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Abstract

Advanced sensing systems, sophisticated algorithms, and increasing com-

putational resources continuously enhance the advanced driver assistance

systems (ADAS). To date, despite that some vehicle based approaches to

driver fatigue/drowsiness detection have been realized and deployed, objec-

tively and reliably detecting the fatigue/drowsiness state of driver without

compromising driving experience still remains challenging. In general, the

choice of input sensorial information is limited in the state-of-the-art work.

On the other hand, smart and safe driving, as representative future trends

in the automotive industry worldwide, increasingly demands the new di-

mensional human-vehicle interactions, as well as the associated behavioral

and bioinformatical data perception of driver. Thus, the goal of this re-

search work is to investigate the employment of general and custom 3D-

CMOS sensing concepts for the driver status monitoring, and to explore

the improvement by merging/fusing this information with other salient cus-

tomized information sources for gaining robustness/reliability. This thesis

presents an effective multi-sensor approach with novel features to driver

status monitoring and intention prediction aimed at drowsiness detection

based on a multi-sensor intelligent assistance system – DeCaDrive, which

is implemented on an integrated soft-computing system with multi-sensing

interfaces in a simulated driving environment. Utilizing active illumination,

the IR depth camera of the realized system can provide rich facial and body

features in 3D in a non-intrusive manner. In addition, steering angle sensor,

pulse rate sensor, and embedded impedance spectroscopy sensor are incor-

porated to aid in the detection/prediction of driver’s state and intention.

A holistic design methodology for ADAS encompassing both driver- and

vehicle-based approaches to driver assistance is discussed in the thesis as

well. Multi-sensor data fusion and hierarchical SVM techniques are used in



DeCaDrive to facilitate the classification of driver drowsiness levels based on

which a warning can be issued in order to prevent possible traffic accidents.

The realized DeCaDrive system achieves up to 99.66% classification accu-

racy on the defined drowsiness levels, and exhibits promising features such

as head/eye tracking, blink detection, gaze estimation that can be utilized

in human-vehicle interactions. However, the driver’s state of ”microsleep”

can hardly be reflected in the sensor features of the implemented system.

General improvements on the sensitivity of sensory components and on the

system computation power are required to address this issue. Possible new

features and development considerations for DeCaDrive are discussed as

well in the thesis aiming to gain market acceptance in the future.



Kurzfassung

Fahrsicherheit ist eine der essentiellsten Anforderungen an Systeme zur

menschlichen Mobilität. Die Erreichung aktiver Sicherheit durch Fahreras-

sistenzsysteme hat den Weg zu den heutigen ’Mainstream’ Automobilan-

wendungen bereitet.

Obwohl einige fahrzeugbasierte Lösungen zur Fahrermüdigkeitserkennung

realisiert und kommerziell eingesetzt worden sind, bleibt bis zum heutigem

Stand eine objektive und zuverlässige Müdigkeitserkennung des Fahrers

ohne Kompromisse hinsichtlich des Fahrerlebnisses nach wie vor eine Her-

ausforderung. Im Stand der Technik wird im Allgemeinen die Wahl der

sensorischen Eingangsdaten solcher Systeme beschränkt. Andererseits ver-

langt ’smartes’ und sicheres Fahren, als Vertreter des Zukunftstrends in der

weltweiten Automobilindustrie, zunehmend die neue dimensionale Mensch-

Fahrzeug-Interaktion, sowie die damit verbundene Verhaltens- und bioinfor-

matische Datenerfassung des Fahrers. Daher ist das Ziel dieser Forschungsar-

beit die Anwendung von generischen und kundenspezifischen 3D-CMOS-

Sensorkonzepten für die Fahrerzustandsüberwachung zu untersuchen und

mögliche Verbesserung zu explorieren, insbesondere durch die Fusion dieser

Informationen mit anderen geeigneten maßgeschneiderten Informationsque-

llen zur Erhöhung der Robustheit und Zuverlässigkeit der Erkennung.

In der vorliegenden Arbeit wird DeCaDrive, eine effektive multisensorische

Systemlösung mit neuartigen Eigenschaften für die Müdigkeitserkennung

des Fahrers auf Basis von spezieller IR-basierter Tiefenmessung und einge-

betteter Impedanzspektroskopie, sowie Multisensordatenfusion und Soft-

Computing Algorithmen, vorgestellt. Vielversprechende Validierungsergeb-

nisse von bis zu 99, 66% Klassifikationsgenauigkeit konnten für dieMüdigkeit-

serkennung mit eigens akquirierten on-line Daten im Demonstrator erreicht



werden. Allerdings spiegelt sich der Fahrerzustand ’Sekundenschlaf’ bislang

unzureichend in den Sensormerkmalen und der Entscheidungsfähigkeit des

implementierten Systems wider. Allgemeine Verbesserungen der Empfind-

lichkeit der sensorischen Komponenten und der System-Rechenleistung wer-

den benötigt, um dieses Problem zu beheben.

Eine der offenen Fragen in der DeCaDrive Systemmodellierung ist die Defi-

nition des sogenannten ’Ground-Truth’ für die tatsächlichen Wachheit oder

Schläfrigkeit der Probanden, die in dieser Arbeit noch heuristisch ermittelt

wurde. In Zukunft können EEG-basierten Methoden, die in der Schlaf-

forschung weit verbreitet verwendet werden, mit entsprechendem Aufwand

angepasst und genutzt werden, um eine bessere, objektive Bestimmung des

tatsächlichen Zustands (’Ground-Truth’) zu gewinnen. Ein weiteres Prob-

lem ist eine potenzielle Personabhängigkeit in dem Klassifizierungssystem

aufgrund der begrenzten Anzahl und Phänotypen der Probanden, die durch

die Erweiterung Probandenzahl und der Datenbank dieser Arbeit folgend

in den nächsten Schritten überwunden werden kann. Die Robustheit von

DeCaDrive müsste vom jetzigen Forschungsprototyp ausgehend mit umfan-

greicheren statistischen Analysen und mit Daten aus realen Fahrszenarien

untersucht und in Richtung eines Produkts verbessert werden.

Ein wesentlicher Beitrag der Arbeit ist die detaillierte Untersuchung und

Nutzung von 3D-Embedded-Vision Technologien, insbesondere Tiefenkam-

eras, im Bereich der Mensch-Fahrzeug-Interaktionen. Basierend auf neuar-

tigen IR-Tiefenmesssystemen und anderen vielversprechenden Sensortech-

niken, sowie Sensordatenfusion wurde ein multisensorisches intelligentes

Assistenzsystem für Fahrer- Zustandsüberwachung und Absichtserkennung

entworfen, als Prototyp implementiert und auf erste Datensätze angewen-

det. Die Fusion heterogener sensorischen Quellen mit dem Ziel der ro-

busten Müdigkeitserkennung wurde dabei untersucht und umgesetzt. Leis-

tungsstarke Methoden der Computational Intelligence, d.h., hierarchische

SVMs für die Entscheidungsfindung und Funktionalität des automatischen

Systementwurfs intelligenter Systeme wurden für eine optimale Parameter-

suche sowie Sensor-Funktion Bestimmung eingesetzt. Weiterhin wurde das



System auf eine neue Open-Access Multi-Plattform Umgebung gebracht,

die u.a. eine Cross-Plattform-Funktionalität ermöglichen soll.

Das vorgeschlagene Systemkonzept und -architektur ist nicht nur für Pkw,

sondern insbesondere für Nutzfahrzeuge, sowie die Überwachung der Führer

von schweren, gefährlichen und/oder teueren Anlagen in Landwirtschaft,

Industrie, der Luft- und Raumfahrt usw. von Nutzen.

Trotz des Trends der Automobilelektronikund der immer noch langsamen

Fortschritte in Richtung vollständig autonomes Fahren gehören Systeme

wie DeCaDrive zu den grundlegenden Komponenten der Mensch-Fahrzeug-

Interaktionen in der aktiven Sicherheit und werden noch auf längere Sicht

einen Beitrag zur Mensch zentrierten sicheren Mobilität leisten.

Ergänzend zur Müdigkeitserkennung kann die Erfassungsfähigkeit von De-

CaDrive durch den modularen Ansatz in Richtung umfassender Fahrerzu-

standserkennung in komplexen Fahrszenarien erweitert werden. Die Ko-

rrelationsstudie der bioelektrischen Impedanz und des menschlichen emo-

tionalen Zustand kann folgend durchgeführt werden. Eine neue Generation

von Mensch-Fahrzeug-Schnittstellen kann auf DeCaDrive aufgebaut wer-

den, beispielsweise mit neuen Freiheitsgraden zur 3D-bildbasierten Gesten-

steuerung, Bioinformatik-basierten Interaktionen usw.

Mit steigender Nachfrage bzgl. Automotive Safety Integrity Level (ASIL)

von E/E-Systeme in der Automobilindustrie, und durch eine Fallstudie des

Airbag-Systems inspiriert, kann das präsentierte DeCaDrive System er-

weitert werden, um den Fahrer-/die Insassensicherheit in Bezug auf die

Fahrzeuginnenraumüberwachung erhöhen. In der Umgebung von Airbags-

und Sicherheitssteuergeräte, ist die Kenntnis der Position des Insassenkopfes

zum Zeitpunkt des Aufpralls von besonderem Interesse, sowie die Ver-

folgung der Orientierung und Position der Extremitäten und des Torso

der Insassen. Basierend auf diesen Informationen können intelligentere

Entscheidungen getroffen werden, die Auswirkungen oder die Schwere der

Verletzungen der Insassen zu minimieren. Eine auf DeCaDrive basierende

Plattform mit Fahrer- bzw. Insassenzustandsüberwachung könnte künftig



somit dem Fahrzeugsicherheitssystem ermöglichen, komplexere Algorith-

men auszuführen, intelligentere Entscheidungen zu treffen, und die Sicher-

heitsmaßnahmen in einer effektiveren Art und Weise durchzuführen.
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Chapter 1

Introduction

This chapter gives an introduction to the research work being proposed in this thesis,

where the motivation of the thesis is highlighted along with the underlined goal of the

research work. Afterwards, the thesis structure is described in detail.

1.1 Motivation

Nowadays the major trends of automotive applications such as electric vehicles, connec-

tivity in particular vehicle-to-vehicle, vehicle-to-infrastructure communications (here-

inafter referred to as V2X), semi-autonomous/autonomous driving, etc. will lead to the

future of automotive world with human-centered safe and sustainable mobility through

renewable energy and smart driving. Despite completely autonomous automated land

vehicles are technically possible (e.g., Google driverless car [Google]) human’s active

role will not diminish but refocus on cooperative interactions by means of re-defined/re-

invented human-vehicle interfaces. To realize this vision, advanced driver assistance sys-

tems (ADAS) have paved the way to the mass market automotive applications such as

parking assistance, 3D surround view, lane departure warning, traffic sign and pedes-

trian recognition, etc. to assist the driver, enhance safety, improve convenience and

economy.

Drowsy driving is a serious problem that impacts road safety and can cause huge

damage to life and property. As conservatively estimated by National Highway Traffic

Safety Administration (NHTSA), 1,550 deaths, 71,000 injuries, and $12.5 billion mon-

etary losses are the result of 100,000 police-reported crashes which are directly caused

1



1. INTRODUCTION

by drowsy driving each year in the United States [Drowsy14]. A study by the Federal

Highway Research Institute (BASt) in Germany presented that drowsy driving was the

second most frequent cause of serious truck accidents on German highways [EA05]. Due

to severe damage caused by drowsy truck or bus drivers it is urgent to extend active

safety to cope with driver drowsiness in commercial vehicles.

In recent years, ADAS systems with the feature of driver drowsiness/vigilance de-

tection have been introduced by major automakers as active safety measures. Driver

Alert from Ford Motor Company [Ford] and Driver Alert Control and Lane Depar-

ture Warning from Volvo [Volvo] are camera based lane tracking system which can

detect abnormal car movement associated with potential drowsy driving. Attention

Assist from Daimler [Daimler] is capable of monitoring steering behavior with the aid

of high resolution steering sensor and issue visual or audible alarm if required. Fatigue

Detection System from Volkswagen [VW] and Driver Monitoring System from Toyota

[Toyota] are directly focusing on driver state in terms of head movement, facial fea-

tures and ocular measures. The technical details of above mentioned ADAS systems

are summarized in Table 1.1.

Table 1.1: Summary of ADAS systems featuring driver drowsiness detection

Vendor System Name Integrated Sensor Technology and Algorithm

Ford Driver Alert
Front and side Camera based

mounted cameras lane detection and tracking

Daimler Attention Assist Steering sensor
High resolution steering sensor based

driving behavior monitoring

Volkswagen Fatigue Detection System Video camera
Driver monitoring based on

head movement and facial features

Toyota Driver Monitoring System
CCD camera with Driver monitoring based on

infrared LED ocular measures

Volvo
Driver Alert Control and

CMOS Cameras
Car movement monitoring and

Lane Departure Warning lane tracking

The driver drowsiness measures being used in such ADAS systems are either de-

rived from the human (driver-based approach) or from the vehicle (vehicle-based ap-

proach) [BSH12]. For driver-based approach, e.g., ocular measures are computed from

images captured by machine vision sensors (mono-focal/stereo, grayscale/chromatic)

[EHFK09]. The quality of such measures is significantly impacted by ambient illumina-

tion, head movement, facial expression, eyewear, etc. For vehicle-based approach, e.g.,

2



1.1 Motivation

vehicle lateral position appears to be a key indicator of driver drowsiness, which can

be estimated by detecting lane markings through vision sensors or cameras. A detailed

survey on video-based lane detection techniques can be found in [MCT06], where the

novel video-based lane estimation and tracking (VioLET) system was presented, which

provides greater robustness to complex shadowing and lighting changes. However, mis-

detection of lane marking edges or detected lane markings with low contrast due to

varying lighting conditions, shadows, and complex scenarios on roadways make the ro-

bust lane position estimation often a challenge. Reliable solutions for driver drowsiness

detection based on multi-measure approach and associated extensive sensor fusion are

still sparse [BSH12].

Depth registration and exploitation in computer vision has been of significant and

constantly increasing interest and importance. For instance, in automotive and robot

vision systems, depth perception has predominantly been achieved by stereo vision

systems and computationally intensive algorithms for disparity computation, e.g., block

matching. The stereo camera system with its intrinsic demands on judicious placement

and calibration of stereoscopic camera modules, however, was not in favor of cost-

sensitive and mobile applications, such as mass market gaming electronics, human-

computer interfaces, or robotic applications. Vibrations in mobile systems are another

obstacle in the use of such systems.

In recent times, it is exciting to see that IR depth cameras, impedance spectroscopy

(IS), electroencephalogram (EEG), and other advanced sensor electronics gain more and

more attention in automobile industry worldwide. They bring new opportunity to meet

the challenge in driver drowsiness detection, or say, in general driver status detection

and intention prediction, by achieving better detection accuracy, better robustness

against sensor failures, and better driving experience in human-vehicle interactions.

Seeing increasing demand on Automotive Safety Integrity Level (ASIL) 1 for electri-

cal and electronic (E/E) systems in automobile, ADAS with ASIL-compliant diversified

redundancy can contribute to the overall improved road safety for all the users of road.

The performance and robustness of such systems are, however, as described above, lim-

ited by sensing capability and application environment. Reinforcement and expansion

in system level with regard to extensive sensory input and computational intelligence

1Automotive Safety Integrity Level (ASIL) is a risk classification scheme defined by the ISO 26262

- Functional Safety for Road Vehicles standard [ISO26262].

3



1. INTRODUCTION

are therefore desirable. On the other hand, the automotive segment, including utility

vehicles, continuously demands cheap and low-power system solutions for high volume

applications in safety related driver assistance. To gain industrial acceptance affordable

system solutions spanning from sensor components to application software are to be

developed to the best possible extent.

1.2 The Goal of the Thesis

Driven by advanced sensing systems, sophisticated algorithms and growing computa-

tional resources, increasing leverage can be seen in the design of intelligent systems.

In particular, human-machine-interface and its related monitoring and assistance sys-

tems, e.g., for multimedia (eye-tracking, gesture recognition, human-activity/behavior-

recognition), ambient assisted living or active safety technologies for vehicles, can con-

siderably benefit from the technological advances.

Aiming to underline the potential of IR depth cameras in such application fields a

comprehensive study on advances of sensor electronics in 3D embedded vision, that can

be adopted in automotive applications, in particular for safety related driver assistance

purposes, is conducted in the thesis.

Furthermore, one major goal of the thesis is to investigate the extensive fusion

of heterogeneous sensory sources for more robust driver drowsiness detection without

compromising driving experience.

In addition, a low-cost/affordable system solution with small footprint and low-

power energy profile is in the focus of this research work. On detection of drowsy

driving, such a system can issue audible, visual, or tactile (vibration) signal to alert

the driver, and to take necessary remedies to mitigate dangerous situations.

Finally, it is aimed to propose an emerging framework of multi-sensor intelligent

assistance system towards generalized approach to driver status monitoring and as

long-range goal, driver intention prediction for passenger and commercial vehicles, po-

tentially also for aircrafts. Hence, in the thesis a multi-sensor approach based on color

and depth vision, vehicle driving data, and biomedical driver data with efficient sensor

fusion and machine learning system architecture has been pursued towards automotive

mass market.

4



1.3 Thesis Structure

1.3 Thesis Structure

The content of the thesis is organized as follows. After the introduction in Chap-

ter 1 an overview of the state-of-the-art ADAS systems is briefly given in Chapter 2

with simultaneous consideration of the role of such systems in a hierarchical control

model. Technical trends and gaps in the field of automotive active safety with respect

to driver drowsiness detection and the demands on the new generation of human-vehicle

interfaces are discussed in this chapter. Chapter 3 highlights the advances of sensor

electronics for ADAS with the focus on 3D embedded vision, such as novel IR depth

cameras which are investigated in the context of automotive applications. Besides,

when and where such diversified vision sensor technologies can be applied are dis-

cussed in the chapter as well. The building blocks for ADAS system modeling aimed

at driver drowsiness detection, or say, general driver status monitoring, are discussed

in Chapter 4 with regard to the state-of-the-art measurement and sensory principles,

feature extraction from smart sensors, as well as the consideration of interconnection

among building blocks. Based on previously discussed advanced sensor electronics and

building blocks, Chapter 5 subsequently introduces advanced ADAS architectures that

feature scalability and self-x-concepts. In addition, the problem definition, sensory data

processing pipeline, and the associated classification techniques are addressed in this

chapter. Afterwards, the proposed system architecture and its actual implementation

for driver status detection and intention prediction are described in Chapter 6. The sys-

tem implementation with respect to its hardware framework (e.g., system components

and setup, multi-sensor interface), software framework (e.g., sensor data processing

and fusion algorithm), as well as the associated human-vehicle interfaces are addressed

in this chapter. The system validation through the experimental work in a simulated

driving environment is described in Chapter 7. Finally, the thesis is summarized and

concluded in Chapter 8.
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Chapter 2

Advanced Driver Assistance

System

This chapter provides an overview of the state-of-the-art driving assistance system.

The urgency of market penetration of ADAS in commercial vehicle systems to meet

active safety demands is underlined here.

2.1 State-of-the-Art ADAS

As key components of smart driving Advanced Driver Assistance Systems (ADAS), in

general, have been on the agenda of automotive and related industry for nearly two

decades now. Inspired by the previous research projects, e.g., the Electronic Eye [See97]

research program of the German Federal Ministry of Education and Research (BMBF)

back to the mid nineties, Sleep-Eye-Detectors or Overtake-Monitors (OTM) [SKSK99]

that focused both on CMOS sensing with high dynamic range and high speed as well

as dedicated massively parallel digital computation platforms, an extension to ADAS

has been pursued in the presented work towards smart driving that brings optimized

human-vehicle interface and safety features.

Advanced driver assistance systems are intended for automated, adapted, or en-

hanced vehicle systems with better safety and adaptive features. Those features are

designed to alert the driver to potential risks on the road, or to avoid collisions by us-

ing safeguards and taking over control of the vehicle if required. From adaptive cruise

control, lane departure warning, traffic sign recognition, and pedestrian protection, to
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2. ADVANCED DRIVER ASSISTANCE SYSTEM

adaptive lighting, night vision, to automatic parking, automatic braking and collision

avoidance, to driver drowsiness detection, and finally to autonomous driving, modern

ADAS systems have evolved rapidly with rich features towards future smart driving.

Adaptive Cruise Control (ACC) also called autonomous or radar cruise control, is an

optional cruise control system for road vehicles that automatically adjusts the vehicle

speed to maintain a safe distance from vehicles ahead. Lane Departure Warning (LDW)

is a mechanism designed to warn a driver when the vehicle starts to move out of its lane

(unless a turn signal is on in that direction) on motorways and arterial roads. Traffic

sign recognition enables vehicle to recognize traffic signs on the road automatically,

e.g., ”speed limit” or ”stop” or ”turn left ahead”, so as to remind/warn the driver to

adjust his driving activity accordingly. Adaptive headlights can redirect the beams

according to the moving direction and current position of the vehicle to increase the

visibility around curves and over hills. As an active safety feature adaptive headlights

are particularly helpful for driving at night or under poor light conditions.

The following systems are designed to minimize accidents and improve road safety

by addressing the main causes of collisions: driver error, distractions and drowsiness.

Automatic parking is an autonomous car-maneuvering system that moves a vehicle from

a traffic lane into a parking spot to perform parallel, perpendicular or angle parking.

The parking maneuver is achieved by means of coordinated control of the steering

angle and speed which takes into account the actual situation in the environment to

ensure collision-free motion within the available space. Collision avoidance also known

as pre-crash system, forward collision warning system or collision mitigating system,

uses radar (all-weather compliant) and sometimes laser and camera (both sensor types

are ineffective against bad weather) to detect an imminent crash. Once the detection

is done, these systems either provide a warning to the driver in case of an imminent

collision, or take action autonomously without any driver input (by braking or steering

or both). Driver drowsiness detection is able to awaken the drowsy driver via acoustic

or optical pre-warning signals and assist him to get the vehicle back to the safe state.

Modern ADAS functions can be realized based upon vision/camera systems, radar

sensor technology, as well as other advanced sensor electronics along with sophisticated

hardware and software components. Many ADAS features can be found in cars as

standard build-in functions, while some features are provided as add-on packages. In

addition, there are various aftermarket ADAS solutions for late model cars.

8



2.2 ADAS in Joint Cognitive System

2.2 ADAS in Joint Cognitive System

2.2.1 Hierarchical Control Model

Driving behavior can be regarded as control activity on controlled systems, here vehi-

cles, to achieve predefined goals, for instance, reaching destination within acceptable

time frame. Based on Neisser’s cognitive cycle concept [Nei76], the Contextual Control

Model (COCOM) is introduced to cope with human control of process by Hollnagel

and Woods [HW05]. In this model the controller and controlled systems are viewed as

an integral Joint Cognitive System (JCS). As depicted in Fig. 2.1 the cyclical model

describes the performance of JCS as a mixture of feedback and feedforward control

activities.

Figure 2.1: COCOM - The Contextual Control Model [EH98, HW05].

The model shows how action is carried out in a proactive way depending on the

controller/controlling system (construct) and the expectations for future, which in turn

is reactive to the events/feedback received by the system. The described cyclical model

can be elaborated with temporal constraints of dynamic actions and be extended from

individual to co-operative actions [Hol98].

A control process in pursuit of a single goal can be sufficiently described in COCOM.

However, the driving behavior in general is a set of control processes pursuing several

(sub-)goals within different time frames. In a top-down hierarchy four control layers

are postulated to address the driving behavior: targeting, monitoring, regulating and
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tracking. The targeting level sets the general goal(s) of the driving task, e.g., destination

and direction, which determines the objectives for the underlying monitoring layer. It

should be noted that other goals may be pursued simultaneously that are irrelevant to

the driving task, e.g., talking to a passenger, listening to the radio. At the monitoring

level it is focused on the control of the state of JCS, here the joint driver-vehicle system.

It involves monitoring the location and state of the vehicle, as well as different conditions

of the traffic environment, e.g., speed limits, congestion, weather. Control processes in

the scope of regulating layer are intended to avoid collision with other traffic items. To

achieve this sub-goal, it requires tracking control in the underlying layer to maintain

the safe state of JCS. In general, tracking control involves the corrective actions against

disturbances on the vehicle, e.g., sliding, jerking.

Figure 2.2: ECOM - The Extended Control Model [HNL03, HW05].

As discussed above, the practical driving task can be interpreted as a set of simul-

taneous, interrelated and layered control processes by extending the COCOM model to

the extended control model - ECOM as shown in Fig. 2.2. A key property of ECOM is

that the goals or target values for the control process of a given layer are determined

by the control process in the upper layer [OPTE05].

