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Preface

These are notes of a course that I have taught at the Technische Universität Kaiserslautern thrice between
2011 and 2016. It is designed for students who have a solid knowlegde of analysis in one and several variables,
and are acquainted with the standard notions of point set topology. The course introduces to the basic ideas
and tools of differential topology, and includes a modern version of vector analysis.

The need to stay within the limits of a one semester course has not permitted to develop the vector
analysis part beyond Stokes’ theorem and Lie derivatives, and quite generally the course stays well away
from Riemannian geometry. Likewise several common themes of basic differential topology like Sard’s and
transversality theorems are not treated. Having to select essentially one typical application of vector fields
and flows I have opted for Ehresmann’s theorem because it beautifully illustrates the technique of controlling
the life span of flow lines by the maximality criterion.

In two versions of the course a bit of spare time had been left, which allowed to include some extra
material according to the students’ interests. This has resulted in the additional Sections 11 and 12, which
have the character of two independent appendices.

In order to facilitate self-study of the text each section ends with a collection of exercises which the
interested reader will have pleasure to work out.
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Mat(p×n,R) space of real p×n-matrices, 7
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SL(n,R) special linear group of real n×n-matrices, 11
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O(n) orthogonal group, 15
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ToX tangent space of X at o, 16

vh component of a tangent vector v with respect to a chart h, 16

Tof differential of a map f at a point o of a manifold, 18

L · v, Lv value of a linear map L at a vector v, preferred over L(v), 18

ḟ(t) velocity vector of a curve f at time t, 20

sl(n,R) Lie algebra of SL(n,R), 21

TX, Tf tangent bundle of a manifold X and differential of a map f , 27

EX,o, Eo algebra of germs of smooth functions at o ∈ X, 30

Ad adjoint representation of a Lie group, 30

SU(n) special unitary group of complex n×n-matrices, 30

σx, σy, σz Pauli matrices, 31

Ex fibre of a bundle E over x, 32

T → RPn tautological bundle, 33

GL(n,R) general linear group, 35

f∗F, f∗h bundle induced from E and bundle homomorphism induced from h, 36

F |X restriction of a bundle F to X, 37

E ⊕ F, g ⊕ h Whitney sum of vector bundles E and F or of bundle homomorphisms, 39

Hom(E,F ), E ⊗ F vector bundles constructed from E and F , 39

Eˇ dual of a vector bundle E, 39

SkE, ΛkE symmetric and alternating powers of a bundle, 39

SymE, AltkE bundles of bilinear and alternating forms, 39
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(−1)
σ
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X
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×, • vector and scalar products in R3, 69

grad, rot, div gradient, rotation, and divergence of a vector field in cartesian coordinates, 69

∇, curl, ∇×, ∇• — alternative symbols, 69

HkX k-th de Rham cohomology of a manifold X, 72

Rn− closed left half-space in Rn, 74

∂X boundary of a manifold X, 74

dV, dS, ds volume, surface, and line elements of classical vector analysis, 85

Φx flow line of Φ through a point x, 86

Φt (local) diffeomorphism defined by a flow Φ at time t, 87

ea exponential of a matrix a, 87

(αx, ωx) interval of definition of the flow line through x, 89

ej j-th standard base vector of Rn, 97

C[z], C[z1, . . . , zn] polynomial ring in n variables, 110

|j|, zj total degree of j, monomial in z, 110

µ(f) Milnor number of f , 111

τ ∈ H a number in the complex upper half plane, 112

[x :y :z] point of RP 2 represented by (x, y, z), 115

PSL(2,Z) modular group, 116

h∗α pull-back of a vector or tensor field under a local diffeomorphism, 117

VectX space of vector fields on X, 117

ξ ϕ partial evaluation of a differential form ϕ by a vector field ξ, 117

〈ξ, ϕ〉 evaluation bracket between a vector field ξ and a 1-form ϕ, 117

Lξ Lie derivative with respect to a vector field ξ, 117
∂
∂hi

i-th base vector field with respect to a chart h, 118

div divergence of a vector field, 122

[ξ, η] Lie bracket, 124

λg, ρg left and right translations by g, 125

LieG, Lie f Lie algebra of G and induced algebra homomorphism, 126

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 v

ad adjoint representation of the Lie algebra of a Lie group, 129

exp exponential map of a Lie group, 131

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 1

1 Topological and Differential Manifolds

The real vector spaces Rn with its standard topology count among the most basic topological spaces. Cu-
riously, topologists usually refer to them as Euclidean spaces even though their scalar product hardly ever
plays a more than auxiliary role. While Euclidean spaces as such are not very interesting examples of topo-
logical spaces they do give rise to an extremely fruitful notion if they are considered not globally but as a
local model for more general topological spaces. This is the idea underlying the notion of manifold.

1.1 Definition A topological space X is called an n-dimensional (topological) manifold or n-manifold for
short if the following conditions are satisfied:

• For every point o ∈ X there exist an open subset U ⊂ X containing o, and a homeomorphism
h:U → h(U) onto an open subset h(U) ⊂ Rn ;

• X is a Hausdorff space, and

• the topology of X admits a countable base.

The homeomorphisms h:U ≈ h(U) are called charts and often quoted as (U, h) rather than just h
in order to make the chart domain U explicit. To say that h is a chart at the point o simply means
o ∈ U , while it is called centred at o if furthermore h(o) = 0 ∈ Rn — like h′ of the figure. Of course
any given chart h at o may be centred by composing it with the translation z 7→ z−h(o) of Rn.

Even if the second and third condition have a mere technical feel they are quite important. While dropping
the Hausdorff property would make for an immediate and profound change, at least an elementary part of
the theory can be developed without the countability axiom, which will only come into play at a later stage.

1.2 Examples (0) A 0-dimensional manifold is the same as a discrete topological space with at most
countably many points.
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(1) Every open subspace X ⊂ Rn clearly is an n-manifold: the single chart (X, id) works for all
o ∈ X.

(2) The sphere Sn =
{
x ∈ Rn+1

∣∣ |x| = 1
}

is an n-manifold: the 2n+2 subsets

U−j :=
{
x ∈ Sn

∣∣xj < 0
}

and U+
j :=

{
x ∈ Sn

∣∣xj > 0
}

(j = 0, . . . , n)

form an open cover, and each is the domain of the chart1

U±j 3 x
h±
j−−−−→ (x0, . . . , x̂j , . . . , xn) ∈ Un

that projects onto the open unit ball Un =
{
x ∈ Rn

∣∣ |x| < 1
}

: the formula(
x0, . . . , xj−1,±

√
1−

∑
i 6=j x

2
i , xj+1, . . . , xn

)
←−7 (x0, . . . , x̂j , . . . , xn)

gives the inverse.

(3) Let (X1, o1) and (X2, o2) be two copies of the pointed space (Rn, 0), and let X be the quotient
topological space of X1+X2 with respect to the gluing relation that identifies each point x ∈ X1r{o1}
with the corresponding point x ∈ X2 r {o2}. Then X contains each of X1 ≈ Rn and X2 ≈ Rn as
an open subset, thus in particular it is covered by chart domains. On the other hand it fails to be a
manifold since the image points of o1 and o2 in X cannot be separated by neighbourhoods in X.

1 We use the convention that terms covered by a hat are to be omitted.
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A few further properties of manifolds follow directly from the definition: they are locally compact and
locally path-wise connected, so that the path components of an arbitrary manifold are open subspaces, and
the manifold can be recovered as the topological sum of its path components.

1.3 Definition (1) Let (U, h) and (V, k) be charts for a manifold X. The composition

h(U ∩ V )
k◦h−1

−−−−→ k(U ∩ V )

is called their transition map. It clearly is a homeomorphism between open subsets of Rn.

(2) An n-dimensional atlas for a manifold X is a set A of charts (Uh, h) with h(Uh) ⊂ Rn such that
the chart domains Uh cover X :

X =
⋃
h∈A

Uh

Note that by Definition 1.1 at least one atlas for X exists.

(3) An atlas A is called differentiable if for any two charts h, k ∈ A the transition map k ◦ h−1 is
differentiable (and hence a diffeomorphism: simply swap the roles of h and k).

Note The atlases of our examples (0), (1), and (2) clearly are differentiable.

Differentiable atlases will allow us to perform differential calculus on a manifold. Some care has to be taken
when adressing the question of how much structure should be included in the notion of differential manifold
that we are now heading for. It is clearly not sufficient to require the mere existence of a differentiable atlas
on a given topological manifold, since even the qualitative notions of differential calculus are likely to be
depend on the choice of the atlas used. On the other hand fixing a particular differentiable atlas would
include too much structure as our Example 1.2(2) with few charts shows: adding all restrictions of these
charts to all open subdomains considerably enlarges this differentiable atlas, without really changing the
structure.

A viable approach would pass from atlases to equivalence classes of atlases in such a way as to make
the two atlases of the example equivalent. But in fact there is a much simpler solution, as follows.

1.4 Definition (1) Let X be a topological manifold. A differentiable structure on X is a differentiable
atlas for X which is maximal with respect to inclusion (among differentiable atlases).

(2) A differentiable or differential n-manifold is a pair (X,A) consisting of a topological manifold
X and an n-dimensional differentiable structure A on it (usually dropped from the notation when
implied by the context). The charts belonging to A are called the differentiable charts of (X,A).
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Note We have built into the definition that the dimension n = dimX of a non-empty differential n-manifold
is well-defined. This is not truly restrictive since diffeomorphic transition maps between non-empty
open subsets of Euclidean spaces in any case preserve the dimension. While the analogous statement
for mere topological manifolds is true it is much harder to prove. You may already have noted that the
dimension of a manifold is often included in its symbol as an upper index which does not necessarily
indicate a Cartesian power: Sn, Un.

1.5 Lemma Every differentiable atlas A is contained in a unique differentiable structure A.

Proof In spite of a superficial similarity with statements like Hahn Banach theorems this is not an appli-
cation of Zorn’s lemma but much simpler. Indeed the unique differential structure containing the
n-dimensional differential atlas A is explicitly written down as

A :=

(V, k)

∣∣∣∣∣∣
(V, k) is an n-dimensional chart of X, and for
every chart (U, h) ∈ A the transition map
k◦h−1:h(U∩V )→ k(U∩V ) is a diffeomorphism

 .

Since A is a differentiable atlas it is clear that A is a set of charts which contains A, in particular
that A again is an atlas. To prove that it is differentiable consider two charts (V, k) and (W, l) of A,
and any point o ∈ V ∩W . We pick a chart (U, h) ∈ A at o, and on the neighbourhood k(U ∩V ∩W )
of k(o) may write

l ◦ k−1 = (l ◦ h−1) ◦ (h ◦ k−1) = (l ◦ h−1) ◦ (k ◦ h−1)
−1

as a composition of two differentiable mappings:

U ∩ V ∩W
k

ttiiiiiiiiiiiiiiiii

h

��

l

**UUUUUUUUUUUUUUUUU

k(U ∩ V ∩W )
h◦k−1

// h(U ∩ V ∩W )
l◦h−1

// l(U ∩ V ∩W )

In particular, by the chain rule l ◦ k−1 is differentiable at the point k(o), and therefore throughout
in k(V ∩W ) since o ∈ V ∩W was arbitrary.

We now show that A is maximal. Thus let us try and add to A another chart (V, k) that makes
A ∪ {(V, k)} a differentiable atlas. Then in view of A ⊂ A the transition map k ◦ h−1 must be a
diffeomorphism for each (U, h) ∈ A, and this means that we already had (V, k) ∈ A.

Finally the uniqueness statement is clear: a differentiable atlas containing A can only be a subset of
A, thus if it is maximal it must be A itself.

1.6 Definition Let X and Y be topological manifolds of dimensions n and p, let f :X → Y be a continuous
map and o ∈ X a point. Then for every chart (V, k) at f(o) there exists a chart (U, h) at o with
f(U) ⊂ V : indeed candidates for h and k can be chosen arbitrarily, and it then suffices to restrict h
to U ∩ f−1V .

(1) The composition k ◦ f ◦ h−1 is called the representation of f in the charts h and k :

X
f **oo ? _ U //

h

��

V �
� //

k

��

Y

Rn oo ? _ h(U)
k◦f◦h−1

// k(V ) �
� // Rp
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(2) Assume that X and Y are differentiable and that the charts h and k are chosen from the respective
differentiable structures. Then f is called differentiable at o if k ◦ f ◦ h−1 is differentiable at h(o).

(3) Let n = dimX and p = dimY denote the dimensions. If f is differentiable at o then its rank at
o is the integer

rkof := rkD(k ◦ f ◦ h−1)(h(o)),

that is the rank of the linear mapping D(k ◦ f ◦ h−1)(h(o)):Rn → Rp, or likewise the rank of this
Jacobian matrix2. If the rank of f equals n at every point o ∈ X then f is called an immersion ; if
it is equal to p then f is called a submersion.

Note Parts (2) and (3) make sense since for different choices of h and k the resulting transition maps are
diffeomorphisms. Indeed, let h′ and k′ be if alternative choices of h and k. We may assume that the
domains of h′ and k′ are U and V like those of h and k, and obtain a commutative diagram

h(U)
k◦f◦h−1

//

h′◦h−1 '

��

k(V )

' k′◦k−1

��

U
f //

h
bbDDDDDDDD

h′||zzzzzzzz
V

k
<<zzzzzzzz

k′ ""DDDDDDDD

h′(U)
k′◦f◦(h′)−1

// k′(V )

where the verticals are diffeomorphisms. Assuming differentiability of k ◦ f ◦h−1 at h(o) we conclude

that of k′ ◦ f ◦ (h′)
−1

at h′(o), and the chain rule

D(k′ ◦ f ◦ (h′)
−1

)(h′(o)) = D(k′ ◦ k−1)(k(o))︸ ︷︷ ︸
∈GL(p,R)

·D(k ◦ f ◦ h−1)(h(o)) ·D(h ◦ (h′)
−1

)(h′(o))︸ ︷︷ ︸
∈GL(n,R)

proves that the relevant ranks agree. — For a similar reason a qualitative version of the chain rule
holds for mappings between manifolds: identity mappings are everywhere differentiable, and if two

2 We use the same notation to denote a real p×n matrix and the linear mapping Rn → Rp defined by it.
On the other hand the action of a differential Df(a) on a vector v will be written as Df(a) · v rather than
Df(a)(v) even if we think of Df(a) as a linear mapping.

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 6

composable maps f and g are differentiable then so is g ◦ f , as is read off from the diagram

U
f //

' h

��

V
g //

' k

��

W

' l

��
h(U)

k◦f◦h−1

// k(V )
l◦g◦k−1

// l(W )

which represents f and g in charts (U, h), (V, k), and (W, l). To those familiar with the notion of
category this means, of course, that we have a category whose objects are the differential manifolds
and whose morphisms are the differentiable mappings. In this framework the first part of the following
definition just gives a special name to the isomorphisms of that category.

1.7 Definition (1) Let X and Y be differential manifolds. A differentiable map f :X → Y is a diffeomor-
phism if there exists a differentiable map g:Y → X such that g ◦ f = idX and f ◦ g = idY . We then

write f :X
'−→ Y rather than f :X

≈−→ Y as we would for a mere homeomorphism.

(2) If o ∈ X is a point then a differentiable map f :X → Y is a local diffeomorphism at o if there
exists an open neighbourhood U ⊂ X of o such that f sends U diffeomorphically onto an open subset
of Y . If this holds for all points o ∈ X the reference to o will be dropped.

Notes Only now it makes sense to say — and is true — that the charts themselves are diffeomorphisms:
the representation of a chart (U, h) in the charts h and idh(U) is the identity mapping.

In everything said so far the notion of differentiability may be replaced by continuous (C1) or higher
order Ck differentiability including C∞ ; in topology the latter is often called smoothness3. Each of
these choices gives rise to its own category of manifolds and differentiable mappings.4

More than on any other tool, the local theory of manifolds builds on a single result of differential calculus,
the local inverse theorem. For manifolds it takes the following form:

1.8 Local Inverse Theorem Let X,Y be Ck manifolds with k ≥ 1, let f :X → Y a Ck mapping, and
o ∈ X a point. Then f is a local Ck diffeomorphism at o if and only if dimX = rkof = dimY .

3 This terminology is not compatible with that of algebraic geometry, where smoothness of a morphism
f does not mean a regularity property of f itself but rather non-singularity of its fibres.

4 It goes without saying that the mere existence of partial derivatives is not a viable substitute for
differentiability, in spite of the foolish but widespread habit to call functions with this property partially
differentiable.
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Proof You must of course be familiar with the coordinate version (if not, do revise it now): there X ⊂ Rn
and Y ⊂ Rp are open subsets, so that the number rkof directly becomes the rank of the Jacobian
matrix

Df(o) =


∂f1
∂x1

(o) · · · ∂f1
∂xn

(o)

...
...

∂fp
∂x1

(o) · · · ∂fp
∂xn

(o)

 ∈ Mat(p×n,R).

Returning to the general case and assuming dimX = rkof = dimY it suffices to represent f in
differentiable charts (U, h) at o and (V, k) at f(o) and apply the coordinate version to k ◦ f ◦ h−1 : it
will yield a local inverse g of the latter map, and then h−1 ◦ g ◦ k is a local inverse of f :

U
f //oo

h−1◦g◦k
h '
��

V

' k

��
h(U)

k◦f◦h−1

//oo
g

k(V )

(dotted arrows indicate maps that require shrinking V ).

The converse statement is but a formality, and plain rather than Ck differentiability sufficient:
Choosing centred charts at o and f(o) we reduce to the case of open subsets X ⊂ Rn and Y ⊂ Rp,
with o = 0 ∈ Rn and f(o) = 0 ∈ Rp. Then if g is a local inverse to f the chain rule yields

Dg(0) ◦Df(0) = D(g ◦ f)(0) = D id(0) = id and Df(0) ◦Dg(0) = D(f ◦ g)(0) = D id(0) = id,

so that Df(0) is an invertible linear map and in particular n = p.

Note It follows from the easy direction of the local inverse theorem that diffeomorphic manifolds must have
the same dimension.

1.9 Examples and Constructions Each of our examples (0), (1), and (2) comes along with a C∞ atlas
and thus is a smooth manifold.

(3) If X,Y are differential manifolds then the Cartesian products

h×k:U × V −→ h(U)× k(V )

of all differentiable charts (U, h) of X, and (V, k) of Y form a differentiable atlas for the product
space X ×Y and thus give it a differential structure, with dimX×Y = dimX + dimY (if both X,Y
are non-empty).

It has the expected universal property in the category of differential manifolds: a differentiable map
into X×Y is, essentially, the same as one differentiable mapping into each of X and Y .
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(4) Similarly, if X and Y have the same dimension then the topological sum X + Y (disjoint union)
again is a differential manifold of that dimension, with the dual universal property.

1.10 Definition (1) Let X be a differential (n+p)-manifold. A subset S ⊂ X is called an n-dimensional
(or p-codimensional) submanifold of X if for each o ∈ S there exists a differentiable chart (U, h) for
X at o such that

h(U ∩ S) = h(U) ∩
(
Rn × {0}p

)
.

Such charts are often referred to as submanifold charts or flattening charts for S. Note that they
make S a differentiable n-manifold in its own right: S inherits the subspace topology from X, and
by definition the submanifold charts h restrict to homeomorphisms

S ⊃ U ∩ S ≈−→ h(U) ∩ (Rn × {0}p) ⊂ Rn × {0}p

which produce differentiable transition maps. Of course the inclusion map S ⊂ X is differentiable,
and submanifolds likewise have the expected universal property: differentiable maps into S are the
same as differentiable maps into X with all values in S.

(2) An embedding of differential manifolds e:W → X is a map that sends W diffeomorphically onto
a submanifold e(W ) of X.

1.11 Examples (0) A 0-codimensional submanifold is the same as an open subset.

c© 2011–2016 Klaus Wirthmüller
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(1) The sphere Sn is a smooth submanifold of Rn+1 : each of the 2n+2 charts discussed before extends
to a submanifold chart for Sn ⊂ Rn+1, for instance h+

0 to

(0,∞)× Un 3 (x0, . . . , xn) 7−→
(
x0 −

√
1−

∑
j>0 x

2
j , x1, . . . , xn

)
∈ R× Un.

(2) The mapping R 3 x 7→ (x2, x3) ∈ R2 is a topological embedding — inverted by 3
√
z ←7 (y, z) —

as well as a differentiable map, but it fails to be an embedding of differential manifolds. It is safer to
avoid the mildly ambiguous term of differentiable embedding in such situations.

A classical consequence of the local inverse theorem is the implicit function theorem. In the theory of
manifolds it is at the heart of the following result, which provides many further examples of differential
manifolds.

1.12 Definition Let f :X → Y be differentiable. A point b ∈ Y is called a regular value of f if

rka f = dimY

holds for every a ∈ f−1{b} ; otherwise b is called a critical value of f .

c© 2011–2016 Klaus Wirthmüller
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1.13 Regular Value Theorem Let X,Y be Ck manifolds with k ≥ 1 and dimY = p, say. Let further
f :X → Y be a Ck mapping, and b ∈ Y a regular value of f . Then the fibre

S := f−1{b} ⊂ X

is a p-codimensional Ck submanifold of X.

Proof The statement is local in S, and choosing differentiable charts for X at a point a ∈ S, and for Y
at f(a) = b we reduce it to the special case where X ⊂ Rn+p and Y ⊂ Rp are open subsets, and
b = 0 ∈ Rp is the origin: thus S ⊂ X is the set of solutions of the equation f(x) = 0.

By assumption the Jacobian matrix Df(a) ∈ Mat
(
p×(n+p),R

)
has rank p, and after a suitable

permutation of coordinates in Rn+p we may assume that the right hand p×p submatrix of Df(a)
is invertible. Now the classical theorem on implicit functions applies: it provides open balls U ⊂ Rn
and V ⊂ Rp such that a ∈ U×V ⊂ X and such that S ∩ (U×V ) is the graph of a Ck function
ϕ:U → V . Then the map

U × V h−→ U × Rp

(x, y) 7−→
(
x , y−ϕ(x)

)
is a Ck diffeomorphism onto an open subset of Rn × Rp, and in fact a flattening chart for S.

Note If b ∈ Y is not a value of f at all it is a regular value in the sense of the definition. While this sounds
weird it is useful, and quite the intended meaning. In this case the regular value theorem correctly
predicts that the empty fibre is an n-manifold for all n ∈ N.

1.14 Examples (1) Let f :Rn+1 → R be a quadratic form. The number 0 is the only critical value of f ,
for if f is written out as a product

f(x) = xtsx

with a symmetric matrix s ∈ Sym(n+1,R) then according to the product rule the differential of f
at a sends the vector x ∈ Rn+1 to xtsa+ atsx = 2atsx, so that Df(a) = 2ats.
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In particular the affine quadric f−1{1} ⊂ Rn+1 always is a smooth submanifold. This includes the
case of the sphere Sn but also other quadrics like hyperboloids.

f(x, y, z) = x2+y2−z2 f(x, y, z) = −x2−y2+z2 f(x, y, z) = x2+y2+z2

(2) The special linear group SL(n,R) may be written as

SL(n,R) =
{
x ∈ Mat(n×n,R)

∣∣ detx = 1
}

and is a 1-codimensional smooth submanifold of the space of matrices Mat(n×n,R) = Rn2

. To see
this we prove the formula

D det(a) · x = tr (adj a·x)

which expresses the differential at a of the determinant function Mat(n×n,R)
det−→ R in terms of the

adjugate matrix of a. Indeed the formula is true at a = 1 since in that case the n2 partial derivatives
are

∂ det(x)

∂xij
= δij

so that D det(1) · x = trx. Given an arbitrary invertible5 a we factor the determinant function
according to the commutative diagram

Mat(n×n,R)
det //

a−1·
��

R
1

det a ·
��

Mat(n×n,R)
det // R

where the left hand arrow — left multiplication by the constant matrix a−1 — sends a to 1. Since
both vertical maps are linear the induced diagram of differentials reads

Mat(n×n,R)
D det(a) //

a−1·
��

R
1

det a ·
��

Mat(n×n,R)
tr // R ,

and in view of a−1 · det a = adj a this confirms the formula in general. For invertible a the adjugate
adj a, and hence the differential D det(a) is non-zero, and in particular we conclude that 1 is a regular
value of the determinant function. By Theorem 1.13 it follows that SL(n,R) ⊂ Mat(n×n,R) is a
submanifold as stated.

Of course the group operations multiplication and inversion are differentiable: this makes SL(n,R)
a so-called Lie group — see Section 11.

5 The formula would extend further to non-invertible a ∈ Mat(n×n,R) by continuity.
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(3) Identifying each pair {±x} ⊂ Sn of opposite points of the sphere Sn to a single point [x] yields
the real projective space RPn.

As to its topological properties RPn is at once seen to be a compact Hausdorff space with a countable
base, and furthermore the n+1 charts of the sphere

h+
j :
{
x ∈ Sn

∣∣xj > 0
}
−→ Un (j = 0, . . . , n)

drop to form a smooth atlas. Thus RPn is a new example of a smooth manifold, and the two-to-one
quotient map Sn → RPn is, essentially by definition, a local diffeomorphism.

(4) The quotient group Rn/Zn, in which n-tuples are identified whenever the difference is integral,
likewise is a compact Hausdorff space called the n-dimensional torus. The quotient homomorphism
q:Rn → Rn/Zn sends sufficiently small open cubes in Rn homeomorphically to open subsets of the
torus, so that inverting these homeomorphisms we obtain an atlas for the torus. If (U, h) and (V, k)
are charts from the atlas the transition map restricts to a translation on each connected component
of h(U ∩ V ).
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In particular the atlas is smooth: thus the torus is a smooth n-manifold, and once more, the quotient
mapping q:Rn → Rn/Zn a local diffeomorphism.

The torus may be alternatively described as the Cartesian product

Rn/Zn = (R/Z)
n ' S1×· · ·×S1 ;

this point of view would reduce the previous reasoning to the 1-dimensional case.

The Story of Differential Structures There are obvious questions about differential structures that we nei-
ther have the time nor the means to discuss in detail. They include:

(1) Given a topological manifold, does there exist a differentiable structure on it?

(2) If so, is it unique?

(3) The same questions for C1, Ck, and C∞ differential structures, if a differential manifold is given.

Question (2) requires interpretation in order to be interesting. If taken at face value the answer (for

positive dimension) will always be no. For instance the homeomorphism R 3 x h7−→ x3 ∈ R fails to
be a diffeomorphism. Choosing {h} as an atlas will put a differential structure on the real line that
differs from the ordinary one; nevertheless the resulting manifold X still is diffeomorphic to R, just
via h:X → R. Both statements are confirmed at once when the set-theoretic identity map and h are
represented in the relevant charts (X,h) and (R, id):

X
6'

x 7→x //

h '
��

R X '
h //

h '
��

R

R h−1
// R R id // R

In order to be interesting, question (2) rather should ask whether on a given topological manifold
there may exist several non-diffeomorphic differential structures.

Let us turn to (3): I am not aware of any work concerning the difference between C1 and plain
differentiable structures — which does not surprise since the question is hardly exciting. On the
other hand it is known that every C1 manifold admits an essentially unique C∞ structure. By and
large this result justifies the habit of considering C∞ manifolds the true objects of differentiable
manifold theory.

Questions (1) and (2) have turned out to be much more fruitful. By 1950 affirmative answers to
both had been found for manifolds of small dimension, not exceeding three. By contrast, in 1960 the
Swiss mathematician Michel Kervaire found an example of a topological 7-manifold that does not
admit any C1 differentiable structure. Already in 1956 the American John Milnor had found a C∞

structure on the sphere S7 which is not diffeomorphic to the ordinary one, and in 1963 in a joint work
both mathematicians succeeded to give a complete and beautiful classification of the differentiable
structures on the topological manifold S7 : besides the standard sphere there are exactly 14 such
exotic spheres, and in a somewhat finer classification including orientations — introduced in 6.4
below — the set of diffeomorphism classes of 7-spheres turns out to carry the structure of a cyclic
group of order 28. In any case it was established that the answer to both questions (1) and (2) is
negative in principle, and for the next two decades not much attention was payed to the particular
question of whether seven was the smallest dimension where these phenomena occur. One reason is
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the curious fact that among all manifolds those of the small dimensions three and four seem to be
the most difficult to investigate.

New information came in the form of by-results from important progress in the investigation of
topological and differential 4-manifolds that was made in the 1980s. For instance it was found that
most simply-connected compact topological 4-manifold do not admit a C1 structure — but do so as
soon as a single point is removed. On the other side by a spectacular and completely unexpected
result the Euclidean space R4 admits, besides its standard differential structure, infinitely many
exotic ones. Nevertheless no systematic theory is available, and by contrast to the situation in higher
dimensions it is unknown whether an exotic 4-sphere exists.

Convention For the sake of simplicity and convenience all manifolds and mappings will forthwith be un-
derstood to be C∞ differentiable, and the terms differentiable and smooth be used as synonymous
with C∞ differentiable. Indeed we will often go as far as to drop these attributes altogether, so that
mappings between manifolds are implicitly meant to be differentiable. In particular the term chart
will always refer to a differentiable chart.

Exercises

1.1 Describe diffeomorphisms between Rn, the open cube (−1, 1)
n
, and the open n-ball

Un =
{
x ∈ Rn

∣∣ |x| < 1
}
.

1.2 Let X be a topological space that obeys the first axiom of Definition 1.1 — note that the notion of
atlas introduced in 1.3 already makes sense for such X. Prove that the following are equivalent:

(1) The topology of X admits a countable base.

(2) There exists a countable atlas for X.

(3) Every atlas of X contains an atlas which is countable.

1.3 The assignment

(R, θ, ϕ)
Φ7−→ (R sin θ cosϕ, R sin θ sinϕ, R cos θ)

defines the spherical coordinate mapping. How can it be used to define differentiable charts of the
manifolds R3 and S2 ?

1.4 Prove that the n-sphere admits a differentiable atlas with just two charts. Does there exist an atlas
consisting of a single chart?

1.5 Let Sn =
{
x = (x0, . . . , xn) ∈ Rn+1

∣∣ |x| = 1
}

be the sphere as usual, and denote by π0:Sn → Rn the
projection which suppresses the 0-th coordinate. Determine the points of Sn where π0 is a local
diffeomorphism.

More generally let πk:Sn → Rn−k be the projection which suppresses the coordinates x0, . . . , xk and
compute the rank rka πk at all points a ∈ Sn.

1.6 Here X is an (n+p)-manifold. Let S ⊂ X be an n-dimensional submanifold. Explain why there is an
open subset U ⊂ X which contains S as a closed submanifold.
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Let S ⊂ X and T ⊂ X be two disjoint closed submanifolds of the same dimension n. Explain why
V := S ∪ T is a submanifold. Show by an example that the assumption of closedness cannot be
removed.

1.7 Prove that neither of the following subsets of R3 is a differentiable submanifold of R3.

• R =
{

(x, y, z) ∈ R3
∣∣x2 + y2 = z2

}
• S =

{
(x, y, z) ∈ R3

∣∣√x2 + y2 = z
}

1.8 Consider the subset S :=
(
[0,∞)×{0}

)
∪
(
{0}×[0,∞)

)
⊂ R2.

• Prove that S is not a differentiable submanifold of R2.

• Construct a C∞-differentiable map f :R→ R2 which is a topological embedding with f(R) = S.

1.9 Determine all λ ∈ R for which the set

S :=
{

(x, y) ∈ R2
∣∣ y2 = x (x−1) (x−λ)

}
is a submanifold of R2.

1.10 Prove that the orthogonal group

O(n) =
{
x ∈ Mat(n×n,R)

∣∣xtx = 1
}

is a 1
2n(n−1)-dimensional submanifold of Mat(n×n,R) — it thus is another example of a Lie group.

Explain why the special orthogonal group SO(n) =
{
x ∈ O(n)

∣∣ detx = 1
}

is a Lie group of the same
dimension. Also explain why both O(n) and SO(n) are compact.
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2 Tangent Spaces and Tangent Bundle

What we have said so far about differentiable mappings clearly is unsatisfactory: we do understand the
qualitative notion of differentiability but are unable to actually differentiate a map f :X → Y between
manifolds at a point o ∈ X, say. Any attempt at differential calculus would require to represent f in charts h
at o and k at f(o), but then the differential Df(o) certainly will depend on the largely arbitrary choices of h
and k. The purpose of the following construction is to set up a framework for chart-independent differential
calculus.

2.1 Definition Let o be a point of the n-manifold X. We consider the (huge) real vector space

(Rn)
{all charts at o}

=
∏
h

Rn,

where we prefer the latter notation, it being understood that the Cartesian product is taken over all
charts h at o. The subspace

ToX :=
{
v ∈

∏
h

Rn
∣∣∣D(k ◦ h−1)

(
h(o)

)
· vh = vk for all h and k

}
is the tangent space of X at o.

Explanation The idea behind this quite abstract definition comes from physics. Asked what a (tangent)
vector in three-dimensional space is, a physicist would, quite characteristically, avoid a direct answer
but rather say that a vector is described by three independent real numbers which transform linearly
with the differential of any coordinate change. To a mathematician this is not directly acceptable as
a definition since it does not tell you what a tangent vector is as an object; nevertheless the idea can
be translated.

By a coordinate change physicists of course mean what we call the transition map k ◦ h−1 from
one chart h at o to another, k. Assume for the moment that one chart h has been fixed. Then our
physicist’s definition plainly states that a vector is a triple vh ∈ R3 in the 3-dimensional standard
Euclidean space. Now if we want to free ourselves from the particular choice of h we must read a
vector as a function v that assigns to every chart h at o a triple vh ∈ R3. The statement that upon
passing from h to k this triple transforms in a particular way means that the assignment h 7→ vh
cannot be arbitrary but that the values vh and vk mutually determine each other; specifically they
must obey the rule

D(k ◦ h−1)
(
h(o)

)
· vh = vk.

Writing this out we arrive at the definition of ToX, since an element of the Cartesian product
∏
h Rn

after all is nothing but a function assigning to each chart h an element of Rn.

Of course since (for positive n) there are many charts at o — given one we already obtain a vast
collection of them by mere restriction to open subsets — the vector space

∏
h Rn is frighteningly

large. But the formula defining the tangent space only allows the value vh for one particular chart
to be specified freely, and then determines vk for all further charts k :

2.2 Lemma Let X be an n-manifold and o ∈ X. For every chart h at o the projection

ToX 3 v 7−→ vh ∈ Rn

is a linear isomorphism. In particular dimToX = n = dimX.
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Proof If v ∈ ToX projects to zero, that is if vh = 0 then

vk = D(k ◦ h−1)
(
h(o)

)
· vh = 0 for all k,

which means that v = 0: therefore the projection is injective. On the other hand given an arbitrary
vh ∈ Rn we define v ∈

∏
k Rn putting

vk = D(k ◦ h−1)
(
h(o)

)
· vh

for every chart k at o. This does not change the value vh, and if g and k are any two charts at o then
the identity1

D(k ◦ g−1) · vg = D(k ◦ h−1) ·D(g ◦ h−1)
−1 · vg = D(k ◦ h−1) · vh = vk

shows that v ∈ ToX. Therefore the projection is surjective too.

Thus while the huge Cartesian product
∏
h Rn is essential in order to give a precise meaning to the concept

of tangent vector, working and calculating with them may, and usually is, done in terms of an — abstractly
or concretely specified — particular chart, and thus fits in the framework of finite dimensional linear algebra.

If after all the definition of ToX is conceptually simple it is not very intuitive in general, and I feel that the
best justification eventually lies in the fact that the ToX thus defined has all the formal properties that one
would expect the tangent space at o to have: many of them we will work out below.

It is worth pointing out that the special case of an open subset X ⊂ Rn is at once understood. The identity
mapping of X is a preferred chart for X, and for each point a ∈ X the corresponding projection v 7→ vid

identifies TaX with Rn. This coincides with the intuitive notion of a tangent vector at a : an observer placed
at a may look within X into any direction of Rn. Here you may prefer to think of the origin of TaX as shifted
to the point a so that tangent vectors will be “based” at a rather than the origin. While this latter point of
view does help intuition it would be technically awkward.

1 We omit the points where the differentials are taken when they are clear form the context. Neither is it
necessary to specify the exact domains of the functions to be differentiated as long as it is clear that they
are defined in some neighbourhood of the relevant point.
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2.3 Lemma and Definition Let f :X → Y be a differentiable map between manifolds, and a ∈ X a point
with image b := f(a) ∈ Y . Then f induces a linear mapping

Taf :TaX −→ TbY

which is called the differential of f at a, and obeys the chain rule:

Ta idX = idTaX and Ta(g ◦ f) = Tbg ◦ Taf

The differential is defined as follows. Using that f is continuous represent f in suitable charts h at
a and k at b.

Now if v ∈ TaX is a tangent vector then the component of Taf(v) labelled by the chart k is

Taf(v)k := D(k ◦ f ◦ h−1)(h(a)) · vh ∈ Rp.

Proof By Lemma 2.2 the defining formula determines a unique tangent vector Taf(v) ∈ TbY . We show that
it does not depend on the choice of h and k : if k is replaced by another chart l then

D(l ◦ k−1) · Taf(v)k = D(l ◦ k−1) ·D(k ◦ f ◦ h−1) · vh = D(l ◦ f ◦ h−1) · vh = Taf(v)l ,

and if g is another choice for h the identity

D(k ◦ f ◦ g−1) · vg = D(k ◦ f ◦ h−1) ·D(h ◦ g−1) · vg = D(k ◦ f ◦ h−1) · vh

proves that we still get the same vector Taf(v) ∈ TbY . Therefore Taf is well-defined.

