
Requirements-Aware, Template-Based
Protocol Graphs for Service-Oriented

Network Architectures
Thesis approved by

the Department of Computer Science of the University of Kaiserslautern

for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

Abbas Siddiqui

Date of Defense: 27.09.2016
Dean: Prof. Dr. Klaus Schneider
Reviewer: Prof. Dr. Paul Müller
Reviewer: Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel

D386

This work is dedicated to my parents - Mr. Noor Ali Siddiqui (in loving memory)
& Mrs. Siddiqui - for their unconditional love and endless support, and to my brother
- Dr. Atif Ali Siddiqui (M.D.) - for his encouragement on every path of my life

2

3

Acknowledgments

The ideas presented in this thesis are developed in the G-Lab project 1 funded by BMBF
under the supervision of Prof. Dr. Paul Müller. Foremost, I would like to thank him
for giving me the opportunity to work on the project. I would further like to express
my gratitude to Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel for being the second
supervisor for the work. I am particularly very grateful to Dr. Bernd Reuther for being my
advisor. He was very open towards my presented ideas. Besides, his valuable comments,
suggestions, and feedback always gave me new prospects on my work. I would also like
to thank my colleague Denis Schwerdel for his practical insightful on my work. Inputs of
Rahamatullah Khondoker, Nathan Kerr, and Daniel Günther also played a role in ideas
development. I am also thankful for the positive critics of my colleague Joachim Götze.
I want to thank Mrs. Hahn and Mrs. Younis for all the administrative work and their
kind nature. I would also like to thank all of my project partners for their discussions
during the meetings. Last but not least, I would like to thank my family and my wife
”Patricia Siddiqui” for their constant support and patience.

1http://www.german-lab.de/

Abstract

Rigidness of the Internet causes its architectural design issues such as interdependen-
cies among the layers, no cross-layer information exchange, and applications dependency
on the underlying protocols implementation.

G-Lab2 is a research project for Future Internet Architecture (FIA), which focuses
on problems of the Internet such as rigidness, mobility, and addressing. Where the
focus of ICSY3 was on providing the flexibility [Mue13] in future network architectures.
An approach so-called Service Oriented Network Architecture (SONATE) [KSMB14]) is
proposed to compose the protocols dynamically. SONATE is based on principles of the
service-oriented architecture (SOA) [Erl08], where protocols are decomposed in software
modules and later they are put together on demand to provide the desired service.

This composition of functionalities can be performed at various time-epochs (e.g.,
run-time, design-time, deployment-time). However, these epochs have trade-off in terms
of the time-complexity (i.e., required setup time) [Bas80] and the provided flexibility. The
design-time is the least time critical in comparison to other time phases, which makes
it possible to utilize human-analytical capability. However, the design-time lacks the
real-time knowledge of requirements and network conditions, what results in inflexible
protocol graphs, and they cannot be changed at later stages on changing requirements.
Contrary to the design-time, the run-time is most time critical where an application
is waiting for a connection to be established, but at the same time it has maximum
information to generate a protocol graph suitable to the given requirements.

Considering limitations above of different time-phases, in this thesis, a novel interme-
diate functional composition approach (i.e., Template-Based Composition) has been pre-
sented to generate requirements aware protocol graphs. The template-based composition
splits the composition process across different time-phases to exploit the less time critical
nature and human-analytical availability of the design-time, ability to instantaneously
deploy new functionalities of the deployment time and maximum information availabil-
ity of the run-time. The approach is successfully implemented (i.e.,A.6), demonstrated
(i.e., [GSS+12]) and evaluated (i.e.,6) based on its performance to know the implications
for the practical use.

2http://www.german-lab.de/
3www.icsy

ii

Contents

1 Introduction 3
1.1 Motivation . 5
1.2 Problem Statement . 7
1.3 Document Structure . 12

2 Background 13
2.1 Terminology . 13
2.2 Functional Composition . 15
2.3 Functional Composition Requirements 16

2.3.1 Description of Requirements . 16
2.3.2 Description of Building Block . 17
2.3.3 Identifying the Dependencies . 18
2.3.4 Finding Granularity of Mechanisms 18
2.3.5 Composition Methods . 19
2.3.6 Rating of Protocol Graphs (PGs) 20
2.3.7 Heterogeneity of Services . 20

3 Service Oriented Network Architecture (SONATE) 23
3.1 Using SOA Paradigm in the Network Architectures 23
3.2 SONATE . 25

3.2.1 Description of Requirements . 27
3.2.2 Requirements-Based API . 28
3.2.3 Building Block Description Language 30
3.2.4 Composition of Protocol Graphs 30
3.2.5 Protocol Graph Description Language 32
3.2.6 Protocol Graph Selection . 32
3.2.7 SONATE Protocol Graph(s) Execution Framework 34

iii

iv CONTENTS

3.3 Contribution . 34

4 State of the Art of Functional Composition 35
4.1 Net-Silo . 35
4.2 NetServ . 36
4.3 Network virtualization architecture (VNet) 36
4.4 Node Architecture . 37
4.5 RNA . 37
4.6 AutoI . 38
4.7 Role-Based Architecture (RBA) . 38
4.8 Self-Net . 39
4.9 Automatic Network Architecture (ANA) 39
4.10 Coyote . 41
4.11 Network Service Architecture . 41
4.12 Dynamic Configuration of Protocols (DaCaPo) 42
4.13 The Function Based Communication Subsystem (FCSS) 43
4.14 TARIFA . 43
4.15 Semantic-Based Semi-Automatic Web Service Composition (SBWComp): 44
4.16 A Template-Based Mechanism for Dynamic Service Composition Based on

Context Prediction in Ubicomp Applications (DTSComp): 44
4.17 Rule-based semi automatic Web services composition (RSWComp): . . . 45
4.18 Dynamic Reconfiguration Using Template Based Web Service Composition

(DTWComp): . 45
4.19 Pattern Based Composition of Web Services for Symbolic Computations

(PBWComp): . 45
4.20 Semi-Automatic Composition of Web Services using Semantic Descriptions

(SWSComp): . 46
4.21 Automatic Composition of SemanticWeb Services (ASWComp): 46
4.22 A Service Composition Method Based On The Template Mechanism In

The Service Scalable Network Framework (TNSComp): 47
4.23 Semi-Automatic Distribution Pattern Modeling of Web Service Composi-

tions using Semantics (SPWComp): . 47
4.24 Comparison of Intermediate Composition Approaches 47

5 Requirements-aware, Template-Based Protocol Graphs 51
5.1 Template Based Composition Approach 52

CONTENTS v

5.1.1 Template Description Language 54
5.1.2 Domains Policies and Its Description Language 57
5.1.3 Selection of a Template . 60
5.1.4 Finding Suitable BBs for Template’s Placeholders 64
5.1.5 Protocol Graph(s) Construction 68

5.2 Putting It All-Together - Secure TCP Example 72
5.3 Conclusion of Template-Based Composition 74

6 Performance Evaluation of Template Based Composition 81
6.1 Test Environment Specifications . 82
6.2 Selection of Template(s) . 82

6.2.1 Single Selection . 83
6.2.2 Multiple Selection . 84

6.3 Protocol Graph(s) Generation . 85
6.3.1 Single Protocol Graph . 85
6.3.2 All Possible Protocol Graphs . 87

6.4 Performance Conclusion . 89

7 Conclusion 91

Appendices 97

A Examples & Implementation 99
A.1 Requirements . 99
A.2 Domain Policies . 100
A.3 Templates . 101
A.4 Protocol Graphs . 104
A.5 Building Blocks . 108
A.6 Implementation (Java Code) . 112

vi CONTENTS

List of Figures

1.1 Time Phases . 6
1.2 Examples of Placement . 8

2.1 Effect, Mechanism and Implementation 14
2.2 Functional Composition [KSRM12] . 16
2.3 Building Block Description [SKR+11] . 17
2.4 Composition Methods and Service Selection [KSRM12] 19

3.1 Layered to LayerLess Architecture [KSMB14] 25
3.2 Service Oriented Network Architecture (SONATE) [KSRM12] 27
3.3 Requirements/Offerings [KSMB14] . 28
3.4 Building Block Description Language Schema 31
3.5 Protocol Graph Description Schema . 33

5.1 Template . 52
5.2 Place-Holder [SKM12] . 53
5.3 Template Description Language Schema 55
5.4 An Example of a Template . 56
5.5 Example of Effects for Policies . 58
5.6 Domain Policies Schema . 59
5.7 Selecting a Template . 61
5.8 Flowchart: Template Selection . 62
5.9 Scenario for Template Selection . 63
5.10 Filling a Placeholder [SKM12] . 65
5.11 Ports Matching . 66
5.12 Flowchart: Filling the Placeholders of a Template 67
5.13 Comparison Between Possible PGs in Template-Based Composition & Sim-

ple Approach . 68

vii

LIST OF FIGURES 1

5.14 Comparison of Possible PGs Growth . 70
5.15 Example: Protocol Graphs Generation 71
5.16 Secure-TCP Example . 72
5.17 Requirements and Short-Term Flexibility 75
5.18 Requirements and Long-Term Flexibility 76
5.19 Placement in Template . 78
5.20 Selection of Building Blocks in different Time Phases 79

6.1 Stages of Template Based Composition 81
6.3 Multi-Template Selection . 86
6.4 Graph: Time Required to Produce an Executable PG 87
6.5 All Possible PGS With Different Suitable BBs In Each Placeholder . . . 88

7.1 Adaption within Template . 93

A.6.1Class Diagram . 114

2 LIST OF FIGURES

Chapter 1

Introduction

On the Internet, the network stack is divided into distinct layers that can be implemented
by different protocols. Each layer offers a service to directly adjacent layers. This crisp
and robust design has provided its advantages like functionality scoping and stability.
However, it also has disadvantages like as following:

• Protocols on different layers implement the same functionality like IP and TCP
Checksum.

• Architecture does not support the cross-layer optimization for instance the physical
layer can not optimize the error-correction or data-coding (e.g., multimedia over
wireless) to the application requirements.

The protocol stack, we use today, has been introduced decades ago. Since then the
whole Internet came to existence and with it the single protocol stack: TCP/IP. What
was a good solution back then, is no longer appropriate to fulfill emerging demands of
applications. As technology advances, new requirements arise regarding security, QoS,
mobility support (e.g., Mobile IP), privacy, sustainability and scalability. However, devel-
opment of the Internet during the last years has shown that it is difficult to integrate new
functionalities [Han06]. Especially the core mechanisms (TCP/IP) are hard to change.
It is not a problem of a single protocol or its implementation it is rather related to
architectural limitations that have been around since the commencement of the Internet.

The following are some issues that cause the rigidness of the Internet architecture.

• Introduction and Exclusion of a Functionality: Including/excluding functionality
in/from a network stack or replacing an entire stack requires a complicated de-
ployment and migration phase. In addition, the cost increases if modification of

3

4 CHAPTER 1. INTRODUCTION

software & hardware is needed. As a result, new functionalities are deployed at the
application layer, some of those examples are security, mobility, quality of service.

• Layer Proliferation: Driven by the demands of ever emerging applications and
the capabilities of new communication networks, many workarounds have been
introduced like sub-layer proliferation and middle-boxes (e.g., firewalls) that were
not part of the original design. MPLS [RVC01] has been introduced to support
traffic categorization so as time optimization. Virtual networks are introduced at
layer 2.5 and, the IPsec [FK11] is introduced for securing the valuable data at layer
3.5.

In addition to the violation of design principal, the induction of sub-layers causes
the more severe problem of unknown dependencies among the layers. Modification
of data by a layer can hinder the underlying layers to function properly such as IPsec
encrypts the data of above layers (e.g., Transport Layer) and prohibits the proper
use of the port numbers or causes the other known problem with NAT [AD04].
These extra layers also decrease the Maximum Transmission Unit (MTU). As a
result, packets might be dropped or rejected at some routers.

• Middle-boxes: Another workaround is the use of middle-boxes like NATS [EF94],
firewalls, proxies and gateways, which erode the end-to-end model. It also causes
that edges are oblivious to newly deployed functionalities of network. As a result,
middle-boxes interfere with the traffic and restrict some functionalities to work
properly. It is also a hurdle in deploying new protocols in a network as unknown
traffic is discarded or blocked by some middle-boxes.

• No Cross-layer Communication: Because of the lack of cross-layer communication
in the current architecture, different layers implement the same mechanisms such
as IP and TCP Checksum. It influences the data transmission rate and wastes
the valuable computing resources. In the worst case, the execution of particular
mechanisms can be counterproductive such as TCP congestion control in wireless
networks, and there is no way to inform a layer to disable the certain mechanisms.

The presented work is carried out under the umbrella of the G-Lab1 project sponsored
by the Federal Ministry of Education and Research (BMBF), which focuses on ”Future
Internet Architecture” It investigage many aspects of the architecture such as addressing,

1http://www.german-lab.de/

1.1. MOTIVATION 5

mobility, cross-layer composition, security, and routing. Our group, Integrated Commu-
nication Systems (ICSY), at University of Kaiserslautern took part in research on the
flexibility of the network architectures and cross-layer composition.

The rest of the chapter describes the motivation, followed by the problem statement,
the methodology, and the structure of the entire thesis.

1.1 Motivation

The inflexibility of the Internet is a motivation to combine various functionality to achieve
the desired communication service. The design of the Internet has lead to a rigid system
that has limited abilities to keep up with the constantly changing demands of applications
like increasing data rates, reliability, QoS, network heterogeneity, mobility, and security.
The following is the discussion on the desired flexibility in Future Internet Architecture
(FIA) and on-going research on the topic. The problem for the proposed approach is
described in section 1.2 .

The FIA research2 [SZ09]3 [Pee11]4 divides into two distinct views so called ”Evolu-
tionary Design [RD10]” and ”Clean-Slate Design [Fel07]”. The Functional Composition
(FC) [SLee11] is a clean-slate design approach. The idea of FC is borrowed from ser-
vice oriented architecture [Erl08] [RSSM09], FC considers the Internet as a distributed
software system. Many projects [BFH03, TWP06, DRB+07, MR08] have used the FC
approach. The state-of-the-art of the approach is presented in [HSee10] and challenges
in [SKR+11]

The FC is an approach to achieve flexibility that is one of the major goals [MDAD]
of FIA so that unseen futuristic demands can be accommodated without having a need
to change the design. The flexibility [Mue13] can be divided into two sub-goals so-called
long-term and short-term flexibility.

• Short-Term Flexibility: It describes adaptability of a network for the given con-
ditions, requirements and constraints. A network should be adaptable to user de-
mands and yet it takes into account the given network conditions (e.g., bandwidth,
jitter, delay) besides the provided policies defined by such as a domain, a service
provider, and an administrator.

2Global environment for network innovations (geni) http://www.geni.net/
3http://www.german-lab.de/
4http://www.fi-ppp.eu/

6 CHAPTER 1. INTRODUCTION

• Long-Term Flexibility: It characterizes the evolution of networks with ongoing tech-
nological development. It entails aspects such as inclusion, exclusion or exchange
(i.e., exclusion + inclusion) of the given functionalities besides, updating the exist-
ing ones.

Figure 1.1: Time Phases

One of the key differences among the functional composition approaches is time phase
they are performed at. The fig. 1.1 shows the three time-phases, the run-time begins
once application/user sends a connection request to an underlying network. The run-
time is further divided into the setup-time (i.e., the time required to compose a protocol
graph) and the execution-time (i.e., is a time when actual data transmission starts till
the connection closes). This classification of the run-time is needed as an adaptation (i.e.,
change of a PG is based on variation in conditions such as of network) of protocol graphs
is taken place at the execution-time, while a PG is composed at the setup-time.

The design-time is used for protocol design & implementation phases, and the de-
signed protocols are deployed to systems at the deployment-time. Time phases differ
regarding available information; the design-time has assumed applications require-
ments and, no information about host environment or network conditions. While the
run-time has actual knowledge of application requirements, host environment and net-
work conditions. Whereas the deployment time has a slight edge on the design-time by
having the host information, unless a service is developed exactly at the system where it
is deployed.

1.2. PROBLEM STATEMENT 7

1.2 Problem Statement

The composition at the design or the deployment time phase is less time critical than a
composition at the run-time as no user or application is waiting for a connection to be
established but at the run-time, it is otherwise. However, if a composition is performed
at the design or the deployment time, it cannot take into account the information that
is available at the run-time that restricts its ability to be optimized.

The run-time composition gives an ideal possibility of optimizing by combing func-
tionalities as late as possible so that a composition process has maximum information
availability to achieve an optimal composition. As a result, it also increases the required
setup-time as it has to perform all of its tasks at the setup-time.

It is more likely that a run-time composition uses an automatic algorithm. Any
human-involvement will delay the process further. Higher information availability at the
run-time increases the number of inputs for a composition method, hence the required
time for a successful composition.

The following are the factors, which increase the required time in a composition
approach.

• Placement: To place functionalities in proper order is one of the vital tasks to carry
out in a successful composition of a PG.

Dependencies among functionalities and optimization of a service are the reasons to
have a proper placement of functionality in a protocol graph. In the conventional
network stacks such as TCP/IP, every functionality has a fixed place which is
carefully chosen by experts. On the one hand, this has an advantage of having
an optimal order of functionalities in a service, but on the contrary, because of its
static nature, the introduction of new functionalities or exclusion of existing ones
is very hard.

Dependencies among functionalities can be observed in the TCP such as in ordering
of acknowledgment and sequence number. The acknowledgment mechanism can not
work until sequence number is not known as this number is needed to set the next
expected sequence number.

The given examples in fig. 1.2 can further elaborate the importance of placement;
wherein fig. 1.2(a), packetization is placed after re-transmission, in this case re-
transmission will not work as it requires data in packets form to stamp (identify), to
count and to retransmit. Even though a protocol graph may cover the desired func-

8 CHAPTER 1. INTRODUCTION

tionalities but because of wrong placement, it will not be able to execute properly.
If an end-to-end encryption mechanism is placed after an addressing mechanism
(i.e., as shown in Fig. 1.2(b)), the address will be encrypted and routers will not
able to forward the incoming packets to the destination or a compression after an
encryption is not as effective.

Placement of functionalities is effected by the explicit requirements such as from
application, network, and domain. Moreover, the implicit requirements of optimiza-
tion such as order between compression and encryption mechanisms.

Figure 1.2: Examples of Placement

Granularity is a major factor in the placement issue as it increases dependencies
among functionalities and ultimately the need for proper placement. Such as error-
correction and error-detection can be a single mechanism or separate mechanisms.
Error-detection-correction (i.e., error-control) as a single mechanism eliminates the

1.2. PROBLEM STATEMENT 9

issue of placement or dependency within each other but limits the ability to be
used individually. The cases where error-correction is not required and packets are
discarded once an error found can longer be realized. On the one hand, fine-grained
functionalities increase those dependencies among each other but, on the contrary,
it also escalates re-usability of functionality.

By using the human-analytical ability, it is easier for an expert to place functional-
ities in a proper order, but an algorithm requires additional knowledge (e.g., ontol-
ogy) to create an executable PG and it will have an impact on the required time.
A trivial composition approach will try to order all the available implementations
of the requested functionalities and relies on permutations (i.e., where order mat-
ters). However, this approach may use a constraint on the size (i.e., fixed number
of elements) of set that will result in n1 ∗ n2 ∗ n3 ∗ ∗ nr or it can be written as
an exponent of r: nr. Where n is total number of building blocks and r of them are
chosen for a single permutation. Moreover, if different size (i.e., r) of sets are possi-
ble then formula will result in summation of all possible permutations such as when
r is from 1 to 3 the number of permutations will be: n1 + n1 ∗ n2 + n1 ∗ n2 ∗ n3, this
summation can be described in general way by this formula:

r=n∑
r=1

nr. Where lower

limit ”1” restricts to have at least single BB selected and “n” is a upper limit.

• Connection of Functionalities: The incoming requirements do not provide any idea
about how functionalities will be connected to each other. In a sequential PG,
functionalities are executed one after other. However, if functionalities are sup-
posed to be connected in parallel graph such as connection management and data-
transmission then additional information is required to connect them. Besides, the
wrong connections among these functionalities can create a loop. The composi-
tion process must check for the cyclic connections to avoid the endless loops. All
those extra information and consistency checking will increase the time required for
composing a PG.

• Information Availability: This can be best described by early or late binding of
the communication services, the early binding will not benefit from the information
such as network capacity, hardware and software constraints thus, the composed
protocol graph might not be the optimal one. On the other hand, late-binding has
the advantage to get real time information. However, the increment in information
results in more inputs to compute which also increases overall requited setup time.

10 CHAPTER 1. INTRODUCTION

If a PG is composed at the design-time, it requires no additional composition to
provide the requested service. Hence, it reduces the required setup-time. However,
it cannot be further optimized for the dynamic requirements and constraints. On
the contrary, all those issues must be taken care if a PG is composed from the scratch
at the run-time. It can take a substantial amount of time (e.g., few microseconds
to few minutes) but, the composed PG can be well adapted to various demands.

According to [BY97] ”A complex system is a system formed out of many compo-
nents whose behavior is emergent, which is, the behavior of the system cannot be
simply inferred from the behavior of its components.” By that definition, a service
generated from interaction of various modules is a complex system. The algorithm
complexity is a direct result of solving a complex system, an intuitive measure of the
algorithm complexity will depend on amount of components, their interactions and
possible combinations, besides amount of input parameters. As described above in
a trivial composition approach, the algorithm complexity will accounts towards an
exponential rise in the required time.

In [Sip96] author defines time-complexity as ”The time complexity of an algorithm
quantifies the amount of time taken by an algorithm to run as a function of the
length of the string representing the input.” Hence, in this work, the required setup-
time and the time complexity terms are used interchangeably.

Given that generated service is a complex system, and it remains same either it
is built at the design-time or at the run-time. However at the design-time, first
of all, human-analytical abilities can be used, and second, time constraints are far
more relaxed unlike at the run-time. However, the design-time has least available
information to generate an optimal service for the arbitrary requirements.

Now the question is here, how long it will take to make the desired service available
to a user once a service is requested while using maximum available information (i.e.,
to achieve the desired flexibility 1.1) for a composition process? The design-time
fails to satisfy the requirements of using the maximum available information for a
composition process, whereas, use of the run-time will increase the required-setup
time significantly as argued above.

Individually, neither the run-time nor the design-time can provide an optimal solu-
tion to the problem.

This research is based on the hypothesis that the required setup-time can be signif-
icantly reduced by splitting a composition in different time-phases without compro-

1.2. PROBLEM STATEMENT 11

mising on the desired flexibility of the FIA.

This work proposes an intermediary FC approach (i.e., template based composi-
tion), which splits a composition process across the different time phases. The
interdependencies within a protocol graph are solved at the less time critical time-
phase (Design-Time). The critical time-phase (Run-Time) is utilized for optimizing
the composition by use of the maximum available information. The detailed ap-
proach can be found in Chapter 5.

