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Abstract

In current practices of system-on-chip (SoC) design a trend can be observed to integrate
more and more low-level software components into the system hardware at different levels of
granularity. The implementation of important control functions and communication structures
is frequently shifted from the SoC’s hardware into its firmware. As a result, the tight coupling
of hardware and software at a low level of granularity raises substantial verification challenges
since the conventional practice of verifying hardware and software independently is no longer
sufficient. This calls for new methods for verification based on a joint analysis of hardware
and software.

This thesis proposes hardware-dependent models of low-level software for performing
formal verification. The proposed models are conceived to represent the software integrated
with its hardware environment according to the current SoC design practices. Two hard-
ware/software integration scenarios are addressed in this thesis, namely, speed-independent
communication of the processor with its hardware periphery and cycle-accurate integration
of firmware into an SoC module. For speed-independent hardware/software integration
an approach for equivalence checking of hardware-dependent software is proposed and an
evaluated. For the case of cycle-accurate hardware/software integration, a model for hard-
ware/software co-verification has been developed and experimentally evaluated by applying
it to property checking.
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Chapter 1

Introduction

Embedded systems play today an integral role in nearly every aspect of modern life. They
are employed in safety-critical products such as medical devices, vehicles, and airplanes,
in manufacturing and security systems, as well as in consumer products such as mobile
devices and home appliances. Thanks to the advances in semiconductor industry, embedded
systems are commonly implemented by means of system-on-a-chips (SoCs). An SoC inte-
grates into a single chip different intellectual property (IP) cores like processors, memories,
communication buses, and communication interfaces.

Continuous development of embedded systems technology is driven by the intense product
competition in system features and capabilities caused by a more and more demanding society.
To be competitive, new designs must exhibit increases in functionality, performance, and
reliability and declines in features like power consumption and size. As a result of this and
supported by the advances in silicon technology, an increasing number of IP cores can be
integrated into a single SoC. Likewise, the subsystems inside an SoC are becoming more and
more complex. In many cases, a single IP block can by itself be considered as an embedded
system. Current microprocessors, for instance, integrate apart form processor cores: caches,
memory controllers, and communication interfaces [BC11].

Besides the use of high-integrated silicon systems, shrinking time-to-market windows
of the highly competitive global electronics market places additional pressure on design
teams. Increasingly complex systems need to be developed in decreasing amounts of time. In
response to this, different design strategies continuously emerge that allow designers to tackle
the challenges in SoC markets. In particular, in recent years the programmability of SoCs
has continuously grown. Because of its inherent flexibility and reconfigurability, software
offers an attractive solution to SoC developers.

Software-based solutions allow also to obtain products that exhibit increased functionality
to the users. Because of this fact, in automotive and aerospace industries, for example,
mechanical systems get continuously replaced or combined with electric and software-based
components. As a result of this, the number of software-implemented control units in cars
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Chapter 1. Introduction

and airplanes keeps growing across the new generations of models.
These trends do not only allow for creating application embedded software with growing

complexity, but also increase the complexity of software at lower design levels [EJ09].
On the one side, the firmware in embedded systems becomes more complex in order to

manage the increasing number of integrated units in an embedded system. Furthermore, the
growing functionality of these units contributes to the complexity increase. For instance,
complex device drivers are required to control and communicate with highly configurable
hardware peripherals available in current SoC architectures.

On the other side, changes in design practices for SoCs at lower design levels contribute
also to the increased programmability of embedded systems. Different chip-wide control
functions of an SoC are no longer implemented in register-transfer level (RTL) hardware,
but as firmware running on service processors that are instantiated particularly for this
purpose [ZES13, WPL+12, CJ09]. Among others, control functions include chip (or system)
initialization, power management, and the control of infrastructures for test and system
diagnosis. Similarly, implementation of communication structures is shifted more and more
from hardware to the low-level software of the system. As an advantage, a firmware-based
design of these functions permits quick product updates and late engineering changes to the
designs because firmware is much easier to change than RTL hardware.

These trends have created new interest in techniques for formal firmware verification,
not only among software developers but also in the hardware design community [KG14,
Gru13, WCGP12, Kro07]. Because of the tight coupling between firmware and hardware,
verification techniques as they have been developed for application-level software are not
always appropriate. Techniques are required that help to analyze the mutual effects of
hardware and firmware on each other.

Motivated by these observations, this thesis tackles the problem of performing formal
firmware verification by following a combined hardware/software analysis. The next section
of this introduction presents integration scenarios of firmware and hardware in current
architectures for embedded systems. Then, Section 1.2 gives an overview of currently
reported techniques for formal SoC verification. Finally, Section 1.3 presents the motivation
of this thesis and summarizes the main contributions of it.

1.1 Firmware Integration in SoC Designs

In the context of this thesis the term firmware is employed to refer to the part of the software
in an embedded system that directly interacts with the system’s hardware. Because of this
fact, firmware will also be referred to as hardware-dependent software in the sequel without
extra notice.

Firmware interacts closely with its hardware environment and the timing behavior of
hardware/software interactions depend on how firmware and hardware are integrated into the
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1.1. Firmware Integration in SoC Designs

system. In the following, two main firmware integration scenarios present in modern SoCs
are described.

1.1.1 Speed-Independent Integration Scenario

The first scenario is found in traditional SoC design flows. Processor cores are integrated
into the hardware system as components of a CPU bus. They usually communicate with
the rest of the system in a speed-independent way using some bus protocol with handshake
mechanisms in order to accommodate for different access latencies. There exists a number of
standard buses (cf. [ARM99,IBM99]) that can be instantiated in the design so that processors
can be easily integrated with different IP cores in an SoC.

Speed-independent communication is key since the execution time in pipelined processors,
especially when advanced architectures based on out-of-order execution are employed, is
difficult to predict. Similarly, caches have a difficult-to-predict timing behavior and provide
another reason for speed-independent bus communication.

In this scenario, a fine-grained timing analysis of the software is not performed. Instead
of that, techniques for worst-case-execution-time (WCET) analysis [WEE+08] are employed
to ensure that the software, executed on its hardware platform, responds in the correct time
limits.

1.1.2 Cycle-Accurate Integration Scenario

Besides conventional design styles where firmware and hardware are integrated by employing
CPU buses, there are also new design approaches for which a clock cycle-accurate analysis
is required. This introduces a second scenario which is described in the following.

When designing SoCs it has become increasingly popular to replace dedicated RTL
hardware components by a firmware-based design [ZES13,WPL+12,CJ09]. For this purpose,
service processors in addition to the main processor are instantiated, implementing the sub-
functions that were formerly performed by the hardware component. Commonly employed
processors have a timing behavior that is fully predictable. For example, processors in the
style of the Intel 8051 or the Xilinx PicoBlaze are popular in ASIC-based and FPGA-based
design flows, respectively.

The firmware executed on its hardware platform implements a finite-state machine
(FSM) that conceptionally behaves just like a pure RTL hardware design. However, the
implemented control structure is not fixed in hardwired state transitions, but is embodied
in firmware executed by the processor. Control-flow decisions occur in branch instructions
and references to the hardware are explicit in load and store operations. The control of the
surrounding hardware is not done in a speed-independent way but performed cycle-by-cycle
by transactions generated by the firmware. This firmware-based design approach offers
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Chapter 1. Introduction

advantages:

1. The design time is reduced and product updates can be made more easily by making
changes in the firmware.

2. Especially for FPGAs, due to a well-optimized design of the processor, the resulting im-
plementation may need less chip area when compared to a conventional implementation
with standard RTL hardware.

The software running on the instantiated cores is usually not meant to be visible to
the users. It is provided as firmware with the design and may be loaded into a read-only
memory. In many cases, the cores are not directly connected to the rest of the system
using (standardized) communication interfaces like SoC buses but instead are embedded
into the surrounding system using special interface hardware, sometimes called “wrapper
RTL” [Xil11a, WCGP12]. Such design styles allow for a tight integration delivering high
performance because the exact timing of the processor hardware and its software is known at
design time. A firmware-based SoC module designed in this way is shown in Figure 1.1. The
module consists of two processor cores tightly integrated with their firmware, wrapper RTL,
and some additional hardware.

1.2 State of the Art in SoC Formal Verification

This thesis does not intend to extend the basic proving methodology for formal verification.
It mainly leverages the state of the art in this field and focuses on how to integrate low-level
software components (firmware) into the computational procedures needed for a combined
hardware/software verification. Therefore, computational models and algorithms for low-
level hardware-dependent software verification are in the particular interest of this thesis.

Formal methods for hardware verification and for software verification have been active
research fields for decades. In the following overview, the focus is kept on (1) those techniques
that help to the development of the intended research and on (2) those contributions that are
related to the topics of this thesis.

First of all, this thesis is based only on fully automated proof techniques which have been
successfully adopted and extended by the Electronic Design Automation (EDA) industry over
the last decades. This precludes the use of sophisticated methodologies based on higher-order
logic and theorem proving [Har09]. In spite of advances in automation of the proofs, these
methodologies still require highly skilled verification engineers that guide the verification
process interactively. This added manual effort makes less attractive the practical adoption of
such methodologies.

Formal verification methods in general employ mathematical models for describing the
design under verification (DUV) and the proof goal (the specification). From this description
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then a formal checker exhaustively inspects whether the proof goal holds or not for all
possible input assignments. If the proof does not hold, then a counterexample (e.g., an input
assignment for which the proof goal does not hold) is extracted and provided to the user so
that the cause of the failure can be derived from it.

There are two main practical applications of formal verification methods, namely property
checking and equivalence checking. In property checking, the DUV is proven to determine
whether it complies with the intended behavior or not. So-called properties are used in the
verification process to formalize the design specification. For its part, equivalence checking
is used to prove whether two designs are functionally equivalent or not. The rest of this
section gives more details on current reported formal verification techniques by property and
equivalence checking for both hardware and software.

1.2.1 Formal Hardware Verification

A possible classification of formal property checking techniques employed for hardware is to
distinguish between a bounded and an unbounded paradigm. In the unbounded paradigm,
techniques reason about behaviors of the system over infinite lengths of time. This paradigm
is rooted in classical model checking [CE81] based on temporal logics. Numerous extensions
to the basic scheme have been proposed to increase its computational power. Based on
Binary Decisions Diagrams (BDDs) [Bry86], symbolic methods have been developed to
traverse the state space [McM93, CBM89]. The state explosion problem is one of the
biggest challenges in this area and is often addressed by automatic abstraction techniques
such as [CGJ+03, GS97, JKSC05] that over-approximate the state space. This is related
to the problem of finding invariants to identify appropriate state space approximations,
e.g., [CHM+96, CNQ04]. Compositional techniques such as [CLM89] have been developed
to handle large designs in a divide-and-conquer strategy.

In the bounded paradigm, always a finite time interval is considered when formulating a
property to describe a piece of design behavior. Bounded Model Checking (BMC) [BCCZ99]
and Interval Property Checking (IPC) [NTW+08] are representatives of this paradigm and
have in common that the underlying computational model is obtained by unrolling finite
state machines for a finite number of steps into an entirely combinational circuit model. This
allows for mapping the property checking problem to the Boolean satisfiability problem
(SAT) [BHvMW09]. Thereby, verification based on bounded models has benefited from the
significant advances in SAT solving technology in the last decades [JLBRS12, KSMS11].

K-step induction [SSS00] can be used to extend verification based on bounded models
for proving safety properties also over unbounded time windows. More recent research also
explores property checking based on SAT with interpolants [McM03] and property directed
techniques [Bra11] to efficiently capture adequate information about the state space. Also, in
the bounded paradigm, invariants can play a key role in obtaining general proofs for relevant
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1.2. State of the Art in SoC Formal Verification

parts of the system behavior, e.g., [BC00, TNW+10]. The restrictions resulting from the
bounded nature of the computational model have motivated sophisticated methodologies,
such as [Cla07, BBM+07], to obtain a global correctness proof for the system.

While the unbounded paradigm is usually adequate to handle systems with no more
than a few hundred state variables, the bounded approach is often successfully applied to
designs with thousands of state variables. This makes it particularly attractive for industrial
use. Current solutions have been able for instance to replace simulation of large hardware
modules in industry [KGN+09].

Most of these techniques and their numerous extensions are tailored to be applied to pure
hardware descriptions, i.e., they operate on Boolean networks and conventional finite state
machine descriptions which are then converted into the required computational models such
as those based on Kripke structures [Kri63]. Rooted in classical temporal logics such as
CTL [CE81] and LTL [Pnu77], standardized property specification languages for hardware
are available such as SystemVerilog Assertions (SVA) [Spe08] and Property Specification
Language (PSL) [Acc04].

Equivalence Checking on its part has been widely adopted in industry and has completely
replaced logic simulation at the gate level in modern SoC design flows. This success is based
on two main facts:

First, design transformations performed by RTL synthesis tools normally preserve the
state encoding of the implemented sequential circuit. This allows to reduce the general
sequential equivalence problem to a pure combinational one. In practice, the problem is
solved using a computational model called miter [Bra93] containing: the logic for the
reference (golden) and the implemented (revised) circuits, mappings for the primary inputs
and outputs as well as mappings between the latches of the designs [vEJ95]. As a result, no
space traversals are required and therefore the required proofs become much easier.

Second, synthesis tools perform only local changes to the reference design. Hence, the
main structure between the circuits being compared is kept. Equivalence checkers leverage
this fact by identifying and pruning out internal equivalences (cut points) from the compared
circuits [KK97, JMF95, Kun93].

Besides this, current solvers integrate several engines such as BDDs, SAT solvers, and
Automatic Test Pattern Generation (ATPG) to achieve increased proof capabilities.

Due to these facts, current equivalence checkers scale up to verification of the whole SoC
RTL hardware. For problems where changes in the state encoding are performed, the works
of [vE00, SWWK04] have adapted the combinational approach achieving, to some extent,
similar benefits.
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Chapter 1. Introduction

1.2.2 Formal Software Verification

There is a large research body on methods for formal software verification. In the follow-
ing, formal software verification techniques are classified into hardware-independent and
hardware-dependent approaches. Although this thesis is focused on a hardware-dependent
software view, methods also from hardware-independent techniques are useful and therefore
are covered by this overview.

In hardware-independent software models, the software is often described by “simple
programs” (cf. [JM09]) as some kind of (finite) state transition system that is processed by
model checking and related techniques. Programs are typically given in high-level languages
like C. Also here it is possible to distinguish between methods adopting an unbounded
paradigm [BPR01, BHJM07, God05, HP00, Hol97] and a bounded paradigm [BH08, IYG+04,
CKY03]. Differences between tools and methods result from the underlying proof methods
(enumerative (stateful, stateless), symbolic) and the employed abstraction techniques (iterative
abstraction-refinement based on localization reduction and/or predicate abstraction).

In [BPR01, BHJM07] properties of C programs are verified by performing a systematic
predicate abstraction [CGJ+03] of the software. While performing a given proof, the abstrac-
tion gets refined until a valid answer is returned by the verification algorithm. Unbounded
model checking is employed in these approaches for traversing the state space of the resulting
finite-state model.

The tools of [IYG+04] and [CKY03] perform bounded model checking of C programs.
In [IYG+04], the transition relation of a C program is obtained by performing optimizations
such as basic-block extraction, one-hot encoding of program locations, and bit-width reduc-
tions by static range analysis. The obtained transition system is then syntactically unrolled
following the approach of [BCCZ99]. Additionally, control flow information is provided
to the SAT engine in order to improve scalability of the method. In [CKY03] a different
approach is taken that unrolls the C program by unwinding its control flow graph. This
combines benefits of conventional BMC with path-oriented techniques employed in symbolic
execution.

Symbolic execution is a technique widely used for software verification and testing [Kin76].
Good overviews of this technique are given in [PV09] and [CS13]. Symbolic execution
traces symbolically the individual execution paths of a program to explore the program
behavior. With the goal of avoiding path explosion, techniques have been developed to prune
as well as to merge execution paths. In the context of software testing, current approaches
combine symbolic and concrete executions in order to obtain test suites with increased
coverage [GKS05, CGP+06]. Also, different traversal algorithms have been proposed for
improving path coverage [GKS05, SMA05].

In this thesis, some ideas from symbolic execution are borrowed to develop a computa-
tional model for software that can be integrated as a component into a hardware description.
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When examining the impact of software on the concrete hardware, as is required in
firmware designs, the software must be examined at a hardware-dependent level. Literature
on hardware-dependent low-level software verification and formal hardware/software co-
verification is much sparser than the literature for hardware-independent software.

Previous work on low-level software verification includes [Sch10] which employs explicit
unbounded model checking algorithms in order check assembly code against properties
specified with computation tree logic.

Different approaches based on symbolic execution have been also proposed. The work
of [CFF+06] performs equivalence checking of digital signal processing algorithms by
employing symbolic execution together with SMT solving (using the theory of uninterpreted
functions with equality). Similarly, in [AEF+05, AEO+08] symbolic execution has been
successfully employed to perform microcode verification. In these approaches, due to
the explicit enumeration of the individual program paths, as pointed out in [AEF+05],
analyzing the reactive behavior of low-level embedded software with its hardware periphery
becomes very complex. Unlike in many cases of hardware-independent verification, the
analysis can no longer be localized to an individual path but the contribution of all possible
execution paths must be considered simultaneously. This typically leads to restrictions on
the hardware/software interfaces that can be modeled. The work of [CFF+06], for instance,
restricts the formulation of comparing two assembly programs to programs with very similar
control flow graphs (CFGs) that can communicate with the environment only at the beginning
and at the end of the execution. [AEF+05] restricts to programs that communicate with the
environment only at specific exit points (no intermediate interactions with the environment
are handled by the approach).

The tool of [CEP00] assumes the manual creation or the availability of an abstract
automaton or petri-net model for hardware and software components. These models are
disconnected from the actual implementation so that a significant amount of additional efforts
would be needed to use such an approach in a standard design flow for firmware designs
employing either ASICs or FPGAs.

In [HTV+13] it is proposed to model the combined hardware/software system in terms
of C programs. The approach is based on manually extracting models for the hardware
from virtual prototypes in C. This level of abstraction is appropriate for performing early
verification of hardware/software systems during design exploration. However, for verifying
the impact of the software on concrete implementations of hardware/software designs, the
modeling task needs to be performed at a different level of abstraction. Otherwise, lifting
such high-level models from the design would again require significant additional efforts for
the verification.

[GKD06] and [EES04] are based on unrolling the programs by representing each program
step as an instance of the processor’s (RTL) hardware. These approaches allow for a tightly
coupled view on both the hardware and the software, but lead to highly complex models that
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only allow for local examinations of the combined system behavior. In order to improve
scalability, specific abstraction mechanisms have been proposed in [NWSK11]. However, a
main drawback of the latest approach is that the required abstractions need to be provided by
the verification engineer for each analyzed program.

In conclusion, there is a large number of formal techniques tailored for verification tasks
in the hardware and in the software domain. Many of the basic algorithmic concepts reported
in previous work have the potential to contribute to a verification environment for firmware
designs in SoCs. However, there is a substantial lack of adequate models and compositional
techniques that allow for a joint analysis of the hardware and software components at the
appropriate levels of abstraction.

1.3 Motivation and Thesis Overview

Traditional techniques for formal software verification usually adopt a hardware-independent
view when verifying software programs written in high-level languages such as C. This is
reasonable for a wide range of applications where the main objective is to identify bugs that
are specific to the software development process. However, in embedded system design, as a
result of the trends described above, it is important to analyze the mutual effects of hardware
and software on each other. Therefore, a hardware-dependent software view is needed where
the behavior of the firmware is precisely described in terms of its effect on the underlying
hardware.

In this thesis, the software is modeled by using program netlists. A program netlist (PN)
is a combinational model that compactly represents the behavior of a low-level embedded
program in terms of the hardware on which it executes. Following a path-oriented modeling
approach, in a program netlist the software behavior is represented along execution paths.
More specifically, the program’s computation is implicitly represented in a compact and
hardware-dependent way for all paths of execution. This is opposed to symbolic execution
where the expressions for the state variables and the path conditions are explicitly generated
for every simulated path. Like symbolic execution, the approach using program netlists
is also based on the enumeration of execution paths. However, this is shifted to a pre-
processing phase that neglects all of the program’s computation that is not relevant to its
control flow. No formulas representing the computation along the paths are generated.
Instead, a program netlist includes additional logic which not only simplifies the model but
also makes relevant control flow information explicit to the decision procedure (e.g., a SAT
solver). This facilitates the reasoning on the model. When solving the actual verification task
on the program netlist, the “intelligence” of a SAT solver is used to exploit the additional
elements of the computational model to traverse the execution paths with their associated
hardware-represented computation in an efficient way.
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Chapter 3 details on the characteristics of the program netlist model and on its generation
process. This includes modeling aspects such as efficient representation of the data traffic
between software and data memory as well as the traffic between software and the surrounding
environment. The developments presented in this chapter have been conducted jointly with
the dissertation work of Dipl.-Ing. Bernard Schmidt.

Subsequently, in Chapter 4, it is presented how generation of program netlists can be
efficiently implemented so that the method scales for practical designs. For that, simulation
techniques are mixed with formal SAT-based analyses for finding reachability information
of the firmware’s control flow as well as for computing the set of memory addresses that
are accessed by the software. This information turns out to be crucial for performing
simplifications not only in the program netlist, but also in models derived from it.

One important characteristic of the program netlist is that it can be instantiated and com-
bined with other models in order to solve different verification problems. Taking advantage
of that, this thesis proposes how formal verification of firmware designs can be performed
for the hardware/software integration scenarios described in Section 1.1.

In Chapter 5 an approach for formal verification by equivalence checking for speed-
independent integration scenarios (cf. Section 1.1.1) is proposed. For this scenario, assuming
the correct implementation of the CPU bus protocol (as can be verified by standard techniques
of formal hardware verification [NTW+08]), it is possible to model the software in a time-
abstract way. This is exploited in the program netlists of Chapter 3 by creating time-abstract
descriptions. In this way, even for complex processor architectures compact models can be
obtained.

It is important to note that even though the concrete timing, in terms of HW clock cycles,
is abstracted away from the program netlist, the original ordering of the instructions during
execution is preserved in the model. This characteristic of the program netlist is particularly
important when analyzing the hardware/software interface of reactive programs. Reactive
software communicates with the environment continuously at distinct time points and the
ordering in which the exchange of information takes place is crucial for the functional
correctness of the system behavior. For example, for the case of equivalence checking, as
will be shown in Chapter 5, it needs to be proven that two different programs interact in the
same way with the environment. Therefore, verification needs to consider not only the data
values exchanged with the environment but also the ordering of the data exchange.