Turning to the chain rule it is obvious that Ta id = idTaX , and for composable differentiable mappings
f and g we calculate2 (

(Tf(a)g ◦ Taf) · v
)
l

= D(l ◦ g ◦ k−1) · (Taf · v)k

= D(l ◦ g ◦ k−1)D(k ◦ f ◦ h−1) · vh
= D(l ◦ g ◦ f ◦ h−1) · vh
=
(
Ta(g ◦ f) · v

)
l

2 In order to reduce the number of brackets we will henceforth usually indicate evaluation of a linear
mapping, even an abstract one, by a central dot or mere juxtaposition.
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using charts h, k, l at the points a, f(a), and (g ◦ f)(a) respectively.

Note It is clear that rka f is the rank of Taf ; in particular a more adequate way to express the rank hypoth-
esis in the local inverse theorem 1.8 is to require that the differential Taf is a linear isomorphism.

2.4 Examples (1) Let X ⊂ Rn and Y ⊂ Rp be open subsets. Their tangent spaces reduce to TaX = Rn
and TbY = Rp, and the differential to the Jacobian matrix Taf = Df(a) ∈ Mat(p×n,R).

(2) Let X be a manifold of dimension n+p, and S ⊂ X an n-dimensional submanifold. If (U, h) is a
submanifold chart at the point a ∈ S then, as we know, the restriction of h

S ∩ U h′−→ h(S ∩ U) ⊂ Rn × {0} = Rn

is a chart for S. It yields a canonical identification of the tangent space TaS with a subspace of TaX,
sending u ∈ TaS to the tangent vector v ∈ TaX with vh = (uh′ , 0) ∈ Rn×{0} ⊂ Rn×Rp. More
formally this identification is just the differential Tae of the inclusion mapping e:S ⊂ X, which of
course is an embedding of differential manifolds.
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Note that by the chain rule we have

Ta(f |S) = Ta(f ◦ e) = Taf ◦ Tae = Taf |TaS

for differentiable maps f :X → Y into a further manifold Y .

Two special cases are worth singling out. One is that of an open subset S ⊂ X, that is p = 0: then
the tangent spaces of S and X are just identified. The other is that of X an open subset of Rn+p : in
this case the identification of TaX with Rn+p makes TaS a subspace of Rn+p. The figure

indicates this and includes the intuitive version of TaS.

(3) Mappings f :T → X from an open interval T into a manifold X are known as (parametrised)
curves on X. Together with any scalar function g:X → R we obtain the differentiable function
g ◦f :T → R of one variable. Its differential is

Tt(g ◦ f) = Tf(t)g ◦ Ttf

or, in more classical notation,

(g ◦ f)′(t) = Tf(t)g · ḟ(t)

for all t ∈ T . Here ḟ(t) = Tt(f) · 1 ∈ Tf(t)X is the velocity vector of the curve f at the time t. Given
a tangent vector v ∈ TbX at a point b ∈ X the number Tbg · v is sometimes called the derivative of
g along v : thus (g ◦ f)′(t) is the derivative of g along the vector ḟ(t) ∈ Tf(t)X.

Note that the notion of gradient plays no role in this picture. Indeed the differential of g is a linear
form on Tf(t)X, and in the absence of a Euclidean structure on this space it is neither possible nor
desirable to turn this linear form into a tangent vector. For the same reason we have refrained from
calling Tbg ·v a directional derivative, a terminology usually reserved to the case of a unitary tangent
vector v ∈ TbX.

(4) If f :X → Y and b ∈ Y are as in the regular value theorem 1.13 then for any a ∈ f−1{b} the
tangent space to the fibre is

Taf
−1{b} = kernelTaf ⊂ TaX.
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Indeed the restriction f |f−1{b} is constant by definition, so that its differential at a vanishes: thus
Taf

−1{b} ⊂ kernelTaf as observed in (2). On the other hand both Taf
−1{b} and kernelTaf have

the same dimension dimX− dimY , so they must coincide.

In the special case of the map f :Rn+1 → R with f(x) = |x|2 and b = 1 we obtain the tangent space
to the sphere

TaS
n = Taf

−1{1} =
{
x ∈ Rn+1

∣∣ 2atx = 0
}

= {a}⊥ ⊂ Rn+1,

while in that of Example 1.14(2) — the determinant function on Mat(n×n,R) — the tangent space
at the unit matrix

T1SL(n,R) =
{
x ∈ Mat(n×n,R)

∣∣ trx = 0
}

— the so-called Lie algebra sl(n,R) of the Lie group SL(n,R) — is the space of traceless matrices.

We turn to an important and beautiful extension of the local inverse theorem. It provides a local normal
form for smooth mappings — albeit under a hypothesis which is quite restrictive.

2.5 Constant Rank Theorem LetX an n-dimensional and Y a p-dimensional manifold, and let f :X → Y
be a smooth map of constant rank r : that is, rko f = r for all o ∈ X. Then for every o ∈ X there
exist centred charts (U, h) at o and (V, k) at f(o) ∈ Y such that f(U) ⊂ V and f expressed in these
charts takes the normal form

h(U) 3 (x1, . . . , xn)
k◦f◦h−1

7−−−−→ (x1, . . . , xr, 0, . . . , 0) ∈ k(V ).

This conclusion may be strengthened in two special cases. In that of r = p — surjective differential
at o — the chart k may be prescribed arbitrarily, and in the case r = n, that is, injective Tof , the
chart h may be obtained from an arbitrarily given one just by restriction.
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Notes The conclusion of 2.5 being local, the rank of f need only be constant in some neighbourhood of o.
Conversely if f admits such a local normal form its rank clearly is r in some neighbourhood of o. —
Important special cases of maps with constant rank are immersions and submersions, which globally
have ranks n and p by definition.

If rko f = r is maximal in the sense of r = n or r = p then rkx f = r holds automatically for all x in
some neighbourhood of o : working in charts the differential of f at o becomes a p×n matrix which
contains an invertible r×r submatrix, and by continuity of the Jacobian determinant this submatrix
remains invertible at all points sufficiently close to o.

It is interesting to compare 2.5 with the well-known theorem of linear algebra which states that every
linear map of rank r takes the form (x1, . . . , xn) 7→ (x1, . . . , xr, 0, . . . , 0) if suitable bases are chosen.
Of course this is way easier to prove.

Proof At first we represent f in an arbitrary pair of centred charts at o and f(o), and thus may assume
that X ⊂ Rn and Y ⊂ Rp are open subsets while o = 0 and f(o) = 0. By assumption the Jacobian
matrix Df(0) ∈ Mat(p×n,R) has rank r, and suitably permuting the coordinates we further achieve
that the submatrix  ∂fi

∂xj
(0)

r

i,j=1

∈ Mat(r×r;R)

is invertible. The smooth mapping

X 3 x h7−→
(
f1(x), . . . , fr(x), xr+1, . . . , xn

)
∈ Rn

has the Jacobian

Dh =


∂fi
∂xj

∂fi
∂xj

0 1

︸ ︷︷ ︸
r

︸ ︷︷ ︸
n−r

of format n×n, which clearly is invertible at the point 0 ∈ X. The local inverse theorem guarantees
that we may shrink X so that the restricted mapping h:X → h(X) becomes a diffeomorphism and
thereby a chart for X. Note that it is centred at o = 0 since f(0) = 0. This essentially completes the
construction of the chart h.

We now represent the given map f in the chart h and the identical chart of Y , that is, we form the
composition g := f ◦ h−1:h(X)→ Y . The commutative diagram

(x1, . . . , xn)
f //

h '
��

(
f1(x), . . . , fp(x)

)
(
f1(x), . . . , fr(x), xr+1, . . . , xn

) g

33gggggggggggggggggggg

shows that g has the form

y = (y1, . . . , yn) 7−→
(
y1, . . . , yr, gr+1(y), . . . , gp(y)

)
.
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Since g represents f in a chart the Jacobian of g

Dg =

 1 0

∗ ∂gi
∂yj

 ,

︸ ︷︷ ︸
r

︸︷︷︸
n−r

must have the same rank as f , that is rank r everywhere: this means that for all i > r and j > r the
entries ∂gi

∂yj
vanish identically. Shrinking X further we may assume that the open set h(X) ⊂ Rn is is

a product W×Z of open balls W ⊂ Rr and Z ⊂ Rn−r, and using convexity of the latter we conclude
that for i > r the value of gi does not depend on yr+1, . . . , yn :

gi(y) = gi(y1, . . . , yr) for each i > r

with differentiable functions gi:W → R.

We now define the chart k. Its domain is V := Y ∩ (W ×Rp−r), and abbreviating (y1, . . . , yp) as
(y′, yr+1, . . . , yp) we put

k(y1, . . . , yp) =
(
y1, . . . , yr, yr+1−gr+1(y′), . . . , yp−gp(y′)

)
.

The inversion formula (y1, . . . , yp) 7→
(
y1, . . . , yr, yr+1 +gr+1(y′), . . . , yp+gp(y

′)
)

shows that k is
a diffeomorphism onto its image in Rp, and as the gi vanish at the origin k is a centred chart
at f(o) = 0 ∈ Y . We finally restrict the chart h:X → h(X) to U := X ∩ f−1V to ensure that
k ◦ f ◦ h−1 = k ◦ g is defined. According to the diagram

(
y1, . . . , yr, gr+1(y′), . . . , gp(y

′)
)

' k

��
(y1, . . . , yn)

k◦f◦h−1

//

g
33hhhhhhhhhhhhhhhhhhhh

(y1, . . . , yr, 0, . . . , 0)

the composition k ◦ f ◦ h−1 now indeed acts as stated in the theorem.
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As to the special cases we observe that for r = p the k constructed in the last part of the proof is the
identity: this means that the original choice of k, which was arbitrary, is preserved. — At the other
extreme r = n, the constructed chart h does differ from the identity, but its effect is neutralised if
the chart k is replaced by its composition with h−1 × idRp−n :

x
f //

h

��

f(x)

k

��
y′

k◦f◦h−1

//

h−1

��

(y′, 0, . . . , 0)

h−1×idRp−n

��
x // (x, 0, . . . , 0)

This completes the proof of the constant rank theorem.

Remark The regular value theorem 1.13 may be seen as a trivial application of the constant rank theorem:
everything being local only a map f in normal form (x1, . . . , xn+p) 7→ (x1, . . . , xp) need be considered.

A similar application of the constant rank theorem in the dual situation of injective differential leads to a
useful method to recognise embeddings of differential manifolds.

2.6 Theorem Let X and Y be manifolds. A differentiable map e:X → Y is an embedding of differential
manifolds if and only if it is both a topological embedding and an immersion.

Proof Only one direction requires proof: We assume that e is an immersive topological embedding and will
prove that it is a differentiable embedding. Let dimX = n and dimY = n+p, and let o ∈ X be
arbitrary. By the constant rank theorem we find centred charts (U, h) at o and (V, k) at e(o) ∈ Y in
which e is represented by

Rn ⊃ h(U) 3 x k◦e◦h−1

7−−−−→ (x, 0) ∈ k(V ) ⊂ Rn×Rp.
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By the special form of k ◦ e ◦ h−1 we have

k
(
e(U)

)
= (k ◦ e ◦ h−1)

(
h(U)

)
= h(U)× {0} ⊂ h(U)× Rp

and therefore e(U) ⊂ V ∩ k−1
(
h(U)×Rp

)
. We thus may shrink the chart domain V to the smaller

open neighbourhood V ∩ k−1
(
h(U)×Rp

)
of e(o), indicated by the dotted borders: by this step we

achieve that k(V ) ⊂ h(U)×Rp and in particular

k(V ) ∩
(
Rn×{0}

)
= h(U)×{0}.

We now use that X
e−→ e(X) is a homeomorphism: the image e(U) ⊂ e(X) is open, and we find

an open subset V ′ ⊂ V with V ′ ∩ e(X) = e(U). Then the restriction V ′
k−→ k(V ′) is a submanifold

chart for e(X) ⊂ Y . Indeed we have

k
(
V ′ ∩ e(X)

)
= (k ◦ e)(U) = (k ◦ e ◦ h−1)

(
h(U)

)
= h(U)× {0},

so that the inclusion in

k(V ′) ∩
(
Rn×{0}

)
⊂ k(V ) ∩

(
Rn×{0}

)
= h(U)×{0}

must be an equality.

We have seen that all tangent spaces of an open submanifold X ⊂ Rn may be identified with Rn itself.
Naturally this is no longer true for a general n-manifold X, where we have to work with a whole family
(TxX)x∈X of tangent spaces parametrised by X. An obstacle to further progress is that so far this is but a
family in the sense of set theory, in particular the tangent spaces at two different points of X are entirely
unrelated. Therefore our next project will be to endow the disjoint union of the tangent spaces with a
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geometric structure: it will become a new differentiable manifold, which has dimension 2n and projects onto
X in such a way that the tangent spaces become the fibres. This is the so-called tangent bundle of X. — Let
us first discuss an important topological tool.

2.7 Lemma — ‘Topologies are Local’ Let X be a set, and X =
⋃
λ∈Λ

Xλ a cover of X by topological spaces

Xλ such that for all λ, µ ∈ Λ

(a) Xλ ∩Xµ is open in Xλ, and

(b) Xλ and Xµ induce the same subspace topology on Xλ ∩Xµ.

Then there is a unique topology on X such that for every λ ∈ Λ

(c) Xλ is open in X, and

(d) X induces the given topology on Xλ.

Proof Let T be any topology on X that satisfies (c) and (d). Then by (d), for every U ∈ T and every
λ ∈ Λ the intersection U ∩Xλ ⊂ Xλ is open. Conversely, if U has this property for every λ ∈ Λ then
according to (d), U ∩Xλ belongs to the subspace topology induced by T on Xλ, so that U ∩Xλ ∈ T
by (c) and thus

U =
⋃
λ∈Λ

(U ∩Xλ) ∈ T .

Therefore

T :=
{
U ⊂ X

∣∣U ∩Xλ ⊂ Xλ is open for each λ ∈ Λ
}

is the only conceivable solution to the problem.

To see that the topology T thus defined indeed satisfies (c) and (d) we fix a λ ∈ Λ. Then by (a) the
intersection Xλ ∩Xµ is open in Xµ for every µ ∈ Λ, and therefore Xλ ∈ T , which proves (c).

In view of the property (c) just established the subspace topology that T induces on Xλ is{
U ∈ T

∣∣U ⊂ Xλ

}
=
{
U ⊂ Xλ

∣∣U ∩Xµ ⊂ Xµ is open for each µ ∈ Λ
}
,

and it remains to see that this coincides with the given topology of Xλ. Thus let U ⊂ Xλ be open in
Xλ. The intersection U ∩Xµ is open in Xλ ∩Xµ, which in turn is open in Xµ by (a) and (b), so that
U ∩Xµ is open in Xµ for all µ ∈ Λ: this means that U belongs to T . The converse is clear, choosing
µ = λ.

2.8 Example Let X be an n-manifold with atlas A = {(Uλ, hλ)}λ∈Λ — while strictly speaking we simply
have Λ = A and λ = (Uλ, hλ) we prefer the more suggestive notation as a family. If we want we may
completely forget the topology of X because it can be reconstructed from the atlas A. Indeed for
each λ we recover the topology of Uλ from the standard topology of Rn by declaring the bijection
hλ:Uλ → hλ(Uλ) a homeomorphism with the open subspace hλ(Uλ) ⊂ Rn. Then the chart domains
Uλ form a cover of the set X by topological spaces. For any two indices λ, µ

(a) Uλ ∩ Uµ is open in Uλ since hλ(Uλ ∩ Uµ) is open in hλ(Uλ), and

(b) the topology induced on Uλ ∩ Uµ from Uλ coincides with that induced from Uµ since the

transition map hλ(Uλ ∩ Uµ)
hµ◦h−1

λ−−−−→ hµ(Uλ ∩ Uµ) is a homeomorphism.

Lemma 2.7 now returns the topology of X as the unique one that satisfies (c) and (d).

At first sight the example seems pointless since after all the topology of a manifold X — as perhaps its most
basic ingredient — should be known before anything else. But the example does illustrate how an atlas can
be used to take a given manifold to pieces and reassemble it from them.
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This process immediately becomes useful if between the two steps a third is performed which typically
enhances the pieces in a way that cannot be directly described for the full manifold. One kind of enhancement
consists in throwing in the tangent spaces, and this allows to construct the tangent bundle, as follows.

2.9 Theorem and Definition (1) Let X be a (smooth) n-manifold. The disjoint union

TX :=
⋃
x∈X
{x}×TxX

π−→ X

together with the projection π: (x, v) 7→ x is called the tangent bundle of X. The tangent bundle
carries a natural structure of a smooth 2n-manifold, which makes π a smooth map and is defined as
follows. If A = {(Uλ, hλ)}λ∈Λ is the differentiable structure of X we give, for each λ ∈ Λ, the subset

π−1Uλ =
⋃
x∈Uλ

{x}×TxX ⊂ TX

the topology that makes the bijection

π−1Uλ 3 (x, v)
Hλ7−−−−→

(
hλ(x), vhλ

)
∈ hλ(Uλ)× Rn

a homeomorphism. The topological spaces π−1Uλ taken for all λ ∈ Λ, cover the set TX and define
the topology of TX according to Lemma 2.7; even more, they provide a differentiable atlas

Ã :=
{

(π−1Uλ, Hλ)
}
λ∈Λ

and thereby the differentiable structure of TX.

(2) Every smooth map f :X → Y induces a smooth mapping Tf :TX → TY , called its differential ,
which acts on tangent vectors by3

TxX 3 (x, v) 7−→
(
f(x), Txf · v

)
∈ Tf(x)Y.

It thus renders the diagram

TX
Tf //

��

TY

��
X

f // Y

3 We identify TxX with the fibre π−1{x} = {x}×TxX, and consequently write v ∈ TxX as (x, v) ∈ TxX
when appropiate.
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commutative and obeys the chain rule, which now simply reads

T idX = idTX and T (g ◦ f) = Tg ◦ Tf.

Proof In (1) we must verify conditions (a) and (b) of Lemma 2.7. This is analogous to Example 2.8:
Condition (a) holds since

Hλ(π−1Uλ ∩ π−1Uµ) = hλ(Uλ ∩ Uµ)× Rn ⊂ hλ(Uλ)× Rn = Hλ(π−1Uλ)

is an open subset, so that π−1Uλ ∩ π−1Uµ is open in π−1Uλ. Similarly (b) follows from the fact that
the transition map

Hλ(π−1Uλ ∩ π−1Uµ) = hλ(Uλ ∩ Uµ)× Rn
Hµ◦H−1

λ−−−−→ hµ(Uλ ∩ Uµ)× Rn = Hµ(π−1Uλ ∩ π−1Uµ)

(u, s) 7−→
(
(hµ ◦ h−1

λ )(u), D(hµ ◦ h−1
λ )(u) · s

)
is a homeomorphism. This is sufficient in order to apply Lemma 2.7 and conclude that Ã is a
topological atlas for TX. Its differentiability follows from the fact that the homeomorphisms Hµ◦H−1

λ

even are diffeomorphisms — note that in the C∞ framework differentiation does not lower the degree
of differentiability.

Before we proceed further it is interesting to note that the construction of the tangent bundle may
equally well be based on any differentiable atlas A rather than the full differentiable structure of X.
The uniqueness statement of Lemma 2.7 shows at once that the resulting topology is the same, and
likewise the differentiable structures of TX coincide since all transition maps are diffeomorphisms.

TX is a Hausdorff space: Let (a, v) 6= (b, w) be two distinct points of TX. In case a 6= b we choose
disjoint open neighbourhoods U ⊂ X of a and V ⊂ X of b ; then π−1U and π−1V separate (a, v)
and (b, w). If a = b then we choose a λ ∈ Λ with a ∈ Uλ. Then (a, v) and (a,w) are distinct points
of the space π−1Uλ which under Hλ is homeomorphic to the Hausdorff space hλ(Uλ)×Rn, so that
again (a, v) and (a,w) can be separated.

The topology of TX admits a countable base: By the result of Exercise 1.2 we find a countable
smooth atlas A of X, and we use this atlas in the construction of TX. The resulting atlas Ã has the
same index set as A and thus is countable too, and the result follows again from Exercise 1.2.

In order to prove differentiability of the projection TX
π−→ X it suffices to note that for any choice of

a chart (U, h) the projection has a representation in the corresponding charts (π−1U,H) and (U, h),
and that this representation is a Cartesian projection:

TX

π

��

π−1U? _oo '
H //

π

��

h(U)×Rn

pr

��
X U? _oo '

h // h(U)
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We turn to part (2). The only statement that requires proof is the differentiability of Tf . To treat
this local question near a point of TX over o ∈ X we represent the map f in charts (U, h) at o and

(V, k) at f(o) ∈ Y . In terms of the projections TX
π−→ X and TY

ρ−→ Y we write

π−1U 3 (x, v)
H7−→
(
h(x), vh

)
∈ h(U)× Rn and ρ−1V 3 (y, w)

K7−→
(
k(y), wk

)
∈ k(V )× Rp

for the corresponding charts of TX and TY . The differential Tf sends π−1U into ρ−1V , and according
to 2.3 its representation in the charts H and K

TX π−1U? _oo
Tf //

H

��

ρ−1V �
� //

K

��

TY

h(U)×Rn
K◦Tf◦H−1

// k(V )×Rp

acts as
h(U)× Rn 3 (u, s) 7−→

(
(k ◦ f ◦ h−1)(u), D(k ◦ f ◦ h−1)(u) · s

)
∈ k(V )× Rp.

This formula clearly defines a differentiable mapping, and this observation completes the proof.

Exercises

2.1 Consider the point a =
(

3
4

√
2, 3

4

√
2, 3

2

√
3
)
∈ R3 and let v ∈ TaR3 be the tangent vector with Cartesian

component vid = (1, 1,−1). Compute the components vc ∈ R3 and vs ∈ R3 of v for each of the
following charts at a :

• the chart c corresponding to cylinder coordinates (r, ϕ, z) 7→ (r cosϕ, r sinϕ, z)

• the chart s corresponding to spherical coordinates (R, θ, ϕ) 7→ (R sin θ cosϕ, R sin θ sinϕ, R cos θ)

Do each case independently, then verify that vc and vs indeed are components of one and the same
tangent vector in TaR3.

Note that the given assignments in fact describe inverses of c and s, as in Exercise 1.3. Also
remember that for standard matrix and differential calculus to work, vectors and even points of Rn
should be written as columns — while in the formulation row notation is used for better readability.

2.2 Every real vector space X of finite dimension n has a canonical structure of a smooth n-manifold:
explain why and how. Show furthermore that for every a ∈ X the tangent space TaX can be
canonically identified with X itself. If f :X → Y is an affine mapping into another finite dimensional
vector space, what is the differential Taf :X → Y ?

2.3 Let X be a non-empty compact manifold of positive dimension. Prove that for every differentiable
function f :X → R there exist two distinct points a, b ∈ X with Taf = 0 and Tbf = 0.

2.4 Let X ⊂ Rn be a smooth submanifold, and let a ∈ X : the linear subspace TaX ⊂ TaRn = Rn is
another (quite special) submanifold. Prove that the orthogonal projection π:Rn → TaX restricts to
a map π′:X → TaX which is a local diffeomorphism at a.

2.5 Let X be a differentiable n-manifold, o ∈ X a point. We consider smooth functions f :V → R defined
on open neighbourhoods V ⊂ X of o and declare two such functions f :V → R and g:W → R
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equivalent if there exists a third neighbourhood U of o with U ⊂ V ∩W and f |U = g|U . Briefly
convince yourself that the equivalence classes form a real algebra — that is, a vector space with a
compatible ring multiplication; this algebra is denoted by EX,o or Eo for short, and its elements are
called the germs of smooth functions at o (who is familiar with the notion will recognise EX,o as a
direct limit).

Set up a canonical isomorphism between the tangent space ToX and the space of scalar derivations
of Eo, that is R-linear functions η: Eo → R with the property

η(f · g) = η(f) · g(o) + f(o) · η(g) for all f, g ∈ Eo .

Express the differential of a smooth mapping X
F−→ Y in terms of this alternative description of the

tangent space.

Hint Taylor’s formula — or a version of the mean value theorem — tells you that every germ
f ∈ ERn,0 can be written in the form

f(x) = f(0) +

n∑
j=1

xj · fj(x)

with germs fj ∈ ERn,0.

2.6 Let f :Rn+1 → R be given by

f(x) =

k∑
j=0

x2
j −

n∑
j=k+1

x2
j

with k ∈ {−1, . . . , n}. Prove that the affine quadric

Q := f−1{1} ⊂ Rn+1

is diffeomorphic to Sk×Rn−k. — Generalise to the case where f :Rn+1 → R is an arbitrary quadratic
form.

2.7 According to Exercise 1.10 the orthogonal group

O(n) =
{
x ∈ Mat(n×n,R)

∣∣xtx = 1
}

is a Lie group: what is its Lie algebra o(n)? Differentiate the following mappings at the point
1 ∈ O(n):

• the inversion O(n) 3 x 7→ i(x) := x−1 ∈ O(n),

• for fixed u ∈ O(n) the conjugation mapping O(n) 3 x 7→ cu(x) := uxu−1 ∈ O(n),

• the so-called adjoint representation O(n) 3 u 7→ Ad(u) := Dcu(1) ∈ End
(
o(n)

)
with values in

the vector space of linear endomorphisms of o(n).

2.8 Prove that the special unitary group

SU(2) = {u ∈ Mat(2×2,C) |utu = 1 and detu = 1}

is a Lie group with Lie algebra

su(2) = {x ∈ Mat(2×2,C) |xt+x = 0 and trx = 0}.
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Verify that su(2) is a Euclidean vector space under the scalar product

su(2)× su(2) 3 (x, y) 7−→ 〈x, y〉 := − trxy ∈ R.

Prove that the adjoint representation of SU(2),

SU(2) 3 u 7−→ Dcu(1) ∈ End
(
su(2)

)
with cu(x) = uxu−1 = uxut

acts by orthogonal automorphisms of su(2) and thus defines a homomorphism f :SU(2)→ SO
(
su(2)

)
of groups.

Finally, express the differential T1f in terms of the Pauli base

X = i · σx = i ·
 1

1

 Y = i · σy = i ·
 −i
i

 Z = i · σz = i ·
 1

−1


of su(2) and prove that f is a surjective local diffeomorphism with kernel {±1}.

2.9 Let X be a connected n-manifold and f :X → X a smooth mapping with the property that f ◦ f = f .
Prove that the image set S := f(X) ⊂ X is a closed differentiable submanifold of X.

Hints Note that S coincides with the fixed point set {x ∈ X | f(x) = x} of f . — The problem is
an application of the constant rank theorem.

2.10 Let f :X → Y be an injective immersion. Prove that if furthermore X is compact then f is a smooth
embedding.

2.11 Describe an embedding S1×S1 → R3 explicitly in terms of Cartesian and also in terms of angle
coordinates θ and ϕ on S1.

2.12 For arbitrary n, p ∈ N construct an embedding of Sn×Sp in Rn+p+1.

Hint The manifolds R×Sp and Rp+1r{0} are diffeomorphic.

2.13 Let X := R2/Z2 be the two-dimensional torus, and for fixed non-zero β ∈ R consider the parametrised
curve

R 3 t f7−→ (t, βt) + Z2 ∈ X.

If β ∈ Q then f induces a smooth embedding of the circle S1 as a smooth submanifold of X : make
this precise and prove it.

Prove that if β is irrational then f is an injective immersion, and the image set f(R) ⊂ X is dense.

Hint The case of irrational β is one of the numerous manifestations of the following fact, which is
half analysis and half algebra, and which you may simply use or wish to prove first: Every additive
subgroup of the real line is either dense or cyclic.

2.14 Let e:S → X be an embedding of manifolds. Prove that Te : TS → TY also is an embedding.
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3 Vector Bundles

The tangent bundle defined in the previous section is a particular instance of the notion of vector bundle.
Vector bundles make precise the idea of linear algebra parametrised by non-linear geometry, a situation
which arises naturally in a variety of topological, algebraic, and analytic contexts. It is the differentiable real
version which is relevant here.

3.1 Definition A (differentiable or smooth real) vector bundle of rank d on, or over a manifold X consists
of another manifold E, a smooth mapping

E
π−→ X,

and a structure of a real d-dimensional vector space on each fibre

Ex := π−1{x} (x ∈ X).

These data are required to obey the axiom of local triviality : for each x ∈ X there exists a bundle
chart at x, consisting of an open neighbourhood U ⊂ X of x and a diffeomorphism h that lets the
diagram

π−1U
h //

π
""EEEEEEEEE U × Rd

pr
{{wwwwwwwww

U

commute and restricts to a — necessarily bijective — linear mapping

Ex
hx−→ {x}×Rd = Rd

on each fibre. A bundle atlas is of course, a family of bundle charts π−1U → U×Rd such that the
open sets U cover X.

The manifolds X and E are called the base and the total space of the bundle respectively, while π
is called the bundle projection. In practice often just the total space of a bundle is written down
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when the remaining data are clear from the context. — Quite generally, in the context of bundles
the notion of locality always refers to the base rather than the total space.

3.2 Examples (1) Given a manifold X and an integer d ∈ N the product bundle

X × Rd pr−→ X

clearly is a vector bundle of rank d ; in this case the identity mapping provides a single global bundle
chart.

(2) The tangent bundle of a manifold X : if (U, h) is a chart then

TU 3 (x, v) 7−→
(
x, vh

)
∈ U × Rn

is a bundle chart. It may be expressed as the composition

TU
H−→ h(U)× Rn h−1×id−−−−→ U × Rn

where H: (x, v) →
(
h(x), vh

)
is the chart derived from h and used in the construction of TX. The

factor h−1 on the right simply undoes the action of H on the base, which here is undesired.

(3) The projective space RPn carries the so-called tautological bundle

T =
{(

[x], v
)
∈ RPn×Rn+1

∣∣ v ∈ Rx
}
3
(
[x], v

) π7−→ [x] ∈ RPn.

It is a vector bundle of rank one or line bundle. Its name comes from the fact that the point
[x] = {±x} ∈ RPn may equivalently be thought of as the line Rx ⊂ Rn+1, so that the fibre TRx = Rx
over it is just the point itself.
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Recall that RPn is covered by the charts

Uj = {[x] ∈ RPn |xj 6= 0} hj−→ Un for j = 0, . . . , n ;

hj sends [x] ∈ Uj to the point (x0, . . . , x̂j , . . . , xn) ∈ Un if the representative x ∈ Sn is normalised
by the condition xj > 0. A suitable bundle chart for T over Uj is given by

π−1Uj 3 ([x], v) 7−→
(

[x],
vj
xj

)
∈ Uj×R

with inverse ([x], t · x)←7 ([x], t); here again x is normalised such that xj > 0.

Several kinds of structure compatible mappings between vector bundles may be envisaged.

3.3 Definition (1) Let E → X and F → Y be vector bundles over manifolds X and Y . A bundle mapping
from E to F is a pair (f, g) of smooth maps such that the diagram

E
g //

π

��

F

ρ

��
X

f // Y

is commutative and g:E → F sends the vector space Ex isomorphically onto Ff(x) for each x ∈ X.

(For better readability the right hand side of the figure shows just the part of F that sits over the
image f(X).)

(2) Let E → X and F → X be vector bundles over one and the same manifold X. A bundle
homomorphism from E to F is a smooth map g:E → F that for each x ∈ X sends the vector space
Ex linearly (but not necessarily bijectively) into Fx.
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(3) A bundle isomorphism between bundles over the same base is a homomorphism which is invertible
by another homomorphism. A bundle over X is called trivial if it is isomorphic to a product bundle

X×Rd pr−→ X (where d must be the rank of E of course).

Note The terminology introduced in (3) makes the axiom of local triviality self-explaining.

3.4 Examples (1) Bundle homomorphisms between product bundles X×Rd g−→ X×Re correspond to
smooth functions f :X → Mat(e×d,R) via g(x, v) = (x, f(x) ·v): note that by elementary analysis
g is differentiable if and only if f is differentiable. It follows that g is an isomorphism of bundles if
and only if d = e and f takes values in the open subset GL(d,R) ⊂ Mat(d×d,R), for in that case

g−1 corresponds to the equally smooth function X 3 x 7→ f(x)
−1 ∈ GL(d,R) ⊂ Mat(d×d,R). For a

homomorphism E
g−→ F between general bundles these observations imply that g is an isomorphism

if and only if it sends each fibre Ex isomorphically onto Fx, that is if and only if g is bijective as a
map.

(2) The tangent bundle TS1 is trivial1, since

TS1 =
{

(x, v) ∈ S1×R2
∣∣xtv = 0

}
3 (x, v) 7−→ (x,−x2v1+x1v2) ∈ S1 × R

is a bundle map: it measures v with respect to the tangent vector of length one pointing in anti-
clockwise direction, and is inverted by

(
x, t·(−x2, x1)

)
←7 (x, t).

1 Trying to visualise the tangent bundle invariably encounters a psychological barrier as it requires to
think of the tangent directions as independent and transverse to the directions on the manifold — which on
the other hand by definition are just one and the same.
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This construction does not generalise to higher dimensions, and in fact TSn is almost never trivial,
the exceptions being n = 0, 1, 3, and 7.

3.5 Theorem and Definition Let F
ρ−→ Y be a rank d vector bundle and f :X → Y a map. Then

f∗F :=
{

(x,w) ∈ X×F
∣∣ f(x) = ρ(w)

}
⊂ X × F

is a smooth submanifold, and the projection

f∗F 3 (x,w)
π7−→ x ∈ X

makes f∗F a vector bundle over X called the induced bundle or pull-back of F ; it has the same rank

d as F . The pair comprising f and the restricted projection f∗F 3 (x,w)
g7−→ w ∈ F is a bundle

map:

f∗F
g //

π

��

F

ρ

��
X

f // Y

The pull-back bundle is natural in the sense that every bundle homomorphism h:F → F ′ pulls back
to a homomorphism f∗h: f∗F → f∗F ′ such that f∗ id = id and f∗(k ◦h) = f∗k ◦f∗h — in particular
every bundle induced from a trivial bundle is trivial. The pull-back is also natural with respect to
the inducing map: if e and f are composable maps then (f ◦e)∗F is canonically isomorphic to e∗f∗F .

Proof The submanifold property of f∗F ⊂ X×F is local with respect to X and a fortiori with respect to
Y , since f is continuous. To prove it we may thus assume that Y ⊂ Rp is an open subset and that
F = Y ×Rd → Y is the product bundle. Then

f∗F =
{

(x, y, t) ∈ X×Y ×Rd
∣∣ f(x) = y

}
⊂ X × Y × Rd

is, up to order of the factors, the graph of the function X×Rd 3 (x, t) 7→ f(x) ∈ Y , so that the
formula

X × Y × Rd 3 (x, y, t) 7−→
(
x, y−f(x), t

)
∈ X × Rp × Rd
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yields a flattening chart for f∗F . For the same reason the map

f∗F 3 (x, y, t)
g7−→ (x, t) ∈ X × Rd

is, in this special situation, a diffeomorphism; it makes the diagram

f∗F '
g //

π
!!CCCCCCCC X × Rd

pr
{{wwwwwwwww

X

commutative, restricts to the identity map between fibres

(f∗F )x = {x} × {f(x)} × Rd → {x} × Rd

and therefore serves as a (global) bundle chart for f∗F .

The first naturality property stated is the subject of Exercise 3.1. As to the second, for given maps

U
e−→ X

f−→ Y the Cartesian projection induces a canonical bundle isomorphism between

e∗f∗F =
{

(u, x, w) ∈ U×X×F
∣∣ e(u) = x and f(x) = ρ(w)

}
and

(f ◦e)∗F =
{

(u,w) ∈ U×F
∣∣ (f ◦e)(u) = ρ(w)

}
.

3.6 Example In the case where f :X ⊂ Y is the inclusion map of a submanifold the induced bundle f∗F

is canonically isomorphic to the restriction ρ−1X
ρ−→ X, which in turn is simply written F |X → X.

Proof The Cartesian projection

f∗F =
{

(x,w) ∈ X×F
∣∣x = ρ(w)

}
−→

{
w ∈ F

∣∣ ρ(w) ∈ X
}

= F |X

does the job.

The concepts of bundle mapping and bundle homomorphism suggest a common generalisation, which nev-
ertheless can be reduced to these more restricted notions:

3.7 Factorisation Lemma Let E
π−→ X and F

ρ−→ Y be vector bundles (of possibly different ranks)
over manifolds X and Y (of possibly different dimensions). Let

E
g //

π

��

F

ρ

��
X

f // Y

be a commutative diagram of smooth maps such that for every x ∈ X the restriction

Ex 3 v 7−→ g(v) ∈ Ff(x)

is linear. Then there exists a unique bundle homomorphism g̃:E → f∗F that renders the diagram

E
g //

g̃

''OOOOOOOOOOOOO

π

��

F

ρ

��
X

OOOOOOOOOOOOOO

OOOOOOOOOOOOOO f∗F

77ppppppppppppp

��

Y

X

f

77pppppppppppppp
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commutative.

