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Abstract

Buses not arriving on time and then arriving all at once - this phenomenon is known from
busy bus routes and is called bus bunching.

This thesis combines the well studied but so far separate areas of bus-bunching prediction
and dynamic holding strategies, which allow to modulate buses’ dwell times at stops to
eliminate bus bunching. We look at real data of the Dublin Bus route 46A and present
a headway-based predictive-control framework considering all components like data
acquisition, prediction and control strategies. We formulate time headways as time series

and compare several prediction methods for those. Furthermore we present an analytical
model of an artificial bus route and discuss stability properties and dynamic holding
strategies using both data available at the time and predicted headway data. In a numerical
simulation we illustrate the advantages of the presented predictive-control framework
compared to the classical approaches which only use directly available data.
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1. Introduction

1.1 Overview

Nowadays many cities suffer from huge traffic density and congestion. One attempt to
the solution of this problem is to motivate the city residents to use public transportation
systems instead of private cars. To this many bus service providers such as Dublin Bus

operate bus routes with a high frequency to ensure high mobility within the city area. One
problem that comes along with highly frequent bus routes is called bus bunching, also
known as platooning, which refers to the phenomenon of two buses of the same route
arriving at the same time at a bus stop, like shown in figure 1.1. One of the main reasons
for bus bunching is varying passenger-boarding times and can be illustrated by a vicious
cycle like in figure 1.2. If a bus arrives delayed at a stop and the previous bus has departed
from that stop on time there will be more passengers waiting. This increases the overall
boarding time at this stop and further delays the arrival time of this bus at the next stop.

Bus bunching has negative effects as well for the passengers as for the service providers.
Like illustrated in figure 1.3 bunching leads to larger headways between separate bunches
of buses. This leads on the one hand to longer waiting times for the passengers at the
stops downstream and on the other hand to longer travel times for the passengers inside the
bus due to longer boarding and dwell times at the stops. The disadvantage for the service
providers is that the costs are those of a highly frequent bus route, i.e., they need to provide
many vehicles and drivers, but the real frequency experienced by the passengers is much
smaller due to the larger headways between the separate bunches, which results in a low
cost efficiency.
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Figure 1.1: Bus bunching at the General Post Office in Dublin, route 46A 1
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Figure 1.2: Bus bunching as vicious cycle

1photo taken by: Matthias Andres, 19th Apr 2016
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Figure 1.3: Negative effects of bus bunching 2

The field of bus bunching has been studied for more than 50 years but got new attention
recently due to modern GPS based techniques that provide online data on the bus positions.
The two main areas of research based on the newly created data focus on the prediction of
bunching events and on corrective control strategies.

In this thesis we present a predictive-control framework based on real data of the
Dublin Bus route 46A, outbound, that combines these two main areas. The prediction of
future headway values based on real data is done, to our best knowledge, for the first time
not by arrival time prediction but by interpreting continuous-time headways as time series
and predicting these directly. Furthermore we extend the existing stability analysis of a
headway-based dynamic holding strategy using data available at the time such that we are
able to include predicted headway data. Where earlier work, to our best knowledge, only
considered single components of a predictive-control strategy regarding bus bunching, we
consider all components.

This thesis is structured like the predictive-control framework shown in figure 1.4 and
is organized as follows. In the following section we give a literature review on topics
related to bus bunching. In chapter 2 we discuss some preliminary topics like the concepts

2photo of the Dublin Bus vehicle taken from: http://www.thejournal.ie/dubiin-bus-strike-
2919690-Aug2016

http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
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Figure 1.4: Predictive-control framework and organization of this thesis

of space-time diagrams and continuous-time headways, and the acquisition of the real
data of the Dublin Bus route 46A, outbound. In chapter 3 we discuss preprocessing
steps of the headway trajectories and we formulate the data-driven prediction of headway
values in the context of time-series forecasting. We compare the predictive performances
of linear-regression-and-extrapolation-, kernel-regression-and-extrapolation-, artificial-

neural-network- and autoregressive-models applied to the real data. In chapter 4 we
present an analytical model of an artificial bus route. We discuss stability properties and
present a classical headway-based control strategy using directly available data as well as a
headway-based predictive-control strategy using predicted headway values. In a numerical
simulation we show the advantage of our suggested predictive-control scheme compared
to the classical one. In chapter 5 we summarize our findings and refer to starting points for
future work.

1.2 Literature Review

In the following section we give an overview on some of the existing literature regarding
bus bunching. We organize the literature review with respect to the two main topics of this
thesis: prediction and control.

1.2.1 Prediction

As described in chapter 2 there are two main tools to investigate the bus bunching phe-
nomenon. One is the space-time diagram and the other is the time-headway distribution,
which we abbreviate simply by headway distribution, unless stated otherwise.
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An intuitive approach to predict bus bunching events is based on the space-time
diagram: if we would be able to predict future trajectories of two neighboring buses, we
could use the space-time diagram to check if the trajectories intersect or become close w.r.t.
some distance metric and use this information to predict bunching events. This allows us
to use methods out of the widely explored field of bus arrival time estimation. Since this is
the most common tool to predict bunching events and there is just little work explicitly
focusing on bunching prediction most of the listed literature is related to bus arrival time
estimation. The literature in this field differs basically in two points: the used data and the
used prediction algorithms.

The headway distribution is a second tool to explore the bunching phenomenon and was
used, for instance, in [Mor+14] to detect bus bunching events. Though to our best knowl-
edge there has been no work so far where the authors explicitly predicted the headway
trajectories using Automated Vehicle Location (AVL) data only using headway information
and without predicting the bus arrival times at stops as an intermediate step.

Among the most common ways to gather data of bus arrival times are on-board or
on-station surveys ([Yu+10]), evaluation of smartcard transactions ([Zho+16]), use of
mobile phone data ([ZZL12]), road side terminals or toll stations ([CK03],[YLT11]), and
most recently automated systems like AVL and Automated Passenger Counting (APC). An
overview on the AVL and APC technology is given in [Fur+03]. An intuitive way to gather
Global Positioning System (GPS) data from buses that is easy to implement is to install a
smartphone in each bus, which was explored in [Bia+11].

A first general framework for the prediction of transit vehicle arrival and departure

times based on AVL data has been presented by Cathey in 2003 ([CD03]), using a tracker,
filter and predictor element. In [Pad+10] we find a list of different types of methods for the
prediction that is similar to the following: schedule-based methods, statistical methods,

machine-learning methods and model-based methods.
The first type of methods are schedule-based methods. The information contained in

the schedule is combined with historical data of the bus trajectories to estimate travel times
on route segments, which can then be used in a cumulative way to predict arrival times.
In [MK04] and [LZ99] the estimated travel times were combined with real-time data of
the bus positions to predict the arrival times of the buses. Furthermore they introduced an
Intelligent Transportation System (ITS), which consists of the three modules automatic bus

location system, real time traffic monitoring system and passengers information system.
The next approach uses statistical methods like time-series analysis, where nonlinear

time-series models were used for the prediction of corridor travel times ([DAW99],[IA02]).
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The prediction of this can then be exploited in a second step to predict the bus arrival times.
Further statistical methods to predict travel times are regression models, like a Bayesian-
regression model ([FK98]), or a (multivariate) linear-regression model which combines
the current traffic situation with historical information, based on both data gathered by a
single loop detector ([RV04]) and APC-data ([PCB04]). Another very common technique
is the nearest neighbor (NN) method using AVL data, like in [Cha+10] and [CPC11]. The
latter work mentioned also used data from Dublin Bus like in this thesis. This approach
determines the historical trajectory that is ’most similar’ to the current partial trajectory,
and the corresponding trajectory is then used as forecast. Crucial for the performance of
this kind of algorithms are the used distance metric and similarity measures ([TJ08]).

The next idea is to employ machine-learning techniques, like artificial neural networks

(ANNs) in [JR04]. The great advantage of ANNs is the ability to include exogenous inputs,
which are quantities that are used for the prediction of other quantities than themselves,
like schedule adherence, dwell times and traffic congestion, additionally to the real-time
information on the bus positions in their model ([Jeo05],[JR05]). Another approach of
this field is the use of support vector machines (SVM) to predict bus arrival times based
on AVL data ([BZB06]), which also has been tested on the real transit system of the
city San Antonio, Texas ([VR07]). A technique that could be seen as both statistical
method and machine-learning technique is the kernel regression, which was successfully
applied to predict future trajectories and thus future arrival and departure times on a dataset
from Dublin Bus ([Sin+12],[LB15]). The same kernel-regression approach was used in
[Nai+14] to predict travel times, but this time as an intermediate step to explicitly predict
bus bunching events. Other works which explicitly focused on bunching prediction by
considering both historical and real-time data to predict travel times and thus headway
distributions are [Mor+14] and [Mor+16], where random forests were applied for the
offline regression.

The next approach is mentioned as model-based approach, which most likely makes
use of a mathematical description of the transit system or a part of it and then uses the
Kalman filter to predict the future states, which could be modeled, for instance, as bus
positions or arrival times, and to fuse different information. This was done, for example,
in [SF04], where a combination of two different Kalman filters was presented, one for
the prediction of running times and the other for the prediction of dwell times, based on
APC and AVL data. The authors in [Son+04] also used a Kalman filter and AVL data
for the prediction of stop-to-stop travel times, but explicitly taking the waiting times at
signalized intersections into account. Another model-based technique was presented in
[Han+15], where a stochastic bus operation model was used within a particle filter. Further
model-based approaches were based on Markov chains ([LB04]), statistical survival models
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([GYW16]), or finite state automata. The latter concept was used in [Sun+07] to combine
real-time information of the bus locations given by AVL data and historical average speeds
on route segments in order to take variations of traffic conditions into account.

A comparison of a linear regression, a k-nearest-neighbor algorithm, ANN and SVM ap-
proach, all based on Automated Vehicle Identification (AVI) data, can be found in [YLT11].
Several authors also combined different techniques mentioned above. For example, in
[Yu+10] a combination of a SVM and a Kalman filter was presented. In here the SVM
was employed to predict segment travel times based on exogenous inputs like weather
data and the daytime while the Kalman filter fused these information with the latest bus
arrival information to predict the bus arrival times. Similar to this a combination of an
ANN and a Kalman filter was exploited in [Che+04] to predict bus travel and arrival times
based on APC data and latest bus-arrival information, where the use of an ANN again
allows the consideration of exogenous inputs like the daytime. It is often promising to use
ensembles of different predictors instead of restricting just to one single prediction method.
Thus an ensemble of several ANNs for the prediction of bus arrival times was presented in
[HVV09], where also confidence intervals for the predictions were stated.

Some works like [Pad+10] distinguished explicitly between homogeneous and hetero-
geneous traffic conditions in their prediction model. Most of the models presented in the
literature are based on simplified models of the bus operation system. A more detailed
analysis of this can be found, for example, in [MQ13], where a probabilistic model for the
dwell times and the impact of merging into the bus lane were explored. Nevertheless in
[Mil08] it has been stated that the most significant contributing factor to dwell times of
buses is the process of boarding and alighting passengers.

1.2.2 Bunching and Corrective Strategies

The bus bunching phenomenon was first studied in year 1964 by Newell and Potts ([NP64]).
Based on a simplified model the authors proved the instability of a bus route, i.e., the
tendency of buses to pair together. After stating the bunching problem a lot of research
focused on corrective strategies to reduce bus bunching. This could be grouped into two
fields: planning and operational strategies.

Planning strategies usually rely on a schedule-based control and try to reduce bus
bunching by adjusting the timetables of the buses. In [Mor+12] historical AVL data were
exploited to identify patterns of headway events and to detect critical schedule points,
called Bunching Black Spots. A similar idea was proposed in [FF11b], where the au-
thors statistically analyzed causes of bunching using AVL and APC data. This acquired
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information could be used in two ways: either the service providers could change the
locations and amount of bus stops, or they could change the arrival and departure times at
the bus stops by including slack times in the schedule, which is one of the main tools in the
planning context. Slack times used as a schedule-based (static) holding, which rule that
the bus should not leave before its scheduled departure time even if the boarding process
is already finished, have two disadvantages. On the one hand it was stated in [New77]
that the stability of the bus route cannot be guaranteed only including a certain amount
of slack time in the schedule in combination with a static holding strategy, for example,
if the occurring delays are larger than the remaining slack times. On the other hand we
need to consider a tradeoff between service reliability (do the buses bunch? are the buses
on time?) and service quality (providing high frequency of buses, riding with maximal
commercial speed and thus decrease the scheduled overall travel time) like mentioned in
[Pil09]. Including scheduled slack times means that we increase the scheduled overall
travel time of a bus in an undisturbed system which could be seen as decreasing the service
quality. Nevertheless a simplified analytical model of a bus route considering one loop
and a single checkpoint to address optimal (w.r.t. passengers’ waiting time) slack time in
schedule-based control can be found in [ZDB06].

The operational case has become more and more interesting with the availability of
real-time data provided, for instance, by AVL and APC systems. Before this most of the
control methods used decision models which only include bus arrival times at stops. The
works done in the real-time setting differ in the used techniques, the used data and also in
the goal they want to achieve by the control strategy.

Delgado ([Del+09]) divided the control strategies in the operational setting in the
three categories station control, like static holding or schedule-based holding, dynamic

holding, boarding /dwell time limitation and stop skipping (e.g., deadheading, expressing

or short-turns), interstation control, like cruising speed control, bus overtaking or transit

signal priority mechanisms, and other control measures like adding vehicles to the route.
The headway distribution can be seen as an indicator for service quality and reliability.

In [LR09] several headway regularity metrics to measure bus reliability were given, and in
[BG10] a stochastic model to identify headway distributions and their characteristics was
presented. Furthermore it is very common to regularize the headways but also to minimize
a certain objective function related to passenger waiting times.

As mentioned by Eberlein in [EWB01] holding seems to be a control strategy that frus-
trates passengers less than other techniques like stop skipping. One of the main assumptions
of the dynamic holding strategy is that passengers do not adhere any schedule as far as the
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bus route is operated with a certain minimal frequency. This frequency was found to have
a maximal target headway between eleven and thirteen minutes ([FM09],[MC84],[JH75])
and was determined by analyzing the arrival times of new passengers at a bus station. It
has been observed that the passenger arrival times tend to be uniformly distributed as far
as the bus arrival frequency is less than the suggested threshold frequencies, and it has
been concluded that passengers do not adhere the schedule in this case. In [FF11a] the
authors investigated the major causes for bus bunching and recommended to move from a
schedule-based (static) control to a headway-based (dynamic) control. An analysis based
on AVL and APC data on how bus bunching, for one bus route as well as for several routes
serving common bus stops, affects bus operations like dwell and running times can be
found in [VDE16].

One of the first works on holding strategies was done by Newell in [New74], where the
purpose was not the application to a real system but showing qualitative effects of holding
strategies. The first holding strategy considering real-time AVL data was presented by
Eberlein in [EWB01], where data were collected from a rail system and the total passenger
waiting times were minimized within a quadratic programming context. The idea of
exploiting AVL data has been applied to urban bus transit operations in [ZAJ04], where a
random local search technique was used for the optimization. The first one who has given
a mathematical stability analysis of the holding problem based on real-time AVL data
was Daganzo ([Dag09]). He introduced an adaptive holding strategy based on AVL data
and showed that the headway deviations are bounded using the proposed control scheme
and assuming bounded noise terms. A similar control approach that is self-equalizing

considering changes of the target headway, like after a bus breakdown, was developed in
[BE12].

Another advantage of dynamic holding strategies over conventional schedule-based
holding strategies is that these might require up to 40% less slack time in the schedule
([XAD11]), which increases the scheduled commercial speed of the bus route.

As mentioned above it is very common to set the regularization of the headways as
the goal of a control strategy. Another very common approach is to state the control
problem as an optimization problem, where the commands of the control strategy are taken
as an input and one tries to minimize/maximize a certain objective function. Common
objective functions are, for example, overall passenger waiting times, impact on passengers
by the control, commercial speed, headway regularity etc.. One of the first works in
this field was [ON72], where a bus route with one control point was considered and the
optimal holding time w.r.t. average passenger waiting times was found via a dynamic
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programming formulation. Similar approaches can be found in [IK74] and [Bar74]. In
the latter one a holding strategy was presented that is optimal w.r.t. the average passenger
waiting times and delay for on-board passengers, using statistical information on future
arrival times. In [XAD11] a family of holding strategies to maximize the commercial
speed was evaluated, whereas AVL data and future information about certain headway data
were needed. Hickman provided an analytical model for the vehicle holding problem in
[Hic01] and explicitly considered stochastic service elements like passenger demand, and
formulated the holding problem for a single vehicle as a one-dimensional convex quadratic
program.

In [Del+09] Delgado explicitly considered capacity constraints of the buses and pre-
sented a holding strategy combined with boarding limits, which is then used in a quadratic
program to minimize the total times experienced by all passengers in the system. He
presented a similar approach in [DMG12], but in here the objective function is the sum of
at-stop waiting times per passenger, in-vehicle waiting times per passenger, extra waiting
times of passengers who are prevented from boarding and a penalty term for passengers
left behind in case there would be capacity available. Another work that explicitly con-
sidered capacity constraints is [Jia+03], where the authors used a cellular automaton model.

Little work has been done in our field of predictive control. In [Cor+10] a combined
holding and stop-skipping strategy and the computation of the optimal control input w.r.t.
passenger waiting times and impact on the passengers over a certain future horizon were
presented as a multi-objective dynamic program, which was solved via a genetic algorithm.
Another predictive-control approach was presented in [Sáe+12], where the prediction was
based on an offline statistical model including AVL and APC data. As stated in those
works the dynamic formulation of the system required the passenger demand forecast,
based on offline and online data. Recent works in the field of predictive control have been
[SKW16], in which a mathematical model for the holding problem was formulated that
takes dynamic changes in running and dwell times into account, and [Mor+16], where the
prediction of the headway distribution is used to determine whether the next control action
should be holding or stop-skipping.

Several works were not phrased within a predictive-control frame, but also relied on
information about future bus arrival times ([XAD11],[He15]). In [BWL15] the holding
problem was formulated as a stochastic decision process, also including information about
future arrival times.

Beside holding strategies there are several other methods to regularize the headway
distribution and avoid bus bunching. In [Pil09] and [DP11] a control algorithm based on a
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bus-to-bus cooperation and AVL data, that adjusts the cruising speed, was given. The work
mentioned first also explicitly considered the tradeoff between high scheduled commercial
speeds and service reliability. A combination of holding and adjusting the cruising speed is
presented in [He15], such that the only information needed are arrival times of the current
bus at the current stop and of the preceding bus at the current and next stop, which might
improve reliability of the control since the only value that might be unknown and needs to
be estimated is the latter one.

While most of the research focuses on the control of single bus routes, the authors
in [Her+15] considered multiple bus routes serving common bus stops and analyzed the
difference between independent operators and one central operator. Also in [Sch+16] bus
bunching was investigated looking at multiple bus routes with common stops, but in here
the goal was to inspect the effect of the fact whether overtaking at stops is allowed or not.

