 Members and methods of AbstractOptimizer.java

public abstract class AbstractOptimizer {

//Members

protected Arrival input;

protected AbstractAnalysis.Boundtype boundtype;

protected HashMap<Integer, Hoelder> sigma_parameters;

protected HashMap<Integer, Hoelder> rho_parameters;

protected double max_theta;

//Methods

...

public abstract double Bound(Arrival input, AbstractAnalysis.Boundtype

boundtype, double bound, double thetagranularity, double

hoeldergranularity) throws Exceptions;

public abstract double ReverseBound(Arrival input,

AbstractAnalysis.Boundtype boundtype, double violation_probability,

double thetagranularity, double hoeldergranularity) throws

Exceptions;

3.3.6. Optimization. (→Code Snippet 9) To achieve a numerical value for
a performance bound, the method evaluate of the Arrival-object of the previous
step must be called. This requires a numerical value for θ and all additional Hölder-
parameters. The resulting performance bound depends heavily on a good choice
of these parameters. It is the goal of the optimizer to �nd a good assignment of
parameters.

Two methods were implemented: Bound and ReverseBound. The former gives
the violation probability of a backlog or delay bound controlled by the user. The
latter takes as input a �xed violation probability ε. Its output is the best found
backlog- or delay bound that is violated by at most ε.

The DISCO SNC provides two methods for optimizing the set of parameters.
The �rst one is a systematic search through the parameter-space. To this end,
the interval of possible θ-assignments is divided into steps of length δθ. The range
of a Hölder-parameter is unlimited in principle. For a �nite set of possible values
for p, the proposed method discretizes the interval [1, 2] into steps of length δp.
Now p takes values in this set and afterwards q iterates through the same set of
values; since 1

p + 1
q = 1 this method covers a wide range of possible values for the

Hölder-pair. The proposed discretization is coarse for p- or q-values close to 1. Yet,
practice has shown that optimal Hölder-parameters are rather close to 2; hence,
this discretization is still of good value.

The number of Hölder-parameters depends on the scenario and thus must be
a variable. The SimpleOptimization-class uses a tally counter to systematically
search through a parameter-space of unknown dimension. The tally counter re-
turns FALSE the �rst time it has run through all possible choices for the Hölder-
parameters.

3.3.7. Improving the Optimization Step. The amount of Hölder-
parameters can increase very quickly for a given scenario, even for few nodes and
�ows. Thus, systematically searching through all combinations of parameters be-
comes a restricting factor quickly.
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Figure 3.4. Network corresponding to Table 1. All service ele-
ments have a constant rate of 3. The increments of the �ows are
stochastically independent and exponentially distributed with pa-
rameter λ. The backlog bound is calculated for the red part of the
network.

δθ, δp rHJ rS xHJ xS

0.05 ≈1 sec. ≈3 min. 60.3 60.285
0.04 ≈1 sec. ≈7 min. 53.013 52.155
0.03 ≈1 sec. ≈37 min. 52.035 52.035
0.001 ≈1 sec. N/A 51.092 N/A

Table 1. Runtime and delay bounds of HJ heuristic and system-
atic (S) search at di�erent granularities. A systematic search for
δθ = δp = 10−3 exceeded the author's patience (8 hours).

The DISCO SNC implements a second method that uses the heuristic of Hooke
and Jeeves [79] to �nd good sets of parameters much faster. The HJ-heuristic is
a discrete version of gradient based optimization: From some starting point in the
discretized parameter space, the performance bounds of all 1-hop-neighbors are
compared to the performance bound of the starting point. A neighbor is de�ned as
a set of parameters that di�ers from the original set of parameters in exactly one
variable (θ or an arbitrary Hölder-parameter) by exactly one δθ or δp, respectively. If
a better performance bound is found amongst the neighbours, the heuristic moves to
the best performing neighbor. This procedure continues until a set of parameters is
found that cannot be improved further by moving to a neighboring set of parameters
(local minimum). Code Snippet 10 presents the loop in which this method improves
the performance bounds in pseudocode. As this heuristic tests a small portions of
the parameter-space, a much faster runtime is expected.

To evaluate this e�ect, a toy example (Figure 3.4) consisting of three �ows and
seven nodes is tested. Solving such a scenario by hand, although looking simple,
is already out of scope. The resulting parameter space encompasses four pairs of
Hölder parameters. The runtime r of the program and the resulting quality of the
bound b depends on δθ and δp, which are chosen equal for this evaluation. Table
1 shows that the runtime of the HJ-heuristic easily outperforms the runtime of
a systematic search. At the same time the resulting bounds are of almost equal
quality (xHJ and xS are the best found value for x in the bound P(b > x) ≤ 10−4).
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Code Snippet 10 The core loop of SimpleGradient.java

//Computes initial value for Backlog Bound with all Hoelder-Parameter equal

to 2 and theta maximally chosen ...

double backlogprob = input.evaluate(theta, 0, 0);

while(improving the bound){

//Checks for a better result, if theta is decreased ...

theta = theta - thetagranularity;

new_backlogprob = input.evaluate(theta, 0, 0);

if(backlogprob > new_backlogprob){

backlogprob = new_backlogprob;

change = SimpleGradient.Change.THETA_DEC;

}

theta = theta + thetagranularity;

//Checks for a better result, if theta is increased ...

//Checks all neighbors resulting from decreasing the P-value of one

Hoelder parameter

for(all considered neighbors){

updateHoelderParameters;

new_backlogprob = input.evaluate(theta, 0, 0);

if(backlogprob > new_backlogprob){

backlogprob = new_backlogprob;

change = SimpleGradient.Change.HOELDER_P;

} ...

}

//Check each neighbor resulting from decreasing the Q-Value of one

Hoelder parameter ...

switch(change){

case THETA_INC:

theta = theta + thetagranularity;

improved = true;

break;

case THETA_DEC: ...

case HOELDER_P:

updateHoelderParameters;

improved = true;

break;

case HOELDER_Q: ...

default:

improved = false;

break;

}

}

result = backlogprob;



CHAPTER 4

Statistical Network Calculus

The results of this chapter are joint work with S. Henningsen, S. Birnbach, and
J. Schmitt [12].

Stochastic network calculus works with a variety of di�erent tra�c models.
Independent and identically distributed increments are bounded in Example 2.32,
MGF-bounds for Markov-modulated arrivals are constructed in Lemma 10.6, and
a model using fractional Brownian motions is discussed in [132], to name three
examples.

As all of these are models only, any real arrivals must be analyzed �rst be-
fore stochastic network calculus can be applied. In this modeling step assumptions
must be made. These assumptions lie in the chosen tra�c model and its param-
eters. But also in their relations between arrivals and service elements, i.e., the
stochastic dependency structures. Usually these assumptions stem from measure-
ments in combination with statistical methods. Consider, as example, independent,
exponentially distributed increments with rate parameter λ; then, the parameter λ
can be estimated by the arithmetic mean of several observed increments. Doing so
bears the risk that the seen sample deviates so strongly from the usual behavior,
that the resulting λ is too large. Consequently, the real size of future increments
would be underestimated.

In many �elds this risk � the con�dence level α � is of little or no importance.
In stochastic network calculus, however, one speci�cally asks for events that happen
with almost vanishing probabilities. Usually these violation probabilities are much
smaller (of order 10−3, 10−6 or even 10−9) than the usual level of con�dence used in
statistics (α = 0.95, 0.99 or 0.999). Hence, the endeavors put into SNC to achieve
a violation probability of 10−6 can quickly become vain, if the corresponding model
is wrong with a probability of 1%. Simply pushing α to a value extremely close
to 1 cannot be a su�cient solution either, as the resulting model becomes ever
more conservative. This chapter presents a third way: The con�dence level α
is integrated into the performance bounds directly. This in turn integrates the
modeling step into the analysis of the system. In the above example this works
as follows: Instead of modeling the increments for some �xed value of λ, only
their exponential distribution is assumed. This e�ectively leads to a reduction of
assumptions.

Such statistical performance bounds are the goal of this chapter. To construct
these, a su�cient condition on the used statistics is given in Theorem 4.2. This
condition allows to integrate the con�dence level into the performance bounds. This
chapter gives three estimators as examples. Each of them di�ers in the amount of
presumed knowledge. Eventually a numerical evaluation is concerned with the
costs, but also the opportunities that arise from the usage of statistical network
calculus (StatNC).

49
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Ciucu and Schmitt construct stochastic arrival curves from measurements for
weighted hyperexponential tra�c in [43]. Similarly, Liebeherr et al. construct
arrival curves for heavy-tailed, self-similar tra�c in [107]. However, in these works
no con�dence levels are involved or used inside the resulting performance bounds.

The estimation of service curves has been object of recent research [108, 114,
113, 115]. The authors perform active measurements of a system's available service
with the help of probing tra�c. The so obtained stochastic service descriptions are
similar to the one in Section 2.1. An approach more similar to the one in this
chapter is followed by Jiang et al. [149, 29]. There internet routers are described
by parametrized service curves. These parameters are estimated by performance-
measurements like the length of backlog periods. However, these works do not
calculate or integrate the con�dence level α either. Further, the objective is di�erent
from this chapter that focuses on estimating the arrivals.

Measuring arrivals is also a topic in the earlier works of admission control [85,
74, 76, 130]. Originating in a time in which stochastic network calculus was still
under heavy construction, they center around the e�ect of statistical multiplexing.
Further, these works assume a given arrival description and measure its validity.
In contrast to that, the following sections are concerned with constructing these
arrival descriptions in the �rst place.

An interesting direction is opened by the work of Dong, Wu, and Srinivasan
[56]. Following the here presented idea, they apply copulas for an analysis of sto-
chastic dependencies between arrivals. A full integration of copula-based statistics
into stochastic network calculus promises to be bene�cial: It might not only re-
duce the number of assumptions made, but also improve the resulting performance
bounds overall.

4.1. The Framework of Statistical Network Calculus

In the derivation of backlog bounds (see Equation (2.25)) the MGF-bound
φA(s,t)(θ) ≤ eθσA(θ)+θρA(θ)(t−s) plays a key role. Here problems arise, when the
model of A is uncertain. If the exact distribution of the increments is unknown,
the expression φA(s,t)(θ) cannot be calculated. This in turn prohibits calculation of
further results. Tools of mathematical statistics can bound φA(s,t)(θ) and e�ectively
replace the MGF in the proof of 2.39. The so used statistic is a function of the
sample ā = (a(t0), . . . , a(−1)). This section's goal is to derive su�cient conditions
such that the uncertainty of the used estimator is included in the performance
bounds.

This chapter uses K = Z and assumes that a single �ow A enters a dynamic
U -server. For K = Z the bivariates A(s, t) must be generalized to the negative

axis: A(s, t) :=
∑t
r=s+1 a(r). Since the basic idea of StatNC is to apply statistical

methods on past observations, time indices t < 0 are thought of as lying in the
past; further, this chapter assumes a value t0 ≤ 0 such that a(t) = 0 for all t < t0.
The time t0 represents the beginning of the observations.

The following lemma prepares the main result of this chapter. It shows that
the backlog bound is monotone in the �ow's MGF.

Lemma 4.1. Fix some θ > 0. If A and U are stochastically independent and

φ̂s,t(θ) ≥ φA(s,t)(θ) for all (s, t) ∈ Λ, then
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P(q(t) > N) ≤ e−θN
t∑

s=0

φ̂s,t(θ)φU(s,t)(−θ)

for all t ∈ N0.

Proof. From the proof of Theorem 2.39 it follows

P(q(t) > N) ≤ e−θN
t∑

s=0

φA(s,t)(θ)φU(s,t)(−θ) ≤ e−θN
t∑

s=0

φ̂k,n(θ)φU(s,t)(−θ).

�

Now de�ne the space S by

f ∈ S ⇔ f : N0 × N0 × R+ → R̄+
0 .

The MGF's continuation

φ̄A(s,t)(θ) :=

{
φA(s,t)(θ) if φA(s,t)(θ) is de�ned

∞ if φA(s,t)(θ) is unde�ned

is an example for a mapping belonging to S.
The following theorem constructs the framework of statistical network calculus.

Theorem 4.2. Fix some t ∈ N0. Let θ∗ = sup{θ : φA(s,t)(θ) < ∞} and

P : R|t0| → S be a statistic such that

(4.1) sup
θ∈(0,θ∗)

P
( ⋃

(s,t)∈Λ

P (ā)(s, t, θ) < φA(s,t)(θ)
)
≤ α.

If A and U are stochastically independent, it holds

P(b(t) > x) ≤ α+ e−θN
t∑

s=0

P (ā)(s, t, θ)φU(s,t)(−θ)

for all t ∈ N0 and 0 < θ < θ∗.

Proof. Fix some 0 < θ < θ∗. Then

P(b(t) > x) = P
(
b(t) > x ∩

⋃
(s,t)∈Λ

P (ā)(s, t, θ) < φA(s,t)(θ)
)

+ P
(
b(t) > x ∩

⋂
(s,t)∈Λ

P (ā)(s, t, θ) ≥ φA(s,t)(θ)
)

≤ α+ P
(
b(t) > x

∣∣∣ ⋂
(s,t)∈Λ

P (ā)(s, t, θ) ≥ φA(s,t)(θ)
)

≤ α+ e−θx
t∑

s=0

P (ā)(s, t, θ)φU(s,t)(−θ).

The last step uses Lemma 4.1. �

Remark 4.3. By applying Hölder's inequality results for the stochastically
dependent case are obtained as well.
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The statistic P is de�ned here in the most general way. There is, however, no
need to use the complete past ā to construct a P . Consider a subsample ā′ ⊂ ā and
a statistic P ′ : R|ā′| → F on ā′. If P ′ meets the assumption of Theorem 4.2 for ā′,
it extends canonically to a statistic P , by setting P (ā) = P ′(ā′) for all ā such that
ā ⊃ ā′ holds.

Another method of subsampling would be to use a sliding window of length
l on the observations. Such an approach is particularly interesting for an online
estimation that dynamically adapts to changes in the arrival's characteristics. In
Section 4.3.2, the versatility of this dynamic view is leveraged to achieve bounds
that improve upon a pure SNC approach.

4.2. Examples of Estimators

Estimating the quantity φA(s,t)(θ) for an arbitrary θ ∈ (0, θ∗) and (s, t) ∈ Λ
is key for StatNC. The following scenarios and corresponding estimators showcase
how such statistics can be constructed. A fairly simple example illustrates the core
idea of parametric estimators; more complex scenarios follow.

4.2.1. Exponential Tra�c. Assume the increments to be independend, ex-
ponentially distributed for some unknown parameter λ. As λ completely determines
the distribution of a(t), the construction of P relies on estimating that parameter.
A lower bound for λ with con�dence level α is given by

λ :=
χ2
α(2|t0|)

2 ·A(t0 − 1,−1)
,

where χ2
α(2|t0|) is the one-sided α-quantile of a Chi-squared distribution with 2|t0|

degrees of freedom; indeed, scaling A(t0 − 1,−1) by 2λ results in a random vari-
able that is χ2(2|t0|)-distributed. The MGF of the exponential distribution is
φE(λ, θ) = ( λ

λ−θ ), for all θ < λ. From this follows the implication

λ ≤ λ⇒ λ

λ− θ
≥ λ

λ− θ
.

Hence, the statistic

P (ā)(s, t, θ) :=


(

λ
λ−θ

)n−m
for θ < λ

∞ for λ ≤ θ

ful�lls

P (ā)(s, t, θ) ≥ φA(s,t)(θ)

for all θ < λ and (s, t) ∈ Λ. By the choice of λ it follows

1− α = P(λ ≤ λ) ≤ inf
θ∈(0,λ)

P
( ⋂
s≤t

P (ā)(s, t, θ) ≥ φA(s,t)(θ)
)
,

which is Condition (4.1).
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4.2.2. Bandwidth-Limited i.i.d. Tra�c. Let a(t) be i.i.d. and adhere to
a bandwidth limitation M , i.e., a(t) ≤M for all t ∈ Z. In contrast to the previous
subsection no further knowledge about the distribution of the increments a(t) is
assumed. Yet, with the help of the Dvoretzky-Kiefer-Wolfowitz inequality, a P
ful�lling Condition (4.1) can be constructed.

Lemma 4.4 (Dvoretzky-Kiefer-Wolfowitz Inequality). Denote by F the distri-

bution of a(t) and by Ft0(x) := 1/|t0|
∑−1
s=t0

1{a(s)≤x} the empirical distribution func-
tion of the sample ā. For all ε > 0 it holds

P
(

sup
x∈[0,M ]

|Ft0(x)− F (x)| ≤ ε
)
≥ 1− 2e−2|t0|ε2 .

Proof. See for example [118]. �

Theorem 4.5. Let ε > 0. The statistic P de�ned by

P (ā)(s, t, θ) := (Ā+ ε(eθM − 1))t−s

satis�es condition (4.1), where Ā := 1
|t0|
∑−1
s=t0

eθas .

Proof. From the event in the Dvoretzky-Kiefer-Wolfowitz inequality it follows
successively

F (x) ≥ Ft0(x)− ε for all x ∈ [0,M ],

⇒ 1− F (x) ≤ 1− Ft0(x) + ε for all x ∈ [0,M ],

⇒ P
(
eθa(s) > x

)
≤ 1− Ft0 (1/θ log(x)) + ε for all x ∈ [1, eθM ],

⇒ φa(s)(θ) = 1 +

ˆ eθM

1

P
(
eθa(s) > x

)
dx

≤ 1 +

ˆ eθM

1

1− Ft0 (1/θ log(x)) + εdx.

Hence, it holds

P
(
φa(s)(θ) ≤ 1 +

ˆ eθM

1

1− Ft0
(

1
θ log(x)

)
+ εdx

)
≥ P

(
sup

x∈[0,M ]

|Ft0(x)− F (x)| ≤ ε
)

≥ 1− 2e−2|t0|ε2

for all θ > 0. This means[
0, 1 +

ˆ eθM

1

1− Ft0 (1/θ log(x)) + εdx

]



4.2. EXAMPLES OF ESTIMATORS 54

is a one-sided con�dence interval for φa(s)(θ) with signi�cance level α = 2e−2|t0|ε2 .
The integral simpli�es to:

ˆ eθM

1

1− Ft0 (1/θ log(x)) + εdx = (1 + ε)(eθM − 1)− 1/|t0|

ˆ eθM

1

−1∑
i=t0

1{eθa(s)≤x}dx

= (1 + ε)(eθM − 1)− 1/|t0|

−1∑
s=t0

ˆ eθM

1

1{eθa(s)≤x}dx

= (1 + ε)(eθM − 1)− 1/|t0|

−1∑
s=t0

eθM − eθa(s)

= (1 + ε)(eθM − 1)− eθM + 1/|t0|

−1∑
s=t0

eθa(s)

= Ā− 1 + ε(eθM − 1).

Inserting the corresponding ε for a signi�cance level α, the con�dence interval
becomes [

0, Ā+

√
− log(α2 )

2|t0|
(eθM − 1)

]
.

The statistic P ful�lls

inf
θ>0

P
( ⋂

(s,t)∈Λ

P (ā)(s, t, θ) ≥ φA(s,t)(θ)
)

= inf
θ>0

P
( ⋂

(s,t)∈Λ

t∏
r=s+1

Ā+ ε(eθM − 1) ≥
t∏

r=s+1

φa(r)(θ)
)

≥ inf
θ>0

P(Ā+ ε(eθM − 1) ≥ φa(r)(θ)) ≥ 1− α

or equivalently

sup
θ>0

P
( ⋃

(s,t)∈Λ

P (ā)(s, t, θ) < φA(s,t)(θ)
)
≤ α.

�

4.2.3. Markov-Modulated Arrivals. This section considers a tra�c class
that no longer has i.i.d. increments. For this, consider a Markov chain
(Yt)t∈{t0,...} ∈ {0, 1}N0 , also called the signal, with transition matrix

T =

(
1− µ µ
ν 1− ν

)
.

Denote the �rst state as O� -state, in which Yt = 0 and the second state the On-
state with Yt = 1. The �ow's increments are de�ned by

a(t) = XtYt,

where (Xt)t∈{t0,...} is a sequence of i.i.d. random variables. Further, assume there
is a bandwidth limitationM on the Xt, as in the previous section. Although the Xt

are i.i.d. the increments a(t) are neither identically distributed nor stochastically
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independent, due to the Markov-modulation. This model generalizes the well-
known and popular Markov-modulated on-o� tra�c model [5]. Choose for Yt0
the chain's stationary distribution:

π0 =
ν

µ+ ν
, π1 =

µ

µ+ ν
.

Indeed, it is easy to see that π = (π0, π1) is a left eigenvector of T .
The next lemma shows the monotonicity of φA(s,t)(θ) with respect to parame-

ters µ and ν.

Lemma 4.6. For all (s, t) ∈ Λ and θ > 0 the implications

µ̃ ≥ µ ⇒ E(eθAµ̃,ν(s,t)) ≥ E(eθAµ,ν(s,t))

ν̃ ≤ ν ⇒ E(eθAµ,ν̃(s,t)) ≥ E(eθAµ,ν(s,t))

hold, where Aµ,ν denotes a �ow following the above model with parameters µ and
ν.