Various ADAS functions can be mapped in the introduced hierarchical control model

as illustrated in Fig. 2.3. In-Vehicle Infotainment System (IVIS) functions, e.g., radio
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Figure 2.3: ADAS in ECOM - The proposed mapping of the ADAS/IVIS categories

and some example functions onto the ECOM layers [OPTE05].

are referred here as well along with ADAS, though IVIS functions are usually not or

less relevant to the driving control processes. ADAS functions can serve concurrent

activities to achieve the target values at different control layers. For instance, the

functions like ACC and ABS that contribute to the control of vehicle dynamics, belong

to the tracking layer. The features like LDW, speed alert, as well as collision avoidance,

which intentionally assist the driver to perform compensatory control on the vehicle

to keep the safety margins to other items in road traffic while maintaining the travel

direction and proper speed in an anticipatory manner, reside in the regulating and

monitoring layers. Setting the destination and planning the route, which, e.g., can be

assisted by the car navigation system, is regarded as targeting control process.

In particular, the scope of monitoring layer can be extended to cover the controller in

JCS, here the driver, so as to address the overall safe state monitoring of the joint driver-

vehicle system. Thus, driver drowsiness/fatigue detection serves the control process in

monitoring layer along with, e.g., the speed alert function, which is focused on the

vehicle state itself. Navigation or infotainment functions can support driving tasks on
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targeting level by providing, e.g., route, traffic, weather information. Hence, it is often

considered as an intersection of ADAS and IVIS. Non-driving related functions, such

as HVAC, MP3 player, mobile phone, are categorized in IVIS mainly residing outside

of ECOM.

2.2.2 Driver Status Monitoring and Intention Prediction

The ECOM model gives an overview on how control processes at different levels are

in relation to each other, and how top level goal(s) can be broken down and prop-

agate across interlayers to corrective vehicle control actions. For example, adjusting

the route to destination after getting traffic information from the navigation system

(targeting), as well as the car speed from dashboard (monitoring) may consequently

trigger the control processes in reducing the car speed (regulating) and changing the

lane (regulating/tracking).

The functional characteristics of the different control types of ECOM are summa-

rized in Table 2.1. The control processes in targeting and monitoring are generally

feed-forward, or say, anticipatory control, while the regulating control is usually a mix-

ture of feedback and feed-forward control. The lower layer tracking control is a typically

feedback referring to momentary corrections on the actual vehicle state according to a

desired state.

Table 2.1: Summary of functional characteristics of different control types [HW05]

Tracking Regulating Monitoring Targeting

Type of Compensatory Anticipatory Condition monitoring Goal setting

control (feedback) (feedforward + feedback) (feedback) (feedforward)

Demands to None High (unfamiliar actions) Low High

attention (pre-attentive) Low (familiar actions) (intermittent) (concentrated)

Frequency of
Continuous

Medium to high Intermittent, Low (preparations,

occurrence (context dependent) but regular re-targeting)

Information
Present Present + Future Past + Present

Past + (Present)

needs + Future

Driver status monitoring and intention prediction proposed in the thesis is intended

to serve/assist overall driving activity that can be interpreted as four control layers in

ECOM (see Fig. 2.2). Although driver status along with vehicle dynamics represent

the state of JCS in the ”present” and ”past”, which can affect all the control layers,
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such information of driver is viewed, however, less relevant to driving control processes,

thus, remains as an open topic when designing a conventional transportation system.

Similarly, looking into the information needed for regulating and targeting layers, driver

intention implies future expectation and intended state of the JCS, therefore, can be

utilized to improve the efficiency of the JCS and the overall driving experience in a

proactive manner. For example, assuming the inattentive control of a drowsy driver is

monitored and detected by the driver assistance system; warning is given subsequently,

attempting to make the driver fully concentrate again on tracking and regulating tasks;

the driver may want to slow down the vehicle and find a parking lot, in order to take

a break; if the driver’s intention can be predicted by the system, it may give route

information to driver and/or issue control assistance, which help accomplish tasks in

targeting and monitoring layers. Thus, general driver status monitoring and intention

prediction can be employed in the JCS across different control layers of ECOM model

to enhance driver-vehicle interaction.

Driver drowsiness/fatigue or vigilance/alertness detection is in the scope of general

driver status monitoring. As mentioned previously in Chapter 1.1, there are driver-

based approach and vehicle-based approach to driver drowsiness detection. The driver-

based approach utilizes various direct measures including steering angle, pressure on

throttle, brake, and clutch pedals, as well as indirect measures with respect to biomed-

ical information of driver from ECG, heart beat rate (HBR), PERCLOS, to impedance

spectroscopy and EEG. Direct measures can reflect the interaction between driver (con-

troller) and vehicle (controlled system). For example, the relation between the steering

wheel angle of driver’s steering motion and the resulted lane position of vehicle has been

studied in [SP96], and driver drowsiness is further estimated based on such information

[TF05, DH06]. For indirect measures on the other hand, a vision-based drowsiness de-

tector, using driver’s ocular measures, has been proposed and implemented by Bergasa

et al. based on a realistic driving simulator [BNS06], and afterwards it has been en-

hanced through IR stereo camera in a real-time driver monitoring system [GBB10].

In [Yu09] biosensors have been embedded in steering wheel to nonintrusively measure

heart beat pulse signals for driver drowsiness detection. Furthermore, it should be

noted that an ECG and EEG based non-intrusive driver assistance system for vital

signal monitoring has been proposed by Ye Sun et al. in [SY14]. Finally, an imple-
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mentation approach combing both direct and indirect measures, i.e., driver’s steering

motion and eye status, is proposed and validated in [FZC09].

For vehicle-based approach, lane position and its associated vehicle dynamics such as

speed, heading angle are intensively investigated using video cameras and/or radar/laser

sensors, and based on that various lane departure warning (LDW) systems are proposed

in [MCT06, HYHF09, CBH09, ABTT10].

The approaches to determination of drivers’ mind state are categorized in [DHUM11]

in five different types of measures: (1) subjective report measures; (2) driver biolog-

ical measures; (3) driver physical measures; (4) driving performance measures; and

(5) hybrid measures. Hybrid multi-measure approach is preliminarily investigated in

[BSH12], where sensor data fusion for two drowsiness metrics, i.e., PERCLOS (driver

biological measures) and lane position (driving performance measures), is required to

make an enhanced drowsiness estimate. In addition, the hybrid measures (the com-

bination of above mentioned (3) and (4)) are believed to give more reliable solutions

compared with single driver physical measures or driving performance measures, be-

cause the hybrid measures can minimize the number of false alarms and maintain a

high recognition rate.

2.3 Discussion: Future Trend

Advanced driver assistance systems are one of the fastest-growing segments in auto-

motive electronics worldwide. ADAS technology can be based upon vision/camera

systems, sensor technology, car data networks, V2X systems. Next-generation ADAS

will increasingly leverage wireless network connectivity to offer more added value by

using car-to-car and car-to-infrastructure data. With an average of more than 100

Electronic Control Units (ECUs) on board, modern vehicles are already computer net-

works on wheels. Furthermore, ADAS systems enhance such vehicles to make them

safer and easier to drive, thus more enjoyable. ADAS systems are being mastered to

create autonomous driverless, self-driving cars in recent years.

Some interesting forms of ADAS are, e.g., special rear-view cameras required by

NHTSA starting in May 2018 [NHTSA], face imaging knows when the driver is nod-

ding off, warnings of local severe weather or disasters; smartview mirror, lane departure
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warning systems and more. Another point here is the prevailing ISO 26262 ”Road vehi-

cles - Functional safety” [ISO26262]. The system design and development for automo-

tive E/E systems, especially for safety related applications, e.g., electric power assisted

steering (EPS), shall be carried out in accordance with ISO 26262. The system concept

being proposed in the thesis, using multi-sensor architecture, realizes on the one hand

the driver state monitoring with enhanced features, and on the other hand such design

concept with diversified redundancy improves the system dependability, thus is in line

with the mind-set of ISO 26262 standard.

Speaking of driver drowsiness detection, an interesting example of commercial prod-

ucts is StopSleep [StopSleep], a discrete add-on product to address drowsy driving,

which had the first press release in July 2013. Before this many studies have been

conducted including the previous study about drowsy driving in relation to driver’s

skin impedance [LBK13] in the frame of this research work. The anti-sleep alarm Stop-

Sleep recognizes the loss of concentration and prevents microsleeps 1 during driving

by measuring and evaluating the skin conductance of driver (electrodermal activity -

EDA). As a driver-based approach to drowsiness detection (see Section 2.2.2), such

low-cost add-on product, applicable for almost all drivers, car brands and models,

provides another option to tackle drowsy driving problem, although drivers may feel

less comfortable when wearing this gadget during driving. It is expected to see more

technologies and solutions thriving in such ADAS domain, that have novel sensory prin-

ciples, non-intrusive user interfaces, decent detection rate (against drowsy driving), and

affordable prices. They can cooperate with other on board systems in vehicle, so as to

contribute to the integral system solution for drowsiness detection, driver warning, as

well as vehicle control assistance if required.

Despite plenty of researches, there is still a lack of multi-sensing integral system

solutions with non-intrusive user interfaces that are able to cope with multi-modality

of driver status. A generalized approach to driver status monitoring and intention

prediction is demanded.

In general, the direct and indirect measures in driver-based approach give clues to

driver (controller) state, while the measures being evaluated in vehicle-based approach

reflect the vehicle (controlled system) state. The matrices derived from both approaches

1A microsleep is an episode of sleep lasting up to 30 seconds during which external stimuli are not

perceived. Microsleeps are associated with excessive sleepiness and automatic behavior [ESST01].
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can be used to define the state of JCS jointly, so as to improve the confidence of decision

making and the performance of driver assistance. Thus, solutions that utilize both

approaches will be demanded in the future smart driving.
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Chapter 3

Advanced Embedded Vision

Systems for ADAS

This chapter gives a survey on advanced embedded vision systems and sensor electronics

with great potential for the use in ADAS (and/or IVIS), e.g., instrument cluster (dash

board), head-up display (HUD), car navigation/infotainment system, as well as the

emerging autonomous driving technology. 3D embedded vision systems are of particular

interest here, thus, will be addressed in the focus of Section 3.1. Afterwards, two typical

variants of such systems, i.e., one time-of-flight based and another structured light based

IR depth cameras being investigated in the research work are discussed in Section 3.2.

The relevant algorithms and methods for 3D embedded vision and signal processing in

ADAS are addressed in Section 3.3. Finally, the comparison among the state-of-the-

art depth cameras and the selection of 3D embedded vision sensors for the presented

project are discussed in Section 3.4. Other building blocks with novel sensory principles

and measurement techniques for ADAS will be addressed in Chapter 4.

3.1 Technology Review for 3D Embedded Vision

Depth information for automotive and robotic tasks was mostly obtained by stereo

camera setups. The advent of CMOS depth sensors, based on time-of-flight-principles,

opened new possibilities and application fields from automotive, robotics, to HMI tasks.

The Institute of Integrated Sensor System’s (ISE) research bases on such activities

back to the end nineties, related to CMOS sensor system design and intelligent system
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design for, e.g., Overtake-Monitors (OTM) [SKSK99] or eye-tracking for 3D display

applications [LXK12].

Modern depth cameras for 3D embedded vision can be characterized by different

means, e.g.,

• Configuration: mono or stereo vision system, multi-camera system

• Light source: active or passive illumination

• Technology: triangulation, time-of-flight (ToF), light-field, etc.

• Sensor type: line sensor, array sensor, or a combination thereof

• Perception mechanism: scan or flash based profilometry

As representative technologies being adopted in 3D embedded vision: stereo vision,

laser scan triangulation, structured light and triangulation, light-field as well as time-

of-flight imaging are addressed in the following subsections.

3.1.1 Passive Triangulation: Stereo Vision

Stereo vision systems, which use passive triangulation to calculate distance, have been

commercially available for more than a decade and become a prevailing system com-

ponent in many application fields such as robotics.

By emulating human eyes’ stereo imaging capability, such system perceives images

using two aligned and calibrated cameras, and finds the correspondences between points

seen by one camera and the same ones seen by the other camera. Afterwards, 3D

location of the points can be calculated with the correspondences and a known baseline

separation between cameras. Stereo vision does not explicitly require a built-in light

source in the system, hence its fundamental technology of 3D perception is called

passive triangulation. The principle of triangulation being used in stereo vision system

is illustrated in Fig. 3.1.

Assuming perfectly undistorted, aligned stereo imagers and known correspondence,

the depth Z, as depicted in Fig. 3.1, can be found by similar triangles; the principal

rays of the imagers begin at the centers of projection Ol and Or and extend through

the principal points of the two image planes at Cl and Cr. The depth to the point P

in the scene is inversely proportional to the disparity between stereo views, where the
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Figure 3.1: Stereo triangulation - Epipolar geometry of stereo coordinate system for

undistorted rectified cameras: the point P in the scene is viewed as Pl and Pr in the image

planes; the depth of P is denoted as Z; two principle points are denoted as Cl and Cr

respectively, where principal rays intersect the image planes; the camera coordinates are

relative to the left camera’s center of projection Ol; the cameras of the same focal length

f are row-aligned and displaced from one another by T [BK08].

disparity is defined by d = xl−xr. With a known baseline separation between cameras,

here T , the depth Z can be derived as follows:

Z

T
=
f

d
=

f

(xl − xr)
⇒ Z =

T · f
(xl − xr)

. (3.1)

Furthermore, if the geometric arrangement of the stereo vision system is known, 3D

location of the points can be computed accordingly.

Stereo vision in practice, however, involves the following steps as illustrated in

Fig. 3.2: (a) capture the raw images from stereo cameras; (b) undistortion of raw

images; (c) rectify and (d) crop of the intermediate imagery data from the previous

process step, and subsequently the correspondence matching and disparity calculation

are carried out.

A typical block diagram of ADAS stereo front view system is shown in Fig. 3.3,

where the key components and their interconnections are illustrated. Compared to

mono view system, stereoscopic system is able to detect objects more reliably due to

additional depth information provided by dense stereo imaging, thus makes the stereo
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Figure 3.2: Stereo rectification - For the left and right camera, the raw image (a)

is undistorted (b) and rectified (c) and finally cropped (d) to focus on overlapping areas

between the two cameras; the rectification computation actually works backward from (c)

to (a) (see dashed arrow in figure) [BK08].

front view camera system more accurate and robust, however, at higher cost with

additional imaging sensor and increased hardware and software complexity [Nik14].

Even though the search space for correspondences can be narrowed down by using

prior knowledge of the geometry of the system, and/or utilizing the known informa-

tion of the specific application field, such operation is in general computationally very

expensive, therefore improving the search algorithm for correspondences like in [PN12]

becomes crucial for real-time automotive applications such as ADAS. Recently, on the

strength of continuously increased embedded computation power, advanced studies on

stereo vision and the associated emerging applications, such as DSP platform based

obstacles detection [ZWB12] or x86 machine based pedestrians detection along with

distance measurement [BBS11] in real time, are observed in the automotive industry.

There are available commercial products such as PointGrey Bumblebee2 (see Table

3.2) and Tobii Pro eye tracking products (remote eye tracking systems) [tobiipro].
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Figure 3.3: ADAS stereo front view system - Key components such as imaging

sensors, preprocessing block, central processing unit (CPU), memory block (DDR), and

various communication interfaces, i.e., CAN, SPI, QSPI (Quad Serial Peripheral Interface),

I2C, Ethernet (RGMII interface support), are visualized in the diagram. Preprocessing

stages such as image rectification and disparity computation in stereo camera system,

are typically carried out in an FPGA or ASIC. The stereo front view camera system is

connected to the vehicle via CAN bus [Nik14].
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3.1.2 Active Triangulation

Active triangulation differs from passive triangulation in that a light source is explicitly

required in the system to illuminate the scene. On the other hand, similar to the

passive triangulation, the reflectance of the objects in the scene is perceived and further

analyzed, so as to reconstruct the 3D object information.

3.1.2.1 Lightsheet

Figure 3.4: Lightsheet triangulation - (a) instrument; (b) detector image [SHM00].

In [SHM00] Schwarte et al. provided a comprehensive overview of the techniques

used for 3D geometry measurements and object surface inspection by utilizing 3D

sensors based on the triangulation principle. An example of such techniques, here

lightsheet triangulation instrument (2D laser triangulation), is schematically shown

in Fig. 3.4a, where a laser beam is expanded via cylindrical lenses to a light sheet,

and projected on the measurement object. A light line, i.e., a so-called height profile

of the measurement object is formed at the cross section of the lightsheet and the

object’s silhouette. The height profile can be captured by 2D image sensor, here a

CCD detector, and result in a generated charge image as shown in Fig. 3.4b. To have

the entire measurement object rendered sharply with such triangulation instrument,

so as to gain the maximum depth resolution, the image plane, lens plane, and the

plane of the object shall have a common axis (through Scheimpflug Intersection) to

meet the Scheimpflug condition [SHM00]. Such a 3D embedded vision system based
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on the lightsheet technique generally uses 2D light source, 2D camera and 1D scanner

(one-dimensional movement) to gain the 3D information of the object under inspection.

3.1.2.2 Structured Light

As another approach of active triangulation, a structured light system generally employs

one camera (viewer) and one structured light emitter (projector) that uses any form of

light with known pattern(s). In order to gain as good depth resolution as possible, the

light pattern being projected on the measurement object needs to be well recognized

from the scene, thus, it demands high power and well focused light source. In addition,

the background illumination in the observed scene shall be properly filtered to remove

brightness fluctuations.

Figure 3.5: Structured light - (a) Sequential pattern projection; (b) Side-by-side setup

of projector (illumination) and viewer (camera).

As an example of structured light instrument, binary gray code based sequential

pattern projection is illustrated in Fig. 3.5.

Kinect uses a static spatially encoded IR pattern projected into the scene that is

in form of scattered points (sparkle pattern) as depicted in Fig. 3.6a. The pattern is

deformed as it falls onto the objects in the scene. A camera inside of Kinect captures

an image of the scene and decodes the result. This method calculates a single depth

value for a group of projected pixels. It takes multiple spatially encoded pixels to map

back to unique camera pixels, which results in a loss of depth resolution. However,

the advantage of this technique is that depth information can be retrieved with single

one capture. Another camera of Kinect records color/intensity image in parallel to the
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depth registration. Along with the spatial information in 2D image (color or intensity),

the calculated depth can be used to define the points in X, Y, and Z coordinates in

terms of point cloud, so as to represent the external surfaces of objects in the scene

(see Fig. 3.6b).

Figure 3.6: Kinect - (a) Infrared pattern projection; (b) Calculated results (point cloud)

with corrected depth projection.

In general, a trade-off needs to be made between the depth accuracy and the acqui-

sition time in range sensing based on time-multiplexed structured light. An interesting

method combining color sensing and structured light has been proposed in [CKS98],

where the number and form of the projection patterns are adapted to the characteris-

tics of the scene in the acquisition process, and color is used for light plane labeling.

In such a way, the dimension of the pattern space can be increased without raising the

number of projection patterns.

The representative commercial products are e.g. Microsoft Kinect Sensor, ASUS

Xtion, and structure lighting based on TI Digital Light Processing (DLP), etc.

3.1.3 Light-Field Imaging

A light-field camera, also called a plenoptic camera, is based on CMOS image sensor

that uses a microlens array to capture local incident angle and intensity information

from the light in the scene. Such light field information can be utilized for range imaging

and producing 3D-TV, or to improve the solution of computer graphics and computer

vision-related problems, and to make digital plenoptic pictures that can be refocused

after they are taken (after-the-fact-refocusing).
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In 1908, Gabriel Lippmann proposed the first light-field camera using integral pho-

tography as the fundamental technology. In 1992, Adelson and Wang proposed the

design of a plenoptic camera in [AW92] that can be used to significantly reduce the

correspondence problem in stereo matching, where an array of microlenses is positioned

at the focal plane of the camera main lens, and the image sensor is located slightly be-

hind the microlenses array. In such a way, the displacement of image parts that are not

in focus can be analyzed, and the depth information can be extracted. In early 2005,

Ng et al. published a technical report [NG05] explaining that a standard plenoptic

camera can potentially be used to refocus an image after being captured. Based on this

work, Lytro – the first consumer light-field digital camera capable of refocusing images

after being taken, was introduced in 2011. The block diagram of Lytro camera system

is illustrated in Fig. 3.7.

Figure 3.7: Lytro light-field camera - A deeper look inside [Lytro].

The recent advances in light-field cameras and light-field displays, as well as their

applications in entertainment, consumer devices, industrial applications, and medical

imaging, strengthen the vitality of light-field imaging. Despite its usage in automotive

applications has not emerged as of today, the technology such as light-field display has

potential to be used for augmented reality towards enhanced HUD application in the

future.

3.1.4 Time-of-Flight

The distance d of an object can be determinded by the echo (turn-around) time-of-

flight (ToF) of an emitted light signal and reflected back from the object to the sensor

via d = c·ToF
2 , where c represents the light velocity (c ≈ 3 × 108m/s). This method
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is suitable for measuring distance starting from some centimeters to several hundreds

of meters with relative accuracies of 0.1%. The range can even be extended up to

thousands of kilometers depending on the power of light source. The time-of-flight

technique is well known in various wave length ranges in military as well as civilian

applications, attracting the attention of researchers since the late 90s until today.

3.1.4.1 3D Laser Scan and LIDAR

LIDAR, known as Laser Illuminated Detection and Ranging, or referred as acronym of

Light Detection And Ranging, sometimes also referred as Laser Detection and Rang-

ing (LADAR) in the literature, in various forms, has become an essential part of au-

tonomous navigation of automobiles and unmanned ground vehicles (UGVs). Utilizing

laser illumination and ToF principle, the LIDAR technology enhances such systems in

the capability of obstacle detection and avoidance. Furthermore, in many applications

besides locating the obstacles, identification and classification of objects through 3D

perception is crucial for situational planning, as robots are increasingly required to

operate in harsh environments and interact safely and effectively with humans, other

vehicles, and their environment. For LIDAR sensors there are a plenty of interesting

research studies along with first prototypes in automotive applications.

A scanning LIDAR system with generated sensor features is discussed in [NMEV94]

aimed at applications in the automotive field, such as obstacle avoidance, navigation,

as well as the potential usage for human-machine-interface, factory floor traffic control,

etc. in industry. A low-cost compact MEMS scanning LADAR system for robotic

applications is presented in [MYBQ12], where improved system sensitivity, low cost,

miniaturization, and low power consumption as the main goals have been pursued.

The block diagram of the LADAR System is illustratively described in Fig. 3.8, where

a two-axis MEMS mirror is used to establish the angular direction for the scanning

procedure.

To investigate near, mid and far infrared laser illuminators, in particular for on-

board automotive applications, an experimental study has been conducted in [SRMC00]

by assessing the ability to detect painted car body panels and various reflectors with

850, 910, 1560, 5600 and 8100 nm LIDAR transceivers. A 1.6µm LIDAR wavelength
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Figure 3.8: LIDAR imaging system - The system components such as laser light source

equipped with MEMS mirror, power conditioning and regulation, laser detector with signal

conditioning, analog-to-digital converter (ADC), and embedded processing unit in terms of

FPGA, as well as Ethernet communication interface towards back-end PC are illustrated

in the block diagram [MYBQ12].

is suggested as optimum in the study with the consideration of eye-safe laser. Further-

more, an approach to pedestrian detection and tracking using in-vehicle LIDAR has

been proposed in [OSST11].

Recently, Google driverless car becomes a prominent project in the field of au-

tonomous driving. The device mounted on top of Google’s driverless car is a Velodyne

64-beam LIDAR sensor that can rotate 360◦ and take up to 1.3 million readings per

second (see Fig. 3.9).

As mentioned previously there are available line or array LIDAR sensors with gray-

scale, color sensing capabilities or the combination thereof. In many cases, such systems

require scanning the light through the scene, which makes it difficult to obtain high

frame rates. Instead of scanning a flash LIDAR system based on two-dimensional

sensor arrays can provide 3D imaging data with a single capture. But they are cost

prohibitive to deploy in robotic and UGV platforms. Low-cost flash LIDAR systems

with high frame rate are therefore in high demanded for such applications.

The representative commercial products available on the market are e.g. Velodyne

HDL-64E LiDAR sensor [Velodyne] and SICK Laser Scanner [SICK].
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Figure 3.9: Google self-driving car prototype with Velodyne HDL-64E LIDAR

sensor - Velodyne 64-beam LIDAR sensor is mounted on top of a Google driverless car

collecting 3D information of car’s surrounding environment [Google, Velodyne].

3.1.4.2 ToF Depth Camera

A time-of-flight based depth camera with active illumination, sometimes also referred as

flash LIDAR, is capable of simultaneously perceiving reflectance and distance informa-

tion of objects in a scene at real-time video frame rates. The obtained intensity image

and depth image are registered pixel by pixel accordingly and do not require extra

effort for image matching which is crucial in conventional stereo imaging systems.