Some headway-based control strategies assume that it is both possible to decrease
and increase the commercial velocity of buses. Under the assumption, that buses ride
with maximal cruising speed, additional mechanisms are necessary to create the flexibility
to increase the commercial velocity. Beside including slack times in the schedule in
combination with dynamic holding strategies, which decreases the scheduled commercial
velocity of the buses, and techniques like stop skipping ([SH05]), which irritate and
frustrate passengers, one option would be Transit Signal Priority ([AF12]). Another
mechanism to control bunching is to work with minimum and maximum station waiting

time. This was considered in addition to a social aspect, namely passenger behavior,
in [GP09], where also technical suggestions for engineers and social suggestions for
passengers were given.

There are several works which explored the performance of control strategies within a
field study. One of those is [Liz+14], where a real-time system was implemented in two
bus services in Santiago de Chile and shows encouraging results.

The literature presented so far does either focus on the prediction part or on the control
part related to bus bunching. To our best knowledge there does not exist any work that
presents a predictive-control framework and considers all related components like data
acquisition, prediction and control strategies. We found that considering the first two
components are substantial for every predictive-control method, since without discussing
the quality of the data and the reliability of the prediction it is hard to evaluate the feasibility
and performance of a predictive-control strategy, unless this is implemented in a field
study.



2. Preliminaries

In this chapter we first introduce a few basic concepts needed for the analysis of bus
bunching, like the space-time diagram and time headways. Secondly we focus on the
real data of the Dublin Bus route 46A, outbound, and discuss the data structure and
preprocessing steps.

system
data acquisition
and processing

headway
prediction

control

2.1 Space-Time Diagram

In order to analyze the bus bunching problem we transform the spatial information like
positions of stops or buses to a one-dimensional representation called offset distances,
which describe the distance a bus traveled along its scheduled path, also called shape,
from the first stop and which is explained in detail in subsection 2.1.1. If we transform a
timestamped trajectory of bus positions, either given as coordinates of a two-dimensional
map representation or as coordinates of a three-dimensional representation of the earth’s
surface, to the one-dimensional offset representation we obtain the space-time trajectory,
and the visualization of space-time trajectories is called space-time diagram. Figure 2.2
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Figure 2.1: Route 46A, outbound, on Google Maps 1

shows the space-time diagram of bus route 46A, outbound, of the 6th of November 2012.
We state some general properties of the space-time diagram:
• The slope of a space-time trajectory indicates the cruising speed of the corresponding

bus. Steeper lines indicate higher cruising speeds, flatter lines indicate lower cruising
speeds.
• A bunching event corresponds to the intersection of two or more lines in the space-

time diagram, or in a weakened form to a ’small horizontal distance’ between two
trajectories at some offset distance. Thus as mentioned in chapter 1 the space-time
diagram is one option to detect, analyze and predict bunching events.
• The horizontal distance between two consecutive lines n−1 and n at a particular

offset distance d is called time headway hn,d (see definition 2.2.1). This quantity is
of major interest for this thesis and is further described in section 2.2. The vertical
distance between two consecutive lines at a particular time is called space headway.
Due to traffic conditions and varying passenger demands the time headway between
two buses varies during the journey. A zero headway implies that the two related
space-time trajectories intersect at the corresponding point and vice versa. Thus time
headways are another tool to investigate bus bunching and in chapter 3 we address
the prediction of those. In the following we refer with the term ’headway’ to the

1source: https://www.dublinbus.ie/RTPI/Sources-of-Real-Time-Information/

https://www.dublinbus.ie/RTPI/Sources-of-Real-Time-Information/
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Figure 2.2: Space-time diagram: Route 46A, outbound, 8th Nov 2012 2

time headway unless stated otherwise.

2.1.1 Offset Metric and Offset Distances

In the previous part we motivated the transformation of spatial coordinates to the one-
dimensional representation called offset distances. In this subsection we formulate this
problem more precisely. We present several methods to compute the offset distances and
address the problem of disturbed data.

In order to define the term of offset distances we need to introduce a few technical
terms, which are illustrated in figure 2.3.

Definition 2.1.1 — Shape. Let Snodes = {n0,n1, . . . ,nNS} ⊂ Searth be a set of points
on the earth’s surface Searth, which we approximate by a reference ellipsoid w.r.t. the
WGS84 in this thesis. We define the shape S corresponding to Snodes as the geodetic

polygon that connects the points in Snodes consecutively, i.e.,

S :=
NS⋃
i=1

Si,

Si := {x ∈ γi} ⊂ Searth, i = 1, . . . ,NS,

2based on [Nai+14]
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where γi is the shortest geodetic curve on Searth connecting ni−1 and ni (also called
geodesic between ni−1 and ni). The geodetic distance ‖·‖gd between two points on
Searth is defined as the arc length of the geodesic between the two points. We call the
sets Si shape segments.

For details on geodesy, which describes the analysis on the surface of a sphere, we refer to
the appendix A.4.
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Figure 2.3: Illustration of the terms shape, offset distance and offset metric

For the following let Snodes = {n0,n1, . . . ,nNS} ⊂ Searth be a set of points and S the
corresponding shape. Let further P = (p0, p1, . . . , pNT ) ⊂ SNT+1

earth be a finite sequence of
points on the earth’s surface and let T = (t0, t1, . . . , tNT ) ⊂ RNT+1

≥0 be a monotonically in-
creasing finite sequence of equidistant points in time, which we interpret as timestamps of
the corresponding points in P.

For some shape S with the shape segments {Si}NS
i=1 we introduce the segment mapping

as a function

MS : Searth→{1, . . . ,NS},

which maps each point on the earth’s surface to the index of a ’suitable’ shape segment Si.
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We call a segment mapping MS canonical, if it maps each point in S onto the smallest of
indices of the segments it is contained in.
The segment projection is defined as a closest-point-projection in the mathematical sense
(see, e.g., [Alt12]) onto a shape segment Si, i.e.,

Π
cpp
S : Searth×{1, . . . ,NS}→ S,

(p, i) 7→ argmin
q∈Si

(
‖q− p‖gd

)Si

,

where · Si describes the mean value w.r.t. the segment Si: for a set of points
{q1, . . . ,qN} ⊂ Si we define q∗ := {q1, . . . ,qN}

Si as the point q∗ ∈ Si such that

‖q∗−ni−1‖gd =
1
N

N

∑
j=1

∥∥q j−ni−1
∥∥

gd

holds. In here we take the mean value w.r.t. the segment Si to encounter the case that the
’argmin’ operator does not give us a unique output. We would like to point out here that
this special case is rather a formal consideration since in this thesis we restrict our geodesic
data on a 30[km]×30[km] region around Dublin.
For some segment mapping MS we call its concatenation with the segment projection Π

cpp
S

the shape projection ΠMS :

ΠMS : Searth→ S,

p 7→Π
cpp
S (p,MS (p)) .

Definition 2.1.2 — Offset Distance, Offset Metric. We consider a set of points
Snodes = {n0,n1, . . . ,nNS} ⊂ Searth and its corresponding shape S. Let further be
p, p̂ ∈ Searth and let MS be a segment mapping. We define the offset distance DMS (p)

of p as

DMS (p) :=
∥∥ΠMS (p)−nip−1

∥∥
gd +

ip−1

∑
i=1
‖ni−ni−1‖gd ,

ip := MS (p) .

Further we define the offset metric as

‖·‖MS
: Searth×Searth→ [0,DMS (nNS)],

(p, p̂) 7→ ‖p− p̂‖MS
:=
∣∣DMS (p)−DMS (p̂) | .
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If we restrict the offset metric to S and choose a canonical segment mapping MS, i.e., each
point in S is mapped onto its true shape index, we obtain a metric in the mathematical
sense on S (see, e.g., [Alt12]). We would like to point to the connection to differential
geometry: we could interpret a shape as the image of a continuous and piecewise contin-
uously differentiable curve on the earth’s surface, and the offset distance would be the
corresponding arc length ([Bro+12]).

The motivation to introduce the segment mapping MS is the following: in this thesis
we consider real data from the GPS3 (see, e.g., [LRT15]) of Dublin Bus. Due to noise
disturbing the GPS data (see [MHD99]) and the fact that buses happen not to follow
precisely the shape of the prescribed journey pattern (e.g., due to changed traffic conditions
like construction sites, new drivers, etc.), in general the spatial coordinates corresponding
to the GPS data are not element of the considered shape. In this case we need to project
the sample points to the shape and thus decide in which segment they were originally
contained in. Furthermore formulating the shape projection using a segment mapping
allows us to include contextual information later on.
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Figure 2.4: Map matching problem illustrated by a U-turn

An intuitive choice for the segment mapping is based on the closest-point projection to
S w.r.t. the geodetic norm, i.e.,

M cpp
S : Searth→{1, . . . ,NS},

p 7→

⌊
argmin
i=1,...,NS

(∥∥Π
cpp
S (p, i)− p

∥∥
gd

)⌋
,

(2.1)

where Π
cpp
S (p, i) again is the classical closest-point projection onto the segment Si and

b · c the rounded standard mean value. We need to take the mean value in equation (2.1)
3http://www.gps.gov/systems/gps/

http://www.gps.gov/systems/gps/
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in order to define a unique mapping, since the ’argmin’ operator in general does not give
us a unique result, and we need to round the output to obtain an integer number.

Beside the possibly ambiguous output of the ’argmin’ operator a second problem of
this approach is that due to data noise even in the case of a unique output of the ’argmin’
operator equation (2.1) may not give us the original shape segment of the sample point.
This could happen for example in U-turns or tight curves of the shape. This problem is
also called map matching problem ([NK09]) and is illustrated in figure 2.4, where the red
lines represent shape segments and the blue markers represent GPS samples, which have
been projected to a two-dimensional map (see appendix A.5)).

2.1.2 Predecessor-Based Approach

The closest-point shape projection ΠM cpp
S

maps each point in P⊂ Searth uniquely to a point
in S without using contextual information of the sequence provided by the timestamps,
i.e., information on neighboring points. Thus it is not able to solve the map matching
problem accordingly due to data noise like illustrated in figure 2.4. This motivates us to
introduce a new kind of shape projections which explicitly include contextual information.
We would like to point out that this does not give us a projection from Searth to S, since
a point p ∈ Searth might be projected to two different points in S depending on the finite
sequence P it is contained in. We rather get a mapping from the set of all possible finite
sequences in Searth, which also contains P, to the set of finite sequences in S.

A very simple approach which we call the predecessor-based approach modifies the
classical segment mapping in equation (2.1) and is based on the assumption that the
position of a point should be "close" to the position of the preceding point, which is true if
the frequency of location samples is "sufficiently high". For a control parameter α ∈ [0,1]
we define the predecessor-based segment mapping as

M predec
S :

{
(p0, p1, . . . , pNT ) ∈ SNT+1

earth

∣∣ NT ∈ N
}
→

⋃
NT∈N

{1, . . . ,NS}NT ,

pk 7→ p̄k =

⌊
argmin
i=1,...,NS

(
α
∥∥Π

cpp
S (pk, i)− pk

∥∥
gd

+(1−α)
∥∥Π

cpp
S (pk, i)− p̄k−1

∥∥
1

)⌋
, k > 0,

p0 7→M cpp
S (p0) ,

(2.2)

where ‖·‖1 is the offset metric w.r.t. a canonical segment mapping on S and p̄k−1 denotes
the priorly projected point. For α = 1 we again get the standard closest-point segment
mapping in equation (2.1), which we also apply to the first point p0. Again we need to
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Figure 2.5: Illustration of the predecessor-based shape projection

consider the rounded mean value in equation (2.2) to define a unique mapping to integer
values.

The parameter α represents the "trust" in the current measurement. The last term
(1−α)

∥∥Π
cpp
S (pk, i)− p̄k−1

∥∥
1 in equation (2.2) penalizes the suggested projection

Π
cpp
S (pk, i) being far away from the priorly projected point w.r.t. the offset metric. This

approach is illustrated in figure 2.5.
We see that this simple approach gives a qualitative improvement compared to single

point projections. The method is computationally efficient and only uses one design param-
eter α . One problem of this approach is that there is no way to ensure or to give preference
to monotonically increasing space-time trajectories. It might happen that outliers are
projected to points on the shape with smaller offset distances than the projections of their
predecessors, which causes negative slopes in the space-time diagram.

A more sophisticated approach that we present in the appendix A.1 uses Hidden Markov

Models to construct a segment mapping. This approach also does not ensure monotonically
increasing space-time trajectories, but at least allows to give preference to monotonically
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Figure 2.6: Map matching problem of the U-turn solved by the HMM shape projection

increasing sequences of segment indices returned by the segment mapping.
Figure 2.6 shows the application of our HMM approach to the U-turn problem.

2.2 Time Headways

In this section we describe the concept of time headways. As mentioned above this is
the second concept beside the space-time diagram for investigating the bus bunching
phenomenon. Before we define the time headways we point out that in the following
we refer with the term ’bus’ not to one specific vehicle of the vehicle fleet of the service
provider but to the bus serving a particular vehicle journey, i.e., a certain scheduled bus
run.

Definition 2.2.1 — Time Headway. Let s ∈ S be a position along the shape S. We
denote by dn(t) the offset distance of the location of bus n at time t ∈ R≥0, w.r.t. some
segment mapping. Let n−1 denote the preceding bus of the same route and direction
according to the schedule.

1. The space-based time headway hn,s between the buses n−1 and n at position s is
defined as the difference between their arrival times an−1,s and an,s at s, i.e.,

hn,s = an,s−an−1,s.

2. The continuous-time headway hn (t) between the buses n−1 and n at time t is
defined as

hn (t) := hn,dn(t).

The two concepts of time headways are illustrated in the space-time diagram 2.7. In
chapter 3 we focus on the continuous-time headways, which are defined similar to [Pil09],
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since these provide us with headway samples at equidistant points in time. Therefore we
are able to view the continuous-time headways as time series which allows us to apply
techniques out of the field of time-series analysis in order to predict future headways. We
study this approach in chapter 3.

In chapter 4 we investigate stop-based headways like in [Dag09], i.e., we study the
headways for locations s that are chosen to be the bus stops of the route. For these we show
that they tend to zero under certain assumptions in a disturbed and uncontrolled system
and we present a dynamic-holding-control scheme to stabilize the headway distribution
w.r.t. a scheduled target headway.

In figure 2.8 we visualize the headway distribution of route 46A, outbound, of the 8th of
November 2016. The X-axis shows the daytime and the Y-axis contains the vehicle journey
IDs. The colors represent the time headways in minutes. We are able to identify bunching
events as those points where the absolute values of the headways become close to zero. We
also observe so called second moment effects, which describe the phenomenon that under
certain assumptions small headways of a bus pair are followed by large headways of the
succeeding bus pair and vice versa. This phenomenon is further studied in proposition 4.1.
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Figure 2.8: Visualization of time headways of route 46A, outbound, 8th Nov 2016
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2.3 Data Acquisition

In this section we briefly discuss the real data used in this thesis.

2.3.1 Data Structure

The data are freely available and are provided by a partnership between the four Dublin

Local Authorities and Maynooth University called Dublinked 4. We use two main datasets.
The first set contains Service Interface for Real-Time Information (SIRI) data and gives
information on the bus locations like timestamped GPS data. The second set contains
General Transit Feed Specification Reference (GTFS) data and provides infrastructure data
of the transit system like stop locations and schedules.

In figure 2.9 an overview on the main parts of both data structures and a link between
those considering different notation is given. Especially it is shown which information
is needed to extract the trajectory of a single bus run from the dataset. For details and
notation of the SIRI and GTFS datasets we refer to the appendices A.2 and A.3.

line: 46A
pattern ID: 046A0001
direction: 0 (outbound)

SIRI

date frame: e.g., 2012-11-06

vehicle journey ID: e.g., 7242

timestamps and buses’
latitude/longitude coordinates

route: 46A
shape ID: 0-46A-y12-1.322.O
direction: O

GTFS

trip ID: e.g.,
4777.2.0-46A-y12-1.1.0

stops’ latitude/longitude
coordinates and scheduled
arrival/departure times

Figure 2.9: Matching SIRI and GTFS notation

4http://dublinked.ie/

http://dublinked.ie/
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For the following we assume that we are able to extract timestamped GPS samples for
each vehicle journey from the SIRI dataset and match those with the scheduled trips given
by the GTFS dataset. Furthermore we assume that for each vehicle journey we are able
to extract the information on precedent and subsequent vehicle journeys according to the
schedule.

It takes some effort to satisfy these assumptions when working with the real data. We
omit the technical details of the implementation here. In order to give an idea about the
additional effort for the implementation caused by working with real data we just would like
to point out the following: even though buses belong to the same bus route and direction
they might be operated on different journey patterns with different shapes, depending, for
example, on the time of the day. This causes problems since we need to compute offset
distances w.r.t. different shapes what makes it hard to analyze the space-time trajectories
and the relation between those. Furthermore it might be ambiguous to determine for
vehicle journey n the preceding vehicle journey n−1 since the bus corresponding to n−1
might be operated just on a part of the same shape that the bus corresponding to n is
operated on.

In order to give an intuition of the different shapes of the route 46A, outbound, we
visualize those in figure 2.10 using the Mercator projection described in the appendix A.5.

On the webpage of Dublin Bus5 another representation of one of those shapes can be
found in a Google Maps Representation like shown in figure 2.1.

2.3.2 Preselecting the Offset Data

We observe that the data are disturbed by some random noise and contain strong outliers.
Figure 2.11 shows the Mercator plot of the raw GPS samples of route 46A, outbound, of
the 8th of November 2016, the corresponding shapes and the corresponding space-time
diagram, which we computed using the HMM segment mapping.

The error source has two main parts: the first part is the ’internal’ measurement noise
included in the data, for example, caused by disturbed signal transmissions or limited
computational accuracy. The second reason is caused not by the measurement device, but
’externally’ by buses that do not drive along the prescribed shape of their journey pattern.
This might happen for example due to temporary road works, road closures (e.g., caused by
special events like St. Patrick’s Day), new bus drivers etc.. For this reason it is necessary
to preselect the data before using them in a prediction framework. We use a very intuitive
set of criteria, which is based on the criteria in [NK09], to mark each single GPS sample
within a vehicle journey with corresponding shape S as outlier or not.

5https://www.dublinbus.ie/RTPI/Sources-of-Real-Time-Information/

https://www.dublinbus.ie/RTPI/Sources-of-Real-Time-Information/
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Our algorithm works as follows: first we only consider trajectories that provide at
least θdata = b0.6× (number of node points of shape S)c data points. For each of those
trajectories we mark those sample points as outliers, which have a geodetic distance to
the shape greater than the threshold θpre = 200 [m] (numeric value taken from [NK09]).
After that we apply a map matching algorithm like described in the previous section
with the reduced set and mark those points as outliers, which have a geodetic distance
to their assigned projected point greater than the threshold θpost = 200 [m]. Then we
check for ’jumps’ in the trajectory, i.e., we mark those points in the reduced set as outliers
with an offset velocity greater than the threshold θspeed = 120 [km/h], where the offset
velocity is approximated using finite differences. Furthermore we observe that a lot of
irregularities occur at the beginning and the end of a vehicle journey. This could be caused,
for instance, by the fact that the GPS tracking might not start or end exactly at the start- or
endpoint of the vehicle journey, but also on the way from or to another vehicle journey
that is served by the same vehicle. For this reason we concentrate just on a part of each
journey-pattern shape and neglect offset distances smaller than θmin = 2000 [m] and larger
than θmax = 18000 [m].