Proof. Since the Xt are i.i.d. the expression φAµ̃,ν(s,t)(θ) depends on the
Markov chain only via the number of visits in the On-state. Denoting by Oµ,ν(t)
the number of visits in the On-state for a Markov chain with parameters µ and ν
up to time t, it su�ces to show E(Oµ̃,ν(t)) ≥ E(Oµ,ν(t)). This is achieved by

E(Oµ̃,ν(t)) = E
( t∑
s=0

Ỹs

)
=

t∑
s=0

E(Ỹs) = (t+ 1)
µ̃

µ̃+ ν
≥ (t+ 1)

µ

µ+ ν
= E(Oµ,ν(t)).

The inequality E(Oµ,ν̃(t)) ≥ E(Oµ,ν(t)) follows in the same way. �

The next theorem constructs a P , ful�lling Condition (4.1), for unknown µ, ν,
and distribution Xt. For this, multiple statistics are combined into P . Denote by
Ti,j the observed number of transitions from state i to state j in an arrival sample
ā = (at0 , . . . , a−1); for example, T0,1 denotes the number of transitions from the
O� - to the On-state in ā. Denote further the observed number of visits in the
O� -state in ā by Oc.

Theorem 4.7. De�ne for P(Xs = 0) = 0, a con�dence level α = αµ+αν +αd,
and a sample ā = (at0 , . . . , a−1) with O 6= 0 the statistics

µu := β−1(1− αµ;Oc − T0,0 + 1, T0,0),

νl := β−1(αν ;O − T1,1, T1,1 + 1),

where β−1 is the inverse of the beta distribution; further, de�ne the transition matrix

T ∗ =

(
1− µu µu
νl 1− νl

)
and

A∗ =
1

O

∑
s:Ys=1

eθXs +

(
− log (αd/2)

2|O|

)1/2 (
eθM − 1

)
.

Then the statistic P : R|t0| → F , de�ned by

P (ā)(s, t, θ) := A∗
x̄On ∨ x̄Off
x̄On ∧ x̄Off

ρ(ĒT ∗)t−s−1,

satis�es the condition of Theorem 4.2. The quantities Ē, x̄On, and x̄Off are de�ned
in the proof.
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Proof. Fix some arbitrary t ∈ N0.
Step 1: It is to show that [0, µu] and [νl, 1] are con�dence intervals for µ and ν

at the con�dence levels αµ and αν . These are the Clopper-Pearson intervals [44].
They are constructed as follows: Interpret T0,0 as the outcome of a Bin(1−µ,Oc)-
distributed random variable, denoted by X. Then it holds

P(X ≤ k) =

k∑
i=0

(
Oc

i

)
(1− µ)iµO

c−i = β(µ; Oc − k, k + 1).

One needs to �nd µu such that a random variable X ∼ Bin(1 − µu, O
c) ful�lls

αµ = Pµu(X ≥ T0,0), or equivalently

1− αµ
!
= Pµu(X ≤ T0,0 − 1) = β(µu; Oc − T0,0 + 1, T0,0).

Solving for µu leads to

µu = β−1(1− αµ; Oc − T0,0 + 1, T0,0).

This results in P(µu < µ) ≤ P(X ≥ T0,0) = αµ.
Similarly one proceeds to �nd νl: The number T1,1 is interpreted as successes

in a Bin(1 − ν,O)-distributed random variable, denoted by Z. Now νl must be
found such that for Z ∼ Bin(1− νl, O) it holds

αν = Pνl(Z ≤ T1,1) = β(ν; O − T1,1, T1,1 + 1).

This is solved by

νl = β−1(αν ; O − T1,1, T1,1 + 1),

resulting in P(νl > ν) ≤ P(Z ≤ T1,1) = αν .
Step 2: Assume for a moment that

µu > µ,

νl < ν,

A∗ > φXs(θ)

holds and de�ne by Y ∗ a Markov chain with transition matrix T ∗. For all (s, t) ∈ Λ
it holds by the previous lemma

E(eθA(s,t)) ≤ E(eθ
∑t
r=s+1 XrYr ) ≤ E(eθ

∑t
r=s+1 XrY

∗
r ).

If the last expression can be bounded by P (ā)(s, t, θ), the bounding of the MGF
φA(s,t)(θ) will be successful. With such a bound it will follow that

α = αµ + αν + αd ≥ P(µu < µ ∪ νl > ν ∪A∗ > φXs(θ))

≥ P
( ⋃
s≤t

E(eθA(s,t)) > P (ā)(s, t, θ)
)

for any t ∈ N0 and the theorem be proven.
Step 3: The missing inequality builds upon the estimator for bandwidth lim-

ited tra�c. De�ne a new Markov-modulated arrival with constant rate arrivals
X∗s = 1/θ log(A∗) in the On-state and T ∗ as transition matrix. Such a Markov-
modulated arrival has a (σ, ρ)-bound given by P (ā)(s, t, θ), as shown in Appendix
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10.2; further,

E(eθ
∑t
r=s+1 XrY

∗
r )) =

t−s∑
k=0

P(O∗(s, t) = k)φXs(θ)
k ≤

t−s∑
k=0

P(O∗(s, t) = k)φX∗s (θ)k

= E(eθ
∑t
r=s+1 X

∗
rY
∗
r )) ≤ P (ā)(s, t, θ).

Here O∗ denotes the number of On-states for the new Markov chain. �

The above examples show that the technically hard part of applying StatNC is
the construction of the estimators. Taking care of other � potentially more complex
� arrival processes is just a question of �nding the corresponding P .

4.3. Numerical Evaluation

This section compares the statistical network calculus with its stochastic coun-
terpart. For this, the costs of involving statistics are investigated (in terms of
looser bounds). Furthermore, properties of StatNC that the SNC lacks are studied.
These are its dynamic view on the measurements and its robustness against false
assumptions.

4.3.1. The Price of StatNC. The �rst scenario asks if the additional uncer-
tainty resulting from the statistical part of the performance bounds is acceptable.
To that end, the smallest x is calculated such that the guarantee P(b(t) > x) ≤ ε
still holds. For a perfect bound, one would encounter after a large number of simu-
lations, say K, that roughly K ·ε of them produce a backlog greater than N at time
t. In this evaluation the backlog process is simulated K times and the empirical
distribution of the observed backlogs is compared with the x found by SNC and
StatNC. The bounds are the better, the closer they lie to the (1−ε)-quantile of the
empirical backlog distribution.

Here a Markov-modulated arrival process, as described in Section 4.2.3, is con-
sidered. The Xt are exponentially distributed, but capped by a bandwidth limita-
tionM . The parameter λ of the exponential distributions is chosen to be 0.2, while
the bandwidth limitation is set to M = 20. This means a hypothetical access link
is maximally utilized at 25%. The transition probabilities of the Markov chain are
set to µ = 0.1 and ν = 0.1. The service element o�ers a constant rate of u = 5;
hence, during the On-state the utilization, considering the bandwidth limitation,
peaks to 1

λu (1 − e−λM ) ≈ 98%. Taking into account the Markov-modulation the
average utilization is ≈ 49%. Backlog bounds for SNC are computed by Theorem
2.39. The StatNC bounds are computed according to Section 4.2.3. For illustration
K = 106 runs of this system's backlog are evaluated at time slot 100 (at which time
the initial distribution of the Markov chain fades out and steady state is reached).
Figure 4.1 shows the empirical distribution function of the backlog. The bounds
are calculated for a violation probability of ε = 10−4. Both bounds are reasonably
close to the (1− ε)-quantile. But, even more importantly, the bounds are close to
each other. This demonstrates that the price for using StatNC is not too high.

4.3.2. Exploiting the Dynamic Behavior of StatNC. This scenario fo-
cuses on StatNC's dynamic point of view. The statistic uses a sliding window over
the last t0 observations (as discussed in Section 4.1). This leads to a subsampling
that eventually forgets old measurements and learns from new arrivals. In this way
the observation window tracks changes in the arrival process on longer timescales.
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Figure 4.1. StatNC and SNC backlog bounds as well as the em-
pirical backlog distribution of the backlog measured at time t = 100
for K = 106 simulation runs.

Such changes can stem from seasonal e�ects such as the time of day. One example
is a non-stationary �ow, whose increments diminish over time. See also Example
2.8 and the work by Becker et al. [17], which applies SNC to transient phases of
queueing systems. Standard SNC has problems in capturing the non-stationary
behavior, as it lacks the corresponding adaptability. Consequently the bounds be-
come looser, when t increases. StatNC, on the other hand, readjusts by discarding
old increments as time passes.

To investigate this e�ect a Markov-modulated arrival process, similar to the
previous one, is used. The signal space consists of the states High and Low. For
both of these, arrivals are drawn from an exponential distribution with a parameter
λYt (and then capped by M); here, the parameter λYt depends on the state of the
Markov chain (high or low).

This scenario uses the estimators from Subsections 4.2.1 and 4.2.2 and not the
estimator presented in Subsection 4.2.3. Instead of �learning� the Markov chain
itself, StatNC uses the observation window to track changes of states. Transition
probabilities of µ = 0.001 and ν = 0.001 create a non-stationary behavior of the
arrival process. The arrival rates are λLow = 5 and λHigh = 0.2 and the bandwidth
limitation is M = 10. With a service rate of u = 5 this results in a utilization of
4% in the low -state and 86% in the high-state. The simulations start the arrival
process at time t0 = −1000 to provide an initial observation window for StatNC.
A typical run of this scenario is plotted in Figures 4.2 (for the exponential tra�c
estimator) and 4.3 (for the i.i.d. bandwidth-limited estimator). In addition to the
bounds the plots also show the simulated backlog process over time. Due to their
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Figure 4.2. The backlog process for a typical simulation run
as well as StatNC and SNC-bounds for t = 10, 1000. Here, the
parametric estimator of Subsection 4.2.1 was used for the StatNC
bounds.

dynamic nature, the StatNC bounds also evolve over time. They are computed for
a violation probability of ε = 10−4 and for a time that lies t time slots after the
point they have been computed. The results correspond to t = 10 and t = 1000
time slots, representing a short and long prediction horizon, respectively.

The StatNC bounds react and ultimately adapt to the observed arrivals: If
the arrival intensity is high (indicated by larger backlogs), the statistical bounds
also increase, whereas they decrease, when the Markov chain changes to the low -
state. The StatNC bounds track the changes of states with some delay, since
old measurements need to be discarded �rst. The prediction horizon results in
higher bounds for larger t irrespective of the bounding method. For comparison
the SNC-bounds are calculated for an exact model of the Markov chain (Lemma
10.6). Although the SNC-bounds use complete information and perfect modeling
they lie far above the StatNC bounds. The StatNC bounds perform better and are
not violated too often (i.e., they are in accordance with the violation probability
ε = 10−4).

Another e�ect observed when comparing the two plots with each other, is the
value of additional modeling information. In Figure 4.2 the estimator uses knowl-
edge about the type of distribution (i.e., that they are exponentially distributed),
whereas the estimator in Figure 4.3 does not. For the same run the StatNC bounds
of Figure 4.2 perform moderately better. Taking more assumptions about the ar-
rivals into account, however, bears the risk of making false assumptions. These, in
turn, can lead to false bounds, as seen in the next subsection.
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Figure 4.3. The backlog process for a typical simulation run as
well as StatNC and SNC-bounds for t = 10, 1000. Here, the non-
parametric estimator of Subsection 4.2.2 was used for the StatNC
bounds.

4.3.3. Robustness of StatNC. This scenario focuses on the robustness of
StatNC and SNC-bounds against false assumptions. This reveals another feature
of StatNC when using the estimator of Subsection 4.2.2: StatNC is su�cient with
rather few assumptions about the arrivals and consequently achieves a �exibility
that SNC is missing.

To illustrate this, SNC deliberately makes a false assumption about the dis-
tribution of the arrivals' increments. The increments are independent, Pareto-
distributed with parameters xmin and m, again capped by the bandwidth limita-
tion M ; yet, for the calculation of the SNC-bound the increments are assumed to
be exponentially distributed with parameter λ (also capped by M). The rate pa-
rameter λ is set such that the expectations of the Pareto-distributed arrivals and
the assumed exponentially distributed arrivals coincide. The expectation of a trun-
cated, exponentially distributed random variable with parameter λ is 1/λ(1−e−λM ).
Further the expectation of a truncated Pareto distribution with parameters xmin
is xmin + xmin

1−m ·
((

xmin
M

)m−1 − 1
)

if m 6= 1

xmin + xmin log
(

M
xmin

)
if m = 1.

The �tting λ is found by numerically solving
1
λ

(
1− e−λM

) !
= xmin + xmin

1−m ·
((

xmin
M

)m−1 − 1
)

if m 6= 1

1
λ

(
1− e−λM

) !
= xmin + xmin log

(
M
xmin

)
if m = 1.
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Figure 4.4. Under a false distribution assumption (exponential
instead of Pareto-distributed increments), SNC delivers a grossly
invalid bound whereas StatNC remains correct.

Figure 4.4 shows how false assumptions on the arrival process lead to disastrous
result: As in the �rst scenario, the empirical distribution of the backlog is displayed
and compared with the bounds calculated by StatNC and SNC. The parameters
are xmin = 1, m = 1, M = 55 with a violation probability of ε = 10−4 at time
t = 100. The plot shows the empirical backlog distribution for 106 simulation runs,
which in turn results in a tight 10−4 bound to be violated 100 times in expectation.
The SNC-bound however is broken by 234,526 runs, i.e., in approximately 23% of
the simulations. This lies far below the empirical (1 − ε)-quantile, the location of
a �sharp� bound. SNC is way too optimistic and hence rendered useless. In con-
trast, the StatNC-bound remains valid and stays reasonably close to the empirical
quantile.

4.4. Con�dence Level α

This section discusses the choice of α in the used statistics. In Theorem 4.2
the con�dence level α appears as a linear term as well as inside the estimator. In
all considered estimators the linear in�uence of α exceeds that of the estimator by
far. Following this insight α should be rather small to achieve good performance
bounds.

Instead of a rigorous optimization this section gives a rule of thumb on how to
pick α. The focus lies on the nonparametric estimator of Subsection 4.2.2, while
the other estimators presented in Section 4.2 show a very similar behavior.
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α 10−10 10−100 10−1000 10−10000

q(α) ≈ 1.5 · 10−5 ≈ 4 · 10−5 ≈ 1.5 · 10−4 ≈ 4 · 10−4

Table 1. Values for q(α) with εviol = 10−4 and |t0| = 103.

For a service element with constant rate u Theorem 4.2 gives

P(b(t) > x) ≤ α+ e−θx
t∑

s=0

P (ā)(s, t, θ)φU(s,t)(−θ)

= α+ e−θx
t∑

s=0

(Ā+ εα(eθM − 1))t−se−θu(t−s)(4.2)

and if the summands are less than 1, the bound becomes

P(b(t) > x) ≤ α+ e−θx(1− e−θu(Ā+ εα(eθM − 1))−1.

The condition for bounding the sum by its series translates to

(Ā+ εα(eθM − 1))e−θu
!
< 1.

This is solved for αc by

α
!
> 2e

−( e
θu−Ā
eθM−1

)22|t0| =: αc.

Taking into account the possible values for α the performance bound becomes:

P(b(t) > x) ≤ inf
α>αc

α+ e−θx
(
1− e−θu(Ā+ εα(eθM − 1))

)−1
=: εviol.

If the violation probability is �xed to εviol, the smallest x ful�lling the above in-
equality is of interest. This x in turn depends on the choice of α. Solving the above
for xα results in

xα = −1

θ
log
(
εviol(1− e−θuĀ)− α(1− e−θuĀ)− q(α)(eθM − 1)e−θu)

)
with q(α) := (εviol − α)

√
− log(α/2)
|t0| for all α > αc. To minimize x the expressions

inside the logarithm must become large. Under the stability condition eθu > Ā the
contribution of α(1− e−θuĀ) is negative. Hence, for this term α should be chosen
as small as possible. On the other side the function q increases for small α. Overall
the range of the function q lies in (0,∞) and it diverges to in�nity for α→ 0, while
it converges to zero for α→ εviol. Due to the logarithm under the square-root, q(α)
remains relatively unchanged for most choices of α. Table 1 presents the di�erences
in q for small α and εviol = 10−4. These values of α lie far beyond the numerical
precision of usual computers.

This essentially allows to insert the value of αc = α for the above in�mum and
bound q(α) from above. In this example Q = 4 · 10−4 could be such a bound. This
reduces the contribution of the summand α(1− e−θcĀ) and leads to the bound

NQ = − 1
θ log

(
(εviol − αc)(1− e−θuĀ)−Q(eθM − 1)e−θu

)
.

Often the parameter α can be reduced beyond αc to achieve even better bounds
for a �xed time t. However, by doing so the summands in Equation (4.2) do not
converge anymore. As a consequence the optimal choice of α depends on t.



CHAPTER 5

Sample Path Backlog Bounds

This chapter presents joint work with J. Schmitt [13].
When moving from deterministic bounds of the form

(5.1) b(t) ≤ x for all t ∈ K

to stochastic bounds

(5.2) P(b(t) > x) ≤ ε for all t ∈ K,

the bound's quality changes in two ways. First, probabilities are introduced. This
allows the backlog bound to be invalid with a residual error probability. This is
justi�ed by a dramatic improvement on the bound x (e.g., [106]). The second
change of quality is the bound's validity with respect to t. In the deterministic
statement (5.1) the bound is valid for all t ∈ K simultaneously. The stochastic
bounds (5.2), however, provide a set of inequalities of which each depends on t.
The di�erence becomes clear, if one asks �Will the bu�er exceed x in the next 23
time steps?� The deterministic bound (5.1) gives a direct answer. In the stochastic
scenario the question translates into the expression

(5.3) P( sup
0≤t≤23

b(t) > x) =: p23,

which is not covered by Equation (5.2). One might even go a step further and
ask, �Will the bu�er ever exceed x?� The deterministic answer remains unchanged,
whereas the stochastic scenario tries to bound P(supt≥0 b(t) > x) =: p∞. In a
stationary system the lemma of Borel-Cantelli states p∞ ∈ {0, 1}; hence, any e�orts
to obtain a di�erentiated answer for the above question must be in vain.

This chapter discusses sample path backlog bounds as in Equation (5.3). The
easiest approach to construct a sample path backlog bound is to combine pointwise
performance bounds via Boole's inequality:

(5.4) P( max
0≤t≤T

b(t) > x) ≤
T∑
t=0

P(b(t) > x).

Here T is the length of the interval for which the backlog bound x has to be ful�lled.
Boole's inequality, however, becomes imprecise the more the considered events

overlap. The events {b(t) > x} in Equation (5.4) clearly overlap, as P(b(t) > x)
depends on b(t− 1). For example, when b(t− 1) > x and the service element o�ers
a maximal service of u per time step, it follows b(t) > x − u. Boole's inequality
neglects these dependencies. This observation is supported by a linear grow of the
backlog bounds for T , as shown in the numerical evaluation of this chaper (Section
5.4).

This chapter obtains �nite sample path bounds that do not build upon Boole's
inequality. It combines the system dynamics with extreme value theory (EVT), a

63
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tool mainly used in �nancial and actuarial mathematics [131, 57, 55]. This method
naturally lends itself to the calculation of �nite sample path backlog bounds; further
it can deliver bounds that lie below the ones derived by an application of Boole's
inequality. These results motivate the development of an alternative SNC,i.e., to
recreate the network operations presented in Chapter 1 and 2. This is of particular
interest, as the needed conditions di�er from the ones needed to apply SNC.

Classical queueing theory is able to compute the steady state backlog distribu-
tion for simple source models [109]. Applying further techniques to this asymptotic
domain such as deviations [141], local limit theorems [126], or extreme value the-
ory [57], leads to approximations similar to Equation (5.3). This chapter, however,
focuses on non-asymptotic bounds rather than asymptotic approximations for the
backlog process. Furthermore, the aforementioned methods are typically tailored
to certain assumptions on the arrival processes. In contrast to that, the results pre-
sented here follow the framework-oriented approach of SNC and keep the analysis
as generic as possible.

In the works of Poloczek et al. [42, 128, 127, 129] the union bound is replaced
with Doob's inequality. This requires the construction of appropriate martingales
for the arrivals or the service process. However, the union bound replaced in these
works is di�erent from the one in Equation (5.4). Instead of constructing sample
path backlog bounds Poloczek et al. are concerned with bounding the min-plus
deconvolution (i.e., the last step in the proofs of Theorems 2.22 and 2.26, respec-
tively).

Alternative solutions to improve the union bound are given in [95, 159, 160].
These results are, however, not directly applicable as they consider a �nite under-
lying probability space. Yet, this is not the case for the union bounds considered
in Equation (5.4).

5.1. Alternative bound

To avoid Boole's inequality the queueing system is analyzed in a way di�erent
from Chapter 2. There the backlog is derived from Lindley's equation and even-
tually cast into bounds on the arrivals moment generating function. The intuition
in this chapter is the following: If (a constant rate) system experiences an extra-
ordinary large backlog, there must have been an extraordinary large number of
arrivals. If this was not the case, assumptions about the system's stability would
ensure that the arrivals are processed quickly enough and no signi�cant backlog
would have accumulated. These considerations can also be extended to the case
of varying service rates. This intuition is similar to the tailbounded approach of
Sections 2.1-2.2. To experience a large backlog the participating random processes
must deviate largely from their typical behavior. This view on the system is given
by Theorem 5.1.