Apart from equivalence checking, also property checking for time-abstract scenarios
using program netlists has been researched in [SVF+13b].

For firmware-based design approaches for which a clock cycle-accurate analysis is
required (cf. Section 1.1.2) extensions to the program netlist are presented in Chapter 6 in
order to perform verification by property checking.

For firmware-based design styles, verification is important because the hardware/software
interface is usually custom-designed and, thus, error-prone. As pointed out in [WCGP12],
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traditional verification approaches based on instruction set hardware/software co-simulation
would never fully capture the entire hardware and firmware system behavior in one tool
environment. Verifying the firmware in isolation, while possible, would require a hardware
bus-functional model interface. This makes the simulation of such firmware-based IPs com-
plicated and creates the need for an additional behavioral test bench [WCGP12]. Similarly,
also a formal approach that verifies hardware and software in separation would require the
tedious task of modeling the interface between them by a set of constraints.

Therefore, this thesis proposes a formal co-verification approach instead. The program
netlists of Chapter 3 are very attractive for this purpose because they can be generated
completely automatically. On the other hand, due to their abstract, non-cycle-accurate nature,
they cannot be directly integrated into the RTL descriptions of the hardware and they do
not allow for a cycle-accurate analysis. In Chapter 6, therefore extensions are presented
to make program netlists cycle-accurate and show how to create a joint model for formal
co-verification of hardware and firmware by property checking. The developments presented
in Section 6.2.3 have been conducted jointly with the dissertation work of M.Sc. Michael
Schwarz.

Chapter 2 details the techniques on which this research is based. Notations and basic
definitions are given in Appendix A. Chapter 7 concludes this thesis summarizing the
proposed approaches and the results obtained as well as describing the future uses of the
computational models presented in this work.

1.4 Publication List

Large parts of this thesis have been already published in the publications listed chronologically
below:

1. Bernard Schmidt, Carlos Villarraga, Jörg Bormann, Dominik Stoffel, Markus Wedler,
and Wolfgang Kunz. A computational model for SAT-based verification of hardware-
dependent low-level embedded system software. In Proceedings of the 18th Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 711–716, 2013

2. Bernard Schmidt, Carlos Villarraga, Thomas Fehmel, Jörg Bormann, Markus Wedler,
Minh Nguyen, Dominik Stoffel, and Wolfgang Kunz. A new formal verification
approach for hardware-dependent embedded system software. IPSJ Transactions on
System LSI Design Methodology (Special Issue on ASPDAC-2013), 6:135–145, 2013

3. Carlos Villarraga, Bernard Schmidt, Christian Bartsch, Jörg Bormann, Dominik Stoffel,
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ACM-IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pages 119–128, 2013
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Chapter 2

Background

This chapter gives a short introduction into different verification techniques and algorithms
used in this thesis. It is not the goal of this introduction to be comprehensive, its purpose is
to recall the most important concepts and terminologies so that the reading of the subsequent
chapters becomes easier for the reader. For a comprehensive discussion, the reader will be
provided, in each section of this chapter, with the corresponding literature.

For an introduction to basic mathematical definitions and notations used in this thesis the
reader is referred to the Appendix A.

2.1 The Boolean Satisfiability Problem

Many problems in the field of electronic design automation can be mapped to the Boolean
satisfiability problem (SAT). In this thesis, verification problems for property and equiv-
alence checking are reduced to instances of the SAT problem. Therefore, this section
introduces the SAT problem and summarizes how this problem is currently solved in practice
by current techniques. For a deeper treatment, readers are recommended the following
reference [BHvMW09].

2.1.1 The Satisfiability Problem

Given a Boolean formula f(x1, . . . , xn), the Boolean satisfiability problem poses the fol-
lowing question: is there an assignment to the variables x1, . . . , xn under which f evaluates
to true ?. If the answer is ’yes’, f is said to be satisfiable and the involved variable assignment
is called a satisfying assignment. If the answer is ’no’, i.e., if no such assignment exists, f is
said to be unsatisfiable.

Due to efficiency reasons, Boolean formulas are usually represented in conjunctive
normal form (CNF) for solving the SAT problem. A CNF formula is satisfied under a given
assignment if each of the individual clauses composing it are satisfied. Furthermore, a single
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Figure 2.1: Basic structure of a conflict driven SAT solver

clause is satisfied if at least one of its literals evaluates to true . On the other hand, a CNF
formula is unsatisfied under a given assignment if at least one of its clauses evaluates to false .
A clause that evaluates to false is called a violated or a conflicting clause. A clause is violated
if each of its literals evaluates to false .

If every clause of a CNF formula contains at maximum two literals, then the SAT problem
can be solved in polynomial time [AB09]. However, for formulas not fulfilling this condition,
as it happens with most real-life formulas, the SAT problem is NP-complete and therefore
it can be solved in the worst-case in exponential time [Coo71]. Despite this fact, in the last
couple of decades, there have been significant advances in developing efficient SAT solvers
capable of solving large practical problems in reasonable amounts of time [JLBRS12].

2.1.2 SAT Solvers

Modern SAT solvers work on the basis of the DPLL algorithm [DLL62, DP60]. Broadly
speaking, for finding a satisfying assignment the DPLL algorithm assigns one by one the
variables of a given CNF formula. Every time a variable gets assigned, the formula is updated
by evaluating the logical implications of the assignment. If after an assignment all clauses
are satisfied then the algorithm finishes returning true . However, if one or more clauses
are violated then the algorithm corrects the bad assignment by backtracking. Backtracking
moves back to the last assignment and reverts it. Since the algorithm moves back to the
last assignment this kind of backtracking is referred to as chronological backtracking. After
backtracking, the variable that has been wrongly assigned is assigned with the opposite truth
value and the algorithm continues. If it happens that clauses are violated for both possible
truth assignments then the algorithm backtracks again and repeats. The DPLL returns false in
case that all variable assignments have been exhausted without success.

In the last decades, the basic DPLL algorithm has been improved to the point that current
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SAT solvers are capable of solving problems having millions of variables in practical amounts
of time [JLBRS12]. However, there are still problems for which modern SAT solvers run in
exponential time. Typical cases are problems containing arithmetic units such as multipliers.

Figure 2.1 presents the core structure of a modern SAT solver. It is composed of one
main loop with two branches inside it. The branch on the right is executed when conflicts are
produced. On the other side, the left branch is executed when assignments cause no conflicts.
Modern SAT solvers implement the engines Propagate, Decide, Analyze and Backtrack
adopting a number of techniques which have become standard during the last decades.
In [KSMS11] an experimental evaluation demonstrates the effectiveness of these techniques.
In the following a brief description is given:

• Analyze performs a diagnosis of the reason for a conflict based on the variable assign-
ment and the logical implications which activate the conflict [MSS99]. As a result of
the diagnosis a so-called conflict clause is generated. A conflict clause represents a
more concise variable assignment which also activates the conflict. [ES03b] performs
further improvements by eliminating redundant literals from the conflict clause. Con-
flict clauses are added to the CNF formula by Analyze. Adding conflict clauses to
the CNF is referred to as learning. Learning prevents the solver of repeating wrong
assignments. In practice, learning has shown to increase importantly the performance
of the solver [KSMS11]. Furthermore, from a conflict clause it can be also derived the
level to which the solver needs to backtrack. If the backtracking level corresponds to
the so-called top level, the solver finishes returning false .

• Decide is responsible for selecting and assigning variables. This process is critical for
the performance of a solver [KSMS11]. In [MMZ+01] a selection heuristic based on
literal activities is proposed. This strategy favors selection and assignment of literals
which try to satisfy first clauses related to the most recent conflicts. Low computational
overhead is added to the solver since only literals related to current conflict clauses
need to be updated. In [ES03b] overhead is further reduced by associating activities
to variables. A possible problem with this approach is that the solver can get stuck
in deep search regions without a solution. Techniques based on restarts have been
proposed in [Bie08, ES03b] to counter effectively this problem.

• Propagate is called to evaluate all logical implications due to a variable assignment.
The overall performance of the solver depends largely on the efficiency of the Prop-
agate engine since a SAT solver spends most of its run time propagating implica-
tions [KSMS11]. In [MMZ+01] a technique based on watching literals by means of
pointers is proposed. More specifically for every clause only two literals which are
not assigned to false are watched. This reduces importantly the bookkeeping of the
propagation process since assignments to literals that are not being watched are not
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updated. Furthermore, the state of a clause is only updated if the two pointers coincide,
i.e. if the clause becomes unit.

• Backtrack goes back to the level estimated by Analyze. Technically, backtracking is
done until the level at which the conflict clause becomes unit. This kind of backtracking
is known as non-chronological backtracking [MSS99]. Non-chronological backtrack-
ing outperforms chronological backtracking as in practice conflicts are caused by
assignments performed many levels before and not by the previous assignment. During
backtracking, the solver reverts all intermediate assignments and their corresponding
implications. For this, the solver benefits from the fact that only non-false literals are
tracked and therefore there is no necessity to relocate pointers while backtracking.

SAT solvers integrating these engines are referred to as conflict-driven clause learning
(CDCL) solvers. State-of-the-art CDCL solvers incorporate different additional techniques
such as pre-processing of CNF formulas [JHB12] and rapid restarts [BA15] to increase
the overall performance. With these improvements, CDCL solvers can currently handle
instances (derived from real-world problems) containing up to tens of millions of variables
and clauses [HS15, JLBRS12].

SAT solvers return by default only a single satisfying assignment for CNF formulas that
result satisfiable. There are problems however where the set of all satisfying assignments is
required. This problem is known as the All-solutions SAT problem (All-SAT) [BHvMW09].
In [McM02], an approach based on so-called blocking clauses is proposed. It adds incre-
mentally blocking clauses to the clause set of a given problem to avoid getting satisfying
assignments that were already found. All-SAT solvers [GSY04, YSTM14] are commonly
built on the top of CDCL solvers and employ incremental techniques (cf. next section) to
improve performance.

Incremental SAT

Many problems in formal verification require to solve a sequence of related SAT prob-
lems [Sht01, ES03a, CLM+10]. Instead of solving each problem independently, incremental
SAT solving seeks to propagate useful knowledge collected across the proofs [Hoo93]. In
this way, a given proof in the sequence can benefit from information that has been previously
learned. A secondary advantage is that the clause set that is shared among the SAT problems
does not need to be parsed over and over again. There are a number of incremental SAT
solvers such as the ones presented in [Bie08] and [ES03b] that implement efficiently this
idea.

After solving a given instance of the SAT problem, an incremental SAT solver allows
solving a new SAT problem by adding clauses to the former instance. For solving the new
problem, the solver keeps conflict clauses that have been learned in the previous proof(s).
These learned conflict clauses then may help to avoid conflicts when solving the new problem.
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In practice, mechanisms need to be included that allow a SAT solver to be further called
independently of the last performed proof. For this, so-called assumptions are used to
represent special clauses that do not belong to the general SAT problem. For unsatisfiable
instances, implications due to assumptions can be discarded so that the state of the solver,
containing among others conflict clauses, can be further used for future calls without the
need of a restart.

2.1.3 Converting Circuits into CNF

A combinational circuit can be encoded by a CNF formula using the procedure presented
in [Tse68]. For a given circuit, this procedure does not represent directly the output of the
circuit. Instead of that, it represents a function that evaluates to true only for assignments
that are consistent with the circuit (i.e. it represents the characteristic function of the circuit).
This ensures that the obtained CNF preserves the satisfiability with respect to the circuit
functionality.

For encoding a given circuit, the procedure represents each gate in a (multi-level) com-
binational circuit as a CNF containing a fixed set of clauses. During the conversion, new
extra variables are used to represent the valid assignments of the gate. The resulting CNF is
obtained by conjuncting the CNFs of all gates. As a result, the final formula is linear in the
size of the circuit.

2.2 Verification Based on Bounded Models

Verification based on bounded models examines the validity of a property ϕl(πl) for a set of
finite paths πl = (s0, s1, . . . , sl) in a finite-state transition system, where l is the length of the
paths. In general, the paths may also have different lengths within a finite interval of length l.
These finite paths all begin in a specific set of starting states and all end in a specific set of
ending states, where each state is characterized by appropriate Boolean state predicates. In
order to formulate the verification problem we consider:

• T (s, s′): the characteristic function of the transition relation of the finite state system.

• ispath(πl) =
∧l

i=1 T (si−1, si): a Boolean predicate obtained by unrolling the tran-
sition relation into l time frames. ispath(πl) is true if πl is a valid path, i.e., the
characterized state sequences can actually be traversed in the concrete transition sys-
tem.

• XC(s0): a Boolean state predicate of C that imposes the starting state(s) of πl.

In Bounded Model Checking [BCCZ99], C corresponds typically to the set of initial
states (I) of the transition system. In Interval Property Checking [NTW+08], XC(s0) does
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not constrain the proof to a specific set of reachable starting states. It corresponds to a
predicate characterizing an invariant (W ) that may only rule out unreachable states at s0. In
the most simple case, the Interval Property Checker may choose XW (s0) = true, i.e., W is
the set of all possible states.

Checking the property ϕl(πl) is then reduced to a tautology check of the formulaXC(s0)∧
ispath(πl) =⇒ ϕl(πl). In other words, for all paths described by XC(s0) ∧ ispath(πl) the
property φl(πl) holds. Formulations have been proposed for cases where there is a loop in
the examined interval [BCCZ99].

The required tautology check can be computed by finding a satisfying assignment for
the formula XC(s0) ∧ ispath(πl) ∧ ¬ϕl(πl). If ϕl(πl) is violated, then there exists a coun-
terexample containing a sequence of states for which the property fails. It should be noted
that the sequential verification problem is reduced to checking an entirely Boolean formula.
The validity of the property can simply be checked by SAT solving. The computational
complexity for the resulting check, in practice, is significantly lower than the computations
that would result from applying a generic model checker to the same finite-state transition
system.

In verification based on bounded models, properties are expressed in linear temporal
logic (LTL) [Pnu77]. The most common application is to check safety properties of the
form Gp. Where G is the always temporal modal operator specifying that the formula p
holds along every state on the interval l. In Interval Property Checking properties commonly
describe cause-effect operations, written as Gp = G(a =⇒ c), that should be performed by
the transition system. Where a and c correspond respectively to LTL formulas describing
the condition that triggers a given operation (assumption part) and the output sequence that
has to be produced by the system (commitment part). In practice, standardized property
specification languages such as SVA [Spe08], PSL [Acc04], and ITL [One] are available to
ease the specification task.

Different optimizations to the basic proving method have been proposed. Techniques
to include additional constraints to the problem are used in order to reduce verification
runtime [Sht01, Sht02]. Reductions by exploiting design symmetries [BJW04] have been
shown to be effective for verifying regular designs such as memories, processors, and arbiters.
Motivated by the observation that a property is commonly not influenced by the whole design,
optimizations based on cone-of-influence reduction are presented in [BCRZ99]. Broadly
speaking, this optimization performs a structural analysis in order to prune out all the logic
that does not belong to the transitive fanin of the properties. As a result, the memory footprint
required for the proofs can be reduced.
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2.3 Symbolic Execution

Symbolic execution is a technique widely used in software verification and testing [Kin76].
A good overview of this technique in the context of software testing is presented in [CS13].
Symbolic execution allows to explore the software behavior for big input spaces which
are impractical to cover with techniques based on concrete execution, such as random test-
ing [CH00, CS04, PE05]. On the other hand, compared to other static analysis tools [BPS00,
CS05], symbolic execution has the ability to produce a valid concrete input together with an
execution trace when a problem is discovered (i.e., no false negatives are produced).

Symbolic execution analyzes the behavior of a given program by exploring systematically
its execution paths. It employs symbolic variables to represent the program inputs and
describes the software behavior as symbolic formulas in terms of these input variables. At
branching points, the path exploration splits to examine each possible execution path. During
the exploration, conditions (typically assertions) are checked by feeding a decision procedure
(e.g. an SMT solver) with formulas for each check. This task is accomplished by a symbolic
execution engine (often called symbolic executor). Figure 2.2 presents an example (taken
from [CDE08]) for a simple C program.

During the analysis, the symbolic execution engine keeps internal record of the program
state, the program location (i.e., the program counter) and of the so-called path conditions.
The program state and the path conditions are expressed in terms of the symbolic inputs.
For sequential programs, the program state is composed of the program variables. For a
simulated path, the path condition is set to true when the path is activated. Furthermore, the
formula for the path condition corresponds to the conjunction of all branch conditions along
the path.

The execution paths can be represented in an execution tree as shown at the bottom of
Figure 2.2. Only those paths that can be activated are represented in the graph. A node in
the execution tree represents the execution of a program statement which is identified by its
program location. Graph edges correspond to transitions between the statements. Each node
is associated with its program state and path condition. At the beginning of the simulation,
the path condition is set to true , since the first program statement is always executed. When
encountering a branch, one of the branches is selected by the execution engine, and the
corresponding branching condition is conjoined to the path condition.

In order to tackle the path explosion problem techniques for path pruning and merging
are available. Path pruning ensures that only feasible paths are explored in the analysis. This
is achieved by making solver calls to check whether the path conditions of new explored
branches can be satisfied or not. In Figure 2.2 the path along the two consecutive “taken"
branches is infeasible since the corresponding branching conditions are contradictory. With
path merging the simulation of (different) divergent paths is joined whenever these paths
converge again in the execution. In this way, the exploration does not produce a tree but a
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l 1 : i n t bad_abs ( i n t x ) {
l 2 : i n t z ;
l 3 : i f ( x < 0)
l 4 : z = −x ;
l 5 : i f ( x == 1234)
l 6 : z = −x ;
l 7 : a s s e r t ( x >= 0 ) ;
l 8 : r e t u r n z ; }

l1
true

x=vx

l2
true

x=vx,z=vz

l3
true

x=vx,z=vz

l4
vx<0

x=vx,z=-vx

l5
vx<0 ⋀ vx!=1234

x=vx,z=vz

l5
vx<0

x=vx,z=-vx

l7
vx<0 ⋀ vx!=1234

x=vx,z=-vx

l7
vx≥0 ⋀ vx!=1234

x=vx,z=vz
l6

vx≥0 ⋀ vx=1234

x=vx,z=vz

taken

taken

infeasible!

taken

l7
vx≥0 ⋀ vx=1234

x=vx,z=vz

li

statement location

Program state/

Path condition

solve()

solve()

solve()

Figure 2.2: Symbolic execution example
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a s s e r t ( x >= 0 ) ; →
i f ( x >= 0) {

a s s e r t f a l s e ;
a b o r t ( ) ;

}

Figure 2.3: Instrumenting assertions in symbolic execution

DAG.
Symbolic execution is commonly used to check assertion violations as well as generic

errors such as dangling pointers, buffer overflows, and divisions by zero. For that, the code
of the analyzed program is instrumented with assertions. Assertions are typically treated as
conditions in order to create explicit error paths. Figure 2.3 presents one example. In this
way, the problem of checking assertions is mapped to reachability.
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Program Netlists

This chapter presents a computational model for hardware-dependent low-level software
called program netlist. A program netlist represents the behavior of a low-level embedded
program in terms of the hardware structures on which it executes. It has been developed for
representing programs that are reactive to the hardware, i.e., communication may happen
not only at the start and at the end of the program execution but also continuously during
run-time.

A straightforward approach for verification of hardware-dependent software could be
to model the software as binary code stored in a ROM which is connected to the processor
hardware. As a result, a hardware model for the entire system is obtained which is represented
by its transition relation, T , in the usual way. Verification could be based on Bounded Model
Checking [BCC+99] by unrolling this transition relation for a finite number of time steps.
For instance, the maximum number of clock cycles along the longest execution path of the
program could be chosen for the unrolling. Figure 3.1 presents an example. In order to keep
the discussion simple it is assumed that the CPU requires one clock cycle to execute each
instruction.

Such a hardware-style BMC approach is attractive for hardware-dependent software
verification since the behavior of the software can be represented by hardware structures at
the desired level of detail. However, the approach will yield a complex computational model
representing the entire processor hardware multiple times, once in each i-th time step. Only
very small designs and only short time windows can be examined with such an approach.

Let us examine what would happen if a SAT solver is used to reason on such a model
when performing a given proof. Consider the piece of control flow graph (CFG) and the
BMC unrolling shown in the top and in the middle of Figure 3.1. The nodes in the CFG
represent individual instructions of the machine code. Each Ti in the model describes all
software behaviors that could occur in the i-th time step. In time step 1 instruction a is
executed. No other instruction can be executed at this point in time. This means that the
system can be modeled under the constraint that this particular instruction is performed. This
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Figure 3.1: HW-style BMC unrolling against program netlist approach

fact can be exploited to drastically simplify the transition relation T1. The same process can
be followed to model the system at time point 2. (Only instruction b can be executed at that
time point.) Now consider time point 3. At this time point, instruction c or instruction e can
be executed. T3 can still be simplified but it now needs to model both of these instructions.
Hence, fewer simplifications to the transition logic can be performed. It is realized that in
more complex control flow graphs with numerous branches and loops the simplification
can only benefit from such constraints during a fairly small number of steps in the initial
parts of a program. At later time points, there will be many possibilities what instructions
can be performed. Therefore, when unrolling the transition relation, the individual Ti will
have to model (almost) the entire hardware system, since no (or only few) constraints can be
identified. If a SAT solver has to enumerate the search space to prove some property on this
model it will obviously suffer from the sheer complexity of this model.

Moreover, there is an additional problem for the SAT solver making the situation even
worse. When backtracking through the search space the solver makes assignments to the
variables of this model that mix situations occurring in different runs of the program. For
example, if instruction c is performed at time 3 it is not possible that instruction f is performed
at time 4. If the SAT solver makes assumptions in its branching decisions relating to
instruction c at time 3 and instruction f at time 4 it will enter the non-solution area of the
search space. It may take a large number of backtracks until this is discovered.
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In conclusion, a SAT solver needs to deduce from scratch the possible execution paths
of the program via clause learning, backtracking, and similar concepts. This is because
the model lacks an explicit view on execution paths. Since the program’s control flow is
represented only implicitly by the unrolled hardware, reasoning on the program will require
a high computational effort. It is then apparent that such a model, even if it was small, is
computationally inefficient and would require excessive computational resources.