Applying our algorithm does not remove all outliers and does not ensure positive offset
velocities, but it provides us with a robust and intuitive method to preselect the data. Figure
2.12 shows the Mercator plot and the space-time diagram of route 46A, outbound, of the
8th of November 2016 corresponding to the GPS samples selected by our algorithm. In
the next chapter, where we address the prediction of headway data, we use the space-time
trajectories of our selected data to compute headway trajectories and after that we further
process these headway trajectories to prepare them for the prediction.
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Figure 2.11: Raw GPS samples and space-time diagram of route 46A, outbound, of 8th
Nov 2016, including outliers
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Figure 2.12: Selected GPS samples and space-time diagram of route 46A, outbound, of 8th
Nov 2016



3. Prediction of Future Headways

In this chapter we assume to have space-time diagrams available and we discuss the
data-driven prediction of headway trajectories. First we present preprocessing techniques
for those. Secondly we use linear-regression-and-extrapolation-, kernel-regression-and-

extrapolation-, artificial-neural-network- and autoregressive-models to predict the headway
trajectories and compare the performances of the different techniques.

system
data acquisition
and processing

headway
prediction

control

3.1 Headway Preprocessing

As discussed in chapter 2 it is necessary to preprocess the headway data before applying
an algorithm for prediction.

The first step of our algorithm is to mark those headway data points as outliers which
have an absolute value greater than a certain threshold, in our case we chose θh,max = 90
[min]. After that we check for each headway trajectory the number of remaining data
points and neglect those trajectories which have less than 100 data points. In order to obtain
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Figure 3.1: Different online filters applied to a headway trajectory

again headway trajectories with equidistant timestamps we apply a linear interpolation

to the remaining trajectories to replace the data points rejected by the first step. As a last
step we apply a smoothing algorithm to the trajectories. If we use the data as training data
we may apply an offline filter like the centered moving average filter, or in the operational
case of online data we apply some online filter like a modification of the moving average
filter or the Kalman filter.

The idea of smoothing here is to reduce the fluctuation of the headway trajectories.
Spontaneous fluctuations could be caused by unforeseen events occurring while operating
the bus, like traffic lights, traffic congestions, higher or lower passenger demands. It is
hard or even impossible to factor in all these components, so we just interpret those as
random noise disturbing the offset trajectories and thus the headway trajectories. Since it
is not our goal to detect or to predict these spontaneous events but the crucial information
inherent in the data, like increase or decrease over longer time periods, we would like to
remove these noise components and only work with the cleaned trajectories. To this there
are plenty of algorithms available, some out of the fields of time-series analysis and signal

processing. An overview can be found in [DM57].
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In the appendix B.1 we describe some details of the weighted moving average filter

and the Kalman filter. Here we would just like to point out that we have to deal with both
offline and online data. The data we use for training or as reference data are considered to
be offline data, i.e., the whole dataset is available at a time we apply our filter. But in the
operational scenario we have to deal with online data, i.e., at a time we apply our filter
only the data points of the current and the previous time steps are available. This means the
used terms do not refer to the data structure but to the accessibility. Having this distinction
in mind we are able to choose an appropriate filter.

In order to illustrate different online filters we show in figure 3.1 a headway trajectory
and several filtered versions of the same, where the parameter R models the process noise

and Q the measurement noise of the Kalman filter.

An overview about how to preprocess data as preparation for data mining and super-

vised learning can be found in [Pyl99] and [KKP06].

For the purpose of prediction we need to define the following quantities.
Definition 3.1.1 We consider a headway trajectory h with equidistant timestamps
(t1, . . . , tNh).

1. The prediction horizon PH ∈ N>0 determines how many time steps ahead we
would like to predict the headway trajectory. For a time index 0≤ k ≤ Nh−PH

we are interested in predicting the headway trajectory at time index k+PH.
2. The historical horizon HH ∈ N≥0 determines the range of preceding indices

which we include for the prediction, i.e., for a time index HH < k we make use
of all data points of h corresponding to the indices {k−HH,k−HH +1, . . . ,k}
for the prediction step at index k.

For a prediction horizon PH, a historical horizon HH and the headway trajectory h of
length Nh we then can apply our algorithm to predict the headways corresponding to
the time indices {HH +PH +1,HH +PH +2, . . . ,Nh−PH}.

There are two main modes of prediction, illustrated in figure 3.2. In the first mode
we apply a single-step-ahead prediction method multiple times consecutively to get the
predicted value PH time steps ahead of the current time. In the second mode we apply a
multi-steps-ahead prediction method which immediately computes the predicted value PH

time steps ahead of the current time. (see [Cha00]).
In the following sections we present different techniques for the time-series forecasting

and we discuss the performance on the given dataset. We would like to point out here that
the prediction of headway data can also be done in connection with the prediction of bus
arrival times, like for example in [Nai+14]. In here we focus on the prediction directly
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Multi-steps-ahead prediction

Figure 3.2: Prediction modes

based on the headway trajectories since this allows us to detect trends of the trajectories
and is thus more suitable for bunching prediction.

For the following when we talk about the prediction of continuous-time headways we
use the following notation for a headway trajectory h with timestamps (t1, . . . , tNh) between
two buses n−1 and n:

hk := hn (tk) , 1≤ k ≤ Nh.

3.2 Numerical Experiment

All tests of our prediction algorithms were performed on the data of the 28th of November
2012, which is the last Wednesday of the dataset, while the remaining data from the 6th to
30th of November 2012 might be used as reference data for the kernel regression method in
section 3.4 or as training data for an artificial neural network in section 3.5. The headway
trajectories are sampled with equidistant time steps of 20 seconds (frequency given by the
SIRI dataset, see appendix A.2). We measured the performance of each prediction method
based on four quantities. First we computed the RMSE (root-mean-square error) between
the true trajectory and the predicted trajectory like in [Nai+14]:

RMSE
(
h,h′

)
=

√√√√ 1
Nh

Nh

∑
k=1

(
hk−h′k

)2
.
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Secondly we checked for each trajectory the percentage of single predictions which are
within certain correctness bins. We chose as bins one minute, two minutes and three
minutes. For each method we then took the means of each of those quantities over all
predicted trajectories and we compare the results for different parameter sets in the tables
3.2, 3.3, 3.4 and 3.5.

In the numerical experiments we compared for each method its performance on the test
set for all combinations of parameters given in table 3.1. The meanings of the parameters
are explained in the corresponding sections. In table 3.6 we compare the best performances
of each method.

parameter value

prediction horizon PH 5;10 [min]
historical horizon HH 3;5;10;15 [min]

model parameter

PR: deg 1
KR: σ 0.3;1;3 ∼[min]
NN: structure (10) ;(20) ;(30) ;(10|10) ;

(20|10) ;(10|10|10) ;(5) ,(10|5)
ARMA: (p,q) (4,0) ;(7,0) ;(10,0) ;(13,0) ;(16,0)

window size (mov avg) w ∼ 0;3;6;9;12 [min]

Table 3.1: Parameter tuning in numerical experiment

3.3 Linear Regression and Extrapolation

The descriptions of this section and further details can be found, for example, in [Bro+12].
The idea of a Linear-Regression-and-Extrapolation model is illustrated in figure 3.3.

More general the idea of polynomial regression is to approximate a given set of data
points by a real polynomial function p(t) = α0 +α1t + . . .+αdtd of degree d such that
the error between the true data points and the approximations measured in the Euclidean
norm is minimized. For the data points (hi)

k
i=k−HH for the historical horizon HH ≥ 0

at times (ti)
k
i=k−HH we find the coefficients of this polynomial by solving the following

Least-Squares Problem:

(α0,α1, . . . ,αd)
T = argmin

α̂∈Rd+1
‖A · α̂−b‖2

2 ,

A =


1 tk−HH · · · td

k−HH
...

...
...

1 tk−1 · · · td
k−1

1 tk · · · td
k

 , b =


hk−HH

...
hk−1

hk

 .

(3.1)
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Figure 3.3: Linear regression and extrapolation

The minimization problem in equation (3.1) can be solved for example by using the pseudo

inverse A# of A (see, e.g., [And14]).
The prediction of the headway value PH time steps ahead of the current time is done by
polynomial extrapolation, i.e., we evaluate the regression polynomial we found by equation
(3.1) at the desired value tk+PH :

h′LR
k+PH = α0 +α1tk+PH + . . .+α1td

k+PH .

In our case of linear regression and extrapolation we use a polynomial of degree d = 1
like shown in figure 3.3 and use it as a multi-steps-ahead prediction, i.e., we compute the
coefficients in equation (3.1) and evaluate the linear polynomial directly at a time PH time
steps ahead of the current time.

Even though this approach is very simple and the headway trajectories most likely do
not show a linear behavior, we are still able to detect trends in the trajectory, i.e., we detect
if the headway values tend to become larger or smaller as time progresses. In chapter 4
we investigate the properties of the headway trajectories based on a simplified bus-route
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model. One result is that in our simplified deterministic model under certain assumptions
headways tend to zero or increase until the end of the bus journey unless they are equal to
the target headway. These trends can be detected by a simple linear regression what is the
reason for us to consider this technique in this context.

Furthermore this technique allows to compute a confidence value that could be used in
an operational setting to decide if we should trust the prediction or not. This could be done,
for instance, by considering the error of the polynomial regression within the historical
horizon measured in the Euclidean norm.

Figure 3.4 visualizes three headway trajectories beside the predicted values computed
by a five-minutes-ahead prediction using linear regression and extrapolation and the corre-
sponding RMSE of our experiment. Table 3.2 shows the best 15 parameter configurations
w.r.t. the RMSE for each prediction horizon PH corresponding to 5 and 10 minutes re-
sulting from our numerical experiment. The last three columns contain the means of the
percentages of predictions within correctness bins of one, two and three minutes among all
predicted headway trajectories.
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PH HH w RMSE err < 1 min err < 2 min err < 3 min
[min] [min] [min] [min] [%] [%] [%]

5 3 6 1.26 61.75 88.14 96.33
5 3 9 1.17 65.57 90.18 97.59
5 3 12 1.18 66.87 89.92 97.77
5 5 6 1.31 59.59 86.35 96.12
5 5 9 1.23 62.73 88.41 97.43
5 5 12 1.24 62.97 87.98 97.73
5 10 0 1.35 57.21 85.73 95.92
5 10 3 1.38 55.84 84.45 95.85
5 10 6 1.38 57.31 84.20 95.76
5 10 9 1.35 57.31 84.62 95.45
5 10 12 1.36 56.20 84.57 96.23
5 15 0 1.38 55.36 82.92 95.84
5 15 3 1.42 52.77 81.14 95.82
5 15 6 1.45 50.91 81.97 95.47
5 15 9 1.46 49.67 82.24 94.48

10 3 6 2.17 40.04 66.37 81.95
10 3 9 1.88 45.17 71.91 85.08
10 3 12 1.76 47.00 74.39 87.64
10 5 6 2.15 39.09 66.27 83.02
10 5 9 1.89 42.85 71.93 84.50
10 5 12 1.79 46.00 73.07 87.72
10 10 3 2.15 35.26 65.16 81.23
10 10 6 2.08 34.88 66.15 83.23
10 10 9 1.98 37.39 67.42 84.75
10 10 12 1.92 38.43 68.53 86.53
10 15 0 2.10 33.20 62.61 81.40
10 15 3 2.12 30.54 62.60 81.15
10 15 6 2.11 31.64 60.83 82.03
10 15 9 2.07 34.41 61.74 83.79
10 15 12 2.03 33.79 61.14 83.81

Table 3.2: Results of the parameter study for the linear-regression-and-extrapolation model
(best 15 results w.r.t. RMSE for each prediction horizon PH)



3.3 Linear Regression and Extrapolation 37

09:00 09:30 10:00

0

5

10

daytime

he
ad

w
ay

[m
in

]
VJ ID: 6358, predecessor ID: 6469

true
5 [min] ahead pred.
RMSE-region

08:00 08:30 09:00
5

10

15

20

25

30

daytime

he
ad

w
ay

[m
in

]

VJ ID: 6370, predecessor ID: 6346

15:30 16:00

0

5

10

daytime

he
ad

w
ay

[m
in

]

VJ ID: 6537, predecessor ID: 6362

Figure 3.4: Illustration of the headway prediction using a linear-regression-and-
extrapolation model, 28th Nov 2012
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3.4 Kernel Regression and Extrapolation

In this section we describe the prediction technique Kernel Regression and Extrapolation.
It is adapted from the method in [Sin+12], where the authors used it to predict space-time
trajectories. For this method we need to define a subset of the headway trajectories as
offline reference data. Instead of using this subset like in the neural network approach
in section 3.5 as training data to tune parameters of the specific algorithm, we use this
data directly as reference trajectories like in a data bank without applying any further
training algorithm. We then compare the headway trajectory of interest h to all trajectories
in the reference set within a certain range of preceding time steps of the current time step
and compute a weighted sum of these trajectories, where the weights correspond to the
similarity of the trajectories to h. The trajectory defined by this weighted sum is then taken
as prediction of the trajectory h. This approach is illustrated in figure 3.5.
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Figure 3.5: Illustration of the idea of kernel regression and extrapolation as prediction
method

The motivation of this approach can be phrased like in [Nai+14]: history repeats itself.
We formulate this idea more precisely in the following definition 3.4.1. For the sake of
simplicity we assume that all headway trajectories as well those in the reference set as
those we would like to predict have the same length Nh.
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Definition 3.4.1 — Kernel Regression and Extrapolation. Let Href ⊂ RNh be the set
of reference headway trajectories, which we assume to be of the same length Nh. Let
HH denote the historical horizon and PH the prediction horizon and let K : R→ R≥0

and σ ∈ R>0. We then define the predicted value h′KR
k+PH for time tk+PH at time tk as

h′KR
k+PH =

1
Z ∑

ĥ∈Href

K

(
−dHH(h, ĥ)

σ

)
· ĥk+PH ,

dHH
(
h, ĥ
)

=
1

HH +1
·
∥∥∥(hi)

k
i=k−HH−

(
ĥi
)k

i=k−HH

∥∥∥2

2

=
1

HH +1

k

∑
i=k−HH

(hi− ĥi)
2,

Z = ∑
ĥ∈Href

K

(
−dHH(h, ĥ)

σ

)
.

The kernel regression and extrapolation method as defined in definition 3.4.1 is operated
as a multi-steps-ahead prediction. In here the parameters that need to be tuned are again the
historical horizon HH and the bandwidth σ . As kernel function we choose the exponential
function K = exp(·). Furthermore for our numerical experiment we only perform a
prediction if there are at least 10 reference trajectories available. As reference trajectories
we chose all headway trajectories of the 13th, 14th, 15th, 20th, 21st and 22nd of November
2012.

Figure 3.6 visualizes three headway trajectories beside the predicted values computed
by a five-minutes-ahead prediction using kernel regression and extrapolation and the corre-
sponding RMSE of our experiment. Table 3.3 shows the best 15 parameter configurations
w.r.t. the RMSE for each prediction horizon PH corresponding to 5 and 10 minutes re-
sulting from our numerical experiment. The last three columns contain the means of the
percentages of predictions within correctness bins of one, two and three minutes among all
predicted headway trajectories.

Again like in the case of linear regression and extrapolation we are able to compute the
Euclidean distance between the regression trajectory, i.e., our weighted sum, and the true
headway trajectory within the historical horizon {k−HH, . . . ,k} and thus get a value that
might help us in an operational setting to decide if we should trust the prediction or not.
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PH HH σ w RMSE err < 1 min err < 2 min err < 3 min
[min] [min] [min] [min] [%] [%] [%]

5 3 0.3 0 1.15 67.48 90.55 97.78
5 3 0.3 3 1.23 63.60 88.58 97.21
5 3 0.3 6 1.31 62.57 85.23 96.29
5 3 1.0 0 1.17 65.60 90.36 97.41
5 3 1.0 3 1.27 62.87 86.65 96.65
5 3 3.0 0 1.21 64.02 89.07 97.45
5 5 0.3 0 1.20 64.63 90.47 97.16
5 5 0.3 3 1.27 62.41 87.96 96.59
5 5 1.0 0 1.21 63.50 89.45 97.09
5 5 1.0 3 1.31 62.58 85.07 96.53
5 5 3.0 0 1.26 62.37 86.18 97.07
5 10 0.3 0 1.23 63.40 88.78 97.03
5 10 0.3 3 1.30 60.95 85.61 96.39
5 10 1.0 0 1.29 61.95 85.76 96.54
5 15 0.3 0 1.29 60.47 86.01 96.57

10 3 0.3 0 1.74 50.72 76.30 88.47
10 3 0.3 3 1.80 49.11 74.38 87.18
10 3 1.0 0 1.71 52.64 74.74 87.56
10 3 1.0 3 1.80 51.36 73.46 86.30
10 3 3.0 0 1.74 51.57 74.31 87.37
10 3 3.0 3 1.83 49.24 72.76 86.08
10 5 0.3 0 1.77 48.33 74.50 87.47
10 5 0.3 3 1.83 46.88 72.87 86.94
10 5 1.0 0 1.75 51.45 74.07 87.69
10 5 1.0 3 1.83 49.80 72.63 85.98
10 5 3.0 0 1.79 50.04 72.92 86.56
10 10 0.3 0 1.77 47.85 74.08 87.65
10 10 0.3 3 1.83 44.07 71.50 86.52
10 10 1.0 0 1.80 48.35 72.58 86.68
10 15 1.0 0 1.83 47.28 70.10 85.75

Table 3.3: Results of the parameter study for the kernel-regression-and-extrapolation model
(best 15 results w.r.t. RMSE for each prediction horizon PH)
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Figure 3.6: Illustration of the headway prediction using a kernel-regression-and-
extrapolation model, 28th Nov 2012
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3.5 Artificial Neural Network - Multilayer Perceptron

In this section we use Multilayer Perceptrons (MLP), which are a special kind of Artificial

Feedforward Neural Networks, to predict the headway trajectories. A brief description
of multilayer perceptrons is given in the appendix B.1.3 and an illustration of a MLP is
shown in figure 3.7. The descriptions of this section and further details on neural networks
can also be found, for example, in [Kri07] or [Bis95].

exog. inputs

inputs

input layer hidden layers output layer

output

Figure 3.7: Multilayer perceptron (MLP) with exogenous inputs

MLPs are used in the field of time-series analysis (see [Cha00]) due to their ability
to approximate unknown nonlinear functions. One very famous result out of the field of
approximation theory is theorem 3.1, also known as universal approximation theorem, and
can be found in [Cyb89].

Theorem 3.1 — Universal approximation theorema. Let ϕ (·) be a non-constant,
bounded and monotonically-increasing continuous function. Let Im be a compact subset
of Rm. The space of continuous functions on Im is denoted by C (Im). Then, given any
function f ∈ C (Im) and ε > 0, there exists an integer N, real constants vi,bi ∈ R and
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real vectors wi ∈ Rm, where i = 1, . . . ,N, such that we may define:

F (x) =
N

∑
i=1

viϕ
(
wT

i x+bi
)

as an approximate realization of the function f where f is independent of ϕ; that is

|F (x)− f (x)|< ε

for all x ∈ Im. In other words, functions of the form F (x) are dense in C (Im).
aformulation from: https://en.wikipedia.org/wiki/Universal_approximation_theorem

If we assume that the headway values can be approximated by a nonlinear function
depending on previous headway data theorem 3.1 tells us that we are able to approximate
this nonlinear behavior by a MLP with one hidden layer and thus are able to predict the
headway trajectories in theory. The theorem does not tell us how to choose the weights
and biases of the network. The process of adjusting the parameters of a network with a
given structure of neurons and layers is called training. The training can be formulated as
a minimization problem, where the objective function is a certain function measuring the
distance between the predicted and the true values, depending on the weights and biases.
One way to find a (at least local) minimum of the function would be a steepest descent

algorithm. This idea is known as the backpropagation algorithm for feedforward networks
(see, e.g., [Kri07]).

