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Abstract

In change-point analysis the point of interest is to decide if the observations follow one model
or if there is at least one time-point, where the model has changed. This results in two sub-
fields, the testing of a change and the estimation of the time of change. This thesis considers
both parts but with the restriction of testing and estimating for at most one change-point.

A well known example is based on independent observations having one change in the mean.
Based on the likelihood ratio test a test statistic with an asymptotic Gumbel distribution was
derived for this model. As it is a well-known fact that the corresponding convergence rate is
very slow, modifications of the test using a weight function were considered. Those tests have
a better performance. We focus on this class of test statistics.

The first part gives a detailed introduction to the techniques for analysing test statistics and
estimators. Therefore we consider the multivariate mean change model and focus on the ef-
fects of the weight function. In the case of change-point estimators we can distinguish between
the assumption of a fixed size of change (fixed alternative) and the assumption that the size
of the change is converging to 0 (local alternative). Especially, the fixed case in rarely anal-
ysed in the literature. We show how to come from the proof for the fixed alternative to the
proof of the local alternative. Finally, we give a simulation study for heavy tailed multivariate
observations.

The main part of this thesis focuses on two points. First, analysing test statistics and, sec-
ondly, analysing the corresponding change-point estimators. In both cases, we first consider a
change in the mean for independent observations but relaxing the moment condition. Based on
a robust estimator for the mean, we derive a new type of change-point test having a random-
ized weight function. Secondly, we analyse non-linear autoregressive models with unknown
regression function. Based on neural networks, test statistics and estimators are derived for
correctly specified as well as for misspecified situations. This part extends the literature as
we analyse test statistics and estimators not only based on the sample residuals. In both
sections, the section on tests and the one on the change-point estimator, we end with giving
regularity conditions on the model as well as the parameter estimator.

Finally, a simulation study for the case of the neural network based test and estimator is
given. We discuss the behaviour under correct and mis-specification and apply the neural
network based test and estimator on two data sets.



Abstract

Die Change-point Analyse beschäftigt sich mit der Analyse von Beobachtungen hinsichtlich
Veränderungen. Im Fokus steht die Fragestellung ob die Beobachtungen einem Modell folgt
oder ob es Zeitabschnitte gibt in denen ein anderes Modell zugrunde liegt. Hieraus ergeben
sich zwei Teilgebiete, eines welches sich mit dem Testen auf Modellwechsel beschäftigt und
ein anderes, welches das Schätzen des Zeitpunktes zum Ziel hat. Diese Arbeit beschäftigt sich
mit beiden Gebieten, jedoch mit der Einschränkung das maximal ein Zeitpunkt der Änderung
erwartet wird.

Ein bekanntes Beispiel basiert auf unabhängigen Beobachtungen und betrachtet die Änder-
ungen im Mittelwert. Hier erhält man auf Basis des Likelihood- ratio Tests eine Statistik
deren asymptotische Verteilung Gumbel ist. Aus der Extremwerttheorie ist bekannt, dass die
Konvergenz gegen diese Verteilung sehr langsam erfolgt. Daher wurde die Teststatistik mit
Gewichtsfunktionen modifiziert. Diese Tests haben ein besseres Konvergenzverhalten. Wir
untersuchen hier diese Klasse von Teststatistiken.

Der erste Abschnitt dieser Arbeit gibt eine Einführung in die verwendeten Techniken zur
Analyse von Change-point Tests und Schätzern. Wir nutzen hierfür das mehrdimensionale
Modell einer Mittelwertänderung bei unabhängigen Beobachtungen. Ein Schwerpunkt dieses
Abschnittes liegt auf dem Verständnis der Gewichtsfunktion. Für den Schätzer des Zeitpunk-
tes der Änderung wird unterschieden zwischen der Annahme einer festen Änderungsgröße
(feste Alternative) und der Annahme das diese Änderung asymptotisch verschwindet (lokale
Alternative). Für den Fall der festen Alternative gibt es kaum Literatur. Wir zeigen hier,
wie der Beweis für die feste Alternative die Grundlage zum Beweis der lokalen Alternative
bildet. Abschließend geben wir die Resultate einer Simulationsstudie für mehrdimensionale
heavy-tailed Beobachtungen.

Im Hauptteil der Arbeit werden zuerst Teststatistiken und anschließend die zugehörigen
Schätzer untersucht. Hierbei wird jeweils zuerst eine Mittelwertsänderung für unabhängige
Beobachtungen untersucht, wobei Momentenannahmen abgeschwächt wurden. Basierend auf
robusten Schätzern für Mittelwerte, erhalten wir eine neue Art von Change-point Tests deren
Gewichtsfunktion zufällig ist. Das zweite Modell untersucht nichtlineare (auto-)regressive
Zeitreihen, bei denen die Regressionsfunktion unbekannt ist. Basierend auf Neuronalen Net-
zen werden Tesstatistiken sowie Schätzer für korrekt spezifizierte und misspezifizierte Mod-
elle analysiert. Dieser Teil erweitert die Literatur in dem Sinne, dass die Statistiken nicht
nur auf den geschätzten Residuen basieren. Beide Abschnitte, Test und Schätzer, werden
abgeschlossen mit der Ana- lyse von Regularisierungsbedingungen für das Modell sowie die
Parameterschätzer, so dass das asymptotische Verhalten der Tests und Change-point Schätzer
gezeigt werden kann.

Abschließend wird eine Simulationsstudie vorgestellt welche das Verhalten des Tests und des
Schätzers basierend auf Neuronalen Netzen im Fall der Misspezifikation und auch der Korrek-
tspezifikation analysiert. Diese Tests und Schätzer werden auf zwei Datensätze angewendet.
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1. Introduction

The first step toward change is awareness.
The second step is acceptance.

Nathaniel Branden

1.1. From the beginning of change-point theory to our set-up

Changes happen all the time. So it is natural to become interested in detecting and estimat-
ing changes. The statistical literature on change-point analysis goes back to the 1950’s when
Darling and Erdös [1956] published a first study of a change-point test. Many publications
analysing different models or adopting different points of view followed.

Besides testing for a change, the estimation of the time of the change is also of interest. A first
publication on the analysis of the change-point estimator was published in 1995, see Antoch
et al. [1995]. They considered the estimation of the change-point for the mean change model
based on independent and identical distributed (i.i.d.) random variables. For an overview of
the different models and concepts on change-point test and estimator we refer to Csörgő and
Horváth [1997].

As changes are not a problem of a specific scientific field, the theory is applied in many areas.
Change-point tests are of interest in industrial quality management (production monitor-
ing), finance (stock prices), climate studies (global warming) as well as in medicine (online-
monitoring of intensive-care patients) or geoscience (annual water volume of rivers) to name
a few.

In practice we usually do not know the correct model, but statistical analysis often starts with
one. This problem is approached by analysing a change-point test and estimator allowing for
model misspecification. In this thesis we contribute to the discussion of misspecification ef-
fects on change-point analysis.

As we have measurements of the same object over time, we consider it as a time-series. This
time-series is allowed to depend on its past values or on some other variable. The structure
of the dependence is unknown. We present a test statistic and estimator using the general
approximation property of neural networks to adapt the unknown relation.

Besides the unknown model, a second problem in many data sets is the possible existence
of a few measurements far away from the rest. To handle such ”outliers” approaches like

1



1. Introduction

M-statistics (compare, e.g. Hušková [1996]) are given even in the context of change-point
theory. Motivated by Zhou and Liu [2008], we derive a new modification of the change-point
test and estimator in case of heavy-tailed distributions producing outliers.

We conclude the analysis of the change-point test and estimator using the concept of esti-
mation functions which provides a general framework for finding estimators and discussing
their properties. The definition of estimation functions was given by Godambe [1960]. A gen-
eral discussion om estimation functions in parametric models can be found in Sørensen [1999].

1.2. Structure of this thesis

This thesis is organised as follows. In subsection 1.3 the general assumptions on the model we
are going to analyse are introduced as well as the notations we use further on. As an intro-
ductory example we consider in section 2 the mean change model based on multivariate i.i.d.
observations. We give detailed proofs and discuss the main ideas. The proofs are sourced out
in seperate sections. We first analyse the change-point test and secondly consider the change-
point estimator. As the ideas of the proofs are easier to understand under the assumption of
a fixed alternative, meaning the size of the change is constant, we first show the assertions
under this fixed alternatives. In section 2.4 we relax this assumption and consider the local
alternative. The chapter is concluded with a simulation study for multivariate heavy-tailed
observations.

We consider separately the change-point test,chapter 3, and the change-point estimator,chapter
4, where we analyse them for the same models. In both chapters, we first consider the a mean
change model with residuals possibly not having a second moment. Afterwards, inspired by
Kirch and Tadjuidje Kamgaing [2012], we show how to handle misspecification for a time-
series model using neural networks (section 3.2 and 4.2) and close the discussion with the
general framework of determining change-point test and change-point estimator using estima-
tion functions, section 3.3 and 4.3.

In chapter 5 we give a simulation study for the neural network based test and estimator
derived in sections 3.2 and 4.2. We discuss the behaviour under correct specification and
misspecification in view of the expanded version.

Finally, we give two real-data examples in chapter 6, one based on DAX data, section 6.1,
and one based on calcium concentrations derived from an ice block drilled in the Antarctica
(section 6.2).

2



1.3. At most one change (AMOC)

1.3. At most one change (AMOC)

In Darling and Erdös [1956], they assumed at most one change, so called AMOC-model. We
consider the AMOC-model, too. Let the observations {Xt}, t = 1, . . . , n , be a time-series in
R
d fulfilling

Xt =

{

X
(1)
t t ≤ m,

X
(2)
t t > m ,

(1.1)

where the two sub-series {X(1)
t , t = 1, . . . ,m}, and {X(2)

t , t = m + 1, . . . , n}, follow distin-
guishable probability measures. The change is assumed to be in a characteristic or a parameter
of the probability measure. We consider a parametric statistic model, in the sense of a proba-
bility space with a parametrized family of probability measures (Ω,F , {Pθ : θ ∈ Θ}), Θ ⊂ R

q.
The parameter θ ∈ Θ ⊂ R

q is assumed to change at t = m.

We assume that {X(2)
t } is an independent process w.r.t. X

(1)
t which results in a kind of

discontinuity in the observations at m. If the observations depend on their past the change
of a parameter would result observations of a time-series having starting values not out of
their stationary distribution. We assume the observations after the change are based on a
stationary time-series.

If m < n, the distribution of the process has changed and m is called change-point. This
change-point is assumed to grow linear with the number of observation to insure asymptotic
results. Therefore, the following assumption is made:

G.1 There exists a λ ∈ (0, 1] such that the unknown time-point m of the change fulfils

m = ⌊λn⌋ ,

where n is the number of observations.

There is at-most one unknown time-point where the change occurs.

We first consider the testing problem. Unless otherwise stated, we test the following hypothe-
ses:

H0 : m = n ( no change occurs) vs. H1 : m < n (there is a change). (1.2)

In the following we will use the terms hypothesis and alternative for λ = 1 and λ ∈ (0, 1),
respectively.

Weighted CUSUM statistic

To derive a change-point test, suppose the time of change is known. Based on the log-likelihood
ratio test statistic the weighted CUSUM is given as

Tn = max
1≤k<n

√
n

k(n− k)

∣
∣
∣
∣
∣

k∑

t=1

(Xt −Xn)

∣
∣
∣
∣
∣
.

Details on the construction are given in section 2.2.1, see page 13.

3



1. Introduction

This statistic has the disadvantage of converging to ∞ for n→ ∞. Therefore, an asymptotic
distribution only exists after transforming the statistic. The critical value then depends on
n and the convergence to the asymptotic distribution is quite slow. As an alternative we
consider modifications of the weighted CUSUM statistic.

CUSUM statistic

The reason for the disadvantage is the weight function
√

n
k(n−k) considering the statistic

Tn = max
1≤k<n

1√
n

∣
∣
∣
∣
∣

k∑

t=1

(Xt −Xn)

∣
∣
∣
∣
∣

shows the existence of a limit distribution. But for this test statistic the power depends on the
position of the change-point. Besides the CUSUM and the weighted CUSUM modifications
of the weight function inbetween are considered.

q-weighted CUSUM statistic

Let the weight function q be of the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a

neighbourhood of one and inf
η≤t≤1−η

q(t) > 0 for all 0 < η < 1
2} .

The q-weighted CUSUM statistic is given as

Tn = max
1≤k<n

1√
nq( k

n
)

∣
∣
∣
∣
∣

k∑

t=1

(Xt −Xn)

∣
∣
∣
∣
∣
.

To derive asymptotic results Csörgő and Horváth [1997] introduced the integral

I(q, c) =

∫ 1

0

1

s(1 − s)
exp

{

−c q2(s)

s(1 − s)

}

ds .

In Csörgő and Horváth [1993] they showed that for functions q ∈ Q0,1 with I(q, c) < ∞ for
all c > 0 the asymptotics hold true for the q-weighted CUSUM statistics.

Modified weighted CUSUM statistic

These statistics are all of the form

Tn(η, γ;A) = max
0<k<n

w(k/n)√
n

(
n∑

t=1

H(Xt; θ̂n)

)
T

A

n∑

t=1

H(Xt; θ̂n) , (1.3)

where Xt is some vector of observations up to time t, θ̂n = θ̂n(X1, . . . , Xn) is an estimator
of the parameter θ̃, H some function and A a suitable matrix, mostly an estimator of the
covariance matrix of the residuals. Thereby, the weight function w is assumed to fulfil the
following assumption.

4



1.3. At most one change (AMOC)

Let w : [0, 1] → R+ be a non-negative continuous weight function fulfilling

lim
s→0

sβw(s) <∞ , lim
s→1

(1 − s)βw(s) <∞ for some β ∈
[
0, 12
)

(1.4)

and for all α ∈ (0, 12)
sup

α<s<1−α
w(s) <∞ . (1.5)

A common choice for the weight function is wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ with γ and
η such that wη,γ fulfils the assumptions above. In this case the assumption on the weight
function reduces to the following.

G.2 Let wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ , with γ and η be either η ∈ (0, 12) and γ ∈ [0, 12 ]

or η = 0 and γ ∈ [0, 12).

Observe, that the case η = 0 and γ = 0.5 is not covered.

change-point estimator

Besides testing for a change, we are also interested in estimating the time of the change. As
the maximum often occurs in the area of the true change-point, a good choice for the estimator
is, where the test statistic has a global maximum. Thus the estimator for the change-point is
given by

m̂(η, γ;A) = arg max
1≤k<n

wη,γ(k/n)√
n

(
n∑

t=1

H(Xt; θ̂n)

)
T

A
n∑

t=1

H(Xt; θ̂n) . (1.6)

Under some additional regularity conditions we are able to show that (1.6) is an appropriate
estimator for the change-point λ. Moreover, it is an asymptotically consistent estimator and
we determine the asymptotic distribution.

Notations

The considered test statistics consist of partial sum processes. To simplify the notation, we
introduce the following notation.

N.1 If not stated otherwise we define for some function G, parameter θ and k = 1, 2, . . . , N
the partial sum

SG(k; θ) =

k∑

t=1

G(Xt; θ) .

If G(Xt; θ) = (Xt − θ) we also write SG(k; θ) = Sk(θ).

N.2 For a symmetric and positive semi-definite matrix A we write 〈x, y〉A := xTAy =

〈A 1
2x,A

1
2 y〉, with 〈·, ·〉 denoting the scalar-product on Im(A) and A

1
2 a Cholesky-

Decomposition of A.

N.3 The norm ‖ · ‖A is induced by 〈·, ·〉A, i.e. ‖x‖A =
√
xTAx.

The modified weighted CUSUM statistic, we are interested in, is then of the form

Tn(η, γ;A) = max
0<k<n

wη,γ(k/n)√
n

∥
∥
∥SG(k; θ̂n)

∥
∥
∥
A
, (1.7)

with A fulfilling the following conditions.

5



1. Introduction

G.3 Let A be a symmetric and positive semidefinite matrix.

This class covers many statistics. In most of the cases we refer to the parts of the magnitude δ
which is of interest. As we can control the parts of interest with A we introduce the following
notation.

N.4 Let δA, δK be so that δn = δA + δK and δA ∈ Im(A) and δK ∈ Kern(A). Then δA is
called the detectable part of δ w.r.t. A and δK the non-detectable part of δ w.r.t. A.

Based on the decision matrix A we introduce the A-fixed and A-local alternatives. The
magnitude of the change will be represented with the vector δn −→

n→∞
δ. Depending on the

limit δ, different assumptions on the alternatives are considered.

G.5.a) (A-fixed alternative) Let δn be an r-dimensional vector with ‖δn‖A ≡ D > 0.

G.5.b) (A-local alternative) Let δn be an r-dimensional vector with ‖δn‖A = Dn > 0 and
Dn −→

n→∞
0 as well as

√
nDn −→

n→∞
∞.

In the case of A-fixed alternative, the interesting part of δ w.r.t. A is non zero. Otherwise for
A-local alternatives δA is assumed to be the zero-vector.

Especially for multi-dimensional test statistics it becomes of interest which kind of alternatives
are detectable. So we add a matrix A′ and define A := Σ− 1

2A′Σ− 1
2 , where Σ is a particular

symmetric, positive definite matrix we will have later on.

N.5 Let A′ := Σ
1
2AΣ

1
2 denote the decision matrix.

It is clear, that A′ is a symmetric and positive semi-definite matrix.

Observe, that we will use the term decision matrix for both A and A′ depending on the
situation.

6



2. Multidimensional mean change model

One of the first results in change-point analysis was given by Page [1957] using the mean
change model, assuming the time of the possible change is known. He assumed the mean
under H0 to be known and the errors to be independent identically normally distributed.
His results were explored, e.g. Sen and Srivaastava [1975], James et al. [1987] and up to the
non-parametric set-up given in Csörgő and Horváth [1997]. We introduce the technique of
the proofs we use in the rest of the thesis with the non-parametric multivariate mean change
model. In [Csörgő and Horváth, 1997, section 2.1.] the observed process Xt ∈ R consists of
i.i.d. (independent identically distributed) random variables, where the (unknown) mean is
changing at some unknown time m. Besides the fact that we are allowing the observations to
be multidimensional, i.e. Xt ∈ R

d, we use the same model. So, the observed process follows
the model (1.1), where the process before and after the unknown time-point m, which fulfils
assumption G.1, is given by

Xt =

{

X
(1)
t = θ + εt 1 ≤ t ≤ m,

X
(2)
t = θ + δn + εt m < t ≤ n ,

(2.1)

where θ ∈ Θ(⊆ R
d), δn ∈ R

d and the errors {εt, 1 ≤ t ≤ n}, are unknown. We make the
following assumption.

L.1 The errors εi are i.i.d. with zero mean, finite second moment and unknown covariance
matrix Σ ∈ R

d×d.

We do not make any assumptions on the error distribution, i.e. we are in the so-called
”non-parametric” set-up. One way to derive estimators is to assume normality for the error
distribution and calculate the corresponding estimator based on likelihood considerations.
In a second step one shows that this estimator is still valid for error distributions fulfilling
L.1 due to the law of large numbers (LLN) and the central limit theorem (CLT). Under the
normality assumption on the distribution of the errors it is well known, that under H0 (1.2)
the MLE (maximum-likelihood estimator) and the LSE (least squares estimator) for θ are
equal. Motivated by this result, we are going to use the LSE’s for the unknown parameter θ
for the model with unknown error distribution.

To derive the test statistic, we first analyse the behaviour of the parameter estimator. We
use the least squares estimator, i.e. θ̂n solves

n∑

t=1

(Xt − θ) = 0 . (2.2)

The corresponding estimator is
θ̂n = Xn ,

which is an unbiased and
√
n-consistent estimator due to the law of large numbers (LLN),

Theorem C.2.1, and the central limit theorem (CLT), Proposition C.2.1, respectively. The

7



2. Multidimensional mean change model

results are shown in section 2.1. In section 2.2 we are constructing the statistic of the change-
point test. If no change occurs the estimated mean over all the observed data should be close
to the mean of a shorter subsample. So, the test statistic Tn(η, γ;A) (1.7) is given by

Tn(η, γ;A) = max
1≤k<n

1√
n

∥
∥
∥SG(k; θ̂n)

∥
∥
∥
A

= max
1≤k<n

1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

= max
1≤k<n

(
k√
n

)∥
∥
∥Xk − θ̂n

∥
∥
∥
A
.

and should have no significant value. It is also possible to weight the statistic to improve the
power of the test for specific values of the change-point (i.e. of λ). To achieve this, statistics
of the form

Tn(η, γ) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

(2.3)

are of interest, where the weight function wη,γ(s) is usually given as

wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ (2.4)

with either η ∈ (0, 12), γ ∈ [0, 12 ] or η = 0 and γ ∈ [0, 12), see G.2.

For a significance test, we determine the distribution of the test statistic for a finite sample
size n. Due to the fact that we have not made any assumptions on the distribution of the
innovations (non-parameteric set-up), determining the distribution of the test statistic Tn(η, γ)
is not possible. However, we determine the asymptotic distributions of these statistics and
further show the consistency of the corresponding tests.

For one-dimensional data the asymptotic distribution of the test statistic Tn(η, γ) (2.3) with
the estimator θ̂n = Xn is given in [Csörgő and Horváth, 1997, section 2.1]. The asymptotic
behaviour for the corresponding change-point estimator, i.e.

m̂(η, γ) := m̂(η, γ; Σ−1) = arg max
1≤k<n

wη,γ(k/n)

∥
∥
∥
∥
∥

k∑

i=1

(
Xi −Xn

)

∥
∥
∥
∥
∥
Σ−1

was analysed and proved in [Antoch et al., 1995]. The proofs are well known for the one-
dimensional case. We show the results for

m̂(η, γ;A) = arg max
1≤k<n

wη,γ(k/n)

∥
∥
∥
∥
∥

k∑

i=1

(
Xi −Xn

)

∥
∥
∥
∥
∥
A

(2.5)

multidimensional data using techniques we are going to improve in the rest of the thesis.

For the change-point test and change-point estimator we are going to analyse the different
types of alternatives separately. In the literature so-called fixed alternative, i.e. δn ≡ δ
constant and local alternatives (‖δn‖ −→

n→∞
0) are analysed. In the multi-dimensional case we

8



2.1. Parameter estimator

introduce the A-fixed alternative, i.e. ‖δn‖A = D > 0 and A-local alternative, i.e. ‖δn‖A =
Dn −→

n→∞
0 (compare G.5.a) and G.5.b)).

We start with analysing the parameter estimator under H0 and H1 in section 2.1. The fixed
and the local alternative are considered in this section. In sections 2.2 and 2.3 we show the
asymptotic results under the A-fixed alternative. We present the corresponding results for
the A-local alternative in section 2.4. In section 2.5 we present first results on a simulation
study for the mean change model with heavy-tailed innovations.

2.1. Parameter estimator

In this section we analyse the behaviour of the parameter estimator for the change-point
model (2.1). We have assumed that the change-point is of the form m = ⌊λn⌋, with λ ∈ (0, 1].
Then the hypothesis H0 is equivalent to λ = 1 and the alternative H1 means λ ∈ (0, 1).

Under the hypothesis H0 (1.2) it is clear by the LLN (law of large numbers) for i.i.d. random
variables that we get a consistent estimator. Moreover, by the CLT (central limit theorem)
for i.i.d. random variables we get the asymptotic normality of the estimator.

The question arises how the estimator behaves under the alternative H1, i.e. if there is a
change at observation time m = ⌊λn⌋, λ ∈ (0, 1). In the following we show that under H0 as
well as under H1 the estimator is

√
n-consistent.

2.1.1. Asymptotic behaviour

Under H0 and H1 we have a consistent estimator for the unknown parameter of our model
(but with different limits). Thus, under H0 (no change) the parameter of the observations
will be correctly determined with growing sample size. If we have observations with a change,
H1, the estimator still converges to some limit. This limit is a convex combination of the true
parameters. It is just the mean of the parameters, if the change is in the middle. And for
example, if the change-point is less than 0.5 we will have more observations after the change,
thus the limit will be weighted in this direction. To be more precise, the result is the following:

Theorem 2.1.1 Let θ̃ ∈ Θ be defined as

θ̃n =







θ̃0 = θ if H0 is true,

θ̃1 = θ + (1 − λ)δn if H1 is true

with δn bounded, i.e. there exists c > 0 such that ‖δn‖ < c for all n. Then, under H0 and
under H1, it holds

‖θ̂n − θ̃n‖ −→
n→∞

0 a.s.

Differently to the one-dimensional case, δn is allowed to contain both constant entries and
vanishing ones (for each i = 1, . . . , q either (δn)i ≡ δi 6= 0 or (δn)i −→

n→∞
0). The results for the

9



2. Multidimensional mean change model

parameter estimator still hold true.

To prove this, we use that the independence of the εt results in the independence of the Xt due
to the chosen model. Under H0 we can directly apply the LLN. For the alternative we split
the statistic into independent sums. One before the change-point and one for observations
after the change-point. Due to the model both sums are sums of i.i.d. random vectors with
constant mean, which allows to apply the LLN.

The specific form of the asymptotic limit can be seen in the following way. Assume, δn ≡ δ.
Then the sample mean can be split into two sums, one over the observations before and one
over the observations after the change-point. The first sum is weighted by m

n (converging to λ,
which is the percentage of the observations before the change) and the second sum is weighted
by 1 − m

n (converging to 1 − λ, the percentage of the observations after the change). We can
think of the limit as a weighted mean of the parameter before the change (θ) and after the
change (θ + δ).

Under the local alternative (δn −→
n→∞

0) the corresponding entries converge always to the

unchanged parameter entry. Why this kind of alternative is of interest will be discussed in the
analysis of the change-point test and the change-point estimator under the local alternative
in section 2.4.

For the parameter estimator we are able to prove
√
n-convergence. We show that this is the

best rate, by determining the asymptotic distribution.

Theorem 2.1.2 Let θ̃ and δn be as in Theorem 2.1.1. Under H0 as well as under H1 it holds

L
(√

n(θ̂n − θ̃n)
)

−→
n→∞

N (0,Σ) ,

where Σ = Cov (ε1).

The asymptotic distribution can be derived by the CLT (see e.g., Theorem C.2.1) and by
using the same partition for the alternative as used in the proof of consistency.

Notice, the covariance matrix of the limit distribution is not changing for the alternative.
This covariance matrix is just the covariance matrix of the errors, i.e. the estimator depends
on the scale of the process.

10



2.1. Parameter estimator

2.1.2. Proofs

Theorem 2.1.1

Let θ̃ ∈ Θ be defined as

θ̃n =







θ̃0 = θ if H0 is true,

θ̃1 = θ + (1 − λ)δn if H1 is true

with δn is bounded, i.e. there exists c > 0 such that ‖dn‖ < c for all n. Then, under H0

and under H1, it holds

‖θ̂n − θ̃n‖ −→
n→∞

0 a.s.

For this proof we use the following notation.

N.6 Let Yi, i = 1, . . . , n, be a sequence of observations and a, b ∈ N with 0 < a < b ≤ n,
then

Y a,b =
1

b− a+ 1

b∑

i=a

Yi . (2.6)

We are going to use this notation in the rest of this thesis.

Proof of Theorem 2.1.1:
First we analyse the behaviour under H0. By the LLN (Theorem C.2.1) we will directly get
the result if we observe that

θ̂n = θ + εn (2.7)

due to the given model 2.1. The expectation of the εi, 1 ≤ i ≤ n, is assumed to be zero, which
proves the claim.

Let us now take a look at what happens under H1. Observe that

θ̂n =
m

n
Xm +

n−m

n
Xm+1,n

=
m

n
θ +

m

n
εm +

(n−m)

n
θ + (1 − m

n
)δn +

n−m

n
εm+1,n

= εn + θ + (1 − m

n
)δn = εn + θ̃n + (λ− m

n
)δn . (2.8)

The LLN C.2.1 for the sample mean of the εi and the fact that m
n = ⌊λn⌋

n −→
n→∞

λ completes

the proof.

Theorem 2.1.2

Let θ̃n and δn be as in Theorem 2.1.1. Under H0 as well as under H1 it holds

L
(√

n(θ̂n − θ̃n)
)

−→
n→∞

N (0,Σ) ,

where Σ = Cov (ε1).

11



2. Multidimensional mean change model

Proof:
Under H0:
With (2.7) and the CLT for εn we get the result under H0.

Under H1:
Using the representation of the estimator as in the proof of Theorem 2.1.1 yields

√
n(θ̂n − θ̃n) =

√
nεn +

√
n(λ− m

n
)δn .

Observe that m
n −λ = ⌊λn⌋

n −λ = O( 1
n) and so

√
n(mn −λ) = O( 1√

n
) = o(1). This fact together

with the CLT C.2.1 for εn and Slutzky C.1.4 finishes the proof.

12



2.2. Change-point test

2.2. Change-point test

In this and the following section, we only consider the A-fixed alternative (A as in G.3), i.e.
the model we are going to analyse is

Xt =

{

θ + εt t ≤ m,

θ + δn + εt t > m,
(2.9)

where the errors {εt} fulfil L.1, the unknown time-point m fulfils assumption G.1 and we
have an A-fixed alternative (G.5.a)).

First we take a look on how we can derive a change-point test (section 2.2.1). There we
introduce the matrix A. We are going to discuss different versions of change-point tests,
which we are using in this thesis further on. This versions differ only in the weightfunction.
To understand this functions we take a closer look on them in section 2.2.2. Then, we show
and discuss the asymptotic results for the change-point test in section 2.2.3. Section 2.2.4
provides the detailed proofs for the asymptotic results.

2.2.1. Test-statistic

In our model 2.9, we do not make any assumptions on the distribution of the errors, the
so-called non-parametric set-up. Nevertheless, one way to derive test statistics is to use the
likelihood ratio, where we pretend that the errors are i.i.d. standard normal. In a second
step we prove that this statistic is still reasonable for other distributions fulfilling assumption
L.1. This makes sense in view of the CLT.

We also have to solve the problem that the change-point is unknown. The idea to overcome
this is to first assume the change-point to be known.

To derive the so-called pseudo-likelihood ratio statistic we first need the maximum likelihood
estimators. It is well known, that this estimators are equal to the least squares estimators
under standard normal assumption on the errors. The parameter estimator under H0 is given
as

θ̂n = Xn (2.10)

and the estimators under H1 are given as

θ̂0n = Xm (before change-point) and θ̂1n = Xm+1,n (after change-point)∗ . (2.11)

∗For the notation see N.6.
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2. Multidimensional mean change model

Instead of the likelihood-ratio statistic, we consider the log-likelihood ratio l(X1, . . . , Xn).
Defining fθ(x) as the density of a normal distributed random variable with mean θ and some
fixed covariance matrix Σ, we get

l(X1, . . . , Xn) = log

∏n
t=1 fθ̂n(xt)

∏m
t=1 fθ̂0n

(xt)
∏n
i=m+1 fθ̂1n

(xi)

=
1

2

(
n∑

i=1

(Xi − θ̂n)tΣ−1(Xi − θ̂n)

−
(

m∑

i=1

(Xi − θ̂0n)tΣ−1(Xi − θ̂0n) +
n∑

i=m+1

(Xi − θ̂1n)tΣ−1(Xi − θ̂1n)

))

Observe, that it holds
n∑

i=1

(Xi − θ̂n)tΣ−1(Xi − θ̂n) =

n∑

i=1

Xt
iΣ

−1Xi −
n∑

i=1

θ̂tnΣ−1Xi −
n∑

i=1

Xt
iΣ

−1θ̂n

+ nθ̂tnΣ−1θ̂n

=

n∑

i=1

Xt
iΣ

−1Xi − n θ̂tnΣ−1θ̂n

The same result follows for the sum up to m by replacing θ̂n with θ̂0n and for the sum from
m+ 1 to n by replacing with θ̂1n. We get for the log-likelihood ratio

l(X1, . . . , Xn) =
1

2

(

m (θ̂0n)tΣ−1/2θ̂0n + (n−m) (θ̂1n)tΣ−1θ̂1n − n (θ̂n)tΣ−1θ̂n

)

=
1

2

(

m (θ̂0n)tΣ−1θ̂0n +
1

n−m

(

nθ̂n −mθ̂0n

)t
Σ−1

(

nθ̂n −mθ̂0n

)

− n (θ̂n)tΣ−1θ̂n

)

=
1

2

nm

n−m

∥
∥
∥θ̂0n − θ̂n

∥
∥
∥

2

Σ−1

=
1

2

n

m(n−m)

∥
∥
∥
∥
∥

m∑

t=1

(

Xt − θ̂n

)
∥
∥
∥
∥
∥

2

Σ−1

Usually, we do not know the point of change. So we maximize over all possible values of
the change-point m, looking for the time-point m which minimizes the variance under the
alternative, i.e. most plausible time-point for the change for the given observations.

The result does not change if we use the square root of the log-likelihood function as test
statistic. This test statistic is the so-called weighted CUSUM (cumulated sum) given by

max
1≤k<n

√
n

k(n− k)

∥
∥
∥
∥
∥

k∑

t=1

(

Xt − θ̂n

)
∥
∥
∥
∥
∥
Σ−1

.

It is known that this statistic has no limit distribution under H0 unless it is transformed.
Then, it becomes asymptotically Gumbel-distributed Darling and Erdös [1956]. In several
simulations it was observable that this convergence is rather slow, that is why modifications
of the test statistic became of interest. The modified test statistics are of the form

Tn(η, γ) = max
ηn<k<(1−η)n

(
n2

k(n− k)

)γ
1√
n

∥
∥
∥
∥
∥

k∑

t=1

(

Xt − θ̂n

)
∥
∥
∥
∥
∥
Σ−1
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2.2. Change-point test

with η ∈ (0, 12) and γ ∈ [0, 12 ] or η = 0 and γ ∈ [0, 12).

These test statistics can be seen as one type of statistic, but with different weight functions

1{ηn<k<(1−η)n}
(

n2

k(n−k)

)γ
.

This is a possibility to test for changes in the mean vector. If one is only interested in testing
for specific dimensions of the mean vector or if one dimension is much more important than
the others, we replace Σ−1 with a matrix A. The test statistic is then defined as

Tn(η, γ;A) = max
ηn<k<(1−η)n

(
n2

k(n− k)

)γ
1√
n

∥
∥
∥
∥
∥

k∑

t=1

(

Xt − θ̂n

)
∥
∥
∥
∥
∥
A

(2.12)

With the matrix A we can decide which alternatives we are interested in. An easy example
is, if we are only interested in changes in the l-th dimension (projection), then

Aij = 0 (i, j) 6= (l, l) and All = 1 .

In the same way one can weight the dimensions to detect for smaller changes in a more
important one. Defining the decision matrix A′ as given in N.5 the asymptotics for the
change-point test and later the change-point estimator become easier.

A different matrix other than the covariance matrix of the residuals, for an other model was
given e.g. in Hušková et al. [2007]. A first introduction in the offline set-up of such a matrix is
given in Kirch et al. [2015]. They discuss the role of the matrix A (in their publication called
H) in the context of estimating the covariance matrix for large dimensions. If the dimension
is quite large in relation to the observation number, the estimators for covariance structures
have high fluctuations. This motivates to use some kind of projection realised with the matrix
A (in Kirch et al. [2015] called H), which is then singular. In the simulation study in section
2.5 we will discuss this effect for some specific examples.

The weight function on the other hand gives the sensitivity of the test statistics against
different alternatives, in the sense of the position of the change. For a better understanding
of the weight function we take a closer look at this class of function in the next section.
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2. Multidimensional mean change model

2.2.2. Understanding the weight functions

We are going to take a closer look at the weight function 1{η<s<(1−η)} (s(1 − s))−γ , with η

and γ fulfilling assumption G.2 (i.e. η ∈ (0, 12), γ ∈ [0, 12 ] or η = 0 and γ ∈ [0, 12)) and its
effect on the change-point test. For simplicity of notation we introduce the following function.

N.7 Let wη,γ : (0, 1) → R+, wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ , with η ∈ (0, 12) and γ ∈ [0, 12 ]

or with η = 0 and γ ∈ [0, 12). In the case of η = 0 we write wγ(s) ≡ w0,γ(s).

The effect of η is clear, it controls the region of detectable times for a change. Sometimes, we
do not make any reduction on the region of the possible change-point, i.e. we would choose
η = 0. Therefore, the effect of the parameter γ on the change-point test becomes of interest.
A study of this effect is rarely done in the literature.

0 s

wγ(s)

11
2

1

2

3

4

γ = 1
2

γ = 1
4

γ = 0.1

Figure 2.1.: weight function wγ(s) with γ = 0.1, 0.25, 0.5

In Figure 2.1 the weight function wγ(s), s ∈ (0, 1), is illustrated for γ = 0.1, 0.25 and γ = 0.5.
The weight function which we use to modify the statistic increases values at the beginning
and at the end. If the change is at the beginning, the partial sum |Sk(θ̂n)| only increases for
the first few observations up to the change. The contribution of the data before the change
to the overall mean will be small, so it is more likely that the change goes undetected. The
parameter γ allows for stronger weighting of these terms at the maximum which corresponds
to potential change-points close to the boundaries. This enables detection of smaller changes
with a constant variability.
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2.2. Change-point test

0 s

wγ(s)/cα

11
2

1
2

1

3
2

γ = 1
2 n = 100

γ = 1
2 n = 1000

γ = 1
4

γ = 0.1

γ = 0

Figure 2.2.: weight function wγ(s)/cα with γ = 0, 0.1, 0.25, 0.5 and α = 0.05

But for each choice of the parameter γ, we have different critical values for the test statistic
(see Theorem 2.2.1). For a better comparison we divide the critical value by the correspond-
ing value of the weight function for s ∈ (0, 1), see Figure 2.2. Assuming the maximum of the
partial sum process is at some fixed s. A lower value of the quotient at this point corresponds
to detection of smaller change-points by the corresponding test. This substantiate once more
the relation between the parameter γ and the position of the change.

Let us take a closer look at the effect. Assume one dimensional normal distributed observa-
tions. For the illustration we restrict the discussion to the weight functions with η = γ = 0
and η = 0, γ = 1

2 . The test statistic can be written as

Tn(0, γ) = max
1≤k<n

(
n2

k(n− k)

)γ
1√
n

∣
∣
∣Sk(θ̂n)

∣
∣
∣ = max

1≤k<n
wγ(k/n)

∣
∣
∣Vk(θ̂n)

∣
∣
∣

with Vk = 1√
n
Sk(θ̂n) and Sk(θ̂n) as in N.1. It is clear, that the Vk are all normally distributed

but with different variances and expectations. The expectation, variance and covariance for
Vk(θ̂n) are given as

17



2. Multidimensional mean change model

E[Vk(θ̂n)] =

{

−k(n−m)
n

δ√
n

, k ≤ m

−m(n−k)
n

δ√
n

, k > m
(2.13)

Var[Vk(θ̂n)] =
k(n− k)

n2
σ2 ≡ σ2k , (2.14)

Cov[Vk(θ̂n), Vl(θ̂n)] =
1

n
Cov[Sk(θ̂n), Sl(θ̂n)] =

(n− max(k, l)) min(k, l)

n2
σ2 . (2.15)

Observe, that multiplying with the weight function w 1
2
(k/n) (s = k

n) would lead to partial

sums with constant variance, i.e.

E[w 1
2
(k/n)Vk(θ̂n)] =







−
√
k(n−m)√
(n−k)

δ√
n

, k ≤ m

−m
√
n−k√
k

δ√
n

, k > m
(2.16)

Var
[

w 1
2
(k/n)Vk(θ̂n)

]

=σ2 , (2.17)

Cov
[

w 1
2
(k/n)Vk(θ̂n), w 1

2
(l/n)Vl(θ̂n)

]

=
nCov

[

Sk(θ̂n), Sl(θ̂n)
]

√

k l (n− k)(n− l)
. (2.18)

The test statistic is based on the absolute values of the unweighted Vk and the weighted Vk.
Due to Jensen’s inequality we have E[|Vk(θ̂n)|] ≥ |E[Vk(θ̂n)]|. Observe that the expectations of
the Vk and the weighted Vk have both their maximum for k = m. If the maximum expectation
is larger compared to the standard deviation, the test statistic will exhibit the value Vm with
high probability.

Let us take a closer look at the unweighted and the weighted partial sums, i.e. |V⌊sn⌋| and
wγ(⌊sn⌋/n)|V⌊sn⌋|, respectively. In Figure 2.3 the expectations and standard deviations of the
unweighted partial sums |V⌊sn⌋| are shown. We have used δ = −0.2 and n = 50. We compare
the behaviour for different standard deviations, σ = 0.5 and σ = 0.2 in the first and second
row, respectively. In the left column the change is in the middle (λ = 0.5) and in the right
column after the first quarter (λ = 0.25, so called early change). The corresponding results
for the weighted partial sums wγ(⌊sn⌋/n)|V⌊sn⌋| are given in Figure 2.4 in the same order.

In Figure 2.3 the expectations (thick black lines) and the expectations plus and minus the
standard deviations (black lines) are shown for different parameters. The blue line is the crit-
ical value of the corresponding test statistic. The maximum mean of the unweighted partial
sum is smaller for the early change ((b) and (d)) than for the change in the middle (2.3a
and 2.3c). Moreover the value is always below the critical value, so the test has problems
in detecting early changes correctly. In case the maximum mean is below the critical value,
the power can not be increased with a lower variance of the residuals. As we can see, it may
happen that all three lines are below the critical value (probability of rejection is quite small,
i.e. low power). Furthermore we see that for a change in the middle the power of the test
increases for smaller variances.
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2.2. Change-point test

In Figure 2.4 again the expectations (thick black lines) and the expectations plus and mi-
nus the standard deviations (black lines) are shown but now for the weighted partial sum
wγ(⌊sn⌋/n)|V⌊sn⌋|. The blue line is the corresponding critical value of the test statistic. The
maximum expectation is always higher than the critical value, while we use the same pa-
rameters as in Figure 2.3. Here we observe that the test enables the detection of the early
and middle changes. For fixed variance of the residuals, the maximum expectation and the
maximum expectation minus the average spread are higher than the critical value (see 2.4a
and 2.4b). This means that the power of the test is not so significantly dependent on the time
of change (compare 2.4b and 2.4d). For some other choice of δ this could be different.

Nevertheless, there exist values of δ for which the unweighted test has smaller power than the
weighted, depending on the time of change. The illustration supports the interpretation we
have made, i.e. for early changes the unweighted test statistic will give better results. After
all, we get the impression that the weighted test statistic should be preferred. We had stated
earlier (section 2.2.1, page 14) that the weighted test statistic with parameter γ = 1

2 converges
slowly to the asymptotic distribution, that is why this distribution is not preferred. A closer
look on the choice of the parameter γ and the properties of the corresponding test statistic
for different distributions (also heavy tailed) can be found in section 2.5.

We conclude that for higher values of γ, γ ∈ [0, 12) the corresponding modified change-point
test detects early changes better. If we have no difficulties in reducing the region of the de-
tectable times of change, i.e. η ∈ (0, 12), we can use γ = 1

2 . Otherwise, we would choose a γ
quite close to 1

2 . Several choices are possible, e.g. assume we would have a truncation of η0,
then we could set γ = 1

2 − η0(1 − η0).
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2. Multidimensional mean change model
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(a) λ = 0.5 and σ = 0.5
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0
11

4

cα

(d) λ = 0.25 and σ = 0.2

Figure 2.3.: Expectation and standard deviation of partial sums V⌊sn⌋(θ̂n), s ∈ (0, 1) for n =
50, δ = 0.5 with the corresponding critical value cα (blue line) based on the
asymptotic distribution
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Figure 2.4.: Expectation and standard deviation of weighted partial sums
wγ(⌊sn⌋/n)|V⌊sn⌋|, s ∈ (0, 1) for n = 50, δ = 0.5 with the coresponding

critical value cα (blue line) based on the asymptotic distribution with γ = 1
2
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2. Multidimensional mean change model

2.2.3. Asymptotic results

Now, we can analyse the asymptotic distribution of the test statistics. Due to the non-
parametric set-up we can not determine the finite dimensional distribution of the test statistic.
We prove the asymptotic distribution for the generalised mean change test statistic.

Theorem 2.2.1 Under the model (2.9), for the weight function wη,γ(k/n) (as in N.7) and
under H0 (1.2) we have

Tn(η, γ;A) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

d−→ sup
η<s<1−η

‖W (s) − sW (1)‖A
(s(1 − s))γ

,

where {W (s)} is a Wiener process having covariance matrix Σ.

The proof of this theorem is analogous to the one with A = Σ−1. For the one-dimensional
case, this can be found in Csörgő and Horváth [1997].

Corollary 2.2.1 Under the assumptions of Theorem 2.2.1 we have with A′ = Σ
1
2AΣ

1
2

Tn(η, γ) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

d−→ sup
η<s<1−η

‖B(s)‖A′

(s(1 − s))γ
,

where {B(s)} is a standard Brownian Bridge.

For the proofs we are going to use the following notation for standardized random vectors.

N.8 The notation ·̃ is used to indicate the multiplication from the left by Σ− 1
2 .

Then the residuals {εt} become standardized i.i.d. random vectors {ε̃t}. It becomes clear
how to prove that the test statistic gives an asymptotic level α-test.

The proof is done in three steps. First we show that the result holds true for Tn(0, 0). To this
end, we make use of the assumed model and then apply the functional central limit theorem
(FCLT) for multidimensional i.i.d. random variables (Theorem C.2.2 gives an invariance
principle for strong mixing, which covers the i.i.d. case and the FCLT follows from this), such
that






Σ− 1

2
1√
n

⌊sn⌋
∑

i=1

εi , s ∈ [0, 1]







d
=







1√
n

⌊sn⌋
∑

i=1

ε̃i , s ∈ [0, 1]







d−→ {W (s) , s ∈ [0, 1]} .

The conclusion of the theorem follows then from the continuous mapping theorem.

In the situation of η ∈ (0, 12) and γ ∈ [0, 12 ] the result follows directly. Because the weight

function is well defined, the FCLT holds true for wη,γ(k/n)
∥
∥
∥
∑k

i=1

(

Xi − θ̂n

)∥
∥
∥
Σ−1

and since

the weight function is bounded, the conclusion follows by the continuous mapping theorem.

If we do not restrict to the smaller inner interval (i.e. η = 0), we can use a modification of
the weight function with γ ∈ [0, 12). Due to the unbounded behaviour of the weight function
at the boundaries, we have to use a truncation argument. Obviously in the inner interval
we gain the result directly. At the boundaries we are going to show that uniformly in n the
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2.2. Change-point test

values are negligible if the cutting value tends to the boundary.

We have derived an asymptotic level α-test. The choice of the critical value for finite samples
will be discussed in section 2.5.

For the different tests, we have identified the asymptotic distribution but it is also important
to know that the test is consistent, i.e. we have an asymptotic power one test. Here, the
assumption on a A-fixed alternative is important.

Theorem 2.2.2 Let model (2.9), assumption G.1 and H1 (1.2) be true. If η < λ < (1 − η),
then

Tn(η, γ;A)
p−→ ∞ .

To prove this, we do not have to make any use of a truncation argument, because the statistic
is greater or equal to the weighted norm of the partial sum up to the change-point m. Making
use of the CLT the asymptotic behaviour follows.

It is crucial to recognize that the constant assumption on δn is made w.r.t. the decision matrix
A (‖δn‖A ≡ D). So we allow the non-interesting entries of δn (‖δn − δ′‖A = 0 with δ′ equals
δn ) to behave arbitrary, as long as the estimator is still a

√
n-consistent estimator, i.e. δn is

non-increasing (see Theorem 2.1.1 and 2.1.2).

Theorem 2.2.3 Let A be a positive semi-definite matrix and

Tn(A) := max
1≤k<n

w(n, k)‖S(k; θ)‖A

a test statistic, with w(n, k) a possibly random weight function and S(k; θ) such that Theorem
2.2.1 and Theorem 2.2.2 hold true for this A as well as for A = Id. Let Ân be an a.s. positive
definite consistent estimator for A. For Tn(Ân) the result of Theorem 2.2.1 holds true. If Ân
is additionally

√
n-consistent estimator Theorem 2.2.2 is also true for Tn(Ân).

The key of the proof is to show that the difference between the test statistic with the estimator
and the one with the true matrix is vanishing asymptotically.

2.2.4. Proofs

Lemma 2.2.1

Under the model (2.9) and H0 (1.2) we have

Tn(η, γ;A)
d−→ sup

η<s<(1−η)
wη,γ(s)‖W (s) − sW (1)‖A , (2.19)

where {W (s)} is Wiener process with covariance matrix Σ, η ∈ (0, 12) and γ ∈ [0, 12 ] or
η = 0 = γ.
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2. Multidimensional mean change model

Proof:
We show the result in 2 steps. First we assume η = γ = 0 and secondly we show the result
for η ∈ (0, 12) and γ ∈ [0, 12 ].

Let us start with η = γ = 0. The main idea of the proof is, instead of analysing
∑k

i=1

(

Xi − θ̂n

)

we can analyse the behaviour of
∑k

i=1 (εi − εn). The functional central limit theorem for mul-
tivariate i.i.d. random variables gives us

{

1√
n

sn∑

i=1

εi , s ∈ [0, 1]

}

d−→ {W (s) , s ∈ [0, 1]} ,

where {W (s)} denotes a d-dimensional Wiener process with covariance matrix Σ. As pro-
jections are continuous a first application of the continous mapping theorem (see Theorem
C.1.6) we have

1√
n

⌊sn⌋
∑

i=1

εi −
⌊sn⌋
n

1√
n

n∑

i=1

εi
d−→W (l) − lW (1) for all s ∈ [0, 1] .

With the tightness of { 1√
n

∑⌊·n⌋
i=1 εi −

⌊·n⌋
n

1√
n

∑n
i=1 εi} and an additional application of the

continuous mapping theorem, the proof is completed.

For η ∈ (0, 12) and γ ∈ [0, 12 ] we need to analyse the weight function. We know

1η<s<(1−η)

(
n2

sn(n− sn)

) 1
2

= 1η<s<(1−η)
1

√

s(1 − s)
,

is a well defined function for 0 < η < 1
2 . It follows by Slutsky C.1.4 that a FCLT is fulfilled.

Therefore, by applying the monotone mapping theorem we get the result.

Lemma 2.2.2

Under the same assumptions as in Theorem 2.2.1 we derive for η = 0 and γ ∈ (0, 1/2)

Tn
(
η, γ;A

) d−→ sup
0<s<1

‖W (s) − sW (1)‖A
(s(1 − s))γ

.

Proof:
We truncate the range of the maximum such that the weight function is bounded. At the
boundaries, we are going to show that uniformly in n the effect is negligible if the truncation
value τ tends to 0. To this end we use

‖Mx‖A ≤ ‖M‖A ‖x‖ (2.20)

for x ∈ R
d, M ∈ R

d×d and ‖M‖A = sup‖v‖=1 ‖Mv‖A. Which gives, analysing w.r.t. ‖·‖ is
enough.
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2.2. Change-point test

Since the weight function wγ fulfils the assumptions of Theorem C.1.7, we have for τ → 0

sup
0<s<τ, (1−τ)<s<1

w2
γ(s)‖B(s)‖2 = oP (1) ,

where {B(s)} is a d-dimensional standardised Brownian Bridge. Then we have

sup
0<s<τ, (1−τ)<s<1

w2
γ(s)‖W (s) − sW (1)‖2A ≤

∥
∥
∥Σ

1
2

∥
∥
∥

2

A
sup

0<s<τ, (1−τ)<s<1
w2
γ(s)‖B(s)‖2

= oP (1) .

On the other hand, we have for τ → 0

max
1≤k<τn

wγ(k/n)
k

n

∥
∥
∥
∥
∥

1√
n

n∑

t=1

εt

∥
∥
∥
∥
∥
≤ max

1/n≤s<τ
wγ(s)s

∥
∥
∥
∥
∥

1√
n

n∑

t=1

εt

∥
∥
∥
∥
∥

= OP (τ1−γ) . (2.21)

So, for analysing max
1≤k<τn, (1−τ)n<k<n

wγ(k/n) 1√
n

∥
∥
∥Sk(θ̂n)

∥
∥
∥ it is left to analyse

max
1≤k<τn, (1−τ)n<k<n

wγ(k/n) 1√
n

∥
∥
∥
∑k

t=1 εt

∥
∥
∥. From the Hájek-Rényi inequality we get for an i.i.d.

sequence {εt} that

max
an≤k≤bn

∥
∥
∥
∥
∥
ck

k∑

t=1

εt

∥
∥
∥
∥
∥

= OP



(anc
2
an +

bn∑

k=an+1

c2k)
1
2



 .

Here, an = 1, bn = τn and ck = wγ(k/n), such that for all fixed n we have for τ → 0

anc
2
an +

bn∑

k=an+1

c2k ≤ w2γ(1/n) + n

∫ τ

1/n
w2γ(s)ds

≤ 22γn2γ + (−2γ + 1)−1(1 − τ)−2γn
(
τ−2γ+1 − n2γ−1

)

≤ 22γn2γ +
22γ

1 − 2γ
nτ−2γ+1 − 22γ

1 − 2γ
n2γ ≤ 22γ

1 − 2γ
nτ1−2γ .

Thus it holds

max
1≤k≤τn

∥
∥
∥
∥
∥
w(k/n)

k∑

t=1

εt

∥
∥
∥
∥
∥

= OP

((
nτ1−2γ

) 1
2

)

(2.22)

Combining (2.21) and (2.22) we get uniformly in n

max
1≤k<τn

wγ(k/n)
1√
n

∥
∥
∥Sk(θ̂n)

∥
∥
∥

≤ 1√
n

max
1≤k<τn

wγ(k/n)

∥
∥
∥
∥
∥

k∑

t=1

εt

∥
∥
∥
∥
∥

+ max
1≤k<τn

wγ(k/n)
k

n

∥
∥
∥
∥
∥

1√
n

n∑

t=1

εt

∥
∥
∥
∥
∥

= OP (τ
1
2
−γ) +OP (τ1−γ)

= OP (τ
1
2
−γ) . (2.23)
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2. Multidimensional mean change model

For (1 − τ)n < k < n we observe

max
(1−τ)n<k<n

wγ(k/n)
1√
n

∥
∥
∥Sk(θ̂n)

∥
∥
∥ = max

(1−τ)n<k<n
wγ(k/n)

1√
n

∥
∥
∥
∥
∥

n∑

t=k+1

εt −
n− k

n

n∑

t=1

εt

∥
∥
∥
∥
∥
.

Using the symmetry of wγ(k/n) and l = n− k, we derive equivalent sums as for 1 ≤ k ≤ τn.
Analogue arguments yield

max
(1−τ)n<k<n

wγ(k/n)
1√
n

∥
∥
∥Sk(θ̂n)

∥
∥
∥ = OP (τ

1
2
−γ) . (2.24)

From Lemma 2.2.1 we have for each fixed but arbitrary τ > 0 and x ∈ R

P (Tn(τ, γ;A) < x) −→
n→∞

P ( sup
τ<s<(1−τ)

wγ(s)‖W (s) − sW (1)‖A < x) .

We can conclude that for all x ∈ R it holds

lim
n→∞

P (Tn(0, γ;A) < x) = lim
τ→0

lim
n→∞

P (Tn(τ, γ;A) < x)

= lim
τ→0

P ( sup
τ<s<(1−τ)

wγ(s)‖W (s) − sW (1)‖A < x)

= P ( sup
0<s<1

wγ(s)‖W (s) − sW (1)‖A < x) .

Theorem 2.2.1

Under the model (2.9), for the weight function wη,γ(n, k) (as in N.7) and H0 (1.2) we
have

Tn(η, γ;A) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

(

Xt − θ̂n

)
∥
∥
∥
∥
∥
A

d−→ sup
η<s<1−η

‖W (s) − sW (1)‖A
(s(1 − s))γ

,

where {W (s)} is a d-dimensional Wiener process with covariance matrix Σ.

Proof:
The result follows from Lemma 2.2.1 (for η ∈ (0, 12) and γ ∈ [0, 12 ] or η = 0 = γ) and Lemma
2.2.2 (η = 0 and γ ∈ [0, 12)).

Corollary 2.2.2 Under the assumptions of Theorem 2.2.1 and with A′ = Σ
1
2AΣ

1
2 , we get

Tn(η, γ;A)
d−→ sup

η<s<1−η

‖B(s)‖A′

(s(1 − s))γ
,

where {B(s)} is a standard Brownian Bridge.

Proof:
Follows directly from ‖x‖A =

∥
∥
∥Σ− 1

2x
∥
∥
∥
A′

. We have

{

Σ− 1
2

1√
n

sn∑

t=1

εt , s ∈ [0, 1]

}

d
=

{

1√
n

sn∑

t=1

ε̃t , s ∈ [0, 1]

}

d−→ {W (s) , s ∈ [0, 1]} ,
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2.2. Change-point test

with {W (s)} being a standard Wiener process. Thus, from Theorem 2.2.1 we get

Tn(η, γ)
d−→ sup

η<s<1−η

‖W (s) − sW (1)‖A′

(s(1 − s))γ
= sup

η<s<1−η

‖B(s)‖A′

(s(1 − s))γ
.

Theorem 2.2.2

Let model (2.9), assumption G.1 and H1 (1.2) be true, then

Tn
(
η, γ;A

) p−→ ∞ .

Proof:
Let k0 = ⌊κn⌋, with κ = λ if η < λ < (1− η) and κ = η otherwise. The main idea is to show

that the sum up to m converges to ∞. Observe that

Tn(η, γ;A) ≥ wγ(k0/n)
1√
n

∥
∥
∥Sk0(θ̂n)

∥
∥
∥
A

≥ 1√
n

∥
∥
∥Sk0(θ̂n)

∥
∥
∥
A

≥ 1√
n

∥
∥
∥
∥
∥

k0∑

t=1

(Xt − θ̂n)

∥
∥
∥
∥
∥
A

=
1√
n

∥
∥
∥
∥
∥

(
k0∑

t=1

(εt − εn) − δ
k0(n−m)

n

)∥
∥
∥
∥
∥
A

.