3.1 Basic Idea

The program netlist approach is related to the BMC approach illustrated above, however, key
obstacles to scalability are removed. The basic idea is the following. The unrolling of the
processor with its instruction and data memory (ROM and RAM respectively) is not done
clock cycle by clock cycle, replicating the full transition function for every time frame, but
rather instruction by instruction (cf. the model on the bottom part of Figure 3.1). At branching
points in the software, the unrolled logic is duplicated, modeling each execution branch
separately. This instruction-wise unrolling along execution paths allows for a significant
reduction in the amount of logic that needs to be replicated: Since the actual instruction in
every unrolled logic block is known and fixed, many constants exist that can be propagated
in order to simplify the logic block so that all circuitry that is not needed for modeling the
instruction behavior is removed.

In fact, this analysis can be moved to a pre-processing step before unrolling (Section 3.3
details on this analysis). As a result of it, information about reachable execution paths of the
software is directly encoded into the control logic of the program netlist (cf. logic blocks on
the bottom of Figure 3.1). These specific control structures make execution paths and the
program’s control flow visible to the verification engine.

For a given instruction set architecture and machine program, the behavior of the processor
can be precisely modeled for each individual instruction of the program. A logic block that
models atomically the effects of an individual instruction on a set of state variables is called
an instruction cell (IC). The set of state variables that the cell modifies depends on the type of
instruction and includes registers from the general-purpose register file, status bits, and flags
as well as memory locations associated with data variables of the program and input/output
registers. (The memory model is described in Section 3.4.) These state variables constitute
the program state (PS) of the programmable hardware/software system. The subset of these
state variables which are internal to the processor are referred to as the architectural state
(AS) variables.

Connecting instruction cells together and duplicating paths at branches is, by itself, not
sufficient for efficiency because the resulting model can become of exponential size in the
number of branches. Instead of building a tree of instructions, a netlist that has the structure
of a directed acyclic graph (DAG) is created. As will be shown next, so-called merge cells,
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Figure 3.2: Instruction Cell for instruction without branching

as the one placed at the fanin of instruction cell g on Figure 3.1, are used for recombining
paths in the program netlist in order to avoid exponential growth of the model.

3.2 Instruction Cells

Instruction cells are the building blocks of the program netlist, i.e., the unrolling of the
processor’s behavior under the control of the program. Instruction cells are parameterized
with registers, operation modes, and similar objects so that they can be optimized during
model generation, in particular by constant propagation. This leads to compact combinational
circuit models.

Instruction cells can be described at different levels of abstractions depending on the
level of detail that is required by the given verification tasks. In this work, manually-written
abstract instruction cells are used to capture behavior according to the programming model at
the instruction set architecture (ISA) level. Instruction cells can be also created for modeling
the concrete behavior of the RTL implementation of a specific processor architecture.

Figure 3.2 and Figure 3.3 show examples of instruction cells with and without branching.
Combinational logic circuitry changes the program state including architecture registers and
variables in the data memory. Instruction cells are connected together at the Program State
interfaces (cf. program netlist on Figure 3.1). A connection between two instruction cells
indicates a possible transition from a CFG instruction to the next one.

Additionally, an instruction cell models the control flow of the program using a special
state variable called active. In the program netlist, all instructions lying on an actual program
execution path have their active flag set. A BRANCH instruction as shown in Figure 3.3
produces two possible program states, one for the branch taken and one for the branch not
taken. The active flag is distributed into the branch selected by the program, as controlled by
the instruction logic (signal J in Figure 3.3).
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Modeling the control flow in this way is crucial to the performance of SAT-based rea-
soning on the program netlist as it makes execution paths explicit to the SAT solver. By
asserting or de-asserting the active signal, whole paths or path segments spanning many
time frames can be taken into or out of consideration simultaneously. This gives significant
performance improvements over an implicit, unguided enumeration of execution paths as in
the straightforward approach discussed above.

3.3 Model Generation

Unrolling of the program involves two steps, as illustrated in Figure 3.4. The unrolling
process begins with a representation of the control flow graph of the program. It is obtained,
e.g., from the machine code of the program or from an assembler program. (As will be
discussed in Chapter 4 the control flow graph may not be complete.) The control flow graph
is unrolled into an execution graph (EXG). This execution graph is then used to build the
program netlist by instantiating and interconnecting instruction cells corresponding to the
nodes in the EXG.

These two steps are not taken one after the other but instead are carried out in an
interleaved fashion. The incomplete program netlist, while it is being built, is used to control
the unrolling of the execution graph. The key idea is to determine whether a branch can
actually be taken at a particular node in the unrolling. For example, a loop is unrolled until the
loop end condition is reached. A SAT solver is used to check whether there exist executions
where the active flag of the loop-back branch can (still) become active. Consider for instance
the unrolling of the branch instruction at CFG node c. In the two first instances of this
instruction (EXG nodes c0 and c1) both possible branches are alive. In the last instance (EXG
node c2), however, the branch to the instruction at CFG node e results dead, i.e., there is no
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input assignment to the program that makes this branch active. Similarly, branch destination
addresses can be computed on the incomplete program netlist to trace the actual flow of
control in the program.

In this way, the depth of the unrolling is determined dynamically at every branch node.
Loop conditions may depend on external inputs. Similarly as in common approaches to
hardware verification or worst-case-execution-time analysis [WEE+08], user-defined envi-
ronment constraints can be employed to bound the number of unrollings of a loop in such a
case.

An important component of the model building process is merging of nodes in the
execution graph. Whenever the control flow modeled in an unrolled path segment reaches a
program location that has been visited before, no new node is created but instead, the program
state variables are connected to the existing instruction cell for that location, provided this
does not introduce a cycle in the graph. This is done using multiplexers in the program
netlist called merge cells (see example in Figure 3.4). Merging keeps the model compact by
sharing of sub-graphs and produces a DAG with reconvergent paths (rather than a tree). Note
that the sub-paths being merged in a merge cell can never be active simultaneously. This is
guaranteed by construction of the program netlist with active flags.

The program netlist model obtained in this way allows for efficient SAT-based reasoning
in applications like equivalence checking (cf. Chapter 5) or property checking (cf. Chapter 6)
for low-level hardware-dependent software. Key to efficiency is the fact that most of the
control flow related information is computed beforehand and is built into the model. The
program netlist is an explicit representation of all possible execution paths in the software,
while the data path information is still contained implicitly in the combinational circuitry
inside the instruction cells. This makes the model particularly amenable to SAT-based proof
algorithms.

3.4 Modeling Data Memory and Input/Output

Modeling accesses to the data memory and to the environment (e.g., to hardware peripherals)
is a key element of the program netlist. On one side, efficient modeling of the data traffic of
between data memory and processor is crucial for the scalability of the method. On the other
side, precise input/output modeling is required to inspect the details of the software behavior
at the hardware/software interface.

Figure 3.5 shows an instruction cell modeling a read or write access to data memory.
The shown selection logic creates an access path from the LOAD or STORE instruction cell
for the given address, addr. In case of a LOAD, the architectural state is modified with the
selected data. In case of STORE, the data memory is updated with data from the architectural
state. Modification is enabled if the active flag is set.
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In order to keep the selection logic block compact, a combined simulation/SAT-based
algorithm, discussed in Chapter 4, is used to compute the set of addresses the LOAD/STORE
instruction at the given program location can actually access. The computed reachable set
of addresses can be used to reduce the size of the selection logic greatly because only the
corresponding data memory locations need to be multiplexed for a given instruction cell. For
the LOAD instruction cell shown in Figure 3.6 for instance, the size of the multiplexer is
reduced because it selects only among memory data addresses, {a1, a2, . . . , am} that can be
actually accessed by the instruction cell. Logic for memory locations not reached by the
instruction cell is not included in the model. Although, in principle, the range of addresses
accessed by a program can be huge, in the intended application domain of the proposed
technique (low-level, hardware-dependent software) the number of addresses used by the
software is usually limited and restricted by design.

This representation of the program state can be viewed as an associative memory model
like the one proposed in [EES04] for formal verification of assembler code by Bounded
Model Checking. Note, however, that in the approach of this work the associated memory
entries are created statically during model generation and not dynamically at proof time
through value assignments in the reasoning engines. The resulting logic in the program
netlist can be much simpler and can lead to more efficient SAT reasoning during verification.
This is a direct benefit of the instruction-wise and path-oriented unrolling of the software
in the program netlist as opposed to a BMC-style unrolling of the processing hardware as
in [EES04].

Figure 3.7 illustrates how input/output is modeled using instruction cells. The input/output
instruction cell provides an interface for the program netlist called port.

Definition 1. The port of an input/output instruction cell i is a set of three logic signals called
i.addr, i.data and i.active. 2

The addr signal provides the address of an environment location, e.g., a peripheral device
register. The active flag indicates when an access occurs and data is transferred through
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the data signal. Using such ports, the sequences of input and output accesses of the software
along different execution paths can be modeled. In the same way as for memory accesses, a
simulation/SAT-based algorithm is used to compute the possible addresses an input/output
instruction can access (cf. Section 3.4). This is used for instance in Chapter 5 for equivalence
checking to reduce the amount of logic necessary to model all possible access sequences
exhibited at the hardware/software interface. It is also used in Chapter 6 for keeping the logic
needed for a cycle-accurate input/output model as small as possible.

3.5 Modeling Interrupt-Driven Systems

Program netlists can be seen as combinational blocks that can be instantiated and combined
with other blocks to create new kinds of computational models. The work of [SVF+13a] takes
advantage of this fact to propose a compositional approach for modeling interrupt-driven
systems.

The approach proceeds in two steps as follows. In the first step, the program netlist
of each software component is generated. (Software components include interrupt service
routines (ISRs) and the main program.) For this purpose, the control flow graphs of the
software components are extracted from the machine code. Starting from the control flow
graphs, program netlist generation is done as explained in Section 3.3.

Subsequently, in the second step, the overall program netlist representing the behavior of
the whole composed system is created by instantiating and interconnecting the individual
program netlists created in the first step. In the composition, complexity problems are tackled
by instantiating program netlists only at instruction cells where communication takes place.
This simplification can be performed if the ISRs communicate with the rest of the system
uniquely via shared memory and if the communications points between software components
can be precisely detected. The former condition can be checked by proving the transparency
of each ISR with respect to the elements of the architectural state. The last condition is
satisfied by taking into account that after program netlist generation the set of data memory
addresses accessed by the instruction cells is known (cf. Section 3.4). Finally, the number
of program netlist instances can be further restricted by using environment constraints that
help to determine the maximum number of times a given ISR can occur between subsequent
accesses to shared memory [SVF+13a].
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Efficient Generation of Program Netlists

This chapter presents a method for efficient generation of program netlists. The method is
used to compute information that is required for performing the control flow graph unrolling
presented in Chapter 3. On the one hand, the method computes control flow reachability
information such as destination addresses (targets) of jump instructions as well as liveness
checks at branch instructions. On the other hand, it computes addresses accessed by memory
instructions and by input/output instructions. The method uses an instruction set simulator to
find the information for most of the cases. It resorts to SAT-based techniques for computing
the remaining, hard-to-determine cases.

Compared to the analysis of high-level code, for low-level software the assumption
that a complete control flow graph is obtained after parsing the source code is not always
valid [RLT+10]. A typical case is a jump instruction whose destination is stored in a CPU
register (e.g. jump [Rm]). Without making a semantic analysis of the software it cannot be
clearly determined during the unrolling which path the execution will take. This situation
occurs in code constructs commonly used in low-level software where jump targets are
computed. Typical examples are low-level implementations of branch tables and call-back
functions.

Moreover, for generating compact models for software it is required to perform different
optimizations during the unrolling. In particular, path pruning [CS13] allows to exclude
unreachable paths of the software from the model. In order to perform path pruning, it is
necessary to perform specific checks for every conditional branch found during the unrolling
that determine whether the corresponding branch can be reached or not.

Finally, low-level software makes heavy use of indirect memory addressing (e.g. load Rn,
[Rm]) which involves arithmetic on memory addresses. A common case is an instruction
accessing an element of an array or buffer stored in data memory. This complicates the
construction of efficient data memory models [VSB+13]. Again, without a semantic analysis
it is not clear what memory address(es) can be accessed by the software.

All the previous situations occur thousands of times while unrolling complex low-level
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software. In consequence, an effective processing strategy is required so that model generation
becomes feasible for industrial applications.

In practice, several characteristics of hardware-dependent software resulting from typical
embedded system applications turn out to be beneficial for an efficient model generation. For
instance, the software neither makes calls to unbounded recursions nor does it dynamically
allocate memory. Moreover, the possible address ranges of the system are limited and
predefined by design. Also, it is a common practice in low-level software to use registers also
for storing constant addresses, for example when jumping to a subroutine or when accessing
a register of the hardware periphery. Finally, analyzing unrolled versions of the control flow
graph reduces the complexity as more constants can be detected. For instance, accesses to
arrays, as mentioned before, normally result in a single constant memory address value.

In this chapter, these characteristics are exploited to only include the feasible behavior of
the software into the computational model. This significantly reduces the state space when
performing verification. Instruction set simulation techniques are employed to propagate and
discover constant values. Only for difficult cases where simulation does not succeed because
the considered values are not constant, e.g., when there is a dependency on primary inputs,
SAT is employed to determine the range of possible values. SAT is much more costly than
simulation and should be avoided whenever possible. As shown in the results, the proposed
combination of techniques provides a very effective solution for the intended applications of
this work.

4.1 Model Generation Using Incomplete CFGs

Program netlist generation requires two main elements (Chapter 3): a set of instruction cells
describing formally the processor behavior for each program instruction and an execution
graph (a fully unrolled control flow graph) containing all possible execution paths of the
software.

Instruction cells are described at the ISA level by means of a tailored instruction cell
language (ICL). This ICL includes different elements that facilitate the description and that
allow automatic translation into other formats. In particular, generation of C++ code is done
so that instruction cells can be executed by the instruction set simulator (cf. Section 4.3).
Instruction cells can be also translated into an internal data structure from which clauses can
be automatically generated in order to perform SAT solving (cf. Section 4.2).

In order to unroll an incomplete control flow graph into an execution graph, as explained
in the previous section, efficient processing of indirect jumps and of indirect accesses to
data memory as well as liveness checks for path pruning are required. When it comes to a
control flow graph that is extracted from a machine program, the resulting control flow graph
will most likely be incomplete. The reason is that not all necessary information is directly
available in the machine code because it depends on the data flow of the program. In those
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cases, a semantic analysis of the software has to be performed in order to deduce the missing
information.

Two cases need to be distinguished here: evaluation of the control flow, including indirect
jumps and conditional branches, and resolution of the memory behavior, including indirect
accesses to memory.

If at a given point of the unrolling an analysis of the semantics of the program is required,
the proposed method proceeds in two steps. First, it calls the instruction set simulator. In
turn, the simulator will proceed by forward propagating all constant values contained in the
program netlist. If the call succeeds then the information is added to the control flow graph
and the unrolling process can continue. Otherwise, if the simulation fails, the SAT solver is
called to compute the required information. This second call will always succeed.

This approach speeds up the overall generation process as fast simulation is used to save
SAT calls that can be costly in terms of generation run-time.

For control flow analysis, extracting successors inside an instruction sequence without
conditional branches and jumps, i.e., a basic block, is straightforward. However, if a jump
instruction is encountered the possible destinations (successors) may not be given directly
by the instruction code because that information can be stored in a register. Two possible
situations may arise for the jump target value. In the simpler one, a constant value loaded
from memory and stored in a register is used to calculate the target address. In the second and
more complex case, the jump instruction can have different values for the target address. They
can depend on the particular execution paths taken by the program or on operations performed
by preceding instruction cells to those values. In both cases all possible destinations need to
be precisely determined, otherwise performing formal verification on the resulting model can
lead to wrong results.

Consider the example of Figure 4.1. The destination of the jump instruction at node h is
unknown in the control flow graph. However, in the execution graph the destination of h0 is
the instruction at node c1 (which corresponds to c in the control flow graph). This is known
in the approach only after examining the semantics of the program by using the combined
simulation/SAT solution.

If a conditional branch is found in the unrolling the possible destinations are known in
the control flow graph (cf. instruction d in Figure 4.1). However, it is still necessary to check
whether each branch can be dead or alive. As explained in Section 3.3, this is required to
remove unreachable execution traces from the model. For conditional branches, two calls to
the simulation/SAT engine are made, one for each branch. In Figure 4.1, both branches (g0

and e0) are determined live after the checks performed at branch node d0 in the execution
graph.

Finally, for resolving data memory accesses the complexity of the model can be reduced
by making data memory values path dependent. This means that memory logic is created for
a given program variable residing in memory only on paths with instructions accessing that
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Figure 4.1: Model generation example: unrolling an incomplete CFG into an EXG

variable. Back to the example of Figure 4.1, assume that the instruction cell at node c reads
a memory value stored at address addr_x. If it is also assumed that the instruction at node
g changes the value stored at the same memory address, then, due to the jump from node h
to node c the control flow graph involves two different accesses to memory location addr_x.
However, after unrolling has been performed execution graph nodes c0 and c1 require only
one memory access respectively. In the resulting program netlist, g0 and c1 will be directly
connected by using memory logic and the memory value read at c0 corresponds to the initial
value of the memory variable. Before taking these decisions, however, it has to be determined
that execution graph nodes g0, c0, and c1 access the same memory location addr_x. In each
case, this location value can depend on the data flow of the program and may be stored in a
CPU register. Consequently, this information needs to be calculated to define the memory
ranges that have to be modeled. In the particular example, three calls to the simulation/SAT
engine need to be made.

38



4.2. Computing Addresses Using SAT Techniques

4.2 Computing Addresses Using SAT Techniques

There is a large research body on the problem of finding all satisfying values of a propositional
formula [JS05]. In this section, the basic enumeration algorithm is presented and how it can
be employed to solve the particular problem of completing control flow graph information.

Let us assume addr is a bit vector in the program netlist representing the signal that needs
to be inspected. Particularly, addr can be the memory address signal (cf. Figure 3.5 and
Figure 3.7) or the program counter of a given instruction cell modeling a jump instruction.
The enumeration algorithm obtains on every iteration a new satisfying value for addr. Let us
also assume that vk is the k-th satisfying value of addr obtained after the k-th iteration of the
algorithm. Then, a new element satisfying value vk+1 can be extracted from a counterexample
refuting the following property.

pk+1 =
∨

vi=v0,v1,...,vk

(addr = vi) (4.1)

The iterative algorithm will iterate until the property of Equation 4.1 holds, i.e., no new
counterexamples are returned by the SAT solver. The constraints in the disjunction are
converted to blocking clauses in the SAT instance preventing the solver to visit previous
solutions. In the implemented algorithm incremental SAT solving is employed to speed up
the process by reusing information learned by the solver in previous iterations.

This proposed solution produces the exact set of values addr can take. Obviously, in a
general setting, this scheme can run into complexity problems since instructions cells, in
principle, could address huge ranges of data memory or jump to many different destinations.
However, for the intended application domains, as explained at the beginning of this chapter,
the possible solution ranges are limited and restricted leading to a tractable number of SAT
calls when computing Equation 4.1.

4.3 Constant Propagation Using Instruction Set Simulation
Techniques

The SAT-based algorithm of the previous section is powerful in the sense that it finds solutions
for all cases, independently whether values are constant or not. However, using the SAT
solver is very time-consuming. The situation is even worse since the number of calls required
for unrolling complex software can be large, e.g., in the order of thousands of calls. In order
to reduce run times a simulator is implemented and integrated on an appropriate abstraction
level. In particular, performance problems that arise when simulating code on low abstraction
levels (e.g., at bit level) are avoided. The proposed simulator employs simulation techniques
on a higher abstraction level in order to compute memory addresses, jump targets, and
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inactive program paths.
Since for program netlist generation instruction-based models like assembler code, control

flow graphs, and execution graphs are used, the ISA level is an adequate level of abstraction.
However, the performance boost obtained on this abstraction level is bought by loss of
information. Particularly, information about single bit values and their relationship is lost.

The simulator is capable of simulating arbitrary programs that have been unrolled com-
pletely or partially into an execution graph. For achieving as much performance boost as
possible, descriptions of instruction cells are generated in a high-level programming language
such as C++. In this way, it is possible to take advantage of compiler optimizations for
significantly reducing the actual number of processor instructions (of the host machine)
needed to simulate a single instruction cell.

Instruction
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active
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Memory

State

Control

Function

Control

Function
Ports

Figure 4.2: Components of the simulation engine

Figure 4.2 depicts the basic components of the proposed simulator. The core of the
simulation engine comprises a set of simulation functions (more specifically C++ methods),
each of them simulating a corresponding instruction cell. Besides this, the simulator contains
an internal data structure modeling the architectural state and the memory state as well
as functions for controlling the flow of the simulation. One instruction can have several
successors and therefore the simulator needs to represent them individually. Besides the
registers belonging to the architectural state, the simulator keeps track of the active flag (cf.
Section 3.1) whose value indicates the activity of a corresponding simulated execution trace.
By using this flag, the simulator can find out what program paths are active at a given point of
the simulation. Once it is called, the simulator runs for all active program paths. Importantly,
every execution path which is not active is considered dead and not reachable by the program.
As shown in Figure 4.2, information of simulated values for registers of the architectural
states can be directly accessed from the instruction cells. Data residing in memory has to
be accessed via specific ports representing address and data buses (cf. Figure 3.5). This
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facilitates the collection of information of addresses related to memory accesses.
Two functions are required to control the simulation flow. One control function decides

which instruction cells has to be simulated next. After this, a call to the simulation method
of the corresponding instruction cell is made. Simultaneously, information about active and
inactive architectural states is collected. The second control function tracks the memory
accesses initiated by the memory ports of the instruction cells. It also collects information
for every memory access (data and addresses) which is necessary for the overall model
generation.

4.3.1 Simulating Undetermined Data and Control Flow

A program netlist represents the behavior of a given program along all possible execution
paths. Whether a particular execution path is executed or not depends on the concrete
assignments to the program inputs. When using formal methods, all valid input assignments
need to be considered. In the program netlist values of the CPU registers or of the memory
that depend on the primary inputs are undetermined. This needs to be addressed when
simulation methods are applied.