Methodology: The research uses the classical hypothesis experimental method to ad-
dress the above question.

Before proposing the approach, to have a sufficient background and to avoid the
repetition of work, a literature review has been carried out which is found in the chapter 4.
A prototype as proof-of-concept is implemented (code: A.6) to evaluate the performance,
in terms of required time, of the proposed approach. The performance evaluation of
the approach is presented in 6. The functionalities of the TCP/IP stack are used for
the testing purpose and the extracted functionalities are published in [SDS+09]. The
prototype of the approach has been demonstrated in [GSS+12]. In addition, the flexibility
of the approach is discussed in section 5.2.

12 CHAPTER 1. INTRODUCTION

1.3 Document Structure

After this introduction, the rest of the thesis is organized as following:
Chapter 2 describes main terminology and the concept of functional composition and

its requirements identified within the G-Lab project and used in this thesis. Chapter 3
covers the proposed SOA-Based Network Architecture by ICSY5 and its components like
requirements, API, composition & selection of PG and finally the execution framework
(SONATE Framework).

Chapter 4 describes the state of the art on the topic of functional composition, the
approaches are classified by time-phases (e.g., design-time, run-time and intermediate).
Also, it covers the comparison among intermediate approaches including the template-
based composition.

The proposed approach (Template-Based Composition) is described in chapter 5, at
first it discusses the basic concept then next it elaborates how the templates and domain
policies are described, followed by the template selection and the generation of executable
protocol graphs. Later, it describes a TCP-like protocol graph generated by the template-
based composition followed by the concluding remarks on the proposed approach.

The performance of the approach (i.e., based on Java-implementationA.6) is evaluated
in the chapter 6. The thesis is concluded with the chapter 7 besides the future work which
can be carried out in later projects. The appendices contain the examples used throughout
the work, and brief detail about the implemented prototype.

5www.icsy.de

Chapter 2

Background

This chapter covers the knowledge that is essential to understand the research work
presented here. The first section describes the terminology used in this work, the next
one, at first describes the functional composition from general perspective and then go
on to describe the definition and the requirements for the Service Oriented Network
Architecture (SONATE) 3.2. Also, the issue of heterogeneity of services is described
briefly, it is not part of either SONATE or the research in this thesis. However, it is
needed to understand how functional composition can increase the diversity of services
so the challenge to deal with it.

2.1 Terminology

Same terms may have different meanings in different research fields. To avoid the am-
biguity of terms, they are clearly described in the individual research work, unless the
definitions of the terms are well known and standardized. This section describes the
most commonly used terms in this work, the other specific terms are explained within its
context as needed.

According to IEEE Standard [IEE00], architecture defines the fundamental organi-
zation of a system, the relationship of components and design & evolution principles.
The Internet is considered as a distributed software system [SDS+09], where several
software modules (i.e., protocols/micro-protocols [GKS03]) are deployed at the end- and
intermediate- nodes. The components, involved in creating a successful communication
between two parties, are considered as a part of inter-network architecture such as ap-
plication programmable interface (API), composition methods, selection methods and
execution framework.

13

14 CHAPTER 2. BACKGROUND

Figure 2.1: Effect, Mechanism and Implementation

In service-oriented network architecture, the idea is not to have specifically made
protocol stacks anymore such as TCPIP, UDP, SCTP but rather have a functionality
implemented by smaller software modules. In this work, the term ”Building block” is
used for an implementation of those micro-protocols.

The lowest abstraction in the fig.2.1 [SDS+09] is an implementation, which is a
software code for a particular mechanism also referred as building block here. One higher
abstraction is an algorithm or a Mechanism as used in this work. A mechanism pro-
vides the description of how to achieve the desired effect. Different pieces of software
can implement a particular mechanism. Two mechanisms are considered equivalent if
they provide the same effects regardless of their implementation techniques and code
intricacy. In a network architecture, mechanisms are usually specification of protocols
or micro-protocols. Such as TCP specification describes every detail which is necessary
for two peers to communicate using the TCP. However, it does not define a specific
implementation. There exist various implementations that are all compatible as they
all implement the same mechanism. Mechanisms exist at any granularity; a mechanism
can as tiny as Time-to-Live (TTL) mechanism such mechanisms are used for creating a
compound mechanism.

2.2. FUNCTIONAL COMPOSITION 15

The highest abstraction is called Effect as shown in the fig.2.1. An effect describes the
desired outcome when a mechanism is used. An example of an effect is ”security”, which
can partially be covered by an encryption or an authentication or any other protection
mechanism. There may be several different mechanisms, which produce the same effect.
For example one mechanism uses sequence numbers to keep order. Another mechanism
uses a sequential acknowledgment and thereby provides the ordering as an implicit effect.
In general, an effect is independent of a mechanism and its implementation, the same set
of effects can be provided by a different mechanism or set of mechanisms. The correlation
and examples of effects are described in detail in this paper [SDS+09].

The goal of a flexible inter-network architecture is to satisfy the customized user/ap-
plication requirements, to achieve that goal the provided effects of building blocks are
combined together (i.e., composition) to get a Communication Service. A commu-
nication service is an end result of a composition process. This service is later used by
applications/users to establish an end-to-end connection. The terms service and commu-
nication service are used interchangeably in this text. The connections among building
blocks are defined in a structured way so called Protocol Graph (PG) [WOP92]. A
protocol graph determines which building blocks are used and how are they connected
to each other in order to provide a communication service. A Composition Method
generates a protocol graph. Composition method/process and functional composition are
used interchangeably in this work.

2.2 Functional Composition

The idea of functional composition is not new it has been used since few decades in
software engineering to divide a code into various modules [May72] and combine them
to achieve the desired result. However, the idea has been introduced relatively late at
network protocols level, as group of network researchers in early 1990s concentrated on
working in dynamic micro-protocol composition. They decomposed a functionality of the
protocol stacks into a set of micro-protocols and then composed those micro- protocols
dynamically based on the incoming requests from an application. Some of those works
are Dynamic Configuration of Protocols [VPPW93a] and Function Based Communication
Subsystem [Sti94].

In SONATE, the functional composition receives different inputs from various sources
such as requirements from an application, policies from a network administrator, con-
straints from the network and available BBs from the host system to generate protocol

16 CHAPTER 2. BACKGROUND

Network

Application

S&C
Constraints

Requirements

Policies

Administration

Protocol
GraphBuilding Blocks

Figure 2.2: Functional Composition [KSRM12]

graphs as shown in figure 2.2.
As the topic of this work is focused on an intermediate composition, it is necessary to

have an overview of the requirements of the functional composition.

2.3 Functional Composition Requirements

Certain requirements must be taken into account to develop a composition approach. In
the course of the project (G-Lab), some members of the G-Lab team worked to identify
the following requirements for a successful composition approach it was also published in
a paper [SKR+11].

2.3.1 Description of Requirements

Applications need to be able to state the requirements to an underlying network to provide
a customized functional composition. Application requirements must be described in a
way that can be processed by a composition method. It is required to have a common
description language and domain understanding that will be shared between application
layer and a composition process. A common description language is necessary so that
an application can make a request of effects that should be processed and provided by
a network. There is not only a need for a description language that tells how to write

2.3. FUNCTIONAL COMPOSITION REQUIREMENTS 17

down requirements but also what to write down. Additional requirements may arise
depending on an application or the platform on which application is running. The same
application might have different energy consumption needs on a desktop or a mobile
phone. User requirements might involve control over costs caused by consuming a certain
service. An application can describe its requirements regarding optional and mandatory
service properties (e.g., max delay, min data rate, max jitter). It can be indicated to the
underlying network which requirements can be left out in case they cannot be fulfilled.
An application can also restrict quantitative properties by providing some mini-ma and
maxi-ma of the property it can be regarded as constraints from an application side.

2.3.2 Description of Building Block

A Building Block (BB), as shown in figure 2.3, is an elementary component of functional
composition approach which poses various challenges. As mentioned earlier, a building
block contains an implementation of a communication service or a partial communication
service. A BB comprises of interfaces that enable the interaction with other entities. To
define these interfaces is challenging because they must be as generic as possible so that
it is not required to alter or re-implement interfaces if it needs to interact with another
building block(s). A semantic description of BBs is required to achieve a functional com-
position. A building block’s description consists of information about interfaces related
to the particular mechanism.

Building Block

Interfaces

Specification

Figure 2.3: Building Block Description [SKR+11]

To describe placement (i.e., ordering) dependencies of Building blocks is another chal-
lenge but of course it depends on how services have been realized. If a single service has

18 CHAPTER 2. BACKGROUND

been built up by single or multiple BBs.

2.3.3 Identifying the Dependencies

One of the key requirements of network functional composition approach is to identify
dependencies among mechanisms.

If it is assumed that a communication service is implemented by several BBs, then
it is required to identify the BBs that are involved in the implementation of a specific
service and their dependencies before the composition process begins. An example of de-
pendency can be compression and encryption mechanisms it does not make much sense
to compress encrypted data. The task of a functional composition process is to create
a protocol graph. An execution sequence of mechanisms can only be established if it is
known that how they are dependent on each other. Dependency information is required
to decide if it makes sense to have two similar kinds of mechanisms in the same protocol
graph. An example of such a dependency can be call-forwarding and answering-machine
mechanisms. If both of those mechanisms are included in a communication service, it will
always be unclear which mechanism should be used when a call arrive. In case if a default
mechanism has been specified then, another mechanism will never be executed thus it
will not have any use. The mechanisms can be dependent based on their read/write, in-
put/output relationship or their dependence can base on their optimal functioning. These
dependencies might be described statically or can be obtained dynamically by observ-
ing their read/write, input/output, syntactic and semantic information. To conclude,
identifying and describing dependencies and obtaining dependency information during
run-time is a challenge and needs to be tackled before and/or during the composition
process.

2.3.4 Finding Granularity of Mechanisms

It is a challenge to find an appropriate granularity of mechanisms that can be used by the
functional composition approaches because the performance (i.e., regarding delay, cost)
of different approach has various amount of impact on granularity. Granularity has also
an impact on how mechanism should be described. For example, a mechanism can be an
entire communication service such as ”reliable transmission” or it can be further divided
into a set of mechanisms: data correctness, completeness and order preservation to make
fine-grained services [SDS+09]. On the one hand, such kind of fine granularity makes
functional composition flexible and on the other hand it requires a complicated description

2.3. FUNCTIONAL COMPOSITION REQUIREMENTS 19

of protocol graph(s) and building block(s) which also makes composition process time
consuming. On the contrary, coarse-grained (e.g., Printing mechanism, Naming and
Addressing) mechanisms are less complicated to describe but make an approach less
flexible as micro-mechanisms can be not be combined with other mechanisms to create
a different communication service. Nevertheless, it simplifies a composition process in
terms of the number of mechanisms and their description handling.

2.3.5 Composition Methods

Finding and selecting a suitable composition method based on domain requirements is a
challenging task.

Service
Broker

Application

R
eq
u
irem

en
ts

Conventional
● TCP/IP
● UDP/IP
● SCTP/IP

TemplatesCompound Dynamic S&C

BB Pool

O
ff
er
in
g
s

Network Abstraction API

Result

Figure 2.4: Composition Methods and Service Selection [KSRM12]

Composition methods can vary from static- to run-time composition as shown in fig-
ure 2.4 where an application designer while using a designing tool does static composition
manually. On the contrary, the run-time composition is done automatically after consum-
ing application requirements and, network and other hardware & software constraints.

Partial composition (i.e., a major part of this work namely template-based compo-
sition5) method is performed statically at design-time and as well as dynamically at
run-time. Different functional composition methods have their disadvantages and advan-

20 CHAPTER 2. BACKGROUND

tages; there is a trade-off while selecting a method. Such as design-time composition
has less information as it does not have access to run-time information of network and
application but as being on design-time, the time is less critical. On the other hand, the
run-time composition has more information regarding all the run-time constraints and
dependencies, but performs at critical time to compose a communication service. Se-
lecting a pre-generated communication service could be faster to set-up but not flexible,
while on the other hand, the dynamic composition takes more setup-time but provides
more flexibility.

2.3.6 Rating of Protocol Graphs (PGs)

In case, if more than one protocol graph is satisfying the user/application requirements
which one should be chosen? In this case, we need to select the one, which is most
nearer (optimal) to application/user demands. However, to compare the values, it is also
necessary to normalize the given properties as those can be qualitative (i.e., security)
and/or quantitative (i.e., delay, cost and loss rate).

Multiple Criteria Decision Analysis (MCDA) methods like Analytic Hierarchy Process
(AHP) [Saa80] can be used to compare the different PGs. For doing this, at first, it is
necessary to aggregate the properties of the offered PGs. Then it is required to compare
the offered aggregated properties with the properties given as requirements from the
application.

2.3.7 Heterogeneity of Services

Networks today are heterogeneous and consist of diverse hardware resources (e.g., Band-
width, CPU, Memory, etc.), and network policies (e.g., free Internet access for home-users
or restricted access from a company LAN). Besides, not all networks support the same
functionalities/protocols such as IPv4, IPv6, and SCTP. The flexibility of networks will
lead to even more heterogeneity than today. Heterogeneity itself cannot be avoided in
general. Heterogeneity itself is not a problem but the attached uncertainty of what is
available in the network or at the communication endpoints and what not. This oblivion
leads to conservative decisions on ”what” is used. Therefore, any reference model for the
FI architectures should support mechanisms for dealing with network heterogeneity at
different levels, including running in parallel the various network architectures. Archi-
tectures based on functional composition should at least be able to be aware of different
network properties and to adapt to differences as far as possible. The network should

2.3. FUNCTIONAL COMPOSITION REQUIREMENTS 21

also provide information to application so that it can adapt if necessary.
Heterogeneity can be found inter or intra architectures. In inter-architecture hetero-

geneity, the major issue is that different nodes hold the different kind of protocols that
raises the challenges like protocol negotiation and possibly dynamic protocol deployment
during run-time. In intra-architecture the challenges are not limited to protocol hetero-
geneity but also domain constraints by being under different kind of operators. Multiple
architectures might be governed by different policies and constraints that raise the chal-
lenge of interoperability.

This work does not deal with this specific topic, as heterogeneity itself a major research
work. The solution such as negotiation before selection of a communication service and
having a common description of service across the networks to come to an agreement
about communication-service-selection can be used to solve the heterogeneity problem.

22 CHAPTER 2. BACKGROUND

Chapter 3

Service Oriented Network
Architecture (SONATE)

This chapter describes the basic principles of Service Oriented Architecture (SOA) and
that how they can be used in the Network Architectures. The further, the Service Ori-
ented Network Architecture (SONATE) approach is described, which is developed at the
group of Integrated Communication Systems – ICSY1 within the framework of G-LAb2.
The presented research work is a part of the SONATE. Thus, it is prerequisite to have
an overall understanding of the SONATE.

3.1 Using SOA Paradigm in the Network Architec-
tures

The current Internet is facing the similar problems as Software Engineering (SE). SE has
evolved to manage complexities (e.g., maintenance, integration of new functionality, time
and task management) of the development process, which has direct effect regarding such
as cost, quality and development time. Similar kind of problems is part of the Internet
that have not been addressed in the current design principle(s) of the Internet. As the
Internet has not been evolved with the change of trends, which made it a victim of
increased complexities. To deal with inflexibility and complexity issues of the Internet,
we can learn and implement the principle(s) and the technique(s) from the software
engineering.

1http://www.icsy.de
2http://www.german-lab.de/

23

24 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

SE architecture has advanced from structured programming to service orientation
paradigm (SOP) [VAMD09] to manage complexities. The design of future network ar-
chitecture can benefit from SE paradigms to make network architecture more flexible.
The SOA approach has already been applied to overlay and grid networks as presented
here [Hea05] [Jea08] [BM05]. In this section, it will be argued how SOP can be one of
the suitable methodologies for a future network architecture. Before arguing about why
to use SOP for a FIA, it will be helpful to describe the fundamental principles [Erl06] of
SOA, which are following.

1. Loose Coupling: Coupling refers to the degree of dependencies and bounding be-
tween two components. Loose coupling defines independence of a service so that
to execute own functionality a service does not require having knowledge of other
services.

2. Service Contract: A communication agreement is covered by service description(s)
or related documents.

3. Autonomy: The control of a service over its logic characterizes the autonomy.

4. Abstraction: Services are independent of logic they use, and it is hidden from the
outside world.

5. Re-usability: A service should be independent and fine-grained enough so that
re-usability can be promoted.

6. Composability: An ability of a service to be coordinated with services in a manner
that they can form a composite service. Composability fosters re-usability of a
service.

7. Statelessness: Property in which services do not keep the state after the request
has been processed.

8. Discoverability: A Service should be descriptive enough to be discovered easily.

Most of the issues in the Internet arise because of inflexibility and rigidness of the net-
work architecture. SOP can provide new prospect to build future network architecture.
SOP includes the characteristics such as loose coupling, re-usability and autonomy of a
service, which are fundamental requirements of a flexible architecture. A Protocol stack
can be decomposed into various functionality which are described with formal contract

3.2. SONATE 25

(i.e., a service description), it makes a functionality autonomous and self-descriptive. A
self-descriptive functionality has an ability to be discovered as it carries an attached de-
scription, which can be processed by a discovering entity. Abstraction is another point
to be taken into account while decomposing a stack into various functionality, it should
be at the abstract level where it does not rely on a particular implementation thus, the
provided logic should be hidden from a consumer point of view. Characteristics of a
BB such as autonomy, description and re-usability, makes it composable. The concept
of Composability fosters ease of integration of functionality. Nevertheless, the principle
statelessness of SOP might not be appropriate for all functionality of a network architec-
ture as some functionalities of network do require to keep the state such as reliable data
transmission.

3.2 SONATE

The Internet architecture is organized as a layered system, where each layer enhances and
abstracts the functionality of the lower layers. Interfaces between layers should define
the relationship of functionality accordingly. There are no universally accepted evolution
principles of the Internet. However, the OSI reference model, which is also a layered
system, defines that it should be possible to modify or even exchange the implementation
of a layer without the need to adapt to adjacent layers [Rec94].

Thus, there is a need of rethinking network architecture in general [BCSW00]. This
chapter discusses the proposed SOA based network architecture. The basic concepts of
network architectures based on the service orientation paradigm from layered to layer-less
as shown in figure 3.1. The main goal is to develop a flexible network architecture which
can adapt to changing requirements and network capabilities as well as it can integrate
new functionality easily.

Figure 3.1: Layered to LayerLess Architecture [KSMB14]

26 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

The following text describes the overall SONATE architecture before going into the
detail of the main components of the architecture.

Web-services implement the specifications of SOA paradigm and are designed for the
inter-operation of distributed autonomous functionality on the application level. Net-
work functionalities like routing, data encoding or flow control themselves are inherently
distributed. Thus, network architectures cannot use the same implementation like web-
services, and because of efficiency issues it would not be appropriate either to process an
exhausting meta tagging.

In Web-services, a workflow is generated to fulfill user requirements, and WSDL is
used for interface specifications. However, web-services implementation does not define
how to describe the service semantics. Where interfaces help to check the comparability
of different web-services with each other but they do not describe what is being covered in
a web-service. So an automatic composition will not have an idea that which web-services
is to combine.

In this architecture, not only that ports define interfaces, but also which effects are
provided and required by those ports. Hence, by the use of the port concept, the semantic
of a service is covered which can be utilized for an automatic composition.

The interfaces of a building block should reflect the provided effects and hide the
implementation details.

In the SONATE [MR08] [RH08], a service oriented network architecture is presented.
SONATE aims at supporting dynamic composition of communication services by gener-
ating dynamic protocol graphs3. Without being dependent on a static protocol graph, it
is easier to make use of new building blocks and to reuse functionality on different levels.
Having dynamic protocol graphs implies that there is no static placement of functionality
as defined by the layers of the OSI reference model. In this sense such networks will be
layerless such as compression or encryption can be used for application payload only or
also for some protocol headers. Furthermore, it is not necessary to process the protocols
in a sequence. For instance there might be different branches in a protocol graph to
handle different but related data flows (e.g., signaling and streaming media) at the same
connection. Service description is used at the early stages of composition to enable the
flexibility.

Figure 3.2 shows the SONATE approach where an application sends the requirements
3.2.1 via requirements based API 3.2.2, which are received by a service broker. Service
broker sends the requirements to a composition process 3.2.4 where the protocol graphs

3A protocol graph corresponds to workflows in SOA terminology.

3.2. SONATE 27

Figure 3.2: Service Oriented Network Architecture (SONATE) [KSRM12]

will be generated. A composition process may generate more than single protocol graph
so that the most suitable one will be selected. A selection process 3.2.6 runs inside the
service broker. After the selection of a protocol graph, it will be directed to the SONATE
framework 3.2.7 for execution and to initiate a communication.

The following text describes the requirements description, API, template-based com-
position process, AHP based service selection process and execution framework respec-
tively.

3.2.1 Description of Requirements

Requirements are consisted of two parameters (i.e., service-name, user-requirements)
which are needed by an API. Where the naming parameter specifies what service is
accessed, and the user-requirements parameter specifies how. Requirements from a user
or an application and offerings from the network are represented by a quadruplet of effect,
operator, attribute, and weight as shown in fig.3.3 [KVM11].

28 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

Operators link effects to attributes, typical operators are “<‘‘, ‘‘>‘‘, ‘‘=‘‘, ” <=′′,
etc. Attributes quantify or qualify the effects. They represent values like an exact quan-
tity (e.g., delay < 20ms), Boolean values (e.g., Packetordering = true) or a quality (e.g.,
delay = low). The qualitative parameters need an extra mapping or a domain-based tax-
onomy. There is an additional branch of weight that is used in specifying requirements.
By using the weight attribute, an application or a user can emphasize on the importance
of particular requirements.

Requirements and offerings are structured in a flat scheme and do not have any
parent-child relationship like having multiple requirements under single requirement (i.e.,
to fulfill single requirement, a composition process must fulfill other sub requirements).
The benefit of this scheme is that an application developer does not need to worry about
the place of a requirement. Any new requirement can be added without extra knowledge
about dependencies (i.e., parent-child relationship) among other requirements. However,
this might not be an economical choice in many cases such as in a selection and composi-
tion method where every single requirement is not dealt independently. In this case, two
interdependent requirements must be processed together such as to select an encryption-
BB the process must consider the functional requirement of ”Ciphering=true” and as
well as the key strength (e.g., Ciphering.key=256).