Because it holds
∥
∥
∥
∥
∥

1√
n

k0∑

t=1

(εt − εn) − k0(n−m)

n
√
n

δ

∥
∥
∥
∥
∥
A

≥
∣
∣
∣
∣
∣

1√
n

∥
∥
∥
∥
∥

k0∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

−√
n
k0(n−m)

n2
‖δ‖A

∣
∣
∣
∣
∣
,

with κ(1 − λ) − k0
n (1 − m

n ) = κ− k0
n − κ(λ− m

n ) − λ(κ− k0
n ) = O

(
1
n

)
we have

Tn(η, γ;A) ≥ 1√
n

∥
∥
∥
∥
∥

k0∑

t=1

(εt − εn) − k0(n−m)

n
δ

∥
∥
∥
∥
∥
A

=
∣
∣OP (1) −√

n (κ(1 − λ)‖δ‖A) + o(1)
∣
∣

−→
n→∞

∞ .

Theorem 2.2.3

Let A be a positive semi-definite matrix and

Tn(A) := max
1≤k<n

w(n, k)‖S(k; θ)‖A

a test statistic, with w(n, k) a possibly random weight function and S(k; θ) such that
Theorem 2.2.1 and Theorem 2.2.2 hold true for this A as well as for A = Id. Let Ân be
an a.s. positive definite consistent estimator for A. For Tn(Ân) the result of Theorem
2.2.1 holds true. If Ân is additionally

√
n-consistent estimator Theorem 2.2.2 is also

true for Tn(Ân).
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2. Multidimensional mean change model

Proof:
For the test statistic we have

∣
∣
∣Tn(η, γ; Ân) − Tn(η, γ, A)

∣
∣
∣ ≤ max

1≤k<n
w(k/n)

∥
∥
∥
∥
Â

1
2
nSk(θ̂n) −A

1
2Sk(θ̂n)

∥
∥
∥
∥

≤
∥
∥
∥
∥
Â

1
2
n −A

1
2

∥
∥
∥
∥

max
1≤k<n

w(k/n)
∥
∥
∥Sk(θ̂n)

∥
∥
∥

=

∥
∥
∥
∥
Â

1
2
n −A

1
2

∥
∥
∥
∥
Tn(Id) .

That

∥
∥
∥
∥
Â

1
2
n −A

1
2

∥
∥
∥
∥

p−→ 0 follows directly from the consistency of the estimator. Hence, the

convergence under H0 is not changed as Tn(Id) = OP (1).

For the consistency, we observe, with k0 = ⌊max(η, λ)n⌋,

Tn(η, γ; Â) ≥ 1√
n

∥
∥
∥
∥
∥

k0∑

t=1

(εt − εn) − k0(n−m)

n
δ

∥
∥
∥
∥
∥
Ân

=
∣
∣OP (1) −√

n(κ(1 − λ))‖δ‖A +OP (1) + o(1)
∣
∣

−→
n→∞

∞ ,

where we used analogous arguments as above for
∥
∥
∥
∑k0

t=1(εt − εn)
∥
∥
∥
Ân

and the
√
n-consistency

for ‖δ‖Ân
.
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2.3. Change-point estimator

2.3. Change-point estimator

After deriving a consistent and asymptotic level-α test, we are interested in the estimator of
the change-point. We want to determine the rate of convergence and verify it by determining
the asymptotic distribution.

We still assume a mean change model (2.1) with a fixed but arbitrary size of the change
(δn ≡ δ constant). The test statistic is given by

Tn(η, γ;A) = max
ηn<k<(1−η)n

(
n2

k(n− k)

)γ
1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

as we derived in section 2.2 (compare (2.12)). With the notation N.7 of the weight function
wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ the test statistic is defined as

Tn(η, γ;A) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

.

We are going to see in subsection 2.3.1, that the argument of the maximum is a good estimator
for the change-point. The effect of the weight function for the change-point estimator will be
discussed in subsection 2.3.2. In this section we also state useful properties of this function.
The main results for the asymptotics of the estimator are given in section 2.3.3. We show n-
consistency of the estimator and verify it by determining the asymptotic distribution. Detailed
proofs are given in section 2.3.4.

2.3.1. The estimator

We have derived the test statistic Tn and discussed the effect of weight function. To this end,
we calculated the expectation for the unweighted and weighted partial sums (see (2.13) and
(2.16) on page 18). We observed, that the maximum of the expectations is approached at the
time of change. Thus the argumentum maximum is a good estimator for the change-point.
So there is a close relation between change-point estimator and test statistic. With the test
statistic Tn(η, γ;A) the change-point estimator is of the form

m̂(η, γ;A) = arg max
1≤k<n

wη,γ(k/n)

∥
∥
∥
∥
∥

k∑

i=1

(

Xi − θ̂n

)
∥
∥
∥
∥
∥
A

, (2.25)

with wη,γ(n, k) as in N.7 on page 16.

In the one-dimensional case asymptotic results for the change-point estimator are given in
Antoch et al. [1995] and Csörgő and Horváth [1997] (section 2.8.1). Multivariate analyses
of change-point estimators are rare. For some models multivariate analyses of change-point
estimators are published, e.g. in the case of linear multiple regression Bai [1997] a analyse of
fixed and shrinking magnitude are done for the non-weighted test statistic. We use the op-
portunity to state the results for the multivariate case. The proofs follow the ideas of Csörgő
and Horváth [1997].
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2. Multidimensional mean change model

As in the proofs for the asymptotic behaviour of the change-point test, we also make use of
properties of the weight function here. We take a closer look at the weight function to obtain
a better understanding of its effect on the change-point estimator and state the properties
needed later on.

2.3.2. Effect and properties of the weight function

In this section we take a closer look at the influence of the weight function on the change-point
estimator as we did in section 2.2.2 for the test statistic. We therefore assume i.i. normally
distributed residuals. We compare the expectation and standard deviation for the unweighted
and weighted partial sums in case of an early change and in a situation where the change oc-
curs in the middle.

In Figure 2.5 the expectations (thick lines) and expectations plus/minus the standard devia-
tions (thin lines) for the weighted (first row) and the unweighted partial sums (second row)
are shown. The region for each partial sum where it is likely observed (around 70%) is be-
tween the thin vertical lines. The horizontal solid line corresponds to the maximal value of the
partial sum minus the standard deviation. The event that the maximum of the partial sums
is less than this value is unlikely. All values of k for which the partial sum has mean plus the
standard deviation larger than the solid black line are also likely values of the change-point
estimator. So, we compare this regions, drawn in blue lines, for the weighted and unweighted
estimators.

We observe, that the intervals (indicated by the blue line) for a change in the middle are
smaller for the unweighted estimator. For early changes the weighted estimator (second row)
has a smaller interval. In conclusion, for changes in the middle the unweighted estimator is
preferable and for early changes the weighted one.

For the proofs of the asymptotics for the weighted change-point estimator we are going to
make use of properties of the weight function. A key property is the Lipschitz continuity of
the weight function wγ(k/n) defined on a compact set k ∈ [αn, βn].
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0 11
2

0 11
4

0 11
2

0 11
4

Figure 2.5.: Comparison of unweighted (first row) and weighted (second row) partial sums
wγ(⌊sn⌋/n)V⌊sn⌋ (γ = 0 and γ = 1

2 , respectively) in view of estimating the change-
point based on n = 50 observations

Lemma 2.3.1

For the function wγ(k/n) =
(
k
n(1 − k

n)
)−γ

, γ > 0, and k, l ∈ [αn, βn], 0 < α < β < 1,
there exists a constant c > 0 with

|wγ(k/n) − wγ(l/n)| ≤ |k − l|c n−1 .

Proof:
By the mean value theorem applied to wγ(s) = s−γ(1 − s)−γ we have

|wγ(k/n) − wγ(m/n)| = |k −m||w′
γ(s̃)

1

n
| , (2.26)
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2. Multidimensional mean change model

with s̃ between k/n and m/n and derivative

w′
γ(s) = −γs−γ−1(1 − s)−γ + γs−γ(1 − s)−γ−1

= γwγ+1(s)(2s− 1) .

This is a bounded function on [α, β] ⊂ [0, 1] such that

|w′
γ(s̃)| ≤ max

α<s<β
|w′(s)| =: c . (2.27)

A very useful result, not only in this special case but for all bounded and Lipschitz continuous
functions, is, that this family is closed under multiplication. This results in the following
important properties of the weight function.

Corollary 2.3.1 Let wγ(k/n), k, l, α and β be as in Lemma 2.3.1

|w2
γ(k/n) − w2

γ(l/n)| ≤ |k − l|c1n−1 (2.28)

|w2
γ(k/n)k − w2

γ(l/n)l| ≤ |k − l|c2 (2.29)

|k − l|c3n ≤ |w2
γ(k/n)k2 − w2

γ(l/n)l2| ≤ |k − l|c′3n (2.30)

with c1, c
′
1, c2 and c3 constants depending on α, β and γ. Moreover, there exists a constant

c4 such that
w2
γ(l/n)l2 − w2

γ(k/n)k2 > c4 > 0 (2.31)

with 1 ≤ k < l < n.

Proof:
The inequality (2.28) is clear since w2

γ(s) = w2γ(s). With the Lipschitz property for linear
functions on a bounded set, the inequalities (2.29) and (2.30) (right hand side) follow directly.

The left inequality of (2.30) follows with the mean value theorem equivalent to the proof of
Lemma 2.3.1, just using |w′

γ(s̃)| ≥ minα<s<β |w′
γ(s)| for s̃ ∈ [k/n, l/n].

Due to the specific choice of the weight function, we can prove (2.31) by calculation. From
the mean value theorem we get for s̃ ∈ [k/n, l/n]

w2
γ(l/n)l2 − w2

γ(k/n)k2 = (l − k)n 2wγ(s̃)s̃
(
γwγ+1(s̃)(2s̃− 1)s̃+ wγ(s̃)

)

= (l − k)w2γ+1(s̃)s̃
2n2 (γ (2s̃− 1) + 1 − s̃)

= (l − k) 2w2γ+1(s̃)s̃
2n

︸ ︷︷ ︸

>c>0

(

(1 − γ) s̃+ γs̃
︸ ︷︷ ︸

)

=f(s̃)

with f(s) > 0 for all α < s < β and c some constant depending on k, l and n, where we use
γ ≤ 1

2 .

Knowing how the weight function behaves in a truncated area, we also need to know how it
behaves at the boundaries.
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2.3. Change-point estimator

Lemma 2.3.2

The weight function wγ(·) fulfils

lim
α→0

sup
s∈(0,α)

wγ(s)s = 0 and lim
α→0

sup
s∈(1−α,1)

wγ(s)(1 − s) = 0 .

Proof:
We show limα→0 sups∈(0,α)wγ(s)s <∞; the other inequality follows analogously.
It holds

lim
α→0

sup
s∈(0,α)

wγ(s)s = lim
α→0

sup
s∈(0,α)

s1−γ(1 − s)−γ

≤ lim
α→0

sup
s∈(0,α)

s1−γ(1 − α)−γ

= 0 .

2.3.3. Asymptotic results

First of all it is important to know whether, for increasing n, the estimator is consistent. This is
not only of interest for the practical application of the estimator, it also helps in further proofs.
In [Csörgő and Horváth, 1997] they proved weak consistency. For other examples, almost sure
consistency is also proven (see, e.g. Antoch et al. [1995] or Kirch and Tadjuidje Kamgaing
[2012]). Later on we only need weak consistency for the change-point estimator, so we prove
convergence in probability for the non-rescaled version of the change-point estimator.

Theorem 2.3.1 Assume assumption G.1, the model (2.1) and let the alternative H1 (1.2)
hold. If the change-point estimator (2.25) fulfils η < λ < (1 − η), then

m̂(η, γ;A) −m = oP (n) .

In particular m̂(η,γ;A)
n is a consistent estimator for λ.

The key of the proof is to show uniform convergence of the test statistic. Then with the
Lemma 3.1 of [Pötscher and Prucha, 1997] (see C.1.2 on page 209) we get the claim. For the
proof of the uniform convergence, we use the LIL (see (C.3)). The detailed proof is given in
section 2.3.4.

As we mentioned, Theorem 2.3.1 shows consistency. In applications, we are also interested
in confidence regions for the time of change. To this end, we first determine the rate of
convergence. Secondly, we show that this rate is the best by determining the asymptotic
distribution.

Csörgő and Horváth [1997] (proof of Theorem 2.8.1) stated that with the weak consistence it
is enough to prove the rate of convergence only for the truncated change-point estimator. The
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2. Multidimensional mean change model

proof makes use of the definition of the change-point estimator only, and not of its specific
form depending on the model.

Corollary 2.3.2 Let m̂(η, γ;A) and m̂(α, γ;A) denote two change-point estimators of the
form

m̂(β, γ;A) = arg max
1≤k<n

wβ,γ(k/n)

∥
∥
∥
∥
∥

k∑

t=1

H(Xt, θ̂n)

∥
∥
∥
∥
∥
A

with η, α, γ, A and function H such that

m̂(β, γ;A) −m = oP (n)

for β = η or β = α and m = ⌊λn⌋. Then it holds

P (m̂(η, γ;A) = m̂(α, γ;A)) −→
n→∞

1 . (2.32)

As we see, this Corollary is for a general change-point estimator. The proof follows essentially
from the oP (n) convergence as well as from the specific definition as the argument of the
maximum. It is clear, that in our specific situation we have the assumptions fulfilled as shown
in Theorem 2.3.1.

The main idea of the proof is that for η < α < 1
2

P (|m̂(η, γ;A) − m̂(α, γ;A)| > 0)

=P ( max
ηn≤k<αn

(1−α)n≤k<(1−η)n

w0,γ(k/n)
∥
∥Sk(Xn)

∥
∥
A
> max

αn≤k<(1−α)n
w0,γ(k/n)

∥
∥Sk(Xn)

∥
∥
A

)

results in the event that | m̂(η,γ;A)
n

− λ| > max(λ − α, 1 − α − λ). Using the definition of the
stochastic Landau symbols (see Appendix A.2) and Theorem 2.3.1, which gives the consistency
of m̂/n, completes the proof.

In a next step as done in [Antoch et al., 1995] and [Csörgő and Horváth, 1997], we prove
the rate of convergence, i.e. m̂(η, γ;A) −m = OP (1). This is not the best rate in the case
of the local alternative, but the proof is analogue. In the literature the proof for the fixed
alternative is rarely shown. We show the proof of the multivariate case in detail. For the rest
of the thesis we will refer to the main ideas and discuss the difficulties in the special cases.

Theorem 2.3.2 Under the assumptions of Theorem 2.3.1 the change-point estimator m̂(η, γ;A)
(2.25) fulfils

m̂(η, γ;A) −m = OP (1) .

For the proof, we use that the estimator is n-consistent and therefore focus on the estimators
with truncated maximum range, because asymptotically they are equivalent. We then replace
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2.3. Change-point estimator

the weighted norm of the partial sum by another but equivalent value, i.e. the argument of

the maximum of w0,γ(k/n)
∥
∥
∥Sk(θ̂n)

∥
∥
∥
A

is the same as that of Vk, with

Vk = w0,γ(k/n)
∥
∥
∥Sk(θ̂n)

∥
∥
∥
A

+ w0,γ(k/n)w0,γ(m/n)ST

k(θ̂n)ASm(θ̂n)

− w0,γ(k/n)w0,γ(m/n)ST

m(θ̂n)ASk(θ̂n)

− w0,γ(m/n)
∥
∥
∥Sm(θ̂n)

∥
∥
∥
A
.

By the properties of the weight function in addition to the Hájek-Rényi inequality and the
CLT, we determine by the right decomposition the dominating parts. Details can be found
in section 2.3.4.

We have seen, that the rescaled change-point estimator ( m̂n ) converges with rate 1
n . From

the proof of Theorem 2.3.2 we get the decomposition as well as the dominating parts. This
is useful for the proof of the asymptotic distribution. To justify that this rate cannot be
improved, we determine the asymptotic distribution.

Theorem 2.3.3 Let the assumptions of Theorem 2.3.1 hold true. Then

m̂(η, γ;A) −m
d−→ arg max{W (s) − |s|g(s)D2, s ∈ Z}

with D = ‖δ‖A,

W (s) =







0 , s = 0 ,

δTAΣ
1
2
∑−1

i=s ξ
(2)
i , s < 0 ,

δTAΣ
1
2
∑s

i=1 ξ
(1)
i , s > 0 ,

ξ
(z)
i are i.i.d. with L

(

ξ
(z)
1

)

= L (ε̃1) for z = 1, 2 and

g(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

With the same decomposition as we used in proof of the theorem about the convergence rate,
we are able to determine the asymptotic distribution. From before, we know the asymptotic
dominating terms, so the asymptotic distribution is given by these parts. For the proof, we
observe that the difference can also be analysed on a sufficiently large subset. Due to the
consistency the probability of observing values outside this subset will tend to zero. As the
maximum is now taken over a finite set, it follows that all the other parts are negligible, which
can be shown using again the triangle inequality, Cauchy-Schwarz inequality as well as the
CLT and the Hájek-Rényi inequality. For the deterministic part we make use of properties of
the weight function to determine the limit behaviour. On the other hand we show the limit
for the stochastic part, by rewriting this part as a function on k −m.
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2. Multidimensional mean change model

In the one-dimensional case, see Antoch et al. [1995], the distribution is given as

m̂(η, γ) −m
d−→ arg max{δW (s) − |s|g(s)δ2, s ∈ Z}

with {W (s)} denoting a two-sided standardised random walk which is equivalent to our result.

We have discussed the influence of the weight function wη,γ in section 2.3.2. We now observe
the influence of the parameters η and γ. First of all, for large observations the influence of η
vanishes. But the effect of γ still exists. We can see, for a change in the middle, the decision
of γ has no effect. But on the other hand, if λ 6= 1

2 , i.e. early or late changes, we would prefer
γ = 1

2 as then the distribution is symmetric. This coincides with our observations in section
2.3.2.

2.3.4. Proofs

Theorem 2.3.1

Assume the model (2.1), assumption G.1 and H1 (1.2). If the change-point estimator
(2.25) fulfils η < λ < (1 − η), then

m̂(η, γ;A) −m = oP (n) .

In particular m̂(η,γ;A)
n is a consistent estimator for λ.

For the proof of Theorem 2.3.1 as for the rest of the thesis we are going to use the following
notation:

gn(s) =







− ⌊sn⌋
n

(

1 − ⌊λn⌋
n

)

, s < λ

− ⌊λn⌋
n

(

1 − ⌊sn⌋
n

)

, s ≥ λ .
(2.33)

Proof of Theorem 2.3.1:
We first give the proof for η = 0 and γ = 0. In the case η ∈ (0, 12) we can directly get the
result from the first part. But for η = 0 and γ ∈ (0, 12) we have to use a truncation argument
as for the proof of Lemma 2.2.2.

First observe that by the model (2.1) we have

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

=

⌊sn⌋
∑

t=1

(εt − εn) +

(

1{s>λ}(⌊sn⌋ − ⌊λn⌋) − ⌊sn⌋
(

1 − ⌊λn⌋
n

))

δ .

=

⌊sn⌋
∑

t=1

(εt − εn) + ngn(s)δ (2.34)

Let

Lγ(s) :=







(s(1 − s))−γ ‖s(1 − λ)δ‖A , s < λ

(s(1 − s))−γ ‖λ(1 − s)δ‖A , s ≥ λ .
(2.35)

If we can prove

sup
s∈(η,1−η)

∣
∣
∣
∣
∣
∣

wγ

(
⌊sn⌋
n

) 1

n

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A

− Lγ(s)

∣
∣
∣
∣
∣
∣

= oa.s.(1) , (2.36)
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where wγ(s) = (s(1−s))−γ , Lemma 3.1 of Pötscher and Prucha [1997] (Theorem C.1.2) yields

m̂(η, γ)

n
− m

n
= oa.s.(1) .

Let us prove equation (2.36).

We first assume η = 0 and γ = 0.
Observe, that the law of iterated logarithm holds true such that

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
∥
A

= O(1)

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(
ε̃t − ε̃n

)

∥
∥
∥
∥
∥
∥

= O(1)





∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

εt

∥
∥
∥
∥
∥
∥

+
⌊sn⌋
n

∥
∥
∥
∥
∥

n∑

t=1

εt

∥
∥
∥
∥
∥





= Oa.s.

(√

⌊sn⌋ log log(⌊sn⌋)
)

+
⌊sn⌋
n

Oa.s.

(√

n log log(n)
)

= Oa.s.

(√

n log log(n)
)

(2.37)

uniformly in s.

First using equation (2.34) and secondly the triangle inequality gives

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A

=

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(εt − εn) + ngn(s)δ

∥
∥
∥
∥
∥
∥
A

≤

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
∥
A

+ n‖gn(s)δ‖A ,

with gn(s) as in (2.33). By the convergence of gn(s) and (2.37) it holds

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A

= Oa.s.

(√

n log log(n)
)

+ n(L0(s) + oa.s.(1))

with L0(s) as in (2.35). The result (2.36) follows directly by weighting with 1
n . Because the

convergence of the difference does not depend on s, the supremum converges with the same
rate.

We derive the proof for η ∈ (0, 12) and γ ∈ (0, 12 ] as follows.
The weight function is bounded on [η, 1 − η]. Thus, with

wγ

(⌊sn⌋
n

)

L0(s) − Lγ(s) = o(1)

uniformly in s ∈ [η, (1 − η)] the result follows from the case above.
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It is left to prove the claim for η = 0 and γ ∈ (0, 12).
Here, we have to be careful because the weight function is not well behaved on (0, 1). Let α
be such that 0 < α < λ < 1 − α < 1. In the truncated area [α, 1 − α] we know from the case
above, that the claim holds true. It is left to prove the (uniformly in n) negligibility of the
values outside this area, i.e.

lim
α→0

max
0<s<α,

(1−α)<s<1

∣
∣
∣
∣
∣
∣

wγ

(⌊sn⌋
n

)
∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A

− Lγ(s)

∣
∣
∣
∣
∣
∣

= oP (1) .

Due to the special choice of the weight function (see Lemma 2.3.2), it follows

lim
α→0

sup
s∈(0,α)

wγ(s)s‖(1 − λ)δ‖A = 0

and
lim
α→0

sup
s∈(1−α,1)

wγ(s)(1 − s)‖λδ‖A = 0 .

As also the quotient wγ(⌊sn⌋/n) ⌊sn⌋n is bounded, we get the uniformly convergence

lim
α→0

sup
s∈(0,α)

wγ(⌊sn⌋/n)|gn(s)|‖δ‖A = 0

as above. On the other hand we can argue as in Lemma 2.3.2 and derive

lim
α→0

sup
s∈(1−α,1)

wγ(⌊sn⌋/n)|gn(s)|‖δ‖A = 0 .

By (2.23) and (2.24) we have uniformly in n

lim
α→0

sup
0<s<α,

(1−α)<s<1

wγ(⌊sn⌋/n)

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
∥
A

= oP (1) .

Thus, it is allowed to ex-change limits for α→ 0 and n→ ∞. This finishes the proof.

Corollary 2.3.2

Let m̂(η, γ;A) and m̂(α, γ;A) denote two change-point estimators of the form

m̂(β, γ;A) = arg max
1≤k<n

wβ,γ(k/n)

∥
∥
∥
∥
∥

k∑

t=1

H(Xt, θ̂n)

∥
∥
∥
∥
∥
A

with η, α, γ, A and function H such that

m̂(β, γ;A) −m = oP (n)

for β = η or β = α and m = ⌊λn⌋. Then it holds

P (m̂(η, γ;A) = m̂(α, γ;A)) −→
n→∞

1 .
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2.3. Change-point estimator

Proof:
Without loss of generality let us assume η < α < 1

2 . For η = α the result is clear. Denote

Sk(θ̂n) =
∑k

t=1H(Xt, θ̂n). Then we get

P (|m̂(η, γ;A) − m̂(α, γ;A)| > 0)

=P
(

max
ηn≤k<αn

(1−α)n≤k<(1−η)n

wγ(k/n)
∥
∥
∥Sk(θ̂n)

∥
∥
∥
A
> max

αn≤k<(1−α)n
wγ(k/n)

∥
∥
∥Sk(θ̂n)

∥
∥
∥
A

)

=P ({ m̂(η,γ;A)
n < α} ∪ { m̂(η,γ;A)

n > 1 − α})

=P ( m̂(η,γ;A)
n − λ < α− λ) + P ( m̂(η,γ;A)

n − λ > 1 − α− λ)) . (2.38)

From Theorem 2.3.1 we have m̂(η,γ;A)
n − λ = oP (1), so (2.38) converges to 0 as α < λ < 1−α.

Before we prove the optimal rate of convergence, we show some useful properties of the partial
sums.

Lemma 2.3.3

Let Yt, 1 ≤ t ≤ n, be i.i.d. random vectors with finite second moments and A symmetric,
positive semi-definite matrix. It follows

max
1≤k≤n

∥
∥
∥
∥
∥

k∑

t=1

(Yt − Y n)

∥
∥
∥
∥
∥
A

≤ 2 max
1≤k≤n

∥
∥
∥
∥
∥

k∑

t=1

Yt

∥
∥
∥
∥
∥
A

= OP

(

n
1
2

)

(2.39)

and for κn > 0

max
1≤k≤m−κn

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(Yt − Y n)

∥
∥
∥
∥
∥
A

≤ max
1≤k≤m−κn

∥
∥
∥
∥

∑m
t=k+1 Yt

m− k

∥
∥
∥
∥
A

+ oP (1)

= OP

(

κ
− 1

2
n

)

+ oP (1) , (2.40)

max
m+κn≤k<n

∥
∥
∥
∥
∥

1

k −m

k∑

t=m+1

(Yt − Y n)

∥
∥
∥
∥
∥
A

≤ max
m+κn≤k<n

∥
∥
∥
∥
∥

∑k
t=m+1 Yt

k −m

∥
∥
∥
∥
∥
A

+ oP (1)

= OP

(

κ
− 1

2
n

)

+ oP (1) . (2.41)

39



2. Multidimensional mean change model

Proof:
Observe, that w.l.o.g. we can assume E[Y1] = 0, otherwise define Y ⋆

i = Yi − E[Yi] and show
the behaviour for Y ⋆

i .

From the Hájek-Rényi inequality we get for an i.i.d. sequence Yt and for sequences an, bn and
non-increasing sequence ck that the partial sums

∑k
t=1 Yt follow

max
an≤k≤bn

∥
∥
∥
∥
∥
ck

k∑

t=1

Yt

∥
∥
∥
∥
∥
A

= OP



(anc
2
an +

bn∑

k=an+1

c2k)
1
2



 .

The equation in (2.39) can be proved using the Hájek-Rényi inequality with ck = 1. For the
inequality in (2.39) we use the triangle inequality.

For the inequalities in (2.40) and (2.41), we use the triangle inequality. The CLT (see Theorem
C.2.1) gives

∥
∥Y n

∥
∥
A

= OP

(

n−
1
2

)

.

To prove the other relations we apply again the Hájek-Rényi inequality. The sequence
{Ym−k+1} is a sequence of i.i.d. random vectors, so the Hájek-Rényi inequality can be applied
to partial sums of them. For (2.40) we get

max
1≤k≤m−κn

∥
∥
∥
∥

∑m
t=k+1 Yt

m− k

∥
∥
∥
∥
A

= max
κn≤l≤m−1

∥
∥
∥
∥
∥

1

l

l∑

k=1

Ym−k+1

∥
∥
∥
∥
∥
A

=Op









1

κn
+

m−1∑

k=κn+1

1

k2





1
2






=Op

((
1

κn
+

∫ m

κn

1

x2
dx

) 1
2

)

=Op

((
1

κn
+

∫ ∞

κn

1

x2
dx

) 1
2

)

=Op

(

κ
− 1

2
n

)

.

The equation in (2.41) follows in the same way

max
m+κn≤k<n

∥
∥
∥
∥
∥

∑k
t=m+1 Yt

k −m

∥
∥
∥
∥
∥
A

= max
κn≤l≤n−m−1

∥
∥
∥
∥
∥

1

l

l∑

t=1

Yt+m

∥
∥
∥
∥
∥
A

= Op

((
1

κn
+

∫ ∞

κn

1

x2
dx

) 1
2

)

=Op

(

κ
− 1

2
n

)

.
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2.3. Change-point estimator

Theorem 2.3.2

Under the assumptions of Theorem 2.3.1 the change-point estimator m̂(η, γ) (2.25) fulfils

m̂(η, γ;A) −m = OP (1) .

Proof:
From Corollary 2.3.2 we know, that it is enough to analyse the behaviour in a truncated area.
For estimators m̂(η, γ;A) = m̂(0, γ;A), it is enough to analyse m̂(α, γ;A) with α ∈

(
0, 12
)

fixed but with α < λ < 1 − α. In the other cases, i.e. η ∈ (0, λ), let α be equal to η. So we
have to prove

m̂(α, γ;A) −m = OP (1)

for α ∈ (0, 12). This means we have to show that for every ǫ > 0 exists a κ > 0 such that for
all n

P (|m̂(α, γ;A) −m| > κ) = P (m̂(α, γ;A) < m− κ) + P (m̂(α, γ;A) > m+ κ) ≤ ǫ . (2.42)

We will consider the two parts m̂(α, γ;A) < m− κ and m̂(α, γ;A) > m+ κ separately.

Before we come to the proofs for each part, we observe

m̂(α, γ;A) = arg max
αn≤k≤(1−α)n

w0,γ(k/n)

∥
∥
∥
∥
∥

k∑

t=1

(Xt − θ̂n)

∥
∥
∥
∥
∥
A

= arg max
αn≤k≤(1−α)n

Vk , (2.43)

with

Vk =
∥
∥
∥wγ(k/n)Sk(θ̂n) − wγ(m̂/n)Sk(θ̂n)

∥
∥
∥
A

=
(

wγ(k/n)Sk(θ̂n)
)
T

A
(

wγ(k/n)Sk(θ̂n)
)

−
(

wγ(m/n)Sm(θ̂n)
)
T

A
(

wγ(k/n)Sk(θ̂n)
)

+
(

wγ(k/n)Sk(θ̂n)
)
T

A
(

wγ(m/n)Sm(θ̂n)
)

−
(

wγ(m/n)Sm(θ̂n)
)
T

A
(

wγ(m/n)Sm(θ̂n)
)

= −
(

wγ(m/n)Sm(θ̂n) − wγ(k/n)Sk(θ̂n)
)
T

A
(

wγ(m/n)Sm(θ̂n) + wγ(k/n)Sk(θ̂n)
)

= −
〈

wγ(m/n)Sm(θ̂n) − wγ(k/n)Sk(θ̂n), wγ(m/n)Sm(θ̂n) + wγ(k/n)Sk(θ̂n)
〉

A

and Sk(θ) =
∑k

t=1(Xt−θ), see N.1. Recall, w0,γ(k/n) = wγ(k/n) by notation N.7 and 〈·, ·〉A
as in notation N.2.
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2. Multidimensional mean change model

First, let us consider 0 < m̂ < m− κ.
With Sk(θ̂n) =

∑k
t=1 εt − kεn − k(1 − m

n )δ for k < m we get

Vk = −
〈

(wγ(m/n) − wγ(k/n))

k∑

t=1

(εt − εn) + wγ(m/n)

m∑

t=k+1

εt

− wγ(m/n)(m− k)εn − (wγ(m/n)m− wγ(k/n)k)(1 − m

n
)δ ,

wγ(m/n)
m∑

t=k+1

(εt − εn) + (wγ(m/n) + wγ(k/n))
k∑

t=1

(εt − εn)

− (wγ(m/n)m+ wγ(k/n)k)(1 − m

n
)δ
〉

A
.

= −
〈

(wγ(m/n) − wγ(k/n))
k∑

t=1

(εt − εn), (wγ(k/n) + wγ(m/n))
k∑

t=1

(εt − εn)

+ wγ(m/n)
m∑

t=k+1

(εt − εn) − (wγ(k/n)k + wγ(m/n)m)(1 − m

n
)δ

〉

A

−
〈

wγ(m/n)
m∑

t=k+1

(εt − εn), (wγ(k/n) + wγ(m/n))
k∑

t=1

(εt − εn)

+ wγ(m/n)

m∑

t=k+1

(εt − εn)

〉

A

+ wγ(m/n)(wγ(k/n)k + wγ(m/n)m)

〈
m∑

t=k+1

εt, (1 − m

n
)δ

〉

A

− wγ(m/n)(wγ(k/n)k + wγ(m/n)m)

〈

εn, (1 − m

n
)δ

〉

A

+ (wγ(m/n)m− wγ(k/n)k)

〈

(1 − m

n
)δ, (wγ(k/n) + wγ(m/n))

k∑

t=1

(εt − εn)

+ wγ(m/n)

m∑

t=k+1

εt − wγ(m/n)(m− k)εn − (wγ(k/n)k + wγ(m/n)m)(1 − m

n
)δ

〉

A

.

Straight forward calculation gives

Vk =(wγ(k/n) − wγ(m/n))(wγ(k/n) + wγ(m/n))

∥
∥
∥
∥
∥

k∑

t=1

εt − kεn

∥
∥
∥
∥
∥

2

A

− w2
γ(m/n)

〈
k∑

t=1

(εt − εn) +

m∑

t=1

(εt − εn),

m∑

t=k+1

(εt − εn)

〉

A

− 2(w2
γ(m/n)m− w2

γ(k/n)k)

〈
k∑

t=1

(εt − εn), (1 − m

n
)δ

〉

A
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2.3. Change-point estimator

− 2w2
γ(m/n)m

〈

(m− k)εn, (1 − m

n
)δ

〉

A

+ 2w2
γ(m/n)m

〈
m∑

t=k+1

εt, (1 − m

n
)δ

〉

A

− (w2
γ(m/n)m2 − w2

γ(k/n)k2)
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

=B1 +B2 +B3 +B4 +B5 +B6 . (2.44)

We determine the parts of Vk which can not be dominated by the deterministic part B6. First
observe that from the properties of the weight function ( equation (2.30) in Corollary 2.3.1),
we have

max
αn<k≤m−κ

m− k

|B6|
= max

αn<k≤m−κ
m− k

|(w2
γ(m/n)m2 − w2

γ(k/n)k2)
∥
∥(1 − m

n )δ
∥
∥2

A
|

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

. (2.45)

Now, we analyse each part of Vk. For the first part observe

max
αn<k≤m−κ

∣
∣
∣
∣

B1

m− k

∣
∣
∣
∣
≤ max

αn<k≤m−κ

|w2
γ(k/n) − w2

γ(m/n)|
m− k

max
αn<k≤m−κ

∥
∥
∥
∥
∥

k∑

t=1

εt − kεn

∥
∥
∥
∥
∥

2

A

≤ O(n−1)

(

max
αn<k≤m−κ

∥
∥
∥
∥
∥

k∑

t=1

εt

∥
∥
∥
∥
∥
A

+ max
αn<k≤m−κ

k2‖εn‖A

)2

,

with the triangle inequality and equation (2.28). In the equation (2.28) the constant is O(1)
because κ/n −→

n→∞
0. Using (a+ b)2 ≤ a2 + b2 for a, b ∈ R and Lemma 2.3.3 (with κn ≡ κ > 0

fixed but arbitrary), we get

max
αn<k≤m−κ

∣
∣
∣
∣

B1

m− k

∣
∣
∣
∣
≤ O(n−1)



 max
αn<k≤m−κ

∥
∥
∥
∥
∥

k∑

t=1

εt

∥
∥
∥
∥
∥

2

A

+ max
αn<k≤m−κ

k2‖εn‖2A





= O(n−1)OP (n) = OP (1) . (2.46)

For the analysis of B2 we use the Cauchy-Schwarz inequality to conclude

max
αn<k≤m−κ

∣
∣
∣
∣

B2

m− k

∣
∣
∣
∣
≤w2

γ(m/n) max
αn<k≤m−κ

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn) +

m∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

· max
αn<k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(εt − εn)

∥
∥
∥
∥
∥
A

.
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2. Multidimensional mean change model

Recall that m = ⌊λn⌋ (G.1), so the weight function at m/n is bounded. Applying the triangle
inequality to

∑k
t=1 εt − kεn +

∑m
t=1 εt −mεn two-times and using Lemma 2.3.3, we get

max
αn<k≤m−κ

∣
∣
∣
∣

B2

m− k

∣
∣
∣
∣
≤ O(1)

(

2 max
αn<k≤m

∥
∥
∥
∥
∥

k∑

t=1

εt

∥
∥
∥
∥
∥
A

+ 2m‖εn‖A

)

·
(

max
αn<k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

εt

∥
∥
∥
∥
∥
A

+ ‖εn‖A

)

=
(

OP (n
1
2 ) +O(n)OP (n−

1
2 )
)(

OP (κ−
1
2 ) +OP (n−

1
2 )
)

= OP

(

n
1
2κ−

1
2

)

+OP (1) . (2.47)

For B3 and B4 we use the Cauchy-Schwarz inequality together with Lemma 2.3.3 (again
κn ≡ κ > 0) and (2.29). Thus, it follows

max
αn<k≤m−κ

∣
∣
∣
∣

B3

m− k

∣
∣
∣
∣
≤ O(1) max

αn<k≤m−κ

∥
∥
∥
∥
∥

k∑

t=1

εt − kεn

∥
∥
∥
∥
∥
A

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

= OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

, (2.48)

max
αn<k≤m−κ

∣
∣
∣
∣

B4

m− k

∣
∣
∣
∣
≤ O(n)‖εn‖A

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

= OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

. (2.49)

To approximate the remaining term we again use Lemma 2.3.3 equation (2.40) and get

max
αn<k≤m−κ

∣
∣
∣
∣

B5

m− k

∣
∣
∣
∣
≤ O(n) max

αn≤k≤m−κ

∥
∥
∥
∥
∥

1

m− κ

m∑

t=k+1

εt

∥
∥
∥
∥
∥
A

∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

= OP

(

nκ−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

. (2.50)

Thus, we can conclude

max
αn<k≤m−κ

∣
∣
∣
∣

B1

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP (1) = oP (1) ,

max
αn<k≤m−κ

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)(

OP (n
1
2κ−

1
2 ) +OP (1)

)

= oP (1) ,

max
αn<k≤m−κ

∣
∣
∣
∣

B3

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

= oP (1) ,

max
αn<k≤m−κ

∣
∣
∣
∣

B4

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

n
1
2

∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

)

= oP (1) ,

max
αn<k≤m−κ

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

nκ−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

= OP (κ−
1
2 ) .
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2.3. Change-point estimator

This leads to

P (m̂(α, γ;A) < m− κ) = P

(

max
αn<k<m−κ

Vk > max
m−κ≤k≤(1−α)n

Vk

)

≤ P

(

max
αn<k<m−κ

Vk ≥ Vm

)

= P

(

max
αn<k<m−κ

Vk ≥ 0

)

= P

(

max
αn<k<m−κ

{

B6

(

1 + oP (1) +
B5

B6

)}

≥ 0

)

. (2.51)

From Corollary 2.3.1 we have B6 < 0 for k < m, with max1≤k≤m−κB6 ≤ c < 0 for some c.
Thus, we conclude

P (m̂(α, γ;A) < m− κ) ≤ P

(

max
αn<k<m−κ

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 + oP (1)

)

≤ P

(

max
αn<k<m−κ

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 − τ

)

+ P

(

1 + oP (1) ≤ max
αn<k<m−κ

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≤ 1 − τ

)

≤ P
(

OP (1) ≥ (1 − τ)κ
1
2

)

+ o(1)

with 0 < τ < 1 arbitrary. This term becomes arbitrarily small for a sufficiently large κ > 0.

The proof for other case, m + κ < m̂ < n, is similar to the case before. However, in the
literature this case is hardly dealt with. We take the opportunity to look at it closely.
As in (2.44) we determine a decomposition of Vk. By using Sm(θ̂n) = Sk(θ̂n)−Sm+1,k(θ̂n) we
get

Vk = −
〈

wγ(m/n)Sm(θ̂n) − wγ(k/n)Sk(θ̂n), wγ(m/n)Sm(θ̂n) + wγ(k/n)Sk(θ̂n)
〉

A

= −
〈

(wγ(m/n) − wγ(k/n))Sk(θ̂n) − wγ(m/n)Sm+1,k(θ̂n), (wγ(m/n) + wγ(k/n))Sk(θ̂n)

− wγ(m/n)Sm+1,k(θ̂n)
〉

A
.

For the specific model we have for k > m

Sm(θ̂n) =

m∑

t=1

εt −mεn − (n−m)
m

n
δ ,

Sm+1,k(θ̂n) =
k∑

t=m+1

εt + (k −m)δ − (k −m)εn − (k −m)(1 − m

n
)δ

=
k∑

t=m+1

εt − (k −m)εn + (k −m)
m

n
δ

=

k∑

t=m+1

εt − (k −m)εn + (n−m− (n− k))
m

n
δ
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2. Multidimensional mean change model

and for k ≥ m

Sk(θ̂n) = Sm(θ̂n) + Sm+1,k(θ̂n)

=
k∑

t=1

εt − kεn − (n−m)
m

n
δ + (k −m)

m

n
δ

=

k∑

t=1

εt − kεn − (n− k)
m

n
δ .

Then we get

Vk = −
〈

(wγ(m/n) − wγ(k/n))
k∑

t=1

(εt − εn) − wγ(m/n)
k∑

t=m+1

εt + wγ(m/n)(k −m)εn

− (wγ(m/n)(n−m) − wγ(k/n)(n− k))
m

n
δ ,

(wγ(m/n) + wγ(k/n))

k∑

t=1

(εt − εn) − wγ(m/n)

k∑

t=m+1

(εt − εn)

− (wγ(m/n)(n−m) + wγ(k/n)(n− k))
m

n
δ

〉

A

=(wγ(k/n) − wγ(m/n))
〈 k∑

t=1

(εt − εn) , (wγ(k/n) + wγ(m/n))
k∑

t=1

(εt − εn)

− wγ(m/n)

k∑

t=m+1

(εt − εn) − (wγ(k/n)(n− k) + wγ(m/n)(n−m))
m

n
δ
〉

A

+ wγ(m/n)
〈 k∑

t=m+1

(εt − εn) , (wγ(k/n) + wγ(m/n))

k∑

t=1

(εt − εn)

− wγ(m/n)
k∑

t=m+1

(εt − εn)
〉

A

− wγ(m/n)(wγ(k/n)(n− k) + wγ(m/n)(n−m))
〈 k∑

t=m+1

εt,
m

n
δ
〉

A

+ wγ(m/n)(wγ(k/n)(n− k) + wγ(m/n)(n−m))
〈

(k −m)εn,
m

n
δ
〉

A

+ (wγ(m/n)(n−m) − wγ(k/n)(n− k))
〈m

n
δ, (wγ(k/n) + wγ(m/n))

k∑

t=1

(εt − εn)

− wγ(m/n)

k∑

t=m+1

εt + wγ(m/n)(k −m)εn − (wγ(m/n)(n−m) + wγ(k/n)(n− k))
m

n
δ
〉

A
.
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2.3. Change-point estimator

Straight forward calculation leads to

Vk =(w2
γ(k/n) − w2

γ(m/n))

∥
∥
∥
∥
∥

k∑

t=1

εt − kεn

∥
∥
∥
∥
∥

2

A

− w2
γ(m/n)

〈 k∑

t=1

(εt − εn) +

m∑

t=1

(εt − εn),

k∑

t=m+1

(εt − εn)
〉

A

− 2(w2
γ(k/n)(n− k) − w2

γ(m/n)(n−m))
〈 k∑

t=1

(εt − εn),
m

n
δ
〉

A

+ 2w2
γ(m/n)m

〈

(k −m)εn, (1 − m

n
)δ
〉

A

− 2w2
γ(m/n)m

〈 k∑

t=m+1

εt, (1 − m

n
)δ
〉

A

+ (w2
γ(k/n)(n− k)2 − w2

γ(m/n)(n−m)2)
∥
∥
∥
m

n
δ
∥
∥
∥

2

A

=B̃1 + B̃2 + B̃3 + B̃4 + B̃5 + B̃6 . (2.52)

We use the properties of the weight function (see Corollary 2.3.1) to prove the asymptotic
behaviour. For the deterministic part (B6) we use the left inequality of (2.30). With the
symmetry of wγ(s) and l = n− k we have

max
m+κ≤k≤(1−α)n

k −m

|B̃6|
= max
αn≤l≤n−m−κ

(n−m) − l

w2
γ(1 − l

n)l2 − w2
γ(m/n)(n−m)2

= max
αn≤l≤n−m−κ

(n−m) − l

w2
γ( ln)l2 − w2

γ(n−mn )(n−m)2
= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

.

Again we analyse the asymptotic behaviour of the other parts. With analogue arguments for
B̃1, B̃2, B̃3 and B̃4 we get

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃1

m− k

∣
∣
∣
∣
∣

= max
m+κ≤k≤(1−α)n

|w2
γ(k/n) − w2

γ(m/n)|
k −m

∥
∥
∥
∥
∥

k∑

t=1

εt + kεn

∥
∥
∥
∥
∥

2

A

= O(n−1)OP (n) = OP (1) .

Equivalently, we get with the Cauchy-Schwarz inequality and the triangle inequality

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃2

m− k

∣
∣
∣
∣
∣
≤ O(1)

(

2 max
αn≤k≤m

∥
∥
∥
∥
∥

k∑

t=1

εt

∥
∥
∥
∥
∥
A

+ 2m‖εn‖A

)

·
(

max
αn≤k≤m−κ

∥
∥
∥
∥
∥

1

k −m

k∑

t=m+1

εt

∥
∥
∥
∥
∥
A

+ ‖εn‖A

)

=
(

OP (n
1
2 ) +O(n)OP (n−

1
2 )
)(

OP (κ−
1
2 ) +OP (n−

1
2 )
)

= OP

(

n
1
2κ−

1
2

)

+OP (1) .
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2. Multidimensional mean change model

For the analysis of B̃3 we use the Cauchy-Schwarz inequality and the symmetry of the weight
function to conclude

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃3

k −m

∣
∣
∣
∣
∣
≤ max

αn≤n−k≤n−m−κ

∣
∣
∣
∣
∣

w2
γ(1 − k/n)(n− k) − w2

γ(1 −m/n)(n−m)

n−m− (n− k)

∣
∣
∣
∣
∣

max
m+κ≤k≤(1−α)n

(∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

)
(∥
∥
∥
m

n
δ
∥
∥
∥
A

)

.

Using property (2.29) of the weight function and Lemma 2.3.3 we get

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃3

m− k

∣
∣
∣
∣
∣
≤ O(1)OP

(

n
1
2

∥
∥
∥
m

n
δ
∥
∥
∥
A

)

= OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

.

For B̃4 and B̃5 we also use the Cauchy-Schwarz inequality and Lemma 2.3.3. Thus, it follows

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃4

m− k

∣
∣
∣
∣
∣
≤ O(n)‖εn‖A

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

= OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

,

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃5

k −m

∣
∣
∣
∣
∣
≤ O(n) max

m+κ≤k≤(1−α)n

∥
∥
∥
∥
∥

1

k −m

k∑

t=m+1

εt

∥
∥
∥
∥
∥
A

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

= OP

(

nκ−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

.

Thus, we can conclude

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃1

B̃6

∣
∣
∣
∣
∣

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP (1) = oP (1) ,

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃2

B6

∣
∣
∣
∣
∣

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

(OP (n
1
2κ−

1
2 ) +OP (1)) = oP (1) ,

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃3

B̃6

∣
∣
∣
∣
∣

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

n−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

= oP (1) ,

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃4

B̃6

∣
∣
∣
∣
∣

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

n
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

= oP (1) ,

max
m+κ≤k≤(1−α)n

∣
∣
∣
∣
∣

B̃5

B̃6

∣
∣
∣
∣
∣

= O

(

n−1
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

−2

A

)

OP

(

nκ−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥
A

)

= OP

(

κ−
1
2

∥
∥
∥(1 − m

n
δ)
∥
∥
∥

−1

A

)

.

As in equation (2.51) we have

P (m̂(α, γ) > m+ κ) = P

(

max
m+κ<k≤(1−α)n

Vk > max
αn<k≤m+κ

Vk

)

≤ P

(

max
m+κ<k≤(1−α)n

Vk ≥ 0

)

= P

(

max
m+κ<k≤(1−α)n

{

B̃6

(

1 + oP (1) +
B̃5

B̃6

)}

≥ 0

)
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2.3. Change-point estimator

By Corollary 2.3.1 together with the symmetry of wγ(k/n), i.e. wγ(k/n) = wγ((n − k)/n),
we have B̃6 < 0 for m < k, with maxm+κ≤k≤(1−α)n B̃6 ≤ c < 0 for c fixed but arbitrary.
Equivalent to the case k < m we have for k > m

P (m̂(α, γ;A) > m+ κ)

≤ P

(

max
m+κ<k≤(1−α)n

∣
∣
∣
∣
∣

B̃5

B̃6

∣
∣
∣
∣
∣
≥ 1 − τ

)

+ P

(

1 + oP (1) ≤ max
m+κ<k≤(1−α)n

∣
∣
∣
∣
∣

B̃5

B̃6

∣
∣
∣
∣
∣
≤ 1 − τ

)

≤ P
(

OP (1) ≥ (1 − τ)κ
1
2

)

+ o(1) ,

with 0 < τ < 1 arbitrary. This term becomes arbitrarily small for a sufficiently large κ > 0.

Lemma 2.3.4

For Yt, t = 1, . . . , n, being i.i.d. with finite second moment and κn > 0 a deterministic
sequence. If κn

n −→
n→∞

0 then we have

max
m−κn<k<m+κn

∥
∥
∥
∥
∥

k∑

t=1

(Yt − Y n)

∥
∥
∥
∥
∥
A

= OP (
√
n) , (2.53)

max
m−κn<k<m

∥
∥
∥
∥
∥

m∑

t=k+1

(Yt − Y n)

∥
∥
∥
∥
∥
A

= OP (
√
κn) , (2.54)

max
m<k<m+κn

∥
∥
∥
∥
∥

k+1∑

t=m

(Yt − Y n)

∥
∥
∥
∥
∥
A

= OP (
√
κn) . (2.55)

Proof:
First observe that w.l.o.g. we can set A = Id and E[Y1] = 0.

For the first equation (2.53) we observe that by the triangle inequality we have

max
m−κn<k<m+κn

∥
∥
∥
∥
∥

k∑

t=1

(Yt − Y n)

∥
∥
∥
∥
∥
≤ max

m−κn<k<m+κn

∥
∥
∥
∥
∥

k∑

t=1

Yt

∥
∥
∥
∥
∥

+ max
m−κn<k<m+κn

k
∥
∥Y n

∥
∥

≤ max
1<k<m+κn

k∑

t=1

‖Yt‖ +O(n+ κn)
∥
∥Y n

∥
∥

= OP

(√
n

(

1 +

√
κn
n

))

+OP

(√
n
(

1 +
κn
n

))

.

The claim follows by the CLT (see e.g. Theorem C.2.1).
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2. Multidimensional mean change model

With the same arguments we get

max
m−κn<k<m

∥
∥
∥
∥
∥

m∑

t=k+1

(Yt − Y n)

∥
∥
∥
∥
∥

= max
1≤l<κn

∥
∥
∥
∥
∥

l∑

t=1

Ym−t+1 − lY n

∥
∥
∥
∥
∥

≤ max
1≤l<κn

∥
∥
∥
∥
∥

l∑

t=1

Ym−t+1

∥
∥
∥
∥
∥

+ κn
∥
∥Y n

∥
∥

= OP (
√
κn) +Op

(
κn√
n

)

.

For the equation (2.55) equivalent argumentation finishes the proof.

Theorem 2.3.3

Let the assumptions of Theorem 2.3.1 hold true. Then

m̂(η, γ;A) −m
d−→ arg max{W (s) − |s|g(s)D2, s ∈ Z}

with D = ‖δ‖A,

W (s) =







0 , s = 0 ,

δTAΣ
1
2
∑−1

t=s ξ
(2)
t , s < 0 ,

δTAΣ
1
2
∑s

t=1 ξ
(1)
t , s > 0 ,

ξ
(z)
i are i.i.d. with L

(

ξ
(z)
1

)

= L (ε̃1) for z = 1, 2 and

g(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

Proof:

To simplify the notation we use m̂ := m̂(η, γ;A).

We show the claim by analysing the behaviour of the parts from the decomposition of Vk. Let
(w.l.o.g.) x > 0 and κ > x be both fixed but arbitrary. We get

P (m̂−m ≤ x) = P (m− κ ≤ m̂ ≤ m+ x, |m̂−m| < κ) + P (m̂−m ≤ x, |m̂−m| > κ) .

The second term on the right hand side is bounded by P (|m̂−m| > κ). From Theorem 2.3.2
we can conclude that for all n the second term of the right hand side becomes arbitrary small
for large enough κ.

Hence, for fixed n and κ→ ∞ we have uniformly convergence and know from Theorem 2.3.2
that the limit exists. This implies that we can interchange the limits. For determining the
asymptotic distribution we consider the convergence in n for fixed κ > 0. Then we derive the
asymptotic distribution by letting κ→ ∞. To determine the limit we use

lim
n→∞

P (m− κ ≤ m̂ ≤ m+ x, |m̂−m| < κ)

= lim
n→∞

P ( max
(k−m)∈(−κ,x]

Vk ≥ max
(k−m)∈(x,κ)

Vk) , (2.56)
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2.3. Change-point estimator

where Vk is as in the proof of Theorem 2.3.2.

Again, we consider the two different cases for k ∈ (m− κ,m) and k ∈ (m,m+ κ) separately.
We start with analysing the asymptotic behaviour for k ∈ (m− κ,m). For this side, we have
by equation (2.44) the following decomposition

Vk =B1 +B2 +B3 +B4 +B5 +B6

with

B1 = (w2
γ(k/n) − w2

γ(m/n))

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥

2

A

,

B2 = −w2
γ(m/n)

〈 k∑

t=1

(εt − εn) +
m∑

t=1

(εt − εn),
m∑

t=k+1

(εt − εn)
〉

A
,

B3 = −2(w2
γ(m/n)m− w2

γ(k/n)k)
〈 k∑

t=1

(εt − εn), (1 − m

n
)δ
〉

A
,

B4 = 2w2
γ(m/n)m

〈

(m− k)εn, (1 − m

n
)δ
〉

A
,

B5 = −2w2
γ(m/n)m

〈 m∑

t=k+1

εt, (1 − m

n
)δ
〉

A
,

B6 = −(w2
γ(m/n)m2 − w2

γ(k/n)k2)
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

= −2(wγ(m/n)m− wγ(k/n)k)wγ(m/n)m‖(1 − λ)δ‖2A
+ (wγ(m/n)m− wγ(k/n)k)2‖(1 − λ)δ‖2A .

Recall, from (2.31) we have B6 < 0.

We state the results in relation to a fixed but arbitrary constant κ. This will be useful later
(see Theorem2.4.4). With Lemma 2.3.4 and the properties of the weight function (Corollary
2.3.1) we have

max
k∈(m−κ,m)

|B1| ≤ max
m−κ≤k≤m

∣
∣w2

γ(m/n) − w2
γ(k/n)

∣
∣



 max
m−κ≤k≤m

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥

2

A





= OP (c2κn
−1)OP (n)

= OP (κ) . (2.57)

Again using the triangle inequality in addition to the Hájek-Rényi inequality and with Lemma
2.3.4 we get, recalling that m = ⌊λn⌋,

max
k∈(m−κ,m)

|B2| ≤ w2
γ(m/n)

(

max
k∈(m−κ,m)

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

+

∥
∥
∥
∥
∥

m∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

)

max
k∈(m−κ,m)

∥
∥
∥
∥
∥

m∑

t=k+1

(εt − εn)

∥
∥
∥
∥
∥
A

= OP (
√
n
√
κ) .
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2. Multidimensional mean change model

Analogously we get

max
k∈(m−κ,m)

|B3| ≤ 2 max
k∈(m−κ,m)

|w2
γ(m/n)m− w2

γ(k/n)k|

max
k∈(m−κ,m)

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥
A

∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

= OP

(

κ
√
n
∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

)

and

max
k∈(m−κ,m)

|B4| ≤ 2w2
γ(m/n)m max

k∈(m−κ,m)
(m− k)‖εn‖A

∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

= OP

(

κ
√
n
∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

)

.

For the dominating parts we observe the following

max
k∈(m−κ,m)

|B5| = max
k∈(m−κ,m)

∣
∣
∣
∣
∣
−2w2

γ(m/n)m(1 − m

n
)δTA

m∑

t=k+1

ε̃t

∣
∣
∣
∣
∣

=OP (n
∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

)

and

max
k∈(m−κ,m)

|B6| = max
k∈(m−κ,m)

∣
∣
∣
∣
−(wγ(m/n)m− wγ(k/n)k)(wγ(m/n)m+ wγ(k/n)k)

∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

∣
∣
∣
∣

= max
k∈(m−κ,m)

∣
∣
∣− 2(wγ(m/n)m− wγ(k/n)k)wγ(m/n)m

+ (wγ(m/n)m− wγ(k/n)k)2
∣
∣
∣

∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

= max
k∈(m−κ,m)

∣
∣
∣− 2(wγ(m/n)m− wγ(k/n)k)wγ(m/n)m+ oP (1)

∣
∣
∣

∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

=OP (n
∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A
) . (2.58)

Moreover, we have due to the property (2.26) of the weight function, that

(wγ(m/n)m−wγ((m+ l)/n)(m+ l))

= −l
(

w′
γ(l̃/n)l̃ + wγ(l̃/n)

)

= −lwγ+1(l̃/n)

(

l̃

n
γ(2

l̃

n
− 1) + (l̃/n(1 − l̃/n))

)

, (2.59)

where l̃ ∈ [m+ l,m] (because l ∈ (−κ, 0)). It follows from m+l
n −→

n→∞
λ for all l ∈ (−κ, 0) that

wγ(m/n)m− wγ((m+ l)/n)(m+ l) −→
n→∞

|l|wγ+1(λ)λ(γ(2λ− 1) + 1 − λ) .
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2.3. Change-point estimator

Let ε̃m+i+1 = Σ− 1
2 εm+i+1 (see Notation N.8), then we have

max
l∈(−κ,0)

w−2γ(m/n)

m
Vm+l

= max
l∈(−κ,0)

(

2(1 − λ)δTAΣ
1
2

−1∑

t=l

ε̃m+t+1 − 2|l|γλ+ (1 − γ)(1 − λ)

(1 − λ)
‖(1 − λ)δ‖2A + oP (1)

)

.