We use MATLAB ’s neural network toolbox described in the appendix B.2, which uses
the Levenberg-Marquardt algorithm (for details see, e.g., [MNT04] or [Bis95]) as a default
solving algorithm. Even though this approach sounds very promising we would like to
point out that it induces all problems that might occur in the classical steepest-descent-
optimization framework. One very famous problem especially known from the training of
recurrent neural networks and multilayer perceptrons with many layers is known as the
vanishing gradient problem (see, e.g., [Hoc98]).

In here we use the neural network in a multi-steps-ahead prediction mode and do not
make use of exogenous inputs, which are quantities that are used for the prediction of other
quantities than themselves. We prepare a so called input-output dataset and divide this in a
training set, validation set and test set. The inputs are stored in a matrix X ∈ R(HH+1)×N

and the outputs are stored in a matrix T ∈ R1×N . The kth column of X for some index
k contains some point of a training headway trajectory h with time index k̂ and its HH

preceding points. The kth column of T contains the point of the headway trajectory PH

https://en.wikipedia.org/wiki/Universal_approximation_theorem
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time steps ahead of time index k̂:

X:,k =


hk̂−HH

...
hk̂

 ,

Tk = hk̂+PH .

(3.2)

This is illustrated in figure 3.8. We obtain the predicted headway value by evaluating the
network function (see appendix B.1.3) at the vector containing the current headway value
and its HH preceding values:

h′MLP
k+PH = fnet




hk−HH
...

hk


 .
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Figure 3.8: Illustration of the input-output data structure for the MLP approach

Figure 3.9 visualizes three headway trajectories beside the predicted values computed
by a five-minutes-ahead prediction using a MLP and the corresponding RMSE of our
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experiment. Table 3.4 shows the best 15 parameter configurations w.r.t. the RMSE
for each prediction horizon PH corresponding to 5 and 10 minutes resulting from our
numerical experiment. The last three columns contain the means of the percentages of
predictions within correctness bins of one, two and three minutes among all predicted
headway trajectories.

PH HH net struct w RMSE err < 1 min err < 2 min err < 3 min
[min] [min] [min] [min] [%] [%] [%]

5 3 10|10|10 0 1.12 68.30 92.02 98.13
5 3 20 0 1.11 67.70 92.50 98.21
5 5 10|10 0 1.11 67.11 91.69 98.25
5 5 10|10|10 0 1.11 66.93 91.51 98.38
5 5 10|5 0 1.11 69.35 91.37 98.18
5 5 20 0 1.11 68.63 91.90 98.25
5 5 20|10 0 1.12 67.88 91.84 98.25
5 5 30 0 1.11 68.79 91.24 98.19
5 5 5 0 1.11 68.31 91.63 98.38
5 10 10 0 1.12 68.15 92.22 97.90
5 10 10|10 0 1.10 68.38 92.11 97.98
5 10 20 0 1.12 68.25 92.18 98.05
5 10 20|10 0 1.11 68.75 92.25 98.05
5 10 30 0 1.10 68.90 92.07 97.97
5 10 5 0 1.12 67.36 91.79 97.76
10 3 10|10|10 0 1.63 52.08 76.98 89.73
10 3 10|5 3 1.68 50.94 75.23 89.52
10 5 10|10|10 0 1.67 51.46 75.88 90.47
10 5 10|5 3 1.67 51.31 75.73 89.06
10 5 5 0 1.66 50.78 74.98 90.16
10 5 5 3 1.68 49.38 75.65 89.67
10 10 10|10 0 1.64 50.77 75.91 90.84
10 10 10|10|10 0 1.66 50.97 75.67 90.60
10 10 10|5 3 1.67 50.00 76.44 89.98
10 10 30 0 1.66 51.19 75.25 89.80
10 10 5 0 1.66 48.93 76.76 90.90
10 15 10|10 0 1.68 48.39 74.44 89.57
10 15 10|5 3 1.64 49.72 75.72 90.54
10 15 20|10 0 1.67 48.59 73.46 91.25
10 15 5 0 1.63 51.44 76.78 91.02

Table 3.4: Results of the parameter study for the multilayer-perceptron model (best 15
results w.r.t. RMSE for each prediction horizon PH)



3.5 Artificial Neural Network - Multilayer Perceptron 46

09:00 09:30 10:00

0

5

10

daytime

he
ad

w
ay

[m
in

]
VJ ID: 6358, predecessor ID: 6469

true
5 [min] ahead pred.
RMSE-region

08:00 08:30 09:00
5

10

15

20

25

30

daytime

he
ad

w
ay

[m
in

]

VJ ID: 6370, predecessor ID: 6346

15:30 16:00

0

5

10

daytime

he
ad

w
ay

[m
in

]

VJ ID: 6537, predecessor ID: 6362

Figure 3.9: Illustration of the headway prediction using a multilayer perceptron, 28th Nov
2012
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3.6 Autoregressive-Moving-Average Model (ARMA/ARMAX)

As a last model we present the autoregressive-moving-average model. The details for this
can be found for example in [Cha00].

Definition 3.6.1 — ARMA/ARMAX model. 1. Let h ∈ RNh be a headway trajec-
tory. An autoregressive-moving-average (ARMA) model with autoregressive

(AR) order p ∈ N≥0 and moving average (MA) order q ∈ N≥0 is given by the
real AR coefficients a1, . . . ,ap and the real MA coefficients c1, . . . ,cq and is for
k ∈ {max{p,q}, . . . ,Nh−1} based on the following equation:

h′ARMA
k+1 = a1hk +a2hk−1 + . . .+aphk−p+1

+ c1εk + c2εk−1 + . . .+ cqεk−q+1,

εi =

{
hi−h′ARMA

i , i ∈ {max{p,q}, . . . ,Nh−1}
0 , else

.

(3.3)

2. If we consider NU ∈ N exogenous inputs and real coefficients b0, . . . ,bNU−1 the
ARMA model can be extended to the ARMAX model. The basic equation (3.3) is
for k ∈ {max{p,q,NU}, . . . ,Nh−1} changed to the following equation:

h′ARMA
k+1 = a1hk +a2hk−1 + . . .+aphk−p+1

+b0uk+1 +b1uk + . . .+bNU−1uk−NU+2

+ c1εk + c2εk−1 + . . .+ cqεk−q+1,

εi =

{
hi−h′ARMA

i , i ∈ {max{p,q,NU}, . . . ,Nh−1}
0 , else

.

3. (a) In case of q = 0 the ARMA/ARMAX model becomes an AR/ARX (autore-
gressive/autoregressive with exogenous inputs) model.

(b) In case of p = 0 the ARMA model becomes a MA (moving average) model.

We obtain a prediction for a point PH time steps ahead of the current time by multiple
single-step-ahead predictions like illustrated in figure 3.2.

For our numerical experiments we restrict ourselves to an AR model without exogenous
inputs. The results are presented in table 3.5. For a sample set (hi)

k
i=k−HH the parameters
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a1, . . . ,aq are computed by solving the least-squares problem in the following equation:

(a1, . . . ,ap)
T = argmin

â∈Rp
‖A · â−b‖2

2 ,

A =


hk−1 hk−2 . . . hk−p

hk−2 hk−3 . . . hk−p−1
...

...
...

hk−HH+p−1 hk−HH+p−2 . . . hk−HH

 , b =


hk

hk−1
...

hk−HH+p

 .

Since we fit the model parameters for each time index k to the data we would be able in
an operational setting to compute online some confidence value for the prediction, at least
for all time indices k > max{p,q,NU}. This confidence value could again be computed
using the Euclidean distance between true headway values and the model outputs within
the range of the historical horizon {k−HH + p, . . . ,k}.

Figure 3.10 visualizes three headway trajectories beside the predicted values computed
by a five-minutes ahead prediction using an AR model and the corresponding RMSE of
our experiment. Table 3.5 shows the best 15 parameter configurations w.r.t. the RMSE
for each prediction horizon PH corresponding to 5 and 10 minutes resulting from our
numerical experiment. The last three columns contain the means of the percentages of
predictions within correctness bins of one, two and three minutes among all predicted
headway trajectories.
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PH HH p|q w RMSE err < 1 min err < 2 min err < 3 min
[min] [min] [min] [min] [%] [%] [%]

5 ≥ 10.0 10|0 3 1.18 65.49 89.47 97.37
5 ≥ 10.0 10|0 6 1.16 65.86 90.04 97.65
5 ≥ 10.0 4|0 0 1.18 65.24 89.60 97.16
5 ≥ 10.0 4|0 3 1.16 67.42 88.74 97.38
5 ≥ 10.0 4|0 6 1.15 66.58 90.16 97.74
5 ≥ 10.0 7|0 3 1.17 66.65 88.74 97.60
5 ≥ 10.0 7|0 6 1.15 66.37 90.56 97.97
5 ≥ 10.0 7|0 9 1.18 65.20 90.03 97.74
5 ≥ 13.0 13|0 6 1.18 64.20 89.31 97.45
5 ≥ 15.0 10|0 3 1.18 64.78 89.36 97.34
5 ≥ 15.0 10|0 6 1.16 65.15 89.75 97.63
5 ≥ 15.0 10|0 9 1.18 65.50 89.68 97.76
5 ≥ 15.0 4|0 3 1.19 66.21 87.80 97.02
5 ≥ 15.0 4|0 6 1.17 66.14 89.67 97.43
5 ≥ 15.0 7|0 6 1.16 65.75 90.10 97.76

10 ≥ 10.0 4|0 0 1.75 48.07 73.08 87.90
10 ≥ 10.0 4|0 3 1.79 50.07 72.91 85.68
10 ≥ 10.0 4|0 6 1.78 51.64 73.54 85.97
10 ≥ 10.0 4|0 9 1.82 48.37 72.79 86.73
10 ≥ 10.0 7|0 3 1.80 47.43 73.38 86.60
10 ≥ 10.0 7|0 6 1.82 48.51 72.43 86.75
10 ≥ 15.0 10|0 3 1.78 48.28 71.72 87.92
10 ≥ 15.0 10|0 6 1.80 47.55 71.32 86.53
10 ≥ 15.0 4|0 0 1.76 47.51 71.71 87.18
10 ≥ 15.0 4|0 3 1.82 48.70 70.97 84.55
10 ≥ 15.0 4|0 6 1.81 50.59 71.95 85.10
10 ≥ 15.0 4|0 9 1.83 47.93 71.02 86.13
10 ≥ 15.0 7|0 0 1.82 46.28 69.44 86.14
10 ≥ 15.0 7|0 3 1.83 47.40 71.29 85.65
10 ≥ 15.0 7|0 6 1.81 48.36 71.43 86.31

Table 3.5: Results of the parameter study for the AR approach (best 15 results w.r.t. RMSE
for each prediction horizon PH)
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Figure 3.10: Illustration of the headway prediction using an AR model, 28th Nov 2012
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3.7 Remarks on the Prediction Methods

In table 3.6 we compare the best results w.r.t. the RMSE for each method and each
prediction horizon. We observe that the performances of all methods are promising and in
the same range, even though the neural network gives for almost all performance measures
the best results in our specific experiment. One advantage of the linear-regression-and-
extrapolation, the kernel-regression-and-extrapolation and the ARMA model is that we
are able to compute some confidence value of our prediction in the operational setting by
computing, for example, the Euclidean distance between the model output and the true
values within the historical horizon.

In chapter 4 we observe so called second moment effects, which describe the phe-
nomenon that under certain assumptions small headways of a bus pair are followed by large
headways of the succeeding bus pair and vice versa. This motivates to use the headway
data of neighboring buses as exogenous inputs in order to improve the prediction. Other
options for exogenous inputs could be information on the date like the day of the week

or the daytime, weather data, traffic information like traffic light control, and later in the
operational case the control inputs of our holding strategy which are presented in the next
chapter.

Furthermore it will be necessary to investigate the feedback effect of a data-driven

predictive-control framework: the headway prediction will influence the control actions
and thus the dynamics of the bus route and its future headway trajectories, which will
affect the headway prediction in the next step, etc.. Thus data-driven prediction used for
control will bias the prediction.

PH method HH param w RMSE err
< 1 min

err
< 2 min

err
< 3 min

[min] [min] [min] [min] [%] [%] [%]

5 LR 3 9 1.17 65.57 90.18 97.59
5 KR 3 0.3 0 1.15 67.48 90.55 97.78
5 NN 10 10|10 0 1.10 68.38 92.11 97.98
5 ARMA ≥ 10.0 7|0 6 1.15 66.37 90.56 97.97

10 LR 3 12 1.76 47.00 74.39 87.64
10 KR 3 1.0 0 1.71 52.64 74.74 87.56
10 NN 15 5 0 1.63 51.44 76.78 91.02
10 ARMA ≥ 10.0 4|0 0 1.75 48.07 73.08 87.90

Table 3.6: Comparison of the best performances of the different methods



4. Bus-Route Model

In this chapter we present an analytical bus-route model. We define and discuss its stability
properties and present a headway-based holding strategy to regularize the headways and to
reduce bus bunching. The analytical model and the control framework using real-time data
are taken and adapted from [Dag09]. Like suggested in [XAD11] we extend this model by
including predicted headway data. Thereby, based on the previous chapters, we present a
predictive-control framework to regularize the headways which is summarized in figure
4.1. We perform a simulation which shows the advantages of predictive control over the
classical control that only uses directly available headway data.

system data acquisition
and processing

headway
prediction

control

Figure 4.1: Predictive-control framework
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4.1 Bus-Route Model

The bus-route model describes an artificial bus route and helps us to understand the
headway dynamics and to design an appropriate control strategy. It is taken from [Dag09],
including most of the notations and derivations.

We consider a bus route with N vehicle journeys per day, which we denote simply by
’buses’. We assume that all buses are operated on the same journey pattern with NS +1
stops (to avoid confusion: in chapter 2 we used the term NS for the number of shape nodes,
which in general does not coincide with the number of stops) and model the buses as single
points on the shape without spatial extent. The first stop s = 0 is considered to be the bus
depot where no passengers board and all buses start at scheduled times tn,0 = t0+(n−1)h0.
The headway h0 is the target headway. We may also call it equilibrium headway, since
in our deterministic model without external disturbances all headways are the same and
it holds hn,s = h0 for all n and s (see proposition 4.1). In the interest of readability we
index the buses by n ∈ {1, . . . ,N} and the stops by s ∈ {0, . . . ,NS} and omit to mention the
ranges every time.

The notations of the following are illustrated in figure 4.2.

t0 a1,1 t0 +h0 a2,1 t0 +2h0 a3,1

depot

stop 1

stop 2

n = 1 n = 2 n = 3

∆t1

∆t2

h2,1 h3,1

d1,1 d2,1 d3,1

d2,2

h3,2

time

of
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Figure 4.2: Notations of the bus-route model



4.1 Bus-Route Model 54

A general law of motion of our bus-route model approximates the arrival time an,s+1 of
bus n at stop s+1 by

an,s+1 = max(ân,s+1,an−1,s+1) , (no overtaking)

ân,s+1 ≈ t0 +(n−1)h0︸ ︷︷ ︸
scheduled departure
time from stop 0
of bus n

+
s+1

∑
i=1

pn,i︸ ︷︷ ︸
travel time from
stop 0 to stop s+1

,

pn,s = dn,s−1 +∆ts +νn,s,

dn,s = d̂n,s +un,s,

(4.1)

where pn,s is the difference between the arrival time of bus n at stop s−1 and stop s, and
dn,s is the dwell time of bus n staying at stop s, where we set dn,0 = 0 (not to be confused
with the offset distance dn(t) of bus n at time t). The value νn,s is a noise term which
describes the random disturbance of the difference an,s− an,s−1 of the expected arrival
times at the stops s−1 and s of bus n due to varying traffic conditions and variations in
passenger demand and is assumed to have mean value zero. We assume that the buses do
not overtake each other, even if they bunched. The dwell time dn,s ≥ 0 consists of two
components. The first component d̂n,s ≥ 0 is the internal dwell time caused by passenger
boardings as described below. The second component un,s ≥ 0 describes the control
input from our dynamic holding strategy including scheduled slack times, that we use to
regularize the headways.

There are two kinds of holding strategies. A static holding strategy, also called
schedule-based holding strategy, only introduces slack times into the schedule which
define scheduled departure times for all buses and stops and rule that a bus should not
depart from a stop earlier than the defined departure time, even if the boarding process
might be finished already. A dynamic holding strategy also introduces additional slack
times into the schedule, but allows to dispatch the bus from the stop flexibly depending
on the current situation and thus enables to both decrease and increase the dwell times at
stops. In here the scheduled slack times do not define earliest departure times, but fixed
dwell times for the time after the boarding process is finished. This means that, once
all passengers have boarded the bus, this one will stay at the stop for the length of the
scheduled slack time regardless of current delays, unless the dynamic holding rule changes
the corresponding dwell time. This second approach gives more flexibility for the control
but also requires access to real-time data on the bus positions.
In the following we treat equation (4.1) as exact.

We call our model deterministic if we assume that there are no random disturbances
in our model, i.e., it holds νn,s = 0 for all n and s. We call our model undisturbed or
uncontrolled if there are no interactions with the system beside the scheduled slack times
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of the dynamic holding strategy, i.e., un,s = ds ≥ 0 for all n and s.

In the deterministic model we do not consider any changes in traffic conditions and
assume that for all s > 0 the travel time between stop s−1 and s is always ∆ts for each bus.
Thus the only component beside the input from our control strategy that slows down the
buses on their journeys are passengers boarding and alighting at each stop.

We model the passenger demand in a continuous way like Daganzo in [Dag09] and
[DP11]. We assume that β̂s ∈ R>0 passengers arrive at stop s per minute. We denote the
boarding time per passenger by λ ∈ R>0. According to [Dag09] the time passengers need
to alight from the bus is small compared to the time passengers need to enter the bus. Thus
we only consider the dwell time caused by passenger boardings and model the undisturbed

internal dwell time d̂n,s of bus n at stop s as the product of the passenger arrival rate, the
boarding time per passenger, and the corresponding headway:

d̂n,s = βs ·hn,s, s > 0,
βs = β̂s ·λ ,
d̂n,0 = 0.

(4.2)

Like in chapter 2 we define the stop-based headways as

hn,s = an,s−an−1,s ≥ 0, s > 0,1 < n≤ N,

hn,0 = h0,

and for the first bus we introduce the artificial headway h1,s = h0 for all s. This is equivalent
to assuming a constant passenger demand for the first bus which causes a dwell time of
d̂1,s = βsh0 for s > 0 and d̂1,0 = 0, independent of the actual trajectory of the first bus.
Since we assume that buses do not overtake each other all headways are non-negative.

We would like to point out that our formula for the passenger demand is based on the
simplifying assumption that those passengers which arrive at stop s after the arrival of
bus n will enter the next bus n+1. Since we consider the first stop s = 0 as the bus depot
where buses depart at scheduled times we do not consider any dwell times there. A more
detailed interpretation of the parameter βs as the expected number of passenger arrivals be-

tween stops s and s+1 during the delay induced by one boarding move is given in [Dag09].
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Formally we define bus bunching and the stability of the bus route in our model as
follows.