Proof There is no other choice for g̃ but to send v ∈ E to
(
π(v), g(v)

)
∈ f∗F ⊂ X×F , and this clearly

yields a smooth mapping with the desired properties.

3.8 Corollary If there exists a bundle map (g, f) from E to F then E ' f∗F .

Note While by the very definition bundle homomorphisms act on the fibres but not on the common base
space the corollary shows that by contrast a bundle mapping acts on the base space but not essentially
on the fibres: in the induced bundle the fibres of F are simply pulled back from points of Y over
points of X. The factorisation lemma states that for the more general type of morphism between
bundles the two effects can be neatly separated. In the following example the separation is between
the differentiable mapping f on one side, and the linear action of its derivative Tf on the other.

3.9 Example The differential of a smooth map f :X → Y is a special case:

TX
Tf //

g̃

((PPPPPPPPPPPP

��

TY

��
X

PPPPPPPPPPPPPPP

PPPPPPPPPPPPPPP f∗TY

77nnnnnnnnnnnn

��

Y

X

f

77nnnnnnnnnnnnnnn

The resulting bundle homomorphism g̃ may be considered as an alternative version of the differential
of f .

3.10 Definition Let E
π−→ X be a vector bundle. A section of E is a map s:X → E that satisfies

π◦s = idX . In view of Theorem 2.6 this condition forces s to be a smooth embedding, and sometimes
the embedded submanifold s(X) ⊂ E rather than s is referred to as a section — in any case the
mapping s can be recovered from s(X).

By the rules of differential calculus the sections of a given bundle E → X form a real vector space.
Its zero vector is the section which assigns to each point x ∈ X the zero vector of the fibre Ex, and
is called the zero section ; it provides a canonical embedding of X in E and is sometimes used to
identify X with its image in E.

Linear algebra knows a variety of standard methods to construct new vector spaces from one or several given
ones in an functorial way. These constructions readily extend to vector bundles. The technique is analogous
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to that which has led to the tangent bundle: the given vector bundles are taken apart using bundle atlases,
the linear construction is applied to the pieces, and finally the results are glued back to form the new bundle.

3.11 Constructions with Vector Bundles (1) Let E
π−→ X and F

ρ−→ X be vector bundles over a
manifold X. We define their Whitney sum E⊕F , a new vector bundle over X, taking the direct sum
fibre-wise:

(E ⊕ F )x := Ex ⊕ Fx = Ex × Fx.

While this defines the bundle E ⊕F σ−→ X as a set over X with the required vector space structure
on each fibre we must still declare its topology and differentiable structure. To this end pick bundle
atlases {

π−1Uλ
hλ−→ Uλ×Rd

}
λ∈Λ

and
{
ρ−1Vµ

kµ−→ Vµ×Re
}
µ∈M

for E and F ; passing to intersections Uλ ∩ Vµ we may assume a common index set Λ = M and
identical covering sets Uλ = Vλ. For every λ ∈ Λ the composition

σ−1Uλ −−−−→ Uλ × Rd × Uλ × Re pr−−−−→ Uλ × Rd × Re

(v, w) 7−→
(
hλ(v), kλ(w)

)
(x, s, y, t) 7−→ (x, s, t)

is linear on fibres and bijective; indeed it is inverted by the assignment

σ−1Uλ 3
(
h−1
λ (x, s), k−1

λ (x, t)
)
←−7 (x, s, t) ∈ Uλ × Rd × Re.

These mappings can be used in the usual way to put on E⊕F first a topology using Lemma 2.7, and
then the manifold and vector bundle structures, noting that the arising transition maps are smooth
and fibrewise linear. — A priori all these structures may depend on which bundle atlases are chosen
for E and F . In order to compare two choices B = (Uλ, hλ, kλ)λ∈Λ and B′ = (U ′λ, h

′
λ, k
′
λ)λ∈Λ′ we may

assume that the open cover (Uλ)λ∈Λ is a refinement of (U ′λ)λ∈Λ′ . Then the uniqueness statement of
Lemma 2.7, applied to (Uλ)λ∈Λ, shows that B′ puts the same topology on E⊕F as B does. Likewise
the smooth structures on E ⊕ F coincide since all transition maps are diffeomorphisms.

The Whitney construction is rightfully called a sum since it has the expected universal property:
given bundle homomorphisms e:E → G and f :F → G to a third bundle over X there is a unique
bundle homomorphism E ⊕ F → G which restricts to e on E ⊂ E ⊕ F and to f on F ⊂ E ⊕ F .
With equal right E ⊕F could be called the direct product of E and F since it also satisfies the dual
universal property: given bundle homomorphisms e:D → E and f :D → F there is a unique bundle
homomorphism D → E ⊕ F which projects to e under E ⊕ F → E and to f under E ⊕ F → F .

It is at once seen, and in fact a formal consequence of the universal property that the Whitney

sum is functorial : every pair of bundle homomorphisms E
g−→ E′ and F

h−→ F ′ induces a sum
homomorphism of bundles

E ⊕ F g⊕h−−−−→ E′ ⊕ F ′,

and apart from the triviality idE ⊕ idF = idE⊕F the rule (g ◦ g′)⊕ (h ◦ h′) = (g⊕ h) ◦ (g′ ⊕ h′) holds
for pairs of composable homomorphisms.

(2) The Whitney sum serves as a model for the bundle versions of other constructions, including:

• Given bundles E → X and F → X there is a bundle Hom(E,F ) such that for each x ∈ X the
fibre Hom(E,F )x = Hom(Ex, Fx) is the space of linear maps from Ex to Fx ; in particular we have
the dual bundle Eˇ = Hom(E,X×R) where Exˇ = Hom(Ex,R) is the space of linear forms.

• Under the same conditions the tensor product of two bundles E ⊗ F may be formed.

• Given any bundle E → X we have its symmetric and alternating powers SkE → X and ΛkE → X.

• Closely related with the latter but more widely known are symmetric bilinear forms and alter-
nating multilinear k-forms; starting from any bundle E → X they give rise to the vector bundles
SymE → X — isomorphic to S2Eˇ→ X, and AltkE → X, which is isomorphic to ΛkE .̌
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3.12 Examples (1) For any n ∈ N let N = Sn × R −→ Sn denote the trivial line bundle on Sn. Then
the Whitney sum N ⊕ TSn is a trivial vector bundle of rank n+1 over Sn. Indeed, the commutative
diagram

N ⊕ TSn h //

$$JJJJJJJJJJ Sn × Rn+1

yyssssssssss

Sn

with h(x, t;x, v) = (x, tx+ v) describes an isomorphism: in order to invert h just decompose a given
vector of the fibre {x}×Rn+1 into its components which are parallel and orthogonal to x.

(2) For every line bundle L → X the bundle Hom(L,L) → X is trivial, since the bundle homomor-
phism X×R→ Hom(L,L) that sends 1 ∈ Rx to the identity map of Lx is bijective — its inverse is
given by the trace.

(3) In Example 3.4(1) we observed the correspondence between homomorphisms of product bundles
X×Rn → X×Rp and matrix valued functions X → Mat(p×n,R). We now can globalise: for any

given vector bundles E
π−→ X and F

ρ−→ X the bundle homomorphisms g:E → F correspond to
the sections s:X → Hom(E,F ) via the formula g(v) = (s ◦ π)(v) · v. The local description in 3.4(1)
also shows that the points x ∈ X such that gx:Ex → Fx is an isomorphism form an open subset of
X.

3.13 Definition Let E
π−→ X be a rank d vector bundle on a manifold X, and s ≤ d. A subset S ⊂ E

together with the restriction S
π|S−→ X is a subbundle of rank s if at every x ∈ X there exists a bundle

chart (U, h) for E

π−1U
h //

π
""EEEEEEEEE U × Rd

pr
{{wwwwwwwww

U

with h(π−1U ∩ S) = U ×
(
Rs×{0}d−s

)
— the restricted projection S → X then clearly is a vector

bundle in its own right.
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3.14 Examples (1) If X ⊂ Y is a submanifold then TX ⊂ TY |X is a subbundle of the restricted tangent
bundle: assuming dimX = n and dimY = n+p let π:TY → Y denote the bundle projection and let
(U, h) be a flattening chart for X ⊂ Y , so that

h(U ∩X) = h(U) ∩
(
Rn × {0}

)
⊂ Rn × Rp.

Then the bundle chart for TY |X

π−1(U ∩X) 3 (x, v) 7−→ (x, Txh · v) ∈ (U ∩X)× Rn+p

sends π−1(U ∩X) ∩ TX = T (U ∩X) onto (U ∩X)× (Rn × {0}) and thus is a subbundle chart.

(2) The tautological bundle T → RPn was defined as the subset

T =
{

([x], v) ∈ RPn×Rn+1
∣∣ v ∈ Rx

}
of the total space of the trivial bundle RPn×Rn+1 → RPn, and one might ask whether it is a
subbundle. Indeed it is : over the open set Uj = {[x] ∈ RPn |xj 6= 0} our bundle chart for T from
Example 3.2(3)

π−1Uj 3 ([x], v) 7−→
(

[x],
vj
xj

)
∈ Uj×R (x normalised so that xj > 0)

can be interpreted as assigning to the vector v ∈ T[x] its projection along Rx , and this suggests its
extension to the subbundle chart

Uj×Rn+1 3 ([x], v) 7−→
(

[x],
vj
xj
, v − vj

xj
x
)
∈ Uj × R×

{
w ∈ Rn+1

∣∣wj = 0
}

for T ⊂ RPn×Rn+1 — where for the sake of convenience the j-th coordinate exceptionally is listed
first.

3.15 Lemma and Definition Let E
π−→ X be a vector bundle on a manifold X, and let S ⊂ E be a

subbundle. Then there is a natural vector bundle E/S → X with (E/S)x = Ex/Sx for all x ∈ X,
called the quotient bundle of E by S. It fits into the equally natural exact sequence2

0 // S // E // E/S // 0

2 Exactness at any position of a sequence requires that the image of the incoming arrow coincides with
the kernel of the outgoing one. In the case at hand exactness is fibre-wise and simply restates the injectivity
of the inclusion S ⊂ E, the surjectivity of the quotient homomorphism, and the fact that the latter’s kernel
is precisely S.
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of vector bundles.

Proof As a set, of course, E/S =
⋃
x∈X Ex/Sx is the disjoint union of the quotient vector spaces, and we

let ρ:E/S → X denote the projection. We choose an atlas indexed by λ ∈ Λ say, of subbundle charts

π−1Uλ
hλ−→ Uλ × Rd = Uλ × Rs × Rd−s

for the subbundle S ⊂ E. For each λ ∈ Λ we define a chart of the quotient bundle by

ρ−1Uλ
kλ−→ Uλ × Rd−s

[v] 7−→
(
x, (pr3 ◦hλ) · v

)
,

with x := π([v]), noting that the last component of hλ does not depend on how the representative v
is chosen in its congruence class modulo Sx. If µ ∈ Λ is another index then of course (Uλ∩Uµ)×Rd−s
is open in both Uλ×Rd−s and Uµ×Rd−s, and it inherits its natural topology from either. Since the
transition map

(Uλ ∩ Uµ)× Rd−s
kµ◦k−1

λ−−−−→ (Uλ ∩ Uµ)× Rd−s

(x,w) 7−→
(
x, (pr3 ◦hµ ◦ h−1

λ ) · (x, 0, w)
)

is a diffeomorphism the charts kλ put well-defined topological and smooth bundle structures on E/S
as desired.

Given a homomorphism of vector bundles E
f−→ F on X one may form its kernel and its image fibrewise,

taking kernel and image of the linear mapping fx:Ex → Fx for each x ∈ X. In general the subsets of E and
F thus defined will fail to be subbundles for the simple reason that the rank of fx usually is a non-constant
function of x ∈ X. Those familiar with the notion thus recognise that the category of vector bundles over X
is not an abelian category. On the other hand the question of constant or non-constant rank turns out to be
just the essential point:

3.16 Theorem Let E,F be vector bundles over X, and let f :E → F be a bundle homomorphism of
constant rank r. Then the fibre-wise defined subsets

kernel f ⊂ E and image f ⊂ F

are subbundles.

Proof The question being local in X we may assume that E = X×Rn and F = X×Rp are product bundles,
so that f has the form

X×Rn 3 (x, v) 7−→ (x, fx · v) ∈ X×Rp
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with a smooth matrix valued function x 7→ fx.

We first assume n = p and consider a point o ∈ X. By elementary linear algebra we may assume
that fo has the standard form

fo =

 1 0
0 0

 ∈ Mat(n×n,R)

with an r×r unit matrix 1. We put

g =

 0 0
0 1

 = id−fo ∈ Mat(n×n,R).

The bundle homomorphism h: (x, v) 7−→
(
x, (fx+g) · v

)
then acts as the identity at x = o, and

reducing X to an open neighbourhood of o we may assume that h is a bundle automorphism of
X×Rn. Even more, h is a subbundle chart for kernel f ⊂ X×Rn since for every x ∈ X the inclusion

hx(kernel fx) = (fx+g)(kernel fx) = g(kernel fx) ⊂ {0}×Rn−r

must be an equality of vector spaces as both sides have the same dimension.

Likewise h−1 is a subbundle chart for image f ⊂ X×Rn : we have

hx
(
Rr×{0}

)
= (fx+g)(Rr×{0}

)
= fx(Rr×{0}

)
⊂ image fx,

hence

Rr×{0} ⊂ h−1
x image fx,

which again is an equality since the dimension on either side is the same for every x ∈ X. This
completes the proof in the special case n = p.

We now assume that n < p. Recalling that E = X×Rn is the product bundle we pick any linear
surjection Rp → Rn and obtain a homomorphism between bundles of common rank p

X×Rp −→ X×Rn = E
f−→ F

with the same image as f : by what we already know image f ⊂ F is a subbundle. Similarly for n > p
we embed Rp in Rn as a linear subspace; the composition

E
f−→ F = X×Rp −→ X×Rn

has the same kernel as f , which therefore is a subbundle kernel f ⊂ E.

Returning to the assumption n < p we now rewrite f as the bundle homomorphism

E
f−→ image f

with the rank of E at least that of image f , and conclude that its kernel, that is kernel f ⊂ E is a
subbundle. Finally for n > p we read the image of f as that of the injective homomorphism

E/ kernel f −→ F ;

the latter has the same image as f , and this shows that image f ⊂ F is a subbundle in this case too.
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Exercises

3.1 Verify the naturality of the pull-back with respect to bundle homomorphisms h:F → F ′ as stated in
Theorem 3.5.

3.2 Let E
π−→ X be a vector bundle of rank d ≥ 2. Prove that the complement of the zero section E rX

is connected if and only if X is connected.

3.3 Prove that for n > 0 the tautological bundle T
π−→ RPn is not trivial.

3.4 Let X be a smooth manifold and S ⊂ X a submanifold. Prove that TS ⊂ TX|S is a subbundle.

3.5 Let X and Y be manifolds. Describe the tangent bundle T (X×Y ) in terms of TX and TY using only
vector bundle operations.

3.6 Let E
π−→ X be a vector bundle. Since the total space E is a manifold it has a tangent bundle TE → E.

Prove that there is a canonical exact sequence

0 // π∗E // TE // π∗TX // 0

of vector bundles on E.

3.7 Explain why the symmetric matrices with n distinct eigenvalues form an open subset X of the space
Sym(n,R) of all symmetric real matrices of size n. Prove that the eigenspace decomposition represents
the product bundle X×Rn → X as the Whitney sum L1 ⊕ · · · ⊕ Ln of n line bundles.

3.8 Prove that for n > 1 the line bundles Lj of the previous problem are not trivial.

3.9 Let T
π−→ RPn be the tautological, and V = RPn×Rn+1 pr−→ RPn the product bundle. Prove the

isomorphy
T (RPn) ' Hom

(
T, V/T

)
of vector bundles on RPn.
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4 Smooth Functions and Sections

4.1 Definition Let s:X → V be a function from a toplogical space to a finite dimensional real vector
space, or alternatively a section of a vector bundle on X. The support of s

supp s := {x ∈ X | s(x) 6= 0} ⊂ X

is defined as the smallest closed subset with the property that s vanishes identically on the comple-
ment X r supp s.

4.2 Table Mountains From the smooth function f :R→ R,

f(t) =
{

0 if t ≤ 0;
e−1/t if t > 0

we construct functions g:R→ R and h:R→ R,

g(t) = f(t) · f(1− t) and h(t) =

∫ t

0

g(τ)dτ,

and normalise the latter to obtain k:R −→ [0, 1],

k(t) =
1

h(1)
· h(t).

All these functions are smooth, and k vanishes identically on (−∞, 0], takes the constant value 1
on [1,∞), and strictly increases in between. Finally, depending on a dimension n ∈ N and real
parameters 0 < r < R we define the table mountain τ :Rn → [0, 1] by

τ(x) = h

(
R− |x|
R− r

)
.

The table mountain likewise is smooth, has constant value 1 on the closed ball Dr(0) ⊂ Rn of radius
r while it vanishes identically outside the open ball UR(0) of radius R.
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4.3 First Applications (1) Let X be an n-manifold and o ∈ X a point. Choose any centred chart (U, h)
at o and further choose 0 < r < R such that DR(0) ⊂ h(U). Then not only U but also Xrh−1DR(0)
is an open subset of X since the compact set h−1DR(0) must be closed in the Hausdorff space X.
Therefore the formula

σ(x) =

{
τ ◦ h(x) for x ∈ U , and
0 for x ∈ X r h−1DR(0)

determines a well-defined C∞-function σ:X → [0, 1]. While σ has constant value 1 in a neighbourhood
of o its support h−1DR(0) is contained in U — in particular it may be forced to be arbitrarily small
by a proper choice of U . We thus have implanted a table mountain on X which is concentrated near
the point o.

(2) To continue the first example let f :U → R be a smooth function — which may, for instance, be
obtained from any smooth real valued function on h(U) ⊂ Rn by composition with h. Then putting

F (x) =

{(
τ ◦ h(x)

)
· f(x) for x ∈ U , and

0 for x ∈ X r h−1DR(0)

we obtain a global smooth function F :X → R which coincides with f in a neighbourhood of o.

Note that it is certainly not possible in general to extend f :U → R to a smooth or even continuous
global function on X. But as this example shows extension is possible if you first allow U to be
shrunk to a smaller neighbourhood of o.

Our first “serious” application of table mountains concerns the question of whether an abstract manifold
can be realised as a submanifold of a Euclidean space.
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4.4 Embedding Theorem Let X be a compact n-manifold. There exist a p ∈ N and an embedding
e:X → Rp of X as a smooth submanifold.

Proof As a first step we implant a table mountain at every point o ∈ X : we choose a chart (Uo, ho) centred
at o and compose it with a dilatation of Rn to make sure that ho(Uo) ⊂ Rn is large enough so that
D2(0) ⊂ ho(Uo). As in 4.3(1) this allows to implant the table mountain function τ :Rn → [0, 1] with
uniform parameters r = 1 and R = 2 for all o ∈ X.

Since X is compact we find a finite set Λ ⊂ X such that X =
⋃
o∈Λ h

−1
o U1(0). We define the smooth

mapping

e:X −→
∏
o∈Λ

(R⊕ Rn)

putting for every x ∈ X

e(x)o =

 (τ ◦ ho)(x) ·
 1
ho(x)

 ∈ R⊕ Rn if x ∈ Uo ;

0 if x ∈ X r h−1
o D2(0).

We prove that e is injective. Thus let x, y ∈ X be points with e(x) = e(y). Since the sets h−1
o U1(0)

cover X there must exist an o ∈ Λ with (τ ◦ ho)(y) = 1. In particular we must have y ∈ Uo, and
looking at the first component of eo we see that then also

e(x)o = e(y)o = (τ ◦ ho)(y) = 1

and therefore x ∈ Uo and (τ ◦ho)(x) = 1. We now read off from the remaining components of eo that

ho(x) = (τ ◦ ho)(x) · ho(x) = (τ ◦ ho)(y) · ho(y) = ho(y),

and since ho is injective we conclude that x = y. Thus e is injective and furthermore a topological
embedding since X is compact.

We now prove that e is an immersion, by showing that at every point x ∈ X the rank of e is n —
that is, no less than n. To this end we choose o ∈ Λ such that x ∈ h−1

o U1(0); the last n components
of e(x)o reduce to ho(x), and we read off that

rkx e ≥ rkx e(x)o = rkx ho = n.

It but remains to apply Theorem 2.6 in order to conclude the proof.

Note Using finer techniques one can prove embedding theorems that give much more precise information
than our rather crude version. To begin with it turns out that the compactness assumption is quite
inessential. Other improvements concern the dimension of the embedding Euclidean space. Hassler
Whitney proved in 1936 that every differentiable n-manifold admits an embedding as a closed differ-
entiable submanifold of R2n+1 — in fact of R2n by a later development. Of course special n-manifolds
like the n-sphere may allow embeddings in Rp for p smaller than 2n. On the other hand methods
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of algebraic topology provide non-embedding theorems that for certain classes of n-manifolds give
interesting lower bounds for the possible embedding dimensions p.

To make available the full power of table mountains we must make a digression into point set topology. It
concerns locally compact Hausdorff spaces that admit a countable base, and thus in particular applies to
manifolds. It comprises two lemmata.

4.5 Lemma Let X be a locally compact Hausdorff space which admits a countable base. Then X is the
union of a suitable sequence of compact subsets.

Proof We choose a countable base (Uλ)λ∈Λ of the topology of X and put

Λ′ =
{
λ ∈ Λ

∣∣Uλ is compact
}
.

Then
⋃
λ∈Λ′ Uλ = X. For let x ∈ X be arbitrary; since X is locally compact we find an open

neighbourhood U of x such that U is compact. The open set U must have a representation as a
union of certain Uλ. As these must necessarily have compact closure only indices λ ∈ Λ′ are possible.
In particular this implies x ∈ Uλ for some λ ∈ Λ′.

Since Λ′ is at most countable it but remains to arrange the at most countable family (Uλ)λ∈Λ′ into
a sequence (adding empty sets in the finite case).

4.6 Lemma Let X be a locally compact Hausdorff space which admits a countable base. There exists a
sequence (Kj)

∞
j=0 of compact subspaces of X such that

Kj ⊂ K◦j+1 for all j ∈ N, and

∞⋃
j=0

Kj = X.

Proof Let (Xj)
∞
j=0 be a sequence as provided by Lemma 4.5. By induction on j ∈ N we will construct

compact subsets Kj ⊂ X with Kj ⊂ K◦j+1 and
⋃j−1
i=0 Xi ⊂ Kj .

Thus let j ∈ N be given and assume K0, . . . ,Kj−1 constructed. Using that X is locally compact we
choose a cover (Uλ)λ∈Λ of the subset Kj−1∪Xj−1 ⊂ X consisting of open sets Uλ ⊂ X with compact
closure:

Kj−1 ∪Xj−1 ⊂
⋃
λ∈Λ

Uλ ⊂ X.

As Kj−1 ∪Xj−1 is compact we can choose Λ as a finite set, and then Kj :=
⋃
λ∈Λ Uλ does the job.

The lemma now follows at once.
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4.7 Definition Let X be a smooth manifold, and (Vµ)µ∈M an open cover of X. A (smooth) partition of

unity subordinate to (Vµ)µ∈M is a sequence (ρj)
∞
j=0 of smooth functions

ρj :X −→ [0, 1]

such that

• for each j ∈ N the support supp ρj is compact,

• these supports form a locally finite family of subsets (supp ρj)
∞
j=0 of X, and

• the sum
∑∞
j=0 ρj = 1 is the constant function;

• finally for each j ∈ N there exists some µ ∈ M such that supp ρj ⊂ Vµ.

Notes Local finiteness means that every x ∈ X has a neighbourhood which meets supp ρj for but finitely
many j ∈ N. This property guarantees that the infinite sum

∑
j ρj not only makes sense but also

that it defines a smooth function on X. Since the latter is positive everywhere the supports must
cover X. — If X happens to be compact then ρj must vanish identically for all but finitely many j,
and vice versa, see Exercise 4.1.

4.8 Theorem For every open cover of a manifold there exists a subordinate partition of unity.

Proof We let (Vµ)µ∈M be the given open cover, fix a sequence (Kj)
∞
j=0 as provided by Lemma 4.6, and put

K−1 = ∅.

Consider any j ∈ N. For every o ∈ Kj+1rK◦j we choose a centred chart

Ujo
hjo−→ U3(0) ⊂ RdimX

at o with Ujo ⊂ K◦j+2rKj−1 and Ujo ⊂ Vµ for some µ ∈ M:

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 50

the condition hjo(Ujo) = U3(0) is easily satisfied by blowing up the image of hjo and restricting. The
family (

h−1
jo U1(0)

)
o∈Kj+1rK◦j

is an open cover of the compact subset Kj+1r K◦j ⊂ X, and we find a finite subcover indexed by
Λj ⊂ Kj+1rK◦j say.

Throwing together all Λj we obtain the countable family of charts(
hjo:Ujo → U3(0)

)
(j,o)∈Λ

with Λ :=
∑∞
j=0 Λj =

⋃∞
j=0{j}×Λj . Its special properties include that

(1) even the smaller open sets h−1
jo U1(0) ⊂ Ujo with (j, o) ∈ Λ cover X,

(2) the Ujo themselves form a locally finite cover of X, and

(3) each Ujo is contained in Vµ for some µ ∈ M.

Properties (1) and (3) are clear by construction. To prove (2) consider any x ∈ X. Choose a k ∈ N
with x ∈ K◦k ; then for j > k all sets Ujo are disjoint from Kk, so that the open neighbourhood K◦k
of x can meet Ujo only for the finitely many (j, o) ∈ Λ with j ≤ k.

For each λ = (j, o) ∈ Λ we now build the usual function σλ:X → [0, 1] by

σλ(x) =

{
τ ◦ hλ(x) for x ∈ Uλ, and
0 for x ∈ X r h−1

λ D2(0)

where τ is the table mountain with parameters r = 1 and R = 2. In view of property (2) the sum

σ :=
∑
λ∈Λ

σλ

is a smooth function on X, which by property (1) is positive everywhere. Dividing by σ we obtain
functions

ρλ :=
σλ
σ

:X −→ [0,∞)

with
∑
λ∈Λ ρλ = 1. Finally replacing the countable index set Λ by the set N we obtain a sequence of

functions which is a partition of unity subordinate to (Vµ)µ∈M, as follows at once form the fact that

the support of ρλ is contained in (indeed equal to) the compact set h−1
λ D2(0) ⊂ Uλ.

Partitions of unity are the key tool that allows to construct global objects from local ingredients. Let us
illustrate the method by a number of applications.

4.9 Theorem Let A and B be disjoint closed subsets of a manifold X. Then there exists a smooth function
f :X → [0, 1] such that f |A = 0 and f |B = 1.
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Proof The pair (XrB,XrA) is an open cover of X, and we choose a subordinate partition of unity (ρj)
∞
j=0.

The function
f :=

∑
supp ρj⊂XrA

ρj

solves the problem, for the ρj not included in the sum must have their support contained in X rB.

One may note as a by-result that every manifold is a normal topological space.

4.10 Definition Let X and Y be manifolds and A ⊂ X an arbitrary subset. A set mapping f :A → Y is
said to be smooth at a ∈ A if it can be locally extended to a smooth mapping, that is if there exist
an open neighbourhood U ⊂ X of a and a smooth map g:U → Y such that f |(A ∩ U) = g|(A ∩ U).

4.11 Theorem Let A be a closed subset of a manifold X, and f :A → R a smooth function. Then there
exists a smooth extension F :X → R of f .

Proof For every a ∈ A we choose an open neighbourhood Va ⊂ X of a and a smooth function ga:Va → R
with ga|(A ∩ Va) = f |(A ∩ Va), while for every a ∈ XrA we put Va = XrA and ga = 0.

Then (Va)a∈X is an open cover of X, and we find a partition of unity (ρj)
∞
j=0 subordinate to it.

Thus for every j ∈ N we can choose an index a(j) ∈ X such that supp ρj ⊂ Va(j), and we define the
function F :X → R by

F =

∞∑
j=0

ρj · ga(j)

where ρj · ga(j) is shorthand for

X 3 x 7−→
{
ρj(x) · ga(j)(x) if x ∈ Va, and
0 if x ∈ X r supp ρj .

Let x ∈ A be an arbitrary point. For every j ∈ N with x ∈ supp ρj we also have x ∈ Va(j) and
ga(j)(x) = f(x). In view of

∑
j ρj = 1 this implies that F (x) = f(x). Therefore F is an extension of

f as claimed.

The local objects that can be glued by a partition of unity need not be just scalar functions: the essential point
is the presence of a linear or, more generally, a convex structure. Quite an important class of applications
concerns sections of a vector bundle E → X. Here a partition of unity on X allows to construct a global
section s:X → E from a collection of local sections, that is sections of the restricted bundle E|V over small
open subsets V . The applications we give at this point are based on one particular kind of bundle.
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4.12 Definition Let E
π−→ X be a vector bundle. A (smooth) section s of the bundle SymE → X of

symmetric bilinear forms is called a Riemannian metric on E if for each x ∈ X the symmetric bilinear
form

s(x):Ex × Ex −→ R

is positive definite, thus turning each fibre Ex into a Euclidean vector space. If one particular Rieman-
nian metric s is understood from the context the awkward notation s(x)(v, w) for vectors v, w ∈ Ex
is usually replaced by the standard 〈v, w〉.

4.13 Theorem Let X be a manifold. Every vector bundle on X admits a Riemannian metric.

Proof In the case of a product bundle X × Rd → X the sections are the mappings

X 3 x 7−→
(
x, t(x)

)
∈ X × Sym(d,R)

with a smooth map t:X → Sym(d,R) into the space of symmetric matrices. Choosing for t the
constant function with value 1 ∈ Sym(d,R) we see that the conclusion certainly holds in this case,
and thereby for every trivial bundle too.

Let now E → X be an arbitrary bundle. By local triviality every x ∈ X has an open neighbourhood
Ux ⊂ X such that E|Ux is trivial, and we can therefore choose a Riemannian metric

sx:Ux −→ SymE|Ux.

Let (ρj)
∞
j=0 be a partition of unity subordinate to the open cover (Ux)x∈X , and choose for every

j ∈ N an x(j) ∈ X with supp ρj ⊂ Ux(j). The argument which by now is standard shows that

s :=

∞∑
j=0

ρj · sx(j)

is a smooth section of E. In view of
∑
j ρj = 1, for every x ∈ X the value s(x) ∈ SymEx is a convex

linear combination of positive definite bilinear forms sx(j), and therefore itself positive definite. This
proves that s is a Riemannian metric.

4.14 Applications (1) Every bundle E → X is (non-canonically) isomorphic to its dual Eˇ: any choice
of a Riemannian metric s on E defines an isomorphism, which relates the fibres over x ∈ X by

Ex 3 v 7−→
(
Ex 3 w 7→ 〈v, w〉 ∈ R

)
∈ Ex̌ .

(2) Let E
π−→ X be a vector bundle and S ⊂ E a subbundle. Given a Riemannian metric on E

the fibre-wise orthogonal complement S⊥ ⊂ E is a subbundle of E. Indeed it is the kernel of the
surjective bundle homomorphism

E 3 v 7−→
(
w 7→ 〈v, w〉

)
∈ S .̌

This subbundle is a fibre-wise linear complement to S :

Ex = Sx ⊕ S⊥x for all x ∈ X,

and thus gives a Whitney sum decomposition E = S ⊕ S⊥.

(3) Let X be a differential manifold and S ⊂ X a submanifold. We know from Example 3.14(1) that
TS ⊂ TX|S is a subbundle, and thus have the quotient bundle

N(S⊂X) := (TX|S)/TS −→ S,
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called the normal bundle of S in X. But often one would prefer a normal bundle which is a subbundle
rather than a quotient bundle of TX|S : this can be achieved choosing a Riemannian metric on TX|S
and taking the isomorphic subbundle TS⊥ ⊂ TX|S instead. Unlike N(S⊂X) it is not determined
by S and X alone, but depends on the choice of the Riemannian metric, and should be referred to
as a normal bundle rather than the normal bundle.

Whenever the context provides a natural choice of a Riemannian metric on TX — for instance if
X = Rn — then one would of course prefer that one and dispose of an equally natural normal
subbundle.

Exercises

4.1 Let X be a topological space and (Kλ)λ∈Λ a locally finite cover of X by compact subspaces. Prove the
equivalence between the statements:

(1) For all but finitely many λ ∈ Λ the set Kλ is empty.

(2) The space X ist compact.

4.2 Let X be a manifold. Show that every continuous function f :X → R can be uniformly approximated
by a smooth function: given f and ε > 0 there exists a smooth function g:X → R such that
|f(x)−g(x)| < ε holds for all x ∈ X.

4.3 Let X be a manifold. Prove that there exists a proper smooth function f :X → R.

Recall or learn that a continuous map f :X → Y between locally compact Hausdorff spaces is
called proper if for every compact L ⊂ Y the pre-image f−1L ⊂ X also is compact.

4.4 Let A ⊂ Rn be a closed subset. Construct a smooth function f :Rn → [0, 1] with A = f−1{0}.

4.5 Let
∑∞
k=0 akx

k be a power series with real cofficients. Prove that there exists a smooth function
f :R→ R whose Taylor series of f at 0 is the given series:

f (k)(0)

k!
= ak for all k ∈ N.

Hint While the given series has no reason to converge you may force uniform convergence, even
of the series of arbitrary order derivatives, by throwing in a factor τ(x/rk) where τ is a fixed table
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mountain and (rk)
∞
k=0 a sequence of sufficiently small positive radii. To find such a sequence it is

helpful to note that for every k ∈ N the set

{( d

dx

)j (
τ(x) · xk

) ∣∣∣ j < k and x ∈ R
}
⊂ R

is bounded.

4.6 Let E → X be a rank d vector bundle. Prove that the following statements are equivalent.

(1) There exists a section of E without zeros.

(2) There exists a trivial subbundle L ⊂ E of rank one.

(3) There exists a Whitney sum decomposition E = L ⊕ E′ of E into a trivial line bundle L ⊂ E
and a subbundle E′ ⊂ E of rank d−1.
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5 Review of Linear Algebra

5.1 Definition Let V be a real vector space of finite dimension. A multilinear form of degree k on V , or
multilinear k-form for short, is a function

ϕ:V k = V × · · · ×V −→ R

which becomes a linear function of each variable whenever the other k−1 variables are held fixed.
Such a form is called alternating if it satisfies

ϕ(v1, . . . , vk) = 0 if vi = vj for some i 6= j.

The sets of multilinear and of alternating forms clearly are real vector spaces Altk V ⊂ Multk V . Of
course Mult1 V = Alt1 V = V ˇ is just the dual vector space of linear forms on V .

5.2 Lemma Let ϕ ∈ Altk V be an alternating k-form, and let v1, . . . , vk ∈ V be vectors.

• Then ϕ(v1, . . . , vk) = 0 whenever (v1, . . . , vk) is linearly dependent; in particular Altk V = {0}
for all k > dimV .

• If f :Rv1+ · · ·+Rvk → Rv1+ · · ·+Rvk is a linear endomorphism then

ϕ
(
f(v1), . . . , f(vk)

)
= det f · ϕ(v1, . . . , vk).

• For every permutation σ ∈ Symk, if we write (−1)
σ

for the sign of σ we have

ϕ(vσ1, . . . , vσk) = (−1)
σ
ϕ(v1, . . . , vk).

Proof In the case of linear dependence we write one of the vectors, say vj , as a linear combination of the
others and apply multilinearity:

ϕ(v1, . . . , vk) = ϕ
(
v1, . . . , vj−1,

∑
i 6=j

λivi, vj+1, . . . , vk

)
=
∑
i 6=j

λiϕ(v1, . . . , vj−1, vi, vj+1, . . . , vk).

The last expression has vi at both the i-th and j-th positions, and therefore vanishes. This proves
the first statement.

If in the second (v1, . . . , vk) happens to be linearly dependent, then this is equally true of the system
of images

(
f(v1), . . . , f(vk)

)
, and the claimed identity holds trivially since both sides vanish. We thus

may assume that (v1, . . . , vk) is independent and therefore a base of the vector space Rv1+ · · ·+Rvk.
Via this base the endomorphisms of the latter correspond to matrices in Mat(k×k,R), and if fa
denotes the endomorphism whose matrix is a then the function

Mat(k×k,R) 3 a 7−→ ϕ
(
fa(v1), . . . , fa(vk)

)
∈ R

is an alternating multilinear form in the columns of a. As is well known such a function must be
proportional to the determinant function, thus there exists a λ ∈ R with

ϕ
(
fa(v1), . . . , fa(vk)

)
= λ · det a for all a ∈ Mat(k×k,R).

Evaluating at a = 1, whence fa = id, we obtain λ = ϕ(v1, . . . , vk), and this concludes the proof of
the second statement.
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Applying it to the endomorphism f with f(vi) = vσi for all i we finally obtain the property stated
as the third part of the lemma:

ϕ(vσ1, . . . , vσk) = ϕ
(
f(v1), . . . , f(vk)

)
= det f · ϕ(v1, . . . , vk) = (−1)

σ
ϕ(v1, . . . , vk).

Note Conversely, if a multilinear form has this property for all permutations it clearly is alternating.