Define ξ
(1)
i

d
= ε̃1 and

V
(1)
l = 2δTAΣ

1
2

−1∑

t=l

ξ
(1)
t − 2|l|(1 − γ)(1 − λ) + γλ

(1 − λ)2
‖(1 − λ)δ‖2A .

Then we have asymptomatic convergence and get

max
l∈(−κ,0)

w−2γ(m/n)

m(1 − m
n

)
Vm+l

d−→ max
l∈(−κ,0)

V
(1)
l .

Now we analyse the other side.

As before the case m < k < m+ κ is hardly considered in the literature, because it is analogue.
For the completeness, we give the ideas. Analogously to the first case, we analyse this one
using the decomposition we used in the proof of Theorem 2.3.2 (see equation (2.52)), i.e.

Vk =B̃1 + B̃2 + B̃3 + B̃4 + B̃5 + B̃6 .

With the same argumentations, i.e. triangle inequality and Cauchy-Schwarz inequality as well
as the CLT together with the Hájek-Rényi inequality, we get

max
k∈(m,m+κ)

∣
∣
∣B̃1

∣
∣
∣ = max

k∈(m,m+κ)
−
(
w2
γ(k/n) − w2

γ(m/n)
)

∥
∥
∥
∥
∥

k∑

t=1

(εt − εn)

∥
∥
∥
∥
∥

2

A

= OP (κ) ,

max
k∈(m,m+κ)

∣
∣
∣B̃2

∣
∣
∣ = max

k∈(m,m+κ)
w2
γ(m/n)

〈
k∑

t=1

(et − εn) +

m∑

t=1

(εt − εn),

k∑

t=m+1

(εt − εn)

〉

A

= OP (
√
n)

and

max
k∈(m,m+κ)

∣
∣
∣B̃3

∣
∣
∣ = max

k∈(m,m+κ)
2
(
w2
γ(k/n)(n− k) − w2

γ(m/n)(n−m)
)

〈
k∑

t=1

(εt − εn),
m

n
δ

〉

A

= OP

(

κ
√
n
∥
∥
∥
m

n
δ
∥
∥
∥
A

)

,

max
k∈(m,m+κ)

∣
∣
∣B̃4

∣
∣
∣ = max

k∈(m,m+κ)
2w2

γ(m/n)(n−m)
〈

(k −m)εn,
m

n
δ
〉

A

= OP

(

κ
√
n
∥
∥
∥
m

n
δ
∥
∥
∥
A

)

.
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2. Multidimensional mean change model

For the dominating parts we observe, that

max
k∈(m,m+κ)

|B̃5| = 2w2
γ(m/n)m max

k∈(m,m+κ)

〈
k∑

t=m+1

εt, (1 − m

n
)δ

〉

A

= OP

(

n
∥
∥
∥(1 − m

n
)δ
∥
∥
∥
A

)

,

max
k∈(m,m+κ)

|B̃6| = max
k∈(m,m+κ)

∣
∣
∣2(wγ(m/n)(n−m) − wγ(k/n)(n− k))wγ(m/n)(n−m)

− (wγ(m/n)(n−m) − wγ(k/n)(n− k))2
∣
∣
∣

∥
∥
∥
m

n
δ
∥
∥
∥

2

A

= max
k∈(m,m+κ)

∣
∣
∣2(wγ(m/n)(n−m) − wγ(k/n)(n− k))wγ(m/n)(n−m)

−O(1)
∣
∣
∣

∥
∥
∥
m

n
δ
∥
∥
∥

2

A

= OP

(

κn
n

n−m

m2

n2

∥
∥
∥(1 − m

n
)δ
∥
∥
∥

2

A

)

.

Observe, that we have by the property (2.26) of the weight function

n(wγ(m/n) − wγ((m+ l)/n)) = −lγwγ+1(l̃/n)(2
l̃

n
− 1) , l̃ ∈ (m,m+ l)

−→
n→∞

−lwγ+1(λ)γ(2λ− 1) .

Together with (2.59), we have

(wγ(m/n)(n−m)−wγ((m+ l)/n)(n− (m+ l)))

= n(wγ(m/n) − wγ((m+ l)/n)) − (wγ(m/n)m− wγ((m+ l)/n)(m+ l))

−→
n→∞

− lwγ+1(λ) (γ(2λ− 1) − λγ(2λ− 1) − λ(1 − λ)) .

Observe, that (γ(2λ− 1) − λγ(2λ− 1) − λ(1 − λ)) = (1−λ) (γ(λ− (1 − λ)) − λ). So, we can
conclude

max
l∈(0,κ)

∣
∣
∣2(wγ(m/n)(n−m) − wγ((m+ l)/n)(n− (m+ l)))

m

n−m

∥
∥
∥(1 − m

n
)d
∥
∥
∥

2

A

− 2lw2γ+1(λ)λ(γ(1 − λ) − γλ+ λ)‖(1 − λ)d‖2A
∣
∣
∣

= oP (1) .

With ε̃i+m = Σ− 1
2 εi+m we have

max
l∈(0,κ)

w−2γ(m/n)

m
Vm+l

d
= max
l∈(0,κ)

(

2(1 − λ)dTΣ
1
2

l∑

t=1

ξ
(2)
t

− 2l
γ(1 − λ) + (1 − γ)λ

1 − λ
‖(1 − λ)d‖2A + oP (1)

)

.

Let V
(2)
l be defined as

V
(2)
l = 2dTAΣ

1
2

l∑

t=1

ξ
(2)
t − 2l

γ(1 − λ) + (1 − γ)λ

(1 − λ)2
‖(1 − λ)d‖2A , (2.60)
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2.4. A-local alternative

with ξ
(2)
t are i.i.d. with L

(

ξ
(2)
1

)

= L (ε̃1). Then it holds

max
l∈(0,κ)

w−2γ(m/n)

m(1 − m
n

)
Vm+l

d−→ max
l∈(0,κ)

V
(2)
l .

Define

Wl =







1
2V

(1)
l , l < 0

0 , l = 0
1
2V

(2)
l , l > 0

,

then for large enough but fixed κ we have

lim
n→∞

P (m̂−m ≤ x,|m̂−m| ≤ κ)

= lim
n→∞

P (m− κ ≤ m̂ ≤ m+ x)

= lim
n→∞

P

(

max
(k−m)∈(−κ,x]

Vk ≥ max
(k−m)∈(x,κ)

Vk

)

= lim
n→∞

P

(
1

w2γ(m/n)m
max

(k−m)∈(−κ,x]
Vk ≥

1

w2γ(m/n)m
max

(k−m)∈(x,κ)
Vk

)

=P

(

max
l∈(−κ,x]

Wl ≥ max
l∈(x,κ)

Wl

)

.

So, letting κ→ ∞, we get the claim.

2.4. A-local alternative

In this section we are going to analyse, what happens if we allow the size of the change to
vanish in the crucial entries, i.e. we have a A-local alternative. The corresponding model is
given as

Xt =

{

θ + εt t ≤ m,

θ + δn + εt t > m,
(2.61)

where the errors {εt} fulfil the L.1, the unknown time-point m fulfils assumption G.1. The
size of the change, i.e. δn, is assumed to fulfil ‖δn‖A = Dn −→

n→∞
0.

First we take a closer look on the test statistic and derive conditions on Dn such that we still
have the asymptotic behaviour we derived before, i.e. a consistent level α test. In section
2.4.2 we are going to analyse the change-point estimator. Here, we are going to see that for
the local alternative we derive a distribution free asymptotic distribution of the change-point
estimator.

2.4.1. Change-point test

The difference between the local and non-local case occurs only under the alternative, i.e.
the asymptotic behaviour of the test statistic under H0 is still valid. We have to analyse the
behaviour under H1. To this end, we have to check under which additional conditions on δn
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2. Multidimensional mean change model

the test is still an asymptotic consistent level α-test.

If the difference between the two states is too small for a given finite sample size the test has
a very low power. Increasing the sample size n will increase the power for all fixed values of
the difference. Now, we allow the entries we are interested in (defined by A) of the difference
δ to depend on the sample size n and decrease with n, i.e. ‖δn‖A −→

n→∞
0. It is clear, that this

converges too fast, the increase of the sample size will not lead to a power one test. Therefore,
we have to determine, how fast the change can become smaller, depending on n. We assume
the A-local alternative, see assumption G.5.b).

Theorem 2.4.1 Assume assumptions L.1,G.1, G.3 and G.5.b). For model (2.61) and
under H1 (1.2)

Tn(η, γ;A)
p−→ ∞

if η < λ < (1 − η).

Proof:
To prove that the test has asymptotic power one, we recall from the proof of Theorem 2.2.2
that

Tn ≥
∣
∣
∣
∣
∣

1√
n

∥
∥
∥
∥
∥

m∑

t=1

(ε̃t − ε̃n)

∥
∥
∥
∥
∥
−O(

√
nDn) + o(1)

∣
∣
∣
∣
∣
.

With Dn being such that Dn −→
n→∞

0 but
√
nDn −→

n→∞
∞, we still have a power one test.

2.4.2. Change-point estimator

For the change-point estimator under a local alternative we have to do a little bit more. First
we check if it is still a consistent estimator.

Theorem 2.4.2 Under the assumptions of Theorem 2.4.1, we have

m̂(η, γ;A) −m = oP
(
D−2
n

)
,

i.e. m̂(η,γ;A)
n is a consistent estimator for λ.

Proof:
To prove the consistency in Theorem 2.3.1 we have used Lemma 3.1 of Pötscher and Prucha
[1997] (Theorem C.1.2), which gives us that from

sup
s∈(η,1−η)

∣
∣
∣
∣
∣
∣

wn(s)γ
1

n

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A

− Lγ(s)

∣
∣
∣
∣
∣
∣

= oa.s.(1) ,

follows that the estimator m̂ maximizing

wn(s)γ
1

n

∥
∥
∥
∥
∥
∥

⌊sn⌋
∑

t=1

(

Xt − θ̂n

)

∥
∥
∥
∥
∥
∥
A
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2.4. A-local alternative

converges to λ (which maximizes  Lγ(s)). Because the Lemma 3.1 of Pötscher and Prucha
[1997] holds true if we use

Lnγ (s) :=







(s(1 − s))−γ ‖−s(1 − λ)δn‖A , s < λ

(s(1 − s))−γ ‖−λ(1 − s)δn‖A , s ≥ λ

instead of Lγ(s) which is also maximised by λ, the consistency follows directly.

In determining the convergence rate we have to go a little more into details. In the proofs
we replace κ by κn and check under which assumptions on κn and δn the result holds true.
It follows that all remains true if we assume

√
nDn −→

n→∞
∞ (assumption G.5.b))and choose

κ = κn = K/D2
n with K > 0.

Theorem 2.4.3 Under assumptions of Theorem 2.4.1 the change-point estimator m̂(η, γ;A)
(2.25) fulfils

m̂(η, γ;A) −m = OP (D−2
n )

with Dn = ‖δn‖A.
The main steps of the proof follows the same idea as for the fixed alternative, but we have to
be careful at some parts.

Proof:
First we have to determine the dominating parts of

Vk = −
〈

wγ(m/n)Sm(θ̂n) − wγ(k/n)Sk(θ̂n), wγ(m/n)Sm(θ̂n) + wγ(k/n)Sk(θ̂n)
〉

A
.

To this end, we use the same decomposition as in the proof of Theorem 2.3.2 (compare
equation (2.44))

Vk =(wγ(k/n) − wγ(m/n))(wγ(k/n) + wγ(m/n))

∥
∥
∥
∥
∥

k∑

t=1

εt − kεn

∥
∥
∥
∥
∥

2

A

− w2
γ(m/n)

〈 k∑

t=1

(εt − εn) +
m∑

t=1

(εt − εn),
m∑

t=k+1

(εt − εn)
〉

A

+ 2w2
γ(m/n)m

〈

(m− k)εn, (1 − m

n
)δn

〉

A

− 2w2
γ(m/n)m

〈 m∑

t=k+1

εt, (1 − m

n
)δ
〉

A

− 2(w2
γ(m/n)m− w2

γ(k/n)k)
〈 k∑

t=1

(εt − εn), (1 − m

n
)δn

〉

A

+ (w2
γ(m/n)m− w2

γ(k/n)k)
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

2

A

=B1 +B2 +B3 +B4 +B5 +B6 .

With the CLT and Hájek-Rényi inequality (see Theorem C.2.1 and C.2.2 for the strong mixing
equivalents) we get the same estimations of the parts B1 till B6 but for the fractions we must
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2. Multidimensional mean change model

be careful because δ now dependence on n. That is, why we replace κ by κn. Nevertheless, we
still have the same bounding of the maxima of the weight function, as long as κn/n −→

n→∞
0.

With the assumption κn = K/D2
n and

√
nDn −→

n→∞
∞ this is fulfilled and we get

max
αn≤k≤m−κn

∣
∣
∣
∣

B1

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

−2

A

)

OP (1) = oP (1)

max
αn≤k≤m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

−2

A

)

OP (n
1
2κ

− 1
2

n )

=OP

(

(
√
nκn

∥
∥
∥(1 − m

n
)δn

∥
∥
∥

2

A
)−1

)

max
αn<k≤m−κn

∣
∣
∣
∣

B3

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

−2

A

)

OP

(

n
1
2

∥
∥
∥(1 − m

n
δn)
∥
∥
∥
A

)

= oP (1)

max
αn<k≤m−κn

∣
∣
∣
∣

B4

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

−2

A

)

OP

(

n
1
2

∥
∥
∥(1 − m

n
δn)
∥
∥
∥
A

)

= oP (1)

max
αn<k≤m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣

=O

(

n−1
∥
∥
∥(1 − m

n
)δn

∥
∥
∥

−2

A

)

OP (nκ
− 1

2
n

∥
∥
∥(1 − m

n
)δn

∥
∥
∥
A

)

=OP

((√
κn

∥
∥
∥(1 − m

n
δn)
∥
∥
∥
A

)−1
)

As we observe, the fractions of B2/B6 and B5/B6 depend on the choice of κn. With κn =
K/D2

n we get the same asymptotic behaviour for this fractions as in the fixed alternative part.

It follows that

P (m̃ < m− κn) =P

(

max
αn<k≤m−κn

Vk ≥ 0

)

≤P
(

max
αn<k≤m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 + oP (1)

)

≤P
(

max
αn<k≤m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 − η

)

+ P

(

1 + oP (1) ≤ max
αn<k≤m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≤ 1 − η

)

≤P
(

OP (1) ≥ (1 − η)K
)

+ o(1) .

This finishes the proof for the case αn ≤ k ≤ m − κn. The same analysise can be done for
m+ κn ≤ k ≤ (1 − α)n, which finishes the proof.

From G.5.b), we have that δn converges to 0 slower than 1√
n

. Hence, D2
n is of smaller order

than n. As m̂, m both increase like n, m̂(η, γ;A) −m becomes relatively smaller (to n) with
increasing sample size.

Theorem 2.4.4 Let the assumptions of Theorem 2.4.1 be fulfilled. For the mean change

model (2.61) it holds
‖δn‖AΣA

Dn
−→
n→∞

c (some constant) and

D2
n

(

m̂(η, γ;A) −m
)

d−→ arg max {cW (s) − |s|g(s), s ∈ R}
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2.4. A-local alternative

with W (s) being a two sided standard Wiener process, Dn = ‖δn‖A and

g(s) =







(1 − γ)(1 − λ) + γλ s < 0

0 s = 0

γ(1 − λ) + (1 − γ)λ s > 0

.

Proof:
We use the main ideas as in the proof of Theorem 2.4.3. So we start with the decomposition
as in Theorem 2.4.3 and determine the limit of Vk for k ∈ (m − CD−2

n ,m) and for k ∈
(m,m + CD−2

n ). Observe that the bounds for the non-dominating parts are still true if we
replace C by CD−2

n .

Since D2
nn −→

n→∞
∞ the maxima of the weight function fulfil the same properties. For example,

the constant c2 from 2.57 is bounded since it is the maximum of the derivative calculated
within m−κn

n and m (from Corollary 2.3.1). The range the maximum is taken decreases in n
and so the derivative. For the case k ∈ (m− CD−2

n ,m) we then have

max
k∈(m−CD−2

n ,m)
|B1| = OP

(

CD−2
n

)

,

max
k∈(m−CD−2

n ,m)
|B2| = OP

(√
n
)

,

max
k∈(m−CD−2

n ,m)
|B3| = OP

(√
nCD−1

n

)

,

max
k∈(m−CD−2

n ,m)
|B4| = OP

(

C
√
nD−1

n

)

= oP (1) .

Equivalently we can handle k ∈ (m,m+ CD−2
n ). Thus, with the same weight of Vk we get

w−2γ(m/n)

2m(1 − m
n

)
Vk

=







2 δ
T

nAΣ
1
2

Dn
Dn

−1∑

t=k−m
ξ
(1)
nt − 2|k −m|γ(2λ−1)+1−λ

(1−λ) D2
n + oP (1) −CD−2

n ≤ k −m ≤ −1

0 k −m = 0

2 δ
T

nAΣ
1
2

Dn
Dn

k−m∑

t=1

ξ
(2)
nt − 2(k −m)λ(γ(1 − 2λ) + λ)D2

n + oP (1) 1 ≤ k −m ≤ CDn
−2

,

with L
(

ξ
(1)
t

)

= L (ε̃−t) and L
(

ξ
(2)
t

)

= L (ε̃t). By the functional central limit theorem

(FCLT) for i.i.d. random vectors (the strong mixing equivalent is discussed in section C.2),
we get 




Dn

−1∑

t=s‖Dn‖−2

ξ
(1)
nt , s < 0







d−→
{

W ′(1)(s), s < 0
}

, (2.62)

where {W ′(1)(s)} is a d-dimensional standard Wiener process. This yields for every x ∈ R
d






xTAΣ

1
2 Dn

−1∑

t=sD−2
n

ξ
(1)
nt , s > 0







d−→
{

‖x‖AΣAW (1)(s), s > 0
}

, (2.63)
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with {W (1)(s)} a standard Wiener process. As
‖δn‖AΣA

Dn
−→
n→∞

c, we define the processes

V (1)
s = cW (1)(s) − |s|g(s) s < 0 ,

V (2)
s = cW (2)(s) − |s|g(s) s > 0

and combine them to

Ws =







V
(1)
s s < 0 ,

0 s = 0 ,

V
(2)
s s > 0 .

(2.64)

Thus, we can conclude†

lim
n→∞

arg max
−C<(k−m)D2

n<C

w−2γ(m/n)

2m(1 − m
n

)
Vk = lim

n→∞
arg max
−C<s<C

w−2γ(m/n)

2m(1 − m
n

)
V⌊ns⌋

= arg max
−C<s<C

Ws .

Observe, that the asymptotic distribution now depends on the lowest decreasing index. But
we the local alternative is usually analysed to derive asymptotic distribution not depending
on the chosen model. In the multivariate case we have to make an additional assumption on
A.

Lemma 2.4.1

Let the assumption of Theorem 2.4.4 hold. If A′ = Σ
1
2AΣ

1
2 is idempotent, then

D2
n

(

m̂(η, γ;A) −m
)

d−→ arg max {W (s) − |s|g(s), s ∈ R}

with W (s) being a two sided standard Wiener process and

g(s) =







(1 − γ)(1 − λ) + γλ s < 0

0 s = 0

γ(1 − λ) + (1 − γ)λ s > 0

.

Proof:
Follows directly by Theorem 2.4.4 and with ‖δn‖AΣA = ‖δn‖

Σ− 1
2A′A′Σ− 1

2
= ‖δn‖

Σ− 1
2A′Σ− 1

2
=

Dn.

†This holds, because for values k + ǫ, ǫ ∈ (0, 1), from the dominating parts only the deterministic one is
affected. The dominating deterministic parts of Vk+ǫ and of V−(k+ǫ)) (k > m) decrease in ǫ.
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2.5. Simulation

Usually we are going to use a distribution free test and estimator. To this end, we have
A = Σ− 1

2A′Σ− 1
2 where A′ is the decision matrix and Σ is the true covariance matrix of the

errors. Σ is usually unknown, hence, before we come to the simulation results, we discuss the
estimation of the unknown covariance matrix. In the next section we are going to introduce
the estimator we used in the simulations.

2.5.1. Covariance estimator

In practice, the covariance matrix Σ is usually unknown. So, the test statistics are not
directly applicable. Replacing the covariance matrix with a consistent estimator gives the
same asymptotic results as it is shown in Theorem 2.2.3. For the one-dimensional case, i.e.
for the test statistic

Tn(η, γ) =
1

σ
max
1≤k<n

wη,γ(k/n)
1√
n

∣
∣
∣Sk(θ̂n)

∣
∣
∣ ,

different estimators for the variance were discussed, see Csörgő and Horváth [1997]. It is
clear, that the sample variance could be used, but also the splitted sample variance, i.e.
estimating the minimal variance under the assumption of a change. If we split the time-
series at the change-point we have two stationary series. Calculating for each separately the
sample variance returns under H0 the same variance estimation after appropriate weighting.
But under H1 the estimated value will be smaller. This results in a larger value of the test
statistic. As we can see, this estimator gains sensitivity also against the alternative of a change
in the variance. This estimator is therefore a good and reasonable one.

In practice we cannot split at the change-point as it is unknown. To this end, we first estimate
a representant of the change-point m̃ using A = A′. The resulting covariance estimator is
then given as

Σ̂n =
m̃

n
Σ̂1 +

n− m̃

n
Σ̂2 (2.65)

where θ̂1, θ̂2 are the parameter estimators based on the observations before and after the
change-point estimator m̂, respectively.

In the univariate case estimating the change-point with the scaled or non-scaled estimator
does not matter. In the multivariate case the estimator for the change-point based on A = A′

and A = Σ
1
2A′Σ− 1

2 may differ.
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2. Multidimensional mean change model

2.5.2. Weight function

As we have discussed in section 2.2.2 and 2.3.2 the choice of the weight function, i.e. the
choice of the parameters γ and η in

wη,γ(s) = 1{η<s<(1−η)} (s(1 − s))−γ

fulfilling N.7, can improve the power of the test as well as the estimation of the change-point.
For the estimation of the change-point depending on the (unknown) position of the change-
point we choose the power of the weight function (γ) to improve the estimation. As the
position is unknown the parameter could be derived using a Plug-In technique, i.e. depending
on the behaviour of the non-weighted test statistic.

Instead of a truncated weight function, with truncation parameter η = η0 and power 1
2 , one

could use a non-truncated one (i.e. η = 0) with a modified power like γ = 1
2 − η0(1 − η0).

We are going to analyse the behaviour of both a truncated with power 1
2 and a non-truncated

with a power modified as proposed. The following parameter constellations are chosen:

η 0 0.01 0.05 0.1

γ 0.4901 0.4525 0.41 0.5

Table 2.1.: Parameter choice for the weight function

The simulated corresponding critical values of the asymptotic distribution for dimensions
d = 1, d = 2 and d = 3 are given in the appendix D.

2.5.3. Models

We have derived a class of test statistics and discussed their behaviour. In this section we are
going to validate the theoretical results and take a closer look at the heavy tailed case.

Csörgő and Horváth [1997] have discussed the goodness of the asymptotic critical value for the
likelihood ratio test in the univariate case. They analysed exponential, Poisson and normal
observations. We focus on the multivariate case and especially on heavy-tailed observations.
For the simulations we used the concept of copula. An introduction and the relation to
multivariate heavy-tailed random variables is given in section B.

As we are in the mean change model (compare (2.61)) we only consider here the simulation of
the residuals εi. For simulating a multivariate random variable based on copula, we use the
algorithm 3.16 from Kroese et al. [2011].

Algorithm 1 Simulation of n random vectors based on copula

1: Generate U having distribution C(u1, . . . , ud).
2: Output X = (X1, . . . , Xd)

T = (F−1
1 (U1), . . . , F

−1
d (Ud))

T.
3: Repeat n times steps 1 & 2.
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2.5. Simulation

The following three distributions for the residuals are analysed.

Example 2.5.1 Multivariate normal distributed, i.e L (εi) = N (0,Σ). For the simulation we
use that a multivariate standard normal distributed random variable has i.i.d. entries. Thus,
let ǫi be independent multivariate normal distributed random variables with expectation 0 and
covariance matrix Id, then

εt = Σ
1
2 ǫt ,

with Σ
1
2 being the Cholesky-decomposition of the positive definite covariance matrix.

Example 2.5.2 Two-sided multivariate log-normal distribution, i.e. εt = ̺tǫt, where each
entry of ̺t is independent of the others with 1 or −1 having probability 1

2 and ǫt are independent
multivariate log-normal distributed with 0 and Σ, i.e. L (log ǫt) = N (0,Σ). The corresponding
copula (as mentioned in Example B.1.2) is given by

C(u1, . . . , ud) = φΣ(φ−1
σ2
11

(u1), . . . , φ
−1
σ2
dd

(ud)) .

The simulation of the U in step 1 of Algorithm 1 results in simulating first a random variable
Y which is multivariate normal distributed with expectation 0 and covariance matrix Σ and
secondly calculate U using U = (φσ2

11
(Y1), . . . , φσ2

dd
(Yd))

T.

The marginal distributions of the residuals are normally distributed with variances which may
differ from the corresponding variances of the marginals in the copula. We know that the
Gaussian copula fulfils the condition for long-tail dependence from example B.2.1. Thus the
marginal distribution decides if the joint distribution of the residuals is long-tail dependent.

Example 2.5.3 Let the observations be t-distributed. Thus, the residuals are assumed to be
multivariate t-distributed with expectation 0. For the marginal distributions we know it is
long-tail dependent for every degree of freedom ν greater than 2. In the multivariate case we
choose the t-copula (see Example B.1.3 on page 206)

C(u1, . . . , ud) = Tν,Σ(T−1
ν (u1), . . . , T

−1
ν (ud)) .

As we know from Example B.2.2 the joint distribution of the random vector having t-distributed
marginals and a t-copula is long-tail dependent. We observe, that if the marginals are all of
the same degree of freedom t-distributed as chosen for the copula, the random vector is just
multivariate t-distributed with expectation 0 and covariance matrix Σ. Such a random vector
can be simulated in the following way (compare Kroese et al. [2011]).

Algorithm 2 Simulation t-distributed random vector with expectation µ and covariance
matrix Σ

1: Generate Z = (Z1, . . . , Zd)
T with Yi being tν distributed.

2: Output Y = (Y1, . . . , Yd)
T = µ+ Σ

1
2Z with (Σ

1
2 )TΣ

1
2 = Σ.

Observe, that this is analogue as for normal distributed random variables, which can also be
seen as for ν → ∞ the t-distribution becomes the normal distribution.

Now, to simulate the U in step 1 of Algorithm 1, we first simulate Y having distribution Tν,Σ
as in Algorithm 2. Then U := (Tν(Y1), . . . , Tν(Yd))

T.

Observe, that the marginal distributions do not have to be of the same degree of freedoms and
especially their degree of freedom can be different to the one of the copula.
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2. Multidimensional mean change model

2.5.4. Results

Using copulas we analyse the change-point test and change-point estimator based on simu-
lated multivariate normal and multivariate heavy tailed random variables. As introduced in
Section 2.5.1, we estimate the covariance matrix of the residuals based on the splitted covari-
ance estimator.

The algorithm implemented for the analysis of the change-point test and change-point esti-
mator is given as follows.

Algorithm 3 Change-point test and estimator for mean change

1: Generate Xt = (Xt1, . . . , Xtd)
T, t = 1, . . . , n observations (including change or without

change).
2: For A = A′ determine the possible change-point m̃.
3: Estimate the covariance matrix Σ using (2.65) with m̃ from the step before.

4: Calculate the test statistic with A = Σ̂
1
2A′Σ̂

1
2 and the corresponding change-point esti-

mator m̂.
5: For a given level α compare the test statistic with the critical value of the asymptotic

distribution (possibly simulated).
6: Output test decision and m̂.

We use the following parameter constellations. Let the expectation µ change from 0 to

a) µ2 =





0.5
0
0



 , b) µ2 =





1
0
0



 , c) µ2 =





0.5
0.5
0



 , d) µ2 =





0.5
0.5
0.5





while we use the following covariance matrices

i) Σ = 0.25Id ii) Σ = Id iii) Σ = 10Id

iv) Σ =





1 0.9 0
0.9 1 0
0 0 1



 v) Σ =





1 0 0.9
0 1 0

0.9 0 1



 vi) Σ =





1 0.9 0.9
0.9 1 0.9
0.9 0.9 1



 .

For the multivariate normal case (Example 2.5.2) this is the covariance matrix. In the other
cases (Example 2.5.2 and 2.5.3) we use Σ for the joint distribution in the copula. Here, we
have to define additional parameters.

In the log-normal case the marginal distributions are with parameters µ = 0 and σ2 = 1, i.e.
L (log(ǫti)) = N (0, 1) for every t = 1, . . . , n and i = 1, . . . , d.

The t-distribution has finite second moment only for a degree of freedom greater than 2. We
choose for the marginal distribution a degree of freedom of 3 and for the copula used 2.
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2.5. Simulation

Size

First of all, we compare the size of the different statistics. In Table 2.2, 2.3 and 2.4 the size for
the multivariate normal, log-normal and t-distributions are given for the 6 different covariance
matrices i) to vi) from page 64. Thereby, we distinguish between diagonal covariance matrices
(case i), ii) and iii)) and non-diagonal covariance matrices (case iv), v) and vi)). We are
interested in the behaviour for small sample sizes. Hence, we run the test for N = 20, 50, 100
observations with M = 106 repetitions. In the case of t-distributed observations we run
into calculation problems, concerning the root of the covariance matrix, for the sample size
N = 100. So, they are missing.

In Table 2.2 we observe that the size of the test converges to the level for normally distributed
observations having a diagonal covariance matrix (case i) to iii)). Otherwise, the size is quite
high (between 0.15 and 0.38). A decrease is observable in the cases iv) and v), but in the case
vi) it seems to be constant.

The estimations of the size under heavy tailed observations (Table 2.3 and Table 2.4) give
comparable results. For non-diagonal covariance matrices (cases iv),v) and vi)) the size is
always higher than 0.56, even 1 for t-distributed observations.

In the case of a diagonal covariance matrix, the estimated size is between 0.04 and 0.52. Let
us take a closer look at the results for log-normal distributed observations (Table 2.3). In the
case i) and ii) the estimated size is between 0.04 and 0.27. A tendency is hardly observable.
But for iii) we can see that the size seems to fall. For example in the case of the weighted
CUSUM we have estimated values between 0.5 and 0.54 for N = 20 and between 0.17 and 0.37
for N = 100. Nevertheless, the values are quite high. This is not the case for t-distributed
observations (with a diagonal covariance matrix). Although we have only estimations for
N = 20 and N = 50, we observe that the estimated size for i) and ii) is comparable to that
in the case of log-normal distribution. But there is no significant difference observable in
between the cases i), ii) and iii) for t-distributed observations.

In conclusion, a dependence of the size of the test on the underlying covariance matrix of the
observations is discernable. A closer look at the estimation of the covariance matrix has to
be done. The use of robust change-point tests even for heavy tailed observations with second
moment should be analysed in comparison to the weighted CUSUM. Also dimension reduction
should be considered in view of the size.
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N η γ i) ii) iii) iv) v) vi)

20 0 0 0.174 0.175 0.175 0.307 0.233 0.325
0.01 0.5 0.148 0.147 0.148 0.301 0.222 0.341

0 0.4901 0.144 0.143 0.144 0.293 0.215 0.332
0.05 0.5 0.172 0.171 0.172 0.335 0.256 0.379

0 0.4525 0.174 0.173 0.174 0.327 0.247 0.365
0.1 0.5 0.202 0.201 0.202 0.352 0.271 0.378
0 0.41 0.188 0.187 0.188 0.339 0.259 0.374

50 0 0 0.085 0.084 0.085 0.196 0.165 0.275
0.01 0.5 0.073 0.073 0.074 0.217 0.181 0.337

0 0.4901 0.068 0.068 0.069 0.205 0.17 0.322
0.05 0.5 0.088 0.088 0.088 0.228 0.191 0.334

0 0.4525 0.085 0.085 0.086 0.229 0.193 0.346
0.1 0.5 0.091 0.091 0.092 0.225 0.19 0.323
0 0.41 0.091 0.091 0.092 0.233 0.196 0.344

100 0 0 0.063 0.063 0.063 0.168 0.152 0.269
0.01 0.5 0.056 0.056 0.056 0.206 0.186 0.366

0 0.4901 0.05 0.05 0.05 0.191 0.172 0.346
0.05 0.5 0.064 0.064 0.064 0.204 0.185 0.344

0 0.4525 0.062 0.062 0.062 0.207 0.188 0.361
0.1 0.5 0.065 0.065 0.065 0.194 0.176 0.319
0 0.41 0.065 0.065 0.066 0.206 0.186 0.351

Table 2.2.: Size for multivariate normal distributed random vectors with α = 0.05
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N η γ i) ii) iii) iv) v) vi)

20 0 0 0.171 0.178 0.377 0.673 0.665 0.868
0.01 0.5 0.183 0.224 0.519 0.702 0.695 0.884

0 0.4901 0.175 0.214 0.511 0.697 0.689 0.881
0.05 0.5 0.21 0.254 0.539 0.726 0.72 0.896

0 0.4525 0.196 0.23 0.519 0.719 0.713 0.894
0.1 0.5 0.235 0.262 0.5 0.719 0.713 0.892
0 0.41 0.201 0.227 0.506 0.726 0.72 0.898

50 0 0 0.074 0.069 0.184 0.595 0.591 0.849
0.01 0.5 0.167 0.212 0.403 0.678 0.674 0.892

0 0.4901 0.156 0.201 0.394 0.67 0.666 0.888
0.05 0.5 0.133 0.161 0.361 0.663 0.659 0.888

0 0.4525 0.159 0.201 0.397 0.691 0.688 0.901
0.1 0.5 0.107 0.119 0.26 0.645 0.641 0.88
0 0.41 0.148 0.184 0.384 0.693 0.69 0.903

100 0 0 0.107 0.047 0.096 0.563 0.563 0.843
0.01 0.5 0.211 0.213 0.361 0.682 0.68 0.907

0 0.4901 0.199 0.199 0.351 0.672 0.67 0.902
0.05 0.5 0.151 0.129 0.304 0.651 0.65 0.898

0 0.4525 0.193 0.191 0.347 0.69 0.689 0.913
0.1 0.5 0.125 0.083 0.173 0.62 0.619 0.879
0 0.41 0.175 0.167 0.327 0.688 0.687 0.913

Table 2.3.: Size for multivariate log-normal distributed random vectors with α = 0.05

N η γ i) ii) iii) iv) v) vi)

20 0 0 0.196 0.195 0.192 1 1 1
0.01 0.5 0.212 0.208 0.2 1 1 1

0 0.4901 0.205 0.201 0.194 1 1 1
0.05 0.5 0.24 0.237 0.228 1 1 1

0 0.4525 0.229 0.226 0.219 1 1 1
0.1 0.5 0.261 0.258 0.252 1 1 1
0 0.41 0.237 0.234 0.228 1 1 1

50 0 0 0.088 0.088 0.087 1 1 1
0.01 0.5 0.171 0.168 0.159 1 1 1

0 0.4901 0.16 0.157 0.149 1 1 1
0.05 0.5 0.143 0.141 0.136 1 1 1

0 0.4525 0.166 0.164 0.156 1 1 1
0.1 0.5 0.119 0.118 0.115 1 1 1
0 0.41 0.156 0.154 0.148 1 1 1

Table 2.4.: Size for multivariate t distributed random vectors with α = 0.05
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Power

For the analysis of the power, we restrict to the case ii) for the covariance matrix, i.e. we
use the unit matrix. We analyse the 4 different cases a), b), c) and d) of the mean change
introduced on page 64.

First, we consider a change in the middle. The results are given in table 2.5, 2.6 and 2.7.
Observe, that even for these small sample sizes, the power for multivariate normal distributed
observations is astonishingly good, especially in the case b). We observe that the power in c)
is constantly less than in b).

N η γ a) b) c) d)

20 0 0 0.257 0.495 0.351 0.45
0.01 0.5 0.201 0.376 0.267 0.345

0 0.4901 0.197 0.372 0.263 0.341
0.05 0.5 0.231 0.416 0.301 0.382

0 0.4525 0.236 0.429 0.309 0.394
0.1 0.5 0.264 0.454 0.337 0.42
0 0.41 0.256 0.459 0.334 0.421

50 0 0 0.281 0.79 0.496 0.679
0.01 0.5 0.188 0.638 0.349 0.519

0 0.4901 0.182 0.633 0.342 0.513
0.05 0.5 0.221 0.682 0.393 0.566

0 0.4525 0.227 0.698 0.405 0.581
0.1 0.5 0.238 0.709 0.419 0.595
0 0.41 0.249 0.731 0.439 0.616

100 0 0 0.463 0.981 0.788 0.935
0.01 0.5 0.307 0.941 0.628 0.845

0 0.4901 0.299 0.94 0.622 0.842
0.05 0.5 0.35 0.954 0.673 0.873

0 0.4525 0.363 0.959 0.69 0.883
0.1 0.5 0.376 0.962 0.701 0.889
0 0.41 0.397 0.968 0.724 0.902

Table 2.5.: Power for multivariate normal distributed random vectors with λ = 0.5 and α =
0.05

For the heavy tailed distributions the weighted CUSUM is significantly better than the
CUSUM statistic. For example the power of the CUSUM statistic is 0.047 in the multi-
variate log-normal case for N = 50 and mean change a). But the weighted CUSUM has
power between 0.139 and 0.25.

Now, we consider an early change. In table 2.8, 2.9 and 2.10 the power for an early change at
λ = 0.1 is given. Let us compare the truncated weight function with the proposed untruncated
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N η γ a) b) c) d)

20 0 0 0.113 0.205 0.157 0.239
0.01 0.5 0.222 0.269 0.231 0.261

0 0.4901 0.209 0.258 0.218 0.249
0.05 0.5 0.253 0.305 0.264 0.299

0 0.4525 0.219 0.278 0.233 0.272
0.1 0.5 0.261 0.327 0.278 0.317
0 0.41 0.206 0.274 0.224 0.27

50 0 0 0.047 0.155 0.101 0.228
0.01 0.5 0.25 0.314 0.26 0.297

0 0.4901 0.236 0.3 0.247 0.284
0.05 0.5 0.191 0.276 0.207 0.255

0 0.4525 0.233 0.31 0.25 0.302
0.1 0.5 0.139 0.242 0.161 0.217
0 0.41 0.209 0.296 0.232 0.297

100 0 0 0.04 0.211 0.139 0.364
0.01 0.5 0.255 0.363 0.28 0.361

0 0.4901 0.239 0.347 0.264 0.346
0.05 0.5 0.167 0.31 0.205 0.308

0 0.4525 0.229 0.359 0.267 0.378
0.1 0.5 0.116 0.287 0.163 0.285
0 0.41 0.2 0.346 0.249 0.383

Table 2.6.: Power for multivariate log-normal distributed random vectors with λ = 0.5 and
α = 0.05

N η γ a) b) c) d)

20 0 0 0.099 0.136 0.118 0.147
0.01 0.5 0.176 0.198 0.181 0.189

0 0.4901 0.169 0.191 0.174 0.182
0.05 0.5 0.201 0.225 0.207 0.216

0 0.4525 0.185 0.211 0.192 0.204
0.1 0.5 0.229 0.256 0.236 0.247
0 0.41 0.185 0.214 0.194 0.208

50 0 0 0.04 0.085 0.066 0.113
0.01 0.5 0.171 0.203 0.178 0.189

0 0.4901 0.159 0.191 0.165 0.177
0.05 0.5 0.145 0.187 0.154 0.169

0 0.4525 0.159 0.198 0.169 0.186
0.1 0.5 0.117 0.166 0.129 0.147
0 0.41 0.143 0.186 0.155 0.177

Table 2.7.: Power for multivariate t-distributed random vectors with λ = 0.5 and α = 0.05
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version. In the multivariate normal case, the untruncated version has slightly lower power.
For the log-normal case the power is better if η = 0.05, 0.1 and N = 50, 100. In the case of
the t-distribution the behaviour is comparable. We conclude that for heavy tailed distribu-
tions the untruncated version has good power (compared to the truncated weight function)
for sample sizes not less than 50. Clearly, this effect could be caused by the different sizes.
A further study, especially in view of size correction and also on the change-point estimator
should be considered.

N η γ a) b) c) d)

20 0 0 0.18 0.192 0.185 0.193
0.01 0.5 0.157 0.191 0.17 0.187

0 0.4901 0.153 0.186 0.166 0.182
0.05 0.5 0.183 0.22 0.197 0.215

0 0.4525 0.184 0.218 0.197 0.214
0.1 0.5 0.215 0.256 0.231 0.251
0 0.41 0.198 0.231 0.211 0.227

50 0 0 0.096 0.135 0.109 0.125
0.01 0.5 0.099 0.22 0.136 0.182

0 0.4901 0.093 0.207 0.127 0.171
0.05 0.5 0.118 0.252 0.16 0.211

0 0.4525 0.112 0.231 0.149 0.194
0.1 0.5 0.12 0.252 0.161 0.211
0 0.41 0.117 0.23 0.152 0.195

100 0 0 0.087 0.183 0.115 0.15
0.01 0.5 0.114 0.417 0.203 0.313

0 0.4901 0.104 0.396 0.188 0.294
0.05 0.5 0.133 0.46 0.232 0.351

0 0.4525 0.12 0.42 0.208 0.317
0.1 0.5 0.128 0.449 0.223 0.34
0 0.41 0.121 0.407 0.204 0.308

Table 2.8.: Power for multivariate normal distributed random vectors with λ = 0.1 and α =
0.05
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2.5. Simulation

N η γ a) b) c) d)

20 0 0 0.192 0.196 0.197 0.213
0.01 0.5 0.384 0.403 0.392 0.415

0 0.4901 0.371 0.391 0.38 0.402
0.05 0.5 0.41 0.43 0.419 0.443

0 0.4525 0.375 0.396 0.384 0.408
0.1 0.5 0.384 0.409 0.396 0.423
0 0.41 0.357 0.377 0.366 0.389

50 0 0 0.03 0.039 0.031 0.035
0.01 0.5 0.231 0.262 0.228 0.231

0 0.4901 0.218 0.248 0.214 0.217
0.05 0.5 0.179 0.223 0.177 0.186

0 0.4525 0.21 0.243 0.208 0.212
0.1 0.5 0.128 0.181 0.131 0.143
0 0.41 0.187 0.219 0.185 0.19

100 0 0 0.009 0.022 0.011 0.014
0.01 0.5 0.226 0.283 0.225 0.228

0 0.4901 0.209 0.263 0.208 0.21
0.05 0.5 0.128 0.207 0.131 0.14

0 0.4525 0.189 0.248 0.19 0.194
0.1 0.5 0.078 0.165 0.087 0.102
0 0.41 0.153 0.211 0.154 0.158

Table 2.9.: Power for multivariate log-normal distributed random vectors with λ = 0.1 and
α = 0.05

N η γ a) b) c) d)

20 0 0 0.132 0.135 0.134 0.138
0.01 0.5 0.298 0.307 0.302 0.309

0 0.4901 0.288 0.296 0.291 0.298
0.05 0.5 0.324 0.333 0.328 0.335

0 0.4525 0.294 0.303 0.298 0.306
0.1 0.5 0.313 0.325 0.318 0.327
0 0.41 0.283 0.292 0.287 0.294

50 0 0 0.016 0.019 0.018 0.021
0.01 0.5 0.153 0.17 0.159 0.168

0 0.4901 0.142 0.158 0.148 0.157
0.05 0.5 0.122 0.143 0.13 0.141

0 0.4525 0.137 0.154 0.144 0.153
0.1 0.5 0.091 0.113 0.099 0.11
0 0.41 0.119 0.136 0.125 0.135

Table 2.10.: Power for multivariate t-distributed random vectors with λ = 0.1 and α = 0.05
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3. Change-point tests

Since the 1950’s many different models have been analysed in deriving off-line test statistics
and estimators in the field of change-point analysis. In this chapter we analyse change-point
tests for some examples. The first example considered in section 3.1 considers a mean change
model with i.i.d. random variables only assuming the existence of the first moment. We
construct the change-point test having a randomized weight function. We are able to prove
the asymptotic behaviour for this test statistic.

As a second example we decided to analyse a NLAR(p)-process or non-linear regression for
a change in the unknown regression function (section 3.2). To overcome the non-parametric
problem, we used neural-networks to approximate the regression function. This approach is
close to practical situations as we allow for possible misspecification.

We complete this chapter giving regularity conditions for change-point tests based on the
concept of estimation functions. The key assumptions are given in this section, 3.3. We also
show that for smooth enough function and some moment conditions these key assumptions
can be derived.
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3. Change-point tests

3.1. Randomized weight functions

Up to now, we considered the weighted CUSUM statistic with the deterministic weight func-
tion

wη,γ(s) = 1{η<s<1−η} (s(1 − s))−γ s ∈ (0, 1) .

This is a typical form of the weight function considered in the literature, but a generalised
class of test statistics so-called q-weighted CUSUM statistics are also considered (see Kirch
and Tadjuidje Kamgaing [2012] or Csörgő and Horváth [1997] section 4.1). The weight func-
tion w is then defined as 1/q where q fulfils some integral conditions. As we mentioned before,
this conditions are equivalent to (1.4) and (1.5).

In all cases the weight function is deterministic and free to choose. A randomized weight func-
tion in the set-up of autroregressive residuals is considered in Zhou and Liu [2008]. It turns
out that the constructed test has a different asymptotic distribution as usual, depending on
the expectation of the weighted autoregressive process. But the consistency of the estimator
is still given. We use the idea for the case of i.i.d. observations with mean change under
possible infinite second moment. We derive a modified change-point test which has the usual
asymptotic properties. The weight function of this change-point test is randomized.

In section 3.1.1 we construct the change-point test motivated by the robust statistic. We then
show the asymptotics for the test statistic.

3.1.1. Construction

As explained in section 2, we usually assume errors with a finite second moment. Here, we are
going to introduce a method for i.i.d. observations under the weaker assumption that only
the first moment exists. Robust techniques are known like the change-point test based on
an M-estimator, analysed for the case of i.i.d. observations with change in mean in Hušková
[1996] and for the mean change under strong mixing residuals in Hušková and Marušiaková
[2012]. In the case of regressions we refer to Prášková and Chochola [2014]. In Hušková
[1996] the unweighted version of our test statistic is analysed along with the MOSUM and the
pseudo maximum likelihood statistic while in Hušková and Marušiaková [2012] the weighted
test statistic based on M-estimators is studied. The proofs are missing in this publication.
We do not only analyse the weighted test statistic based on a subclass of M-estimator but
also discuss a weight function which is data driven. The motivation comes from the paper
Zhou and Liu [2008], where autoregressive processes with infinite variances are analysed. At
the end of this section a new version of weight functions is derived. The idea of the proofs is
used to define a class of weight functions, such that the weighted CUSUM statistics still have
the known asymptotics (see section 2.2).

Let us assume that X1, . . . , Xn ∈ R follow the AMOC-model

Xt =

{

θ + εt , 1 ≤ t ≤ m

θ + δn + εt ,m < t ≤ n
, (3.1)
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3.1. Randomized weight functions

where m fulfils G.1 and δn −→
n→∞

0. Recall the definition of the AMOC-model (1.1), then

X
(1)
t = θ + εt and X

(2)
t = θ + δn + εt. Differently to section 2 we only assume the errors to

have at least first moment.

L.1 Let {εt} be i.i.d. with E[ε1] = 0 and E[|ε1|ν ] <∞ for some ν > 1.

To handle the difficulties with the possibly infinite variance, in Hušková [1996] M-estimators
are considered. So, the parameter estimator solves the equation

n∑

t=1

φ(Xt, θ) = 0 , (3.2)

where φ(x, θ) is assumed to be non-decreasing in θ and E[φ2(X1, θ)] < ∞. We are going to
take a closer look at estimators as solutions of (3.2) where φ can be written as

φ(x, θ) = g(x)(x− θ) .

For simplicity of notation we introduce the following sum.

N.9

Sg(n, θ) :=
n∑

t=1

g(Xt)(Xt − θ) .

The weight function g(·) should be chosen in the way that the weighted process has finite
second moment. An intuitive example is a truncation function such as g(x) = 1{|x−θ|≤K} +

1{{x−θ}>K}
K

|x−θ| , with K >> 0. Further examples are given on page 78.

L.2 Let g : Rd → R be a measurable function such that g(X
(z)
1 ) is a.s. positive, bounded

and E

[

g2(X
(z)
1 )

(

1 +
∥
∥
∥X

(z)
1

∥
∥
∥

2
)]

<∞, z = 1, 2.

Besides the condition on the existence of the second moment for the weighted process, we will

need the existence of the finite second moment of the random variable g(X
(z)
1 ). This is not a

strong assumption as the function g itself is chosen in the way that it reduces the variability
of the process. But, the assumption is not only under H0 but also under H1, i.e. for the time
series after the change, which is needed for the change-point estimator in section 4.1.

L.3 Furthermore, let g fulfil E[g(X
(1)
1 )ε1] = 0.

Notize, the assumption L.3, the zero expectation of the modified errors, is only true for the
unchanged part of the time-series. So we have to be careful especially in the proofs under the
alternative. The parameter estimator is given as

θ̂n(g) =

∑n
t=1 g(Xt)Xt
∑n

t=1 g(Xt)
. (3.3)
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3. Change-point tests

We can prove that the estimator is also consistent under both hypotheses, H0 and H1.

Theorem 3.1.1 Assume G.1, L.1 – L.3. Let θ̂n be the solution of Sg(n, θ) = 0 (see N.9)
under H0 as well as under H1. If δn fulfils either G.5.a) or G.5.b) and δ = limn→∞ δn, then
we have:

a) θ̂n(g) is a consistent estimator, i.e

θ̂n(g)
a.s−→ θ̃ ,

where θ̃ = θ under H0 and under H1 θ̃ = θ + (1 − λ)(c1δ + c2) with c1 and c2 some
constants depending on g and ε.

b)
√
n(θ̂n(g) − θ̃)

d−→ N (0, V ) ,

with θ̃ as in a) and V the covariance matrix depending on g(X
(z)
1 )ε1 as well as g(X

(z)
1 ),

z = 1, 2.

This theorem gives us |θ̂n − θ| = OP

(

n−
1
2

)

. For the detailed proof see page 81.

Observe, that even under the local alternative, we do not necessary have θ̃ = θ. Later on, we
will need this, so we make an additional assumption which guarantees θ̃ = θ under the local
alterantive.

L.4 For δn −→
n→∞

0 it follows E[g(X
(2)
1 )ε1] −→

n→∞
E[g(X

(1)
1 )ε1].

Proposition 3.1.1

Let θ̂n(g), g and {Xt} be as in Theorem 3.1.1 and δn fulfil G.5.b). If additionally
assumption L.4 holds true, the results of Theorem 3.1.1 are true for θ̃ = θ.

For the construction of the test statistic let d = 1. Recall that the least squares estimator
under H0 is given as

n∑

t=1

g(Xt)(Xt − θ̂n)2 = min
θ

(
n∑

t=1

g(Xt)(Xt − θ)2

)

then

θ̂n(g) =

∑n
t=1 g(Xt)Xt
∑n

t=1 g(Xt)
.

Equivalently, we determine the estimators under the alternative. They are given as

k∑

t=1

g(Xt)(Xt − θ̂1)
2 = min

θ1

k∑

t=1

g(Xt)(Xt − θ1)
2

n∑

t=k+1

g(Xt)(Xt − θ̂2)
2 = min

θ2

n∑

t=k+1

g(Xt)(Xt − θ2)
2
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3.1. Randomized weight functions

with

θ̂1(g) = θ̂k and θ̂2(g) =

∑n
t=k+1 g(Xt)Xt
∑n

t=k+1 g(Xt)
=: θ̂k+1,n . (3.4)

As in the case of the mean change model (section 2.2.1), we consider the difference of the
sums based on the estimation under H0 or under H1. We get

( n∑

t=1

g(Xt)(Xt − θ̂n(g))2
)

−
(

k∑

t=1

g(Xt)(Xt − θ̂1(g))2 +
n∑

t=k+1

g(Xt)(Xt − θ̂2(g))2

)

=
n∑

t=1

g(Xt)(Xt − θ̂n(g))2 −
k∑

t=1

g(Xt)(Xt − θ̂k(g))2 −
n∑

t=k+1

g(Xt)(Xt − θ̂k+1,n(g))2

=

k∑

t=1

g(Xt)
(

Xt − θ̂k(g) − (θ̂n(g) − θ̂k(g))
)2

+
n∑

t=k+1

g(Xt)
(

Xt − θ̂k+1,n(g) − (θ̂n(g) − θ̂k+1,n(g))
)2

−
k∑

t=1

g(Xt)(Xt − θ̂k(g))2 −
n∑

t=k+1

g(Xt)(Xt − θ̂k+1,n(g))2

=(θ̂n(g) − θ̂k(g))2

(
k∑

t=1

g(Xt)

)

+ (θ̂n − θ̂k+1,n(g))2

(
n∑

t=k+1

g(Xt)

)

with
∑k

t=1 g(Xt)(Xt− θ̂k(g)) = 0 and
∑n

t=k+1 g(Xt)(Xt− θ̂k+1,n(g)) = 0. Using the definition
of the estimators (see (3.3) and (3.4)) we have

(θ̂n(g)−θ̂k(g))2

(
k∑

t=1

g(Xt)

)

+ (θ̂n(g) − θ̂k+1,n(g))2

(
n∑

t=k+1

g(Xt)

)

=

(
k∑

t=1

g(Xt)Xt −
(

k∑

t=1

g(Xt)

)

θ̂n(g)

)2
1

∑k
t=1 g(Xt)

+

((
n∑

t=1

g(Xt) −
k∑

t=1

g(Xt)

)

θ̂n(g) −
(

n∑

t=1

g(Xt)Xt −
k∑

t=1

g(Xt)Xt

))2
1

∑n
t=k+1 g(Xt)

=

(
k∑

t=1

g(Xt)Xt −
(

k∑

t=1

g(Xt)

)

θ̂n(g)

)2(

1
∑k

t=1 g(Xt)
+

1
∑n

t=k+1 g(Xt)

)

=

(
k∑

t=1

g(Xt)Xt −
(

k∑

t=1

g(Xt)

)

θ̂n(g)

)2




∑n
t=1 g(Xt)

∑k
t=1 g(Xt)

(
∑n

t=1 g(Xt) −
∑k

t=1 g(Xt)
)



 .

Due to the fact, that the change-point is unknown, we take the maximum over all possible
values k. The change-point test statistic is given as

Tn = max
1≤k<n





∑n
t=1 g(Xt)

∑k
t=1 g(Xt)

(
∑n

t=1 g(Xt) −
∑k

t=1 g(Xt)
)





1
2 ∣
∣
∣Sg(k, θ̂n(g))

∣
∣
∣ . (3.5)
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3. Change-point tests

In Zhou and Liu [2008] they analysed the truncated version of this kind of statistics. If g ≡ 1
we get the weighted CUSUM statistic which converges to a Gumble distribution. To derive the
asymptotics, we modified the weight function, see section 2.2. Equivalently, we multiply the
statistic in (3.5) with (g(X)n)

1
2 . Since E[g(Xt)] 6= 0 the asymptotic statistic of the truncated

version of (3.5) can be derived using Slutsky C.1.4. We are going to analyse the asymptotic
behaviour of the modified multivariate version.

N.10 Denote with wη,γ;g the weight function

wη,γ;g(k, n) = 1{ηn<k<(1−η)n}




(
∑n

t=1 g(Xt))
2

∑k
t=1 g(Xt)

(
∑n

t=1 g(Xt) −
∑k

t=1 g(Xt)
)





γ

,

with η ∈ (0, 12).

With this notation we analyse test statistics of the form

Tn(η, γ; g) = max
1≤k<n

wη,γ;g(k, n)
1√
n

∥
∥
∥Sg(k, θ̂n(g))

∥
∥
∥
Σ−1

g

, (3.6)

with Σg = Var[g(Xt)εt]. Observe, that if we have g(x) ≡ 1, Σg = Σ and the errors εt have
finite second moment. The test statistic is then the weighted CUSUM as mentioned before,
i.e.

Tn(η, γ) = Tn(η, γ; Σ−1) = max
1≤k<n

wη,γ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

Xt −
k

n

n∑

t=1

Xt

∥
∥
∥
∥
∥
Σ−1

.

So, the derived test coincides with the known theory.

Let us for the moment allow g to depend on θ, too, and consider some examples. Clearly,
these functions are not applicable, because they depend on the unknown parameter θ. We
are going to see how we can modify the weight function.

Example 3.1.1 Let θ be the true parameter under H0 and εt be a sequence of continuous
random variables. An intuitive idea is to truncate all values having a large error value. Then,
the weight function can be chosen as g̃(x) = 1{|x−θ|≤K}+1{{x−θ}>K}

K
|x−θ| , with K >> 0. This

function fulfils assumption L.2, if the distribution of ε1 is symmetric around zero. At some
points later on we will need a g which is two times differentiable. Of course g̃ is not. Hence,
we use a function g which is C2 and equals g̃ outside (−K−ǫ,−K+ǫ)∪(K−ǫ,K+ǫ) instead.
Such a function g can easily be found by replacing g̃ at (−K − ǫ,−K + ǫ) ∪ (K − ǫ,K + ǫ) by
suitable polynomials of order 5 or higher.