Depending on the employed modulation techniques ToF cameras can be classified

in three categories, i.e., continuous wave (CW) modulation, pulse modulation, and

pseudo-random modulation. Some typical ToF depth cameras available on the market

since 2010 are depicted in Fig. 3.10.

A typical ToF camera consists of a modulated light source, e.g., laser or LED,

a pixel array, capable of detecting the phase of the reflected light, and an ordinary

optical system for focusing the light onto the sensor (see Fig. 3.11a). The light is given

within a modulation envelope by rapidly turning the light source on and off. Distance

measurement can be achieved either by measuring the phase shifting of the transmitted

light within the modulation envelope as received at the pixel array, or through direct

measurement on the time-of-flight of the emitted light.
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Figure 3.10: Commercial available ToF cameras and sensors - (a) Canesta

DP200 [Canesta]; (b) MESA SR4000 [MESA]; (c) PMD CamBoard nano [PMDnano15];

(d) Panasonic D-IMager [Panasonic]; (e) OptriCam DS10k-A [Optrima]; (f) odos VS-

1000 [odos15]; (g) TriDiCam LDPD sensor [TriDiCam].

Figure 3.11: Time-of-Flight: continuous wave modulation - (a) Time-of-flight

measurement based on continuous wave modulation; (b) A method of phase/amplitude

calculation [GYB04].
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Let s(t) = sin(2πfmt) be the transmitted light where fm is the modulation fre-

quency. The light being reflected from the target object, here r(t) in Eq. (3.2), falls on

a sensor pixel with a phase shift φ:

r(t) = Rsin(2πfmt− φ) = Rsin(2πfm(t− 2d

c
)), (3.2)

where R is the amplitude of the reflected light, d is the distance between the sensor

and the target, and c denotes the light velocity (≈ 3× 108 m/s). From Eq. (3.2) it has

φ = 2πfm ·
2d

c
=

4πfmd

c
. (3.3)

Thus, the distance d can be calculated from Eq. (3.3) as follows:

d =
cφ

4πfm
. (3.4)

The maximum unambiguous phase delay that can be detected using ToF is a full cycle

of the modulation period, which corresponds to an unambiguous range of c
2fm

. For

instance, the maximum unambiguous range for fm = 50 MHz is 3 m. As an illustrative

example of ToF principle with continuous wave modulation, it is explained in [GYB04]

that the phase and amplitude of the reflected light can be gained through signal pro-

cessing techniques, e.g., using mixers and low-pass filters as depicted in Fig. 3.11b. A

survey on such ToF depth cameras based on lock-in sensor pixels employing continu-

ous wave modulation can be found in [FAT11]. Despite known issues of lock-in ToF

cameras such as low spatial resolution, range ambiguity, ambient light noise, motion

artifacts, etc. that can be coped with viable technical solutions, such ToF cameras

can offer depth and intensity image registration at real time frame rate, compact de-

sign, reduced power consumption, thus prove to be especially suitable for automatic

acquisition of 3D models in real time [FAT11].

The representative ToF cameras available on the market are PMDTech CamCube3,

PMDTech CamBoard nano, MESA SR4000, Canesta DP208, Fotonic B70, Panasonic

D-Imager, which feature continuous wave modulation with lock-in pixels, as well as

TriDiCam based on pulse modulation with lateral drift-field Photodetector [Elk05],

and odos VS-1000 using pulsed light with fast gating.

Due to the virtue of time-of-flight sensor technology the depth camera is suitable for

image post-processing to segment foreground/background very robustly, resolve ambi-

guities, track objects, as well as to estimate object size and shape, measure volumes,
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surveil a target zone, and to count objects or people. The application fields span from

logistics/warehouses, factory automation, surveillance and security, robotics, medical

and physical therapy to automotive.

3.2 Investigated Depth Cameras in the Project

As discussed in Section 3.1, a depth camera system is capable of perceiving reflectance

and distance information of objects in a scene (at real-time video frame rates), so

as to enable 3D embedded vision. Thus, it is of particular interest to be used for

the vehicle interior monitoring, or for the human-machine-interface as part of ADAS

system. DriMix and Microsoft Kinect are selected for the investigation in the project.

3.2.1 DriMix Micro-3D-Camera

This research work is involved in the development of a novel time-of-flight based depth

camera, i.e., DriMix Micro-3D-Camera, which is aimed at more compact system de-

sign and better energy efficiency for 3D embedded vision intended for industrial and

automotive applications such as robot control, surveillance, unmanned ground vehi-

cle, driver assistance, as well as its potential use as commodity device in consumer

electronics. It is carried out internally as the 3DKM project by the Institute of In-

tegrated Sensor System (ISE) as subcontractor for the Federal Ministry of Education

and Research (BMBF) project ”Design of a Micro-3D-Camera System for the Rapid

Time-Resolved 3D-Shape Acquisition of Objects” coordinated by the company iC-Haus

GmbH in Bodenheim, Germany. The scope of the 3DKM project in ISE is specified as

follows.

• Modeling of the depth/range measurement of the DriMix sensor.

• Fast prototyping of DriMix Micro-3D-Camera with the focus on the realization

of camera control logic and data transmission.

• Calibration, validation and test of the DriMix camera system.

The DriMix Micro-3D-Camera is based on a single sensor coupled with active il-

lumination employing the time-of-flight principle as introduced in Section 3.1.4, in an

optical embodiment. The sensor has been realized by iC-Haus with a sub-µm-SOI
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technology with 80 × 60 pixel array in 50µm × 50µm pixel size. The DriMix features

a proprietary sensor technology from iC-Haus based on a patented drift-field-mixing

concept [HERZ05] to perceive the reflected light pulses and calculate the time-of-flight

of emitted light pulses, which therefore can be categorized into ToF pulse modulation

technique (see Fig. 3.10). The basic measurement principle of DriMix is briefly depicted

in Fig 3.12. The generated sensory data is a pair of images, i.e. grayscale and depth

maps.

Figure 3.12: DriMix ToF pulse modulation - Pulse modulated time-of-flight mea-

surement principle.

As illustrated in Fig. 3.13 the system modeling of DriMix Micro-3D-Camera has

been conducted in the 3DKM project. The first prototype of control and communication

interfaces based on Altera Cyclone III FPGA and the dedicated circuits for A/D-

conversion and sensor interfacing is depicted in Fig. 3.14.

More details of the DriMix sensor components are given in Fig. 3.15, including

the laser diode driver (iC-HG1M module), sensor layout (iC-TS006 module), and the

control electronics consisting of FPGA prototyping board and AX01 expansion board.

The DriMix camera board including optical sensor, IR light source, and the integrated

control and communication interfaces is shown in Fig. 3.16. The demonstrator of

DriMix Micro-3D-Camera and its exemplary application in robotics, i.e., palletising

car tires, are presented in Fig. 3.17(a) and (b) respectively.
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Figure 3.13: DriMix system diagram - The block diagram indicates the sensing part

at the front-end camera board, the control and communication interfaces on an FPGA,

and the processing of sensory data at the back-end PC.

Figure 3.14: DriMix control board (prototype) - The FPGA-based prototyping

board with control and communication interfaces to the DriMix camera board.
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Figure 3.15: DriMix sensor components - The sensor components from left to right,

emitter, detector, control electronics [ISE3DKM].

Figure 3.16: DriMix camera board - The camera main board with sensor and IR light

source (courtesy and copyright iC-Haus) [BMBF3DKM].
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Figure 3.17: DriMix Micro-3D-Camera and its application - (a) DriMix camera

with metallic housing c© iC-Haus; (b) An exemplary application of DriMix camera in

industrial robotics at AROTEC Automation und Robotik GmbH [BMBF3DKM].

3.2.1.1 DriMix Sensor Specification

The fundamental of DriMix Micro-3D-Camera is an optical sensor equipped with double-

integrator pixels with drift-field-mixing concept. When Lambertian surface is assumed

here, which means the apparent brightness of object surface to an observer is the same

regardless of the observer’s angle of view, the double-integrator pixel in the sensor

array is capable of perceiving reflectance intensity of the object. Based on that the dis-

tance of object can be calculated with ToF principle. A Patent (No. WO2005036647

A1 [HERZ05]) for such type of optical sensor is filed by iC-Haus.

The DriMix sensor array with 80(column)×60(row) pixels is built upon drift-field-

mixing concept as shown in Fig. 3.18. Each pixel is equipped with two integrator

capacitors being able to perform multiple integration of the photocurrent generated

from the sensed pulse-modulated (laser) light beam. The fast integration can reach up

to 50 image captures pro second. There is LVDS interface for digital interconnection

between optical sensor array and modulated light source. SPI interface is available for

on-board communication link for control logic and data transmission.

Determination of the measured distance/depth depends on a set of system param-

eters. A summary of the DriMix system parameters in the distance calculation model
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Figure 3.18: DriMix (drift-field-mixing) concept - Example of the drift-field-mixing

concept with a double-capacitor setup.

is given as follows.

• TWIDTH : Pulse duration of emitted photocurrent (laser)

• TSTARTADR: Time shift between emitted photocurrent and drift-voltage (VMODH)

• TMOD: Period of modulation voltage (drift-voltage)

• fMOD: Frequency of modulation voltage (drift-voltage)

• Ttravel: Time-of-Flight for the pulsed laser traveling from light source to photo

detector

• Tdistance: Time-of-Flight for the pulsed laser traveling from light source to object

• Tint.SA: Integration time of SA capacitor

• Tint.SB: Integration time of SB capacitor

• Uint.SA: Integrated voltage of SA capacitor

• Uint.SB: Integrated voltage of SB capacitor
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• d: Distance between photodetector and measuring object

• c: Velocity of light

As per DriMix sensor specification (TS006 Specification A0.6) the dynamic range

of configurable system parameters are specified as follows.

• 0 < fMOD ≤ 20 MHz, i.e., TMOD ≥ 50 ns

• 0 ≤ TWIDTH < TMOD with WIDTH = 0, 1 , 2, ... ,63

• 0 < TSTARTADR < TMOD with STARTADR = 0, 1 , 2, ... ,63

Depending on the above mentioned parameter settings there are four cases in DriMix

depth calculation model being addressed in Fig. 3.19, Fig. 3.21, Fig. 3.22, Fig. 3.23

respectively.

The distance between the DriMix sensor and the measuring object can be calculated

as follows

d = c · Tdistance = c · Ttravel
2

. (3.5)

When the falling edge of modulation voltage VMODH in square wave form lies in the

reflected laser pulse, and the condition 0 < (TSTARTADR + Ttravel) <
TMOD

2 is fulfilled,

then Case 1 (Fig. 3.19) is addressed here. When the rising edge of modulation voltage

VMODH in square wave form lies in the reflected laser pulse, and the condition TMOD
2 <

(TSTARTADR + Ttravel) < TMOD is fulfilled, Case 2 (Fig. 3.21) is occurring. When the

falling edge of modulation voltage VMODH in square wave form lies in the reflected

laser pulse, and the condition TMOD < (TSTARTADR + Ttravel) <
3
2TMOD is fulfilled,

Case 3 (Fig. 3.22) is observed. When the rising edge of modulation voltage VMODH

in square wave form lies in the reflected laser pulse, and the condition 3
2TMOD <

(TSTARTADR + Ttravel) < 2TMOD is fulfilled, Case 4 (Fig. 3.23) is discussed.

When TSTARTADR ∈ [0, TMOD[ (as per TS006 Specification A0.6) as depicted in

Fig. 3.19 (Case 1) it has

Ttravel =
1

2
TMOD − Tint.SA − TSTARTADR

with Tint.SA 6= 0 ∩ Tint.SB 6= 0, 0 < (TSTARTADR + Ttravel) <
TMOD

2

(3.6)

and

TWIDTH = Tint.SA + Tint.SB. (3.7)
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Figure 3.19: DriMix measurement (Case 1) - Example of timing diagram for single

measurement Case 1.
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With the same amount of capacity C of SA- and SB-capacitors it has

Qint.SA

Qint.SB
=
C · Uint.SA

C · Uint.SB
=
Uint.SA

Uint.SB
with Uint.SB 6= 0 ∩ C 6= 0. (3.8)

For photoelectric charge it has

Q = I · T, (3.9)

where Q is the die integrated photoelectric charge, I is the photocurrent, and T is the

integration time. Because capacitor SA and SB are associated with the same photodiode

in DriMix sensor, SA and SB have the same photocurrent I. From Eq. (3.9) it has

Qint.SA

Qint.SB
=
I · Tint.SA
I · Tint.SB

=
Tint.SA
Tint.SB

with Tint.SB 6= 0 ∩ I 6= 0. (3.10)

Eq. (3.8) and Eq. (3.10) imply

Tint.SA
Tint.SB

=
Qint.SA

Qint.SB
=
Uint.SA

Uint.SB
with Uint.SB 6= 0 ∩ Tint.SB 6= 0. (3.11)

From Eq. (3.11) it has

Tint.SA
Tint.SA + Tint.SB

=
Uint.SA

Uint.SA + Uint.SB
with Tint.SA 6= 0 ∩ Tint.SB 6= 0. (3.12)

Applying Eq. (3.7) in Eq. (3.12) results

Tint.SA
TWIDTH

=
Uint.SA

Uint.SA + Uint.SB
with TWIDTH 6= 0. (3.13)

From Eq. (3.13) it has

Tint.SA =
Uint.SA

Uint.SA + Uint.SB
· TWIDTH . (3.14)

Applying Eq. (3.14) in Eq. (3.6) results

Ttravel =
1

2
TMOD −

Uint.SA

Uint.SA + Uint.SB
· TWIDTH − TSTARTADR

with Uint.SA 6= 0 ∩ Uint.SB 6= 0,

TSTARTADR ∈ [0, TMOD[, TWIDTH ∈ [0, TMOD[,

0 < (TSTARTADR + Ttravel) <
TMOD

2
.

(3.15)

The parameter TWIDTH can be preliminarily configured within [0, TMOD[. However,

this parameter shall be further constrained, otherwise the so-called multiple integration

will occur when TMOD
2 ≤ TWIDTH < TMOD and Eq. (3.15) is not valid anymore.
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Figure 3.20: DriMix measurement (multiple integration) - Example of timing

diagram for multiple integration.
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An example for the multiple integration in this case is illustrated in Fig. 3.20.

In addition, TWIDTH = 0 implies that there is no laser pulse emitted. In order to

determine Ttravel in unambiguous way the range of TWIDTH shall be tuned as 0 <

TWIDTH ≤ TMOD
2 , i.e., TWIDTH ∈]0, TMOD

2 ]. In the end Ttravel of Case 1 can be derived

as follows

TCase1
travel =

1

2
TMOD −

Uint.SA

Uint.SA + Uint.SB
· TWIDTH − TSTARTADR

with Uint.SA 6= 0 ∩ Uint.SB 6= 0,

TSTARTADR ∈ [0, TMOD[, TWIDTH ∈]0,
TMOD

2
],

0 < (TSTARTADR + Ttravel) <
TMOD

2
.

(3.16)

Figure 3.21: DriMix measurement (Case 2) - Example of timing diagram for single

measurement Case 2.

When TSTARTADR ∈ [0, TMOD[ (as per TS006 Specification A0.6) as depicted in

Fig. 3.21 (Case 2) it has

Ttravel = TMOD − Tint.SB − TSTARTADR

with Tint.SA 6= 0 ∩ Tint.SB 6= 0,
TMOD

2
< (TSTARTADR + Ttravel) < TMOD.

(3.17)
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Eq. (3.7) to Eq. (3.10) hold true in Case 2 as well and 3.11 can be transformed to

Tint.SB
Tint.SA

=
Qint.SB

Qint.SA
=
Uint.SB

Uint.SA
with Uint.SA 6= 0 ∩ Tint.SA 6= 0. (3.18)

From Eq. (3.11) it has

Tint.SB
Tint.SA + Tint.SB

=
Uint.SB

Uint.SA + Uint.SB
with Tint.SA 6= 0 ∩ Tint.SB 6= 0. (3.19)

Applying Eq. (3.7) in Eq. (3.19) results

Tint.SB
TWIDTH

=
Uint.SB

Uint.SA + Uint.SB
with TWIDTH 6= 0. (3.20)

From Eq. (3.20) it has

Tint.SB =
Uint.SB

Uint.SA + Uint.SB
· TWIDTH . (3.21)

With 0 < TWIDTH ≤ TMOD
2 Eq. (3.21) is applied in Eq. (3.17) and results

TCase2
travel = TMOD −

Uint.SB

Uint.SA + Uint.SB
· TWIDTH − TSTARTADR

with Uint.SA 6= 0 ∩ Uint.SB 6= 0,

TSTARTADR ∈ [0, TMOD[, TWIDTH ∈]0,
TMOD

2
],

TMOD

2
< (TSTARTADR + Ttravel) < TMOD.

(3.22)

Analogous to Case 1 it holds true when TSTARTADR ∈ [0, TMOD[ (as per TS006

Specification A0.6) as depicted in Fig. 3.22 (Case 3),

Ttravel =
3

2
TMOD − Tint.SA − TSTARTADR

with Tint.SA 6= 0 ∩ Tint.SB 6= 0, TMOD ≤ (TSTARTADR + Ttravel) <
3

2
TMOD.

(3.23)

Eq. (3.7) to Eq. (3.14) hold true in Case 3 as well and applying Eq. (3.14) in Eq. (3.23)

results

TCase3
travel =

3

2
TMOD −

Uint.SA

Uint.SA + Uint.SB
· TWIDTH − TSTARTADR

with Uint.SA 6= 0 ∩ Uint.SB 6= 0,

TSTARTADR ∈ [0, TMOD[, TWIDTH ∈]0,
TMOD

2
],

TMOD < (TSTARTADR + Ttravel) <
3

2
TMOD.

(3.24)
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Figure 3.22: DriMix measurement (Case 3) - Example of timing diagram for single

measurement Case 3.
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Analogous to Case 2 it holds true when TSTARTADR ∈ [0, TMOD[ (as per TS006

Specification A0.6) as depicted in Fig. 3.23 (Case 4),

Ttravel = 2TMOD − Tint.SB − TSTARTADR

with Tint.SA 6= 0 ∩ Tint.SB 6= 0,
3

2
TMOD ≤ (TSTARTADR + Ttravel) < 2TMOD.

(3.25)

Eq. (3.7) to Eq. (3.11) and Eq. (3.18) to Eq. (3.21) hold true in Case 4 as well, and

applying Eq. (3.14) in Eq. (3.25) results

TCase4
travel = 2TMOD −

Uint.SB

Uint.SA + Uint.SB
· TWIDTH − TSTARTADR

with Uint.SA 6= 0 ∩ Uint.SB 6= 0,

TSTARTADR ∈ [0, TMOD[, TWIDTH ∈]0,
TMOD

2
],

3

2
TMOD < (TSTARTADR + Ttravel) < 2TMOD.

(3.26)

Figure 3.23: DriMix measurement (Case 4) - Example of timing diagram for single

measurement Case 4.

So far the single measurement of distance has been discussed within two periods of

drift voltage. In fact Ttravel can be extended with one or multiple periods of drift voltage
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without changing Uint.SA and Uint.SB, which causes the so-called aliasing problem

(range ambiguity). In special case as depicted in Fig. 3.24 the distances being calculated

from Case 1 and Case 3 have the following relationship

TCase3
travel = TCase1

travel + TMOD

with Tint.SA 6= 0 ∩ Tint.SB 6= 0, TMOD < (TSTARTADR + Ttravel) <
3

2
TMOD.

(3.27)

In general Ttravel in the above mentioned four cases can be interpreted as follows

TCase∗
travel ′ = TCase∗

travel + k · TMOD

with k = 0, 1, 2, ......
(3.28)

Case* in Eq. (3.28) denotes Case 1, Case 2, Case 3 or Case 4.

In order to avoid aliasing problem the distance measurement shall be performed with

different modulation frequencies of drift voltage (fMOD). Alternatively the measuring

distance can be determined from the two aliasing values by using priori knowledge

for the scene, e.g., the maximum distance of measuring object away from the DriMix

sensor.

As mentioned previously Ttravel can be computed as per Eq. (3.16), Eq. (3.22),

Eq. (3.24), Eq. (3.26) for four different cases if the following conditions are fulfilled:

Uint.SA 6= 0 ∩ Uint.SB 6= 0, TSTARTADR ∈ [0, TMOD[, and TWIDTH ∈]0, TMOD
2 ]. After-

wards the measuring distance can be determined according to Eq. (3.5).

To determine the maximum measurement range of the DriMix sensor the dy-

namic range of TCase1
travel , TCase2

travel , TCase3
travel , TCase4

travel are investigated. As per Eq. (3.16),

Eq. (3.22), Eq. (3.24), Eq. (3.26) it can be identified: TCase1
travel ∈ [0, TMOD

2 [, TCase2
travel ∈

[TMOD
2 , TMOD[, TCase3

travel ∈ [TMOD,
3
2TMOD[, TCase4

travel ∈ [32TMOD, 2TMOD[. To sum up

it has

0 ≤ Ttravel ≤ 2TMOD. (3.29)

By applying Eq. (3.29) in Eq. (3.5) the maximum measurement range of the DriMix

sensor can be determined under conditions TSTARTADR ∈ [0, TMOD[ and TWIDTH ∈
]0, TMOD

2 ] as follows

d = c · Ttravel max

2
= c · 2TMOD

2
= c · TMOD =

c

fMOD
. (3.30)

The charge integration of the background light is due to multiple measurements

and by the four-phase integration mostly compensated and therefore does not come
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into the derived computation formula. The systematic delay of the electronic circuits

and from the laser driver is for the time being, together with the adjustable laser pulse

delay as TSTARTADR considered.

Figure 3.24: DriMix measurement (aliasing) - Example of timing diagram for aliasing

issue between Case 1 and Case 3.

3.2.1.2 DriMix Camera System Evaluation

First evaluations to validate the calculation model of distance measurement using

DriMix camera system are described in this section.

The charge separation of photocurrent from SA and SB integration capacitors is

considered in the first place. After removal of DC offset (caused by background illumi-

nation) the maximum voltage difference of SA and SB (peak-to-peak) remains almost

constant, before and after the intersection of the SA and SB curves. However, the

further the object is away from the camera, the lower is the |SA − SB| due to the

attenuation of reflected light intensity along with a increased distance. To achieve bet-

ter charge separation the system parameters TWIDTH and fMOD should be properly
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Figure 3.25: DriMix Evaluation (normalization) - Normalized SA/SB values of the

sensor pixel on row 30, column 40, left to right and top to bottom: distance between

sensory array and object, 0 cm, 40 cm, 80 cm, 120 cm, WIDTH = 7, fMOD = 9 MHz.

47



3. ADVANCED EMBEDDED VISION SYSTEMS FOR ADAS

adjusted in accordance with the depth range of the measuring object. In the DriMix

camera evaluation test (see Fig. 3.30), the modulation frequency of drift-voltage (fMOD)

was chosen to be 9 MHz. Using Eq. (3.30) the maximum range can be determined in

this case as 33 m. The distance of measuring object to DriMix is less than 33 m, thus

no aliasing issue to be considered. The parameter WIDTH was set to 7, i.e., 7
64 of

TMOD, thus no multiple integration (see Fig. 3.20) was observed, and Eq. (3.16) can

be used to estimate the time of flight and calculate the distance here.

For one pixel of the sensor array, the integrated voltage of SA/SB capacitor, here

in the form of 12-bit ADC output, is normalized as follows,

U ′int.SA = U ′int.SA −OffsetDC ,

Uint.SA =
U ′int.SA −min(U ′int.SA)

|max(U ′int.SA)−min(U ′int.SA)|
,

(3.31)

where U ′int.SA is the raw data representing the voltage of SA capacitor, max(U ′int.SA)

and min(U ′int.SA) give the maximum and minimum integrated voltage on SA capacitor

of the pixel within the measurement window. The voltage value normalization is appli-

cable for SB capacitor of the same pixel as well. An example of the normalized SA/SB

values of a single pixel on the DriMix sensor can be found in Fig. 3.25.

Using normalized SA and SB values the measured distance can be computed. As

shown in Fig. 3.26, in Case 1, four different distances measured by the same DriMix

sensor pixel at row 30, column 40, are represented as four parallel running horizontal

lines with constant vertical spacing where STARTADR = 34 to 44 (see Fig. 3.27).