Figure 3.3: Requirements/Offerings [KSMB14]

3.2.2 Requirements-Based API

The design concept of socket API allows defining address family. However, it relies
on applications to specify the exact protocol to use. The current socket API does not

3.2. SONATE 29

hide underlying protocols from the applications, which makes it harder for an appli-
cation to switch from one transport protocol to other transport protocol such as from
SCTP [SXea00] to DCCP [FK06], as an application needs to specify the type of a pro-
tocol exclusively. The exact demand of a protocol by applications fosters tightly bound
coupling, which forces the underlying network to use that exact protocol rather than an
improved version of a protocol or one that is more suitable for the given network con-
ditions. To deploy a new protocol in the Internet architecture, it is not enough just to
change the application but it also requires modifying or exchanging the API. The tight
coupling also causes the issues [KWL+10] like compatibility (e.g., IPV6 has no backward
compatibility to IPV4), Middleboxes (i.e., rejection of packets in case of unknown format
of a packet), and Operating System (i.e., adaptation of deployed protocol in vendor OS).

An application needs to be modified if it wants to use a different transport protocol
than currently being used such as an application intends to shift from TCP [oSC81] to
UDP [Pos80]. Peer addressing and address-resolution are part of an application, which
makes an application address type dependent. Thus an application has to select a par-
ticular addressing type such as IPV4 or IPV6 or a mapping/translation mechanism (e.g.,
Application Layer Gateway [vB11]) must be deployed at lower layers. Different address-
ing types require different socket structures (struct) so that there is a difference between
IPv4 TCP socket structure and IPv6 TCP socket structure and same is true for UDP.

The call of “setsockopt” is an example of another dependency where protocol specific
options such as TCP NODELAY can be turned on or off, as options are specific to a
protocol so that it is must for an application to know details about a protocol.

If an application needs to switch transport protocol, it is not enough just to adjust
socket options or to change addressing family but it is also required to alter the existing
API(e.g., Sockets API Extensions for SCTP [STP+11]) or to use a different API.

Abstraction is used for hiding complexity and to encourage flexibility. In this ap-
proach, it is proposed an API by which an application can send its requirements in an
abstract form to the underlying network in a way that applications do not need to rely
on specific protocols; the process of selection would rather be handled by the network
architecture. Network architecture should able to process those abstract requirements of
applications. Abstract requirements from the applications also help to create a unified
API so that a single API can be used for multiple means of transport protocols transpar-
ently to foster a loose coupling between the application and underlying protocols.

Current applications are tightly coupled with the given protocols, though they only
care about its connectivity demands are fulfilled. A Requirements-based API [SM12]

30 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

[LMW+11] will alleviate the developer from choosing a protocol. Instead, requirements
will be communicated to the underlying network architecture. An application uses these
requirements to request specific characteristics of a connection. Requirements are spec-
ified regarding effects/capabilities, an effect is a visible outcome of a functionality such
as flow control functionality provides effect of transmission rate adaptation between two
parties.

A requirements-based API has been proposed, the further details can be found in this
publication [SM12].

3.2.3 Building Block Description Language

The description of a BB2.3.2 contains the information such as covered effects and the
interfaces that are needed to connect a BB to others.

Figure 3.4 shows the schema of a building block description language. Every building
block has a unique universal (i.e., UUID) and building block id (i.e., BBID), BBID is
used internally by a composition method to distinguish BBs in a protocol graph so that
execution framework can select a right BB instance out of BB pool. The schema consists
of two major branches so called ”Port” and ”Optional” as shown in fig.3.4. The ”Port”
section deals with the ports of a BB, ports work as communication end-points in BBs
interaction [SGKee11], the section ports is the most crucial part of the description as each
port describes the offerings and the requirements on it. Moreover, accumulation of all the
offerings on the ports defines the effects covered in a building block. Besides, revealing
the covered effects, ports are used for connecting a BB to other BB(s). A composition
method matches the port offerings (i.e., output) of a BB to the requirements (i.e., input)
of other the other BBs to connect the building blocks together.

Offerings and requirements of a port have a same internal structure consists of a triplet
of effect, operator and attribute so that they can be compared to connect to other port.
The triplet is described in detail in the sub-section 3.2.1 except weight. The ”Optional”
branch of the description language covers the properties of a building block, which in the
later process summed up to the same properties of other BBs to select the most suitable
communication service.

3.2.4 Composition of Protocol Graphs

Once the application requirements are known, a composition process starts by checking
the requirements and the available effects (i.e., covered by the BBs). To compose a

3.2. SONATE 31

Figure 3.4: Building Block Description Language Schema

protocol graph, first the suitable building blocks are selected from the BB pool, there
could be more than one building block that would satisfy the application requirements.
After the building blocks have been selected, they must be placed (i.e., ordered) properly
so that there are no conflicts. Besides, it should create an executable protocol graph.
Finally, the building blocks are connected to each other via ports as described in the
previous section.

The composition methods differ in terms of the time phase it uses to generate a
protocol graph. A composition can be performed at different phases (as described in 1.1)
which vary from development-time to on-the-fly (i.e., runtime).

Design-time composition creates a static protocol graph, which cannot be changed at
the later stages, whereas Runtime composition provides the most flexibility. Both design
and run-time compositions have their own advantages and disadvantages some of those
trade-offs are discussed in [SM11].

Based on arguments given here and 1.1, an innovative composition approach so called

32 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

template-based composition is presented in this work. Template based composition is a
partial run-time approach; Template based approach is the main topic of this work so
that it is described in the separate chapter 5 in detail.

3.2.5 Protocol Graph Description Language

After a composition process has been executed, it will generate a single or multiple
protocol graphs. However, a composition process must create a protocol graph that
can be interpreted by the intended execution framework (i.e., in this case, SONATE
Framework) to render the requested communication service from an application. Hence,
it is necessary to have a description language, which is known to the composition process
and to the execution framework (i.e., to execute a PG). A protocol graph is described in
a specific language. The description language is based on XML. The schema is shown in
the figure. 3.5.

The description language is divided into three major elements named as building-
blocks, connections, and offering.

The ”Optional” branch of the description language is used in a selection process of
a protocol graph, in case there is more than single protocol graphs have been generated
by a composition method. The selection of a protocol graph and use of the ”Optional”
section is described in the following sub-section 3.2.6.

The ”buildingblocks” part of the language tells an execution framework about the
included building blocks in a protocol graph so that they can be retrieved from the BB
pool and instantiated. Its ID or UUID can identify a BB depending on the scope of
the retrieval. Whereas, the ”special” attribute symbolizes the two exclusive building
blocks namely ”app” (i.e., application) and ”net” (i.e., network), which are responsible
for collecting/dispatching the data from/to application and network respectively.

The ”connections” branch in the description language defines the ordering of building
blocks and ultimately execution flow. Whereas, ”blockname” & ”blockid” attributes are
related to building block and ”name” & ”id” attributes describe a port.

3.2.6 Protocol Graph Selection

Once a composition process is carried out, it may generate more than single suitable
protocol graphs. It is now necessary to select one out of them so that it will be used for
the communication establishment. If any of the generated protocol graphs can be used for
the communication, the simplistic selection mechanism will be to select the first match.

3.2. SONATE 33

Figure 3.5: Protocol Graph Description Schema

However, it is in the best interest of the requested application to find the most optimized
match among the generated protocol graphs. To extract the most optimal match, the
qualitative and quantitative properties (e.g., delay, jitter, bit-rate, throughput) of an
individual protocol graph are used as a selection criterion. Before these properties can
be compared to find the most appropriate protocol graph it is needed that the applica-
tion/user defines that which criteria are more important by assigning the weight to the
individual properties. If no weight is specified then it is up to the selection process to
deal with it.

The selection of a PG uses multi criteria so that it can not be solved by a simple
comparison algorithm. Hence, Multiple Criteria Decision Analysis (MCDA) methods are
used for the selection, two of those methods are Analytic Hierarchy Process (AHP) [Saa80]
and Multi-Attribute Utility Theory (MAUT).

34 CHAPTER 3. SERVICE ORIENTED NETWORK ARCHITECTURE (SONATE)

3.2.7 SONATE Protocol Graph(s) Execution Framework

The SONATE execution framework provides a mean to execute protocol graphs. In ex-
ecution of a PG, a BB is invoked and executed; the corresponding values (i.e., resultant
after BB execution) are passed as input parameters to the connecting BBs. The ba-
sic concept of SONATE Framework is described in this paper [RSS+09]. The SONATE
framework deals directly with the instances of building blocks to provide the required
communication service. A protocol graph is described in the Extensible Markup Lan-
guage (XML), and the SONATE framework can process an XML based protocol graph.
The major tasks in the processing of a protocol graph involve retrieval of BBs from the
repository, the connection of BBs as specified in the PG, execution of BBs and exchange
of data/information among the building blocks.

The SONATE framework has a JAVA-based implementation. To enforce loose cou-
pling, the BB interaction model hides all BB’s implementation from each other. Since
building block instances still need to communicate with each others to solve this prob-
lem the concept of named communication endpoints called ports is introduced. Building
blocks can use the ports to distinguish different kinds of communication partners or dif-
ferent operation modes, the concept of the ports is discussed in detail in this paper [SG-
Kee11].

3.3 Contribution

The SONATE is a combined effort of G-Lab members at ICSY. However, every individual
member had a specialized focused within the project. ”Dennis Schwerdel”4 worked on a
run-time composition approach [Sea10a] and the port-concept [SGKee11]. ”Rahmatullah
Khodoker” 5 proposed a service description [KVM11] and PG selection [Kea12] method.
Whereas, ”Daniel Guenther” 6 researched on a run-time selection and composition ap-
proach [Gea11].

Other proposed approaches are performed at run-time, whereas the presented work
suggests a novel intermediate composition approach which exploits the strength of differ-
ent time-phases to generate the protocol graphs with reduced time-complexity and yet
flexible enough to adapt to application and network requirements.

4https://www.researchgate.net/researcher/61636997 D Schwerdel
5https://www.researchgate.net/profile/Rahamatullah Khondoker
6https://www.researchgate.net/profile/Daniel Guenther/

Chapter 4

State of the Art of Functional
Composition

This chapter describes the state of the art on functional composition to have a bet-
ter overview of the topic. The presented approaches are divided into categories on the
time-phase. The section ”Design-Time Composition”4 covers the projects with static
composition such as RNA [TWP06], SILO [DRB+07] and, NetServ1. Whereas section
”Run-Time Composition”4.6 describes dynamic composition like RBA [BFH03], Da-
CaPo [VPPW93a] [VPPW93b] and, Network Service Architecture [GW07] approaches in
the network architectures. The section ”Intermediate Composition”4.14 covers the most
related work to the proposed approach of Template-Based composition5, as the proposed
approach also deals with intermediate composition method by splitting it in different
time-phases. The related work in this section is not only taken from network architecture
but also from the web-service domain as this strategy is not yet implemented in many
network-based projects. Further, intermediate composition approaches are compared to
each other and then finally to the Template-Based composition.

Design-Time Composition

4.1 Net-Silo

Service Integration Control and Optimization (Silo) [DRB+07] 2 is a US NSF project that
also uses elements of fine-grained functionalities as reusable building blocks. Their main

1NetServ Project - http://www.cs.columbia.edu/irt/project/netserv/
2Net Silos http://net-silos.net/

35

36 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

objective is to separate control from data functions to enable cross-layer interactions. A
service is fully defined by describing the function it performs, interfaces it presents to
other services and its control parameters that are also referred as knobs. Knobs (service
parameters) can be tuned dependent on the application requirements. A method is an
implementation of a service that uses a specific mechanism to carry out the functionality
associated with the service. For instance ”re-sequencing” is one method for implementing
the ”in-order packet delivery” service. A silo is a dynamic composition of building blocks,
which are instantiated on a per-flow basis. A control agent, available at each node, is re-
sponsible for the composition of a silo. The composition refers to determining the subset
of services, their order in the stack, and the service implementation. Besides, composi-
tion process also adjusts all service & method knobs based on the requirements and the
available resources. An ontology, constraints and dependencies among services, has been
established for the fine-grained composition. In [VWR+07] the authors present a sim-
plistic service composition approach for the SILO network architecture. It is a recursive
approach based on pre-defined (at design-time) precedence constrains of services.

4.2 NetServ

The NSF NetServ project 3 started in Spring 2009. It follows a bit different approach to
ANA and RBA functional composition. Whereas in ANA and RBA, the nodes function-
ality is dependent on the packet header and content, in NetServ the service invocation is
signaling driven. The implementation is based on the Click Modular Router 4 which is
an OpenSource C++ project. Services are deployed in the OGSI Java Framework. OSGI
supports loading and unloading of building blocks at runtime that can be simple bundled
jar files. This setup enables dynamic in network service deployment.

The NetServ project concentrates on the implementation of Content Distribution
Network (CDN) enabled by additional services implemented on top of the Click Router.

4.3 Network virtualization architecture (VNet)

In the current EU Project 4WARD 5, the virtualization of network resources is investi-
gated. Network virtualization allows the concurrent operation of multiple network types

3NetServ Project - http://www.cs.columbia.edu/irt/project/netserv/
4http://read.cs.ucla.edu/click/
54WARD http://www.4ward-project.eu/

4.4. NODE ARCHITECTURE 37

on the same infrastructure thus providing a multiple instead of an IP ”one-size-fits-all”
solution for networking. In this project, virtualization takes the central role and is con-
sidered as a technology for enabling Internet innovation [SWP+09]. The idea is to have
different virtual networks, which can be built according to different design criteria and are
operated on the custom-tailored network. There are four main players in the proposed
approach namely Physical Infrastructure Providers (PIPs), Virtual Network Providers
(VNPs), Virtual Network Operators (VNOs) and Service Providers (SPs). Where PIP
owns & manages physical infrastructure, VPN is responsible for composing the virtual
resources, VNO provides installation & operation of a VNet and SP uses VNet to offer
its service. The virtual path is connected beforehand, later, any user or application can
request to join a virtual network.

4.4 Node Architecture

The node architecture is another project that has been carried under the EU project of
4WARD. This project [VME+09] also uses the virtualization for running the different
virtual networks in parallel. A so-called Netlet [VMW+09] contains a collection of func-
tional building blocks and can be seen as a container i.e., to encapsulate today or a future
network protocol stack. Netlets hide the protocol details and the only way to commu-
nicate is via provided interfaces. They can be exchanged without the need to change
the application or network interfaces. A Netlet Selector depending on the application
requirements can choose such a Netlet. The functional building blocks can be reused in
different Netlets, and are stored in a Repository. These Netlets are created at design-
time but they also contain knobs for configuring the certain properties of the Netlets at
run-time. Architecture specific multiplexers are used to run the Netlets in parallel.

4.5 RNA

The Recursive Network Architecture [TWP06] uses a different approach by introducing
a meta-layer which is a generic protocol layer offering essential services. Each protocol
layer stack will then be instantiated from this meta-layer, which provides cross-layer
interactions. The meta-layers are designed at the design-time. The goals are set at the
run-time to configure the meta layers based on the requirements. Project provides the
limited information. Hence, it is not possible to know the exact implementation details.

38 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

4.6 AutoI

The Autonomic Internet, AutoI 6 is a running European Union (EU) project which targets
a self-managing communication resource overlay for secure, reliable, guaranteed and fast
delivery of services. For achieving this objective, AutoI is focusing on designing and
developing an open source framework for the composition and execution of reliable &
guaranteed services. For doing so, it merges virtualization of network resources and
policy-based management techniques to define, describe and control the internal logic of
services.

Run-Time Composition

4.7 Role-Based Architecture (RBA)

RBA was proposed in [BFH03] and can be seen as an abstract approach to a non-layered
architecture. The RBA is organized in standardized building blocks, which are called
roles. Each role has its roleID that reflects its functionality. In the initial concept there
was only a small and limited amount of roles considered. There can be multiple roles on
a single node and a role can also be abstractly distributed over multiple nodes.

RBA decomposes the network stack and therefore the packet header structure will no
longer be a stack but a heap of headers. This use of Role Specific Headers (RSH) is the
main concept for role interaction and composition in RBA.

The RSH semantically define the inputs and the outputs of a certain role. They
address roles at specific nodes in the way roleID@nodeID; in case of the distributed role
this may also be roleID@* which means that each node along the path with that roleID
will process the packet. Along with its path the packets RSH can be read, modified,
added or deleted. A role may also contain an internal role state that can be changed by
signaling through another RSH or can modify its activity depending on the set of RSH
in a packet.

How this internal state can be used is shown by the example of forwarding. RBA does
not provide a model for routing packets, but for header processing. In a packet from A
to B, a role specific header will address the ”Forward” role with additional information
Forward@*, sourceID, destinationID on every node. How the forwarding is done will
be determined by another role that first calculates the routing path and then it sends

6http://ist-autoi.eu/autoi/

4.8. SELF-NET 39

another RSH to change the state of the Forwarding role.
When a packet arrives, the node must decide in what order the roles must be exe-

cuted. Because some functionalities require specific ordering (e.g., Compress, Encrypt,
Expand, Decrypt is not useful), there also needs to be some precedence information car-
ried in packets. Roles that communicate directly with each other on one node should
be composable into an aggregate role. These roles are directly bounded instead of using
shared data in RSH.

The authors especially emphasize that RBA is a generic model, in the sense that it
can be applied on top of any layer, whether all network functionality is split into roles
or only the functionalities above the Link, IP or even application layer is decomposed,
depends on the realization.

4.8 Self-Net

Self-Net (Self-Management if Cognitive Future Internet Elements) 7 is an ongoing Eu-
ropean Project that investigates approaches for autonomic self-management of the net-
work stack. Functionality is also split into functional blocks (network elements), which
form network compartments. The orchestration of network elements and the selection
of network compartments are achieved through cognitive cycles (measurement, execute,
decide) which empowers self-organization and optimization. As the project is still young
only preliminary results are available.

4.9 Automatic Network Architecture (ANA)

The project ANA 8 has been funded by the EU commission for a three years period
since 2006 realized the first implementation of a non-layered network architecture. In
ANA, the functionality is decomposed in functional blocks that perform the processing.
Functional blocks can have arbitrary granularity such as the size of a small entity or a
whole network stack. Functional Blocks can be accessed via one or multiple Information
Dispatch Points (IDP). Data packets are always sent to a certain IDP not to a functional
block itself. Having multiple IDPs for one FB enables the differentiation between different
functions or states that are performed by the functional block. If IDP A is accessed then

7Self-Net https://www.ict-selfnet.eu/
8Autonomic Network Architecture (ANA) http://www.ana-project.org/

40 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

the function performs forwarding to an address A whereas when IDP B is used the
information is forwarded to a different address B.

An Information Channel (IC) is a functional block that is also accessed by an IDP
and provides an information channel to some remote entity. ICs can be a cable, radio
medium or memory, but can also be a composed service that offers multicast or broadcast.
ANA uses the term compartment for different network ”instances” which includes nodes
with the same functional blocks. One of these compartments may also be legacy IP,
but a compartment can also be bounded by different network technologies (wireless,
wired). Each compartment can have its own communication scheme (incl. addressing,
forwarding, etc.). Nodes can be part of different compartments as long as they include the
functional blocks for these compartments. These ”multihome” nodes can act as gateways
for translating the communication between the compartments.

An ANA Node includes the MINMEX (Minimal INfrastructure for Maximal Exten-
sibility) and the playground. Whereas the playground includes all functional blocks, the
MINMEX provides packet forwarding between different functional blocks on a node and
access to other protocols and compartments.

Each functional block knows a successor IDP and, after processing, sends the data
to this IDP. Dispatching from IDP to IDP or FB to FB continues until an IDP is called
which provides a low-level function, which forwards the packet the next node via a net-
work interface. Different functional compositions are achieved by manipulation of the
IDPs either bounding the IDPs to different functional blocks, deleting or adding them.
For loading functional blocks and exchanging service specification ANA uses the Active
Service Deployment Protocol [SSCH03], which can query the presence of services such as
(un-)load, (re-)configure, (de-)activate services and service composites. The composition
of atomic functional-blocks into higher-level service components is done by the use of
service control graphs and filters [Sif08]. The control graph is a cyclic directed graph and
represents all possible processing paths through functional blocks whereas the actual pro-
cessing path is runtime determined. The actual processing path depends on the content
of the message, which is matched by message filtering rules and external events that are
used for autonomic adaptation.

A first running implementation of ANA can be used as standalone user-space appli-
cation or as Linux kernel module. ANA has not been designed for performance more as a
proof of concept. The implementation provides basic functional blocks, but also provides
interoperability with legacy IP.

4.10. COYOTE 41

4.10 Coyote

Coyote [BHS+98] is motivated by the challenges of mobile computing systems like service
disconnection, location and QoS support. The required functionality for mobile hosts and
base stations are structured in protocols which can be implemented in a variety of micro-
protocols. In Coyote, composite-protocols and protocols are composed in hierarchical
order whereas micro-Protocols are composed in non-hierarchical to provide more freedom
to composition. The micro-protocols are structured via events and event handlers in
order to reduce interdependencies among them. The actual micro-protocol selection is
run-time based, which depends on the events that are originated by the system or the
micro-protocols.

4.11 Network Service Architecture

With [Wol06] [GW07] [SW08] [HGW08] [SHPW09], the authors present the series of
publications that present an automated network service composition approach and im-
plementation. In [GW07], they propose a first design for a network service architecture.
A service controller (i.e., one for each autonomous System, organized in a hierarchy)
manages some network service nodes and upon connection request sets up the service
processing sequence and the data transfer between the service nodes for each flow. The
request is then passed to the neighboring service controller along the path to the des-
tination so it can further setup the connection. This implies that fixed routes for each
flow are assumed i.e., connection-oriented packet switching. Each service node has to
maintain state for each flow and each packet of the flow is processed equally.

The Service Controller receives the user request and parses the information for a
Mapping Algorithm. The Mapping Algorithm uses service and resource information
(i.e., available services, memory, power, bandwidth from the service nodes) and tries to
map the user request to service nodes. In [HGW08], they present a distributed service
routing algorithm to find an (nearly) optimal network path that incorporates all required
services. A Service Node Interface allows the Service Controller to send control messages
for connection setup to the network service nodes.

Initially a service node registers its available services at the service controller. It then
receives a connection request from the service controller and keeps track which flows re-
quire which services. It receives, processes and transmits packets for each flow accordingly
- based on a UDP hop-by-hop connection. The Service node monitors resources which it

42 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

sends to the Service Controller.
In [SW08], they describe and implement a ”service socket API” which provides end2end

abstraction like the commonly used BSD TCP/IP sockets. The API consists of the fol-
lowing three methods:

• Method-1 is a request function that takes as input the required service specification
then sets up the connection and finally returns a socket.

• Method-2 uses returned socket to create packets and to send the data to the next
node.

• Method-3 receives and stores the arriving packets in the memory.