Example 3.1.2 We can also construct examples given by g(x) = φ(x−θ)/(x−θ) and φ being
some generating function for an M -estimator, like the Tukey function or Welsh function. As
long as ε1 is symmetric around zero, the assumption L.2 is fulfilled.

Example 3.1.3 Let g(·) be as in Example 3.1.1. The corresponding test is a consistent level-
α test. In practice this test is not applicable due to the dependence of g(·) on the unknown
parameter θ, i.e. g(x) = g(x; θ). Replacing the unknown parameter with a robust estimator
will solve this problem. Let θ̂n be a robust estimator for θ, then gn(x) = g(x; θ̂n) is the function
of interest.
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3.1. Randomized weight functions

From now on, we define g(x) as in the above example.

N.11 Let g(x) = g(x, θ), where θ is the true parameter under H0 or up to time m. If θ is
replaced by an estimator θ̂n we denote gn(Xt) = g(Xt; θ̂n).

Observe, that the function gn(x) given in example 3.1.3 is evaluated at {Xt, t = 1, . . . , n}.
So we did not have a function gn(X) with X independent of X1, . . . , Xn as the estimator θ̇
depends on X1, . . . , Xn. Therefore, we have to make additional assumptions on the weight
function.

First, we need to make an assumption on the asymptotic behaviour of the parameter estima-
tor θ̂n used for gn(x).

L.5 The estimator θ̂n is
√
n-consistent estimator w.r.t. θ under H0 and under H1 (local

alternative, i.e. G.5.b)).

We only consider the local alternative from now on, as under the fixed alternative the estima-
tor does not always converge against θ. But this is necessary, since we are going to use that
the function gn(x) is converges against g(x).

L.6 Let gn(Xt) be an a.s. positive function with E[g2n(X
(z)
1 )(1 +

∥
∥
∥X

(z)
1

∥
∥
∥

2
)] < c < ∞, for all

n, and

P
(

lim
n→∞

gn

(

X
(z)
t

)

= g
(

X
(z)
t

))

= 1 ∀t , (3.7)

where z = 1, 2 and g(·) fulfils L.2 and L.3. ∗

L.7 Let g(x) = g(x; θ) be 2-times differentiable w.r.t. θ with E

[

supθ∈Θ

∥
∥
∥∇g(X

(z)
1 )ε1

∥
∥
∥

]

<∞
and E

[

supθ∈Θ

∥
∥
∥∇2g(X

(z)
1 )ε1

∥
∥
∥

]

<∞.

Observe, the weight function in Example 3.1.3 fulfils this assumption due to the convergence
of the median.

Notice, the assumption L.6 implies that we only consider the local alternative. It is important
to recognize, that under this assumption the strong law of large numbers holds true for gn(Xt).

Lemma 3.1.1

Let gn and g fulfil the assumption L.6. Then for the model (3.1) it holds under H0 and
H1 (i.e. G.5.b))

1

n

n∑

t=1

(gn(Xt) − g(Xt))(1 + εt) = oa.s.(1) .

This implies that under H0 and under H1 the limit of the arithmetic sum w.r.t. gn(Xt) can
be identified as the limit of the arithmetic sum of g(Xt). But for determining the rate, we
have had to make the additional assumptions on the derivatives. Then we derive the following
Theorem.

∗E.g. for g(x, θ) continuous in θ = θ̃ for P
X

(z)
t

, z = 1, 2, a.s. all x this assumption is fulfilled.

79



3. Change-point tests

Theorem 3.1.2 Assume G.1 and L.1 – L.7. Let θ̂n(gn) be the solution of Sgn(n, θ) = 0

(see N.9) under H0 as well as H1 (i.e. G.5.b)). Then θ̂n(gn) is a
√
n-consistent estimator,

i.e

θ̂n(gn) − θ = OP

(
1√
n

)

.

The corresponding test statistic is given as

Tn(η, γ; gn) = max
1≤k<n

wη,γ;gn(k, n)
1√
n

∥
∥
∥Sgn(k, θ̂n(gn))

∥
∥
∥
Σ−1

gn

. (3.8)

At first we are going to analyse the behaviour of the test statistic Tn(η, γ; g). Then we show
that also for Tn(η, γ; gn) the results hold true.

3.1.2. Asymptotics for randomly weighted change-point tests

We constructed test statistics with weight functions depending on the observations. For these
weight functions we are going to show that the test statistics still fulfil the asymptotics as in
the case of i.i.d. errors with finite second moment.

To handle the influence of the estimator θ̂n used for gn(x) we make the following assumptions.

L.8 Let θ̂n be the solution of
n∑

t=1

ψ(Xt; θ) = 0 (3.9)

with ψ being dominated integrable and 2-times differentiable with dominated integrable

derivatives and E[∇ψ(X
(z)
1 , θ)] 6= 0.

Theorem 3.1.3 Assume L.1 and let η, γ fulfil G.2. Under H0, we have

a) if L.2 and L.3 hold, then

Tn(η, γ; g) = max
1≤k<n

wη,γ;g(k, n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(Xt)Xt −
(

k∑

t=1

g(Xt)

)

θ̂n(g)

∥
∥
∥
∥
∥
Σ−1

g

d−→ sup
s∈(η,1−η)

‖B(s)‖
(s(1 − s))γ

,

with wη,γ;g(k, n) = 1{ηn<k<(1−η)n}

(

(
∑n

t=1 g(Xt))
2

∑k
t=1 g(Xt)(

∑n
t=1 g(Xt)−

∑k
t=1 g(Xt))

)γ

.

b) if L.2 – L.8 hold, then

Tn(η, γ; gn) = max
1≤k<n

wη,γ;gn(k, n)
1√
n

∥
∥
∥Sgn(k, θ̂n(gn))

∥
∥
∥
Σ−1

gn

d−→ sup
s∈(η,1−η)

‖B(s)‖
(s(1 − s))γ

,

with Σgn = Var[gn(X1)ε1] and Sgn(k, ·), wη,γ;gn(k, n) as in N.9, N.10.
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3.1. Randomized weight functions

For a) the important part is that we have the a.s. convergence against the deterministic
weight function w(η, γ) from before. Then the rest follows straight forward as in the proof
of Theorem 2.2.1 . To show b) we use the result a). Therefore, we show that asymptotically
there is no difference between these two test statistics.

As before we do not only guarantee a level-α test but also an asymptotic power one test.

Theorem 3.1.4 Let {B(s)} be a standard Brownian bridge. Assume L.1, G.1 and let η, γ
fulfil G.2 . Under H1, we have:

a) if L.2 and L.3 hold true and δn fulfilling either G.5.a) or G.5.b), then (with A = Σ−1
g )

Tn(η, γ; g)
p−→ ∞ .

b) if L.2 – L.7 hold true and δn fulfilling G.5.b), then (with A = Σ−1
gn )

Tn(η, γ; gn)
p−→ ∞ .

In section 2.2.3 we have used some properties of the considered deterministic weight func-
tion to prove the asymptotics. Specifically, we used results based on (1.4) and (1.5). As we
are only interested in determining sufficient conditions, we combine those with the results
here and derive regularity conditions for the weight functions. This will allow us to choose
weight functions independently of the considered test statistic. Details are given in section 3.3.

3.1.3. Proofs

Theorem 3.1.1

Assume G.1, L.1 – L.3. Let θ̂n be the solution of Sg(n, θ) = 0 (see N.9) under H0 as
well as under H1. If δn fulfils either G.5.a) or G.5.b) and δ = limn→∞ δn, then we
have:

a) θ̂n(g) is a consistent estimator, i.e

θ̂n(g)
a.s−→ θ̃ ,

where θ̃ = θ under H0 and under H1 θ̃ = θ+ (1− λ)(c1δ+ c2) with c1 and c2 some
constants depending on g and ε.

b) √
n(θ̂n(g) − θ̃)

d−→ N (0, V ) ,

with θ̃ as in a) and V the covariance matrix depending on g(X
(z)
1 )ε1 as well as

g(X
(z)
1 ), z = 1, 2.

Proof:
First we show a).
From assumption L.1 it follows that g(Xi) and g(Xt)Xt, t = 1, . . . , n, are i.i.d. random
variables under H0. So, the sums of these random variables fulfil a strong LLN (for strong
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3. Change-point tests

mixing Theorem C.2.1). From assumption L.2 and L.3 together with Slutsky C.1.4 we have
under H0

∑n
t=1 g(Xt)Xt
∑n

t=1 g(Xt)

a.s−→ E[g(X1)X1]

E[g(X1)]
= θ .

Analogue to the proof of Theorem 2.1.1 we can prove consistency under H1 by splitting the
sums at m. Then we have
∑n

t=1 g(Xt)Xt
∑n

t=1 g(Xt)
= θ+

∑n
t=m+1 g(Xt)δn

∑m
t=1 g(Xt) +

∑n
t=m+1 g(Xt)

+

∑m
t=1 g(Xt)εt +

∑n
t=m+1 g(Xt)εt

∑m
t=1 g(Xt) +

∑n
t=m+1 g(Xt)

(3.10)

Applying the LLN for each part of the sums finishes the proof.

Now, we prove b) in two steps.
First we assume H0. The difference θ̂n(g) − θ̃ can be written (using the model (3.1)) as a
fraction of sums of i.i.d. positive random variables with finite second moment, i.e.

∑n
t=1 g(Xt)Xt
∑n

t=1 g(Xt)
− θ =

∑n
t=1 g(Xt)εt
∑n

t=1 g(Xt)
.

Applying the CLT for a sum of i.i.d. random variables in the numerator and the LLN in the
denominator yields the claim together with Slutsky, see Theorem C.1.4.

The proof under H1 uses that for Xt, t = 1, . . . , n, i.i.d. random variables it holds

1
1
n

∑n
t=1Xt

− 1

E[X1]
= OP

(
1√
n

)

.

The decompotion (3.10) and analogous arguments as in the proof of Theorem 2.1.2 finish the
proof.

Lemma 3.1.1

Let gn and g fulfil the assumption L.6. Then for the model (3.1) it holds under H0 and
H1

1

n

n∑

t=1

(gn(Xt) − g(Xt))(1 + εt) = oa.s.(1) .

Proof:
We proof this in 2 steps.

First observe that it is enough to show 1
n

∑n
t=1 |gn(Xt) − g(Xt)| = oa.s.(1). Let

A :=

∞⋂

t=1

{ω| lim
n→∞

gn(Xt) = g(Xt)} .

From the assumption L.6 we have P (A) = 1. Then for all ω ∈ A and all ǫ there exists n0(ǫ, ω)
such that for all t and all n ≥ n0(ǫ, ω) it holds

|gn(Xt(ω)) − g(Xt(ω))| ≤ ǫ .
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3.1. Randomized weight functions

Then we have

1

n

n∑

t=1

|gn(Xt(ω)) − g(Xt(ω))| ≤ 1

n

n0(ǫ,ω)∑

t=1

|gn(Xt(ω)) − g(Xt(ω))| +
n− n0(ǫ, ω)

n
ǫ ,

where the weighted sum of the differences on the left hand side converges to 0 as it is a fixed
sum and n→ ∞ and n−n0(ǫ,ω)

n −→
n→∞

1 . Then we can define the sets

Bǫ :=
{

ω
∣
∣
∣ lim
n→∞

1

n

n∑

t=1

|gn(Xt(ω)) − g(Xt(ω))| < ǫ
}

and

Bǫ −→
ǫ→0

B =
{

ω
∣
∣
∣ lim
n→∞

1

n

n∑

t=1

|gn(Xt(ω)) − g(Xt(ω))| = 0
}

.

As for all ω ∈ A it holds ω ∈ Bǫ, we have A ⊆ B. This implies P (B) = 1.

Now define A′ = {ω| 1n
∑n

t=1 εt −→
n→∞

0}, which has probability 1 due to the sLLN. Because

P (A∩A′) = P (A) +P (A′)−P (A∪A′) = 1, we can consider an equivalent argumentation as
above and gain the result.

Theorem 3.1.2

Assume G.1 and L.1 – L.7. Let θ̂n(gn) be the solution of Sgn(n, θ) = 0 (see N.9) under

H0 as well as H1 (i.e. G.5.b)). If θ̂n(gn) is a
√
n-consistent estimator, i.e

θ̂n(gn) − θ = OP

(
1√
n

)

.

Proof:
With the assumption L.7, we have the rate of convergence and can conclude

θ̂n(gn) − θ = θ̂n(gn) − θ̂n(g) + θ̂n(g) − θ

=

∑n
t=1(gn(Xt) − g(Xt))Xt

∑n
t=1 gn(Xt)

+

∑n
t=1 g(Xt)Xt

∑n
t=1 g(Xt)

∑n
t=1 gn(Xt)

(
n∑

t=1

gn(Xt) −
n∑

t=1

g(Xt)

)

+OP (n−1/2)

= OP (n−1/2) + oP (n−1/2) +OP (n−1/2) .

We used

1

n

n∑

t=1

(gn(Xt) − g(Xt))Xt

=

(

1

n

n∑

t=1

(∇g(Xt))Xt

)

(θ̂n − θ) + (θ̂n − θ)T

(

1

n

n∑

t=1

(∇g(Xt))Xt

)

(θ̂n − θ)

= OP (1)OP (n−1/2) +OP (n−1) . (3.11)
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Lemma 3.1.2

Let {Zt} be a sequence of i.i.d. positive random variables with E[Z1] = µ. For every ǫ
exists ∆ with µ−∆ > 0 and n0 = n0(ǫ,∆) such that such that Bn0 :=

⋂

n>n0
{|Zn−µ| <

∆} fulfils
P (Bn0) > 1 − ǫ . (3.12)

Proof:
By the strong LLN we have for all ∆ > 0

P
(
lim supk≥n|Zk − µ| ≥ ∆

)
= 0

and it holds

P
(
lim supk≥n|Zk − µ| ≥ ∆

)
= lim

n→∞
P
(
supk≥n|Zk − µ| ≥ ∆

)
.

Choose ∆ < µ and ǫ > 0, then there exists an n0 such that

P

(

sup
k≥n0

|Zk − µ| ≥ ∆

)

≤ ǫ

Now, we have

P (qBn0) = P
(⋃

n>n0

{|Zn − µ| ≥ ∆}
)

≤ P
({

∃n > n0 : |Zn − µ| ≥ ∆
})

≤ P

(

sup
n≥n0

|Zn − µ| ≥ ∆

)

≤ ǫ .

Lemma 3.1.3

Let {Zt} be a sequence of i.i.d. positive random variables with E[Z1] = µ < ∞. For
arbitrary but fixed τ ≤ 1 let Mτ,n = min1≤k≤τn Zk. Then for every ǫ > 0 exists ∆ > 0
such that for all n and τ we have

P

(
Mτ,n

Zn
> ∆

)

> 1 − ǫ .

Proof:
Observe that if we have

P

(
M1,n

Zn
> ∆

)

> 1 − ǫ , (3.13)

then for all τ < 1 we have †

P

(
Mτ,n

Zn
> δ

)

≥ P

(
M1,n

Zn
> ∆

)

> 1 − ǫ .

†Since Mτ,n ≥ M1,n.
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3.1. Randomized weight functions

So without loss of generality we can assume τ = 1. For easiness of notation we set Mn := M1,n.

Let ǫ be arbitrary but fixed. From Lemma 3.1.2 we know there exists n0 = n0(ǫ1,∆1) such
that for every ǫ1 exists ∆1 with µ− ∆1 > 0 such that Bn0 :=

⋂

n>n0
{|Zn − µ| < ∆1}

P (Bn0) > 1 − ǫ1 . (3.14)

Let n ≤ n0, then the minimum Mn consists of only finitely many a.s. positive random
variables. So, for every ǫ2 there exists ∆n such that

P

(
Mn

Zn
> ∆n

)

= 1 − ǫ2 .

Define ∆2 = minn≤n0(∆n). Then also

P

(
Mn

Zn
> ∆2

)

> 1 − ǫ2 . (3.15)

The question occurs, how it behaves for large n.

Consider n ≥ n0, then we have

P

(
Mn

Zn
> ∆

)

= P

(
Mn

Zn
> ∆, Bn0

)

+ P

(
Mn

Zn
> ∆, qBn0

)

≥ P

(
Mn

Zn
> ∆, Bn0

)

.

From Bn0 we have Zn < µ+ ∆1 a.s. and Mn ≥ min(Mn0 , µ− ∆1), so we get

P

(
Mn

Zn
> ∆

)

≥ P

(
Mn

µ+ δ1
> ∆, Bn0

)

≥ P

(
min(Mn0 , µ− ∆1)

µ+ ∆1
> δ, Bn0

)

≥ 1 − P (min(Mn0 , µ− ∆1) < δ(µ+ ∆1)) − P (qBn0) .

We can choose ∆ < µ−∆1

µ+∆1
, then we have

P

(
Mn

µ+ ∆1
> ∆

)

≥ 1 − (P (Mn0 < ∆(µ+ ∆1)) + P (qBn0))

≥ 1 − ǫ .

The last line follows from (3.15) and (3.14) with ǫ = ǫ1 + ǫ2 and ∆ ≤ ∆2/(µ+ ∆1).

In conclusion for every ǫ = ǫ1 + ǫ2 we find 0 < ∆ < min(∆2/(µ + ∆1),∆2,
µ−∆1

µ+∆1
) such that

for all τ and n the claim holds true.
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Theorem 3.1.3

Let {B(s)} be a standard Brownian bridge. Assume L.1 and let η, γ fulfil G.2. Under
H0, we have

a) if L.2 and L.3 hold, then

Tn(η, γ; g) = max
1≤k<n

wη,γ;g(k, n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(Xt)Xt −
(

k∑

t=1

g(Xt)

)

θ̂n(g)

∥
∥
∥
∥
∥
Σ−1

g

d−→ sup
s∈(η,1−η)

‖B(s)‖
(s(1 − s))γ

,

with wη,γ;g(k, n) = 1{ηn<k<(1−η)n}

(

(
∑n

t=1 g(Xt))
2

∑k
t=1 g(Xt)(

∑n
t=1 g(Xt)−

∑k
t=1 g(Xt))

)γ

.

b) if L.2 – L.8 holds, then

Tn(η, γ; gn) = max
1≤k<n

wη,γ;gn(k, n)
1√
n

∥
∥
∥Sgn(k, θ̂n(gn))

∥
∥
∥
Σ−1

gn

d−→ sup
s∈(η,1−η)

‖B(s)‖
(s(1 − s))γ

,

with Σgn = Var[gn(X1)ε1] and Sgn(k, ·), wη,γ;gn(k, n) as in N.9, N.10.

Proof:
At first we prove a).
Notice, that {g(Xt)εt} is a sequence of i.i.d. random variables with expectation zero and finite
second moment. With the FCLT we have






s ∈ [0, 1] :

1√
n

⌊ns⌋
∑

t=1

g(Xt)εt







d−→ {s ∈ [0, 1] : W (s)} , (3.16)

where {W (s)} is a Wiener process with covariance matrix Σg. The LLN gives us 1
n

∑⌊ns⌋
t=1 g(Xt)

p−→
sE[g(X1)] for all s ∈ [0, 1] since g(X1) are i.i.d. with finite variance. By the Cramer-World
device C.1.5 and the tightness we get for the random vector

{

s ∈ [0, 1] :

(
1√
n

∑⌊ns⌋
t=1 g(Xt)εt

1
n

∑⌊ns⌋
t=1 g(Xt)

)}

d−→
{

s ∈ [0, 1] :

(
W (s)

sE[g(X1)]

)}

. (3.17)

Observe, that we have

k∑

t=1

g(Xt)(Xt − θ̂n) =
k∑

t=1

g(θ + εt)εt −
∑k

t=1 g(θ + εt)
∑n

t=1 g(θ + εt)

n∑

t=1

g(θ + εt)εt .

In the proof of Lemma 2.2.1 we used for η ∈ (0, 12) and γ ∈ [0, 12 ] or η = 0 = γ that the
statistic could be written as a sum over i.i.d. random variables with mean zero. Then the
functional central limit theorem together with the continuous mapping theorem finished the
proof.

For η ∈ (0, 12) and γ ∈ [0, 12 ] or η = 0 = γ we use the analogue idea. The equation 3.17
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together with the continuous mapping theorem yield the result.

It is left to show the asymptotic distribution for η = 0 and γ ∈ (0, 12).

As in the proof of Lemma 2.2.2 we show that uniformly in n the values outside a truncated
range are asymptotically negligible. To this end we analyse the behaviour for k ∈ [1, τn] and
k ∈ [(1 − τ)n, n).

Let us consider the case k ∈ [1, τn].

Observe that we therefore have to analyse the fraction

w0,γ;g(k, n)

wγ(k/n)
=



g(X)
2

n

k(n− k)
∑k

t=1 g(Xt)
(
∑n

t=1 g(Xt) −
∑k

t=1 g(Xt)
)





γ

=

(

g(X)n
g(X)k

)γ (

g(X)n
1

n−k
∑n

t=k+1 g(Xt)

)γ

.

First observe that the second fraction on the right hand-side is of the same form as the first
one. Let us consider the first fraction.

The random sequence {g(Xt)} is by L.2 a.s. positive sequence of i.i.d random variables.
Hence it fulfils the assumptions of Lemma 3.1.3 and we gain

max
1≤k≤τn

g(X)n
g(X)k

= OP (1) .

Then for every τ , we have that

max
1≤k≤τn

w0,γ;g(k, n)

wγ(k/n)
≤ max

1≤k≤τn

(

g(X)n
g(X)k

)γ

max
1≤k≤τn

(

g(X)n
1

n−k
∑n

t=k+1 g(Xt)

)γ

= OP (1)

Now we have

max
1≤k<τn

w0,γ;g(k, n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(θ + εt)εt −
∑k

t=1 g(θ + εt)
∑n

t=1 g(θ + εt)

n∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

≤ max
1≤k<τn

w0,γ;g(k, n)

wγ(k/n)

(

max
1≤k<τn

wγ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

)

+ max
1≤k<τn

g(X)n
g(X)n−k,n

max
1≤k<τn

wγ(k/n)
k

n

∥
∥
∥
∥
∥

1√
n

n∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

.

From above we have

max
1≤k<τn

w0,γ;g(k, n)

wγ(k/n)
= OP (1) and max

1≤k<τn
g(X)n

g(X)n−k,n
= OP (1) .
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As in (2.21) and (2.22), we can conclude

max
1≤k<τn

wγ(k/n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

= OP (τ
1
2
−γ)

max
1≤k<τn

wγ(k/n)
k

n

∥
∥
∥
∥
∥

1√
n

n∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

= OP (τ1−γ)

since this are sums of i.i.d. random variables. Finally, we have uniformly in n for τ → 0

max
1≤k<τn

w0,γ;g(k, n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

g(θ + εt)εt −
∑k

t=1 g(θ + εt)
∑n

t=1 g(θ + εt)

n∑

t=1

g(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

g

= oP (1) .

For τ → 0 this means this part is (uniformly in n) negligible.

In the other case, i.e. k ∈ [(1−τ)n, n), the result follows with analogue arguments. Exchanging
limits is therefore allowed, which finishes for a).

Now, we show b).
Observe, from assumption L.6 we have from Lemma 3.1.1 that

1

n

⌊ns⌋
∑

t=1

gn(Xt)
a.s−→ sE[g(X1)] . (3.18)

With

C(θ) = λE[∇g(X
(1)
1 )ε1]E

−1[∇ψ(X
(1)
1 , θ)] + (1 − λ)E[∇g(X

(2)
1 )ε1]E

−1[∇ψ(X
(2)
1 , θ)]

on the other hand, we can determine

( ⌊ns⌋
∑

t=1

gn(Xt)εt−
⌊ns⌋
∑

t=1

g(Xt)εt +
⌊ns⌋
n

C(θ)
n∑

t=1

ψ(Xt, θ)

)

=

( ⌊ns⌋
∑

t=1

∇g(Xt, θ)εt(θ̂n − θ) +

⌊ns⌋
∑

t=1

(θ̂n − θ)T∇2g(Xt, θ)(θ̂n − θ)εt

+
⌊ns⌋
n

C(θ)
n∑

t=1

(ψ(Xt, θ) − ψ(Xt, θ̂n))

)

.
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Centring each sum leads to

( ⌊ns⌋
∑

t=1

gn(Xt)εt−
⌊ns⌋
∑

t=1

g(Xt)εt +
⌊ns⌋
n

C(θ)
n∑

t=1

ψ(Xt, θ)

)

=

⌊ns⌋
∑

t=1

(∇g(Xt, θ)εt − E[∇g(X1, θ)ε1]) (θ̂n − θ)

+
⌊ns⌋
n

C(θ)
n∑

t=1

(∇ψ(Xt, θ) − E[∇ψ(X1, θ)]) (θ̂n − θ)

− ⌊ns⌋ (E[∇g(X1, θ)ε1] + C(θ)E[∇ψ(X1, θ)]) (θ̂n − θ)

− (θ̂n − θ)T
⌊ns⌋
∑

t=1

∇2g(Xt, ξ)εt(θ̂n − θ)

+
⌊ns⌋
n

C(θ)(θ̂n − θ)T
n∑

t=1

∇2ψ(Xt, ξ)(θ̂n − θ)

= A1(θ̂n − θ) +A2(θ̂n − θ) +A3(θ̂n − θ)

+ (θ̂n − θ)TA4(θ̂n − θ) + (θ̂n − θ)TA5(θ̂n − θ) .

Observe that A1, A2 fulfil the assumptions of the LIL. As we have assumed that θ̂n is a√
n-consistent estimator, ξ is is for large enough n in a compact area around θ. Then we get

E[ sup
ξ∈Uθ

‖ψ(Xt, ξ)‖] <∞ , (3.19)

and so we have a ULLN (uniform law of large numbers, see Theorem C.1.1). Hence, we get

A1(θ̂n − θ) +A2(θ̂n − θ) + (θ̂n − θ)TA4(θ̂n − θ) + (θ̂n − θ)TA5(θ̂n − θ)

= OP (
√

log log n) +OP (
√

log log n) +OP (1) +OP (1) .

It is left to analyse the term with A3. Choosing C(θ) = −E[∇g(X1, θ)ε1]E
−1[∇ψ(X1, θ)]

(assumption L.8) gives us oP (1) for A3(θ̂n − θ). In conclusion we have

sup
s∈(0,1)

1√
n

( ⌊ns⌋
∑

t=1

gn(Xt)εt −
⌊ns⌋
∑

t=1

g(Xt)εt +
⌊ns⌋
n

C(θ)

n∑

t=1

ψ(Xt, θ)

)

= oP (1). (3.20)

Hence, we only have to analyse the asymptotic distribution of

⌊ns⌋
∑

t=1

g(Xt)εt +
⌊ns⌋
n

C(θ)

n∑

t=1

ψ(Xt, θ) .

With (3.11) and the FCLT we can conclude







1√
n

⌊ns⌋
∑

t=1

gn(Xt), s ∈ (0, 1)







d−→ {W (s) − sWψ(1), s ∈ (0, 1)} ,

89



3. Change-point tests

where {Wψ(s)} is the Wiener process 1√
n
{C(θ)

∑⌊sn⌋
t=1 ψ(Xt, θ) is converging to and {W (s)}

the Wiener process from (3.16). So, we get

max
1≤k<n

w0,γ;gn(k, n)
1√
n

∥
∥
∥
∥
∥

k∑

t=1

gn(θ + εt)εt −
∑k

t=1 gn(θ + εt)
∑n

t=1 gn(θ + εt)

n∑

t=1

gn(θ + εt)εt

∥
∥
∥
∥
∥
Σ−1

gn

d−→ sup
s∈(η,1−η)

wγ(s) ‖W (s) − sWψ(1) − s(W (1) −Wψ(1))‖ ,

which gives the claim.

For η = 0 and γ ∈ (0, 12) we first observe that Lemma 3.1.3 holds true for sums over gn.
Moreover, the Hájek-Rényi inequality is also fulfilled, after replacing. Therefore, analogue
arguments as in the proof of a) yield the results.

Theorem 3.1.4

Assume L.1, G.1 and let η, γ fulfil G.2 . Under H1, we have:

a) if L.2 and L.3 hold true and δn fulfilling either G.5.a) or G.5.b), then (with
A = Σ−1

g )

Tn(η, γ; g)
p−→ ∞ .

b) if L.2 – L.7 hold true and δn fulfilling G.5.b), then (with A = Σ−1
gn )

Tn(η, γ; gn)
p−→ ∞ .

Proof:
Consider the claim a).
First observe that by assumption L.2 we have

wη,γ;g(k, n) ≥ 1 .

Equivalently to the proof of Theorem 2.2.2, we see analysing
∥
∥
∥Sm(θ̂n; g)

∥
∥
∥
Σ−1

g

is enough. From

model (3.1), we get

1√
n

∥
∥
∥Sm(θ̂n; g)

∥
∥
∥
Σ−1

g

≥

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥

1√
n

m∑

t=1

(g(Xt)εt − g(Xt)εn)

∥
∥
∥
∥
∥
Σ−1

g

− 1√
n

n∑

t=1

g(Xt)w0,1;g(m,n)‖δn‖Σ−1
g

∣
∣
∣
∣
∣
∣

.

The key in the proof of Theorem 2.2.2 was the CLT applied to the random sum. The {g(Xt)εt}
are i.i.d. with finite variance (assumptions L.1 and L.2), so the CLT is also fulfilled. Moreover,
we have the a.s. convergence of w0,1;g(m,n) and g(X)n. Thus, we conclude

∥
∥
∥Sm(θ̂n; g)

∥
∥
∥ =

∣
∣
∣OP (1) −OP (

√
n‖δn‖Σ−1

g
)
∣
∣
∣

p−→ ∞ for n→ ∞ .

Due to the strong LLN we have with the equivalent inequalities as in the proof of Theorem
2.2.2.

The proof of b) goes equivalently.
Assumptions L.1 and L.6 yield that

∑k
t=1 gn(Xt)εt, k = m,n, fulfil a CLT and w0,1;gn(m/n) =

OP (1), gn(X)n = OP (1). Then the proof follows the ideas of the proof of a).
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3.2. Non-linear (auto-)regressive processes and neural network functions

3.2. Non-linear (auto-)regressive processes and neural network

functions

Let X1, . . . , XN be the observations of a non-linear autoregressive process of order p > 0. It
is only possible to detect changes in the observations Xp+1, . . . , XN . We denote with n the
number of observations in which the change is detectable, i.e. X−p+1, . . . , X0, X1, . . . , Xn with
n = N − p.

The considered time series model with a change after an unknown time point 1 ≤ m = m(n) ≤
n is given as

Xt =

{

g1(Xt) + εt 1 ≤ t ≤ m,

g2(Xt) + εt m < t ≤ n ,
(3.21)

where g1 and g2 are some functions, such that {Xt, t ≤ m} and {Xt, t > m} differ in
distribution, Xt = (Xt−1, . . . , Xt−p) is the regression vector and εt is a sequence of i.i.d. zero
mean random variables with 2 + φ moments (φ > 0). The unknown parameter m = ⌊λn⌋,
λ ∈ (0, 1), is called the change-point if m < n. For m = n no change occurs.

After the change-point the new time-series Xt with autoregression function g2 has starting
values not from the stationary distribution. Therefore, one needs some more assumptions for
this time series. We assume Xt to be α-mixing with polynomial rate for (auto-)regression
functions g1 and g2.

Neural networks have a universal approximation property, i.e. a large class of functions can
be approximated by a neural network to any degree of accuracy (Hornik et al. [1989]). This
motivates to overcome the problem of the unknown regression function by approximating with
neural networks. Under H0, the unknown regression function is approximated by the neural
network

f(x, θ) = ν0 +

H∑

i=1

νiψ(< ai, x > +bi)

with αi = (αi1, . . . , αip)
T, θ = (ν0, . . . , νH , a1, . . . , aH , b1, . . . , bH) ∈ Θ compact and Θ ⊂

R
(2+p)H+1. The ψ is assumed to be a sigmoid function with

ψ(x) = 1 − ψ(−x) lim
x→∞

ψ(x) = 1 lim
x→−∞

ψ(x) = 0 .

Observe, that θ is identifiable up to permutations, if the network is not redundant (see section
3.2.2). It is necessary to assume that the neural network parameters, approximating each
function, are distinguishable, i.e.

g1(x) ≈ f(x, θ1) g2(x) ≈ f(x, θ2)

with θ1 6= θ2 (not of the same equivalence class). Therefore, we have the following model

Xt =

{

f(Xt, θ1) + et t ≤ m,

f(Xt, θ2) + et t > m .

If we assume Xt to be a sequence of α-mixing random variables (with polynomial rate), then
invariance principles hold true and we are able to derive asymptotic results. We want to
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3. Change-point tests

mention, that in the correctly specified case the residuals et form a sequence of i.i.d. random
variables with et independent of {Xs, s < t}.

A technical problem occurs if the time-series after the change-point does not start in the
stationary distribution. To overcome this problem we use the quasi model, i.e.

Xt =

{

X
(1)
t = g1(X

(1)
t ) + εt t ≤ m,

X
(2)
t = g2(X

(2)
t ) + εt t > m ,

where {X(1)
t } and {X(2)

t } are 2 independent time series, which differ in distribution. Then
the quasi neural network model is given by

Xt =

{

f(X
(1)
t , θ1) + e

(1)
t t ≤ m,

f(X
(2)
t , θ2) + e

(2)
t t > m ,

where {e(1)t }, {e(2)t } are sequences of zero mean, stationary and α-mixing random variables

with polynomial rate, but the time series before ({X(1)
t }) and after ({X(2)

t }) the change point
do not coincide.

Observe that under correct specification it the {e(1)t } and {e(2)t } become {εt} from the original
model. In this case some of the assumptions can be relaxed. We are going to analyse the
behaviour for the misspecified situation.

In Kirch and Tadjuidje Kamgaing [2012] tests for change-points for these models are in-
troduced. Based on the sample residuals they introduced, besides other statistics, the test
statistic

Tn2 = max
1≤k<n

1√
n q( kn)

∣
∣
∣
∣
∣

k∑

i=1

(Xi − f(Xi, θ̂n))

∣
∣
∣
∣
∣
,

where q is a weight function defined on (0, 1). They assumed that the weight function q
belongs to the class

Q0,1 = {q : q is non-decreasing in a neighborhood of 0, non-increasing in a

neighbourhood of 1 and inf
η≤t≤1−η

q(t) > 0 for all 0 < η <
1

2
} .

The convergence of the test statistic is then based on results of Csörgő and Horváth [1993]. To
this end, an additional integral condition has to be fulfilled. We discuss the assumptions and
the relation to our weight function in section 3.3. Then, this kind of test statistic is covered
by the tests we are considering. But we are going to generalise this kind of test statistic to a
more general model and to be sensitive against different alternatives.

Besides the test statistic Kirch and Tadjuidje Kamgaing [2012] also proved the consistency of
the change-point estimator using

m̂ = arg max
{∣
∣
∣SH(k; θ̂n)

∣
∣
∣ : 1 ≤ k < n

}

,
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3.2. Non-linear (auto-)regressive processes and neural network functions

where SH(k; θ̂n) is the partial sum of estimated residuals using the least-squares estimator θ̂n,
i.e.

SH(k; θ̂n) =

k∑

t=1

ε̂t =

k∑

t=1

(

Xt − f(Xt, θ̂n)
)

,

θ̂n = arg min
θ∈Θ

n∑

t=1

(Xt − f(Xt, θ))
2 (3.22)

for the sample X−p, . . . , Xn. We are going to analyse the change-point estimator based on the
test statistic. For more informations on the change-point estimator we refer to section 4.2.

In the following we use a more general set-up where we combine regression and autoregression
model. We show that with a some more assumptions on the observations as well as on the
generating function of the neural network we derive equivalent results.

3.2.1. Model

Recall that we specified the situation to observing times series

Xt =

{

g1(Xt, Zt) + εt t ≤ m

g2(Xt, Zt) + εt t > m
(3.23)

where Zt ∈ R
d, possibly random but independent of εt, and 1 ≤ m = m(n) = ⌊λn⌋ ≤ n

(λ ∈ (0, 1)) is called the change-point. To simplify notation we introduce the following random
vector.

N.12 Let Xt ∈ R
p be the autoregression and Zt ∈ R

d the regression vector. Define Yt =
(Xt, Zt) ∈ R

p+d the vector containing in the first p coordinates the autoregression and
in the last d coordinates the regression vector.

In the given model 3.23 the regression functions g1 and g2 are assumed to be unknown, which
motivates us to use approximation via neuronal networks instead. This leads to the model

Xt =

{

X
(1)
t = f((Y

(1)
t ), θ1) + ε

(1)
t t ≤ m

X
(2)
t = f((Y

(2)
t ), θ2) + ε

(2)
t t > m

, (3.24)

where {ε(1)t }, {ε(2)t } are sequences of stationary and α-mixing random variables of polyno-

mial order and θ1, θ2 define different neural networks. {X(1)
t } and {X(2)

t } are 2 independent
(strictly) stationary time series, which differ distributionally.

Observe that like in Kirch and Tadjuidje Kamgaing [2012] we restrict our model to be able
to make use of results like the invariance principle (Theorem C.2.2) and the Hajek-Renyi
inequality (Lemma C.2.4).

L.1 Let {X(1)
t : t ∈ Z} and {X(2)

t : t ∈ Z} be stationary time series and E

[∣
∣
∣X

(1)
1

∣
∣
∣

υ]

< ∞
and E

[∣
∣
∣X

(2)
1

∣
∣
∣

υ]

<∞ for some υ ≥ 3.
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3. Change-point tests

L.2 Let {X(1)
t : t ∈ Z} and {X(2)

t : t ∈ Z} be independent and each α-mixing with rate
α(j) = o(j−c), c > υ/(υ − 2) where υ > 3.

Observe, that we have to make stronger assumptions on the observed time series than in Kirch
and Tadjuidje Kamgaing [2012]. This is caused by the multidimensional test statistic. For
the regression parameter {Zt} we make the following assumptions.

L.3 Let {Zt : t ∈ Z}, Zt ∈ R
d, be either a deterministic sequence or a stationary time series

with finite third moment and independent of {εt : t ∈ Z}.

For the regression part, we also need to have a third moment condition. If the test statistic
contains only the first h derivatives or the last h ones of the neural network function this
assumption can be relaxed to the existence of the second moment.

3.2.2. Properties of the neural network estimator

As mentioned we approximate the regression function using non-linear (auto-)regressive mod-
els with a one-layer neural network as (auto-)regressive function. The one-layer neural network
f : Rp+d → R is given by

f(y, θ) = ν0 +
h∑

i=1

νiψ(< ai, y > +bi) (3.25)

with θ = (ν0, . . . , νh, a11, . . . , a1(p+d), a21, . . . , ah(p+d), b1, . . . , bh)T ∈ Θ compact and

Θ ⊂ R
(2+p+d)h+1. The generating function ψ is assumed to be a sigmoid function, i.e. a

continuous function with

ψ(y) = 1 − ψ(−y) lim
y→∞

ψ(y) = 1 lim
y→−∞

ψ(y) = 0 .

Moreover, we need the following assumption.

L.4 The sigmoid function ψ of the neural network

f(y, θ) = ν0 +

h∑

i=1

νiψ(< ai, y > +bi)

has to be 3-times differentiable w.r.t. θ = (ν0, . . . , νh, a11, . . . , a1(p+d), a21, . . . , ah(p+d),

b1, . . . , bh)T with bounded derivatives.

Observe, that we need 3-times differentiable but in Kirch and Tadjuidje Kamgaing [2012]
2-times is enough.

For the definition of the limit of the parameter estimator under H0 as well as under H1, we
assume G.1. Then the loss function is defined as

Eθ = λE
(

X
(1)
1 − f(Y

(1)
1 , θ)

)2
+ (1 − λ)E

(

X
(2)
1 − f(Y

(2)
1 , θ)

)2
(3.26)
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3.2. Non-linear (auto-)regressive processes and neural network functions

for 0 < λ ≤ 1. The non-linear least squares estimator of the neural network parameter is
derived by minimizing

Qn(θ) :=

n∑

t=1

(Xt − f(Yt, θ))
2 (3.27)

with respect to θ, which leads to

θ̂n = arg minθ∈ΘQn(θ) (3.28)

for a suitable compact set Θ.

L.5 Let

Eθ = λE
(

X
(1)
1 − f(Y

(1)
1 , θ)

)2
+ (1 − λ)E

(

X
(2)
1 − f(Y

(2)
1 , θ)

)2
.

There exists θ̃ = arg minθ Eθ, which is the unique minimizer of Eθ and lies in the interior
of the compact parameter set Θ ⊂ R

q, with q = (p+ d+ 2)h+ 1.

L.6 Let
M := ∇2Eθ̃

be positive definite.

The existence and identifiability of θ̃ is necessary to derive the asymptotic distribution for the
test statistic and later for the change-point estimator. It is known that each neural network
is not identifiable in the common sense. So, we have to clarify the term identifiably in the
context of neural networks. Following Hwang and Ding [1997] we get for a non-redundant and
irreducible network the identifiability of the parameter up to a symmetry transformation and
transposition (see Lemma A.1.1). So we can define a equivalence class and define identifiability
as identifying the equivalence class.

The equivalence class is defined as follows. Let θ ∈ Θ, θ = (ν0, µ1, . . . , µh), with µi =
(νi, αi, βi) for i = 1, . . . , h, then a parameter θ2 is of the equivalence class of θ if there exists a
finite number of transpositions (πi,k) and symmetry transformations (πk), i.e. a function π a
composite function of {πl, πi,k|i, k, l = 1, . . . , h i 6= k} such that θ2 = π(θ). For the notation
and definitions see section A.1.

For the test statistic this definition of identifiability is enough, because we are interested in
determining a possible difference in the regression function. So it is enough to check if f(x, θ1)
is close to f(x, θ2) where θ1 is the estimator based on the observations before the possible
change and θ2 the one after.

We want to analyse the parameter estimator for the non-linear (auto-)regressive model (3.24).
As in the proof of a consistent change-point estimator in the mean change model (proof of
Theorem 2.3.1 given in section 2.3.4) we are going to make use of Lemma 3.1 of Pötscher
and Prucha [1997] (see Theorem C.1.2). So we first prove the uniform convergence of 1

nQn(·)
against the loss function and then conclude that the estimator is consistent.

Kirch and Tadjuidje Kamgaing [2012] stated in Proposition 1

sup
θ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

t=1

(Xt − f(Xt, θ))
2 − Eθ

∣
∣
∣
∣
∣

= o(1) a.s. ∀ θ ∈ Θ. (3.29)
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We show the result also holds true in the (auto-)regressive model.

Proposition 3.2.1

Assume assumptions L.1, L.3 and L.4. Let Qn(·) be as in (3.27) and E· as in (3.26).
Then under the model (3.24) and for Θ ⊂ R

q (q = (p+ d+ 2)h+ 1) we have for H0 as
well as H1 that for n→ ∞
a)

sup
θ∈Θ

∣
∣
∣
∣

1

n
Qn(θ) − Eθ

∣
∣
∣
∣

a.s−→ 0

b) and

sup
θ∈Θ

∥
∥
∥
∥

1

n
∇2Qn(θ) −∇2Eθ

∥
∥
∥
∥

a.s−→ 0 ,

where ∇2 denotes the Hesse matrix with respect to θ.

This is essentially a ULLN for (Xi − f(Yi, θ)
2) (a) and ∇2(Xi − f(Yi, θ))

2. To prove this,
we have to assume 3-times differentiability of the generating function. In Kirch and Tad-
juidje Kamgaing [2012] they assumed 2-times, which for the change-point test is enough if the
model is correctly specified. Otherwise, the 3rd moment is necessary.

With this result, the
√
n-consistency follows directly. In Kirch and Tadjuidje Kamgaing [2012]

Theorem 2.1 and Theorem 2.2 state the consistency

θ̂n − θ̃ = o(1) a.s. , (3.30)

where θ̃ is given by L.5 and the rate of convergence

‖θ̂n − θ̃‖ = Op

(
1√
n

)

, (3.31)

respectively. We derive equivalent results for our model (3.24).

Theorem 3.2.1 Assume L.1, L.3 and L.4, L.5. Then

a) the parameter estimator is strong consistent, i.e.

θ̂n
a.s−→ θ̃ as n→ ∞ ,

where θ̃ as in L.5.

b) If additionally assumptions L.2 and L.6 hold true, then

√
n(θ̂n − θ̃)

d−→ N (0,M−1VM−1) ,

where

V = lim
n→∞

1

n
E

[

∇Qn(θ̃)(∇Qn(θ̃))T
]

and M as in L.6.
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Notice, the limit V exists but can be singular.

The proof of the consistency follows directly from Proposition 3.2.1 using Lemma 3.1 of
Pötscher and Prucha [1997] (Theorem C.1.2). For the asymptotic normality analogue tech-
niques are used as for the sample mean (see Theorem 2.1.2). With the assumption of the
existence for the Hesse matrix the result then follows due to the mixing assumptions and
because of the sum structure of the estimation function.

We are going to see, that the normality of the estimator is not important but the rate of
convergence is. In the section 3.3.2 this fact is presented clearly.

3.2.3. Asymptotics of the test-statistic

Differently to Kirch and Tadjuidje Kamgaing [2012] we do not observe the sum over the
sample residuals, corresponding to the derivative of the least squares function w.r.t. the
constant parameter of the neural network (ν0). As can be seen in the simulations in Kirch
and Tadjuidje Kamgaing [2012] for a correctly specified model, the sensitivity against a change
in the non-linear parameter can happen to be not as good as for a misspecified model. One
idea to overcome this problem is to not necessarily consider the first derivative but to allow
for more flexibility by, e.g. considering gradients w.r.t. only a part of the parameter vector.
The test statistic is then given as

Tn(η, γ;A) = max
1≤k<n

wη,γ(k/n)
∥
∥
∥Sk(θ̂n)

∥
∥
∥
A

(3.32)

Sk(θ) =

k∑

i=1

∇f(Yi, θ)(Xi − f(Yi, θ))

with Yt as given in N.12 and A as in G.3. The result follows with analogue argumentation
as in Kirch and Tadjuidje Kamgaing [2012]. They first observed that the sample residuals
in the partial sums can be replaced with ζt − ζn, where ζt = Xt − f(Xt, θ̃). Then the main
assertion followed by standard argumentation.

Analogous, we first show that the replacement in the modified model and for the modified
test statistic still holds true. To simplify the notation we introduce the following function.

N.13 Let q(t, θ) := ∇f(Yt, θ)(Xt − f(Yt, θ)) for θ ∈ Θ.

Theorem 3.2.2 Assume L.1- L.6 and define q(t, θ) as in N.13, ζ(t) = q(t, θ̃). Then under
H0 it holds

max
1≤k<n

n

k(n− k)

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − (ζ(t) − ζn))

∥
∥
∥
∥
∥

2

= Op

(
log log n

n

)

.

Observe that the centering with the sample mean is necessary. This controls the variability
due to the estimator. For k = n the sum of q(t, θ̂n) is 0 but the sum of ζt is not. We are going
to use this result to formulate regularity conditions for change-point tests in section 3.3.

97



3. Change-point tests

With the replacement, determining the asymptotic distribution of Tn follows with equivalent
arguments as in Theorem 2.2.1.

Theorem 3.2.3 Assume L.1- L.6. Under H0 the two series

Γij = E[Z1iZ1j ] + 2
∞∑

l≥2

E[Z1iZlj ] +
∞∑

l≥2

E[ZliZ1j ] ,

with Z1i = qi(t, θ̃) = ∇if(Y1, θ̃)(X1 − f(Y1, θ̃)), converge absolutely and we have

Tn(η, γ;A)
d−→ sup

η<s<(1−η)

‖W (s) − sW (1)‖A
(s(1 − s))γ

,

where {W (t)} is a Wiener process having a covariance matrix Γ = (Γij)1≤i,j≤q.

Observe, that Γ denotes the long-run variance of the residuals. In the multivariate case with
A11 = 1 and Aij = 0 for i + j 6= 2 we have for the correctly specified model that Γ is equal
to the variance of the residuals. In this situation estimation of Γ becomes easier, but in the
rest of the cases, as already mentioned in the case of the variance estimator (section 2.5.1),
the estimation becomes its own problem.

With the special choice of the matrix A we were able to derive the limit distribution w.r.t. a
Brownian bridge. Therefore, we used the square root of the covariance matrix of the residuals
which corresponds, due to the model, with the covariance matrix of the Wiener process. Here,
the covariance matrix of the Wiener process is the long run variance of the observed process.
So we define our decision matrix as follows.

L.7 There exists a matrix A′ such that A = Γ− 1
2A′Γ− 1

2 , with Γ as in Theorem 3.2.3.

Corollary 3.2.1 Under the assumptions of Theorem 3.2.3 and L.7, then

Tn(η, γ;A)
d−→ sup

0<t<1
‖B(t)‖A′ ,

with {B(t)} being a standard Brownian bridge in R
q.

In practice the long-run variance of the observed process is not known. From Theorem 2.2.3
we know that replacing it with a consistent estimator will not change the asymptotic results.

Estimating the long-run variance in finite samples leads to estimation problems. In the section
5.1 we are going to discuss this problem and propose a possible solution.

Now we have determined the asymptotic behaviour of Tn under H0. In the next step we show
that the change-point test is a consistent one.

L.8 There exists c > 0 such that
∥
∥
∥E

[

∇f(Y
(1)
1 , θ̃)(X

(1)
1 − f(Y

(1)
1 , θ̃)

]∥
∥
∥
A
> c .

Before we consider the asymptotic behaviour of the change-point test under H1, we state a
useful property of the neural network estimator.
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Proposition 3.2.2

Assume the model (3.24) and the assumptions L.1, L.3, L.4, L.5 and L.8. Under H1

we have
θ̃ 6= θz z = 1, 2 . (3.33)

To prove this proposition, we are going to use, that θ̃ is also the root of the existing derivative
of Eθ. We will use this result also for the change-point test in proving the consistency and
especially for the proofs of the asymptotic behaviour of the change-point estimator.

Lemma 3.2.1

Let assumption L.1-L.8 hold true. Under H1 the parameter θ̃ solves ∇Eθ = 0, with

∇Eθ = λE[∇f(Y
(1)
1 , θ)(X

(1)
1 − f(Y

(1)
1 , θ))] + (1 − λ)E[∇f(Y

(2)
1 , θ)(X

(2)
1 − f(Y

(2)
1 , θ))] .

This Lemma is going to be proven using the properties of the derivative of neural networks
as well as the Dominated Convergence Theorem C.1.3.

With the Proposition 3.2.2 and Lemma 3.2.1 we are able to prove the consistency of the test.
The proof follows essentially the same idea as the proof of Theorem 2.2.2 but requires higher
technically effort due to the neural network.

Theorem 3.2.4 Let assumptions L.1, L.3, L.4, L.5 and L.8 hold. If η < λ < (1− η), then
under H1

Tn(η, γ;A)
p−→ ∞ .

The main idea is to take a look at the sum up to m and analyse this behaviour. Then Tn is
bounded from below by this value.

For the boundedness from below one can use the ULLN (Theorem C.1.1)but also the UCLT
(uniform central limit theorem) as shown in Kirch and Tadjuidje Kamgaing [2012] and Kirch
and Kamgaing [2014], respectively. Here we have the derivative of the neural network func-
tion within the test statistic, thus we follow the argumentation with the ULLN to show the
consistency. Now, Lemma 3.2.1 helps to show the consistency equivalently to the proof of
Theorem 2.2.2.
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3. Change-point tests

3.2.4. Proofs

For all the proofs we use a following of the neural network properties which guarantees the
existence of the uniform LLN.

Lemma 3.2.2

Assume assumptions L.1, L.3 and L.4. Then we have

E[sup
θ∈Θ

‖∇f(Yt, θ)‖] <∞

E[sup
θ∈Θ

∥
∥∇2f(Yt, θ)

∥
∥] <∞

E[sup
θ∈Θ

∥
∥∇2(∇if(Yt, θ))

∥
∥] <∞ i=1,. . . ,p+d .

Proof:
In Lemma A.1.2 the derivatives of the neural network functions are calculated and approxi-
mated under the assumption Θ is compact. From this we gain there exists constants c1, c2
and c3 such that

E[sup
θ∈Θ

‖∇f(Yt, θ)‖] ≤ c1E[ max
j=1,...,p+d

|Yt−j |]

E[sup
θ∈Θ

∥
∥∇2f(Yt, θ)

∥
∥] ≤ c2E[ max

j=1,...,p+d
Y 2
t−j ]

E[

p+d
∑

i=1

sup
θ∈Θ

∥
∥∇2(∇if(Yt, θ))

∥
∥] ≤ c3E[ max

j=1,...,p+d
|Y 3
t−j |] .

With the definition of Yt N.12 we get the existence of the moments due to the assumptions
L.2 and L.3.

Corollary 3.2.2 Under the assumptions of Lemma 3.2.2 we have

E[sup
θ∈Θ

‖∇f(Yt, θ)(Xt − f(Yt, θ))‖] <∞

E[sup
θ∈Θ

∥
∥∇2(Xt − f(Yt, θ))

2
∥
∥] <∞

E[sup
θ∈Θ

∥
∥∇2(∇if(Yt, θ)(Xt − f(Yt, θ))

∥
∥] <∞
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Proof:
Using the triangle inequality and Lemma 3.2.2 we get

E[sup
θ∈Θ

‖∇f(Yt, θ)(Xt − f(Yt, θ))‖] ≤ c1E[|Xt| max
j=1,...,p+d

|Yt−j |] + c2E[ max
j=1,...,p+d

|Yt−j |]

<∞ ,

E[sup
θ∈Θ

‖∇(∇f(Yt, θ)(Xt − f(Yt, θ)))‖] ≤ c3E[|Xt| max
j=1,...,p+d

Y 2
t−j ] + c4E[ max

j=1,...,p+d
Y 2
t−j ]

<∞ ,

E[sup
θ∈Θ

∥
∥∇2(∇if(Yt, θ)(Xt − f(Yt, θ)))

∥
∥] ≤ c6E[|Xt| max

j=1,...,p+d
|Y 3
t−j |] + c4E[ max

j=1,...,p+d
|Y 3
t−j |]

<∞ .

Proposition 3.2.1

Assume assumptions L.1, L.3 and L.4. Let Qn(·) be as in (3.27) and E· as in (3.26).
Then under the model (3.24) and for Θ ⊂ R

q (q = (p+ d+ 2)h+ 1) we have for H0 as
well as H1 that for n→ ∞

a)

sup
θ∈Θ

∣
∣
∣
∣

1

n
Qn(θ) − Eθ

∣
∣
∣
∣

a.s−→ 0

b) and

sup
θ∈Θ

∥
∥
∥
∥

1

n
∇2Qn(θ) −∇2Eθ

∥
∥
∥
∥

a.s−→ 0 ,

where ∇2 denotes the Hesse matrix with respect to θ.

Proof:
The proof is analogous to the one of Proposition 1 in Kirch and Tadjuidje Kamgaing [2012].
Therefore, we only discuss the necessary modifications.

With the additional assumptions on the independent regression vector Zt we still have for H0

that Qn(θ) and ∇2Qn(θ) are a sums of stationary and ergodic processes defined on C(Θ,R)
and C(Θ,R(q×q)), respectively. In both cases the functions are of the form

∑n
i=1 vi(θ) (see

(3.27)). Then we use under H1, that we have

sup
θ∈Θ

∥
∥
∥
∥
∥

1

n

n∑

i=1

vi(θ) − E(θ)

∥
∥
∥
∥
∥

≤ sup
θ∈Θ

∥
∥
∥
∥
∥
∥

1

n

⌊λn⌋
∑

i=1

vi(θ) − λE1(θ)

∥
∥
∥
∥
∥
∥

+ sup
θ∈Θ

∥
∥
∥
∥
∥
∥

1

n

n∑

i=⌊λn⌋+1

vi(θ) − (1 − λ)E2(θ)

∥
∥
∥
∥
∥
∥

for every E(θ) = λE1(θ) + (1 − λ)E2(θ). Notice the sums of the mixed parts, i.e. where the
function vi(θ) depends on the observations before the change-point, are negligible by L.1 and
L.3. So it is enough to show the result separately for each part. The separate parts are again
sums of stationary ergodic processes. Thus one assumption of the uniform LLN (see Theorem
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3. Change-point tests

C.1.1) is fulfilled for the least squares function Qn(θ) and the second derivative of the least
squares function ∇2Qn(θ).

For a) we have from L.4 that supθ∈Θ |f(y, θ)| ≤ D1 for some D1 > 0 and y ∈ R
p+d. With the

assumptions L.1 and L.3 the uniform LLN is applicable under H0 as well as H1.

To show b) we use Ranga Rao C.1.1. The stationarity and ergodicity follows from assumptions
on X and Z. It is left to show

E[sup
θ∈Θ

∥
∥∇2(Xt − f(Yt, θ))

2
∥
∥] <∞ . (3.34)

We observe that E[supθ∈Θ
∥
∥∇2(Xt − f(Yt, θ))

2
∥
∥] = 2E[supθ∈Θ ‖∇(∇f(Yt, θ)(Xt − f(Yt, θ)))‖].

From Corollary 3.2.2 we get directly 3.34 and from the dominated convergence theorem C.1.3
we can exchange the derivatives and the expectations. This shows ∇2Eθ is the expectation.

Theorem 3.2.1

Assume L.1, L.3 and L.4, L.5. Then

a) the parameter estimator is strongly consistent, i.e.

θ̂n
a.s−→ θ̃ as n→ ∞ ,

where θ̃ as in L.5.

b) If additionally assumptions L.2 and L.6 hold true, then

√
n(θ̂n − θ̃)

d−→ N (0,M−1VM−1) ,

where

V = lim
n→∞

1

n
E

[

∇Qn(θ̃)(∇Qn(θ̃))T
]

and M as in L.6.