For solving this problem a new flag is introduced in the simulation model. This flag
indicates whether the value of a register is valid or not. A valid value corresponds to a
constant word stored in the register. Undetermined (invalid) values occur when there exists a
dependency with the primary inputs. With this flag, it is possible to identify whether all bits
or just a subset of them are undetermined.

Detecting individual undetermined bits is used extensively in the case of branch instruc-
tions. Imagine that all bits of the status register of the CPU are invalid except the ones required
for branch decisions. Without an analysis on register values at bit granularity simulation
could lead to false conclusions, for example that both branches of a branch instruction can be
reached by the program even though in reality this is true only for one of them. Nevertheless,
situations, where both branches of a conditional branch instruction can be reached by the
program, can occur. This situation is recorded in the simulation engine by setting the flags
for the corresponding bits in the status register of the CPU. Consequently, both branches are
marked active. In these cases, the simulator then simulates both paths until no one can be
simulated any further. This happens when the program has ended or when an unresolved
control flow instruction (a new branch or jump instruction) is found for the first time by the
simulator. This is the topic of the next section.

4.3.2 Computing Successors of Control Flow Instructions

As explained in Section 4.1 there are two situations where the control flow of a program
needs to be evaluated while unrolling incomplete control flow graphs, namely indirect jumps
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and conditional branches. In order to handle them the simulation engine implements an
additional analysis in order to improve performance.

If a new control flow instruction is found, while unrolling, then a new call to the simulator
is made in order to define the possible successors. For the case of a conditional branch
instruction, this means to check the liveness of each branch. For this purpose, the simulator
traverses every preceding path ending at the control instruction that is being inspected. Taking
into account that the simulation is based on concrete values, if there is a merge point preceding
the control instruction, then the simulator does not merge the concrete simulated values of
the architectural state. Instead of that, each path is simulated individually until the control
flow instruction is reached. Note that merging concrete simulation values could introduce
nondeterminism into the simulation. By avoiding this, unnecessary calls to the SAT solver are
avoided. For jump instructions, every path simulation can find at maximum one destination
value. In the case that at least one of the simulated paths result in an invalid value then the
simulation fails to resolve the control flow and consequently the SAT engine is called.

4.4 Tool

The techniques for efficient generation of program netlists presented in this chapter have
been implemented and integrated into the formal verification platform FCK (Formal Checker
Kaiserslautern). FCK is implemented in C++ and can be used for automatic verification of
low-level hardware-dependent software. Figure 4.3 shows the main components of the tool.

At the front end, the block CFG Parser processes the machine code that can be generated
from C, assembler, or a mixture of both. As a result of this, a control flow graph data structure
is produced. From the control flow graph, the execution graph is generated by the block
CFG Unroll. In the unrolling process, whenever the semantics of the program needs to be
evaluated in order to resolve control flow or accesses to data memory, CFG Unroll makes the
corresponding calls to the Simulation Engine.

For constructing the simulator a set of instruction cells described as a set of C++ func-
tions is used. These are generated automatically from the input description in the ICL
language. Instruction cells in ICL are provided as a library which is described manu-
ally by the user (for a detailed description of the syntax of ICL see https://www.eit.uni-
kl.de/fileadmin/eis/pdf/icl.pdf). An example of an instruction cell described in ICL is shown
in Figure 4.4. The code describes the behavior of the ADD instruction of the SuperH-2
ISA [Ren05].

The SAT Solver is called uniquely if the simulation engine fails. CNF instances for the
solver are generated by the block SAT Interface by taking an intermediate version of the
program netlist and properties which are automatically generated by CFG Unroll. These
properties correspond to the active checks for path pruning and the properties related to
Equation 4.1.
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ADD_SH2(const u<4> Rm, const u<4> Rn, in PS S, out PS Z)
{

Z’ = S;
Z.RegisterFile[Rn] =

S.RegisterFile[Rn] + S.RegisterFile[Rm];
}

Figure 4.4: ADD Instruction Cell described in ICL

The final program netlist together with its corresponding execution graph is output by the
tool. Both outputs are used to perform property verification or equivalence checking as will
be shown in the coming chapter.

4.5 Experimental Results

The following experiments evaluate the efficiency of the model generation with the im-
provements of the proposed simulation/SAT approach. The low-level software used in
the experiments are a LIN driver (LIN), a serial-to-parallel converter (S2PCONV) and a
multiplier (MULT).

The serial-to-parallel converter takes a 32-bit serial input sequence and writes it in parallel
as one 32-bit word to the output. The detection of the bit sequence is done via repeated
polling on a device register. It is guaranteed by the environment that after at most 5 polling
accesses a valid input bit is read in.

The multiplier implements a simple 32x32-bit multiplication subroutine using addition
and shifting instructions.

The LIN driver (developed by Infineon Technologies AG) implements a master node
as low-level software [LIN02]. For these experiments code was adapted to run on the
open-source version of the SuperH-2 processor [Ren05] Aquarius [Ait03]. The processor
has a datapath of 32-bit and a 5-stage pipelined. The driver comprises about 1350 lines of
hardware-dependent, low-level C code and inline assembly. It can be configured such that
both, transmission and reception modes, are allowed. The driver interacts on one side with a
UART containing different registers and on the other side with an application using shared
memory. The GCC compiler was used for applying three different optimization levels to the
source code, starting from the level zero LIN (l0) with no optimizations being activated, and
increasing the aggressiveness of the compiler optimizations up to the maximum level two
LIN (l2). LIN (multi) corresponds to a version of the LIN driver for which the ID of the
message can be configured by the application.

All experiments were performed on an Intel Xeon E5420 CPU at 2.5 GHz with 16 GB
RAM.

Table 4.1 shows the time required to generate each program netlist. Additionally, the
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CPU time (s.) Calls (Using Simulation)
Program SAT SAT and address successors active bit

only simulation
LIN (multi) 1791.44 41.27 574 (572) 181 (175) 424 (424)
LIN (l0) 5805.59 98.10 1136 (1136) 161 (161) 401 (401)
LIN (l1) 1062.28 27.02 569 (569) 158 (158) 398 (398)
LIN (l2) 630.74 17.89 496 (496) 75 (75) 342 (342)
S2PCONV 2920.59 2878.97 1448 (263) 0 (0) 2018 (360)
MULT 2.83 0.4 0 (0) 0 (0) 99 (99)

Table 4.1: CPU times and solver calls for program netlist generation

table presents the times needed for finding memory addresses, jump successors and to decide
whether branches are alive or not.

As can be observed, using the combined approach for finding constant values drastically
reduces the CPU time needed for model generation for the multiplier as well as for all
variants of the industrial LIN driver. For model generation of the serial-to-parallel converter,
however, the run times with and without simulation are roughly equal, as can be observed
from Table 4.1. The reason for this lies in the repeated polling on the input register which
results in a number of program paths that is exponential in the number of access attempts.
The simulator needs to enumerate all these paths. For preventing a runtime that is longer than
a SAT-only model generation the simulation is stopped if its runtime exceeds a certain limit.
In this case, the rest of the model generation is done using only SAT. This also explains the
low number of found addresses and active bits using simulation for the S2PCONV.

Table 4.1 also shows the total number of calls made to the combined engine, with the
number of calls for which simulation succeeded in parentheses. In most experiments, the
simulator was able to find all needed information so that the SAT engine was not needed at
all. In LIN(multi) not all addresses and successors could be calculated using simulation. The
reason is that some address computations in this benchmark were done using bit manipulation
instructions. The simulator, however, cannot analyze values at the bit level and was, therefore,
unable to compute the unknown targets. For those cases, the SAT solver successfully found
the address values.

These experimental results confirm that the memory addressing mechanisms, as they are
employed here and in similar applications, can result in a large number of constant address
values so that the generation of program netlists remains tractable even in the presence of a
large address space.
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Chapter 5

Equivalence Checking of HW-Dependent
Software

During the design of an embedded system, the software usually undergoes several transforma-
tions. For instance, embedded software is frequently optimized, automatically or manually,
in order to meet design requirements on program execution speed, memory footprint (code
size) and power consumption. Furthermore, often during the design or field time of a product,
features are added to a given software, extending the existing functionality. Finally, embedded
software is also often ported to different hardware platforms. For all these cases, equivalence
checking is a valuable tool since it can be used to certify that the original functionality of the
software is not damaged or altered by the applied transformations.

Figure 5.1 depicts the general equivalence checking problem for comparing hardware-
dependent programs at the machine level. A revised program R is obtained after performing a
certain number of transformations to the original (golden) program G. Similar as in hardware
design flows, transformations can be either implemented by a compiler or performed manually
by the designer. Equivalence checking is used for determining whether R is functionally
equivalent to G or not.

This chapter presents a fully automated method to formally prove the functional equiva-
lence of hardware-dependent programs. The chapter focuses on describing the main ideas,
originally presented in [VSB+13, VSK16], that enable building an efficient computational
model called software miter.

The equivalence criterion for the proposed method establishes that two programs are
equivalent if for any input sequence read by both programs, the output sequences produced by
the programs are equal. Input (output) sequences of a program contain the values read from
(written to) the environment and the corresponding orderings. According to this equivalence
criterion, it is not only certified that the data values exchanged by the programs with the
environment are equal but also that data are exchanged in the exact same order. This second
element of the proof is especially relevant if the reactiveness of the software is taken into
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Figure 5.1: General view of the problem of comparing two machine programs

account.
For taking into account reactive behavior, as will be shown in this chapter, the program

netlist is extended with a global model of the input/output behavior based on access sequences.
This global model describes in a time-abstract way the transactions performed by the software
at its interfaces, e.g., at the hardware/software interface. More specifically, time modeling is
not performed in terms of clock cycles but in terms of abstract time points.

Note that formulating the equivalence problem in terms of input/output sequences be-
comes trivial for the case of transformational programs (e.g., arithmetic algorithms, sorting
algorithms, etc.). For transformational software, input and output sequences contain each
only one element because communication with the environment takes place at only at two
points in time, namely at the beginning of execution when the inputs of the software are read
and at the end of execution when outputs are returned. Therefore matching the sequences
for two different transformational programs is straightforward. This situation clearly differs
from the case of hardware-dependent software where input/output sequences describing
interactions with the hardware or with other software components can become complex.

The following general steps are carried out to check equivalence of two machine pro-
grams G (for “golden”) and R (for “revised”) which may run on different hardware platforms:

• The program netlists for G and R are generated independently from the corresponding
machine programs and the corresponding instruction cells of the processor on which
the programs run. For this, the generation process presented in Chapter 3 is followed.

• Each generated program netlist is extended with a sequence-based model that represents
the behavior of a given machine program at its interface. The logic necessary for
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constructing the sequence model is simplified by exploiting information about the
possible execution traces of the software contained in the EXG as well as information
about the address space reached by the software. Section 5.1 details on how the
sequence model is constructed.

• A software miter is built by using the program netlists, the sequence-based input/output
model and a bijective mapping of input/output data environment locations from G

to R which is provided by the user. For constructing the software miter, the proposed
method takes advantage of the fact that program netlists are compositional. Section 5.2
gives the details on this step.

• Finally, a decision procedure, in particular a SAT solver, is called iteratively to prove the
equivalence of G and R. Section 5.3 shows how incremental SAT solving techniques
can be employed to reduce verification run-time.

At the end of this chapter, Section 5.5 presents different experiments evaluating the
effectiveness of the proposed method for industrial low-level software in relevant equivalence
checking scenarios such as automated/manual code transformations and code porting.

5.1 Sequence-Based Input/Output Model of Low-Level Soft-
ware

This section describes a model for representing in a time-abstract way the transactions
initiated by the software at its interfaces. The model employs the concept of input/output
sequences to represent the exchange of data of the software with its environment.

Since the software is embedded in a reactive environment, it is necessary to include
in the interface model a representation of the orderings describing the timing of the data
exchange. A good example of a reactive program is a software-implemented bus agent.
According to the bus specification, the bus agent must transfer frames of information ensuring
that the transmission order of the individual fields composing a frame is preserved. If the
transmission ordering produced by the agent does not comply with the bus specification, then
the correctness of the system’s behavior might be seriously compromised.

Broadly speaking, a hardware-dependent program exchanges information with its envi-
ronment by reading or writing environment locations that belong to the system’s address
space. The set of data environment locations accessed by a given program is denoted
by A = {a1, a2, . . . , am}. Each aj is an address of such a location. These locations are
read (input data location) or written (output data location) by the software to communi-
cate with the rest of the system. As shown in Figure 5.2, data environment locations for
a hardware-dependent program correspond to registers in hardware devices or to shared
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Figure 5.2: Data environment locations of a HW-dependent program

memory locations used for exchanging data with other software components or layers (e.g.,
the application layer).

According to its definition, A is a subset of the set of all data locations accessed by
the software. It contains only data locations which are relevant to the external input/output
behavior. Data locations corresponding to software variables in main memory that are not
externally visible are not contained in A. Consequently, the interface model describes only
the sequences of accesses that the software makes to the data locations in A. Since the
proposed method focuses on representing transactions generated by software that typically
has finite execution time (e.g., interrupt-based drivers, tasks with deadlines in an RTOS-based
system, etc.), finite sequences are considered in the following formulation.

For each aj ∈ A a data sequence of accesses (dataaj(0), dataaj(1), dataaj(2), . . . ,

dataaj(n − 1)) is generated by the software such that for each consecutive pair of se-
quence points (dataaj(k), dataaj(k + 1)) it holds that dataaj(k + 1) occurs later in time
than dataaj(k). As an example, Figure 5.3 shows the data sequence generated by a software
implemented LIN (local interconnect network) [LIN02] master agent when performing a
write transaction. For this example, the software sends data to the LIN bus by writing the
transmission buffer (with address TxBuff ) of a UART peripheral. Values written to the
transmission buffer, denoted as dataTxBuff , by the software depict an output data sequence
as shown in Figure 5.3.

The values of the input/output sequences can be only modified by input/output instructions
of the software, i.e., instructions that access the data locations in A. In memory-mapped
input/output systems, input/output instructions typically correspond to load/store instructions
transferring information from/to device registers in hardware peripherals or IP cores. Other
CPU architectures dispose of dedicated instructions for controlling input/output CPU ports.
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Figure 5.3: Data sequence for a software-implemented LIN master agent

The interface model presented here is independent of the kind of mechanisms used by the
CPU to communicate with the environment.

For creating the sequence model, in a first step, input/output instructions of a given
machine program need to be identified so that the sequence model is expressed only in
terms of these instructions. This helps to keep the size of logic building the sequence model
compact since only instructions defining the software’s external behavior are considered. In
a less efficient approach, the sequence model could also consider instructions different to
input/output instructions, for instance, instructions addressing data memory. In this case,
the sequence logic would need to resolve additionally whether the considered instructions
address the locations of A or not. As a result, the obtained sequence model would be valid
but the logic for representing it would be more complex.

In the program netlist, input/output instructions can be easily identified because after
program netlist generation, the complete address space accessed by the software is known.
As shown in Section 3.4, for each input/output instruction the values taken by the port
signal addr (cf. Definition 1) are computed during generation of the program netlist by using
simulation together with enumerative SAT, as described in Chapter 4. In practice, input/output
instruction cells are identified as follows. From the program netlist only instruction cells
having a port are inspected (instruction cells without port are discarded). If the values
taken by the port signal addr (cf. Figure 3.7) belong to the set of data locations A then the
corresponding instruction cell is marked as input/output instruction cell. Furthermore, for
each address the location aj the set Iaj = {i1, i2, . . . , inj

} of all instruction cells accessing aj
is recorded. This complementary information will be further used in the sequel for building
the sequence model.

5.1.1 Abstract Time Modeling of Input/Output Software Operations

In order to represent the ordering of accesses for each data location aj ∈ A a new time
variable taj is added to the program netlist. This variable represents the position (index)
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of a particular element in the sequence of accesses to a given data location aj . It can be
understood as an abstract access time point.

In the program netlist, time variables (taj ) are necessary for describing precisely the
values written or read by a given instruction cell as a function of the time. Since execution
paths reconverge at merge cells, single instruction cells can belong to different execution
paths. Hence, a single input/output instruction cell can access a given environment location
at different time points and the data values exchanged by the instruction cell may vary as
a function of the time point. Figure 5.4 illustrates this for a small segment of a program
netlist (shown on the left side of the figure). In this example the same environment location
is written at instruction cells d0 and g0. Therefore, instruction cell g0 can write to the given
environment location at time points one (when the branch is taken) and two (when the branch
is not taken). Furthermore, the value issued by g0 can vary depending on the particular time
point at which the access is performed. This is because the value written at g0 at time point
two can be modified, with respect to the value written at g0 at time point one, by one of the
instruction cells which are on the not-taken branch, for instance, instruction cell e0.

This situation is caused by the merge performed at the fanin of instruction cell f0. If no
merging was done, then instruction cells would access the environment at single unique time
points. This is the case of the model shown on the right side of Figure 5.4. In this equivalent
model, two different instruction cells g0 and g1 are included for representing each of the
possible accesses. In particular, g0 represents the access at time point one and g1 the access
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at time point two. Instead of removing merge cells of the program netlist (what notably
would increase the size model), the proposed approach employs the new time variables above
introduced. This allows representing sequences precisely while maintaining the compactness
of the program netlist.

In the program netlist, time variables are updated uniquely at input/output instruction cells
that access a particular data location aj . For updating the abstract time variable taj , the logic
for input/output instruction cells is extended with incrementers as shown in Figure 5.5. The
logic increments the value of the time variable by one if the given instruction cell accesses
the location aj and if the corresponding active signal is true , i.e., the instruction cell belongs
to the path executed by the program. In the sequel, the value of the time variable at the
instruction cell i is denoted by i.taj .

5.1.2 Logic for Modeling Input/Output Sequences

Based on the time variables it is possible to construct the logic for each sequence element.
The k-th written data value, denoted by dataaj(k), to a given location aj , is described by the
following if-then-else construct, built for the set Iaj .

dataaj(k) :=
if (i1.active and i1.addr = aj and i1.taj = k) then i1.data

else if (i2.active and i2.addr = aj and i2.taj = k) then i2.data
. . .

else inj
.data

The logic for dataaj(k) builds a cascade of multiplexers where each multiplexer is
connected to a single input/output instruction cell belonging to Iaj . The selection signal of
each multiplexer is set to true if three conditions are met, namely, (1) the instruction cell is
active, (2) location aj is addressed and (3) the time variable has the value k. The last two
conditions are necessary because an instruction cell can access more than one data address
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and, also, can perform the accesses at different abstract time points. For a concrete execution
trace of the program only one port signal data is selected by the logic. When the select signal
of a given instruction cell’s multiplexer is true then the data value of the sequence at time
point k is assigned the value of the port signal data.

The logic for dataaj(k) can be simplified because normally for a given sequence element k
just a single instruction cell or a small subset of Iaj can actually access the interface at the
abstract time point k [VSB+13]. Therefore, not all instruction cells belonging to the set Iaj
need to be considered in the logic for dataaj(k) and consequently the amount of multiplexers
can be reduced. Figure 5.6 presents one example. A program, whose CFG is shown on the
right side of the figure, writes to the environment location TxBuff at instruction b. From
the corresponding program netlist, shown on the right hand side of Figure 5.6, it can be
deduced that ITxBuff = {b0, b1, b2}. Furthermore, the longest sequence for TxBuff has three
elements. This happens when the program takes the right-most path through the program
netlist, visiting the b-instruction three times. Figure 5.6 shows the resulting data sequence for
this example. As can be seen, for each element of the access sequence there is only a single
b-instruction cell that can write to the location and therefore, no multiplexer chain needs to
be constructed for the building the sequence model.

This simplification not only reduces the size of the sequence model but also speeds up
verification run-time since the decision procedure does not waste time anymore analyzing and
eventually discarding instruction cells which are now known to be irrelevant for a particular
sequence element.

For identifying the set of instruction cells, Ĩkaj ⊆ Iaj , that access the location aj at time
point k the algorithm of Figure 5.7 is employed. The algorithm takes as input the EXG
which is topologically sorted (V and E refer to the sets of nodes and edges of the EXG,
respectively), the set of EXG root nodes S, and the set Iaj . For a given location aj , the
algorithm propagates sets of access count values, i.e., sets of possible values of the index
variable taj as introduced above, through the EXG in topological order beginning at the root
node(s). At a EXG node iv the set of count values is denoted as Kpropiv . Whenever an
instruction cell is visited that accesses address aj , every access count in the set is incremented.
At such an instruction cell, the set represents the possible indexes of the elements in the
output sequence for aj that are affected by the instruction. For instructions that do not access
address aj , the set of access counts is propagated without modification. After the traversal, for
each sequence element k, the set of instruction cells Ĩkaj ⊆ Iaj that affect k can be computed.
For the example of Figure 5.6 the algorithm returns the sets Ĩ0TxBuff = {b0}, Ĩ1TxBuff = {b1},
and Ĩ2TxBuff = {b2}.

Another auxiliary signal also included in the sequence model is activeaj(k). It is asserted
in any execution path where the k-th read or write access to a data location aj occurs. As
will be explained later, this signal helps to speed up the verification by ensuring that only
the execution paths related to the k-th access sequence point are considered by the decision
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1: COMP_SEQ_POINTS(V,E, S, Iaj) {
2: initialize start nodes of EXG
3: for each is ∈ S {
4: Kpropis ← {0};
5: }
6: traverse the nodes of the EXG
7: for each iv ∈ V {
8: if iv /∈ S {
9: Kpropiv ← ∅;

10: }
11: for each ip ∈ Pred[iv] {
12: Kpropiv ← Kpropiv ∪Kpropip;
13: }
14: check if iv accesses address aj
15: if iv ∈ Iaj {
16: K̃iv

aj
← Kpropiv ;

17: Ktemp← ∅;
18: for each k ∈ Kpropiv {
19: Ĩkaj ← Ĩkaj ∪ {iv};
20: increment sequence point values
21: Ktemp← Ktemp ∪ {k + 1};
22: }
23: Kpropiv ← Ktemp;
24: }
25: }
26: }

Figure 5.7: Algorithm for precomputing the sequence points of a given environment location
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procedure in a particular proof. All other paths (if any) related to other time points will be
disregarded by the solver.

activeaj(k) :=
if (i1.active and i1.addr = aj and i1.taj = k) then true

else if (i2.active and i2.addr = aj and i2.taj = k) then true
. . .

else if (inj
.active and inj

.addr = aj and inj
.taj = k) then true

else false

While the previous analysis describes the sequences of data exchanges for single data
locations, in some cases it is also important to consider the interleaving of accesses to
different data locations. For example, for the bus agent introduced above, it can be required
that the initialization of the surrounding hardware takes place before the data payload can be
transferred, otherwise, the hardware periphery would not be ready to communicate with the
agent. Therefore, verification needs to prove that initialization is executed before the data
payload transmission takes place. For this purpose, a model for address sequences can be
employed. For the bus agent example, the first element of the address sequence should equal
the value of the address used for initialization and the rest of the elements of the sequence
should correspond to the address used for transferring the payload and so on. The model
generation for the address sequence follows the same strategy based on incrementers as was
introduced for the data sequences (see Figure 5.5). The logic added for updating time points
of address sequences is shown in Figure 5.8. This logic is again added to all input/output
instruction cells of the program netlist. However, note that for this case, comparators are
not required as all environment locations in the set A need to be considered simultaneously.
Likewise, the corresponding logic for each element of the address sequence is described as
follows.