The depth measurements of DriMix sensor pixel can be evaluated using MSE (Mean

Square Error) of the computed depth differences (∆d), so that the inherent offset

of depth measurements can be eliminated. In Fig. 3.25 it should be noted that the

cross points of SA- and SB-curve are used to identify the linear section of SA, where

Eq. (3.16) can be used to compute the measured distance. ∆d1 are depth differences

of the computed values based on the sample point right after the second cross point

of SA- and SB-curve; ∆d2 are depth differences of the computed values based on the

sample point right before the second cross point of SA- and SB-curve; ∆d3 are mean

values of the respective ∆d1 and ∆d2. The measurement results of DriMix sensor pixel

at row 30, column 40, are summarized in Table 3.1.
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Figure 3.26: DriMix Evaluation (distance calculation) - The distance calculation

with normalized SA/SB values in Case 1 (refer to Eq. (3.16)) for distance 0 cm, 40 cm,

80 cm, 120 cm; WIDTH = 7; fMOD = 9 MHz. Left: distance computation based on

STARTADR values; right: computed linear distances of four measuring objects with

constant offset 152 cm.
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Figure 3.27: DriMix Evaluation (distance calculation with details) - The flat

watershed on the curve in Fig. 3.26 left, WIDTH = 7.
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Table 3.1: Depth measurement evaluation of a single DriMix sensor pixel

∆dGT True Value in [cm] ∆d1 in [cm] ∆d2 in [cm] ∆d3 in [cm]

40cm− 0 40 40.5577 38.0126 39.2851

80cm− 0 80 83.8107 81.6946 82.7526

120cm− 0 120 120.0040 123.6167 121.8104

80cm− 40cm 40 43.2530 43.6820 43.4675

120cm− 40cm 80 79.4463 85.6042 82.5253

120cm− 80cm 40 36.1933 41.9221 39.0577

MSE in [cm2] - 6.7019 11.4269 5.1090

The measurement flow of the developed DriMix camera system prototype (see

Fig. 3.28) is designed and validated in the experiments. The current measuring frame

rate is up to 10 fps with the designed measurement flow.

Figure 3.28: DriMix measurement flow - The software-controlled depth measurement

flow.

Compared to other state-of-the-art (ToF) depth cameras (refer to Table 3.2) DriMix

camera system does not bring superior measurement results with respect to depth

resolution (accuracy), frame rate, and operation range. The following aspects should

be considered to improve the DriMix camera system.

• Firstly, the fill factor of DriMix sensor pixel (currently < 30%) can be increased

to improve the SNR.

• Additive record maneuver, i.e., a single-pass of the measurement flow (see Fig. 3.28),

with elevated magnitude of TWIDTH should be taken while maintaining both SA,
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SB values within the dynamic range, so that sensor pixels can collect more pho-

tons during exposure.

• In addition, aiming to improve the (depth) frame rate and overall camera perfor-

mance, the measurement flow described in Fig. 3.28, which is currently handled

in the host application, can be further implemented and integrated in the sen-

sor/camera in terms of firmware, especially, for the exposure control process. The

repetitive record maneuver can be realized in the camera firmware, which can be

re-programmed afterwards if required.

• Last but not least, for depth image pre-processing, the outliers on the SA/SB-

curves can be removed by applying linear regression. However, it requires special

care to smartly ”locate” the intersection interval of SA and SB curves, otherwise

the results deteriorate dramatically when non-intersection record samples are in-

volved. Thus, linear regression may therefore only be applied in the vicinity of

the cross point of SA and SB.

Figure 3.29: DriMix host application - The PC-based host application features a

customized user interface for the modulation control of light pulses, exposure (time) control,

and some basic post-processing functions such as histogram of grayscale image.

The PC-based back-end host application is demonstrated in Fig. 3.29, which was

developed by Benjamin Lutgen in the frame of 3DKM project. The host application

52



3.2 Investigated Depth Cameras in the Project

issues commands that afterwards are processed by the FPGA and expansion board,

and communicated to the camera board, so as to manage the modulation control of

light pulses, exposure (time) control, and data transmission control. In addition, some

basic post-processing functions such as computation of histogram from grayscale image

are realized in the host application.

Fig. 3.30 shows the test environment of the DriMix camera system. The validation

test of the DriMix sensor was conducted in the frame of the 3DKM project, and more

details can be found in Appendix.

Figure 3.30: DriMix validation test - Test on camera system in the laboratory of

iC-Haus GmbH.

3.2.2 Microsoft Kinect: Commodity IR Depth Camera

Microsoft launched in 2010 a new depth camera – Kinect for its Xbox 360 video game

platform [KinectV1], hereinafter referred to as ”Kinect V1 sensor”. Similar to ToF

depth cameras, Kinect has dual image output, i.e., depth and color/intensity images,

which are pixel-aligned through a so-called Registration procedure. Depth measurement

of Kinect V1 sensor is based on active IR Light CodingTM technology of PrimeSense

which is claimed to be immune to ambient light [PrimeSense]. As mentioned in Section

3.1.2.2 it uses a static spatially encoded IR pattern (scattered points) projected onto

the scene. The built-in camera captures an image of the scene and decodes the result

from the projected pixels.

The hardware system of Kinect V1 sensor consisting of optical sensor electronics

including depth image CMOS and color image CMOS, the associated IR light source,
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audio sensor array and microphones, flash memory, control logic (SoC), and communi-

cation interface, was developed based on PrimeSensor product (see Fig 3.31) of Prime-

Sense company (acquired by Microsoft in 2010).

Along with audio signal output Kinect V1 sensor can provide different types of

image output as follows,

• Intensity and depth image (ID) output,

• Color and depth image (RGBD) output,

• Point cloud (with 3D coordinates) output,

where image output (ID or RGBD) can be provided at video frame rate, and point

cloud output is optimized for applications such as robot control.

Figure 3.31: PrimeSensor - System block diagram [PrimeSense].

There are Kinect V1 sensors for different hardware platforms such as Xbox 360

game console and Windows PC with the following specifications:

• Spatial resolution (h x v): 640x480 (RGB) 640x480 (Depth)

• Depth accuracy: 1cm

• Operation range: 0.8m to 3.5m

• Illumination type: near infrared (NIR 830 nm).
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The second generation of Kinect sensor hardware was released together with Xbox

One game console in late 2013 – Kinect for Xbox One, hereinafter referred to as ”Kinect

V2 sensor”. Compared to the structured-light based Kinect V1 sensor, the new ToF

based Kinect V2 sensor provides higher resolution in both depth and color images,

higher precision in motion sensing, and does not suffer from shadowing effects.

There are rich software development resources with regard to sensor drivers, tools,

APIs, as well as open source applications. In particular, Kinect for Windows software

development kit (SDK v1.8/v2.0) contains sensor device interfaces, code samples, and

comprehensive guidelines to simplify the development of applications for commercial

deployment. For instance, the Kinect Identity technology developed by Microsoft Re-

search uses three visual cues to recognize different users: the faces and heights of users

as well as the colors of their clothing. Robust face recognition is the key component

of Kinect Identity [CYTS10]. In this approach a new unsupervised learning-based

encoding method for salient facial components is introduced. Combined with a pose-

adaptive matching technique the Kinect based face recognition is capable of compensat-

ing facial pose variation in real-life scenarios. As proposed by OpenKinect community

[OpenKinect10] the Kinect based user-recognition can be further improved with 3D

body size and human voice information to realize enhanced biometric identification.

Figure 3.32: Kinect V1 sensor calibration - (a) Kinect sensor calibration on op-

tical bench; (b) Kinect depth calibration results; (c) Kinect head height calibration re-

sults [LXK12].
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Before this work, the Kinect based researches in automotive applications are still

scarce. In [KSB13] a 3D experimental framework for exploring driver’s body activity

using low-cost IR depth sensor (Kinect) has been proposed. The study was focused

on driver’s body movements when performing specific maneuver types such as lane

changing and merging, and aiming to identify potential unsafe situations.

Driven by the advances in 3D embedded vision, in the frame of this research

work, the Kinect V1 sensor was investigated for human-machine interactions [LXK11,

LXK12], in particular for human-vehicle interfaces [LWK12], with the focus on head/eye

localization and tracking. As an illustrative example, a Kinect calibration method in-

tended for head tracking is depicted in Fig. 3.32.

3.3 Algorithms and Methods for 3D Embedded Vision

The following sections provide additional insights in useful algorithms and methods for

3D embedded vision and signal processing in ADAS.

3.3.1 Single-/Multi-Person Eye Localization

Until recently, the application of 3D embedded vision systems in ADAS aimed at driver

status monitoring is still scarce. On the hand the usage of such systems is constrained

by environmental conditions, e.g., light conditions, vibrations, and the employment is

limited by production cost. On the other hand, the traditional image/signal processing

methods are facing challenges to deal with 3D objects, thus seek for adaptations and

enhancements.

In [LXK11] a novel approach to IR depth camera based single-/multi-person eye

localization is proposed for the use in human-machine interactions. The proposed al-

gorithm is outlined in Fig. 3.33. After image denoising procedure with median filter,

foreground object segmentation is performed on the input depth image to extract indi-

vidual objects from the foreground. It should be highlighted that with additional depth

information it is much easier to cut out the background and analyze the spatial relations

among foreground objects. Contour analysis is applied on the detected object regions

to find potential faces in the scene. Facial sub-images are extracted from the input in-

tensity image based on the face region masks obtained from the previous stage. Using

predefined template eye candidates are located and paired in group in the normalized
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Figure 3.33: Eye localization (algorithm) - The processing pipeline of the proposed

algorithm for single-/multi-person eye localization [LXK11].

face region. Afterwards, the geometric features of the eye pair candidates are extracted

based on the extended eye template. Along with a supervised training procedure a

support vector machine (SVM) is employed to classify the eye pair candidates.

It should be noted that the extracted facial sub-images have different scales depend-

ing on the distance between the user and camera. To apply the predefined template

for eye candidates searching the face size normalization is required. Since the original

image output of Kinect is with 640 × 480 spatial resolution, the facial sub-images are

normalized in the size of 60 by 50 pixels. The located eyes on the normalized facial

sub-image can be mirrored back to the original image based on the scale factor as

determined here.

A predefined eye template (see Fig. 3.34: left eye and right eye) is employed to search

the left and right eye candidates in the obtained facial intensity image. The design of

the eye template is based on the fact that the iris is darker than the surrounding sclera

in the eye region. In addition, the template highlights the bilateral symmetry of a pair

of eyes with respect to the pixel intensity. The implementation of the eye template

is inspired by Monotonie-Operator [KZ89], Harris [HS88] and SUSAN [SB97] corner
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Figure 3.34: Eye template - The predefined left and right eye template (18 pix-

els/blocks) and its extension (45 pixels/blocks) for feature extraction [LXK11].

detectors. The left eye map Mleft(x, y) is defined in the template as follows,

Mleft(x, y) =

{
1 ∀I(x, y) ∈ I, I(x, y) < min(I lefti )
0 otherwise

i = 1, 2, ..., 5 (3.32)

where I(x, y) is the intensity value of the current pixel with the given coordinates (x, y)

in the image I; I lefti denotes the intensity values of the neighboring pixels defined in

the eye template as shown on the left side in Fig. 3.34. Similarly, the right eye map

Mright(x, y) can be defined as

Mright(x, y) =

{
1 ∀I(x, y) ∈ I, I(x, y) < min(Irightj )

0 otherwise
j = 1, 2, ..., 5 (3.33)

Based on Eq. (3.32) and Eq. (3.33) a consolidated eye map M for all the eye

candidates are generated as

M = Mleft(x, y)
⋃
Mright(x, y). (3.34)

To rule out the spurious eye candidates various condition checks with respect to

intensity level, geometric characteristics (e.g., distance, angle, symmetry, etc.) are

specified in the algorithm described in [LXK11].

The mean (H) and Gaussian (K) curvatures are well-known measures for surface

classification [PS85]. According to the sign of the computed H and K surface curva-

tures the image pixels can be classified in one of the eight different surfaces, i.e., peak,
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pit, flat, minimal, ridge, valley, saddle ridge and saddle valley. Generally H and K

surface curvatures are computed from depth images. However, on the one hand the

surface coherency property inferred by reflectance information can be used to estimate

the curvatures from the intensity image [BJ88], and on the other hand the surface

curvature estimation is preferred to be done on intensity images due to relatively poor

discrimination among facial components in depth images. Hence, a geometric feature

map is computed from the intensity values of the facial sub-image using the method

implemented in [HBMB07]. This procedure can be performed in parallel with eye can-

didates searching (see Fig. 3.33) to achieve higher processing speed. The extended eye

template consisting of prominent regions of the potential eyes and nose (see Fig. 3.34)

is applied on the region of interest (ROI) of the computed feature map for feature

extraction as shown in Fig. 3.35. In the end, the extracted curvature measures can be

used as local features for the classification of eye candidates.

Figure 3.35: Eye localization (feature map) - (a) the computed feature map with

the extended eye template and (b) eye pair candidates on the facial sub-image [LXK11].

The experimental results in [LXK11] show that the proposed eye template is partic-

ularly suitable for images with low spatial resolution. Using ARTTS 3D-TOF database

[ARTTS08] and self-made Kinect image database the SVM classifier is trained in a

supervised manner with hand labeled true eye pairs (ground truth) and non-eye-pair

candidates detected through the eye template based searching procedure. The average

detection accuracy of eye pairs on different face image databases with up to three per-

sons in a scene is more than 92% despite of the simplified scheme for face detection

[LXK11].

The above mentioned eye localization algorithm has evolved afterwards to a multi-

user eye tracker by taking significant optimizations and by incorporating video-based
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object tracking [LXK12]. The proposed object tracking method, which is based on

difference map of consecutive depth images, achieves superior results compared to state-

of-the-art intensity image based tracking techniques with respect to tracking accuracy

and occlusion handling. Using this method the head/eye positions of multiple users can

be detected and tracked accurately with relatively low overall computational cost. This

method can be further enhanced with effective real-time tracking algorithms, so as to

serve the needs of human-vehicle interfaces in ADAS system for automatic (multi-user)

eye gaze estimation, intention prediction, etc., and to perform driver status monitoring

or in-vehicle surveillance.

3.3.2 Kinect based Object Tracking

Depth camera can extend driver status monitoring in the 3rd dimension. By using

state-of-the-art depth cameras, vision systems are able to perceive distance and build

up 3D profile of objects without compromising field-of-view, robustness to lighting

conditions and computation performance, which are intrinsically limited in stereo vision

systems [LXK11]. As a low-cost commodity depth camera Kinect sensor is incorporated

in the presented system due to its satisfactory depth sensing resolution, ease of use, as

well as the variety of software resource. The key software components of Kinect are the

skeleton tracking algorithm derived from the human body parts recognition method

[SFCS11], and the CANDIDE-3 based face tracking algorithm.

In [SFCS11] a new method is proposed to estimate 3D positions of body joints from

a single depth image, in a fast and accurate way, without using temporal information.

Thanks to large-scale and highly varied training data, the realized classifier is able to

estimate body parts invariant to body shape, pose, clothing, etc. The classification

result is re-projected on the scene to find local modes, and finally the 3D proposals of

body joints with confidence score are generated. Based this method, a human body

skeleton made of several body joints can be detected from the recorded depth images,

and be applied on the object under tracking afterwards.

CANDIDE, a parameterized face mask specifically developed for model-based cod-

ing of human faces, was created by Mikael Rydfalk in 1987 [Ryd87]. It became well

known to a larger public through the research of Forchheimer et al. [FK89, LRF93,

LLF94]. With low number of polygons (approximately 100), CANDIDE allows fast

reconstruction at moderate computation cost. As an updated parameterized face
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model, CANDIDE-3 [Ahl01] consists of 113 vertices and 168 surfaces and has improved

mouth and eyes modeling significantly compared to its earlier versions. CANDIDE

and its improved versions has been widely used in computer vision, e.g., MPEG-4

Facial Animation Parameters [MPEG4]. With the built-in CANDIDE-3 face model,

the Face Tracking Software Development Kit (SDK) along with Kinect for Windows

SDK [FaceTracking] is adopted in this research work with modifications, so as to utilize

the real-time face tracking for driver status monitoring. Fig. 3.36 visualizes the wire-

frame model CANDIDE-1 and its improved version CANDIDE-3. The head movement

seen by Kinect can be captured in terms of pitch, yaw, roll around three axes in 3D

coordinate system. Facial features such as locations of eyebrows, mouth, nose, and

other facial components are computed as well.

Figure 3.36: CANDIDE - The different versions of the parameterized face mask:

CANDIDE-1 (front and side views) and CANDIDE-3 (front and side views).

Many Active Appearance Model (AAM) methods are based on CANDIDE. A real-

time 3D face tracking algorithm based on AAM constrained by depth data is developed

by Microsoft and used in the Kinect system [SHLA14].

Among the selected sensory data/features, such as ocular measures, etc., the relation

of observed head orientation (yaw, pitch and roll) and driver’s drowsiness state has

been investigated by utilizing the state-of-the-art IR depth camera in the frame of

this research work. A similar study on driver’s head orientation and drowsiness state,

however, with focus on the estimation of head orientation by exploiting three points

face features using conventional RGB camera, can be found in [AM13].
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3.4 Summary and Discussion

Depth perception is a valuable complement to conventional color/intensity imaging

in a variety of application fields, e.g., industrial, robotics, consumer electronics for

home/office use, etc. Despite many application-driven innovations have been made in

3D sensing, depth camera based 3D embedded vision in automobile is still scarce. In

the recent years novel IR depth sensors/cameras bring the embedded vision in the third

dimension to enhance the sensing capability for better human-vehicle interactions, and

to move forward towards smart driving. There are new sensor components/systems with

decent depth resolution, computing power, and intelligent data processing algorithms.

The fusion of various depth perception principles in a single compact sensor embodiment

starts to emerge as well.

To gain depth/distance information stereo imaging system is able to compute dis-

parity map out of stereo views, so as to facilitate the image segmentation procedure,

which is usually the precondition for further processes such as object detection/tracking.

However, stereo imaging has several intrinsic limitations such as correspondence prob-

lem (stereo matching) which requires complex algorithm and high computational cost

to compensate and stereo imaging itself is also sensitive to illumination change.

Light sheet based 3D object sensing (see 3D laser scan in 3.1.4.2) is a very robust

method of 3D imaging. Many industrial applications have linear motion of the objects,

thus, profile scan methods can fit such purpose very well. Multiple cameras can be used

for 360 degree coverage. 3D sensing on static objects/scenes requires sensor movement,

and as such the technology is not suitable for object tracking applications.

Light-field imaging seems to remain immature to the present day. It offers rich fea-

tures including after-the-fact-refocusing, depth map, etc., but it demands high process-

ing power, and sacrifices image quality with regard to sharpness and resolution severely.

The depth resolution of light-field images is coarse, and real-time video recording is not

available. Thus, light-field technology requires further improvements to comply with

applications of 3D embedded vision.

ToF imaging benefits from active illumination that can suppress or limit the in-

fluence of environment light conditions. No matter using continuous wave or pulse

modulation, the obtained intensity and depth images are registered pixel by pixel ac-

cordingly in ToF camera, thus, do not require extra computational effort for image
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matching which is crucial in conventional stereo imaging systems. In general, ToF

imaging requires high accuracy time measurement – a good balance among light source

power, integration time, and frame rate.

Depth sensing with novel structured light triangulation such as the Kinect sensor vi-

talizes the machine vision market, and enables massive innovations. Based on standard

CMOS technology the Kinect sensor becomes a popular mass-production consumer

electronics device with low cost, despite the fact that the operation range is limited by

the baseline between IR light source and depth sensor, and depth sensing capability

can be impaired by the shadow effect of projection.

It must be noted that depth cameras are having great potential for gesture based

human-machine interactions, e.g., natural user interface (NUI), gesture recognition/control

in consumer applications for gaming/home/office use, robot control, etc. Here are the

emerging application fields where (IR) depth cameras are already employed.

• Interactive digital signage for commercial advertisement

• Digital identity (player-recognition),

• Full body 3D scan, human body mass estimation with Kinect [VDPA12]

• Industrial robot control

• Surveillance (people counting and classification)

• Automotive applications such as driver assistance

• Telepresence and video conference

• Virtual reality

• Augmented reality (e.g. LEGOr vending machine)

• Gesture control in car infotainment system

The combination of conventional 2D color vision with depth sensing, low-power con-

sumption and miniaturization of sensor/camera components exhibit the technological

advances and trends of depth cameras. For example, Microsoft Kinect V2 is so far the

highest resolution 3D depth camera (full HD) available on the market which combines

ToF technology with 2D imaging. Similarly, the 1.3 megapixel 2+3DTM camera from
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odos imaging gives comparable depth accuracy with fairly lower color image resolution.

PMD CamBoard nano [PMDnano15] with a ToF image sensor and a single LED as

light source in compact design (37×30× 25 mm) is developed for consumer electronics

such as smart phone and tablet PC. More technical details of the state-of-the-art depth

cameras are summarized in Table 3.2.

Additional technical specifications of depth cameras, such as field of view (FOV),

illumination power of light source, modulation frequency, data and control interfaces,

e.g., USB, Ethernet, data (output) format, price information (if available), and product

feature highlights, can be found in Depth Sensor Database in Appendix.

Considering automotive applications, in particular, ADAS applications, the follow-

ing system design metrics with respect to 3D embedded vision should be taken into

account:

• Compact design

• Energy footprint (power consumption)

• Computational requirements

• Potential cost (affordable)

• Robustness

In the final system realization of the research work, DriMix Micro-3D-Camera is

not used, because

1. the image registration rate of the camera prototype is not real-time, yet to be

improved by implementing the depth calculation algorithm in the sensor hardware

directly;

2. the laser power used is not eye-safe for human, thus, not suitable for driver

monitoring applications.

Despite certain limitations as mentioned previously such as limited operation range

due to baseline setup between light source and depth sensor, weakness against shadow

effect of projection, the Kinect sensor, however, exhibits good usability, decent depth

sensing accuracy, robust performance, as well as excellent built-in real-time functions

(e.g. object tracking and face recognition), and it is prevailing in consumer electronics
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(availability and affordability). Therefore, the Kinect sensor V1 was selected as the key

system component in the DeCaDrive project which will be addressed in Chapter 6.
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Table 3.2: Specifications of the State-of-the-Art Depth Cameras

Depth Camera Tech. Depth Frame Operation Wavelen. Output

Model Name Mode Acc. [cm] Rate [fps] Range [m] [nm] Resolution

MESA
CW 1 1 25 0.8− 8 850 176× 144

SR3000 [MESA]

MESA
CW 1 50 0.8− 8 850 176× 144

SR4000 [MESA]

PMD Tech
CW 1 80 0.3− 7 870 200× 200

CamCube3 [PMDnano15]

PMD CamBoard
CW 0.5 90 0− 2 850 160× 120

nano [PMDnano15]

Canesta
CW 0.6− 30 30 0.1− 6 785 64× 64

DP208 [Canesta]

Fotonic
CW 0.3− 1.5 75 0.1− 7 808 160× 120

B70 [Fotonic]

Panasonic
CW 3− 14 30 1.2− 9 850 160× 120

D-Imager [Panasonic]

odos
PG2 1 30 0.5− 10 905 1280× 1024

VS-1000 [odos15]

TriDiCam
PM3 1 100 0.3− 10 850 128× 96

LDPD [TriDiCam]

OptriCam
PM 1− 3 50 1− 10 870 120× 90

DS10k-A [Optrima]

Point Grey
PT 4 0.2 48 0.5− 29 N/A 648× 488

Bumblebee2 [PointGrey]

DriMix
PM5 1− 10 10 1− 5 850 80× 60

iC-TS006 [iC-Haus]

Microsoft
AT 6 1 30 0.8− 3.5 830 640× 480

Kinect V1 [KinectV1]

Microsoft
PG 1 30 0.5− 4.5 830 1920× 1080

Kinect V2 [KinectV2]

1. Continuous wave modulation with lock-in pixels

2. Pulsed light with fast gating

3. Pulse modulation with lateral drift-field photo detector

4. Passive triangulation with stereo vision

5. Pulse modulation with drift-field-mixing concept

6. Active triangulation with structured light
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Chapter 4

Further Sensory Building Blocks

for ADAS

This chapter gives a survey on the state-of-the-art methods of measurement and sensory

principles with the focus on ADAS building blocks complementing the solely vision-

based solutions for general-purpose driver status monitoring. These diversified building

blocks are ranging from conventional vehicle sensors, driver body measurement (skin

impedance) sensor, EEG, ECG to electronic nose that are discussed in Section 4.1 to

4.5 respectively. The associated sensory data evaluation and feature computation of

the building blocks are addressed in the respective sections. Finally, this chapter is

summarized in Section 4.6.

4.1 Vehicle Dynamics Measurement

4.1.1 Measurement and Sensory Principles

Today’s vehicles are having up to four wheel speed sensors used for the anti-lock braking

system (ABS). Wheel speed sensors generate an electrical signal that is proportional

to the speed of the wheel. The ABS module can condition the generated signals to

determine vehicle speed and transfer the data via controller area network (CAN). The

transferred data can be visualized by the connected instrument cluster for speedometer

function, and can be used by power train control module for functions like adaptive

cruise control (ACC). The vehicle speed information can be further processed with

other data to determine the fuel efficiency. In addition, vehicle speed is needed by
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Figure 4.1: Vehicle sensors to measure dynamic motions - The number of auto-

motive sensors in a single vehicle has been steadily rising over time.

body control modules (BCM) like door lock module to realize automatic door locks

after vehicle start and beyond a specified speed.