Notice, the limit V exists but can be singular.

Proof:
With Proposition 3.2.1 and assumption L.5 the assumptions of Lemma 3.1 in Pötscher and
Prucha [1997] (see Theorem C.1.2) hold true. The assertion a) follows then directly.

The proof of assertion b) is given in two steps. First we prove it for H0 and secondly for H1.

Under H0 we have from Lemma A.1.2 supθ ‖∇f(y, θ)‖ ≤ cmax(|x1|, . . . , |xp|, |z1|, . . . , |zd|),
where y = (x1, . . . , xp, z1, . . . , zd). By L.1 and L.3 it follows from the dominated convergence
Theorem C.1.1 that we can exchange derivative and expectation. With the definition of θ̃ (see
assumption L.5) we know, θ̃ solves

0 = ∇Eθ = E[∇(X1 − f((X1, Z1), θ))
2] .

Because ∇Qn(θ̃) is a sum over α-mixing stationary time series, a CLT holds true (see Propo-
sition C.2.1) and we have

1√
n
∇Qn(θ̃)

d−→ N (0, V ) .
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From the Taylor expansion there exists a θ⋆n, with
∥
∥
∥θ⋆n − θ̃

∥
∥
∥ ≤

∥
∥
∥θ̂n − θ̃

∥
∥
∥ and

0 = ∇Qn(θ̂n)

= ∇Qn(θ̃) + (θ̂n − θ̃)∇2Qn(θ⋆n) .

The almost sure consistency, shown in a), provides θ⋆n
a.s−→ θ̃. Proposition 3.2.1 assertion b)

yields

1

n
∇2Qn(θ⋆n)

a.s−→ ∇2Eθ̃ .

With assumption L.6 the left hand side is an invertible matrix. Putting everything together
we have first

∇Qn(θ̃) = −(θ̂n − θ̃)∇2Qn(θ⋆n) = −n(θ̂n − θ̃)M + op(
√
n)

and secondly
√
n(θ̂n − θ̃) = − 1√

n
∇Qn(θ̃)M−1 d−→ N (0,M−1VM−1) .

Under H1 we use the independence of the sums up to m and from m + 1 till n. Each part
is separately a sum over α-mixing stationary time series, so the result follows with the same
argumentation. With the linearity of the derivative we can directly get the assertion.

Theorem 3.2.2

Assume L.1- L.6 and define q(t, θ) as in N.13, ζ(t) = q(t, θ̃). Then under H0 it holds

max
1≤k<n

n

k(n− k)

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − (ζ(t) − ζn))

∥
∥
∥
∥
∥

2

= Op

(
log log n

n

)

.

Proof:
From

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − (ζt − ζn))

∥
∥
∥
∥
∥

2

=

q
∑

i=1

(
k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζi,n))

)2

we get that it is enough to show

max
1≤k<n

√
n

k(n− k)

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζin))

∣
∣
∣
∣
∣

= Op

(√

log log n

n

)

for i = 1, . . . , q. The proof follows analogously to the proof of Lemma 3 in Kirch and Tad-
juidje Kamgaing [2012], except we have the derivative w.r.t. θ of the neural network. That
is the reason for the higher moment condition. We use the possibility to show the proof in
detailed steps.
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Assume n large enough such that θ̂n ∈ Θ. Because
∑n

t=1 q(t, θ̂n) = 0 we have

k∑

t=1

(qi(t, θ̂n)−(ζi(t) − ζin))

=
k∑

t=1

(qi(t, θ̂n) − ζi(t)) −
k

n

n∑

t=1

(qi(t, θ̂n) − ζi(t))

=

k∑

t=1

(
qi(t, θ̂n) − qi(t, θ̃)

)
− k

n

n∑

t=1

(
qi(t, θ̂n) − qi(t, θ̃)

)

=
k∑

t=1

(

∇qi(t, θ̃)T (θ̂n − θ̃)
)

+
1

2

k∑

t=1

(

(θ̂n − θ̃)T∇2qi(t, ξ)(θ̂n − θ̃)
)

− k

n

n∑

t=1

(

∇qi(t, θ̃)T (θ̂n − θ̃)
)

− k

2n

n∑

t=1

(

(θ̂n − θ̃)T∇2qi(t, ξ)(θ̂n − θ̃)
)

,

with ξ elementwise between θ̂n and θ̃. From consistency of θ̂n we have ξ ∈ Θ̇. Using that
∇qi(t, θ̃), for each i = 1, . . . , q, is again a stationary α-mixing time series with finite 2 + δ
moments, the assumptions of the LIL (C.3) are fulfilled. From this and ‖θ̂n − θ̃‖ = Op(

1√
n

)

we derive

max
1≤k<n

2

1√
k

∣
∣
∣
∣
∣

k∑

t=1

(

∇qi(t, θ̃)T (θ̂n − θ̃)
)

− k

n

n∑

t=1

(

∇qi(t, θ̃)T (θ̂n − θ̃)
)
∣
∣
∣
∣
∣

≤ max
1≤k<n

2

∥
∥
∥
∥
∥

1√
k

k∑

t=1

(

∇qi(t, θ̃) − E(∇qi(1, θ̃)
)
∥
∥
∥
∥
∥

∥
∥
∥θ̂n − θ̃

∥
∥
∥

+

∥
∥
∥
∥
∥

1√
n

n∑

t=1

(

∇qi(1, θ̃) − E(∇qi(1, θ̃))
)
∥
∥
∥
∥
∥

∥
∥
∥θ̂n − θ̃

∥
∥
∥

= Op(
√

log log n)Op

(
1√
n

)

.

It is left to show that the parts with the second derivative vanishes faster. We have from
Lemma

max
1≤k≤n

2

1

k

k∑

t=1

‖∇2qi(t, ξ)‖∞ = max
1≤k≤n

2

1

k

k∑

t=1

sup
θ∈Θ

∥
∥∇2(∇if(Yt, θ))

∥
∥ = Op(1) i = 1, . . . , q .

Then we get

max
1≤k≤n

2

1√
k

∣
∣
∣
∣
∣

k∑

t=1

(

(θ̂n − θ̃)T∇2qi(t, ξ)(θ̂n − θ̃)
)

− k

n

n∑

t=1

(

(θ̂n − θ̃)T∇2qi(t, ξ)(θ̂n − θ̃)
)
∣
∣
∣
∣
∣

≤ √
n
∥
∥
∥θ̂n − θ̃

∥
∥
∥

2
max

1≤k≤n
2

1

k

k∑

t=1

‖∇2qi(t, ξ)‖∞ +
√
n
∥
∥
∥θ̂n − θ̃

∥
∥
∥

2 1

n

n∑

t=1

‖∇2qi(t, ξ)‖∞

= Op

(
1√
n

)

.
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From the properties of the stochastic Landau symbols (A.2) we get the claim for the maximum
up to n

2 . For the other part, we observe

max
n
2≤k<n

1√
n− k

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζin))

∣
∣
∣
∣
∣

= max
n
2≤k<n

1√
n− k

∣
∣
∣
∣
∣

n∑

t=k+1

(qi(t, θ̂n) − (ζi(t) − ζin))

∣
∣
∣
∣
∣
.

With the Tailor expansion we get an equivalent splitting except the sums are from k+1 up to
n. Using the stationarity we get {∑n

t=k+1∇qi(t, θ̃), n
2 ≤ k ≤ n− 1} is distributionally equal

to {∑l
t=1∇qi(−t, θ̃), 1 ≤ l ≤ n− n

2 }. The mixing property does not change, therefore we can
argue analogue as before. Doing the same for the second derivative, we get

max
1≤k<n

n

k(n− k)

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζi,n))

∣
∣
∣
∣
∣

= O(1) max

{

max
1≤k≤n

2

1√
k

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζi,n))

∣
∣
∣
∣
∣
,

max
n
2≤k<n

1√
n− k

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − (ζi(t) − ζi,n))

∣
∣
∣
∣
∣

}

.

Then the claim follows.

Theorem 3.2.3

Assume L.1- L.6. Under H0 the two series

Γij = E[Z1iZ1j ] + 2

∞∑

l≥2

E[Z1iZlj ] +
∑

l≥2

E[ZliZ1j ]

with Z1i = qi(t, θ̃) = ∇if(Y1, θ̃)(X1 − f(Y1, θ̃)), converges absolutely and we have

Tn(η, γ;A)
d−→ sup

η<s<(1−η)

‖W (s) − sW (1)‖A
(s(1 − s))γ

,

where {W (t)} is a Wiener process having a covariance matrix Γ = (Γij)1≤i,j≤q.

Proof:
By Theorem 3.2.2 we have

∣
∣
∣
∣
∣

max
1≤k<n

w(η, γ)

∥
∥
∥
∥
∥

k∑

t=1

q(t, θ̂n)

∥
∥
∥
∥
∥
A

− max
1≤k<n

w(η, γ)

∥
∥
∥
∥
∥

k∑

t=1

(ζ(t) − ζn)

∥
∥
∥
∥
∥
A

∣
∣
∣
∣
∣

≤ max
1≤k<n

w(η, γ)

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − (ζ(t) − ζn))

∥
∥
∥
∥
∥
A

= oP (1)

with q(t, θ) = ∇f(Yt, θ)(Xt − f(Yt, θ)) and ζ(t) = q(t, θ̃). Observing that

max
1≤k<n

∥
∥
∥
∥
∥

1√
n

k∑

t=1

ζ(t) − k

n

1√
n

n∑

t=1

ζ(t)

∥
∥
∥
∥
∥
A

= max
1
n
≤s<1

∥
∥
∥
∥
∥
∥

1√
n

⌊sn⌋
∑

t=1

ζ(t) − s
1√
n

n∑

t=1

ζ(t)

∥
∥
∥
∥
∥
∥
A
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and ζ(t) fulfils a invariance principle for α-mixing processes (see C.2.2). With the invariance
principle and the continuous mapping theorem we get

max
1≤k<n

∥
∥
∥
∥
∥

1√
n

k∑

t=1

ζt −
k

n

1√
n

n∑

t=1

ζt

∥
∥
∥
∥
∥
A

d−→ sup
0<s<1

‖W (s) − sW (1)‖A

Lemma 3.2.1

Let assumption L.1-L.8 hold true. Under H1 the parameter θ̃ solves ∇Eθ = 0, with

∇Eθ = λE[∇f(Y
(1)
1 , θ)(X

(1)
1 − f(Y

(1)
1 , θ))] + (1 − λ)E[∇f(Y

(2)
1 , θ)(X

(2)
1 − f(Y

(2)
1 , θ))] .

Proof:
From the Corollary of the Dominated Convergence Theorem (see Corollary C.1.1) we know

the derivative of Eθ exists if we can show that ‖∇f(Y
(1)
1 , θ)(X

(1)
1 − f(Y

(1)
1 , θ))‖ as well as

‖∇f(Y
(2)
1 , θ)(X

(2)
1 − f(Y

(2)
1 , θ))‖ are dominated integrable. This is given in Corollary 3.2.2,

which gives the claim.

Proposition 3.2.2

Assume the model (3.24) and the assumption L.1- L.8. Under H1 we have

θ̃ 6= θz z = 1, 2 . (3.35)

Proof:
Assume θ̃ = θ1, i.e. E

[

∇f(Y
(1)
1 , θ̃)

(

X
(1)
1 − f(Y

(1)
1 , θ̃)

)]

= 0 which is a contradiction to L.8.

Let θ̃ = θ2, i.e. E

[

∇f(Y
(2)
1 , θ̃)

(

X
(2)
1 − f(Y

(2)
1 , θ̃)

)]

= 0.

Using L.8 we get the existence of d such that
∥
∥
∥E[∇f(Y

(1)
1 , θ̃)(X

(1)
1 − f(Y

(1)
1 , θ̃)]

∥
∥
∥ > d > 0 .

From Lemma 3.2.1 we get that

λE
[

∇f(Y
(1)
1 , θ̃)

(

X
(1)
1 − f(Y

(1)
1 , θ̃)

)]

+ (1 − λ)E
[

∇f(Y
(2)
1 , θ̃)

(

X
(2)
1 − f(Y

(2)
1 , θ̃)

)]

= 0 .

Therefore, it follows

∥
∥
∥E

[

∇f(Y
(2)
1 , θ̃)

(

X
(2)
1 − f(Y

(2)
1 , θ̃)

)]∥
∥
∥ =

λ

1 − λ

∥
∥
∥E[∇f(Y

(1)
1 , θ̃)(X

(1)
1 − f(Y

(1)
1 , θ̃)]

∥
∥
∥

>
λ

1 − λ
d > 0 .

This is a contradiction to the definition of θ1, but we assumed θ̃ = θ1. So it follows θ̃ 6= θz for
z = 1, 2.
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3.2. Non-linear (auto-)regressive processes and neural network functions

Theorem 3.2.4

Let assumptions L.1-L.8 hold. Under H1

Tn(η, γ;A)
p−→ ∞ .

Proof:
As in the proof of Theorem 2.2.2 (see page 27) we can conclude

Tn(η, γ;A) ≥ 1√
n

∥
∥
∥
∥
∥

m∑

t=1

∇f(Yt, θ̂n)
(

Xt − f(Yt, θ̂n)
)
∥
∥
∥
∥
∥
A

.

In Kirch and Tadjuidje Kamgaing [2012] they rewrite the sum up to m as a sum over centered
stationary and α-mixing sequence plus some expectation as well as a part which could be
handled using the ULLN for neural networks. In our situation we get for i = 1, . . . , q

m∑

t=1

(

(∇f)i(Yt, θ̂n)
(

Xt − f(Yt, θ̂n)
))

= m
(

E[qi(Y1, θ̃)]
)

+

m∑

t=1

(

qi(Yt, θ̂n) − qi(Yt, θ̃)
)

+O

(

sup
θ∈K

m∑

t=1

(qi(Yt, θ) − E[qi(Y1, θ)])

)

.

For the last part on the right hand side, we know from Corollary 3.2.2 that the assumptions
of Ranga Rao C.1.1 are fulfilled. It converges to 0, which gives oP (n). It is left to analyse

m∑

t=1

(

qi(Yt, θ̂n) − qi(Yt, θ̃)
)

=

m∑

t=1

(

∇qi(Yt, θ̃)
(

θ̂n − θ̃
))

+

m∑

t=1

(

θ̂n − θ̃
)
T

∇2qi(Yt, ξ)
(

θ̂n − θ̃
)

,

where
∥
∥
∥ξ − θ̃

∥
∥
∥ ≤

∥
∥
∥θ̂n − θ̃

∥
∥
∥. First observe that θ̂n is

√
n-consistent, i.e.

∥
∥
∥θ̂n − θ̃

∥
∥
∥ = OP ( 1√

n
).

Using the ULLN (Theorem C.1.1) which holds by Corollary 3.2.2, we get

∣
∣
∣
∣
∣

m∑

t=1

((

θ̂n − θ̃
)
T

∇qi(Yt, θ̃)
)
∣
∣
∣
∣
∣
≤
∥
∥
∥θ̂n − θ̃

∥
∥
∥

∥
∥
∥
∥
∥

m∑

t=1

∇qi(Yt, θ̃)
∥
∥
∥
∥
∥

= oP (n) ,

∣
∣
∣
∣
∣

m∑

t=1

(

θ̂n − θ̃
)
T

∇2qi(Yt, ξ)
(

θ̂n − θ̃
)
∣
∣
∣
∣
∣
≤
∥
∥
∥θ̂n − θ̃

∥
∥
∥

2
m∑

t=1

∥
∥∇2qi(Yt, ξ)

∥
∥
∞

= OP (1) .

Then we gain

1√
n

m∑

t=1

qi(Yt, θ̂n) −
m∑

t=1

qi(Yt, θ̃) = oP (
√
n) .
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3. Change-point tests

For the test statistic this results in

Tn(η, γ;A) ≥ 1√
n

∥
∥
∥
∥
∥

m∑

t=1

q(t, θ̂n)

∥
∥
∥
∥
∥
A

=
√
nλ
∥
∥
∥E[q(Y1, θ̃)]

∥
∥
∥
A

+ oP (
√
n) + oP (n) .
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3.3. Generalized class of change-point test

3.3. Generalized class of change-point test

In the section 2.2 as well as in section 3.2 we have analysed change-point tests for different
model assumptions. Nevertheless, the proofs are quite analogue. This does not only hold
true for this two examples. The non-parameteric change-point test is analysed not only for
the mean change model, but has been subsequently been extended to many different models.
For instance, Gombay [2010] analysed a change-point test for linear regression model with
time-series errors, Gombay et al. [1996] considered change-point tests for variance changes
and robust techniques are also studied, e.g. for M-tests see Hušková [1996], see 3.1. The test
statistics seems to be different, but they are all based on the same idea and are proven in
a similar way. Hence, it seems more plausible to develop a generalized class of change-point
tests.

For the sequential set-up regularity conditions on the change-point test were derived in Kirch
and Tadjuidje Kamgaing [2014]. In the sequential set-up the estimator is based on an inde-
pendent historical dataset. This assumption is not made in the offline case; on the contrary
the estimator depends on the same observations as the test statistic.

We considered the weighted CUSUM statistic with the deterministic weight function

wη,γ(s) = 1{η<s<1−η} (s(1 − s))−γ s ∈ (0, 1) .

This is a typical form of weight function considered in the literature. But also a generalised
class of test statistics so-called q-weighted CUSUM stastistics are considered (see Kirch and
Tadjuidje Kamgaing [2012] or Csörgő and Horváth [1997] section 4.1). The weight function
w is then defined as 1/q where q is out of the class

Q0,1 = {q : q is non-decreasing in a neighborhood of zero, non-increasing in a

neighbourhood of one and inf
η≤t≤1−η

q(t) > 0 for all 0 < η < 1
2} .

To derive asymptotic results they introduced the integral

I(q, c) =

∫ 1

0

1

s(1 − s)
exp

{

−c q2(s)

s(1 − s)

}

ds .

In Csörgő and Horváth [1993] they showed that for functions q ∈ Q0,1 the integral I(q, c) is
finite for all c > 0 if and only if we have

lim sup
tց0

|B(t)|/q(t) = 0 a.s. and lim sup
tր1

|B(t)|/q(t) = 0 a.s.

One can check that the weight function wη,γ(s) fulfils these conditions.

As we are interested in sufficient conditions on the weight function to derive the asymptotics,
we define the following class of weight functions (as done in Kirch and Tadjuidje Kamgaing
[2014])

L(η, γ) := {ρ : non-negative functions with lim
α<s<1−α

ρ(s) <∞

for all α ∈ (η, 12) and for γ ∈ (0, 12) lim
s→0

ρ(s)sγ <∞

and lim
s→1

ρ(s)(1 − s)γ <∞} .
(3.36)
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3. Change-point tests

Notize, the asymptotic behaviour given in (3.36) is used to prove the sufficiency of the integral
condition. For informations on the proof we refer to Shao et al. [1991]. So, functions satisfying
the integral conditions also fulfil the asymptotic conditions in (3.36), in consequence, they are
equivalent. In section 3.1, we analysed a special form of the randomized weight function. We
use the main idea to show that for a general class of possible randomized weight functions the
asymptotic results still hold true under some regularity conditions.In the following sections
we study the general principle of the test statistic and identify regularity conditions under
which the asymptotic results are derived. In section 3.3.1, we describe the statistical model
and the general concept of the test statistic of interest. The regularity conditions for deriving
the asymptotic distribution as well as having a consistent test for a general set-up will be
discussed in section 3.3.2. In the case of smooth functions, we give the conditions on the
function and the model such that we still have the same asymptotics (section 3.3.3). This
topic is completed with technical proofs in section 3.3.4.

3.3.1. Change-point model and construction of change-point test

Let {Xt} be the observed process. Under λ = 1, the process {Xt} has probability measure
P0. We consider the following class of probability measures Pθ := {Pθ : θ ∈ Θ}. In most of
the cases one assumes that P0 is out of Pθ. As we have seen in section 3.2, it is enough to
assume that there exists an identifiable parameter θ̃ such that Pθ̃ fits P0 best. We assume for
λ < 1 that there exists also a parameter out of Θ such that the measure to this parameter
fits best, but is neither equal to the measure before the change-point nor to the measure after
the change-point. In both cases we denote the best fitting parameter with θ̃. It is important
that under λ = 1 the parameter θ̃ is not the same as under λ < 1.

For the analysis of estimators, Godambe [1960] introduced the class of estimation functions.
A discussion of estimation functions in parametric statistic model is given in Sørensen [1999].
The most interesting property of this class of functions is the structure. They are assumed to
be sums and the estimator is defined as a root. In the following those functions are denoted
by estimating functions.

A common method in change-point theory to derive test statistics is to use the estimating
function of the parameter as the test function. Let G denote the estimating function for the
change-point, i.e.

SG(n, θ) =
n∑

t=1

G(Xt; θ) ,

and the corresponding parameter estimator θ̂n solves

SG(n, θ) = 0 .

The estimation function is assumed to be an unbiased estimating function, i.e.

E[G(X1, θ̃)] = 0 . (3.37)

In our situation this is only true under H0. That is why we assume, the parameter θ̃ under
H0 to be the unique solution of the equation E[G(X1, θ)] = 0. The corresponding test statistic
is then given as

Tn(θ̂n;A) = max
0<k<n

w(k/n)√
n

∥
∥
∥SG(k; θ̂n)

∥
∥
∥
A
,
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3.3. Generalized class of change-point test

with w(k/n) ∈ L(η, γ) (see (3.36)). A is again given as before (see chapter 2). A simple
example is the projection on the lth dimension, i.e.

Aij = 0 (i, j) 6= (l, l) and All = 1 . (3.38)

In the same way, one can weight the dimensions due to the importance. For example, there is
one dimension where even small changes have to be detectable, then this dimension is weighted
higher. In consequence, we can control the power and increase it for some alternatives at
the cost of loosing power in others. The matrix A is a positive semi-definite symmetric
matrix. From the previous examples, we can see that besides weighting the importance of
the alternatives, the matrix is also used to handle the asymptotic covariance Σ of the Wiener
process. To derive the asymptotic distribution based on a standard Brownian bridge we
replace the matrix A by Σ− 1

2A′Σ− 1
2 . For the applications we usually have to replace Σ− 1

2

with a consistent estimator, but this does not change the asymptotic results (see Theorem
2.2.3). Moreover, the choice of A defines the detectable alternatives as well as the sensitivity
to different alternatives.

In Ciupera [2013] different functions are considered for testing and estimation. Motivated
by this publication, we allow the general set-up, where one might use different estimation
functions for testing and for deriving the parameter. Additionally, we allow the weight function
to depend on the data. The corresponding test statistic is then given by

Tn(θ̂n;A) = max
0<k<n

wn(n, k)√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
, (3.39)

where SH(k; θ) =
∑k

t=1H(Xt, θ) is some unbiased estimating function, but does not be an
estimating function such that it has unique solution of E[H(X1, θ)] = 0. We consider the
following example.

Example 3.3.1 Let X1, . . . , Xn be log-normal distributed with µ0, σ
2
0 then we have to solve

n∑

t=1

(log(Xt) − µ) = 0

n∑

t=1

(

(log(Xt) − µ)2 − σ2
)

= 0

This means an estimating function is given by

G(x, θ) =

(
log(x) − µ

(log(x) − µ)2 − σ2

)

. (3.40)

The change, we are interested in, occurs in the mean of the log-normal distributed observations,
i.e. an intuitively choice of the test function would be

SH(k; θ) =

k∑

t=1

(
Xt − exp(µ+ 1

2σ
2)
)
,

with θ = (µ, σ2).
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3. Change-point tests

3.3.2. Regularity conditions for asymptotics of change-point tests

Before we come to the parameter estimation and change-point estimation function we derive
general assumptions, further on called regularity conditions. We derive an asymptotic test-
statistic with asymptotic power 1. We consider the following change-point test-statistic

Tn(θ̂n) := max
1≤k<n

w(n, k)

√

ST

H(k; θ̂n)ASH(k; θ̂n) = max
1≤k<n

w(n, k)
∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
, (3.41)

where ‖ · ‖A is as defined in N.3 and

SH(k; θ) =

k∑

i=1

H(Xi, θ) . (3.42)

Further on we will call SH(k; ·) the statistic function. Our test statistic is not only based on
the statistic function, we also have the so called weight function w(n, k). This function has
to fulfil the following assumption.

G.7 The weight-function wn(n, k) ≡ w(n, k;X1, . . . , Xn) is a measurable non-negative ran-
dom function and there exists a continuous function ρ(s) ∈ L(η, γ) (see (3.36)), such
that

sup
0<s<1

|wn(n, ⌊sn⌋) − ρ(s)| = oP (1) .

Note that on every inner interval of (0, 1) the function ρ(s) is bounded. In most of the cases
this assumption is fulfilled due to the fact that the weight-function is a non-random function
of the form wn(n, k) ≡ w(n, k) = 1√

n
ρ(k/n). But, as we have seen in section 3.1 other weight

functions are also possible.

It should be mentioned that the form of the statistic function does not need to be a sum as
described here, as long as the asymptotic behaviour ,given as assumptions in this section, still
hold true. The sum assumption makes it easier to verify these assumptions.

Null hypothesis

Let us first consider under which regularity conditions we derive an asymptotic level-α test.
Thus, in the following H0 is true and so λ = 1 or m = n (see (1.2) and G.1). For deter-
mining the asymptotic distribution of the test statistic, we saw in the section 2.2 that we
rewrite the statistic in terms of i.i.d. random variables. In section 3.2, we needed to re-
place the test function such that we were able to determine the asymptotic distribution. The
key is to replace the estimator with the true parameter under H0, see Prášková and Chochola
[2014], Gombay [2010], among others. For an overview we refer to Csörgő and Horváth [1997].
So the regularity condition for the asymptotic distribution of the test statistic is the following.

G.8 There exists a matrix C(θ) such that

max
1≤k<n

∥
∥
∥
∥
SH(k; θ̂n) −

(

SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

)∥
∥
∥
∥
A

= OP (1) . (3.43)

Thereby, the matrix C(θ̃) has the suitable dimension, such that the operations are well
defined.
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3.3. Generalized class of change-point test

Observe that the weight function here is necessary, as we have stated in the section 3.2.
There, the replacement with the sample mean was only necessary due to the weight function
to control the convergence in the neighbourhood of 1 and to guarantee the use of the LIL. As
an example for the dimension reduction, let us consider the Example from before.

Example 3.3.2 On going with example 3.3.1. Define the matrix

C(θ̃) = − exp(µ+ 1
2σ

2)

(

1,
1

2

)(
−1 0
0 −1

)

= exp(µ+ σ2)

(

1,
1

2

)

.

Then, we have

SH(k; θ̂n) − SH(k; θ̃) +
k

n
C(θ̃)SG(n; θ̃)

=

k∑

t=1

H(Xt, θ̂n) −H(Xt, θ̃) − C(θ̃)
k

n

n∑

t=1

G(Xt, θ̂n) −G(Xt, θ̃)

=

k∑

t=1

∇H(Xt, θ̃)(θ̂n − θ̃) +
k∑

t=1

(θ̂n − θ̃)T∇2H(Xt, ξ)(θ̂n − θ̃)

− C(θ̃)
k

n

(
n∑

t=1

∇G(Xt, θ̃)(θ̂n − θ̃) +
n∑

t=1

2∑

i=1

ei(θ̂n − θ̃)T∇2Gi(Xt, ξi)(θ̂n − θ̃)

)

,

with θ̃ = (µ, σ2)T, ei the ith unit vector and ξi ∈ Θ, where it is in each component between θ̂n
and θ̃. With the choice of C we have

k∑

t=1

∇H(Xt, θ̃)(θ̂n − θ̃) − C(θ̃)
k

n

(
n∑

t=1

∇G(Xt, θ̃)(θ̂n − θ̃)

)

= 0

Then we have to show that the rest converges to 0. This holds as we have that the second
derivatives are uniformly bounded. For the test function we have

∇2H(Xt, ξ) = − exp(µξ +
1

2
σ2ξ )

(
1 1

2
1
2

1
4

)

which is bounded for a parameter ξ = (µξ, σ
2
ξ ) ∈ Θ. The second derivative of G(Xt, ξ) is either

−2 or 0 not depending on ξ, in particular constant. Then we have

n∑

t=1

2∑

i=1

ei(θ̂n − θ̃)T∇2Gi(Xt, ξ)(θ̂n − θ̃) = n
∥
∥
∥θ̂n − θ̃

∥
∥
∥

2
(

0
−2

)

.

This leads us with

max
1≤k≤n

2

ρ

(
k

n

)∥
∥
∥
∥
SH(k; θ̂n) −

(

SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

)∥
∥
∥
∥
A

=
∥
∥
∥θ̂n − θ̃

∥
∥
∥

2
max

1≤k≤n
2

ρ

(
k

n

)

kOP (1)

= OP

(
1

n

)

,
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3. Change-point tests

which shows the result for the first half. It is left to proof it for the second half, which essentially
goes an equivalent argumentation for

max
n
2<k<n

ρ

(
k

n

)∥
∥
∥SH(n− k, θ̂n)−SH(n− k, θ̃) +

n− k

n
C(θ̃)SG(n, θ̃)

− SH(n, θ̂n) + SH(n, θ̃) − C(θ̃)SG(n, θ̃)
∥
∥
∥
A
.

To determine the asymptotic distribution, we used the functional central limit theorem. This
is then applied on the replacement.

G.9 Let the fCLT hold true, i.e.
{

1√
n

(
SH(⌊sn⌋; θ̃)

C(θ̃)SG(⌊sn⌋; θ̃)

)

: s ∈ [0, 1]

}

converges towards a Wiener process {W (s) : 0 ≤ s ≤ 1}, W (s) = (WH(s),WG(s))T

with covariance matrix

Σ =

(
ΣH ΣH,G

ΣT

H,G ΣG

)

.

If the statistic function SH(k; ·) is given by (3.42), this assumption implies E[H(X
(1)
1 , θ̃)] = 0.

In the context of estimation function, such functions are called unbiased as we have stated in
the introduction.

To handle the use of some weight function we have to assume forward and backward Hájek-
Rényi inequalities.

G.10 For 0 < γ < 1
2 it holds

max
1≤k<n

2

1

m
1
2
−γ kγ

∥
∥
∥SH(k; θ̃)

∥
∥
∥
A

= OP (1) ,

max
n
2≤k<n

1

m
1
2
−γ (n− k)γ

∥
∥
∥SH(n; θ̃) − SH(k; θ̃)

∥
∥
∥
A

= OP (1) .

Theorem 3.3.1 Assume assumptions G.7 and G.8 – G.10. Under H0 we have

Tn(θ̂n;A)
d−→ sup

0<s<1
ρ(s)‖WH(s) − sWG(1)‖A , (3.44)

with {WH(s)} and {WG(s)} are Wiener processes with covariance matrix ΣH and ΣG, respec-
tively.
The covariance matrix of the Wiener processes is given by ΣH,G.

Example 3.3.3 For the example 3.3.1 we show that there exists such an Wiener process. We
have

E[H(⌊sn⌋, θ̃)C(θ̃)G(⌊sn⌋, θ̃)]

= c(θ̃)

(

E[H(⌊sn⌋, θ̃)G1(⌊sn⌋, θ̃)] +
1

2
E[H(⌊sn⌋, θ̃)G2(⌊sn⌋, θ̃)]

)

.

As we can write this as moments of Yi and exp(Yi), with Yi normally i.i.d. having expectation
0, we get the existence and in the same way, we can show that it converges.
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3.3. Generalized class of change-point test

As we already know from the examples, we just want to mention that the matrix A can be
replaced by a consistent estimator, not changing the asymptotic distribution.

Corollary 3.3.1 Let the assumptions of Theorem 3.3.1 hold true and let Ân be a consistent
estimator for A. Then it holds

Tn(θ̂n; Ân)
d−→ sup

0<s<1
ρ(s)‖WH(s) − sWG(1)‖A

Alternative

Now, we want to focus on the power of the test. In Kirch and Tadjuidje Kamgaing [2012],
and here, we make the following assumption.

G.11 The statistic function SH(k; ·) has to fulfils a CLT, i.e. there exists a vector δn such
that ∥

∥
∥
∥

1

m
SH(m; θ̃) − δn

∥
∥
∥
∥
A

= Op

(
1√
m

)

.

We are going to see, in view of the change-point estimator this assumption is not strong
enough to proof the asymptotics of these estimator. But for the moment that is all we need.

For sufficiently smooth functions and
√
n-consistent parameter estimator these conditions are

fulfilled, see section 3.3.3.

Theorem 3.3.2 Let H1 hold true as well as the assumptions G.1, G.7, G.8 and G.11.
If ρ(λ) > 0 and δn from G.11 fulfils either assumption G.5.a) or G.5.b), then

Tn(θ̂n;A)
p−→ ∞ . (3.45)

Let us show that this condition is fulfilled for the example of the log-normal distributed ob-
servations introduced in Example 3.3.1.

Example 3.3.4 For the test function given in Example 3.3.1, we have

∥
∥
∥
∥

1

m
SH(m; θ̃) − E[H(X1, θ̃)]

∥
∥
∥
∥
A

=

∥
∥
∥
∥
∥

1

m

m∑

t=1

(H(Xt, θ̃) − E[H(X1, θ̃)])

∥
∥
∥
∥
∥
A

.

The sum is taken over i.i.d. centered random variables with finite second moment. From the
CLT we have this converges with the rate of

√
n.

Observe that under H0 the test function H(X1, θ̃) has expectation 0 but as we are under the
alternative and allow fixed alternative, we have to center with this expectation. In the local
alternative, the expectation depends on n. Then we have to make assumptions on the rate of
convergence (compare section 3.2).

For smooth enough function, criteria given below, we can replace the assumptions G.8 and
G.11 with some moment conditions.
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3.3.3. Smooth functions

In the case of the mean change for i.i.d. random variables as in the case of NLAR(p)-processes
we consider smooth function. These functions fulfil some moment conditions such that we are
able to proof the regularization conditions. Here, we are going to state such moment conditions
for the testing and the estimating function to guarantee the replacement assumption G.8.
Afterwards, we also consider under which additional assumptions the consistency of the test
follows, i.e. the assumption G.11.

We follow the same idea as used in Kirch and Tadjuidje Kamgaing [2012]. The key ideas are
still the same, nevertheless we have to be careful since the estimator θ̂n depends on the same
observations as the testing function is evaluated.

√
n-consistent parameter estimator

We show first, under which conditions we derive a
√
n-consistent parameter estimator.

L.1 Assume {Xt} stationary and ergodic under H0.

The following assumptions are made for the estimating function.

L.2 E[supθ∈Θ ‖G(X1, θ)‖] <∞

L.3 θ̃ unique root of E[G(X1, θ)]

L.4 G continuously differentiable w.r.t. θ in a convex environment Uθ̃ of θ̃ such that

E[∇G(X1, θ̃)] is positive definite and E[supθ∈Uθ̃
‖∇G(X1, θ)‖] <∞

L.5
∑n

t=1G(Xt, θ̃) = OP (
√
n) .

As in Sørensen [1999] and Kirch and Tadjuidje Kamgaing [2012] stated the last assumption
follows from a central limit theorem for G(Xt, θ̃) under moment conditions in addition to weak
dependence assumptions. Then the

√
n-consistency of the parameter estimator follows.

Moreover, we know from the examples that the stationary assumption and the uniformly
boundedness of the estimating function w.r.t. the expectation we have from Theorem C.1.1
that there exists F (θ) such that

sup
θ∈Θ

∥
∥
∥
∥

1

n
SG(n; θ) − F (θ)

∥
∥
∥
∥

= oP (1) .

Then we can use the Theorem C.1.2 and gain the consistency. Equivalent argumentation
together with the

√
n assumption on the estimating function gives us then that the parameter

estimator is
√
n-consistent.

Proposition 3.3.1 (Kirch and Tadjuidje Kamgaing [2012] Proposition 5.1)

1. Under assumptions L.1–L.3 the estimator θ̂n is consistent for θ̃.

2. Under the assumptions L.1–L.5 the estimator θ̂n is
√
n-consistent for θ̃.
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3.3. Generalized class of change-point test

Replacement assumption

For
√
n-consistent estimator which are derived under the above assumptions, with the follow-

ing additional assumptions the replacement assumption G.8.

L.6 Let E

[∥
∥
∥∇H(X1, θ̃)

∥
∥
∥

]

<∞ and

L.7 for j = 1, . . . , r

E

[

sup
θ∈Uθ̃

∥
∥∇2Hj(X1, θ)

∥
∥
∞

]

<∞ , E

[

sup
θ∈Uθ̃

∥
∥
∥∇2(C(θ̃)G)j (X1, θ)

∥
∥
∥
∞

]

<∞ .

This gives us a ULLN.

Proposition 3.3.2 (Kirch and Tadjuidje Kamgaing [2012], Proposition 5.2)

Under the assumptions L.1–L.7 and with

C(θ̃) = E[∇H(X1, θ̃)](E[∇G(X1, θ̃)])
−1 (3.46)

the assumption G.8 follows with ρ fulfilling G.7.

The proof follows the equivalent ideas of the proof of Proposition 5.2 in Kirch and Tad-
juidje Kamgaing [2012]. Due to the Taylor-expansion and the triangle inequality we can
follow their proof.

Observe that this assumptions hold true for the example 3.3.1. So for deriving the matrix
C(θ̃) we just calculated the derivatives.

Alternative assumption

To derive the asymptotic conditions for the change-point test, we need some moment condi-
tions on the testing function evaluated for the time-series after the change-point.

L.8 Let {X(2)
t } be a stationary and ergodic time-series such that for a convex environment

Uθ̃ of θ̃ we have for j = 1, . . . , r

E

[∥
∥
∥∇H(X

(2)
1 , θ̃)

∥
∥
∥

]

<∞ , E

[

sup
θ∈Uθ̃

∥
∥
∥∇2Hj(X

(2)
1 , θ)

∥
∥
∥
∞

]

<∞

and there exists θ̃n being the root of λE[G(X
(1)
1 , θ)] + (1 − λ)E[G(X

(2)
1 , θ)]] for each n.

This guarantees the interchange of integration and limit. So we are able to identify the limit
with

lim
n→∞

δn = E

[

H(X
(1)
1 , θ̃)

]

= δ

for stationary observations up to m. In the case of the A-fixed alternative we have δn ≡ δ and

E

[

H(X
(1)
1 , θ̃)

]

6= E

[

H(X
(2)
1 , θ̃)

]

. For the A-local alternative the equality of the expectations

hold true.
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3. Change-point tests

Proposition 3.3.3

Assume L.8 then under H1 we have G.11.

Until now, we always considered abrupt changes. However, even in the case of an AR(p)-
process with an abrupt change of the autoregressive function the observations after the
change have starting values not out of the stationary distribution. Therefore, Kirch and
Tadjuidje Kamgaing [2014] considered under which conditions on the time-series after the
change the proofs still hold true.

3.3.4. Proofs

Theorem 3.3.1

Assume assumptions G.7 and G.8 – G.10. Under H0 we have

Tn(θ̂n;A)
d−→ sup

0<s<1
ρ(s)‖WH(s) − sWG(1)‖A , (3.47)

with {WH(s)} and {WG(s)} are Wiener processes with covariance matrix ΣH and ΣG,
respectively.
The covariance matrix of the Wiener processes is given by ΣH,G.

Proof of Theorem 3.3.1:
First we consider the behaviour of
∣
∣
∣
∣

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
−
∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥
A

∣
∣
∣
∣
≤
∥
∥
∥
∥
SH(k; θ̂n) − (SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃))

∥
∥
∥
∥
A

Note that it holds ∀ak, bk ≥ 0 k = 1, . . . , d

| max
1≤k≤d

ak − max
1≤k≤d

bk| ≤ max
1≤k≤d

|ak − bk| .

This inequality in addition with assumption G.8 gives us, that

∣
∣
∣
∣

max
1≤k<n

ρ

(
k

n

)
1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
− max

1≤k<n
ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥
A

∣
∣
∣
∣

≤ max
1≤k<n

∣
∣
∣
∣
ρ

(
k

n

)
1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
− ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥
A

∣
∣
∣
∣

≤ max
1≤k<n

ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̂n) − (SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃))

∥
∥
∥
∥
A

→ 0 .

So it follows

max
1≤k<n

ρ

(
k

n

)
1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A

= max
1≤k<n

ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥
A

+ op(1) .

With the matrixes D1 and D2 given by

D1 =

(
Ip 0
0 0

)

and D2 =

(
0 0
Ip 0

)
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3.3. Generalized class of change-point test

and we get from the monotone mapping theorem the following result. Then for every η ∈ (0, 12)
we have

max
ηn≤k<(1−η)n

ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥
A

= sup
η<s<1−η

ρ

(⌊sn⌋
n

)
∥
∥
∥
∥
∥

1√
n
D1

(
SH(⌊sn⌋; θ̃)

C(θ̃)SG(⌊sn⌋; θ̃)

)

− ⌊sn⌋
n

D2

(
SH(n; θ̃)

C(θ̃)SG(n; θ̃)

)
∥
∥
∥
∥
∥
A

d−→ sup
η<s<1−η

ρ(s)‖WH(s) − sWG(1)‖A .

It is left to proof that for all η → 0 the limit also exists and is given as defined.

max
1≤k<ηn

ρ2
(
k

n

)
1

n

∥
∥
∥
∥
SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

∥
∥
∥
∥

2

A

≤ sup
0<k<ηn

ρ2
(
k

n

)

k2α
1

m2α
·
(

sup
1≤k<ηn

1

n1−2α k2α

∥
∥
∥SH(k; θ̃)

∥
∥
∥

2

A
+ η1−2α

∥
∥
∥
∥

1√
n
C(θ̃)SG(n, θ̃)

∥
∥
∥
∥

2

A

)

With the forward Hájek-Rényi inequality (see assumption G.10) we gain this is oP (1). Anal-
ogously, we handle the supremum over ((1 − η)n, n). So for deterministic weight functions
fulfilling of the class L(η, γ) we are finished.

It is left to show that for the randomized weight function wn(n, k) the same limit is reached.
From the a.s. convergence and because ρ is a.s. positive, we have

∣
∣
∣
∣

max
1≤k<n

wn(n, k)
1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
− max

1≤k<n
ρ( kn)

1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A

∣
∣
∣
∣

≤
∣
∣
∣
∣

max
1≤k<n

(
wn(n, k) − ρ( kn)

) 1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A

∣
∣
∣
∣

≤ max
1≤k<n

∣
∣wn(n, k) − ρ( kn)

∣
∣

∣
∣
∣
∣

max
1≤k<n

1√
n

∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A

∣
∣
∣
∣

Observe, from the assumption G.8 and G.9 the second maximum on the right hand side is
OP (1) as shown above. From the assumption on the weight function we get

max
1≤k<n

∣
∣wn(n, k) − ρ( kn)

∣
∣ = oP (1) .

This gives us the claim.

Corollary 3.3.1

Let the assumptions of Theorem 3.3.1 hold true and let Ân be a consistent estimator
for A. Then it holds

Tn(θ̂n; Ân)
d−→ sup

0<s<1
ρ(s)‖WH(s) − sWG(1)‖A

Proof:
The proof follows essentially the idea of the proof of Theorem 2.2.3.
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3. Change-point tests

Theorem 3.3.2

Let H1 hold true as well as the assumptions G.1, G.7, G.8 and G.11. If ρ(λ) > 0
and δn from G.11 fulfils either assumption G.5.a) or G.5.b), then

Tn(θ̂n;A)
p−→ ∞ . (3.48)

Proof:
The main idea is to show that w(n,m)

∥
∥
∥SH(m; θ̂n)

∥
∥
∥
A

is converging to ∞.

max
1≤k≤n

wn(n, k)
∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
≥ mwn(n,m)

∥
∥
∥
∥

1

m
SH(m; θ̂n)

∥
∥
∥
∥
A

= OP

(

ρ
(m

n

))√
n

∥
∥
∥
∥

1

m
SH(m; θ̂n)

∥
∥
∥
∥
A

Due to the assumptions G.8 and G.11 we have

∣
∣
∣
∣

∥
∥
∥
∥

1

m
SH(m; θ̂n)

∥
∥
∥
∥
A

−
∥
∥
∥
∥

1

m
SH(m; θ̃)

∥
∥
∥
∥
A

∣
∣
∣
∣
≤
∥
∥
∥
∥

1

m
SH(m; θ̂n) − 1

m
SH(m; θ̃)

∥
∥
∥
∥
A

= OP

(
1√
m

)

∣
∣
∣
∣

∥
∥
∥
∥

1

m
SH(m; θ̃)

∥
∥
∥
∥
A

− ‖δn‖A
∣
∣
∣
∣
≤
∥
∥
∥
∥

1

m
SH(m; θ̃) − δn

∥
∥
∥
∥
A

= OP

(
1√
m

)

Therefore, we get with assumption G.1 for the A-local (G.5.b)) and the A-fixed (G.5.a))
alternative

Tn(θ̂n) ≥ wn(n,m)
∥
∥
∥SH(m; θ̂n)

∥
∥
∥
A

≥
∣
∣
∣
√
mρ(

m

n
)‖δn‖A +OP (1) +

∣
∣
∣ρ(

m

n
) −√

nwn(n,m)
∣
∣
∣ (‖δn‖A +Op(1))

∣
∣
∣→ ∞ .

Proposition 3.3.1 (Kirch and Tadjuidje Kamgaing [2012] Proposition 5.1)

1. Under assumptions L.1–L.3 the estimator θ̂n is consistent for θ̃.

2. Under the assumptions L.1–L.5 the estimator θ̂n is
√
n-consistent for θ̃.

Proof:
From the assumption L.1 and L.2 we get with Theorem C.1.1 a ULLN. With the assumption
L.3 it follows from Theorem C.1.2 that θ̂n is consistent w.r.t. θ̃.

With the assumption L.4 the differentiation is given and from L.5 we have a CLT for the
estimating function evaluated at θ̃. With the mean value theorem get the claim.
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3.3. Generalized class of change-point test

Proposition 3.3.2 (Kirch and Tadjuidje Kamgaing [2012], Proposition 5.2)

Under the assumptions L.1–L.7 and with

C(θ̃) = E[∇H(X1, θ̃)](E[∇G(X1, θ̃)])
−1 (3.49)

the assumption G.8 follows with ρ fulfilling G.7.

Proof:
First of all we observe, the assumption L.4 guarantees the existence of (E[∇G(X1, θ̃)])

−1 and
that it is unique. From L.6 we have that E[∇H(X1, θ̃)] does also exist. Then we have to show
that for this C(θ̃) we have

max
1≤k<n

ρ

(
k

n

)
1√
n

∥
∥
∥
∥
SH(k; θ̂n) −

(

SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

)∥
∥
∥
∥
A

= oP (1) .

As θ̂n solves SG(n; θ̂n) = 0 and we have {Xt} is a sequence of stationary ergodic random
variables L.1 we get

SH(k; θ̂n)−
(

SH(k; θ̃) − k

n
C(θ̃)SG(n; θ̃)

)

= SH(k; θ̂n) − SH(k; θ̃) +
k

n
C(θ̃)

(

SG(n; θ̃) − SG(n; θ̃)
)

= ∇
(

SH(k; θ̃) − kE
[

∇H(X1, θ̃)
])

(θ̂n − θ̃) + kE
[

∇H(X1, θ̃)
]

(θ̂n − θ̃)

− k

n
C(θ̃)

((

SG(n; θ̃) − nE
[

∇G(X1, θ̃)
])

(θ̂n − θ̃) + nE
[

∇G(X1, θ̃)
]

(θ̂n − θ̃)
)
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4. Change-point estimator

The literature contains many publications analysing change-point tests for different models.
The number of publications on the asymptotic analysis of change-point estimator, i.e. the
rate and asymptotic distribution, is even smaller.

In section 4.1 we present the analysis of the change-point estimator for i.i.d. observations with
possible infinite variance. The corresponding change-point test is constructed in section 3.1.
The change-point test and estimator are randomly weighted, as the weight function depends
on the observations. We analyse the estimator and derive analogous results as in the case of
i.i.d. observations with finite variance.

In section 4.2 we analyse for a non-linear (auto)regressive model a change-point estimator
based on neural networks. Also under misspecification we can derive the asymptotic distri-
bution of the change-point estimator.

With the concept of estimation functions we are able to determine regularity conditions for
the change-point estimator. In section 4.3 we give the regularity conditions and prove the
asymptotic behaviour.
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4. Change-point estimator

4.1. Randomized weight function

As in section 3.1.1, we are going to consider a mean change model with i.i.d. observations
with finite first moment. The model (3.1) is defined as

Xt =

{

µ+ εt , 1 ≤ t ≤ m

µ+ δn + εt ,m < t ≤ n

with {εt} i.i.d sequence and E[|ε1|] < ∞. In contrast to the model in section 2, the residuals
do not need to have a second moment. Based on the idea of M-estimator we constructed a
change-point test having a randomized weight function (section 3.1.1). We now focus on the
corresponding change-point estimator and analyse its asymptotic behaviour.

In section 4.1.1 we first introduce the change-point estimator of interest and then give the
main results. The proofs are given in section 4.1.2.

4.1.1. Asymptotics of random weighted change-point estimator

Again we make use of a self weighted estimator for the unknown parameter µ which results
from a weighted least squares, where the weight function is allowed to depend on the ith
observation. As discussed in section 3.1.1 on the one hand we have the test statistic

Tn(η, γ; g) = max
1≤k<n

wη,γ;g(k, n)
1√
n

∥
∥
∥Sg(k, θ̂n(g))

∥
∥
∥
Σ−1

g

,

with

wη,γ;g(k, n) = 1{ηn<k<(1−η)n}




(
∑n

t=1 g(Xt))
2

∑k
t=1 g(Xt)

(
∑n

t=1 g(Xt) −
∑k

t=1 g(Xt)
)





γ

and γ, η fulfilling assumption G.2, and on the other hand Tn(η, β; gn). In view of applications,
we consider the estimator w.r.t. the weight function gn.

As in the introductory example (section 2.3) we are going to use the argument of the maximum
as estimator for the change-point, i.e. the change-point estimator is given as

m̂(η, γ; gn) = arg max
1≤k<n

wη,γ;gn(k, n)

∥
∥
∥
∥
∥

k∑

t=1

gn(Xt)Xt −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

n∑

t=1

gn(Xt)Xt

∥
∥
∥
∥
∥
. (4.1)

The consistency of m̂(η, γ; gn) follows equivalently as in the mean change model, but is tech-
nically more efficient. We have to make an assumption on the behaviour of the expectation of
g w.r.t. the time-series after the change. If g is dominated integrable, we can change limit and
expectation. If additionally the function is continuous, we do not need any more assumptions.
As we assumed g to be bounded, this is fulfilled.

Theorem 4.1.1 Under H1 and the assumptions L.1 – L.7∗ we have for weight functions gn
fulfilling L.6

m̂(η, γ; gn)

n
− λ = oP (1) .

∗See section 3.1.
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4.1. Randomized weight function

One can ask, how fast does the estimator converge against the true parameter. An answer
gives the next Theorem.

Theorem 4.1.2 Under H1, assumptions L.1 – L.8 and if δn −→
n→∞

0 the change-point esti-

mator m̂(η, γ; gn) given in 4.1 fulfils

m̂(η, γ; gn) −m = OP (D−2
n ) ,

as long as Dn
√
n −→
n→∞

∞, with Dn =
∥
∥
∥E[g(X

(1)
1 + δn)(ε1 + δn)]

∥
∥
∥ −→
n→∞

0.

The rate derived in Theorem 4.1.2 is the best rate as can be seen by the next theorem.

Theorem 4.1.3 Let H1 be true and the change-point fulfil assumption G.1. Under the as-
sumptions of Theorem 4.1.2, the asymptotic distribution of the change-point estimator is given
as

D2
n(m̂(η, γ; gn) −m)

d−→ arg max {W (s) − |s|gγ,λ(s); s ∈ R}
with Dn as in Theorem 4.1.2 , {W (s)} a two-sided standard Wiener process and

gγ,λ(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

So the results are exactly the same as in the case of finite variance.

4.1.2. Proofs

Theorem 4.1.1

Under H1 and the assumptions L.1 – L.7 we have for weight functions gn fulfilling L.6

m̂(η, γ; gn)

n
− λ = oP (1) .

Proof:
First we observe that the random weight function converges to the non-random weight function
even under the alternative as the a.s. convergence holds true (δn → 0).

It is left to analyse

∥
∥
∥Sgn(k, θ̂n(gn))

∥
∥
∥ =

∥
∥
∥
∥
∥

k∑

t=1

gn(Xt) Xt −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

n∑

t=1

gn(Xt)Xt

∥
∥
∥
∥
∥
.
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4. Change-point estimator

Notice, from assumption L.6 we have by Lemma 3.1.1 that (3.18) holds. So, it follows

∑⌊ns⌋
t=1 gn(Xt)

∑n
t=1 gn(Xt)

p−→ s . (4.2)

Let k < m, then we have
∥
∥
∥
∥
∥

k∑

t=1

gn(Xt) Xt −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

n∑

t=1

gn(Xt)Xt

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

k∑

t=1

gn(Xt)εt −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

n∑

t=1

gn(Xt)(εt + δn)

∥
∥
∥
∥
∥
.

Using (4.2) and Lemma 3.1.1 we first show that
∥
∥
∥Sgn(k, θ̂n(gn))

∥
∥
∥ can be replaced by

‖Sg(k, θ)‖ =

∥
∥
∥
∥
∥

k∑

t=1

g(Xt)εt −
k

n

n∑

t=1

g(Xt)(εt + δn)

∥
∥
∥
∥
∥
,

Have in mind that gn(Xt) = g(Xt; θ̂n) and g(Xt) = g(Xt; θ). Using C(θ) as in (3.20) and
(4.2), we conclude

∥
∥
∥
∥
∥

⌊ns⌋
∑

t=1

(gn(Xt) − g(Xt))εt −
∑⌊ns⌋

t=1 gn(Xt)
∑n

t=1 gn(Xt)

(
n∑

t=1

(gn(Xt) − g(Xt))(εt + δn)

)

+

(∑⌊ns⌋
t=1 gn(Xt)

∑n
t=1 gn(Xt)

− ⌊ns⌋
n

)
n∑

t=1

g(Xt)(εt + δn)

∥
∥
∥
∥
∥

= oP (n) .

An equivalent replacement follows for k > m. Hence, it is left to analyse the replacement.

Now, using the CLT, which holds true for {g(Xt)εt}, we get uniformly in s

∥
∥
∥
∥
∥

⌊ns⌋
∑

t=1

g(Xt)εt − Egε,n(⌊ns⌋) − s

n∑

t=1

g(Xt)εt − sEgε,n(n)
∥
∥
∥ = OP (

√
n) + oP

(
1

n

)

,

with

Egε,n(k) =

{

0 , 1 ≤ k ≤ m,

(k −m)E[g(X
(1)
1 + δn)ε1] ,m < k ≤ n .

Then we can conclude that
∥
∥ 1
n(Egε,n(k) − k

nEgε,n(1)
∥
∥ =: ‖E(k, n)‖ has a maximum at k = m,

since

E(k, n) =

{

− k
n(n−m)E[g(X

(1)
1 + δn)(ε1 + δn)] , k ≤ m,

−m
n (n− k)E[g(X

(1)
1 + δn)(ε1 + δn)] , k > m .

So, in conclusion we have

max
1≤k<n

1

n

∥
∥
∥Sgn(k, θ̂n(gn)) − E(k/n)

∥
∥
∥ = OP

(
1√
n

)

.

126



4.1. Randomized weight function

Thus, with the Theorem C.1.2 we get the result.

For a deterministic weight function

ρ(s) = 1{η<s<(1−η)}

(
1

s(1 − s)

)γ

fulfilling assumption G.2, the result follows analogously as in the proof of Theorem 2.3.1.

In the case of the randomised weight function wη,γ;gn(k, n), we have from (3.18), that

sup
s∈(0,1)

|wη,γ;gn(s) − ρ(s)| = oP (1) ,

where

ρ(s) = 1{η<s<(1−η)}

(
(E[g(X1)])

2

sE[g(X1)](E[g(X1)] − sE[g(X1)])

)γ

=
1

(s(1 − s))γ
.

With

max
1≤k<n

∥
∥
∥
∥
wη,γ;gn(k/n)

1

n
Sgn(k, θ̂n(gn)) − ρ(k/n)E(k/n)

∥
∥
∥
∥

≤ sup
s∈(0,1)

|wη,γ;gn(s) − ρ(s)| max
1≤k<n

∥
∥
∥
∥

1

n
Sgn(k, θ̂n(gn))

∥
∥
∥
∥

+ max
1≤k<n

∥
∥
∥
∥
ρ(k/n)

1

n
Sgn(k, θ̂n(gn)) − ρ(k/n)E(k/n)

∥
∥
∥
∥

= oP (1)

the proof is finished.

Theorem 4.1.2

Under H1, assumptions L.1 – L.8 and if δn −→
n→∞

0 the change-point estimator m̂(η, γ; gn)

given in 4.1 fulfils
m̂(η, γ; gn) −m = OP (D−2

n ) ,

as long as Dn
√
n −→
n→∞

∞, with Dn =
∥
∥
∥E[g(X

(1)
1 + δn)(ε1 + δn)]

∥
∥
∥ −→
n→∞

0.

Proof:
From Corollary 2.3.2we know, it is enough to analyse a truncated version of the change-point
estimator. To simplify the notation, we define

Sgn(k; θ̂n(gn)) =
k∑

t=1

gn(Xt)εt −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

n∑

t=1

gn(Xt)εt −
(

k∑

t=1

gn(Xt)

)(

1 −
∑k

t=1 gn(Xt)
∑n

t=1 gn(Xt)

)

δn ,

Sg(k; θ) =

k∑

t=1

g(Xt)εt −
k

n

n∑

t=1

g(Xt)εt −
k

n

n∑

t=1

g(Xt)δn .