Definition 4.1.1 — Stability. 1. We say that the buses n−1 and n are bunched, if
for a certain θb ∈ R≥0 and some stop s∗ it holds

|hn,s∗| ≤ θb.

2. We call a subset of buses of our bus-route model stable, if for a certain θst ∈ R≥0

the deviation of the headways from the target headway h0, which we denote by
∆hn,s = hn,s−h0, is bounded by θst, i.e.,

|∆hn,s| ≤ θst

holds for all stops s and buses n of the subset. We call the stable situation also
equilibrium.

In [Nai+14] the value θb is chosen to be one minute. For the following we choose θb = 0.
The main reason why buses tend to bunch can be described as a vicious cycle like

illustrated in figure 4.3.

bus arrives
late at stops more passengers

waiting at
stops

longer dwell/
boarding times

bus arrives
early at stops less passengers

waiting at
stops

shorter dwell/
boarding times

Figure 4.3: Bus bunching as vicious cycle

If we assume that, for example, bus n−1 is operated without any disturbances and the
headway of bus n to bus n−1 at stop s is for some reason smaller than the equilibrium
headway h0, then less passengers are waiting for bus n at stop s. This leads to bus n staying
less time at stop s and thus departing from there earlier than expected, which corresponds
to the definition of the undisturbed internal dwell time in equation (4.2). As a result bus
n catches up on bus n−1, what will further decrease the headway hn,s+1 at the next stop.
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Without any further disturbances this will repeat itself and will lead after a certain time to
the bunching of the buses n−1 and n.

The impact of the headway deviations on the dwell times can also be seen by reformu-
lating equation (4.2):

d̂n,s = βshn,s = βsh0︸︷︷︸
equilibrium dwell
time w.r.t.θst=0

+ βs (hn,s−h0)︸ ︷︷ ︸
dwell time depending
on headway deviation

.

We observe that the time to get from stop s to stop s+1 in the deterministic and uncontrolled
model is approximately affine-linear in hn,s, i.e.,

an,s+1−an,s︸ ︷︷ ︸
travel time from
stop s to stop s+1

= ∆ts+1 +ds +βshn,s = ∆ts+1 +βsh0 +ds︸ ︷︷ ︸
travel time without
disturbances

+ βs (hn,s−h0)︸ ︷︷ ︸
dwell time depending
on headway deviation

, (4.3)

where the parameter βs models again the increase in bus delay arising from an unit increase
in headway due to passenger boardings, like described by the vicious cycle.

We reformulate the law of motion (4.1) in terms of headways using equation (4.3) and
get for 1 < n≤ N and all s

hn,s+1 = max
(
0, ĥn,s+1

)
,

ĥn,s+1 = ân,s+1− ân−1,s+1

= an,s +βsh0 +∆ts+1 +βs (hn,s−h0)+un,s +νn,s+1

− (an−1,s +βsh0 +∆ts+1 +βs (hn−1,s−h0)+un−1,s +νn−1,s+1)

= (1+βs)hn,s−βshn−1,s +un,s−un−1,s + ν̂n,s+1

(4.4)

with ν̂n,s+1 = νn,s+1−νn−1,s+1. For the following part we define ν̂n,s = 0 for n≤ 1,n > N

and for all s.

The following proposition states the instability of the deterministic and uncontrolled
bus-route model in case of a single deviation of an arbitrary headway from the target
headway.

Proposition 4.1 — Instability. We consider our deterministic bus-route model, i.e., ν̂n,s = 0
for all buses n and stops s. We choose for all stops s the control inputs un,s = ds ≥ 0 as the
scheduled slack times for all buses n.

1. If there are no external disturbances and no further control inputs, i.e., un,s = ds for
all n and s, then the bus route is in its equilibrium w.r.t. θst = 0 and it holds hn,s = h0

for all n and s.
2. If under the same assumptions like in the first item two or more buses bunched w.r.t.
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θb = 0, they will stay bunched for the rest of the journey.
3. We consider the time that a bus n̂ arrives at stop ŝ. We assume that until that time

there have been no external disturbances of the bus route and thus no deviations
of the headways hn,s from the target headway h0, as far as a corresponding bus n

already reached some stop s. Then, if we add [subtract] some ε > 0 to the dwell
time dn̂,ŝ in equation (4.1) and do not disturb the system at any other point in time,
the headways (hn+1,s)s≥ŝ

[
(hn,s)s≥ŝ

]
are monotonically decreasing in s and become

zero at some point as far as NS is sufficiently large, i.e., the buses n̂ and n̂+1 [n̂−1
and n̂] will bunch.

4. Under the same assumptions as for the previous item the following statement holds
for two buses n−1 and n: if for some s1,s2 with 0 < s1 < s2 it holds 0 < hn−1,s < h0

for all s with s1≤ s< s2 and hn,s1 ≥ h0 then the finite subsequence (hn,s)
s2
s=s1

is strictly
monotonically increasing. If hn−1,s > h0 holds for all s1 ≤ s < s2 and hn,s1 ≤ h0

then the finite subsequence (hn,s)
s2
s=s1

is strictly monotonically decreasing, unless
the buses already bunched w.r.t. θb = 0. We call this phenomenon second moment

effect.

The third item of proposition 4.1 could be phrased in simpler terms: A single distur-
bance in the deterministic and otherwise undisturbed bus-route model will lead to bus
bunching.
Also the fourth item has a simple interpretation: in the deterministic and from some point
in time undisturbed bus-route model small headways of a bus pair are followed by large
headways of the succeeding bus pair and vice versa, as far as bunching events do not
change this.

Proof of proposition 4.1. 1. We assume hn,s = hn−1,s = h0 for some s and n with 1 <

n≤ N. By equation (4.4) with un,s = un−1,s = ds and νn,s+1 = 0 it follows

ĥn,s+1 = (1+βs)hn,s−βshn−1,s = h0.

The statement follows by a nested induction over n and s since hn,0 = h0 holds for
all n and h1,s = h0 holds for all s by assumption.

2. We present the proof for a single bus pair that bunched. The statement for several
bunched buses follows by the same argument. Let’s assume that the buses n−1 and
n bunched at some point and arrive at the same time at stop s, i.e., an,s = an−1,s. By
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equation (4.1) we get for the deterministic and undisturbed case

ân,s+1 = an,s +∆ts+1 +βs · hn,s︸︷︷︸
=an,s−an−1,s
=0

≤ an,s︸︷︷︸
=an−1,s

+∆ts+1 +βshn−1,s︸ ︷︷ ︸
≥0

= ân−1,s+1

≤ an−1,s+1,

and thus

an,s+1 = max(ân,s+1,an−1,s+1) = an−1,s+1.

This implies that the buses arrive at the next stop again at the same time. The
statement follows now by induction over ŝ≥ s.

3. We prove the third item of proposition 4.1 only for the second case, i.e., we subtract
some ε > 0 from the dwell time dn̂,ŝ. The proof for the first case goes analogously.
W.l.o.g. we assume that we have infinitely many stops, i.e., NS = ∞ and for all s

holds βs ≥ β > 0, and we consider the sequence h = (hn̂,s)s≥ŝ. As long as the buses
n̂− 1 and n̂ did not bunch it holds hn̂,s = ĥn̂,s. By assumption it holds hn̂,ŝ = h0

and hn̂,ŝ+1 = h0− ε . We consider the deterministic case in equation (4.4), i.e.,
ν̂n,s+1 = 0, and get with un,s = un−1,s = ds

ĥn̂,ŝ+2
(4.4)
= (1+βŝ+1)hn̂,ŝ+1−βŝ+1hn̂−1,ŝ+1︸ ︷︷ ︸

=h0

= (1+βŝ+1)(hn̂,ŝ+1−h0)︸ ︷︷ ︸
=−ε

+h0

≤ −(1+β )ε +h0.

With the same argument for ŝ+ i with i > 1

ĥn̂,ŝ+i ≤−(1+β )i−1
ε +h0,

follows by induction. We observe that the differences between consecutive auxiliary
headways

ĥn̂,ŝ+i− ĥn̂,ŝ+i−1 =−β (1+β )i−2
ε <−βε < 0, for all i > 1,
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are always smaller than −βε < 0, which implies that there exists some i≥ 0 such
that ĥn̂,ŝ+i < 0. The statement follows now with hn̂,ŝ+i = max

(
0, ĥn̂,ŝ+i

)
.

4. We show the statement only for the first case. We get from equation (4.4) with
un,s = un−1,s = ds and ν̂n,s+1 = 0

hn,s1+1 = max
(
0, ĥn,s1+1

)
≥ ĥn,s1+1

= (1+βs1)hn,s1−βs1hn−1,s1

= hn,s1 +βs1

hn,s1−h0︸ ︷︷ ︸
≥0

− (hn−1,s1−h0)︸ ︷︷ ︸
<0


> hn,s1

≥ h0.

The statement follows now with the same argument for s1 + i by induction over i,
for i ≤ (s2− s1).

�

We illustrate the instability result of proposition 4.1 in figure 4.4, which shows the space-
time diagram and the continuous-time headways (see definition 2.2.1) of our simulation
of the deterministic model in the corresponding colors. For the simulation we consider a
bus route with NS +1 = 51 equidistant stops with constant boarding coefficient βs = 1 and
zero scheduled slack times ds = 0 for all s and a target headway h0 = 5 [min]. We simulate
the run of N = 8 buses. All buses depart with equal headways like in equation (4.1), except
the first bus which departs from the first stop with an additional delay of u1,0 = ε = 5 [sec].
We do not disturb the dwell times dn,s for any other bus n or any stop s.

We observe the last three statements of proposition 4.1: once two (or more) buses
bunched, they will stay together until the end of their journeys. Furthermore we observe
that all occurring bunching events are just caused by one additional delay of one bus at
one stop. At last we observe the second moment effects, i.e., small headways of a bus
pair are followed by large headways of the succeeding bus pair and vice versa as far as no
bunching events change the dynamics of the headway trajectories.
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Figure 4.4: Illustration of proposition 4.1: Instability of headway trajectories
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4.2 Control

In this section we present a dynamic headway-based holding framework introduced by
Daganzo in [Dag09] to reduce the headway deviation and avoid bunching. This gives us
one possible rule for choosing the inputs un,s in equation (4.1).

The control strategy aims to reduce the headway deviation from the target headway,
thus it is necessary to increase the headways if they are too small and to decrease the
headways if they are too large. To this there are multiple different control strategies such
as holding, stop skipping, short turns, traffic light control, etc. as described in section 1.2.

Decreasing the headway by speeding up the succeeding bus is only possible if we
operate the buses as default mode not with their maximum cruising speed or if we introduce
scheduled slack times at certain stops, i.e., additional scheduled dwell times which allow
to dispatch a bus from a stop earlier if needed. In our model we assume that buses are
operated with their maximum cruising speed and use a headway-based dynamic holding
strategy as control.

We would like to point out that using a dynamic holding strategy and thus introducing
a scheduled slack time at each stop slows down the scheduled commercial speed, which is
the average speed of the bus over several stops, and increases the scheduled travel time
of each vehicle journey which might come along with a lower service quality and higher
costs for the service provider.

According to [FM09] and [MC84] passengers arrive randomly distributed at bus stops
in case that the scheduled headways are smaller than 11-13 minutes. This means that the
passengers do not rely on any scheduled arrival times but on the fact that buses arrive in
the ideal case every 11-13 minutes. For this reason we do not try to achieve schedule
adherence by our control method but evenly distributed headways.

In [Dag09] Daganzo assumes that an,s = ân,s and thus hn,s = ĥn,s. This simplified model
coincides with our original model in equation (4.1) as long as there are no bunching events.
So in case we could show that our control avoids buses from bunching in the simplified
model, this would also hold for our original model. So to simplify the analysis and the
notation and to avoid several case distinctions we also assume an,s = ân,s and hn,s = ĥn,s in
the following.

4.2.1 Forward-Headway Control

A very simple realization of the holding strategy is called forward-headway control and is
expressed in equation (4.5) in terms of the dwell time of bus n at stop s, depending on the
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forward headway hn,s

un,s = max(0, ûn,s) ,

ûn,s = ds︸︷︷︸
scheduled
slack time

+ γs · (h0−hn,s)︸ ︷︷ ︸
negative
headway deviation

, (4.5)

where ds denotes the scheduled slack time for each bus at stop s, i.e., once all passengers
have boarded the bus will wait for an additional time ds. In order to simplify the following
analysis and to avoid several case distinctions we assume that the headways hn,s are
bounded by some constant Mh ∈ R>0 and that the scheduled slack times are chosen as
ds ≥ γs (Mh−h0) for all s, such that we get un,s = ûn,s (like in [Dag09]). With this
assumption we get the controlled dwell time as

dn,s = d̂n,s +un,s

= βsh0 +βs (hn,s−h0)︸ ︷︷ ︸
dwell time due to
passenger boardings

+ds + γs (h0−hn,s)︸ ︷︷ ︸
holding strategy

. (4.6)

The term βsh0 + ds in equation (4.6) can be seen as the target dwell time. In [Dag09]
it is shown that for stability reasons we should choose γs ∈ (βs,1+βs), i.e., we rewrite
γs = α +βs for some α ∈ (0,1). The motivation for this is the following: if the dwell time
at stop s differs from the target dwell time this might increase the headway deviation at
the following stops as shown in proposition 4.1. Thus our control term should at least
eliminate the current deviation from the target dwell time by adding βs (h0−hn,s), where
the remaining part α (h0−hn,s) can be seen as the term of a classical P-controller (see
[Son13] for details on control theory), which is expected to reduce the deviations of the
headways from the target headway at the following stops. Since we interpret α later on as
an entry of a discrete probability distribution function, which we use to prove the stability
of this approach, we also require α ∈ (0,1).
We observe that all variables and constants on the right-hand side of equation (4.6) are
known at the time we need to evaluate the equation, namely when bus n arrived at stop s.

We get the law of motion for the forward-headway-controlled model as follows:

an,s+1 = an,s +∆ts+1 +dn,s +νn,s+1

= an,s +∆ts+1 +βsh0 +βs (hn,s−h0)+ds +(α +βs)(h0−hn,s)+νn,s+1

= an,s +∆ts+1 +βsh0 +ds +α (h0−hn,s)+νn,s+1.
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The following equation for the headways holds similar to equation (4.4) for 1 < n≤ N:

hn,s+1 = an,s+1−an−1,s+1

(4.4)
= (1+βs)hn,s−βshn−1,s +un,s−un−1,s + ν̂n,s+1

= (1+βs)hn,s−βshn−1,s +(α +βs)(hn−1,s−hn,s)+ ν̂n,s+1

= (1−α)hn,s +αhn−1,s + ν̂n,s+1,

(4.7)

with ν̂n,s+1 = νn,s+1−νn−1,s+1 as before.

We would like to prove that our method leads under certain assumptions to a bounded
headway deviation, where the bound depends on the corresponding stop.

First we reformulate equation (4.7) in terms of headway deviations ∆hn,s = hn,s−h0.
By subtracting h0 on both sides of equation (4.7) we get for 1 < n≤ N

∆hn,s+1 = (1−α)∆hn,s +α∆hn−1,s + ν̂n,s+1. (4.8)

We define for n < 1 and n > N artificial headways hn,s = h0 and artificial noise terms
νn,s = 0 and we obtain including the assumptions on the first bus the boundary conditions

of equation (4.8)

∆hn,s = 0, for all s,n≤ 1,n > N. (4.9)

The idea of the following is to formulate equation (4.8) as a convolution of the headway
deviations with a vector ~f which contains the information on the control parameters. In
order to include the boundary conditions we need to introduce a few technical terms. We
express the convolution by the operator F and the consideration of the boundary conditions
by the operator B. We denote the components of any vector~x by (~x)n = xn, unless stated
otherwise, and define the operator B as follows:

B : l∞ (R)→ l∞ (R) ,

~x 7→ B(~x) ,

with (B(~x))n =

{
xn , 1 < n≤ N

0 , else
,

(4.10)

where l∞ (R) is the set of all real valued bounded sequences, where the indices of sequence
entries range over all integer values.

For some ~f ∈ l∞ (R≥0) with ∑
∞
i=−∞ fi = 1 the convolution operator F is defined as
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follows (see, e.g., [Bro+12]):

F : l∞ (R)→ l∞ (R) ,

~x 7→ F (~x) = ~f ∗~x,

with (F (~x))n =
∞

∑
i=−∞

fn−ixi.

(4.11)

We can interpret the vector ~f as a probability mass function (p.m.f.) of a discrete random
variable.

We use these operators to reformulate equation (4.8). For this we need the following
lemma 4.2.

Lemma 4.2 1. The operators B from equation (4.10) and F from equation (4.11) are
linear.

2. We define the operator

BF : l∞ (R)→ l∞ (R) ,

~x 7→ B◦F (~x) = B(F (~x)) .

We denote the jth application of the operator BF to itself by

BF j : l∞ (R)→ l∞ (R) ,

~x 7→ BF j (~x) = BF ◦ · · · ◦BF︸ ︷︷ ︸
j−times

(~x) .

(a) The operator BF is linear.
(b) If for some M ∈ R>0 it holds |xn| ≤M for all n then we get for all j ≥ 0

∣∣(BF j (~x)
)

n

∣∣≤M. (4.12)

(c) For the zero vector~0 ∈ l∞ (R) it holds for all j ≥ 0

BF j
(
~0
)
= 0. (4.13)

Proof. 1. Let~x,~y ∈ l∞ (R) and αx,αy ∈ R.
• The operator B is well defined. For some n with 1 < n≤ N we get

(B(αx~x+αy~y))n = αxxn +αyyn

= αx (B(~x))n +αy (B(~y))n
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and for any other n with n≤ 1 or n > N we get

(B(αx~x+αy~y))n = 0

= αx0+αy0

= αx (B(~x))n +αy (B(~y))n ,

what proves the linearity of B.
• By definition of~x there exists some number M ∈ R≥0 such that |xn| ≤M holds

for all integer n. The operator F is well defined since for any L ∈ N and any
integer n it holds∣∣∣∣∣ L

∑
i=−L

fn−ixi

∣∣∣∣∣≤ L

∑
i=−L

fn−i |xi|︸︷︷︸
≤M

≤M
L

∑
i=−L

fn−i︸ ︷︷ ︸
≤1

≤M.

Thus the term ( f ∗g)n in formula (4.11) is bounded by M for all n and thus
defines an element in l∞ (R). The linearity of the convolution operator F is
proved by the following equation:

(F (αx~x+αy~y))n =
∞

∑
i=−∞

fn−i (αx~x+αy~y)i

= αx

∞

∑
i=−∞

fn−ixi +αy

∞

∑
i=−∞

fn−iyi

= αx (F (~x))n +αy (F (~y))n .

2. The linearity of BF follows by the linearity of the operators B and F .
If we assume for some j ≥ 0 that

∣∣(BF j (~x)
)

n

∣∣≤M holds for all n we get by use of
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the triangle inequality

∣∣(BF j+1 (~x)
)

n

∣∣=

∣∣∣∣∣ ∞

∑
i=−∞

fn−i
(
BF j (~x)

)
i

∣∣∣∣∣ , 1 < n≤ N

0 , else


≤


∞

∑
i=−∞

| fn−i| ·
∣∣(BF j (~x)

)
i

∣∣︸ ︷︷ ︸
≤M

, 1 < n≤ N

0 , else


≤


M

∞

∑
i=−∞

| fn−i|︸ ︷︷ ︸
=1

, 1 < n≤ N

0 , else


≤M.