5.3 Notation Transformation of the multilinear form ϕ ∈ Multk V by σ ∈ Symk results in a new multi-
linear form σϕ ∈ Multk V :

σϕ(v1, . . . , vk) := (−1)
σ
ϕ(vσ1, . . . , vσk).

This defines a linear action of the symmetric group Symk on the vector space Multk V :

1ϕ = ϕ and τ(σϕ) = (τσ)ϕ for all σ, τ ∈ Symk .

The alternating forms are just the fixed vectors of this action.

5.4 Definition and Lemma (1) Two multilinear forms ϕ ∈ Multk V and χ ∈ Multl V may be multiplied
putting

(ϕχ)(v1, . . . , vk, w1, . . . , wl) = ϕ(v1, . . . , vk) · χ(w1, . . . , wl);

then ϕχ ∈ Multk+l V . Even if ϕ and χ are both alternating ϕχ has no reason to be so.

(2) The exterior or wedge product of two alternating forms ϕ and χ is defined by

ϕ∧χ =
1

k! l!

∑
σ∈Symk+l

σ(ϕχ),

making it alternating by brute force; the bilinear products

Altk V ×Altl V
∧−−−−→ Altk+l V

are associative and graded commutative :

χ∧ϕ = (−1)
kl
ϕ∧χ if ϕ ∈ Altk V and χ ∈ Altl V.

For k = 0, when Altk V = R, the product reduces to the scalar multiplication R×Altl V → Altl V .

Note In the defining formula each term occurs k! l! times in the sum — think of the scalar factor as
eliminating this multiplicity rather than as a true denominator.

Proof In order to verify associativity we compute the products of three forms ϕ ∈ Altk V , χ ∈ Altl V , and
ψ ∈ Altm V :

(ϕ∧χ)∧ψ =
1

(k+l)!m!

∑
τ

τ
(
(ϕ∧χ)ψ

)
=

1

k! l!

1

(k+l)!m!

∑
σ,τ

τ
(
σ(ϕχ)ψ

)
where the sums are taken over all σ ∈ Symk+l and τ ∈ Symk+l+m. Considering Symk+l ⊂ Symk+l+m

as the subgroup that fixes the last m symbols and thereby does not affect ψ we re-write the equation
as

(ϕ∧χ)∧ψ =
1

k! l!

1

(k+l)!m!

∑
σ,τ

τσ(ϕχψ).
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Now any fixed permutation ρ ∈ Symk+l+m is realised as a product τσ in exactly (k+ l)! different
ways, given by an arbitrary σ ∈ Symk+l and the τ = ρσ−1 ∈ Symk+l+m determined by it. Collecting
equal summands we thus obtain the simplified equation

(ϕ∧χ)∧ψ =
1

k! l!m!

∑
ρ

ρ(ϕχψ).

Evaluating ϕ∧(χ∧ψ) we would obtain exactly the same, and this proves the associative law.

The proof of commutativity relies on the special permutation ρ ∈ Symk+l which shifts the first l
symbols past the last k without changing their order. Indeed, evaluating on vectors vi, wj ∈ V we
obtain

ρ(χϕ)(v1, . . . , vk, w1, . . . , wl) = (−1)
ρ
(χϕ)(w1, . . . , wl, v1, . . . , vk)

= (−1)
ρ
χ(w1, . . . , wl) · ϕ(v1, . . . , vk)

= (−1)
ρ
ϕ(v1, . . . , vk) · χ(w1, . . . , wl)

= (−1)
ρ
(ϕχ)(v1, . . . , vk, w1, . . . , wl),

and, writing σ = τρ,

χ∧ϕ =
1

k! l!

∑
σ∈Symk+l

σ(χϕ) = (−1)
ρ 1

k! l!

∑
τ∈Symk+l

τ(ϕχ) = (−1)
kl
ϕ∧χ.

The expression for the wedge product of three alternating forms established in the last proof easily generalises
to an arbitrary number of factors, and is useful in its own right:

5.5 Formula The product of r alternating forms ϕj of degree kj is

ϕ1∧ϕ2∧ · · · ∧ϕr =
1

k1! k2! · · · kr!
∑
σ

σ(ϕ1ϕ2 · · ·ϕr)

where σ runs over the group Symk1+···+kr . In particular

(ϕ1∧ · · · ∧ϕk)(v1, . . . , vk) = det
ϕi(vj)k

i,j=1

computes the product of k linear forms ϕi.

5.6 Example The first non-trivial case is (ϕ∧χ)(v, w) = ϕ(v)χ(w)− ϕ(w)χ(v).

5.7 Notation Every linear map f :V → W into another vector space of finite dimension induces linear
maps

Multkf : MultkW −→ Multk V and Altkf : AltkW −→ Altk V

acting by

χ 7−→
(

(v1, . . . , vk) 7→ χ
(
f(v1), . . . , f(vk)

))
.

Both are usually abbreviated by f∗, where the upper position of the star reminds of the fact that
the direction of f is reversed. In any case the chain rule

id∗ = id, (g◦f)
∗

= f∗ ◦ g∗

is evident, and f∗ is compatible with the wedge product of alternating forms:

f∗(ϕ∧χ) = f∗(ϕ)∧f∗(χ).
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5.8 Bases Let b = (β1, . . . , βn) be a base of Alt1 V = V .̌ The wedge products

βj1∧βj2∧ · · · ∧βjk

with 1≤j1<j2< · · · <jk≤n form a base of the vector space Altk V . In particular dim Altk V =
(
n
k

)
,

and dim
⊕∞

k=0 Altk V = 2n.

Let c = (γ1, . . . , γp) be a base of Wˇ and f :V → W a linear mapping. In terms of the bases of V
and W to which b and c are dual f is expressed by a matrix a ∈ Mat(p×n,R). Then f∗ acts on base
forms by the determinants of submatrices of a :

f∗(γi1∧ · · · ∧γik) =
∑

det
airjsk

r,s=1
βj1∧ · · · ∧βjk

where the sum is taken over all k-tuples (j1, . . . , jk) with 1≤j1<j2< · · · <jk≤n.

Proof Let (v1, . . . , vn) denote the base of V dual to b. A form ϕ ∈ Multk V clearly is determined by its
values on all k-tuples of base vectors, and if ϕ alternates then even by its values on the k-tuples
(vj1 , . . . , vjk) with strictly increasing indices j1 < · · · < jk. This shows that the dimension of Altk V
is at most

(
n
k

)
. On the other hand the k-fold wedge products βj1∧ · · · ∧βjk for such js are at once

seen to form a linearly independent system and therefore a base of Altk V .

The matrix a of the linear map f :V → W has the coefficients aij = (γi ◦f)(vj) = (f∗γi)(vj) by
definition. Therefore we have the pull-back formula

f∗γi =

n∑
j=1

aij βj ,

which generalises to arbitrary degree via 5.5:

f∗(γi1∧ · · · ∧γik)(vj1 , . . . , vjk) = (f∗γi1∧ · · · ∧f∗γik)(vj1 , . . . , vjk)

= det
(f∗γir )(vjs)

k

r,s=1

= det
air,jsk

r,s=1

or

f∗(γi1∧ · · · ∧γik) =
∑

j1<···<jk

det
airjsk

r,s=1
βj1∧ · · · ∧βjk

5.9 Orientations Let V be a real vector space of dimension n. We consider the set of bases of V , and

declare two bases equivalent if their transition map Rn '−→ Rn has positive determinant. Assuming
n > 0 there are exactly two equivalence classes which are called the orientations of V . An oriented
vector space is, of course, a finite dimensional real vector space together with one of its orientations. A
linear isomorphism f :V 'W between oriented vector spaces either preserves or reverses orientations.
To determine which case occurs one can represent f by its matrix with respect to bases which are
selected arbitrarily from the orientations, and read the sign of the determinant.

For the sake of completeness and consistency it is useful to extend the notion of orientation to the
exceptional case n = 0: an orientation of the zero space V = {0} is just one of the real numbers ±1
assigned to it, and the isomorphism {0} ' {0} preserves orientations if and only if these signs agree.

5.10 Definition The non-zero alternating n-forms on the n-dimensional vector space V are called volume
forms since they provide V with a notion of oriented volume. A base (v1, . . . , vn) of V belongs to
the orientation defined by the volume form ω if and only if ω(v1, . . . , vn) > 0 or, equivalently, if the
representation of ω in terms of the dual base b = (β1, . . . , βn) is

ω = λ · β1∧ · · · ∧βn with λ > 0.
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The intuitive meaning of the absolute value
∣∣ω(v1, . . . , vn)

∣∣ is the n-dimensional volume of the par-
allelepiped

[0, 1]v1 + · · ·+ [0, 1]vn ⊂ V.

Exercises

5.1 Assume that (b1, b2, b3, b4) is a basis for the dual V ˇ of some real vector space V . Do there exist linear
forms ϕ, χ ∈ V ˇ such that

b1∧b2 + b3∧b4 = ϕ∧χ ?

5.2 Let V be a (finite dimensional) real vector space and k ∈ N. The formula

σϕ(v1, . . . , vk) := ϕ(vσ1, . . . , vσk)

(without the sign) defines another linear action of the symmetric group Symk on the vector space
Multk V , and the forms in the subspace

Symk V :=
{
ϕ ∈ Multk V

∣∣σϕ = ϕ for all σ ∈ Symk

}
⊂ Multk V

are, of course, called the symmetric multilinear forms of degree k. Prove that the statement

Multk V = Altk V ⊕ Symk V

is true for k = 2 but, assuming dimV ≥ 2, for no other k ∈ N.

5.3 Let V be a real vector space of finite dimension, and let α ∈ V ˇ be a non-zero linear form. Prove that
for every form χ ∈ Altl V the following equivalence holds:

α∧χ = 0 ⇐⇒ there is a ϕ ∈ Altl−1 V such that χ = α∧ϕ

(put Alt−1 V := {0} to include the case of l = 0). If you are familiar with exact sequences you may
prefer to read that the sequence

0 // Alt0 V
α∧ // Alt1 V

α∧ // · · · α∧ // Altl−1 V
α∧ // Altl V

α∧ // · · ·

is exact, which means exactly the same.
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5.4 Let V be an n-dimensional real vector space and fix a volume form ω ∈ Altn V . Prove that the
assignment

h(v)(v2, . . . , vn) := ω(v, v2, . . . , vn)

defines an isomorphism of vector spaces h:V ' Altn−1 V .

5.5 Let V be an oriented Euclidean vector space of dimension n ∈ N.

• Prove that V carries a canonical volume form ω ∈ Altn V , characterized by the property that

ω(u1, . . . , un) = 1

whenever (u1, . . . , un) is a positively oriented orthonormal base of V .

• Let (v1, . . . , vn) be an arbitrary positively oriented base of V . Express ω in terms of the dual base
(β1, . . . , βn) and the scalar products 〈vi, vj〉.
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6 Differential Forms

We recall that natural constructions with vector spaces may be transferred to vector bundles, as described
in 3.11. A case of particular interest is that of alternating forms on the tangent bundle of a smooth manifold.

6.1 Definition Let X be a differential manifold and k ∈ N. A (smooth) section of the vector bundle

Altk TX
π−→ X is called a differential form of degree k on X, or simply a k-form on X. The set of

all k-forms on X clearly is a real vector space denoted ΩkX (usually of infinite dimension).

A k-form on X thus restricts, for every x ∈ X, to an alternating k-form ϕx:TxX× · · · ×TxX → R
on the tangent space TxX. The exterior product, applied fibrewise, induces the exterior product of
differential forms

ΩkX × ΩlX
∧−→ Ωk+lX,

which inherits its properties: bilinearity, associativity, and graded commutativity.

If X
f−→ Y is a smooth mapping then every differential form χ ∈ ΩkY may be pulled back to the form

f∗χ ∈ ΩkX with (f∗χ)x = (Txf)
∗
χf(x). In the case that f :X ⊂ Y is the inclusion of a submanifold

this form is written f∗χ = χ|X and called the restriction of χ to X.

Notes All these constructions are pointwise with respect to X : in order to know (ϕ∧χ)x all you need know

about ϕ and χ is ϕx ∈ Altk TxX and χx ∈ Altl TxX. Likewise the pull-back form (f∗χ)x ∈ Altk TxX

depends only on χf(x) ∈ Altk Tf(x)Y rather than χ as a whole. — For formal completeness it is
sometimes useful to put Ω−1X = {0} and thus admit the trivial differential form of degree −1.

6.2 Basic Special Cases (0) A 0-form on X is the same as a smooth function X → R. Taking the wedge
product with f ∈ Ω0X just multiplies the values of an arbitrary form χ ∈ ΩlX point by point with
those of f .

(1) A 1-form on X is a smooth function TX → R which is linear on each fibre. Every 0-form f :X → R
determines a particular 1-form df which composes Tf with the projection of the product bundle TR
to its fibre:

df :TX
Tf−−−−→ TR = R× R pr2−−−−→ R.

As df carries the same information as Tf it is often taken as an alternative interpretation of the
differential of f and referred to as such.

(2) Let (U, h) be a chart for the n-manifold X. The components h1, . . . , hn are smooth functions on
the manifold U so that we may consider their differentials dh1, . . . , dhn ∈ Ω1U . The value of dhj on
the tangent vector v ∈ TxX is just the j-th component of vh ∈ Rn, so that at each point x ∈ U the
forms dh1, . . . , dhn restrict to a base of the cotangent space TxXˇ = Hom(TxX,R). Therefore every
1-form ϕ ∈ Ω1U has a unique expression

ϕ =

n∑
j=1

ϕj · dhj

in terms of smooth coefficient functions ϕj :U → R, and more generally every differential form
ϕ ∈ ΩkU may be uniquely expressed as

ϕ =
∑

ϕj1···jk · dhj1∧ · · · ∧dhjk
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with smooth functions ϕj1···jk :U → R indexed by all k-tuples such that 1≤j1<j2< · · · <jk≤n.

(3) It does no harm and is quite convenient to use the names h1, . . . , hn of the component functions
likewise for the coordinates on h(U) ⊂ Rn. Thus if f :U → R is a differentiable function the partial
derivatives of f represented in the chart h with respect to hj make sense; they are in turn interpreted
as functions on U and, by abuse of language, abbreviated as

∂f

∂hj
:=

∂(f ◦ h−1)

∂hj
◦ h.

The differential of f then takes the easily memorised form

df =

n∑
j=1

∂f

∂hj
· dhj .

In particular f may be the i-th component of another chart (U, g), and we obtain the fool-proof
formula

dgi =

n∑
j=1

∂gi
∂hj
· dhj

which governs the transition between representations of differential forms with respect to different
charts. From the linear algebra of the previous section we infer that

dgi1∧ · · · ∧dgik =
∑

j1<···<jk

det
 ∂gir
∂hjs

k

r,s=1
· dhj1∧ · · · ∧dhjk

is the transition formula for differential forms of arbitrary degree k.

6.3 Example The identical (global) chart of the 3-manifold R3 is traditionally written (x, y, z). Thus the
differential forms on an open subset X ⊂ R3 are

Ω0X : f · 1 = f

Ω1X : f · dx+ g · dy + h · dz
Ω2X : f · dy∧dz + g · dz∧dx+ h · dx∧dy
Ω3X : f · dx∧dy∧dz

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 63

with smooth functions f, g, h:X → R — note how the base forms of degree 2 have been arranged
according to the usual convention, based on the missing variable and cyclic permutation.

Spherical coordinates (R, θ, ϕ) give an alternative chart on the open subset, say,

X = R3 r
(
[0,∞)×{0}×R

)

of R3 which corresponds to the restrictions of R positive, θ ∈ (0, π), and ϕ ∈ (0, 2π). Differentiating
the transition map

(R, θ, ϕ) 7−→ (x, y, z) = (R sin θ cosϕ,R sin θ sinϕ,R cos θ)

we obtain
dx = sin θ cosϕdR+R cos θ cosϕdθ −R sin θ sinϕdϕ

dy = sin θ sinϕdR +R cos θ sinϕdθ +R sin θ cosϕdϕ

dz = cos θ dR−R sin θ dθ,

and thereby the transition formulae between the linear base forms of both charts. They directly imply
those for forms of degree two and three like

dy∧dz =
(
sin θ sinϕdR+R cos θ sinϕdθ +R sin θ cosϕdϕ

)
∧
(
cos θ dR−R sin θ dθ

)
= −R(sin θ)

2
sinϕdR∧dθ +R(cos θ)

2
sinϕdθ∧dR

+R cos θ sin θ cosϕdϕ∧dR−R2(sin θ)
2

cosϕdϕ∧dθ
= −R sinϕdR∧dθ −R cos θ sin θ cosϕdR∧dϕ+R2(sin θ)

2
cosϕdθ∧dϕ ,

though

dx∧dy∧dz = R2 sin θ · dR∧dθ∧dϕ

may be more readily obtained from the Jacobian determinant.

6.4 Orientations of Manifolds Let X be a manifold. An oriented atlas of X is a (differentiable) atlas
for X which gives rise to orientation preserving transition maps: thus the Jacobian determinant of
every transition map is required to be positive everywhere.
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Every orientable atlas is contained in a unique maximal orientable one, and an orientation of X is
defined as such a maximal orientable atlas for X ; its charts are then called the oriented charts. If X is
an oriented manifold then −X is written to denote the same manifold with the opposite orientation.

A manifold may, but need not admit orientations and thus be orientable.

It is easy to see that a non-empty connected orientable manifold admits exactly two different ori-
entations, see Exercise 6.3. A diffeomorphism between oriented manifolds X and Y is orientation
preserving if all its local representations with respect to oriented charts have orientation preserv-
ing differentials — of course it is sufficient to verify this for suitably restricted charts taken from
fixed oriented atlases of X and Y . All this remains perfectly true even for 0-manifolds X, where an
orientation of X is just any function X → {±1}.

6.5 Integration Let X be an oriented n-manifold, and let ϕ ∈ ΩnX be a differential form of the highest
degree n, with compact support. The integral ∫

X

ϕ

is defined in two steps:

• If the support of ϕ is contained in the domain of some oriented chart (U, h) then write

ϕ = f · dh1∧ · · · ∧dhn

and put ∫
X

ϕ :=

∫
h(U)

f ◦ h−1.
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The integral on the right hand side exists as it integrates a continuous function with compact support.
It is clearly insensitive to shrinking the domain U as long as the latter contains the support of ϕ. We
show that the integral does not change either if h is replaced by another oriented chart k:U → k(U)
with the same domain. The form ϕ then reads

ϕ = f · dh1∧ · · · ∧dhn = f · det
∂hi
∂kj

n

i,j=1
· dk1∧ · · · ∧dkn,

and since the determinant is positive the classical transformation formula for integrals gives∫
k(U)

(
f · det

∂hi
∂kj

n

i,j=1

)
◦k−1 =

∫
k(U)

(f ◦h−1) ◦ (h◦k−1)
∣∣detD(h◦k−1)

∣∣ =

∫
h(U)

f ◦ h−1,

so that we obtain the same result indeed.

• For an arbitrary form ϕ ∈ Ωn with compact support we cover X by oriented charts and choose
a subordinate partition of unity (ρj)

∞
j=0. The sum in∫

X

ϕ :=

∞∑
j=0

∫
X

ρjϕ

has but finitely many non-zero terms and is easily seen to be independent of the choice of the partition
of unity.

Notes As to notation, if X ⊂ Y happens to be a submanifold and ϕ an n-form on Y then the integral∫
X

(ϕ|X) is simply written
∫
X
ϕ.

Of course much more general n-forms may be considered for integration. Very much like in coordinate
integration theory, the existence of the integral is no longer guaranteed beyond continuous forms with
compact support, and the notion of integrable n-form on an oriented n-manifold arises naturally.

While the definition of the integral based on partitions of unity is perfectly satisfactory from a
conceptual point of view, it is little suited to explicit calculus. Nor is it needed there since for the
purpose of evaluating an integral any null sets may be happily ignored. On a smooth n-manifold
X the notion of null set makes sense even though in the absence of further structure X does not
carry a canonical measure: A subset N ⊂ X is a null set if for every chart (U, h) of X the image
h(U ∩ N) ⊂ Rn is an n-dimensional Lebesgue null set. This condition only needs to be verified for
the charts of some atlas of X rather than for all charts, since the transition functions, like all C1

mappings, send null sets to null sets.
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In practice removing suitable null sets usually allows to cover X by few pairwise disjoint chart
domains, if not even a single chart suffices.

6.6 Example Spherical coordinates provide a chart

R3 ⊃ R3 r
(
[0,∞)×{0}×R

)
= U

h−−−−→ h(U) = (0,∞)× (0, π)× (0, 2π) ⊂ R3

defined on the complement of a null set of R3. If the 3-form on R3 with compact support is given as
ψ = f(R, θ, ϕ) dR∧dθ∧dϕ then its integral may be evaluated using Fubini’s theorem:∫

R3

ψ =

∫
U

f(R, θ, ϕ) dR∧dθ∧dϕ =

∫ 2π

0

∫ π

0

∫ ∞
0

f(R, θ, ϕ) dRdθ dϕ.

6.7 Volume Forms A nowhere-vanishing n-form ω ∈ ΩnX on an n-manifold X is called a volume form.
It immediately defines an orientation of X, singling out those charts (U, h) in which ω is represented
as

ω = f · dh1∧ · · · ∧dhn with f(x) > 0 for all x ∈ U.

While integrating a function on a manifold of positive dimension has no meaning in general it does
make sense as soon as a volume form is selected, say ω, for then ω not only provides the necessary
orientation of X but it also converts functions f :X → R to n-forms by simple multiplication f 7→ f ·ω.

Let us return to the notion of differential form on a manifold in general. Apart from the possibility to
integrate forms of highest degreee we have not yet seen compelling reasons to single out alternating forms
rather than for instance symmetric, or general multilinear ones. Indeed quite analogous concepts exist which
are based not on forms at all but rather on tensor products of tangent vectors, and even both ideas can be
combined. Such objects, generally called tensor fields on manifolds are very interesting and important. But
there is one feature that makes the alternating differential forms unique among all tensor fields: differential
forms can be differentiated without reference to any additional structure on the underlying manifold.

6.8 Theorem and Definition Let X be a manifold. There exists a unique sequence

ΩkX
d−→ Ωk+1X for all k ∈ N

of linear operators satisfying the following axioms. They are called exterior derivatives or the Cartan
differentials.

(a) The 0-th differential d: Ω0X
d−→ Ω1X has the same meaning as before, explained in 6.2(1).

(b) The product rule d(ϕ∧χ) = dϕ∧χ+ (−1)
k
ϕ∧dχ holds for all ϕ ∈ ΩkX and χ ∈ ΩlX.

(c) For every k ∈ N the composition ΩkX
d−→ Ωk+1X

d−→ Ωk+2X is the zero operator.

Note that the sign in (b) is to be expected since d, which raises the degree of forms, may be thought
of as an operator of degree 1.

Proof At first we make the additional assumption that the n-manifold X admits a global chart, say (X,h).
Then every ϕ ∈ ΩkX has a unique representation

ϕ =
∑

j1,...,jk

ϕj1···jk · dhj1∧ · · · ∧dhjk

with indices j1 < · · · < jk and coefficient functions ϕj1···jk . Repeated application of the axioms shows
that for the value dϕ ∈ Ωk+1X there is no choice but to put

dϕ =
∑

dϕj1···jk∧dhj1∧ · · · ∧dhjk .
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This formula proves uniqueness, and we now read it as the definition of dϕ. It clearly complies with
(a), and by linearity the axiom (b) need only be verified on differential forms ϕ = f · dhj1∧ · · · ∧dhjk
and χ = g · dhj1∧ · · · ∧dhjk :

d(ϕ∧χ) = d(f dhi1∧ · · · ∧dhik∧g dhj1∧ · · · ∧dhjl)
= d(fg dhi1∧ · · · ∧dhik∧dhj1∧ · · · ∧dhjl)
= (df ·g + f ·dg) ∧ dhi1∧ · · · ∧dhik∧dhj1∧ · · · ∧dhjl
= (df∧dhi1∧ · · · ∧dhik) ∧ (g dhj1∧ · · · ∧dhjl)

+ (−1)k(f dhi1∧ · · · ∧dhik) ∧ (dg∧dhj1∧ · · · ∧dhjl)
= dϕ∧χ+ (−1)kϕ∧dχ

As to axiom (c), applied to a form of degree zero it is a consequence of the fact that the partial
differentiation operators commute with each other:

df =

n∑
j=1

∂f

∂hj
dhj

ddf =

n∑
i,j=1

∂2f

∂hi∂hj
dhi∧dhj = 0.

The product rule (b) then extends it to all degrees:

ddϕ = dd(f dhi1∧ · · · ∧dhik) = d(df∧dhi1∧ · · · ∧dhik) = 0.

This completes the proof for manifolds X that admit a global chart.

We now remove this condition. We know that the theorem holds for every chart domain U ⊂ X, and
denote by dU the Cartan differentials of the manifold U . Note that since charts may be restricted
the differentials are compatible in the sense that whenever V is a chart domain and U ⊂ V an open
subset then the diagram

ΩkV
d //

��

Ωk+1V

��
ΩkU

d // Ωk+1U

of differentials and restrictions commutes. — We now define a global Cartan differential dX of X as
follows. Let the form ϕ ∈ ΩkX and a point x ∈ X be given. We choose a chart domain U ⊂ X with
x ∈ U and put

(dXϕ)x =
(
dU (ϕ|U)

)
x
∈ Altk TxX.

This definition does not depend on the choice of U , and since on the other hand we clearly have
(dXϕ)|U = dU (ϕ|U) the resulting Cartan operators dX satisfy the three axioms.

The proof of uniqueness is more delicate. Let d denote any sequence of Cartan differentials for X,
let ϕ be a k-form, and x ∈ X a point. We choose a chart (U, h) and a table mountain σ:X → R with
suppσ ⊂ U , both centred at x. If

ϕ|U =
∑

ϕj1···jk · dhj1∧ · · · ∧dhjk ∈ ΩkU

is the chart representation of ϕ — note that in view of axiom (a) the meaning of d is unambiguous
— then we define a global form

ϕ̃ =
∑

ϕ̃j1···jk · dh̃j1∧ · · · ∧dh̃jk ∈ ΩkX

using the smooth functions ϕ̃j1···jk = σ · ϕj1···jk and h̃j = σ · hj on X. Applying the axioms to d we
obtain that

dϕ̃ =
∑

dϕ̃j1···jk∧dh̃j1∧ · · · ∧dh̃jk
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and, evaluating at x, that (dϕ̃)x =
(
dU (ϕ̃|U)

)
x

= (dX ϕ̃)x = (dXϕ)x since ϕ and ϕ̃ coincide in some
neighbourhood of x.

It only remains to prove that (dϕ)x = (dϕ̃)x. To this end we choose a narrower table mountain
ρ:X → R at x such that supp ρ ⊂ σ−1{1}. Then ρ ·ϕ = ρ · ϕ̃, and another application of the axioms
to d yields

dρ ∧ ϕ+ ρ · dϕ = d(ρϕ) = d(ρ ϕ̃) = dρ ∧ ϕ̃+ ρ · dϕ̃.

Since ρ has constant value 1 near x evaluation just leaves (dϕ)x = (dϕ̃)x as desired: this concludes
the proof.

The last point of the proof is of independent interest and leads to the first part of the following proposition.

6.9 Proposition The Cartan differentials are local operators:

supp dϕ ⊂ suppϕ for every differential form ϕ ∈ ΩkY.

They also are functorial with respect to mappings: for every smooth mapping f :X → Y and every
k ∈ N the diagram

ΩkY
d //

f∗

��

Ωk+1Y

f∗

��
ΩkX

d // Ωk+1X

commutes.

Proof Locality is clear since the value of dϕ at a point x ∈ X is defined by first restricting ϕ to a neighbour-
hood of x that we may prescribe to be small. Functoriality for forms of degree zero, that is functions
ϕ:Y → R, follows from the chain rule:

d(f∗ϕ) = d(ϕ ◦ f) = dϕ ◦ Tf = f∗dϕ.

It also holds for 1-forms of type dh, for the simple reason that d(f∗dh) = ddf∗h and f∗d(dh) both
vanish. Locally, in terms of a chart, every form of higher degree is obtained from these two types as
a linear combination of wedge products. Therefore it is sufficient to prove that f∗ and d commute
on the wedge product ϕ∧χ whenever they commute on both ϕ ∈ ΩkX and χ ∈ ΩlX. The direct
calculation

f∗d(ϕ∧χ) = f∗
(
dϕ∧χ+ (−1)

k
ϕ∧dχ

)
= f∗dϕ ∧ f∗χ+ (−1)

k
f∗ϕ ∧ f∗dχ

= d(f∗ϕ) ∧ f∗χ+ (−1)
k
f∗ϕ ∧ d(f∗χ)

= d(f∗ϕ∧f∗χ)

= d
(
f∗(ϕ∧χ)

)
achieves this and thus completes the proof of the proposition.
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6.10 Summary of Differential Form Calculus The triangle comprises the most prominent laws that
govern exterior multiplication, Cartan differentials, and pull-backs of differential forms. Rules con-
cerning one of these operations are placed at the corners, and compatibility formulae between oper-
ations at the corresponding edges.

χ∧ϕ = (−1)degϕ·degχ ϕ∧χ

f∗(ϕ∧χ) = f∗ϕ∧f∗χ

{{{{{{{{{{{{{{{{{{{{{{{{{{

d(ϕ∧χ) = dϕ∧χ+ (−1)
degϕ

ϕ∧dχ

@@@@@@@@@@@@@@@@@@@@@@@@@

(gf)
∗

= f∗g∗
f∗d = d f∗

dd = 0

Note that these laws are universal in the sense that they do not depend on, in fact do not even
refer to any manifold chart. If on the other hand charts must be used for an explicit calculation the
differential form calculus does not impose a particular one: a chart may be arbitrarily selected to
suit the particular application.

6.11 Classical Vector Analysis Let X ⊂ R3 be an open subset. Cartesian coordinates x, y, z allow
to identify every differential form on X with the system of its coefficient functions as in 6.3: for

instance f dx + g dy + h dz ∈ Ω1X with (f, g, h) ∈ (Ω0X)
3
. The basic operations ∧ and d then

translate according to the diagrams

Ω1X × Ω1X
∧ //

'
��

Ω2X

'
��

Ω1X × Ω2X
∧ //

'
��

Ω3X

'
��

(Ω0X)
3 × (Ω0X)

3 × // (Ω0X)
3

(Ω0X)
3 × (Ω0X)

3 • // Ω0X

and

Ω0X
d //

'
��

Ω1X
d //

'
��

Ω2X
d //

'
��

Ω3X

'
��

Ω0X
grad // (Ω0X)

3 rot // (Ω0X)
3 div // Ω0X

to operations on the coefficient functions respectively vectors. The algebraic operations, which of
course already make sense on the level of linear algebra rather than differential forms, are known as
the vector and scalar products f

g
h

×
 f ′

g′

h′

 =

 gh′ − hg′
hf ′ − fh′
fg′ − gf ′

 and

 f
g
h

 •

 f ′

g′

h′

 = ff ′ + gg′ + hh′.

As to the analytic operators, they are

grad f =

 ∂f/∂x
∂f/∂y
∂f/∂z

, rot

 f
g
h

 =

 ∂h/∂y − ∂g/∂z
∂f/∂z − ∂h/∂x
∂g/∂x− ∂f/∂y

, and div

 f
g
h

 =
∂f

∂x
+
∂g

∂y
+
∂h

∂z

with alternative fancy symbols grad =∇, rot = curl =∇×, and div =∇• . These traditional vector
operations, known and in common use by the end of the 19th century, were definitely established in
1901 in a monograph titled “Vector Analysis” by the mathematician Edwin Bidwell Wilson, based on
lectures by the physicist Josiah Willard Gibbs. In terms of these classical operations the concise laws
6.10 of vector analysis disintegrate into an extensive zoo of seemingly unrelated identities. Physicists
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and engineers live with them to these days (enhancing the zoo by as many versions of the integral
theorem 7.4 to be discussed in the next section). This may be due to the authority exercised by Gibbs
through Wilson’s book1, but also to the fact that the smooth calculus of differential forms as we know
it today took its time to emerge. While the notion of differential form is generally attributed to a
1899 paper by Elie Cartan, it was not until 1946 that it was clarified in a mathematically satisfactory
way by Claude Chevalley. Nevertheless it seems peculiar if not absurd that scientists and engineers
even today largely disdain differential forms and continue to bother with an awkward formalism in
presence of a much simpler alternative.

6.12 Definition A differential form ϕ is closed2 if dϕ = 0. It is called exact if there exists a form χ such
that dχ = ϕ.

Note In view of d◦d = 0 every exact form is closed. The converse does not hold in general but is true under
special conditions:

6.13 Poincaré’s Lemma Let X ⊂ Rn be an open set which is star-shaped with respect to one of its
points a, in the sense that for every x ∈ X the segment{

(1−t)a+ tx
∣∣ t ∈ [0, 1]

}

is completely contained in X. Then for k > 0 every closed differential form ϕ ∈ ΩkX is exact. A
so-called homotopy operator H: ΩkX → Ωk−1X allows to explicitly compute a form Hϕ ∈ Ωk−1X
with d(Hϕ) = ϕ :

(Hϕ)x(v2, . . . , vk) =

∫ 1

0

tk−1ϕ(1−t)a+tx(x, v2, . . . , vk) dt for ϕ ∈ ΩkX

Proof Note how the geometric hypothesis ensures that the integral makes sense at all. Patient calculation
gives the identity

H ◦ d+ d ◦H = id

of endomorphisms of ΩkX. Applied to a closed form ϕ there remains the equation d(Hϕ) = ϕ, which
was the claim.

As charts may always be chosen to map onto an open ball we obtain at once:

6.14 Corollary A differential form ϕ of positive degree is closed if and only it is locally exact, that is if
every point admits an open neighbourhood on which ϕ is exact.

1 This is a well-written book, and Gibbs’ notions were eminently useful in their time.
2 In German: geschlossen, not abgeschlossen.
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Notes A 0-form on any manifold X, that is a function ϕ:X → R is closed if and only if it is locally constant.
On the other hand the only exact 0-form is the zero form. — Physicists and engineers tend to ignore
the difference between closedness and exactness when they state that “every conservative vector field
admits a scalar potential”, or that “every incompressible vector field admits a vector potential” — in
mathematical terms they would erroneously claim that every closed form of degree 1 respectively 2
is exact. This negligence is at the root of “unexpected” phenomena like non-uniqueness of solutions
in certain instances of Maxwell’s equations.

6.15 Example The polar angle of a point (x, y) ∈ S1

arctan (y/x) where x > 0 arctan (y/x) + π where x < 0

arccot (x/y) where y > 0 arccot (x/y) + π where y < 0

is not a well-defined function ϕ on the manifold S1 ; nevertheless it is often treated as a smooth
scalar function which is locally defined up to the choice of an additive constant (a multiple of 2π).
By contrast the inverse ϕ−1:R→ S1 is well-defined, sending ϕ ∈ R to (cosϕ, sinϕ) ∈ S1.

Also well-defined is the differential dϕ ∈ Ω1S1 since differentiation kills additive constants. Never-
theless the notation dϕ is an abuse of language as it suggests an exact form. In fact dϕ is closed
since there are no non-trivial 2-forms on S1, but it fails to be exact, as we now see. First note that
the three formulae for the polar angle with x < 0 or y 6= 0 do yield a well-defined function ϕ, which
is a chart for S1 defined on the complement of the point (1, 0) ∈ S1 and with values in the interval
(0, 2π). The integral of dϕ is easily evaluated in terms of this chart:∫

S1

dϕ =

∫ 2π

0

1 · dϕ = ϕ
∣∣∣2π
ϕ=0

= 2π.

If on the other hand there were a true function f ∈ Ω0S1 with df = dϕ then the integral would
vanish: ∫

S1

dϕ =

∫
S1

df =

∫
S1

∂f

∂ϕ
dϕ =

∫ 2π

0

d

dϕ
(f ◦ ϕ−1)dϕ = f ◦ ϕ−1

∣∣∣2π
ϕ=0

= 0.

Thus dϕ cannot be exact.

The discrepancy between closedness and exactness has in itself been an interesting subject for investigation:

6.16 Definition Let k ∈ N. For every differential manifold X the quotient vector space

HkX :=
kernel

(
ΩkX

d−→ Ωk+1X
)

image
(
Ωk−1X

d−→ ΩkX
)
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is called the k-th de Rham cohomology of X. It is functorial in the sense that every smooth map
f :X → Y induces linear mappings f∗:HkY → HkX which satisfy id∗ = id and (g ◦ f)

∗
= f∗ ◦ g∗.

Notes While spaces of differential forms nearly always have infinite dimension it can be shown that the
de Rham cohomology spaces of, for instance, a compact manifold are finite dimensional. Their func-
toriality generalises from smooth to all continuous mappings, so that the cohomology spaces of a
manifold X are in fact invariants of the topological space that underlies X. They turn out to admit
several other interpretations in the framework of algebraic topology, and can often be explicitly de-
termined. Example 6.14 for instance shows that H1S1 is non-trivial ; in fact the congruence class of
dϕ turns out to span this vector space, so that H1S1 = R · [dϕ] ' R — see Exercise 6.9.

Exercises

6.1 The assignment χx(v, w) := det
x v w

 defines a differential form χ ∈ Ω2R3.