Assume for the rest of this chapter that K = N0. Denote by E
τ
T the number of

arrivals a(t) up to time T exceeding a threshold τ , i.e.,

EτT :=

T∑
t=1

1{at>τ} ∈ {0, . . . , T}.

The arrivals exceeding τ form a subsequence of (a(t))t∈N0 , denoted by
(a(ti))i∈{0,...,EτT }.
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Theorem 5.1. Assume that a dynamic U -server has an incoming �ow with
increments a(t). Then holds the following sample path backlog bound

P( max
1≤t≤T

b(t) > x)

≤ 1−
T∑
n=0

P(EτT = n)P( max
1≤i≤n

a(ti) ≤ τ + x
n ∩

⋂
0≤s≤t≤T

U(s, t) ≥ (t− s)τ | EτT = n).

for all τ ∈ [0,∞); further, if U is stochastically independent of A, it holds

P( max
1≤t≤T

b(t) > x)

≤ 1− P(
⋂

0≤s≤t≤T

U(s, t) ≥ (t− s)τ)

T∑
n=0

P(EτT = n)P( max
1≤i≤n

a(ti) ≤ τ + x
n | E

τ
T = n).

Proof. Assume for a while that EτT = n together with

max
1≤i≤n

a(ti) ≤ τ +
x

n

and
U(s, t) ≥ (t− s)τ for all 0 ≤ s ≤ t ≤ T

holds.
From the �rst assumption follows that

A(t)−A(s) ≤ τ(t− s) +
x

n
(t− s ∧ n),

as A(t)−A(s) contains t− s many increments. For the backlog this results in

b(t) ≤ max
0≤s≤t

{A(t)−A(s)− U(s, t)} ≤ max
0≤s≤t

{A(t)−A(s)− (t− s)τ}

≤ max
0≤s≤t

{ xn (t− s ∧ n)} ≤ x

for every t ∈ {1, . . . , T}. Hence, by the law of total probability it follows

P( max
1≤t≤T

b(t) > x)

= 1− P( max
1≤t≤T

b(t) ≤ x) = 1−
T∑
n=0

P(EτT = n)P( max
1≤t≤T

b(t) ≤ x | EτT = n)

≤ 1−
T∑
n=0

P(EτT = n)P( max
1≤i≤n

a(ti) ≤ τ + x
n ∩

⋂
0≤s≤t≤T

U(s, t) ≥ (t− s)τ | EτT = n).

For the stochastic independent case P(A ∩B | C) = P(B | C)P(A | B ∩C) leads to

P( max
1≤t≤T

b(t) > x)

= 1− P(
⋂

0≤s≤t≤T

U(s, t) ≥ (t− s)τ)

T∑
n=0

P(EτT = n)P( max
1≤i≤n

a(ti) ≤ τ + x
n | E

τ
T = n).

�

Remark 5.2. The parameter τ , in the above bound, is left open as a free
parameter. The above theorem needs no assumptions about the service or the
arrivals having corresponding MGFs or being i.i.d. sequences. Further, the above
bound is always less than 1, as expected of a violation probability.
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Remark 5.3. For the special case of U(s, t) = U(t) − U(s) the probabilities
simplify to

P( max
1≤t≤T

b(t) > x)

≤ 1− P( min
1≤t≤T

u(t) ≥ τ)

T∑
n=0

P(EτT = n)P( max
1≤i≤n

a(ti) ≤ τ + x
n | E

τ
T = n),

where u(t) describes the increments U(t)− U(t− 1).

5.2. A Brief Introduction to EVT

The bound in Theorem 5.1 relies on the analysis of P(max1≤t≤T Xt ≤ x), where
(Xt)t∈N is a sequence of random variables and x ∈ R. This probability is well
studied in Extreme Value Theory (EVT) under di�erent assumptions on (Xt)t∈N
(see for example [131, 57, 55]). The following small selection of results from EVT
holds for nonnegative and i.i.d. (Xt)t∈N.

Denote by FX the distribution of Xt, then P(max1≤t≤T Xt ≤ x) = (FX(x))T .
For simple distributions FX the result in the previous theorem leads directly to
�nite sample path backlog bounds. However, taking the T -th power of FX might
be computationally unstable. The question arises if this expression can be approx-
imated instead. By the Borel-Cantelli lemma the above probability converges to
either zero or one; hence, some kind of scaling is needed to give proper information
about the behavior of maxXt. This leads to the next de�nition.

Definition 5.4. A random variable X lies in the domain of attraction of some
non-degenerate random variable G, written X ∈ D(G), if there exist sequences
αt, βt such that

(5.5) P( max
1≤t≤T

Xt ≤ αTx+ βT )
T→∞−−−−→ G(x),

where the Xt are a sequence of i.i.d. variables with distribution FX .

The next de�nition can be found in [131, 57]. Denote the right endpoint of
some distribution F by x+ := inf{x : F (x) = 1} ∈ [0,∞].

Definition 5.5. A distribution F is a von Mises function, if there exist c > 0,
z < x+, and some function f such that for all z < x < x+ it holds

1− F (x) = c exp

(
−
ˆ x

z

1

f(u)
du

)
.

Further, the auxiliary function f must ful�ll

• f(u) > 0 for all z < u < x+,
• f is absolutely continuous on (z, x+),
• limu↗x+ f

′(u) = 0.

Three examples of von Mises functions that appear in the context of queueing
systems follow now.

Example 5.6. The exponential distribution is a von Mises function with the
constant auxiliary function f(x) = 1

λ .
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Example 5.7. The Weibull distribution Ψα(x) = 1 − e−λx
α

is a von Mises
function with the auxiliary function f(x) = 1

λαx
1−α for x > 0. Special cases of

the Weibull distribution are the exponential distribution (α = 1) and the Rayleigh
distribution (α = 2). The Weibull distribution itself plays � together with the
Gumbel- and the Fréchet-distribution � a central role in the theory of extreme
values (see below). Further, the Weibull distribution does not have a closed form
for its MGF. This makes its usage in SNC di�cult.

Example 5.8. The Erlang distribution E(x) = 1 − e−λx
∑n−1
k=0

(λx)k

k! is a von

Mises function with auxiliary function f(x) =
∑n−1
k=0

(n−1)!
(n−k−1)!λ

−(k+1)x−k for x > 0.

Further examples of von Mises functions include the gamma-, normal-, and
lognormal-distributions. See [57] for a list of distributions and corresponding aux-
iliary functions.

Von Mises functions lie in D(Λ), where Λ(x) := exp(−e−x) is the Gumbel
distribution (see [131]). The von Mises condition is another characterization of
functions that lie in D(Λ).

Definition 5.9. De�ne the function ϕ by

ϕ := − log(− log(F )).

A distribution F ful�lls the von Mises condition, if

h(x) : =

(
1

ϕ′(x)

)′
= − logF (x) +

F (x)F ′′(x) logF (x)

(F ′(x))2

x→x+−−−−→ 1.

When some distribution F ful�lls the von Mises Condition, de�ne
g(x) := supy≥x |h(y)|.

As Resnick shows in [131], the von Mises condition is ful�lled if and only if F is
a twice di�erentiable von Mises function. Furthermore, if the von Mises condition is
ful�lled, a uniform speed of convergence to Λ can be given. This result is essential
for obtaining performance bounds from Theorem 5.1.

Lemma 5.10. Let the Xt be i.i.d. and their corresponding distribution FX ful�ll
the von Mises Condition. Then it holds

P( max
1≤t≤T

Xt ≤ xαT + βT ) ≤ Λ(x)− e−1g(βT )

for all T ∈ N and x ≥ 0. Here ϕ(βt) := log t and αt := F (βt)
tF ′(βt)

. The function g

stems from De�nition 5.9.

Proof. See Proposition 2.18. in [131]. �

One of EVT's main results is the following: If a distribution lies in any domain

of attraction, it lies either in D(Λ), D(Φα), or D(Ψα), where Φα(x) := e−x
−α

is the Fréchet distribution [54]. The thesis at hand uses only results concerning
the Gumbel distribution. Corresponding conditions for the convergence and the
uniform speed of convergence towards Φα and Ψα are hence skipped here. Results
about the uniform speed of convergence date back as early as 1970. See for example
[45, 53, 142, 1], the textbooks [131, 57], and the references therein.

The von Mises condition takes for Theorem 5.1 a similar role as the existence
of the moment generating function for Theorem 2.39. It is a su�cient condition for
deriving performance bounds. Yet, Example 5.7 demonstrates that there are von
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Mises functions that would be hard to analyze via MGF-calculus. Further examples
include the Pareto distribution and power law distributions, which lie in D(Φα) and
D(Ψα), respectively.

In the context of queueing networks as described in Section 1.2 Theorem 5.1
cannot be applied directly. In SNC the network operations allow to reduce a net-
work to the case of a single node and a single �ow. The next section follows this
approach and derives network operations in accordance to Theorem 5.1.

5.3. Sample Path Network Operations

Lemma 5.11 (Output Bound). Let U be the service of some node with input
�ow A. Denote by B the node's output. Then it holds

P( max
0≤t≤T

b(t) ≤ x) ≥ P( max
0≤t≤T

a(t) ≤ x
T + T+1

T τ ∩
⋂

0≤s<t≤T

U(s, t− 1) ≥ (t− 1− s)τ)

for all x ∈ [0,∞) and τ ∈ [0, x].

Proof. By the de�nition of service it holds

b(t) = B(t)−B(t− 1) ≤ B(t)− min
0≤s<t

{A(s) + U(s, t− 1)}

≤ max
0≤s≤t−1

{A(t)−A(s)− U(s, t− 1)} = max
0≤s<t

{
t∑

r=s+1

a(r)− U(s, t− 1)}

= max
0≤s<t

{a(t)− U(s, t− 1) +

t−1∑
r=s+1

a(r)}.

Fix some τ ∈ [0, x] and assume for a while that

a(t) ≤ x

T
+
T − 1

T
τ for all 0 ≤ t ≤ T

and
U(s, t− 1) ≥ (t− 1− s)τ for all 0 ≤ s < t ≤ T

holds. Then it would follow

b(t) ≤ max
0≤s<t≤T

{a(t)− U(s, t− 1) +

t−1∑
r=s+1

a(r)}

≤ max
0≤s<t≤T

{( xT + T+1
T τ)(t− s)− (t− 1− s)τ} = max

0≤s<t≤T
{( xT −

τ
T )(t− s) + τ}

= max
0≤s<t≤T

{x−τT (t− s) + τ} ≤ x.

Hence, it holds

P( max
0≤t≤T

b(t) ≤ x) ≥ P(

T⋂
t=1

max
0≤s<t

{a(t)− U(s, t− 1) +

t−1∑
r=s+1

a(r)} ≤ x)

≥P( max
0≤t≤T

a(t) ≤ x
T + T−1

T τ ∩
⋂

0≤s<t≤T

U(s, t− 1) ≥ (t− 1− s)τ)

for all τ ∈ [0, x]. �

The parameter τ ∈ [0, x] is subject to optimization and there is no gain in τ
being greater than x. In the special case of U(s, t) = u(t− s) the optimal choice is
τ = x and it leads to the bound P(max1≤t≤T b(t) ≤ x) ≥ P(max1≤t≤T a(t) ≤ x).
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Lemma 5.12 (Multiplexing). Let A1 and A2 be two arrivals. Denote by a(t)
the increments of A1 ⊕A2. It holds

P( max
0≤t≤T

a(t) ≤ x) ≥P({ max
0≤t≤T

a1(t) ≤ x− τ)} ∩ { max
0≤t≤T

a2(t) ≤ τ})

for all x ∈ [0,∞) and τ ∈ [0, x].

Proof. Choose an arbitrary x > 0. Then under the assumption of

max
0≤t≤T

a1(t) ≤ x− τ for all 0 ≤ t ≤ T,

max
0≤t≤T

a2(t) ≤ τ for all 0 ≤ t ≤ T

it holds

max
0≤t≤T

a(t) ≤ x for all 0 ≤ t ≤ T

for any τ ∈ [0, x]. Moving to probabilities proves the lemma. �

The following network operation of subtracting cross�ows is formulated for
two �ows only. This is no loss of generality, as any number of cross�ows can be
subtracted together from the service element via the above lemma.

Lemma 5.13 (Leftover Service). Consider the scenario as presented in Theorem
1.13 with two �ows A1 and A2. It holds

P(
⋂

0≤s≤t≤T

U1(s, t) ≥ (t−s)x) ≥ P( max
0≤t≤T

a2(t) ≤ τ∩
⋂

0≤s≤t≤T

U(s, t) ≥ (x+τ)(t−s))

for all x ∈ [0,∞) and τ ∈ [0,∞).

Proof. Let x ∈ [0,∞). Assume for a while that

max
0≤t≤T

a1(t) ≤ τ for all 0 ≤ t ≤ T

and
U(s, t) ≥ (x+ τ)(t− s) for all 0 ≤ s ≤ t ≤ T

holds. Then it follows

U1(s, t) = max{0, U(s, t)−A(t) +A(s)} = max{0, U(s, t)−
t∑

r=s+1

a(r)}

≥max{0, (x+ τ)(t− s)− (t− s)τ} = x(t− s)
for all 0 ≤ s ≤ t ≤ T . The assertion follows then as in the previous proof. �

The situation simpli�es in the special case U(s, t) = u(t− s). If x ∈ [0, u], the
optimal τ is u− x. This results in

P( min
0≤t≤T

u1(t) ≥ x) ≥ P( max
0≤t≤T

a(t) ≤ u− x).

The last network operation is the convolution of nodes.

Lemma 5.14 (Convolution). Consider two dynamic Ui-service elements
(i = 1, 2) such that the �rst node's output is the second node's input. For
U = U1 ⊗ U2 and arbitrary x ≥ 0 it holds

P(
⋂

0≤s≤t≤T

U(s, t) ≥ (t− s)x) ≥ (
⋂

0≤s≤t≤T

max{U1(s, t), U2(s, t)} ≥ (t− s)x).
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U1

U1

A1 ∼ exp(λ)

A2 ∼ exp(λ)
U

Figure 5.1. The example considered for the numerical evaluation.
The service element has a constant rate of u and gives priority to
A2.

Proof. Assume for a while that

U1(s, r) ≥ (r − s)x,
U2(r, t) ≥ (t− r)x

holds for all r = s, . . . , t. Then it would follow

U1(s, r) + U2(r, t) ≥ (t− s)x
and hence

U(s, t) = min
s≤r≤t

{U1(s, r) + U2(r, t)} ≥ (t− s)x.

Translating this implication into probabilities completes the proof. �

5.4. Numerical Evaluation

The following scenario compares the result of Theorem 5.1 to the one given
by Boole's inequality (Equation (5.4)). Consider the scenario as in Figure 5.1: A
constant rate server processes a low and a high priority �ow,where A1 is the �ow
of interest. For the sake of simplicity, both �ows have independent, exponentially
distributed increments with parameter λ, i.e.,

Fa1
(x) = Fa2

(x) =

{
1− e−λx if x ∈ [0,∞)

0 if x ∈ (−∞, 0)
.

The node's service rate is denoted by u.

5.4.1. MGF-Calculus Bound. Denote the leftover service forA1 at the node
by U1. First Theorem 2.37 is applied. The (σ, ρ)-bound for the arrivals is

E(eθAi(s,t)) =

t∏
r=s+1

E(eθa(r)) =

(
λ

λ− θ

)t−s
= eθρ(θ)(t−s),

where ρ(θ) := 1
θ log( λ

λ−θ ) and θ ∈ (0, λ). Hence, the high and low priority �ows

are (0, ρ)-bounded. Using Theorem 2.37 and that the constant rate service element
is (0, u)-bounded results in U1 � (0, ρ + u). The pointwise performance bound is
given by Theorem 2.39. Together with Boole's inequality the �nite sample path
backlog bound reads:

P( max
1≤t≤T

b(t) ≥ x)

= inf
0≤θ<λ

T∑
t=0

e−θx
1−

(
λ
λ−θ

)2(t+1)

e−θ(t+1)u

1−
(

λ
λ−θ

)2

e−θu
≤ inf

0≤θ<λ

T∑
t=0

e−θx
1− eθ(t+1)(2ρ(θ)+u)

1− eθ(2ρ(θ)+u)
.

To compute a competitive backlog bound the above must be optimized by the free
parameter θ.
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5.4.2. Alternative Bound. Denote by EτT the number of low priority arrivals
that exceed the value τ and denote these arrivals by the subsequence
(a1(ti))i∈{0,...,EτT }). Then:

P( max
1≤t≤T

b(t) > x)

≤ 1− P( min
1≤t≤T

u1(t) ≥ τ)

T∑
n=0

P(EτT = n)P( max
1≤i≤n

a1(ti) ≤ τ + x
n | E

τ
T = n)

and with Lemma 5.13 it follows

P( max
1≤t≤T

b(t) > x)

≤ 1− P( max
1≤t≤T

a2(t) ≤ u− τ)

T∑
n=0

P(EτT = n)P( max
1≤i≤n

a1(ti) ≤ τ + x
n | E

τ
T = n)

≤ 1− P( max
1≤t≤T

a2(t) ≤ u− τ)

T∑
n=0

P(EτT = n) · P( max
1≤i≤n

a1(ti) ≤ x
n ).

The last step uses the memoryless property of the exponential distribution and the
i.i.d. property of the arrivals.

Due to the arrival's nature one can either use the EVT-approximation or di-
rectly compute the above expression by P(max1≤t≤T ai(t) ≤ x) = (Fai(x))T . In this
evaluation both methods are followed to test the quality of the EVT-approximation.
The exponential distribution ful�lls the conditions of Lemma 5.10 with the norming
sequences

αn =− log(1− e−1/n)

λ
,

βn =
1

nλ(e1/n − 1)

and

g(x) = − log(1− e−λx)

e−λx
− 1.

Inserting this into the Theorem 5.1 yields

P( max
1≤t≤T

b(t) > x) ≤ 1− (exp(−e−γT (λ(u−τ)+log(1−e−T
−1

)))− g̃(T ))

·
T∑
n=0

P(EτT = n)(exp(−e−γn(λ xn+log(1−e−n
−1

)))− g̃(n)),

where

g̃(n) :=
1

e · n(1− e−n−1)
, γn := n(e

1/n − 1).

Similar to the MGF-bound a numerical optimization must be performed to achieve
a competitive bound � in this case for the parameter τ ∈ [0, u].

5.4.3. Results. For the evaluation u is set to one. By varying λ di�erent
utilizations u = 2

λ of the node are considered. The plots show the minimal x such

that P(max1≤t≤T b(t) > x) ≤ ε with ε = 10−6 (Figures 5.2 and 5.3) and ε = 10−9

(Figures 5.4 and 5.5). The results are dependent on the considered sample path
length T . To �nd reasonable values for T the queueing system was simulated and
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Figure 5.2. T = 10 and ε = 10−6.

the duration of the backlogged periods observed. The starting point of a backlogged
period is de�ned as the time step, in which the node starts to accumulate backlog
and the endpoint is de�ned as the �rst time step thereafter, in which no backlog
occurs at the node. In the simulations 100,000 backlogged periods were observed
under di�erent utilizations. For example, for a utilization of 80% an average period
length of 3.2 is observed and 99.9% of the periods have a length shorter than 37.
For this reason sample path bounds are plotted for the lengths T = 10, T = 20 and
T = 40.

The results for T under di�erent utilizations are displayed in Figures 5.2-5.5.
Two observations are made. First, the results of EVT approximations (solid black
lines) and direct computations (dashed blue line) are close to each other; second,
the alternative method outperforms the MGF-method, given by the dotted red
line, in the region of lower utilizations. However, the alternative method has for
large T a tipping point after which, only by an immense increase of N the wished
violation probability ε is achieved. Comparing the three methods under increasing
T the MGF-method loses the least. All three methods are quite robust against the
transition from a violation probability of 10−6 to 10−9. However, the MGF-method
looses a bit more here.
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Figure 5.3. From top: T = 20, T = 40. ε = 10−6.
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Figure 5.4. T = 10 and ε = 10−9.
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Figure 5.5. From top: T = 20, T = 40. ε = 10−9.



Part 3

Window Flow Controller



Stochastic Network Calculus (SNC) has matured in recent years to provide
an alternative method for the performance analysis of stochastic queueing systems
(see [88, 68, 43]). Many results � foremost the network operations � have been
transferred to the stochastic domain. The transfer of some results had been rather
immediate, while others required considerable e�ort [39]. One major open challenge
is the stochastic analysis of feedback systems. In communication networks such
systems model for example window-based transport protocols like TCP [83, 84,
28, 156, 146, 145, 77]. While there are very elegant solutions for the window �ow
controller (WFC) in the deterministic setting [3, 34, 101], corresponding results
in SNC are identi�ed as a challenging open research question [88, 66, 68, 41].