The change-point estimator

m̂ = arg max
1≤k<n

∥
∥
∥wη,γ;gn(k/n)Sgn(k; θ̂n(gn))

∥
∥
∥ =: arg max

1≤k<n
{Vk}
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4. Change-point estimator

can be represented as in the proof of Theorem 2.3.2 by

Vk = −
〈

wη,γ;gn(m/n)Sgn(m; θ̂n(gn)) − wη,γ;gn(k/n)Sgn(k; θ̂n(gn)),

wη,γ;gn(k/n)Sgn(k; θ̂n(gn)) + wη,γ;gn(m/n)Sgn(m; θ̂n(gn))
〉

= −
〈

(wη,γ;gn(m/n) − wη,γ;gn(k/n))Sgn(k, θ̂n(gn))

+ wη,γ;gn(m/n)
(

Sgn(m, θ̂n(gn)) − Sgn(k, θ̂n(gn))
)

,

wη,γ;gn(m/n)
(

Sgn(m, θ̂n(gn)) − Sgn(k, θ̂n(gn))
)

+ (wη,γ;gn(m/n) + wη,γ;gn(k/n))Sgn(k, θ̂n(gn))
〉

.

Observe, from (3.18) we have

sup
s∈(0,1)

|wη,γ;gn(s) − ρ(s)| = oP (1) , (4.3)

where

ρ(s) = 1{η<s<(1−η)}

(
(E[g(X1)])

2

sE[g(X1)](E[g(X1)] − sE[g(X1)])

)γ

= 1{η<s<(1−η)}
1

(s(1 − s))γ
.

Later on we are interested in the asymptotic behaviour of Vk. From (4.3) we can replace
wη,γ;g(k/n) by the Lipschitz continuous function ρ(k/n) in Vk. To simplify the notation we
define

E(k, n) =

{

− k
n(n−m)E[g(X1 + δn)(ε1 + δn)] k ≤ m,

−m
n (n− k)E[g(X1 + δn)(ε1 + δn)] k > m .

(4.4)

Replacing Sgn(k, θ̂n(gn)) by Sgn(k, θ̃), with θ̃ = θ since δn −→
n→∞

, and centring Sgn(k, θ) add

expectation, we derive the following representation for Vk analogously as in Theorem 2.3.2

Vk = −
〈

(ρ(m/n) − ρ(k/n))
(

Sgn(k, θ̂n(gn)) − E(k, n)
)

+ ρ(m/n)
(

Sgn(m, θ̂n(gn)) − Sg(m, θ̃) − Sgn(k, θ̂n) + Sg(k, θ̃)
)

+ ρ(m/n)
(

Sg(m, θ̃) − E(m,n) − Sg(k, θ̃) + E(k, n)
)

+ (E(m,n)ρ(m/n) − E(k, n)ρ(k/n)) ,

ρ(m/n)
(

Sgn(m, θ̂n(gn)) − E(m,n) − Sgn(k, θ̂n(gn)) + E(k, n)
)

+ (ρ(m/n) + ρ(k/n))
(

Sgn(k, θ̂n(gn)) − E(k, n)
)

+ (E(m,n)ρ(m/n) + E(k, n)ρ(k/n))

〉

=B1 +B2 +B3 +B4 +B5 +B6 .
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4.1. Randomized weight function

We can calculate in an analogous way as in Theorem 2.3.2, using

k∑

t=1

εt − kεn = Sgn(k, θ̂n) − E(k, n) ,
k∑

t=1

εt = Sg(k, θ̃) − E(k, n) ,

εn = −
(

Sgn(k, θ̂n) − Sg(k, θ̃)
)

.

Hence, we derive

B1 = (ρ2(k/n) − ρ2(m/n))
∥
∥
∥Sgn(k, θ̂n) − E(k, n)

∥
∥
∥

2

B2 = −ρ2(m/n)
〈

Sgn(k, θ̂n) − E(k, n) + Sgn(m, θ̂n) − E(m,n),

Sgn(m, θ̂n) − E(m,n) − Sgn(k, θ̂n) − E(k, n)
〉

B3 = −(ρ(m/n) − ρ(k/n))
〈

Sgn(k, θ̂n) − E(k, n), (E(m,n)ρ(m/n) + E(k, n)ρ(k/n))
〉

+ (ρ(m/n) + ρ(k/n))
〈

Sgn(k, θ̂n) − E(k, n), (E(m,n)ρ(m/n) − E(k, n)ρ(k/n))
〉

= −2(ρ2(m/n)m− ρ2(k/n)k)
〈

Sgn(k, θ̂n) − E(k, n),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B4 = −ρ(m/n)
〈

Sgn(m, θ̂n) − Sg(m, θ) − Sgn(k, θ̂n) + Sg(k, θ),

ρ(k/n)E(k, n) + ρ(m/n)E(m,n)
〉

− ρ(m/n)
〈

ρ(m/n)E(m,n) − ρ(k/n)E(k, n),

Sgn(m, θ̂n) − Sg(m, θ) − Sgn(k, θ̂n) + Sg(k, θ)
〉

= −2ρ2(m/n)m
〈

Sgn(m, θ̂n) − Sg(m, θ) − Sgn(k, θ̂n) + Sg(k, θ),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B5 = 2ρ2(m/n)m
〈

Sg(m, θ) − E(m,n) − Sg(k, θ) + E(k, n),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B6 = −
(

‖E(m,n)‖2 ρ2(m/n) − ‖E(k, n)‖2 ρ2(k/n)
)

= −
(
ρ2(m/n)m2 − ρ2(k/n)k2

)
∥
∥
∥(1 − m

n
)E[g(X1 + δn)(ε1 + δn)]

∥
∥
∥

2
.

As ρ(s) equals the weight function wη,γ(k/n) from section 2. So, we can conclude the following
approximations.

We have

max
αn<k≤m−κn

m− k

|B6|
= O

(
1

nD2
n

)

,

with Dn =
∥
∥
∥E[g(X

(1)
1 + δn)(ε1 + δn)]

∥
∥
∥. Hence, it is enough to examine the order of

max
αn<k<m

∣
∣
∣
∣

Bi
m− k

∣
∣
∣
∣
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4. Change-point estimator

for i = 1, . . . , 5. From the proof of Theorem 4.1.1 we get

max
αn<k<m−κn

1

m− k

∥
∥
∥Sgn(m, θ̂n) − Sg(m, θ) − Sgn(k, θ̂n) + Sg(k, θ)

∥
∥
∥ = oP (1)

and

max
αn<k<m−κn

1

m− k

∥
∥
∥Sgn(m, θ̂n) − E(m,n) − Sgn(k, θ̂n) + E(k, n)

∥
∥
∥ = OP

(
1√
n

)

.

Additionally, we are going to use the Hájek-Rényi inequality for i.i.d. random variables, which
gives us

max
αn<k<m−κn

1

m− k
‖Sg(m, θ) − Sg(k, θ) − (E(k, n) − E(m,n))‖ = OP (κ−1/2

n ) .

For B1 we then conclude

max
αn<k<m−κn

∣
∣
∣
∣

B1

(m− k)

∣
∣
∣
∣

≤ max
αn<k<m−κn

∣
∣
∣
∣

ρ2(k/n) − ρ2(m/n)

(m− k)

∣
∣
∣
∣

max
αn<k<m−κn

∥
∥
∥Sgn(k, θ̂n) − E(k, n)

∥
∥
∥

2

= O(n−1)OP (n) .

From the Cauchy-Schwarz inequality we get

max
αn<k<m−κn

∣
∣
∣
∣

B2

(m− k)

∣
∣
∣
∣

≤ ρ2(m/n) max
αn<k<m−κn

∥
∥
∥Sgn(k, θ̂n) − E(k, n) + Sgn(m, θ̂n) − E(m,n)

∥
∥
∥

· max
αn<k<m−κn

1

m− k

∥
∥
∥Sgn(m, θ̂n) − E(m,n) − Sgn(k, θ̂n) + E(k, n)

∥
∥
∥

= O(1)OP (
√
n)

(

OP (κ
− 1

2
n ) +OP (n−

1
2 )

)

= OP (n
1
2κ

− 1
2

n ) +OP (1) .

The terms B3 and B4 follow with the triangel inequality and arguments as above, i.e. we get

max
αn<k<m−κn

∣
∣
∣
∣

B3

(m− k)

∣
∣
∣
∣
≤ max

αn<k<m−κn

∣
∣
∣
∣

ρ(m/n)m− ρ(k/n)k

(m− k)

∣
∣
∣
∣

· max
αn<k<m−κn

∥
∥
∥Sgn(k, θ̂n) − E(k, n)

∥
∥
∥

(

1 − m

n

)

Dn

= O(1)OP (
√
n)O(Dn) ,

max
αn<k<m−κn

∣
∣
∣
∣

B4

(m− k)

∣
∣
∣
∣
≤ 2ρ2(m/n)m

(

1 − 1

2

)

Dn

· max
αn<k<m−κn

1

m− k

∥
∥
∥Sgn(m, θ̂n) − Sgn(m, θ) − Sgn(k, θ̂n) + Sgn(k, θ)

∥
∥
∥

= O(1)OP (nDn)OP (n−
1
2 ) .
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4.1. Randomized weight function

The last 2 terms are the dominating ones and give the rate of convergence. We get

max
αn<k<m−κn

∣
∣
∣
∣

B5

(m− k)

∣
∣
∣
∣
≤ 2ρ2(m/n)m

(

1 − m

n

)

Dn

· max
αn<k<m−κn

1

(m− k)

∥
∥
∥Sgn(m, θ̃) − E(m,n) − Sgn(k, θ̃) + E(k, n)

∥
∥
∥

= O(nDn)OP (κ−1/2
n ) .

For κn = K/D2
n this leads to

max
αn<k<m−κn

∣
∣
∣
∣

B1

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B3

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B4

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣

= K−1/2OP (1) .

Combining this, gives us for k < m

P (m̂ < m− κn) = P

(

max
αn<k<m−κ

Vk > max
m−κ≤k<(1−α)n

Vk

)

≤ P

(

max
αn<k<m−κn

Vk ≥ Vm

)

= P

(

max
αn<k<m−κn

Vk ≥ 0

)

= P

(

max
αn<k<m−κn

{

B6

(

1 + oP (1) +
B5

B6

)

+ oP (1)

}

≥ 0

)

≤ P

(

max
αn<k<m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 + oP (1)

)

≤ P

(

max
αn<k<m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≥ 1 − τ

)

+ P

(

1 + op(1) ≤ max
αn<k<m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣
≤ 1 − τ

)

≤ P
(

OP (1) ≥ (1 − τ)K1/2
)

+ o(1) ,

with 0 < τ < 1 arbitrary. This term becomes arbitrarily small for a sufficiently large K > 0.
Analogously we can show the other direction (k > m).

Theorem 4.1.3

Let H1 be true and the change-point fulfil assumption G.1. Under the assumptions of
Theorem 4.1.2, the asymptotic distribution of the change-point estimator is given as

D2
n(m̂−m)

d−→ arg max {W (s) − |s|gγ,λ(s); s ∈ R}
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4. Change-point estimator

with Dn as in Theorem 4.1.2 , {W (s)} a two-sided standard Wiener process and

gγ,λ(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

Proof:

We show the claim by analysing the behaviour of the parts from the decomposition of Vk. Let
(w.l.o.g.) x > 0 and C > x be both fixed but arbitrary. We get

P (m̂−m ≤ x) = P (m− CD−2
n ≤ m̂ ≤ m+ x) + P (m̂−m ≤ x, |m̂−m| > CD−2

n )

The second term on the right side becomes arbitrary small for large enough C because of the
consistency of m̂. Therefore, we consider

P (m− CD−2
n ≤ m̂ ≤ m+ x) ≤ P ( max

(k−m)∈(−CD−2
n ,x]

Vk ≥ max
(k−m)∈(x,CD−2

n )
Vk) + oP (1) .

The last approximation follows with the same argumentation. Consider the decomposition of
Vk similar to the one we used in the proof of Theorem 4.1.2

Vk =B1 +B2 +B3 +B4 +B5 +B6 .

Recall the representation was given as

B1 = (ρ2(k/n) − ρ2(m/n))
∥
∥
∥Sgn(k, θ̂n) − E(k, n)

∥
∥
∥

2

B2 = −ρ2(m/n)
〈

Sgn(k, θ̂n) − E(k, n) + Sgn(m, θ̂n) − E(m,n),

Sgn(m, θ̂n) − E(m,n) − Sgn(k, θ̂n) − E(k, n)
〉

B3 = −2(ρ2(m/n)m− ρ2(k/n)k)
〈

Sgn(k, θ̂n) − E(k, n),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B4 = −2ρ2(m/n)m
〈

Sgn(m, θ̂n) − Sg(m, θ) − Sgn(k, θ̂n) + Sg(k, θ),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B5 = 2ρ2(m/n)m
〈

Sg(m, θ) − E(m,n) − Sg(k, θ) + E(k, n),
(

1 − m

n

)

E[g(X1 + δn)(ε1 + δn)]
〉

B6 = −
(
ρ2(m/n)m2 − ρ2(k/n)k2

)
∥
∥
∥(1 − m

n
)E[g(X1 + δn)(ε1 + δn)]

∥
∥
∥

2
.

Thus, analogously as in Theorem 2.4.4 we get

max
k∈(m−CD−2

n ,m)
|B1| = OP (CD−1/2

n ) , max
k∈(m−CD−2

n ,m)
|B2| = OP (

√
n) ,

max
k∈(m−CD−2

n ,m)
|B3| = OP (

√
n) , max

k∈(m−CD−2
n ,m)

|B4| = oP (n) ,

and for k ∈ (m− CD−2
n ,m)

ρ−2(m/n)

m(1 − m
n )
B5 =

(

(E[g(X1 + δn)(ε1 + δn)])T
m∑

t=k+1

(g(Xt)εt) +OP

(
C

Dn
√
n

))

.
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4.1. Randomized weight function

With the FCLT for i.i.d. random vectors we have





Dn





−1∑

t=sD−2
n

(g(Xt)εt)



 , s ∈ (0, 1)







d−→
{
W ′
s, ßs ∈ (0, 1)

}
,

with W ′
s being a Wiener process with covariance matrix Σgε. Then, we can conclude

{

dTn
Dn

Σ
1
2
gεDn



Σ
− 1

2
gε

−1∑

t=sD−2
n

(g(Xt)εt)



 , s ∈ (0, 1)

}

d−→ {DW (s), s ∈ (0, 1)} ,

with {W (s)} being a standard Wiener process, dn := E[g(X1 + δn)(ε1 + δn)] and

D = limn→∞
‖dn‖Σgε

‖dn‖ , which clearly exists.

As ρ(s) is equal to wη,γ(s) from (2.58), we have

max
k∈(m−CD−2

n ,m)

ρ−2(m/n)

m(1 − m
n )
Vk = max

k∈(m−CD−2
n ,m)

V
(1)
k

= max
k∈(m−CD−2

n ,m)

(

2
dTnA

Dn
Dnξ

(1)
m,⌊sn⌋ − 2(m− k)gλ(k/n)D2

n + oP (1)

)

.

Doing the same for m < k < m+C, we can argue analogously as in the proofs of the Theorem
2.3.3.
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4. Change-point estimator

4.2. Non-linear (auto-)regressive processes and neural network

functions

We considered in section 3.2 the change-point test for a non-linear (auto-)regressive model with
unknown regression function. For the change-point test we used the general approximation
property of neural networks and derived the test statistic for possible misspecified models.
For the non-linear autoregressive model Kirch and Tadjuidje Kamgaing [2012] analysed a
univariate test statistic. We used results from Kirch and Tadjuidje Kamgaing [2012] and
showed the asymptotics for the multivariate test for a non-linear (auto-)regressive model.

As the estimator is usually based on the test statistic we are going to analyse the corresponding
estimator to the test statistic for non-linear (auto)-regressive model derived in section 3.2.
Before we do so, let us notice that Kirch and Tadjuidje Kamgaing [2012] also introduced a
change-point estimator given as

m̂ = arg max
{∣
∣
∣SH(k; θ̂n)

∣
∣
∣ : 1 ≤ k < n

}

,

where SH(k; θ̂n) is the partial sum of estimated residuals using the least-squares estimator θ̂n,
i.e.

SH(k; θ̂n) =
k∑

t=1

ε̂t =
k∑

t=1

(

Xt − f(Xt, θ̂n)
)

,

θ̂n = arg min
θ∈Θ

n∑

t=1

(Xt − f(Xt, θ))
2 (4.5)

for the sample X−p, . . . , Xn. In Kirch and Tadjuidje Kamgaing [2012] Corollary 3.1 they
showed m̂ −m = op(n), with m = ⌊λn⌋, i.e it defines a consistent estimator for the change-
point λ.

As we have discussed in section 2.3 the weighted version of the change-point estimator allows
better estimation for different positions of the change-point. We consider the non-linear
(auto-)regressive model introduced in section 3.2.1 and analyse the weighted multivariate
change-point estimator given as

m̂(η, γ;A) = arg max
1≤k<n

wη,γ(k/n)
∥
∥
∥S(k, θ̂n)

∥
∥
∥
A
, (4.6)

S(k, θ) =

k∑

t=1

∇f(Yt, θ)(Xt − f(Yt, θ))

=

k∑

t=1

q(t, θ) ,

where wη,γ as in N.7 and A fulfils G.3. We show that the weighted multivariate change-point
estimator is consistent and determine the best convergence rate. To verify that it is the best
rate, we determine the asymptotic distribution.
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4.2.1. Preliminary results

Before we state the main results we first determine some properties of sums and maxima
of neural networks and its derivatives. To derive asymptotic results for the change-point
estimator we first state a result following from (3.29) and (3.30).

Lemma 4.2.1

For the model (3.24) we assume L.1- L.5 and L.8. We get for all θ ∈ Θ and z = 1, 2

1

l

l∑

t=1

(

∇f(Y
(z)
t , θ)f(Y

(z)
t , θ) −∇f(Y

(z)
t , θ̂n)f(Y

(z)
t , θ̂n)

)

= E

(

∇f(Y
(z)
1 , θ)f(Y

(z)
1 , θ) −∇f(Y

(z)
1 , θ̃)f(Y

(z)
1 , θ̃)

)

+ oa.s.(1)

(4.7)

for l → ∞.

Remark, that because of the ergodicity of {f(Y
(z)
t , θ)} and because of the properties of oa.s.

and Oa.s. it holds for m→ ∞

max
1≤l≤m

∥
∥
∥
∥
∥

1

l

l∑

t=1

∇f(Y
(z)
t , θ) f(Y

(z)
t , θ) − E

(

∇f(Y
(z)
1 , θ) f(Y

(z)
1 , θ)

)
∥
∥
∥
∥
∥

= Oa.s.(1) .

Together with Lemma 4.2.1 we get for m→ ∞

max
1≤l≤m

∥
∥
∥
∥
∥

1

l

l∑

t=1

(

∇f(Y
(z)
t , θ̂n)f(X

(z)
t , θ̂n) − E

[

∇f(Y
(z)
1 , θ̃)f(Y

(z)
1 , θ̃)

])
∥
∥
∥
∥
∥

= Oa.s.(1) . (4.8)

But this result is not strong enough to prove the consistency of the change-point estimator.
Nevertheless its proof contains ideas which are needed in the proof of the consistency. There-
fore, we state the following Lemma which needs the Hajek-Renyi-Typ inequality (Lemma
C.2.4 b)) from section C.2.
Recall the notation N.13, i.e. we define q(t, θ) := ∇f(Yt, θ)(Xt − f(Yt, θ)) for θ ∈ Θ.

Lemma 4.2.2

Let q(t, θ) be as in N.13 and d := E

[

q(1, θ̃)
]

. Assume that the model (3.24) fulfils

assumption L.1- L.5 and L.8. Then there exists ς ∈ (0, 1) such that for fixed κ > 0
we have

max
1≤k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̃) − d
)
∥
∥
∥
∥
∥

= κ−
ς

4+2ςOP (1) ,

max
1≤k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)
∥
∥
∥
∥
∥

= oP (1) ,

max
1≤k≤m−κ

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)

+

m∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

= O

(

max
1≤k≤m−κ

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

)

= oP (1) .
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4. Change-point estimator

Observe, that we used Xt, Yt instead of X
(1)
t , Y

(1)
t this is caused by k ≤ m which implies that

the underlying process is then X
(1)
t and Y

(1)
t .

To determine the asymptotic distribution we use analogous arguments as in Theorem 2.3.3.
We know that for n → ∞ the limit exists. To determine the limit we use a truncation
argument and determine first the limit for a fixed area around m. As we only consider the
A-fixed alternative, this distance is fixed. For the local alternative we have to consider the
behaviour in a growing distance and would derive conditions for the rate of growing. Since
we use the equivalent decomposition as for the proof of the rate. Hence we determine the
following convergence.

Lemma 4.2.3

With the notation and under the assumptions of Lemma 4.2.2 and with the definitions
from there, we get

max
0<m−k<C

∥
∥
∥
∥
∥

m∑

t=k+1

(q(t, θ̃) − d)

∥
∥
∥
∥
∥

=OP (1) ,

max
0<m−k<C

∥
∥
∥
∥
∥

m∑

t=k+1

(q(t, θ̂n) − q(t, θ̃))

∥
∥
∥
∥
∥

=oP (1) ,

max
0<m−k<C

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − d) +

m∑

t=1

(q(t, θ̂n) − d)

∥
∥
∥
∥
∥

= OP

(

max
0<m−k<C

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − d)

∥
∥
∥
∥
∥

)

=OP
(√
m
)
,

where C is a constant.

4.2.2. Asymptotics

The first result is that the weighted change-point estimator is consistent.

Theorem 4.2.1 Under the model (3.24) and assumptions G.1, L.1- L.5 and L.8, the
change-point estimator m̂(η, γ) (4.6) is a consistent estimator for λ if η < λ < 1 − η, i.e.

m̂(η, γ)

n

p−→ λ . (4.9)

In Kirch and Tadjuidje Kamgaing [2012] they proved the consistency of the change-point
estimator under a NLAR(p)-process for η = 0, γ = 0 and A = (aij)1≤i,j≤r, r = (2+p+d)h+1,
where a11 = 1 and aij = 0 for i · j 6= 1. Now we also show that the multivariate weighted
change-point estimator is a consistent estimator. From the discussion in section 2.3.2 we know
that for different positions of the change-point different weight functions are preferable. In
the next steps we determine the rate and the asymptotic distribution.

From Corollary 2.3.2 we have seen, that due to the construction of the estimator and the
oP (n) convergence for the proofs of the asymptotics observing the truncated version of the
weighted change-point estimator is sufficient.

To determine the consistency rate we use Lemma 4.2.2.
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4.2. Non-linear (auto-)regressive processes and neural network functions

Theorem 4.2.2 Under assumptions of Theorem 4.2.1 we have

m̂(η, γ) −m = Op(1) .

This Theorem gives an upper bound for the convergence rate. To verify that it is the best
rate of convergence and to be able to derive a confidence interval for m, we are interested in
determining the asymptotic distribution.

Theorem 4.2.3 Let the assumptions of Theorem 4.2.1 hold true. Then

m̂(η, γ) −m
d−→ arg max{W (s) − |s|g(s)D2, s ∈ Z}

with D = ‖δ‖A =
∥
∥
∥E[(∇f(Y

(1)
1 , θ̃)(X

(1)
1 − f(Y

(1)
1 , θ̃0))]

∥
∥
∥
A
,

W (s) =







0 , s = 0 ,

δTAΓ
1
2
∑−1

i=s ξ
(2)
i , s < 0 ,

δTAΓ
1
2
∑s

i=1 ξ
(1)
i , s > 0 ,

ξ
(z)
i = ∇f(Y

(z)
i , θ̃)(X

(z)
i − f(Y

(z)
i , θ̃) − E[(∇f(Y

(z)
1 , θ̃)(X

(z)
1 − f(Y

(z)
1 , θ̃0))] for z = 1, 2 and

g(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

Note that remembering the original model (3.23), ξ
(z)
i = ei+gz(Y

(z)
i )−f(Y

(z)
i , θ̃0)−E(gz(Y

(z)
i )−

f(Y
(z)
i , θ̃0)) is a stationary, centered at 0, α-mixing time series with α(j) = o(j−c). But in

the correct specified case or if we have a non-linear regression model with iid regressors, the
errors are i.i.d and we get an equivalent result as in section 2.3.

Recalling that under correct specification (i.e. g is a neural network) a neural network with

h = 0 hidden layer is then a mean change model. In this case, we have ξ
(z)
i = εi and get the

same result as in Theorem 2.3.3 .

4.2.3. Proofs

Lemma 4.2.1

For the model (3.24) we assume assumption L.1- L.5 and L.8. We get for all θ ∈ Θ
and z = 1, 2

1

l

l∑

t=1

(

∇f(Y
(z)
t , θ)f(Y

(z)
t , θ) −∇f(Y

(z)
t , θ̂n)f(Y

(z)
t , θ̂n)

)

= E

(

∇f(Y
(z)
1 , θ)f(Y

(z)
1 , θ) −∇f(Y

(z)
1 , θ̃)f(Y

(z)
1 , θ̃)

)

+ o(1) a.s.

(4.10)

for l → ∞.
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4. Change-point estimator

Proof:
First notice that it is enough to analyse each entry of the vectors the sum is taken over.
Consider the following decomposition of them. Let j = 1, . . . , (2 + p+ d)H + 1, then

1

l

l∑

t=1

(

(∇f)j(Y
(z)
t , θ)f(Y

(z)
t , θ) − (∇f)j(Y

(z)
t , θ̂n)f(Y

(z)
t , θ̂n)

)

=
1

l

l∑

t=1

(∇f)j(Y
(z)
t , θ)f(Y

(z)
t , θ) − E

[

(∇f)j(Y
(z)
1 , θ)f(Y

(z)
1 , θ)

]

+ E

[

(∇f)j(Y
(z)
1 , θ)f(Y

(z)
1 , θ)

]

− E

[

(∇f)j(Y
(z)
1 , θ)f(Y

(z)
1 , θ̃)

]

+ E

[

(∇f)j(Y
(z)
t , θ̃)f(Y

(z)
1 , θ̃)

]

− 1

l

l∑

t=1

(∇f)j(Y
(z)
t , θ̂n)f(Y

(z)
t , θ̂n)

=: A1 +A2 +A3

We know {Y (z)
t } is a sequence of α-mixing random vectors and f as well as (∇f)j are mea-

surable functions, such that (∇f)j(Y
(z)
t , θ)f(Y

(z)
t , θ) is α-mixing. From (C.1) we get that

A1 = o(1) a.s. The constant on the right hand of (4.10) if A2. Thus, we need to show
A3 = o(1) a.s. It holds

∣
∣
∣
∣
∣
E
[
(∇f)j(Y

(z)
t , θ̃)f(Y

(z)
1 , θ̃)

]
− 1

l

l∑

t=1

(∇f)j(Y
(z)
t , θ̂n)f(Y

(z)
t , θ̂n)

∣
∣
∣
∣
∣

≤
(

sup
θ∈Θ

∣
∣
∣
∣
∣

1

n

n∑

t=1

(∇f)j(Y
(z)
t , θ)f(Y

(z)
t , θ) − E[(∇f)j(Y

(z)
1 , θ)f(Y

(z)
1 , θ)]

∣
∣
∣
∣
∣

)

+ E

∣
∣
∣(∇f)j(Y

(z)
1 , θ̃)f(Y

(z)
1 , θ̃) − (∇f)j(Y

(z)
t , θ)f(Y

(z)
1 , θ)

∣
∣
∣

∣
∣
∣
∣
∣
θ=θ̂n

.

Using from Corollary 3.2.2 and Theorem C.1.1 the first term on the right side is oa.s.(1).
As we can see in the proof of this corollary, there exists an integrable dominating variable.
Theorem C.1.3 gives that we can interchange limit and integration in the second term. With
the consistency of the parameter estimator θ̂n given in a) in Theorem 3.2.1 and the continuity
of the generating function, the desired result follows.
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4.2. Non-linear (auto-)regressive processes and neural network functions

Lemma 4.2.2

Let q(t, θ) be as in N.13 and d := E

[

q(1, θ̃)
]

. Assume that the model (3.24) fulfils

assumption L.1- L.5 and L.8. Then there exists ς ∈ (0, 1) such that for fixed κ > 0 we
have

max
1≤k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̃) − d
)
∥
∥
∥
∥
∥

= κ−
ς

4+2ςOP (1) , (4.11)

max
1≤k≤m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)
∥
∥
∥
∥
∥

= op(1) , (4.12)

max
1≤k≤m−κ

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)

+

m∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

= O

(

max
1≤k≤m

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

)

= op(1) . (4.13)

Proof:
Observe, that we used Xt, Yt is stationary since k < m. Again it is enough to analyse the
behaviour of the maxima for each entry of the vectors. Define for every i = 1, . . . , (2+p+d)h+1
the sequence {ζi(t)} with ζi(t) := qi(−t, θ̃) − di. Then this is a zero mean, stationary and
α-mixing time series. From Lemma C.2.1 we have that ζi(t) is again polynomial mixing with
αζ(j) = αX(j − p+ 1). Furthermore, we have for υ = 2 + ς + ∆, ς ∈ (0, 1], that

E[|ζi(t)|2+ς+∆] =E[|ζi(1)|2+ς+∆]

≤c1 max
j=1,...,p+d

E[|Y1,jX1|2+ς+∆]

+ c2 max
j=1,...,p+d

E[|Y1,jf(Y1, θ̃)|2+ς+∆] + d2+ς+∆

≤c3 (4.14)

for some constants 0 < c1, c2 < c3 <∞, by Y1,j 6= X1 and assumption L.1, L.2, L.3 as well
as the existence of 0 < K <∞ such that |f(Y1, θ̃)| < K <∞ (L.4).

For showing (4.11) we use
{
∑m

t=k+1

(

q(t, θ̃) − d
)

, 1 ≤ t < m− κ
}

is distributional equal to
{
∑l

t=1

(

q(−l, θ̃) − d
)

, κ < t < m
}

for 4.11. Then ζi(t) := qi(−l, θ̃)−di is again alpha mixing

of polynomial rate. From Lemma C.2.4 b) with ς as in (4.14) we have

max
1≤k≤m−κ

1

m− k

∣
∣
∣
∣
∣

m∑

t=k+1

(qi(t, θ̃) − di)

∣
∣
∣
∣
∣

= max
κ≤l≤m−1

1

l

∣
∣
∣
∣
∣

l∑

t=1

ζi(t)

∣
∣
∣
∣
∣

= OP





(
m−1∑

l=κ

l−
2+ς
2

) 1
2+ς





= OP

((∫ ∞

κ
x−

2+ς
2 dx

) 1
2+ς

)

= κ−
ς

4+2ςOP (1) .
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We will use a property of the neural network to prove (4.12). Let θ = (θ1, . . . , θ(2+p+d)h+1),

with (θ̂n)i ≤ θi ≤ (θ̃)i, i = 1, . . . , (2 + p+ d)h+ 1. Then it holds

|qi(t, θ̂n) − qi(t, θ̃)| = |(∇qi(t, θ))t(θ̂n − θ̃)|

≤ D

(

max
j=1,...,p+d

|Y 2
t,j | + max

j=1,...,p+d
|Y 2
t,jXt|

)

‖θ̂n − θ̃‖ , (4.15)

from mean value theorem and from (L.4)

sup
θ∈Θ

‖∇qi(Yt, θ)‖ ≤ D

(

max
j=1,...,p+d

|Y 2
t,j | + max

j=1,...,p+d
|Y 2
t,jXt|

)

.

Observe, by Lemma C.2.1 the time series maxj=1,...,p+d |Y 2
t,j | is α-mixing. Hence

{ 1
m−k

∑m
t=k+1 maxj=1,...,p |Y 2

t,j |, 1 ≤ k ≤ m − κ} is distributional equal to

{1
l

∑l
t=1 maxj=1,...,p |Y 2

−l,j |, κ ≤ l < m}. Using Theorem C.2.1 gives

max
1≤k≤m−κ

∣
∣
∣
∣
∣

1

m− k

m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)
∣
∣
∣
∣
∣

= O(1)
∥
∥
∥θ̂n − θ̃

∥
∥
∥ max
1≤k≤m−κ

1

m− k

m∑

t=k+1

max
j=1,...,p

|Y 2
t,j |

≤ O(1)oP (1) max
κ≤l<m

1

l

l∑

t=1

max
j=1,...,p

|Y 2
−l,j |

= op(1)O(1) a.s.

For the norm of the difference of the parameter esitmator and its limit we used a) of Theorem
3.2.1. The result (4.12) follows from properties of the stochastic Landau symbols.

For (4.13) we get with the triangle inequality that we have

max
1≤k≤m−κ

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)

+

m∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

≤ max
1≤k≤m−κ

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

+
1

n

∥
∥
∥
∥
∥

m∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

≤ 2 max
1≤k≤m

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥

Hence, it is enough to consider

max
1≤k≤m

1

n

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − d)
)
∥
∥
∥
∥
∥
.

From the triangle inequality it follows that analysing the two maxima

max
1≤k≤m

∣
∣
∣
∣
∣

k∑

t=1

(

qi(t, θ̂n) − qi(t, θ̃)
)
∣
∣
∣
∣
∣

and max
1≤k≤m

∣
∣
∣
∣
∣

k∑

t=1

ζi(t)

∣
∣
∣
∣
∣
, (4.16)

where ζi(t) := qi(t, θ̃)−di, is enough. The second maximum in (4.16) is OP (
√
n) using {ζi(t)}

is stationary α-mixing time-series and Remark C.2.1. An analogous argument as for (4.12)
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4.2. Non-linear (auto-)regressive processes and neural network functions

gives that the first maximum in (4.16) is OP (n)oP (1). These give us (4.13).

Lemma 4.2.3

Under the assumptions of Lemma 4.2.2 and with the definitions from there, we get

max
0<m−k<C

∥
∥
∥
∥
∥

m∑

t=k+1

(q(t, θ̃) − d)

∥
∥
∥
∥
∥

=OP (1) , (4.17)

max
0<m−k<C

∥
∥
∥
∥
∥

m∑

t=k+1

(q(t, θ̂n) − q(t, θ̃))

∥
∥
∥
∥
∥

=oP (1) , (4.18)

max
0<m−k<C

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − d) +
m∑

t=1

(q(t, θ̂n) − d)

∥
∥
∥
∥
∥

= OP

(

max
0<m−k<C

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − d)

∥
∥
∥
∥
∥

)

=OP
(√
m
)
, (4.19)

where C is a constant.

Proof:
As before in Lemma 4.2.2 we consider the entries of the vectors and show their asymptotic
behaviour.
To show (4.17), note that by L.1, L.2 and L.3 we can use the invariance principle and get

max
0<m−k<C

∣
∣
∣
∣
∣

m∑

t=k+1

ζi(t)

∣
∣
∣
∣
∣
≤ max

0<m−k<C
(m− k)

1
2 max
0<m−k<C

1

(m− k)
1
2

∣
∣
∣
∣
∣

m∑

t=k+1

ζi(t)

∣
∣
∣
∣
∣

=OP (1)

with ζi(t) = qi(t, θ̃)−di fulfilling the assumptions of Theorem C.2.2 (analogously to the proof
of (4.11)).

Equation (4.18) can be shown, using (4.15) and knowing that max0<m−k<C |maxj=1,...,p+d Y
2
t+k,j | =

OP (1), by stationarity, as well as (a)) in Theorem 3.2.1 hold true.

For (4.19), we first observe that the left hand side is equal to

max
0<m−k<C

∥
∥
∥
∥
∥

2
k∑

t=1

(q(t, θ̂n) − d) +

m∑

t=k+1

(q(t, θ̂n) − d)

∥
∥
∥
∥
∥
. (4.20)

Now, it follows

max
0<m−k<C

m∑

t=k+1

(qi(t, θ̂n) − di) ≤ max
0<m−k<C

∣
∣
∣
∣
∣

m∑

t=k+1

(qi(t, θ̃) − di)

∣
∣
∣
∣
∣

+ max
0<m−k<C

m∑

t=k+1

∣
∣
∣qi(t, θ̂n) − qi(t, θ̃)

∣
∣
∣

≤OP (1) + oP (1) , (4.21)
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4. Change-point estimator

where the behaviour of the first term follows by stationarity. For the second sum we used the
Lipschitz-inequality as in (4.15), which leads to

max
0<m−k<C

m∑

t=k+1

∣
∣
∣qi(t, θ̂n) − qi(t, θ̃)

∣
∣
∣ ≤ c1

∥
∥
∥θ̂n − θ̃

∥
∥
∥ max

0<m−k<C

m∑

t=k+1

max
j=1,...,p+d

|Y 2
t,j | , (4.22)

where c1 is some constant. From Theorem 3.2.1 we have ‖θ̂n− θ̃0‖ = oP (1) using stationarity
of {Y 2

t } we get

max
0<m−k<C

m∑

i=k+1

max
j=1,...,p+d

|Y 2
t,j | = OP (1) . (4.23)

Combine (4.23) with (4.22) and (4.21) is shown.

It is left to observe the behaviour of the first term in (4.20). We use the same decomposition
as for the second term and apply the Lipschitz-inequality, too. Thus, we gain

max
0<m−k<C

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̂n) − di)

∣
∣
∣
∣
∣
≤ max
k∈(m−C,m)

∣
∣
∣
∣
∣

k∑

t=1

(qi(t, θ̃) − di)

∣
∣
∣
∣
∣

+ ‖θ̂n − θ̃‖ max
k∈(m−C,m)

k∑

t=1

max
j=1,...,p+d

|Y 2
t,j | .

Using {maxj=1,...,p+d |Y 2
t,j |} is stationary, α-mixing time series, Theorem C.2.1 gives us that

the second term is OP (
√
m). For the first term we apply the Hajek-Renyi Inequality (Lemma

C.2.4), which gives the claim.

Lemma 4.2.4

Under the model (3.24) and assumptions G.1, L.1- L.5 and L.8 we have that

sup
s∈[0,1]

∣
∣
∣
∣

1

n

∥
∥
∥S(⌊sn⌋, θ̂n)

∥
∥
∥
A
−
∥
∥
∥Es(θ̃)

∥
∥
∥
A

∣
∣
∣
∣

= oP (1) ,

with Es(θ) = g(s)E[∇f(Y1, θ)(X1 − f(Y1, θ))] and

g(s) =

{

s, s ≤ λ ,

λ s−λ1−λ , s > λ .

Proof:
From triangle inequality it follows

sup
s∈[0,1]

∣
∣
∣
∣

1

n

∥
∥
∥S(⌊sn⌋, θ̂n)

∥
∥
∥
A
−
∥
∥
∥Es(θ̃)

∥
∥
∥
A

∣
∣
∣
∣

≤ sup
s∈[0,1]

∥
∥
∥
∥

1

n
S(⌊sn⌋, θ̂n) − Es(θ̃)

∥
∥
∥
∥
A

.
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4.2. Non-linear (auto-)regressive processes and neural network functions

Furthermore, we have

sup
s∈(0,1)

∥
∥
∥
∥

1

n
S(⌊sn⌋, θ̂n) − Es(θ̃)

∥
∥
∥
∥
A

≤ sup
s∈(0,1)

∥
∥
∥
∥

1

n
S(⌊sn⌋, θ̂n) − 1

n
S(⌊sn⌋, θ̃)

∥
∥
∥
∥
A

+ sup
s∈(0,1)

∥
∥
∥
∥

1

n
S(⌊sn⌋, θ̃) − Es(θ̃)

∥
∥
∥
∥
A

(4.24)

= oP (1) .

The second term on the right hand side can be proven equivalently to b)of Proposition 3.2.1.
It is left to prove the convergence of the first supremum in 4.24.

Assume s ≤ λ the other side follows from splitting the sum at λ. We use the mean value
theorem and the

√
n-consistency of θ̂n. By the properties of the neural network we get

supθ∈Θ ‖∇qi(t, θ)‖∞ ≤ c(maxj=1,...,p+d |XtY
2
t,j | + maxj=1,...,p+d |Y 2

t,j |) for some constant c > 0.
Since by the assumptions L.1 and L.3 both maxima are stationary α-mixing time-series, we
have

1

n

⌊sn⌋
∑

t=1

qi(t, θ̂n) − qi(t, θ̃) ≤
1

n

⌊sn⌋
∑

t=1

sup
θ∈Θ

‖∇qi(t, θ)‖∞
∥
∥
∥θ̂n − θ̃

∥
∥
∥

≤
∥
∥
∥θ̂n − θ̃

∥
∥
∥




1

n

⌊sn⌋
∑

max
j=1,...,p+d

|XtY
2
t,j | +

1

n

⌊sn⌋
∑

t=1

max
j=1,...,p+d

|Y 2
t,j |





= OP (n−
1
2 )OP (1) .

Since the convergence holds for every entry of the difference uniformly, it holds for the norm
of the difference vector.

Theorem 4.2.1

Under the model (3.24) and assumptions G.1, L.1- L.5 and L.8, we get the change-
point estimator m̂(η, γ) (4.6) defines an consistent estimator for λ if η < λ < 1 − η,
i.e.

m̂(η, γ)

n

p−→ λ . (4.25)

Proof:
First observe, that in Kirch and Tadjuidje Kamgaing [2012] they essentially used

sup
s∈[0,1]

∣
∣
∣
∣
∣
∣

1

n

∣
∣
∣
∣
∣
∣

⌊sn⌋
∑

t=1

(Xt − f(X, θ̂n))

∣
∣
∣
∣
∣
∣

− Ln(s)

∣
∣
∣
∣
∣
∣

= oP (1) ,

where

Ln(s) =







s
∣
∣
∣E[X

(1)
1 − f(X

(1)
1 , θ)]|θ=θ̂n

∣
∣
∣ , s < λ

max
(

λ
∣
∣
∣E[X

(1)
1 − f(X

(1)
1 , θ)]|θ=θ̂n

∣
∣
∣ , (1 − s)

∣
∣
∣E[X

(2)
1 − f(X

(2)
1 , θ)]|θ=θ̂n

∣
∣
∣

)

, s = λ

(1 − s)
∣
∣
∣E[X

(2)
1 − f(X

(2)
1 , θ)]|θ=θ̂n

∣
∣
∣ . s > λ
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4. Change-point estimator

We instead use the result of Lemma 4.2.4 and combine it with Theorem C.1.2.

Theorem 4.2.2

Under the model (3.24) and assumptions L.1- L.5 and L.8, we get for η < λ < 1 − η

m̂(η, γ) −m = OP (1) .

Proof:
Observe that by Corollary 2.3.2 the change-point estimator m̂(η, γ) is asymptotically equal
to m̂(α, γ) with 0 < α < min(λ, 1 − λ). For the proof we therefore consider m̂ = m̂(α, γ).

With the notation N.7, we define

m̂ = arg max{w(η, γ)
∥
∥
∥Sk(θ̂n)

∥
∥
∥
A

: 1 ≤ k < n} = arg max{Vk, αn < k < (1 − α)n} ,

where

Vk = −〈wγ(m/n)Sm(θ̂n) − wγ(k/n)Sk(θ̂n), wγ(m/n)Sm(θ̂n) + wγ(k/n)Sk(θ̂n)〉A .

We have to check (2.42) for this model. As we done there, we check each side separately.

Lets consider the first event 0 < m̂ < m− κ. Thus, we have to determine

P (m̂ < m− κ) = P (0 < m̂ < m− κ) = P

(

max
αn<k<m−κ

Vk ≥ max
m−κ≤k<(1−α)n

Vk

)

.

We observe that Vk can be written in the following way

Vk = −
〈

(wγ(m/n) − wγ(k/n))Sm(θ̂n) + wγ(k/n)Sk+1,n(θ̂n),

wγ(m/n)Sk+1,m(θ̂n) + (wγ(m/n) + wγ(k/n))Sm(θ̂n)
〉

A

= −
〈

(wγ(m/n) − wγ(k/n))
m∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+ wγ(k/n)
m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)

+ wγ(k/n)
m∑

t=k+1

(

q(t, θ̃) − E[q(1, θ̃)]
)

+ (mwγ(m/n) − kwγ(k/n))E[q(1, θ̃)],

wγ(m/n)
m∑

t=k+1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+ (wγ(m/n) + wγ(k/n))
k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+ (mwγ(m/n) + kwγ(k/n))E[q(1, θ̃)]

〉

A

= B1 +B2 +B3 +B4 +B5 +B6 .

Where we use the equivalent calculation as for (2.44) with replacing

εt − εn=̂q(t, θ̂n) − E[q(1, θ̃)] , εn=̂ − (q(t, θ̂n) − q(t, θ̃)) εt=̂q(t, θ̃) − E[q(1, θ̃)] .
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4.2. Non-linear (auto-)regressive processes and neural network functions

Thus, we have Bi, i = 1, . . . , 6, given as

B1 = (w2γ(k/n) − w2γ(m/n))

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − E[q(1, θ̃))

∥
∥
∥
∥
∥

2

A

B2 = −w2γ(m/n)

〈
k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+

m∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

,

m∑

t=k+1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
〉

A

B3 = −2(w2γ(m/n)m− w2γ(k/n)k)

〈
k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

,E[q(1, θ̃)]

〉

A

B4 = 2w2γ(m/n)m

〈
m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)

, E[q(1, θ̃)]

〉

A

B5 = 2w2γm

〈
m∑

t=k+1

(

q(t, θ̃) − E[q(1, θ̃)]
)

, E[q(1, θ̃)]

〉

A

B6 = −(m2w2
γ(m/n) − k2w2

γ(k/n))
∥
∥
∥E[q(1, θ̃)]

∥
∥
∥

2

A

Let δn ≡ δ := E[q(1, θ̃)], then B6 = −(m2w2
η,γ(m/n) − k2w2

η,γ(k/n))‖δ‖2A. This is equivalent
to B6 from Theorem 2.3.2 (see page 43). Thus, we have the same approximation as in (2.45).
Hence, it is enough to examine the order of

max
1≤k<m

∣
∣
∣
∣

Bi
m− k

∣
∣
∣
∣

for i = 1, . . . , 5. By Lemma 4.2.2 there exists ς such that for chosen large enough κ, we get

max
αn<k<m−κ

∣
∣
∣
∣

B1

(m− k)

∣
∣
∣
∣
≤ max

αn<k<m−κ

∣
∣
∣
∣

w2γ(k/n) − w2γ(m/n)

(m− k)

∣
∣
∣
∣

max
αn<k<m−κ

∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − E[q(1, θ̃))

∥
∥
∥
∥
∥

2

A

= O(n−1) (oP (n)) .

We used the Lipschitz property of the weight function (2.28), equivalently as for (2.46). For
the following approximations we will also make use of the properties of the weight function
given in Corollary 2.3.1.

max
αn<k<m−κ

∣
∣
∣
∣

B2

(m− k)

∣
∣
∣
∣

≤ w2γ(m/n) max
αn<k<m−κ

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+

m∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

· max
αn<k<m−κ

∥
∥
∥
∥
∥

m∑

t=k+1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

= O(1) (op(1))
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4. Change-point estimator

Therefore, we used that from the triangle inequality we get

max
1≤k≤m−κ

1

n

∣
∣
∣
∣
∣

(
m∑

t=1

(

qi(t, θ̂n) −di
)

+

k∑

t=1

(

qi(t, θ̂n) − di)
)
)∣
∣
∣
∣
∣

≤ 1

n

(

max
1≤k≤m−κ

∣
∣
∣
∣
∣

m∑

t=1

(

qi(t, θ̂n) − di

)
∣
∣
∣
∣
∣

+ max
1≤k≤m−κ

∣
∣
∣
∣
∣

k∑

t=1

(

qi(t, θ̂n) − di)
)
∣
∣
∣
∣
∣

)

≤ 2

n
max

1≤k≤m−κ

∣
∣
∣
∣
∣

k∑

t=1

(

qi(t, θ̂n) − di)
)
∣
∣
∣
∣
∣
.

For B3 and B4 we directly can apply Corollary 2.3.1. and get

max
αn<k<m−κ

∣
∣
∣
∣

B3

(m− k)

∣
∣
∣
∣

≤ max
αn<k<m−κ

∣
∣
∣
∣

w2γ(m/n)m− w2γ(k/n)k

(m− k)

∣
∣
∣
∣

max
αn<k<m−κ

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

‖δ‖A

= O(1)OP (
√
n‖δ‖A) ,

max
αn<k<m−κ

∣
∣
∣
∣

B4

(m− k)

∣
∣
∣
∣

≤ 2w2γ(m/n)m max
αn<k<m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)
∥
∥
∥
∥
∥
A

‖δ‖A

= O(n)oP (1)‖δ‖A .

Observe, that for B4 we used
√
n-consistency of θ̂n and that {Y 2

t } is a α-mixing stationary
time series.

max
αn<k<m−κ

∣
∣
∣
∣

B5

(m− k)

∣
∣
∣
∣

≤ 2w2γ(m/n)m max
αn<k<m−κ

∥
∥
∥
∥
∥

1

m− k

m∑

t=k+1

(

q(t, θ̃) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

‖δ‖A

= O(n)OP (κ−
ς
6 )‖δ‖A .

It leads to

max
αn≤k<m−κ

∣
∣
∣
∣

B1

B6

∣
∣
∣
∣

= oP (1) ,

max
αn≤k<m−κ

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣

= κ−
ς
6OP (1) ,

max
αn≤k<m−κ

∣
∣
∣
∣

B3

B6

∣
∣
∣
∣

= oP (1) ,

max
αn≤k<m−κ

∣
∣
∣
∣

B4

B6

∣
∣
∣
∣

= oP (1) ,

max
αn≤k<m−κ

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣

= oP (1) .
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4.2. Non-linear (auto-)regressive processes and neural network functions

Using this results and B6 < 0 for k < m, with max1≤k<m−κB6 ≤ c < 0 for c fixed but
arbitrary, it yields

P (m̂ < m− κ) = P

(

max
1≤k<m−κ

Vk > max
m−κ≤k≤n

Vk

)

≤ P

(

max
1≤k<m−κ

Vk ≥ Vm

)

= P

(

max
1≤k<m−κ

Vk ≥ 0

)

= P

(

max
1≤k<m−κ

{

B6

(

1 + oP (1) +
B2

B6

)}

≥ 0

)

≤ P

(

max
1≤k<m−κ

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≥ 1 + oP (1)

)

≤ P

(

max
1≤k<m−κ

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≥ 1 − η

)

+ P

(

1 + op(1) ≤ max
1≤k<m−κ

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≤ 1 − η

)

≤ P
(

OP (1) ≥ (1 − η)κ
ς
6

)

+ o(1) ,

with 0 < η < 1 arbitrary. This term becomes arbitrarily small for a sufficiently large κ > 0.
The other way around works similar, just using that

∑k
i=1(Xi− f(Yi, θ̂N )) = −∑m

i=k+1(Xi−
f(Yi, θ̂N )).

Theorem 4.2.3

Let the assumptions of Theorem 4.2.2 hold true. Then

m̂(η, γ;A) −m
d−→ arg max{W (s) − |s|g(s)D2, s ∈ Z}

with D = ‖δ‖A =
∥
∥
∥E[(∇f(Y

(1)
1 , θ̃)(X

(1)
1 − f(Y

(1)
1 , θ̃))]

∥
∥
∥
A

,

W (s) =







0 , s = 0 ,

δTAΓ
1
2
∑−1

i=s ξ
(2)
i , s < 0 ,

δTAΓ
1
2
∑s

i=1 ξ
(1)
i , s > 0 ,

ξ
(z)
i = ∇f(Y

(z)
i , θ̃)(X

(z)
i − f(Y

(z)
i , θ̃) − E[(∇f(Y

(z)
1 , θ̃)(X

(z)
1 − f(Y

(z)
1 , θ̃0))] for z = 1, 2

and

g(s) =







(1 − γ)(1 − λ) + γλ , s < 0 ,

0 , s = 0 ,

γ(1 − λ) + (1 − γ)λ , s > 0 .

Proof:
To simplify the notation we use m̂ := m̂(η, γ;A), as η, γ and A are fixed.

As in the proof of Theorem 2.3.3 (see page 50) it is only of interest to determine the asymptotic
distribution of

P (m− κ ≤ m̂ ≤ m+ x, |m̂−m| < κ) = P

(

max
(k−m)∈(−κ,x]

Vk ≥ max
(k−m)∈(x,κ)

Vk

)

,
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(compare (2.56)). Vk is as in Theorem 4.2.2. For the proof we have to analyse Vk for k ∈
(m − κ,m) and for k ∈ (m,m + κ). Here, we show that with Lemma 4.2.3 and analoguous
argumentation as in the proof of Theorem 2.3.3 we can determine the asymptotic distribution
for k ∈ (m− κ,m). The other side follows equivalently.

Let (w.l.o.g.) x > 0 and κ > x be both fixed but arbitrary. Then we get from Corollary 2.3.1
and Lemma 4.2.3

max
k∈(m−C,m)

|B1| = max
k∈(m−C,m)

|w2γ(k/n) − w2γ(m/n)|
∥
∥
∥
∥
∥

k∑

t=1

(q(t, θ̂n) − E[q(1, θ̃))

∥
∥
∥
∥
∥

2

A

= OP
(
n−1

)
OP (n) ,

max
k∈(m−C,m)

|B2| ≤ w2γ(m/n) max
k∈(m−C,m)

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)

+

m∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

· max
k∈(m−C,m)

∥
∥
∥
∥
∥

m∑

t=k+1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

= OP (1)oP
(√
n
)
,

max
k∈(m−C,m)

|B3| ≤ 2 max
k∈(m−C,m)

|w2γ(m/n)m− w2γ(k/n)k| max
k∈(m−C,m)

∥
∥
∥
∥
∥

k∑

t=1

(

q(t, θ̂n) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

· max
k∈(m−C,m)

∥
∥
∥E[q(1, θ̃)]

∥
∥
∥
A

= OP (1)OP (
√
n) ,

max
k∈(m−C,m)

|B4| ≤ 2w2γ(m/n)m max
k∈(m−C,m)

∥
∥
∥
∥
∥

m∑

t=k+1

(

q(t, θ̂n) − q(t, θ̃)
)
∥
∥
∥
∥
∥
A

∥
∥
∥E[q(1, θ̃)]

∥
∥
∥
A

= OP (n)oP (1) ,

max
k∈(m−C,m)

|B5| = 2w2γm max
k∈(m−C,m)

∥
∥
∥
∥
∥

m∑

t=k+1

(

q(t, θ̃) − E[q(1, θ̃)]
)
∥
∥
∥
∥
∥
A

∥
∥
∥E[q(1, θ̃)]

∥
∥
∥
A

= OP (n)OP (1) ,

max
k∈(m−C,m)

|B6| = max
k∈(m−C,m)

|m2w2
γ(m/n) − k2w2

γ(k/n)|
∥
∥
∥E[q(1, θ̃)]

∥
∥
∥

2

A
= O(n) .

This coincides with the results in the proof of Theorem 2.3.3 (page 50). Observe, that the
result (2.58) only depends on the weight function. Thus we get the same asymptotic for B6

(with (1 − λ)δ = E[q(1, θ̃)] in (2.58)). Analogously, we conclude

max
l∈(−κ,0)

w−2γ(m/n)

m
Vm+l

= max
l∈(−κ,0)

(

2δTAΓ
1
2

−1∑

t=l

ζ̃(m+ t+ 1) − 2|l|γλ+ (1 − γ)(1 − λ)

(1 − λ)
D + oP (1)

)

,
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with ζ(t) = q(t, θ̃) − E[q(1, θ̃)] = ∇f(Yt, θ̃)(Xt − f(Yt, θ̃) − E[∇f(Yt, θ̃)(Xt − f(Yt, θ̃)] and

D = ‖δ‖2A. Define ξ
(1)
t

d
= ζ̃(−t), again stationary α-mixing time-series, and

V
(1)
l = 2δTAΣ

1
2

−1∑

t=l

ξ
(1)
t − 2|l|(1 − γ)(1 − λ) + γλ

(1 − λ)2
D .

Then we have asymptomatic convergence and get

max
l∈(−κ,0)

w−2γ(m/n)

m(1 − m
n

)
Vm+l

d−→ max
l∈(−κ,0)

V
(1)
l .

Doing the same for m < k < m+ κ, we get

max
l∈(0,κ)

w−2γ(m/n)

m(1 − m
n

)
Vm+l

d−→ max
l∈(0,κ)

V
(2)
l .

with

V
(2)
l =2δTAΣ

1
2

l∑

t=1

ξ
(2)
t − 2|l|γ(1 − λ) + (1 − γ)λ

(1 − λ)2
D .

Define

Wl =







1
2V

(1)
l , l < 0

0, l = 0
1
2V

(2)
l , l > 0

,

we can conclude equivalently as in the proof of Theorem 2.3.3 (see page 50).
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4. Change-point estimator

4.3. Generalized class of change-point estimator

In section 3.3, we analysed a consistent level -α test. Now, we are interested in determining
the best convergence rate of the corresponding change-point estimator, i.e.

m̂ := arg max
1≤k<n

wn(n, k)
∥
∥
∥SH(k; θ̂n)

∥
∥
∥
A
, (4.26)

with SH(k; θ̂n) as given in (3.42) and wn(n, k) fulfils assumption G.7. We verify the result
by determining the asymptotic distribution of the estimator.

The main idea is to decompose the statistic such that we can analyse the behaviour of the
parts. To this end, we will make use of the representation of SH(k; θ) as a sum.

4.3.1. Asymptotic results for the change-point estimator

We first consider the key regularity conditions and secondly prove them for the example 3.3.1
from section 3.3.

To handle the randomized weight function we recall that this weightfunction converges uni-
formly to a deterministic weight function, such that the influence vanishes asymptotically. In
the proofs we use this to change directly to the deterministic function.