(4.14)

The statement follows by inequality (4.14) and induction over j since∣∣ (BF0 (~x)
)

n

∣∣ = |xn| ≤ M holds by assumption.
3. The statement follows for all j ∈ N0 by the linearity of the operator BF j, which is

linear as the jth composition of the linear operator BF .
�

Using the boundary conditions in (4.9) we are able to rewrite equation (4.8) for
1 < n ≤ N as a convolution

∆hn,s+1 =
∞

∑
i=−∞

fn−i∆hi,s + ν̂n,s+1 =
(

F
(
~∆hs

))
n
+ ν̂n,s+1,

with ~∆hs =
(
· · · 0 ∆h2,s · · · ∆hN,s 0 · · ·

)T
. The operator BF allows us to write this

equation for all n in a vectorized and more compact form as

~∆hs+1 =
(
· · · 0 ∆h2,s+1 · · · ∆hN,s+1 0 · · ·

)T

= B
(

F
(
~∆hs

)
+~̂νs+1

)
= BF

(
~∆hs

)
+~̂νs+1,

(4.15)

with~̂νs+1 =
(
· · · 0 ν̂2,s+1 · · · ν̂N,s+1 0 · · ·

)T
=B

(
~̂νs+1

)
. In the case of our forward-

headway control we choose f0 = (1−α) , f1 = α and fi = 0 for all other integers i. The
vector ~f is allowed to have the form of a probability mass function of a non-negative
random variable with positive mean value. In [Dag09] it is stated that this case arises
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if, instead of only using the headway hn,s to compute a control output, we also include
the information of other headways of preceding bus pairs at stop s such that we extend
equation (4.6) for all n to

dn,s = d̂n,s +ds +(F0 +βs)(h0−hn,s)+
∞

∑
i=1

Fi (h0−hn−i,s) ,

where ~F ∈ l∞ with Fi = ∑
∞
m=i+1 fm is the complementary cumulative distribution function

of ~f .
Next we would like to present the stability result from [Dag09]. For this we plug in the

right-hand side of equation (4.15) in itself and get by the linearity of the operator BF (see
lemma 4.2)

~∆hs+1 = BF
(
~∆hs

)
+~̂νs+1

= BF
(

BF
(
~∆hs−1

)
+~̂νs

)
+~̂νs+1

= BF
(

BF
(
~∆hs−1

))
+BF

(
~̂νs

)
+~̂νs+1.

Induction leads to

~∆hs+1 = BFs+1
(
~∆h0

)
+BFs

(
~̂ν1

)
+BFs−1

(
~̂ν2

)
+ . . .+BF1

(
~̂νs

)
+BF0

(
~̂νs+1

)
.

By assumption we have hn,0 = h0 for both real and artificial headways and thus ~∆h0 =~0
and get due to equation (4.13)

~∆hs+1 =
s

∑
j=0

BF j
(
~̂νs+1− j

)
, (4.16)

which gives us for each component

∆hn,s+1 =
s

∑
j=0

(
BF j

(
~̂νs+1− j

))
n
. (4.17)

We would like to repeat the proof of Daganzo in [Dag09] for arrival times for our
headway formulation.

Proposition 4.3 — Stability. If for some bound M ∈ R>0 it holds |νn,s| ≤ M for all n

and s, then for all n and s the headway deviations ∆hn,s are bounded by 2Ms under the
assumptions of this section.
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Proof. The proof is adapted from [Dag09]. By assumption it holds for all n and s

|ν̂n,s|=

{ ∣∣νn,s−νn−1,s
∣∣ , 1 < n≤ N

0 , else

}
≤ |νn,s|+

∣∣νn−1,s
∣∣≤ 2M. (4.18)

The statement follows by taking absolute values in equation (4.17), equations (4.12) and
(4.18) and the triangle inequality:

∣∣∆hn,s+1
∣∣ (4.17)

=

∣∣∣∣∣ s

∑
j=0

(
BF j

(
~̂νs+1− j

))
n

∣∣∣∣∣
≤

s

∑
j=0

∣∣∣(BF j
(
~̂νs+1− j

))
n

∣∣∣
(4.12)
≤

(4.18)

s

∑
j=0

2M

≤ 2M (s+1) .

�

4.2.2 Forward-Backward-Headway Control

Even though the forward-headway control is very promising, we would like to point to the
following problem: we consider three succeeding buses n−1, n and n+1. We assume
that for some reason bus n−1 arrived early at stop s but bus n arrived on time such that
hn,s > h0 holds. According to the forward-headway-control rule in equation (4.6) we would
dispatch bus n at stop s earlier to decrease the headway hn,s+1 at the next stop. But with this
approach we do not consider the impact of this control action on the succeeding bus n+1.
If we assume for example that bus n+1 left the previous stops later than scheduled, for
instance, caused by an unexpected higher passenger demand, such that hn+1,s > hn,s > h0

holds, the early dispatch of bus n would further increase the headway hn+1,s additional to
the ’natural’ increase due to the headway dynamics given by equation (4.4). This motivates
us not only to include the forward headway hn,s but also the backward headway hn+1,s.
This approach has been introduced by Xuan and Daganzo in [XAD11]. The idea can be
illustrated like in figure 4.5. We imagine that consecutive buses are connected by ’springs’,
which are relaxed when the corresponding headways are equal to the target headway.
If we assume that hn,s < h0, which is equivalent to a shorter time distance between the
buses n−1 and n, we could imagine the spring between the two buses to be compressed
and creating a repelling force on the buses, which means that bus n−1 gets accelerated
and bus n gets delayed. Vice versa if we assume hn,s > h0 this would correspond to the
spring being stretched which will delay bus n−1 and accelerate bus n. Compared to the
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n+1 n n−1

hn+1,s = h0 hn,s = h0

t

t

n+1 n n−1

hn+1,s < h0 hn,s > h0

t ∼ arrival time at stop

Figure 4.5: Idea of the forward-backward-headway control as connecting springs 1

forward-headway control we control both buses that are related by their headway instead
of just controlling the succeeding bus.

This approach has another major difference compared to the forward-headway ap-
proach: if bus n arrives at stop s, so at a time we need to compute the control input un,s,
the forward headway hn,s is available but the backward headway hn+1,s = an+1,s−an,s is
not available, since, as far as the buses n and n+1 did not bunch, bus n+1 did not arrive
yet at stop s. This means we do not only need directly available data but also predicted
headway data. In [XAD11] the authors assumed that also the backward-headway data
would be available and presented a stability analysis for the resulting control strategy. This
is one possible situation where we can apply the concept of the prediction of headway
trajectories like described in the previous chapter.

Since we did not consider the prediction of the stop-based headways hn,s but of the
continuous-time headways hn (t) previously, we need to use an estimation for the arrival
time of bus n+1 at stop s to determine the temporal prediction horizon. In the literature
review in chapter 1 we listed several works which address the problem of bus arrival time
prediction and could be used for this task.

The forward-backward-headway-control approach is summarized in the following

1photo of the Dublin Bus vehicle taken from: http://www.thejournal.ie/dubiin-bus-strike-
2919690-Aug2016

http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
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equation:

dfb
n,s = d̂n,s + ds︸︷︷︸

scheduled slack
based dwell time

+ γ
f
s (h0−hn,s)︸ ︷︷ ︸

forward-headway
based dwell time

+ γ
b
s (hn+1,s−h0)︸ ︷︷ ︸

backward-headway
based dwell time

= βsh0 +βs (hn,s−h0)+ds + γ
f
s (h0−hn,s)+ γ

b
s (hn+1,s−h0) .

For the same reasons like in the previous subsection 4.2.1 we choose γ f
s = α +βs and

γb
s = α with α ∈

(
0, 1

2

)
like the authors in [XAD11]. With this choice we obtain the law

of motion of the forward-backward-headway-controlled model as

an,s+1 = an,s +∆ts+1 +dfb
n,s +νn,s+1

= an,s +∆ts+1 +βsh0 +ds +α (h0−hn,s)+α (hn+1,s−h0)+νn,s+1

and the following equation for the headways for 1 < n≤ N

hn,s+1 = an,s+1−an−1,s+1

= αhn+1,s +(1−2α)hn,s +αhn−1,s + ν̂n,s+1

= α( h′nn+1,s︸ ︷︷ ︸
predicted
headway

− ε
n
n+1,s︸ ︷︷ ︸

prediction
error

)+(1−2α)hn,s +αhn−1,s + ν̂n,s+1,

with ν̂n,s+1 = νn,s+1−νn−1,s+1 and εn
i,s = h′ni,s−hi,s as the prediction error for the headway

hi,s if it is predicted at a time bus n arrived at stop s. We denote the approximation of the
headway hn,s+1 using predicted values like h′nn+1,s by h′′n,s+1, i.e., in this case we get

h′′n,s+1 = α(h′nn+1,s)+(1−2α)hn,s +αhn−1,s + ν̂n,s+1

= hn,s+1 +αε
n
n+1,s.

Again we can reformulate this using the operators B and F from the previous subsection
as convolution with a vector ~f as in equation (4.15) with f0 = 1−2α, f1 = α, f−1 = α .
This time we may allow the more general case of ~f being some probability mass function
of a random variable, that is not necessarily non-negative. We set h′mi,s = h0 for all m, s and
i with i≤ 1,i > N. This implies εm

i,s = 0 for all m, s and i with i≤ 1,i > N and we get for
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all n with 1 < n≤ N

hn,s+1 =
∞

∑
i=−∞

fn−ihi,s + ν̂n,s+1

=
n

∑
i=−∞

fn−ihi,s +
∞

∑
i=n+1

fn−i
(
h′ni,s− ε

n
i,s
)
+ ν̂n,s+1

=
n

∑
i=−∞

fn−ihi,s +
∞

∑
i=n+1

fn−i
(
h′ni,s
)
+ ν̂n,s+1︸ ︷︷ ︸

=h′′n,s+1

−
∞

∑
i=n+1

fn−i
(
ε

n
i,s
)
.

(4.19)

We define

f
ε

n
s =


∞

∑
i=n+1

fn−iε
n
i,s , 1 < n≤ N

0 , else

and the corresponding vector f~εs =
(
· · · 0 f ε2

s · · · f εN
s 0 · · ·

)T
and get for n with

1< n≤N by subtracting h0 from both sides of equation (4.19) the general relation between
the headway deviations using true values and predicted values as

∆hn,s+1 = ∆h′′n,s+1− f
ε

n
s . (4.20)

We get the following formula for the headways of our controlled model using predicted
headway values h′ni,s for 1 < n≤ N:

∆h′′n,s+1 = ∆hn,s+1 +
f
ε

n
s

=
∞

∑
i=−∞

fn−i∆hi,s + ν̂n,s+1 +
f
ε

n
s .

(4.21)

We reformulate equations (4.20) and (4.21) for all n with the vectorized forms

~∆hs+1 =
(
· · · 0 ∆h2,s+1 · · · ∆hN,s+1 0 · · ·

)T
,

~∆h′′s+1 =
(
· · · 0 ∆h′′2,s+1 · · · ∆h′′N,s+1 0 · · ·

)T

and by use of the operators B and F from the previous subsection as

~∆hs+1 = ~∆h′′s+1− f~εs (4.22)
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and

~∆h′′s+1 = B
(

F
(
~∆hs

)
+~̂νs+1 +

f~εs

)
= BF

(
~∆hs

)
+~̂νs+1 +

f~εs

(4.22)
= BF

(
~∆h′′s− f~εs−1

)
+~̂νs+1 +

f~εs

= BF
(
~∆h′′s
)
−BF

(
f~εs−1

)
+~̂νs+1 +

f~εs.

We define

f~νs+1 =−BF
(

f~εs−1

)
+~̂νs+1 +

f~εs

and get inductively the similar equation to (4.16)

~∆h′′s+1 =
s

∑
j=0

BF j
(

f~νs+1− j

)
. (4.23)

We find the following stability result for the general headway-based control in proposi-
tion 4.4.

Proposition 4.4 If for some bounds M,Mp ∈ R>0 it holds |νn,s| ≤M for all n and s, and if
for the prediction error

∣∣∣εn
i,s

∣∣∣= ∣∣∣h′ni,s − hi,s

∣∣∣ ≤ Mp holds for all n, s and i with i > n which
are needed for the control, then for all n and s the headway deviations ∆h′′n,s are bounded
by 2(M+Mp)s under the assumptions of this section.

Proof. The proof is analog to the proof of proposition 4.3.
By the assumption of bounded prediction errors εn

i,s we get for all n and s

∣∣∣ f
ε

n
s

∣∣∣=

∣∣∣∣∣ ∞

∑
i=n+1

fn−iε
n
i,s

∣∣∣∣∣ , 1 < n≤ N

0 , else

≤
∞

∑
i=−∞

fn−i︸ ︷︷ ︸
=1

∣∣εn
i,s
∣∣≤Mp. (4.24)
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By use of the triangle inequality we get for all n and s

∣∣∣( f~νs+1

)
n

∣∣∣ =


∣∣∣∣∣ν̂n,s+1−

∞

∑
i=−∞

fn−i ·
(

f
ε

i
s−1

)
+ f

ε
n
s

∣∣∣∣∣ , 1 < n≤ N

0 , else


≤
∣∣ν̂n,s+1

∣∣+ ∣∣∣∣∣ ∞

∑
i=−∞

fn−i ·
(

f
ε

i
s−1

)∣∣∣∣∣+ ∣∣∣ f
ε

n
s

∣∣∣︸ ︷︷ ︸
≤Mp

(4.24)
≤
∣∣νn,s+1

∣∣︸ ︷︷ ︸
≤M

+
∣∣νn−1,s+1

∣∣︸ ︷︷ ︸
≤M

+
∞

∑
i=−∞

fn−i︸ ︷︷ ︸
=1

·
∣∣∣ f

ε
i
s−1

∣∣∣︸ ︷︷ ︸
≤Mp

+Mp

(4.24)
= 2(M+Mp).

(4.25)

The statement follows by viewing equation (4.23) componentwise and taking absolute
values, equations (4.12) and (4.25) and the triangle inequality:

∣∣∆h′′n,s+1
∣∣ (4.23)

=

∣∣∣∣∣ s

∑
j=0

(
BF j

(
f~νs+1− j

))
n

∣∣∣∣∣
≤

s

∑
j=0

∣∣∣(BF j
(

f~νs+1− j

))
n

∣∣∣
(4.12)
≤

(4.25)

s

∑
j=0

2(M+Mp)

≤ 2(M+Mp)(s+1) .

�

4.2.3 Numerical Experiment

In this subsection we present the results of our numerical simulation. We implemented
the deterministic bus-route model described in the previous part using MATLAB, and
compare the trajectories for the uncontrolled case and the controlled cases using the
forward-headway-based and forward-backward-headway-based approach in the figures
4.6,4.7 and 4.8. For this we choose the parameters given in table 4.1. Like stated in
[Dag09] the value βs typically ranges between 10−2 and 100.

In the following we use the term schedule. The scheduled arrival times for s > 0 are
defined as

tn,s = t0 +(n−1)h0 + s∆t +(s−1) · (βh0 +d0) .
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symbol description value

N number of buses 3
NS number of stops -1 50
∆s distance between stops 500 [m]
β̂ passenger arrival rate at stop, equal for all s 1 [passenger/minute]
λ boarding time per passenger 5 [sec]
β β̂ ·λ 1/12

d0 scheduled slack time 15 [sec]
h0 target headway 5 [min]
vop cruising speed 50 [km/h]
∆t ∆s/vop, travel time between stops, equal for all s 36 [sec]

Table 4.1: Simulation parameters

In order to implement the forward-backward-headway-based approach we also need to
decide for a prediction technique. At a time an,s when bus n arrives at stop s we need to
predict the value of the headway hn+1,s to the succeeding bus at stop s. Since the arrival
time of bus n+1 at stop s is the only unknown value we need for that and since we are not
interested in a trend detection of the headway trajectory in this case we decide to employ
a simple arrival time prediction. To this we measure the offset distance dn

n+1,s between
the position of bus n+ 1 and stop s at time an,s. In case bus n+ 1 is at a stop ŝ at time
an,s we denote its remaining dwell time at this stop by d̂n+1, otherwise we set d̂n+1 = 0.
Furthermore we count the number m of stops between bus n+ 1 and stop s (excluding
stops s and ŝ) and get the expected arrival time as

a′nn+1,s = an,s + dn
n+1,s/vop︸ ︷︷ ︸

pure travel time
to stop s

+m · (βh0 +d0)︸ ︷︷ ︸
scheduled dwell
time per stop

+ max{0, t0 +n ·h0−an,s}︸ ︷︷ ︸
remaining dwell time at the depot
in case bus n+1 is still there

+ d̂n+1︸︷︷︸
possibly
remaining
dwell time
of bus n+1
at current stop

and thus the expected headway as

h′nn+1,s = a′n+1,s−an,s

= dn
n+1,s/vop +m · (βh0 +d0)+max{0, t0 +n ·h0−an,s}+ d̂n+1.

Due to the properties of our control approach, which can be seen as a P-controller,
the headways are likely to oscillate around the target headway within a certain range. In
this situation neither the arrival time prediction nor our regression methods would lead
to reliable headway predictions. For this reason we use the forward-backward-headway-
based control inputs only if for the predicted headway value

∣∣∣h′nn+1,s−h0

∣∣∣> 30 [sec] holds,
otherwise we use the forward-headway-based control inputs.
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The simulation is set up as follows: we set νn,s = 0 for all n and s, i.e., we consider the
deterministic bus-route model. The scheduled departure times at stop s = 0 would be

t1,0 = 0,
t2,0 = 300 [sec],
t3,0 = 600 [sec].

We only disturb the departure times from the depot

t̂1,0 = 0,
t̂2,0 = 300+30 [sec],
t̂3,0 = t̂2,0 +300+30 [sec],

i.e., both buses n = 2 and n = 3 leave the depot 30 seconds delayed, but we do not disturb
the dwell times beside by using our control inputs.

Figure 4.6 shows the space-time diagram of our bus route for the uncontrolled case.
Furthermore we visualized the headway trajectories and the deviations from the scheduled
arrival times at the stops an,s− tn,s in corresponding colors. We see that the buses n = 2
and n = 3 bunch after around 45 minutes and that the headway h2,s (∼ h2 (t)) and thus the
deviation from the scheduled arrival times of the second bus are strictly monotonically
increasing.

Figure 4.7 shows the results if we apply the forward-headway-based control to the same
initial situation. We performed a parameter study by trying several values for the control
parameter α forw and found that for α forw→ 1 we obtain the best results in our specific case,
so the results presented here are created with α forw = 1. Even though we can avoid the
buses from bunching we see that the headways h2,s are increasing and h3,s are decreasing
at the end of the simulation. This is due to the fact that the chosen scheduled slack time
d0 is not sufficient to compensate the initial headway deviation if we only accelerate bus
n = 2, such that we can not reach the target headway h0. This also results in an increasing
deviation of the scheduled arrival times of the buses n = 2 and n = 3. We could create
more flexibility by increasing the scheduled slack times, but this leads to longer scheduled
travel times for the customers and thus to a lower default service quality and possibly
higher costs for the service provider. Nevertheless, we reached our goal to prevent the
buses from bunching.