In [SHPW09], they further describe an automatic service composition approach based
on the semantic description of data and communication characteristics with the Web On-
tology language (OWL). They structure typical network characteristics in a tree hierarchy
that can be expressed in OWL. Based on preconditions and transformations they formu-
late the service composition approach as an AI planning problem. The AI problem is
formulated in Golog, a high-level programming language which is based on situation cal-
culus which is a logical language for reasoning. They have shown the operation of the
network service architecture on the EMULAB testbed and a prototype implementation
on the Cisco ISR 2800 router, which provides an Application eXtension Platform (AXP).

4.12 Dynamic Configuration of Protocols (DaCaPo)

This approach [VPPW93a] [VPPW93b] proposes an architecture for dynamically con-
figuring protocols based on QoS requirements and Network Coding. The DaCaPo in-
frastructure is divided into 3 layers - Transport, Application and Middle C layer where
the DaCaPo protocols are processed. The composition is based on an acyclic graph that
shows the order of protocol invocation. The selection of the direct sequence depends on
the application requirements. The sequence is then confirmed with the receiver and the
modules initialized.

The model is realized by three cooperating entities where configuration process selects
the most suitable protocols, the connection manager negotiates the configuration, and the
resource manager provides the run-time environment. The protocols are configured at
run-time on application requirements and QoS parameters.

4.13. THE FUNCTION BASED COMMUNICATION SUBSYSTEM (FCSS) 43

4.13 The Function Based Communication Subsys-
tem (FCSS)

FCSS [Sti94] shows the decomposition of tasks in functional modules, which should be
aligned in a stack but based on the application requirement. In [GR97], the authors point
to a drawback of the above approaches and ask for a generic description so that the new
deployment can be facilitated and the customization of the implementation is kept at a
minimum. They propose the use of the Service Description Language (SDL) which is the
predecessor of the current Web Service Description Language (WSDL).

In [SSSZ94], the authors present a protocol-machine-configuration and a protocol-
resource-descriptor languages that support a function-based approach to creating custom
application based protocol machines. The different data streams are supported for those
protocol machines. A scenario of collaborative distance learning has been used to show
the functionality of presented languages and the approach.

4.14 TARIFA

Tarifa [SLJJ+09] is a clean slate approach that targets an architecture covering aspects of
ubiquitous service provision besides its Composition. Services are classified into atomic
and composed services. Atomic services are those individual functions commonly used in
networking protocols (i.e. flow control, sequence numbers, etc). Composed services are
network applications with a wider scope (e.g. printer service, directory service, instant
messaging, etc). Composed services are likely to build upon atomic services and/or other
composed services. Services are considered to be distributed which could be discovered
and executed while passing through the route. In this approach, different negotiation
schemes (i.e. 3-way and 4-way handshake) have been proposed to negotiate application
request for the desired network functionality and QoS requirements. Tarifa also uses the
run-time to compose the composite services. However, the considered domain has the
small number of atomic services so that it can be easily handled at run-time.

44 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

Intermediate Composition

4.15 Semantic-Based Semi-Automatic Web Service
Composition (SBWComp):

The main purpose of the project [AP10] [AP11] is to assist non-expert users, who are
oblivious about how to achieve their goals to acquire the optimized solutions by composing
a web service and to satisfy their requirements. The approach uses domain information
and semantic to cover a specific domain. The generic process templates are proposed to
users to achieve goal above. A process template consists of the workflow (i.e, which is
composed of several functions) linked with control flow, structured activities (e.g., loops,
conditional statements) and user preferences. There are no examples of template in the
publications, however, in [AP11] it is stated that: ”‘The generic process template acts
as a configurable module. It defines generic participating activities and the control flow.
We are still investigating the best way (language) to describe such templates. Indeed,
this question will be one of our major research focuses”’. A smart home (i.e., equipped
with various sensors) scenario is selected for the proof of concept. The scenario explains
different service orchestrations for saving the energy in a smart home, in addition to,
fitting to one’s living habits and circumstances.

4.16 A Template-Based Mechanism for Dynamic Ser-
vice Composition Based on Context Prediction
in Ubicomp Applications (DTSComp):

This approach [MHK07] covers the pattern-based composition in an intelligent living
scenario. The approach uses a list of predefined tasks corresponds to specific actions that
lead to a peculiar service pattern. The used services in the patterns are also preselected
which restricts it from using the different implementations of the same service.

4.17. RULE-BASED SEMI AUTOMATIC WEB SERVICES COMPOSITION (RSWCOMP):45

4.17 Rule-based semi automatic Web services com-
position (RSWComp):

In this approach [ZOP09], a user performs the service composition with the help an easy
drag and drop tool (i.e., similar to the Mashup tools like Yahoo Pipes). The composed
service is later translated into an intermediate language, which can be initiated and
executed by the system to provide the requested service to the user. In the proposed
approach the defined workflow uses a lower abstraction as input and output variables are
part of the workflow description, which consequently makes it dependent on the particular
implementation.

4.18 Dynamic Reconfiguration Using Template Based
Web Service Composition (DTWComp):

In [GSM08], a template based approach is used to deal with re-usability issue of WS-
BPEL. It proposes a framework that allows the design of WS-BPEL processes in a mod-
ular way. The concrete modules of WS-BPEL activities are modeled as templates and
stored for the re-usability. The approach [GSM08] combines different templates to create
a workflow. A set of templates works as a pattern that can be reused for different sce-
narios. The composition of the workflow has not been specifically discussed or described
in the presented approach.

4.19 Pattern Based Composition of Web Services for
Symbolic Computations (PBWComp):

In [CMPK08], a dynamic but yet design-time workflow composition approach is presented
which utilizes standard workflow patterns to solve the symbolic computing problem in
the context of web services. In this approach, the general workflow patterns are used for
helping Computer Algebra Systems (CAS) user(s) to describe the relationships and the
sequence of service calls.

46 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

4.20 Semi-Automatic Composition of Web Services
using Semantic Descriptions (SWSComp):

In [SHP03], a semi-automatic approach is presented to guide the user in a dynamic ser-
vice composition process. The semi-automatic process presents the matching services to
the user at each step of service composition. The approach uses the semantic description
of the services to evade the barrier between human and machine understanding. The
developed prototype consists of two basic components so called a composer and an infer-
ence engine. The inference engine stores the information about services in its Knowledge
Base in addition to finding the matching services for the user. Moreover, the composer
handles the communication between the user and the engine. To find an exact match,
the inference engine looks in the ServiceProfile description for the same OWL class. The
priority of the suggesting matches is ranked lower as the distance between the two types
in the ontology tree increases. In case, the presented choices are in an excessive amount,
further, filtering is performed based on non-functional attributes such as location, type,
deployment data, and sensitivity to reduce the number choices, so that, the selection pro-
cess for a user can be eased. After selection, execution of composite service is performed
by invoking the each individual service and passing the data between them.

4.21 Automatic Composition of SemanticWeb Ser-
vices (ASWComp):

In paper [KBGH07], a semantic-based automated web-services discovery & composition
approach is presented. A service is defined by 6-tuple (i.e., S= (CI;I;A;AO;O;COi))
namely preconditions, inputs, side-effect, affected object, outputs, and post-conditions.
A query is used to formulate the requirements, and based on the query a service is looked
up in the service repository. Requirement query is described by input parameters, output
parameters and conditions. A query is satisfied if one of these requirements is satisfied:
(i) it produces query output parameters and satisfies the query post-conditions; (ii) it
uses the provided input parameters and satisfies the query pre-conditions; (iii) it produces
the requested side-effects. The composition is based on automatically finding a directed
acyclic graph of services to obtain the desired service. The semantic of the services were
not presented. Hence, it is unclear how composition process can match the unrelated
input and output parameters of individual services.

4.22. A SERVICE COMPOSITION METHOD BASED ON THE TEMPLATE MECHANISM IN THE SERVICE SCALABLE NETWORK FRAMEWORK (TNSCOMP):47

4.22 A Service Composition Method Based On The
Template Mechanism In The Service Scalable
Network Framework (TNSComp):

In [FS13], a redesign of the network framework below the application layer is proposed.
A service container is used instead of the multi-layer structure of the network architec-
ture. The service container encapsulates the network function such as scheduling, queue
operation, QoS control. A service container provides the essential services. The network
services are divided into three categories namely connection management services, QoS
management services, and network security services. Moreover, the templates are used
for configuring the individual protocol units (i.e., instances of the services) to provide
the required service. At first, a formal description of a service template is written, and
then a parser parses the description to load the appropriate protocol units into the ser-
vice container. The approach is quite recent as presented in 2013. The data flow and
the connections among the services are not covered which are the crucial parts of the
composition.

4.23 Semi-Automatic Distribution Pattern Modeling
of Web Service Compositions using Semantics
(SPWComp):

In [BP06], a distributed web service composition approach is presented, which relies on
semantic description and user involvement much like the approach presented in [SHP03]
with difference of being distributed rather than being centralized. Web services are
described in OWL-S to generate the distribution pattern model. A tool is implemented
so-called TOPMAN (TOPology MANager) to do the modeling and to compose a web
service.

4.24 Comparison of Intermediate Composition Ap-
proaches

A comparison of the approaches above is shown in the table 4.1 to have an overview of the
work. The approaches are compared by time-phase, human involvement during composi-

48 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

Approach Automatic
\Manual

Runtime
\Designtime
\Intermediate

Static
\Dynamic
\Configurable

WS
\Network

Distributed
\Local

DTSComp 4.16 Automatic Runtime Static WS Local
RSWComp 4.17 Manual Designtime Dynamic WS Local
SBWComp 4.15 Semi Runtime Dynamic WS Local
DTWComp 4.18 Semi Designtime Dynamic WS NA
PBWComp 4.19 NA Designtime Dynamic WS Local
SWSComp 4.20 Semi Designtime Dynamic WS Distributed
ASWComp 4.21 Automatic Runtime Dynamic WS NA
TNSComp 4.22 Automatic Runtime Configurable Net Local
SPWComp 4.23 Semi Designtime Dynamic WS Distributed

– NA: Not Available – Semi: Semi-Automatic

– WS: Webservices – Net: Network

Table 4.1: Comparison of Composition Approaches

tion, flexibility, domain and scope. The table 4.1 shows that majority of the intermediate
approaches are designed for non-distributed composition and they are dynamic in nature.
Almost all of the approaches target Webservice domain and they require constant human-
feedback during the composition process. The presented approaches do not differentiate
the time-phases, rather human-involvement during the composition process make them
intermediate (semi-automatic) in nature.

Comparison to Presented Approach (Template-Based Composition): Except one4.22
intermediate approach all others are designed for Webservice domain, which poses dif-
ferent requirements (i.e., a larger number of services, lesser time constraints) than the
network, thus, it is acceptable to have a constant user feedback during the composition
process. Involvement of human during the setup time in the network will not be accept-
able, which makes web service domain based approaches inappropriate to be used in the
network domain. However, the flexibility of description of interface and service can still
be of use.

The template-based composition approach focuses on the network domain. Hence,
it requires urgency in the composition process. Unlike approaches (i.e., defined in in-
termediate composition related work4.14) the approach in this thesis refers intermediate
nature to a split that is defined between time phases regardless of human involvement.
The process at the design-time may also be carried out by an expert system without the

4.24. COMPARISON OF INTERMEDIATE COMPOSITION APPROACHES 49

need of human experts.
The approach ”TNSComp” also deals with network and uses the both design and

run-time for composition, however, the constructed templates are directly associated
with implementations of protocols. The provided flexibility is more about the selection
of different Services (protocol stack), which are already composed beforehand and only
require some configuration to execute. Whereas the template-based composition does
not deal with the implementation of protocol until later at the run-time, which makes it
highly flexible to changing inputs like application requirements and network constraints.
In the presented paper [FS13], a flowchart is described, which only talks about selection
and configuration of service rather than its composition. The approach is nearer to
SILO [VWR+07], where meta-layers are predefined.

50 CHAPTER 4. STATE OF THE ART OF FUNCTIONAL COMPOSITION

Chapter 5

Requirements-aware,
Template-Based Protocol Graphs

This chapter describes the template based composition approach. A composition can
be carried out at different time phases (e.g., design-time, deployment and run-time - as
described in 1.1). The presented approach rather than using a single time-phase uses
all three of them to provide the desired flexibility and to reduce the required setup time
for generating the PGs. In the following text, the main idea of the template-based com-
position is described followed by the details on components (e.g., Template Description
Language, Domain-based Policies) and the actions (e.g., Selection of template(s), Filling
placeholders, BBs connection) required to generate executable protocol graphs. In the
end, an example is provided to show that how the approach can generate the PGs for
Secure-TCP like protocol.

After the generation of PGs if the composition process originates more than single
protocol graph, all of them are executable and also satisfy the provided functional require-
ments. They only differ regarding QoS parameters (e.g., delay: time needs for execution
of the included BBs). It will be desirable to select a PG that is nearest to the expectation
of the application about QoS. The selection of an optimal PG is outside the scope of PG
composition, hence the details of PG-Selection is beyond the scope of this work. The
selection of a most suitable protocol graph is carried out by using qualitative properties
and by employing the MCDA approaches such as MAUT and AHP, the further detail
can be found in [Saa80] [Saa08] [KR76] [EG03] [Mun95].

51

52CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

5.1 Template Based Composition Approach

To create a requirements-based protocol graph out of the given functionalities, it is nec-
essary to define data and control flow of the selected functionalities. A control flow
is defined by the execution order while data flow defines how and where data will be
transferred next. Template-based composition is a partial-run-time approach where the
ordering of functionalities and their connections are defined at the design-time. The
idea was also used and demonstrated in the cross-layer composition with the series of
publications [MSBee12] [SJMM11] [MSH10] which was the part of G-Lab Deep project 1.

Figure 5.1: Template

The basic idea of the approach [SKM12] [KSMB14] [SM11] is to split functional com-
position process among different time-phases (i.e., design-time, deployment-time, and
run-time) so that relatively inefficient activities in terms of time are performed at the
design-time and potentially less time-consuming activities are performed at the run-time.

1http://www.g-lab-deep.de/index.html

5.1. TEMPLATE BASED COMPOSITION APPROACH 53

In this case, time-consuming activities are the selection and the placement of function-
ality, but not the actual building blocks (i.e., selection of encryption and compression
functionality but not their implementations/BBs such as AES256 or Blowfish256). And
then placing then in an appropriate order (i.e., encryption is placed after compression)
in addition to connecting them so that they can interact with each other. The template
based composition approach utilizes a devised abstraction of placeholders instead of using
actual functionality as shown in fig.5.1. A placeholder can be occupied by different BBs,
if a BB ports match with a pace-holder ports.

Placeholder is an abstraction that encapsulates the details of used implementation
(BB) for provided functionality. Place-holders are connected via ports these are only
mean for communicating the encapsulated BB(s). Functionality can have multiple effects
and they are distributed over the connected ports. Effects are further classified by offered
(i.e., provided by the port) and required (i.e., accepted by the port) effects as shown in fig.
5.2 (a). The benefit of having ports and well-defined effects on them is that any building
block that is fulfilling the given connections requirements can fill a place-holder. Hence,
it is not dependent on a certain building block but rather dependent on the functionality
of a building block.

Figure 5.2: Place-Holder [SKM12]

A mechanism can have numerous implementations and may differ in terms of defined
ports (i.e., it implies same covered and required effects on those ports). Any implemen-
tation which also has same ports as described in a placeholder can be a suitable match

54CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

to fill that placeholder. Figure 5.2 (b) shows the example of ciphering as an effect and
encryption as a mechanism and the AES256 as a selected implementation.

A placeholder also contains optional ports that cover general interfaces like manage-
ment, administration, and monitoring. Those ports are active only when a selected BB
also provides that data, hence, they are not considered in the BBs selection process.
The current implementation only supports port for error-notification, however, further
administrative ports can be introduced as the concept matures and demand grows.

A template can be designed by different entities such as at design-time by an expert
with domain specific knowledge. In first prototype this is the only considered option.
However, it may also be possible to automatize the process by a software module (e.g.,
dynamic functional composition method), or having an Artificial Intelligence (AI) learn-
ing process, which keeps track of requirements and offerings and creates a template for
the often used requirements3.2.1.

5.1.1 Template Description Language

A template description needs to cover the effects it provides. It also needs to describe
placeholders for the possible BBs to fill them and the connections among those place-
holders. Also, it is expected to provide information regarding QoS parameters. The
information in the language is divided into separate sections. The covered effects are
needed for the selection of a Template, whereas the BB selection process needs place-
holders. The connections are needed for the proper placement of functionalities and
QoS parameters are required to select the most suitable PG out of many. A template is
programmatically expressed in XML language. XML is chosen for its extensibility and
human readable form. The figure 5.3 shows the schema of the description language.

The template description is split into four main parts so-called Domains, Placehold-
ers, Connections and CoveredEffects as shown in fig.5.3. Where, the Domains section
describes the types of domains that are covered by a template, examples of domains are
telephony, video streaming, video conferencing, data transmission, image transmission,
file transmission, on-line banking, etc. The Placeholders section incorporates the exist-
ing functionalities in a template that is further sub-divided into individual placeholder
and its ports. The Connections section of the language deals with the ordering and the
connections of its placeholders. The ”QoS Parameters” section covers the QoS values of
a template such as overall expected delay or encryption strength if any provided.

To give an idea how an actual template looks like, the figure 5.4 shows an example

5.1. TEMPLATE BASED COMPOSITION APPROACH 55

Figure 5.3: Template Description Language Schema

of a template with two functionalities namely ”Compression” and ”Encryption” This
template consists of four placeholders, two of them are special ones, one of them provides
a connection to an application and another one to a network. The other two provide the
functionalities like Ciphering by encrypting data and Data Reduction by compressing data
respectively. The ”isToggle” attribute of the ”CoveredEffect” tag informs the template
selection process if a covered effect in a template can be toggled. Toggling of a covered
effects helps in the sense that if a template has more functionality than requested by an
application then extra ones can be turned off. Actual toggling takes place in placeholders,
that is why placeholder also has an attribute ”isToggle” it is a crucial property for the
short term adaptation. The either of the covered effects, shown in fig. 5.4, can be
excluded by turning on or off the placeholders (i.e., compression, encryption) without
creating any malfunction in a PG processing.

Further examples of templates are listed in the appendices A.
Placehoders: The template example shows a compression placeholder which accepts

plain data as an input (i.e., requiredeffect) at the port ”9” and gives output (i.e., offere-
deffect) compressed data (”DataReduction”) at the port ”2”. This process is reversed
when data is coming from the network.

Data types are not part of the description as they are mainly used for to connect

56CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Figure 5.4: An Example of a Template

5.1. TEMPLATE BASED COMPOSITION APPROACH 57

two placeholders and as connections are already part of the template description so that
defining data types on ports is redundant.

Placement in a Template (Connections): The connections section in the example
shows connection among four placeholders namely app, Compression, Encryption, and
net. Where compression is placed before encryption, this connection example also en-
lightens the fact about the importance of placement of the functionalities as encryption
before compression makes the least sense. The CoveredEffects section describes which
functionalities are part of a template, which is also used for the selection of a template.

5.1.2 Domains Policies and Its Description Language

Domains Policies

A template is created for the certain domain(s), the need of domains is to include
the functionalities that are required by them but not requested by an application. The
examples of domains are telephony, messaging, data-transmission and image transmission.
One template can cover more than one domain, in other words one template can consist
of functionalities that are used in multiple domains. The domains which are covered in
a template are listed in the ”Domains” branch of the template description5.1.1.

The functionalities like data reduction, connection management and loop avoidance
as shown in figure 5.5 are of no importance for an application or a user but many of
them are essential for communication such as for addressing or connection management.
Hence, extra policies or requirements from an administrator or a network are needed to
describe them that are referred as domain policies in the template-based composition.

The requirements from an application also include the domain-name such as an Image-
Processing application may provide a domain name as ”ImageTransmission”. Later, based
on a domain name, its policies will be extracted from the predefined domain policies.
These policies are used for listing the functionalities, which are not part of application
requirements but crucial for optimization or proper working of a communication. Many
of these policies are a simple list of functionalities and others are conditional. An example
of a conditional policy will be that in case of low (i.e., less than given value) bandwidth,
a compression functionality will be included in the given requirements.

58CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Figure 5.5: Example of Effects for Policies

Description Language for Domain Policies

A simple description language is used for listing the policies of a domain on a system.
The language consists of the section called ”Domain” this is divided further into two sub-
sections namely ”Requirement” and ” Condition”. The schema of the language is shown
in figure 5.6. The language supports two kinds of inclusion of functionalities with and
without condition. In the case of without condition inclusion, a name of functionality is
added under the tag of ”Requirement” for a particular domain. The conditional inclusion
is shown by an XML listing in 5.1, where two different domains ”DataTransmission” and
”ImageTransmission” are listed with a simple network policy. The policy in this exam-
ple is conditional, the ”DataReduction” effect will be turned on only when bandwidth is
below a certain limit.

5.1. TEMPLATE BASED COMPOSITION APPROACH 59

Figure 5.6: Domain Policies Schema

Listing 5.1: Domain Policies
<?xml version ="1.0" encoding ="UTF -8"?>
<DomainsPolicies xmlns:xsi ="" xsi:noNamespaceSchemaLocation ="/

DomainPolicies .xsd">
<Domain Name=" DataTransmission ">
<Condition >

<IF Effect =" bandwidth " Operator ="<" Attribute ="2" Unit=
"MB"></IF>

<Then Effect =" DataReduction " Operator ="=" Attribute ="
true"></Then >

</ Condition >
</ Domain >
<Domain Name=" ImageTransmission ">
<Condition >

<IF Effect =" bandwidth " Operator ="<" Attribute ="1" Unit=
"MB"></IF>

<Then Effect =" DataReduction " Operator ="=" Attribute ="
true"></Then >

</ Condition >

60CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

</ Domain >
</ DomainsPolicies >

5.1.3 Selection of a Template

To select a template, first of all the selection process receives a set of requirements from
an application or a user. The requirements are represented by a quadruplet of effect,
operator and attribute besides its weight (i.e., to specify its importance for an application)
as described in 3.2.1. In figure 5.7, a set of application requirements is represented by Rp,
set of QoS parameters by Qi, the set of domain policies by Rd and a set of offered effects by
Oe. There is no difference between the description of application and QoS requirements.
Thus, QoS parameters cannot be differentiated from functional requirements. Template
selection process knows all the QoS (i.e., denoted by Qp) beforehand.

After receiving the application requirements, the domain is extracted and it is checked
against the stored domain policies at the system. Once the domain policies are retrieved,
it is merged with the application requirements (Rp ∪ Rd) to find a matching templates
as shown in figure 5.7 The quality of service (QoS) parameters are extracted (R-Qp)
from the combined requirements. QoS parameters do not play any role in a template
selection, as QoS of a communication service is affected by the implementations of the
selected functionality, which is not carried out during the template selection. There are
two types of QoS parameters, one which is related to entire workflow such as delay and
other is specific to BBs such as the strength of encryption (ciphering.key). Both of them
are extracted from the merged requirements. Overall QoS of a communication service is
dependent on combined QoS of individual BBs that are used in the BB selection process.