In this part of the thesis window �ow controller and their solution in deter-
ministic network calculus is introduced in detail. This includes the well-known,
univariate results, as presented �rst by [4, 52], and the solution for bivariate equa-
tions with K = N0, as found in [35]. Section 6.3 further presents the framework of
σ-additive operators, which also allows to model feedback systems. This framework
in particular is used to analyze the special case of WFC systems with a �xed-delay
element (see also [139]).

In Chapter 7 two methods are presented to reproduce the deterministic results
in a stochastic setting. The �rst approach works under a subadditivity assumption
for the involved service processes. With such a subadditive service description the
stochastic analysis simpli�es by far; however, this assumption also seems restric-
tive. To that end, a class of networks is identi�ed that preserves the subadditivity
assumption and thus remains analytically tractable.

The second approach aims at a general analysis. The key idea is to stochasti-
cally control how far the service deviates from being subadditive. This is cast into
the setting of MGF-calculus as a further contribution to the violation probabilities
of the performance bounds.



CHAPTER 6

Window Flow Control in Deterministic Network

Calculus

Window �ow controlled (WFC) systems model situations in which the amount
of arrivals to a subsystem is strictly bounded. The idea is to separate the system
into a throttle and a feedback loop. The throttle governs how much workload is
admitted to the feedback loop. It blocks any tra�c that would push the current load
beyond a threshold that is called window size. As new arrivals are only allowed to
enter the subsystem if there is enough �room�, the throttle needs information about
the feedback loop's departures. Receiving this information might be delayed, as it
has to pass through service elements itself (e.g., the acknowledgements in transport
protocols).

In the context of network calculus the most prominent example for WFC sys-
tems are window based transport protocols, like TCP [156, 146, 145]. The feed-
back loop is, in this case, the end-to-end channel between sender and receiver. The
objective is to avoid congestion in the communication channel. Indeed, WFC sys-
tems only allow a certain amount of data � the window size � to be in transit. The
metric of interest for this system is the end-to-end delay between sender and re-
ceiver, including both subsystems: the throttle and the feedback loop. See also the
survey of Ka� et al. about congestion control protocols in wireless sensor networks
[90].

The WFC model extends beyond the usage in transport protocols. Two exam-
ples: Consider an exit of a highway that ends at a tra�c signal. On its lengths
(in meters) the exit can only hold a certain amount of vehicles. Hence, it can be
considered as a bu�er to the tra�c light, which is the service element. If more cars
queue at the tra�c light than �t on the exit lane, the congestion reaches the high-
way itself. In this scenario, the delay of acknowledgments is the time the cars need
to cross after the beginning of a green phase. For more details on the management
of tra�c lights and road tra�c in general, see [97, 72, 155, 38, 61].

The second example considers the storing of energy that is produced by renew-
able and typically unreliable sources [60, 153, 158, 73]. The methods to store
energy di�er in capacity, e�ciency and costs [73]. E�ciency means here the waste
of energy, while charging or discharging the energy bu�er. Of course one want
to use low-e�ciency storages only if the high e�ciency storages are full. In this
scenario the high-e�ciency storage represents the feedback system. The notion of
�service� corresponds to the energy demand and the incoming arrival �ow is the
energy produced by renewable sources. Further, the backlog inside the feedback
system corresponds to how far the storage is charged. Any energy that does not
��t� into the feedback loop must be bu�ered at the throttle and results in the usage

78
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Sender ∧ U Receiver

∗Σ

A B C

D
Feedback Loop

Figure 6.1. A window �ow controlled system. The element de-
noted by ∗ is a placeholder.

of low e�ciency storages. The goal in this case � quite contrary to the one in com-
munication networks � is to neither let the bu�er run dry, nor to �ll it completely.
In the former case the result would be an outage of power; whereas the latter case
enforces either overcharging or the usage of low-e�cient storage. A particularly
interesting �energy storage� is the consumption of energy in households, see for
example [133, 89]. Here the energy demand is in�uenced by dynamic electricity
pricing.

Very similar examples can be constructed in the context of production networks
(for example [110, 22]), in which raw materials must be stored, when not processed.
Again the con�icting goals of availability and storage costs must be considered at
the same time.

WFC systems and their treatment is closely linked to the development of net-
work calculus itself. The analysis of WFC systems began with the work of Cruz [46].
There the results' applicability depends on the number of service elements: Feed-
back loops with more than two service elements must be recursively reduced to the
two server case. Baccelli, Cohen, Olsder and Quadrat [7] consider feedback systems
in the max-plus algebra. This algebra shares many properties with the framework
of the later developed network calculus; indeed, in [7] the max-plus version of the
subadditive closure appears already. Cruz and Okino [52], as well as Agrawal and
Rajan [4] describe the window �ow controller for the �rst time by the subadditive
closure of service curves. Chang [34], and LeBoudec and Thiran [23] extend and
re�ne the results of [52, 4]. In [34] the de�nition of maximal f -regulators is di-
rectly connected to WFC systems via the subadditive closure. Baccelli and Hong
consider TCP as a max-plus linear system in [8]. Eventually the results had been
consolidated in the textbooks of Chang [35] and LeBoudec and Thieran [102].

Despite the extensive treatment of WFC systems in deterministic network cal-
culus, the corresponding analysis with stochastic network calculus remained an
open problem ever since [88, 66, 68, 41].

This chapter presents the deterministic results of network calculus concerning
WFC systems, including the univariate and the bivariate formulations; furthermore,
the notion of σ-additive operators is introduced, which allows a third formulation
of the feedback system. The notion of σ-additive operators is of particular interest,
as it allows the commutation of service elements with �xed-delay elements. This in
turn leads to a closed form of the subadditive closure, as shown in Section 6.4.

6.1. Introduction and Notations

The general framework of a WFC system is given in Figure 6.1. Ignoring
the element Σ for a while, this system works as follows: The arrivals A reach a
throttle before they are allowed to enter the system's feedback loop. The throttle,
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represented by a ∧-symbol, takes A and a control �ow D to produce the output

B(t) = A(t) ∧D(t) for all t ∈ K.

The throttle's output B is called the e�ective arrival to the system. It is processed
with service curve U . Its output C plays two roles: 1) it is the data that arrives at
the receiver and 2) it is processed into the control �ow D. The processing of C is
indicated by a placeholder element in Figure 6.1. Eventually, the control �ow D is
fed back into the throttle element ∧; hence, the information of departures from U
is brought back to the throttle element in form of �ow D, which in turn allows new
arrivals to U .

The element denoted by Σ is a window-element. In principle it just adds a
positive constant Σ to its ingress �ow. This has two e�ects on the system: 1)
Without a window-element the system could never start running. All initial �ows
would be equal to zero and hence the throttle would never admit any workload to
the feedback loop. 2) The amount of backlog inside the feedback loop never exceeds
the window size Σ. This is seen by

bU (t) := B(t)− C(t) ≤ (A(t) ∧ C(t) + Σ)− C(t) ≤ Σ.

This strict guarantee on the amount of backlog inside the feedback loop gives the
WFC its modeling strength.

For the analysis of the above system, the notion of subadditive closure is central.

Definition 6.1 (Subadditive Closure). Let U either be in F or F̃ . Its n-th
self-convolution is de�ned by

U (n) := U ⊗ . . .⊗ U︸ ︷︷ ︸
n times

.

Its subadditive closure Ū is de�ned by Ū :=
∧∞
n=0 U

(n).

All operations in the above de�nition hold pointwise and use the univariate or
bivariate convolution, respectively. For the empty operation U (0) of the convolution
its neutral element must be de�ned. It is given by

1(t) :=

{
0 if t = 0

∞ if t > 0
, 1(s, t) :=

{
0 if s = t

∞ if s < t
.

Indeed 1⊗ U = U ⊗ 1 = U .

Definition 6.2. Let U either be in F or F̃ . It is subadditive, if

U(t) ≤ U(t− s) + U(s) for all (s, t) ∈ Λ

U(s, t) ≤ U(s, r) + U(r, t) for all (s, t), (s, r), (r, t) ∈ Λ

holds.

Lemma 6.3. Let U be subadditive, then Ū = 1 ∧ U .

Proof. If U is subadditive, then

U(s, t) ≥ min
s≤r≤t

{U(s, r) + U(r, t)} ≥ min
s≤r≤t

{U(s, t)}

for all (s, t) ∈ Λ and hence U (n) = U for all n ≥ 1. The univariate case follows in
the same way. �
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As the name suggests, the subadditive closure of some U is subadditive again
(see for example [35, 102]). A well-known property of the min-plus convolution is
its distributivity with respect to minima. The following lemma is needed later and
is easily checked.

Lemma 6.4. Let A,B,C be either in F or F̃ . Then A⊗(B∧C) = A⊗B∧A⊗C.

6.2. Univariate Results

This section derives and solves the univariate feedback equation. A short dis-
cussion on the role of subadditivity and the window size Σ follows.

Adding a constant Σ can be expressed by the min-plus convolution. To that
end, de�ne

1Σ(t) :=

{
Σ if t = 0

∞ if t > 0
.

Indeed, it holds

1Σ ⊗ C(t) = inf
0≤s≤t

{1Σ(s) + C(t− s)} = Σ + C(t)

for any �ow C and t ∈ K. This allows to describe the whole feedback loop via
Theorem 1.7 and the service curve Ufb = U ⊗ U∗ ⊗ 1Σ. Here U∗ is a service curve
for the placeholder in Figure 6.1. The whole system is summarized in

(6.1) B(t) = A(t) ∧D(t) ≥ A(t) ∧B ⊗ Ufb(t).
This is the feedback equation for the univariate case.

To analyze the performance of WFC systems a service description for the throt-
tle must be found. This means that the expression A(t)∧B⊗Ufb(t) must be recast
into some service curve U∧ such that

B(t) ≥ A⊗ U∧.
Theorem 6.5 shows how to construct U∧. For now assume that such a service curve
U∧ exists, then Theorem 1.7 gives the end-to-end service curve Usys(t) = U∧⊗U(t).
With Usys the system in Figure 6.1 can be analyzed; for example, an end-to-end
delay bound derives from using Usys in Theorem 1.18.

Theorem 6.5. Assume that the feedback loop in Figure 6.1 is described by a
service curve Ufb with Ufb(0) > 0. Further, assume that A(t) < ∞ for all t ∈ K.
Then the throttle element ∧ has service curve Ūfb.

Proof. The proof is based on Theorem 2.1.6 in [35]. It is to show that every
�ow ful�lling Equation (6.1), also ful�lls

B(t) ≥ A⊗ Ūfb.
To that end, let B ful�ll Equation (6.1) and �x some t ∈ K, then

B ⊗ U (n+1)
fb (t) ≥ B ⊗ U (n+1)

fb (0) ≥ (n+ 1)Ufb(0).

Since A(t) < ∞ and Ufb(0) > 0 there exists an integer n∗ ∈ N such that

B ⊗ U (n∗+1)
fb (t) > A(t). Iterating the feedback equation leads to

B(t) ≥ A(t) ∧B ⊗ Ufb(t) ≥ A(t) ∧ (A(t) ∧B ⊗ Ufb)⊗ Ufb(t)

= A(t) ∧A⊗ Ufb(t) ∧B ⊗ U (2)
fb (t) ≥ . . . ≥

n∗∧
k=0

A⊗ U (k)
fb (t) ∧B ⊗ U (n∗+1)

fb (t).
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Because B ⊗ U (n∗+1)
fb (t) ≥ A(t) ≥ B(t) the last term can be omitted and it follows

B(t) ≥
n∗∧
k=0

A⊗ U (k)
fb (t) ∧B ⊗ U (n∗+1)

fb (t) = A⊗ (

n∗∧
k=0

U
(k)
fb )(t) ≥ A⊗ Ūfb(t).

�

The condition Ufb(0) > 0 explains the role of the window-element: Without
the addition of Σ the resulting service curve would generally not ful�ll the positivity
condition in zero.

The role of Σ goes even further: If Σ is large enough, the feedback loop's service
curve will become subadditive. In this case the calculation of Ūfb simpli�es. To
that end, denote the service curve of the feedback loop without Σ by Ures. It is
de�ned by

Ufb = U ⊗ U∗ ⊗ 1Σ =: Ures ⊗ 1Σ.

The self-convolution of Ufb reads then as

U
(2)
fb (t) = (Ures ⊗ 1Σ)(2)(t) = inf

0≤s≤t
{Ures(s) + Σ + Ures(t− s) + Σ}

= 2Σ + inf
0≤s≤t

{Ures(s) + Ures(t− s)};

and if the in�mum can be bounded by

(6.2) inf
0≤s≤t

{Ures(s) + Ures(t− s)} ≥ Ures(t)−K

for some constant 0 < K ≤ Σ, the self-convolution continues to

U
(2)
fb (t) ≥ 2Σ−K + Ures(t) ≥ Ures(t) + Σ = Ufb(t).

Hence, if the self-convolution of Ures is bounded, the service curve Ufb becomes
subadditive for Σ large enough. This insight is used later in Chapter 7.

Example 6.6. Let Ures(t) = [r(t − T )]+ be a rate latency service curve. The
self-convolution of Ures ful�lls

U (2)
res(t) = inf

0≤s≤t
{[r(s− T )]+ + [r(t− s− T )]+} ≥ inf

0≤s≤t
{[rs− rT + rt− rs− rT ]+}

≥ inf
0≤s≤t

{[rt− rT ]+} − rT = Ures(t)− rT.

If Σ ≥ rT , the feedback system's throttle simpli�es to the service curve
Ūfb = Ures ⊗ 1Σ. In this case the end-to-end service curve is

Usys(t) = U ⊗ (Ures ⊗ 1Σ)(t) ≥ Ures(t).

6.3. Bivariate Results

The results for the bivariate formulation parallel those of the univariate case;
still, their value exceeds a simple �nger exercise or transcript of the univariate
results. The de�nition of the bivariate window-element makes this clear.

Definition 6.7. A window-element is described by a function Σ : K → R+
0

such that for any input A it produces an output B by

B(t) = A(t) + Σ(t)

Σ(t)− Σ(s) ≥ −A(s, t) for all s ≤ t.(6.3)

As for �ows the bivariates of Σ are de�ned by Σ(s, t) := Σ(t)− Σ(s).
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Remark 6.8. The constraint (6.3) enforces the window-element's outputB(s, t)
to be nonnegative.

The above de�nition allows the window-element to vary in time. Still the
addition of Σ is described as a bivariate convolution. De�ne

1Σ(s, t) :=

{
Σ(t) if s = t

∞ if s 6= t
.

Then it holds 1Σ ⊗ C(0, t) = C ⊗ 1Σ(0, t) = C(t) + Σ(t) for any �ow C.
The bivariate feedback equation has the form

(6.4) B(t) = A(t) ∧D(t) ≥ A(t) ∧B ⊗ Ufb(0, t),

where Ufb = U ⊗ U∗ ⊗ 1Σ.
The next theorem is from the textbook of Chang [35].

Theorem 6.9. Assume that the feedback loop in Figure 6.1 is a dynamic Ufb-

server with inft∈K{Ufb(t, t)} > 0 and Ufb ∈ F̃+. Further assume that A(t) < ∞
for all t ∈ K. Then the throttle element ∧ is a dynamic Ūfb-server.

Proof. The proof is similar to the one of Theorem 6.5. Fix some time t ∈ K.
It holds

B ⊗ U (n)
fb (0, t) = inf

0≤s1≤...≤sn+1=t
{B(s1) +

n∑
i=1

Ufb(si, si+1)}

≥ inf
0≤s1≤...≤sn+1=t

{
n∑
i=1

Ufb(si, si)} ≥ n inf
s≥0
{Ufb(s, s)}

for all n ≥ 1. Hence, an n∗ exists with B ⊗ U
(n∗+1)
fb (0, t) > A(t). The proof

concludes as in Theorem 6.5. �

As in the univariate case, large values of Σ can produce a subadditive service
description of the feedback loop. Write again

Ufb = U ⊗ U∗ ⊗ 1Σ =: Ures ⊗ 1Σ.

Assume that U
(2)
res is bounded by

(6.5) inf
s≤r≤t

{Ures(s, r) + Ures(r, t)} ≥ Ures(s, t)−K

for all (s, t) ∈ Λ and some constant 0 < K ≤ inft{Σ(t)}. Then the self-convolution
of Ufb leads to

U
(2)
fb (s, t) = (Ures ⊗ 1Σ)(2)(s, t) = inf

s≤r≤t
{Ures(s, r) + Σ(r) + Ures(r, t) + Σ(t)}

= Σ(t) + inf
s≤r≤t

{Ures(s, r) + Σ(r) + Ures(r, t)}

≥ Σ(t) + Ures(s, t)−K + inf
s≤r≤t

{Σ(r)} ≥ Ufb(s, t)

and Ufb is subadditive. As before, the subadditive closure takes the closed form
Ūfb = 1 ∧ Ufb.

The next corollary appears trivial at �rst; however, it relaxes the condition
Ufb ∈ F̃+ and hence applies to service descriptions that are the result of the leftover
operation 	.



6.4. σ-ADDITIVE OPERATORS 84

Corollary 6.10. Assume that the feedback loop in Figure 6.1 is a dynamic
Ufb-server with Ufb = Ures ⊗ 1Σ for some subadditive Ures. If inft∈K{Σ(t)} > 0
and A(t) <∞ for all t ∈ K, it holds

B(t) ≥ A⊗ (1 ∧ Ufb)(0, t)

for all t ∈ K.

Proof. Extend B recursively for

B(t) ≥ A(t) ∧B ⊗ Ufb(0, t) ≥ . . .

≥
n∗∧
n=0

A⊗ U (n)
fb (0, t) ∧B ⊗ U (n∗+1)

fb

The last convolution is expressed as

inf
0≤s1≤...≤sn≤sn+1=t

{B(s1) +

n∗+1∑
i=1

Ures(si, si+1) + Σ(si)}

≥ inf
0≤s1≤t

{B(s1) + Ures(s1, t)}+ n∗ inf
0≤r≤t

Σ(r)}.

For n∗ large enough the above convolution is greater than A(t), from which follows

B(t) ≥
n∗∧
n=0

A⊗ U (n)
fb (0, t).

The same argument applies to the terms A ⊗ U
(n)
fb (0, t) too and leads to

A⊗ U (n)
fb (0, t) ≥ A⊗ Ufb(0, t) for all n > 1. Hence, it follows

B(t) ≥ A⊗ (1 ∧ Ufb)(0, t).

�

6.4. σ-additive Operators

When switching from univariate to bivariate calculus the min-plus convolution
looses its commutativity (see also Chapter 1). This denies the step

(6.6) (U ⊗ U∗ ⊗ 1Σ)(2) = U (2) ⊗ U (2)
∗ ⊗ 1

(2)
Σ .

Subsequently, calculating the subadditive closure becomes much harder.
This section shows how one can still commute a dynamic U -server with a �xed-

delay element. This allows to calculate the subadditive closure by self-convolving
the single service descriptions, as one would like to do in (6.6). The notion of
σ-additive operators [35] is helpful in this context.

For the entirety of this section let K = N0.

Definition 6.11. An operator π : F̃+ → F̃+ is called σ-additive, if

π
( ∞∧
n=1

Fn

)
=

∞∧
n=1

π(Fn),(6.7)

where Fn is any sequence in F̃+ and the in�ma are understood pointwisely. The
space of σ-additive operators is denoted by Π.
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Lemma 6.12. The space Π is closed under taking compositions and countable
minima. Further σ-additive operators distribute over countable minima, i.e.,( ∞∧

n=1

πn

)
◦ π =

∞∧
n=1

(πn ◦ π), π ◦
( ∞∧
n=1

πn

)
=

∞∧
n=1

(π ◦ πn).

Proof. Let π1, π2 ∈ Π. Then it holds

π1

(
π2

( ∞∧
k=1

Fk

))
= π1

( ∞∧
k=1

π2(Fk)
)

=

∞∧
k=1

π1(π2(Fk)) =

∞∧
k=1

π(Fk)

for any sequence Fk ∈ F̃+.
Let πn ∈ Π be a sequence of σ-additive operators. De�ne π :=

∧∞
n=1 πn. Then

it holds

π
( ∞∧
k=1

Fk

)
=

∞∧
n=1

πn

( ∞∧
k=1

Fk

)
=

∞∧
n=1

∞∧
k=1

πn(Fk) =

∞∧
k=1

∞∧
n=1

πn(Fk) =

∞∧
k=1

π(Fk)

for all sequences Fk ∈ F̃+.

Eventually for any F ∈ F̃+ it holds( ∞∧
n=1

πn

)
◦ π(F ) =

( ∞∧
n=1

πn

)
(π(F )) =

∞∧
n=1

πn(π(F )) =

∞∧
n=1

(πn ◦ π)(F ),

π ◦
( ∞∧
n=1

πn

)
(F ) = π ◦

( ∞∧
n=1

πn(F )
)

=

∞∧
n=1

π(πn(F )) =

∞∧
n=1

(π ◦ πn)(F )

because of π(F ), πn(F ) ∈ F̃+. �

Example 6.13. The bivariate convolution with some U ∈ F̃+ is an example

for a σ-additive operator. Indeed for any sequence Fn ∈ F̃+ and choice (s, t) ∈ Λ
it follows

min
s≤r≤t

{
∞∧
n=1

Fn(s, r) + U(r, t)} = min
s≤r≤t

{
∞∧
n=1

(Fn(s, r) + U(r, t))}

=

∞∧
n=1

min
s≤r≤t

{Fn(s, r) + U(r, t)} =

∞∧
n=1

Fn ⊗ U(s, t)

and hence

πU (

∞∧
n=1

Fn) := (

∞∧
n=1

Fn)⊗ U =

∞∧
n=1

Fn ⊗ U =

∞∧
n=1

πU (F ).