The steering wheel (position/angle) sensor is used to monitor actual steering wheel

position to determine the driver’s intended path of travel. It has a potentiometer

capable of generating analog voltage signal in relation to steering wheel rotation. The

generated analog voltage signal is conditioned and further processed by BCM to gain

steering wheel position. Nowadays the steering angle sensors are mostly photoelectric

sensors that detect the rotation of steering wheel using light-sensitive elements [Hol10].

As mentioned previously in Section 1.1, vehicle lateral position, or say, lane position

is considered as key indicator for detecting driving ability in case of driver fatigue. Lat-

eral position sensor is used to measure the distance between the vehicle and the lateral

lane markings. Infrared sensor, radar sensor can perform well in certain situations to

determine lateral position of vehicle. Video-camera-based lateral position sensor is able

to cope with a wide variety of situations, thus, can be taken as a good base to build a

robust lane departure warning system [SJBG03].

The ultrasonic sensors transmit and receive acoustic waves beyond human audible
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range (ultrasound) at a frequency between 25 kHz and 50 kHz. An ultrasonic sensor is

used for calculating the distance and/or detecting objects based on the time-of-flight of

ultrasound to travel to the target and reflect back. Automotive ultrasonic sensors are

commonly seen in applications such as parking assistance, blind spot detection, etc.,

where the system performs object detection based on range sensing, and acoustically

alarm the driver to other vehicles or obstacles within close proximity. In recent years,

the ultrasonic sensors are evolving into automatic parking systems, automatic braking

systems (for collision avoidance), as well as autonomous driving systems, along with

other sensing technologies such as vision, radar, LIDAR, etc.

As attitude indicator, gyroscopes are useful for measuring or maintaining object

orientation in space. The success story of advanced Micro-Electro-Mechanical Systems

(MEMS)-based gyroscopes in automotive applications started nearly 20 years back,

since the first yaw rate sensor in MEMS was introduced and incorporated in electronic

stability program (ESP) by Bosch in 1998 [CFKE07]. The ESP system, recognized as

one of the most important active safety systems, replies on the input of yaw rate sensors

to detects the loss of steering control, and apply yaw control via ABS to brake individ-

ual wheels, so as to aid control over the vehicle. Three-axis MEMS-based gyroscopes

commonly seen in consumer electronic devices provide 6 component motion sensing,

i.e., acceleration for X-, Y-, and Z-movement, and gyroscopes for measuring the extent

and rate of rotation in space (roll, pitch and yaw). Similarly, flexible inertial sensor

clusters encompassing gyroscope and accelerometer can be seen in the automotive sub-

systems. In addition, 9-axis (acceleration, gyro, magnetic x/y/z sensing) MEMS units

are available on the market [InvenSense, ST9D, BOSCH].

Since the first Global Positioning System (GPS)-based car navigation system was

introduced in the early 1990s, automotive navigation systems prevail gradually and

become a standard function in modern automobile. A GPS module allows the car

navigation system to calculate routing based on current positions and to aid driving

activity. To gain improved position resolution, differential GPS (DGPS), utilizes fixed,

ground-based reference station networks to broadcast the difference between the GPS

positions provided by the satellite signals and the known reference positions. Assisted

GPS (A-GPS) further augments stand-alone GPS by using data of cellular base stations

to enhance localization precision and navigation quality in case of poor satellite signal
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conditions. Hence, such GPS-based automotive navigation requires infrastructure im-

provements and relies on up-to-date and accurate map data. In addition, the sensory

data of gyroscope and accelerometer can be used for greater reliability, as GPS signal

loss and/or multipath propagation may occur in situations like traveling down through

urban canyons, tunnels, etc.

The headway sensors can detect the distance between a vehicle and any vehicles or

large objects in front of the vehicle. These sensors are used by ACC and/or collision

avoidance systems (also known as precrash detection system). Most existing headway

sensors use a 76.5 GHz radar, but other frequencies (e.g. 24 GHz, 35 GHz and 79

GHz) are also in use. Radar signals are very good at detecting objects that strongly

reflect electromagnetic radiation, e.g., metal objects. These radar signals operate at

wavelengths on the order of a few millimeters, thus, automotive radar systems are

suitable for detecting objects of several centimeters or larger sizes. Some systems

use infrared sensors instead of (or in addition to) the radar sensors. Furthermore,

the gyroscope sensor in vehicle can be used to compensate the measurement error of

headway sensor, so as to cope with diversified landforms and road characteristics (e.g.

uphill, downhill, pit).

The tire pressure sensors can directly or indirectly measure the air pressure of

individual wheels which can have severe impact on vehicle dynamics. A tire pressure

monitoring system (TPMS), usually consisting of tire pressure sensors, battery manage-

ment, wireless communication interface and microcontroller, can continuously monitor

the tire pressure and report the measurement results via human-vehicle interface (in

real-time). TPMS can be used to avoid traffic accidents, poor fuel economy due to

under-inflated tires by detecting the hazardous states of tires in early phase.

To give an overview the important sensors for vehicle dynamics measurement are

visualized in Fig. 4.1.

4.1.2 Data Analysis for Vehicle Sensors

Speed variation can be used as a metric of driver response to situations where the

speed changes are required. It can be influenced by voluntary speed changes, e.g., due

to change of road environment, or by involuntary speed changes due to loss of speed

control. However, the relation between speed variation and accident risk is difficult to

comprehend and explain. Thus, there are more useful alternatives, e.g., mean speed
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and headway metrics, which are relatively easy to interpret with respect to driving

performance and risk of accident.

Mean speed, speed variation and maximum speed are frequently used speed metrics.

Mean speed is defined as the average travel speed (km/h). Mean speed is a reliable and

valid metric of driving performance in scenarios where the driver determines and con-

trols the speed, such as in rural road and motorway driving during low traffic intensity

hours. Mean speed is not useful in scenarios where speed is controlled by traffic flow

or other environmental factors. Maximum speed can reveal occasional severe loss of

speed monitoring. Occasional speeding behavior can be caused by visual and cognitive

distraction.

In general, increased lateral position variation indicates a reduced lateral control,

while reduced lateral position variation is found when drivers are under cognitive load

[BVW91, EJO05].

Mean lateral position is defined as the average distance between the right side of the

front or rear right wheel and the inner (closest) edge of the right hand lane marking.

Lateral position (LP) should be measured perpendicular to the lane marking. In case

of several lanes (e.g. motorways), the lane markings of the current lane should be used.

Mean lateral position is not defined during lane changes.

Mean time-to-line-crossing (TLC) is defined as the mean of the TLC local minima,

where TLC is defined as the time to cross either lane boundary with any of the wheels

of the vehicle if speed and steering wheel angle are kept constant. TLC metrics are

only defined if the vehicle is within a lane. Decreased mean TLC indicates a decreased

lateral control performance on either a regulatory or tracking level. Visual distraction

and heavy cognitive load lead to decreased mean TLC.

Minimum time headway is defined as the minimum time gap (seconds) to a lead

vehicle, traveling in the experimental vehicle’s path of travel, while mean time headway

is defined as the mean value of the time gap (seconds) to a lead vehicle. Headway is

calculated as the distance to the lead vehicle (bumper to bumper) divided by the

experimental vehicle travel speed. Small headways are related to high risk of collision.

Headway larger than 3 seconds can be considered safe and are of little interest. Headway

less than 1 second can be considered unsafe, but the subjective estimation of safe

headway varies a lot between drivers. Decreased and increased headway may reflect loss

of situation awareness if the driver is engaged with a distracting (visual or cognitive)
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task. Increased headway may also indicate that the driver decides to increase the

distance to the lead vehicle in order to compensate for increased distraction/cognitive

load.

The brake jerks metric is a binary metric, which is true or = 1 if there was one or

several abrupt onsets of the brakes during driving, and false or = 0 otherwise. Abrupt

onset of the brakes is defined as the occurrence of a deceleration change higher than

10 m/s3, induced by braking. As with line crossings, analysis of situations where

brake jerks are found may give valuable understanding of the effects of distraction and

cognitive load on the driver. Brake jerks of the specified amplitude only occur in very

hazardous situations, thus indicate high risk of accident. Only brake jerks that would

have been avoided if the driver was not distracted or under cognitive workload indicate

that driving performance was deteriorated.

Figure 4.2: General trend of steering angle - A general trend of steering wheel

movement over a 58-minute driving simulation can be computed based on moving average

of steering angle data.

An example of general trend of steering angle in a driving simulation experiment

illustrated in Fig. 4.2. The following features of steering angle sensor data can be consid-

ered in driver status monitoring. Steering reversals being related to micro-corrections

indicate the frequency of lateral motion changes (left-right or right-left) within gap

size θ. Depending on θ two features are taken into evaluation (with θ = 1◦ and θ =

3◦ respectively). Steering-same-side represents the frequency of steering motion in the

same direction above threshold ϑ which indicates lane changing or curve turning move-

ments. Two features are computed based on ϑ = 12◦ and ϑ = 32◦ respectively. Mean
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and standard deviation of steering wheel positions within a measurement time frame

are evaluated. The percentage of micro-corrections being taken to the overall steering

motion as well as the steering velocity are considered here. In addition, FFT based

frequency domain analysis of steering movement statistics can be performed to extract

respective features. It should be noted that the parameters for feature computation

are depending on system calibration and steering wheel specifications such as steering

wheel size, resolution of steering angle sensor.

Despite the dependency on driving experience, type of vehicle, road and weather

conditions, etc., the steering behavior indicated by steering wheel movement or by

lane departure/line crossing is regarded as the most trustworthy measure of driving

performance and has been widely employed in mainstream ADAS systems [LWK12].

The correlation between steering wheel movement and lane position processes which

can be jointly used for drowsiness detection has been studied in [SP96].

4.2 Body Measurement: Impedance Spectroscopy

4.2.1 Measurement and Sensory Principles

Impedance spectroscopy (IS), also known as electrochemical impedance spectroscopy

(EIS), measures the dielectric properties of a medium as a function of frequency. Since

long time, it has been used in study on the electrical properties of biological tissues,

regarded as bioimpedance analysis.

Thomasset explored the utilization of bioimpedance measurement in total body

water estimation using bipolar electrode method [Tho63]. The bipolar electrode method

employs single electrode for both purpose without separated current electrode and

voltage electrode, so that the number of electrodes can be reduced and the lineup of

the electrical circuitry as well as the sensor product composition can be simplified.

The minimum required number of electrodes is 2 (+ electrode and - electrode). The

electrodes can be actually attached to both arms and legs, so that the number of

electrodes is possible to increase up to 8 (bi-polar electrode method using 8 touch type

electrodes). The accuracy of this method is, however, lowered by the contact resistance

generated from electrodes.

Nyboer applied quad surface electrode readings for bioimpedance measurements to

estimate the fat free mass of the human body [Nyb70]. Hoffer et al. introduced the
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association between total body impedance and total body water content in reference

to tritium dilution techniques [HMS69]. The tetra-polar electrode method separates

the current electrode pair from the voltage electrode pair. Hoffer et al. and Nyboer

introduced this method to make up for the weak point of bi-polar electrode method,

so that contact resistance of electrodes was considerably reduced. Though, the lineup

of electric circuit is complex and the number of electrodes is increased. The minimum

required number of electrodes is 4 (current electrodes +/- and voltage electrodes +/-).

Similar to the bipolar electrode method, the number of electrodes in the tetra-polar

electrode method can be increased to cover both arms and legs in body impedance

measurement.

A graphical comparison between bipolar and tetra-polar electrode methods for IS

measurement can be found in Fig. 4.3. The problem of bipolar electrode method is that

the true endogenous bioimpedance ZTUS is masked through Zk(≈ ZSkin + ZElectrode),

i.e., the contact impedance of the joint current and voltage electrode on the measured

skin surface, which leads to the measured frequency dependent impedance Z(ω) as

follows.

Z(ω) =
U(ω)

I(ω)
= Zk1 + ZTUS + Zk2, (4.1)

where Zk1 and Zk1 denote the contact impedance generated from the positive and

negative electrodes respectively; ZTUS is the tissue impedance to be measured.

Using tetra-polar method, where one pair of current electrodes to excite the tissue

and another pair of voltage electrodes measure the voltage difference, there is almost no

current flowing through the high impedance voltage electrodes, thus almost no Zk(≈ 0)

is measured along with ZTUS . In this case, Eq. 4.1 can be reformulated as

Z(ω) =
U(ω)

I(ω)
= ZTUS . (4.2)

4.2.2 Data Analysis for Skin Impedance Measurement

For impedance analysis of solids and liquids a simple RC circuit model as shown in

Fig. 4.4 are often used. Any electrode system in measurement has a geometrical ca-

pacitance Cg ≡ C∞ = C and a bulk resistance Rb ≡ R∞ = R in parallel with it, which

lead to the time constant τd = R∞C∞, representing the dielectric relaxation time of

the basic material [MM05].
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Figure 4.3: Bipolar and tetra-polar electrode methods - (a) Bipolar method with

joint current and voltage electrode; (b) tetra-polar method with separate current and

voltage electrodes [BT13].

Figure 4.4: Impedance plane plot - Part (a) shows a common RC circuit. Part (b)

shows the corresponding impedance plane plot. Arrows indicate the direction of increasing

frequency [MM05].
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Three-dimensional plot is often used to examine and visualize the IS data. A 3D

plot, as depicted in Fig. 4.5, consists of a normal complex plane plot in the real-

imaginary plane plus the third frequency axis showing the impedance response in a

proper 3D perspective [MM05]. In addition, software tools such as ZViewr [ZVIEW]

can be used to generate Cole-Cole plot.

Figure 4.5: Impedance plane 3D plot - A 3D plot of impedance response, where a

log(frequency) axis has been added at right angles to the ordinary -Im(Z), Re(Z) complex

plane plot, allows frequency response to appear explicitly [MM05].

Electrical bioimpedance measurements are most often performed as deflection mea-

surements by measuring the response of the system to an external electrical excitation

[PW01]. The electrodes are a critical element of such IS measurement systems. They

function as an electronic-to-ionic interface between the electronic conductor in the mea-

surement leads and the ionic conductor in the load, i.e., biological tissue. This interface

can be modeled as a parallel circuit of a variable resistance RE and a variable capac-

itance CE along with a variable voltage source UEP at the interface (see Fig. 4.6).

After measuring the response to the excitation in terms of voltage or current, the com-

plex impedance is estimated by applying methods such as sine correlation and Fourier

analysis [SFSB08].

The skin impedance Z varies in response to the frequency of the measurement

alternating current (AC). The higher the frequency the more easily the current passes

through, thus, the lower the impedance. A periodically measured skin impedance of

approx. 0.9 kΩ with 30− 100 kHz measurement frequency is visualized in Fig. 4.7.
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Figure 4.6: Skin impedance measurement - Equivalent model for the electronic-ionic-

interface, and its connection with the working load – tissue under study (TUS) [SFSB08].

Figure 4.7: Skin impedance response in time - The magnitude of skin impedance Z

changes in time in response to the periodically repeated measurement frequency 30− 100

kHz.
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4.3 Electroencephalography

4.3.1 Measurement and Sensory Principle

Figure 4.8: The 10-20 system for EEG - The standard locations of scalp electrodes

specified in the 10-20 system [AES91].

As a typical non-invasive method, electroencephalography (EEG) can record elec-

trical activity of the brain along the scalp. It measures voltage fluctuations resulting

from ionic current within the neurons of the brain. In clinical contexts, EEG records

the brain’s spontaneous electrical activity in a certain time frame from multiple elec-

trodes placed on the scalp. The locations and nomenclature of these electrodes are

standardized by the American Electroencephalographic Society [AES91]. The 10-20

system is an internationally recognized method to describe and apply the location of

scalp electrodes in the context of an EEG test or experiment (see Fig. 4.8). The ”10”

and ”20” refer to the fact that the actual distances between adjacent electrodes are

either 10% or 20% of the total front-back or right-left distance of the skull.

The clinical diagnostic applications generally focus on the spectral content of EEG

signals that is the type of neural oscillations. The frequency spectrum of EEG signal is
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ranging from 0.1 Hz to 70 Hz, which is classified in the following five frequency bands:

delta, theta, alpha, beta and gamma, reflecting different levels of consciousness [BG10].

• Delta waves are the slowest in frequency but are the highest in amplitude. Ob-

served in deep, dreamless sleep, this frequency is the gateway to the universal

mind and the collective unconsciousness, where information received is otherwise

unavailable at the conscious level. It is a dominant brainwave of infants (birth to

24 months) and even adults in deep sleep.

• Theta brainwaves occur during deep relaxation and meditation, light sleep or

lucid dreaming including the REM dream state (Rapid Eye Movement sleep). The

lower the brain frequency the faster the learning. Most children and teenagers

have dominant theta brainwave patterns.

• Alpha brainwaves are slower in frequency as compared to Beta, which translates

to a highly relaxed state of awareness. It is a normal brainwave pattern in people

who are naturally relaxed and creative. Alpha brainwaves are considered the

healthiest brainwave range and 10 Hz has widely been accepted as the ”safest”

brainwave frequency to train.

• Beta are the brainwaves of our normal waking consciousness. It is associated

with a heightened state of alertness, logical thinking, problem-solving ability,

concentration, when the mind is actively engaged in mental activities. But higher

Beta levels also result into stress, anxiety and restlessness.

• The Gamma brainwave is the fastest frequency at which the brain functions,

where an individual can experience bursts of insight or high-level information

processing.

A brief summary of the EEG signal frequencies and the associated functions can

be found in Table 4.1. In detection of driver drowsiness, particularly for microsleeps,

EEG based approach has given results indicating that microsleeps have EEG shift to

lower frequencies (from alpha to theta waves) [BTPR08].

In recent years, consumer brain-computer interface (BCI) devices emerge thanks to

the development of EEG technology. The representative products seen in the consumer

market are NeuroSky and Emotiv devices as illustrated in Fig. 4.9.
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Table 4.1: EEG signal frequencies and the associated functions [BG10]

Brainwave Type Frequency Range Mental States and Conditions

Delta 0.1 Hz to 3 Hz
Deep and dreamless sleep, unconscious sleep,

unconscious state

Theta 4 Hz to 7 Hz
Intuitive, creative, recall, fantasy,

imaginary, dream

Alpha 8 Hz to 12 Hz
Relaxed, but not drowsy,

tranquil, conscious

Beta 12 Hz to 25 Hz
Relaxed yet focused, integrated, thinking,

aware of self and surroundings, alertness, agitation

Gamma 26 Hz to 70 Hz
Higher mental activity,

to be seen in conscious waking state and REM dreams

NeuroSky released the first affordable consumer based EEG along with the game

NeuroBoy in 2007. This was also the first large scale EEG device to use dry sensor

technology. ThinkGear is the technology inside every NeuroSky product or partner

product that enables a device to interface with the wearers brainwaves. It includes the

sensor that touches the forehead, the contact and reference points located on the ear

pad, and the on-board chip that processes all of the data. Both the raw brainwaves and

the eSense Meters (attention and meditation) are calculated on the ThinkGear chip.

eSenseTM is a NeuroSky’s proprietary algorithm for characterizing mental states. To

calculate eSense, the NeuroSky ThinkGear technology amplifies the raw brainwave

signal and removes the ambient noise and muscle movement. The eSense algorithm is

then applied to the remaining signal, resulting in the interpreted eSense meter values.

Please note that eSense meter values do not describe an exact number, but instead

describe ranges of activity.

Emotiv EPOC headset is a high resolution, multi-channel, portable EEG system

that features 14 EEG channels with saline soaked felt pads (at location AF3, AF4,

F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1, O2 as per the 10-20 system), plus 2

references with left/right mastoid process / Alt P3-P4. The advanced model EPOC+

features motion sensors (accelerometer, gyro, magnetometer) and provides more user

configurable options. The EPOC headset is able to detect the following facial expres-

sions and emotional states.

• Facial expressions: blink, left wink, right wink, furrow (frown), raise brow (sur-
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Figure 4.9: Brain-computer interface - Emotiv EPOC (left) [EPOC] and NeuroSky

MindWave (right) [MindWave].

prise), smile, clench teeth (grimace), glance left, glance right, laugh, smirk (left

side), smirk (right side).

• Emotional States: instantaneous excitement, long term excitement, frustration,

engagement, meditation.

4.3.2 EEG Data Analysis

The advent of digital computers enables the advanced signal processing of high-density

EEG recordings. Some open-source toolboxes can be used to process EEG data. As

a prominent example EEGLAB is a toolbox with interactive graphic user interface

(GUI) developed by Swartz Center for Computational Neuroscience, UC San Diego.

The EEGLAB toolbox is available under the GNU public license for noncommercial

use and open source development. It can be used under the cross-platform MATLAB

environment to process collections of single-trial and/or averaged EEG data of any

number of channels. The available functions of EEGLAB include EEG data, channel

and event information importing, data visualization (scrolling, scalp map and dipole

model plotting), preprocessing (including artifact rejection, filtering, epoch selection,

and averaging), independent component analysis (ICA) and time/frequency analysis
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(TFA) as well as standard averaging methods [DM04]. In particular, a primary func-

tion of EEGLAB is to facilitate the process of applying and evaluating the ICA results

of EEG data. The core mathematical concept of ICA is to minimize the mutual infor-

mation among the data projections or maximize their joint entropy. ICA algorithms

have proven in [JMHL00] to be capable of isolating both artifactually and neurally gen-

erated EEG sources, whose EEG contributions across the training data are maximally

independent of each other [DM04].

Further new plug-in toolboxes for advanced EEG signal processing, e.g., NFT – 3D

head and source location modeling, are developed for EEGLAB in recent years.

Figure 4.10: Emotiv TestBench - Features: 5 second rolling time window (chart

recorder mode); all or selected channels can be displayed; automatic or manual scaling

(individual channel display mode); adjustable channel offset (multi-channel display mode);

synchronized marker window [EPOC].

Nowadays, with the advent and popularity of commodity EEG devices, a good

example of EEG data analysis based on such devices can be seen in Fig. 4.10. Real-

time display of the Emotiv headset data stream is shown on the TestBench GUI,

including EEG, contact quality, FFT, gyro (if fitted custom option), wireless packet

acquisition/loss display, marker events, headset battery level. Record and replay files

are in binary EEGLAB format. Command line file converter is included to produce .csv

format. Timed markers can be defined and inserted into the data stream, including
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on-screen buttons and defined serial port events. Markers are stored in EEG data file.

Marker definitions can be saved and reloaded. Markers are displayed in real time and

playback modes.

4.4 Heart/Pulse Rate Measurement: ECG and PPG

4.4.1 Measurement and Sensory Principle

Figure 4.11: Pulox - Finger Clip Pulsoximeter CMS-50E (top right) and a functional

block diagram of PPG-based pulse oximetry. The red LED is on for 50 sec, both LEDs are

off for 450 sec, the NIR LED is on for 50 sec, and then both LEDs are off for 450 sec. The

system repeats this cycle continuously.

Electrocardiography (ECG or EKG) is the process of recording the electrical activity

of the heart over a period of time using electrodes placed on a human body. These

electrodes detect the tiny electrical changes on the skin that arise from the heart muscle

depolarizing during each heartbeat. Until recently, ECG-based electrical biosensors

were found only in high-end medical equipments.

The most common digital application of the highly informative ECG trace is heart

rate variability (HRV) [WLAL11]. HRV can also be reliably estimated from photo-

plethysmography (PPG) [SJSD08]. ECG directly measures the bio-potential generated

by electrical signals that control the expansion and contraction of heart chambers, while

PPG senses the rate of blood flow during heart activity using electrical signals derived

from changes in reflected light due to blood flow. In addition, PPG based methods
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have already been intensively studied and afterwards exploited for noninvasive pulse

oximetry [Men88].

A typical PPG-based solution for heart rate measurement and blood oxygen met-

rics is visualized in Fig. 4.11. The pulse-oximeter circuit alternates the on-time of a

red LED and a near-infrared LED to monitor blood oxygen saturation (SpO2). The

transimpedance amplifier, A1, converts the photodiode current generated by the LEDs

to a voltage at the output. The signal then travels through a bandpass filter and gain

stage to the 12-bit ADC. The signal also travels through a lowpass filter to regulate

the driver power to the LEDs. The microcontroller acquires the signals from the 12-bit

ADC, computes the ratio of the red- and NIR-LED signals, and compares the results

with a SpO2 look-up table. The LCD shows a percentage of oxygenated hemoglobin

versus nonoxygenated hemoglobin and the heart rate [Tow01].

4.4.2 ECG/PPG Data Analysis

Figure 4.12: ECG and PPG record comparison - Simultaneously recorded ECG

(from chest) and PPG (from wrist) when the subject was at rest. One cycle of PPG

corresponds to one cycle of ECG with sampling rate 250 Hz [ECGPPG].