The template selection process also neglects the requirements related to BBs and
these do not influence the selection of a template such as Ciphering. A requirement like
Delay < 2ms does not alter the template selection but a requirement for the selection of
a suitable BB.

The matching process goes through all the merged requirements and checks against
covered effects in a template. This selection process works separately for a single template,
the advantage of this approach is that multiple processes can run in parallel without being
dependent on each other.

After the selection process is executed, if more than one template satisfies the final
requirements then either a single template will be selected or all the templates will be
selected as described below.

5.1. TEMPLATE BASED COMPOSITION APPROACH 61

Figure 5.7: Selecting a Template

• Exact First Match: It is the simplest strategy to choose the first template that
satisfies all the given requirements without any additional covered effects.

• Select All: This strategy forwards all the possible templates for the requirements
to the BB selection process so that, the best possible protocol graph based on QoS
parameters is selected from the available choices.

Figure 5.8 shows the flowchart of the template selection process where select all strat-
egy is deployed to retrieve all the suitable templates.

Example: An example can more clearly illustrate the template selection process.
An application wants to have a secure & reliable transmission of an image. Thus, the
application specifies the requirements as ciphering and retransmission besides the domain

62CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Figure 5.8: Flowchart: Template Selection

5.1. TEMPLATE BASED COMPOSITION APPROACH 63

Figure 5.9: Scenario for Template Selection

64CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

of data as ImageTransmission and VideoTransmission as shown in figure 5.9. However,
optimizing features like DataReduction is not specified by the application, which can
be further included in the domain requirements. At the first step, consistency of the
requirements will be checked it is to exclude any repetition (Requirements Union). QoS
parameters are excluded related to functionality or entire protocol graph. As shown in
the figure 5.9, the ”Ciphering” is included only once besides, the QoS parameters such as
”Ciphering. Delay”, ”Ciphering.Key” and ”Delay” are not part of the requirements for
the template selection.

In the second step, the process searches for the templates having the covered effects to
satisfy the incoming requirements. In this case, any template provides the functionality
of Encryption, Retransmission, Ordering and Data Reduction will be sorted out.

Once the templates are sorted, in the 4th step an algorithm is executed to select the
template(s). In this scenario, exact first match strategy is deployed. Thus, the only
template will be selected which covers only the given requirements. However, if there is
no exact match then next best match will be selected with additional effects and if there
are more than one exact match then the first exact match is chosen.

5.1.4 Finding Suitable BBs for Template’s Placeholders

To fill a template, every placeholder that can not be switched off must have at least one
BB which can be fit in it so that the requested service can be satisfied. However, there
can be more than one BBs which can be fit in a placeholder these are called ”suitable”
building blocks as shown in fig. 5.10.

Selection of Suitable Building Blocks: Suitable BBs are chosen by matching
ports and its effects of building blocks with the provided placeholder ports. The selection
also based on given application requirements for the functionality as shown in fig. 5.11.

For matching application requirements with the building block offerings, each effect
must be uniquely identified as presented in these papers [SM12] [SDS+09] [KRS+10].

A port of a placeholder and a BB provide a set of offered effects (OF) and required
effects (RE). Hence, to be sure if a BB can be fit into a placeholder, a BB must provide
the matching ports to the placeholder ports as shown in figure 5.11.

To match BB’s port to placeholder’s port, the set of OF and RE of them are compared.
If a match is found, the process moves on to the next ports until all the remaining ports
of the placeholder can be connected to the ports of the BB. Once, it is known that all
the ports of a placeholder can be occupied by a BB, a reference to this BB will be added

5.1. TEMPLATE BASED COMPOSITION APPROACH 65

Figure 5.10: Filling a Placeholder [SKM12]

as a suitable BB for the placeholder. If a BB’s port offers more OF then it is needed
such as additional formatting of data, it is still considered a matching port if rest of
the effects can be neglected in the protocol graph execution. The figure 5.11 shows two
BBs, where BB-AES256 matches both of placeholder ports and BB-3DES only covers
the single port. Thus, BB-AES256 is a suitable BB but not BB-3DES. The figure also
depicts the condition of the additional effects on a BB’s port where BB-3DES offers an
additional effect of ”quality” on Port-1 and, still this port is considered a matching port
as the effect does not change the data.

The figure 5.11 also shows a case where a BB offers the ports which are a not needed
by a placeholder, the port 3 of BB-AES256 remains unconnected and will be neglected
during the execution of a protocol graph.

The process of a BB selection is described in the flowchart 5.12, where all the available
building blocks in the BBPool are looped through to match against the placeholders in
a template. A suitable BB must cover all the ports of a placeholder except optional
(e.g., data-logging, monitoring, management) ones. In the figure 5.12, the IsBBMatch()
function is responsible for going through all the ports and once a port is found a mapping
between the placeholder port and the BB port is added. Ports don’t share the exact name
or description, the only common thing is set of covered and offered effects on a port. If a
BB offers more than single port for a port in the placeholder then, the first port will be
selected as the loop breaks as soon as a suitable port is found. To check the effects, first
the process goes through all the required effects on a port if all the effects are matched
then the process checks for the offered effects. In case, any single effect is not matched

66CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Figure 5.11: Ports Matching

the port will not be considered as a matching port.
The selection of suitable BBs for the placeholders can be performed beforehand such

as at the deployment-time or as soon as a new BB is introduced into the repository. Thus,
when a BB is introduced on a system, a background selection process goes through all the
placeholders of available templates and in the case it matches to a certain placeholder, a
reference is added in that placeholder.

The pre-selection strategy fastens the connection process. However, this does not take
any requirements or constraints into account. Let’s assume a placeholder, which can be
filled with various kind of encryption strengths (128, 256, etc.), application requirement
specifically asks for 256 key strength. If a placeholder is filled beforehand, it will have all
the possible BBs with different key strengths. However, it is still possible to preclude BBs
on QoS parameters (e.g., key-strength, delay) for this specific placeholder (Ciphering).
The QoS based selection of BBs requires more processing time, if building blocks have

5.1. TEMPLATE BASED COMPOSITION APPROACH 67

Figure 5.12: Flowchart: Filling the Placeholders of a Template

68CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

multiple selection criteria such as delay, throughput, and cost then process will use Multi-
Criteria Decision Making (MCDM) methods to have an appropriate selection.

5.1.5 Protocol Graph(s) Construction

Once the placeholders of a template are associated with actual software modules (BBs),
the final stage of the composition process is to generate executable protocol graph(s).
The number of protocol graphs is directly related to the number of possible BBs in each
placeholder.

Figure 5.13: Comparison Between Possible PGs in Template-Based Composition & Sim-
ple Approach

The trivial composition approach (described in 1.2) assumes that any BB can be
combined to get all possibilities. However in a template, not more than one BB can be
used from the same placeholder for a protocol graph as every BB has an order that is
provided by the placeholder. The comparison between two approaches is shown in figure

5.1. TEMPLATE BASED COMPOSITION APPROACH 69

5.13, where maximum possible permutations for five (5) BBs with three (3) are chosen
at a time, with repetition, and order is important are ”125” for the trivial approach.

In the template-based approach, if a placeholder has more than single suitable BB
then only one can be selected at a time as shown in figure 5.13 where both ”a” and ”b”
can not be part of same protocol graph.

The possible number of protocol graphs in a template is calculated with the product
of all BBs as shown below.
PossiblePGs = ∏n

i=1 PBi

Where PBi is number of BBs in the placeholder-i. By given formula, it can be calculated
for the given scenario of the figure 5.13:
PossiblePGs = 2 ∗ 2 ∗ 1
PossiblePGs = 4
It is also important to note that, a repetition is a possibility in a template, in case two
different placeholders have same BB. The most common scenario will be encryption of
encrypted data to have further security, in this case, both placeholders will have same
BBs but at different positions in a protocol graph.

The figure 5.14 shows growth-comparison between Template-based composition and
the described trivial approach when the numbers of BBs are increased. The trivial ap-
proach gives an ascending graph as it can be seen figure 5.14(a), the graph uses 2, 4, and
5 number of BBs from the total available pool for a single PG. It can be seen the number
of permutations highly depends on the combination size and total available BBs.

Whereas the number of generated PGs in Template-Based composition is not depen-
dent on the total number of building blocks but rather on the number of placeholders and
how many BBs each of those placeholder holds. As it can be seen from the figure 5.14 (b),
the same number of BBs and placeholders can generate the different number of protocol
graphs such as 5 BBs in two placeholders can generate 4 and 6 protocol graphs depending
on the distribution of BBs among the placeholders in a template. The graph also shows
the maximum possible PGs which is shown by red dots for the given number of BBs,
whereas the minimum number of PG will be 1 at any point. The number of maximum
possible PGs is created by distributing the BBs across a different number of placeholders
such as if BBs are 5 then only if these BBs are distributed into 2 placeholders will result
in maximum PGs as shown by the following calculation.
PossiblePGs = 2 ∗ 2 ∗ 1 = 4 where BBs = 5, P laceholders = 3
PossiblePGs = 1 ∗ 1 ∗ 1 ∗ 2 = 2 where BBs = 5, P laceholders = 4
PossiblePGs = 3 ∗ 2 = 6 where BBs = 5, P laceholders = 2

70CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

2 3 4 5 6 7 8

101

102

103

104

Building Blocks

n
r

r = 2
r = 4
r = 5

(a) Simple Approach

4 5 6 7 8

5

10

15

P G = 2 ∗ 2

P G = 3 ∗ 1

P G = 3 ∗ 2

P G = 4 ∗ 1

P G = 2 ∗ 2 ∗ 2
P G = 3 ∗ 3

P G = 3 ∗ 3 ∗ 2

P G = 2 ∗ 2 ∗ 2 ∗ 1 ∗ 1

Building Blocks

P
G

s
=

∏ n i=
1

P
B

i

(b) Template-Based

Figure 5.14: Comparison of Possible PGs Growth

How protocol graphs are generated in the approach is explained by an example for
the domain of ”Imagetransmission” as shown in the figure 5.15. At first (Step 1), an
application asks for encrypted and loss-free data transmission by specifying the require-
ments. Once the requirements are received (Step 2), application’s domain is retrieved
to check the domain policies. Here, the domain has a conditional policy which states if
bandwidth is less than or equal to one megabyte (1 MB) then a data-reduction (compres-
sion) functionality will be included in the PG. The next step (Step 3) is to check network
parameters to decide whether to include data reduction or not. The example network
offers the bandwidth of ”1 Mb” and ”0” data loss ratio, which implies that data reduction
must be part of the protocol graph. Now (Step 4), the selection process goes through
template repository to find suitable template(s) if there are more than one suitable tem-
plate than the first exact match will be selected. In this example, a single template is
selected. The template consists of three placeholders namely Compression, Encryption
and Retransmission. These placeholders have pre-filled references of the suitable BBs,
where P1 holds a reference to ”ImageComp75” BB, P2 has two references of ”AES256”
& ”Twofish256” and the P3 holds a single reference to ”Retransmission” BB.

Next, the possible number of protocol graphs is calculated by the product of available
BBs in the placeholders that are two (2) in this scenario. The PG generator will iterate
through 2 times to create two protocol graphs, as it can be seen from the figure 5.15
in step 5. The only difference between two PGs is different encryption mechanism with
a change in delay. It is also important to note that both of these protocol graphs are

5.1. TEMPLATE BASED COMPOSITION APPROACH 71

Figure 5.15: Example: Protocol Graphs Generation

72CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

executable. The generated XML files of the protocol graphs are listed in Appendix A.

5.2 Putting It All-Together - Secure TCP Example

To create a TCP-like protocol graph. First, we need to identify the needed functionali-
ties to satisfy the requirements before creating a template. The identified functionalities
also need classification of application requirements and domain policies. An application
will not be interested in a connection management rather in fastest possible transmis-
sion mode. The following functionalities are included to fulfill the TCP-like protocol
requirements.

Figure 5.16: Secure-TCP Example

5.2. PUTTING IT ALL-TOGETHER - SECURE TCP EXAMPLE 73

• Mux/Demux: On a single system, multiple applications use the same protocol
graph to communicate. This functionality provides the added information (e.g.,
port number) to distinguish different data streams (Multiplexing). It also sorts out
(De-Multiplexing), once the data arrives at the desired destination.

• Error Detection: This functionality controls data correctness by detecting any
error caused by application/network malfunction or by an external threat. TCP
uses Cyclic Redundancy Check (CRC) to perform this task.

• Packetization: This functionality is deployed to avoid large chunk of data that
can not be handled by a network path. It is performed by dividing the data into
sizable packets to smallest Maximum Transmission Unit (MTU) acceptable on a
network path. Besides network, functionalities can also be a reason for smaller
MTU in case they can handle the only limited amount of data at once such as
underlying technology ATM, Ethernet, Point-to-Point Protocol (PPP).

• Retransmission: Retransmission avoids the data loss and ensures the reception
of the delivered data in a communication. This functionality resends the packets
after a certain interval if an acknowledgment for them is not received back. TCP
uses Automatic repeat request (ARQ) for this purpose.

• Congestion/Flow Control: TCP uses these functionalities for controlling the
amount of data flow. Flow control regulates the amount of transmitting data so
that a receiving end can properly handle it. Whereas congestion control tries to
manage the well being of overall network. It controls the amount of data transferred
at once.

• Connection Management: This functionality provides different procedures such
as connection establishment (TCP: Three-way handshake), connection release and
keeping connection alive.

• Extra Functionalities (Not Part of Current TCP Implementation)

– Compression: Compression reduces the data size in order to save valuable
bandwidth and to shorten the transmission time.

– Encryption: This functionality protects the data by encoding it in a ciphered
text.

74CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

An application requests for a ciphered and reliable transmission (e.g., encryption,
retransmission, error detection). The domain policies cover the rest of the needed effects
such as Congestion/Flow Control, Multiplexing and compression.

Figure 5.16 shows the covered functionalities and theirs placement. The covered
functionalities in a template are placed in an executable order. In this example as shown
in the figure 5.16, control mechanisms and CRC are placed nearer to the network preceded
by retransmission as a packet should to be checked for error first and thrown away in
case of error before it is delivered further. Compression is placed before encryption for
optimal function. Encryption cannot be placed after packetization as packet number &
size are needed by the functionalities below. Connection management is placed parallel
to the other functionalities, as it is not needed during the entire communication time.
The complete template is listed in the appendix A.3.1.

The template also provides some entirely independent functionalities such as com-
pression, encryption and error detection. The turning off or on of those functionalities
does not have any impact on any other functionality. If the application does not request
ciphering, encryption is turned off without any malfunction or effect on the other included
mechanisms.

The implementation of this TCP-like example contains a description of a Template,
BBs description, domain policies for SecureTCP domain and the generated PGs. As
the implementation of BBs is out of scope for a composition process, and its goal is to
generate one or more executable PGs. In the implementation of the current example,
every placeholder holds only single suitable building block. The BBs are listed in the
A.5. The protocol graph generation is described in the section 5.1.5 and the resultant
protocol graph is listed in the appendix A.4.1.

5.3 Conclusion of Template-Based Composition

This section describes conclusive detail on how the approach achieves the desired flexi-
bility as well as what are the aspects of the approach which counts towards the reduction
in required setup-time. However, the performance evaluation of various processes of the
approach is carried out in 6.

Flexibility and Template-Based Approach

The following text discusses the flexibility in the template-based composition.

5.3. CONCLUSION OF TEMPLATE-BASED COMPOSITION 75

Figure 5.17: Requirements and Short-Term Flexibility

Short-Term Flexibility:
The approach uses the run-time for selection of appropriate template and implementa-

tion of functionality (BBs) to generate PG(s). The late binding of the actual implementa-
tion (BB) fosters the short-term flexibility. Whereas the maximum available information
at the run-time helps to generate PGs which are aligned to the application requirements
& the network conditions.

Figure 5.17 shows a scenario where two different kinds of application requirements
and network offerings are given. The domain policies remain same in both cases. The
requirements 1 (R1) consists of ciphering, retransmission, and the requirements 2 (R2)
has a single requirement of retransmission. R1 & R2 belong to a same domain (”Image-

76CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

transmission”) and share the same domain policy. It states that in the case of offered
bandwidth is less than 1 Mb the size of the data should be reduced by compressing it. The
system offers two kinds of network connections one with bandwidth less than 1 Mb and
other with more than 4 Mb. Depending on the incoming requirements and the selected
network connection different a PG will be generated. The figure 5.17 shows four different
possible combinations where R1 & R2 ->Requirement 1 & 2, and N1 & N2 ->Network
offerings 1 & 2 respectively.

Long-Term Flexibility:
The approach supports the deployment of a new template or a new building block.

Moreover, newly deployed functionality can be immediately used, which in the long-run
provides the long-term flexibility in a network. This phenomenon is further elaborated
in the following scenario.

Figure 5.18: Requirements and Long-Term Flexibility

The figure 5.18 shows a scenario where an application asks for security and reliability
with the QoS parameters like encryption key more than 100 bits and delay less than
10 ms. The figure also shows a time-line (left-to-right). When the requirements first

5.3. CONCLUSION OF TEMPLATE-BASED COMPOSITION 77

arrive the BB pool has only one suitable BB for each Encryption and Retransmission.
Thus, only single PG is generated where DES128 provides 128 bit encryption key. Here,
encryption needs 5 ms for the execution and retransmission needs 3 ms for the execution.
Hence, overall delay remains less than 10 ms as required. The next, a new building block
is deployed to the system. And it is instantly made available to be used by going through
all the templates and their placeholders to check for suitability.

When the same requirements are presented to the system again it generates two PGs
with two different encryption mechanisms namely AES256 and DES128. In this case the
selected PG is with AES256-BB as it provides the better encryption and lesser delay (5
ms) based on QoS requirements.

Required Setup-Time and Template Based Composition

The split of functional composition among different time phases in the template based
approach makes it possible to perform the tasks (i.e., which increase the required setup
time) like placement and connections at the design-time to reduce the required setup
time. Experts can be involved in an optimal placement of functionalities in the design-
time placement that is not pragmatic during the run-time.

The connections are defined at design-time. The experts validate the connections if
au automatic composition has been used to create them. The connections section of the
template description language is responsible for the connections and placement as shown
in fig.5.19(a). The ports of a placeholder are connected with another placeholder(s) ports,
which are later mapped to selected building block ports.

How placement is looks like in the template based approach is shown in the fig.5.19(a).
It shows a part of the schema (i.e., described in 5.1.1) of the template description language.
The connections section of the language deals with the placement of functionality besides
connections among them that is further explained by an example given in fig.5.19 (b) and
(c). Part (b) gives a pictorial representation of placement and connections of placeholders.
Part(c) shows how does it look like in an XML-format.

The required setup time can be further reduced by pre-selection of building blocks
in the approach. The idea behind is to reduce the number of choices by selecting the
suitable building blocks for the placeholders in a template. The process of pre-selection
is shown in the fig.5.20 by an example of ciphering placeholder. At deployment time,
building block pool is searched to find the fitting BBs by matching the ports of BBs
and placeholders. Once the suitable BBs are found for a placeholder, they are entered

78CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Figure 5.19: Placement in Template

in the pre-selection description of a placeholder as shown in fig. 5.20 (b). This process
is done for every placeholder in all the existing templates. This process helps to exclude
inapplicable matches before the run-time (i.e., critical time). Hence at the run-time, the
selection only takes place within pre-selected BBs as shown in fig. 5.20(c). The selection
is further refined by incoming application requirements, policies and network conditions.

So as a conclusion, the split of the composition in different time-phases helps template-

5.3. CONCLUSION OF TEMPLATE-BASED COMPOSITION 79

Figure 5.20: Selection of Building Blocks in different Time Phases

based approach to deal with the complex nature of a composition and eventually reduces
the required setup time.

80CHAPTER 5. REQUIREMENTS-AWARE, TEMPLATE-BASED PROTOCOL GRAPHS

Chapter 6

Performance Evaluation of Template
Based Composition

The presented approach will not be applicable unless it can be carried out within some
time constraints, to ensure the pragmatic nature of it, this chapter focuses on the per-
formance evaluation of the approach. The assessment is based on the time needed at the

Figure 6.1: Stages of Template Based Composition

run-time to generate the executable protocol graph(s).

81

82CHAPTER 6. PERFORMANCE EVALUATION OF TEMPLATE BASED COMPOSITION

The template-based composition is performed in three main stages as shown in figure
6.1, these stages are the template selection, the template filling, and the protocol graph(s)
generation. However, this evaluation is based on the actions that are inevitably carried
out during the run-time. Hence, processing of building blocks, templates, domain policies
and network offerings can be performed before an incoming request. The same is also
true for filling the placeholders of templates with suitable BBs. When a new BB is
deployed, a background process checks for the matching placeholders and add its reference
to the fitting placeholders, thus it does not have an impact on the time required for the
generation of protocol graph(s). It leaves remaining two stages ”template selection” and
”PGs generation”. A performance evaluation of those stages is realized in this chapter
to calculate the required setup time. In case multiple PGs are generated, one must be
selected for execution. The PG selection is also performed at run-time. However, a
simple selection method like first-match has no considerable impact on the required time.
Besides, it is out of the scope of the composition so that of the presented work.

6.1 Test Environment Specifications

This section lists the hardware, software and technology used for this evaluation.

• Hardware: The testing is done using the following hardware.

– Process: Intel (R) Pentium (R) CPU B970 2.30GHz - Dual Core

– RAM: 2 GB

• Software & Technology: The following is the list of software and technology
used during the evaluation.

– Programming Language: JAVA (JDK 1.7)

– OS: Windows 7 Ultimate (64 bits) with Service Pack 1

6.2 Selection of Template(s)

The time consumption during the selection process mainly depends on the numbers of
incoming requirements and the available templates in a template pool. Moreover, based
on the assumption that percentage of suitable templates in a pool will have an impact on
how fast the selection process can find the match(es). Different samplings are simulated
differ by percentage of available fitting templates for the given requirements.

6.2. SELECTION OF TEMPLATE(S) 83

6.2.1 Single Selection

In this simulation only a single template is selected regardless of how many suitable
templates are available in a system. It uses the first exact match algorithm. A required
time graph is plotted against the number of available templates with a different number
of requirements (i.e., 2, 10, 30, 50) and two different percentages of suitable templates
available. The amount of BBs and placeholders have no impact on the result as to select
a template the requirements are checked only against the covered effects of a template.