• Represent χ in Cartesian coordinates.

• Represent the restriction χ|S2 in spherical coordinates (θ, ϕ). What is the intuitive meaning of
this form?

• Giving S2 the “standard” orientation — that for which (θ, ϕ) is an oriented chart — compute
the area of the sphere

∫
S2 χ.

6.2 Let X be a differentiable manifold of dimension n. Show that the following are equivalent:

(1) X is orientable.

(2) There exists a volume form on X.

(3) The line bundle Altn TX → X ist trivial.

6.3 Prove that a non-empty connected orientable manifold admits exactly two orientations.

6.4 Every integral matrix a ∈ Mat(n×n,Z) induces a smooth self-mapping f :X → X of the n-dimensional
torus X = Rn/Zn. Explain how to read off from a whether f is

• a local diffeomorphism,

• a (global) diffeomorphism,

• an orientation preserving local diffeomorphism.

Find the relation between
∫
X
f∗χ and

∫
X
χ for differential forms χ ∈ ΩnX.

Hint You may find it useful to represent a in Smith normal form.

6.5 Compute the exterior derivative of the following differential forms:

• an arbitrary (n−1)-form α =
∑n
j=1 (−1)

j−1
αj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn on an open subset

X ⊂ Rn ;

• the form β = − y√
x2+y2

dx+ x√
x2+y2

dy on R2r{0} ;

• the form γ = r dϕ (in polar coordinates) on R2r{0}.

Is there a connection between β und γ ?
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6.6 Prove that β = 2xz dy∧dz− dz∧dx− (ex+z2) dx∧dy is a closed form on R3. Compute a form α on R3

with dα = β.

6.7 A popular formula of classical vector analysis states that

∇ • (~F × ~G) = (∇× ~F ) • ~G− ~F • (∇× ~G)

for “vector fields” ~F and ~G, that is, functions on an open subset of R3 with values in R3. Which
identity is hidden behind it?

6.8 Let ϕ ∈ ΩkX und χ ∈ ΩlX be differential forms on the manifold X. Prove the following:

• If ϕ and χ are closed then so is ϕ∧χ.

• If ϕ is a closed, and χ an exact form then ϕ∧χ is exact.

Explain how these facts imply that the total de Rham cohomology
⊕∞

k=0H
kX carries the structure

of a graded commutative algebra over R.

6.9 Prove that the congruence class of dϕ spans H1S1 as a real vector space.
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7 Boundaries and Integrals

For many purposes the concept of manifold that we have developed is too narrow. One reason is that one
would often like to think of a connected manifold as glued from smaller pieces of the same dimension without
much overlap: based on the present notion alone this is clearly impossible since pieces which themselves are
manifolds would have to intersect in non-empty open subsets.

7.1 Definition The concept of n-dimensional manifold with boundary extends that of differential n-
manifold by allowing charts (U, h) such that h(U) is an open subset of the closed half-space

Rn− = (−∞, 0]× Rn−1 =
{

(x1, . . . , xn) ∈ Rn
∣∣x1 ≤ 0

}

rather than Rn. A point a ∈ X is called an inner respectively a boundary point1 of X according to
whether such a chart at a throws a into (−∞, 0)×Rn−1 or into {0}×Rn−1. The set of all boundary
points of the manifold X is called its boundary ∂X ⊂ X.

1 These notions are not to be confused with those pertaining to subsets of a topological space.
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Explanation This definition presupposes the notion of differentiability of a mapping

Rn− ⊃ S
f−→ T ⊂ Rp−

between open subsets S ⊂ Rn− and T ⊂ Rp− via the existence of local smooth extensions, which in
a special case has already been considered in Section 4. More precisely f is considered differentiable
at a ∈ S if and only if there exist an open neighbourhood V ⊂ Rn of a and a smooth mapping
F :V → Rp such that

f |(S ∩ V ) = F |(S ∩ V ).

In contrast to Section 4, where arbitrary domains of f were allowed, the now relevant domain S is
sufficiently “thick” to make the differential DF (a) ∈ Mat(p×n,R) independent of the choice of the
local extension F , and therefore a well-defined feature Df(a) of f . As a consequence differentiable
mappings between manifolds with boundary have well-defined differentials at all points, including
boundary points.

By the local inverse theorem any transition map

Rn− ⊃ S
k◦h−1

−−−−→ T ⊂ Rn−
must send S◦, the interior of S with respect to Rn, into T ◦ : therefore the distinction between inner
and boundary points of X does not depend on the choice of a particular chart. It also follows that
∂X ⊂ X is a closed subset.

From a mere logical point of view the charts of 7.1 might supersede the old style ones of Definition 1.1; yet
it does no harm, and is useful to retain the latter as additional charts. In any case the term of manifold as
such will continue to mean a manifold without boundary; it is of course included in the extended notion as
that of a manifold with empty boundary.

7.2 Example The closed disk (or synonymously, ball) Dn ⊂ Rn is an n-dimensional manifold with bound-
ary ∂Dn = Sn−1. In fact the charts we used in 1.11(1) to show that the sphere is a submanifold of
Rn require a but slight adjustment to become charts for Dn, for instance{

x ∈ Dn
∣∣x1 > 0

}
3 (x1, . . . , xn) 7−→

(
x1 −

√
1−

∑
j>1 x

2
j , x2, . . . , xn

)
∈ Un ∩ Rn−.
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7.3 Analogies and No-Analogies (1) At boundary points the local inverse theorem does not hold, as is
testified by the smooth map

R2
− 3 (x, y) 7→ (x−y2, y) ∈ R2

−.

The differential of this map at the origin is the identity, yet there is no neighbourhood of the origin
on the left that is sent onto a full neighbourhood of the origin on the right.

(2) The Cartesian product of a manifold X with boundary and one without boundary Y is a new
manifold with boundary ∂(X×Y ) = ∂X×Y , but the Cartesian product of two manifolds with
non-empty boundary is not — rather one with “corners”. Depending on the context one may wish
to elaborate and systematically work with this more general notion, or avoid it applying a tech-
nique called “straightening the angle” which turns such products back into ordinary manifolds with
boundary.

(3) The regular value theorem has a variant which is an abundant source of manifolds with boundary:
Let X be an n-manifold without boundary, and f :X → R a smooth scalar function with regular
value b ∈ R. Then S := f−1(−∞, b ] is in a natural way an n-manifold with boundary ∂S = f−1{b}.
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(4) There is not one universal notion of submanifold but several, pertaining to different situations.
A first case is that of equidimensional submanifolds, with S ⊂ X from (3) as an example.

Another is that of the boundary ∂X ⊂ X, which itself can be considered as a closed submanifold of
codimension one: simply restrict charts (U, h) for X to U ∩ ∂X and note that the transition map to
another chart (V, k) restricts to a diffeomorphism

h(U ∩ V ) ∩
(
{0}×Rn−1

) '−→ k(U ∩ V ) ∩
(
{0}×Rn−1

)
.

In particular ∂X is a manifold (without boundary) in its own right.

The probably most useful class of submanifold comprises those S ⊂ X which at boundary points are
transverse to the boundary in the following sense. Assuming some positive dimension s ≤ n = dimX
it is required that at each point a ∈ S there exists a chart (U, h) for X such that

h(U ∩ S) = h(U) ∩
(
Rs−×{0}n−s

)
.

(5) The tangent space of an n-manifold X at a boundary point o ∈ ∂X is defined exactly as for
interior points o, and likewise is an n-dimensional real vector space (not a half-space). Let (U, h) and
(V, k) be charts for X at o. A pointed out in (4) the transition map k ◦ h−1 may be restricted to a
diffeomorphism

h(U ∩ V ) ∩ ({0}×Rn−1)
'−→ k(U ∩ V ) ∩ ({0}×Rn−1);

therefore its Jacobian has the form

D(k ◦ h−1)(h(o)) =


+ 0 · · · 0

∗
... D′

∗
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and contains as a submatrix the Jacobian D′ ∈ GL(n−1,R) of the transition map for ∂X. Further-
more the first component of the transition map is non-positive throughout, which implies that the
top left entry of D(k ◦ h−1)(h(o)) is positive. From these special properties of the Jacobian we infer
that the tangent space ToX carries two additional structures:

• the hyperplane To(∂X) ⊂ ToX, and

• a preferred connected component of ToX r To(∂X) comprising the outward pointing vectors.

The latter are just those tangent vectors whose representation with respect to one, and thus every
chart at o, has a positive first component.

Globally speaking we have the codimension one subbundle T (∂X) ⊂ TX | ∂X. It is easy to construct
a section of the bundle TX | ∂X which points outward everywhere: such sections clearly exist locally,
and they may be glued using a partition of unity on ∂X. The point here is that every convex linear
combination of outward pointing vectors again points outward.
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In particular such a section ν: ∂X → TX | ∂X vanishes nowhere, and thus defines an embedding

∂X×R 3 (x, t) 7−→ t · ν(x) ∈ TX | ∂X

of the product line bundle. By Theorem 3.16 its image is a trivial rank one subbundle of TX | ∂X
and furthermore a complement to T (∂X) ⊂ TX | ∂X. In other words the section ν determines a
bundle isomorphism

TX | ∂X ' (∂X×R)⊕ T (∂X).

(6) The notion of orientation carries over to manifolds with boundary. Just the one-dimensional case
requires a minor adjustment since there need not exist an oriented chart at a boundary point: thus
either charts that map into open subsets of [ 0,∞) rather than R− = (−∞, 0 ] must also be allowed,
or both orientation-preserving and -reversing charts must be used, keeping track of orientation signs.
Given an orientation of the n-manifold X a boundary orientation is induced on ∂X simply by
restricting all oriented charts of X to the boundary: these restrictions form an oriented atlas for ∂X.

The calculus of differential forms carries over to manifolds with boundary without any problem, as
does the connection between orientations and volume forms. A volume form ω ∈ ΩnX does not in
a canonical way induce a volume form on ∂X, but it does so once an everywhere outward pointing
section ν of the bundle TX | ∂X has been selected: the formula

ω′x(v2, . . . , vn) = ωx(ν(x), v2, . . . , vn) for all x ∈ ∂X and v2, . . . , vn ∈ Tx∂X

then defines a volume form ω′ ∈ Ωn−1(∂X) on ∂X. Evaluation on an oriented base (v2, . . . , vn) in
terms of a chart at x at once verifies not only that ω′x 6= 0, but also that ω′ induces on ∂X the
boundary orientation inherited from X (oriented by the form ω).

The following theorem is generally regarded as the culmination of integral calculus on manifolds.

7.4 Stokes’ Theorem Let X be a smooth oriented n-manifold with boundary. Then the integral formula∫
X

dϕ =

∫
∂X

ϕ

holds for all differential forms ϕ ∈ Ωn−1X with compact support.

Proof In nearly all cases2 the manifold X admits an atlas consisting of oriented charts (U, h) such that

h(U) either is the open unit cube (−1, 0)×(0, 1)
n−1 ⊂ Rn — let us call such charts of interior type

— or the relatively open cube (−1, 0 ]×(0, 1)
n−1 ⊂ Rn− : call these of boundary type. We first make

the additional assumption that the support of ϕ is completely contained in the domain U of one of
these charts, so that we can express

ϕ =

n∑
j=1

fj · dh1∧ · · · ∧ d̂hj ∧ · · · ∧dhn

2 One-dimensional oriented manifolds do not admit an oriented chart at a negatively oriented boundary
point: a minor modification of the argument will take care of this.
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in terms of h. Since ϕ has compact support the functions fj ◦ h−1 have compact support contained
in h(U), and therefore extend by zero to C∞ functions on all Rn−. We use these functions in order to
independently evaluate both integrals of Stokes’ formula.

The form

dϕ =

n∑
j=1

(−1)
j−1 ∂fj

∂hj
· dh1∧ · · · ∧dhn

by definition integrates to∫
X

dϕ =

∫
U

dϕ =

n∑
j=1

(−1)
j−1

∫
h(U)

∂fj
∂hj
· dh1∧ · · · ∧dhn.

Fubini’s theorem converts the j-th integral into the multiple integral∫
h(U)

∂fj
∂hj
· dh1∧ · · · ∧dhn =

∫ 1

0

· · ·
∫ 1

0

∫ 0

−1

∂fj
∂hj

dh1 . . . dhn.

Performing the j-th integration first we distinguish the cases of j > 1 from that of j = 1. In the
former ∫ 1

0

∂fj
∂hj

dhj = fj(h1, . . . , hn)
∣∣∣1
hj=0

= 0

vanishes since the integrand has compact support contained in the open interval (0, 1). The same
conclusion holds for j = 1 if the chart h is of interior type. If not then the support is contained in
(−1, 0 ], and there remains the contribution∫ 0

−1

∂f1

∂h1
dh1 = f1(h1, . . . , hn)

∣∣∣0
hj=−1

= f1(0, h2, . . . , hn).

Thus the overall result is ∫
X

dϕ =

∫ 1

0

· · ·
∫ 1

0

f1(0, h2, . . . , hn) dh2 . . . dhn.
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The boundary integral is immediately evaluated: Note first that the domain of integration is empty
unless h is of boundary type. In that case the function h1 is constant on U∩∂X, so that dh1|(U∩∂X)
is the zero form. Therefore we have∫

∂X

ϕ =

∫
U∩∂X

ϕ =

∫
h(U∩∂X)

f1 · dh2∧ · · · ∧dhn =

∫ 1

0

· · ·
∫ 1

0

f1(0, h2, . . . , hn) dh2 . . . dhn.

This completes the proof for forms with support contained in a chart of interior or boundary type.
Since these charts constitute an open cover of X we find a subordinate partition of unity (ρj)

∞
j=0.

If now ϕ is an arbitrary form with compact support then what we have shown applies to each form
ρj · ϕ. Only finitely many of them are not the zero form, therefore we may simply sum up, and
conclude that Stokes’ integral formula holds for ϕ as well.

7.5 Examples (1) Consider the 1-manifold X = [ 0, 1] with the standard orientation (which makes the
translation X ⊃ (0, 1] 3 t 7→ t−1 ∈ (−1, 0 ] ⊂ R1

− an oriented chart). A differential form ϕ ∈ Ω0X is
just a smooth function on [ 0, 1], and since the oriented boundary of X is ∂[ 0, 1] = {1}−{0} Stokes’
formula reads ∫ 1

0

ϕ′(t) dt =

∫
[0,1]

dϕ =

∫
∂[0,1]

ϕ = ϕ(1)− ϕ(0).

Thus the case of dimension 1 reduces to the fundamental theorem of calculus. This does not surprise
since the latter is at the heart of the proof of Stokes’ formula.

(2) If more generally f : [ 0, 1]→ X is a smooth curve on any manifold X, and ϕ ∈ Ω1X a differential
form of degree 1 then the curve, path, or contour integral∫ 1

0

f∗ϕ =

∫
[0,1]

f∗ϕ

is defined. If ϕ happens to be exact, say ϕ = dχ, then the integral may be evaluated as∫ 1

0

f∗dχ =

∫
[0,1]

d f∗χ =

∫
∂[0,1]

f∗χ = χ ◦ f
∣∣∣1
0

= χ
∣∣∣f(1)

f(0)

and thus depends only on the values of χ at the initial and end points of the curve f .
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(3) Let X be a compact n-manifold without boundary — for conciseness such manifolds are often
called closed3 manifolds. Let an orientation of X be fixed, and let f, g:X → Y be smooth mappings
into another manifold Y . Assume there exists a homotopy from f to g, that is a smooth mapping
F : [ 0, 1]×X → Y such that F (0, x) = f(x) and F (1, x) = g(x) for all x ∈ X. Finally let ϕ ∈ ΩnY
be a closed differential form — in many interesting cases Y has the same dimension n = dimX, so
that closedness becomes automatic.

Under these assumptions
∫
X
f∗ϕ =

∫
X
g∗ϕ.

Indeed we have dϕ = 0 by assumption, and if we apply Stokes’ theorem to the pull-back form
F ∗ϕ ∈ Ωn

(
[ 0, 1]×X

)
we obtain

0 =

∫
[0,1]×X

F ∗dϕ =

∫
[0,1]×X

d(F ∗ϕ)

=

∫
∂[0,1]×X

F ∗ϕ =

∫
{1}×X

F ∗ϕ−
∫
{0}×X

F ∗ϕ =

∫
X

g∗ϕ−
∫
X

f∗ϕ.

(4) Let X be an oriented (n+1)-manifold with boundary, and let S ⊂ X be a finite subset with
S ∩ ∂X = ∅. Let further ϕ be a closed n-form on X with “singularities” in S, which simply means
that it is not defined there: ϕ ∈ Ωn(XrS). Then the boundary integral

∫
∂X

ϕ turns out to be
completely determined by data which is concentrated near S. To make this precise, pick for each
s ∈ S a compact neighbourhood Ds ⊂ Xr∂X (arbitrarily small if desired) which is diffeomorphic
to a ball. Then ∫

∂X

ϕ =
∑
s∈S

∫
∂Ds

ϕ.

This follows at once, applying Stokes’ Theorem to the “Emmental cheese” X ′ := Xr
⋃
s∈S D

◦
s : note

that the integrals on the right refer to the orientation of the sphere ∂Ds as the boundary of Ds,
while the orientation of ∂Ds as a boundary component of X ′ is the opposite one.

3 Make sure to note that this terminology has nothing to do with the notion of closed subset of a topological
space. Unfortunately it introduces some ambiguity into statements involving closed submanifolds.
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As the importance of Stokes’ theorem reaches far beyond pure mathematics one would wonder whether the
C∞ smoothness assumptions can be relaxed. In fact we have been working with C∞ for mere convenience,
and closer inspection would reveal that much less is sufficient:

7.6 Addendum Stokes’ theorem holds for C1 differential forms on a C2 manifold rather than C∞ data.

It is also possible to allow differential forms with singularities, that is, forms defined on the complement of a
certain subset of the base manifold. The essential points are that this singular subset should have codimension
at least two and that the growth of the differential form and its Cartan derivative near the singular points
be sufficiently moderate. Of course this would have to be made precise, but we do not go into the details.

In yet another interesting direction one may allow for singularities of the manifold boundary. One
instance would be manifolds with corners as they occur as Cartesian products of manifolds with boundary,
and it turns out that Stokes’ theorem extends entirely to this and similar cases. Rather than formulate a
general theorem let us investigate one example.

7.7 Example The quadrant X = [ 0,∞)
2 ⊂ R2 is not a smooth manifold with boundary. Removing the

origin we do obtain a manifold with boundary X ′, but restricting a given 1-form ϕ to X ′ in general
will destroy compactness of its support. To re-establish it we choose a table mountain τ :R2 → [ 0, 1]
at the origin, say of inner radius 1 and outer radius 2, put τr(x) = τ(x/r) for radii r > 0 yet to be
determined, and apply Stokes’ theorem to the form (1−τr) · ϕ :∫

X′
d
(
(1−τr)ϕ

)
=

∫
∂X′

(1−τr)ϕ

The surface integral expands into∫
X′
d
(
(1−τr)ϕ

)
= −

∫
X′
dτr∧ϕ+

∫
X′

(1−τr) dϕ ,

and we observe that if we let run r through a sequence with limit zero the first integrand also tends
to zero while the second converges to dϕ. We show that in each case the pointwise convergence is
dominated by an integrable function. Indeed the coefficients of the C∞ forms ϕ and dϕ are bounded,
so that the second integrand is dominated by a constant multiple of the characteristic function of
suppϕ. The same incidentally is true of the line integral

∫
∂X′

(1−τr)ϕ on the right hand side of
Stokes’ formula, which therefore converges to

∫
∂X′

ϕ. The case of the first surface integral is slightly
more delicate, since

(dτr)x =
1

r
(dτ)x/r

is not bounded as r tends to zero. On the other hand the support of this expression is contained in
the quarter annulus X ′ ∩D2r(0)rUr(0), and we do find a constant c such that the 2-form dτr∧ϕ is
bounded by c/r. If we now let run r through the set {2−k | k ∈ N} the function g:X ′ ∩D2(0) → R
defined by

g(x) = 2k · c if 2−k < |x| ≤ 2−k+1
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dominates the sequence of integrands
(
dτr∧ϕ | r=2−k

)∞
k=0

. Since the area of X ′ ∩D2r(0)rUr(0) is

proportional to r2 evaluating the integral of g leads to a convergent geometric series. Therefore g is
integrable, the integrals of dτr∧ϕ converge to zero, and Stokes’ formula holds for ϕ.

In low-dimensional situations in Euclidean spaces Stokes’s theorem obviously can be expressed in the terms
of classical vector analysis in order to recover the nineteenth century integral formulae named after Gauß,
Green, and others — see Exercise 7.8. But nowadays this would seem like doing number theory using Roman
numerals . . .

Exercises

7.1 Let X be a manifold with boundary, and let f :X → R a smooth function without critical values. Prove
that any point where f takes its smallest value must lie on the boundary ∂X.

7.2 Let X be a compact n-manifold without boundary that admits a fixed point free involution, that is, a
self-diffeomorphism h:X → X with h ◦ h = id and h(x) 6= x for all x ∈ X. Prove that there exist a
compact (n+1)-manifold W with boundary and a diffeomorphism X ' ∂W .

7.3 Let X ⊂ R3 be a 3-dimensional submanifold with boundary.

• Explain why the surface ∂X carries a canonical area form ω′ ∈ Ω2(∂X), which generalises that
of Exercise 6.1.

• Let W
f−→ R3 be an orientation preserving embedding of an open subset W ⊂ R2 in R3 with

image f(W ) = ∂X — such an f often is called a parametrization of ∂X. Show that

f∗ω′ =

∣∣∣∣∂f∂u × ∂f

∂v

∣∣∣∣ · du ∧ dv
where R3×R3 ×−→ R3 denotes the classical vector product.

• How does this simplify if f is a graph mapping (u, v) 7→ f(u, v) =
(
u, v, ϕ(u, v)

)
?

• For 0 < r < R compute the area of the embedded torus{(
(R+r cos θ) cosϕ, (R+r cos θ) sinϕ, r sin θ

)
∈ R3

∣∣ ϕ, θ ∈ R
}
.

7.4 For fixed n ∈ N and real R > 0 let D := DR(0) ⊂ Rn be the closed n-dimensional ball of radius R.
Describe the area form — that is, the (n−1)-dimensional volume form induced by the canonical
outward pointing unit field — on the boundary S := SR(0), and prove the identity

n · volume(D) = R · area(S).

7.5 Let X be a non-empty orientable compact n-manifold (without boundary). Prove that HnX 6= {0}.

7.6 Let X = S1×S1 be the torus. Prove that the multiplication H1X×H1X
∧−→ H2X introduced in

Exercise 6.8 is non-trivial.

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 85

7.7 Let X be a non-empty orientable compact manifold with boundary. Prove that there cannot exist a
smooth mapping f :X → ∂X such that f |∂X = id.

7.8 Let Y ⊂ R3 be a compact oriented surface, that is, a two-dimensional smooth submanifold. Note that Y
carries the unit normal field ν:Y → TR3 determined by the property that for every y ∈ Y the vector
ν(y) ∈ TyR3 = R3 makes

(
ν(y), v, w

)
a positively oriented orthonormal base if (v, w) is a positively

oriented orthonormal base of TyY , as in Exercise 7.3. Also recall that using ν the canonical volume
form ω of R3 induces a volume (area) form ω′ on Y . In nineteenth century terminology ω = dV is
called the volume element , and ω′ = dS the surface or area element of Y . They occur in the classical
integral theorems:

• Divergence theorem Here X ⊂ R3 is a smooth compact three-dimensional submanifold and
Y = ∂X. The theorem states that for every smooth F :X → R3 — a “vector field” in that terminology
— the formula ∫

X

divF dV =

∫
∂X

F • ν dS

holds. Show that this is just the result of applying Theorem 7.4 to the situation.

• Theorem of Kelvin-Stokes Forget X and allow the surface Y to have a boundary. The latter
is an oriented closed curve which carries not only an induced volume form — the line element ds
— but also the unit vector field τ : ∂Y → T∂Y which assigns to y ∈ ∂Y the positively oriented
tangent vector of unit length in Ty∂Y . Then for every “vector field” F which is defined on some open
neighbourhood of Y in R3 ∫

Y

rotF • ν dS =

∫
∂Y

F • τ ds.

Again show that this is what results from Theorem 7.4.
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8 Vector Fields and Flows

The aim of this section is to translate the basic theory of ordinary differential equations to the setting of
smooth manifolds. Recall that manifolds have no boundary unless the contrary is stated explicitly.

8.1 Definition Let X be a manifold. A smooth section ξ:X → TX of the tangent bundle is called a vector
field on X.

8.2 Definition Let X be a manifold. A global flow on X is a (smooth) mapping

Φ:R×X −→ X

that satisfies the flow axioms

• Φ(0, x) = x for all x ∈ X ;

• Φ
(
s,Φ(t, x)

)
= Φ(s+t, x) for all s, t ∈ R and x ∈ X.

For a given point x ∈ X the partial map

R 3 t Φx7−→ Φ(t, x) ∈ X

is a smooth curve called the flow line through x (or having x as its initial point). Via these flow lines
every global flow Φ on X produces a vector field ξ:X → TX by

ξ(x) = Φ̇x(0) =
d

dt
Φ(t, x)

∣∣∣∣
t=0

∈ TxX,

which is called the velocity field of Φ.
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Remarks To aid intuition think of t ∈ R as a time parameter. — In different terminology the flow axioms
state that Φ is an action of the additive group R on the set X. In terms of the partial maps

Φt:X −→ X defined by Φt(x) = Φ(t, x)

they may be restated as Φ0 = idX and Φs ◦Φt = Φs+t, and we see in particular that for every t ∈ R
the map Φt is a diffeomorphism with inverse Φ−t. — The theoretically conflicting notations Φx and
Φt pose no problem in practice if one avoids time-like names as s or t for “space” variables.

8.3 Examples (1) For every fixed vector b ∈ Rn the assignment (t, x) 7→ t b + x defines a global flow on
the manifold Rn ; in terms of the identification TRn = Rn× Rn its velocity field has the constant
value b.

(2) The same formula defines a global flow on the n-dimensional torus Rn/Zn.

(3) If a ∈ Mat(n×n,R) is any matrix then

Φ(t, x) := eta · x =

∞∑
k=0

tkak

k!
· x

defines a global flow on Rn. If a happens to be skew-symmetric then the matrices eta are orthogonal:

(eta)
t · eta = eta

t

· eta = e−ta · eta = e0 = 1.

In this case Φ may be restricted to give a global flow R×Sn−1 → Sn−1 on the sphere. In either case
the corresponding velocity field assigns the tangent vector a · x ∈ Rn = TxRn to the point x.
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(4) In terms of a chart (U, h) a vector field ξ on an n-manifold X reduces to a smooth function
v:U → Rn via

v(x) =
(
ξ(x)

)
h

= Txh · ξ(x).

By contrast any attempt to represent a global flow Φ in terms of (U, h) encounters the problem that
restricting a flow to the open subset U ⊂ X will not result in a global flow on U but just a smooth
mapping

R× U ⊃ (R× U) ∩ Φ−1U
Φ|...−−−−→ U.

The problem already occurs if U is formed by removing a single point x from the manifold X which
does not happen to be a fixed point , that is one with Φ(t, x) = x for all t ∈ R.

This last example motivates to complement the notion of global flow by a weaker version which does allow
restriction to arbitrary open subsets.

8.4 Definition Let X be a manifold. A (not necessarily global) flow on X is a smooth mapping

R×X ⊃ D Φ−→ X

where

• D ⊂ R×X is open,

• for each x ∈ X the open set
{
t ∈ R

∣∣ (t, x) ∈ D
}

is an interval containing 0 ∈ R, and

• the flow axioms Φ(0, x) = x and Φ
(
s,Φ(t, x)

)
= Φ(s+t, x) hold, the latter for all s, t ∈ R such

that both sides of the identity are defined.
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Notes (1) For fixed x ∈ X the pairs (s, t) such that Φ
(
s,Φ(t, x)

)
and Φ(s+t, x) are defined are determined

by the conditions

(t, x) ∈ D ,
(
s,Φ(t, x)

)
∈ D , and (s+t, x) ∈ D

and thus form an open neighbourhood of (0, 0) in R2.

(2) It now makes sense to restrict a flow Φ:D → X to an open subset U ⊂ X : the subset

D′ :=
{

(t, x) ∈ D
∣∣ [ 0, t]×{x} ⊂ Φ−1U

}
⊂ R× U

— for t < 0 read [ 0, t] as [t, 0 ] — is open and has the required geometry, and Φ restricts to a mapping
Φ′:D′ → U which is a flow on U .

(3) If Φ:D → X is a flow then its flow line through a point x ∈ X still is a smooth curve

(αx, ωx)
Φx−→ X

with (αx, ωx) :=
{
t ∈ R

∣∣ (t, x) ∈ D
}

, but its life span (into the past, the future, or both) may be
limited if Φ is not global.

(4) While for a non-global flow the diffeomorphisms Φt need not be defined the velocity field of Φ
still is, since for every x ∈ X the domain D is a neighbourhood of (0, x) in R×X.

8.5 Lemma Let Φ:D → X be a flow on X with velocity field ξ:X → TX, and let Φx: (αx, ωx) → X be
the flow line through a point x ∈ X. Then

Φ̇x(t) = ξ
(
Φx(t)

)
for all t ∈ (αx, ωx).

In other words Φx is a solution of the ordinary differential equation ϕ̇ = ξ ◦ϕ for ϕ with initial value
ϕ(0) = x. Therefore the flow lines are also called integral curves of the velocity field.

Proof For fixed t and x differentiate the flow identity Φ(τ+t, x) = Φ
(
τ,Φ(t, x)

)
at τ = 0.

We will take the local theory of ordinary differential equations for granted. All that we need is contained in
the following theorem, which is a standard result and which we state without proof as our starting-point.

8.6 Fundamental Theorem on Ordinary Differential Equations LetX ⊂ Rn be open and v:X → Rn
a C1 map. Then we have:

• Uniqueness of solutions — If the C1 curves ϕ: I → X and χ: J → X defined on open intervals
containing 0 ∈ R satisfy ϕ̇(t) = v(ϕ(t)) and χ̇(t) = v(χ(t)) for all t, as well as ϕ(0) = χ(0) then ϕ
and χ agree on some neighbourhood of 0 in I ∩ J .
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• Existence of solutions and their dependence on the initial condition — For every x ∈ X there
exist a δ > 0, an open neighbourhood U ⊂ X of x, and a C1 mapping

Φ: (−δ, δ)× U → X

such that d
dtΦ(t, x) = v

(
Φ(t, x)

)
and Φ(0, x) = x for all t ∈ (−δ, δ) and x ∈ U . If v is even Ck

differentiable for some larger k then so is Φ.

8.7 Maximal Integral Curves of a Vector Field Let X be a manifold and ξ a vector field on X, and
let x ∈ X be a point. A (weak) application of the existence part of the fundamental theorem shows
that there exists at least one curve ϕ: (−δ, δ) → X solving the differential equation ϕ̇ = ξ ◦ ϕ with
initial condition ϕ(0) = x : expressing ξ in any chart at x takes us straight to the situation of 8.6.

Now consider two integral curves ϕ: I → X and χ: J → X, both defined on open intervals containing
0 ∈ R. The subset

T :=
{
t ∈ I ∩ J

∣∣ϕ(t) = χ(t)
}
⊂ I ∩ J

is closed by continuity. It is also open: given t ∈ T both

τ 7→ ϕ(τ+t) and τ 7→ χ(τ+t)

are integral curves starting at the point ϕ(t) = χ(t); thus they coincide near 0. Since the interval
I ∩ J is connected we obtain T = I ∩ J , so that ϕ and χ must coincide on I ∩ J .

Now the definition of the maximal1 integral curve through x

ϕx: (αx, ωx) −→ X

makes sense: simply take for (αx, ωx) the union of the domains of all integral curves through x and
define ϕx(t) as the common value of those curves which are defined at t.

We come to the central result of the section: assigning to a flow its velocity field is reversed by solving a
differential equation.

8.8 Theorem Let X be a manifold with a vector field ξ. For each x ∈ X let ϕx: (αx, ωx)→ X denote the
maximal integral curve of the differential equation ϕ̇ = ξ ◦ ϕ through x. Then the union

D :=
⋃
x∈X

(αx, ωx)× {x} ⊂ R×X

is open, and
Φ:D −→ X defined by Φ(t, x) = ϕx(t)

1 This is the usual name even though from a logical point of view it rather is the largest integral curve
through x.
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is a flow on X with velocity field ξ. Given (t, x) ∈ D the domains of the curves ϕx and ϕΦ(t,x) are
related by

(αΦ(t,x), ωΦ(t,x)) = (αx−t, ωx−t)

(with the convention that ±∞− t = ±∞).

Proof The essential point is to show that D is open and that Φ is smooth. We fix a point a ∈ X and
consider the set

J :=

{
t ∈ [ 0, ωa)

∣∣∣∣ D contains an open neighbourhood of
[ 0, t]×{a} ⊂ R×X on which Φ is smooth

}
⊂ R .

Our main goal is to prove that J = [ 0, ωa): of course the analogous reasoning works for (αa, 0 ], and
since the choice of a ∈ X was arbitrary we will have shown that every point of D is an interior point
and that Φ is smooth near it.

From Theorem 8.6 we know that at least 0 ∈ J : using a chart at a the existence part supplies a
δ > 0, an open neighbourhood U ⊂ X of a, and a smooth map

Ψ: (−δ, δ)× U −→ X

with d
dtΨ = ξ ◦Ψ and Ψ(0, x) = x for all x ∈ U ; by maximality and uniqueness this further implies

(−δ, δ)×U ⊂ D and Ψ = Φ|(−δ, δ)×U .

It is clear from the definition that J ⊂ [ 0, ωa) is an open subset. We will prove that it is also closed.
Thus let t ∈ J ∩ [ 0, ωa) be any point of the closure: we must show that t ∈ J , and to this end may
assume t > 0. We put

c = Φ(t, a) ∈ X

and apply the existence part of 8.6 there. We thus find a δ > 0, an open neighbourhood V ⊂ X of
c, and a smooth mapping

Ψ: (−δ, 3δ)× V −→ X

such that d
dtΨ = ξ ◦Ψ and Ψ(0, y) = y for all y ∈ V . Since the maximal half-curve ϕa: [ 0, ωa)→ X

is continuous at t with value ϕa(t) = c we may make δ > 0 smaller to achieve that t−3δ > 0 and

b := ϕa(t−2δ) ∈ V.

Now by definition of J there exists an open neighbourhood U ⊂ X of a such that [ 0, t−δ)×U ⊂ D
and Φ: [ 0, t−δ)×U → X is smooth. In particular the map

U 3 x Φt−2δ7−−−−→ Φ(t−2δ, x) ∈ X
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is continuous, and we may replace U by the smaller open set

U ∩ Φ−1
t−2δV ⊂ X,

which in view of Φt−2δ(a) = ϕa(t−2δ) = b ∈ V still is a neighbourhood of a.

Next we define a smooth map Φ̃: [ 0, t+δ)×U → X by

Φ̃(τ, x) =

{
Φ(τ, x) if τ ∈ [ 0, t−δ),
Ψ
(
τ−t+2δ, Φ(t−2δ, x)

)
if τ ∈ (t−3δ, t+δ).

Why do both cases give the same value on the intersection (t−3δ, t−δ)×U ? Consider the curves
ϕ, χ: (−δ, δ)→ X given by

ϕ(σ) = Φ(σ+t−2δ, x) and χ(σ) = Ψ
(
σ, Φ(t−2δ, x)

)
— they are translates of the terms defining Φ̃. Both are integral curves: ϕ̇ = ξ ◦ ϕ and χ̇ = ξ ◦ χ,
with ϕ(0) = Φ(t−2δ) = χ(0). Hence we have ϕ = χ throughout, and are sure that Φ̃ is well-defined.

By maximality and uniqueness we conclude that [ 0, t+δ) ⊂ D and Φ̃ = Φ|[ 0, t+δ)×U , and in
particular that t ∈ J holds as desired. We thus have shown that J is an open and closed subset of
the interval [ 0, ωa). Since the latter is connected we must have J = [ 0, ωa), and this concludes the
proof of the main assertions.

We now know that D ⊂ R×X is open and that Φ is smooth. As to the flow identities the first,
Φ(0, x) = x for all x ∈ X, is obvious. For the second we fix a pair (t, x) ∈ D and compare the curves

s 7→ ϕΦ(t,x)(s) and s 7→ ϕx(s+t).

Both solve the differential equation with initial value Φ(t, x): thus by uniqueness they coincide
wherever both are defined, and by maximality they also have the same interval of definition. This
proves the second flow axiom, as well as the equality (αΦ(t,x), ωΦ(t,x)) = (αx−t, ωx−t).

Finally the identity d
dtΦ(t, x) = ξ

(
Φ(t, x)

)
, which holds by definition of Φ, reduces for t = 0 to the

equation that establishes ξ as the velocity field of Φ. This completes the proof of the theorem.

8.9 Definition Let X be a manifold. A flow R×X ⊃ D Φ−→ X is called maximal , if it allows no extension

to a flow R×X ⊃ D̃ Φ̃−→ X such that D̃ strictly contains D.
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8.10 Summary Let X be a manifold. Assigning to a flow its velocity field sets up a one-to-one correspon-
dence between maximal flows and vector fields on X ; the inverse assignment sends the vector field ξ
to the flow assembled from the maximal integral curves of the differential equation ϕ̇ = ξ ◦ ϕ — by
definition this flow is maximal even in the stronger sense that none of its flow lines can be extended.