Pulse rate is one of the measurable vital signals that can be used to check heart

health and fitness level. Pulse rate can be estimated from PPG signal records.

Fig. 4.12 shows a PPG segment and an ECG segment recorded at the same time

when the subject was at rest (no obvious noise was present in both signals). In the

recorded waveform one cycle of the PPG corresponds to one cycle of the ECG.
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Accurately estimating pulse/heart rates from the PPG signals is sometimes quite

challenging. In scenarios where e.g., subjects perform physical exercises or carry out

strong motions, such as fast running, jumping, etc., it can result in huge motion artifacts

in recorded PPG signals, making the pulse/heart rate estimation difficult.

Based on embedded pulse rate sensor on steering wheel the LF/HF ratio of heart

rate variation, or say pulse rate, in frequency domain is suggested as an indicator for

drowsiness detection in [Yu09]. With predefined low frequency band 0.04 − 0.15 Hz

(LF) and high frequency band 0.15−0.4 Hz (HF) the LF/HF ratio of pulse rate course

within a measurement time frame is computed. The mean value of pulse rate is taken

up in feature computation as well.

There are interesting researches in ECG/HRV and pulse oximetry highlighting their

potential applications in bioinformatics, e.g., human identification [BPPW99] and hu-

man state recognition [TVGS11].

4.5 Electronic Nose

4.5.1 Measurement and Sensory Principle

The term ”electronic nose” (e-nose) was coined in 1988 by Gardner and Bartlett, who

later defined it as ”an instrument which comprises an array of electronic chemical

sensors with partial specificity and appropriate pattern recognition system, capable of

recognizing simple or complex odors/flavors [GB94].

A typical electronic nose system consists of a multi-sensor array, an information-

processing unit based on e.g. artificial neural network (ANN), software with digital pat-

tern classification/recognition algorithms, and reference databases. The multi-sensor

array is composed of various sensors responding to a wide range of chemical classes

and collectively discriminating diverse mixtures of possible analytes. The commonly

used sensors for electronic noses include MOSFET devices, conducting polymers, poly-

mer composites, quartz crystal microbalance, surface acoustic wave (SAW) devices,

electrochemical gas sensors, fiber-optic gas sensors, etc. [WB09]

E-nose is utilized in a wide variety of industries such as automobile, food, cosmetic,

analytical chemistry and biomedical industries for a broad and diverse range of ap-

plications including quality control of raw and manufactured products, process design,

freshness and maturity (ripeness) monitoring, classification of scents and perfumes, and
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environmental assessment studies [WB09]. Finally, the exploratory use of e-nose to aid

in the detection of driving impairment/deprivation due to inebriation is expected in

ADAS domain.

There are commercial products, e.g., Micronas gas sensors based on CCFET (Ca-

pacitive Coupled Field Effect Transistor) technology [MICRONAS], UST gas sensing/e-

nose systems based on resistive effects used in intelligent ventilation systems in cars

[USTGAS].

4.5.2 Data Analysis for Electronic Noses

The typical analysis techniques for e-nose data can be classified in three main categories

as follows [SBE98]:

• Graphical analyzes: bar chart, profile, polar and offset polar plots

• Multivariate data analyzes (MDA): principal component analysis (PCA), canoni-

cal discriminate analysis (CDA), featured within (FW) and cluster analysis (CA)

• Network analyzes: artificial neural network (ANN) and radial basis function

(RBF)

The selection of the utilized method(s) depends on the type of sensory input and the

type of information that is sought. In general, MDA is very useful when e-nose sensors

have partial-coverage sensitivities to individual compounds in the sample mixture. The

artificial neural network (ANN) can be used to identify underlying nonlinear models of

e-nose data, so as to perform the (aroma) pattern recognition based on analyte-specific

reference database [WB09].

4.6 Summary and Discussion

To gain reliable and as comprehensive as possible descriptions of the vehicle’s dynamic

motions, versatile sensory inputs including wheel speed, angular rates, lateral position,

tilt angles, headway, linear accelerations, etc. need to be measured and evaluated. In

addition, the road safety related automotive sensory components are vastly demanded

due to the steadily strengthened regulations. For instance, from 1st November, 2014, all

new passenger cars sold in the European Union must be equipped with a tire pressure
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monitoring system (TPMS) (refer to Section 4.1.1) to avoid traffic accidents and poor

fuel economy.

The bioinformatical data of driver, on the other hand, can contribute to the im-

proved road safety as well. Skin impedance, heart/pulse rate, and EEG measures of

the driver’s brain, as well as the driver’s body odor can be sensed and processed to

monitor the driver’s physiological and psychological states. Other novel sensor compo-

nents/systems, e.g., E-Taster assistance system with Lab-on-Spoon [LabOnSpoon] and

Lab-on-Fork as ”electronic tongues” [ETaster] intended for smart kitchen and ambient

assisted living (AAL) applications, could also be interesting in ADAS domain, and seek

for their potential applications.

These diversified sensory building blocks including advanced embedded vision sys-

tems (see Chapter 3) can expand the range of ADAS applications and enable creative

and innovative solutions to address active safety mechanisms such as collision avoid-

ance, driver drowsiness detection as well as to maintain the general safe state of JCS.

Hence, the selection of the suitable building blocks and their interconnections become

crucial for the sensor data fusion and will impact the overall system performance. With

regard to this, the top level ADAS system modeling concept and the associated design

methodology are discussed in Chapter 5.
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Chapter 5

ADAS System Modeling Concept

Next generation ADAS aiming at smart driving and moving forward to its ultimate

manifestation - autonomous driving, raises a set of challenging requirements on driving

safety, connected security, and cutting edge signal processing as well as human-vehicle

interfaces.

Inspired by the novel ADAS concept coupled with COCOM/ECOM model (see

Chapter 2.2), and the advances in sensor electronics, functional building blocks (as

described in Chapter 3 and Chapter 4), a generic system concept of driver status moni-

toring and the adopted design methodology are underlined in this chapter. An overview

of the proposed system concept along with the holistic and integrated development and

validation framework are given in Section 5.1, followed by the discussions on sensor

feature selection and fusion algorithms in Section 5.2. Afterwards, an insight into rel-

evant flat and hierarchical classification techniques is addressed in Section 5.3. The

limitations and possible improvements are discussed in Section 5.4.

5.1 System Concept and Design Methodology

The challenges in the development of ADAS are large quantities of data from diversified

sensor devices such as radar, lidar, ultrasonic, laser and video-based systems must be

visualized and validated. The major goal of this research work was to study human

driving behavior as well as vital signs of driver by exploiting novel sensing technologies

and the combinations thereof, which can facilitate the realization of driver drowsiness

detection in ADAS.
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Figure 5.1: Sensor signal processing pipeline mapped in COCOM - The stages of

sensor signal processing pipeline in ADAS, such as sensing, feature computation, feature

selection, and classification can be mapped in the COCOM model as introduced in Section

2.2.1.

Based on the top level system concept involving controller and controlled system, the

modeling of driver behavior in the context of human-vehicle interactions can be viewed

in the decomposition of JCS. As part of JCS the sensor signal processing pipeline, which

assists driver to perform a single control process on vehicle, can be mapped in COCOM

model as shown in Fig. 5.1. The process including the assistance to decision making of

the controller and the action being performed on the controlled system is marked with

dashed arrow to differentiate itself from the sensing and data processing procedures.

In addition, the feedback of controlled system in response to the undertaken action, as

well as the input from external environment (outside of controlled system) construct

the stimulus to JCS in terms of events/feedback.

The proposed system concept in the form of JCS has been broken down to building

blocks on the function level as shown in Fig. 5.2. Benefiting from smart sensing and

intelligent soft-computing, the proposed system concept has been formed as extend-

able/scalable, multi-sensory ADAS-architecture being able to cope with driver status

monitoring and intention prediction. Smart sensors also adaptation/learning and self-x

concepts can be discussed in this context. The information flows, or say, data and con-
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Figure 5.2: The proposed system concept - Extendable/scalable, multi-sensory

ADAS-architecture for driver status monitoring.

trol signal paths, within and surrounding the whole system are indicated by the (bold)

black arrows. The common multi-sensing interfaces enable the interconnection between

(smart) sensors and back-end system components. A structural metadata being formed

by multi-sensing interfaces is crucial here for the exchange of sensory data along with

descriptive information (e.g., timestamp, sensor type, data type, linkage to other data,

etc.) among building blocks inside of the system.

Design methodology: The X-in-the-Loop (XiL) is a framework for validation

of complex mechatronic drive systems. This approach can be used as a generic and

scalable design methodology for the development of automotive and other mechatronic

systems [Dus10]. For example, the IPEX XiL framework provides a holistic and inte-

grated development and validation framework for powertrain systems. ”X” represents

the Unit Under Test (UUT). Compared to the widely used Hardware-in-the-Loop (HiL)

approaches, the UUT in the XiL framework can be a real prototype as well as a simu-

lated virtual prototype. The XiL framework can be used for design validation activities

throughout the whole process of automotive engineering (see Fig. 5.3). It enables the

system designers to focus on the interactions between the vehicle and its driver, its

environment as well as its subsystems and interfaces at different levels of abstraction

[ASM11].
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Figure 5.3: The XiL approach - XiL application in embedded software and system

development: ECU denotes Electronic Control Unit; HiL, SiL, MiL stand for Hardware-

in-the-Loop, Software-in-the-Loop, Model-in-the-Loop, respectively [EtasXiL].

In addition, considering the use of emerging smart sensors capable of self-monitoring,

-trimming, -repair/healing/rejuvenation, the automated design approach of dependable

intelligent sensory systems with self-x properties in [IK11] can be incorporated into the

system design flow.

AUTOSAR-based layered modular software design paradigm: In order to

achieve the technical goals: modularity, scalability, transferability and re-usability of

functions, Automotive Open System Architecture (AUTOSAR), as shown in Fig. 5.4,

provides a common software infrastructure for automotive systems of all vehicle do-

mains based on standardized interfaces for the different layers [AUTOSAR]. Consider-

ing the future trend (refer to Section 2.3), next-generation ADAS systems have more

extreme demands on e.g. network connectivity, 3D graphics processing, which leverage

large code bases and possibly third party software with the lack of formal safe software

development process. Designers must plan for serious problems with these increasingly

complex systems and build a reliable, scalable software patch/upgrade system [Hoo15].

The modularization and standardization of ADAS software components:

A world-wide recognized standard for ADAS is so far not yet established due to the

diversity of applications and the complexity of system functions. It would be difficult

to form the ADAS standard without consolidation of system architecture, configuration
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Figure 5.4: AUTOSAR software architecture - The AUTOSAR software components

have well-defined interfaces, which are described using a standardized exchange format de-

fined in AUTOSAR. An user application is decomposed and encapsulated in the respective

AUTOSAR software components which run on the AUTOSAR infrastructure [AUTOSAR].
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schemes, standard functions (API), data exchange format, etc. There are companies

in the automotive industry attempting to standardize the system design for ADAS or

facilitate the formation of ADAS standards. A bold example is the joint work of BASE-

LABS and Vector, where modular data fusion software components [BASELABS] and a

framework for ADAS applications [vADASdeveloper] have been seamlessly integrated.

It should be noted that BASELABS modules are design as open as possible, thus,

not counting on any specific runtime environment (e.g., AUTOSAR). However, these

modules can be adapted to an AUTOSAR environment if it is needed.

ISO 26262 functional safety in system design considerations: Since the

year 2011, ISO 26262 functional safety standard provides the guidance for the automo-

tive industry and has been extensively accepted throughout the automotive commu-

nity. Although governments have not yet issued an mandate of the standard to fulfill

the challenging safety requirements of ADAS and other automotive E/E systems, ISO

26262 compliance is deemed to be an internal mandate by automotive industry leaders

including some OEMs, Tier-1s, and Tier-2s [Hoo15].

Figure 5.5: ADAS on multicore system - ADAS subsystems and non-critical par-

titions consolidated on a multicore processor based on Green Hills (GHS) INTEGRITY

RTOS (real-time operating system) [Hoo15].

To meet ISO 26262 functional safety standard, the mind-set of safety design must

be applied on various levels of system abstraction (see Fig. 5.5), especially by introduc-
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ing diversified redundancy on the safety critical signal paths. For example, in ASIL-D

compliant automotive Electric Power Steering (EPS) system, different torque sensors

(e.g., optical and hall effect) can be employed via Serial Peripheral Interface (SPI) and

Single Edge Nibble Transmission (SENT) respectively on the same (torque) signal path

to the ECU for the torque measurement inputs. Such double sensory inputs enable the

plausibility check by comparing one input against the other, and improve the robustness

of torque measurements by applying redundancy in the design. Another example of

diversified redundancy can be found in an ADAS system for collision avoidance. Radar

and vision sensors in the ADAS jointly contribute to the object detection and tracking

so as to assist driver to avoid potential collisions. Both sensors or sensor arrays work

independently and can actually complement each other to help the system accommo-

date various environmental conditions and driving scenarios. The EPS system realizes

the diversified redundancy on the sensor signal level, i.e., the same type of measure-

ments provided by different torque sensors, while the above ADAS example establishes

the diversified redundancy on the system function level - object detection and tracking

employing different types of sensors and measurement principles. Such design decisions

may fall due to different system design flows (e.g., top-down or bottom-up).

5.2 Sensor Fusion Algorithms

A multi-sensor system relies upon sensory inputs using diversified measurement princi-

ples (refer to Chap. 3 and 4). Multiple metrics need to be employed to fully characterize

objects under inspection, because neither a single sensor nor an individual measure-

ment system can fulfill the requirements. Thus, in order to benefit from the advantages

of all the inspection systems for the evaluation, various testing and inspection methods

should be used. The fusion of the acquired data facilitates the diminishment of un-

certainty and the enhancement of signals. The combination with present measurement

systems and advanced data processing methods can give a better evaluation outcome

[ZFK07].

The JDL process model for sensor fusion, which was introduced by Joint Direc-

tors of Laboratories, is conceptualized by sensor inputs, human-computer interaction,

database management, source preprocessing, and six key subprocesses: signal refine-

ment, object refinement, situation refinement, significance estimation, process refine-
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ment, cognitive refinement [LHL08]. In other words, sensor fusion can be carried out

at different abstraction levels, i.e., (raw) signal/data level, feature level, decision level.

Figure 5.6: Data fusion schemes - (a) Feature integration; (b) Feature discrimination;

(c) Feature discrimination [ZFK07].

The following typical sensor fusion schemes can be observed in practice. Fig. 5.6

showed that A, B and C are distinguished from each other by fusing sensors 1 and 2.

The salient features from the two data sources are combined by the first type of data

fusion (see Fig. 5.6(a)), while a higher level approach, i.e., decision or feature level,

can use the second or third type of data fusion shown in Fig. 5.6(b) and Fig. 5.6(c)

respectively. The preprocessing unit, which can be ANN, data clustering, segmentation

algorithm, or other types of classifiers, are planed for the input sensor data. A thematic

map can be generated afterwards through the preliminary results, which are fused by

the probabilistic theory, fuzzy logic operator, or numerical combination. An alternative

approach in terms of sensor modeling can be employed instead of using categorizing

methods. Therefore, the sensor model can be built by implementing statistical methods

through calibration, supervised, or unsupervised learning. The outputs are fused to

generate the posterior probabilities by applying the Dempster–Shafer theory, Bayesian

inference, or fuzzy logic method [ZFK07].

In the proposed conceptual ADAS system, sensor fusion can be performed in multi-

sensing interfaces to refine the signal; it can be performed in the soft-computing sub-
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system at feature level by applying feature selection and optimization techniques to

enhance the salient features and increase the class separability in feature space; it can

also be applied in driver-vehicle-interfaces at decision level to warn/assist the driver to

make proper reaction.

5.3 Multiclass Classification Methods

Many real-world problems in the context of ADAS such as pedestrian detection, traffic

sign recognition, driver drowsiness detection, automatic parking, etc. can be resolved

based on classification systems. Classification methods aim to produce a mapping from

inputs x to outputs y, given a labeled set of input-output pairs D = {(xi, yi)Ni=1}, where

D is the training set, yi is a categorical variable from the finite set, yi ∈ {1, ..., L} , and

N is the number of training examples. If L > 2, it is known as multiclass classification,

while it is regarded as binary classification when L = 2 [Mur12a].

5.3.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs), in particular the Multilayer Perceptrons (MLP),

are employed in order to classify instances that are also non linearly separable. In

feed-forward ANNs, neurons are grouped into distinct layers as depicted in Fig. 5.7(a).

Output of each layer is connected to input of nodes in the following layer. Using a

number of output neurons and proper class designation, MLP can naturally address

multiclass classification problem.

Inputs of the first layer (input layer) are the inputs to the network, while the

outputs of the last layer form the outputs of the network. The input-output mapping

is determined by the network, which is trained on a labeled set of input-output pairs.

The weights of the connections between neurons are then fixed, and the network is used

to determine the classifications of a new set of data. When the input and activation

functions of the neurons as well as the network architecture are fixed, the current values

of weights define the behavior of the ANN. For estimating the values of the weights,

the back propagation algorithm is regarded as the most well-known and widely used

learning algorithm [Kot07].

A two-layer feed-forward neural network with sigmoid hidden neurons and linear

output neurons was employed in the research work to classify driver drowsiness levels.
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The details of the neural network with learning algorithms are described in Section

6.4.2. And the data evaluation results in application can be found in Section 7.4.

Figure 5.7: Multilayer perceptrons and RBF - (a) Multilayer perceptrons; (b) RBF

network.

An RBF network is a three-layer feed-forward network as shown in Fig. 5.7(b),

in which each hidden unit implements a radial activation function and the output of

the network is a linear combination of radial basis functions of the inputs and neuron

parameters. On the other hand, MLP may have one or more hidden layers. Both RBF

and MLP are universal function approximators [Hay99a]. The difference between RBF

networks and MLP lies in the activation functions in the hidden layers as well. MLP

typically uses S-shaped sigmoid functions, as formulated in Eq. (5.1), in the hidden

layers,

S(t) =
1

1 + e−t
(5.1)

while RBF uses the multivariate Gaussian function defined as follows in the hidden

layers.

G(x, xi) = exp(− 1

2σ2
‖x− xi‖2) (5.2)

Here xi denotes the center of the function and σ is known as the width. Eq. (5.2) is

an example of a radial basis function, since it is only a function of Euclidean norm of

the difference vector x−xi, i.e., ‖x−xi‖ [Hay99b]. The selection of different ANNs for

classification purposes depends on the shape of the class boundaries.

5.3.2 Support Vector Machines (SVMs)

As a supervised machine learning technique, Support Vector Machines [Vap95] are

very popular. The basic SVMs support only binary classification. Given a set of

training examples, each marked for belonging to one of two categories, SVM-based
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learning algorithm constructs a hyperplane in a multidimensional space that separates

given examples by maximizing the margin (large margin principle), i.e., the minimum

distance from the separating hyperplane to the nearest example (see Fig. 5.8).

SVMs do not result in calibrated probabilistic outputs, which makes it difficult

to use them in the multiclass classification setting [Mur12b]. However, extensions

of SVMs such as [WW99] and [CS01] are proposed to solve this problem. Another

approach to tackle multiclass classification, known as Hierarchical Support Vector Ma-

chine (HSVM), is to construct a decision tree with an SVM at each node that is used

as binary classifier (see [CCG04] for details).

In addition to performing linear classification, SVMs can efficiently perform non-

linear classification using kernel method, implicitly mapping their inputs into high-

dimensional feature spaces. The SVM model complexity is not affected by the number

of features contained in the training data, thus, SVMs are well suited to deal with

learning tasks with large number of features with respect to the amount of training

instances [Kot07].

Figure 5.8: SVM-based classification - Hyperplane H1 does not separate the classes.

H2 does, but only with a small margin. H3 separates them with the maximum margin.

Other effective methods for multiclass classification such as decision trees, k-Nearest

Neighbor (KNN), Naive Bayes classifiers, etc., are not discussed here in details. It

should be noted that the Bayesian Networks (BN) based method has been utilized in

drowsiness detection by monitoring the physical behavior of the drivers [JLL06], and

it has been shown that the BN is able to capture dynamics associated with fatigue

[YMT09].
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5.4 Summary and Discussion

The proposed JCS-based conceptual ADAS model can be partitioned in two parts.

One is focused on the driver-based approach underlining the methods for driver mon-

itoring, interior monitoring, driver-vehicle interactions, etc., surrounding the driver or

any specific travel participants inside of the vehicle. In the other part, vehicle-based

approach is pursued with respect to vehicle control, localization and navigation, colli-

sion avoidance, etc., centering around the vehicle and its interactions with transport

infrastructures (V2X). The holistic design of ADAS covering these two parts remains

as the major challenge of such complex systems (see Fig. 5.9). Industrial standards like

AUTOSAR, ISO 26262, as well as XiL being highlighted in the above sections should

be jointly considered and employed properly in the system design/validation processes.

Figure 5.9: Holistic design of ADAS - Driver-based approach and vehicle-based ap-

proach jointly form a more comprehensive driver assistance system that can be mapped to

one or several layers (typically tracking, regulating and monitoring) in the ECOM model.
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Chapter 6

DeCaDrive: System Architecture

and Implementation

Following the proposed system concept and model in Chapter 5, driver-based approach

is employed in the DeCaDrive project aiming at driver status detection and inten-

tion prediction. The insight into system realization of DeCaDrive with respect to the

evolution of system requirements, the relevant building blocks, as well as the design

considerations and changes is given in this chapter. An overview of the implemented

DeCaDrive system is given in Section 6.1 followed by its development history in Sec-

tion 6.2. The system hardware and software components are described in Section 6.3

and 6.4 respectively. Finally, the system implementation is summarized with known

limitations, possible improvements and new features in Section 6.5.

6.1 DeCaDrive System Architecture

Recalling the JCS system concept and the associated COCOM/ECOM model, the

proposed intelligent system incorporating such processing pipeline that covers sensor

signal acquisition, feature extraction/computation, feature selection and optimization,

as well as learning and classification, positions itself in the Monitoring layer of the

hierarchical control model - ECOM (see Fig. 2.3 and Fig. 5.9). The system block

diagram in Fig. 6.1 gives an overview of the involved subsystems, functional building

blocks, interfaces, and the associated operation environment (marked with dash lines)

in the implemented DeCaDrive system. Instead of testing on a real vehicle, a simulated
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driving environment is built and integrated in DeCaDrive for experiment and validation

purposes.

Figure 6.1: DeCaDrive system concept - The block diagram of the implemented

system concept includes the relevant system components, interfaces and the operation

environment.

To enable driver drowsiness detection that can be modeled as (multiclass) pattern

classification, the DeCaDrive system to be viewed as JCS, can be partitioned in four

subsystems, i.e., the sensing subsystem, the soft-computing subsystem, and the driv-

ing simulation subsystem (simulated controlled system) as well as driver (controlling

system) as shown in Fig. 6.1. It should be noted that the driving performance metrics

derived from vehicle dynamics, such as vehicle speed, acceleration, heading angle, etc.,

are not evaluated in the implemented DeCaDrive system. Hence, DeCaDrive belongs

to the category of driver-based approaches for drowsy driver assistance, which has a

different focus compared to the vehicle-based approaches.

The proposed sensing subsystem consists of steering angle sensor, pulse rate sensor,

impedance spectroscopy sensor, so as to monitor the steering behavior, pulse rate, and

skin impedance of driver respectively. As a key component the IR depth camera with

active illumination, here the Kinect sensor, is integrated in order to reliably provide

visual cues of driver including eye gaze estimation and blink detection as well as head
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orientation and pose. In the soft-computing subsystem the feature computation, (fea-

ture) dimension reduction and optimization, as well as learning and classification in the

processing pipeline are realized. In general a multi-sensor approach based on color and

depth vision, vehicle driving data, and biomedical driver data with efficient sensor fu-

sion and a learning system architecture has been pursued here to address driver status

detection and intention prediction. The driving simulation subsystem is able to sim-

ulate different driving scenes for highway, city streets, country roads, etc., for various

types of vehicles such as passenger cars, buses or trucks. The multi-sensing interfaces,

which interconnect sensory components and the soft-computing subsystem, enable A/D

conversion if needed, sensor data streaming, multi-sensor time-based synchronization.

With scalable adaptive sensing interfaces the diversified (redundant) sensory inputs can

be realized. Furthermore, if required the DeCaDrive system can be flexibly adapted to

the respective driving simulation scenarios through the best suitable sensor configura-

tions. For example, for a simulated truck driving in the night on highway, it would be

requiring IR vision with depth sensing for better performance of driver status monitor-

ing, since traditional vision sensors without active illumination won’t help in this case.

Pulse rate sensor would be especially needed when monitoring a driver with a history

of heart disease to detect potential heart attacks.