Figure 4.8 visualizes our bus-route model when applying the forward-backward-
headway-based approach. Again our numerical test showed that we obtain the best
performance for α forw-back→ 1

2 , so we chose α forw-back = 1
2 for our simulation. The dashed

lines in the second plot indicate the predicted headway trajectories, where we set those
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predicted values h′nn+1,s to h0 which fulfill
∣∣∣h′nn+1,s−h0

∣∣∣ < 30 [sec]. This means that for
these cases our method gives the same control inputs like the forward-headway-based
method. We observe that in this setting we do not only eliminate bus bunching, but also get
much smaller headway deviations and deviations from the scheduled arrival times. This is
due to the fact that we compensate the initial headway deviation not only by accelerating
bus n = 2, but also by slowing down bus n = 1. We thus obtain in our specific case a
much better performance than using the forward-headway-based approach with the same
scheduled slack time.

minimum headway min
n>1;s

hn,s

mean absolute headway deviation
1

(N−1) · (NS +1) ∑
n>1;s
|hn,s−h0|

maximum positive deviation from schedule max
n;s>0

max(an,s− tn,s,0)

mean positive deviation from schedule
1

N ·NS
∑

n;s>0
max(an,s− tn,s,0)

Table 4.2: Performance criteria

We compare the three cases of the uncontrolled, the forward-headway-based-controlled
and the forward-backward-headway-based-controlled model based on the criteria listed in
table 4.2. Even though our goal is to prevent buses from bunching and thus we mainly focus
on the headways becoming close to zero or not, we also include the positive deviations
from scheduled arrival times. Although we do not operate the buses using a fixed schedule
since passengers do not rely on scheduled arrival times as mentioned before, we observe
from the figures 4.6,4.7 and 4.8 that later arrival times at stops might go along with longer
travel times like in our case which directly affect the passengers inside the bus. In table 4.3
we present the results of our simulation.

minimum
headway

mean
headway
deviation

max pos.
schedule
deviation

mean pos.
schedule
deviation

[min] [min] [min] [min]

uncontrolled 0.00 4.54 24.75 3.48
forward 4.03 1.88 12.38 1.93
forward-backward 4.97 0.09 1.01 0.47

Table 4.3: Comparison: uncontrolled; forward-headway-based control; forward-backward-
headway-based control
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We observe that even though we used a very simple method for the headway prediction
the results of the forward-backward-headway-based control are much better than the simple
forward-headway-based control which indicates the potential of our predictive-control
approach.

4.2.4 Predictive Control as Anticipative Correction

As mentioned before the real stop arrival times of a bus may differ from the scheduled
arrival times due to varying traffic conditions and unexpected passenger demands. But
these unforeseen events might also have the opposite effect, namely that in some cases they
might lead to a reduction of the headway deviations. This is the reason why in a practical
application we should modify for example the forward-headway-based control in equation
(4.6) in such a way, that we just apply our holding strategy if the headway deviation passed
a certain threshold or if it is going to pass this one in future. A control strategy based on
forward headways could look like

dth
n,s = d̂n,s +ds−

(
α

0 +βs
)

sign (hn,s−h0)︸ ︷︷ ︸
current headway
deviation

·max((|hn,s−h0|−θ) ,0)

−α
psign

(
h′n,s+p−h0

)︸ ︷︷ ︸
future headway
deviation

·max
((∣∣h′n,s+p−h0

∣∣−θ
)
,0
)
,

for some stop prediction horizon p ∈ N>0 and some constants α0,α p ∈ R≥0. The idea of
including future forward headways here is an anticipatively-corrective control strategy,
i.e., the goal is "to control the system before it becomes too disrupted to be restored to a
stable condition" ([Han+15]).
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Figure 4.6: Trajectories of the uncontrolled bus-route model
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5. Future Work and Conclusion

In this final chapter we review the findings of this thesis and propose potential starting
points for future work based on the presented predictive-control framework.

5.1 Conclusion

Bus bunching has negative effects as well for the passengers, who have to accept longer
travel and waiting times, as for the service providers, who have to face a lower cost
efficiency.

In this thesis we presented a predictive-control framework based on real data to reduce
bus bunching. By this we combined the two well known fields of bunching prediction

and corrective control to reduce bunching. To our best knowledge none of the existing
work in this area addressed all parts of the predictive-control chain like done in this thesis,
including acquisition of real data, prediction of headway trajectories and corrective control
strategies.

We discussed the acquisition of the real data provided by Dublin Bus and the transfor-
mation to space-time trajectories, including necessary preprocessing steps like the segment
mapping.

Following this we presented the continuous-time headway and discussed the pre-
processing of the headway trajectories. We formulated the prediction task in the con-
text of time-series forecasting and compared the performances of linear-regression-

and-extrapolation-, kernel-regression-and-extrapolation-, artificial-neural-network- and
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autoregressive-models. In our numerical experiment we found that the methods show
similar performances, even though the artificial-neural-network approach appeared to give
the best results for most of the performance measures. To our best knowledge most of the
existing works in the field of bunching prediction are based on bus arrival time prediction
and do not explicitly consider the headway trajectories as basis for the prediction.

In the last chapter we presented an analytical model of an artificial bus route. We
presented and discussed stability properties. Secondly we presented a classical control
approach using directly available data as well as our predictive-control approach including
predicted headway data and showed the stability of the controlled bus-route model under
certain assumptions. We created a MATLAB simulation and observed based on an illustra-
tive example the advantage of the predictive-control approach as well in terms of bunching
as in terms of schedule adherence and thus impact on the passengers.

5.2 Future Work

• The modularized structure of our predictive-control framework illustrated in figure
4.1 enables us to improve the entire approach by improving its single parts.

– The data acquisition part could be studied further to improve the quality of the
space-time trajectories. For example, we could further tune and elaborate the
HMM approach for the segment mapping to ensure linear increasing space-time
trajectories or, in case this should not be possible, to return a suitable labeling
for outliers.

– As already mentioned in chapter 3 we might be able to improve the prediction

by including exogenous inputs like the information on neighboring buses, day

of the week, time of the day, weather data, traffic information like traffic light
control, and later in the operational case the control inputs of our holding
strategy. Furthermore it will be necessary to investigate the feedback effect

of a data-driven predictive-control framework: the headway prediction will
influence the control actions and thus the dynamics of the bus route and its
future headway trajectories, which will affect the headway prediction in the
next step, etc.. Thus data-driven prediction used for control will bias the
prediction.

– For the control it would be worth investigating different holding policies, for
instance, those which include exogenous inputs. Furthermore we mentioned
the alternative application of predictive-control in the context of anticipatively-
corrective control strategies.

• In this thesis we concentrated on headways to analyze and reduce bus bunching. As
we have seen while discussing the real data it might be difficult to assign to a bus its
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stop s stop s+1

(timegap at s) = h5,t (timegap at s+1) = h2,t

d2 (t)

n = 2

d5 (t)

n = 5 n = 1n = 4 n = 3

Figure 5.1: Illustration of stop-based timegaps at time t 1

preceding and succeeding buses only using the GPS data due to data noise and the
fact that buses of the same route might be operated on different shapes. Furthermore
it might be interesting to investigate bunching not only within one route but among
different routes serving common stops.
To this we would like suggest another way to formulate the bunching problem, which
we call stop-based timegap approach. An illustration of this is given in figure 5.1.
This approach does not focus on the headway between two specific vehicles but
assigns the continuous-time headway between the two neighboring buses of a stop
to this stop at a specific time. Thus independent on the number of vehicles or routes
considered serving the stops we can always compute for each stop and each time step
the corresponding timegap by determining the two adjacent buses and computing the
corresponding headway. Figure 5.2 shows the timegap values and the corresponding
space-time diagram of route 46A, inbound, of the 28th of November 2012, where
the X-axis indicates the time, the Y-axis indicates the stop, and the color indicates
the value of the corresponding timegap in minutes. A bunching event at a stop
corresponds to a small (zero) timegap.
• The next step would be the implementation of the presented predictive-control

framework in a real system and to explore its performance in the field. For this we
would need to consider the following issues:

– We need to develop heuristics like mentioned in chapter 4 to incorporate
predicted headway values including unknown prediction errors in a robust way
in a control policy.

– In a real system we need to find a suitable way to present the online information
on headway distributions and control inputs to the drivers. This includes the
implementation of suitable devices in the buses and the training and motivation
of the drivers.

1photo of the Dublin Bus vehicle taken from: http://www.thejournal.ie/dubiin-bus-strike-
2919690-Aug2016

http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
http://www.thejournal.ie/dubiin-bus-strike-2919690-Aug2016
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Figure 5.2: Stop-based timegaps of route 46A, inbound, of 28th Nov 2012
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– Instead of providing the drivers with strict control inputs of a stop-based
holding rule one could think about including the driver’s information on the
current traffic situation into the control strategy. This could be done as follows:
instead of regulating the headways by controlled dwell times at stops one could
consider controlled segment travel times between stops. In this case the driver
could decide based on the current traffic situation if he can reach the suggested
segment travel time by waiting at a stop or if he should flow with the traffic,
what might also increase the segment travel time in case of congestion.



A. Appendix to chapter 2

A.1 Hidden Markov Model Approach

In [NK09] the authors presented a map matching algorithm that includes contextual infor-
mation by the use of Hidden Markov Models (HMM) (see, e.g., [Rab89]).

Definition A.1.1 — Hidden Markov Model. A Hidden Markov Model is a five tuple(
X ,Z,

{
Ak
∣∣ k = 2, . . . ,NZ−1

}
,
{

Bk
∣∣ k = 1, . . . ,NZ

}
,PI
)

corresponding to the sequence
(tk)

NZ
k=1 ⊂ R≥0 of equidistant points in time and consists of:
• X = {x1, . . . ,xNX} is the set of (hidden) states, which are the possible values for a

random variable Xt .
• Z = {z1, . . . ,zNZ} is a tuple of observations, which are also called emissions.
• Ak = A(zk−1,zk) ∈ RNX×NX is the transition matrix of transitions from time tk−1

to tk . The entry (Ak)i j gives the probability to transition from state xi to state x j

at the transition from time tk−1 to tk, i.e.,

(Ak)i j = P
(
Xk = x j

∣∣ Xk−1 = xi
)
, i, j = 1, . . . ,NX .

The rows of the transition matrix sum up to one.
• Bk = B(zk) ∈ RNX is the emission matrix of time tk and its ith entry describes the

probability to observe the particular measurement zk ∈ Z under the assumption
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Figure A.1: Hidden Markov Model at time tk

Xk = xi, i.e.,

(Bk)i = P
(
zk
∣∣ Xk = xi

)
, i = 1, . . . ,NX .

• PI ∈ RNX gives the initial probabilities for the system being in one of the states in
X at the beginning k = 1, i.e.,

(PI)i = P(X1 = xi) , i = 1, . . . ,NX .

In our application we define the states as the shape segments Si, i.e., X =
{

Si
∣∣ i = 1, . . . ,NS

}
,

and the observations are the GPS samples indicating the bus positions on Searth, i.e.,
Z = (z1, . . . ,zNZ)⊂ (Searth)

NZ . Thus the random variable Xk describes the true segment
of an observation zk at time tk. Our goal is to find the most likely sequence of hidden
states q∗ =

(
q∗1, . . . ,q

∗
NZ

)
⊂ XNZ for a given sequence Z of observations and given model

parameters λZ =
({

Ak
∣∣ k = 2, . . . ,NZ

}
,
{

Bk
∣∣ k = 1, . . . ,NZ

})
, i.e., using Bayes theorem

(see, e.g., [Jam+13]) we need to consider1

q∗ = argmax
q∈XNZ

(
P
(
q
∣∣ Z;λZ

))
,

P
(
q
∣∣ Z;λZ

)
∝ P

(
q;Z

∣∣ λZ
)
=
(
(PI)q1

· (B1)q1

)
·

NZ

∏
k=2

(
(Ak)qk−1qk

· (Bk)qk

)
,

(A.1)

where (Bk)qk
denotes the entry of Bk at the index corresponding to state qk.

This method is successfully used for example in the field of speech recognition (see
[Rab89] for further details). Here the phonemes, which are elementary speech units, are
modeled as states, which suits very well to our map matching problem since on the one

1based on https://de.wikipedia.org/wiki/Viterbi-Algorithmus

https://de.wikipedia.org/wiki/Viterbi-Algorithmus
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hand some phoneme-to-phoneme transitions are more likely than others, and on the other
hand the speaking rate depends on the speaker and changes the physical input signal but
not the content. The HMM compensates these individual variations in speaking rate, since
there is the possibility to stay within a state or even to skip some states by choosing an
according sequence of states. This problem is similar to the map matching problem, since
certain segment-to-segment transitions are more likely than others w.r.t. geographical
relations between the shape segments and even though buses might drive with individual
commercial speeds the fact remains unchanged that ideally the buses should drive in one
direction along the shape and thus the sequence of segment indices should be monotonically
increasing.

There are two ways to determine the transition and emission probabilities for our
problem.
• The first one is using a technique out of the field of machine learning. Based on

historical data the Baum-Welch-Algorithm (see [Bil+98] for further details) computes
the model parameters λ ∗ with a constant transition matrix A and a constant emission
matrix B by using the maximum likelihood approach

λ
∗ = argmax

λ

(
P
(
Z
∣∣ λ
))

,

for some offline available observations Z, which we denote as training data. This
approach has two problems. The first problem is that in our case we have an
infinite set of possible observations and thus non-constant emission matrices, which
would be a prerequisite for applying the standard Baum-Welch-Algorithm. Another
problem is that we need historical data for the training of our model. But this means
that we need to compute the space-time trajectories, i.e., we need to compute offset
distances. This is exactly the problem we try to solve with our HMM approach, what
means we need another method like the presented predecessor-based approach as an
initial step to provide us with training data.
• In order to encounter the fact that the set of possible observations is infinitely large

we use time dependent emission matrices that are constructed using the current
observation at the end of a transition. Furthermore instead of working with transi-
tion and emission matrices one could provide more general probability distribution
functions like in [NK09].

We use the second technique from above and the suggestions for time depending
transition and emission probabilities like proposed in [NK09]. We would like to point out
that in the mentioned work the task was more general, since instead of finding the most
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likely mapping onto a single shape, the task was to map the coordinates on a road network,
including crossings and especially a much larger set of segments.

The authors modeled the GPS noise as zero-mean Gaussian, i.e.,

P
(
zk
∣∣ Xk = Si

)
∝ exp

(
−1

2
(
‖zk−Π

cpp
S (zk,i)‖gd/σz

)2
)
.

The value σz represents the variance of the noise. We use this probability distribution to
calculate the emission matrix Bk = B(zk) for the transition from time tk−1 to tk as follows:

(Bk)i = P
(
zk
∣∣ Xk = Si

)
.

The transition probabilities for the transition from time tk−1 to tk also depend on the current
and last measurements and are given as follows:

P
(
dk,i j

)
∝

1
β

exp(−dk,i j/β) ,

dk,i j =
∣∣∣‖zk−1− zk‖gd−

∥∥Π
cpp
S (zk−1, i)−Π

cpp
S (zk, j)

∥∥
1

∣∣∣ ,
where the value β ∈ R>0 is a design parameter. We obtain the transition matrix for the
transition from time tk−1 to tk again by normalizing:

(Ak)i j = P
(
dk,i j

)
.

The remaining question is how to find the maximizing sequence of states q∗ in equation
(A.1). To solve this problem we use the Viterbi algorithm (see [For73]). This dynamic

programming algorithm uses on the one hand the variable vk (i), which gives the maximum
probability to end up in state Si after k−1 transitions transitioning through a sequence of
length k and having the observations z1, . . . ,zk, i.e.,

vk (i) = max
q∈Xk

qk=Si

(
P
(
z1,z2, . . . ,zk;q1,q2, . . . ,qk

∣∣ λZ
))

,

for a model with parameters λZ depending on the sequence of observations. On the other
hand it uses the variable ψk (i) which saves for each transition and each state the preceding
state which was involved in creating the maximum value for vk (i). This idea is summarized
in algorithm 1.
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Algorithm 1 Viterbi algorithm 2

1: v1 (i) = (PI)i · (B1)i ,ψ1 (i) = 0, 1≤ i≤ NX . Initialization
2: for 2≤ k ≤ NZ do . Recursion
3: vk (i) = (Bk)i · max

1≤ j≤NX

(
(Ak) ji · vk−1 ( j)

)
, 1≤ i≤ NX

4: ψk (i) = argmax
1≤ j≤NX

(
(Ak) ji · vk−1 ( j)

)
, 1≤ i≤ NX

5: P
(
q∗;Z

∣∣ λ
)
= max

1≤i≤NX
(vNZ (i)) . Termination: probability

6: i∗NZ
= argmax

1≤i≤NX

(vNZ (i)) . Termination: state sequence

7: i∗k = ψk+1
(
i∗k+1

)
, 1≤ k < NZ . Determination of path

8: q∗ =
(

xi∗1 , . . . ,xi∗NZ

)
. Maximizing sequence

We obtain the segment mapping by

M HMM
S :

{
(p0, p1, . . . , pNT ) ∈ SNT+1

earth

∣∣ NT ∈ N
}
→

⋃
NT∈N

{1, . . . ,NS}NT ,

pk 7→ i∗k (given by the Viterbi algorithm with zk = pk), k = 0, . . . ,NT .

A nice feature of the Viterbi algorithm is the fact that it furthermore gives us the
probability P

(
q
∣∣ Z;λZ

)
of the state sequence q for a given sequence of observations Z.

This value could be used as one criterion to evaluate the quality of the shape projection.
Furthermore we are able to give preference to monotonically increasing sequences of state
indices by assigning more weights to the transitions (Ak)i, j with i≤ j than to those with
i > j, like suggested in figure A.1. Furthermore the HMM approach is applicable to online
data, i.e., we are able to use it with some modifications in an operational setting.

A.2 SIRI Data

The information given in this part about SIRI data is based on and partially taken from
[Kno08] and the webpage www.siri.org.uk.
The abbreviation SIRI stands for Service Interface for Real-Time Information, which is an
European data interface standard for exchanging information about performance of real-
time public transport operations. In this thesis we are interested in its Vehicle Monitoring

service. For this we use the SIRI dataset provided on https://data.dublinked.ie/

dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project,
which contains Dublin Bus GPS data across Dublin City for the time from the 6th of

November 2012 to 30th of November 2012.
2based on https://de.wikipedia.org/wiki/Viterbi-Algorithmus

www.siri.org.uk
https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-insight-project
https://de.wikipedia.org/wiki/Viterbi-Algorithmus
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The data is given in a csv-file, and the columns of each row of this file contain the following
entries:

1. timestamp: The timestamp is given in microseconds since the 1st of January
1970, 00:00:00 GMT. We refer to the MATLAB functions datenum, datevec and
datetime.

2. line ID: The line ID is the information displayed to the passengers, like in our
example 46A . This does neither include information about the direction (inbound
or outbound) nor about timing nor about the particular stop sequence, as this might
vary for example at different daytimes.