8.11 Corollaries A flow Φ is maximal if and only if every one of its flow lines is a maximal integral curve of
the velocity field of Φ. — Every flow Φ extends to a unique maximal flow, namely that corresponding
to the velocity field of Φ.

Remark The existence of the maximal flow corresponding to a given vector field ξ is expressed in more
classical terminology by saying that every smooth vector field ξ is integrable. It is called globally
integrable in case the solution flow is global.

There is a striking and extremely useful criterion that characterizes the maximality of flow lines.

8.12 Maximality Criterion Given a manifold X and a maximal flow Φ let

Φx: (αx, ωx) −→ X

be the flow line through x, and for some finite positive ω ≤ ωx consider the restriction ϕ := Φx|[0, ω).
Then the following statements are equivalent:

• ω = ωx ;

• the mapping [ 0, ω)
ϕ−→ X is proper2.

Proof Assume ω < ωx : then L := Φx
(
[ 0, ω]

)
is a compact subset of X while its preimage ϕ−1L = [0, ω)

fails to be compact, so that ϕ is not proper.

We now fix an arbitrary finite positive ω ≤ ωx and assume that ϕ is not proper. We select a compact
set L ⊂ X such that ϕ−1L is not compact, and therefore not contained in any compact subinterval
of [ 0, ω). We thus find a sequence (tk)

∞
k=0 in [ 0, ω) such that limk tk = ω and ϕ(tk) ∈ L for all k.

Since L is compact we may replace this sequence by a subsequence such that y := limk ϕ(tk) ∈ L
also exists.

2 A continuous map f :X → Y between locally compact Hausdorff spaces is proper if for every compact
set L ⊂ Y the pre-image f−1L ⊂ X also is compact.
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We choose a number δ ∈ (0, ω) and an open neighbourhood V ⊂ X of y such that (−δ, δ)×V is
contained in the domain of Φ, and select one k ∈ N so large that ω−δ < tk < ω and ϕ(tk) ∈ V . Then
the curve ϕ̃: [ 0, tk+δ)→ X with

ϕ̃(τ) =

{
ϕ(τ) if τ ∈ [ 0, ω),

Φ
(
τ−tk, ϕ(tk)

)
if τ ∈ (ω−δ, tk+δ)

is well-defined since the curves

σ 7→ ϕ(σ+tk) and σ 7→ Φ
(
σ, ϕ(tk)

)
both are integral curves through ϕ(tk). In view of tk + δ > ω we have thus constructed a strict
extension of ϕ as a flow line, and thereby shown that ω < ωx.

8.13 Corollary Every maximal flow on a compact manifold must be global.

Proof If X is compact the half-curve ϕ of the criterion can never be proper, thus no ωx can be finite. Of
course the same argument applies to αx.

The correspondence 8.10 between flows and vector fields is routinely used to construct flows with prescribed
properties. The strategy is to translate such properties to equivalent ones of the corresponding vector field,
where they are easier to deal with since vector fields, being sections of the tangent bundle, are linear objects.
Going back to the solution flow will then solve the original problem. In the end this is yet another instance
of the central idea of differentiation: to solve non-linear problems by treating them in linear approximations.
— The following examples are held rather simple, but we will study quite a sophisticated application in the
next section.

8.14 Examples (1) Let X be a manifold and a ∈ X be a point. If you wish to construct flows Φ that
leave a fixed you must look for vector fields ξ:X → TX with ξ(a) = 0: For if a is a fixed point of Φ
then Φa is constant and the value of the velocity field ξ(a) = Φ̇a(0) certainly is zero. Conversely if

ξ(a) = 0 then the constant curve R 3 t ϕ7−→ a ∈ X is a solution of the differential equation ϕ̇ = ξ ◦ϕ,
and therefore coincides with the flow line of Φ through a. Incidentally it follows that the flow line
through a fixed point always has infinite life span. The figure shows a selection of such fixed points
a ∈ X.

(2) Suppose a smooth function f :X → R is given on the manifold X. If you are interested in flows
Φ that leave f invariant in the sense that f is constant along each flow line Φx then you must look
for vector fields ξ with the property

Tf ◦ ξ = 0.

For if f ◦ Φx is constant then

(Tf ◦ ξ)(x) = Txf · Φ̇x(0) =
d

dt
(f ◦ Φx)(0) = 0.
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Conversely, if we assume Tf ◦ ξ = 0 then for every x ∈ X the composition f ◦Φx is a scalar function
on an interval such that

d

dt
(f ◦ Φx)(t) = TΦ(t,x)f · Φ̇x(t) = (Tf ◦ ξ)

(
Φx(t)

)
= 0 for all t,

so that f ◦ Φx solves the differential equation ϕ̇ = 0 for the scalar function ϕ on the real line: such
a function must be constant by uniqueness of solutions (or common knowledge). This being true for
every x ∈ X it follows that Φ leaves f invariant.

We now look into the question of what can be said about the geometry of the individual flow lines. The
following definition generalizes the notion of orbit as it is used in the context of group actions.

8.15 Definition Let X be a manifold, R×X ⊃ D Φ−→ X a maximal flow, and x ∈ X. The image set

Φx(αx, ωx) ⊂ X

of the flow line through x is called the orbit of x.

8.16 Lemma Let X be a manifold, R×X ⊃ D Φ−→ X a maximal flow. Two points x, y ∈ X have the same
orbit if and only if there exists a t ∈ (αx, ωx) ∈ D with Φ(t, x) = y. Otherwise the orbits of x and y
are disjoint. In particular the distinct orbits form a partition of the set X.

Proof Assume Φ(t, x) = y. By Theorem 8.8 we have (αy, ωy) = (αx−t, ωx−t) and

Φy
(
(αy, ωy)

)
= ΦΦ(t,x)

(
(αx−t, ωx−t)

)
= Φx

(
(αx, ωx)

)
,

so that x and y have the same orbit. Conversely assume that the orbits of x and y intersect: we must
show that y = Φ(t, x) for some t. But by what we have just seen both orbits coincide with that of
the intersection point; therefore the orbits are equal. In particular y belongs to the orbit of x, and
the claim follows. Finally the orbits form a partition since clearly every point of X lies in its own
orbit.

8.17 Theorem Let X be a manifold, R×X ⊃ D Φ−→ X a maximal flow, and x ∈ X a point. Then exactly
one of the following statements is true.

• The domain (αx, ωx) of the integral curve Φx is all R, and x a fixed point of Φ.
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• The point x is a not a fixed point of Φ, but (αx, ωx) = R and there exists a time p > 0 such that

Φ(p, x) = x ; the flow line Φx induces an embedding of the circle R/pZ '−→ Φx(R) ⊂ X as a so-called
periodic orbit.

• The flow line Φx: (αx, ωx)→ X is an injective immersion.

Proof Let ξ:X → TX be the velocity field of Φ. We have seen in 8.14(1) that the case ξ(x) = 0 corresponds
to the first statement, where x is a fixed point. We now assume ξ(x) 6= 0. If there were a time
t ∈ (αx, ωx) with ξ

(
Φ(t, x)

)
= 0 then Φ(t, x) would be a fixed point, and by Lemma 8.16 also x

would be a fixed point, in contradiction to ξ(x) 6= 0. Thus applying Lemma 8.5 we have

Φ̇x(t) = ξ
(
Φ(t, x)

)
6= 0 for all t ∈ (αx, ωx),

and the curve Φx is an immersion.

Continuing with the case ξ(x) 6= 0 we now assume that Φx is not injective and prove that it is
periodic. If we pick distinct times p, q ∈ (αx, ωx) such that Φx(p) = Φx(q) the intervals of definition
satisfy

(αx−p, ωx−p) = (αΦ(p,x), ωΦ(p,x)) = (αΦ(q,x), ωΦ(q,x)) = (αx−q, ωx−q),

so that necessarily (αx, ωx) = R. Therefore the restricted map

R× Φx(R) 3 (t, x) 7−→ Φ(t, x) ∈ Φx(R)

is a continuous action of the real line on the orbit Φx(R), and a standard argument from the theory
of group actions applies: the isotropy subgroup

{
t ∈ R

∣∣Φ(t, x) = x
}

is a closed non-zero proper
subgroup of R, therefore of the form pZ ⊂ R for a unique positive period p, and the induced map
R/pZ → Φx(R) is bijective. It is even a homeomorphism since R/pZ is compact, and composing
with the inclusion Φx(R)→ X we obtain a mapping which is both a topological embedding and an
immersion. By Theorem 2.6 it is an embedding of the circle as a smooth submanifold of X, and this
completes the proof.

Our examples from 8.3 nicely illustrate the three kinds of orbits. The flow of (3) — rotation of the sphere
say about the polar axis — has the poles as two fixed points, while the circles of latitude, which comprise
all other orbits, are periodic (incidentally all with the same period).

While example (1) shows the case of flow lines that embed injectively the most interesting flows are those
of (2) on the torus, say with n = 2 and b = (1, β) ∈ R2. Given a rational β = m/p every orbit is periodic,
and if the denominator p > 0 is chosen minimal then this is the common period. But if β is irrational then
every flow line is an injective immersion of the real line in the torus R2/Z2. Its image turns out to be a dense
subset of R2/Z2 even though, being a countable union of 1-dimensional submanifolds it must be a null set,
in particular a proper subset of R2/Z2.
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We turn to a result that bears a certain resemblance to the constant rank theorem. Rather than to the
local classification of smooth mappings it pertains to that of vector fields, and states that vector fields are
locally described by a single normal form wherever they do not vanish: intuitively speaking, ξ can locally
be “combed”. By contrast local classification of vector fields near their zeros is quite a difficult task, indeed
a hopeless one unless strong simplifying conditions are imposed — quite like the task of classifying smooth
maps near points of non-constant rank. For this reason the zeros of a vector field are often called its singular
points or singularities.

8.18 Theorem Let ξ be a vector field on the n-manifold X, and let o ∈ X be a point with ξ(o) 6= 0 ∈ ToX.
There exists a centred chart (U, h) at o such that ξ expressed in this chart becomes the constant
mapping

U 3 x 7−→ ξ(x)h = e1 ∈ Rn

whose value is the first standard base vector e1 = (1, 0, . . . , 0). Thus the flow that corresponds to ξ
is of the type considered in Example 8.3(1), acting in terms of h by

(t, h) 7−→ (t+h1, h2, . . . , hn)

on its domain.

Proof Since the conclusion is of local nature we may assume that X ⊂ Rn is open with o = 0, and that

ξ(0) = (0, e1) ∈ X×Rn = TX. Let R×X ⊃ D
Φ−→ X be the maximal flow corresponding to ξ. We

abbreviate
X ′ := X ∩

(
{0}×Rn−1

)

and let g denote the restriction of Φ to D ∩ (R×X ′). Then g|({0}×X ′) sends (0, h′) ∈ {0}×X ′ to
h′ ∈ X ′ ⊂ X, and in view of ∂g

∂t (0) = ξ(0) = e1 the Jacobian matrix of g at the origin is the unit
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matrix 1 ∈ Mat(n×n,R). By the local inverse theorem g is a local diffeomorphism at the origin, and
we define the chart (U, h) as a local inverse.

We summarize the situation in the following diagram. For better readability we do not name the
precise domains of the maps involved, thus the arrows stand for smooth mappings that are de-
fined near the origins of R, Rn−1, and their Cartesian products. Points of h(U) are written as
h = (h1, . . . , hn) = (h1, h

′):

R× U Φ //
OO

id×g '

UOO

' g

(
t,Φ(h1, h

′)
) � //

OO

_

Φ(t+h1, h
′)

OO

_
R× h(U)

Ψ // h(U) (t, h) � // (t+h1, h
′)

The definition of the bottom arrow Ψ is (t, h1, h
′)) 7→ (t+h1, h

′), so that the diagram commutes as
indicated on the right. This shows that in terms of the chart h the flow of ξ does act as claimed by
the theorem, and this in turn implies the stated normal form of ξ itself.

So far in the section we have treated what in the language of ordinary differential equations would be called
autonomous equations. By contrast, a non-autonomous differential equation on the manifold X is defined
by a time-dependent vector field: such a field assigns to each point x ∈ X a tangent vector ξ(t, x) ∈ TxX
which also depends on a time parameter t that varies in an open interval J ⊂ R. More precisely ξ is a smooth
section of the pull-back bundle

pr∗X TX
//

OO
ξ

��

TX

��
J×X

prX // X

induced from the tangent bundle. A solution of the corresponding differential equation is a curve ϕ defined
on a subinterval J ′ ⊂ J such that ϕ̇(t) = ξ

(
t, ϕ(t)

)
holds for all t ∈ J ′.

While such a time-dependent vector field ξ does not give rise to a flow on X it is at once accommodated
in our set-up if the time parameter is given the status of an independent variable: in terms of the identification
TJ = J×R the assignment

J×X 3 (t, x) 7−→ ξ̃(t, x) := (t, x; 1)⊕ ξ(t, x) ∈ pr∗J TJ ⊕ pr∗X TX = T (J×X)

defines a vector field on J×X, and a curve ϕ: J ′ → X is a solution curve of ξ with initial point ϕ(a) = x if
and only if the curve ϕ̃: J ′ → J×X with

ϕ̃(t) =
(
t, ϕ(t)

)
∈ J×X

is the solution curve of ξ̃ with initial point ϕ̃(a) = (a, x).
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Note that now the curve ϕ may well fail to be injective without being periodic, as indicated in the figure.
By contrast, ϕ̃ always is a smooth embedding of course.

In a similar way every second order differential equation on X may be written as a first order equation
on the total space TX of the tangent bundle TX

π−→ X, treating the first order derivative as an independent
variable. A second order differential equation on X thus becomes the first order equation given by a vector
field ξ:TX → T (TX) on TX with the special property Tπ ◦ ξ = idTX .

A final comment on flows and vector fields on manifolds with non-empty boundary. Clearly most propo-
sitions made in this section then no longer can apply literally: for instance there will certainly not exist an
integral curve with a positive life span through a point of the boundary where the vector field points out-
ward. As so often the precise way of transfer to the case with boundary depends on the intended application.
Nevertheless it is worth singling out one situation of quite general interest where everything we have said

remains literally true: here the flows R×X ⊃ D Φ−→ X are required to preserve the boundary in the sense of

Φ
(
D ∩ (R× ∂X)

)
⊂ ∂X,

and on the other side only vector fields ξ:X → TX are admitted that are tangent to the boundary:

ξ(x) ∈ T (∂X) for all x ∈ ∂X.

Exercises

8.1 For fixed n ∈ N let f :Sn → Sn be the antipodal map that sends x to −x.

• Prove the formula ∫
Sn
f∗ϕ = (−1)

n+1
∫
Sn
ϕ

for all differential forms ϕ ∈ ΩnSn.

• Assume that there exists a vector field ξ:Sn → TSn without zeros. Prove that there exists a
(smooth) homotopy from idSn to f .

• Conclude that there exists a vector field without zeros on Sn if and only if n is odd.

Note This exercise would belong entirely to the previous section if it did not involve the notion of
vector field. This is but used in an elementary way, and the relation to flows is not relevant.

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 100

8.2 Let ξ be the vector field on the manifold X = R that sends x to (x, x2) ∈ TX = X×R. Write out
the corresponding ordinary differential equation, solve it by explicit calculation, and determine the
corresponding maximal flow on Φ, including its precise domain D ⊂ R×X.

8.3 Prove that every vector field with compact support is globally integrable.

8.4 Let X be a manifold and Φ:D → X a maximal flow on it. Prove that if there exists a δ > 0 with
(−δ, δ)×X ⊂ D then Φ is global.

8.5 Let ξ be a vector field on Rn such that in the representation

ξ(x) =
(
x, v(x)

)
∈ Rn×Rn = TRn

the smooth function v:Rn → Rn is bounded. Prove that v is globally integrable.

8.6 Let X ⊂ Rn be a non-empty star-shaped open subset. Prove that X is diffeomorphic to Rn.

Hint A useful ingredient is a proper smooth function f :X → [0,∞) — such a function exists by
Exercise 4.3.

8.7 Let X be a connected manifold. Prove that for any two points a, b ∈ X there exist a diffeomorphism
h:X → X and a compact subset K ⊂ X such that h(a) = b and f(x) = x for all x ∈ XrK.

8.8 Let Φ be a flow on the manifold X with velocity field ξ, and let S ⊂ X be a closed submanifold. Prove
that S is stable under Φ if and only if ξ is everywhere tangent to S. The first of these statements
means

Φ(t, x) ∈ S for all x ∈ S and all t such that Φ(t, x) is defined,

and the second that ξ(x) ∈ TxS for all x ∈ S.

8.9 Let Φ be a flow on the manifold X with velocity field ξ, and let S ⊂ X be a closed equidimensional
submanifold with boundary: dimS = n = dimX. Prove that if ξ(x) ∈ TxX = TxS points inward for
every x ∈ ∂S then flow lines that start in S will stay in S :

Φ(t, x) ∈ S for all x ∈ S and all t ≥ 0 such that Φ(t, x) is defined.

8.10 Prove the conclusion of the previous exercise under the weaker assumption that ξ(x) does not point
outward at any point x ∈ ∂S.
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9 Fibre Bundles

One purpose of the section is to illustrate the method of flows and vector fields in an interesting context.
As proper mappings will be of particular importance we collect some of the most important aspects of
properness.

9.1 Proper Mappings (1) A continuous map p:X → Y between locally compact Hausdorff spaces is
called proper if for every compact L ⊂ Y the inverse image p−1L ⊂ X is compact: that is the
definition1.

(2) Methods to establish properness of a map include the following simple observations:

• If X is a compact space (and, as always, Y locally compact) then every map X → Y is proper.

• If K is a compact space then the cartesian projection pr:Y ×K −→ Y is a proper mapping.

• If p:X → Y is proper and if Z is an arbitrary locally compact space then the product mapping

X × Z p×id−−−−→ Y × Z

is proper.

• Compositions of proper maps are proper.

• The restriction of a proper mapping p:X → Y to a closed subspace F ⊂ X is proper.

• Let p:X → Y is a proper mapping and Y ′ ⊂ Y a locally closed subspace (that is, the intersection
of any open with any closed subset of Y ). This ensures that Y ′ and p−1Y ′ also are locally compact
Hausdorff spaces, and the mapping

p′: p−1Y ′ −→ Y ′

obtained by restricting p is proper.

• If p:X → Y is any mapping between locally compact spaces, and if Y admits a locally finite
closed cover (Fλ)λ∈Λ such that for each λ ∈ Λ the restriction of p

pλ: p−1Fλ −→ Fλ

is proper, then p is proper: given a compact L ⊂ Y , write p−1L =
⋃
λ∈Λ p

−1(L ∩ Fλ).

(3) The last observation would establish properness of p as a local property with respect to Y if the
locally finite cover could be replaced by an arbitrary open one. This holds true by definition if Y is a
so-called paracompact space: a Hausdorff space Y is paracompact if for every open cover (Yλ)λ∈Λ of
Y there is a locally finite closed cover (Fµ)µ∈M which refines it in the sense that each Fµ is contained
in Yλ for some λ ∈ Λ.

It can be shown that every compact Hausdorff space is paracompact. On the other hand the class of
paracompact spaces is much wider and for instance includes all manifolds (with or without boundary):
given the open cover (Yλ)λ∈Λ choose a subordinate partition of unity (ρj)

∞
j=0 and, with M = N, put

Fj = supp ρj for each j ∈ N.

1 The definition for a continuous map p:X → Y between general topological spaces requires that for every
topological space Z the map p×id:X×Z → Y ×Z sends closed subsets of X×Z to closed subsets of Y ×Z.
While, for instance, algebraic geometers must have recourse to this definition when working with Zariski
topologies, in the context of locally compact Hausdorff spaces it is equivalent to the simpler version we use.
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The figure suggests how some of these rules may be applied to a typical situation of local analytic geometry,
where a variety X defined by analytic equations is exhibited as a so-called branched cover of an open subset
Y of a Euclidean space.

The notion of fibre bundle is more general and weaker than that of vector bundle, from which it takes up
the geometric but not the algebraic aspect.

9.2 Definition Let F and X be manifolds. A (smooth) fibre bundle over X with fibre F is a smooth
mapping called the bundle projection

E
π−→ X

from another manifold E to X which satisfies the axiom of local triviality : for every point x ∈ X
there exist an open neighbourhood U ⊂ X of x and a diffeomorphism h such that the diagram

π−1U '
h //

π
""EEEEEEEEE U × F

pr
||xxxxxxxxx

U

commutes. The spaces X and E are called the base and the total space of the bundle. Fibre bundles
are alternatively called locally trivial fibrations.
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Much further terminology concerning fibre bundles is identical with that for vector bundles, and
includes the notions of product and trivial bundles, bundle mappings and isomorphisms, induced
bundles, and sections.

Notes Since {x}×F ⊂ U×F is a submanifold and the diffeomorphism h−1 sends {x}×F onto Ex = π−1{x},
every fibre of π is a submanifold of E diffeomorphic to F : in this abstract sense F is “the” fibre of
π. In case of a connected base it is possible to rewrite the definition without explicit reference to F ,
which then is replaced by Ex with an arbitrary fixed choice of x ∈ U . For the axiom of local triviality
then implies that the partition of X according to diffeomorphism type of the fibre is a partition into
open sets and therefore the trivial one, so that all fibres are diffeomorphic and F may be selected as
any one of them.

It is clear from the definition that the bundle projection π always is a submersion. Of course we must
have dimE = dimX + dimF whenever E is not empty.

The definition would allow either X or F to have a boundary; in both cases E will have a boundary,
and in the former π may be restricted to another fibre bundle ∂E → ∂X with fibre F while in the
latter π|∂E: ∂E → X is a fibre bundle with fibre ∂F .

9.3 Lemma The bundle projection of a fibre bundle E
π−→ X with fibre F over a non-empty base space

X is proper if and only if F is compact.

Proof Let π be proper. Choose any x ∈ X, then π−1{x} is compact and homeomorphic to F , so that F is
compact.

Conversely assume that F is compact. Let (Xλ)λ∈Λ be an open cover of X such that π is trivial over
each Xλ, and let (Fµ)µ∈M be a locally finite closed refinement. Then each restriction π−1Fµ → Fµ is

proper, and therefore π is proper by the last point of 9.1(2).

9.4 Examples (1) Of course every rank d vector bundle E
π−→ X reduces to a fibre bundle with fibre Rd

when the linear structure of the fibres is forgotten. Its projection π is not a proper mapping, with
two trivial exceptions, X = ∅ and rkE = 0.

(2) If the rank d vector bundle E
π−→ X carries a Riemannian metric ρ:X → SymE then the disk

and sphere bundles

DE :=
{
v ∈ E

∣∣ ρπ(v)(v, v) ≤ 1
} π|DE−−−−→ X and SE :=

{
v ∈ E

∣∣ ρπ(v)(v, v) = 1
} π|SE−−−−→ X
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are fibre bundles with fibre Dd and Sd−1 respectively. The projections of both bundles are proper.

(3) Fibre bundles with a discrete fibre F are known as covering projections2. Their projections are
proper if and only if F is finite. Well-known explicit examples with base space S1 =

{
z ∈ C

∣∣ |z| = 1
}

include the exponential map

R 3 t 7−→ e2πit ∈ S1 with infinite fibre Z

and, for non-zero n ∈ Z, the n-th power mapping

S1 3 z 7−→ zn ∈ S1 with finite fibre Z/|n| .

The two-to-one quotient map Sn 3 x 7→ [x] ∈ RPn provides a further example.

When a concrete smooth map E
π−→ X is given it may be quite cumbersome to verify the definition in

order to recognize π as the projection of a fibre bundle. In certain cases this task is greatly facilitated by
the following theorem, which is central to this section. Indeed when only proper maps π are considered it is
a criterion that decides whether such a π is a fibre bundle.

9.5 Ehresmann’s Fibration Theorem3 Let X be a connected, and E an arbitary manifold. If the
smooth mapping π:E → X is a proper submersion then E

π−→ X is a fibre bundle.

Proof The conclusion is local in X, and we may therefore assume that X = Rp. To move around in Rp we
will use p particularly simple flows: denoting the standard base vectors by e1, . . . , ep we put

Ψi:R× Rp −→ Rp ; (τ, y) 7→ y + τ · ei for i = 1, . . . , p.

These are in fact global flows, and given an arbitrary point t = (t1, . . . , tp) ∈ Rp the image of 0 ∈ Rp
under the composition

(Ψ1)t1 ◦ (Ψ2)t2 ◦ · · · ◦ (Ψp)tp :Rp −→ Rp

2 More precisely they are smooth covering projections. Virtually all bundle notions are easily adapted
to a purely topological context, replacing manifolds by mere topological spaces, and smoothness by mere
continuity.

3 The French mathematician Charles Ehresmann was a pioneer of differential topology and geometry. He
used his fibration theorem from the 1940s onward as one of his standard tools.
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is just t.

In order to find the desired trivialisation of E
π−→ Rp we shall try and “lift” each of these flows to

E, that is construct equally global flows

Φi:R× E −→ E for i = 1, . . . , p

such that all diagrams

R× E Φi //

id×π
��

E

π

��
R× Rp Ψi // Rp

commute. Then, putting E0 = π−1{0} as usual, the mapping

Rp × E0
g−→ E

(t, x) 7−→
(

(Φ1)t1 ◦ · · · ◦ (Φp)tp

)
(x)

is a diffeomorphism — it is inverted by sending the point y ∈ E with π(y) = s to the pair(
s,
(

(Φp)−sp ◦ · · · ◦ (Φ1)−s1

)
(y)
)
∈ Rp × E0 .

It is clear from the definition that g will send the fibre pr−1{t} = {t}×E0 onto π−1{t} = Et for every
t ∈ Rp : thus the diagram

E '
g−1

//

π   AAAAAAAA Rp × E0

pr
zzuuuuuuuuu

Rp
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commutes, and g−1 is a (global) trivialisation of the bundle.

It is quite unfeasible to construct the flows Φi directly, and at this point the dictionary translating
flows to vector fields becomes crucial. We fix one index i and put Φ := Φi and Ψ := Ψi ; note that the
velocity field of Ψ has the constant value ei ∈ Rp. If we had found Φ then its velocity field ξ:E → TE
would satisfy

Tπ ◦ ξ = Tπ ◦ Φ̇t

∣∣∣
t=0

=
d

dt
(π ◦ Φt)

∣∣∣
t=0

=
d

dt
(Ψt ◦ π)

∣∣∣
t=0

= ei

and in this sense be a lifting of ei to E. Assume conversely that we have constructed a maximal
flow Φ on E whose velocity field ξ lifts ei. Then if ϕ: (αx, ωx) → E is the flow line through x the
composition

π◦ϕ: (αx, ωx)→ Rp

is a flow line of ei through π(x):

d

dt
(π◦ϕ) = Tπ ◦ ξ ◦ ϕ = ei and (π◦ϕ)(0) = π(x) .

By the uniqueness of flow lines we must have

(π◦ϕ)(t) = π(x) + t · ei for all t ∈ (αx, ωx).

We claim that αx = −∞ and ωx = ∞, so that in fact π ◦ ϕ = Ψπ(x). Assuming ωx < ∞ the curve
ϕ|[ 0, ωx) is proper by the maximality criterion 8.12. Since π is proper the curve

[ 0, ωx) 3 t π◦ϕ7−−−−→ π(x) + t · ei ∈ Rp

also is proper — which clearly is untrue, so that we have arrived at a contradiction. Therefore
ωx = ∞, and symmetrically αx = −∞. This completes the proof that the flow Φ = Φi is a global
lifting of Ψi.
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In view of Theorem 8.8 on the equivalence of maximal flows and vector fields our task has by now
been reduced to that of constructing a vector field ξ on E which lifts the constant vector field ei on
Rp. We first solve this problem locally near an arbitrary point a ∈ E : We know that rka π = p and
find, by the constant rank theorem 2.5, a centred chart (U, h) at a such that π ◦ h−1 becomes

h(U) 3 (s1, . . . , sn, t1 . . . , tp) 7−→ π(a) + (t1, . . . , tp) ∈ Rp.

Therefore the assignment U 3 x 7→ (Txh)
−1 ·en+i ∈ TxE defines a vector field ξ on U with Tπ◦ξ = ei

as required. Applying this construction to every point a we obtain an open cover (Ua)a∈E of E, and
for every a ∈ E a lifting vector field ξa:Ua → TUa = TE|Ua. Let (ρj)

∞
j=0 be a partition of unity

subordinate to this cover, and choose for each j ∈ N a point a(j) ∈ E with supp ρj ⊂ Ua(j). Then
the sum

ξ :=
∑
j=0

ρj · ξa(j)

is a well-defined global vector field on E. It lifts ei since at every point x ∈ E the lifting condition
Txπ · ξ(x) = ei is a convex condition on the vector ξ(x).

This completes the construction of ξ and thereby the proof of the fibration theorem.

In a special case we have in fact proved a stronger result :

9.6 Corollary Every proper submersion E → Rp is a trivial fibre bundle.

The method that has allowed to control the life spans of the flow lines, on the other hand, is worth being
recorded for general use.

9.7 Proposition Let X
f−→ Y be a proper smooth mapping between manifolds, and let ξ:X → TX and

η:Y → TY be vector fields such that ξ lifts η :

Tf ◦ ξ = η ◦ f

Let R× Y ⊃ D Ψ−→ Y be the maximal flow of η. Then the maximal flow of ξ has the domain

(id×f)
−1
D ⊂ R×X.

Proof Let x ∈ X be arbitrary, and let ϕ: (αx, ωx) → X be the maximal integral curve through x. Then
f ◦ ϕ is an integral curve of η, and we must show that it is maximal. By symmetry it is sufficient
to prove that the restriction f ◦ ϕ|[0, ωx) has maximal life span as a flow line of η. This is certainly
true if ωx =∞. If not, then we know from the criterion 8.12 that ϕ|[0, ωx) is proper, and since f is
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proper the composition f ◦ ϕ|[0, ωx) also is proper. This composition is an integral curve of η, and
again by the criterion we conclude its maximality.

Since fibrations with closed fibres — compact manifolds without boundary — are relatively special let us
briefly treat a version of the theorem with boundary.

9.8 Theorem Let X be a connected manifold, and E a manifold with boundary. Let π:E → X be a
proper smooth mapping such that not only π itself but also the restriction π|∂E is submersive. Then

E
π−→ X is a fibre bundle.

Proof The proof from 9.5 requires but little change. In view of the remarks at the end of the previous section
we only must make sure that the vector field ξ:E → TE is everywhere tangent to the boundary ∂E.
As this is a linear property concerning the values of ξ on ∂E it can be treated locally. At interior
points a ∈ E there is no new condition at all, and the local vector fields ξa are chosen as before.

Thus consider a boundary point a ∈ ∂E. First using any chart at a we may assume that E is an
equidimensional submanifold of Rn+p and that π is defined on an open neighbourhood Ẽ of a in
Rn+p.

There the constant rank theorem applies, and we find a centred chart (W,h) at a such that π ◦ h−1

takes the form

h(W ) 3 (s1, . . . , sn, t1, . . . , tp) 7−→ π(a) + (t1, . . . , tp) ∈ Rp.

While this chart has no reason to send W ∩ ∂E to {0}×Rn+p−1 from the assumption that π|∂E is
submersive we do know that the projection (s1, . . . , sn, t1, . . . , tp) 7→ (t1, . . . , tp) maps the tangent
space T0

(
h(W ∩ ∂E)

)
onto Rp :

In particular this (n+p−1)-dimensional space cannot contain Rn×{0}, and after a rotation of Rn
— which does not affect π ◦ h−1 — we may assume that T0

(
h(W ∩ ∂E)

)
does not contain the first

coordinate axis R×{0}×{0} ⊂ R×Rn−1×Rp. By the implicit function theorem we now may shrink
W such that h(W ) becomes an open box U×V ⊂ R×Rn+p−1, and h(W ∩ ∂E) ⊂ U×V the graph of
a smooth function ϕ:V → U . Correcting h by composition with the local diffeomorphism

(h1, . . . , hn+p) = (h1, h
′) 7−→

(
h1−ϕ(h′), h′

)
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and possibly flipping h1 we obtain a boundary chart for E.

None of these corrections has an effect on the map π ◦ h−1, and we can now lift the constant vector
field ei from Rp to en+i on h(W ), which corresponds to a vector field on W which is tangential to
W ∩ ∂E as required.

9.9 Examples (1) For fixed radii 0 < r < R consider the embedded torus

T =
{(

(R+r cos θ) cosϕ, (R+r cos θ) sinϕ, r sin θ
)
∈ R3

∣∣ ϕ, θ ∈ R
}
⊂ R3

and let f :T → R be the restriction of the coordinate function x:R3 → R. Since T is compact f is
proper; on the other hand the differential of f vanishes exactly at the four points (±R± r, 0, 0) ∈ T ,
so that the numbers ±R ± r ∈ R are the critical values of f . Thus for any choice of the interval X
among

(−∞,−R−r), (−R−r,−R+r), (−R+r,R−r), (R−r,R+r) , and (R+r,∞)

the restricted mapping f−1X −→ X is a proper submersion and therefore, by Ehresmann’s theorem,
a locally trivial fibration — even a trivial one by Corollary 9.6.
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The fibrations over the two unbounded intervals with empty fibre are of no interest. The fibre over
the middle interval is S1+S1, and that over the lateral ones, a single copy of S1. Thus a dense part
of T is built of cylinders over the fibres of f . One might think of scanning T starting at low values
of f where the fibres are empty, then increasing the value of f to observe a change in the type of
fibre every time a critical value is crossed — on the other hand there is no such change between two
consecutive critical values. This idea of analyzing a manifold via the fibres of a cleverly chosen scalar
function has led to a surprisingly powerful method — named after the American mathematician
Marston Morse — to investigate the manifold’s topology.

(2) One particular application of the boundary version 9.8 has been much used in order to study
so-called isolated singular points of complex polynomials. For the sake of simplicity we consider a
complex polynomial

f(z) =
∑
|j|=d

ajz
j ∈ C[z] = C[z1, . . . , zn]

which is homogeneous of positive degree d ∈ N ; the summation is over n-dimensional indices j ∈ Nn
of constant total degree |j| :=

∑n
k=1 jk, and zj is shorthand for the monomial zj11 · · · zjnn . We interpret

f as a holomorphic function
f :Cn −→ C

and assume that Df(z) 6= 0 for all z ∈ Cnr{0} : thus by the regular value theorem all fibres f−1{t}
with t 6= 0 are submanifolds of Cn of codimension 2, while for the zero fibre f−1{0} this becomes
true when the origin of Cn is removed.

We wish to show that for sufficiently small real δ > 0 the mapping

E := D2n ∩ f−1Sδ(0)
π−→ Sδ(0)

obtained by restricting f is a smooth fibre bundle. First note that the function f has complex rank
one — thus real rank 2 — at every point z ∈ S2n−1∩f−1{0}. Since f is homogeneous the differential
Df(z) annihilates the radial vector z ∈ Cn = TzD

2n, and this further implies that the auxiliary
mapping

Cn ⊃ D2(0) 3 z F7−→
(
|z|2, f(z)

)
∈ R× C

has rank 3 along S2n−1 ∩ f−1{0} : in other words the pair (1, 0) ∈ R×C is a regular value of F .

Using the fact that the set of critical values of F |D2(0) must be compact we choose δ > 0 sufficiently
small so that all points of {1}×Dδ2 ⊂ R×C are regular values of F |U2(0). A fortiori the composition

U2(0) 3 z 7−→
(
|z|2, |f(z)|2

)
∈ R× R

obtained from F has (1, δ2) ∈ R×R as a regular value, and applying the regular value theorem first
in the original version 1.13 and then in the boundary version 7.3(3) we obtain that

U2(0) ∩ f−1Sδ(0) =
{
z ∈ U2(0)

∣∣ |f(z)|2 = δ2
}
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and
E = D2n ∩ f−1Sδ(0) =

{
z ∈ U2(0) ∩ f−1Sδ(0)

∣∣ |z|2 ≤ 1
}

are (2n−1)-dimensional submanifolds of Cn, the latter with boundary ∂E = S2n−1 ∩ f−1Sδ(0).

Thus E
π−→ Sδ(0) is a smooth mapping between manifolds. At any given point of E the rank of π is

1 since the original function f has rank 2. At a point of ∂E the rank of the auxiliary mapping F is
3, and since π|∂E essentially is the restriction of F to the pre-image of {1}×Sδ(0) ⊂ R×C the rank
of π|∂E must be at least 3−2, and thus also equal to 1.

We now know that
E

π−→ Sδ(0) and ∂E
π−→ Sδ(0)

are submersions, and by Ehresmann’s theorem conclude that E
π−→ Sδ(0) is a fibre bundle over the

circle as claimed.