Lemma 4.3.1

Let wn(n, k) denote a random weight function fulfilling assumption G.7.
Then it holds for α ∈ (0, λ) and κn non-decreasing, that

max
αn<k<m−κn

∣
∣
∣
∣

wn(k, n) − ρ(k/n)

m− k

∣
∣
∣
∣

= oP (κ−1
n ) = oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

w2
n(k, n) − ρ2(k/n)

m− k

∣
∣
∣
∣

= oP (κ−1
n ) = oP (1) ,

Consistency

First we want to show, that the rescaled change-point estimator m̂
n is consistent to λ, i.e.

∣
∣
∣
∣

m̂

n
− λ

∣
∣
∣
∣

= oP (1) .

Due to the fact, that we are interested on assumptions besides properties of the process, we
have the following properties for the estimation function as well as for the test function. It is
ensured that for the asymptotic behaviour we can replace the statistic function evaluated at
θ̂n by the statistic function evaluated at θ̃. Especially, we have to assume the following.

G.12 There exists θ̃ ∈ Θ being unique root of E[G(X1, θ)] under H1.

This is some basic assumption, as we need to define the asymptotic behaviour under H1 of
the change-point estimator. Let us state the asymptotic value under H1 for the example of
the log-normal observations.
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4.3. Generalized class of change-point estimator

Example 4.3.1 We assume that for the observations introduced in Example 3.3.1 a change in
the expectation of the log-normal observations occurs. This can either follow from a change in
the expectation (δn,µ) or in the variance (δn,σ2) or in both of the log-transformed observations.
We denote with δn the change given by

exp(µ0 + δn,µ +
1

2
(σ20 + δn,σ2)) = δn exp(µ0 +

1

2
σ20) .

The parameter estimator converges under H1 against

θ̃ =

(
µ0 + (1 − λ)δn,µ
σ20 + (1 − λ)δn,σ2

)

.

Now, as we have the convergence of the parameter estimator, we are interested in conditions
for deriving a consistent change-point estimator. To this end we need some replacement as-
sumption as well as an assumption on the convergence rate.

G.13 There exists a function ψ(s), s ∈ (0, 1) and a matrix C(θ̃) such that

sup
0<s<1

ψ(⌊sn⌋/n)

n

∥
∥
∥
∥
SH(⌊sn⌋; θ̂n) − SH(⌊sn⌋; θ̃) +

⌊sn⌋
n

C(θ̃)SG(n, θ̃)

∥
∥
∥
∥
A

= OP

(
1√
n

)

,

with G being an unbiased estimation function.

G.14 There exists a function ψ(s), s ∈ (0, 1) and a function Esn,n(θ̃) such that

sup
0<s<1

ψ(⌊sn⌋/n)

n

∥
∥
∥
∥
SH(⌊ns⌋; θ̃) − ⌊sn⌋

n
C(θ̃)SG(n, θ̃) − E⌊sn⌋,n(θ̃)

∥
∥
∥
∥
A

= OP

(
1√
n

)

.

Moreover,
∥
∥
∥Ek,n(θ̃)

∥
∥
∥
A

has a unique maximum at k = m. We denote by Dn = ‖δn‖A =

max1≤k<n
∥
∥
∥
1
nEk,n(θ̃)

∥
∥
∥
A

.

As we assumed that G is an unbiased estimation function and we have defined a limit to
exist for the parameter estimator, the part ⌊sn⌋

n C(θ̃)SG(n, θ̃) usually converges to 0. Hence,
∥
∥
∥E⌊sn⌋,n(θ̃)

∥
∥
∥
A

does not depend on the estimating function G.

Thus in the following we are going to prove the results for the deterministic weight function.
We will see that the results then also hold true for the randomized weight function.

Theorem 4.3.1 Let m̂ be the change-point estimator given by (4.26) with a possibly random
weight function fulfilling assumption G.7. If the assumptions G.1, G.13 and G.14, with
ψ(s) = ρ(s) and ψ(s) = 1, are fulfilled, then m̂/n is a consistent estimator for λ.
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4. Change-point estimator

Let us consider the example of the log-normal distributed observations. We show that the
conditions are fulfilled and determine the function E⌊sn⌋,n(θ̃).

Example 4.3.2 Recall the example of independent identical log-normal distributed observa-
tions, introduced in Example 3.3.1. We were interested if the expectation of the log-normal
observations changes. We considered the test statistic

Tn(θ̂n;A) = max
0<k<n

wn(n, k)

∥
∥
∥
∥
∥

k∑

t=1

(
Xt − exp(µ̂n + 1

2 σ̂
2
n)
)

∥
∥
∥
∥
∥
A

,

with θ̂n = (µ̂n, σ̂
2
n)T are the least-squares estimators of the log-observations. Let us proof that

the assumption G.14 is fulfilled. To this end we consider

1

n
SH(⌊ns⌋; θ̂n)

=
1

n

⌊sn⌋
∑

t=1

(
Xt − exp(µ̂n + 1

2 σ̂
2
n) −Xt + exp(µ̃+ 1

2 σ̃
2)
)

+
1

n

⌊sn⌋
∑

t=1

(
Xt − exp(µ̃+ 1

2 σ̃
2)
)

=
⌊sn⌋
n

(
exp(µ̃+ 1

2 σ̃
2) − exp(µ̂n + 1

2 σ̂
2
n)
)

+
1

n

⌊sn⌋
∑

t=1

(
Xt − exp(µ̃+ 1

2 σ̃
2)
)
,

with θ̃ = (µ̃, σ̃2)T.

The last sum on the right hand-side is a sum is a sum over i.i.d. random variables, if s ≤ λ.
For s > λ we split the sum at s = λ, then we get the convergence.

For the assumption G.14 we need to determine the rate of convergence. This essentially comes

from the CLT applied to each stationary sum of 1
n

∑⌊sn⌋
t=1

(
Xt − exp(µ̃+ 1

2
σ̃2)
)
after splitting

at ⌊λn⌋. But we have to be careful since Xt− exp(µ̃+ 1
2
σ̃2) has not expectation 0. We use the

same C(θ̃) as in example 3.3.2 evaluated for the parameter θ̃ under the alternative. Then we
have

1

n
SH(⌊ns⌋; θ̂n)− 1

n
SH(⌊ns⌋; θ̃) +

⌊ns⌋
n

C(θ̃)SG(n, θ̃)

=
⌊sn⌋
n

(
exp(µ̃+ 1

2 σ̃
2) − exp(µ̂n + 1

2 σ̂
2
n)
)

+
⌊ns⌋
n

C(θ̃)SG(n, θ̃)

=
⌊sn⌋
n

(
exp(µ̃+ 1

2 σ̃
2) − exp(µ̂n + 1

2 σ̂
2
n)
)

+ ⌊ns⌋ exp(µ̃+ 1
2 σ̃

2)

(

µ̃− µ̂n +
1

2
(σ̂2n − σ̃2)

)

+
⌊ns⌋
n

exp(µ̃+ 1
2 σ̃

2)

(
n∑

t=1

(
1

2
(log(Xt) − µ̃)2 − 1

2
(log(Xt) − µ̂n)2)

)

Now calculating the Taylor expansion up to degree 2, gives with analogue argumentation as in
Example 3.3.2 the rate OP (1/

√
n).
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4.3. Generalized class of change-point estimator

The question occurs of the limit E⌊sn⌋,n(θ̃). Assuming the change is additive in one of the
parameters leads to

1

n

⌊sn⌋
∑

t=m+1

(
Xt − exp(µ0 + 1

2σ0
2 + dn)

)

=
1

n

⌊sn⌋
∑

t=m+1

(
Xt − exp(µ0 + 1

2σ0
2)
)

+
⌊sn⌋ −m

n
(1 − δn) exp(µ0 + 1

2σ0
2) .

Observe that G is an unbiased estimation function even under H1. So, E⌊sn⌋,n(θ̃) is given as

E⌊sn⌋,n(θ̃) =

{

⌊sn⌋(exp(µ0 + 1
2σ

2
0) − exp(µ̃+ 1

2 σ̃
2)) , s ≤ λ

m(1 − δn)(exp(µ0 + 1
2σ

2
0)) + ⌊sn⌋(δn exp(µ0 + 1

2σ
2
0) − exp(µ̃+ 1

2 σ̃
2)) , s > λ

,

(4.27)

with θ0 = (µ0, σ
2
0)T being the true value from the time-series before the change and δ denote the

size of the change in the expectation of the log-normal distributed observations (see Example
4.3.1). This function has its the maximum or its minimum at k = m. For δn > 0 is greater 1
we have µ0+ 1

2σ
2
0 < µ̃+ 1

2 σ̃
2 < µ0+ 1

2σ
2
0 +log(δn), which includes that Ek,n(θ̃) is decreasing for

k < m and increasing for k > m always with negative values. Then we see, that
∥
∥
∥Ek,n(θ̃)

∥
∥
∥
A

has its maximum at k = m.

Rate of convergence

In this section, we are going to determine the rate of convergence and identify the part of the
statistic which gives us the asymptotic behaviour. Before we state the main result, we give
the proofs of the behaviour for the decomposition parts.

To derive our result, we have to make some assumptions.

G.15 Let the following assumptions hold true for the process before the change-point.

a) The parameter estimator can be replaced by its consistent asymptotic value without
changing the asymptotic behaviour, i.e.

max
1≤k<m

1

m− k

∥
∥
∥
∥
∥

m∑

t=k+1

(

H(Xt, θ̂n) −H(Xt, θ̃)
)
∥
∥
∥
∥
∥
A

= OP

(
1√
n

)

.

b) Let a Hájek-Rényi-type condition hold true, i.e. there exists κn > 0 non-decreasing
with κn/n −→

n→∞
0, such that

max
1≤k≤m−κn

1

m− k

∥
∥
∥SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃)

∥
∥
∥
A

= κ−1/2
n OP (1) .

G.16 Let the following assumptions hold true for the process after the change-point.

a) The parameter estimator can be replaced by its consistent asymptotic value without
changing the asymptotic behaviour, i.e.

max
m≤k<n

1

k −m

∥
∥
∥
∥
∥

k∑

t=m+1

(

H(X
(2)
t , θ̂n) −H(X

(2)
t , θ̃)

)
∥
∥
∥
∥
∥
A

= OP

(
1√
n

)

.
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4. Change-point estimator

b) Let a Hájek-Rényi-type condition hold true, i.e. there exists κn > 0 non-decreasing
with κn/n −→

n→∞
0, such that

max
m+κn≤k<n

1

k −m

∥
∥
∥SH(k, θ̃) − Ek,n(θ̃) − SH(m, θ̃) + Em,n(θ̃)

∥
∥
∥
A

= κ−1/2
n OP (1) .

Example 4.3.3 Ongoing example of log-normal distributed observations (see first mentioned
in Example 3.3.1). We proof that the assumptions G.15a and G.15b hold true. The other
site follows equivalently.

Let us consider the replacement condition. We have

max
1≤k≤m

1

m− k

∥
∥
∥
∥
∥

m∑

t=k+1

(

H(Xt, θ̂n) −H(Xt, θ̃)
)
∥
∥
∥
∥
∥
A

max
m<k<n

1

k −m

∥
∥
∥
∥
∥

k∑

t=m+1

(

H(Xt, θ̂n) −H(Xt, θ̃)
)
∥
∥
∥
∥
∥
A







=
∥
∥
(
exp(µ̃+ 1

2 σ̃
2) − exp(µ̂n + 1

2 σ̂
2
n)
)∥
∥
A
.

So, it vanishes as the parameter estimator is consistent and exp is continuous.

For the Hájek-Rényi-type condition we use E⌊sn⌋,n(θ̃) as given in (4.27). Then it follows that
we have

SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃) =
m∑

t=k+1

(Xt − E[Xt]) .

This is the same situation as given in Lemma 2.3.3.Analogously we calculate for the difference
for k > m

max
m+κn≤k<n

1

m− k

∥
∥
∥SH(k, θ̃) − Ek,n(θ̃) − SH(m, θ̃) + Em,n(θ̃)

∥
∥
∥
A

= max
m+κn≤k<n

1

m− k

∥
∥
∥
∥
∥

k∑

t=m+1

(Xt − E[Xt])

∥
∥
∥
∥
∥
A

= OP (κ
− 1

2
n ) .

As the sum is taken over stationary ergodic random variables with expectation 0.
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4.3. Generalized class of change-point estimator

Lemma 4.3.2

Let the change-point be given by G.1 and let the assumption G.14, with ψ ≡ 1, be
fulfilled.

If {X(1)
t } fulfils the assumption G.15, then it holds

max
1≤k<m

1

n

∥
∥
∥SH(k; θ̂n) + SH(m; θ̂n) − Ek,n(θ̃) − Em,n(θ̃)

∥
∥
∥
A

= oP (1) . (4.28)

If {X(2)
t } fulfils the assumptions G.16, then we have

max
m<k<n

1

n

∥
∥
∥SH(k; θ̂n) + SH(m; θ̂n) − Ek,n(θ̃) − Em,n(θ̃)

∥
∥
∥
A

= oP (1) . (4.29)

For the rate we have to make some additional assumptions on the weight function, as it has
an influence on the asymptotic distribution.

G.17 Let the weight function ρ : (0, 1) → R+ be local Lipschitz continuous and

c1|k − l|n−1 ≥ |ρ2(k/n) − ρ2(l/n)|

with c1 > 0 and k, l ∈ [αn, βn] for 0 < α < β < 1.

G.18 The function E⌊sn⌋,n(θ̃) is Lipschitz continuous with

|s− r|nDnc2 ≤ ‖E⌊sn⌋,n(θ̃) − E⌊rn⌋,n(θ̃)‖ ≤ |s− r|nDnc
′
2 s, r ∈ (α, β) ,

where 0 < α < β < 1, c2, c
′
2 some constants, Dn (from assumption G.14) is non-

increasing and there exists a constant D such that limn→∞Dn = D.

G.19 For E⌊sn⌋,n(θ̃) and ρ(s), s ∈ (0, 1) we have

max
αn≤k<m

m− k

ρ2(k/n)‖Ek,n(θ̃)‖2 − ρ2(m/n)‖Em,n(θ̃)‖2
= O(n−1D−2

n )

and

max
m<k≤(1−α)n

k −m

ρ2(k/n)‖Ek,n(θ̃)‖2 − ρ2(m)‖Em,n(θ̃)‖2
= O(n−1D−2

n ) .

Lemma 4.3.3

For a function ρ ∈ L(η, γ) and G.17 and a function Es,n fulfilling G.18 there exists
constants c′1, c

′
2 and c′3 constants depending on α, β such that it holds for k, l ∈ [αn, βn]

|ρ2(k/n) − ρ2(l/n)| ≤ |k − l|c′1n−1

∣
∣
∣ρ(k/n)

∥
∥
∥Ek,n(θ̃)

∥
∥
∥− ρ(l/n)

∥
∥
∥El,n(θ̃)

∥
∥
∥

∣
∣
∣ ≤ |k − l|c′2n−1Dn

|ρ2(k/n)‖Ek,n(θ̃)‖2 − ρ2(l)‖El,n(θ̃)‖2| ≤ |k − l|c′3nD2
n .
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4. Change-point estimator

This is an equivalent result to the properties of the usual used weight function we needed in
section 2.3 (see Corollary 2.3.1).

Finally, we are able to determine the rate of convergence, at least an upper bound. That it is
the best rate is proven in Theorem 4.3.3.

Theorem 4.3.2 Let assumptions G.1, G.5.a) or G.5.b) and G.12 – G.16 hold true.
Then the change-point estimator m̂, (4.26), with λ ∈ (η, 1 − η) fulfils

m̂−m = OP (D−2
n ) . (4.30)

Asymptotic distribution

We will make use of the same decomposition of Vk as in the proof for the rate. Therefore, we
first observe the behaviour of the parts from the decomposition.

Lemma 4.3.4

Let H1 hold true and the change-point fulfil assumption G.1. If the assumptions G.5.a)

(or G.5.b)) and G.14 hold true and the process {X(1)
t } fulfils the assumption G.15,

then for fixed but arbitrary C we have

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃)

∥
∥
∥
A

= oP (1) ,

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m; θ̃) − Em,n(θ̃) − SH(k; θ̃) + Ek,n(θ̃)

∥
∥
∥
A

= OP (1) ,

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m; θ̂n) − Em,n(θ̃) + SH(k; θ̂n) − Ek,n(θ̃)

∥
∥
∥
A

= OP (
√
n) .

Secondly, we have to make some more assumptions on the test function.

G.20 a) Define

ξ(1)n (s) := δTA
(

SH(m, θ̃) − SH(m−D−2
n s, θ̃) − E(m,n)(θ̃) + E(m−D−2

n s,n)(θ̃)
)

0 < s ,

ξ(2)n (s) := δTA
(

SH(m−D−2
n s, θ̃) − SH(m, θ̃) − E(m−D−2

n s,n)(θ̃) + E(m,n)(θ̃)
)

s < 0

and ξn(s) := 1{s>0}ξ
(1)
n (s)+1{s<0}ξ

(2)
n (s). Let there exists a process {W (s), s ∈ Z}

such that for the A-fixed case we have

{ξn(s), s ∈ Z} d−→ {W (s), s ∈ Z} .
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4.3. Generalized class of change-point estimator

b) Let

ξ(1)n (s) := δTnA(SH(m, θ̃) − Em,n(θ̃) − SH(m−D−2
n s, θ̃) + E(m−D−2

n s),n(θ̃)) 0 < s ,

ξ(2)n (s) := δTnA(SH(m−D−2
n s, θ̃) − SH(m, θ̃) − E(m−D−2

n s),n(θ̃) + Em,n(θ̃)) s < 0 .

Under the A-local alternative there exists a process W (s) such that ξn(s) =

1{s>0}ξ
(1)
n (s) + 1{s<0}ξ

(2)
n (s) converge in distribution, i.e.

{ξn(s), s ∈ R} d−→ {W (s), s ∈ R} .

G.21 a) For

h(s, n) :=

(

ρ2(m/n)
∥
∥
∥E(m,n)(θ̃)

∥
∥
∥

2

A
− ρ2((m− s)/n)

∥
∥
∥E((m−s),n)(θ̃)

∥
∥
∥

2

A

)

ρ2(m/n) n

we have under the A-fixed alternative, there exists a function gλ(s) such that
uniformly in C it holds

sup
s∈(−C,C)

∣
∣h(s, n) − |s|gλ(s)D2

∣
∣ = oP (1) ,

with D = limn→∞Dn.

b) For

h(s, n) :=

(

ρ2(m/n)
∥
∥
∥E(m,n)(θ̃)

∥
∥
∥

2

A
− ρ2((m−D−2

n s)/n)
∥
∥
∥E((m−D−2

n s),n)(θ̃)
∥
∥
∥

2

A

)

ρ2(m/n) n

we have under the A-local alternative, there exists a function gλ(s) with

sup
s∈(−C,C)

|h(s, n) − |s|gλ(s)| = oP (1) .

Theorem 4.3.3 Let the assumptions of Theorem 4.3.2 hold true.

1. Under the A-fixed alternative, if additionally the assumptions G.20a and G.21a are
true, then

m̂−m
d−→ arg max{W (s) − |s|gλ(s)D2, s ∈ Z} . (4.31)

2. Under the A-local alternative, if additionally the assumptions G.20b and G.21b hold
true, then

D2
n(m̂(η, γ) −m)

d−→ arg max{W (s) − |s|gλ(s), s ∈ R} .

4.3.2. Smooth functions

We have seen in section 3.3.3 that we derive moment conditions for the estimating and testing
functions if they are smooth enough. The smoothness is meant in the sense of the existence
and boundedness of the derivatives and the functions itself. Let us consider under which
assumptions we derive the regularity conditions.
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4. Change-point estimator

Replacement assumption

As in the case of H0, we have to assume differentiability and stationarity of the observations
before and after the change-point as well as some moment conditions.

L.9 The observations before ({X(1)
t }) and after ({X(2)

t }) the change-point are independent
and each is stationary and ergodic.

L.10 For each stationary part the estimating function G fulfills the assumptions L.2, L.4 and
L.5 hold true.

L.11 The testing function H fulfils for each stationary part the assumptions L.6 and L.7.

Proposition 4.3.1

Under the assumptions L.9 – L.11 we have G.13 with

C(θ̃) = λE[∇H(X
(1)
1 , θ̃)](E[∇G(X

(1)
1 , θ̃)])−1+(1−λ)E[∇H(X

(2)
1 , θ̃)](E[∇G(X

(2)
1 , θ̃)])−1 .

Deterministic function E⌊sn⌋,n(θ̃)

Now, let us analyse the deterministic function E⌊sn⌋,n(θ̃). Therefore, we assume H to be an
unbiased estimation function. Then, we use that SH(k, θ) is given as a sum. This allows us
to determine the following representation of E⌊sn⌋,n(θ̃).

Proposition 4.3.2

Under the assumptions G.12 and L.8 – L.11 we have for H being an unbiased estima-

tion function for θ under H1, i.e. λE[H(X
(1)
1 , θ̃)] + (1 − λ)E[H(X

(2)
1 , θ̃)] = 0, then

E⌊sn⌋,n(θ̃) = g(⌊sn⌋)E[H(X
(1)
1 , θ̃n)]

with θ̃n as in L.8 and

g(⌊sn⌋) =

{

⌊sn⌋ , s ≤ λ
1

1−λ(m− ⌊sn⌋λ) , s > λ
.

We have this form in section 2.3, 4.1 and 4.2. But also in the mentioned publications this
form was used.

L.12 The weight function ρ is symmetric and differentiable with 0 < sρ′(s) + ρ(s) < c for all
s ∈ (0, 1).

Proposition 4.3.3

Let the assumptions of Proposition 4.3.2 hold true. If additionally the assumption L.12
holds, then G.18 and G.21a, G.21b hold true with each having a limit function

g(s) =

{

2λρ(λ)(ρ(λ) + λρ′(λ)) , s < 0

2ρ′(λ) − λρ(λ)(ρ(λ) + λρ′(λ)) , s > 0

either with s ∈ Z or s ∈ R.
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4.3. Generalized class of change-point estimator

4.3.3. Proofs

Lemma 4.3.1

Let wn(n, k) denote a random weight function fulfilling assumption G.7.
Then it holds for α ∈ (0, λ) and κn non-decreasing, that

max
αn<k<m−κn

∣
∣
∣
∣

wn(n, k) − ρ(k/n)

m− k

∣
∣
∣
∣

= oP (κ−1
n ) = oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

w2
n(n, k) − ρ2(k/n)

m− k

∣
∣
∣
∣

= oP (κ−1
n ) = oP (1) ,

Proof:
First notice, max(an/bn) ≤ max(an)/min(bn). Applying this inequation and using the uni-
form convergence of wn(n, k), finishes the proof.

Theorem 4.3.1

Let m̂ be the change-point estimator given by (4.26) with a possibly random weight
function fulfilling assumption G.7. If the assumptions G.1, G.13 and G.14, with
ψ(s) = ρ(s) and ψ(s) = 1, are fulfilled, then m̂/n is a consistent estimator for λ.

Proof:
First notice, the random weight function can be replaced by the deterministic function, since
G.13 and G.14 hold true for ψ(s) = 1.

Secondly, from assumption G.13 and G.14, we get

sup
s∈(0,1)

ρ( ⌊sn⌋
n

)

n

∥
∥
∥SH(⌊ns⌋; θ̂n) − E⌊ns⌋,n(θ̃)

∥
∥
∥
A

= OP

(
1√
n

)

(4.32)

Under the assumption G.14, the maximum of E⌊ns⌋,n(θ̃) is taken at m. So by Lemma 3.1 of

Pötscher and Prucha [1997] (Theorem C.1.2), we have m̂
n is consistent to λ (mn

p−→ λ).
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4. Change-point estimator

Lemma 4.3.2

Let the change-point be given by G.1 and let the assumption G.14, with ψ ≡ 1, be
fulfilled.
If {X(1)

t } fulfils the assumption G.15, then it holds

max
1≤k<m

1

m+ k

∥
∥
∥SH(k; θ̂n) + SH(m; θ̂n) − Ek,n(θ̃1) − Em,n(θ̃)

∥
∥
∥
A

= op(1) . (4.33)

If {X(2)
t } fulfils the assumptions G.16, then we have

max
1≤k<m

1

m+ k

∥
∥
∥SH(k; θ̂n) + SH(m; θ̂n) − Ek,n(θ̃) − Em,n(θ̃)

∥
∥
∥
A

= op(1) . (4.34)

Proof:
We are able to show (4.33) using the assumption G.14 in the following way.

max
1≤k<m

1

m+ k

∥
∥
∥SH(k; θ̂n) + SH(m; θ̂n) − Ek,n(θ̃) − Em,n(θ̃)

∥
∥
∥
A

≤
(

max
1≤k<m

n

m+ k

)(∥
∥
∥
∥

1

n
(SH(m; θ̂n) − Em,n(θ̃))

∥
∥
∥
∥
A

+ max
1≤k<m

1

n

∥
∥
∥SH(k; θ̂n) − Ek,n(θ̃)

∥
∥
∥
A

)

=OP (1) (oP (1) + oP (1))

Lemma 4.3.3

For a function ρ ∈ L(η, γ) and G.17 and a function Es,n fulfilling G.18 there exists
constants c′1, c

′
2 and c′3 constants depending on α, β such that it holds

|ρ2(k/n) − ρ2(l/n)| ≤ |k − l|c′1n−1 (4.35)
∣
∣
∣ρ(k/n)

∥
∥
∥Ek,n(θ̃)

∥
∥
∥− ρ(l/n)

∥
∥
∥El,n(θ̃)

∥
∥
∥

∣
∣
∣ ≤ |k − l|c′2n−1Dn (4.36)

|ρ2(k/n)‖Ek,n(θ̃)‖2 − ρ2(l)‖El,n(θ̃)‖2| ≤ |k − l|c′3nD2
n . (4.37)

Proof:
The properties (4.35), (4.36) and the right hand side of (4.37) follow directly from the Lipschitz
property and the boundedness.

Theorem 4.3.2

Let assumptions G.1, G.5.a) or G.5.b) and G.12 – G.16 hold true. Then the
change-point estimator m̂, (4.26), with λ ∈ (η, 1 − η) fulfils

m̂−m = OP (D−2
n ) .
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4.3. Generalized class of change-point estimator

Proof:
First observe, we can reduce to a truncated version of the change-point estimator by Corollary
2.3.2. Secondly, we analyse the change-point estimator with the deterministic weight function
ρ(s) instead of wn(s). Thirdly, we finish the proof by showing that the randomized weight
function can be replaced by the deterministic one asymptotically.
The change-point estimator

m̂ = arg max
1≤k<n

{ρ(k/n)STH(k; θ̂n)Aρ(k/n)SH(k; θ̂n)} =: arg max
1≤k<n

{Vk}

can be represented as in the proof of Theorem 2.3.2, Theorem 2.4.3 and Theorem 4.2.2 with

Vk = (ρ(k/n)SH(k; θ̂n) − ρ(m/n)SH(m; θ̂n))TA(ρ(m/n)SH(m; θ̂n) + ρ(k/n)SH(k; θ̂n))

= −
〈

ρ(m/n)SH(m; θ̂n) − ρ(k/n)SH(k; θ̂n), ρ(k/n)SH(k; θ̂n) + ρ(m/n)SH(m; θ̂n)
〉

A

= −
〈

(ρ(m/n) − ρ(k/n))SH(k, θ̂n) + ρ(m/n)
(

SH(m, θ̂n) − SH(k, θ̂n)
)

,

ρ(m/n)
(

SH(m, θ̂n) − SH(k, θ̂n)
)

+ (ρ(m/n) + ρ(k/n))SH(k, θ̂n)
〉

A
.

In the examples we always considered a decomposition of Vk and prove then that for every ǫ

P (m̂ < m− κn) = P

(

max
1≤k<m−κn

Vk ≥ max
m−κn≤k<n

Vk

)

< ǫ .

Observe that we usually should use, for every ǫ exists a constant δ such that

P (m̂ < m− δκn) < ǫ .

Without loss of generality, we can assume δ = 1.

The decomposition we analyse is given as

Vk = −
〈

(ρ(m/n) − ρ(k/n))
(

SH(k, θ̂n) − Ek,n(θ̃)
)

+ ρ(m/n)
(

SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃)
)

+ ρ(m/n)
(

SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃)
)

+
(

Em,n(θ̃)ρ(m/n) − Ek,n(θ̃)ρ(k/n)
)

,

ρ(m/n)
(

SH(m, θ̂n) − Em,n(θ̃) − SH(k, θ̂n) + Ek,n(θ̃)
)

+ (ρ(m/n) + ρ(k/n))
(

SH(k, θ̂n) − Ek,n(θ̃)
)

+
(

Em,n(θ̃)ρ(m/n) + Ek,n(θ̃)ρ(k/n)
)
〉

A

=B1 +B2 +B3 +B4 +B5 +B6 .
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4. Change-point estimator

Observe, we are in an equivalent situation as in the case of the neural-network based change-
point estimator. Careful consideration and analogously calculation leads to the following
representation

B1 = (ρ2(k/n) − ρ2(m/n))
∥
∥
∥SH(k, θ̂n) − Ek,n(θ̃)

∥
∥
∥

2

A

B2 = −ρ2(m/n)

〈

SH(k, θ̂n) − Ek,n(θ̃) + SH(m, θ̂n) − Em,n(θ̃),

SH(m, θ̂n) − Em,n(θ̃) − SH(k, θ̂n) − Ek,n(θ̃)

〉

A

B3 = 2

〈

SH(k, θ̂n) − Ek,n(θ̃), Em,n(θ̃)ρ2(m/n) + Ek,n(θ̃)ρ2(k/n)

〉

A

B4 = −2ρ2(m/n)
〈

SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃), Em,n(θ̃)
〉

A

B5 = 2ρ2(m/n)
〈

SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃), Em,n(θ̃)
〉

A

B6 = −
(∥
∥
∥Em,n(θ̃)

∥
∥
∥

2

A
ρ2(m/n) −

∥
∥
∥Ek,n(θ̃)

∥
∥
∥

2

A
ρ2(k/n)

)

.

With the assumption G.17 and G.18

max
αn≤k<m−κn

m− k

|B6|
= O

(
1

nD2
n

)

This is equivalent to the property of B6 in Theorem 2.3.2 (see page 43) or Theorem 2.4.3. In
the last one, we see the relation between the size of the change δn and κn from the assumptions.
Nevertheless, we have the same approximation as in (2.45). Hence, it is enough to examine
the order of

max
1≤k<m

∣
∣
∣
∣

Bi
m− k

∣
∣
∣
∣

for i = 1, . . . , 5. From the assumptions G.15 and G.15a as well as the Lipschitz continuoity
of ρ, we get

max
αn<k<m−κn

∣
∣
∣
∣

B1

(m− k)

∣
∣
∣
∣
≤ max

αn<k<m−κn

∣
∣
∣
∣

ρ2(k/n) − ρ2(m/n)

(m− k)

∣
∣
∣
∣

max
αn<k<m−κn

∥
∥
∥SH(k, θ̂n) − Ek,n(θ̃)

∥
∥
∥

2

A

= O(n−1)OP (n) .

We used the Lipschitz property of the weight function (2.28), equivalently as for (2.46). For
the following approximations we use the properties of the weight function in combination with
Es,n(θ̃) given in Lemma 4.3.3.
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4.3. Generalized class of change-point estimator

Combining the assumptions G.13, G.15b and the Lemma 4.3.2, the Cauchy-Schwarz inequal-
ity gives

max
αn<k<m−κn

∣
∣
∣
∣

B2

(m− k)

∣
∣
∣
∣

≤ ρ2(m/n) max
αn<k<m−κn

∥
∥
∥SH(k, θ̃) − Ek,n(θ̃) + SH(m, θ̂n) − Em,n(θ̃)

∥
∥
∥
A

· max
αn<k<m−κn

1

m− k

∥
∥
∥SH(m, θ̂n) − Em,n(θ̃) − SH(k, θ̂n) − Ek,n(θ̃)

∥
∥
∥
A

= O(1)OP (
√
n)OP (κ−1/2

n ) .

For B3 and B4 using again the triangle inequality, Cauchy-Schwarz and Lemma 4.3.2, we
conclude

max
αn<k<m−κn

∣
∣
∣
∣

B3

(m− k)

∣
∣
∣
∣

≤ max
αn<k<m−κn

∣
∣
∣
∣

ρ(m/n) − ρ(k/n)

(m− k)

∣
∣
∣
∣

max
αn<k<m−κn

∥
∥
∥SH(k, θ̂n) − Ek,n(θ̃)

∥
∥
∥
A

(

max
αn<k<m−κn

∥
∥
∥

(

Em,n(θ̃)ρ(m/n) − Ek,n(θ̃)ρ(k/n)
)∥
∥
∥
A

+
∥
∥
∥−2

(

Em,n(θ̃)
)∥
∥
∥
A

)

= O(n−1)OP (
√
n) (O(nDn)) ,

max
αn<k<m−κn

∣
∣
∣
∣

B4

(m− k)

∣
∣
∣
∣
≤ 2ρ2(m/n)

∥
∥
∥Em,n(θ̃)

∥
∥
∥
A

· max
αn<k<m−κn

1

m− k

∥
∥
∥SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃)

∥
∥
∥
A

= O(1)OP (nDn)OP (n−
1
2 ) .

Using the triangle inequality we get

max
αn<k<m−κn

∣
∣
∣
∣

B5

(m− k)

∣
∣
∣
∣
≤ 2ρ2(m/n)

∥
∥
∥Em,n(θ̃)

∥
∥
∥
A

· max
αn<k<m−κn

1

(m− k)

∥
∥
∥SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃)

∥
∥
∥
A

= O(nDn)OP (κ−1/2
n ) .
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4. Change-point estimator

For κn = K/D2
n this leads to

max
αn<k<m−κn

∣
∣
∣
∣

B1

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B3

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B4

B6

∣
∣
∣
∣

= oP (1) ,

max
αn<k<m−κn

∣
∣
∣
∣

B5

B6

∣
∣
∣
∣

= K−1/2OP (1) .

Using this results and B6 < 0 for k < m, with max1≤k<m−κn B6 ≤ c < 0 for c fixed but
arbitrary, it yields

P (m̂ < m− κn) = P

(

max
αn<k<m−κn

Vk > max
m−κn≤k≤(1−α)n

Vk

)

≤ P

(

max
αn<k<m−κn

Vk ≥ Vm

)

= P

(

max
αn<k<m−κn

Vk ≥ 0

)

= P

(

max
αn<k<m−κn

{

B6

(

1 + oP (1) +
B2

B6

)}

≥ 0

)

≤ P

(

max
αn<k<m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≥ 1 + oP (1)

)

≤ P

(

max
αn<k<m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≥ 1 − τ

)

+ P

(

1 + op(1) ≤ max
αn<k<m−κn

∣
∣
∣
∣

B2

B6

∣
∣
∣
∣
≤ 1 − τ

)

≤ P
(

OP (1) ≥ (1 − τ)K1/2
)

+ o(1) ,

with 0 < τ < 1 arbitrary. This term becomes arbitrarily small for a sufficiently large K > 0.
The other way around works similar.

It is left to analyse the behaviour for a change-point estimator having a randomized weight
function. We use the equivalent representation of Vk, i.e. Vk = B̃1 + B̃2 + B̃3B̃4 + B̃5 + B̃6.
For analysing

max

∣
∣
∣
∣
∣

B̃i
B6

∣
∣
∣
∣
∣

i = 1, . . . , 6 ,

with B6 as above, we use Lemma 4.3.1 to handle the randomized weight function. This is
finishes the proof.
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4.3. Generalized class of change-point estimator

Lemma 4.3.4

Let H1 hold true and the change-point fulfil assumption G.1. If the assumptions G.5.a)

(or G.5.b)) and G.14 hold true and the process {X(1)
t } fulfils the assumption G.15,

then for fixed but arbitrary C we have

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃)

∥
∥
∥
A

= oP (1) , (4.38)

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m; θ̃) − Em,n(θ̃) − SH(k; θ̃) + Ek,n(θ̃)

∥
∥
∥
A

= OP (1) , (4.39)

max
k∈(m−CD−2

n ,m)

∥
∥
∥SH(m; θ̂n) − Em,n(θ̃) + SH(k; θ̂n) − Ek,n(θ̃)

∥
∥
∥
A

= OP (
√
n) . (4.40)

Proof:
The part (4.38) can be shown by the assumption G.15a using that the maximum is taken

over a set of maximal constant size as D−β
n is non-increasing.

For the equation (4.39) we use assumption G.15b with κn ≡ 1 and get the claim using
analogously to (4.38).
To show (4.40) we make use of the assumption G.14 and get analogously to the other parts
the result.

Theorem 4.3.3

Let the assumptions of Theorem 4.3.2 hold true.

1. Under the A-fixed alternative, if additionally the assumptions G.20a and G.21a
are true, then

m̂−m
d−→ arg max{δTA 1

2W (s) − |s|gλ(s)D2, s ∈ Z} . (4.41)

2. Under the A-local alternative, if additionally the assumptions G.20b and G.21b
hold true, then

D2
n(m̂(η, γ) −m)

d−→ arg max{W (s) − |s|gλ(s), s ∈ R} .

Proof:
The proof is shown for the local alternative, the fixed alternative follows equivalently to the
proof of Theorem 2.3.3.

We show the claim by analysing the behaviour of the parts from the decomposition of Vk. Let
(w.l.o.g.) x > 0 and C > x be both fixed but arbitrary. We get

P (D2
n(m̂−m) ≤ x) = P (m−CD−2

n ≤ m̂ ≤ m+D−2
n x)+P (m̂−m ≤ D−2

n x, |m̂−m| > CD−2
n )

The second term on the right side becomes arbitrary small for large enough C because of the
consistency of m̂. Therefore, we consider

P (m− CD−2
n ≤ m̂ ≤ m+ D−2

n x) ≤ P ( max
D2

n(k−m)∈(−C,x]
Vk ≥ max

D2
n(k−m)∈(x,C)

Vk) + oP (1) ,
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4. Change-point estimator

by the same argumentation. Consider the decomposition of Vk similar to the one we used in
the Proof of Theorem 4.3.2. Again we first analyse the decomposition with

Vk = −
〈

ρ(m,n)SH(m; θ̂n) + ρ(k, n)SH(k; θ̂n) − ρ(m,n)Em,n(θ̃) − ρ(k, n)Ek,n(θ̃)

+ ρ(m,n)Em,n(θ̃) + ρ( kn)Ek,n(θ̃) ,

ρ(m,n)SH(m, θ̂n) − ρ(m,n)SH(m, θ̃) − ρ(k, n)SH(k, θ̂n) + ρ(k, n)SH(k, θ̃)

+ ρ(m,n)SH(m, θ̃) − ρ(k, n)SH(k, θ̃) − ρ(m,n)Em,n(θ̃) + ρ(k, n)Ek,n(θ̃)

+ ρ(m,n)Em,n(θ̃) − ρ(k, n)Ek,n(θ̃)
〉

A

=B1 +B2 +B3 +B4 +B5 +B6 .

Recall that we then have

B1 = (ρ2(k/n) − ρ2(m/n))
∥
∥
∥SH(k, θ̂n) − Ek,n(θ̃)

∥
∥
∥

2

A

B2 = −ρ2(m/n)

〈

SH(k, θ̂n) − Ek,n(θ̃) + SH(m, θ̂n) − Em,n(θ̃),

SH(m, θ̂n) − Em,n(θ̃) − SH(k, θ̂n) − Ek,n(θ̃)

〉

A

B3 = 2

〈

SH(k, θ̂n) − Ek,n(θ̃), Em,n(θ̃)ρ2(m/n) + Ek,n(θ̃)ρ2(k/n)

〉

A

B4 = −2ρ2(m/n)
〈

SH(m, θ̂n) − SH(m, θ̃) − SH(k, θ̂n) + SH(k, θ̃), Em,n(θ̃)
〉

A

B5 = 2ρ2(m/n)
〈

SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃), Em,n(θ̃)
〉

A

B6 = −
(∥
∥
∥Em,n(θ̃)

∥
∥
∥

2

A
ρ2(m/n) −

∥
∥
∥Ek,n(θ̃)

∥
∥
∥

2

A
ρ2(k/n)

)

= −2
(

ρ(m/n)
∥
∥
∥Em,n(θ̃)

∥
∥
∥
A
− ρ(k/n)

∥
∥
∥Ek,n(θ̃)

∥
∥
∥
A

)

ρ(m/n)
∥
∥
∥Em,n(θ̃)

∥
∥
∥
A

+
(

ρ(m/n)
∥
∥
∥Em,n(θ̃)

∥
∥
∥
A
− ρ(k/n)

∥
∥
∥Ek,n(θ̃)

∥
∥
∥
A

)2
.

From Lemma 4.3.4 we get

max
k∈(m−CD−β

n ,m)
|B1| = OP (n) , max

k∈(m−CD−β
n ,m)

|B2| = OP (
√
n) ,

max
k∈(m−CD−β

n ,m)
|B3| = OP (Dn√

n
) , max

k∈(m−CD−β
n ,m)

|B4| = oP (n) .

Assumption G.20b gives us for

ξn(s) := δTnA(SH(m,θ̃) − Em,n(θ̃) − SH(m−D−2
n s, θ̃) + nEm−D−2

n s,n(θ̃))

that {

ξn(s), s > 0
}

d−→ {Ws, s > 0}
and for

h(s, n) :=
ρ(m/n)

∥
∥
∥E(m,n)(θ̃)

∥
∥
∥
A
− ρ((m−D−1/β

n s)/n)
∥
∥
∥E

((m−D−1/β
n s),n)

(θ̃)
∥
∥
∥
A

ρ2(m/n)n
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4.3. Generalized class of change-point estimator

we have from G.21b

max
s∈(−C,0)

|h(s, n) − |s|gλ(s)| = oP (1) .

Let ξ
(1)
m,k = (SH(m, θ̃) − Em,n(θ̃) − SH(k, θ̃) + Ek,n(θ̃)), then we have

max
D2

n(m−k)∈(0,C)

1

ρ2(m/n) n
Vk

= max
D2

n(m−k)∈(0,C)
V

(1)
k

= max
D2

n(m−k)∈(0,C)

(

dTnAξ
(1)
m,k − 2(m− k)gλ((m− k)D2

n)D2
n + oP (1)

)

.

Doing the same for m < k < m + CD−2
n , we can now argue analogously as in the proofs of

the Theorem 2.3.3 leads to the claim.

Smooth functions

Proposition 4.3.1

Under the assumptions L.9 – L.11 we have G.13 with

C(θ̃) = λE[∇H(X
(1)
1 , θ̃)](E[∇G(X

(1)
1 , θ̃)])−1+(1−λ)E[∇H(X

(2)
1 , θ̃)](E[∇G(X

(2)
1 , θ̃)])−1 .

Proof:
The proof follows by splitting the sums at m. Each sum is now a sum of stationary and ergodic
observations. Analogous argumenation as in the proof of Proposition 3.3.2 the claim follows.

Deterministic function E⌊sn⌋,n(θ̃)

Proposition 4.3.2

Under the assumptions G.12 and L.8 – L.11 we have forH being an unbiased estimation

function for θ under H1, i.e. λE[H(X
(1)
1 , θ̃)] + (1 − λ)E[H(X

(2)
1 , θ̃)] = 0, then

E⌊sn⌋,n(θ̃) = g(⌊sn⌋)E[H(X
(1)
1 , θ̃n)]

with θ̃n as in L.8 and

g(⌊sn⌋) =

{

⌊sn⌋ , s ≤ λ
1

1−λ(m− ⌊sn⌋λ) , s > λ
.

Proof:
Observe, with the assumptions the Proposition 4.3.1 holds true and 1

nSG(n, θ̃)
p−→ 0. The

only relevant part is then
1

n
SH(⌊ns⌋; θ̃) .
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4. Change-point estimator

As we have stationary and ergodic parts which are independent, we get from the ergodic
theorem the convergence against the expectation in each. Now using the unbiasedness under
H1, gives the claim.

Proposition 4.3.3

Let the assumptions of Proposition 4.3.2 hold true. If additionally the assumption L.12
holds, then G.18 and G.21a, G.21b hold true with each having a limit function

gλ(s) =

{

λρ(λ)(ρ(λ) + λρ′(λ)) , s < 0

ρ′(λ) − λρ(λ)(ρ(λ) + λρ′(λ)) , s > 0

either with s ∈ Z or s ∈ R.

Proof:
For G.18 we use the special form of E⌊sn⌋,n(θ̃) and calculate

∣
∣
∣

∥
∥
∥E⌊sn⌋,n(θ̃)

∥
∥
∥
A
−
∥
∥
∥E⌊rn⌋,n(θ̃)

∥
∥
∥
A

∣
∣
∣ = |⌊sn⌋ − ⌊rn⌋|Dn

≤ c2|s− r|nDn ,

with

Dn =
∥
∥
∥E[H(X

(1)
1 , θ̃n)]

∥
∥
∥

2

A
.

To show the results for the two alternatives we notice first

1

n2

(∥
∥
∥E⌊sn⌋,n(θ̃)

∥
∥
∥

2

A
ρ2(s) −

∥
∥
∥Em,n(θ̃)

∥
∥
∥

2

A
ρ2(λ)

)

=
∥
∥
∥E[H(X

(1)
1 , θ̃n)]

∥
∥
∥

2

A

((⌊sn⌋
n

)2

ρ2(s) −
(m

n

)2
ρ2(λ)

)

= (2s̃ρ(s̃) (ρ(s̃) + s̃ρ′(s̃)) (s− λ) + o(1))D2
n

≥ c > 0 .

for s > λ. On the other hand s̃ ∈ (λ, 1 − α), we have the boundedness.

Additionally, we can conclude for the maximum

max
k∈(m−KD−2

n ,m)

1

n

(

−
∥
∥
∥Em,n(θ̃)

∥
∥
∥

2

A
ρ2(λ) −

∥
∥
∥Ek,n(θ̃)

∥
∥
∥

2

A
ρ2(k/n)

)

= 2 max
k
n∈(λ− K

D2
nn
,λ); l̃∈(m,k)

(

l̃

n
ρ

(

l̃

n

)(

ρ

(

l̃

n

)

+
l̃

n
ρ′
(

l̃

n

))

(m− k)

)

D2
n .

Since D2
nn −→

n→∞
∞, we get

sup
D−2

n (m−k)∈(0,K)

∣
∣
∣
∣
∣
n−1ρ−2(m/n)

(∥
∥
∥Ek,n(θ̃)

∥
∥
∥

2

A
ρ2(k/n) −

∥
∥
∥Em,n(θ̃)

∥
∥
∥

2

A
ρ2(λ)

)

−2(k −m)D2
nλρ

−1(λ)(ρ(λ) + λρ′(λ))

∣
∣
∣
∣
∣

= oP (1) .
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5. Simulations - Neural Network based
change-point test and estimator for
NLAR(p)-processes

In this section we are interested in simulation studies of the asymptotic behaviour of the
CP-estimator. For analysing the estimated distribution and the theoretical limit distribution,
we also have to approximate the second one. The algorithms are implemented in R.

The change-point test and the change-point estimator depend on the long-run variance. As
we have shown, we can replace the long-run variance with an estimator without changing the
asymptotic distribution of the test. In section 5.1 we discuss some difficulties in the common
long-run variance estimator and state the used one.

Besides the problems with the long-run variance estimator. We get some problems for the
analysis of the asymptotic distribution of the change-point estimator. The main problem is
the unknown limit of the neural network estimator θ̃0. In section 5.2 we discuss how to find
a suitable representative of θ̃.

A simulation study on the power of the test and the distribution of the change-point estimator
is done. Thereby, we first consider the case of correct specification, section 5.3. In section 5.4
we analyse the test and estimator under misspecification.

5.1. Long-run variance estimator

As we usually do not know the true long-run variance, we replace it with a consistent esti-
mator. Even in the univariate case the estimation of the long-run variance leads to statistical
problems. The estimations mostly contain higher errors than in the case of the variance es-
timation. In the multivariate case this leads also to the problem of the increase of incorrect
estimations. Moreover, we would like the estimator to converge even under the alternative to
some reasonable matrix.

In Kirch and Tadjuidje Kamgaing [2012], the authors used the splitted variance estimator
instead of the long-run variance. The idea is that the error made with the long-run vari-
ance estimator is higher as the error made with the splitted variance estimator for a good
approximation. Have in mind, even in the case of multivariate i.i.d. observations with a high
dimension of unknown parameters, we have difficulties in deriving a good estimation. So, in
the case of long-run variance this problem increases, as we have a higher error probability.
This will lead to size distortion. A discussion on this can be found in Kirch et al. [2015].
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5. Simulations - Neural Network based change-point test and estimator for NLAR(p)-processes

We are going to use the proposed splitted variance estimator for the simulation study and
later on in the applications.

5.2. Representative of θ̃

We are interested in the simulation of θ̃ as we want to verify if the simulated distribution
based on a small finite number of observations is close to the asymptotic distribution or not.
Normally, we would try different sample sizes, estimate the unknown parameter and observe, if
the parameter differs from one number of observations to the next more than some threshold.
But this algorithm is not possible, as we have to deal with the non identifiability of θ̃. So we
have to transform the problem. From the asymptotic distribution, Theorem 4.2.3 we know
that we are only interested in the distance of the neural network functions on the support
of the regression vector. So we can transform the problem in finding a representant θ̂N such
that

|f(θ̂N , ·) − f(θ̃, ·)|

becomes necessary small.

In section 3.2 we stated in Theorem 3.2.1 that the neural network estimator is consistent. So
our problem reduces to finding an N such that

P (|f(θ̂N , ·) − f(θ̃, ·)| < ǫ) ≥ 1 − ∆

for some ∆, ǫ > 0.

Because we do not know θ̃, we cannot calculate the lower bound for ǫ directly. To solve this
problem of the unknown θ̃0 we analyse the distances of several independently estimated θ̂iN ,
i = 1, . . . ,M . Then we have the following theoretical result for the lower bound of the ǫ
distance.

Lemma 5.2.1

Let θ̂iN , i = 1, 2, be independent estimates for the neural network parameter given by
(4.6), with

E

(

f
(

θ̂1N ,X1

)

− f
(

θ̂2N ,X1

))2
< c

for some c > 0, where X1 is independent of θ̂iN for i = 1, 2. Then for every neural

network estimator θ̂N given by (4.6) it follows

P (|f(θ̂N ,X1) − f(θ̃,X1)| < ǫ) ≥ 1 − c

2ǫ2
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5.2. Representative of θ̃

Proof:
Observe that L

(

θ̂iN

)

= L
(

θ̂N

)

, i = 1, 2, such that it holds

c > E

[(

f
(

θ̂1N ,X1

)

− f
(

θ̂2N ,X1

))2
]

= E

[(

f
(

θ̂1N ,X1

)

− f
(

θ̃,X1

)

+ f
(

θ̃,X1

)

− f
(

θ̂2N ,X1

))2
]

= 2E

[(

f
(

θ̂1N ,X1

)

− f
(

θ̃,X1

))2
]

+2E
[

E

[(

f
(

θ̃,X1

)

− f
(

θ̂1N ,X1

))(

f
(

θ̃,X1

)

− f
(

θ̂2N ,X1

)) ∣
∣
∣X1

]]

= ‡ 2E

[(

f
(

θ̂1N ,X1

)

− f
(

θ̃,X1

))2
]

+ 2E

[

E

[(

f
(

θ̃,X1

)

− f
(

θ̂N ,X1

)) ∣
∣
∣X1

]2
]

≥ 2E

[(

f
(

θ̂N ,X1

)

− f
(

θ̃,X1

))2
]

Then it follows

P (|f(θ̂N ,X1) − f(θ̃,X1)| < ǫ) ≥ 1 − 1

ǫ2
E

[(

f
(

θ̂N ,X1

)

− f
(

θ̃,X1

))2
]

≥ 1 − c

2ǫ2

To estimate the expected distance we used the statistic

1

l

l∑

r=1

2

(M − 1)M

M−1∑

i=1

M∑

j=i+1

(

f
(

θ̂i,lN ,Xl

)

− f
(

θ̂j,lN ,Xl

))2
.

Thereby, θ̂j,ln indicates for the lth repetition the jth estimator.

We determine a representative N based on 2 examples, which we use later on for the analysis
of the change-point test and estimator. Thereby, we decided for one example of a correct
specified model, i.e. regression function is a neural network, and one of a misspecified model.
As we are under the alternative, we have the following models.

The correct specified model, called GAR 1, is given as

Xt =

{

0.5 + (1 + exp(0.5 ∗ (1+0.7Xt−1)))
−1 + εt t ≤ m

0.5 + (1 + exp(0.5 ∗ (1−0.7Xt−1)))
−1 + εt t > m

.

In the misspecified case we have the AR 1 case, given by

Xt =

{

0.3Xt−1 + εt t ≤ m

0.5 + 0.1Xt−1 + εt t > m
.

‡Using first the independence of θ1 and θ2, and secondly that L

(

E

[(

f
(

θ̃,X1

)

− f
(

θ̂1N ,X1

))
∣

∣

∣
X1

])

=

L

(

E

[(

f
(

θ̃,X1

)

− f
(

θ̂2N ,X1

))
∣

∣

∣
X1

])

.
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5. Simulations - Neural Network based change-point test and estimator for NLAR(p)-processes

In Table 5.1 we present the estimation of the expected distance for the AR 1 and the GAR 1
model. Depending on N we can see that there is a strong increase for N = 1 000, 5 000 and
10 000. After this the increase is not very significant. Even the difference between 5 000 and
10 000 is not so big, so one may say this is a good size for the estimation of the expected
distance. But as we have to divide by the maximal distance we allow on the neural network,
we should choose the expected distance as small as possible but with acceptable calculation
time.

N 1 000 5 000 10 000 100 000 1 000 000

AR 1 1.02 e-02 2.72 e-03 1.26 e-03 3.89 e-04 3.62 e-04
GAR 1 5.83 e-03 9.69 e-04 4.44 e-04 4.78 e-05 1.92 e-05

Table 5.1.: estimated expected distance of the neural network based on M = 100 replications
of θ̂n for λ = 0.5

Therefore, we calculate based on the expected distance the lower bound for the probability that
the neural network differs at most ǫ for two independent estimators based on N observations.
Figure 5.1 shows the estimated lower bound for this probability. The y-axes contains the
estimated lower bound and on the x-axes the maximal distance ǫ. The figure confirms that
the increase of the sample size from N = 105 to N = 106 does not result in a strong increase
of the probability of the distance.
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(a) AR 1
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(b) GAR 1

Figure 5.1.: estimated lower relative frequency against ǫ for different number of observations

We observe that the estimation for the parameter in the AR 1 model seems to be worse than
in the GAR 1 case. Having in mind that the approximation for a linear function, as the
regression line is in the AR 1 case, the neural network can not be approximate for finite h
properly. This results in a slower convergence for an acceptable representative of the best

172



5.3. Correct specified Model

approximating neural network.

As a conclusion we propose a sample size of N = 105 for the simulation of the asymptotic
distribution in the analysed models.

5.3. Correct specified Model

Let’s assume that the regression functions before and after the change are given by a normal
network. The first example is the classical mean change model which is approximated by a
neural network with 0 hidden layers.

Observe change in mean model introduced by Antoch et al. [1995]. Let m = ⌊λN⌋ and

Xt =

{

µ+ εt, t ≤ m

µ+ δ + εt, t > m .

Denote by θ1 = µ and θ2 = µ + δ the expectation before the change and after the change,
respectively. We want to approximate the regressive function by an empty neuron one layer
neural network, i.e. f(Xt, θ) = θ and θ ⊆ Θ ⊂ R. Then, by definition of θ̂N and of the
consistency we get

θ̃0 =λE(µ+ ε1) + (1 − λ)E(µ+ δ + ε1)

=λθ1 + (1 − λ)θ2 .

Then we get for z = 1, 2

e
(z)
i =X

(z)
i − f(X

(z)
i , θ̃0) − E(X

(z)
i − f(X

(z)
i , θ̃0))

=εi + θz − θ̃0 − θz + θ̃0

=εi ,

where εi are the errors of the true time series. So the limit distributions becomes

arg max{DWe(s) − |s|D2 gλ(s), s ∈ Z} ,

where D = (θ2 − θ1) and

gλ(s) =

{

λ, s ≤ 0

1 − λ, s > 0 .

This has the same distribution as the result in Antoch et al. [1995].

In Figure 5.2 a sample path of a mean change model with µ = 1 and δ = 1 is given, where
λ = 0.5 and N = 250, 500. The corresponding test statistic and the empirical as well as the
estimated asymptotic distributions using 200 simulation steps are given in Figure 5.2, too.

Let us observe one more model which has regression function given by a neural network. In
Kirch and Tadjuidje Kamgaing [2012] they analysed the power of the following example

Xt =

{

0.5 + (1 + exp(0.5 ∗ (1 + 0.7Xt−1)))
−1 + εt t ≤ m

µ+ α(1 + exp(0.5 ∗ (1 + βXt−1)))
−1 + εt t > m

,

with

173



5. Simulations - Neural Network based change-point test and estimator for NLAR(p)-processes

(a) sample path; N=250 (b) CUSUM statistic; N=250 (c) estimated distributions; N=250

(d) sample path; N=500 (e) CUSUM statistic; N=500 (f) estimated distributions; N=500

Figure 5.2.: Mean Change Model with µ = 1, δ = 1 and standard normally distributed errors

• GAR 1: µ = 0.1, α = 1, β = 0.7

• GAR 2: µ = 0.5, α = −1, β = 0.7

• GAR 3: µ = 0.5, α = 1, β = −0.7

• GAR 4: µ = 0.5, α = −1, β = −0.7

As they discussed the power of the test for the different parameter combinations (see table 5.2.
As in the cases of GAR 1, GAR 2 and GAR 4 the power is quite good, we expect the asymp-
totic distribution to be quite good approximated by the empirical distribution of the estimator
using M = 1000 replications of estimates of m. The empirical and asymptotic distribution as
well as a sample path and its CUSUM statistic can be found in the Figures 5.3, 5.4, 5.5 and 5.6.