Other examples for σ-additive operators in the context of WFC systems are

πẽ(A) = A,

π+Σ(A)(s, t) =

{
A(s, t) if s 6= 0

A(0, t) + Σ if s = 0
,

π∆(A)(s, t) =

{
A(s, t−∆) if s ≤ t−∆

0 else
,
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∧ U

∆Σ

A B C

D
Feedback Loop

Figure 6.2. A window �ow controlled system with a �xed-delay
element of length ∆. The delay element is described by the oper-
ator π∆.

where Σ ∈ R. The above operators represent the identity operator, a window-
element, and a �xed-delay element, respectively. Their σ-additivity and the follow-
ing properties are an immediate consequence of their de�nitions:

• π+Σ commutes with πU , i.e., πU ◦ π+Σ = π+Σ ◦ πU .
• π+Σ commutes with π∆, i.e., π∆ ◦ π+Σ = π+Σ ◦ π∆.
• π2

+Σ = π+2Σ, and U is subadditive if and only if πU is idempotent, i.e.,

π2
U = πU .

With the above operators the feedback loop of Figure 6.1 is

(6.8) B = A ∧ πfb(B) := A ∧ π+Σ ◦ π∗ ◦ πU (B),

where π∗ describes the behavior of the placeholder ∗. The solution of this feedback
equation resembles those of the univariate and bivariate formulations.

Theorem 6.14. Assume that the feedback loop in Figure 6.1 is described by the
σ-additive operator πfb, i.e., D ≥ πfb(B). If A(s, t) < ∞ for all (s, t) ∈ Λ and if

there exists a δ > 0 such that π
(n)
fb (E)(t, t) ≥ nδ for all n, t ∈ N0 and E ∈ F̃ , then

it holds

B ≥
∞∧
k=0

πkfb(A) =: π̄fb(A),

where π0
fb = πẽ.

Proof. The proof works similar to the ones in Theorem 6.5 and 6.9. Let
(s, t) ∈ Λ be arbitrary. Then, since πnfb(B) ∈ F̃+, it holds

πnfb(B)(s, t) ≥ πnfb(s, s) ≥ nδ

and hence an n∗ exists such that πn
∗

fb (B)(s, t) ≥ A(s, t). The rest follows as for the
univariate and bivariate formulations. �

In the next lemma the placeholder ∗ is set to a �xed-delay element; further,
the service U is assumed to be subadditive. As a result, the commutation step in
(6.6) becomes possible, after introducing an error term.

Lemma 6.15. Consider the WFC system of Figure 6.2, where π∆ is a �xed-
delay element, as de�ned above. If U ∈ F̃+ is subadditive, decreasing in its �rst
variable, and U(t, t) = 0 for all t ∈ N0, the system has the description

B(t) ≥ πsys(A)(0, t) =

n∗∧
n=0

n(Σ− U∆) + min
n∆≤s≤t

{A(0, s− n∆) + U(s, t)}

for all t ∈ N0. Here n
∗ is the �rst n ∈ N such that n∆ > t and U∆ := U(t−∆, t).
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Proof. The feedback system is described by

B(t) ≥ A(t) ∧ π+Σ ◦ π∆ ◦ πU (B)(0, t) = πfb(B)(0, t).

Choose some n, t ∈ N0 and E ∈ F̃+, then it is easy to see that π
(n)
fb (E)(t, t) ≥ nΣ

and the conditions of Theorem 6.14 are ful�lled. Thus, it holds

B ≥ π∧(A) :=

∞∧
n=0

(π+Σ ◦ π∆ ◦ πU )n(A).

The question is: How does πnfb evolve for n → ∞? By the associativity of
σ-additive operators and the commutativity of π+Σ with the other operators, it
holds

πfb ◦ πfb = π+Σ ◦ π∆ ◦ πU ◦ π+Σ ◦ π∆ ◦ πU = π+2Σ ◦ (π∆ ◦ πU ) ◦ (π∆ ◦ πU ).

The goal is to compare π∆ ◦ πU with πU ◦ π∆. For A ∈ F̃+ it holds

π∆ ◦ πU (A)(s, t) + U(t−∆, t) = min
s≤r≤t−∆

{A(s, r) + U(r, t−∆) + U(t−∆, t)}.

Since U is subadditive, it holds U(r, t−∆) +U(t−∆, t) ≥ U(r, t), which results in

π∆ ◦ πU (A)(s, t) ≥ min
s≤r≤t−∆

{A(s, r) + U(r, t)} − U(t−∆, t)

= min
s+∆≤r′≤t

{A(s, r′ −∆) + U(r′ −∆, t)} − U(t−∆, t)

≥ min
s+∆≤r′≤t

{π∆(A)(s, r′) + U(r′, t)} − U(t−∆, t)

= min
s≤r′≤t

{π∆(A)(s, r′) + U(r′, t)} − U(t−∆, t)

= πU ◦ π∆(A)(s, t)− U(t−∆, t).

The minimum in line three does not decrease when the interval extends to [s, t], due
to the de�nition of the operator π∆ and U being decreasing in the �rst variable.

The above relation between π∆◦πU and πU ◦π∆ introduces the term U(t−∆, t),
which is independent of s and A. Iterating the above leads to

πn+1
fb (A)(s, t) = (π+Σ ◦ π∆ ◦ πU )n+1(A)(s, t)

= π+Σ ◦ π∆ ◦ πU ◦ πnfb(A)(s, t)

≥ π+Σ ◦ π∆ ◦ πU ◦ π+nΣ ◦ πU ◦ πn∆(A)(s, t)− nU(t−∆, t)

= π+(n+1)Σ ◦ π∆ ◦ πU ◦ πn∆(A)(s, t)− nU(t−∆, t)

≥ π+(n+1)Σ ◦ πU ◦ π(n+1)∆(A)(s, t)− (n+ 1)U(t−∆, t).

Next it is to show that it is su�cient to take the minimum over a �nite set of
integers in the closure π̄fb. To that end, let n∗ be the �rst n such that n∆ > t and
denote for brevity U(t−∆, t) = U∆. Then

πn
∗

fb (A)(0, t) ≥ π+n∗(Σ−U∆) ◦ πU ◦ πn∗∆(A)(0, t)

= n∗(Σ− U∆) + min
0≤s≤t

{πn∗∆(A)(0, s) + U(s, t)} = n∗(Σ− U∆),
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as the last minimum always reduces to zero by setting s = t. In particular it holds

πn
∗+1

fb (A)(0, t) ≥ (n∗ + 1)Σ− n∗U∆ + π∆ ◦ πU ◦ πn∗∆(A)(0, t)

= (n∗ + 1)Σ− n∗U∆ + min
0≤s≤t−∆

{πn∗∆(A)(0, s) + U(s, t−∆)}

= (n∗ + 1)Σ− n∗U∆ ≥ n∗(Σ− U∆).

Hence,

πnfb(A)(0, t) ≥
⌈
t

∆

⌉
(Σ− U(t−∆, t)) for all n >

t

∆

and consequently

π∧(A)(0, t) =

∞∧
n=0

πnfb(A)(0, t) ≥
n∗∧
n=0

πn
∗

fb (A)(0, t).

With a �nite representation of π∧ the end-to-end behavior is captured by πsys
with

πsys(A)(0, t) = πU ◦ π∧(A)(0, t) =
( ∞∧
n=0

πU ◦ πnfb
)

(A)(0, t)

≥
n∗∧
n=0

πU ◦ π+n(Σ+U∆) ◦ πU ◦ πn∆(A)(0, t)

=

n∗∧
n=0

π+n(Σ+U∆) ◦ πU ◦ πn∆(A)(0, t)

=

n∗∧
n=0

n(Σ− U∆) + min
0≤s≤t

{πn∆(A)(0, s) + U(s, t)}

=

n∗∧
n=0

n(Σ− U∆) + min
n∆≤s≤t

{A(0, s− n∆) + U(s, t)}.

�

The above lemma provides a closed form of π̄fb for any �xed t ∈ N0. As seen
in the next chapter, this allows to extend the deterministic result to a stochastic
setting, in which any non-closed forms of

∧∞
n=0 π

n
fb would cause severe problems.



CHAPTER 7

Window Flow Control in Stochastic Network

Calculus

Parts of this chapter are joint work with J. Schmitt and have been presented
�rst in [15].

Window �ow control in SNC has been considered a challenging and open prob-
lem for years [88, 66, 68]. Recently, �rst successes can be marked [41, 16, 139].
This chapter presents the challenge of WFC in SNC in more detail and presents
�rst steps towards a solution. To that end, Section 7.1 investigates why standard
methods only give limited results for WFC systems. Afterwards two methods for
obtaining stochastic performance bounds in WFC systems are presented. The �rst
method is based on preserving subadditivity inside the feedback loop. The second
method utilizes the problem's stochastic nature: It bounds the probability of the
feedback loop not being subadditive. This bound is derived by SNC-methods again.
As a result, both methods consider a subadditive description of the feedback loop,
which simpli�es the construction of the subadditive closure Ūfb. A numerical eval-
uation that compares the obtained results with the deterministic methods and to
each other concludes this chapter.

7.1. Problem Exposition

To create stochastic performance bounds for WFC systems the throttle's service
must be stochastically bounded. Here the subadditive closure Ūfb(t), Ūfb(s, t),
or π̄fb forms a severe obstacle. This section describes, why the straightforward
application of already known methods only leads to limited results. For ease of
presentation K = N0.

Assume that the feedback loop is tailbounded by a service curve Ufb with error
ζ and �x some t ∈ K and ε > 0. To successfully apply Theorem 6.5 the assumption

(7.1) D(s) ≥ (B ⊗ Ufb(ε))(s) for all s ≤ t

is needed, as it leads to Equation (6.1). In this case the throttle has service curve
Ūfb and hence

P(B(t) < (A⊗ Ūfb(ε))(t)) ≤ P
( ⋃
s≤t

D(s) < (B ⊗ Ufb(ε))(s)
)

≤
t∑

s=0

P(D(s) < (B ⊗ Ufb(ε))(s)) ≤
t∑

s=0

ζ(s, ε).

The above forms a tailbounded service curve Ūfb with error ζ̄(t, ε) =
∑t
s=0 ζ(s, ε)

for the throttle. As the error ζ̄ is not convergent in t, however, this bound is of
limited use.

89
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The reason for the divergence of ζ̄ lies in assumption (7.1): The service curve
property must hold for the entire interval [0, t]. This condition resembles the one
encountered in the convolution of two tailbounded service curves (see Theorem
2.20). There the error function ζ is improved by introducing a slack rate δ to the
service curve. Hence, the apparent �rst idea is to reduce the tailbounded service
curve Ufb in the same way.

To that end, the tailbounded service curve de�nition of Chapter 3 is repeated
here: Assume that for the feedback loop the tailbound

P(B(t) < A⊗ [U − ε]+(t)) < ζ(t, ε),

holds, where the convolution reads

A⊗ [U − ε]+(t) = min
0≤s≤t

{A(s) + [U(t− s)− ε]+}.

Now �x some t ∈ N0. Similar to Theorem 2.20 relax Assumption (7.1) to

D(s) ≥ (B ⊗ [U − ε− δ(t− s))]+)(s) for all s ≤ t.

If Theorem 6.5 did apply, this would leads to

P(B(t) < (A⊗ Ūfb(ε))(t)) ≤ P
( ⋃
s≤t

D(s) < (B ⊗ [U − ε− δ(t− s)]+)(s)
)

≤
t∑

s=0

ζ(s, ε+ δ(t− s)) <∞.(7.2)

However, the condition [U(0)− ε− δt]+ > 0 of Theorem 6.5 is only ful�lled for
a limited choice of t ∈ [0, t∗), where t∗ solves [U(0) − ε − δt]+ = 0. Reducing δ
leads to larger t∗; hence, to achieve Inequality (7.2) for all t ∈ N0 the parameter δ
must tend to zero. This in turn leads to a divergence of the error ζ̄ again. Overall
a tailbounded service curve with error independent of t cannot be reached by this
approach.

Instead of a tailbounded service, assume now that the feedback loop is a
(σfb, ρfb)-bounded dynamic Ufb-server. Further, assume that the service element
inside the feedback is a (σU , ρU )-bounded dynamic U -server and A � (σA, ρA). By
Theorem 6.9 the throttle is a dynamic Ūfb-server, if inft Ufb(t, t) > 0.

The goal is to �nd an MGF-bound for the expression φA�Usys(s,t)(θ), as it is
central in deriving performance bounds (see Theorem 2.39). In Theorem 3.1 the
arrivals A distribute over the minima of Usys, resulting in

A� Usys(s, t) = sup
0≤r≤s

{
A(r, t)−

∞∧
n=0

U ⊗ U (n)
fb (r, s)

}
= sup

0≤r≤s

{ ∞∨
n=0

A(r, t)− U ⊗ U (n)
fb (r, s)

}
=

∞∨
n=0

A� (U ⊗ U (n)
fb )(s, t).

This translates into the MGF-bounds

φA�Usys(s,t)(θ) ≤
∞∑
n=0

φ
A�(U⊗U(n)

fb )(s,t)
(θ).
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Using a generalized version of Hölder's inequality and the steps in Theorem 3.1 the
MGF corresponding to index n is bounded by

φ
A�(U⊗U(n)

fb )(s,t)
(θ)

≤
s∑

r1=0

φA(r1,t)(θ)
∑

r1≤r2≤...rn+1≤s

E(e−θ(U(r1,r2)+Ufb(r2,r3)+...+Ufb(rn+1,s)))

≤
s∑

r1=0

φA(r1,t)(θ)
∑

r1≤...≤rn+1≤s=rn+2

φ
1/p1

U(r1,r2)(−θp1)

n+1∏
k=2

φ
1/pk
Ufb(rk,rk+1)(−θpk)

≤ eθσA(θ)+θσU (p1θ)+
∑n+1
k=2 σUfb (pkθ)

s∑
r1=0

eθρA(θ)(t−s)

(7.3)

·
∑

r1≤...≤rn+1≤s=rn+2

eθ(ρU (p1θ)+ρA(θ))(r2−r1)
n+1∏
k=2

eθ(ρUfb (pkθ)+ρA(θ))(rk+1−rk)

=: Φ(θ, s, t),

where
∑n+1
k=1

1
pk

= 1. The next example shows that the above MGF diverges, in

general, for n, s, t→∞.

Example 7.1. Assume that the arrivals and the cross�ow have independent
exponential increments and that the server U has a constant rate. Assume further
that the feedback loop contains, besides U , only the window-element Σ. Thus,

ρA(θ) =
1

θ
log
( λ

λ− θ

)
, σA(θ) = 0,

ρU (θ) = ρUfb(θ) = −c+
1

θ
log
( λ

λ− θ

)
, σU (θ) = 0, σUfb(θ) = −Σ

for all θ < λ. Denote the prefactor in Line (7.3) by eθσ(θ).

Let kn be a sequence of indices for which pkn
n→∞−−−−→∞. Such a sequence exists,

as for each n ∈ N it holds 1 =
∑n
k=1

1
pk
≥ nmin{ 1

pk
}. From this the existence of

some k ∈ {1, . . . , n} with pk ≥ n follows. As the following steps do not depend on
the usage of ρUfb or ρU , the index kn is without loss of generality greater than 1.

The sum in Line (7.3) contains as one possible choice of indices

r2 = r3 = . . . = rkn = r1; rkn+1 = . . . rn+1 = s.

Considering only this choice results in

Φ(θ, s, t) ≥ eθσ(θ)
s∑

r1=0

eθρA(θ)(t−s)eθ(ρUfb (pknθ)+ρA(θ))(s−r1)

= eθσ(θ)
s∑

r′1=0

eθρA(θ)(t−s)eθ(ρUfb (pknθ)+ρA(θ))r′1

= eθσ(θ)+ρA(θ)(t−s) 1− eθ(ρUfb (pknθ)+ρA(θ))(s+1)

1− eθ(ρUfb (pknθ)+ρA(θ))

t,s→∞−−−−−−−−→
(t−s)=const.

eθσ(θ)+ρA(θ)(t−s) 1

1− eθ(ρUfb (pknθ)+ρA(θ))
.
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Consider now the exponent θ(ρUfb(pknθ) + ρA(θ)). It holds

θ(ρUfb(pknθ) + ρA(θ)) = −cθ +
1

pkn
log
( λ

λ− pknθ

)
+ log

( λ

λ− θ

)
n→∞−−−−→ 0

as pkn
n→∞−−−−→∞ and therefore θ

n→∞−−−−→ 0 (it must always hold pkθ < λ). Hence, the
sum over all r1 diverges to in�nity, for this particular choice of indices. As all sum-
mands in Line (7.3) are positive, there cannot be other summands to compensate
this divergence and Φ must be divergent too.

For tailbounds and MGF-bounds the di�culty in bounding the throttle's service
stems from the in�nite convolution in Usys. The next two sections show a way
towards a closed description for Usys. By this the in�nite convolution is avoided.

7.2. Subadditive Feedback Loops

This section focuses on subadditive service descriptions. An example for a
subadditive server is a constant rate server Uo(s, t) = rU (t− s) with some positive
rate rU serving a cross�ow AU . As it turns out, subadditivity is the central property
for an analysis of WFC systems.

Lemma 7.2. Fix some θ > 0 and let K = N0. Let the feedback loop of Figure
6.1 be a dynamic Ufb-server with Ufb = Ures⊗1Σ. Further, assume that the MGF-
bounds U � (σ, ρ) and Ures � (σres, ρres) hold. If Ures is subadditive, the whole
system is a dynamic Usys-server for the input A and departures C with

φUsys(s,t)(−θ) ≤ e
θσ(pθ)+θσres(qθ)

t∑
r=s

eθρ(pθ)(r−s)+θρres(qθ)(t−r),

where 1
p + 1

q = 1.

Proof. Corollary 6.10 applies and characterizes the throttle as a dynamic U∧-
server with U∧ = 1∧Ufb. Concatenating U∧ with U leads to the service description

Usys(s, t) = U∧ ⊗ U(s, t) ≥ U(s, t) ∧ Ufb ⊗ U(s, t)

≥ U(s, t) ∧ Ures ⊗ U(s, t) + inf
s≤r≤t

Σ(r) ≥ Ures ⊗ U(s, t).

Following the same steps as in Theorem 2.36 leads to the assertion. �

The above Lemma shows that the subadditive case avoids the in�nite con-
volution. The fact that subadditivity is not necessary for a closed form of the
subadditive closure is shown by Lemma 6.15. There the feedback loop consists of a
subadditive dynamic U -server and a �xed delay element that are in concatenation
not subadditive anymore. The feedback loop with a �xed-delay element is picked up
again in the next section. The goal for the rest of this section is to investigate the
class of subadditive service elements or, to be more precise, under which conditions
Lemma 7.2 applies.

As before write Ufb = Ures⊗1Σ. Now consider Ures as the service description of
any kind of network with input B and departures C (see Figure 6.1). The de�nition
of subadditivity extends intuitively to subadditivity of networks.

Definition 7.3. A network with input �ow B and output C is subadditive, if
there exists a subadditive dynamic Ue2e-server such that

C(t) ≥ B ⊗ Ue2e(0, t) for all t ≥ 0.
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To answer the question which kind of networks are subadditive the network opera-
tions 	 and ⊗ are checked.

Theorem 7.4. Consider a subadditive dynamic U -server and a �ow A. The
leftover service Ul = U −A is subadditive.

Proof. Fix some s, r, t ∈ N0 with s ≤ r ≤ t, then

Ul(s, r) + Ul(r, t) = U(s, r) + U(r, t)−A(s, r)−A(r, t) ≥ U(s, t)−A(s, t)

= Ul(s, t).

�

The concatenation of subadditive service elements is in general not subadditive.

Example 7.5. Fix some s < rB < rA < t with all times in N0, and de�ne the
bivariates

A(s, r) :=

{
0 if r < rA

A if r ≥ rA
, B(r, t) :=

{
0 if r ≥ rB
B if r < rB

,

U(s, t) := u(t− s)−A(s, t), V (s, t) := v(t− s)−B(s, t)

for some constants u, v,A,B ∈ R+. The functions U and V correspond to the
service description of constant rate servers that serve the high priority cross�ows
A and B, respectively.

For the convolution of U and V it holds

U ⊗ V (s, t) = inf
s≤r≤t

{u(r − s)−A(s, r) + v(t− r)−B(r, t)}

≥ u(t− s) + inf
s≤r≤t

{−A(s, r)−B(r, t)} = (u ∧ v)(t− s)− (A ∨B).