This locally trivial fibration was first constructed in the 1960s by John Milnor, and is named after
him. Recall that in the previous decade Milnor had been the first to describe exotic spheres, and
his interest was catched by the discovery that some quite simple choices of the polynomial f lead to
Milnor fibres whose boundaries are such exotic spheres. The idea has since been partially reversed
and put in a much more general context. Already Milnor had shown that given a homogeneous4

polynomial f with an isolated singular point, the fibration does not essentially depend on the choice
of the number δ and thus is an invariant of f . Its fibre Eδ — the Milnor fibre — turns out to
reveal a lot of information about the singular point, and is closely related to other invariants of
purely algebraic nature. A first instance of such relations may be expressed in terms of the de Rham
cohomology of this (2n−2)-dimensional manifold with boundary: all de Rham spaces but H0Eδ = R
and Hn−1Eδ = Rµ(f) vanish, and the dimension of the latter, the so-called Milnor number µ(f) has
an algebraic interpretation as the dimension of the Jacobian algebra

C
[
z1, . . . , zn

]/( ∂f
∂z1

, . . . ,
∂f

∂zn

)
4 More generally inhomogeneous polynomials and even holomorphic functions defined near the origin of

Cn may be considered if D2n is replaced by a ball of sufficiently small radius, and if the Jacobian algebra
referred to below is suitably localized.
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as a complex vector space.

(3) We let H :=
{
τ ∈ C

∣∣ Im τ > 0
}

denote the complex upper half plane (the name τ of the complex
coordinate is traditional here), and consider the product bundle

H × C pr−→ H.

The group Z2 acts on the total space H × C via

Z2 × (H×C) −→ H×C ; (k, l) · (τ, z) = (τ, k+l τ+z)

preserving the fibres of the bundle, and this action gives rise to the orbit space

E := (H × C)/Z2

obtained by identifying (τ, w) with (τ, z) if and only if the difference w−z belongs to the lattice
Λτ := Z + Zτ ⊂ C. By the discreteness of this lattice sufficiently small restrictions of the identical
mapping (τ, z):H×C → H×C yield an atlas on E whose transition maps locally are affine linear.
Therefore the quotient space E is a smooth 4-manifold, and, even more, the projection induces a
smooth mapping E 3 [τ, z]

π7−→ τ ∈ H which is a proper submersion. Note that the fibre over τ ∈ H
is the torus Eτ = C/Λτ .

We now might apply Ehresmann’s theorem and conclude that E
π−→ H is a trivial fibre bundle —

but this would be overkill since a global trivialisation can be easily written down explicitly:

E oo '
[τ, x+yτ ]←7 (τ,x,y)

π

&&MMMMMMMMMMMMM H × R2/Z2

pr
yytttttttttt

H

In any case it is true that for all choices of τ ∈ H the fibres Eτ are diffeomorphic to each other, for
instance to the standard torus Ei = C/(Z+Zi) = R2/Z2.

The true interest of this example lies in the fact that it carries a richer than just a smooth structure.
The charts that define the differentiable structure of the manifold E not only take complex rather
than real values but also give rise to holomorphic transition functions. Therefore E in fact carries
the structure of a complex (holomorphic) manifold — a notion whose local theory is quite analogous
to ours; simply the notion of differentiable must be read as holomorphic throughout. Of course this
is also true for the upper half plane H, and our bundle projection π:E → H is a proper holomorphic
submersion. The fibres of π thus also are complex manifolds; they are rightfully called 1-dimensional
complex tori5. If Ehresmann’s theorem held for complex manifolds then in particular all these tori

5 They also turn out to be the elliptic curves of complex algebraic geometry. — Of course complex
dimension 1 means real — that is topological — dimension 2, a fact reflected in the traditional name of
Riemann surface for a 1-dimensional complex manifold.
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would be biholomorphically equivalent to each other — this is the accepted term for isomorphy in
the category of complex manifolds and holomorphic maps.

In reality the picture is quite different. The Eτ form a continuous family of generically biholomor-
phically inequivalent tori ; in order to make a simple precise statement let us say that there are
uncountably many τ ∈ H such that the corresponding complex tori Eτ are pairwise biholomorphi-
cally inequivalent.

To see this, we define an invariant that distinguishes inequivalent fibres. Fix any τ ∈ H. On a
complex manifold like Eτ the notion of holomorphic differential form makes sense, and here we have
the particular holomorphic 1-form dz:TEτ → C at hand: the global coordinate z of C provides local
coordinates on Eτ whose transition functions locally are translations, and thus have no effect on the
differential dz. Note that the complex rank of the bundle TEτ is just one, and since dz clearly has no
zeros, every further holomorphic 1-form must be a scalar multiple λ(z) ·dz of it. But then λ:Eτ → C
is a holomorphic function on the compact torus Eτ , and by the well-known maximum principle for
holomorphic functions must be a constant.

Let f : [ 0, 1]→ Eτ be a C∞ loop (closed curve) in Eτ . If it happens to be of the form

[ 0, 1]
f̃−→ C π−→ Eτ

for a smooth curve f̃ : [ 0, 1] → C then the difference f̃(1)− f̃(0) must belong to the lattice Λτ . On
the other hand this difference is the value of the path integral

∫
[0,1]

f∗dz =

∫
[0,1]

d(f̃∗π∗z) =

∫ 1

0

df̃ = f̃
∣∣∣1
0

= f̃(1)− f̃(0)

along f . It is not difficult to see that π is a covering projection and that every loop f lifts to a curve
f̃ , and we conclude that Λτ ⊂ C is the set of all path integrals of dz along arbitrary loops f in Eτ .

Let now τ ′ ∈ H be a second number and assume that there exists a biholomorphic equivalence
between Eτ and Eτ ′ .
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It must take the 1-form dz from Eτ to some holomorphic 1-form on Eτ ′ , that is to some constant
multiple λ · dz. Therefore the sets of path integrals are related by

Λτ = λ · Λτ ′ ⊂ C.

Explicitly this means that there exists an invertible matrix g =

 a b
c d

 ∈ GL(2,Z) with

g ·
 τ

1

 = λ ·
 τ ′

1


or, explicitly, τ ′ =

aτ + b

cτ + d
. Since GL(2,Z) is countable this proves our claim: there must exist

uncountably many τ ∈ H such that the corresponding complex tori Eτ are pairwise biholomorphically
inequivalent.

The picture is easily completed. The formula relating τ and τ ′ defines an action of the special linear
group SL(2,Z) on H, and this action has a so-called fundamental domain

F :=
{
τ ∈ H

∣∣ |Re τ | ≤ 1

2
and |τ | ≥ 1

}
.

Roughly speaking this statement means that every orbit in H intersects F in exactly one point of
the interior F ◦, or just finitely many points of the boundary F r F ◦. In particular any two distinct
τ ∈ F ◦ yield holomorphically inequivalent tori Eτ . In complex analysis as well as algebraic geometry
parameters like τ are called moduli , and parameter spaces like H moduli spaces — they describe
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continuous variations of the holomorphic or algebraic structure. They constitute a fundamental con-
trast with smooth manifold theory, since Ehresmann’s theorem implies that from the smooth point
of view such variations, at least in the compact case, must be trivial.

If we attempt to adapt the proof of Ehresmann’s theorem to the holomorphic setting, something of
course must break down, and it is easily identified: the identity theorem for holomorphic function
precludes the existence of holomorphic table mountains and thereby of partitions of unity.

Exercises

9.1 Let p:X → Y be a proper mapping between locally compact Hausdorff spaces. Prove that p sends
closed subsets of X to closed subsets of Y .

9.2 Let X be a smooth compact 2-manifold and f :X → R a function such that the differential of f vanishes
at exactly two points of X. Prove that X is homeomorphic to S2.

9.3 Putting a = −3/ 3
√

4 and X = (−∞, a) ∪ (a,∞) consider the projection

E :=
{(
s, [x :y :z]

)
∈ X×RP 2

∣∣ y2z = x3 + sxz + z3
} π−→ X

that sends
(
s, [x :y :z]

)
to s. Prove that E is a smooth manifold and that π restricts to a fibre bundle

over each of the two connected components of X.

Note [x : y : z] is the customary notation for the equivalence class of (x, y, z) ∈ S2 in RP 2 — it
emphasises the fact that what counts in a projective space is exactly the ratios between the numbers
x, y, and z.

9.4 Let X and E be manifolds, and E
π−→ R×X be a fibre bundle with compact fibre. Prove that the

bundle is isomorphic to the bundle

R×E′ id×π′−−−−→ R×X

where E′
π′−→ X is obtained from π by restriction over {0}×X :

E′

π′

��

π−1
(
{0}×X

)
� � //

��

E

π

��
X

' // {0}×X � � // R×X

9.5 Let E
π−→ Y be a fibre bundle with compact fibre, and let f0:X → Y and f1:X → Y be two smoothly

homotopic maps. Prove that the induced bundles f∗0E and f∗1E on X are isomorphic.

9.6 Let f ∈ C[z1, . . . , zn] be the quadratic polynomial f(z) =
∑n
j=1 z

2
j . Show that any choice of δ with

0 < δ < 1 is good in the sense that the restriction

E := D2n ∩ f−1Sδ(0) −→ Sδ(0)
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becomes a fibre bundle (the Milnor fibration). Prove that the Milnor fibre Eδ is diffeomorphic to the
total space of the unit disk bundle{

(u, v) ∈ TSn−1
∣∣ |v| ≤ 1

}
⊂ Sn−1×Rn

of the tangent bundle of Sn−1.

9.7 Verify that the formula  a b
c d

 · τ =
aτ + b

cτ + d

defines an action of the modular group Γ := PSL(2,Z) = SL(2,Z)/{±1} on the upper half plane H.
Prove that the set

F =
{
τ ∈ H

∣∣ |Re τ | ≤ 1

2
and |τ | ≥ 1

}
is a fundamental domain of the action. This means precisely

• that every orbit intersects F ,

• that this intersection consists either of just one point of the interior F ◦, or a finite subset of the
boundary F r F ◦, and

• that the isotropy group is trivial in the first case, and finite else.

What is the quotient H/Γ as a topological space?
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10 Lie Derivatives

The equivalence between flows and vector fields can be used to introduce a new kind of differentiation on an
arbitrary manifold.

10.1 Definition Let h:X → Y be a smooth map between manifolds. The process of pulling back differential
forms

ΩkY 3 χ 7−→ h∗χ ∈ ΩkX with (h∗χ)x(v1, . . . , vk) = χ
(
Txh · v1, . . . , Txh · vk

)
has no analogue for vector fields in general, but it does in the case that h is a local diffeomorphism:
a vector field η:Y → TY is sent to

h∗η := Th−1 ◦ η ◦ h, explicitly (h∗η)(x) = (Txh)
−1 · η

(
h(x)

)
.

Remarks As in previous sections we often indicate evaluation of a linear map on a vector by a dot rather
than use brackets. — Sections of any tensor product bundle E → X with (possibly repeated) factors
TX, (TX) ,̌ and their symmetric and alternating powers are called tensors or tensor fields on X.
The construction of h∗ extends from the vector fields and differential forms that we are mainly
considering, to such tensors α:X → E in general :

(h∗α)x = lh · αh(x)

where the linear mapping lh:Eh(x) → Ex is induced from one copy of (Txh)
−1

for each tensor factor
TX, and one of (Txh)ˇ for each factor TXˇ of E.

10.2 Definition We denote by VectX the real vector space of (smooth) vector fields on the manifold X.
For every k ∈ N there is a partial evaluation map

VectX × ΩkX 3 (ξ, ϕ) 7−→ ξ ϕ ∈ Ωk−1X

defined by

(ξ ϕ)x(v2, . . . , vk) = ϕ
(
ξ(x), v2, . . . , vk

)
(to be interpreted as zero for k = 0).

Note that this bilinear operation is purely algebraic like the wedge product of differential forms:
in order to know (ξ ϕ)x ∈ Altk−1X for fixed x ∈ X it is sufficient to know ξ(x) ∈ TxX and
ϕx ∈ Altk TxX. For k = 1 the operation reduces to the evaluation of linear forms on vectors, and is
usually written as such:

〈ξ, ϕ〉 := ξ ϕ ∈ Ω0X for ϕ ∈ Ω1X.

10.3 Definition Let X be a manifold, ξ ∈ VectX, and α another vector field or a differential form — or,
quite generally, any tensor on X. Then the Lie derivative of α with respect to ξ is defined as

Lξα =
d

dt
Φ∗tα

∣∣∣∣
t=0

where Φ is the maximal flow on X that integrates ξ.
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Explanation While Φt need not make global sense, in order to determine the derivative on the right hand
side near a point o ∈ X we only need Φt(x) = Φ(t, x) for t close to 0 ∈ R and x in some neighbourhood
of o : the flow will supply these values since its domain is open and includes {0}×X. — If the tensor
α is, say, a section of E → X then for fixed o ∈ X the assignment t 7→ (Φ∗tα)(o) is a curve in the
vector space Eo. Hence also (Lξα)(x) ∈ Eo, and therefore Lξα is a tensor of the same type as α.

10.4 Lemma Let Φ:D → X denote the maximal flow generated by ξ. The formula defining Lξα generalises
to the identities

d

dt
Φ∗tα (x) = LξΦ∗tα (x) = Φ∗tLξα (x) ,

valid for all times t and points x ∈ X with (t, x) ∈ D.

Proof For any fixed (t, x) ∈ D we have, using a time parameter τ close to 0,

d

dt
(Φ∗tα)(x) =

d

dτ
(Φ∗τ+tα)(x)

∣∣∣∣
τ=0

=
d

dτ

(
Φ∗τ (Φ∗tα)

)
(x)

∣∣∣∣
τ=0

= (LξΦ∗tα)(x)

and

d

dt
(Φ∗tα)(x) =

d

dτ
(Φ∗t+τα)(x)

∣∣∣∣
τ=0

=
d

dτ

(
Φ∗t (Φ

∗
τα)
)
(x)

∣∣∣∣
τ=0

= Φ∗t
d

dτ
(Φ∗τα)(x)

∣∣∣∣
τ=0

= (Φ∗tLξα)(x) .

In the second case we have used that the action of Φ∗t is by a linear mapping EΦ(t,x) → Ex.

Intuitively speaking Lξα is the infinitesimal change that α undergoes when ξ, more precisely the flow gen-
erated by ξ, is applied.

10.5 Example Let f ∈ Ω0X be a differential form of degree 0, in other words a smooth function on X.
Then

Lξf =
d

dt
(Φ∗t f)

∣∣∣∣
t=0

=
d

dt
(f ◦ Φt)

∣∣∣∣
t=0

= df ◦ ξ = 〈ξ, df〉

is a new function on X, its value at x is the directional derivative of f with respect to the tangent
vector ξ(x). In particular the value of Lξf at a point x depends only on ξ(x), not on other values of
ξ ; this is not a property of Lie derivatives in general. — Often the Lie action of the vector field ξ on
the smooth function f is written even shorter as ξf rather than Lξf .

10.6 Notation Let (U, h) be a chart for the n-dimensional manifold X and fix some i ∈ {1, . . . , n}. The
vector field ξ:U → TU = TX|U whose h-component has the constant value

ξ(x)h = Txh · ξ(x) = ei for all x ∈ U,

acts on functions on U by

ξf = d(f ◦ h−1) ◦ Th ◦ ξ =
〈
ei, d(f ◦ h−1)

〉
=

∂f

∂hi
.

This property, which uniquely determines ξ, explains the classical and seemingly weird notation
∂

∂hi
∈ VectU for this particular vector field. The fields

∂

∂h1
, . . . ,

∂

∂hn
∈ VectU

clearly are dual to the differential 1-forms dh1, . . . , dhn, so that
〈 ∂

∂hi
, dhj

〉
= δij . The notation

suggests the correct transition formula

∂

∂hi
=

n∑
j=1

∂kj
∂hi

∂

∂kj
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when the chart is changed to k. Unfortunately it also suggests that
∂

∂hi
might just depend on the

function hi and not the other components of h — this is not true, and unlike df which makes sense

for any scalar function f on X the expression
∂

∂f
has no meaning for general f .

10.7 Definition Let X be a manifold. A linear mapping D: Ω0X → Ω0X is called a derivation if it satisfies
the product rule

D(f · g) = Df · g + f ·Dg for all functions f, g ∈ Ω0X .

Similarly a linear function D: Ω0X → R is called a derivation at the point o ∈ X if

D(f · g) = Df · g(o) + f(o) ·Dg for all functions f, g ∈ Ω0X .

10.8 Proposition Let X be a manifold. Every derivation D is a local operator:

suppDf ⊂ supp f for all f ∈ Ω0X ,

and if D is a derivation at o ∈ X then Df = 0 unless o ∈ supp f .

Proof If D is a derivation and o ∈ X then the assignment Ω0X 3 f 7→ Df(o) ∈ R is a derivation at o ; thus
it is sufficient to prove the second statement, concerning a derivation D at the point o. To this end
we assume o /∈ supp f . We choose a table mountain τ :X → [0, 1] at o with τ · f = 0 and obtain

Df = D
(
(1−τ) · f

)
= D(1−τ) · f(o) + (1−τ)(o) ·Df = 0 .

It is clear that for every vector field ξ ∈ VectX the map Lξ: f 7→ ξf is a derivation, and that for a given
point o ∈ X and tangent vector v the assignment f 7→ (df)o · v defines a derivation at o. It turns out that
in fact all derivations at o are of this type:

10.9 Theorem Let X be a manifold and o ∈ X. The map that assigns to each vector v ∈ ToX the
derivation f 7→ (df)o · v is an isomorphism between ToX and the vector space of derivations at the
point o.

Proof In view of 10.8 and the possibility of extending smooth functions defined near o by a table mountain
the question is local near o, and we do not restrict the generality if we assume that X is covered by
the domain of a single chart h at o. Then, putting n = dimX, the derivation assigned to

v =

n∑
i=0

vi
∂

∂hi
∈ ToX

sends the j-th component function hj ∈ Ω0X to vj ∈ R, so that the coefficients of v can be recovered
from the derivation as vi = (dhi)o · v : this shows that the assignment is injective. To prove it is also
surjective it suffices to show that the vector space of derivations at o has dimension at most n.

We may work in a centred chart at o and thus assume that X ⊂ Rn is a convex open neighbourhood
of o = 0. By Taylor’s formula every smooth function f ∈ Ω0X may be written as

f(x) = f(0) +

n∑
i=0

xi · fi(x) with fi(x) =

∫ 1

0

∂f

∂xi
(tx) dt .

If now D is a derivation at 0 then firstly

D1 = D(1·1) = D1·1 + 1·D1 = 2·D1
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so that D1 = 0, and D annihilates constant functions. Secondly

D(xi · fi) = Dxi · fi(0) + xi(0) ·Dfi = Dxi · fi(0) ,

so that

Df =

n∑
i=0

Dxi · fi(0) =

n∑
i=0

Dxi ·
∂f

∂xi
(0) for all f ∈ Ω0X .

This expresses D as a linear combination of the n partial derivation operators at 0, and thereby
completes the proof of the lemma.

10.10 Lemma The Lie derivative with respect to a fixed vector field ξ is a derivation with respect to both
the wedge product of differential forms, and the partial evaluation map between vector fields and
differential forms:

Lξ(ϕ∧χ) = Lξϕ ∧ χ+ ϕ ∧ Lξχ and Lξ(η χ) = Lξη χ+ η Lξχ

— in fact for any bilinear algebraic tensor operation the analogue would be true. Furthermore the
Lie derivative commutes with the Cartan differential :

Lξ(dϕ) = d(Lξϕ).

Proof Let Φ:D → X be the maximal flow generated by ξ. Then

d

dt
Φ∗t (ϕ∧χ) =

d

dt
(Φ∗tϕ∧Φ∗tχ) =

d

dt
Φ∗tϕ ∧ Φ∗tχ+ Φ∗tϕ ∧

d

dt
Φ∗tχ ,

and
d

dt
Φ∗t (η χ) =

d

dt
(Φ∗t η Φ∗tχ) =

d

dt
Φ∗t η Φ∗tχ+ Φ∗t η

d

dt
Φ∗tχ .

Similarly we have
d

dt
Φ∗t (dϕ) =

d

dt
d(Φ∗tϕ) = d

( d
dt

Φ∗tϕ
)

since time and space derivatives commute with each other. Evaluation at t = 0 now yields the desired
identities.

10.11 Example Let (U, h) be a chart for the n-dimensional manifold X. By Lemma 10.10 the vector field

ξ =
∑
j

vj
∂

∂hj
acts on a general 1-form by

Lξ
n∑
i=1

ϕi dhi =

n∑
i=1

(Lξϕi dhi + ϕi dLξhi)

=

n∑
i=1

 n∑
j=1

vj
∂ϕi
∂hj

dhi + ϕi dvi


=

n∑
i,j=1

vj
∂ϕi
∂hj

dhi +

n∑
i,j=1

ϕi
∂vi
∂hj

dhj

=

n∑
i,j=1

(
vj
∂ϕi
∂hj

+
∂vj
∂hi

ϕj

)
dhi .

Note that the expression involves first derivatives of the coefficient functions vi, so that the Lie
derivative no longer is a pointwise operator with respect to ξ.
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The Lie derivative in 10.11 is the coordinate version of the degϕ = 1 case of the following more general
conceptual formula.

10.12 Theorem Let X be a manifold and ξ a vector field on X. The Lie derivative of a differential form
may be expressed as

Lξϕ = ξ dϕ+ d(ξ ϕ).

Proof We fix ξ ∈ VectX. From 10.10 we know that the left hand side of the formula behaves like an
(ungraded) derivation with respect to ϕ and the wedge product. If we write Dψ = ξ ψ then
the right hand side of the formula becomes (Dd+dD)ϕ. We know the Cartan differential d also
is a derivation, though a graded one2, and we now show that the latter is equally true for the
operator D. Since the value (Dψ)x only depends on ξ(x) and ψx this is a mere question of linear
algebra involving tangent spaces at a fixed point x. It is therefore sufficient to verify the equation

D(ψ∧χ) = Dψ∧χ±ψ∧Dχ for the case of ξ =
∂

∂h1
with respect to some chart h, and the differential

forms
ψ = dhi1∧ · · · ∧dhik and χ = dhj1∧ · · · ∧dhjl

with i1 < · · · < ik and j1 < · · · < jl. Inserting ξ =
∂

∂h1
into the wedge product we obtain

D
(
(dhi1∧ · · · ∧dhik) ∧ (dhj1∧ · · · ∧dhjl)

)
=


0 if i1 > 1 and j1 > 1 ,
(dhi2∧ · · · ∧dhik) ∧ (dhj1∧ · · · ∧dhjl) if i1 = 1 and j1 > 1 ,

(−1)
k
(dhi1∧ · · · ∧dhik) ∧ (dhj2∧ · · · ∧dhjl) if i1 > 1 and j1 = 1 ,

0 if i1 = 1 and j1 = 1 ,

which coincides with

D(dhi1∧ · · · ∧dhik) ∧ (dhj1∧ · · · ∧dhjl) + (−1)
k
(dhi1∧ · · · ∧dhik) ∧D(dhj1∧ · · · ∧dhjl)

=


0 + 0 if i1 > 1 and j1 > 1 ,
(dhi2∧ · · · ∧dhik) ∧ (dhj1∧ · · · ∧dhjl) + 0 if i1 = 1 and j1 > 1 ,

0 + (−1)
k
(dhi1∧ · · · ∧dhik) ∧ (dhj2∧ · · · ∧dhjl) if i1 > 1 and j1 = 1 ,

(dhi2∧ · · · ∧dhik) ∧ (dhj1∧ · · · ∧dhjl)
+(−1)

k
(dhi1∧ · · · ∧dhik) ∧ (dhj2∧ · · · ∧dhjl) if i1 = 1 and j1 = 1

(to make the two terms of the last expression cancel the factor dhi1 = dh1 is shifted past k−1 other
degree 1 factors to become dhj1).

We now know that d and D are graded derivations with respect to the wedge product, and it is
readily shown that Dd+dD then is an ungraded one. Thus both sides of Lξϕ = ξ dϕ + d(ξ ϕ)
are local operators and derivations with respect to ϕ, and this reduces the proof to the two cases of

a 0-form ϕ = f and of the special 1-forms ϕ = dhk. Again writing ξ =
∑
j

vj
∂

∂hj
, the first reads

Lξf = 〈ξ, df〉+ d 0

and was observed in Example 10.5 while the second,

Lξdhk =

n∑
i=1

∂vk
∂hi

dhi = ξ 0 + dvk

is included in Example 10.11.

2 We are here working with derivations that do not fit into the formal framework of Definition 10.7 because
they act on the algebra of differential forms rather than that of scalar functions.
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Note that the formula of Theorem 10.12 reduces to Lξϕ = d(ξ ϕ) whenever ϕ is a closed differential form.

10.13 Application Let X be an n-manifold and K ⊂ X a compact oriented n-dimensional submanifold

with boundary. Let further ξ be a vector field on X and R×X ⊃ D
Φ−→ X be the maximal flow

generated by ξ : since K is compact D contains a set of the form (−δ, δ)×K for some positive δ,
so that Φt:K → X is a well-defined smooth embedding for all times t close to zero. Under these
conditions the identity

d

dt

∫
K

Φ∗tω

∣∣∣∣
t=0

=

∫
∂K

(ξ ω)

holds for every differential form ω ∈ ΩnX.

Interpretation If ω is the density of some physical quantity, say charge, then the formula equates the
variation of total charge in K with the flow of charge across the boundary of K.

Proof Of course ω ∈ ΩnX is closed, so that Theorem 10.12 and Stokes’ formula yield∫
K

Lξω =

∫
K

d(ξ ω) =

∫
∂K

(ξ ω) .

We substitute the definition of the Lie derivative; since differentiation with respect to t commutes
with integration we obtain

d

dt

∫
K

Φ∗tω

∣∣∣∣
t=0

=

∫
K

d

dt
Φ∗tω

∣∣∣∣
t=0

=

∫
K

Lξω =

∫
∂K

(ξ ω) .

10.14 Definition Let X be an n-manifold, possibly with boundary, and assume that a volume form
ω ∈ ΩnX is given. Then multiplication by ω defines canonical isomorphisms

Ω0X 3 f 7−→ f · ω ∈ ΩnX and VectX 3 ξ 7−→ ξ ω ∈ Ωn−1X.

The new mapping that makes the diagram

VectX
div //

'
��

Ω0X

'
��

Ωn−1X
d // ΩnX

commutative and assigns a scalar function to each vector field is called the divergence.
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The intuitive meaning of the divergence is easily read off from the formula

Lξω = d(ξ ω) = div ξ · ω :

at every point x ∈ X the number div ξ(x) is the infinitesimal change that the local volume suffers under the
flow generated by ξ. In particular ξ expands or compresses volumes near x if div ξ(x) is positive or negative,
respectively — note in passing that this sign has nothing to do with orientations since the divergence remains
the same when ω is replaced by −ω and thus the orientation of X is flipped.

We turn from the Lie derivative of differential forms to that of vector fields as another basic instance of
tensor fields.

10.15 Example Let X be a manifold and ξ, η ∈ VectX two vector fields. In order to understand the Lie
derivative of η we calculate that of the evaluation bracket between η and an exact form df ∈ Ω1X :

Lξ〈η, df〉 = 〈Lξη, df〉+ 〈η,Lξdf〉

By 10.5 the left hand side and the first term of the right are respectively LξLηf and (Lξη)f , while
10.10 and again 10.5 show that the remaining term is 〈η,Lξdf〉 =

〈
η, d(Lξf)

〉
= LηLξf . The overall

result is

(Lξη)f = LξLηf − LηLξf for all smooth f :X → R ,

or

Lξη = ξ ◦ η − η ◦ ξ

if we write the operator f 7→ Lξf = ξf simply as ξ. Since the vector field Lξη ∈ VectX is uniquely
determined by its action on scalar functions we thus have found a new representation of it as the
commutator of the first order differential operators ξ and η — note that the composition ξ◦η = LξLη
is of second order but that its second order terms must cancel with those of LηLξ. Written out in a
chart (U, h) the formula reads

Lξη =

n∑
j,k=1

(
vk
∂wj
∂hk

− wk
∂vj
∂hk

)
∂

∂hj

with n = dimX and vector fields ξ =
∑
j vj

∂
∂hj

and η =
∑
j wj

∂
∂hj

on U .

10.16 Definition The bilinear mapping

VectX ×VectX 3 (ξ, η) 7−→ [ξ, η] := Lξη ∈ VectX
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is called the Lie bracket , and it gives the real vector space VectX the structure of a Lie algebra.
Apart from bilinearity the Lie algebra axioms require the now obvious skew-symmetry [η, ξ] = −[ξ, η]
and the so-called Jacobi identity[

ξ, [η, ζ]
]

+
[
η, [ζ, ξ]

]
+
[
ζ, [ξ, η]

]
= 0 for all ξ, η, ζ ∈ VectX ;

the latter is immediately verified by writing out the action of each term on scalar functions.

Lie algebras form an interesting class of algebraic objets, and an extensive theory is available, though much
more complete for algebras which have finite vector space dimension. By contrast the Lie algebra VectX has
infinite dimension up to the obvious exception of 0-manifolds X.

Exercises

10.1 Let X be an n-manifold with volume form ω ∈ ΩnX, and let Φ be a flow on X with velocity field ξ.
Prove for every compact equidimensional submanifold1 K ⊂ X the formula

d

dt

∫
Φt(K)

ω

∣∣∣∣∣
t=0

=

∫
K

div ξ · ω

which expresses the rate of change of volume as K is carried along by Φ.

10.2 Let X be an n-manifold, f :X → R a smooth function, and o ∈ X a critical point of f . Let further
ξ, η ∈ VectX be two vector fields. Prove that the values of

LξLηf and LηLξf

at the point o coincide and that they only depend on the tangent vectors ξ(o) and η(o) rather than
on the fields ξ and η. Express the number LξLηf(o) in terms of a chart (U, h) at o.

10.3 Let η =
∑n
j=1 wj

∂
∂xj

be a vector field on the open ball Un. Prove that the Lie bracket[ ∂

∂x1
, η
]
∈ VectUn

vanishes identically if and only if the values of the coefficient functions wj(x1, . . . , xn) do not depend
on x1.

10.4 Let Φ and Ψ be flows on the manifold X. Prove that the flows commute in the sense of

Φ
(
s,Ψ(t, x)

)
= Ψ

(
t,Φ(s, x)

)
for all x ∈ X and all s, t ∈ R sufficiently close to 0

if and only if their velocity fields ξ and η satisfy [ξ, η] = 0.

10.5 Let ξ, η ∈ VectX be vector fields on a manifold X such that [ξ, η] = 0. Prove that at every point
o ∈ X where ξ(o) and η(o) are linearly independent in ToX there exists a chart (U, h) for X such
that

ξ|U =
∂

∂h1
and η|U =

∂

∂h2
.

1 In fact any compact subset of X would do.
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11 Lie Groups

We already have informally met Lie groups in the context of the regular value theorem. The aim of this
section is to take a first systematic look at Lie groups — but we will not even get near to the heart of their
theory, since the latter by itself would be a subject for a full course.

11.1 Definition A Lie group G is, simultaneously, a smooth manifold and a group, such that the group
multiplication

G×G 3 (x, y) 7−→ xy ∈ G

is differentiable1. A homomorphism of Lie groups by definition is a differentiable group homomor-
phism.

A homomorphism of Lie groups R→ G is called a one parameter group of G (or in G)2.

11.2 Notation Let G be a Lie group. We will write G×G µ−→ G whenever a letter for the group multipli-
cation map is required. For any fixed g ∈ G we let

G 3 y λg7−→ gy ∈ G and G 3 x ρg7−→ xg ∈ G

denote the left, respectively right translation mapping . All these maps are smooth, and the translation
maps are diffeomorphisms as translation by g−1 inverts them. While for given elements g, h ∈ G the
translation λg need not commute with λh, the associative law guarantees that λg and ρh always
commute with each other.

11.3 Proposition Let G be a Lie group. Then the inverting map

G 3 x 7−→ x−1 ∈ G

also is smooth and therefore a self-diffeomorphism of G.

Proof Fix a point g ∈ G. The partial differential of µ:G×G → G with respect to the second variable at
the point (g, g−1) is just the differential Tg−1λg, and therefore invertible. By the implicit function
theorem there exist open neighbourhoods U ⊂ G of g and V ⊂ G of g−1 such that

µ−1{1} ∩ (U×V ) =
{

(x, y) ∈ U×V
∣∣ϕ(x) = y

}

1 It is not unusual to require the differentiability of the inverting map x 7→ x−1 as well, in order to keep
the definition analogous to that of a topological group. Proposition 11.3 below will show that this property
is a consequence of the definition as stated.

2 Of course these are not groups but mappings. Yet in the literature it is not uncommon even to call them
one parameter subgroups of G
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is the graph of a smooth function ϕ:U → V . This function necessarily sends x to x−1, and therefore
the inverting map is differentiable at g.

11.4 Definition Let G be a Lie group. The tangent space at the unit element

LieG := T1G

is called the Lie algebra of G. If f :G→ H is a homomorphism of Lie groups we will use Lie f as an
alternative notation for the differential T1f in order to emphasize functoriality of the Lie algebra.

Let us briefly recall examples of Lie groups that we have met before. The euclidean spaces Rn are abelian
Lie groups with respect to vector addition, and so are all finite dimensional real or complex vector spaces
V . Their Lie algebra LieV is canonically identified with V itself.

If such a V is fixed any collection of linearly independent vectors span a lattice Λ ⊂ V , and the quotient
V/Λ is an abelian Lie group with Lie algebra V . This class of Lie groups includes the explicit examples of
Λ = Zn ⊂ Rn = V as well as the complex tori C/Λτ — which in fact carry an even richer structure as
holomorphic Lie groups.

In the context of the regular value theorem we encountered some of the linear groups, namely the general
and special linear groups GL(n,R) and SL(n,R), and the orthogonal group O(n). Their Lie algebras are the
space of all n×n-matrices

LieGL(n,R) = gl(n,R) = Mat(n×n,R) ,

that of the traceless matrices

LieSL(n,R) = sl(n,R) =
{
x ∈ Mat(n×n,R)

∣∣ trx = 0
}
,

and that of the skew-symmetric matrices

LieO(n) = o(n) =
{
x ∈ Mat(n×n,R)

∣∣xt+x = 0
}

respectively.

11.5 Observation Let G be a Lie group. The tangent bundle of TG
π−→ G is canonically trivial : the

triangle

TG oo
T1λx·ξ ←7 (x,ξ)

π
!!BBBBBBBB G× LieG

pr
zzuuuuuuuuuu

G

describes a global trivialisation.

Proof The inverse sends η ∈ TG to Tπ(η)λπ(η)−1 · η.
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11.6 Definition A vector field ξ:G→ TG on the Lie group G is called left invariant if λ∗xξ = ξ for every
x ∈ G, or explicitly if for every x ∈ G the diagram

TG
Tλx //

OO

ξ

TGOO

ξ

G
λx // G

commutes.

11.7 Lemma If ξ is a left invariant vector field on the Lie group G then the corresponding maximal flow

R×G 3 D Φ−→ G is global and left invariant too:

Φ(t, gx) = g · Φ(t, x) for all t ∈ R and g, x ∈ G.

In particular the flow line through the unit element is a one parameter group of G.

Proof Fix a point x ∈ G and let Φx: (αx, ωx) → G be the maximal flow line through x. For any choice of
g ∈ G the curve

ϕg := λg ◦ Φx

starts at λg(x) = gx, satisfies

ϕ̇g(τ) =
d

dτ
(λg ◦Φ)(τ, x) = TΦ(τ,x)λg ·Φ̇(τ, x) = TΦ(τ,x)λg ·ξ

(
Φ(τ, x)

)
= ξ
(
(λg ◦Φ)(τ, x)

)
= (ξ◦ϕg)(τ)

and thus is an integral curve of ξ through gx.

We apply this fact in two ways. Firstly, if t is chosen such that (t, x) ∈ D the particular choice of
g := Φ(t, x)x−1 shows that

(αx, ωx) ⊂ (αΦ(t,x), ωΦ(t,x)) = (αx−t, ωx−t),

where the last identity is taken from Theorem 8.8. Since both negative and positive choices of t are
possible this implies that αx = −∞ and ωx = ∞. Therefore Φ is global. — Secondly, we read from
the identity of curves λg ◦ Φx = ϕg = Φgx the left invariance of Φ. It further implies for all s, t ∈ R
that

Φ(s+t, 1) = Φ
(
t,Φ(s, 1) · 1

)
= Φ(s, 1) · Φ(t, 1) ,

so that the curve t 7→ Φ(t, 1) is a homomorphism.

11.8 Corollary If ξ and η are two left invariant vector fields on the Lie group G then their Lie bracket
[ξ, η] ∈ VectG again is left invariant. Therefore the left invariant vector fields form a Lie subalgebra
of VectG.

Proof Let R×G Φ−→ G be the flow generated by ξ, and g ∈ G an arbitrary element. Then

λ∗g[ξ, η] = λ∗g
d

dt
Φ∗t η

∣∣∣∣
t=0

=
d

dt
λ∗gΦ

∗
t η

∣∣∣∣
t=0

=
d

dt
Φ∗tλ

∗
gη

∣∣∣∣
t=0

=
d

dt
Φ∗t η

∣∣∣∣
t=0

= [ξ, η] ;

note that λ∗g commutes with differentiation since the factor Tgxλ
−1
g contained in it is a linear mapping

for every x ∈ G.