The rounded-off number of templates are generated which fulfill the given require-
ments such as for the 80% suitability if the pool has 22 templates altogether then -
22*80/100 = 17.6 (18) - 18 templates will be suitable ones and rest of them unsuitable.
The generated templates are randomly distributed with a random number of matching
covered-effects. Hence, there is no fixed number before a suitable template will be found,
it can be found anywhere from the first to the last template. The randomly covered
effects also have an impact, if an unsuitable template covers 18 requirements out of 20
then it can be that first checked requirement is unfitting or the second last, both of these
cases will consume different time.

It is apparent from both of these graphs 6.2a 6.2b that as the number of requirements
increase so the taken time. The main reason behind is the algorithm complexity, as shown
in Listing 6.2.1. Two loops are being used which makes it n2, however, the inner loop
is probabilistic and gives a constant number, which makes the big-o-notation to simple
”n” which represents a number of requirements. Hence, the number of templates and its
distribution has the least impact on the performance of the selection process.

for (Requirement req : requirements) {
for (Template temp: templates)
{
...
}

}

The time is measured in the microseconds, the average maximum required time is
between 400 and 500 microseconds with some deviation because of a random sampling
of templates and a number of suitably covered effects associated. It can also be con-
cluded from the plotted graphs that major performance effecting parameter is number of
requirements during the selection of a single template.

84CHAPTER 6. PERFORMANCE EVALUATION OF TEMPLATE BASED COMPOSITION

10 20 30 40 50 60 70 80 90
Number of Templates

50

100

150

200

250

300

350

400

450

500

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(a) Single Selection With 10% Matching Templates

10 20 30 40 50 60 70 80 90
Number of Templates

50

100

150

200

250

300

350

400

450

500

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(b) Single Selection With 50% Matching Templates

6.2.2 Multiple Selection

In this simulation all the possible matching templates are selected with varying number of
requirements and number of available templates. For a selection of all possible matches,
the selection process must go through all the available templates and select whichever
are fitting to the given requirements, which consequently increases the required time.

This simulation uses four different percentages of suitable templates. Some require-
ments have the major impact on the required time same as in the previous case, but
unlike single selection, the number of templates has significance in overall performance.
All the graphs presented in the figure 6.3 have linear growth with respect to number of
templates. It is also to be noted that suitability also plays a role in this case as the
required-time increases with the number of suitable templates. However, the main factor
is to go through all the templates before finding all the matching ones. In this case,
the process requires checking all the available templates before finding all matching ones
unlike the previous case where it terminates as soon a single suitable template is found.
Selection of suitable one requires longer than rejection, as during the selection, the pro-
cess must check the covered effects of a template. But in another case, a template is
rejected as soon as the single requirement is not fulfilled.

The time taken for the extreme case of 50 requirements and 90 available template is
between 20 and 23 Milliseconds. With the same number of requirements and change in

6.3. PROTOCOL GRAPH(S) GENERATION 85

the number of templates, the ascending is almost stable as shown in graph 6.3a with 10
requirements. The addition of every template increases the time on average by 40 to 50
microseconds and in case of 30 requirements by 100 to 200 microseconds.

6.3 Protocol Graph(s) Generation

The next run-time activity is to replace placeholders of a template with actual implemen-
tation (BBs) to generate an executable protocol graph. The process involves to connects
BBs’ ports to placeholders’ ports and place them in order. It also aggregates QoS param-
eters of all the BBs in a protocol graph for further optimal selection in case more than
one PGs are generated.

The required time mainly depend on the number of placeholders and the available
suitable BBs for each placeholder, which accounts for number of PGs. The simulation is
divided into two sub-cases, one where only single PG is generated and second where all
possible PGs are created. Multiple PGs are generated to select the most optimal PG on
the given QoS requirements. However, in many cases, even having a single executable
PG will be sufficient which is measured in the first case. The second case generates
every possible executable PG so that later, a best possible PG will be selected for service
provision.

6.3.1 Single Protocol Graph

In this simulation for the constant increase of resultant PGs, it is assumed that every
placeholder in a template has the same amount of suitable BBs, which is unlikely in ev-
eryday scenarios as contemporary number of security implementations is higher than flow
control implementations. In this case, the PG generation process breaks after creating
an executable PG successfully.

It is apparent from the graph 6.4 that number of placeholders plays a vital role in the
increment of required time. The effect on the time is minimal on accretion in some BBs,
it is more evident in case 10 BBs but yet negligible. The required time is between 200
and 300 microseconds for 6 placeholders, hence the difference between 1 suitable BB and
10 BBs for 6 placeholders is ∼100 microseconds.

86CHAPTER 6. PERFORMANCE EVALUATION OF TEMPLATE BASED COMPOSITION

10 20 30 40 50 60 70 80 90
Number of Templates

0

5000

10000

15000

20000

25000

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(a) All Possible Matches With 10% Matching Templates

10 20 30 40 50 60 70 80 90
Number of Templates

0

5000

10000

15000

20000

25000

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(b) All Possible Matches With 20% Matching Templates

10 20 30 40 50 60 70 80 90
Number of Templates

0

5000

10000

15000

20000

25000

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(c) All Possible Matches With 50% Matching Templates

10 20 30 40 50 60 70 80 90
Number of Templates

0

5000

10000

15000

20000

25000

T
im

e
 t

a
ke

n
 (

m
ic

ro
-s

e
co

n
d
s)

2 Requirements
10 Requirements
30 Requirements
50 Requirements

(d) All Possible Matches With 80% Matching Templates

Figure 6.3: Multi-Template Selection

6.3. PROTOCOL GRAPH(S) GENERATION 87

0 1 2 3 4 5 6
Number of Placeholders

0

50

100

150

200

250

300

T
im

e
 (

m
ic

ro
-s

e
co

n
d
s)

10 BB
7 BBs
5 BBs
2 BBs
1 BBs

Figure 6.4: Graph: Time Required to Produce an Executable PG

6.3.2 All Possible Protocol Graphs

In this case, like in the previous scenario6.3.1, every placeholder in a template holds the
same number of suitable BBs, but here, all possible protocol graphs are generated.

The possible number of PGs in a template is calculated by following formula:
PossiblePGs = ∏n

i=1 PBi

Where PBi is number of BBs in the placeholder-i.
However, as in this simulation, every placeholder contains the exact same amount of

suitable BBs it can simply be calculated by PossiblePGs = (NumberofBBs)(NumberofP laceholders).
The four graphs 6.5 are drawn for a different number of building blocks as the value

varies significantly (0-6000 Milliseconds) to visualize all the readings in one graph. It is
also important to note that unlike other graphs, the time is measured in Milliseconds. In
this scenario, a number of BBs and placeholders both play a vital role in the consumed
time, as it is more about how many PGs are generated as a result. In the worst-case
scenario with 4 BBs and 8 placeholders, 65536 PGs are generated which takes about 6

88CHAPTER 6. PERFORMANCE EVALUATION OF TEMPLATE BASED COMPOSITION

2 3 4 5 6 7 8
Number of Placeholders

0.06

0.04

0.02

0.00

0.02

0.04

0.06

T
im

e
 t

a
ke

n
 (

m
ill

i-
se

co
n
d
s)

1 BB

(a) 1 Suitable BB

2 3 4 5 6 7 8
Number of Placeholders

0

100

101

102

103

T
im

e
 t

a
ke

n
 (

m
ill

i-
se

co
n
d
s)

2 BBs

(b) 2 Suitable BBs

2 3 4 5 6 7 8
Number of Placeholders

0

100

101

102

103

T
im

e
 t

a
ke

n
 (

m
ill

i-
se

co
n
d
s)

3 BBs

(c) 3 Suitable BBs

2 3 4 5 6 7 8
Number of Placeholders

0

100

101

102

103

104

T
im

e
 t

a
ke

n
 (

m
ill

i-
se

co
n
d
s)

4 BBs

(d) 4 Suitable BBs

Figure 6.5: All Possible PGS With Different Suitable BBs In Each Placeholder

6.4. PERFORMANCE CONCLUSION 89

seconds (about a second for every 1100 PGs).

6.4 Performance Conclusion

The presented performance evaluation shows that the use of the approach will highly
depend on the number of requirements, number of BBs and time criticality of a domain.
However, it requires less than a millisecond to generate a single executable PG as demon-
strated in this evaluation. Every generated PG is executable though not optimal (i.e.,
as not selected based on QoS requirements) on the given requirements. An executable
protocol graph with 10 requirements and 6 placeholders can be generated within 200 mi-
croseconds. The worst case scenario (i.e., 65536 PGs), presented in 6.3.2, can take up to
few seconds, which will not be suitable for domains where required-setup time is less than
a second. However, as a research prototype, the current implementation is not exclusively
focused on performance and uses verbose but extensible meta-language like XML. It can
be enhanced with performance oriented implementation besides use of more concise data
representations like JSON or other binary forms. Besides, the incoming requirements and
the generated PGs are not cached, which can also be a performance-improving feature to
avoid the redundant processing. The selection of most optimal PG out of generated PGs
is not part of the presented work.

90CHAPTER 6. PERFORMANCE EVALUATION OF TEMPLATE BASED COMPOSITION

Chapter 7

Conclusion

The presented approach addresses the challenge of trade-off between time-complexity,
regarding setup time, and desired flexibility in a functional composition. As a result,
a template based composition is presented and successfully tested [GSS+12] within the
framework of G-Lab project1. The approach splits the composition process in different
time-phases to reduce the setup-time and yet to provide the desired flexibility for future
network architectures.

The approach also assures that every generated protocol graph is executable by having
a pre-defined connections (i.e., template) among the functionalities and later replacing it
with an actual implementation. The selection of most suitable one is required if multiple
PGs are generated this work does not cover this part. However, a simple multiple criteria
decision analysis approach like Analytical Hierarchy Process can be used to select a better
suited PG out of the generated pool. How much time it requires to choose a better-suited
graph has a direct impact on the required setup time. But to remain independent of any
additional selection process, a first-match algorithm has been used for evaluation that
requires no time for the selection and it still provides the desired service though not best
suited one.

The current implementation requires experts to develop the templates but an auto-
matic process can also create it. The approach has its limitations regarding the required
time to generate multiple PGs with increment in a number of functionalities and possible
suitable implementations (i.e., BBs) as evaluated in 6.3.2. Hence, it will depend on the
domain specifications and constraints that if the performance of the approach is suitable
for that particular domain.

This work presents a general composition approach with the focus on domain of net-
1http://www.german-lab.de/

91

92 CHAPTER 7. CONCLUSION

work architectures. The presented approach can be used independently of a network
architecture in other domains like overlay networks, and Web-service composition. How-
ever, it may require modifications in descriptions (e.g., service, policies, requirements)
and domain related ontologies. The well-defined ordering of abstract functionalities (i.e.,
placeholders) makes the approach adaptable to needs of other domains. The following
section describes the future work, which can be undertaken to cover another aspect of
the composition process.

Future Work

This section describes the work, which can be carried out in future to cover the aspects
of the future Internet architectures that have not been yet covered in SONATE or the
presented work. The following text first describes adaptation in the template, which is
to change a BB to adapt to network changes during the running communication. Next,
the text describes the heterogeneity. Heterogeneity is the diversity of the services within
inter- and intra-architecture.

Adaption within Template

The functional composition is a process, which is performed before the actual communi-
cation takes place so that it is assumed that application/user requirements do not change
during communication. However, what happens if network conditions or some other poli-
cies change during a communication? The reaction to that change is referred as adaption
in this text. It is a valuable feature in mobile communication wherein the same session a
mobile user switches from one network to another and experiences the different network
conditions, which are needed to be adapted.

The adaption of the functional composition is not to create a new protocol graph but
how some functionalities can be turned-off or turned-on without creating any malfunction
during a communication. An alternative would be to create a new connection based
on new requirements. However, it requires to save the status information like packet
numbering and connection duration or to re-initiate the connection. And these additional
processes will increase the overall delay and management complexity. Hence, it is chosen
to limit the adaption by toggling the functionalities during the run-time. The abstraction
of placeholder comes as handy to deal with this feature.

Toggling a placeholder performs the adaptation in the Template Based FC. A place-

93

Figure 7.1: Adaption within Template

holder is not randomly toggled, rather it is carefully specified by a designer of a template
that which placeholders can be toggled. It is necessary because turning on/off an arbi-
trary functionality can be responsible for a malfunction or a total failure of a generated
protocol graph. Only compression and encryption functionalities can be toggled in the
given template as shown in figure 7.1.

To perform a run-time adaption within a template has many necessities some of those
are mentioned below.

• A workflow engine must be able to execute a template rather than a protocol graph
(i.e., based on fixed BBs). If a protocol graph is executed instead of a template
then given abstraction of a placeholder cannot be used.

• A template needs an interface for receiving external requirements, network con-
straints and varying contexts at the run-time as shown in the fig. 7.1.

94 CHAPTER 7. CONCLUSION

• It is also needed to have an adaption mechanism which goes through the inputs
and adapt a template accordingly.

• A place-holder must provide an interface to turn on/off a specific functionality of a
place-holder.

• It is also necessary to signal the change to communicating partner, so that it is
known to both parties, which functionality is on or off and which BB for the specific
functionality is selected.

How adaption works: After the selection of templates, only the placeholders will
be turned on which have been requested by the requirements given that a placeholder
can be toggled. Once a template has been selected, suitable building blocks will be filled
for all the placeholders in that template regardless of their status (i.e., on or off). Later,
this selected template will be given to a workflow engine to execute.

The run-time adaption occurs once a workflow engine is executing a template. Let’s
assume that compression was part of the selected template but it was not turned on
as it was not needed on the given network conditions (i.e., sufficient bandwidth so no
compression) or domain policies (e.g., If the domain is data transmission then compression
is not included). Now let’s assume that the given bandwidth changes drastically which
add a new requirement on the template to enable the compression and to use best possible
BB. At this point, the adaption mechanism receives the new requirements via given
interface to enable the compression functionality. Now it is the task of the adaption
mechanism to search for the placeholder(s) that fulfill those requirements and to enable
it accordingly. However, enabling a functionality is not the whole story, it is also needed
to select out of possible suitable BBs. The simplest way to do this to use the BB that
is specified as standard and already connected. However, it is not enough just to select
the most suitable BB but it is also necessary to signal the occurred changes to the
communicating partner so that same changes can take place at the other side.

Like during composition, we may also face the heterogeneity (i.e., see section 2.3.7)
problem, it might be that the other end does not support the selected BB or this specific
BB is not available on the system. The difference here is that connection in use might
be disconnected. Specifying a most used BB as standard BB for this functionality can
solve this problem. For instance aes256 can be used as a standard BB for encryption
functionality. By this method, we can select a standard BB and can also suggest other
more preferred BBs in a prioritize order to the other end. Depending on the availability,
the other end can decide for the one of the preferred BBs or in a worst case it will fall-back

95

to the standard BB. However, the practical implementation of any of this is not part of
the current work.

The current work supports the idea of adaption by providing the toggling property
to placeholders in the description language. The implementation of this adaption feature
can be done in future, and the mobile-domain can be used as a testing scenario.

Heterogeneity of Services

The flexible composition of protocol graphs will create even further heterogeneity. The
heterogeneity is described briefly in section 2.3.7, however not being the focus of the
presented work, it has not been researched in detail. This published paper ”Mediation
between Service and Network Composition [Sea10b]” describes two kind of negotiation
schemes so-called implicit and explicit. Wherein implicit negotiation, one end uses the
cache to decide for the suitable protocol graph for the other end. And in explicit negotia-
tion, one end communicates the used protocol graph before connection establishment. To
implement these negotiation schemes besides finding others will be beneficial for future
network architectures.

96 CHAPTER 7. CONCLUSION

Appendices

97

Appendix A

Examples & Implementation

A.1 Requirements

Listing A.1.1: Requirements with Retransmission
<?xml version="1.0" encoding="UTF -8"?>
<Requirements xmlns:xsi="Req_Desc.xsd">

<Domain >ImageTransmission </Domain >
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Requirements >

Listing A.1.2: Requirements with Security and Reliability
<?xml version="1.0" encoding="UTF -8"?>
<Requirements xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="Req_Desc.xsd">
<Domain >ImageTransmission </Domain >
<Requirement >

<Effect >ciphering </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Requirements >

Listing A.1.3: Example of Requirements
<?xml version="1.0" encoding="UTF -8"?>
<Requirements xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="Req_Desc.xsd">
<Domain >ImageTransmission </Domain >
<Requirement >

<Effect >ciphering </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

99

100 APPENDIX A. EXAMPLES & IMPLEMENTATION

</Requirement >
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >MessageCount </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >DataReduction </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Requirements >

Listing A.1.4: Example of Quality of Transmission Domain Requirement
<?xml version="1.0" encoding="UTF -8"?>
<Requirements xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="Req_Desc.xsd">
<Domain >QualityTransmission </Domain >
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Requirements >

Listing A.1.5: Data Transmission Domain Requirements
<?xml version="1.0" encoding="UTF -8"?>
<Requirements xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="Req_Desc.xsd">
<Domain >SecureReilableDataTransmission </Domain >
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >ciphering </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Requirements >

A.2 Domain Policies

Listing A.2.1: Example of Domain Policies
<?xml version="1.0" encoding="UTF -8"?>
<DomainsPolicies xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="DomainPolicies.xsd">
<Domain Name="DataTransmission">
<Condition >

<IF Effect="bandwidth" Operator="=<" Attribute="2" Unit="MB"
></IF>

<Then Effect="DataReduction" Operator="=" Attribute="true"></
Then >

</Condition >
</Domain >
<Domain Name="ImageTransmission">

A.3. TEMPLATES 101

<Condition >
<IF Effect="bandwidth" Operator="=<" Attribute="1" Unit="MB"

></IF>
<Then Effect="DataReduction" Operator="=" Attribute="true"></

Then >
</Condition >
</Domain >
<Domain Name="QualityTransmission">
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Domain >
<Domain Name="SecureReilableDataTransmission">
<Requirement >

<Effect >retransmission </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Ordering </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Congestion </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Flow </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Connection </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Error Detection </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
<Requirement >

<Effect >Multiplexing </Effect >
<Operator >=</Operator >
<Attribute >true </Attribute >

</Requirement >
</Domain >

</DomainsPolicies >

A.3 Templates

Listing A.3.1: Template for Secure Reliable Data Transmission
<?xml version="1.0" encoding="UTF -8"?>
<Template xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" xsi:

noNamespaceSchemaLocation="file/Template_Description.xsd">
<Domains >

<Domain >SecureReilableDataTransmission </Domain >
</Domains >
<Placeholders >

<PlaceHolder Name="app" ID="3">
<ToggleEnable isToggle="false" />
<Port PortID="6">

<OfferedEffect Effect="application" Operator="=" Attribute="true" />
</Port >

102 APPENDIX A. EXAMPLES & IMPLEMENTATION

</PlaceHolder >
<PlaceHolder Name="MuxDeMux" ID="1">

<ToggleEnable isToggle="true" />
<Port PortID="11">

<OfferedEffect Effect="mux" Operator="=" Attribute="true" />
</Port >
<Port PortID="12">

<OfferedEffect Effect="demux" Operator="=" Attribute="true" />
</Port >
<Port PortID="13">

<OfferedEffect Effect="Mangement" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Connection" ID="11">

<ToggleEnable isToggle="false" />
<Port PortID="111">

<OfferedEffect Effect="req" Operator="=" Attribute="true" />
</Port >
<Port PortID="112">

<OfferedEffect Effect="reply" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Compression" ID="2">

<ToggleEnable isToggle="true" />
<Port PortID="9">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >
<Port PortID="2">

<OfferedEffect Effect="DataReduction" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Encryption" ID="5">

<ToggleEnable isToggle="true" />
<Port PortID="51">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >
<Port PortID="52">

<OfferedEffect Effect="ciphering" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
<PlaceHolder Name="CRC" ID="12">

<ToggleEnable isToggle="true" />
<Port PortID="121">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >
<Port PortID="122">

<OfferedEffect Effect="Integrity" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Packetization" ID="7">

<ToggleEnable isToggle="false" />
<Port PortID="71">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >
<Port PortID="72">

<OfferedEffect Effect="Packets" Operator="=" Attribute="0" />
</Port >
<Port PortID="73">

<OfferedEffect Effect="Mangement" Operator="=" Attribute="0" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Retransmission" ID="4">

<ToggleEnable isToggle="false" />
<Port PortID="5">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >
<Port PortID="8">

<OfferedEffect Effect="LossRatio" Operator="=" Attribute="0" />
</Port >

</PlaceHolder >
<PlaceHolder Name="Control" ID="10">

<ToggleEnable isToggle="false" />
<Port PortID="101">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

A.3. TEMPLATES 103

</Port >
<Port PortID="102">

<OfferedEffect Effect="Controlling" Operator="=" Attribute="0" />
</Port >

</PlaceHolder >
<PlaceHolder Name="net" ID="6">

<ToggleEnable isToggle="false" />
<Port PortID="7">

<OfferedEffect Effect="net" Operator="=" Attribute="true" />
</Port >

</PlaceHolder >
</Placeholders >
<Connections >

<Connection >
<Port PortID="6" Placeholder="app" />
<Port PortID="11" Placeholder="MuxDeMux" />

</Connection >
<Connection >

<Port PortID="12" Placeholder="MuxDeMux" />
<Port PortID="9" Placeholder="Compression" />

</Connection >
<Connection >

<Port PortID="13" Placeholder="MuxDeMux" />
<Port PortID="111" Placeholder="Connection" />

</Connection >
<Connection >

<Port PortID="2" Placeholder="Compression" />
<Port PortID="51" Placeholder="Encryption" />

</Connection >
<Connection >

<Port PortID="52" Placeholder="Encryption" />
<Port PortID="71" Placeholder="Packetization" />

</Connection >
<Connection >

<Port PortID="111" Placeholder="Connection" />
<Port PortID="73" Placeholder="Packetization" />

</Connection >
<Connection >

<Port PortID="72" Placeholder="Packetization" />
<Port PortID="5" Placeholder="Retransmission" />

</Connection >
<Connection >

<Port PortID="8" Placeholder="Retransmission" />
<Port PortID="121" Placeholder="CRC" />

</Connection >
<Connection >

<Port PortID="122" Placeholder="CRC" />
<Port PortID="101" Placeholder="Control" />

</Connection >
<Connection >

<Port PortID="102" Placeholder="Control" />
<Port PortID="7" Placeholder="net" />

</Connection >
</Connections >
<CoveredEffects >

<CoveredEffect Effect="Congestion" Operator="=" Attribute="␣true" isToggle
="true" />

<CoveredEffect Effect="Flow" Operator="=" Attribute="␣true" isToggle="false
" />

<CoveredEffect Effect="Connection" Operator="=" Attribute="␣true" isToggle=
"false" />

<CoveredEffect Effect="Error␣Detection" Operator="=" Attribute="␣true"
isToggle="true" />