Whereas, for some rB ≤ r ≤ rA it holds

U ⊗ V (s, r) + U ⊗ V (r, t) = inf
s≤r1≤r

{u(r1 − s) + v(r1 − r)−B}

+ inf
r≤r2≤t

{u(r − r2)−A+ v(t− r2)}

= (u ∧ v)(r − s)−B + (u ∧ v)(t− r)−A
= (u ∧ v)(t− s)− (A+B) < (u ∧ v)(t− s)− (A ∨B)

≤ U ⊗ V (s, t).

Hence U ⊗ V is not subadditive.

The above example shows that a straightforward concatenation of service el-
ements does not preserve subadditivity. Still, there exist subadditive descriptions
for concatenated service elements. For that purpose a stronger property than sub-
additivity is needed.

Definition 7.6. A dynamic U -server is called separable, if there exists a sub-
additive Uo and a �ow AU such that

U(s, t) = Uo(s, t)−AU (s, t).
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Uo

AU

Vo

AV

 Uo ∧ Vo

AU ∨AV

Figure 7.1. Theorem 7.8 allows a subadditive end-to-end descrip-
tion of separable service elements.

If K = R+
0 , the bivariates Uo and AU must further have the representation

Uo(s, t) =

ˆ t

s

uo,c(r)dr,(7.4)

AU (s, t) =

ˆ t

s

aU,c(r)dr +
∑
r∈[s,t]

lim
r′↘r

AU (r′)−A(r)(7.5)

for some integrable functions uo,c and aU,c. The summation is over all r for which
the instantaneous increments limr′→r AU (r′)−AU (r) are nonzero. For a separable
U this set must be countable. The instantaneous bursts are henceforth denoted by
aU,j(r).

Remark 7.7. A separable dynamic U -server is always subadditive by Theorem
7.4, but the converse must not be the case.

Theorem 7.8. Assume that U and V are separable. They form a separable
dynamic W -server, as in Figure 7.1, with

Wo(s, t) :=

t−1∑
r=s

Uo(r, r + 1) ∧ Vo(r, r + 1),

AW (s, t) :=

t−1∑
r=s

AU (r, r + 1) ∨AV (r, r + 1),

if K = N0 and

Wo(s, t) :=

ˆ t

s

uo,c(r) ∧ vo,c(r)dr,

AW (s, t) :=

ˆ t

s

aU,c(r) ∨ aV,c(r)dr +
∑
r∈[s,t]

aU,j(r) + aV,j(r),

if K = R+
0 .

Remark 7.9. Here r ∈ [s, t] denotes all times for which either aU,j(r) 6= 0 or
aV,j(r) 6= 0.

Proof. Without loss of generality let K = R+
0 . The proof for slotted time

follows as a special case.
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∧ U

∆Σ

A B C

D
Feedback Loop

Figure 7.2. A window �ow controlled system with a �xed-delay
element of length ∆.

The tandem is a U ⊗ V -server with

U ⊗ V (s, t) ≥ inf
s≤r≤t

{Uo(s, r) + Vo(r, t)} − sup
s≤r≤t

{AU (s, r) +AV (r, t)}

≥ inf
s≤r≤t

{ˆ r

s

uo,c(x) ∧ vo,c(x)dx+

ˆ t

r

uo,c(x) ∧ vo,c(x)dx
}

− sup
s≤r≤t

{ˆ t

s

aU,c(x) ∨ aV,c(x)dx+
∑

r′∈[s,r]

aU,j(r
′) +

∑
r′∈[r,t]

aV,j(r
′)
}

≥Wo(s, t)−AW (s, t),

for all s ≤ t. By the convolution's monotonicity it holds

C(t) ≥ B ⊗ (U ⊗ V )(0, t) ≥ B ⊗W (0, t)

and W is a separable dynamic server for the tandem. �

The above proof can be generalized to tandems with more than two servers and
can be applied to several cross�ows. Extending each cross�ow to the entire path of
Ai, however, is surely not optimal and can in fact become arbitrarily loose. Similar
to the construction of end-to-end service curves in deterministic network calculus
(see Examples 1.15-1.17), better ways for attaining a networks service are available
(see for example the numerical evaluation in Section 7.5). Such improvements rely
on the considered network's structure and an e�cient ordering of the demultiplexing
and convolution operations. In contrast to the methods discussed in Chapter 1, here
the additional condition of preserving subadditivity is crucial. More sophisticated
exploits of topological characteristics are left to future work.

7.3. Fixed-Delay Elements

Before delving into the general case, a stochastic extension to Lemma 6.15 is
given. This example considers a subadditive service U and a �xed-delay element
in the feedback loop (see Figure 7.2). Such feedback loops are not subadditive due
to the �xed-delay element. This scenario is of particular interest as the resulting
stochastic bound converges in t.

Theorem 7.10. Let K = N0. Consider the WFC system of Figure 7.2, where
∆ is a �xed-delay element described by π∆ ∈ Π. Here U ∈ F̃+ is subadditive,
decreasing in its �rst variable, and U(t, t) = 0 for all t ∈ N0. Let 1

p + 1
q = 1 and
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(σ, ρ) � U � (σ̄, ρ̄) for some θ > 0. Under the stability conditions

(ρA(θ) + ρ̄U (qθ))∆ ≤ Σ,

ρA(θ) + ρU (pθ) < 0,

ρ̄U (θ)∆ < Σ

the system has the end-to-end delay bound

P(d(t) > T ) ≤ e−θρA(θ)T+θσ(θ,p,q)

(1− eθ(ρA(θ)∆+ρ̄U (qθ)∆−Σ))(1− eθ(ρA(θ)+ρU (pθ)))
+ ε(t)

with ε(t)
t→∞−−−→ 0 .

Proof. Fix some t, T ∈ N0, θ > 0 and de�ne n∗ = d t+T∆ e. If d(t) > T , then it
holds by the de�nition of the virtual delay

0 < A(t)−B(t+ T ) ≤ A(t)− πsys(A)(0, t+ T ),

which yields

0 <

n∗∨
n=0

max
n∆≤s≤t+T

{A(t)−A(s− n∆)− U(s, t+ T )} − n(Σ− U∆)

with U∆ = U(t−∆, t) by Lemma 6.15. Recasting this in Cherno�'s inequality and
MGF-bounds results in

P(d(t) > T )

≤
n∗∑
n=0

E(eθ(maxn∆≤s≤t+T {A(t)−A(s−n∆)−U(s,t+T )}−n(Σ−U∆)))

≤
n∗−1∑
n=0

( t+T∑
s=n∆

E(eθA(s−n∆,t)−θU(s,t+T )+θnU∆)e−θnΣ
)

+ E(eθn
∗U∆)e−θn

∗Σ

(7.6)

≤ eθ(σA(θ)+σU (pθ)+σ̄U (qθ))
n∗−1∑
n=0

t+T∑
s=n∆

eθρA(θ)(t−s+n∆)eρU (pθ)(t+T−s)eθnρ̄U (qθ)∆e−θnΣ

+ eθn
∗(ρ̄U (θ)∆−Σ)eθσ̄U (θ)

=: e−θρA(θ)T+θσ(θ,p,q)
n∗−1∑
n=0

eθn(ρA(θ)∆+ρ̄U (qθ)∆)−θnΣ
t+T∑
s=n∆

eθ(ρA(θ)+ρU (pθ))(t+T−s)

+ ε(t).

Under the assumed stability conditions the above bound converges in t since

P(d(t) > T )

≤ e−θρA(θ)T+θσ(θ,p,q)
n∗−1∑
n=0

(
eθn(ρA(θ)∆+ρ̄U (qθ)∆−Σ)(1− eθ(ρA(θ)+ρU (pθ)))−1

)
+ ε(t)

≤ e−θρA(θ)T+θσ(θ,p,q)

(1− eθ(ρA(θ)∆+ρ̄U (qθ)∆−Σ))(1− eθ(ρA(θ)+ρU (pθ)))
+ ε(t).

�
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Remark 7.11. This bound is similar to the one in the unthrottled case (using
the �rst part of Lemma 2.34)

P(d(t) > T ) ≤ e−θρA(θ)T+θ(σA(θ)+σU (θ))(1− eθ(ρA(θ)+ρU (θ)))−1.

Under stricter conditions on U the above bound can be improved.

Corollary 7.12. Assume the setting from Theorem 7.10. Further assume that
U has independent increments and is additive; i.e., for non-overlapping intervals
(s1, t1] and (s2, t2] the random variables U(s1, t1) and U(s2, t2) are stochastically
independent and it holds

U(s, t) = U(s, r) + U(r, t)

for all s ≤ r ≤ t ∈ N0. Then

P(d(t) > T )

≤ eθρU (θ)T

1− eθ(ρA(θ)∆+ρ̄U (θ)∆−Σ)

(
eθρA(θ)∆−θρ̄U (θ)∆

1− eθ(ρA(θ)+ρU (θ))
+ (T + ∆)eθρA(θ)(∆−1)

)
+ ε(t)

holds with ε(t)
t→∞−−−→ 0.

Proof. Choose some n < n∗− 1, where n∗ is de�ned again as the �rst integer
such that n∗∆ > t. The quantity nU∆−U(s, t+T ) in Equation (7.6) simpli�es for
all s ≤ t−∆ to

(n− 1)U∆ − U(s, t−∆)− U(t, t+ T )

due to the additivity of U and U∆ being de�ned as U(t −∆, t). For all s > t −∆
it holds instead

nU∆ − U(s, t+ T ) = (n− 1)U∆ + U(t−∆, s)− U(t, t+ T ) ≤ nU∆ − U(t, t+ T ).

For n = n∗−1 the summation in Equation (7.6) ranges from s = (n∗−1)∆ > t−∆
to t+ T and hence the above distinction is of no concern.

Overall Equation (7.6) can be written as

n∗−1∑
n=0

( t+T∑
s=n∆

E(eθA(s−n∆,t)−θU(s,t+T )+θnU∆)e−θnΣ
)

+ E(eθn
∗U∆)e−θn

∗Σ

≤
n∗−2∑
n=0

e−θnΣ
( t−∆∑
s=n∆

E(eθA(s−n∆,t)−θU(s,t−∆)−θU(t,t+T )+θ(n−1)U∆)

+

t+T∑
s=t−∆+1

E(eθA(s−n∆,t)−θU(t,t+T )+θnU∆)
)

+ e−θ(n
∗−1)Σ

t+T∑
s=(n∗−1)∆

E(eθA(s−(n∗−1)∆,t)−θU(t,t+T )+θ(n∗−1)U∆)

+ E(eθn
∗U∆)e−θn

∗Σ.
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All expectations appearing in the above term can be separated without using
Hölder's inequality, as the increments of U are assumed to be stochastically in-
dependent. Doing so and applying the MGF-bounds leads to

P(d(t) > T )

≤
n∗−2∑
n=0

e−θnΣ
( t−∆∑
s=n∆

eθ(ρA(θ)(t−s+n∆)+ρU (θ)(T+t−∆−s)+ρ̄U (θ)(n−1)∆)

+

t+T∑
s=t−∆+1

eθ(ρA(θ)(t−s+n∆)+ρU (θ)T+ρ̄U (θ)n∆)
)

+ e−θ(n
∗−1)Σ

t+T∑
s=(n∗−1)∆

eθρA(θ)(t−s+(n∗−1)∆)+θρU (θ)T+θ(n∗−1)∆ρ̄U (θ)

+ eθn
∗ρ̄U (θ)∆e−θn

∗Σ.

The summation over s = n∆, . . . , t − ∆ can be reindexed as a summation over
s′ = t− (n+ 1)∆, . . . , 0 resulting in the geometric sum

eθρA(n+1)∆+ρ̄U (θ)(n−1)∆+θρU (θ)T

t−(n+1)∆∑
s′=0

eθ(ρA(θ)+ρU (θ)s′

≤ eθρU (θ)T e
θρA(n+1)∆+ρ̄U (θ)(n−1)∆

1− eθ(ρA(θ)+ρU (θ))
.

Further, the summation over s = t−∆ + 1, . . . , t+ T is bounded by

t+T∑
s=t−∆+1

eθρA(θ)(t−s+n∆)+θρU (θ)T+θρ̄U (θ)n∆

≤ (T + ∆)eθ(ρA(θ)+ρ̄U (θ))n∆+θρA(θ)(∆−1)+θρU (θ)T

and the third summation over s is, since n∗∆−1 ≥ t ≥ (n∗−1)∆, similarly bounded
by

t+T∑
s=(n∗−1)∆

eθρA(θ)(t−s+(n∗−1)∆)+θρU (θ)T+θ(n∗−1)∆ρ̄U (θ)

≤ (T + ∆)eθ(ρA(θ)+ρ̄U (θ))t+θρU (θ)T .
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Applying all of these inequalities results in

P(d(t) > T )

≤ eθρU (θ)T
n∗−2∑
n=0

e−θnΣ
(eθρA(n+1)∆+ρ̄U (θ)(n−1)∆

1− eθ(ρA(θ)+ρU (θ))

+ (T + ∆)eθ(ρA(θ)+ρ̄U (θ)n∆+ρA(θ)(∆−1))
)

+ e−θ(n
∗−1)Σ(T + ∆)eθ(ρA(θ)+ρ̄U (θ))t+θρU (θ)T

+ eθn
∗ρ̄U (θ)∆e−θn

∗Σ

≤ eθρU (θ)T
( eθρA∆−θρ̄U (θ)∆

1− eθ(ρA(θ)+ρU (θ))
+ (T + ∆)eθρA(θ)(∆−1)

) n∗−2∑
n=0

eθn(ρA(θ)∆+ρ̄U (θ)∆−Σ)

+ eθΣ(T + ∆)eθn
∗(ρA(θ)∆+ρ̄U (θ)∆−Σ)+θρU (θ)T

+ eθn
∗(ρ̄U (θ)∆−Σ).

Now under the stability condition ρA(θ)∆ + ρ̄U (θ)∆ < Σ the above geometric sum
is convergent and the two last expressions vanish for t → ∞, since n∗ → ∞. This
eventually leads to

P(d(t) > T )

≤ eθρU (θ)T

1− eθ(ρA(θ)∆+ρ̄U (θ)∆−Σ)

(
eθρA(θ)∆−θρ̄U (θ)∆

1− eθ(ρA(θ)+ρU (θ))
+ (T + ∆)eθρA(θ)(∆−1)

)
+ ε(t)

�

This concludes the SNC-bound for a feedback loop of the form
πfb = π+Σ ◦ π∆ ◦ πU . Very related to this is the report [139] by Shekaramiz,
Liebeherr, and Burchard. There feedback-loops consist of an additive service ele-
ment U ∈ F̃+ and a �xed-delay element. Yet, the used methods are di�erent from
the above in the way the �xed-delay element is handled. Corollary 7.12 works on
the level of σ-additive operators to achieve a commutation, whereas in [139] the
system is analyzed on the level of convolutions. There the �xed-delay element in
conjunction with the window-element is exploited. Wether the approach presented
in [139] can be generalized to U resulting from the operations 	 or ⊗ is an open

question. The di�culty lies in preserving U ∈ F̃+(to apply Theorem 6.9) and
keeping the additivity of U . For example: The subtraction of cross�ows leads, in
general, to U /∈ F̃+. This holds even if the leftover service is de�ned by the in-
crements u(t) = uo(t) − aU (t). Here uo and aU are the increments of the original
server and the cross�ows, respectively. This can be avoided by subtracting a cross-
�ow on the level of increments from a strict dynamic U -server, i.e., by de�ning U
via u(t) = [uo(t)− aU (t)]+.

7.4. The General Case

The two previous sections gave examples for which the stochastic analysis of
the WFC systems is successful; however, these results are strongly connected to
the subadditivity of Ures or U , respectively. This assumption is rather strict and
Theorem 7.8 must be employed, if multiple service elements are involved. As a
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consequence the available service inside the feedback loop is, in general, underesti-
mated. Eventually leading to looser performance bounds. Clearly one would like to
drop the assumption of subadditivity and deal with general feedback loops instead.

This section shows a way to separate the assumption of subadditivity from the
performance bounds. To that end, two cases are distinguished: 1) the subadditivity
of the feedback loop holds and the results of Section 7.2 apply; or 2) the subadditiv-
ity is not given and thus no performance bound either. Yet, the probability of the
second case happening can be stochastically bounded. Performance bounds follow
by combining these two cases into an overall violation probability. In that way, this
section's main idea is similar to the one in Chapter 4. The two cases distinguished
there are the events that the statistic delivers a valid MGF-bound or not. In this
chapter the events to distinguish are that the feedback loop shows a subadditive
behavior or not.

Recalling the solution of Theorem 6.5 an MGF-bound is needed for

Usys =
( ∞∧
n=0

(Ufb)
(n)
)
⊗ U(s, t).

Section 7.1 presents the result of a straightforward application of the usual MGF-
bound techniques. The generalized Hölder inequality for each self-convolution

U
(n)
fb ⊗ U leads to di�culties and to a fast divergence of the resulting bounds in t.

Here another path is opened by Condition (6.5), which is repeated here: Let
Ufb = Ures⊗1Σ = U ⊗U∗⊗1Σ and �x some t ∈ K. The service Ufb is subadditive,
if the condition

(7.7) inf
s≤r≤t

{Ures(s, r) + Ures(r, t)} ≥ Ures(s, t)−K

holds for some positive constantK ≤ infr≥0{Σ(r)} and all (s, t) ∈ Λ. This condition
is written di�erently as

Ures(s, t)− U (2)
res(s, t) ≤ K for all (s, t) ∈ Λ

⇔ Ures � U (2)
res(t, t) ≤ K(7.8)

The following lemma summarizes the situation.

Lemma 7.13. Fix some t. Under Condition (7.7) the feedback system is a
dynamic Ures-server.

Proof. For all (s, t) ∈ Λ it holds by Corollary 6.10

Usys(s, t) = (1 ∧ Ufb)⊗ U(s, t)

= U(s, t) ∧ inf
s≤r≤t

{Ures(s, r) + Σ(r) + U(r, t)}

≥ U(s, t) ∧ Ures ⊗ Ures(s, t) + Σmin(t)

≥ U(s, t) ∧ Ures(s, t)−K + Σmin(t) ≥ U(s, t) ∧ Ures(s, t) = Ures(s, t).(7.9)

�

As the bivariate Ures is a stochastic process, Condition (7.7) is not a determin-
istic event; thus, the probability of Equation (7.7) being ful�lled comes into focus.
To this end, �x some t ∈ K and denote by S(t) the event that Condition (7.7) holds.
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U U
U

Figure 7.3. Equation (7.8) can be interpreted as a backlog bound
in the above system.

Then

P(dsys(t) > T ) = P(dsys(t) > T |S(t))P(S(t)) + P(dsys(t) > T | ¬S)P(¬S(t))

≤ P(dU⊗U∗(t) > T ) + P(¬S(t)),

where P(dU⊗U∗(t) > T ) is calculated by applying Theorem 1.7 and Theorem 2.39.
If P(¬S(t)) is bounded, the above gives a delay bound for the WFC system.

Theorem 7.14. Fix some t ∈ K for condition S(t). If (σ, ρ) � Ures � (σ̄, ρ̄),
then

P(¬S(t)) ≤ e−θK+θ(σ̄(pθ)+σ(qp′θ)+σ(qq′θ))L

t∑
s′=0

eθ(ρ̄(pθ)+θρ(qp
′θ))s′ ,

where 1
p + 1

q = 1
p′ + 1

q′ = 1 and L is a constant given in the proof.

Proof. The alternative representation (7.8) has the interpretation of a backlog
bound. The corresponding system consists of a ��ow�' U and a dynamic U ⊗ U -
server (see Figure 7.3). As the �ow and service are stochastically dependent the
Hölder parameters 1

p + 1
q = 1

p′ + 1
q′ = 1 are introduced. By Theorem 2.39 it holds

P(b(t) > x)

≤P(Ures � U (2)
res(t, t) > x) ≤ e−θx

t∑
s=0

eθρ̄(pθ)(t−s)+θσ̄(pθ)(E(e−θqU⊗U(s,t))
1/q

≤e−θx+θσ̄(pθ)
t∑

s=0

eθρ̄(pθ)(t−s)
( t∑
r=s

eθqρ(qp
′θ)(r−s)+θqσ(qp′θ)eθqρ(qq

′θ)(t−r)+θqσ(qq′θ)
)1/q

≤ e−θx+θσ̄(pθ)+θσ(qp′θ)+θσ(qq′θ)

·
t∑

s=0

eθρ̄(pθ)(t−s)eθρ(qp
′θ)(t−s)

( t−s∑
r′=0

eθq(ρ(qq
′θ)−ρ(qp′θ))r′

)1/q

.

(7.10)

Assume that w.l.o.g. q′ > p′. Then the last sum converges for t → ∞. The
corresponding series' limit is denoted by L and the above term can be written as

P(b(t) > x) ≤ e−θx+θ(σ̄(pθ)+σ(qp′θ)+σ(qq′θ))L

t∑
s=0

eθρ̄(pθ)(t−s)+θρ(qp
′θ)(t−s)

≤ e−θb+θ(σ̄(pθ)+σ(qp′θ)+σ(qq′θ))L

t∑
s′=0

eθ(ρ̄(pθ)+θρ(qp
′θ))s′ .