6.2 DeCaDrive Development History

Initially the project was motivated by the novel IR depth sensing technology during

the investigation and experiment on the proprietary DriMix Micro-3D-Camera (see

Section 3.2.1). By that time, drowsy driving issues still remained unsolved, thus the

idea about using depth and color sensing in driver status monitoring and drowsiness

detection emerged. A low-cost commodity depth camera, the Kinect V1 sensor (by the

time it was released), was firstly selected to serve the comparison study purpose, and it

was finally taken into the system as the vision sensor component due to its availability,

comprehensive features, and low cost. Thus, the system was originally designed based

on a single IR depth camera with inspiration: Depth-Camera-based Driver status

monitoring – DeCaDrive.

The validation results of ISE EyeLoc demonstrator based on the previous study in

[LXK11, LXK12] unveiled the potential of IR depth camera in multi-user eye localiza-
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tion/tracking applications, which laid the foundation of the first DeCaDrive prototype

in early 2012. The sensory data was initially acquired by IR depth camera (depth

and RGB outputs), pulse rate sensor, and steering angle sensor. The tactile sensor

button on the steering wheel and the pressure sensors behind the throttle and brake

pedals were considered as auxiliary inputs to the system, which generate additional

information on the side of driving simulator.

To enhance the sensing capability and to study the relation of driver’s skin impedance

and drowsy state, DeCaDrive has been extended with embedded impedance spec-

troscopy, which has a novel embodiment integrated in the steering wheel.

The DeCaDrive system has finally evolved from Windows/C/MATLAB based im-

plementation to C/C++/Python/Orange based multi-platform-compliant system that

is capable of on-line data acquisition and classification. A demonstrator of DeCaDrive

has been successfully presented on the International Motor Show – IAA Nutzfahrzeuge

2014 in Hannover, Germany.

Figure 6.2: DeCaDrive (the first version) - The system overview of the first version

of DeCaDrive: the sensing and soft-computing tasks are carried out in a merged subsystem

in one PC; the simulated human-vehicle interfaces and the driving environment are realized

in another PC [LWK12].

In the first version of DeCaDrive the implementation was mainly focused on Kinect-

based face tracking and Kalman-filter based eye gaze estimation, as well as sensor fusion

among Kinect, steering angle and pulse rate data. The implementation of the face

tracking algorithm of Kinect provided in Windows SDK was optimized in DeCaDrive

with multi-threads instead of single thread for both RGB and depth input data, i.e., one
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Figure 6.3: DeCaDrive (the first demo) - A test subject is operating the demonstrator

of DeCaDrive [Wer12].

thread for RGB image processing and another thread for depth image processing. This

method enables intrinsic synchronization/alignment between RGB and depth images

by explicit control on both threads, especially when the frame rates of RGB and depth

deviate from each other due to the disturbances on the Kinect sensor or the lack of

computation resources [Wer12]. The system was constructed using two PCs: one for

the sensing and soft-computing tasks, the other for the simulated driving environment

as shown in Fig 6.2. An off-the-shelf PPG-based pulse oximeter was employed to collect

the on-line sensory data of pulse rate and oximetry and record the data into file for

later (off-line) use. As illustrated in Fig 6.3 the pulse oximeter was attached to the

finger of test subject. The Kinect sensor was set on top of the screen, where the

simulated driving environment was visualized. Two LEDs on each side of the screen

were used to randomly generate stimulating light pulses to attract the attention from

test subject, which can facilitate the evaluation of test subject’s response time during

driving simulation. The first graphic user interface (GUI) of DeCaDrive was developed

based on MATLAB showing on-line technical computation of input sensory data (see

the plots on the left side of Fig. 6.4) and face tracking, eye detection, eye gaze estimation

results (see the right side of Fig. 6.4).

DeCaDrive was enhanced with embedded impedance spectroscopy for driver drowsi-

ness detection afterwards. A novel embedded IS-sensor was designed and integrated

on the steering wheel to monitor driver’s (skin) impedance response in a non-invasive
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Figure 6.4: DeCaDrive GUI of the first demo - MATLAB-based GUI of DeCaDrive;

left: the visualization of technical evaluation of sensory data; top right: test subject ob-

served by the vision sensor; bottom right: real-time depth image, eye detection and gaze

estimation [Wer12].

manner. As illustrated in Fig. 6.5, data links of various embedded sensors on steering

wheel were channelized to a microcontroller based digital front-end, so as to establish

scalable and adaptive multi-sensor interfaces. The IR depth camera, as a key com-

ponent of the sensing subsystem, was connected via USB interface to the PC-based

system back-end directly.

Finally, the system realization of DeCaDrive has been advanced towards higher

flexibility, sensor feature optimization, as well as on-line recognition capability by mi-

grating to ORANGE – a new open-access multi-platform environment [DCEG13], and

by utilizing Support-Vector-Machine (SVM) based classifier [MMRT01]. The final sys-

tem architecture with more computational intelligence is visualized in Fig. 6.6, which

employs hierarchical classification and automated feature selection methods.

6.3 Hardware Components

DeCaDrive system originated from a prototype based on single depth camera and after-

wards has evolved in so far to an intelligent system incorporating diversified embedded
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Figure 6.5: DeCaDrive with IS enhancement - The system overview of DeCaDrive

with integrated IS-sensor and microcontroller based digital front-end [LBK13].

Figure 6.6: DeCaDrive (the final version) - The system architecture with the focus

on the realization of sensing and soft-computing subsystems [LTK14].
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Figure 6.7: DeCaDrive host application GUI - Left: the visualization of technical

evaluation of sensory data was optimized, and switch buttons for sensor connection and

system activation were made available on the GUI panel; top right: test subject observed by

the vision sensor; bottom right: real-time depth image, eye detection and gaze estimation

[LTK14].
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sensors including IR depth camera, pulse rate sensor, blood oxygen saturation meter,

steering angle sensor, tactile and pressure sensors, IS-sensor, and more in the future

development. The analog and digital frond-end, especially for the embedded IS-sensor,

as well as the scalable adaptive multi-sensor interface are highlighted in this section.

6.3.1 Analog and Digital Front-End

In typical bioelectrical impedance analysis only the tissue impedance is of interest

which is usually measured with tetra-polar electrode method (see Fig. 4.3(b)), or say,

four-wire measurement configuration [Ivo03]. In DeCaDrive, for embedded impedance

spectroscopy, a two-wire (bipolar electrode method in Fig. 4.3(a)) impedance measure-

ment configuration is adopted, because not only tissue impedance but galvanic skin

response (GSR) of driver are under research. And both measures can be used as indi-

cation of psychological or physiological arousal in driving simulation context. Fig. 6.8(a)

illustrates two-wire configuration on a single hand where the tissue impedance of palm

(ZTUS) is measured along with contact impedance at two electrode positions (Zk1 and

Zk2). Two-wire impedance measurement configuration can be applied on two hands as

well. The overall measured impedance Z is interpreted as follows

Z =
U

I
= Zk1 + ZTUS + Zk2, (6.1)

when contact impedance of two electrodes are the same, e.g., using one-hand measure-

ment as Fig. 6.8(a), where Zk1 ≈ Zk2 = Zk, Eq. (6.1) can be simplified to

Z = 2Zk + ZTUS . (6.2)

As depicted in Fig. 6.8(c) the measurement signal path is from one electrode over the

body (including arm and thorax impedance) to the other electrode; thus, it forms a

two-wire measurement configuration with two hands.

For non-intrusive impedance measurement two dry electrodes made of flexible cop-

per tape were embedded on the steering wheel at standard ”ten to two” position. The

electrodes are connected via the analog front-end to the impedance converter AD5933

as shown in the shield board on top of Arduino Mega 2560 microcontroller in Fig. 6.8(b),

which operates from 10−100 kHz and covers the impedance range 0.1 kΩ − 10 MΩ. The

microcontroller-based digital front-end communicates with the impedance converter via
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Figure 6.8: Embedded IS-sensor in DeCaDrive - (a) Two-wire configuration for one-

hand impedance measurement; (b) the analog front-end (top shield board) of IS-sensor,

and the microcontroller-based digital front-end (bottom Arduino board) of DeCaDrive; (c)

two-wire configuration for two-hand impedance measurement [LBK13].
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I2C link. A switch array of 12 ports were installed to realize a resistor network of high

precision calibration and feedback resistors (tolerance ±0.05%) allowing a faster and

easier calibration process. Due to the analog front-end the DC level on the signal path

of impedance measurements remains constant, thus, the effects of electrode polarization

can be minimized.

One-hand and two-hand measurement configurations can be combined in a proper

manner to address different driving styles. With the embedded IS-sensor the system is

able to detect whether the steering wheel is handled with a single hand or two hands in

addition to monitoring the impedance response. Such information can be used in the

context of driving scenario to facilitate the assessment of driving behavior of individuals.

The copper-based dry electrodes used in the early implementation of DeCaDrive

are, however, facing the limitations such as higher contact impedance in general, low

biocompatibility and weak corrosion resistance. Thus, in the final system the cop-

per electrodes have been replaced by conductive textile electrodes which allow flexible

adaptation of the electrodes on the steering wheel contour despite very high impedance

(MΩ) of textile electrodes. Alternatively, medically safe materials like stainless steel

or titanium can be considered for electrodes. These metal electrodes could be attached

to a precisely fitting milling groove in the steering wheel.

The remaining issue of the current IS-sensor is less robustness against movement

artefacts like hand contact loss or high contact pressure on the electrodes which directly

affect the measurement results. On the other hand such movement artefacts, however,

may indicate abnormal stress situations during driving, especially in conjunction with

video cues and other sensory inputs, hence can be considered in the assessment of

driving performance.

6.3.2 Scalable Adaptive Multi-Sensor Interface

The sensory components used in DeCaDrive are summarized in Table 6.1. There is

a direct connection of Kinect sensor to the PC-based soft-computing subsystem via

USB. Other sensory inputs are channelized to a microcontroller (µC) based digital

front-end. After preprocessing the sensor data are transferred via USB interface of

the microcontroller to the soft-computing subsystem, where the sensor features are

extracted and fused.
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Analog to CAN interface for the interconnection of ECUs and on-board equipments,

standardization of smart sensor interfaces is demanded for ADAS due to multi-rate

heterogenous sensory data. In DeCaDrive, a preliminary scalable adaptive multi-sensor

interface is established based on microcontroller and standard PC.

Table 6.1: Summary of sensory components used in DeCaDrive

Sensor Output Preprocessing Sampling Rate Interface

Kinect Digital In sensor
Up to USB

30 fps on sensor

Steering angle
Analog µC 512 Hz

USB

sensor on µC

Pulse rate
Analog µC 512 Hz

USB

sensor on µC

IS-sensor Digital µC 512 Hz
USB

on µC

6.4 Software Components

The software components used in DeCaDrive are mainly implemented in the soft-

computing subsystem as shown in Fig. 6.1. From functional point of view, they can be

categorized in the following groups.

• Sensor data preprocessing

• Sensor data synchronization

• Sensor fusion

• Feature computation and optimization

• Feature selection

• Learning and classification

An optimized face tracking is provided in Microsoft Kinect SDK, based on which

head/eye tracking algorithm is adapted and utilized in this work. Fig. 6.9 gives exam-

ples of face/eye tracking results with overlapped CANDIDE-3 face model and in poor

lighting condition.

112



6.4 Software Components

Figure 6.9: Kinect Face Tracking - Face and eye tracking based on Kinect sensor, left

to right, CANDIDE-3 face model in Kinect Face Tracking Demo [FaceTracking], face and

eye tracking under poor illumination condition [Gua12].

Diversified sensory components and sophisticated algorithms make the system scal-

able and adaptive to different driving profiles and scenarios. Multi-rate data sets of

complementary sensors are synchronized on the same time base before being processed

by the feature computation and other relevant software components.

6.4.1 Sensor Feature Computation

The complete sensor feature set being extracted from various sensor inputs of DeCaDrive

is summarized in Table 6.2.

Steering angle sensor features: The features computed from steering angle

sensor data are described as follows.

• Steering reversals being related to micro-corrections indicate the frequency of

lateral motion changes (left-right or right-left) within gap size θ. Depending on

θ two features are taken into evaluation, i.e., Feature 1 and 3 in Table 6.2 with θ

= 1◦ and θ = 3◦ respectively.

• Steering-same-side represents the frequency of steering motion in the same direc-

tion above threshold ϑ which indicates lane changing or curve turning movements.

Feature 2 and 4 in Table 6.2 are computed based on ϑ = 12◦ and ϑ = 32◦ respec-

tively.
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Table 6.2: List of features being computed from multiple sensor measurements

Feature Sensor Description Feature Sensor Description

1, 3 Steer Wheel Steering Reversals 1◦, 3◦ 34, 35 Kinect
Translation, Rotation

Speed

2, 4 Steer Wheel Steering SameSide 12◦,32◦ 36 Kinect
Mean

Eyebrow Position

5 Steer Wheel Std of Position 37, 38 Kinect
Mean Blink

Frequency, Duration

6 Steer Wheel Low Steering Percentage 39 Pulse Rate LF/HF

7 Steer Wheel
Mean of

40 Pulse Rate
Mean

Absolute Position Pulse Rate

8 Steer Wheel Steering Velocity 41, 42 IS
Mean of

Magnitude, Phase

9-11 Steer Wheel
FFT-LowBand,

43, 44 IS
Std of

-MidBand, -HighBand Magnitude, Phase

12-14 Kinect
Mean x-, y-,z-

45, 46 IS
Lin. fit coeff.

Head Position of magnitude

15-17 Kinect
Pitch-, Yaw-, Roll-

47, 48 IS
Exp. fit coeff.

Head Orientation of magnitude

18-21 Kinect
x-, y-, z-, Norm-

49-51 IS
Poly. fit coeff.

FFT-LowBand of magnitude

22-25 Kinect
x-, y-, z-, Norm-

52, 53 IS
Lin. fit coeff.

FFT-HighBand of phase

26-29 Kinect
Pitch-, Yaw-, Roll-,

54, 55 IS
Exp. fit coeff.

Norm-FFT-LowBand of phase

30-33 Kinect
Pitch-, Yaw-, Roll-,

56-58 IS
Poly. fit coeff.

Norm-FFT-HighBand of phase

• Feature 5 and 7 reflect mean and standard deviation of steering wheel positions

within a measurement time frame.

• Feature 6 gives the percentage of micro-corrections being taken to the overall

steering motion.

• Feature 8 represents the steering velocity.

• Feature 9 to 11 are frequency domain analysis of steering statistics based on FFT.

Parameters for feature computation are dependent on the steering wheel specification

(e.g., wheel size, sensor resolution, etc.) and system setup.
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Kinect sensor features: Various visual clues including head movement, eye gaze

direction and ocular measures are extracted from the data provided by the Kinect

sensor. The following features are used in DeCaDrive:

• Mean head position in 3D coordinate system of Kinect within a measurement

time frame (see Feature 12 to 14 in Table 6.2);

• Mean head orientation measures, i.e., pitch, yaw and roll (Feature 15 to 17);

• Frequency domain analysis for head translation on three axes and its Euclidean

norm based on FFT LowBand (Feature 18 to 21) and FFT HighBand (Feature

22 to 25);

• Frequency domain analysis for head rotation around three axes and its Euclidean

norm based on FFT LowBand (Feature 26 to 29) and FFT HighBand (Feature

30 to 33);

• Translation speed (Feature 34) and rotation speed (Feature 35);

• Mean of eyebrow positions relative to left and right eyes (Feature 36);

• Mean eye blink frequency (Feature 37) and blink duration (Feature 38).

It should be noted that based on the outcome of eye tracking process the eye pupil and

corners are further detected to estimate the gaze direction using a modified algorithm

from [MZ00] in Werber’s work [Wer12] for DeCaDrive. The estimated gaze direction is

evaluated for the purpose of driver intention prediction. The potential features associ-

ated with eye gaze direction are, however, not evaluated for driver drowsiness detection.

Pulse rate sensor features: With predefined low frequency band 0.04− 0.15 Hz

(LF) and high frequency band 0.15−0.4 Hz (HF) the LF/HF ratio of pulse rate course

within a measurement time frame is computed in Feature 39. The mean pulse rate is

provided by Feature 40.

IS-sensor features: Linear, exponential and polynomial regression analysis are

performed on IS-sensor data in evaluation window. Considering the goodness of fit
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of regression model (refer to R-squared value in Fig. 6.10) IS-sensor data including

magnitude and phase angle is modeled as second-order polynomial in each evaluation

window for feature computation. The IS-sensor features being extracted in the first cut

implementation are summarized as follows.

• Feature 41, 42: mean values of magnitude and phase angle

• Feature 43, 44: standard deviations of magnitude and phase angle

• Feature 45, 46: linear fit coefficients of magnitude

• Feature 47, 48: exponential fit coefficients of magnitude

• Feature 49, 50, 51: coefficients of quadratic polynomial fit to magnitude

• Feature 52, 53: linear fit coefficients of phase angle

• Feature 54, 55: exponential fit coefficients of phase angle

• Feature 56, 57, 58: coefficients of quadratic polynomial fit to phase angle

Figure 6.10: IS-sensor features - Linear, exponential, polynomial regression analysis

on IS-sensor data in evaluation window with frequency sweep from 30− 100 kHz [LBK13].

For correct off-line IS-data analysis the user has to make sure that the first value

of the measurement data matrix starts exactly with the IS start frequency (30 kHz in

this case). The duration of each frequency sweep of the IS-sensor is configured as one

evaluation time window (512 data samples), hence IS data sets can be aligned with
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Kinect data sets. Data sets of different sensors are synchronized on the same time

base and fused on the feature level for pattern classification process. Different features

are treated equally in the current DeCaDrive system, even though a proper weighting

scheme can be applied.

In order to synchronize IS-sensor with other embedded sensors in system the time

base and data evaluation time frame being used during system runtime have been

streamlined by referring to Kinect sensor time base and taking least common multiple

of respective sensor evaluation time frames.

Due to different driving styles, physiological conditions, etc., the dynamic range and

variation of sensor data differ significantly among individual test subjects. In order to

consolidate sensor features of respective test subjects feature vectors are normalized

based on global mean and standard deviation as described in Eq. 6.3,

−→
Dk,T,norm =

−→
Dk,T,orig − µk,T

σk,T
, (6.3)

where
−→
Dk,T,norm is the normalized feature vector of test subject T for specific sensor

feature k,
−→
Dk,T,orig is the corresponding original feature vector, µk,T and σk,T are mean

value and standard deviation of
−→
Dk,T,orig respectively [Wer12].

6.4.2 Learning and Classification

Figure 6.11: DeCaDrive data flow - Overview of the data processing flow.

Off-Line Version – Windows/C/C++/MATLAB-based approach: The

driver drowsiness detection is modeled as a three-class pattern classification problem
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in DeCaDrive, i.e., 1 – not drowsy (alert), 2 – a little drowsy (transition) and 3 – deep

drowsy (fatigue). In the initial version, DeCaDrive was able to collect data from all

the sensor inputs, however, the implemented classifier cannot process data in real-time

to estimate the drowsiness states due to the limitations in software components. Thus,

it is referred here as the off-line version of DeCaDrive.

As illustrated in Fig. 6.11, in the information processing architecture of DeCaDrive,

the sensory data is collected from IR depth vision, steering angle, pulse rate, (skin)

impedance measurements, and fused on the feature level afterwards. Based on the out-

come of feature computation in the previous processing stage, the data sets are fused

on the feature level to construct the input vectors, which are further optimized with re-

gard to dimensionality reduction by employing feature selection techniques, for learning

and classification procedures. Due to advantage of learning complex, nonlinear, high-

dimensional patterns the classifier being used in DeCaDrive is built upon artificial neu-

ral network (ANN) or, more particularly, multilayer perceptrons (MLP) with supervised

training procedures. Two learning algorithms have been evaluated here, i.e., scaled con-

jugate gradient algorithm (SCG) [MM93] and Levenberg-Marquardt algorithm (LM)

[Mor77]. The developed approach to driver drowsiness detection is confirmed in the

experimental results using multifold cross-validation.

In the first-cut implementation of DeCaDrive, the feature – driver drowsiness de-

tection was realized based on a hybrid solution with MATLAB-scripting and C/C++

programming. Kinect sensor data acquisition and preprocessing was implemented in

C++ code. It has been further combined with C-code-based data processing algorithms

running on the microcontroller for the other sensor components in DeCaDrive. Sensor

fusion, feature computation, as well as learning and classification procedures are real-

ized in MATLAB code executed in the Windows PC-based soft-computing subsystem.

On-Line Version – C/C++/Python/Orange-based approach:

It is aimed to achieve an effective Automated Feature Selection (AFS) as well as

a robust on-line classification system. The proposed approach is based on a multi-

platform flexible and open system, with on-line classification capability, which is pro-

vided by the Python-based signal processing and computation intelligent libraries as

well as, ORANGE, an open source python based machine learning software through

visual programming.
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The on-line version of the system was implemented jointly utilizing the Python

scripting in ORANGE and the heuristic DeCaDrive runtime modules which were de-

veloped previously. For example, the Serial Port Interface module communicates with

the DeCaDrive sensing device using USB interface connection to control acquisition

activity and import acquired data to store in ORANGE’s data structure. The Feature

Selector module allows user to manually filter data in term of sensory channels, e.g.,

pulse rate, steering angle, Kinect features and skin impedance in the design process.

The pattern classification module analyzes multi-sensory context from the DeCaDrive

data acquisition system to on-line determine the driver status. These effective modules

developed in C/C++ were further improved by using BOOST for Python [AGK03] in

the final DeCaDrive system.

The standard SVM classification technique was employed in DeCaDrive to validate

the approach of flat/single SVM based feature-level sensor fusion together with the AFS

option. In addition, inspired by HSVM (see Section 5.3.2), an effective multi-channel

hierarchical SVM approach (here H-SVM to be distinguished from HSVM) [TK14] was

applied here to realize a more powerful and robust classification. H-SVM consists of

multiple SVM classifiers with soft output in the first level processing stage and one

additional SVM classifier at the final stage, so as to produce class probability (class-P)

vectors corresponding to the probabilistic patterns of different classes (see Fig. 6.12).

Each SVM classifier in the first level stage of H-SVM locally and individually computes

a specific sensor (feature) channel to generate a class-P vector corresponding to different

classes (not drowsy, little drowsy, deep drowsy). Here, SVM is not used as a binary

classifier, but a classifier being able to address multiclass setting. The SVM classifier at

the final stage computes the global class-P vector, the concatenation of class-P vector

from all sensor channels, to produce the final class output.

To generate an optimum SVM model, two parameters, C which controls the error

penalty of non-separable data points, and γ of the Radial Basis Function (RBF) ker-

nel, are recommended to be appropriately defined with regard to the input data. In

general, the SVM optimum parameters searching procedure takes place in the training

step based on the training data sets only. In DeCaDrive the SVM automated param-

eters search option implemented in ORANGE with grid search and cross-validation

techniques is employed. The respective SVM parameters are individually determined

for each of the investigated feature channel SVMs and for the final SVM.
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Figure 6.12: Hierarchical classification in DeCaDrive - Overview of the extended

DeCaDrive system with hierarchical processing using H-SVM [LTK14].

6.5 Summary and Discussion

In order to investigate human driving behavior and to monitor vital signs of driver

simultaneously a prototype of driving simulator was built. Initially the system was

based on a single depth camera (Depth-Camera-based Driver-state monitoring) and

afterwards has evolved to a multi-sensor soft-computing system encompassing PC-based

driving simulation and diversified sensing interfaces including IR depth camera, PPG-

based blood oxygen saturation meter with integrated pulse rate sensor, steering angle

sensor, tactile sensor and pressure sensor. The initial version of DeCaDrive, which was

published in [LWK12] and carried out within Werber’s diploma thesis [Wer12], received

the annual award of the Pfalzmetall foundation 2013 (Preis der Stiftung Pfalzmetall

2013) [PfalzMetall13].

The possible new features of DeCaDrive and its future development considerations

are listed as follows.

• The runtime environment can be enhanced to store the sensory data for off-line

use, comparative study, and can replay the recorded data for simulation purposes.

• Bioelectrical impedance with tetrapolar electrode method should be considered

to further investigate driving impairments such as inebriation.

• To integrate the embedded IS-sensor together with PPG-based pulse rate sensor

to realize a more elegant and compact embodiment.

• To improve the embedded IS-sensor to support both one-hand and two-hand

configurations on the steering wheel, so that the system can adaptively evaluate
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the IS-sensor inputs in continuously changing driving styles.

• Context by tactile sensor and pressure sensors is also useful to avoid spurious

readings of the skin impedance during absence of one or both hands from the

steering wheel.

• EEG-based methods (e.g., brain-computer interface described in Section 4.3.1)

can be used as in sleep research to get a better, somehow invasive, determination

of the ground truth for DeCaDrive.