3. direction: Each line can be operated in two directions: inbound (1) and outbound

(0).
4. journey pattern ID: A journey pattern specifies a particular sequence of stops. This

especially includes information about the direction. A journey pattern could include
timings for covering the links between the stops, but does not include any other
operational time information like a schedule. A line can have several patterns, as
these might be changed during peak hours (e.g., short turns) or in late hours (e.g.,
combining of services; see figure 2.10). We would like to point to the mismatch
between the direction field in the third column and the true direction indicated in
the journey pattern ID. Thus we use the direction information given by the journey
pattern ID.

� Example A.1 Structure of a journey pattern ID: 046A︸ ︷︷ ︸
line ID

1︸︷︷︸
direction

001︸︷︷︸
number

. �

5. date frame: The date frame of a vehicle journey is defined as the day of the start
date of the journey.

� Example A.2 A journey that starts on the 5th of November 2012 at 23:00 and
ends on the 6th of November at 01:00 would have the date frame 2012-11-05. �

6. vehicle journey ID: A vehicle journey describes a scheduled journey on a public
transport route. A Dated Vehicle Journey is a planned journey run on a specific date
and is a unique identifier within a journey pattern.

pattern date frame vehicle journey ID

046A0001 2012-11-06 7468
046A1001 2012-11-06 7468

Table A.1: Example: Unique identifier in SIRI data

7. operator: Bus operator, not the driver.
8. congestion: 0 = no, 1 = yes.
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9. longitude: One of two GPS coordinates in degree of arc (deg) w.r.t. WGS84 (see
appendix A.5).

10. latitude: One of two GPS coordinates in degree of arc (deg) w.r.t. WGS84 (see
appendix A.5).

11. delay: Value that represents the delay of the bus w.r.t. the schedule, given in seconds.
If the bus is ahead of schedule, this value is negative.

12. block ID: A section ID of the journey pattern.
13. vehicle ID: ID of the corresponding operated vehicle.
14. stop ID: See appendix A.3, used in combination with the at stop field in column 15

to indicate if the bus is currently at a particular stop.
15. at stop: 0 = no, 1 = yes, referring to stop ID.

In this thesis we only use the dated vehicle journey IDs as unique identifiers of bus runs
and the timestamped GPS coordinates from the SIRI dataset, i.e., the columns 1,4,5,6,9,10
of the above mentioned csv-file.

A.3 GTFS Data

The information given in this part about GTFS data is based on and partially copied from
https://developers.google.com/transit/gtfs/.
The abbreviation GTFS stands for General Transit Feed Specification Reference, which
is a format for infrastructure data of public transportation, like schedules and associ-
ated geographic information. The GTFS data for Dublin Bus is provided on https:

//data.dublinked.ie/dataset/dublin-bus-gtfs-data and is given by the follow-
ing txt.files:
• agency.txt: One or more transit agencies that provide the data in this feed. In our

case this is Dublin Bus.
• stops.txt: Coordinates and IDs of stops, i.e., individual locations where vehicles

pick up or drop passengers.
• routes.txt: Transit routes. A route is a group of trips that are displayed to riders as a

single service. The GTFS field route is similar to the SIRI field line in the sense that
it is grouping services but without containing timetable or direction information. In
this thesis we consider the route 46A . The route type determines the vehicle used

route ID route short name route long name route type

0-46A-y12-1 46A Queen’s Road - Phoenix Pk Gate 3

Table A.2: Example: Structure of ’routes’ file

for the transportation. A list can be found on https://sites.google.com/site/

https://developers.google.com/transit/gtfs/
https://data.dublinked.ie/dataset/dublin-bus-gtfs-data
https://data.dublinked.ie/dataset/dublin-bus-gtfs-data
https://sites.google.com/site/gtfschanges/proposals/route-type
https://sites.google.com/site/gtfschanges/proposals/route-type
https://sites.google.com/site/gtfschanges/proposals/route-type
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shape ID point
latitude
[deg]

point
longitude
[deg]

point
num-
ber in
sequence

distance
traveled in
shape [m]

0-46A-y12-1.322.O 53.3516... -6.2975... 1 0
0-46A-y12-1.322.O 53.3520... -6.2975... 2 62.43
0-46A-y12-1.322.O 53.3521... -6.2980... 3 68.76

Table A.3: Example: Structure of the ’shapes’ file

gtfschanges/proposals/route-type. The route type 3 for example indicates
that the transportation is done by bus.
• trips.txt: Trips for each route. A trip is a sequence of two or more stops that occurs

at specific times. The GTFS field trip is similar to the dated vehicle journey of the
SIRI dataset, as it identifies a particular run of the schedule and combines location
information with certain points in time. It is also the unique identifier within the
GTFS dataset for a particular scheduled bus run.
• calendar.txt: Dates for service IDs using a weekly schedule. It is specified when a

service starts and ends, as well as days of the week where a service is available.
• calendar_dates.txt: Exceptions for the service IDs defined in the calendar.txt file.
• shapes.txt: This file contains the geographic information of a route. More specific

each journey pattern has its own shape. A shape is represented by a set of points
like in definition 2.1.1. The points are given by longitude and latitude coordinates
in degree of arc (deg) w.r.t. WGS84 (see appendix A.5). A vehicle journey of a
particular pattern is approximated by connecting the points of the corresponding
shape to form a geodetic polygon. The value distance traveled in shape positions
a shape point as a distance traveled along a shape from the first shape point. This
is equivalent to the offset distance of this point w.r.t. to the shape described in
subsection 2.1.1.
• stop_times.txt: Times at which a vehicle arrives at and departs from individual

stops for each trip.

A.4 GPS Data and Geodetic Distance

All spatial coordinates in the given datasets are represented as latitude and longitude

coordinates, provided by Global Positioning Systems (GPS). GPS data are based on the
standard World Geodetic System 1984 (WGS84) ([ElR02]). This one provides a coordinate

system whose origin is located in the center of mass of the earth, a spheroidal reference
surface, which we call reference ellipsoid, and the geoid, which is a mathematical model of

https://sites.google.com/site/gtfschanges/proposals/route-type
https://sites.google.com/site/gtfschanges/proposals/route-type
https://sites.google.com/site/gtfschanges/proposals/route-type
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the earth’s sea level and describes the shape that the surface of the oceans would take only
considering the influence of gravitation and rotation of the earth. In [IA00] a description of
the WGS84 is given. Especially the values for the semi-major axis a and the semi-minor

axis b of the reference ellipsoid are given as follows:

aearth = 6 378 137.0 [m],
bearth = 6 356 752.3142 [m].

In this thesis we do not consider the elevation coordinate, i.e., a point’s height above or
below the reference geoid, and thus approximate the surface of the earth by the WGS84
reference ellipsoid. This allows us to represent the surface of the earth Searth like in the
following equation:

Searth =

{(
x y z

)T
∈ R3 ∣∣ x2

a2
earth

+
y2

a2
earth

+
z2

b2
earth

= 1
}

=


aearth cos(φ)cos(λ )

aearth cos(φ)sin(λ )
bearth sin(φ)

 ∣∣ φ ∈
(
−π

2
,
π

2

)
,λ ∈ (−π,π)

 ,

where the parameter φ is called (degree of ) latitude and λ is called (degree of) longitude.
Parallels of latitude (German: Breitengrad) are formed by circles surrounding the earth and
in planes parallel with that of the equator. Meridians of longitude (German: Längengrad)
are formed with a series of imaginary lines, all intersecting at both the north and south
poles, and crossing each parallel of latitude at right angles. This description is illustrated
in figure A.2 and can be found beside further information in [Sny87].

N Pole

equator

0◦

60◦

latitudeparallels

30◦

90◦

m
eridians

longitude

x y

z

λ

φ

Figure A.2: Earth’s coordinate system
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For our application we are interested in computing the geodetic distance
∥∥P− P̂

∥∥
gd

between two points P, P̂ ∈ Searth on the earth’s surface, which is defined as the length of
the shortest curve on the surface connecting the two points. This problem is known as
inverse geodetic problem and includes the solution of elliptical integrals, which can be
approximated by an iterative method called Vincenty’s formulae (see [Vin75]).

A.5 Map Projection

This subsection is based and partially taken from [Sny87].
In order to visualize, for example, the locations of buses on a map we need to transform

the three-dimensional coordinates describing the location as a point on the earth’s surface
Searth into two-dimensional coordinates in a "reasonable" way. This transformation is
called map projection and describes a systematic representation of a part of a surface of
a round body, for instance, the surface of the earth, on a plane. The term "reasonable"
depends on the particular scope of the transformation as there are several characteristics
regarding map projections like area, shape, scale, direction, method of construction, etc..
In this thesis we consider the map projection of coordinates of a 30 [km] × 30 [km] square
on the earth’s surface around the Dublin area. In order to obtain a suitable visualization,
for example, of a route’s shape we are especially interested in a method that is conformal,
i.e., the relative local angles about every point on the map are shown correctly and thus
small features of shapes are mapped essentially correctly. We choose a very well known
conformal method called Mercator projection, which is also used in a slightly modified
way by services like Google Maps3 and thus meets our requirements.

The Mercator projection is a cylindrical projection like shown in figure A.34and uses
the following formula for the projection of coordinates of the surface of the reference
ellipsoid to the plane:

xmerc = aearth · (λ −λ0) ,

ymerc = aearth · log

(
tan
(

π

4
+

φ

2

)
·
(

1− eearth sin(φ)
1+ eearth sin(φ)

) eearth
2
)
− y0,

eearth =

√
1− b2

earth
a2

earth
, (eccentricity of the ellipsoid)

where λ0 defines the "Zero-Meridian" and y0 shifts the latitude of the map’s origin. In this
thesis we choose as origin of the map the Millenium Spire in Dublin. For further reading
we refer to [Fen06] and [Sny87].

3https://en.wikipedia.org/wiki/Google_Maps
4source: http://geographx.co.nz/_wp/wp-content/uploads/2012/01/cylindrical.jpg

https://en.wikipedia.org/wiki/Google_Maps
http://geographx.co.nz/_wp/wp-content/uploads/2012/01/cylindrical.jpg
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Figure A.3: Cylindrical projection 4



B. Appendix to chapter 3

B.1 Headway Preprocessing

We briefly describe two very common preprocessing functions, called filters, to reduce the
effect of noise disturbing our headway trajectories. For this let h = (hk)

Nh
k=1 be a headway

trajectory of a bus pair with equidistant timestamps T = (tk)
Nh
k=1.

B.1.1 Moving Average

The weighted moving average filter replaces the value hk at time tk by the weighted
average over all values of h with indices {k−wl, . . . ,k, . . . ,k+wu} for the window limits
wl,wu ∈ N≥0, i.e.,

ĥk =
bu

∑
i=bl

ω
(k)
k−i ·hi,

bl = max{1,k−wl},
bu = min{Nh,k+wu},
bu

∑
i=bl

ω
(k)
k−i = 1,

ω
(k)
k−i ≥ 0, i = bl, . . . ,bu.

For the centered moving average filter it holds wl = wu, so in our context it can only be
applied in an offline case, like in the sections 3.4 and 3.5 for the smoothing of the reference
and training trajectories, since at time tk when we need to evaluate the filter the values
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{hk+1, . . . ,hk+wu} are not accessible yet.
For this reason the (standard) moving average filter with wu = 0 has been introduced,

which can also be applied in an operational setting. In here we chose linear decreasing
weights ω

(k)
k−i =

w−i
w(w+1)/2

, with w = k−bl +1 and i ∈ {bl, . . . ,k}, and ω
(k)
k−i = 0 otherwise for

the moving average and equal weights ω
(k)
i = 1

w , with w = bu−bl +1 and i ∈ {bl, . . . ,bu},
and ω

(k)
i = 0 otherwise for the centered moving average. The centered moving average

with equal weights is implemented as the MATLAB function smooth.
This description and further details can be found in most text books on statistical

analysis such as [DM57].

B.1.2 Kalman Filter

The Kalman filter is an application of the more general framework of Bayesian filtering.
This description is based on [Che03] and [WB06]. It is a probabilistic approach, i.e.,
instead of one exact filtered value we obtain a probability distribution of values, which
is called belief . In general we distinguish between the state xk ∈ RNX , the external input
uk ∈ RNU and the observation zk ∈ RNZ corresponding to the equidistant times (tk)

NT
k=1. The

belief is then defined as

bel(k) = P
(
xk
∣∣ u1:k,z1:k

)
.

It relies on the Markov assumption, which states that the state is a complete summary of
the past. Furthermore we assume a linear state space model of the following form:

xk = Akxk−1 +Bkuk + εk, (motion model)
zk =Ckxk +δk, (measurement model)
εk ∼N (0,Rk) ,

δk ∼N (0,Qk) ,

with Ak ∈RNX×NX , Bk ∈RNX×NU , Ck ∈RNZ×NX and the positive definite matrices Rk ∈ RNX×NX

and Qk ∈ RNZ×NZ , called process noise and measurement noise, and N denotes the normal
distribution.

For a mean value µk−1 ∈ RNX and covariance matrix Σk−1 ∈ RNX×NX at time index k−1
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one iteration of the Kalman filter is given by the following equation:

µ̂k = Akµk−1 +Bkuk,

Σ̂k = AkΣk−1AT
k +Rk,

Kk = Σ̂kCT
k
(
CkΣ̂kCT

k +Qk
)−1

,

µk = µ̂k +Kk (zk−Ckµ̂k) ,

Σk = (I−KkCk) Σ̂k,

bel(xk) ∼N (µk,Σk) ,

where I ∈ RNX×NX denotes the identity matrix. In our case the states xk as well as the
observations zk correspond to the entries in the headway trajectory hk and we do not
consider any control inputs uk. Using a constant motion model we obtain the matrices
Ak =Ck = 1 ∈ R for all k. Also the process noise Rk and measurement noise Qk become
scalar values.

We would like to point out the following observation regarding parameter tuning,
illustrated for the one-dimensional case:

Rk = const, Qk→ 0 ⇒ Kk→
1

Ck
= 1 ⇒ µk→ zk,

Rk = const, Qk→ ∞ ⇒ Kk→ 0 ⇒ µk→ µ̂k = Akµk−1.

This means by fixing the values of Rk we can control the ’trust’ in the measurement by
changing the value of Qk. If we choose large values for Qk we can consider this as trusting
the motion model more than the measurement model. Reversely if we choose small values
for Qk we can consider this as trusting the measurement model more than the motion
model.

The advantage of the Kalman filter is on the one hand that it is an online algorithm, i.e.,
as far as we get the value of hk for some time tk we are able to compute the filtered value for
it and do not need to wait until succeeding points in time are available. Furthermore we do
not only obtain a filtered value ĥk = µk online, but also with Σk a probabilistic confidence
value, that could be used to mark outliers in the filtering process what could be applied in
the prediction part.

B.1.3 Neural Network

Formally a neural network can be seen as a directed, L-partite graph (with L ∈ N≥2) with
vertex set V and edge set E. Each partition Lk of V contains mk ∈ N vertices and is called
layer of the neural network. Each neural network has one input layer, one output layer and
L−2 hidden layers. In the special case of a multilayer perceptron (MLP) the layers are
ordered in such a way, that there are only edges between vertices of the (k−1)th layer to
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jth neuron in layer k
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yk−1
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mk−1
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j

σ
yk

j

Figure B.1: Single neuron

vertices of the kth layer, where the first layer is the input layer and the last layer the output
layer. Especially there are no recurrent connections and with that the MLP is a feedforward

neural network. All edges are weighted, where the weight of the edge connecting the ith
vertex in layer k−1 with the jth vertex in layer k is denoted by wk

i j ∈ R. Each vertex is
called neuron (illustrated in figure B.1) and can be seen as a function that maps the outputs
of the previous layer to a real number, which is used as the output of this vertex. For the
jth vertex of the kth layer there is a real value bk

j ∈ R, which is called bias, and real valued
activation function σ k

j : R→ R. The neuron function f k
j for the jth vertex of the kth layer

with k > 1 is then defined as

f k
j : Rmk−1 → R,

x1
...

xmk−1

 7→ σ
k
j

(
mk−1

∑
i=1

wk
i jxi +bk

j

)
,
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and for k = 1 as

f 1
j : RmIN → R,

x1
...

xmIN

 7→ x j,

where
(

x1 · · ·xmIN

)
is the input vector to our network. In our case the activation functions

are chosen for all vertices of the corresponding layer as follows:
1. hidden layer, k < L: σ k

j : R→ R : x 7→ tanh(x) = ex−e−x

ex+e−x (see fig B.2),
2. output layer: σL

j = idR.

-5 0 5

−1

0

1

x

ta
nh

(x
)

Figure B.2: Activation function of hidden layers: tanh

The input layer is used as a formal way to present the argument (x1 · · ·xm1)
T to the

network function, which is defined as

fnet : RNIN → RNOUT,
x1
...

xNIN

 7→


yL
1
...

yL
NOUT

 ,

yk
j = σ

k
j

(
mk−1

∑
i=1

wk
i jy

k−1
i +bk

j

)
, j ∈ {1, . . . ,mk},k ∈ {2, . . . ,L},

where NIN = m1 is defined as the number of inputs of the neural network, NOUT = mL is
the number of outputs of the neural network and yk

j ∈ R is the output of the jth neuron in
the kth layer. An illustration of a MLP is shown in figure 3.7.
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B.2 MATLAB : Neural Network Toolbox

For the numerical experiments in this thesis we make use of MATLAB’s Neural Network

Toolbox. To this we have to prepare the headway trajectories in the following way:
1. As a first step we need to create a network structure. For example, the MATLAB

command net = feedforwardnet([10,5]) creates a feedforward neural network
(MLP) with two hidden layers, where the first hidden layer contains 10 and the second
hidden layer contains 5 neurons.

2. As a second step we need to create two matrices X ∈ R(HH+1)×N (input) and
T ∈ R1×N (target/output), where N is the number of input-output samples, like
defined in equation (3.2).

3. We need to subdivide the sample set (X ,T ) into a training set, a validation set and
a test set. For the training and validation we used all headway trajectories of the
14th and 21st of November 2012, and for the testing some trajectories of the 28th
of November 2012. In order to prepare the dataset the net structure provides the
objects
• net.divideFcn = ’divideind’,
• net.divideParam.trainInd,
• net.divideParam.valInd,
• net.divideParam.testInd.

We chose 60 % of the data as training set, 20% of the data as validation set, and the
testing was performed on the remaining 20% of the dataset. In here we chose these
ratios for the data of the 14th and 21st of November 2012, and the results presented
in the table 3.4 are computed using the trained network applied only on headway
trajectories of the 28th of November.

4. The training of the network is done by the command net = train(net,X,T).
5. The evaluation of the network function for a input matrix Xtest is then done by the

command net(X_test).

We would like to point out here that it is common to normalize the data before
using it for prediction, like described in [Bis95]. This is done automatically by
MATLAB’s training and evaluation functions.

B.3 MATLAB : ARMA/ARMAX Model

For our numerical experiment we made use of MATLAB’s System-Identification Toolbox.
This one provides the functions iddata, which transforms a headway trajectory, given as
an equidistantly timestamped vector, into a data format that can be further processed by
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the toolbox. The function for fitting an AR/ARX model to the given data is ar/arx, which
gets the data and the AR order p or both the AR order p and the number of exogenous
inputs NU respectively as inputs. The function armax fits an ARMAX model to the data.
The output of these functions is an idpoly model, which can be plugged into the function
forecast together with the data needed for predicting the future values. The function
forecast performs the multi-step-ahead prediction and returns the predicted values as
output.
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