11.9 Lemma and Definition Let G be a Lie group. Evaluation at the unit element ξ 7→ ξ(1) defines an
isomorphism from the vector space of left invariant vector fields on G to the Lie algebra LieG. This
isomorphism gives the vector space LieG a real Lie algebra structure and thereby justifies its name.
If f :G→ H is a Lie group homomorphism then the induced linear mapping

LieG
Lie f−−−−→ LieH
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is a homomorphism of Lie algebras.

Proof In order to invert the evaluation map ξ 7→ ξ(1) we assign to each vector ξ1 ∈ LieG the constant
section G 3 x 7→ (x, ξ1) ∈ G×LieG and then compose with the canonical trivialisation 11.5: the
resulting vector field G 3 x 7→ T1λx · ξ1 ∈ TG is left invariant by definition.

As to functoriality with respect to f :G → H we note that the differential Lie f = T1f may now be
re-interpreted as a map which assigns to every left invariant vector field ξ:G → TG a left invariant
vector field f∗ξ:H → TH such that (f∗ξ)(1) = T1f · ξ(1). This assignment makes the diagram

TG
Tf //

OO

ξ

THOO

f∗ξ

G
f // H

commutative since f is a homomorphism: given a fixed x ∈ G we calculate

Txf · ξ(x) = Txf · T1λx · ξ(1) = T1λf(x) · T1f · ξ(1) = T1λf(x) · (f∗ξ)(1) = (f∗ξ)
(
f(x)

)
.

Turning to the action of vector fields on a scalar function h:H → R we now obtain the identity

Lf∗ξh ◦ f = 〈f∗ξ, dh〉 ◦ f = 〈Tf · ξ, dh ◦ f〉 = 〈ξ, f∗dh〉 = Lξ(h ◦ f) ,

and if η is another left invariant vector field on G a second application of this identity yields

Lf∗ξLf∗ηh ◦ f = Lξ(Lf∗ηh ◦ f) = LξLη(h ◦ f) .

Using the representation 10.15 of the Lie bracket as a commutator we conclude that

L[f∗ξ,f∗η]h ◦ f = L[ξ,η](h ◦ f) = Lf∗[ξ,η]h ◦ f .

As this holds for all scalar functions h the vector fields [f∗ξ, f∗η] and f∗[ξ, η] take the same value at
least at the point 1 ∈ H. Since both are left invariant fields on H they coincide altogether.

Besides the interpretations of the Lie algebra as a tangent space, and the space of left invariant vector fields
there are others, which we now summarize.

11.10 Theorem Let G be a Lie group. There are canonical bijections between the following sets, and they
respect the vector space structures of the first and second:

• vectors in LieG = T1G, interpreted as tangent vectors at the unit element,

• elements of LieG, interpreted as left invariant vector fields on G,

• left invariant global flows on G, and

• one parameter groups of G.
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Proof The first two items have been linearly related in 11.9, and in 11.7 we have seen that every left
invariant vector field defines a left invariant global flow, which in turn restricts to a one parameter
group of G. If conversely ϕ:R → G is a one parameter group with, say, ϕ̇(0) = ξ ∈ LieG then the
formula

R×G 3 (t, x) 7−→ x · ϕ(t) ∈ G

defines a global flow on G which is clearly left invariant, and whose time derivative is

d

dt
x · ϕ(t)

∣∣∣∣
t=0

=
d

dt
(λx ◦ ϕ)(t)

∣∣∣∣
t=0

= Tϕ(0)λx · ϕ̇(0) = T1λx · ξ(1) = ξ(x) :

this must be the left invariant flow generated by ξ.

It is immediately verified that the various assignments we have described are compatible with each
other and thus also provide inverses.

In accordance with the basic idea of differential calculus we should expect the tangent space LieG = T1G
to hold at least local information about the Lie group G near the unit element. A first glance seems to
disappoint that hope: since the multiplication mapping µ satisfies µ(x, 1) = x = µ(1, x) for all x ∈ G its
differential T1µ:T1G×T1G → T1G must be just vector addition; therefore the differential T1µ reveals no
information whatsoever about µ itself. This may be interpreted saying that the group laws determine the
multiplication of a Lie group to first — that is, linear — order. Particular features of the multiplication,
including a failure to be commutative, are of higher order and not reflected in LieG as a mere vector space.
We will now see that the Lie algebra structure recovers the seemingly lost information. We begin with an
alternative description of the Lie bracket.

11.11 Definition and Theorem Let G be a Lie group. The group homomorphism

Ad:G −→ GL(LieG)

which assigns to x ∈ G the differential at 1 ∈ G of the conjugation map G 3 y 7→ xyx−1 ∈ G is
called the adjoint representation of the group G. Differentiating this homomorphism at 1 ∈ G and
using the canonical identification of the tangent space T1GL(LieG) with End(LieG) we obtain the
linear mapping

ad: LieG −→ End(LieG) ,

the adjoint representation of the algebra LieG. Its action is given by the Lie bracket:

ad(ξ) · η = [ξ, η] for all ξ, η ∈ LieG.

Proof Given left invariant vector fields ξ, η ∈ LieG we let ϕ, χ:R→ G be the corresponding one parameter
groups of G. For every s ∈ R we have

Ad
(
ϕ(s)

)
· η(1) = Ad

(
ϕ(s)

)
· χ̇(0) =

∂

∂t
ϕ(s)χ(t)ϕ(s)

−1

∣∣∣∣
t=0

by the chain rule, and further

ad(ξ) · η(1) = ad
(
ϕ̇(0)

)
· η(1) =

∂

∂s

∂

∂t
ϕ(s)χ(t)ϕ(s)

−1

∣∣∣∣
s=t=0

∈ T1G = LieG .

This formula implies that the vector field ad(ξ) · η acts on scalar functions f :G → R in such a way
that

(Lad(ξ)·ηf)(1) =
∂2

∂s ∂t
f
(
ϕ(s)χ(t)ϕ(s)

−1) ∣∣∣∣
s=t=0

.

To see this we first show that the right hand side defines a derivation

D: f 7−→ ∂2

∂s ∂t
f
(
ϕ(s)χ(t)ϕ(s)

−1) ∣∣∣∣
s=t=0
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at the unit element 1 ∈ G, satisfying D(f · g) = Df · g(1) + f(1) ·Dg for all functions f, g:G → R.

Indeed, abbreviating e(s, t) := ϕ(s)χ(t)ϕ(s)
−1

we observe e(s, 0) = 1 for all s, and calculate

D(f · g) =
∂

∂s

(〈∂e
∂t
, df ◦ e

〉
· (g ◦ e) + (f ◦ e) ·

〈∂e
∂t
, dg ◦ e

〉)∣∣∣∣
s=t=0

= Df · g(1) + f(1) ·Dg.

By Theorem 10.9 the derivation D must correspond to some tangent vector in T1G. To identify
this tangent vector we choose a chart h centred at the point 1 ∈ G : our previous calculation shows
that (Lad(ξ)·ηf)(1) = Df certainly holds if f is any of the cartesian components of h. Therefore
ad(ξ) · η(1) ∈ T1G is the tangent vector that corresponds to D, and the formula therefore holds for
all functions f .

Since the flows generated by ξ and η are (s, x) 7→ x · ϕ(s) and (t, y) 7→ y · χ(t), we can compute

∂

∂t
f
(
ϕ(s)χ(t)

) ∣∣∣∣
t=0

= Lηf
(
ϕ(s)

)
and further

∂2

∂s ∂t
f
(
ϕ(s)χ(t)

) ∣∣∣∣
s=t=0

=
∂

∂s
Lηf

(
ϕ(s)

) ∣∣∣∣
s=0

= LξLηf (1)

as well as, switching the roles of ϕ and χ,

∂2

∂s ∂t
f
(
χ(t)ϕ(s)

) ∣∣∣∣
s=t=0

= LηLξf (1).

The fact that the differential T1µ(1, 1) is just vector addition in T1G implies that products in G are
differentiated like usual bilinear products: the differential of a product z 7→ a(z) ·b(z) = µ

(
a(z), b(z)

)
at a point z with a(z) = b(z) = 1 ∈ G is

ζ 7→ ( 1 1 )

Tza · ζ
Tzb · ζ

 = (Tza+ Tzb) · ζ.

This allows us to finally evaluate

(Lad(ξ)·ηf)(1) =
∂2

∂s ∂t
f
(
ϕ(s) · χ(t) · ϕ(−s)

) ∣∣∣∣
s=t=0

=
∂2

∂s ∂t
f
(
ϕ(s) · χ(t)

) ∣∣∣∣
s=t=0

− ∂2

∂s ∂t
f
(
χ(t) · ϕ(s)

) ∣∣∣∣
s=t=0

= LξLηf (1)− LηLξf (1)

= (L[ξ,η]f)(1).

Thus the vector fields ad(ξ) · η and [ξ, η] agree at the unit element. Since both are left invariant they
agree everywhere.

11.12 Examples (1) For an abelian Lie group the adjoint representation of the group is constant, and
the Lie bracket vanishes identically: Lie algebras with this property are likewise called abelian or
commutative Lie algebras.

(2) The adjoint representation of the group GL(n,R) with Lie algebra gl(n,R) = Mat(n×n,R) is
given by

gl(n,R) 3 η Ad(x)7−−−−→ x η x−1 ∈ gl(n,R) ,

inducing that of the Lie algebra

gl(n,R) 3 η ad(ξ)7−−−−→ ξ η−η ξ ∈ gl(n,R) .
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Therefore the Lie bracket [ξ, η] of two matrices has the usual meaning as the commutator ξ η − η ξ.
By naturality of the Lie algebra structure this property is inherited by all Lie subgroups of GL(n,R).

Like curves on any manifold, one parameter groups of a Lie group have velocity vectors and therefore induce
infinitesimal data in tangent spaces. A special feature of Lie groups is that there also is a correspondence in
the opposite direction.

11.13 Definition and Lemma Let G be a Lie group. The exponential map

LieG
exp−−−−→ G

assigns to the vector ξ ∈ LieG the value ϕ(1) ∈ G of the one parameter group ϕ:R → G which
corresponds to ξ.

The exponential map is smooth, and its differential at 0 ∈ LieG is the identity mapping. The
exponential map also is natural : for every homomorphism of Lie groups f :G→ H the diagram

LieG
Lie f //

exp

��

LieH

exp

��
G

f // H

commutes.

Proof Throughout the proof we treat elements of the Lie algebra consistently as tangent vectors ξ ∈ T1G.
We denote the corresponding one parameter group by ϕξ and recall that

R×G 3 (t, x) 7−→ x · ϕξ(t) ∈ G

is the global flow of ξ, whose (left invariant) velocity field sends x ∈ G to T1λx · ξ ∈ TxG.

The first point in question is the smooth dependence of ϕξ on ξ. To this end we observe that the
tangent bundle of the manifold T1G×G contains the subbundle

pr∗ TG �
� //

&&LLLLLLLLLL T (T1G×G)

wwppppppppppp

T1G×G

induced from TG under the cartesian projection T1G×G
pr−→ G. The section

T1G×G 3 (ξ, x) 7−→ T1λx · ξ ∈ pr∗ TG
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of this bundle therefore defines a smooth vector field ξ̃ on T1G × G. The maximal flow determined
by ξ̃ acts as

R× T1G×G 3 (t, ξ, x) 7−→ Φ̃(t, ξ, x) :=
(
ξ, x · ϕξ(t)

)
∈ T1G×G .

Indeed the values of this formula depend smoothly on t and satisfy the differential equation

d

dt
Φ̃(t, ξ, x) =

(
0, Tϕξ(t)λx · T1λϕξ(t) · ξ

)
=
(
0, T1λx·ϕξ(t) · ξ

)
= ξ̃
(
ξ, x · ϕξ(t)

)
= (ξ̃ ◦ Φ̃)(t, ξ, x)

as well as the initial condition Φ̃(0, ξ, x) = (ξ, x) for all (ξ, x) ∈ T1G×G. In particular we now know
that Φ̃ is smooth, and since the exponential map can be written as the composition

LieG 3 ξ 7→ (1, ξ, 1) ∈ R× LieG×G Φ̃−→ LieG×G pr−→ G

it is smooth too.

In order to compute the differential

LieG = T0 LieG
T0 exp−−−−→ LieG

we consider a tangent vector ξ ∈ LieG. For every t ∈ R the curve

τ 7−→ ϕξ(t · τ)

is a one parameter group with initial velocity vector t · ξ, and therefore coincides with ϕtξ. This
implies that

d

dt
exp(t · ξ)

∣∣∣∣
t=0

=
d

dt
ϕtξ(1)

∣∣∣∣
t=0

=
d

dt
ϕξ(t)

∣∣∣∣
t=0

= ξ,

so that T0 exp is the identity as claimed.

Finally the naturality of the exponential map follows from the observation that for given ξ ∈ T1G
the curve f ◦ ϕξ is a one parameter group of H with initial velocity T1f · ϕ̇ξ(0) = T1f · ξ.

11.14 Examples (1) Let V be a finite dimensional real vector space, considered as a Lie group. To the
tangent vector ξ ∈ LieV = V there corresponds the one parameter group R 3 t 7→ tξ ∈ V , and the
exponential map is the identical mapping. If Λ ⊂ V is a lattice and we pass from V to the quotient
group V/Λ then the exponential map essentially becomes the quotient homomorphism:

Lie(V/Λ) = LieV = V −→ V/Λ

(2) The group GL(n,R) has Lie algebra gl(n,R) = Mat(n×n,R), and the one parameter group
corresponding to the matrix ξ ∈ gl(n,R) is

R 3 t 7−→ exp(tξ) =

∞∑
j=0

1

j!
tjξj ∈ GL(n,R) ,

so that the exponential map is

gl(n,R) 3 ξ 7−→ exp ξ =

∞∑
j=0

1

j!
ξj ∈ GL(n,R) .

The name of exponential map goes back to this fundamental example. That we are truly dealing
with a one parameter group in GL(n,R) follows from the observation exp 0 = 1 and the functional
relation

exp(ξ+η) =

∞∑
m=0

1

m!
(ξ+η)

j
=

∞∑
j,k=0

1

j!

1

k!
ξjηk = exp ξ · exp η
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valid for all commuting matrices ξ and η : the proof relies on absolute convergence and may be copied
word by word from the well-known scalar case.

By naturality of the exponential map its description as a power series passes to all Lie subgroups of
GL(n,R). The simplest example is the special linear group SL(n,R) ⊂ GL(n,R) of Example 2.4(4)
with Lie algebra

sl(n,R) =
{
ξ ∈ Mat(n×n,R)

∣∣ tr ξ = 0
}
,

and it shows in particular that the condition tr ξ = 0 implies det exp ξ = 1.

The fact that the exponential map is a local diffeomorphism at the origin of the Lie algebra — as follows
from 11.13 by the local inverse theorem — makes the relation between a Lie group and its tangent space at
the unit a particularly tight one. A first striking consequence is this :

11.15 Theorem Let G and H be Lie groups, G connected. Homomorphisms G
f−→ H are uniquely

determined by their differentials LieG
Lie f−−−−→ LieH.

Proof The image of LieG
exp−→ G contains a neighbourhood of 1 ∈ G ; therefore the subgroup generated by

this image is an open subgroup of G. All its cosets in G likewise are open, and since G is connected
this subgroup must be all of G.

By naturality of the exponential map two homorphisms f and f ′ with Lie f = Lie f ′ must coincide
on the image set exp(LieG) ⊂ G and therefore on the subgroup generated by it, which we have just
seen is G itself.

The exponential map need not be a group homomorphism, nor need it be surjective even for a connected
Lie group. The following lemma gives more precise information on the first point.

11.16 Theorem Let be a connected Lie group. The exponential map LieG
exp−→ G is a group homomor-

phism if and only if G is abelian. In this case exp also surjective.

Proof Assume that LieG
exp−→ G is a homomorphism. Then its image is a subgroup which — as we saw

in the previous proof — must be all G. Thus the exponential map is surjective, and since LieG is
commutative under addition so is the group multiplication of G.

Assume conversely that G is abelian. Then the multiplication map G×G µ−→ G is a homomorphism
of Lie groups, and by naturality of the exponential map the diagram

LieG× LieG
Lieµ //

expG×G

��

LieG

expG

��
G×G

µ // G

commutes. The exponential map of G×G is expG×expG, and the differential of µ is vector addition
in LieG : thus the commutativity of the diagram just means that expG is a group homomorphism.

11.17 Corollary Every connected abelian Lie group is isomorphic to (S1)
r × Rs for integers r, s ∈ N.

Proof Let G be a connected abelian Lie group. By Theorem 11.16 the exponential map is a surjective

homomorphism of Lie groups LieG
exp−→ G. We know from 11.13 that LieG

exp−→ G is a local diffeo-
morphism at 0 ∈ LieG ; therefore Λ := kernel exp ⊂ LieG is a discrete subgroup, and the induced
homomorphism (LieG)/Λ → G is a diffeomorphism and thus an isomorphism of Lie groups. On
the other hand, as a discrete subgroup of a finite dimensional real vector space Λ is known3 to be
a lattice, that is, the additive subgroup spanned by a set of linearly independent vectors in LieG.
Up to isomorphism we may assume that LieG = Rr+s is a Euclidean space and that Λ ⊂ LieG is

3 If you wish to prove this the hint for Exercise 2.13 may be helpful.
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spanned by the first r standard base vectors e1, . . . , er ∈ Rr+s = LieG. This makes (LieG)/Λ and
thereby G isomorphic to Rr/Zr × Rs = (S1)

r × Rs.

In view of this corollary the theory of Lie groups is mainly about Lie groups which are not commutative. A
fact that unexpectedly carries over from the commutative case is that the algebraic structure of a Lie group
is quite faithfully reflected in the — now non-trivial — multiplicative structure of its Lie algebra: this allows
to study Lie groups by methods of linear algebra and thus once more perfectly fits into the general concept
of differential calculus.

Exercises

11.1 Let G be a Lie group. Show that the connected component of the unit element is a normal Lie
subgroup of G.

11.2 Prove that every bijective homomorphism of Lie groups is an isomorphism.

11.3 Show that that every connected Lie group of dimension 1 is abelian.

11.4 Let ϕ:R→ SO(3) be a non-trivial one parameter group. Prove that the image of ϕ is a Lie subgroup
isomorphic to S1.

11.5 Let G be a Lie group. Explain why the right invariant vector fields on G — those ξ ∈ VectG with
ρ∗yξ = ξ for all y ∈ G — form a Lie subalgebra of VectG and prove that this subalgebra is canonically
isomorphic to LieG.

11.6 Let G be a Lie group. Prove the formula

exp
(
Ad(g) · ξ

)
= g · exp ξ · g−1

for all g ∈ G and ξ ∈ LieG.

11.7 Let G be a holomorphic Lie group. Prove that if G is compact and connected, then G is abelian.

11.8 Prove that the exponential map of the Lie group SO(n) is surjective.

11.9 Determine the image of the exponential map of the Lie group SL(2,R).

Hint Study the trace of exp ξ for ξ ∈ sl(2,R).

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 135

12 Symplectic Manifolds

12.1 Symplectic Linear Algebra A symplectic structure on a finite dimensional real vector space V is
a form ω ∈ Alt2 V which has full rank in the sense that the linear mapping

V 3 v 7−→ ω(v, ?) ∈ V ˇ

is an isomorphism. A symplectic vector space is a vector space with a symplectic form on it, and a
linear isomorphism f : (V, ω)→ (V ′, ω′) between such spaces is symplectic if ω = f∗ω′.

Every symplectic vector space (V, ω) admits symplectic bases, with respect to which the skew-
symmetric matrix of ω is  0 1

−1 0

 ∈ Mat(2n×2n,R) ,

built from the unit matrix 1 ∈ Mat(n×n,R); in particular dimV = 2n must be even. If the base
(b1, . . . , bn, c1, . . . , cn) of V ˇ is dual to a symplectic base we have

ω =

n∑
j=1

bj∧cj ∈ Alt2 V,

and therefore

1

n!
ωn =

1

n!
ω ∧ · · · ∧ ω = (b1∧c1) ∧ (b2∧c2) ∧ · · · ∧ (bn∧cn) ∈ Alt2n V

is a volume form on V .

Note that a linear subspace L ⊂ V does not in general inherit a symplectic structure from (V, ω).
While its orthogonal complement

L⊥ := {v ∈ V |ω(v, w) = 0 for all w ∈ L} ⊂ V

always has the complementary dimension 2n−dimL it need not be a linear complement to L in
V . If it is then ω does restrict to a symplectic structure on L. At the other extreme subspaces
L ⊂ V with L ⊂ L⊥ are called isotropic ; among them there are all one-dimensional subspaces. The
maximal isotropic subspaces have dimension n and are called Lagrangian. For instance in terms of
any symplectic base Rn×{0}n and {0}n×Rn correspond to Lagrangian subspaces.

12.2 Definition A symplectic manifold is a differentiable manifold X with a symplectic form on it, which
in turn means a differential form ω ∈ Ω2X which is closed and restricts for each x ∈ X to a symplectic
structure ωx ∈ Alt2 TxX on the tangent space. A local diffeomorphism f : (X,ω)→ (X ′, ω′) is called
symplectic if ω = f∗ω′.

12.3 Examples (1) Every open subset X ⊂ R2n = {(p1, . . . , pn, q1, . . . , qn)} carries the standard symplec-
tic form

ω =

n∑
j=1

dpj ∧ dqj

and thus is a symplectic manifold.

(2) A symplectic structure on a surface — a smooth manifold X of dimension two — is the same as
a volume form (or rather a surface form) on X.
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(3) Let X be an arbitrary n-manifold. The total space of the cotangent bundle TˇX
π−→ X carries

a natural 1-form ψ ∈ Ω1TˇX which is defined as follows. Given a point ξ ∈ (TxX)ˇ ⊂ TˇX and a
tangent vector v ∈ Tξ(TˇX) the value of the linear form ψξ on v is

ψξ(v) =
〈
v, (Tξπ)

∗
ξ
〉
Tξ(TˇX)

=
〈
Tξπ · v, ξ

〉
TxX
∈ R.

Every chart (U, q) for X induces a chart

T q̌:TˇU −→ q(U)×Rn

for the manifold TˇX — essentially the corresponding bundle chart for the cotangent bundle; it
sends ξ ∈ (TxU)ˇ to the pair

(
q(x), p(ξ)

)
∈ q(U)×Rn where the component pj of p(ξ) = (p1, . . . , pn)

is determined by evaluation on the j-th standard vector ej ∈ Rn :

pj = ξ · (Txq)−1 · ej =
〈 ∂

∂qj
, ξ
〉

Note that the diagram

TˇU
T q̌=(q,p) //

π

��

q(U)×Rn

pr

��
U

q // q(U)

commutes by definition. Returning to the natural 1-form ψ defined above we see that its value on

the tangent vector
∂

∂qj
∈ Tξ(TˇU) is just pj . Since ψ clearly annihilates all tangent vectors to the

fibres of π this means that

ψ =

n∑
j=1

pj · dqj

is the expression of ψ in terms of the chart (TˇU, T q̌) = (TˇU, q, p). It is remarkable that the
expression of this differential form is the same for all charts q. It further results that the 2-form

ω := dψ =

n∑
j=1

dpj ∧ dqj ∈ Ω2TˇX

is a symplectic form: thus the total space of every cotangent bundle is a symplectic manifold in a
canonical way.

12.4 Darboux’s Theorem Let X be a symplectic 2n-manifold, and let o ∈ X be a point. Then there
exists a symplectic chart (U, p, q) at o : one which is a symplectic diffeomorphism onto an open subset
V ⊂ R2n with its standard symplectic form

∑
j dpj∧dqj .

Notes We have recorded in 12.1 that every symplectic vector space admits a symplectic base. Stated in
another way, any two 2n-dimensional symplectic vector spaces are symplectically isomorphic to each
other. In a similar vein Darboux’s theorem states that any two symplectic 2n-manifolds are locally
related by symplectic diffeomorphisms. This theorem thus stands in the same relation to the existence
of symplectic bases as the constant rank theorem 2.5 to the existence of normal forms for linear
mappings between two vector spaces.

As a consequence of Darboux’s theorem there can be no local invariant that would distinguish between
two different symplectic manifolds.1

1 The situation is quite different in differential geometry, which studies smooth manifolds equipped with
a Riemannian metric on the tangent bundle. In differential geometry the curvature is just such an invariant.
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Proof It will be shown that locally any given symplectic form can be smoothly deformed into a standard
form. We begin with a few simple preparations.

The statement being local we need but consider the case where X ⊂ R2n is an open subset and o = 0.
Also after a linear transformation we may assume that the value of the symplectic form ω at 0 ∈ X
is the standard form

ω0 =

n∑
j=1

dpj ∧ dqj ∈ Alt2 R2n.

As a final preparation we shrink X ⊂ R2n to an open ball centred at the origin.

On the (2n+1)-manifold R×X we denote the extra coordinate by t and consider the differential
forms

ω̃ := (1−t) · ω + t · ω0 ∈ Ω2(R×X) and Ω := dt ∧ ω̃ ∈ Ω3(R×X)

where ω ∈ Ω2(R×X) is shorthand for the pull-back pr∗ω under the projection pr:R×X → X, while
ω0 is now re-interpreted as a differential form with constant coefficients in Ω2X or Ω2(R×X). We
define the open subset Y ⊂ R×X as

Y =
{

(t, x) ∈ R×X
∣∣ ω̃t,x|({0}×R2n) ∈ Alt2 R2n has full rank

}
and note that R×{0} ⊂ Y .

The central tool in the proof Darboux’s theorem is a maximal flow

R× Y ⊃ D Φ−→ Y

that we will construct on the manifold Y . It will have the following properties:

(1) Φ(τ, t, 0) is defined for all τ, t ∈ R, and its value is Φ(τ, t, 0) = (τ+t, 0).

(2) The diagram

R× Y

id× pr

��

D? _oo Φ // Y

pr

��
R× R

(τ,t)7−→τ+t // R
commutes.

(3) At every point (t, x) the identity Φ∗τΩ = Ω holds for all τ ∈ R such that (τ, t, x) ∈ D.

Once we have such a flow the conclusion of the theorem will follow. For (1) implies that there is an
open neighbourhood U ⊂ X of the origin such that [0, 1]×{0}×U ⊂ D, so that in particular the
restriction of Φ

Φ1: {0} × U −→ Y

is defined. By (2) we have Φτ (t, x) ∈ {τ+t}×X whenever the left hand side is defined, in particular
Φ1 sends {0}×U into {1}×X and thus restricts to a diffeomorphism

Φ1: {0} × U '−→ {1} × V
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for a suitable open subset V ⊂ X which by (1) contains the origin. Lastly from (3) we know that
Ω = Φ∗1Ω, or

dt ∧ ω̃ = Φ∗1(dt ∧ ω̃) = dΦ∗1t ∧ Φ∗1ω̃ = dt ∧ Φ∗1ω̃.

Partial evaluation on the vector field ∂
∂t yields

ω̃ = Φ∗1ω̃ − dt ∧
( ∂
∂t

Φ∗1ω̃
)

— recall from the proof of 10.12 that partial evaluation is a graded derivation and note that ω̃
contains no dt. Restricting this identity of 2-forms to {0}×U we finally obtain

ω = ω̃|t=0 = (Φ∗1ω̃)|t=0 = Φ∗1 (ω̃|t=1) = Φ∗1ω0.

Therefore Φ1, read as a mapping U
'−→ V , is a symplectic chart for X.

We now turn to the construction of the maximal flow Φ. We rely, of course, on the standard technique
of constructing the corresponding vector field ξ on Y instead. In order to learn which properties we
must give ξ we differentiate the requirements listed under (1–3) and thereby translate them into
properties of ξ.

(1) This becomes ξ(t, 0) =
d

dτ
Φ(τ, t, 0)

∣∣∣∣
τ=0

=
d

dτ
(τ+t, 0)

∣∣∣∣
τ=0

=
∂

∂t
for all t ∈ R.

(2) Here differentiation yields

Tt,x pr · ξ(t, x) =
d

dτ

(
pr ◦Φ(τ, t, x)

)∣∣∣∣
τ=0

=
d

dτ
(τ+t)

∣∣∣∣
τ=0

=
∂

∂t
for all (t, x) ∈ Y.

In other words ξ must have the form

ξ =
∂

∂t
+ ξ′ =

∂

∂t
+

n∑
j=1

ξj
∂

∂pj
+

n∑
j=1

ηj
∂

∂qj

with coefficient functions ξj , ηj :Y → R which by (1) must vanish identically along R×{0}.
(3) Translation of the last condition simply gives

LξΩ =
d

dτ
(Φ∗τΩ)

∣∣∣∣
τ=0

=
d

dτ
Ω

∣∣∣∣
τ=0

= 0.

Conversely, if ξ is any vector field on Y with these three properties we integrate it to obtain the

maximal flow R× Y ⊃ D Φ−→ Y . By uniqueness of integral curves we recover the original conditions
imposed on Φ:

(1) For every t ∈ R the assignment τ 7→ (τ+t, 0) defines an integral curve of ξ, which must coincide
with Φt,0.

(2) For all (t, x) ∈ Y the curve ϕ: τ 7→ pr ◦Φt,x is an integral curve of the vector field ∂
∂t on R, thus

we must have ϕ(τ) = τ+t for all τ .

(3) Fix any (t, x) ∈ Y . The time derivative of the curve

τ 7→ (Φ∗τΩ)t,x ∈ Alt3 R2n+1

vanishes identically, so it is the curve with constant value Ωt,x.

It remains to construct a vector field ξ with properties (1–3). Let us first work out the third condition
LξΩ = 0 in more detail. We begin with

LξΩ = Lξ(dt ∧ ω̃) = dLξt ∧ ω̃ + dt ∧ Lξω̃ = dt ∧ Lξω̃

c© 2011–2016 Klaus Wirthmüller



K. Wirthmüller : Manifolds 2011–2016 139

using that Lξt = 〈ξ, dt〉 = 1 in view of (2). Expanding the Lie derivative

Lξω̃ = d(ξ ω̃) + ξ d
(
(1−t) · ω + t · ω0

)
= d(ξ ω̃)− ξ

(
dt ∧ (ω−ω0)

)
= d(ξ ω̃)− (ω−ω0) + dt ∧

(
ξ (ω−ω0)

)
we see that condition (3) becomes equivalent to

dt ∧
(
d(ξ ω̃)− (ω−ω0)

)
= 0.

This suggests how to construct ξ : The symplectic forms ω and ω0 are closed forms on X, and so is
their difference ω−ω0 ∈ Ω2X. By Poincaré’s lemma the latter even is exact, say ω−ω0 = dψ with
ψ ∈ Ω1X. We adjust ψ so that it vanishes at the point 0 ∈ X ; this is possible simply because the
base forms

dhj1∧ · · · ∧dhjk
with respect to any chart h whatever are closed.

Let
p:Y ⊂ R×X pr−→ X

denote the restriction of the Cartesian projection. The assignment ξ′ 7→ ξ′ ω̃ defines a homomor-
phism

Y × T0X

pr

%%KKKKKKKKKKK p∗TX
' //

��

p∗TˇX

��

Y ×Alt1 T0X

pr

wwppppppppppppp

Y Y

of (trivial) vector bundles, in fact an isomorphism since by the choice of Y the alternating form
ω̃t,x|({0}×R2n) ∈ Alt2 R2n has full rank at all points (t, x) ∈ Y . Therefore there is a unique ∂

∂t -free
vector field

ξ′ =

n∑
j=1

ξj
∂

∂pj
+

n∑
j=1

ηj
∂

∂qj

on Y with ξ′ ω̃ = p∗ψ. Since ψ vanishes at 0 ∈ X the field ξ′ vanishes along R×{0} ⊂ Y . We finally
put ξ = ∂

∂t + ξ′ ; then obviously (1) and (2) are true, and so is (3):

LξΩ = dt ∧
(
d(ξ ω̃)− (ω−ω0)

)
= dt ∧

(
d(ξ′ ω̃)− dψ

)
= 0.

This completes the proof of Darboux’s theorem.

12.5 Definition A vector field ξ on a symplectic manifold (X,ω) is called symplectic if

Lξω = 0

or equivalently if the flow it generates preserves the symplectic form ω. As ω is closed the condition
may be rephrased as d(ξ ω) = 0.

The easiest way to ensure this is to make ξ ω an exact form: let H:X → R be any smooth function,
and let the vector field ξ correspond to −dH ∈ Ω1X under the isomorphism

VectX 3 ξ 7−→ ξ ω ∈ Ω1X.

In this case ξ is called a Hamiltonian vector field , and the function H, which is well-defined up to
addition of a locally constant function, its Hamiltonian.

Notes Every symplectic vector field ξ on a 2n-manifold X must preserve the symplectic volume of X :

Lξ(
1

n!
ωn) =

1

n!
n · Lξω ∧ ωn−1 = 0.
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This fact was first observed studying the equations of motion of certain mechanical systems; it is
known as Liouville’s theorem though in the context of symplectic geometry it is a mere observation.

The Hamiltonian H of a vector field ξ is automatically invariant under the flow of ξ, since

LξH = ξ dH = ξ (−ξ ω) = 0

— recall ω(v, v) = 0 for all tangent vectors v. In classical language H is said to be a first integral of
ξ. In particular cases there may exist other first integrals, but not more than n independent ones, in
a sense that would need to be made precise.

12.6 Example The 1-dimensional pendulum consists of a rod suspended at one end with a mass fixed
to the other; its movement under the earth’s gravitational field is restricted to a vertical plane
that passes through the point of suspension. The mass is idealised as concentrated in a single point
while the rod is massless, and the gravitational field is assumed a constant parallel field that points
downwards.

Using suitable units the configuration space of the pendulum — that is, the manifold of its possible
positions — is the unit circle S1 with a coordinate q (defined up to addition of multiples of 2π) which
measures the counter-clockwise angle from the downward vertical to the rod.

As in abundantly many physical systems the canonical fibre coordinate p on the cotangent bundle
TˇS1 = S1×R is naturally identified with momentum, making TˇS1 itself the phase space of the
system. The total energy is a function H:TˇS1 → R called the Hamiltonian, and is easily determined
explicitly as the sum of kinetic and potential energy:

H(p, q) =
1

2
p2 − cos q

The corresponding Hamiltonian vector field ξ gives the equations of motion of the pendulum. The
possible trajectories of the system in phase space are the flow lines obtained by integrating ξ. Each
flow line is uniquely determined by its starting point, and this is one advantage of phase over con-
figuration space: while the flow lines project from TˇS1 to trajectories in S1 there are many of the
latter that pass through a given starting point, corresponding to different initial velocities.

From the formula for H and the symplectic form dp∧dq the field ξ is immediately worked out:

ξ = −∂H
∂q
· ∂
∂p

+
∂H

∂p
· ∂
∂q

= − sin q · ∂
∂p

+ p · ∂
∂q

Thus the equation of motion is the differential equation

ṗ = − sin q

q̇ = p

which would become the second order equation q̈ = − sin q on the configuration space S1.
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The vector field ξ is globally integrable. As remarked above, the Hamiltonian H takes a constant
value E — the total energy — along each flow line, and in this example energy furthermore turns
out to provide a perfect classification of the orbits.

• The lowest possible value E = −1 is taken at (q, p) = (0, 0) ∈ TˇS1, which is a fixed point and
corresponds to the pendulum at rest in the stable equilibrium position.

• The other critical point of H is (π, 0) with value E = 1. We immediately recognise the unstable
equilibrium position of the pendulum. The remainder of the fibre H−1{1} r {(π, 0)} is made up of
two embedded orbits attached to (π, 0) in the form of loops. They represent a pendulum that has
just the energy necessary to rise to the top but never reaches it (in finite time as physicists would
add).

• All other orbits are periodic. A fibre H−1{E} with −1 < E < 1 consists of a single orbit which is
periodic and displays the typical pendulum movement with turning points at ±Q(E) := arccos(−E).
At the turning points all the energy is potential.

• Finally for E > 1 the kinetic energy is positive throughout, and the pendulum rotates continu-
ously. The fibre H−1{E} accommodates two embedded orbits of which the sense of rotation selects
one.

Exercises

12.1 Verify the facts of symplectic linear algebra stated at the beginning of the section.

12.2 The area form ω := χ|S2 constructed in Exercise 6.1 turns the 2-sphere into a symplectic manifold.
Compute the vector field ξ on S2 derived from the height function H = z as a Hamiltonian, and
determine the flow generated by it.

12.3 Let X be a smooth n-manifold with a Riemannian metric s on its tangent bundle. According to

4.14(1) the metric determines a bundle isomorphism TX
'−→ TˇX, which may be used to pull back
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the canonical form ω of Example 12.3(3) to a symplectic form on the total space TX. Given a chart
q of X, express this form in terms of the corresponding chart

Tq: (x, v) 7−→
(
q(x), Txq · v

)
of TX and the scalar products sij = s

(
∂
∂qi
, ∂
∂qj

)
for i, j = 1, . . . , n.

Note Physicists have no scruples to write the i-th component of Txq · v as q̇i even though this is
a free coordinate which does not depend in any way on the values of q. You may wish to do the
exercise using his notation.

12.4 Prove what is stated in Example 12.6 about the trajectories of the pendulum.

12.5 Prove that in Example 12.6 the orbit of energy E ∈ (−1, 1) has period

T (E) = 2
√

2

∫ Q(E)

0

dq√
cos q − cosQ(E)

while those with E > 1 have period

T (E) =
√

2

∫ π

0

dq√
cos q + E

.
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