�
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Remark 7.15. The above sum does not converge in general. This is due to the
three inequalities:

ρ̄(θ) ≥ −ρ(θ) for all θ ≥ 0,

ρ̄(pθ) ≥ ρ̄(θ) for all p ≥ 1,

ρ(qθ) ≥ ρ(θ) for all q ≥ 1.

For the case q′ = p′ = 2, the exponents in the last sum of Line (7.10) vanish and

the sum reduces to t− s+ 1 ≤ eθ(t−s) 1
θ ; hence, the bound becomes

P(q(t) > b) ≤ e−θb+θ(σ̄(pθ)+2σ(2qθ))
t∑

s′=0

eθ(ρ̄(pθ)+θρ(2qθ)+
1
qθ )s′ .

The system in Figure 7.3 is unstable (the concatenation of the two servers with
service U ⊗U is at most as large as the arrivals U). By this the bound of Theoerm
7.14 is only valid for �nite time t. Still it has advantages over the bound in Equation
(7.3) as it remains analytically tractable.

Overall, the stochastic performance bound for the general feedback loop is given
in the next theorem.

Theorem 7.16. Consider a WFC system as in Figure 6.1 with the placeholder
∗ being a dynamic U∗-server. Let 1

p + 1
q = 1

p′ + 1
q′ = 1 and q′ > p′. De�ne

Σmin(t) = inf0≤r≤t{Σ(r)}. If (σ, ρ) � Ures = U ⊗ U∗ � (σ̄, ρ̄), the whole system
ful�lls the probabilistic delay bound

P(dsys(t) > T ) ≤ P(dUres(t) > T ) + e−θΣmin(t+T )+σtot(θ,p,p
′)B

t+T∑
s=0

eθρtot(θ,p,p
′)s

with

σtot(θ, p, p
′) = σ(pθ) + σ(qp′θ) + σ(qq′θ),

ρtot(θ, p, p
′) =

{
ρ(pθ) + ρ(qp′θ) if p′ 6= 2

ρ(pθ) + ρ(2qθ) + 1
qθ if p′ = 2

,

B =


(

1
1−eθq(ρ(qq′θ)−ρ(qp′θ)

)1/q

if p′ 6= 2

1 if p′ = 2

and dUres being the delay of an unthrottled tandem consisting of a dynamic Ures-
server.

Remark 7.17. Step (7.9) in Lemma 7.13 is not a necessary one. One could,
for example, choose K < Σmin(t) and continue with

(7.11) Usys(s, t) ≥ U(s, t) ∧ Ures(s, t) + Σmin(t)−K.

Theorem 7.16 applies to this Usys (which is at least as large as Ures) also. This
procedure has the interpretation of shifting the violation probability towards the
subadditive part (event S(t)) of the bound. This tradeo� is analyzed in more detail
in the numerical evaluation.

The next example is used in the numerical evaluation of Section 7.6.
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Example 7.18. Let K = N0 and assume that U and U∗ are two constant rate
servers that serve high-priority cross�ows AU and A∗, respectively. The service
elements' rates are u and u∗, respectively, with u > u∗. If AU � (σAU (θ), ρAU (θ))
and AU∗ � (σA∗(θ), ρA∗(θ)), it holds

P(¬S(t)) ≤ eθ(σAU (θ)+σAU∗ (θ))
t∑

r=0

t−r∑
r′=1

eθr
′(u−u∗+ρAU (θ)+ρA∗ (θ))(7.12)

for all t ∈ N0. This is seen as follows: Fix any triple of times s ≤ r ≤ t ∈ N0. It
holds

U ⊗ U∗(s, r)
= min

s≤r′≤r
{u(r′ − s) + u∗(r − r′)−AU (s, r′)−A∗(r′, r)}

= min
s≤r′≤r

{u(r′ − s) + u∗(t− r′)− u∗(t− r)−AU (s, r′)−A∗(r′, t) +A∗(r, t)}

≥U ⊗ U∗(s, t)− u∗(t− r) +A∗(r, t).

Now assume that it held U ⊗ U∗(r, t) ≥ u∗(t− r)−A∗(r, t), then

U ⊗ U∗(s, r) + U ⊗ U∗(r, t) ≥ U ⊗ U∗(s, t)

would follow.
Hence,

P(¬S(t)) ≤ P(∃r ≤ t : U ⊗ U∗(r, t) < u∗(t− r)−A∗(r, t)).

The condition inside the probability is equivalent to the existence of an r ≤ t such
that

0 > min
r≤r′≤t

{u(r′ − r) + u∗(t− r′)−AU (r, r′)−A∗(r′, t)} − u∗(t− r) +A∗(r, t)

= min
r≤r′≤t

{(u− u∗)(r′ − r)−AU (r, r′) +A∗(r, r
′)}.

Hence,

P(¬S(t)) ≤ P
( t⋃
r=0

t⋃
r′=r+1

AU (r, r′)−A∗(r, r′) > (u− u∗)(r′ − r)
)

≤
∑

0≤r<r′≤t

P(AU (r, r′)−A∗(r, r′) > (u− u∗)(r′ − r))

≤
∑

0≤r<r′≤t

eθ(u−u
∗)(r′−r)E(eθAU (r,r′)−θA∗(r,r′))

≤ eθ(σAU (θ)+σA∗ (θ))
∑

0≤r<r′≤t

eθ(u−u
∗)(r′−r)eθ(ρAU (θ)(r′−r)−ρA∗ (θ)(r′−r)).

From the above Equation (7.12) follows by the substitution r′ − r = r′′.

By changing the roles of U and U∗ in the above example, it also holds

P(¬S(t)) ≤ eθ(σAU (θ)+σA∗ (θ))
t∑

r=0

t−r∑
r′=1

eθr
′(u∗−u+ρA∗ (θ)+ρAU (θ))

for the case u∗ > u.
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Sender ∧ U Receiver

∗Σ

A B C

D
Feedback Loop

Figure 7.4. A window �ow controlled system. The element de-
noted by ∗ is a placeholder.

7.5. Numerical Evaluation of Delay Bounds

This section investigates how the bounds derived in Theorems 7.8 and 7.16
evolve in their parameters. Further, the impact of window �ow control on the
system's delay is quanti�ed, by comparing it to a similar unthrottled system. In
this section U is a constant rate server Uo(s, t) = u(t−s) that serves a high priority
cross�ow AU (s, t). Similarly the placeholder in Figure 7.4 is a dynamic U∗-server
that also o�ers a constant rate U∗,o(s, t) = u∗(t − s) to a high priority cross�ow
A∗(s, t), such that U∗(s, t) = u∗(t − s) − A∗(s, t). Both service descriptions are
subadditive by themselves but, as Example 7.5 shows, their subadditivity is lost for
Ures = U ⊗ U∗. The entire evaluation is performed for slotted time (K = N0).

The service element's rate u∗ is set to be greater than u to account for the typ-
ically smaller size of acknowledgments �owing back to the throttle. The cross�ows
in this example consist of independent, exponentially distributed increments aU (t)
and a∗(t), respectively. The arrivals at the WFC system, denoted by A also consist
of independent, exponentially distributed increments. All �ows are stochastically
independent of each other. It would be possible to analyze more sophisticated
cross�ows or to drop the independency assumption. Yet, this is not the focus of
this evaluation. Further the window size Σ is held constant, for all times t ≥ 0.

A corresponding unthrottled system would just consist of the �ow A being fed
into the service element U .

To achieve reasonable values in the bounds of Theorem 2.39 and Theorem 7.16,
the parameter θ and the Hölder pairs p, q, p′, q′ are numerically optimized. When
not speci�ed otherwise, the parameters in all calculations are set as follows: The
bound is taken at time t = 5 and asks for a delay T = 10, i.e., the probability
P(dsys(5) > 10) is searched for. The parameter of the exponential distributions for
the arrivals and cross�ows is λ = 4 (three �ows have the same rate λ for simplicity),
while the server rates are u = 1 and v = 2. This corresponds to a utilization of
50% and 25%, respectively. Results are presented for a window size of Σ = 15.

7.5.1. Throttled vs. Unthrottled System. First the system is compared
with its unthrottled counterpart. To that end, the arrival rates λ are varied, re-
sulting in utilizations from 30% to 80%. The corresponding violation probabilities
are plotted against the performance bounds on a logarithmic scale for the throttled
and the unthrottled system. Di�erent window sizes Σ = 10, 15, 20 are considered.
The results are displayed in Figure 7.5 as black and blue lines for the throttled and
unthrottled system, respectively. As expected, the throttled system behaves better,
the greater Σ is. For Σ = 20 the throttled system behaves almost identically to the
unthrottled one.
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Figure 7.5. A graph showing the violation probabilities depend-
ing on the utilization of throttled (black) and unthrottled (blue)
systems for di�erent window sizes. The red lines are equal to 1,
10−3 and 10−6.

7.5.2. Dependence on Delay. A major di�erence between the unthrottled
and the throttled analysis lies in the dependency on the delay T . While for the
unthrottled system an increase in T leads to a decrease in the violation probability,
the bound of Theorem 7.16 increases in the term P(¬S(t)) for increasing T . In
Figure 7.6, one sees for the black line how the bound evolves for an increasing T .
The two red lines show how the bound di�ers when choosing b = Σ

2 ,
9Σ
10 as suggested

in Remark 7.17 (Equation (7.11)). The trend here is that for increasing T the bound
becomes worse, the greater the di�erence between K and Σ is. However, for small
values of T there is a very slight improvement for K = 9Σ

10 and even for K = Σ
2 .

In this scenario, trading a higher violation probability for the event S(t) is not
worthwhile the gain from a better service description Usys.

To investigate the composition of the delay bound further, Figure 7.7 separates
the two parts of the bound. The blue circles correspond to the delay part of the
violation probability P(dUres(t) > T ) and the red circles correspond to the violation
probability of event S(t), while the solid black circles are the sum of both. From
a certain point onwards the probability P(¬S(t)) dominates the overall violation
probability. The additional lines in the graph show how the di�erent parts of the
bound are a�ected when setting K = Σ

2 ,
3Σ
4 ,

9Σ
10 in Equation (7.11). The delay part

(blue) of the probability experiences no considerable change, while the probability
of violating event S(t) (red) increases signi�cantly, when K < Σ.

7.5.3. Convergence to Unthrottled System. Figure 7.8 shows the con-
vergence of the throttled system towards the unthrottled one, when increasing the
window size. From Theorem 7.16 the violation probability P(¬S(t)) vanishes for
increasing window sizes. However, the throttled system does not fully converge to
the unthrottled one. This is due to P(dU (t) > T ) ≤ P(dUres(t) > T ). The size of the
gap, which cannot be closed by increasing the window size further, is completely
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Figure 7.6. A graph showing how the bound evolves when in-
creasing the delay T . The red colored lines represent a shift to-
wards the violation probability of event S(t).
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Figure 7.7. A graph showing the di�erent components of the
violation probability: The blue circles are the delay part, while the
red circles represent the subadditivity part. The black circles are
the sum of both parts. The lines show the same for di�erent shifts
towards the violation probability P(¬S(t)).

dependent on the service descriptions U and U∗. The graph also shows the results
for systems with u∗ = 2, 1.5, 1.1. The gap to the delay of the unthrottled system
(red) increases, when reducing the rate of u∗.
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Figure 7.8. A graph showing the convergence of the throttled
system towards the unthrottled one for increasing Σ. The red line
is the bound for the unthrottled system. The black lines show the
throttled system for di�erent rates of v.

7.6. Admissible Flows in WFC

This Section compares the two methods derived in Theorems 7.8 and 7.16 to
each other and with a deterministic analaysis. This is done in the context of an
admission problem. The question therein is, �Given a queueing system, how many
�ows of the same type can be admitted to it, without exceeding a given performance
bound?� In that sense, this evaluation follows the spirit of the one in [106]. There it
is shown, how stochastic network calculus can, compared to a deterministic analysis,
admit a much larger number of �ows to an unthrottled system. This is due to the
statistical multiplexing gain, which cannot be captured by deterministic network
calculus.

The performance bound used in this example is a backlog constraint on the
throttle.

7.6.1. Scenario Description. The scenario is similar to the one in the pre-
vious section: The feedback loop consists of two constant rate service elements with
rates u and u∗ and high-priority cross�ows AU and A∗. The cross�ow AU consists
of NU single �ows that are multiplexed to form AU . Each of the cross�ows has
an average rate λU . This leads to a utilization at the �rst node of NUλU/u. The
cross�ow A∗ at service element U∗ follows the same structure with variables NU∗
and λU∗ , respectively.

Also, the aggregate A consists of NA �ows, each with an average rate λA. The
system is scaled such that λA = 1 and the rate at the �rst service element equals
u = 100. By this admitting one sub�ow of A increases the utilization at the service
element U by 1%. Hence, neglecting the window �ow controller, the server U would
be fully utilized after admitting 100(1−NUλU/u) �ows.

The performance bound considered here is b∧ ≤ x for some x ∈ R+.
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Deterministic Analysis. Arrival curves as in De�nition 1.8 are needed for a de-
terministic analysis . A common model are leaky buckets (see Example 1.9), which
result in a�ne arrival curves of the form A(t) = K + λ(t− 1). The backlog bound
at the throttle is given by the maximal vertical deviation between the throttle's
service curve and the arrival curve of the aggregate (as presented in Figure 1.12).
In this scenario b∧ is bounded by

b∧ = NA

(
KA + λA

(
NU (KU − λU )

u− λUNU
+
NU∗(KU∗ − λU∗)
u∗ − λU∗NU∗

)
− 1

)
− Σ

and solving for NA leads to the maximal number of admissible �ows.
Stochastic Analysis. For the stochastic analysis assume that all �ows are stochas-

tically independent of each other. Further, the �ows are assumed to have indepen-
dent exp(λ−1

A )-, exp(λ−1
U )-, and exp(λ−1

V )-distributed increments, respectively. The
moment generating function of AU is

E(eθAU (s,t)) =

NU∏
i=1

E(eθAU,i(s,t)) =

(
λU

λU − θ

)NU (t−s)

.

The MGF of AU∗ takes the same form.
The MGF of W as constructed in Theorem 7.8 reads

E(e−θW (s,t)) =

(
e−θ|u−u

∗|
(

λU
λU − θ

)NU ( λU∗
λU∗ − θ

)NU∗)(t−s)

.

By inserting these bounds into Theorem 2.39 the inequality P(b∧(t) > x) ≤ ε
can be solved for NA and given ε, t. This corresponds to the method discussed in
Section 7.2.

Alternatively Theorem 7.16 can be used. The scenario used in this evaluation
equals the one described in Example 7.18. Since P(¬S(t)) joins the equation, the
resulting number of admissible �ows becomes dependent on the time t at which the
backlog is evaluated.

7.6.2. Deterministic vs. Stochastic Bounds. For the �rst evaluation the
number of admissible �ows is plotted against the number of admitted cross�ows
AU . Due to the normalization this corresponds to the utilization at U before any
sub�ows of A are admitted: λUNU/100. The average arrival rates are �xed to
λU = λU∗ = λA = λ, further the deterministic arrival curves have a peak rate
K = 10λ.

First an asymmetric scenario is considered. In this the service element U∗ has
rate u∗ = 200 and handles U∗ = 25 cross�ows. This re�ects the circumstance that
the feedback information can usually be easier processed than the system's arrivals.
Figure 7.9 presents the number of admissible �ows for x = 50, Σ = 5 and violation
probabilities of ε = 10−3, 10−6, 10−9. The event S(t) is evaluated at t = 1000,
but could have been chosen much larger, without changes to the results. Using a
stochastic analysis turns out ot be clearly bene�cial over the deterministic analysis
for all utilizations. Further, in this scenario, the general method of Theorem 7.16
admits more �ows to the system than the analysis with Theorem 7.8 does.

The quantity of admitted �ows for λUNU = 0.5 (corresponding to a utilization
of 50% before admitting sub�ows of A) emphasizes this results: The deterministic
analysis admits 2 �ows, without breaking the backlog guarantee. This would result
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Figure 7.9. The number of admitted �ows NA for varying uti-
lizations at U . The thick blue line represents an upper bound
(stability condition). The dashed orange lines correspond to using
Theorem 7.8 and the solid red lines to Theorem 7.16, respectively.
The deterministic bound is given as a dotted black line.

(ignoring the �ow control) in an overall utilization of 52% at the dynamic U -server.
Using Theorem 7.8 allows up to 15 �ows instead, when setting the violation prob-
ability to 10−3. This corresponds to an overall utilization of 65%. With Theorem
7.16 the number of admitted �ows ranges from 27 (ε = 10−9) up to 40 (ε = 10−3)
or an overall utilization of 77-90%.

7.6.3. Dependence on Burst Sizes. The next evaluation considers di�er-
ent burst sizes of the arrivals. To that end, all parameters are chosen as before, but
λ = 0.25, 1, 25. To achieve the same utilization at U∗ the number of cross�ows is
adapted to NU∗ = 100, 25, 10, respectively. With fewer and burstier �ows the sta-
tistical multiplexing gain decreases and one should expect the number of admitted
�ows to decrease. Figure 7.10 illustrates this e�ect.

7.6.4. Bounding P(¬S(t)). The above evaluations describe an asymmetric
situation in which the service element U∗ provides more service than U . This is
bene�cial for bounding S(t), whereas the bound in Theorem 7.8 is rather loose.
This is investigated in more detail now. To this end, the servers' rates are set equal
now, i.e., u∗ = u = 100. Further the number of cross�ows at U∗ is reduced to
NU∗ = 10. This means that the two service elements are quite similar, when NU
is a small number. As a result, the bounding of P(¬S(t)) is harder, whereas the
bound in Theorem 7.8 is tighter. For a large number of cross�ows at U the opposite
is the case, instead, as the service elements loose their similarity.
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Figure 7.10. The number of admitted �ows N for varying λU =
λU∗ . For the stochastic analysis the violation probability ε is set
to 10−3 .
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Figure 7.11. Number of admissible �ows N for the case in which
service elements U and U∗ are similar in rate.
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Figure 7.11 shows this e�ect: The method from Theorem 7.16 breaks down
completey for low utilizations. In these cases the probability P(¬S(t)) exceeds ε
and hence no �ows can be admitted via this analysis. As the utilization at U rises,
it reaches a point at which P(¬S(t)) can be bounded. From that point onwards
Theorem 7.16 becomes viable again. The second pair of curves shows the same
e�ect for ε = 10−9.

Also, a signi�cant boost of admissible �ows for the �rst method can be noted.
This is due to the reduced number of cross�ows at U∗. Reducing u

∗ to the value 100
has no e�ect for Theorem 7.8 as its result uses the minimum of u and u∗ anyways.



CHAPTER 8

Conclusion and Outlook

This chapter gives an overview of the achieved results; further, it discusses
future directions with respect to the topics covered in this thesis.

Several contributions to the theory and application of stochastic network cal-
culus were made:

(1) The DISCO Stochastic Network Calculator is the �rst � and so far only �
open-source tool for applying stochastic network calculus. It distinguishes
itself from tools for deterministic network calculus by separating the anal-
ysis and the numerical optimization. The analysis, which is performed
on a symbolic level, applies the network operations derived in Chapter
2 to achieve a backlog- or delay-bound for the �ow of interest. The re-
sulting bound is given in form of a mathematical function. Afterwards
this function is numerically optimized to obtain a near-optimal value for
the performance measure. Due to its modular structure the analysis-step
or the optimization-step can be completely substituted without changing
other parts of the Network Calculator. This also holds for other parts of
the program, like tra�c- or server-models or the graphical user interface.
The DISCO Stochastic Network Calculator gives the opportunity to in-
vestigate large scale and general feedforward networks with stochastic
network calculus. Methods of an end-to-end analysis as known from de-
terministic network calculus (Total Flow Analysis, Separate Flow Analy-
sis, Pay-Bursts-Only-Once,...) can be implemented. But also e�ects like
the usage � or avoidance � of Hölder's inequality should be adressed and
taken into account. The implementation of further tra�c models, such as
fractional Brownian motion, or the extension to feedback-systems are also
items of future.

(2) The development of a statistical network calculus is an e�ective analyt-
ical tool to reduce assumptions about the involved stochastic processes.
Obtaining knowledge about the arrivals or service via statistical methods
introduces another uncertainty: The probability that the used statistic
delivered a wrong result. This probability is usually captured by a con-
�dence level α. Chapter 4 integrates this probability into the stochastic
performance bound. The result is a methodology that captures both:
the �uctuations of stochastic processes and the possibility that the used
statistics underestimated the arrival's MGF. Furthermore, statistical net-
work calculus gives a dynamic perspective on the system. This makes it
possible to adapt to changes in the system or capture transient phases.
Another e�ect of using statistics is a higher level of robustness against
false modeling assumptions.
Future work includes the construction of further statistics. Fractional
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Brownian motion as tra�c model is one example here. But also advanced
subsampling techniques are of interest. Further statistical methods for
capturing stochastic dependencies and implementing those into the per-
formance bounds are an interesting direction of future research [56].