• To fuse the driver’s data with the measurements of vehicle dynamics such as brake

and throttle information - a combination of driver- and vehicle-based approaches.

• The sensing and soft-computing subsystems can be merged/unified in an embed-

ded solution for future on-board equipments in vehicle. Advanced integration of

the key components and IPs into a single SoC-based solution can be pursued.

In the presented DeCaDrive implementation the sensor interfaces to soft-computing

subsystem are USB ports, mainly due to the PC-based architecture. In the order of a

seamless integration of DeCaDrive into the mainstream ECU-based ADAS architecture,

the following considerations and adaptations are required:

• Sensing and soft-computing subsystems shall be miniaturized and further inte-

grated by migrating from PC to embedded computing systems, e.g., high perfor-

mance feature-rich microcontroller, FPGA, SoC or a combination thereof. Thus,

both physical and energy footprint can be significantly reduced and yield a more

cost-effective system solution, which is conclusive for automotive mass market.

• System architecture shall be further optimized to realize modular design at dif-

ferent levels of abstraction following automotive standards such as AUTOSAR.

• Inter-system communication link shall be using state-of-the-art automotive net-

working technologies such as CAN, CAN-FD (flexible data rate with higher band-

width), LIN, FlexRay, MOST, Ethernet. Due to demand on high communication

bandwidth, Ethernet is of particular interest for ADAS related applications. The

interconnection with existing automotive (sub)systems is crucial for emerging
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novel ADAS systems with respect to functionality, extendability and compati-

bility. Using compatible communication links can facilitate the extensive fusion

of sensory data generated by various automotive components/systems. Thus, it

may further improve the validity and efficiency of DeCaDrive.

• Functional safety (ISO 26262) compliant design/development shall be adopted

for the integration of such ADAS system in mass-produced vehicles.

• Elegant expansion of human-vehicle interfaces can be realized with the improved

ergonomic designs of embedded sensory components in DeCaDrive.
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Chapter 7

Experimental Work

The system validation and experimental results are discussed in this chapter with the

focus on the design of experiments addressed in Section 7.1, the simulated driving

environment in Section 7.2, the ground truth definition in Section 7.3, as well as the

evaluation/validation results in Section 7.4. In the end, the chapter is finalized with

summary and discussion in Section 7.5.

7.1 Design of Experiments

To validate the DeCaDrive system for driver status monitoring, in particular, for driver

drowsiness detection purpose, an experiment with a set of simulated driving tests has

been designed and carried out as follows.

• Five test subjects volunteered to participate in an experiment with simulated

driving environment under room temperature (20 to 25 degrees Celcius).

• All test subjects are male with average age of 28 (±3) years old. One participant

is not in possession of driving license while the other four drive regularly and have

7 to 12 years of driving experience.

• The test subjects were instructed in advance to follow their normal daily routine

and to avoid taking any stimulating substances (coffee, caffeine, etc.) before the

experiment.
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• The sensory components were calibrated properly before the experiment. The

dry electrodes of IS-sensor on the steering wheel were finely prepared each time

before a test subject started with driving simulation.

• A monotonous driving scenario (highway with low traffic density at daytime) was

chosen for the experiment in order to promote driver drowsiness. The duration of

driving session for each test subject was limited to 60 minutes. The speed limit

in driving simulation for the experiment is up to 100 km/h.

• To minimize driving style dependent influence on IS-sensor inputs all test subjects

performed two-hand driving operations with proper skin-electrode contact areas.

It was ensured that the embedded pulse rate sensor on steering wheel was touched

properly by test subjects during driving simulation.

• In early phase of each test (2 to 5 minutes from the beginning) the measured

impedance was biased due to temporal changes of dry electrode-skin interface

(electrolyte diffusion process). As a result, IS-sensor data of early phase was

excluded from data evaluation process.

• Despite that sensor data evaluation can be performed during system runtime, all

the sensor measurements of driving simulation were time-based synchronized and

recorded in files for later off-line analysis.

7.2 Simulated Driving Environment

As visualized in Fig. 7.1 the simulated driving environment consists of a real-size driver

seat, steering wheel with support stand, brake and throttle pedals, as well as a standard

PC with 22-inch computer monitor showing the front view of driver (later it has been

replaced by a 55-inch LCD TV panel in the DeCaDrive demonstrator prepared for

IAA Nutzfahrzeuge 2014). Before conducting the experiment the test subjects were

instructed to spend some time and get themselves familiar with the simulated driving

environment.

Based on a PC software (see Fig. 7.2) different driving scenes for highway, city

streets, country roads, etc. can be simulated for a typical passenger car. Other en-

vironmental factors such as weather, light conditions can be simulated in the driving
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7.2 Simulated Driving Environment

Figure 7.1: DeCaDrive demonstrator - The simulated driving environment of

DeCaDrive (the final version).

Figure 7.2: Driving Simulator 2011 - A simulated driving scene of the city streets.
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scene as well. As mentioned in Section 7.1 a monotonous driving task in the simula-

tion software, i.e., highway driving at daytime with very few traffics, was chosen and

performed by the test subjects in the experiments. Software packages aimed at e.g.

bus or truck driving simulations can be adopted in DeCaDrive as well to extend the

supported driving profiles.

7.3 Ground Truth Definition

To detect and classify driver drowsiness level, the ground truth (GT), or say, the target

class of drowsiness level is defined with three-class scale: 1 – not drowsy (alert), 2 – a

little drowsy (transition) and 3 – deep drowsy (fatigue).

Figure 7.3: Ground truth and extracted features - a) Ground truth; b) blink fre-

quency (Feature 37 in Table 6.2); c) low steering percentage (Feature 6); d) mean pulse

rate (Feature 40) [LWK12].

Initially, two criteria, i.e., self-rated score (subjective) and measured response time

(objective) are combined to assess the drowsiness level and to establish the ground truth

(see Fig.7.3). In the experiment the test subjects were asked to rate their subjective

sleepiness every 10 minutes based on the predefined three-class scale. In the early
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implementation of DeCaDrive, a green and a red LED were mounted on the left and

right side of the monitor respectively (see Fig. 6.3) for the purpose of driver response

time measurements. Two LEDs were turned on in a random order and on a randomly

generated time base. It was expected that the test subject will press the corresponding

button on steering wheel as soon as he notices the light-up of the green or red LED,

so that the LED can be turned off, thus, the next round of random light-up procedure

can be triggered. The response time of the test subject during driving simulation was

measured as the elapsed time from light-up to turn-off of the LED.

In practice, however, according to the feedback of test subjects and the prelimi-

nary measurement results of response time, it was observed that all test subjects were

more reactive to the red LED compared to the green one. This led to biased measure-

ment results of the response time on green LED. In addition, the correlation between

self-rated drowsiness level and the one derived from the response time is still under

investigation and yet to be concluded. In many cases, two independent methods result

in discrepancies in the estimated drowsiness level.

A modified Karolinska-Scale (KSS) ranging from 1 (very alert) to 9.5 (fighting sleep)

was investigated in the DeCaDrive project as an alternative assessment method for the

ground truth definition of driver drowsiness. As shown in Fig. 7.4a a general trend

of steering wheel movement which reflects the driving scenario characteristics can be

computed based on the moving average of steering angle data. The skin impedance of

approx. 0.9 kΩ with 30 kHz measurement frequency is evaluated here (see Fig. 7.4b).

The features extracted from the steering angle sensor and the IS-sensor are compared

against the KSS scores estimated by the test subjects every five minutes during the

simulated driving tests. However, KSS-based self-estimation is even more complex

than the three-class scale, thus, requires more expertise in the state estimation of test

subjects.

Finally, to improve the self-rating accuracy of drowsiness level estimation based

on the three-class scale, additive ratings made by an independent observer/assessor

are evaluated along with the self-estimated scores. This approach to ground truth

definition is used in the final DeCaDrive system.
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Figure 7.4: Alternative method for ground truth definition - Data evaluation

against the ground truth definition: a) steering angle and its general trend; b) skin

impedance with with periodical frequency sweep from 30 kHz to 100 kHz; c) self-estimated

KSS vs feature 1 (the slope coefficient of linear regression on steering angle sensor data);

d) self-estimated KSS vs feature 2 and 3 (exponential fit coefficients of IS magnitude).
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7.4 Data Evaluation and System Validation

The sensory data of 353 time frames/windows with approximately 100-second measure-

ment time per window are evaluated in the experiments. Each measurement consists

of multiple sensor inputs including steering angle measures, head movement, ocular

measures and pulse rate values.

Figure 7.5: DeCaDrive evaluation with 3D impedance spectrogram - Magnitude

(a) and phase (b).

Instead of using Cole-Cole plot a 3D impedance spectrogram is introduced to facili-

tate impedance response analysis in both time and frequency domains. As depicted in

Fig. 7.5 the magnitude and phase angle of measured complex impedance are visualized

in 330-second time frame with 10 times of frequency sweep from 10 to 100 kHz. A

time frame covering one frequency sweep with specified frequency range is referred as

evaluation window for IS-sensor data.

Two learning algorithms, i.e., scaled conjugate gradient (SCG) algorithm [MM93]

and Levenberg-Marquardt (LM) algorithm [Mor77], have been evaluated in DeCaDrive

along with the ANN based classifier in the first implementation. The classification

results were carried out by performing 10-fold cross-validation process. A comparison

between two learning algorithms in terms of confusion matrix of classifier can be made

in Table 7.1 and Table 7.2.

The classification accuracy (ACC) with dependencies on the number of hidden

neurons and the learning algorithms are illustrated in Fig. 7.6. The classifier trained

with LM algorithm yields superior outcome compared to the one with SCG algorithm.
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Table 7.1: Confusion matrix of classification results based on scaled conjugate gradient

algorithm (SCG)

SCG Target Class (GT)

40 I II III
∑

O
u
tp

u
t

C
la

ss
(P

R
) I

339 22 10 91.4%

7.1% 0.5% 0.2% 8.6%

II
147 3226 298 87.9%

3.1% 67.7% 6.3% 12.1%

III
10 101 614 84.7%

0.2% 2.1% 12.9% 15.3%∑ 68.3% 96.3% 66.6% 87.7%

31.7% 3.7% 33.4% 12.3%

Table 7.2: Confusion matrix of classification results based on Levenberg-Marquardt al-

gorithm (LM)

LM Target Class (GT)

80 I II III
∑

O
u
tp

u
t

C
la

ss
(P

R
) I

494 2 0 99.6%

10.4% 0.0% 0.0% 0.4%

II
2 3338 4 99.8%

0.0% 70.0% 0.1% 0.2%

III
0 9 918 99.0%

0.0% 0.2% 19.3% 1.0%∑ 99.6% 99.7% 99.6% 99.6%

0.4% 0.3% 0.4% 0.4%

Note: GT and PR represent Ground Truth and Predicted Result respectively. Class I,

II, III indicate driver drowsiness levels: not drowsy, a little drowsy, deep drowsy.
∑

gives the aggregated results for specific rows, columns or for the overall statistics in

the matrix. For instance, in Table 7.1, 7.1% in cell GT-I-PR-I (under 339) indicates

the percentage of truly predicted Class I samples against the overall samples under

classification; the true positive rate (TPR) of Class I is given in cell GT-I-PR-
∑

upper

row, i.e., 68.3%, while the false negative rate (FNR) of Class I is 31.7% at lower row.

And 91.4% in cell GT-
∑

-PR-I upper row denotes the positive predictive value (PPV) of

Class I, while the lower row value 8.6% indicates the false discovery probability (FDP)

of Class I on the other hand. The consolidated overall classification accuracy (ACC) is

given in cell GT-
∑

-PR-
∑

upper row as 87.7%.
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With 40 hidden neurons the classifier based on LM algorithm achieved the ACC result

of 99.6% with high performance and modest memory consumption in the experiments.

A preliminary subset with 8 features corresponding to Feature 6, 12, 13, 14, 36,

37, 39, 40 are selected from Feature 1–40 in Table 6.2 (without IS-sensor features) by

applying sequential feature selection algorithm (SFS). In this case backward heuristic

search is used to minimize the feature set while preserving the feature quality with

respect to overlap and separability. The selected features are low steering percentage,

head position in 3D coordinate system of Kinect sensor, mean eyebrow position, mean

blink frequency, pulse rate LF/HF ratio and mean pulse rate.

Figure 7.6: Comparison of classification accuracy of algorithms - Comparison

between SCG and LM algorithms.

A comparison among different feature sets are summarized in Fig. 7.7, where 8 SFS

indicates 8 selected features being mentioned above; only IS indicates the exclusive

IS-sensor features (Feature 41, 43, 45, 47, 49, 50, 51, 52, 56, 57, 58 in Table 6.2); while

without IS means the total feature set excluding IS-sensor features, and full represents

the complete feature set. The combined feature set 8 SFS & IS yields the best result

in the experiments. An overview of the feature sets used in the experiments is given in

Table 7.3.

In the final version of DeCaDrive the flat SVM classification approach was employed

and evaluated with 5 different feature sets: 8 SFS&IS, 8 SFS, w/o IS, IS, and full
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Figure 7.7: Comparison of classification accuracy of selected features - Drowsi-

ness level classification accuracy (ACC) with dependency on selected features.

features. Afterwards, the full feature set as well as 8 SFS & IS were applied in the

H-SVM classification approach as described in Section 6.4.2. Each feature set was

Table 7.3: Overview of the feature sets used in the experiments

Sensor Feat. Full 8SFS IS w/o IS 8SFS & IS Description

Kinect

1-3 1-3 - 1-3 1-3 Head pos. in x,y and z

4-6 - - 4-6 - Head orientation in x,y and z

7,8 - - 7-8 - Translat. and rot. head velocity

9 9 - 9 9 Eyebrow position

10-11 10 - 10-11 10 Eyelid closing freq. and duration

Steering

Angle

12-13 - - 12-13 - Steering activity

14 - - 14 - Standard deviation of steering activity

15 15 - 15 15 Percentage of minimum steering activity

16 - - 16 - Mean of magnitude

17 - - 17 - Steering speed

18 - - 18 - Center of FFT-band

Pulse Sensor 18-19 18-19 - 18-19 18-19 HF/LF ratio of pulse frequency

IS

21-22 - 21-22 - 21-22 Mean and std. of magnitude

23 - 23 - 23 Coeff. a (slope) of lin. fit (mag.)

24 - 24 - 24 Coeff. a of exp. fit (mag.)

25-27 - 25-27 - 25-27 Coeff. a, b and c of poly. fit (mag.)

28 - 28 - 28 Coeff. a (slope) of lin. fit (pha.)

29-31 - 29-31 - 29-31 Coeff. a, b and c of poly. fit (pha.)
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Table 7.4: Classification results

Feature Set LM Algorithm in % Flat SVM in % H-SVM in %

8 SFS & IS (50%:50%) 99.70 99.79 (97.21) 99.58

8 SFS 89.38 78.28 -

w/o IS 90.48 93.19 -

IS 98.70 99.16 -

Full 99.22 98.22 99.66

Table 7.5: Flat SVM parameters generated from automated parameter search function

Parameter
Feature Set

8 SFS & IS (50%) 8 SFS w/o IS IS Full

C 512 (32) 512 8 512 128

γ 8 (8) 8 8 8 2

No. of SVs 690 (674) 1124 1895 455 947

divided to training set and testing set by using the holdout random sampling method

with 80% : 20% ratio for the flat SVM and more stringent 50%:50% ratio for the H-SVM

as well as for a second reference run with flat SVM given in parentheses in Table 7.4.

The parameter C and γ of all employed SVMs were optimized from the automated

parameters search function with the searching range of 1−512 for C and 0−8.00 for γ.

The obtained parameter values of flat SVM and H-SVM are summarized in Table. 7.5

and 7.6 respectively. The conducted experiments confirmed the superiority of the SVM

in both flat and hierarchical approach.

To compare to the more lenient investigations of the previous work, first flat ex-

periment was conducted with a larger training set. In the second, more extensive

experiment, a substantially smaller training set was employed, which gives absolutely

seen slightly smaller recognition rates of 99.66%, but the system solution will have

much higher general validity and the promise to perform better for newly acquired

”life” data. AFS application compacted the solution for a more lean system, but it

has to be revisited, as the full set of features gives slightly better performances, than

the selection adopted from the prior work with only 99.58%. The comparison between

the feature map plot of the full feature data and the hierarchical data (global class-P

vector) is visualized in Fig. 7.8.
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Table 7.6: H-SVM parameters generated from automated parameter search function

Feature Set Parameter
Sensor Channel

Kinect Steering Angle Pulse Rate IS Final

Full

C 128 32 512 512 512

γ 8 8 2 8 8

No. of SVs 700 1004 854 356 52

8 SFS & IS

C 64 128 512 512 512

γ 6 8 2 8 8

No. of SVs 560 848 854 356 50

Figure 7.8: Feature space - (a) Flat SVM with full features; (b) the hierarchical data

of the top-level SVM in H-SVM. It is clearly shown in (a) that the data possess a very

high intrinsic dimensionality, which does not allow a mapping to 2D feature space with

acceptable error.
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7.5 Summary and Discussion

In this research work, the sequential feature selection algorithm is employed to refine

the sensor feature set being used for classification. The feature selection can be further

optimized with sophisticated heuristics, e.g., genetic algorithm (GA) and particle swarm

optimization (PSO).

A more comprehensive sensitivity analysis on SVM parameters: C and γ, which

impact the generation of optimum SVM model, is required, especially when the SVM

training data changes in the sensor scope and data volume.

DeCaDrive is feeded with real-time sensor inputs including depth and color image

sequences in video frame rate, steering angle, pulse rate, and skin impedance with

much higher sampling rate. However, the Kinect frame rate is not constant, and varies

in time due to the lighting condition and object tracking status. The sensitivities of

different sensors are balanced through the alignment of sampling rates. In this case the

sampling rate of the Kinect sensor is regarded as baseline for alignment.

Despite the response time, or say, the prediction time of DeCaDrive can fit the real-

time requirements of ADAS, it is difficult to use the current system to detect microsleeps

that can be as dangerous as the drowsy states. The visual clues of microsleeps such

as slow eyelid-closure and head nodding [PIBW14] are not measured and evaluated

in DeCaDrive, thus the current system should be further enhanced in this regard.

In addition, microsleeps can hardly be identified through IS-sensor measures or pulse

rate sensor features in the current system setup due to the lack of EEG measures for

correlation studies.

Another issue is the ground truth definition of driver’s drowsy states. The current

approach is based on subjective ratings, either self-rating, or rating by independent

observer/assessor. Thus, it requires human intervention, and may suffer from biased

ratings or even rating failures. The EEG-based methods as discussed in Section 6.5 can

be used along with other means to improve the accuracy of the ground truth definition

of drowsy states.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Driving safety is one of the key requirements for the solutions of human mobility. Ac-

tive safety related driver assistance systems have paved the way to mainstream automo-

tive applications. To date, objectively and reliably detecting the fatigue/drowsiness of

driver still remains as a challenge. Non-intrusive, accurate and robust driver drowsiness

detection is one of the final goals of advanced driver assistance. DeCaDrive, a novel

system approach to driver drowsiness detection based on emerging IR depth sensing

and embedded impedance spectroscopy, multi-sensor data fusion and soft-computing

algorithms, is presented in the thesis. Promising validation results up to 99.66% clas-

sification accuracy were achieved for driver drowsiness detection with on-line fresh

acquired data. The DeCaDrive system was demonstrated on IAA Nutzfahrzeuge 2014

in Hannover.

One of the open issues in the DeCaDrive system modeling is the definition of ground

truth of probands actual alertness or drowsiness, which still has been heuristically

determined. In the future, EEG-based methods that are widely used in sleep research,

can be adapted and utilized with endeavor to gain a better, somehow non-invasive,

determination of the ground truth. Another issue is a potential person dependency in

the classification system due to the limited number and phenotypes of the probands,

which will be overcome by enlarging the database in the next steps. The robustness of

DeCaDrive can be further examined and improved with more statistics and with data

from real driving scenarios.
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8.2 Contributions of the Thesis

One major contribution of the thesis is the investigation and exploitation of 3D em-

bedded vision technologies, in particular depth cameras, in the field of human-vehicle

interactions. Based on novel IR depth sensing and other promising sensor techniques

(e.g. IS-sensor), as well as sensor data fusion approaches, a multi-sensor intelligent

assistant system for driver status monitoring and intention prediction, is carried out.

A new 3D impedance spectrogram is introduced to facilitate impedance response anal-

ysis in both time and frequency domains. Fusion of heterogeneous sensory sources

aiming at more robust drowsiness detection has been explored. Powerful methods of

computational intelligence, i.e., hierarchical SVMs for decision-making and automation

capabilities have been employed for optimum parameter search as well as sensor feature

determination. Finally, the system is transferred to a new open-access multi-platform

environment enabling its cross-platform functionality.

Furthermore, a holistic design methodology for ADAS encompassing both driver-

and vehicle-based approaches to driver assistance is discussed in the thesis as well. The

proposed system concept and architecture are not only applicable for passenger cars,

but in particular are useful for commercial vehicles, as well as for the use in monitoring

of operators of heavy, dangerous, and/or expensive agricultural/industrial/aerospace

machinery.

Despite the trend that future automotive electronics advances towards fully au-

tonomous driving, systems such as DeCaDrive belong to the fundamental components

of human-vehicle interactions in active safety context, thus can contribute to human

centered smart and safe mobility.

8.3 Future Work

In addition to fatigue/drowsiness detection, the sensing capability of DeCaDrive can be

enhanced with more comprehensive driver status detection in complex driving scenar-

ios. For instance, inspired by study in [UCPZ13] driving impairment such as inebriation

can be investigated by employing the enhanced capability of DeCaDrive in bioelectri-

cal impedance analysis with tetrapolar electrode method. The correlation study of

bioelectrical impedance and human emotional state can be carried out thereafter. A

new generation of human-vehicle interface can be built upon DeCaDrive to stretch
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out to new dimensions including 3D vision based gesture control, bioinformation based

interactions, etc.

Some future development considerations of DeCaDrive has been addressed in Sec-

tion 6.5 already with respect to possible transfer to industry/market. With regard to

a SoC-based realization of DeCaDrive, it needs to be packaged in a miniature enclo-

sure and must deliver maximum computation performance, while dissipating minimum

heat in order to operate at the extreme temperatures (note: −40◦C to 125◦C is the

temperature range of automotive-grade IC devices). Integration and miniaturization

of embedded sensors with wireless technology can facilitate the overall system design.

Seeing increasing demand on Automotive Safety Integrity Level (ASIL) of E/E

systems in automobile, and inspired by a case study of airbag system, the presented

DeCaDrive system can be extended to further increase the driver/occupant safety in

terms of vehicle interior monitoring. In the environment of airbag and safety control

units, the position of the occupants’ head at the time of the impact is of particular

interest, as well as tracking the orientation and position of the occupants’ extremities

and torsos. Based on this information, more intelligent decisions can be made to mini-

mize the effects or severity of injuries for the occupants. A DeCaDrive based platform

features driver/occupant state monitoring, thus, can enable the in-vehicle safety sys-

tem to run more sophisticated algorithms, make smarter decisions, and perform safety

measures in a better way.
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Appendix

Hardware Specifications

This section provides complementary information about specifications of system com-

ponents.

• AD5933 Data Sheet: 1 MSPS, 12-Bit Impedance Converter, Network Analyzer

Website: http://www.analog.com/media/en/technical-documentation/

data-sheets/AD5933.pdf

• Arduino Mega 2560 microcontroller (ATmega2560) Data Sheet

Website: https://www.arduino.cc/en/Main/arduinoBoardMega2560

• Depth Sensor Database*

• DriMix Sensor TS006 Specification A0.6**

• Kinect for Windows Sensor Components and Specifications

Website: https://developer.microsoft.com/en-us/windows/kinect/hardware

Note*: The information with regard to the depth sensor database could be poten-

tially obtained from Institute of Integrated Sensor Systems (ISE) based on individual

negotiations.

Note**: Please contact iC-Haus GmbH for more details about the DriMix sensor.

Source Code

The software components used in the research work that are available in public resource

are summarized here.

167



LIST OF TABLES

• Kinect for Windows software development kit (SDK v2.0).

Website: https://www.microsoft.com/en-us/download/details.aspx?id=44561

• Orange - Data Mining Toolbox in Python.

Website: http://orange.biolab.si

All C/C++/MATLAB/Python/Orange source code and libraries related to the

development and evaluation of the DriMix sensor as well as the DeCaDrive system are

proprietary information, hence can only be accessible in a research partnership with

Institute of Integrated Sensor Systems (ISE), TU Kaiserslautern.

Test Reports

The test reports for the validation of the DriMix camera system are generated in the

3DKM project at Institute of Integrated Sensor Systems (ISE), TU Kaiserslautern.

The information with regard to the test reports could be potentially obtained from ISE

based on individual negotiations.
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