<CoveredEffect Effect="Multiplexing" Operator="=" Attribute="␣true"
isToggle="false" />

<CoveredEffect Effect="retransmission" Operator="=" Attribute="␣true"
isToggle="false" />

<CoveredEffect Effect="ciphering" Operator="=" Attribute="␣true" isToggle="
true" />

<CoveredEffect Effect="DataReduction" Operator="=" Attribute="␣true"
isToggle="true" />

</CoveredEffects >
</Template >

104 APPENDIX A. EXAMPLES & IMPLEMENTATION

A.4 Protocol Graphs

Listing A.4.1: Protocol Graph for Secure Reliable Data Transmission
<?xml version="1.0" encoding="UTF -8"?>
<Workflow >

<Optional >
<Offering >

<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="" >85.0</ Attribute >

</Offering >
<Offering >

<Effect >imagequality </Effect >
<Operator >=</Operator >
<Attribute Unit="" >75.0</ Attribute >

</Offering >
<Offering >

<Effect >bandwidth </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
<Offering >

<Effect >lossratio </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
</Optional >
<buildingblocks >

<buildingblock id="app" uuid="app" special="app">
<Port PortID="data">

<OfferedEffect Effect="application" Operator="=" Attribute="true"
/>

</Port >
</buildingblock >
<buildingblock id="Mux" uuid="Mux">

<Port PortID="down">
<OfferedEffect Effect="demux" Operator="=" Attribute="true" />

</Port >
<Port PortID="extra">

<OfferedEffect Effect="Mangement" Operator="=" Attribute="true" />
</Port >
<Port PortID="up">

<OfferedEffect Effect="mux" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Management" uuid="Management">

<Port PortID="down">
<OfferedEffect Effect="req" Operator="=" Attribute="true" />

</Port >
<Port PortID="up">

<OfferedEffect Effect="reply" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="ImageComp75" uuid="ImageComp75">

<Port PortID="down">
<OfferedEffect Effect="DataReduction" Operator="=" Attribute="true"

/>
</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="AES256" uuid="AES256">

<Port PortID="down">
<OfferedEffect Effect="ciphering" Operator="=" Attribute="true" />

</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >

A.4. PROTOCOL GRAPHS 105

<buildingblock id="CRC" uuid="CRC">
<Port PortID="down">

<OfferedEffect Effect="Integrity" Operator="=" Attribute="true" />
</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Fragementation" uuid="Fragementation">

<Port PortID="down">
<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

</Port >
<Port PortID="extra">

<OfferedEffect Effect="Mangement" Operator="=" Attribute="true" />
</Port >
<Port PortID="up">

<OfferedEffect Effect="Packets" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Retransmission" uuid="Retransmission">

<Port PortID="up">
<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

</Port >
<Port PortID="down">

<OfferedEffect Effect="LossRatio" Operator="=" Attribute="0" />
</Port >

</buildingblock >
<buildingblock id="FlowCongControl" uuid="FlowCongControl">

<Port PortID="down">
<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

</Port >
<Port PortID="up">

<OfferedEffect Effect="Controlling" Operator="=" Attribute="true"
/>

</Port >
</buildingblock >
<buildingblock id="net" uuid="net" special="net">

<Port PortID="data">
<OfferedEffect Effect="net" Operator="=" Attribute="true" />

</Port >
</buildingblock >

</buildingblocks >
<connections >

<connection >
<port blockname="app.xml" blockid="app" name="data" id="data" />
<port blockname="Mux.xml" blockid="Mux" name="up" id="up" />

</connection >
<connection >

<port blockname="Mux.xml" blockid="Mux" name="down" id="down" />
<port blockname="ImageComp75.xml" blockid="ImageComp75" name="up" id="

up" />
</connection >
<connection >

<port blockname="Mux.xml" blockid="Mux" name="extra" id="extra" />
<port blockname="Management.xml" blockid="Management" name="down" id="

down" />
</connection >
<connection >

<port blockname="ImageComp75.xml" blockid="ImageComp75" name="down" id
="down" />

<port blockname="AES256.xml" blockid="AES256" name="up" id="up" />
</connection >
<connection >

<port blockname="AES256.xml" blockid="AES256" name="down" id="down" />
<port blockname="Fragementation.xml" blockid="Fragementation" name="

down" id="down" />
</connection >
<connection >

<port blockname="Management.xml" blockid="Management" name="down" id="
down" />

<port blockname="Fragementation.xml" blockid="Fragementation" name="
extra" id="extra" />

106 APPENDIX A. EXAMPLES & IMPLEMENTATION

</connection >
<connection >

<port blockname="Fragementation.xml" blockid="Fragementation" name="up
" id="up" />

<port blockname="Retransmission.xml" blockid="Retransmission" name="up
" id="up" />

</connection >
<connection >

<port blockname="Retransmission.xml" blockid="Retransmission" name="
down" id="down" />

<port blockname="CRC.xml" blockid="CRC" name="up" id="up" />
</connection >
<connection >

<port blockname="CRC.xml" blockid="CRC" name="down" id="down" />
<port blockname="FlowControl.xml" blockid="FlowCongControl" name="down

" id="down" />
</connection >
<connection >

<port blockname="FlowControl.xml" blockid="FlowCongControl" name="up"
id="up" />

<port blockname="net.xml" blockid="net" name="data" id="data" />
</connection >

</connections >
</Workflow >

Listing A.4.2: Protocol Graph with AES Encryption
<?xml version="1.0" encoding="UTF -8"?>
<Workflow >

<Optional >
<Offering >

<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="" >3.0</Attribute >

</Offering >
<Offering >

<Effect >imagequality </Effect >
<Operator >=</Operator >
<Attribute Unit="" >75.0</ Attribute >

</Offering >
<Offering >

<Effect >bandwidth </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
<Offering >

<Effect >lossratio </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
</Optional >
<buildingblocks >

<buildingblock id="app" uuid="app" special="app">
<Port PortID="data">

<OfferedEffect Effect="application" Operator="=" Attribute="true"
/>

</Port >
</buildingblock >
<buildingblock id="ImageComp75" uuid="ImageComp75">

<Port PortID="down">
<OfferedEffect Effect="DataReduction" Operator="=" Attribute="true"

/>
</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="AES256" uuid="AES256">

<Port PortID="down">
<OfferedEffect Effect="ciphering" Operator="=" Attribute="true" />

</Port >
<Port PortID="up">

A.4. PROTOCOL GRAPHS 107

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Retransmission" uuid="Retransmission">

<Port PortID="up">
<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

</Port >
<Port PortID="down">

<OfferedEffect Effect="LossRatio" Operator="=" Attribute="0" />
</Port >

</buildingblock >
<buildingblock id="net" uuid="net" special="net">

<Port PortID="data">
<OfferedEffect Effect="net" Operator="=" Attribute="true" />

</Port >
</buildingblock >

</buildingblocks >
<connections >

<connection >
<port blockname="app.xml" blockid="app" name="data" id="data" />
<port blockname="ImageComp75.xml" blockid="ImageComp75" name="up" id="

up" />
</connection >
<connection >

<port blockname="ImageComp75.xml" blockid="ImageComp75" name="down" id
="down" />

<port blockname="AES256.xml" blockid="AES256" name="up" id="up" />
</connection >
<connection >

<port blockname="AES256.xml" blockid="AES256" name="down" id="down" />
<port blockname="Retransmission.xml" blockid="Retransmission" name="up

" id="up" />
</connection >
<connection >

<port blockname="Retransmission.xml" blockid="Retransmission" name="
down" id="down" />

<port blockname="net.xml" blockid="net" name="data" id="data" />
</connection >

</connections >
</Workflow >

Listing A.4.3: Protocol Graph with Twofish Encryption
<?xml version="1.0" encoding="UTF -8"?>
<Workflow >

<Optional >
<Offering >

<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="" >4.0</Attribute >

</Offering >
<Offering >

<Effect >imagequality </Effect >
<Operator >=</Operator >
<Attribute Unit="" >75.0</ Attribute >

</Offering >
<Offering >

<Effect >bandwidth </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
<Offering >

<Effect >lossratio </Effect >
<Operator >=</Operator >
<Attribute Unit="" >0.0</Attribute >

</Offering >
</Optional >
<buildingblocks >

<buildingblock id="app" uuid="app" special="app">
<Port PortID="data">

<OfferedEffect Effect="application" Operator="=" Attribute="true"
/>

108 APPENDIX A. EXAMPLES & IMPLEMENTATION

</Port >
</buildingblock >
<buildingblock id="ImageComp75" uuid="ImageComp75">

<Port PortID="down">
<OfferedEffect Effect="DataReduction" Operator="=" Attribute="true"

/>
</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Twofish256" uuid="Twofish256">

<Port PortID="down">
<OfferedEffect Effect="ciphering" Operator="=" Attribute="true" />

</Port >
<Port PortID="up">

<OfferedEffect Effect="Data" Operator="=" Attribute="true" />
</Port >

</buildingblock >
<buildingblock id="Retransmission" uuid="Retransmission">

<Port PortID="up">
<OfferedEffect Effect="Data" Operator="=" Attribute="true" />

</Port >
<Port PortID="down">

<OfferedEffect Effect="LossRatio" Operator="=" Attribute="0" />
</Port >

</buildingblock >
<buildingblock id="net" uuid="net" special="net">

<Port PortID="data">
<OfferedEffect Effect="net" Operator="=" Attribute="true" />

</Port >
</buildingblock >

</buildingblocks >
<connections >

<connection >
<port blockname="app.xml" blockid="app" name="data" id="data" />
<port blockname="ImageComp75.xml" blockid="ImageComp75" name="up" id="

up" />
</connection >
<connection >

<port blockname="ImageComp75.xml" blockid="ImageComp75" name="down" id
="down" />

<port blockname="Twofish256.xml" blockid="Twofish256" name="up" id="up
" />

</connection >
<connection >

<port blockname="Twofish256.xml" blockid="Twofish256" name="down" id="
down" />

<port blockname="Retransmission.xml" blockid="Retransmission" name="up
" id="up" />

</connection >
<connection >

<port blockname="Retransmission.xml" blockid="Retransmission" name="
down" id="down" />

<port blockname="net.xml" blockid="net" name="data" id="data" />
</connection >

</connections >
</Workflow >

A.5 Building Blocks

Listing A.5.1: Building Block: Encryption AES256
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

AES256" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >ciphering </Effect >
<Operator >=</Operator >

A.5. BUILDING BLOCKS 109

<Attribute Unit="ms">
<Formula Type="value">true </Formula >

</Attribute >
</Offering >

</Port >
<Port PortID="up">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Optional >

<QOS >
<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >3</Formula >
</Attribute >

</QOS >
<QOS >

<Effect >lossratio </Effect >
<Operator >=</Operator >
<Attribute Unit="%">

<Formula Type="value" >0</Formula >
</Attribute >

</QOS >
</Optional >

</BuildingBlock >

Listing A.5.2: Building Block: Checksum (CRC)
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="CRC"

xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >Integrity </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="up">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Optional >

<QOS >
<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >1</Formula >
</Attribute >

</QOS >
<QOS >

<Effect >lossratio </Effect >
<Operator >=</Operator >
<Attribute Unit="%">

<Formula Type="value" >0</Formula >
</Attribute >

</QOS >
</Optional >

</BuildingBlock >

110 APPENDIX A. EXAMPLES & IMPLEMENTATION

Listing A.5.3: Building Block: Flow Control
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

FlowCongControl" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="up">

<Offering >
<Effect >Controlling </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Optional >

<QOS >
<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >1</Formula >
</Attribute >

</QOS >
</Optional >

</BuildingBlock >

Listing A.5.4: Building Block: Retransmission
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

Retransmission" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="up">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="down">

<Offering >
<Effect >LossRatio </Effect >
<Operator >=</Operator >
<Attribute Unit="%">

<Formula Type="value" >0</Formula >
</Attribute >

</Offering >
</Port >

</BuildingBlock >

Listing A.5.5: Building Block: Fragementation
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

Fragementation" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >

A.5. BUILDING BLOCKS 111

</Attribute >
</Offering >

</Port >
<Port PortID="extra">

<Offering >
<Effect >Mangement </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="up">

<Offering >
<Effect >Packets </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Optional >

<QOS >
<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >1</Formula >
</Attribute >

</QOS >
</Optional >

</BuildingBlock >

Listing A.5.6: Building Block: Image Compression
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

ImageComp75" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >DataReduction </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="up">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Optional >

<QOS >
<Effect >delay </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >75</Formula >
</Attribute >

</QOS >
<QOS >

<Effect >imagequality </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value" >75</Formula >
</Attribute >

</QOS >
</Optional >

</BuildingBlock >

112 APPENDIX A. EXAMPLES & IMPLEMENTATION

Listing A.5.7: Building Block: Message Count
<?xml version="1.0" encoding="UTF -8"?>
<BuildingBlock xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance" BBID="

MsgCount" xsi:noNamespaceSchemaLocation="BB_Description.xsd">
<Port PortID="down">

<Offering >
<Effect >MessageCount </Effect >
<Operator >=</Operator >
<Attribute Unit="ms">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >
<Port PortID="up">

<Offering >
<Effect >Data </Effect >
<Operator >=</Operator >
<Attribute Unit="">

<Formula Type="value">true </Formula >
</Attribute >

</Offering >
</Port >

</BuildingBlock >

A.6 Implementation (Java Code)

A Java-based implementation has been carried out as a proof-of-concept. The code is di-
vided into various classes with respect to its scope. Some of the main classes and only few
of their attributes and methods are shown in the class diagram in Fig. A.6.1. Where the
class ”Composition” is the entrance point. The method ”PerformComposition” accepts
application requirements and network constraints as parameters and returns the number
of generated protocol graphs. The generated PGs are saved in XML format and ready
to be used. The classes ”TemplatePool” and ”BuildingBlockPool” hold all the available
templates and building blocks at the host system respectively. The class ”DomainPoli-
cies” holds the policies of all the domains, which is used by the template selection process
to choose adequate template(s). The class ”WorkflowGenerator” generates all possible
protocol graphs with respect to suitable templates and fitting building blocks for them.

The entire code can be found at Git Repository: https://github.com/abbas-siddiqui/
Template_Based_Composition.git. The code contains two different ”NetBeans” projects
in folders ”Demo With GUI” and ”Template Demo”. The first project runs independently
and has a graphical user interface, where a user can load requirements as an XML file.
Once the requirements are loaded the GUI will show all available templates in the pool.
All available suitable template(s) can be selected by clicking on the button ”Suitable
Template(s)”. The button ”Select a Template” will select a single template from the
suitable templates, the selection is based on first exact match mechanism. The button
”Fill the Template” can be clicked to generate all possible protocol graphs, these PGs
later can be used by the SONATE Framework or other PG execution framework. The

https://github.com/abbas-siddiqui/Template_Based_Composition.git
https://github.com/abbas-siddiqui/Template_Based_Composition.git

A.6. IMPLEMENTATION (JAVA CODE) 113

second project does not run independently rather intended to function as a library to be
used by other programs or frameworks such as a PG execution framework. Where the
class ”Composition” is used as an entry to pass requirements to the composition process
and to receive back generated PGs.

114 APPENDIX A. EXAMPLES & IMPLEMENTATION

Figure A.6.1: Class Diagram

Bibliography

[AD04] B. Aboba and W. Dixon. Ipsec-network address translation (nat) compati-
bility requirements. RFC, 2004.

[AP10] A. Albreshne and J. Pasquier. Semantic-based semi-automatic web service
composition. Computer Department,Switzerland, 2010.

[AP11] A. Albreshne and J. Pasquier. A template-based semi-automatic web
services composition framework. European Conference on Web Services
ECOWS11, 2011.

[Bas80] V. R. Basili. Qualitative software complexity models: A summary. in: Tu-
torial on models and methods for software management and engineering.
IEEE Computer Society Press, Los Alamitos, 1980.

[BCSW00] R. Braden, D.D. Clark, S. Shenker, and J. Wroclawski. Developing a next-
generation internet architecture. ISI, 2000.

[BFH03] Robert Braden, Ted Faber, and Mark Handley. From protocol stack to pro-
tocol heap: role-based architecture. SIGCOMM Comput. Commun. Rev.,
33(1):17–22, 2003.

[BHS+98] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, Wanda Chiu,
and A Chiu. Coyote: A system for constructing fine-grain configurable
communication services, 1998.

[BM05] Fabio Baroncelli and Barbara Martini. A service oriented network archi-
tecture suitable for global grid computing. Optical Network Design and
Modeling, 2005. Conference on, 2005.

115

116 BIBLIOGRAPHY

[BP06] R. Barrett and C. Pahl. Semi-automatic distribution pattern modeling of
web service compositions using semantics. Enterprise Distributed Object
Computing Conference, 2006. EDOC 06, 2006.

[BY97] Yaneer Bar-Yam. Dynamics of complex systems. Studies in nonlinearity.
Westview, Boulder (Colo.), 1997.

[CMPK08] A. Carstea, G. Macariu, D. Petcu, and A. Konovalov. Pattern based com-
position of web services for symbolic computations. ICCS, 2008, 2008.

[DRB+07] R. Dutta, G.N. Rouskas, I. Baldine, A. Bragg, and D. Stevenson. The
silo architecture for services integration, control, and optimization for the
future internet. In Communications, 2007. ICC ’07. IEEE International
Conference on, pages 1899–1904, June 2007.

[EF94] K. Egevang and P. Francis. The ip network address translator (nat). RFC,
1994.

[EG03] Matthias Ehrgott and Xavier Gandibleux. Multiple criteria optimization
state of the art annotated bibliographic surveys. Kluwer Academic Publish-
ers, 2003.

[Erl06] Thomas Erl. Service-Oriented Architecture. Prentice Hall, 2006.

[Erl08] Thomas Erl. Soa design patterns. Prentice Hall 2008, 2008.

[Fel07] Anja Feldmann. Internet clean-slate design: What and why? ACM SIG-
COMM Computer Communication Review 59 Volume 37, Number 3, July
2007, 2007.

[FK06] S. Floyd and E. Kohler. Profile for datagram congestion control protocol
(dccp) congestion control id 2: Tcp-like congestion control. RFC4341, March
2006.

[FK11] S. Frankel and S. Krishnan. Ip security (ipsec) and internet key exchange
(ike) document roadmap. RFC, 2011.

[FS13] W. Fan and J. Shen. A service composition method based on the template
mechanism in the service scalable network framework. Computer Science
and Education (ICCSE), 2013 8th International Conference, 2013.

BIBLIOGRAPHY 117

[Gea11] Daniel Guenther and et al. A way to identify decision criteria for selecting
different mechanisms which provide reliable transmission in a future internet
architecture. 7th Conference on Next Generation Internet, EURO-NGI,
Kaiserslautern, Germany, 2011.

[GKS03] Reinhard Gotzhein, Ferhat Khendek, and Philipp Schaible. Micro protocol
design: the snmp case study. SAM’02 Proceedings of the 3rd international
conference on Telecommunications and beyond: the broader applicability of
SDL and MSC, 2003.

[GR97] Birgit Geppert and Frank Roessler. Generic engineering of communication
protocols - current experience and future issues. In ICFEM ’97: Proceed-
ings of the 1st International Conference on Formal Engineering Methods,
page 70, Washington, DC, USA, 1997. IEEE Computer Society.

[GSM08] K. Geebelen and W. Joosen S. Michiels. Dynamic reconfiguration using
template based web service composition. 3rd Workshop on Middleware for
Service Oriented Computing, MW4SOC 2008, 2008.

[GSS+12] Daniel Günther, Dennis Schwerdel, Abbas Siddiqui, M Rahamatullah Khon-
doker, Bernd Reuther, and Paul Mueller. Selecting and composing require-
ment aware protocol graphs with sonate. 12th Wurzburg Workshop on IP:
ITG Workshop” Visions of Future Generation Networks”(EuroView2012),
2012.

[GW07] Sivakumar Ganapathy and Tilman Wolf. Design of a network service archi-
tecture. In Proc. of Sixteenth IEEE International Conference on Computer
Communications and Networks (ICCCN), Honolulu, HI, August 2007.

[Han06] Mark Handley. Why the internet only just works. BT Technology Journal,
24(3), 2006.

[Hea05] Andreas Hanemann and et al. Perfsonar: A service oriented architecture for
multi-domain network monitoring. Springer, 2005.

[HGW08] Xin Huang, S. Ganapathy, and T. Wolf. A scalable distributed routing
protocol for networks with data-path services. In Network Protocols, 2008.
ICNP 2008. IEEE International Conference on, pages 318–327, Oct. 2008.

118 BIBLIOGRAPHY

[HSee10] Christian Henke, Abbas Siddiqui, and et. el. Network functional composi-
tion: State of the art. Australasian Telecommunication Networks and Ap-
plications Conference (ATNAC 2010), Auckland, Newzealand, Oct-2010.,
2010.

[IEE00] IEEE. 1471-2000 - ieee recommended practice for architectural description
of software-intensive systems. IEEE Standard, 2000.

[Jea08] William JOHNSTON and et al. Network communication as a service-
oriented capability. High Performance Computing and Grids in Action,
Volume 16 Advances in Parallel Computing, 2008.

[KBGH07] S. Kona, A. Bansal, G. Gupta, and T. Hite. Automatic composition of
semanticweb services. ICWS, 2007, 2007.

[Kea12] Rahamatullah Khodoker and et al. Usage of analytic hierarchy process for
communication service selection. 7th GI/ITG KuVS Workshop on Future
Internet 2012, At Nokia Siemens Networks, 2012.

[KR76] R. L. Kenny and H. Raiffa. Decisions with mulitple objectives: Preferences
and value trade-offs. John Wiley and Sons, New York, 1976.

[KRS+10] Rahamatullah Khondoker, Bernd Reuther, Dennis Schwerdel, Abbas Sid-
diqui, and Paul Müller. Describing and selecting communication services in
a service oriented network architecture. In the proceedings of the 2011 ITU-
T Kleidoscope event, Beyond the Internet? Innovations for future networks
and services, Pune, India, December 2010.

[KSMB14] M Rahamatullah Khondoker, Abbas Siddiqui, Paul Müller, and Kpatcha
Bayarou. Realization of service-orientation paradigm in network architec-
tures. Journal of ICT, 2014.

[KSRM12] M. Rahamatullah Khondoker, Abbas Siddiqui, Bernd Reuther, and Paul
Mueller. Service orientation paradigm in future network architectures. Sixth
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS-2012), 2012.

[KVM11] Rahamatullah Khondoker, Eric MSP Veith, and Paul Müller. A description
language for communication services of future network architectures. In

BIBLIOGRAPHY 119

Proceedings of the 2011 International Conference on the Network of the
Future, pages 69 – 76, 2011.