(3) Stochastic performance bounds hold pointwisely, i.e., for speci�c values of
t. Yet, in practice one is often interested in interval-valid bounds: What
is the probability of exceeding a target-delay in the next minutes, hours,
or days? So far, questions of this type are seldomly adressed in the SNC-
literature. Chapter 5 evaluates the application of Boole's inequality and
compares it against a new method that is based on the theory of extreme
values. Results show no clear winner: In the regime of low-utilizations
the bounds based on extreme value theory outperform stochastic network
calculus. Further they are very robust to changes in the violation proba-
bility ε. However, in scenarios with high utilizations the bounds obtained
by stochastic network calculus scale better with respect to the length of
the considered sample-path. One of the major advantages of stochastic
network calculus are their network operations. They allow to reduce the
complexity of queueing networks. Thus, Chapter 5 also includes a full set
of network operations for the EVT-based calculus.
The challenge of how to achieve sample-path performance bounds is not
solved, yet. Chapter 5 shows, that invoking Boole's inequality leads
to rather loose bounds, especially for low utilizations. Still EVT-based
bounds do not scale well for higher utilizations. An overall good way to
avhieve sample-path performance bounds is still missing. The usage of
extreme value theory also o�ers a new approach to tra�c models, which
are hard to handle by stochastic network calculus: The assumptions on
the arrivals made in Chapter 5 are di�erent from the ones usually made
in SNC (i.e., the existence of a moment generating function). The class of
heavy-tailed arrivals might be analyzable via an EVT-approach, whereas
they pose hard problems to an SNC-approach [107].

(4) The last part of this thesis presents the challenge of window �ow controlled
systems in detail. Two approaches towards a solution for a stochastic anal-
ysis are given. Here the key-property is the subadditivity of the feedback
loop.
In the �rst approach the subadditivity is conserved by performing an ap-
propriate network analysis. This network analysis di�ers from the usual
methods towards an end-to-end description, as it must preserve subaddi-
tivity. Eventually this thesis characterizes a class of subadditive networks.
It is also shown, that this characterization is not exhaustive: systems that
include �xed-delay elements can be analyzed, but do not fall into the given
characterization.
The second approach towards an analysis of window �ow controlled sys-
tems utilizes the probabilistic nature of the problem. Instead of preserving
subadditivity one asks for its likelihood instead. This probability is then
integrated into the performance bounds. For this the probability that the
feedback loop is not subadditive must be bounded. This can again be
accomplished with the methods of stochastic network calculus.
Analyzing window �ow controlled system with stochastic network calculus
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had been an open problem for over a decade.
Yet, the challenge to analyze window �ow controlled systems has not come
to end. It has rather just begun. The here presented methods are not com-
plete, as they miss desirable properties: Parts of the available service is
lost, when one wants to preserve subadditivity directly. Further, the prob-
ability of the event {¬S(t)} cannot be bounded for t→∞, yet. Also the
analysis of feedback-loops with �xed-delay elements has its shortcomings,
as it is strongly tied to a special case of general feedback systems. Future
research in this area is needed to overcome these obstacles.



Part 4

Appendix



CHAPTER 9

Network Calculus

9.1. Multicommodity Queueing Systems

As discussed in Chapter 1, in a service element the two commodities A and
U meet to get processed into the commodity B. In this process the commodity A
can be stored while any exceeding service U is lost. This is described by Lindley's
equation, which states b(t) = [b(t− 1) + a(t)− u]+.

Instead, if both commodities are storable, backlog for A and U can occur.
Under an instantaneous processing of the commodities A and U , if both are present
at the service element, the backlogs are described by

bA(t) = [A(t)− U(t)]+, bU (t) = [U(t)−A(t)]+.

If both commodities are stored in the same bu�er, the above equations combine to
b(t) = |A(t)− U(t)|.

One might also consider both commodities not to be storable. In this case
bA = bU = 0 and the output of the system, in slotted time, is
B(t) =

∑t
s=0 a(s) ∧ u(s).

Again: Lindley's equation and service curves describe the case in which one
commodity is storable (in the �eld of communication networks: data) and one
commodity is not storable (service). A general framework distinguishes the storable
commodities Ai (i ∈ I) and non-storable commodities Uj (j ∈ J) that are to be
transformed into a product B. Denote by Bi the output of a system that would
result from Ai and the non-storable commodities only. In this case a general form
of Lindley's equation leads to

Bi(t) = min
0≤s≤t

{
Ai(s) +

t−s∑
r=0

∧
j∈J

uj(r)
}
,

where uj(r) is the available non-storable commodity in time-slot r. As the output
B is the minimum over all Bi, the system that works all storable commodities
simultaneously is described by

B(t) =
∧
i∈I

Ai ⊗ U(t),

with U(t) =
∑t
s=0

∧
j∈J uj(s). For the backlog of commodity Ak one gets in this

scenario:

(9.1) bk(t) = max
0≤s≤t

{∨
i∈I

Ak(t)−Ai(s)− U(t− s)
}

The literature gives some examples of storable commodities being di�erent to data
[110, 22]. One example is the charging and discharging of accumulators [154, 153,
158, 103, 73]. The storable commodity in this case is energy and the non-storable
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commodity is energy demand. The service element at which both commodities
meet and get processed is the rechargeable battery. Still, in this example the service
element processes exactly one storable and exactly one non-storable commodity. A
network calculus using Equation (9.1) together with the dependencies between the
commodities are nicely captured in the form of matrices by Chang et al. [34, 36].
Chapter 4 of [35] gives a good introduction to this topic and de�nes the matrix-
valued network operations ⊕,	,⊗,�.

9.2. Inverse Calculus

The goal of this section is to derive the deterministic performance bounds in
another way. Let A and U be the arrival and service curve of a �ow A and a service
element, respectively. While the backlog bound is given as the simple vertical
deviation b(t) ≤ supr≥0{A(r) − U(r)}, the delay bound requires to calculate the
horizontal deviation between A and U , which is harder to perform. The idea
presented here is to consider generalized inverse functions of A and U . Indeed, as
derived here, the virtual delay is bounded by the vertical deviation of the inverse
functions. This Section is related to [67] of Fidler and Recker. There the min-
plus operations ⊗ and � are expressed via the simple addition and subtraction of
their Legendre transforms, respectively. There the performance bounds can also be
calculated in the space of Legendre-transforms, although that is not the main goal
of [67]. For a di�erent derivation of Theorem 9.4 see the paper of Valaee [150].
See also Chapter 3 of the textbook [102] by LeBoudec and Thiran, which derives
the horizontal deviation of two functions by their pseudo-inverses. The resulting
operations of Lemma 9.1 and 9.2 are the max-plus deconvolution and max-plus
convolution, respectively. For those see [102] and the work of Baccelli et al. [7].

Let A ∈ F(R) be left-continuous. Then its generalized inverse function is

A−1 :R+
0 → R+

0

x 7→ sup{t | A(t) ≤ x}.

Lemma 9.1. Let A,A be left-continuous. Then A � A, if and only if

A−1(x+ y)−A−1(y) ≥ A−1(x)

for all x, y ∈ R+
0 .

Proof. For the only if part choose some x, y ∈ R+
0 and set s∗ = A−1(y). Then

A(s∗) = A(A−1(y)) ≤ y

and

A−1(x+ y) = sup{s′ | A(s′) ≤ x+ y} ≥ sup{s′ | A(s′)−A(s∗) ≤ x}
= s∗ + sup{s′ | A(s′ + s∗)−A(s∗) ≤ x}
≥ s∗ + sup{s′ | A(s′) ≤ x} = A−1(y) +A−1(x).

For the if part choose some s, t ∈ R+
0 and set x = A(t). Then

A−1(x) = sup{s′ | A(s′) ≤ x} = sup{s′ | A(s′) ≤ A(t)} = t
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and hence t ≤ sup{s′ | A(s′) ≤ A(t) + y} −A−1(y) for all y ∈ R+
0 . Set y = A(s) to

follow

t ≤ sup{s′ | A(s′) ≤ A(t) +A(s)} − s = sup{s′′ | A(s+ s′′)−A(s) ≤ A(t)}
= sup{s′′ | A(s+ s′′)−A(s) ≤ A(t)}.

This implies A(s+ t)−A(s) ≤ A(t). �

The above lemma shows that arrival curves are equivalent to bounds on arrivals
in the time domain. The arrival curve states that the number of arrivals in an inter-
val of length t cannot exceed A(t). Similarly the inequality
A−1(x + y) − A−1(y) ≥ A−1(x) means that x arrivals cannot occur in intervals
shorter thanA−1(x). The next lemma shows a similar equivalence for service curves
U and the inequality

(9.2) B−1(x) ≤ sup
0≤y≤x

{A−1(y) + U−1(x− y)}.

Service curves make a statement about the minimal departures of a system. The
above inequality bounds the time needed for x departures from above.

Lemma 9.2. Consider a service element with arrivals A. Denote the departures
by B. The service element o�ers service curve U if and only if Equation (9.2) holds
for all x ∈ R+

0 .

Proof. For the only if part �x some x ∈ R+
0 . It is to show there exists a y ≤ x

such that B−1(x) ≤ A−1(y) + U−1(x− y). De�ne t = B−1(x). It follows as in the
previous lemma B(t) ≤ x. By de�nition of the service curve exists a s ∈ [0, t] with

B(t) ≥ A(s) + U(t− s).

De�ne y = A(s) from which follows A−1(y) = s as in the previous lemma. Since
U(t− s) ≥ 0 it holds y = A(s) ≤ B(t) ≤ x. Further,

A−1(y) + U−1(x− y) = s+ U−1(x− y) = s+ sup{s′ | U(s′) ≤ x−A(s)}
= sup{s′′ | U(s′′ − s) +A(s) ≤ x}
≥ sup{s′′ | U(s′′ − s) +A(s) ≤ B(t)} ≥ t = B−1(x).

For the if part �x some t ∈ R+
0 and de�ne x = B(t) following B−1(x) = t.

Then there exists a y ≤ x with

t = B−1(x) ≤ A−1(y) + U−1(x− y).

De�ne now s = A−1(y) (following A(s) ≤ y) and it holds

s = A−1(y) = sup{s′ | A(s′) ≤ y} ≤ sup{s′ | B(s′) ≤ x} = t.

Eventually,

t = B−1(x) ≤ s+ sup{s′ | U(s′) ≤ x− y} = sup{s′′ | U(s′′ − s) + y ≤ B(t)}
≤ sup{s′′ | U(s′′ − s) +A(s) ≤ B(t)}

from which follows U(t− s) +A(s) ≤ B(t). �

The next result shows that the virtual delay d(t) is just the vertical distance of
the inverse functions A−1 and B−1.
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Lemma 9.3. Let A and B be the arrivals and departures of a system, respec-
tively. If d(t) < T holds for all t ∈ R+

0 , then

B−1(x)−A−1(x) < T for all x ∈ R+
0 .

Proof. Choose some x ∈ R+
0 and assume the �rst inequality to hold. De�ne

t = A−1(x) and it follows

T > d(t) = inf{s | A(t) < B(t+ s)} = −t+ inf{s′ | A(t) < B(s′)}.
If A(t) = x, the above continues to

T > −A−1(x) +B−1(x)

If A(t) < x, de�ne y = lims↘tA(s) ≥ x instead. Similarly as before it holds

T > lim
s↘t

d(s) = lim
s↘t
−s+ inf{r′ | A(s) < B(r′)} = −A−1(x) +B−1(y)

and by the monotonicity of B−1 it follows T > B−1(x)−A−1(x) again. �

Eventually the delay-bound can be expressed as the vertical distance between
the inverse of the arrival curve and the service curve.

Theorem 9.4. Let A and B be the arrivals and departures of a system, respec-
tively. If A � A and the system o�ers a service curve U , then

d(t) ≤ sup
x≥0
{U−1(x)−A−1(x)}.

Proof. By the previous lemma all left to show is that

U−1(x)−A−1(x) ≤ sup
x≥0
{U−1(x)−A−1(x)}

holds for all x ∈ R+
0 . Fix some x, by Lemma 9.1 and 9.2 it holds

U−1(x)−A−1(x) ≤ sup
0≤y≤x

{A−1(y) + U−1(x− y)} −A−1(x)

= sup
0≤y≤x

{A−1(y)−A−1(x) + U−1(x− y)}

≤ sup
0≤y≤x

{U−1(x− y)−A−1(x− y)} ≤ sup
0≤y
{U−1(y)−A−1(y)}.

�



CHAPTER 10

Stochastic Network Calculus

10.1. Duality of Tail- and MGF-bounded Network Calculus

The two branches of tailbounded and MGF-bounded network calculus are re-
lated to each other. To some extend the arrival- and service-descriptions of one
calculus can be transferred into the other and vice versa. This section describes
how to do this. The main idea is drawn from [106]. There it is shown how to
obtain MGF-bouds from tailbounds and vice versa for arrivals. Related to this is
also the work of Wu et al. concerning the di�erent methods of tailbounds [157].

Lemma 10.1. If a �ow A is MGF-bounded by function f , it is also tailbounded
for appropriate error η and envelope A. If A � (A, η) with error η(t, ε) = ε

and envelope A ful�lling
´ 1

0
eθA(t−s,ε)dε < ∞, then it is also MGF-bounded by

appropriate f .

Proof. Fix some (s, t) ∈ Λ. The proof follows the steps in [106]. Assume
that A is MGF-bounded by f and Choose some envelope A. For every θ > 0 it
holds then

P(A(s, t) > A(t− s, ε)) ≤ φA(s,t)(θ)e
−θA(t−s,ε)

≤ f(t− s, θ)e−θA(t−s,ε) =: η(t− s, ε).

For the second part of the lemma assume without loss of generality that the
cumulative distribution function Fs,t(x) := P(A(s, t) ≤ x) is continuous and strictly
increasing (if it does not ful�ll these assumptions a �tting approximation can be
found). Denote further by Gs,t(ε) the inverse function of

1− Fs,t(x) = P(A(s, t) > x).

It holds then

P(A(s, t) > Gs,t(ε)) = ε ≥ P(A(s, t) > A(t− s, ε)),

as A � (A, η). From this follows that Gs,t(ε) ≤ A(t− s, ε). Using the substitution
x = Gs,t(ε) it follows

φA(s,t)(θ) =

ˆ ∞
0

eθA(s,t)dFs,t(x) =

ˆ 1

0

eθGs,t(ε)dε

≤
ˆ 1

0

eθA(t−s,ε)dε =: f(t− s, θ)

for all θ > 0. �

A corresponding result for service descriptions requires the notion of exact and
universal service elements.
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Definition 10.2. A dynamic U -server is exact if for any input-output pair A
and B holds B(t) = A⊗U(0, t). A tailbounded server is called universal, if it ful�lls
De�nition 2.11 independent of the choice of A.

Remark 10.3. The convolution of exact service elements is exact. The convo-
lution of universal service elements is universal. The leftover calculation 	 as in
Theorem 2.37 does not preserve exactness.

Theorem 10.4. If a dynamic U -server is MGF-bounded by a function f , then it
is also tailbounded for appropriate error ζ and envelope U . If an exact and universal
dynamic U -server is tailbounded with an error ζ(t, ε) = ε and some envelope U
ful�lling

´ 1

0
e−θU(t−s,ε)dε <∞, then it is also MGF-bounded for appropriate f .

Proof. Assume �rst that K = N0 and �x some t ∈ N0. Choose some envelope
U increasing in its time-variable. and consider the case, that

U(s, t) ≥ U(t− s, ε) for all s ≤ t.

Then would follow

B(t) ≥ A⊗ U(0, t) = min
0≤s≤t

{A(s) + U(s, t)}

≥ min
0≤s≤t

{A(s) + U(t− s, ε)} = A⊗ U(ε)(0, t).

Choose some θ > 0 such that φU(s,t)(−θ) ≤ f(t−s, θ). Translating this implication
into probabilities results in

P(B(t) < A⊗ U(ε)(0, t)) ≤ P
( t⋃
s=0

U(s, t) < U(t− s, ε)
)

≤
t∑

s=0

P(−U(s, t) > −U(t− s, ε))

≤
t∑

s=0

φU(s,t)(−θ)e−θU(t−s,ε)

≤
t∑

s=0

f(t− s, θ)e−θU(t−s,ε) =: ζ(t− s, ε).

For the case K = R+
0 Boole's inequality preceeds a discretization step.

For the second part of the theorem �x some (s, t) ∈ Λ and de�ne

A∞s (t) =

{
0 if t ≤ s
∞ if t > s

.

Denote by B the output of the dynamic U -server when fed with A∞s . Then it
holds B(t) = A∞s ⊗ U(0, t) = U(s, t), as the dynamic U -server is exact. Further,
�x some ε > 0, then holds: A∞s ⊗ U(ε)(t) = U(t − s, ε). Assume now for a while
B(t) ≥ A∞s ⊗U(t−s, ε), then follows U(s, t) ≥ U(t−s, ε); or written as probabilities

P(U(s, t) < U(t− s, ε)) ≤ P(B(t) < A∞s ⊗ U(ε)(t)) ≤ ζ(t, ε).

Assume without loss of generality there exists a continuous and strictly increasing
cumulative distribution function Fs,t(x) = P(U(s, t) < x). Denote its inverse by
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Gs,t. Then

ζ(t, ε) = P
(
U(s, t) < Gs,t(ζ(t, ε))

)
≥ P(U(s, t) < U(t− s, ε)),

from which follows Gs,t(ζ(t, ε)) ≥ U(t− s, ε).
Using the substitution x = Gs,t(ε) it follows

φU(s,t)(−θ) =

ˆ ∞
0

e−θxdFs,t(x) =

ˆ 1

0

e−θGs,t(ζ(t,ε))dε ≤
ˆ 1

0

e−θU(t,ε)dε

=: f(t− s, θ)
for all θ > 0. �

10.2. MGF-bound for Markov-Modulated Arrivals

Let K = N0. The next lemma is very similar to Lemma 7.2.7. in [35]. However,
the proof given here is constructive. A corollary is needed �rst.

Corollary 10.5. Assume a �nite signal space S. Let A = [aij ] ∈Mat(S) be a

nonnegative matrix and At = [a
(t)
ij ] be its t-th power. If A has a positive eigenvector

x̄ = [xi], then for all t ∈ N and all i ∈ S the inequality∑
j∈S

a
(t)
ij ≤

maxk∈S x̄k
mink∈S x̄k

· sp(A)t

holds, where sp(·) is the spectral radius of some matrix in Mat(S).

Proof. See (8.1.33) in [80]. �

Assume now a Markov-modulated arrival A with �nite signal space S, i.e., the
distribution of the increments of A depend on the current state of an underlying
Markov chain Y . The Markov chain is described by S and transition matrix T =
[tij ] such that tij > 0 for all i, j ∈ S. Denote by E ∈ Diag(S) the matrix with

entries Ei := Eii := E(eθa(t)|Yt = i) for all states i ∈ S.

Lemma 10.6. For the above holds A � (σ, ρ) with

σ(θ) =
1

θ
log

(
max
i∈S

Ei ·
maxi∈S x̄i
mini∈S x̄i

· 1

sp(E · T )

)
,

ρ(θ) =
1

θ
log (sp(E · T )) ,

where x is a positive eigenvector of ET .

Proof. Fix θ > 0, for every i ∈ S holds the backward equation

E(eθA(t)|Y1 = i) =: Ei(t) =
∑
j∈S

E(eθA(t)|Y1 = i, Y2 = j)P(Y2 = j|Y1 = i)

=
∑
j∈S

E(eθa(1)|Y1 = i, Y2 = j)E(eθA(t)−a(1)|Y1 = i, Y2 = j)tij

= Ei
∑
j∈S

E(eθA(t−1)|Y1 = j)tij = Ei
∑
j∈S

Ej(t− 1)tij .

Hence, the vector E(t) with entries Ei(t) has the form E(t) = ET · E(t − 1).
Applying this recursion results in E(t) = (ET )t−1E · 1, where 1 is the unit column
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vector on S. Assume now the beginning state of the chain is not given but follows
a distribution (πi)i∈S . Then an application of the law of total probability yields

Eπ(eθA(t)) =
∑
j∈S

P(Y1 = j)Ej(t) =
∑
j∈S

πjEj(t) =
∑
j∈S

πj
(
(ET )t−1E · 1

)
j

= π · (ET )t−1E · 1.
Since T is positive and E has positive entries on the diagonal, the matrix ET is

also positive (i.e., every entry is larger 0). This allows to apply the Perron-Frobenius
theorem [125, 69], which guarantees an eigenvector with positive entries. Denote
this eigenvector by x̄ ∈ RS ; it ful�lls the conditions of Corollary 10.5. Eventually
holds

Eπ(t) =
∑
i∈S

πi
∑
j∈S

(ET )t−1
ij (E · 1)j ≤

∑
i∈S

πi

(
max
k∈S

Ek

)∑
j∈S

(ET )t−1
ij

≤
(

max
k∈S

Ek

)∑
i∈S

πi
maxk∈S x̄k
mink∈S x̄k

sp(ET )t−1 =
(

max
k∈S

Ek

)maxk∈S x̄k
mink∈S x̄k

sp(ET )t−1

for every starting distribution π and all t ∈ N. This allows to �nish the proof via
φA(s,t)(θ) = E(eθ(A(t)−A(s))|Ys) = EYs(t− s). �
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