57



Chapter 5. Equivalence Checking of HW-Dependent Software

addr(k) :=
if (i1.active and i1.t = k) then i1.addr

else if (i2.active and i2.t = k) then i2.addr
. . .

else inj
.addr

The functions for the signals dataaj(k), activeaj(k) and addr(k) encapsulate the interface
of the software with the environment and are used next for solving the equivalence checking
problem.

5.2 Software Miter

The previous model of the software interface makes it possible to formulate the equivalence
of hardware-dependent programs in a straightforward way as follows.

Consider two low-level hardware-dependent programs G and R. For these programs, the
inputs and outputs are defined by the user as sets of input data locations XG, XR and output
data locations YG, YR.

The user provides additionally a bijective mapping that assigns to every input data
location xG ∈ XG of program G an input data location xR ∈ XR of R. Also, a bijective
mapping assigning elements of YG to elements of YR must be provided. Then, the program
netlists for G and R and the corresponding sequence models are created with respect to the
user-defined environment locations. Finally, the two program netlists together with their
corresponding interface models are combined as follows.

Mapped inputs are set equal by connecting every input sequence element dataxG
(k) of

program G with the corresponding sequence element dataxR
(k) of program R. This ensures

that the input assignments of the programs are equal as established in the equivalence criteria
defined at the beginning of this section. At this point, it is expected that the sequence lengths
are the same for both programs. If this is not the case, then no sequence mapping is possible
and the programs are not considered equivalent.

Similarly, for each sequence element of the mapped outputs datayG(k), datayR(k) and
their respective active signals activeyG(k), activeyR(k) the following set comparisons are
implemented.

equiv(yG, yR, k) =

(activeyG(k) = activeyR(k)) and (5.1)

(activeyG(k) implies datayG(k) = datayR(k))
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The function equiv(yG, yR, k) can be seen as a property, in particular a Boolean predicate.
The first condition in Equation 5.1 expresses that a sequence element must be produced by
both programs under exactly the same input conditions. Remember that both, activeyG(k) and
activeyR(k), are asserted for exactly the input conditions that make the respective program,
G or R, produce the output sequence element k. They are deasserted if k is not produced.
The second condition states that whenever the output sequence element k is produced then
its data value must be the same in both programs.

For checking equivalence of the address interleavings the same kind of comparison can
be implemented for the sequence elements addrG(k) and addrR(k) of the programs G and R,
respectively.

The final model results in a software miter with a set of mapped inputs and a vector of
comparison for the outputs. It must be checked whether or not all of these comparisons
always yield true . If this is the case then both programs G and R are equivalent.

5.3 Equivalence Checking Using SAT

In order to compute the proofs expressed by Equation 5.1, the procedure takes each pair
of mapped outputs (yG, yR) and calls the SAT solver iteratively for all related sequence
points as shown in the algortihm of Figure 5.9. As for the inputs, sequence lengths for the
outputs are also expected to be the same for each environment location, i.e., for the mapped
locations yG, yR, the corresponding sequence lengths mG, mR must have the same value.

1: for k ← 1 to mG do {
2: solve: SAT (¬equiv(yG, yR, k));
3: }

Figure 5.9: Iterative SAT proofs for a given data environment location

For each iteration k the SAT solver enumerates all involved execution paths by using
the active signal mechanisms described in Section 3.1. The Equation 5.1 places Boolean
constraints on the active signals of the compared output sequence elements. By taking
decisions and propagating values into the active signals of the elements of the program netlist,
the SAT solver explores the consequences of these constraints on the control flow of each of
the programs, G and R. The SAT search is, thereby, guided to consider only those execution
paths that are related to the equivalence check of the currently considered output sequence
element k. By construction, the active flags in both program netlists are assigned by the SAT
solver such that only related execution paths in the two program versions are considered
simultaneously. Multiple executions paths can be implicitly considered at once. Clauses
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can be learned that express relationships between corresponding execution paths in both
programs. All of this helps to significantly enhance the efficiency of the SAT proof.

It is clear that the cone of influence of the proofs in Figure 5.9 grows incrementally
with k because, if an access happens at sequence index k + 1 then an access to the same
port has happened at sequence index k in the same execution path. This means that the
cone of influence of the constraint equiv(yG, yR, k + 1) contains the cone of influence of the
constraint equiv(yG, yR, k).

The procedure takes advantage of this fact and employs incremental SAT techniques
to re-use the knowledge acquired by the SAT solver when proving equiv(yG, k) for the
subsequent proof of equiv(yG, k + 1). The individual points in the sequence of equivalence
proofs can be seen as “internal equivalences” for all later proofs and have a similar speed-up
effect as internal equivalences in combinational hardware equivalence checking.

5.4 Tool

The functionality of the verification platform FCK has been extended in order to implement
the methods proposed in this chapter. Two new main components are added to FCK. The
first component, shown in Figure 5.10, creates the input/output sequence model as described
in Section 5.1. This component is employed twice (one for each of the programs to be
compared) by the tool. The block called Sequence Points Computation implements the
algorithm of Figure 5.7. The EXG and the PN, which are inputs to this component, are
generated after running the tool presented in Section 4.4. Information about the reachable
address space, also produced during program netlist generation, is also taken as input by the
tool. This information is part of the data structure holding the information of the EXG.

The second component of the tool, seen in Figure 5.11, builds the software miter from the
program netlists and their sequence models. This job is done by the block called SW Miter
Builder based on the mapping information provided by the verification engineer. If required,
mappings and comparison functions can be adjusted by the user.

The block SAT Interface calls iteratively the SAT solver for proving incrementally the
checks of Equation 5.1. MiniSAT [ES03b] is used in the current implementation of the
tool. In the case of a bug, the tool presents a counterexample as a pair of active program
traces showing a scenario in which both programs behave differently. For every trace, the
tool presents the values of the program states along active paths on the program netlist
corresponding to a given input assignment of the mapped inputs. Note that there can be no
false counterexamples because the program netlists in the software miter exactly represent all
execution paths beginning at the initial states of the programs and there are no approximations
of state sets in the model.
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5.5 Experimental Results

The following experimental evaluation demonstrates that it is feasible to perform equivalence
checking of industrial hardware-dependent programs using the approach presented above. The
experiments are based on two relevant examples of hardware-dependent software, namely, an
industrial software implementation of the automotive protocol LIN and a serial synchronous
interface. Both examples are mainly control driven.

All experiments are performed on an Intel Xeon E5420 CPU at 5 GHz with 16 GB RAM.

5.5.1 LIN Driver

The described equivalence checking approach was applied to the LIN driver considered in
Section 4.5. The following description summarizes the main characteristics of the LIN node.

The LIN node can be configured such that transmission and reception modes are allowed,
data-length is variable up to 8 bytes, and the used IDs can be modified. The driver interacts
with the LIN bus by means of an UART containing status, configuration and data registers.
The UART is accessible as a memory-mapped input/output device. The driver also interacts
with the user application via shared memory consisting of the received data, the data to be
transmitted and additional status information (e.g., the status of the transmission).

Different verification scenarios were considered in which the code was subjected to
automated and/or manual transformations. The GCC compiler was used applying three
different optimization levels to the source code, starting from level zero (LIN l0, cf. Table 5.3)
with no optimizations being activated and increasing the aggressiveness of the compiler
optimizations up to the maximum level two (LIN l2). Engineering changes were introduced
into the code in different parts of the program (LIN modif.). For all these cases the program
versions were verified to keep the same input/output behavior. Experiments were also
conducted with a version of the driver containing an error in the computation of the checksum
(LIN error). This code was obtained based on the code version modified by engineering
changes (LIN modif.) and by making further manual changes that introduced an error.

Table 5.1 shows the size of the program netlists and the times required to generate them.
The tool for program netlist generation presented in Chapter 4 has been used in this step.
Generation times include the times necessary to explore the address spaces accessed by each
instruction cell that interacts with the environment or with data memory.

Before calling the SAT solver it was checked that all versions of the LIN driver have the
same number of access sequence points. This was a first indication that the programs are
equivalent in all cases. Table 5.2 presents information on the interface model. Times to build
the access sequence, as explained in Section 5.1, were negligible since only a simple graph
traversal of the EXGs are needed in order to identify input/output instruction cells.

For each output sequence point, a SAT check was then performed. Data for the software
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Program Instr. CPU time
Cells (s.)

LIN (l0) 7856 26.8
LIN (l1) 5908 12.4
LIN (l2) 5342 11.6
LIN (modif.) 6032 12.9
LIN (error) 6007 12.1
SER (orig.) 6655 698.4
SER (ported) 5105 645.0

Table 5.1: CPU times for PN model generation

miters and the proof times are shown in Table 5.3. In all cases, except for the comparison
LIN (l1) vs. LIN (error), the programs were proven equivalent according to the proposed
formulation. For the equivalence proof of LIN (l1) vs. LIN (error) a counterexample was
returned by the SAT solver. This counterexample was composed of two active execution
traces: one for LIN (l1) and the other for LIN (error). The counterexample presents an input
assignment to the mapped inputs of both programs which, in the considered case, produced a
mismatch of the values written to the UART’s transmission buffer. The value written to the
UART buffer corresponded to the checksum field of the LIN-protocol and, specifically, it
could be observed that the erroneous behavior occurred at the 12th time point of the output
access sequence belonging to this buffer.

For the proofs the technique described in Section 5.3 was employed. By using internal
equivalences detected by incremental SAT, CPU times could be reduced to about 36% on
average.

5.5.2 Serial Synchronous Interface

The interface implements a serial synchronous receiver using a round-robin scheme that
iteratively samples a clock synchronization signal and a data-input serial line. In every
transfer, the data is passed byte-wise to the user application until a 32-bit word has been
received. In order to guarantee a finite unrolling a model generation constraint was added
that limits the number of sampling actions to ten (five for each clock-phase).

The code was initially developed for the Aquarius (SER (orig.)) and was later ported to
run on the ARM7-TDMI architecture (SER (ported)). Then, the equivalence of both versions
of the code was formally proven .

The serial synchronous interface provides an interesting case study since it contains a
complex nested-loop structure with a high number of branches. On the other hand, when
compared to the LIN driver, this program has low traffic with data memory. Therefore, the
times for the model generation in this case were dominated by the checks on the active
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No. locations No. seq. points
Program input output input output
LIN 6 5 25 42
SER 2 4 992 4

Table 5.2: Program netlists: interface model

signals performed for path pruning at every branch during the unrolling. The times for model
generation were: 698.4 s for SER (orig.) and 645.0 s for SER (ported).

Table 5.2 shows information on the interface model. Both versions of the serial inter-
face presented the same number of access points on the interfaces. Input sequence points
correspond to the individual samples of the serial data line and of the clock signal. Output
points of the interface relate the corresponding storing accesses of the received data to the
user application.

Table 5.3 presents the information on software miter construction and proof times. The
programs were proven to be equivalent. Due to incremental SAT run times were reduced to
27%.

Miter Proof Memory
size time usage

Golden Revised (inst. cells) (s.) (MB)
LIN (l0) LIN (l1) 13764 692.3 777.5
LIN (l0) LIN (l2) 13198 766.2 698.1
LIN (l1) LIN (l2) 11520 419.5 343.0
LIN (l1) LIN (modif.) 11904 500.5 470.5
LIN (l1) LIN (error) 11915 295.1 336.2
SER (orig.) SER (ported) 11760 188.2 404.6

Table 5.3: Equivalence checking: proof results
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Chapter 6

Cycle-Accurate HW/SW Co-Verification
of Firmware-Based Designs

This chapter deals with hardware/software co-verification by property checking of firmware-
based designs where processor and firmware are directly integrated with the rest of the system
without using standard bus interfaces. As described in Section 1.1, commonly for these
design approaches, processors with high timing predictability are employed allowing the
firmware behavior to be integrated into the surrounding hardware in a cycle accurate way by
means of a wrapper RTL (cf. Figure 1.1).

Hardware/software co-verification of firmware-based designs becomes an important but
also difficult task when the software is reactive, i.e., when the tight interaction between the
processor executing the software and the surrounding hardware needs to be examined in
sufficient detail. A straightforward approach capable of delivering cycle-accurate precision is
to model the processor with its program and data memory at the hardware RT level and to
use standard hardware verification techniques such as Bounded Model Checking [BCCZ99]
or Interval Property Checking [NTW+08] to verify properties for this model. Figure 6.1
illustrates the unrolling performed in standard BMC for a firmware-based design. At every
clock cycle, there is a copy of the system’s transition logic including gate-level representations
of the processor, the instruction memory with the firmware (stored as machine code), the data
memory, the wrapper RTL, and the additional system hardware. A formal property can be
expressed as a propositional logic formula over arbitrary signals of the unrolled circuit and
can be added as combinational circuitry to the model, (this is not shown in Figure 6.1). The
resulting problem instance is converted to a single formula in conjunctive normal form and
checked using a SAT solver.

Verification based on standard BMC has been shown to be appropriate for verifying pure
hardware designs [PBG05, KGN+09]. However, as pointed out in Chapter 3, employing
standard BMC technology in a straightforward way also to software, and in particular to
a hardware/software system as the one shown in Figure 6.1, bears important complexity
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Figure 6.1: Straightforward BMC-style verification approach

challenges. These complexity challenges arise from the fact that the unrolling of BMC
implicitly models all possible executions of the software for all possible inputs without any
guidance regarding the possible execution traces the software can take. A time frame i
represents all possible system states at clock cycle i including the possible states of the
program, which, obviously, depend on the possible program states at earlier clock cycles.
Therefore, the SAT solver implicitly enumerates all these possible states for proving the
property, and, since it has no guidance of any form, does this very inefficiently. Furthermore,
the model can usually not be simplified by constant propagation because a time frame
represents not a single location in the program but many possible locations. Approaches
relying on a straightforward BMC-style unrolling therefore can work only for small problem
instances, even for systems with simple processors as the ones used in firmware-based design
styles. Experiments presented at the end of this chapter confirm this for different case studies.

This chapter proposes a new modeling approach which preserves the precision of standard
BMC while also modeling explicitly the possible instruction sequences that can actually
occur in real program runs. For this purpose, the software and the hardware on which it runs
(CPU, instruction memory, and data memory) are modeled by means of the program netlist.
The program netlist is then extended with a cycle accurate model of the hardware/software
interface to create a computational model of the system that is cycle accurate and therefore
compositional in RTL hardware descriptions. The techniques used in this chapter for creating
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this compositional model are similar to the ones presented in Chapter 5 with the difference
that here the resulting representation is cycle accurate.

This chapter is organized as follows. Section 6.1 gives a global overview of the proposed
model for hardware/software co-verification. Section 6.2 presents the abstractions performed
to model the hardware/software interface in terms of an timed interface model. A short
description of the extensions done to the FCK verification platform is presented in Section 6.3.
Finally, Section 6.4 shows the experimental evaluation of the proposed model.

6.1 Joint Hardware/Firmware Model

As shown in Figure 1.1 and Figure 6.1, systems are composed of processor cores, their
surrounding hardware, also called “uncore” hardware, and the software to be executed. In
the following analysis, the uncore hardware (wrapper RTL, peripherals, and relevant IP
components) should be distinguished from the core hardware (CPU, data memory, instruction
memory, and communication infrastructure) with its software. For the sake of a simple
terminology, in the sequel, the term hardware is only used for the uncore parts of the system.
In the hardware-dependent software view of this chapter, since the software behavior is
described completely in terms of the core hardware, the term software or firmware subsumes
not only the considered program but also the core hardware on which it runs.

The model to be presented precisely describes the functional behaviors of the system
cycle by cycle over finite-time windows. For taking both the hardware and the firmware into
account, an approach is taken that combines two different kinds of unrollings as depicted
in Figure 6.2. On the one hand, the uncore hardware is unrolled in a classical BMC fashion
by instantiating a copy of the associated transition relation at every time step (lower part
of Figure 6.2). On the other hand, the unrolled software is modeled by a program netlist,
instruction by instruction, representing all possible executions of the programmable system
(upper part of Figure 6.2). Time granularity in this part of the model is given by processor
instructions and not by clock cycles.

Every core architecture contains input/output instructions that allow interaction of the
software with the uncore hardware. In the proposed model, input/output instructions are
modeled by means of input/output instruction cells which are equipped with ports as intro-
duced in Definition 1. In Figure 6.2, for example, input/output instructions are represented
by instruction cells i1, i4, i6 and i8 and their corresponding ports porti1 , porti4 , porti6 and
porti8 .

For constructing the hardware/software model, the proposed method takes advantage
of the fact that a program netlist can be instantiated as a hardware component and can be
extended with a new model of the processor’s interface, called timed interface model (see
Figure 6.2), that allows to combine the program netlist together with the hardware into a
single model.
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The timed interface model represents the input/output operations (such as read, write,
etc.) that can take place between the hardware and the software at every time frame of the
unrolling. Different simplifications (to be presented in the rest of this chapter) are performed
in order to reduce the amount of logic required to create the timed interface model and to ease
the reasoning on the resulting composed hardware/software model. These simplifications
are done under the premise that the set of input/output instructions of the firmware that can
interact with the relevant system’s uncore hardware at a specific time point of the unrolling is
known.

With this timing information the logic for modeling the interface can be reduced because
at a given time frame the required logic depends only on the relevant input/output instructions
that actually interact with the hardware at the time frame and not on other instructions
accessing the interface of the processor at other time frames or accessing other domains
that do not correspond to the relevant uncore hardware. Since this information is explicitly
added to the interface model, the decision procedure used to reason on the model can directly
exploit this information instead of deducing it from another more complex representation.

In general, developing such a model of the interface may appear complicated. However,
for the approach proposed in this chapter, it turns out doable, since the required algorithms
can employ information readily available as a result of the generation procedures for program
netlists. In particular, when determining the timing of input/output instructions, the proposed
method benefits from working directly on the execution graph which contains explicit
information about the control flow of the firmware (in terms of valid instruction traces taken
by the firmware) and its corresponding accessed memory address space.

68



6.2. Timed Interface Model

6.2 Timed Interface Model

Most of the challenges of creating a combined hardware/software model stem from the
combination of two unrolling styles with different temporal resolution (cf. Figure 6.2). Since
the hardware is unrolled in a cycle-accurate manner, state variables and, in particular, signals
connecting to the processor are contained in the model for every analyzed time frame. For
the firmware, however, the situation is different because the program netlist as presented
originally in [SVF+13b] is a time-abstract model. As explained in Section 3.2, instruction
cells atomically represent how a given ISA instruction modifies the program state, abstracting
from any intermediate steps carried out by the CPU during instruction execution. This is also
true for input/output instructions (cf. Figure 3.7), which do not model how the interaction
between the processor and the hardware specifically takes place in time. In the same way,
even though a program netlist represents sequences of instructions executed by the processor,
the state of a program at a particular absolute time point is not known because it depends on
the inputs of the program and thus on the execution path taken by the firmware.

These issues can be resolved by adding a cycle-accurate model of the processor’s interface
to the overall model that accurately represents the interface signals of the processor for each
time frame of the unrolling. In the following, it is shown in detail how such a processor’s
interface model can be constructed by (1) adding new abstractions describing the behavior of
the processor’s interface and by (2) creating additional resolution logic for deciding the time
points and the values communicated between hardware and software.

6.2.1 Timed Interface Cells

A timed interface cell (TIC) is defined as an abstract model representing the state of the
signals belonging to the processor’s interface at a particular clock cycle. TICs (the small
boxes inside the timed interface model in Figure 6.2) are hardware-dependent models specific
to each processor architecture. TICs can be classified into DATA-TICs and IDLE-TICs.
DATA-TICs transport input/output information such as data, addresses and control values
between the software and the uncore hardware. IDLE-TICs represent the processor’s interface
when there is no exchange of information between hardware and software. The signals of a
TIC instance connect to the corresponding copy of the uncore hardware at a given time frame
in the unrolling (cf. Figure 6.2).

Similar as with the instruction cells (cf. Section 3.2), TICs are combinational models
that can be described using a hardware description language (HDL). A DATA-TIC typically
propagates values between the software and the uncore hardware without performing any
modification.

At every time frame of the unrolling exactly one TIC is instantiated that models the
interactions that can occur at the time frame. A DATA-TIC is instantiated if there is data

69



Chapter 6. Cycle-Accurate HW/SW Co-Verification of Firmware-Based Designs

d
a
ta

a
d
d
r

w
_
s
e
l

r_
s
e
l

d
a
ta

a
d
d
r

w
_
s
e
l

r_
s
e
l

d
a
ta

a
d
d
r

w
_
s
e
l

r_
s
e
l

a
d
d
r

data

addr

w_sel

0 0fr
e
e

fr
e
e

0 0fr
e
e

fr
e
e

0

IDLE-TIC IDLE-TIC

port

Instr. cell: ik

free

free

t t+1 t+2

dataik

addrik

activeik

i k
.d
a
ta

i k
.a
d
d
r

i k
.a
c
ti
v
e

+
s.cyc s'.cyc

DATA-TIC

Figure 6.3: Example of TICs for a non-pipelined multi-cycle architecture

exchange at the given time frame, otherwise, an IDLE-TIC is used. Information about what
kind of TIC should be instantiated at a specific time frame is obtained from the timing analysis
described in Section 6.2.3. If at certain time frame there is at least one input/output instruction
cell in the program netlist that accesses the processor’s interface, then a DATA-TIC is placed
at the time frame. On the other side, if no input/output instruction cell can access the interface
at certain time frame then an IDLE-TIC is placed at the time frame.