[KWL+10] A. Kostopoulos, H. Warma, T. Leva, B. Heinrich, A. Ford, and L. Eggert.
Towards multipath tcp adoption: Challenges and opportunities. Next Gen-
eration Internet (NGI), 2010 6th EURO-NF Conference on, 2010.

[LMW+11] Florian Liers, Denis Martin, Hans Wippel, Helge Backhaus, Eric Veith, Ab-
bas Siddiqui, and M Rahamatullah Khondoker. Gapi: a g-lab application-
to-network interface. Euroview 2011, Würzburg, 2011.

[May72] Jeff Maynard. Modular programming. London : Butterworths, 1972.

[MDAD] Steven M.Bellovin, David D.Clark, A.Perrig, and D.Song. A
clean-slate design for the next-generation secure internet. http:
//www.cs.berkeley.edu/˜dawnsong/papers/bellovin_clark_perrig_
song_nextGenInternet.pdf.

[MHK07] A. Jimenez Molina and I. Ko H. Koo. A template-based mechanism for
dynamic service composition based on context prediction in ubicomp appli-
cations. International Workshop on Intelligent Web Based Tools (IWBT-07)
in conjunction with 19th IEEE ICTAI-07, 2007.

[MR08] Paul Müller and Bernd Reuther. Future internet architecture - a service ori-
ented approach (future internet architecture - ein serviceorientierter ansatz).
it - Information Technology, 50(6):383–389, 2008.

[MSBee12] Julius Mueller, Abbas Siddiqui, Martin Becke, and et. el. Evaluating a
future internet cross-layer composition prototype. Testbeds and Research
Infrastructure. Development of Networks and Communities, 2012.

[MSH10] Julius Mueller, Abbas Siddiqui, and Dirk Hoffstadt. Cross-layer security
demonstrator for future internet. 3rd Future Internet Symposium 2010 (FIS
2010), 2010.

[Mue13] Paul Mueller. Software defined networking: Bridging the gap between
distributed-systems and networked-systems research. In Paul Müller, Bern-
hard Neumair, Helmut Reiser, and Gabi Dreo Rodosek, editors, 6. DFN-
Forum Kommunikationstechnologien, Beiträge der Fachtagung, 03.-04. Juni
2013, Erlangen, volume 217 of LNI, pages 43–53. GI, 2013.

http://www.cs.berkeley.edu/~dawnsong/papers/bellovin_clark_perrig_song_nextGenInternet.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/bellovin_clark_perrig_song_nextGenInternet.pdf
http://www.cs.berkeley.edu/~dawnsong/papers/bellovin_clark_perrig_song_nextGenInternet.pdf

120 BIBLIOGRAPHY

[Mun95] G. Munda. Multi criteria evaluation in a fuzzy environment - theory and
applications in ecological economics. Hidelberg: Physika Verlag, 1995.

[oSC81] Information Sciences Institute University of Southern California. Transmis-
sion control protocol. RFC793, Sept 1981.

[Pee11] Jianli Pan and et. el. A survey of the research on future internet architec-
tures. IEEE Communications Magazine July 2011, 2011.

[Pos80] J. Postel. User datagram protocol. RFC768, Aug 1980.

[RD10] Jennifer Rexford and Constantine Dovrolis. Future internet architecture:
Clean-slate versus evolutionary research. communications of the acm vol.
53 september 2010, 2010.

[Rec94] Recommendation. Recommendation x.200 (07/94), x.200 information tech-
nology, open systems interconnection, basic reference model the basic model.
ITU-T, 1994.

[RH08] Bernd Reuther and Dirk Henrici. A model for service-oriented communica-
tion systems. Journal of Systems Architecture: the EUROMICRO Journal,
2008.

[RSS+09] Bernd Reuther, Dennis Schwerdel, Abbas Siddiqui, Zornitsa Dimitrova, and
Paul Mueller. A protocol framework for a service-orientedfuture internet
architecture. GI/ITG KuVS Fachgespräch Future Internet, Munich, 2009.

[RSSM09] Bernd Reuther, Abbas Siddiqui, Dennis Schwerdel, and Paul Mueller. An
approach towards a flexible network architecture. Euroview 2009, Würzburg,
2009.

[RVC01] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching
architecture. RFC, 2001.

[Saa80] T. L. Saaty. The analytic hierarchy process. McGraw-Hill, New York, 1980.

[Saa08] Thomas L. Saaty. Decision making with the analytic hierarchy process. Int.
J. Services Sciences, 1(1):83–98, 2008.

BIBLIOGRAPHY 121

[SDS+09] Dennis Schwerdel, Zornitsa Dimitrova, Abbas Siddiqui, Bernd Reuther, and
Paul Mueller. Composition of self descriptive protocols for future network
architectures. EuroMicro 2009, 27-29 August, Patras, Greece, 2009.

[Sea10a] Dennis Schwerdel and et al. On using evolutionary algorithms for solving
the functional composition problem. EuroView2010, 2010.

[Sea10b] Abbas Siddiqui and et al. Mediation between service and network composi-
tion. 10th Würzburg Workshop on IP: Joint ITG and Euro-NF Workshop”
Visions of Future Generation Networks”(EuroView2010), 2010.

[SGKee11] Dennis Schwerdel, Daniel Guenther, M. Rahamatullah Khondoker, and et.
el. A building block interaction model for flexible future internet architec-
tures. 7th EURO-NF CONFERENCE ON NEXT GENERATION INTER-
NET, 2011.

[SHP03] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of web ser-
vices using semantic descriptions. In Web Services: Modeling, Architecture
and Infrastructure workshop in ICEIS, 2003.

[SHPW09] Shashank Shanbhag, Xin Huang, Santosh Proddatoori, and Tilman Wolf.
Automated service composition in next-generation networks. Distributed
Computing Systems Workshops, International Conference on, 0:245–250,
2009.

[Sif08] Manolis Sifalakis. Adaptation and Awareness for Autonomic Systems. PhD
thesis, Computer Department Lancester University, October 2008.

[Sip96] Michael Sipser. Introduction to the Theory of Computation. International
Thomson Publishing, 1st edition, 1996.

[SJMM11] Abbas Siddiqui, Mueller Julius, Becke Martin, and Kleis Michael. Evalu-
ating a future internet cross-layer composition prototype. 7th International
ICST Conference on Testbeds and Research Infrastructures for the Develop-
ment of Networks and Communities, TridentCom, Shanghai, China, 2011.

[SKM12] Abbas Siddiqui, Rahamatullah Khondoker, and P Muller. Template based
composition for requirements based network stacks. Telecommunication Net-
works and Applications Conference (ATNAC), 2012 Australasian, 2012.

122 BIBLIOGRAPHY

[SKR+11] Abbas Siddiqui, Rahamatullah Khondoker, Bernd Reuther, Paul Mueller,
Christian Henke, and Helge Backhaus. Functional composition and its chal-
lenges. In The First International Workshop on Future Internet and Next
Generation Networks (FIGNet-2011), Seoul, South Korea, 2011.

[SLee11] M. Sifalakisb, A. Loucaa, and et. el. Functional composition in future net-
works. Computer Networks Volume 55, Issue 4, 10 March 2011, 2011.

[SLJJ+09] X. Sanchez-Loro, J.Casademont, J.Paradells, J. L. Ferrer, and A. Vidal.
Proposal of a clean slate network architecture for ubiquitous services pro-
visioning. In Future Information Networks, 2009. ICFIN 2009. First Inter-
national Conference on. IEEE Computer Society, 2009.

[SM11] Abbas Siddiqui and P Muller. Tradeoffs in selection and composition ap-
proaches for future internet architectures. 7th GI/ITG KuVS Workshop on
Future Internet, 2011.

[SM12] Abbas Siddiqui and Paul Mueller. A requirement-based socket api for a
transition to future internet architectures. Sixth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-
2012), 2012.

[SSCH03] M. Sifalakis, S. Schmid, T. Chart, and D. Hutchison. A generic active
service deployment protocol. In In proceedings of the Second International
Workshop on Active Network Technologies and Applications, pages 100–111,
2003.

[SSSZ94] Douglas C. Schmidt, Burkhard Stiller, Tatsuya Suda, and Martina Zitter-
bart. Configuring function-based communication protocols for multimedia
applications, 1994.

[Sti94] B. Stiller. Fukss: Ein funktionsbasiertes kommunikationssubsystem zur flex-
iblen konfiguration von kommunikationsprotokollen. GI/ITG-Fachgruppe
Kommunikation und Verteilte Systeme, 1994.

[STP+11] R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich. Sockets api
extensions for the stream control transmission protocol (sctp). RFC 6458
(Informational), December 2011.

BIBLIOGRAPHY 123

[SW08] Shashank Shanbhag and Tilman Wolf. Implementation of end-to-end ab-
stractions in a network service architecture. In CoNEXT ’08: Proceedings
of the 2008 ACM CoNEXT Conference, pages 1–12, New York, NY, USA,
2008. ACM.

[SWP+09] Gregor Schaffrath, Christoph Werle, Panagiotis Papadimitriou, Anja Feld-
mann Rol, Bless Adam, Greenhalgh Andreas Wundsam, Mario Kind, Olaf
Maennel, and Laurent Mathy. Network virtualization architecture: Proposal
and initial prototype. In In Proceedings of ACM SIGCOMM VISA, 2009.

[SXea00] R. Stewart, Q. Xie, and et al. Stream control transmission protocol.
RFC2960, Oct 2000.

[SZ09] Peter Stuckmann and Rainer Zimmermann. European research on future
internet design. IEEE Wireless Communications Magazine, October 2009,
2009.

[TWP06] Joseph D. Touch, Yu-Shun Wang, and Venkata Pingali. A recursive
network architecture. Online: http://www.isi.edu/touch/pubs/isi-tr-2006-
626/, 2006.

[VAMD09] M. H. Valipour, B. Amirzafari, K. N. Maleki, and Negin Daneshpour. A brief
survey of software architecture conceptsand service oriented architecture.
Computer Science and Information Technology, 2009. ICCSIT 2009. 2nd
IEEE International Conference, 2009.

[vB11] I. van Beijnum. An ftp application layer gateway (alg) for ipv6-to-ipv4
translation. RFC 6384 (Standards Track), October 2011.

[VME+09] Lars Völker, Denis Martin, Ibtissam El Khayat, Christoph Werle, and Mar-
tina Zitterbart. A Node Architecture for 1000 Future Networks. In Pro-
ceedings of the International Workshop on the Network of the Future 2009,
Dresden, Germany, June 2009. IEEE.

[VMW+09] Lars Völker, Denis Martin, Christoph Werle, Martina Zitterbart, and Ibtis-
sam El Khayat. Selecting Concurrent Network Architectures at Runtime.
In Proceedings of the IEEE International Conference on Communications
(ICC), Dresden, Deutschland, June 2009. IEEE Computer Society.

124 BIBLIOGRAPHY

[VPPW93a] M. Vogt, Th. Plagemann, B. Plattner, and Th. Walter. Eine laufzeitumge-
bung fuer da capo. GI/ITG-Arbeitstreffen Verteilte Multimedia-Systeme,
1993.

[VPPW93b] M. Vogt, Th. Plagemann, B. Plattner, and Th. Walter. A run-time envi-
ronment for da capo. In Proceedings of INET93 International Networking
Conference of the Internet Society, 1993.

[VWR+07] Manoj Vellala, Anjing Wang, George Rouskas, Rudra Duttaand Ilia Bal-
dine, and Daniel Stevenson. A composition algorithm for the silo cross-layer
optimization service architecture. In Proc. of the Advanced Networks and
Telecommunications Systems Conference (ANTS), Mumbai, India, Decem-
ber 2007.

[Wol06] Tilman Wolf. Service-centric end-to-end abstractions in next-generation net-
works. In Proc. of Fifteenth IEEE International Conference on Computer
Communications and Networks (ICCCN), pages 79–86, Arlington, VA, Oc-
tober 2006.

[WOP92] Sean W, O’Malley, and Larry L. Peterson. A dynamic network architecture.
ACM Transactions on Computer Systems, 10:110–143, 1992.

[ZOP09] E. Zahoor and C. Godart O. Perrin. Rule-based semi automaticweb services
composition. 2009 IEEE Congress on Services, 2009.

Abbas
Siddiqui
Curriculum Vitae B siddiqui.abbas@gmail.com

Nationality: German

"I have no special talents. I am only passionately curious." -
Albert Einstein — To Carl Seelig, his biographer, March 11,

1952. Einstein Archive 39-013

Education
MS in Electrical & Communication Engineering, University of Kassel, Germany,
1.1 (Excellent).
Bachelor of Engineering (Computer Science), .

Doctorate Thesis
Title Requirements Aware Template Based Protocol Graphs in SOA Based Network Ar-

chitecture
Supervisors Prof. Paul Müller
Description Modularization of a network stack and then compose the desirable service on demand

is relatively new in the networks, though, it is being practiced in software engineering
since few decades now. Composition of the functionalities to achieve a desired result
can be performed at various epochs such as run-time, design-time, deployment-
time. However, epochs have trade-offs in terms of the complexity (i.e., required
setup time) and the achieved flexibility. In this work, an approach is presented
to split the composition in different time-phases (i.e., run-time, deployment-time,
and design-time) to provide the flexibility and yet having a practical enough setup
time. In this approach, the complex and time consuming activities are performed at
less-critical time (i.e., design-time, deployment-time) and rest is done at run-time.
The application of the approach is not limited to the SOA network architecture, but
the design also considers the needs of Internet-of-Things and Overlay-Networks

Masters Thesis
Title Implementing SOAP Server & Deploying Web Service Technology based on SOAP

for gathered data from Batteries & Capacitors
Supervisors Prof. Dr.-Ing. Jürgen Schmidt

1/4

Description In this work, a software is developed for signaling and data collection from the
Batteries & Capacitors. And to publish this collected information on INTERNET or
within company’s network, a multi-threaded SOAP server is implemented that can
serve multiple users simultaneously. The server is independent of the Client imple-
mentation as the open standards like SOAP, XML are used for the communication
purpose.

Tools & Tech. C, Java, Hardware Cards Library in C, Visual C++ (MFC), UML, J-Builder, XML,
SOAP, WSDL, UDDI, and Tomcat Apache

Publications
Software Engineering & Architecture
D. Günther, D. Schwerdel, A. Siddiqui, M. R. Khondoker, B. Reuther, and P. Mueller.
Selecting and composing requirement aware protocol graphs with sonate. 12th
Wurzburg Workshop on IP: ITG Workshop" Visions of Future Generation Net-
works"(EuroView2012), 2012.

C. Henke, A. Siddiqui, and et. el. Network functional composition: State of the art.
Australasian Telecommunication Networks and Applications Conference (ATNAC
2010), Auckland, Newzealand, Oct-2010., 2010.

M. R. Khondoker, A. Siddiqui, P. Müller, and K. Bayarou. Realization of service-
orientation paradigm in network architectures. Journal of ICT, 2014.

M. R. Khondoker, A. Siddiqui, B. Reuther, and P. Mueller. Service orientation
paradigm in future network architectures. Sixth International Conference on Inno-
vative Mobile and Internet Services in Ubiquitous Computing (IMIS-2012), 2012.

R. Khondoker, B. Reuther, D. Schwerdel, A. Siddiqui, and P. Müller. Describing
and selecting communication services in a service oriented network architecture.
In the proceedings of the 2011 ITU-T Kleidoscope event, Beyond the Internet?
Innovations for future networks and services, Pune, India, December 2010.

F. Liers, D. Martin, H. Wippel, H. Backhaus, E. Veith, A. Siddiqui, and M. R.
Khondoker. Gapi: a g-lab application-to-network interface. Euroview 2011,
Würzburg, 2011.

B. Reuther, D. Schwerdel, A. Siddiqui, Z. Dimitrova, and P. Mueller. A proto-
col framework for a service-orientedfuture internet architecture. GI/ITG KuVS
Fachgespräch Future Internet, Munich, 2009.

B. Reuther, A. Siddiqui, D. Schwerdel, and P. Mueller. An approach towards a
flexible network architecture. Euroview 2009, Würzburg, 2009.

D. Schwerdel, Z. Dimitrova, A. Siddiqui, B. Reuther, and P. Mueller. Composition
of self descriptive protocols for future network architectures. EuroMicro 2009, 27-29
August, Patras, Greece, 2009.

A. Siddiqui, R. Khondoker, and P. Muller. Template based composition for
requirements based network stacks. Telecommunication Networks and Applications
Conference (ATNAC), 2012 Australasian, 2012.

2/4

A. Siddiqui, R. Khondoker, B. Reuther, P. Mueller, C. Henke, and H. Backhaus.
Functional composition and its challenges. In The First International Workshop on
Future Internet and Next Generation Networks (FIGNet-2011), Seoul, South Korea,
2011.

A. Siddiqui, M. Kleis, J. Mueller, P. Mueller, and T. Magedanz. Application
and network services composition with the help of mediation. 11th Würzburg
Workshop on IP: Joint ITG and Euro-NF Workshop" Visions of Future Generation
Networks"(EuroView2011), 2011.

A. Siddiqui and P. Mueller. A requirement-based socket api for a transition to
future internet architectures. Sixth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS-2012), 2012.

A. Siddiqui and P. Muller. Tradeoffs in selection and composition approaches
for future internet architectures. 7th GI/ITG KuVS Workshop on Future Internet,
2011.
Adaptability and Context based Filtering in mHealth Architecture
M. Jansen, A. Siddiqui, and O. Koch. Provision of personalized data via mobile
web services in ehealth scenarios. WEBIST 2014, 2014.

O. Koch, A. Siddiqui, and M. Jansen. Context-based mhealth applications based
on mobile web services. Med-e-Tel 2014, 2014.

A. Siddiqui, O. Koch, A. Rabie, and U. Handmann. Personalized and adaptable
mhealth architecture. MOBIHEALTH 2014, 2014.
Future Internet & Security
M. Becke, K. Campowsky, C. H. andJulius Müller, C. Schmoll, A. Siddiqui, and
et. el. A demonstrator for cross-layer composition. 10th Würzburg Work-
shop on IP: Joint ITG and Euro-NF Workshop" Visions of Future Generation Net-
works"(EuroView2010), 2010.

M. Becke, K. Campowsky, C. Henke, A. Siddiqui, and et. el. Addressing security in
a cross-layer composition architecture. 10th Würzburg Workshop on IP: Joint ITG
and Euro-NF Workshop" Visions of Future Generation Networks"(EuroView2010),
2010.

C. Henke, K. Campowsky, A. Siddiqui, and et. el. Scenarios for a future internet
based on cross-layer functional composition. 5th GI/ITG KuVS Fachgespräch Future
Internet, Stuttgart, 2010.

M. Kleis, C. Varas, A. Siddiqui, P. Mueller, I. Simsek, M. Becke, and et. el. Cross-
layer security and functional composition for a future internet. Proceedings of 11th
Würzburg Workshop on IP: Visions of Future Generation Networks (EuroView2011),
2011.

J. Mueller, A. Siddiqui, M. Becke, and et. el. Evaluating a future internet cross-
layer composition prototype. Testbeds and Research Infrastructure. Development
of Networks and Communities, 2012.

3/4

J. Mueller, A. Siddiqui, and D. Hoffstadt. Cross-layer security demonstrator for
future internet. 3rd Future Internet Symposium 2010 (FIS 2010), 2010.

C. Schmoll, C. Henke, D. Hoffstadt, A. A. Siddiqui, and et. el. G-lab deep:
Cross-layer composition and security for a flexible future internet. Testbeds and
Research Infrastructures. Development of Networks and Communities, 2011.

A. Siddiqui, M. Julius, B. Martin, and K. Michael. Evaluating a future internet
cross-layer composition prototype. 7th International ICST Conference on Testbeds
and Research Infrastructures for the Development of Networks and Communities,
TridentCom, Shanghai, China, 2011.

T. Zseby, C. Schmoll, C. Henke, D. Hoffstadt, and A. Siddiqui. G-lab deep: Cross-
layer composition and security for a flexible future internet. The 6th International
ICST Conference on Testbeds and Research Infrastructures for the Development of
Networks and Communities (TridentCom 2010), 2010.

4/4

	Introduction
	Motivation
	Problem Statement
	Document Structure

	Background
	Terminology
	Functional Composition
	Functional Composition Requirements
	Description of Requirements
	Description of Building Block
	Identifying the Dependencies
	Finding Granularity of Mechanisms
	Composition Methods
	Rating of Protocol Graphs (PGs)
	Heterogeneity of Services

	Service Oriented Network Architecture (SONATE)
	Using SOA Paradigm in the Network Architectures
	SONATE
	Description of Requirements
	Requirements-Based API
	Building Block Description Language
	Composition of Protocol Graphs
	Protocol Graph Description Language
	Protocol Graph Selection
	SONATE Protocol Graph(s) Execution Framework

	Contribution

	State of the Art of Functional Composition
	Net-Silo
	NetServ
	Network virtualization architecture (VNet)
	Node Architecture
	RNA
	AutoI
	Role-Based Architecture (RBA)
	Self-Net
	Automatic Network Architecture (ANA)
	Coyote
	Network Service Architecture
	Dynamic Configuration of Protocols (DaCaPo)
	The Function Based Communication Subsystem (FCSS)
	TARIFA
	Semantic-Based Semi-Automatic Web Service Composition (SBWComp):
	A Template-Based Mechanism for Dynamic Service Composition Based on Context Prediction in Ubicomp Applications (DTSComp):
	Rule-based semi automatic Web services composition (RSWComp):
	Dynamic Reconfiguration Using Template Based Web Service Composition (DTWComp):
	Pattern Based Composition of Web Services for Symbolic Computations (PBWComp):
	Semi-Automatic Composition of Web Services using Semantic Descriptions (SWSComp):
	Automatic Composition of SemanticWeb Services (ASWComp):
	A Service Composition Method Based On The Template Mechanism In The Service Scalable Network Framework (TNSComp):
	Semi-Automatic Distribution Pattern Modeling of Web Service Compositions using Semantics (SPWComp):
	Comparison of Intermediate Composition Approaches

	Requirements-aware, Template-Based Protocol Graphs
	Template Based Composition Approach
	Template Description Language
	Domains Policies and Its Description Language
	Selection of a Template
	Finding Suitable BBs for Template's Placeholders
	Protocol Graph(s) Construction

	Putting It All-Together - Secure TCP Example
	Conclusion of Template-Based Composition

	Performance Evaluation of Template Based Composition
	Test Environment Specifications
	Selection of Template(s)
	Single Selection
	Multiple Selection

	Protocol Graph(s) Generation
	Single Protocol Graph
	All Possible Protocol Graphs

	Performance Conclusion

	Conclusion
	Appendices
	Examples & Implementation
	Requirements
	Domain Policies
	Templates
	Protocol Graphs
	Building Blocks
	Implementation (Java Code)