Since an instruction can be executed at different time points, depending on the particular
path executed by the software, a single input/output instruction cell can connect to different
DATA-TICs. In the same way, a single DATA-TIC can connect to different input/output
instruction cells since for different execution paths different input/output instruction cells
can be active at the time point defined by the related DATA-TIC. Section 6.2.2 presents how
input/output instruction cells connect to DATA-TICs by means of resolution logic blocks.
Contrary to DATA-TICs, IDLE-TICs do not require connection with any instruction cell of
the program netlist.

In Figure 6.2 the instruction cells i1, i4, i6 and i8 correspond to input/output instructions
and therefore connect to DATA-TICs. In the same example, the white instructions do not
exchange data with the uncore hardware and therefore IDLE-TICs are instantiated in the
interface model for representing them. There is no connection between IDLE-TICs and the
white instruction cells.
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Figure 6.3 details on how a STORE instruction writing to the hardware is modeled using
different TICs. In this example, the processor has a non-pipelined three-phase multi-cycle
architecture. A write operation is performed at the third clock cycle. For each ISA instruction,
three TIC instances are needed. As shown in the figure, the first two clock cycles are
represented by IDLE-TICs since during these clock cycles no data is exchanged. Also, there
is no connection of these IDLE-TICs with the program netlist. Data transfer happens at
the third clock cycle which is modeled by a DATA-TIC. This last TIC connects the uncore
hardware at the third time frame with the port of the STORE instruction cell ik.

Figure 6.3 also shows how non-determinism is used in modeling the processor’s input/out-
put interface through TICs: The control signal w_sel specifies the validity of the output
data data. At time points where w_sel is 0 the data signal is left undetermined (modeled by
an unconstrained “free” input). In this way, details of the processor’s implementation which
are not relevant to the model are abstracted away.

6.2.2 Resolution Logic

In order to interconnect DATA-TICs and program netlist resolution logic blocks are employed.
For resolving program netlist outputs, i.e. for output signals belonging to the ports of
input/output instruction cells such as address, output data and active bit, output resolution
blocks are employed. Similarly, for program netlist inputs input resolution blocks are used.

Output Resolution Logic

If two or more input/output instructions cells can access the interface of the processor at the
same time frame then extra control logic is needed in order to resolve the outputs issued by
the software to the uncore hardware. This situation is in general possible, since for different
execution paths, different instructions can be executed at the same clock cycle. Figure 6.4
shows an example where instruction cells i4, i6 and i8 (from Figure 6.2) can write to the
hardware at the same clock cycle if the CPU timing of Figure 6.3 is assumed. For cases
like this, an output resolution logic block (RL) is instantiated that decides which of these
input/output instructions cells drive the involved processor’s interface signals.

An output resolution logic block takes as input all output signals belonging to the ports
(c.f. Definition 1) of the involved input/output instruction cells and decides which of them
connects to the corresponding DATA-TIC. In general, this decision depends on the active
signal values of the ports (which in turn depend on the inputs of the program) and on whether
accesses are performed at the given time point. This last condition needs to be regarded,
since a single instruction may access the interface at two or more different time points and
thus the values written by the instruction to the environment may depend on the particular
time at which the input/output access is performed.
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For resolving the output values issued by input/output instructions at a particular time
point a time variable, called cyc, is added to the program state (see the instruction cell in
Figure 6.3). This variable encodes the clock cycles at which input/output instructions cells
access the processor’s interface. Section 6.2.3 gives more details on how this time variable is
incorporated to the program netlist.

If at clock cycle k the set of input/output instruction cells Wk = {i1, i2, ..., im} can write
to the processor’s interface then the resolution logic for the output data value, data(k), is
defined as follows.

data(k) :=
if (i1.active and (i1.cyc = k)) then i1.data

else if (i2.active and (i2.cyc = k)) then i2.data
. . .

else if (im.active and (im.cyc = k)) then im.data
else free

This logic describes a chain of multiplexers in which il.data and il.active belong to the
port signals of the instruction cell il and il.cyc is the time variable previously introduced.

For resolving the values of the port signals address and active, a similar multiplexer chain
is constructed. For this purpose, the logic of the multiplexer’s select signals is reused, from
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the selection logic implemented for data, and the signals to select are changed from data to
address and active in each of the multiplexer chains.

By using Wk the amount of logic is reduced since output resolution logic blocks are
instantiated only at time points when they are in fact needed. Furthermore, each resolution
block takes into account input/output instruction cells contained in Wk and not other instruc-
tions which can not reach the interface of the processor at the particular time frame. Note
that if Wk was unknown then output resolution blocks would be required at every time point
and additionally for each block all possible input/output instruction cells belonging to the
program netlist would need to be regarded. Section 6.2.3 details on how the elements of Wk

can be determined.

Input Resolution Logic

As shown previously, resolution logic has been employed to resolve signals issued by the
software to the uncore hardware. For signals read by the software, a similar approach based
on multiplexers can be followed.

For the case of input/output instruction cells reading data from the uncore hardware, it
needs to be considered that for different execution paths, a given input/output instruction can
be active at different time points and therefore the read operation performed by the instruction
can take place at different time points. Figure 6.5 presents one example where it is assumed
that instruction cell i6, from Figure 6.2, reads data from the uncore hardware. As shown in
the picture, the instruction cell can read data at two different time points, namely t+ 14 and
t+ 17. These time points are obtained if the CPU in the example of Figure 6.3 is employed.
The fact that i6 belongs to two different execution paths makes it possible that i6 can read
values from the uncore hardware at two different time points. For this example, an input
resolution logic block is instantiated to define the value of the input signal of porti6 .

The input resolution block in the example connects only to DATA-TICs at time points
that can be actually reached by i6. Entries for other time points such as t+ 15 and t+ 16 are
disregarded in the model avoiding additional unnecessary decision logic.

In general if an instruction cell il can read from the environment at clock cycles belonging
to the set Cl = {c1, c2, . . . , cq}, then the logic for the data read by the instruction cell l,
denoted as il.data, can be represented by a chain of multiplexers as follows.

il.data :=
if (il.active and (il.cyc = c1)) then data(c1)

else if (il.active and (il.cyc = c2)) then data(c2)
. . .

else if (il.active and (il.cyc = cq)) then data(cq)
else free
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Figure 6.5: Example of unrolled model containing an input resolution block

Where data(k) represents the data read by the instruction cell from the DATA-TIC placed
at the time frame k.

By using the information provided by the set Cl the resolution logic is simplified because
time frames which can not be reached by a given input/output instruction cell are disregarded.
Section 6.2.3 gives the details about how Cl can be obtained.

6.2.3 Timing of Software Input/Output Operations

This section presents a time model that is included into the program netlist in order to
represent, in a cycle-accurate manner, the input/output operations that occur at the hard-
ware/software interface. In particular, processor architectures with high time predictability
present in firmware based designs are contemplated in the following analysis. Furthermore,
this section describes how information about the timing of input/output operations can be
statically computed by using the elements of the created time model. As previously discussed
in this chapter, important simplifications can be done to the resolution logic if the possible
time points at which software input/output operations take place are known.
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Time Model of Software Input/Output Operations

Precise cycle-accurate input/output modeling of the software requires to represent correctly
the data values read or written by input/output instructions as a function of time. In general,
the values read or written by an input/output instruction depend on the time points at which
the instruction is executed. These time points depend, in turn, on two factors. First, they
depend on the control flow of the program, i.e., the paths executed by the program that can
reach the input/output instruction. Second, they depend on the time needed by the processor
to execute each of the instructions which precede the input/output instruction. In order to see
this more clearly, let us examine instruction cell i6 from Figure 6.2 and assume again that we
have a three stage non-pipelined processor where the input/output access phase takes place
at the third clock cycle (cf. Figure 6.3). Depending on the branch taken by the program at
instruction cell i2, it is observed that the input/output access at i6 can be performed at time
point t + 14 when the branch is not taken, or, at t + 17 when the branch is taken. Besides
this, the value of the outputs issued by i6 vary as a function of the time if the instructions
executed on one of the branches, for example i3 and i4, change the output values issued by i6
with respect to the values issued by the same instruction on the other branch.

For tracking the time points (clock cycles) at which input/output instructions of the
software access the processor’s interface the time variable cyc (defined in Section 6.2.2) is
incorporated into the program netlist. The time variable cyc is appended to the program state
(cf. instruction cell on Figure 6.3) and propagated through the program netlist in terms of
the control structures employed for describing the active bit. This ensures that the values
of cyc depend on the path taken by the program, as it happens with the signals belonging
to the architectural state of the processor. The value of cyc at a particular instruction cell
il is denoted as il.cyc or as sl.cyc (where sl denotes the set of signals of the program state
at instruction cell il). At an input/output instruction cell, il.cyc describes the time at which
the instruction cell initiates the input/output operations. At instruction cells other than
input/output instruction cells, the value of cyc has no special meaning, since no input/output
operations are performed at those instructions.

The dependency of cyc on the execution time of the software instructions can be modeled
in different ways. A possible approach is to include an incrementer at every instruction cell
in the program netlist. At a given instruction cell the incrementer updates the value of cyc
by a predetermined amount of delay. Figures 6.6 and 6.7 show the logic for instructions
cells with and without branching. The delay added at instruction cells without branching is
represented by a constant value d as shown on Figure 6.6. For branch instructions, the delay
value can depend on the branch that is taken as normally happens in pipelined processors.
Therefore, for conditional branches two delay constant values dt and dnt for the taken and
not taken branches respectively are used, as shown in Figure 6.7. Delays for unconditional
branches can be modeled in a similar way.
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Figure 6.6: Logic for updating the time variable cyc in an instruction cell
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Figure 6.7: Logic for updating the time variable cyc in an branching instruction cell

The values of the delays for the instruction cells depend on the particular processor
architecture under consideration. Processors used in firmware-based designs have a high
time predictability and, therefore, obtaining delay values is, in principle, not a difficult task.
In the sequel, the analysis concentrates on non-pipelined and statically-pipelined processor
architectures. For the case of processor architectures implementing dynamic pipelining
mechanisms techniques based on integer linear programing (cf. [LRM06]) can be employed
for computing such delay values.

For non-pipelined multi-cycle architectures, the delay values can be easily derived from
the number of clock cycles per instruction as well as from the timing specific to phases where
input/output operations take place (e.g., the memory access phase). Since no stalls occur in
non-pipelined architectures, the delay values of the instruction cells are independent of the
execution scenarios of the instructions. Hence, the delay value set for each instruction cell in
the program netlist is commonly the same.

Figure 6.8 shows the resulting time model for the example of a small piece of firmware
which runs on the Picoblaze processor of Xilinx [Xil11b]. Execution graph nodes for
input/output instructions are marked in blue. The Picoblaze processor implements a non-
pipelined 2-phase architecture. All instructions, independently of their kind, require two
clock cycles to execute. Hence, the delay values for all instructions cells (including the delays
for branch instruction cells) are set to two in the program netlist. Input/output operations
take place at the second clock cycle. In the example, the time at which i6 reads data from
the environment (s6.cyc) can be expressed in relation to the value of cyc at i3 as s3.cyc+ 6.
Note also that, the merge cell at the fanin of i7 recombines the values of cyc for each of the
two possible execution paths. Based on this, the input/output access at i8 (s8.cyc) can happen
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Figure 6.8: Obtaining delays for PicoBlaze instructions

either at s3.cyc+ 10 for the not taken branch or at s3.cyc+ 6 for the taken branch.
For pipelined architectures, the delay added by an instruction cell depends on the possible

execution scenarios since stalls may occur. Therefore, a description of the possible stall
scenarios is needed when dealing with pipelined processors. It should be noted that statically
pipelined processors commonly get rid of most of the hazards by using forwarding units and
other related techniques that keep the total number of stall scenarios low. This reduces the
complexity of obtaining the delays introduced by instruction cells since fewer stall scenarios
need to be considered in the analysis.

With the information about stall scenarios, the computation of the delay for each in-
struction cell in the program netlist can be implemented by the algorithm of Figure 6.9.
The algorithm takes the execution graph (V and E refer to the sets of nodes and edges of
the EXG, respectively) and traverses it node by node. When a new execution graph node
is processed then the execution scenarios for the related instruction are examined. The
processed instruction is analyzed together with a determined number of successors. This is
done by the function ANALYZE_DELAYS. The number of successor nodes analyzed depends
on the depth of the pipeline. If stalls are detected, then the delay values are incremented
correspondingly. Note that if no stalls occur and assuming that the minimum cycles per
instruction is one, then the delay value is one. This algorithm can be understood as the
process of moving a window through the execution graph instruction by instruction (the size
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of the window corresponds to the depth of the pipeline). If there are branches, the window
moves through each of the instructions on the branch so that all execution scenarios are
covered (cf. line 13 in Figure 6.9).

1: COMP_DELAYS(V,E) {
2: list← {}
3: for each iv ∈ V {
4: FIND_PATHS(V,E, iv, list);
5: }
6: }

8: FIND_PATHS(V,E, iv, list) {
9: list1 ← list;
10: INSERT(list1, iv);
11: if SIZEOF(list1) = depth {
12: ANALYZE_DELAYS(list1);
13: }
14: else {
15: for each is ∈ Succ[iv] {
16: FIND_PATHS(V,E, is, list1);
17: }
18: }
19: }

Figure 6.9: Algorithm for computing execution delays of I/O instruction cells

Figure 6.10 shows the resulting time model including the delays for a small piece of
firmware. In this case, the code runs on the SuperH-2 processor of Renesas [Ren05]. As can
be seen, a stall occurs as a result of the data dependency between i6 and i7. The delay value
at i6 is incremented by one time unit to reflect the extra delay caused by this stall. Note that
the branch instruction at i4 has two different delay values for each of the branches. The taken
branch has a delay value of three, as two instructions in the pipeline are discarded by the
processor for this execution scenario.

Static Computation of Timing Information for Software Input/Output Operations

Computing information about the possible set of clock cycles at which input/output instruc-
tions communicate with the environment is important for reducing the amount of resolution
logic built in to the timed interface model (cf. Section 6.2.2). By using the time model
presented above, timing information can be easily derived. Note that the set of clock cycles
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Figure 6.10: Obtaining delays for SuperH-2 instructions

at which an input/output instruction cell il communicates with the environment corresponds
to the set of values the variable il.cyc can take. This is the set Cl = {c1, c2, . . . , cq} which
has been defined in Section 6.2.2.

In order to computeCl for each input/output instruction cell il an algorithm that propagates
the execution times for each individual instruction cell through the execution graph is
employed. Figure 6.11 presents the pseudo-code of this algorithm. The algorithm takes
as inputs the execution graph (V and E refer to the sets of nodes and edges of the EXG,
respectively) and the time delays associated to every instruction cell. In particular, for each
direct successor u of a node q, delay(q,u) represents the delay added by node q when the
program takes the path to u.

The algorithm traverses the nodes of the execution graph which is topologically sorted.
Associated with every execution graph node q there is a set of possible execution times Cq

containing the values the variable iq.cyc can take. When visiting a new execution graph
node q, the set Cq is computed by joining the execution times Cprop(p,q) of each direct
predecessor p of q (see line 11 in Figure 6.11), where Cprop(q,u) contains the set of possible
execution times that result when the program takes the path from q to u. Since the execution
graph is topologically sorted, the set of execution times for all predecessors of a given node q
are known when that node is visited.

In theory the sizes of the sets computed by the algorithm can grow exponentially with
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1: COMP_CYCLES(V,E, S) {
2: initialize start nodes of EXG
3: for each istart ∈ S {
4: Cistart ← {c0};
5: }
6: traverse the nodes of the EXG
7: for each iv ∈ V {
8: if iv /∈ S {
9: Civ ← ∅;

10: for each ip ∈ Pred[iv] {
11: Civ ← Civ ∪ Cprop(ip,iv);
12: }
13: }
14: compute clock cycles for each successor
15: for each is ∈ Succ[iv] {
16: Cprop(iv ,is) ← ∅;
17: for each c ∈ Civ {
18: Cprop(iv ,is) ← Cprop(iv ,is) ∪ {c+ delay(iv ,is)};
19: }
20: }
21: }
22: }

Figure 6.11: Algorithm for computing timing information of I/O Operations
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Figure 6.12: Computing timing information of input/output instruction cells

the number of execution paths since a given input/output access can be performed at a
different time for each path leading to the corresponding input/output instruction. However,
for practical firmware the number of possible execution times of an input/output accesses
are often limited by design constraints (e.g. WCET constraints) ensuring that input/output
accesses are completed in a specified time window.

It is pointed out that this algorithm operates independently of the type of processor used.
Specific information about the timing of the processor is taken into account by the delays
resulting from the time model above presented.

Consider again the example of Figure 6.2 and assume a three-phase multi-cycle archi-
tecture (cf. Figure 6.3). Figure 6.12 shows the execution graph with the delays for each
instruction cell. The algorithm begins with computing Ci0 = {t} (where t is the initial time
reference), then Ci1 = {t + 3} and so on. Once i6 is processed, it is already known that
Ci4 = {t + 12}, Ci5 = {t + 9} and therefore Ci6 = {t + 12, t + 15} is computed. The
algorithm can then further continue to compute Ci7 = {t+ 15, t+ 18}. The traversal ends as
soon as the possible execution times are calculated for all execution graph nodes.

Since the memory access phase takes place at the third clock cycle (i.e., it has a delay
of two time units) the initial time reference is set to two. Consequently the final access
times for the input/output instruction cells are Ci1 = {5}, Ci4 = {14}, Ci6 = {14, 17} and
Ci8 = {14}.

From the computed information, the data required to reduce the resolution logic can be
directly derived. For example, it can be seen that during t+ 12 and t+ 14 the input/output
instruction cells i4, i6, i8 can be executed. More specifically, since in the last phase the data is
written to the hardware it can be determined that the set of instruction cells that can write at
the clock cycle number 14 is W14 = {i4, i6, i8}, as shown in Figure 6.4. All other time points
of the unrolling can be processed in the same way.
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6.3 Tool

The verification platform Formal Checker Kaiserslautern (FCK) was extended with the
algorithms and modeling elements presented in this section. Figure 6.13 presents the block
diagram of the extended platform.

For program netlist generation, FCK takes as input the machine code of the firmware
and the instruction cells modeling the core hardware. Section 4.4 presents the details of
the part of the platform employed for program netlist generation. For creating the unrolled
hardware/software co-verification model, the resulting program netlist together with the
corresponding execution graph are taken as inputs. This is shown on the top of Figure 6.13.

In order to generate the timed interface model (see Timed Interface Builder block in the
figure), FCK requires an RTL description of the TICs of the processor together with the
specific timing information of the CPU necessary for predicting instruction execution times.
In the current implementation this information is provided directly as a data structure. TICs
are provided in ICL for each supported CPU architecture. Both pieces of information, TICs
and CPU timing specification data, should be provided by the user (see the gray box on the
block diagram of FCK).

With all these inputs FCK fully automatically generates the hardware/software model
for performing formal verification. The block called Timed PN Builder constructs the cycle-
accurate time model as explained in Section 6.2.3. Static computation of execution times for
input/output instructions is performed by the block Timing Information Computation.

The elements in the green box show the flow for unrolling the uncore hardware. An RTL
description of the uncore hardware is read in this part of the tool. From this description, the
transition logic is extracted and unrolled as done in most BMC-based hardware verification
tools. In the current implementation, the property checker of Onespin [One] is employed for
this purpose.

The tool can export the combined hardware/software model, including the program netlist
with its timed model incorporated and the timed interface model, as VHDL RTL code so that
it can be used as input in a standard property checker.

6.4 Experimental Results

The following experimental evaluation considers an application domain where high pre-
dictability of the processor’s timing behavior allows for a firmware-based design style, in
which the processor is directly integrated into the hardware without the use of a standard bus
interface. In the experiments the commercial property checker OneSpin 360 DV [One] was
used. All experiments were conducted on an Intel Xenon running at 2.83 GHz with 32 GB of
main memory.

Two different case studies were conducted employing the PicoBlaze processor from
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LoC PN DATA- HW state
Design SW HW size TICs inputs vars.
FPI slave 172 2908 380 188 113 1149
Control unit 253 2734 474 171 18 1148

LoC HW: lines of HDL code, LoC SW: lines of assembly code,
PN size: number of instruction cells

Table 6.1: Characteristics of the designs and models

Xilinx. Properties written in the experiments specify global behavior of the designs, e.g.,
complete transactions. OneSpin’s property language ITL was used to describe the properties.

In all experiments, the approach presented in this section was compared with the classical
hardware Bounded Model Checking technique of Figure 6.1. The author is not aware (at the
time of submitting this thesis) of any other tools or methods reported in the literature that
could be applied in this context.

The first case study is a firmware-based implementation of a slave interface for the
Flexible Peripheral Interconnect (FPI) bus protocol [Inf]. The FPI bus is a pipelined SoC bus
developed by Infineon. The slave serves to connect a peripheral device with the FPI bus. In
this design, the main control of the slave agent is implemented as firmware while the data
path functionality is implemented in hardware. The slave agent interacts synchronously with
the bus and asynchronously with the peripheral. In the system, the surrounding hardware
(wrapper RTL in Figure 1.1) captures the signals from the FPI bus when a request occurs.
Subsequently, the firmware checks from the wrapper RTL for new incoming requests and
informs the peripheral about it. Once the answer from the peripheral device arrives, the
firmware finishes the transaction by setting the correct values on the wrapper RTL. The
outputs of the wrapper RTL drive the signals of the FPI bus when data and control values are
read from the slave agent.

Table 6.1 summarizes the characteristics of the design and the models produced by
the FCK tool. Proofs were conducted for two different safety properties slave_read and
slave_write, specifying a read and a write transaction, respectively, after a system reset
sequence. Both properties describe control and data values as specified in the FPI bus
documentation. Table 6.2 presents the results obtained for proving both properties.

The second case study is a control unit resembling typical non-mainline functionality
implemented with the use of firmware. The control unit interacts on one side with a master
SoC module (e.g., a processor or some other hardware module) which sends commands to
specific hardware devices through the control unit. Addresses of the destinations (hardware
units) are also sent to the control unit by the same master SoC module. The firmware of the
control unit receives command and destination information, analyzes its validity (checking
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PN-based BMC-style
length time mem. time mem.

Property (cycles) (min.) (GB) (min.) (GB)
slave_write 461 01m21s 1.93 45m02s 19.11
slave_read 460 01m50s 1.82 43m34s 20.78

trans_ok 729 04m02s 1.62 TO1 23.402

trans_valid 700 03m04s 1.46 TO1 21.052

1time-out = 24h, 2memory usage at time-out

Table 6.2: Property checking results

parity) and then synchronously sends the command to the corresponding hardware devices.
Each of the hardware devices runs an independent finite state machine recognizing whether
commands are actually intended for it or not. In the case of a match, the command is latched
by the hardware unit and a control signal is activated to indicate the arrival of the valid
command. At the end, the firmware of the control unit informs the master SoC module
whether the transaction has been completed successfully or not.

For improving performance, two pipeline stages are inserted to the read/write transactions
initiated by the CPU. This pipelining is implemented in the RTL wrapper and splits the
address decoding in two phases. In the first stage, the address issued by the CPU is latched
and decoded. In the second stage, the address is validated against the enable signal of the
CPU.

Table 6.1 summarizes the characteristics of the design and the resulting models. Two
safety properties trans_ok and trans_valid were proved. The first property specifies that (after
a reset sequence was applied) if the data obtained from the master SoC module is valid then
at the end of the transaction the corresponding commands and control signals are activated in
the correct hardware unit. The second property specifies that the correct finish condition is
sent to the master SoC module depending on the validity of the command and destination
values. Table 6.2 contains the results obtained for proving both properties.

All properties were finally proven correct after a number of system bugs had been
identified by the method and were corrected. For instance, in the FPI slave interface there
was a situation in which after the reset, the slave could be selected before the system was
properly initialized by the firmware and therefore wrong values of the FPI control signals
were issued by the interface. Also, the firmware of the control unit contained a bug due to
a wrong sequence of reading operations. For a certain execution scenario of the firmware,
it was possible that the acknowledge was read after the command value. This could trigger
invalid read commands by the control unit.
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As can been observed from the experiments, the proposed technique outperforms a
straightforward BMC approach in all cases. The properties for the control unit turn out to be
more difficult for the property checker (i.e., for the SAT engine) than the properties for the
FPI bus. An explanation for this is that the control signals depend on the parity computation
performed by the firmware which increases the computational challenges for the solver.

In both case studies, the firmware was required to react as fast as possible so as to cause
only a minimum number of wait states. Therefore, the run times for complete transactions, in
both cases, are short, resulting in program netlists of small size. Their generation required
less than one minute in all cases. Taking into account that verification based on much larger
program netlists can be performed, as shown in Section 5.5 of this thesis, there is promise
that also significantly larger designs integrating firmware as described in Section 6.1 can be
handled.
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Chapter 7

Summary and Future Work

7.1 Summary

This thesis described hardware-dependent models of firmware for formal verification. The
proposed models are conceived to represent the firmware integrated with its hardware envi-
ronment according to the current SoC design practices. Two hardware/software integration
scenarios have been addressed, namely, speed-independent communication of the processor
with its hardware periphery and cycle-accurate integration of firmware into an SoC module.

The proposed models are based on the program netlist (Chapter 3). A program netlist is a
combinational model that represents the software behavior in terms of its underlying hardware
platform. For a given software, the program netlist compactly represents the behavior along
all possible execution paths and models the program computation by instantiating instruction
cells of the corresponding processor architecture. An instruction cell describes the behavior
of the hardware for executing a given ISA instruction. Information about the execution paths
reachable by the software is collected by performing an automated analysis of the control
flow. The resulting information is then encoded into the control logic of the program netlist so
that it can be directly exploited by verification engines. Modeling of the data traffic between
the processor and memory is a another component in the program netlist. For improving
scalability of the memory model, only sets of reachable data memory locations accessed by
load/store instructions are regarded in the logic representing the memory behavior.

For program netlist generation, information on addresses, such as jump/branch destina-
tions and data memory accesses, needs to be computed many times. In Chapter 4, a method
for quickly finding this information is proposed. The method exploits several characteristics
of firmware that significantly reduce the state space when performing model generation.
For instance, firmware commonly neither makes calls to unbounded recursions nor does
it dynamically allocate memory. Moreover, the possible address ranges of the system are
limited and predefined by design. Also, it is a common practice in firmware to use registers
also for storing constant addresses, for example when jumping to a subroutine or when
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accessing a register of the hardware periphery. As a result, most of the addresses that need
to be computed correspond to constant values. Instruction set simulation techniques are
employed in order to discover quickly these constants. For hard-to-determine addresses
where simulation fails, the method resorts to enumerative SAT-based techniques.

The proposed methods in Chapters 5 and 6 benefit from information provided by program
netlists to model the hardware/software interface for different time granularities. In particular,
information about the data memory address spaces accessed by the software is used to identify
possible hardware/software interactions. Additionally, explicit control flow representation is
employed for determining temporal information about those hardware/software interactions.

In Chapter 5, for speed-independent communication schemes, a time-abstract model
of the hardware/software interface has been proposed for checking equivalence of reactive
hardware-dependent programs. For this purpose, a model of the input/output sequences of
accesses to data environment locations is incorporated into the program netlist. The logic
for representing the sequences is constructed in terms of the control logic of the program
netlist. This enables efficient program path exploration while performing proofs. Based on
the input/output model, a software miter is created in order to perform the equivalence check.
In particular, two programs are proven to be equivalent, if for the same sequence of inputs
both programs produce the same sequence of outputs. Incremental SAT solving is employed
in order to reduce verification run time.

For cycle-accurate integration (cf. Chapter 6), a time interface model representing the
input/output behavior of the processor is constructed and integrated into the program netlist.
This allows to integrate the firmware together with its hardware environment in a single model.
The obtained model preserves the precision of standard techniques based on finite unrollings
of concrete hardware descriptions while also modeling explicitly the possible instruction
sequences that can actually occur in real firmware runs. The resulting computational model
has been used for performing hardware/software co-verification by property checking.

The experimental evaluation demonstrates that with the approaches presented in this
thesis, it is feasible to perform relevant formal verification tasks for hardware/software
systems as they are designed in industry. As shown by the experiments, low-level software of
realistic complexity can be handled by the proposed approaches. In most cases verification
of the designs was completed in few minutes. This is achieved mainly by the three following
factors. Firstly, significant simplifications are performed to the computational models before
the actual verification tasks take place. These simplifications avoid that the employed decision
procedures waste time in exploring state spaces which are not relevant to the performed
proofs. Secondly, computational models allow verification engines to explore efficiently
the execution paths of the firmware. This is achieved by an explicit encoding of the control
flow of the software in the proposed computational models. More specifically, models of
the hardware/software interface are built in terms of these control structures so that program
paths can be efficiently explored for verification problems where not only the firmware but
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also the hardware environment is taken into account. Thirdly, abstraction performed for
modeling the processor hardware reduces the verification effort. Models of the processor
(including CPU, memory subsystem, and input/output interfaces) consider uniquely logic
that is relevant to represent precisely the hardware/software behavior. Details of the processor
internals, such as intermediate pipeline logic, are abstracted away in the employed models
reducing the complexity when making proofs.

Furthermore, for the experiments of Chapters 4 and 5, an off-the-shelf SAT solver has
been employed. No special targeted heuristics or pre-processing techniques have been built
into the solver. Similarly, in Chapter 6, a general Interval Property Checker has been used,
instead of a specialized back end. These facts leave room for additional optimizations to the
proposed approaches.

These results encourage further investigations in the field of formal verification and also
in other application domains such as testing and formal safety analysis of hardware/software
systems.

7.2 Future Work

7.2.1 Perspectives in Formal Verification

The approach of Chapter 6 targets verification of designs with high timing predictability. This
approach can be adapted to perform also hardware/software co-verification of designs where
the exact timing of the software is not relevant or too difficult to predict. In such scenario,
no cycle-accurate model of the hardware/software interface needs to be created. Instead, a
model mixing different time resolutions could be constructed.

The envisioned approach would proceed in a compositional way as follows. For time
intervals where the hardware environment idles waiting for commands to be issued by the
firmware, no hardware unrolling takes place. In those intervals, the behavior of the complete
system would be modeled by a program netlist describing the firmware operations performed
in oder to start a new hardware transaction. Those software operations are atomic, i.e.,
they are abstracted in time. Correspondingly, for intervals where the firmware waits for the
hardware environment to react, the system’s behavior can be represented uniquely in terms of
the hardware environment. In this situation, the hardware is unrolled in a cycle-accurate way
following a Bounded Model Checking strategy. As a result, a composed hardware/software
model could be obtained that represents complete system transactions. Complementary
proofs establishing the correctness of the “idle" operations would ensure the soundness of
the final model. This approach works under assumption that the interface between processor
and hardware environment is correct. This allows model generation to abstract away such an
interface by interconnecting directly the processor with its hardware environment.

The program netlist can be seen as a formal specification of the concrete hardware when it
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executes a certain piece of software. In this context, methods could be developed that formally
check whether or not a given program runs correctly on the given processor and its hardware
platform. This would allow a software-driven approach to hardware design verification. A
possible technique to implement this idea would be to use equivalence checking for examining
if the software execution on the platform complies with the generated specification (i.e., the
program netlist). Particularly, comparisons of the program netlist against unrolled versions
of the hardware platform could be performed for finding discrepancies between the models.
These comparisons would be enabled by extensions based on the methods of Chapter 6 for
representing the memory subsystem with the required timing accuracy. If a discrepancy
between the models is found, it means that a design error in the hardware is detected. If
no bug is found, it means that the hardware is correct with respect to the specific program.
The advantage of the approach is that it is fully automatic. No properties need to be written.
Instead, test programs can be written reflecting the software that will actually run on the
system.

7.2.2 Perspectives in Test and Safety

The models presented in this thesis are created by computational processes that need to be
conducted only once for a given design. After the computation has been completed, a formal
analysis by SAT-based techniques can be conducted efficiently. Such analysis may go beyond
a merely functional verification. In the following, it is outlined how the proposed models can
also be used in test and when designing fault-resilient systems.

Program netlists can be extended to model the behavior of a program in the event of
hardware faults. Based on this, a formal analysis employing the equivalence checker of
Chapter 5 can be accomplished in order to evaluate the effects of the faults on the global
software behavior. Comparisons of the model fault-free system against the model containing
different injected faults would be possible. The results of the performed analysis can be used
to develop application-dependent strategies for test and error resilience of hardware/software
systems which target only those errors that can actually modify the correct software behavior.
As a result, the overhead associated to error detection and resilience mechanisms can be
(in principle) reduced, since logic for test is uniquely built for relevant scenarios. First
experimental results presented in [BRV+16] demonstrate the feasibility of this approach.

A program netlist includes explicit information for a given program on: all possible
execution paths, all possible input/output access sequences to hardware peripherals and to
shared memory, the address spaces reached by every instruction, and all possible effects
of the program on the program-visible hardware registers. This could form the basis of a
hardware/software cross-layer approach for assessing the effect of hardware faults at the
system level. New techniques can be envisioned for providing formal guarantees that certain
hardware faults will always be detected by specific system-level mechanisms when executing
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the system’s software. Design of resilience mechanisms at the software level may benefit
from the information whether the targeted hardware faults are completely unaffected by
some system-level resilience mechanisms, possibly masked in some testing scenarios and/or
always safely covered during functional operation.
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Chapter 8

Deutsche Zusammenfassung

Im aktuellen Ablauf des Entwurfs von System-on-Chips (SoC) ist ein Trend zur immer
stärker werdenden Integration von low-level Software Komponenten in der Systemhardware
feststellbar. Die Implementierung der wichtigen Kontrollroutinen und Kommunikations-
strukturen wird häufig in der Firmware anstatt der SoC Hardware realisiert. Dies hat zur
Folge, dass diese enge Bindung von Hard- und Software auf dieser niederen Ebene den
Verifikationsaufwand erheblich vergrößert, da der bisherige getrennte Verifikationsansatz
von Hard- und Software nicht mehr ausreichend ist. Daher werden neue Methodiken für eine
gemeinsame Verifikation von Hard- und Software benötigt.

Diese Arbeit stellt hardwareabhängige Modelle für low-level Software zur formalen
Verifikation vor. Die vorgeschlagenen Modelle wurden entwickelt um Software, die in eine
Hardwareumgebung integriert ist, bezüglich der gängigen SoC Entwurfsverfahren zu reprä-
sentieren. In dieser Arbeit werden zwei Hardware/Software Integrationsszenarien adressiert,
nämlich die geschwindigkeitsunabhängige Kommunikation des Prozessors mit seiner Peri-
pherie und die zyklengenaue Integration der Firmware in ein SoC Modul. Für geschwindig-
keitsunabängige Hardware/Software Integration wird ein Verfahren zum Äquivalenzvergleich
hardwareabhängiger Software vorgestellt und evaluiert. Für den Fall der zyklengenauen
Hardware/Software Integration wurde ein Modell zur Hardware/Software Co-Simulation
entwickelt und experimentell evaluiert, indem es für Eigenschaftstests genutzt wurde.

8.1 Programmnetzliste

Während die meisten Techniken zur Softwareverifikation auf einer hardwareunabhängigen
Ebene arbeiten, beschreibt diese Arbeit ein hardwareabhängiges Softwaremodell, genannt
Programmnetzliste. Eine Programmnetzliste modelliert formal das Verhalten eines Prozessors
bezüglich eines bestimmten Softwareprogramms. Diese repräsentiert als kombinatorische
Logik alle möglichen Programmausführungen unter allen möglichen Eingaben mit den
entsprechenden Ausgaben. Da dieses Modell kombinatorisch ist, kann Boole’sche Beweis-
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führung mittels Erfüllbarkeitstest genutzt werden, um beliebiges Programmverhalten zu
verifizieren.

Der Vorgang zur Erzeugung einer Programmnetzliste ist vollautomatisch und besteht
aus zwei Schritten. Der erste Schritt ist das Abrollen eines Kontrollflussgraphen, der das
Programm repräsentiert. Der Kontrollflussgraph kann durch Extraktion aus Maschinen- oder
Assemblercode erhalten werden. Jeder Knoten im resultierenden Graphen repräsentiert eine
einzelne Prozessorinstruktion. Der abgerollte Kontrollflussgraph wird Ausführungsgraph
genannt und ist der Ausgangspunkt für den zweiten Schritt. In diesem zweiten Schritt wird
jeder Knoten des Ausführungsgraphen durch einen entsprechenden Logikblock ersetzt, der
das Verhalten des Prozessors für die Instruktion modelliert. Ein solcher Logikblock wird
Instruktionszelle genannt.

Eine Instruktionszelle besitzt einen Eingang und einen Ausgang, der mit der vorangehen-
den bzw. nachfolgenden Zelle verbunden ist. Der Eingang einer Instruktionszelle repräsentiert
den aktuellen Programmzustand. Dieser umfasst die Werte der Programmvariablen im Spei-
cher und den Inhalt der CPU Register, die vom Programm angesprochen werden können,
bevor die entsprechende Instruktion ausgeführt wird. Der Ausgang entspricht dem näch-
sten Programmzustand, d.h. dem Zustand nachdem die Instruktion ausgeführt wurde. Die
Kommunikation mit dem Speicher sowie alle anderen Eingangs- und Ausgangsoperationen
werden durch spezielle Schnittstellen in den Instruktionszellen modelliert.

Die Größe des erhaltenden Ausführungsgraphen wird durch zwei wichtige Optimierungen
reduziert. Erstens werden Ausführungspfade, welche für das Programm nicht erreichbar sind,
vom Graphen ausgeschlossen. Dies wird erreicht indem der Abrollprozess mit einer Kombi-
nation aus Simulation und Erreichbarkeitsanalyse, welche tote Zweige (Zweige, die nicht
unter der gegebenen Eingangsbelegung erreicht werden können) identifiziert, für Kontroll-
instruktionen verschachtelt wird. Zweitens wird eine Reduzierung der Größe des Graphen
erreicht, indem Pfade wenn möglich durch Rekombination verschmolzen werden. Auf diese
Weise wird anstatt eines Aussführungsbaumes ein gerichteter, azyklischer Graph (DAG)
erzeugt.

Ein entscheidendes Element der Programmnetzliste is die Art der Modellierung des
Kontrollflusses. Ein einbittiges Signal, genannt Aktivsignal, wird dem Programmzustand
hinzugefügt. Für jede Instruktionszelle ist das Signal wahr, wenn die entsprechende Instrukti-
onszelle zum ausgeführten Pfad gehört. Ansonsten ist das Aktivsignal falsch. Das Aktivsignal
wird nur an Entscheidungsstellen, wie zum Beispiel Verzweigungsinstruktionen, aktualisiert.
Für diese Instruktionen ist eine Kontrolllogik in der entsprechenden Instruktionszelle einge-
fügt, die sicherstellt dass abhängig von der Verzweigungsentscheidung nur ein ausgeheneder
Zweig aktiviert werden kann. In anderen Instruktionszellen wird das Aktivsignal lediglich
ohne Veränderung durchgereicht. Es wird dazu keine Kontrolllogik benötigt. Indem einem
Aktivsignal ein Wert in der Programmnetzliste zugeordnet wird, können ganze Pfadsegmente
aktiviert und deaktiviert werden. Im Gegensatz zu Methoden basierend auf symbolischer
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Ausführung, welche Beweise durch explizite Traversierung der Ausführungspfade eines
gegebenen Programms führen, wird für Programmnetzlisten ein Erfüllbarkeitsentscheider
für die Pfadtraversierung genutzt. Ein Erfüllbarkeitsentscheider profitiert vom Kontrollfluss
in der Programmnetzliste, da dieser sich nur auf die Ausführungspfade konzentriert, die für
die gegebene Probleminstanz entscheidend sind und die irrelevanten Pfade direkt ignoriert.
Dies wird erreicht nur durch Wertezuordnung zu den Aktivsignalen. Die Effektivität dieses
Ansatzes wurde an Hand von durchgeführten Experimenten in dieser Arbeit belegt.

Die Modellierung von Datentransfer zwischen Prozessor und Speicher ist ein weiteres
wichtiges Element in der Programmnetzliste. Um die Skalierbarkeit des Speichermodells zu
verbessern wird das Speicherverhalten nur für erreichbare Speicherstellen von Daten, auf die
Lade- und Speicherinstruktionen zugreifen, durch Logik modelliert. Dies wird ermöglicht,
indem der Satz von Speicheradressen, welche von den Lade- und Speicherinstruktionen in
der Programmnetzliste adressiert werden, mittels einer Kombination aus Simulation und
Erreichbarkeitsanalyse berechnet.

Neben der Berechnung von Informationen von erreichbaren Adressen von Datenspei-
cherzugriffen, müssen auch Ziele der Verzweigungen von der kombinierten Simulations-
und Erfüllbarkeitsanalyse berechnet werden. Der Kontrollflussgraph, der als Ausgangspunkt
für die Modellerzeugung genutzt wird, kann unvollständig sein. (Beispielsweise können
Verzweigungsziele unbekannt sein auf Grund von indirekter Adressierung.) Dies ist oft der
Fall für Kontrollflussgraphen, die aus einer realen Maschine oder Assemblercode extrahiert
wurden. Diese gemischte Analyse nutzt verschiedene Eigenschaften von low-level Software,
welche den Zustandsraum während der Modellgenerierung stark reduziert. Zum Beispiel
ruft eine Software normalerweise weder unbegrenzte Rekursionen auf noch reserviert diese
dynamisch Speicher. Zudem sind die Addressräume des Systems begrenzt und vordefiniert
beim Entwurf. Es ist ebenfalls üblich, dass Register zur Speicherung von konstanten Ad-
dressen genutzt werden, z.B. beim Sprung in eine Unterroutine oder beim Zugriff auf ein
Register einer peripheren Hardware. Infolgedessen entsprechen die meisten zu berechnen-
den Addressen konstanten Werten. Simulationstechniken für Instruktionssätze werden zur
schnellen Ermittlung dieser Konstanten genutzt. Für schwer zu berechnende Adressen, bei
denen die Simulation fehlschlägt, wird auf enumerative erfüllbarkeitsbasierte Techniken
zurückgegriffen.

Die resultierende Programmnetzliste enthält alle benötigten Informationen um die low-
level Softwareverifikation in eine Hardwareverifikationsumgebung zu integrieren. Zusätzlich
kann eine Programmnetzliste als Block instanziiert und mit weiteren Blöcken zusammen-
gesetzt werden, um verschiedene Arten von Verifikationsproblemen zu lösen. Der Rest der
Zusammenfassung erklärt, wie diese Eigenschaften in dieser Arbeit ausgenutzt werden.
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8.2 Äquivalenzvergleich von hardwareabhängiger
Software

Diese Arbeit schlägt eine vollautomatische Methode für formale Beweise der funktionalen
Äquivalenz von hardwareabhängigen Programmen, welche in reaktiven Umgebungen ein-
gebettet sind, vor. Äquivalenzvergleich ist ein wertvolles Werkzeug, da es zur Überprüfung
genutzt werden kann, dass die ursprüngliche Funktionalität weder beschädigt noch verändert
wurde nach: Transformationen zur Codeoptimierung, Hinzufügen neuer Funktionalität zum
Code oder Portierung des Codes zu neuen Hardwareplattformen. Das Äquivalenzkriterium
für die vorgeschlagene Methode ist, dass zwei Programme äquivalent sind, wenn für jede
Eingangssequenz, die von beiden Programmen gelesen wird, die produzierte Ausgabese-
quenz der Programme gleich ist. Eingabesequenzen (Ausgabesequenzen) eines Programms
enthalten die Werte, welche von (zu) der Umgebung gelesen (geschrieben) werden und
die entsprechende Reihenfolge. Entsprechend dieses Äquivalenzbegriffes wird nicht nur
sichergestellt, dass die von dem Programms mit der Umgebung ausgetauschten Datenwerte
gleich sind, sondern dass die Reihenfolge des Datenaustauschs ebenfalls die gleiche ist.

Um reaktives Verhalten berücksichtigen zu können, wird die Programmnetzliste erweitert
um ein globales Modell des seqeunzbasierten Ein- und Ausgabeverhaltens. Dieses globale Mo-
dell beschreibt zeitabstrakt die Transaktionen, welche von der Software an den Schnittstellen,
dass heißt den Hardware/Software Schnittstellen, ausgeführt werden. Das Zeitmodell wird
nicht an Hand von Taktzyklen sondern von abstrakten Zeitpunkten beschrieben. Die folgen-
den, allgemeinen Schritte werden für den Äquivalenzvergleich zweier Maschinenprogramme
G (für “golden") und R (für “revised"), welche auch auf verschiedenen Hardwareplattformen
ausgeführt werden dürfen, ausgeführt:

• Die Programmnetzlisten für G und R werden unabhängig voneinander aus den ent-
sprechenden Maschinenprogrammen und den dazugehörigen Instruktionszellendes
Prozessors, auf dem das Programm ausgeführt wird, erzeugt.

• Jede generierte Programmnetzliste wird durch ein sequenzbasiertes Modell erweitert,
welches das Verhalten des Maschinenprogramms and seinen Schnittstellen bschreibt.

• Ein Software-Miter wird durch Instanziierung der Programmnetzliste, des sequenz-
basierten Ein- und Ausgabemodells und einer bijektiven Zuordnung der Ein- und
Ausgabeumgebung von G und R, welche vom Benutzer bereitgestellt wird, erstellt.
Zur Erzeugung des Software-Miters wird in dieser Arbeit ausgenutzt, dass Programm-
netzlisten kompositional sind.

• Zum Abschluss wird eine Entscheidungsprozedur, vornehmlich ein
Erfüllbarkeitsentscheider, iterativ aufgerufen, um die Äquivalenz von G und R zu
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beweisen. Insbesondere kann inkrementelles Erfüllbarkeitstesten genutzt werden, um
die Laufzeit der Verifikation zu reduzieren.

Zur Erzeugung des sequenziellen Modells werden zeitabstrakte Variablen zur Programm-
netzliste hinzugefügt. Diese Variablen repräsentieren die abstrakten Zeitpunkte (d.h. die
Sequenzindizes) zu denen die Software auf die Umgebung zugreift. Für jede Umgebungs-
adresse, auf die vom Programm zugegriffen wird, existiert eine entsprechende zeitabstrakte
Variable, welche die Anzahl der Zugriffe auf die Adresse verfolgt. Jedes Mal, wenn eine
Lade- oder Speicherinstruktion auf eine gegebene Umgebungsadresse zugreift, wird die ent-
sprechende zeitabstrakte Variable inkrementiert. Dies hat zur Folge, dass die Logik, welche
zur Repräsentation der Ein-und Ausgabesequenzen genutzt wird, verkettete Multiplexer er-
zeugt, welche als Eingang die Schnittstellensignale der Lade- oder Speicherinstruktionszellen
zusammen mit der zeitabtrakten Variable erhält, um die Werte zu ermitteln, die zwischen der
Software und der Umgebung an jeder Sequenzstelle ausgetauscht werden. Die notwendige
Logik zur Konstruktion des sequenziellen Modells wird vereinfacht durch die Ausnutzung der
Informationen aus dem Ausführungsgraphen über mögliche Ausführungspfade der Software.
Durch die Traversierung des Ausführungsgraphen ist es möglich, eine Untermenge von
Ein- oder Ausgabeinstruktionszellen, welche auf die Umgebung zu gegebenen Zeitpunkten
zugreifen können, zu identifizieren. Das endgültige Sequenzmodell enthält ausschließlich
Logik zur Modellierung der relevanten Instruktionszellen.

8.3 Zyklengenaue Hardware/Software
Co-Verifikation

Diese Arbeit stellt ein Rechenmodell für Hardware/Software Coverifikation vor zum Eigen-
schaftstest für firmwarebasierte Designs, falls Prozessor und Firmware gemeinsam mit dem
Rest des Systems integriert werden ohne Nutzung von Standardbusprotokollen. Für diese
Entwurfsansätze werden Prozessoren mit einer hohen Vorhersagbarkeit des Zeitverhaltens
genutzt, um das Verhalten der Firmware in die umgebende Hardware in einer zyklengenauen
Weise intregrieren zu können mittels eines sogenannten Wrapper RTL.

Um sowohl Hardware als auch Firmware gemeinsam berücksichtigen zu können, wird
ein Ansatz gewählt, der zwei verschiedene Arten von Abrollvorgängen kombiniert. Einerseits
werden die Firmware und die Haupthardware (einschließlich der CPU, des Instruktionsspei-
chers und des Datenspeichers) von einer Programmnetzliste modelliert. Andererseits wird
die Nebenhardware (einschließlich der Wrapper RTL und der Peripherie) mittels einer Art
klassischen Bounded Model Checkings abgerollt, indem für jeden Zeitpunkt eine Kopie
der zugehörigen Übergangsfunktion instanziiert wird. Um die Programmnetzliste mit der
abgerollten Nebenhardware in ein berechenbares Modell kombinieren zu können, wird die
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Programmnetzliste um ein zyklengenaues Modell der Hard- und Softwareschnittstelle erwei-
tert. Dieses Modell, bezeichnet als zeitlich festgelegtes Schnittstellenmodell, repräsentiert
die Ein- und Ausgabeoperationen (wie z.B. read, write, idle, usw.), welche zwischen der
Hardware und der Software zu jedem Zeitpunkt des Abrollens stattfinden.

Die folgenden Elemente werden in das Modell integriert, um das zeitlich festgelegte
Schnittstellenmodell erzeugen zu können. Zuerst wird eine zyklengenaue Zeitvariable in die
Programmnetzliste eingebaut. Diese Variable bestimmt zu welchen Taktzyklen die Ein- und
Ausgabeoperationen, die von der Software initiiert werden, stattfinden. Als zweites werden
abhängig von der Zeitvariablen Resolutionslogikblöcke erzeugt um die Ein- und Ausgabewer-
te zu bestimmen, die zwischen der Hardware und der Software ausgetauscht werden zu jedem
Zeitpunkt des Abrollvorgangs. Drittens werden sogenannte zeitliche Schnittstellenzellen,
welche den Status aller Ein- und Ausgabesignal der CPU repräsentieren, instanziiert und
mit den Resolutionsblöcken verbunden. Das resultierende Modell, einschließlich der Pro-
grammnetzliste und des zeitlichen Schnittstellenmodells, beschreibt präzise das funktionale
Verhalten der Firmware während der Laufzeit auf der Hardwareplattform Takt für Takt über
einen begrenztes Zeitfenster.

Verschiedene Vereinfachungen werden unternommen um die Menge an Logik zu re-
duzieren, die benötigt wird um das zeitliche Schnittstellenmodell zu erzeugen und das
Schlussfolgern über das resultierende, zusammengesetzte Hardware-/Softwaremodell zu
vereinfachen. Diese Vereinfachungen werden unter der Prämisse ausgeführt, dass die Menge
der Ein- und Ausgabeinstruktionen der Firmware, welche mit der relevanten Systemhardware
zu festen Zeitpunkten des Abrollens interagieren kann, bekannt ist. Mit diesen Informationen
über das zeitliche Verhalten wird die Logik zur Modellierung der Schnittstelle reduziert,
weil zu einem gegebenen Zeitfenster die Logik nur von den relevanten Ein- und Ausgabein-
struktionen abhängt, welche tatsächlich mit der Hardware in dem Zeitfenster interagieren,
und nicht von weiteren Instruktionen, welche zu Zeitpunkten außerhalb des Zeitfenstern
auf die Schnittstelle zugreifen oder andere Bereiche, welche nicht der relevanten Neben-
hardware entsprechen. Da diese Information explizit zum Schnittstellenmodell hinzugefügt
wird, kann das Entscheidungsverfahren, welches zur Beweisführung für das Modell genutzt
wird, diese Information unmittelbar abgreifen, anstatt diese aus anderen, komplizierteren
Repräsentationen herzuleiten.

Dieses endgültige Berechnungsmodell bewahrt die Genauigkeit eines normalen BMC
Ansatzes, in dem das gesamte konkrete System einschließlich der im Instruktionsspeicher
geladenen Firmware abgerollt wird. Allerdings modelliert das vorgestellte Modell auch
explizit die möglichen Instruktionssequenzen, die tatsächlich während realer Programm-
ausführungen auftreten können. Dies ermöglicht den Erfüllbarkeitsentscheider direkt diese
Ausführungspfade während des Prüfungsprozesses zu untersuchen.
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Appendix A

Preliminaries

A.1 Mathematical Background

This section presents different mathematical concepts which are relevant to this work. The
description aims to give basic definitions and the corresponding notations. A more compre-
hensive description of these concepts can be found in [GT96, Ros11].

A.1.1 Sets

A set is a collection of distinct elements. Sets are denoted using curly braces and the elements
of a set are enclosed inside the braces. For example the set X = {a, b, c} contains the
elements a, b, and c. Sets can also be defined by using quantification expressions such as
W = {p : p is prime and p ≤ 5}. If an object belongs to a set then it is said that the
object is an element of the set. This membership is indicated with ∈. On the other side,
non-membership is indicated with /∈. For instance, in the given example it holds that a ∈ X
and also that d /∈ X . The cardinality of a set defines the number of elements of it and is
denoted for a set X as |X|, in the above example for instance |X| = 3.

If all elements of a set X are completely contained in set Y , then X is a subset of Y . This
containment is denoted as X ⊆ Y (similarly not being a subset is denoted with the symbol
6⊆). The empty set ∅ is defined as a set with no elements in it.

For two sets X and Y the following operations are defined. X ∪ Y defines the union
as the set {z : z ∈ X or z ∈ Y }. Likewise, the intersection is defined as X ∩ Y = {z :

z ∈ X and z ∈ Y }. The Cartesian product is a set defined as X × Y = {(x, y) : x ∈
X and y ∈ Y }. Elements (x, y) of X × Y are called tuples (note that the order matters in
a tuple). The presented set operations can be extended to a finite number of operands Wi

with i = 1, 2, . . . , n and n ≥ 2 as
⋃n

i=1Wi,
⋂n

i=1Wi and
∏n

i=1Wi, representing the union,
the intersection and the Cartesian product respectively. For the case of the Cartesian product,
each element of the resulting set is a tuple of n elements (w1, . . . , wi, . . . , wn) with wi ∈ Wi.
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If all sets of the Cartesian product are identical, i.e. Wi = W for every i, then the result is
written W n.

A.1.2 Relations, Functions, and Sequences

A relation R from two sets X and Y is a subset of X × Y . Relations can also be defined on
a particular set X . In this case, the relation R on X is a subset of X ×X .

A relation R on a set X is reflexive if it holds that (x, x) ∈ R for all x ∈ X . The
relation R is antisymmetric if for x, y ∈ X it holds that if (x, y) ∈ R and (y, x) ∈ R implies
x = y. Furthermore, R is transitive, if for x, y, z ∈ X it holds that if (x, y) ∈ R and
(y, z) ∈ R implies (x, z) ∈ R. A partial order is a relation that is simultaneously reflexive,
antisymmetric, and reflexive. It is called “partial order”, since not every possible couple of
elements of X can be compared with the relation. On the contrary, for a total order any pair
of elements x, y ∈ X can always be compared, i.e., for all x, y ∈ X there is a tuple (x, y) or
(y, x) belonging to the relation.

A relation f ⊆ X × Y is called a function, commonly written as f : X 7→ Y , if for
every x ∈ X there is an unique y ∈ Y such that the tuple (x, y) ∈ f . This means that for
every x ∈ X , there is exactly one tuple (x, y) ∈ f and no other tuple (x, y1) with y 6= y1 can
be contained in f . Instead of writing (x, y) ∈ f , the notation f(x) = y is preferably used.
For functions, X is called the domain and Y the codomain. The range of a function is the
set of elements of the codomain for which there exits a tuple (x, y). A function is surjective
if its range is equal to the codomain. A function is injective iff for all x1, x2 ∈ X it holds
that if f(x1) = y, f(x2) = y implies that x1 = x2. A bijective function is both surjective and
injective.

Sequences are defined over sets and can have finite or infinite length. Sequences are
denoted by using normal brackets. For example (1, 1, 0) and (0, 0, 1, 0) are sequences with
three and four elements respectively. In general, a sequence of length n is a tuple with n
elements. Therefore, it is possible to say that a sequence of length n over the set X must be
a member of the Cartesian product Xn. The order in a sequence matters, therefore (1, 1, 0)

and (1, 0, 1) are considered different. Likewise, repetition of elements is important. For
instance (1, 1, 0) and (1, 1, 0, 0) correspond to different sequences.

A.1.3 Graphs

A graph, G = (V,E), consists of the nonempty set of nodes V and the set of edges E. An
edge e ∈ E connects two nodes u, v ∈ V . While in a directed graph edges are ordered
pairs (u, v), i.e. E ⊆ V × V , in a undirected graph edges are unordered pairs {u, v}.

Graphs which are directed and have finite sets of nodes and edges are especially relevant
to this work and are discussed more in detail in the following. For a given edge e = (u, v)
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in a directed graph, the node u is the immediate predecessor of v and the node v is called
the immediate successor of u. A path p = (v1, . . . , vk) of length k of G is a sequence (of
length k) over V with the property that for each pair of consecutive sequence elements vi, vi+1

it holds that (vi, vi+1) ∈ E. It is said that vk is reachable from v1 (via p), if there is a path p
from v1 to vk. In this case, v1 is called predecessor of vk and vk is called successor of v1. In
a directed graph, a path (v1, . . . , vk) forms a cycle if v1 = vk and the path contains at least
one edge.

A directed graph with no cycles is called directed acyclic graph (DAG). Under the
property of reachability above introduced a DAG forms a partial order. A node in a DAG is
called root node if the node has no predecessors. Similarly, a node is denoted as end node in
a DAG if it has no successors.

A.2 Graph Algorithms

There are two basic methods to traverse a graph: bread-first search (BFS) and depth-first
search (DFS). The following sections introduce the main ideas of these methods for the
case of DAGs showing the corresponding implementations. While in practice the algorithms
explore the nodes of a graph according to a particular application (e.g. distance computation,
specific node finding, etc.), here the focus is on the simple task of visiting all nodes of the
graph. The text summarizes the ideas presented in [CLR94]. The algorithms assume that
the graphs to be traversed are represented by using adjacency lists. If a graph G = (V,E)

is considered, then the adjacency list Adj[u] stores all direct successors of a node u ∈ V .
Furthermore, each node u ∈ V has associated a Boolean variable marked[u] which guides
the exploration of the graph. This variable is set to true after visiting the node u.

Section A.2.3 presents the topological sorting algorithm. A topological sort can be used,
for instance, to ensure that nodes of a DAG are processed according their precedence which
results beneficial in many applications.

A.2.1 Breadth-First Search

The BFS works based on the notion of distance. The distance is the number of nodes (e.g.
successors) that need to be traversed in order to reach another node in the traversal. In
particular, the BFS traverses nodes in ascending distance with respect to a starting node s.
This means that if the current node v is examined, then the algorithm first visits all direct
successors of v (nodes at distance one) before visiting any other node. Subsequently, the
search is expanded by visiting the nodes which are at distance two of v and so on. The BFS
ends after all nodes have been traversed, i.e., the variable marked[u] is set to true for each
node u.
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Figure A.1 shows the basic BFS algorithm. Note that marked[u] avoids that the node u
is visited more than once. The algorithm employs a queue structure Q to record the nodes
whose direct successors are to be visited next.

1: BFS(V,E, s) {
2: for each u ∈ V ∧ u 6= s {
3: marked[u]← false;
4: }
5: Q← {s};
6: while Q 6= ∅ {
7: u← head[Q]; {
8: for each v ∈ Adj[u] {
9: if marked[v] = false {

10: ENQUEUE(Q, v);
11: }
12: }
13: DEQUEUE(Q);
14: marked[u]← true;
15: }
16: }

Figure A.1: Basic BFS algorithm

A.2.2 Depth-First Search

In contrast to the BFS strategy, the DFS explores as deep as possible the successors of a given
node. If a node u is currently examined then the algorithm selects a direct successor of u
(which has not been visited yet) and proceeds directly to examine it in a recursive way. Note
that unexplored nodes are possibly left in the search after moving to the direct successor of u.
This process continues on the current path until the selected node corresponds to an end node
or to a node with all successor nodes visited. A node is marked as visited only if all its direct
successors are also marked as visited. The algorithm then returns back to the last node which
still has pending nodes that are not visited. The search continues recursively until all nodes
have been visited.

Figure A.2 shows the basic DFS algorithm. As for the BFS, marked[u] avoids revisiting
of node u. As can be observed, the implementation is based on the recursive call of the
procedure DFS_V ISIT . Non-recursive implementations can be also developed by using a
stack structure.
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1: DFS(V,E) {
2: for each u ∈ V {
3: marked[u]← false;
4: }
5: for each u ∈ V {
6: if marked[u] = false {
7: DFS_VISIT(V,E, u);
8: }
9: }

10: }

12: DFS_VISIT(V,E, u) {
13: for each v ∈ Adj[u] {
14: if marked[v] = false {
15: DFS_VISIT(V,E, u);
16: }
17: }
18: marked[u]← true;
19: }

Figure A.2: Basic DFS algorithm

A.2.3 Topological Sorting

A topological sort orders linearly the nodes of a DAG such that if the graph contains an
edge (u, v), then u appears before v in the ordering. A DFS can be employed in order to sort
a DAG topologically by executing the following steps.

1. given a DAG G = (V,E) call DFS(V,E) (cf. Figure A.2)

2. initialize a linked list as empty at the beginning of DFS(V,E)

3. as a given each node is finished (right after marking it as visited) insert it at the head
of the linked list

4. return the linked list after processing all nodes of G

Figure A.3 shows the modified DFS algorithm implementing the topological sorting. The
resulting list contains all DAG nodes in reverse order with the last inserted node at the head
of the list.
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1: T_SORT(V,E) {
2: list← {}
2: for each u ∈ V {
3: marked[u]← false;
4: }
5: for each u ∈ V {
6: if marked[u] = false {
7: DFS_VISIT(V,E, u);
8: }
9: }

10: }

12: DFS_VISIT(V,E, u) {
13: for each v ∈ Adj[u] {
14: if marked[v] = false {
15: DFS_VISIT(V,E, u);
16: }
17: }
18: marked[u]← true;
19: INSERT(list, u);
20: }

Figure A.3: Basic topological sorting algorithm

A.3 Boolean Functions

A Boolean variable x can take (be assigned) only one of the values in B, where B is the
Boolean set {0, 1}. A Boolean vector is a tuple of Boolean variables X = (x1, . . . , xn)

which can be assigned an element of Bn.
A Boolean function f of n variables x1, . . . , xn is a mapping defined by f : Bn 7→ B.

The notation f(x1, . . . , xn) is used to emphasize the dependency on the variables x1, . . . , xn.
Alternatively, the notation f(X) (with X the Boolean vector X = (x1, . . . , xn)) can be also
employed. A Boolean function is satisfiable if there is at least one input assignment for which
the function evaluates (maps) to 1. If such an assignment does not exist then the function
is unsatisfiable. A tautology is a Boolean function that always evaluates to 1.

A Boolean function with m outputs is a vector of Boolean functions F (X) = (f1, . . .

, fm), where each function fi depends on the variables X = (x1, . . . , xn). Note that F
corresponds to the mapping F : Bn 7→ Bm.

Boolean functions can be represented using truth tables or formulas. The Boolean
functions AND, OR, implication and equivalence are represented by the symbols ∧, ∨,→,
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and↔ respectively. The NOT function (or complement) of a variable x is represented as ¬x
and defined by ¬0 = 1 and ¬1 = 0.

All possible Boolean functions can be expressed in terms of the AND, OR, and NOT
functions, for instance a→ b = ¬a ∨ b and a↔ b = (¬a ∨ b) ∧ (a ∨ ¬b)

The AND and the OR can be respectively expressed as
∧n

i=1 xi and
∨n

i=1 xi in case that
they depend on the variables xi, where i = 1, 2, . . . , n and n ≥ 2.

When using formulas to represent logical functions normal forms are often employed.
The following terminology is introduced when using normal forms. The AND and OR are
referred to the conjunction and the disjunction respectively. A literal is a variable or the
complement of a variable. A clause is a disjunction of literals (e.g. x1 ∨ ¬x2 ∨ ¬x3) and
a cube is a conjunction of literals (e.g. x1 ∧ x2 ∧ ¬x3). A formula in conjunctive normal
form (CNF) is a conjunction of clauses. A formula in disjunctive normal form (DNF) is a
disjunction of cubes.

Different to truth tables, normal forms are not canonical. There are other representations
based on minterms and maxterms, not discussed here, which are canonical [GT96]. Reduced
ordered binary diagrams (ROBDDS) [Bry86] are also a canonical representation which can
be used to represent Boolean functions more efficiently in a computer.

A.3.1 Characteristic Functions

Boolean sets can be specified by means of characteristic functions. The characteristic
function of a set A ⊆ Bm is defined as a Boolean function χA : Bm 7→ B which evaluates
to 1 for the elements a ∈ A. Otherwise, for elements b /∈ A (and b ∈ Bm) χA is equal to 0.
Note that if A = ∅ then χA = 0 and if A = Bm then χA = 1. Following this definition,
the characteristic function of a Boolean relation R ⊆ Bn ×Bm equals to 1 if (a, b) ∈ R
with a ∈ Bn and b ∈ Bm. For the particular case Boolean functions f : Bn 7→ B,
the characteristic function predicates on the valid assignments of the function and can be
described by the formula χf (X, y) = f(X) ↔ y, where X = (x1, . . . , xn). Likewise
for a function with m outputs f1, . . . , fm, the characteristic function can be written as∧m

i=1(fi(X)↔ yi).
When employing characteristic functions, the set operations ∩ and ∪ can be replaced

by the Boolean functions ∧ and ∨ respectively. Likewise, the complement operation can
be represented by the NOT function. Therefore, Boolean functions allow to manipulate
sets of elements simultaneously and not individually which turns out to be beneficial for
implementing efficient algorithms. For example, the union of the sets A and B can done by
computing χA ∨ χB rather than iterating on each individual element of the sets A, B. This,
of course, is valid only if Boolean functions are efficiently represented in a computer.
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