N GAR 1 GAR 2 GAR 3 GAR 4 GAR 3 (derivative w.r.t. β)

250 0.42 0.94 0.09 0.96 0.77
500 0.74 1 0.16 1 0.92

Table 5.2.: Power for the correct specified model based on 104 repetitions
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5.3. Correct specified Model

Notice, that the structure of the asymptotic distribution is related to the power of the test.
For example the GAR 3 has power 0.16 and the corresponding distribution of the estimator
has larger standard deviation. So even if the model is correct specified this test has difficulties
in detecting the change and estimating the time of change.

This follows as we have discussed that the used test statistic is constructed to detect changes
in the mean. In the case of GAR 1, the mean changes linearly. For GAR 2 and GAR 4 we
see that the positive dependence changed to a negative one. All this three cases are clearly
change the expectation. But in GAR 3 the intensity of the regressor changed.

To improve the power and the detection of the change-point, we can use the derivative w.r.t.
β as the test statistic. This is equivalent to using a different A in (3.32) and in (4.6). Observe
that this has an advantage in the power.

We also observe that the asymptotic distribution is still wider and the estimator has problems
in correct detection.

(a) GAR 1: sample path (b) GAR 1: CUSUM statistic (c) GAR 1: estimated distributions

Figure 5.3.: GAR 1 with 1 hidden layer neural network as regression function and standard
normally distributed errors, N=500

(a) GAR 2: sample path (b) GAR 2: CUSUM statistic (c) GAR 2: estimated distributions

Figure 5.4.: GAR 2 with 1 hidden layer neural network as regression function and standard
normally distributed errors, N=500
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5. Simulations - Neural Network based change-point test and estimator for NLAR(p)-processes

(a) GAR 3: sample path (b) GAR 3: CUSUM statistic (c) GAR 3: estimated distributions

Figure 5.5.: GAR 3 with 1 hidden layer neural network as regression function and standard
normally distributed errors, N=500

(a) GAR 4: sample path (b) GAR 4: CUSUM statistic (c) GAR 4: estimated distributions

Figure 5.6.: GAR 4 with 1 hidden layer neural network as regression function and standard
normally distributed errors, N=500
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5.4. Misspecified Model

5.4. Misspecified Model

Again we use the results of Kirch and Tadjuidje Kamgaing [2012] which discussed the be-
haviour of the test statistic as well as the the number of the Hidden layers for AR(1) and
TAR(1)-processes. Based on this results we choose the following Models

Xt =

{

g1(Xt−1) + εt t ≤ m

g2(Xt−1) + εt t > m

with

• AR 1: g1(x) = 0.3x, g2(x) = 0.5 + 0.1x

• AR 2: g1(x) = 0.3x, g2(x) = 1 − 0.1x

• TAR 1: g1(x) = 0.3x1{x≥0} − 0.1x1{x<0}, g2(x) = (0.5 + 0.5x)1{x≥0} − 0.3x1{x<0}

• TAR 2: g1(x) = 0.3x1{x≥0} − 0.1x1{x<0}, g2(x) = (1 − 0.1x)1{x≥0} + (0.5 + 0.1x)1{x<0}

For the simulation we choose N = 500 observations and M = 1000 replications. In the AR
models we approximated the regression function with a 2 layer hidden neural network using
the logistic function. Where as we used in the TAR models 3 hidden layer neural network but
again with the logistic function.

In Kirch and Tadjuidje Kamgaing [2012] they analysed the power of these models. Our
calculation coincides with the results give there. Table 5.3 shows the results.

N AR 1 AR 2 TAR 1 TAR 2

250 0.627 0.963 0.762 0.477
500 0.911 0.999 0.984 0.795

Table 5.3.: Power for the misspecified specified model based on 104 repetitions

From the power we assume that the asymptotic and the empirical distributions should be
close to each other, which is confirmed by the graphics in Figure 5.7 (AR 1 and AR 2) and
Figure 5.8 (TAR 1 and TAR 2). Although, we have miss-specification and we know the neural
network has difficulties in approximating linear functions, we still have good results. In view
of the correct specification even petter, as we the GAR 3 has for different test statistics a
power lower than 50%.
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5. Simulations - Neural Network based change-point test and estimator for NLAR(p)-processes

(a) AR 1: sample path (b) AR 1: CUSUM statistic (c) AR 1: estimated distributions

(d) AR 2: sample path (e) AR 2: CUSUM statistic (f) AR 2: estimated distributions

Figure 5.7.: AR(1)-Models with standard normally distributed errors, N=500

(a) TAR 1: sample path (b) TAR 1: CUSUM statistic (c) TAR 1: estimated distributions

(d) TAR 2: sample path (e) TAR 2: CUSUM statistic (f) TAR 2: estimated distributions

Figure 5.8.: TAR(1)-Models with standard normally distributed errors, N=500
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6. Applications

6.1. Dax - Dot-com bubble

As an example for application of change-point detection, we are going to analyse the DAX-
data from 01.2000-01.2008 in which the Dot-com bubble occurred. With the Dot-com bubble
massive speculations on internet-based companies in the end of the 1990’s are meant. After
1995 many new companies are founded with an almost immediate emission of publicly traded
stocks. High expectations in those companies having a domain name ”.com” increase their
stock prices. But the speculations could not be fulfilled by the companies, such that during
1999-2001 some of them failed completely and the crisis took place. Until 2004 the stock
prices were falling and even afterwards most companies were underrated, compared to their
starting prices.

We are going to check if we are able to detect and estimate the time of stabilization of the
stock market using the NLAR set-up with a change-point test and estimator based on neural
networks.

Fit time series

First we have to fit a NLAR-process to the data. Let {Yt, t = 1, . . . , T} denote the DAX-data
from 01.2000-01.2008, i.e. 2084 measurements. Usually, one is interested in the returns, i.e.
rt = (Yt − Yt−1)/Yt−1. The DAX-values and the corresponding returns are given in Figure
6.1.
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Figure 6.1.: DAX-data from 01.2000-01.2008 and the corresponding returns
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6. Applications

A possible model for the returns is given by rt = σtZt. In Stărică and Granger [2005] they
proposed to choose σt piecewise constant and Zt some autoregressive process. Then the log-
returns would result in log(r2t ) = 2 log(σt)+log(Z2

t ). In Figure 6.1 we observe that the change
occurs in the variance. As the test and estimator are constructed for change in the mean, we
can use them for detecting a change in the structure rt in applying them to log(r2t ). But the
squared returns can become also 0 due to rounding effects. So, instead of the usual analysis of
the log-returns we are going to work with the Fuller log-transformed returns of the DAX-data.
In Fuller [1996] this transformation is given as

Xt = log(r2t + ρσ̂2r ) −
ρσ̂2r

r2t + ρσ̂2r
, (6.1)

where σ̂2r is the sample variance of the returns and ρ > 0 some weight. We will call it the
Fuller transformation. With the Fuller transformation we come close to our assumption of a
NLAR-process. In the following we use ρ = 0.02.

We need to find the order of the stationary parts. Therefore, we analyse the first 600 and
the last 600 observations. In Figure 6.2 we used the graphical methods of acf and pacf to get
a first idea about the orders. Interpreting the graphics leads to the idea of a maximal AR(6).
But to justify the model we used the auto.arima

∗ function in R based on the AIC to identify
the model and get the following:

ARIMA(1,0,1) with non-zero mean

Coefficients:

ar1 ma1 intercept

0.9157 -0.8269 -9.5192

s.e. 0.0374 0.0508 0.1529

sigma^2 estimated as 3.408: log likelihood=-1217.76

AIC=2443.52 AICc=2443.58 BIC=2461.1

This leads to an ARMA(1,1) with an intercept. Avoiding a moving average part we gain an
AR(6):

ARIMA(6,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 intercept

0.0735 0.0575 0.0414 0.0871 0.0757 0.1224 -9.5201

s.e. 0.0405 0.0405 0.0404 0.0406 0.0407 0.0407 0.1371

sigma^2 estimated as 3.394: log likelihood=-1214.53

AIC=2445.05 AICc=2445.29 BIC=2480.23

For the change-point test and estimator we have to use one order for the whole time-series.
But with a too large chosen order we run into the problem of overfitting the data. Therefore,
we analyse the assumed second stationary part and check which order we would assume there.
In Figure 6.3 we have again a graphical analysis using the acf and pacf. As for the first part
it is hard to tell which kind of model to fit, but at least the order seems to be smaller than

∗Contained in the forecast package.
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Figure 6.2.: graphical analysis of the first 600 observations

10. The analogue estimation using the auto.arima function from the R-package forecast

leads to either an ARMA(2,1) with an intercept or to an AR(3).

ARIMA(2,0,1) with non-zero mean

Coefficients:

ar1 ar2 ma1 intercept

0.9426 0.0025 -0.8760 -10.5273

s.e. 0.0722 0.0476 0.0593 0.1554

sigma^2 estimated as 2.954: log likelihood=-1174.36

AIC=2358.73 AICc=2358.83 BIC=2380.71
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Figure 6.3.: graphical analysis of the last 600 observations

ARIMA(3,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 intercept

0.0893 0.0417 0.1559 -10.5270

s.e. 0.0404 0.0407 0.0406 0.0981

sigma^2 estimated as 2.967: log likelihood=-1175.64

AIC=2361.28 AICc=2361.38 BIC=2383.27

Finally, we decide for the smaller order 3 to avoid overfitting. For neural networks there is
still the decision of the number of hidden neurons to make. There are different test procedures
even in combination to the choice of the order. A good overview about this part is given in
Anders [1997] but we will leave this out and just try different numbers of hidden neurons.
Note that the application of order selection methods based on linear autoregressions does not
necessarily provide good orders for non-linear autoregressions, e.g. neural networks. We rather
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6.1. Dax - Dot-com bubble

expect the latter to be smaller as the non-linear models offer more freedom in characterizing
the dependence. However, for the change-point tests we do not need a very good model but
only a reasonable one as we use a change-point approach designed for model misspecification
anyhow.

6.1.1. Change-point detection and estimation

If we want to use the neural network based change-point test and change-point estimator for
a NLAR(p)-process, we have to find p and h (number of hidden neurons). As discussed in
the section before, we use a NLAR(3)-model for the test with different numbers of hidden
neurons. We choose h = 1, . . . , 5. The results for h = 1, . . . , 5 to the significance level α = 0.05
do not differ much, we give exemplarily the results for h = 1, 2 in the Figure 6.4.
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Figure 6.4.: DAX and Fullertransformed returns with the detected and estimated change-point
(blue line), α = 0.05

We mentioned at the beginning, that the stock market for ”.com” companies stabilised after
2004. This can be detected at the change in the variance of the returns. To show the
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6. Applications

significance, we finish this section with the Figure 6.5 giving the DAX, the cumulated sum
of the sample residuals (Cumsum, not to be confused with CUSUM, the test statistic), the
returns and the Fuller transformed returns for the change-point test to the significance level
α = 0.01. Even for this level the change-point is quite significant, so the dot-com bubble had
a significant influence on the stock prices of the DAX.
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Figure 6.5.: estimated change-point using significance level α = 0.01 with constant number of
hidden neurons h = 1
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6.2. Ice Data

6.2. Ice Data

The Antarctic ice sheet is a huge persistent ice body existing over millions of years. It is a
valuable archive for reconstructing climate time series. We consider a set of measurements
done on an ice core drilled in the framework of EPICA (European partnership of ice coring in
Antarctica) at Dome C. For further informations see Bigler et al. [2010]. The measurements
were performed on a continuously melted core section (Continuous flow analysis) giving depth
profiles of different trace elements and other species. Here, we focus on the depth profiles of
calcium ion concentration (a tracer of dust in the atmosphere) and temperature estimated
from measured water isotopes. The data are equidistant with depth with some missing data
points on breaks and other core imperfections. The age of the ice was estimated by a complex
flow model that allows for ice flow under continuously increasing compression. The resulting
age-depth relation was used to interpolate the measured data points to a time-equidistant data
point series. The dataset contains the depth in m, the calcium concentrations in ppb as well as
the estimated temperature at the Antarctic (based on isotopic data) and the estimated time in
ka (based on other measurements - here 1 ka=1000 years), each has a length of 281 000 values.

(a) against depth (b) against age

Figure 6.6.: black line is the measured calcium values, blue line is the estimated temperature

From Figure 6.6 we can see that if temp is low, we have a higher mean as well as a bigger
variance of the calcium concentration. That confirms that there might be a correlation be-
tween the temperature and the calcium value. The data also contains many outliers, probably
errors based on measurements,that is why normality is not assumed. Additionally, the mea-
surements are not equidistant w.r.t. the depth. But the interpolation was done such that we
can assume equidistant measurements w.r.t. the time (age).

Dependent on the cold and warm periods at the Antarctic, we expect changes in the calcium
concentration. We are interested in detecting and estimating these change-points. As we

185



6. Applications

want to be flexible in the model we use the change-point test and change-point estimator
for NLAR-processes based on neural network functions. For the theoretical results we have
assumed p and h fixed, compare section 3.2 and 4.2. To determine p we first analyse which
order the NLAR with a neural network as regression function can be assumed for both cold
and warm periods.

6.2.1. Fit non-linear autoregressive model

We fit a non-linear autoregressive model (NLAR) with neural networks as regression functions
for the cold and the warm periods, where we first split the data. The first part (warm period)
is chosen in depth between 45 and 240 and the second part (cold period) is in depth between
470 and 631 (see Figure 6.7). We first fit to each subsample a NLAR.

0 500 1000 1500 2000 2500 3000 3500

−
5
7

−
5
6

−
5
5

−
5
4

−
5
3

(a) temperature warm period

0 500 1000 1500 2000 2500 3000 3500

−
6
5
.0

−
6
4
.5

−
6
4
.0

−
6
3
.5

−
6
3
.0

−
6
2
.5

−
6
2
.0

(b) temperature cold period

200 150 100 50

0
5

1
0

1
5

2
0

(c) calcium warm period

600 550 500

5
0

1
0
0

1
5
0

(d) calcium cold period

Figure 6.7.: temperature of the desired stationary representation parts and the corresponding
calcium levels

As we can see in Figure 6.8 the first observations between depth 45 and 240, i.e. between
0.368 and 12.183 thousand years ago, seem to be stationary up to some linear part caused by
the interpolation of missing data. Thus, we use this part to fit an underlying model. To model
the value of calcium as a time-series {Xt} with t denotes the number of the measurement,
where the first measurement X1 corresponds to the measured value in depth d1 = 3192.391
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Figure 6.8.: acf and pacf of the observations in depth between 45 and 240

and the last measured value X281000 in depth d281000 = 0. So we are assuming a causal
time-series, i.e.

Xt = m(Xt−1, . . . , Xt−p) + ηt (6.2)

with m an unknown function and ηt some noise.

We can see, that both acf and pacf indicate no pure AR or MA process. The slow decrease
of the acf indicates an ARIMA process. Identifying the order of the underlying time-series
is not possible by graphical methods. We use the auto.arima function in R to identify the
model on one hand and force this function to fit an AR(p)-process.

Series: Ca.first

ARIMA(1,1,1)

Coefficients:

ar1 ma1

0.2689 -0.9687

s.e. 0.0182 0.0064

sigma^2 estimated as 0.4751: log likelihood=-3600.1

AIC=7206.2 AICc=7206.21 BIC=7224.63

Series: Ca.first

ARIMA(10,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 ar10 intercept

0.3037 0.0338 0.0604 0.0256 0.0472 0.0269 0.0235 0.0180 0.0224 0.0388 1.5423

s.e. 0.0170 0.0178 0.0178 0.0178 0.0178 0.0179 0.0179 0.0179 0.0179 0.0171 0.0294

sigma^2 estimated as 0.479: log likelihood=-3609.76

AIC=7243.53 AICc=7243.62 BIC=7317.25

The result coincides with the further result. The ARIMA(1,1,1) seems to fit the calcium levels
best. But we would like to get a NLAR(p)-process, therefore we prefer an order of 10.

We do have mentioned that we only analysed the part of the process which seems to be station-
ary. Let us know find a model for a part which obviously is different to the first observations.
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The part in depth between 470 and 631 is one candidate. We proceed as before. Again we
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Figure 6.9.: acf and pacf of the observations in depth between 470 and 631

see, the acf is slowly falling which indicates a integrated part. To verify our assumption we
determine the most plausible orders for this time-series based on AICc.

Series: Ca.first

ARIMA(2,1,2)

Coefficients:

ar1 ar2 ma1 ma2

0.7469 -0.0479 -1.4307 0.4525

s.e. 0.1503 0.0526 0.1488 0.1404

sigma^2 estimated as 161.9: log likelihood=-13597.8

AIC=27205.6 AICc=27205.62 BIC=27236.31

Series: Ca.second

ARIMA(8,0,0) with non-zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 intercept

0.3441 0.1381 0.0579 0.0733 0.0576 0.0539 0.0437 0.0515 42.7447

s.e. 0.0170 0.0180 0.0181 0.0181 0.0181 0.0181 0.0180 0.0170 1.2177

sigma^2 estimated as 166.4: log likelihood=-13646.11

AIC=27312.22 AICc=27312.28 BIC=27373.63

We derive that the best fit would be given with an ARIMA(2,1,2) but as we use a non-linear
autoregressive process we would prefer the forced autoregressive order for the neural network
function as the number of explanatory variables, i.e. p = 8.

In combination we choose the smaller one, as we want to avoid over-fitting. Thus for the
calcium levels itself we choose a NLAR(11)-process as model. Then it is left to determine the
number of hidden neurons.

As our data are concentrations with high variability, we apply a normalizing and variance sta-
bilizing transformation. Again we choose the Fuller-transformation of section 6.1 to the first
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6.2. Ice Data

difference of the calcium values. The latter are considered to remove the effect of integration.

(a) Depth (b) Age

Figure 6.10.: Fuller transformed calcium innovations

As in the previous subsection we first select the order of a linear auto-regression based on
the data- here often differencing to remove the effect of integration. The results based on the
auto.arima function from R-package forecast are given below. In order to verify the result
we determine the difference and check again the acf and pacf. Based on the graphics in figure
6.11 we may fit a MA(2). From the result of the order selection based on AICc for the first
part of the calcium levels, we know that a better model might be a ARMA(p,q) process. We
again determine the order of the process based on the AICc for the innovations of the calcium
levels.

Series: Ca.first.diff

ARIMA(1,0,1) with zero mean

Coefficients:

ar1 ma1

0.2689 -0.9687

s.e. 0.0182 0.0064

sigma^2 estimated as 0.4751: log likelihood=-3600.1

AIC=7206.2 AICc=7206.21 BIC=7224.63

Series: Ca.first.diff

ARIMA(5,0,0) with zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5

-0.5992 -0.4915 -0.3577 -0.2575 -0.1349

s.e. 0.0169 0.0193 0.0201 0.0193 0.0169
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Figure 6.11.: first line: values of the calcium concentration differences in depth between 45
and 240; second line: acf and pacf of these observations

sigma^2 estimated as 0.5229: log likelihood=-3762.79

AIC=7537.59 AICc=7537.61 BIC=7574.44

Let us do the same for the second part. Let us verify this by determining the difference and
check the assumption that this might be a ARMA(2,2) process.

Series: Ca.second.diff

ARIMA(2,0,2) with zero mean

Coefficients:

ar1 ar2 ma1 ma2

0.7469 -0.0479 -1.4307 0.4525

s.e. 0.1503 0.0526 0.1488 0.1404

sigma^2 estimated as 161.9: log likelihood=-13597.8

AIC=27205.6 AICc=27205.62 BIC=27236.31

Series: Ca.second.diff

ARIMA(5,0,0) with zero mean

Coefficients:

ar1 ar2 ar3 ar4 ar5

-0.6059 -0.4294 -0.3349 -0.2250 -0.1245

s.e. 0.0169 0.0195 0.0200 0.0195 0.0169
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6.2. Ice Data
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Figure 6.12.: first line: calcium innovations in depth between 470 and 631; second line: acf
and pacf of the reversed observations

sigma^2 estimated as 173.7: log likelihood=-13717.95

AIC=27447.9 AICc=27447.93 BIC=27484.75

Here we observe, that a fit of a ARMA(2,2) would fit best. If we enforce an AR(p)-process
we end up with the order 5.

As we allow a non-linear AR(p)-process and due to the general approximation property of
neural networks, we have to choose p and h in appropriate way. The order and the esti-
mated coefficients for the AR(p) fitted processes are in the first and second part nearly the
same. Therefore, we choose for the Fuller transformed innovations of the calcium level an
NLAR(p)-process of order p = 2 based on the general fittings. For the calcium level itself,
we have decided to choose p = 8 as this is the smallest order and we want to avoid over-fitting.

6.2.2. Neuronal network based change-point test and estimator

In this example we are not interested in detecting only one change but we expect many to exist.
The presented test statistic is an AMOC, i.e. at most one change, statistic. To overcome this
problem the binary segmentation (BS) algorithm was introduced. This algorithm recursively
checks for change-points. The idea of the BS algorithm is given in Algorithm 4.
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6. Applications

Algorithm 4 BS (binary segmentation)

1: Start with only one subample equal to the whole sample {Xt}, t = 1, . . . , n. For each
current subsample, say {X ′

t}, t = 1, . . . ,M , test for a change-point using the critical value
ζn.

2: If a change-point is detected,, estimate it by m̂0 and add the latter to the set of already
detected change-points. Split the subsample {X ′

t}, t = 1, . . . ,M into two new subsamples
{X ′

t}, t = 1, . . . , m̂0 and {X ′
t}, t = m̂+ 1, . . . ,M . If no change-point is detected, then fix

the subsample {X ′
t}, t = 1, . . . ,M and do not consider it further on.

3: Repeat steps 1-2 for any not yet fixed subsample until all subsamples are fixed, i.e. in
none of them a change− point is detected.

The algorithm given here is from Fryzlewicz [2014]. He proposed to choose ζn = C
√

2 log n.
Then it remains to determine C , which he has done using a simulation study. As the time
was not enough for a wide simulation study, we choose C = 1 to run the BS. It is left to
determine the number of explanatory variables as well as the number of hidden neurons. Due
to the discussion above, we use a dependence of order 8 and 1. For the number of hidden
neurons we used 1 till 5. Additionally, we run the test for the Fuller transformed differences
of the calcium levels. Therefore, we used 2 and 5 as the number of explanatory variables but
with the same number of hidden neurons, i.e. h = 1, . . . , 5. The figures show only the values
where the procedure detected at least one change. The other combinations fail to detect a
change point.

(a) Observations: h= 1 and p=2 (b) Innovations: h=1 and p=2

Figure 6.13.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on time-series modelled as NLAR(1)-process with the C = 1
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6.2. Ice Data

In the graphics we present the results using the binary segmentation algorithm. We observe
that the NLAR(1) model in combination with a boundary parameter C = 1 detects only one
change.

Using an NLAR(8) model we get a better result, see Figure 6.14. But also observe that with
an increase of the number of hidden neurons the detection get worse.

Differently to this result we observe that in the case of the Fuller transformations we gain
better results. In Figure 6.15 and Figure 6.16 we have the results for the Fuller transformed
calcium innovations modelled as an NLAR(2)-process. The results are promising, especially
for H = 1 and H = 2. Again we observe that increasing the number of hidden neurons leads
to underestimation of the number of changes, as the neural network fits can adapt the change.
In the case of H = 5 we get worse results as expected, see Figure 6.17 and Figure 6.18. In the
fit we have seen that for a linear AR(5)-process the parameter for the cold and for the warm
period did not differ much. So it is not surprising that the algorithm has trouble in detecting
changes.

We observe, that the result based on the Fuller transformed calcium innovations with p = 5
and h = 2 yields a result we would expect. Although this one fails in detecting between 200ka
and 400ka the results are the best. A simulation study for a more reasonable choice of the
constant may give an even better result.

We can see, the result clearly depends on the choice of the number of hidden neurons. There
exists some algorithms for automatically choosing the number of hidden neurons and the order
of the process. An overview is given in Anders [1997]. We applied one model selection strategy
based on hypotheses tests (Teräsvirta/Lin/Granger 1993) which often produces good results
(Anders [1997]). But due to the interpolations, the data contain linear dependent parts. These
parts are reasons why the algorithm fails and always prefers one hidden layer (the starting
value). Alternatively, one may try some other strategies or even other test statistics as robust
ones for the change-point detection.
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6. Applications

(a) Observations: h= 1 and p=8 (b) Innovations: h=1 and p=8

(c) Observations: h= 2 and p=8 (d) Innovations: h=2 and p=8

(e) Observations: h= 3 and p=8 (f) Innovations: h=3 and p=8

Figure 6.14.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on time-series modelled as NLAR(8)-process with the C = 1
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6.2. Ice Data

(a) Observations: h=1 and p=2 (b) Innovations: h=1 and p=2

(c) Observations: h=2 and p=2 (d) Innovations: h=2 and p=2

(e) Observations: h=3 and p=2 (f) Innovations: h=3 and p=2

Figure 6.15.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on the Fuller transformed innovations of the time-series to mod-
elled as NLAR(2)-process, C = 1, for h = 1, 2, 3
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6. Applications

(a) Observations: h=4 and p=2 (b) Innovations: h=4 and p=2

(c) Observations: h=5 and p=2 (d) Innovations: h=5 and p=2

Figure 6.16.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on the Fuller transformed innovations of the time-series to mod-
elled as NLAR(2)-process, C = 1,for h = 4, 5
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6.2. Ice Data

(a) Observations: h=1 and p=5 (b) Innovations: H=1 and p=5

(c) Observations: h=2 and p=5 (d) Innovations: h=2 and p=5

(e) Observations: h=3 and p=5 (f) Innovations: h=3 and p=5

Figure 6.17.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on the Fuller transformed innovations of the time-series to mod-
elled as NLAR(5)-process, C = 1, for h = 1, 2, 3
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6. Applications

(a) Observations: h=4 and p=5 (b) Innovations: h=4 and p=5

(c) Observations: h=5 and p=5 (d) Innovations: h=5 and p=5

Figure 6.18.: Time-series and innovations with the detected change-points based on NeuNet-
statistic applied on the Fuller transformed innovations of the time-series to mod-
elled as NLAR(5)-process, C = 1, for h = 4, 5
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7. Further research

In this thesis, we derived a general framework for change-point tests and estimators based on
estimation functions. This allows to show the asymptotic results for different change-point
models by verifying the regularity conditions.

As we have asymptotic results and data consisting of a finite number of observations, a com-
mon technique to derive a critical value is via bootstrap. Bootstrap can also be used to derive
confidence intervals for the change-point estimator. In both cases, we would first show that
the bootstrap parameter estimator is

√
n-consistent even under H1. Having done this, it is

left to prove that the regularity conditions are fulfilled.

For i.i.d. data, this likely can be done based on results for the bootstrap in misspecified re-
gression models using neural network approximations. The

√
n-consistency of the bootstrap

estimator for neural networks under H0 was proven in Franke and Neumann [1998]. With
the splitting technique it should be possible to derive the asymptotics of this estimator even
under H1. Proving then that the sample residuals still fulfil the regularity conditions would
give us the result.

To handle the multiple change-points in the ice data, we used the technique of binary seg-
mentation. Another approach would be the wild binary segmentation. In both cases the
algorithms depend on parameter choices. To determine a suitable choice, a simulation study
has to be done. We mentioned that the automatic algorithms for determining the order of
the non-linear autoregressive model are not applicable due to the interpolations. Another
possible way of detecting the change could be based on the original data. They have the
disadvantage that they are not equidistantly measured. But the relation between time (years)
and depth (meter) of the measurement is known. For multiple changes the MOSUM statistic
(moving sum) could also be used. This statistic usually has a fixed size window moving over
the data. In each step the test statistic is calculated. If the value of the test statistic reaches
some critical value a change is detected. Direct application for the interpolated data would
be possible, but also a modified version changing the window size in relation to the change in
time would be possible.

We also want to mention that even the set-up with the change-point test and estimator hav-
ing randomized weight function could be advantageous for our applications. We could think
about plugin-weights replacing the power in the usually used weight function with an estima-
tor based on the observations. But of course, we have to ensure that the regularity conditions
are still fulfilled.
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A. Neural network and Landau symbolds

A.1. Identifiability of neural network parameter

Definition A.1.1

Let θ = (ν0, µ1, . . . , µh). Then

a) a transposition, i.e. a permutation changing only two elements, π of (ν0, µ1, . . . , µh),
is given for i < k by

πik(ν0, µ1, . . . , µh) = (ν0, µ1, . . . , µi−1, µk, µi+1, . . . , µk−1, µi, µk+1, . . . , µh)

b) a symmetry transformation πk of (ν0, µ1, . . . , µh) is defined as πk(ν0, µ1, . . . , µh) =
(ν0 + µk, µ1, . . . , µk−1,−µk, µk+1, . . . , µh).

Lemma A.1.1

Assume

a) f(y, θ) is not redundant (i.e. there exists no other networks with fewer hidden
neurons (h′ < h) that represent exactly the same relationship function,

b) f(y, θ) is irreducible, i.e. for all i 6= 0, j 6= 0

a) νi 6= 0

b) αi 6= 0

c) (αi, βi) 6= (αj , βj) for all i 6= j.

Moreover, in Hwang and Ding [1997] Theorem 2.3 a) a sufficient condition on identifiability
is given.

Theorem A.1.1 Hwang and Ding [1997] Theorem 2.3 a) Assume

a) f(y, θ) is not redundant (i.e. there exists no other networks with fewer hidden neurons
(h′ < h) that represent exactly the same relationship function,

b) f(y, θ) is irreducible, i.e. for all i 6= 0, j 6= 0

a) νi 6= 0

b) αi 6= 0

c) (αi, βi) 6= (αj , βj) for all i 6= j.

then θ is identifiable up to a family of symmetry transformations and transpositions.
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A. Neural network and Landau symbolds

We are going to observe the behaviour of the derivatives.

Lemma A.1.2

Assume the generating function φ be bounded from below and above and 2-times differ-
entiable. Let Y = (Y1, . . . , Yq)

T be a random vector with finite second moment. For a
compact set Θ we have

sup
θ∈Θ

‖∇f(Y, θ)‖∞ ≤ c max
i=1,...,q

|Yi|

and for all i = 1, . . . , q

sup
θ∈Θ

‖∇(∇f)i(Y, θ)‖∞ ≤ c max
j,i=1,...,q

|YiYj | .

Proof:
First we calculate the derivatives of f(y, θ) = ν0 +

∑h
i=1 νiφ(〈αi, y〉 + βi).

The first derivative is given as

∂

∂ν0
f(y, θ) = 1 ,

∂

∂αij
f(y, θ) = νiφ

′(〈αi, y〉 + βi)yj ,

∂

∂νi
f(y, θ) = φ(〈αi, y〉 + βi) ,

∂

∂βi
f(y, θ) = νiφ

′(〈αi, y〉 + βi) .

The second derivative is given as

∂

∂νk

(
∂

∂νi
f(y, θ)

)

= 0

∂

∂αkj

(
∂

∂νi
f(y, θ)

)

=

{

φ′(〈αi, y〉 + βi)yj k = i

0 else

∂

∂βk

(
∂

∂νi
f(y, θ)

)

=

{

φ′(〈αi, y〉 + βi) k = i

0 else

∂

∂νk

(
∂

∂αij
f(y, θ)

)

=

{

φ′(〈αi, y〉 + βi)yj k = i

0 else

∂

∂αkl

(
∂

∂αij
f(y, θ)

)

=

{

νiφ
′(〈αi, y〉 + βi)yjyl k = i

0 else

∂

∂βk

(
∂

∂αij
f(y, θ)

)

=

{

νiφ
′(〈αi, y〉 + βi)yj k = i

0 else

∂

∂νk

(
∂

∂βi
f(y, θ)

)

=

{

φ′(〈αi, y〉 + βi) k = i

0 else

∂

∂αkl

(
∂

∂βi
f(y, θ)

)

=

{

νiφ
′(〈αi, y〉 + βi)yl k = i

0 else

∂

∂βk

(
∂

∂βi
f(y, θ)

)

=

{

νiφ
′(〈αi, y〉 + βi) k = i

0 else
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A.2. Analytic and stochastic Landau symbols

The statement follows from the boundedness of the generating function φ.

A.2. Analytic and stochastic Landau symbols

Landau’s symbols are named after the german number theoretician Edmund Landau who
invented the notation. He used O because the rate of growth of a function is also called its
order. We first define the analytic landau symbols and some properties. The proofs of the
rules are left out. Secondly we show the corresponding stochastic versions. Informations to
the proofs can be found in van der Vaart [1998], section 2.2.

Definition A.2.1

Let xn and un be deterministic sequences with un > 0, then

xn = o(un) ⇔ xn
un

−→
n→∞

0 ,

xn = O(un) ⇔ ∃n0, C : |xn| ≤ Cun ∀n ≥ n0 .

We are going to state some useful rules, the analogues versions we are going to use later.

Lemma A.2.1

Let xn, yn, un and vn be deterministic sequences with un, vn positive.

i) xn = o(un) ⇒ xn = O(un).

ii) xn = O(un), yn = O(vn) ⇒ xn ± yn = O(max(un, vn)), xnyn = O(unvn).

iii) xn = o(un), yn = o(vn) ⇒ xn ± yn = o(max(un, vn)).

iv) xn = O(un), yn = o(vn) ⇒ xnyn = o(unvn).

v) xn = O(un), un = O(vn) ⇒ xn = O(vn).

vi) If one of the Landau symbols on the left hand side in v) is o instead of O we get
xn = o(vn).

vii) If xn −→
n→∞

x, then xn = O(1) .

viii) xn = O(1) ⇒ max1≤i≤n xi = O(1).

The proof is omitted.
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A. Neural network and Landau symbolds

Now, we define the stochastic versions of the Landau symbols. Here we have for each, asymp-
totically dominated or bounded, we define the almost sure and the convergence in probability.

Definition A.2.2

Let Xn, Un be stochastic sequences with Un > 0 almost surely, then

Xn = oP (Un) ⇔ Xn

Un

p−→ 0 for n→ ∞ ,

Xn = o(Un) a.s. ⇔ Xn

Un

a.s−→ 0 for n→ ∞ ,

Xn = OP (Un) ⇔ ∀ ǫ ∃C : P (|Xn| > CUn) ≤ ǫ ∀n ,
Xn = O(Un) a.s. ⇔ ∃C : |Xn| ≤ CUn a.s. ∀n ,

where C in last line might be random.

Observe, that OP (1) does not necessarily mean the existence of a limit distribution.

Example A.2.1 Let {Xt} be i.i.d. random variables with finite variance. From the CLT we
know the sample mean converges with rate

√
n. Define the divergent rate r(n) =

√
n ∗ b(n)

with b(n) = 1 if n odd and b(n) = 2 if n even. The sample mean multiplied with r(n) is OP (1)
but does not have a limit distribution.

Lemma A.2.2

Let Xn, Yn, Un and Vn stochastic sequences and Un as well as Vn are almost surely
positive.

i) Assertion i)-viii) in Lemma A.2.1 also hold true replacing the Landau symbols with
the a.s. ones.

ii) Replacing the Landau symbols in assertion i)-vii), and in vii) the convergence, in
Lemma A.2.1 with the corresponding P ones.

iii) Xn = O(Un) a.s. ⇒ Xn = Op(1)
and Xn = o(Un) a.s. ⇒ Xn = oP (1)

iv) Xn = O(1) a.s. ⇒ max1≤k≤nXk = O(1) a.s.

v) The assertion viii) is in general not true for replacing O with OP .

Some of the proofs can be found in van der Vaart [1998] section 2.2.
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B. Multivariate heavy-tailed random variables
and copulas

We are going to analyse the change-point test and estimator for multivariate heavy-tailed
random variables. To this end, we define what we understand as multivariate heavy-tailed
random variables and introduce how copulas can be used for the simulation’s.

B.1. Copula

In the context of multidimensional random variables copulas are useful. An introduction
to copulas can be found in Nelsen [1999] and in the context with applications we refer to
Embrechts et al. [1997]. We briefly summarise the necessary results here based on [Kroese
et al., 2011, section 3.2.1].

Definition B.1.1

A function C : [0, 1]d → [0, 1] is called a copula function if there are dependent uniform
random variables U1, . . . , Ud taking values in [0, 1] such that C is their joint distribution
function,i.e.

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud) .

We are interested in simulating a random vector X with a cumulative distribution function
F . Sklar’s Theorem describes the relation between a copula C and a cumulative distribution
function F . For a given copula C and marginal distributions Fi, i = 1, . . . , d, there exists a
distribution function F such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) .

On the other hand for a given distribution function F and marginal distributions Fi, i =
1, . . . , d, a copula C exists if it holds

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)) .

Observe, that for continuous F1, . . . , Fd the copula C is unique. This also shows, that with
copulas we can change the dependence structure without changing the marginal distributions.

Example B.1.1 Let C be given as

C(u1, . . . , ud) = u1 · . . . · ud .

Then C is called independence copula as the entries of X will be independent.
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B. Multivariate heavy-tailed random variables and copulas

Example B.1.2 For multivariate normal distributed random variables with covariance ma-
trix Σ = (σ2ij)1≤i,j≤d, the copula is given as

C(u1, . . . , ud) = ΦΣ(Φ−1
σ2
11

(u1), . . . ,Φ
−1
σ2
dd

(ud)) .

This is also the copula for log-normal distributed random vectors. Let X be normal distributed
with expectation µ and covariance matrix Σ, then Y = exp(X) is multivariate log-normally
distributed with the parameters µ and Σ. This relation holds also for each entry, that is why
we have

FY (y1, . . . , yd) = FX(log(y1), . . . , log(yd)) . (B.1)

For z = FYi(yi) = FXi(log(yi)) = FXi(xi) we have

F−1
Yi

(z) = F−1
Yi

(FYi(yi))

= yi

= exp(F−1
Xi

(z)) . (B.2)

Combining the results (B.1) and (B.2) shows that the copula is the same.

Example B.1.3 A commonly used copula is the t-copula given by

C(u1, . . . , ud) = Tν,Σ(T−1
ν (u1), . . . , T

−1
ν (ud)) ,

where Tν,Σ is the distribution function of a tν(0,Σ) distributed random vector with ν degree
of freedom, mean vector 0 and covariance matrix Σ.

B.2. Heavy-tailed random vectors

Now we are familiar with simulating dependent random vectors. In the univariate case, heavy
tailed distributions with finite second moments exist and especially in finance they are of in-
terest. An introduction to the topic of heavy-tailed random vectors in the context of insurance
and finance is given in Embrechts et al. [1997]. We focus only on the relevant definitions and
relations. Based on Weng and Zhang [2012] we introduce the following definitions.

Definition B.2.1

Let F := 1−F denote the survival function of an univariate random variable. It belongs
to the class L(α) ( called long-tailed class) for some α ≥ 0 if and only if

lim
x→∞

F (x− y)

F (x)
= eαy for y > 0 . (B.3)

For the multivariate case we need the following notations.

N.14 The Borel σ-field Bd on Ed := [0,∞)d \ 0 (here 0 is the d-dimensional zero vector)

N.15 The space M+(Ed) of non-negative Radon measures on Ed and
v→ stands for vague

convergence on this space.

Definition B.2.2
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B.2. Heavy-tailed random vectors

A random vector X in [0,∞)d belongs to the multivariate long-tailed class L(ν, b) if and
only if there exist a non-null Radon measure ν on Bd and a function vector b(u) :=
(b1(u), . . . , bd(u)) satisfying bi(u) → ∞ as u→ ∞ for i = 1, . . . , d such that

uP (X − b(u) ∈ ·) v→ ν(·)

in M+(Ed).

It is quite technical to check this condition. With copula however we are able to give conditions
on the copula and the marginal distributions such that the random vector is long-tailed.

Definition B.2.3

A function Ĉ : [0, 1]d → [0, 1] is called the survival copula induced by the copula C if it
is given as

Ĉ(u1, . . . , ud) = u1 + · · · + ud − 1 + C(1 − u1, . . . , 1 − ud) .

It follows that for the joint distribution F and the marginals Fi, i = 1, . . . , d, the survival
copula is given as

Ĉ(u1, . . . , ud) = F (F
−1
1 (u1), . . . , F

−1
d (u1)) ,

where F is the survival function of F and F
−1
i is the inverse of the survival functions of Fi,

i = 1, . . . , d. The following assumptions have to be made on the marginal distributions of the
random vector X.

L.1 The marginal distributions of X belong to the class of long-tailed distributions.

L.2 The marginal distributions of X have equivalent tails, i.e.

F i = O(F 1) ∀i = 2, . . . , d .

Then we get the following result bringing together the long-tail property of the marginal
distributions and properties of the survival copula to ensure that the random vector X is
long-tail dependent.

Theorem B.2.1 (Weng and Zhang [2012] Theorem 4.1)

Let X be a random vector with survival Copula Ĉ and univariate marginal distributions
Fi, i = 1, . . . , d satisfying assumptions L.1 and L.2. If additionally the joint distribution
of X is continuous and the lower tail dependence functions of Ĉ exist, i.e. for k =
1, . . . , d there exists λk(u1, . . . , uk) with

λk(u1, . . . , uk) := lim
s→0+

Ĉ(su1, . . . , sud)

s
, (B.4)

then X belongs to the multivariate long-tailed class.

For the given copulas in section B.1 we show, that the survival Copula fulfils the conditions.
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B. Multivariate heavy-tailed random variables and copulas

Example B.2.1 Let us consider the Gaussian copula from example B.1.2. Observe, that it
holds

lim
s→0+

C(1 − su1, . . . , 1 − sud)

s
= lim

s→0+

Φ(Φ−1
σ2
11

(1 − su1)), . . . ,Φ
−1
σ2
dd

(1 − sud)

s
.

From example 3.4 in Embrechts et al. [2003] we know

λk(u1, . . . , uk) : = lim
s→0+

Ĉ(su1, . . . , sud)

s

= 0 .

Example B.2.2 The lower tail dependence function for the t-copula was analysed and deter-
mined in Embrechts et al. [2003] (section 5.3). Thus this copula also fulfils the assumptions
for the long-tail dependence.

For further informations we advise the reader to study Embrechts et al. [2003].
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C. Limittheory

C.1. Used basic limit theorems

Theorem C.1.1 (Ranga Rao [1962] Theorem 6.5 (cited from Kirch and Tadjuidje Kamgaing
[2012] Theorem 6))

Let ‖·‖ be any norm on R
d and {vt(θ)} be a stationary ergodic random sequence with

values in C(Θ,Rd) satisfying

E[sup
θ∈Θ

‖v1(θ)‖] <∞ ,

then

sup
θ∈Θ

∥
∥
∥
∥
∥

1

n

n∑

t=1

vt(θ) − E[v1(θ)]

∥
∥
∥
∥
∥

−→
n→∞

0 a.s.

Proof:
The proof follows from Theorem 6.5 in Ranga Rao [1962]. Observe that the Theorem 6.5 is
based on Theorem 6.4. The g within Theorem 6.4 is here supθ∈Θ ‖v1(θ)‖.

Theorem C.1.2 (Pötscher and Prucha [1997] Lemma 3.1)

Let fn : Ω × Θ → R and fn : Θ → R (Θ ⊂ R
p) be two sequences of functions such that

a.s. (or in probability)
sup
θ∈Θ

|fn(ω, θ) − fn(θ)| −→
n→∞

0 .

Let θn be an identifiably unique sequence of minimizers of fn(θ), then for any sequence
θ̂n such that eventually

fn(ω, θ̂n) = inf
θ∈Θ

fn(θ)

holds, we have
∥
∥
∥θ̂n − θn

∥
∥
∥ a.s. (or in probability).

Proof:
Just the Lemma 3.1 with a specific ρB(·) = ‖·‖.

The next Theorems are stated without proofs as the references are given and no difference
was made (except notation).
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Theorem C.1.3 (Dominated Convergence Theorem, Theorem 16.4 in Billingsley [1995], page
209)

Let {Xn} be a sequence of integrable random variables and let the limit limn→∞Xn(ω) =
X(ω) exist for all ω ∈ Ω. If there is a non-negative integrable random variable Y such
that |Xn(ω)| ≤ Y (ω) for all ω ∈ Ω and all n, then X is integrable and limn→∞ E[Xn] =
E[X].

Corollary C.1.1 Let f(X, θ) be an integrable random variable for θ ∈ Θ ⊂ R
p and let f(x, θ)

be differentiable in θ ∈ Θ and for all x. If there exists an integrable random variable M(X)
such that for all x ∣

∣
∣
∣

∂

∂θ
f(x, θ)

∣
∣
∣
∣
≤M(x) ,

then E[f(X, θ)] has derivative given by

∂

∂θ
E[f(X, θ)] = E

[
∂

∂θ
f(X, θ)

]

.

on Θ.

Proof:
Follows directly from the Dominated Convergence Theorem. A detailed proof can be found
in Billingsley [1995] proof of Theorem 16.8 on page 212.

Theorem C.1.4 (Slutsky from Lemma 2.8 in van der Vaart [1998] page 11)

{Xn} and {Yn} sequences of random variables such that Xn
d−→ X (random variable)

and Yn
p−→ y (constant) then

1. Xn ∗ Yn d−→ y ∗X
2. Xn + Yn

d−→ X + y

3. Y −1
n Xn

d−→ y−1X if y 6= 0.

Theorem C.1.5 (Cramer-Wold device from Theorem 29.4 in Billingsley [1995], page 383)

For random vectors Xd = (Xn1, . . . , Xnd)
T and X = (X1, . . . , Xd)

T, a necessary and suf-

ficient condition for Xn
d−→ X is that aTXn

d−→ aTX for each vector a = (a1, . . . , ad) ∈
R
d.

Theorem C.1.6 (Continuous mapping theorem from Theorem 2.3 in van der Vaart [1998],
page 7)

Let {Xn}, X be random vectors in R
d and Xn

d−→ X. For every continuous function
f : Rd → R

r, it holds

f(Xn)
d−→ f(X) .
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C.2. Strong mixing time series

Let B(t) denote a standard Brownian bridge. We give useful results for asymptotic behaviour
of this process. A useful result by Shao et al. [1991] gives necessary and sufficient conditions
for the behaviour of functions such that the supreme of the weighted Brownian bridge still
exists or is zero if we tend near to the boundary.

Theorem C.1.7 (Csörgő and Horváth [1997], page 373 Theorem A.5.1)

Let q(t) be a positive function on (0, 1) and non-decreasing in a neighbourhood of zero
and non-increasing in a neighbourhood of one. Denote by I0,1(q, c) the integral

∫ 1

0

1

t(1 − t)
exp

(

−c q2(t)

t(1 − t)

)

∂t .

Then,

1. I0,1(q, c) <∞ for some c > 0 if and only if

lim sup
tց0

|B(t)|/q(t) <∞ a.s. and lim sup
tր1

|B(t)|/q(t) <∞ a.s.

2. I0,1(q, c) <∞ for all c > 0 if and only if

lim sup
tց0

|B(t)|/q(t) = 0 a.s. and lim sup
tր1

|B(t)|/q(t) = 0 a.s.

C.2. Strong mixing time series

In the Change-point theory we are going to analyse functions over discrete observations Xi.
We want to get asymptotic results. As we have seen in section 2 we are going to use some
general results for the underlying process. For the rest of the thesis the observed process is
assumed to be strong mixing. We are going to repeat needed results and show a Hájek-Rényi-
type inequality.

Let {Zt} be a strictly stationary (in the following we only say stationary), α-mixing time
series with rate of polynomial order. First we give the definition of α-mixing of polynomial
order.

Definition C.2.1

A stationary stochastic process {Zt} is called α- or strong mixing with rate α(·), if

α(j) = supA∈F0
−∞(Z), B∈F∞

j (Z)|P (A ∩B) − P (A)P (B)| → 0 as j → ∞ ,

where F0
−∞(Z) is the σ-algebra generated by Z0, Z−1, . . . and F∞

j (Z) is the σ-algebra
generated by Zj , Zj+1, . . . . It is called α-mixing with rate of polynomial order if a(j) =
O(j−c) for some 1 < c <∞.

For the next steps we need some basic properties of α-mixing time series, which we state here.
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C. Limittheory

Lemma C.2.1

For the time series {Zt} the following hold.

1. {Zt} is ergodic.

2. For every measurable function f : RM → R (M > 0) the time series f(Zt, . . . , Zt+M−1)
is α-mixing with αf (j) = αZ(j −M + 1) for j ≥M .

3. {Z−t} is α-mixing time series with the same mixing rate.

These are basic results. For more informations we refer to [Bradley, 2007, volume 1, Remark
1.8, Theorem 2.14].

The first result needed is the strong law of large numbers.

Theorem C.2.1 Assuming g : Rp → R is a measurable function. Then for Zt, we get

1

l

l∑

t=1

g(Zt) − E (g(Z1)) = o(1) a.s. , (l → ∞) (C.1)

where Zt = (Zt−1, . . . , Zt−p).

Proof:
Theorem 6.28 and Proposition 6.31 in Breiman [1992], together, give that (C.1) follows from
stationarity and ergodicity of the processes and from g being measurable.

Observe, the strong law of large numbers holds true for multivariate strong mixing processes.

Theorem C.2.2 Let {Zt} be a stationary sequence of random vectors in R
d, centered and

having (2 + φ)th moments with φ > 0. Suppose that {Zt} is α-mixing of polynomial order
c > 2+φ

φ . Then the two series in

γij = E[Z1iZ1j ] + 2

∞∑

k≥2

E[Z1iZkj ] +
∑

k≥2

E[ZkiZ1j ]

converges absolutely. Let Γ denote the matrix of γij, 1 ≤ i, j ≤ d. Then we can redefine
the sequence {Zt} on a new probability space together with a Wiener process {Ws} having
covariance matrix Γ such that

k∑

t=1

Zt −Wk = O
(

k
1
2
−λ
)

a.s.. (k → ∞)

with 0 < λ < 1
2 depending on φ, c and d.

Proof:
The proof can be found in Berkes and Philipp [1979] remark 4.4.4 .
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Proposition C.2.1

Let {Zt} fulfill the conditions of the invariance principle (Theorem C.2.2). Then

1√
n

n∑

t=1

(Zt − EZt)
d−→ N (0, τ) .

Proof:
See Kuelbs and Philipp [1980] Proposition 2.1. or Pötscher and Prucha [1997] S. 102.

Remark C.2.1
Under the conditions of Theorem C.2.2 one gets

max
1≤k≤n

|
k∑

t=1

Zt| = Op(
√
n) .

Proof:
From Theorem C.2.2 we know that also

∑s
t=1 ǫt, where ǫt are i.i.d standard normal random

variables, converges to a Wiener process {Ws} and τ = 1. Then it follows

max
1≤k≤n

|
k∑

t=1

Zt| ≤ max
1≤k≤n

k
1
2
−ν max

1≤k≤n
1

k
1
2
−ν |

k∑

t=1

Zt − τ

k∑

t=1

ǫt| + τ max
1≤k≤n

|
k∑

t=1

ǫt|

= o(n
1
2 )Oa.s.(1) +Op(n

1
2 ) ,

where the last line holds because of the Hajek-Renyi inequality for martingal differences,
Lemma C.2.2, applied to i.i.d. random variables and properties of the stochastic Landau-
Symbols∗.

Lemma C.2.2

Let {ǫt} be sequence of martingal differences with E|ǫ2t | < ∞ and Ys :=
∑s

t=1 ǫt. Then
for all c > 0 and non increasing positive sequence bs

P ( max
1≤s≤n

bs|Ys| ≥ c) ≤ c−2
n∑

s=1

b2s Var(ǫk)

Proof:
See Gänssler and Stute [1977], p.230.

As we can see the Hajek-Renyi inequality is quite useful. By Theorem 1 from Yokoyama
[1980] we get such a result for stationary α-mixing sequences with polynomial mixing order.
For geometric ergodic time series this follows by the exponential rate. Under the weaker
assumption of mixing rate with polynomial order we have to restrict the order w.r.t. the
existing moments.

∗From o( ) a.s. follows O( ) a.s.. Moreover if Xn = O(1) a.s. this implies max(X1, . . . , Xn) = O(1) a.s..
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Lemma C.2.3

Let {Zt} be α-mixing with α(j) = o(j−c) for some c > 1. If there exists φ > 0 and
D > 0 such that

E|Zt|2+φ ≤ D ∀t ∈ Z ,

and

α(j) = o(j−c) and φ >
2

c− 1
, (C.2)

then there exists δ ∈ (0, 1] and ∆ > 0 with φ = δ + ∆ and

E

∣
∣
∣
∣
∣

n∑

t=1

Zt

∣
∣
∣
∣
∣

2+δ

≤ Γ(D,α, δ,∆)n
(2+δ)

2 ,

where Γ is a function depending on D, α, δ and ∆.

Proof:
The proof follows by Theorem 1 of Yokoyama [1980] showing that under the conditions above
(3.1) in that Theorem is fulfilled. Let φ = δ+ ∆, then (3.1) in Theorem 1 of Yokoyama [1980]
becomes ∞∑

k=0

(k + 1)
δ
2
(
(k)−c

) ∆
2+δ+∆ =

∞∑

k=0

(k + 1)
δ
2 k−c

∆
2+δ+∆ < K <∞ .

It is enough to show†
δ

2
− c

∆

2 + δ + ∆
< −1 ,

which is equivalent to
(2 + δ)2

2c− (2 + δ)
< ∆ = φ− δ .

The existence of such a δ follows because (2+δ)2

2c−(2+δ) + δ is continuous increasing in δ and for

δ → 0 we derive 2
c−1 < φ (as required). Therefore, we can find for all φ = ǫ + 2

c−1 a δ such

that φ−
(

(2+δ)2

2c−(2+δ) + δ
)

≥ ǫ
2 .

Lemma C.2.4

Let {Zt} be stationary, α-mixing process of polynomial order c > 1 and assume the
(2 + φ)-moments exist, with φ > 2

c−1 . Then exist δ ∈ (0, 1] and ∆ > 0, such that
φ = δ + ∆. Moreover, for any n ≥ 1, 1 ≤ m ≤ n and any positive decreasing sequence
bk, we have

a) E (maxk=1,...,n bk|Sk|)2+δ ≤ CA(δ)
∑n

k=1 b
2+δ
k k

2+δ
2

b) maxm≤k≤n bk|Sk| = Op

([
∑n

k=m b
2+δ
k k

2+δ
2

] 1
2+δ

)

,

†Observe that for k > 1 it holds
( 1
2
k)a

(2k)b
≤

(k+1)a

kb
≤

(2k)a

( 1
2
k)b

. This implies that
∑∞

k=0
(k+1)a

kb
is converging iff

a− b < −1.
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C.2. Strong mixing time series

where Sk =
∑k

t=1 Zt, C is a constant and A(δ) is some constant depending on δ, which
is as in Lemma C.2.3.

Proof:
The result a) follows by Theorem B.3 in Kirch [2006].
For b) first note that for k > m it holds bk|Sk| ≤ bk(|Sm|+ |S(m+1),k|) ≤ bm|Sm|+bk|S(m+1),k|,
where S(m+1),k =

∑k
t=m+1 Zt. Therefore, we get

P ( max
m≤k≤n

bk|Sk| > σ) ≤ P
(

bm|Sm| >
σ

2

)

+ P

(

max
m+1≤k≤n

bk|S(m+1),k| >
σ

2

)

≤
(

2bm
σ

)2+δ

E|Sm|2+δ +

(
2

σ

)2+δ

E

(

max
1≤l≤n−m

bl+m|S′
l|
)2+δ

≤
(

2bm
σ

)2+δ

O
(

m
2+δ
2

)

+

(
2

σ

)2+δ

E

(

max
1≤l≤n−m

bl+m|S′
l|
)2+δ

with S′
l =

∑l
t=1 Zt+m. The second term in the last line can be estimated by the result from

a).

The result derived in b) is called the Hájek-Rényi-Typ inequality for stationary α-mixing time
series.

As we also need the LIL (Law of iterated logarithm) we just want to state that due to
the invariance principle this also holds true (see Berkes and Philipp [1979] or for the one-
dimensional case Oodaira and Yoshihara [1971]), i.e. for some Λ, 0 ≤ Λ <∞

P

(

sup
n

‖∑n
t=1Xt‖
an

<∞
)

= P

(

limn
‖∑n

t=1Xt‖
an

= Λ

)

= 1 . (C.3)

with an := (n log(log(n)))
1
2 .

215





D. Tables - Critical value

We give tables for the critical value of sup
η<s<(1−η)

‖B(s)‖
(s(1 − s))γ

, where B is a d-dimensional

Brownian bridge.

d

γ η 1 2 3

0 0 1.212256 1.443812 1.609381

0.5 0.01 2.99186 3.45851 3.79555

0.4901 0 2.995043 3.44158 3.764023

0.5 0.05 2.85296 3.32581 3.66867

0.4525 0 2.673823 3.088289 3.389556

0.5 0.1 2.75516 3.23421 3.5791

0.41 0 2.417517 2.810113 3.096722

Table D.1.: Critical value of weighted norm of a d-dimensional Brownian bridge, with α = 0.1

d

γ η 1 2 3

0 0 1.347522 1.574039 1.736181

0.5 0.01 3.24195 3.70026 4.02713

0.4901 0 3.231012 3.662986 3.978833

0.5 0.05 3.1168 3.57791 3.9108

0.4525 0 2.897949 3.303564 3.602494

0.5 0.1 3.02738 3.49251 3.8292

0.41 0 2.632796 3.022263 3.301614

Table D.2.: Critical value of weighted norm of a d-dimensional Brownian bridge, with α = 0.05
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d

γ η 1 2 3

0 0 1.468787 1.689353 1.851499

0.5 0.01 3.47012 3.91041 4.23665

0.4901 0 3.440831 3.865758 4.176037

0.5 0.05 3.3493 3.80231 4.12883

0.4525 0 3.102743 3.501203 3.793509

0.5 0.1 3.26821 3.72102 4.05426

0.41 0 2.830868 3.211655 3.491204

Table D.3.: Critical value of weighted norm of a d-dimensional Brownian bridge, with α =
0.025

d

γ η 1 2 3

0 0 1.615893 1.830308 1.992486

0.5 0.01 3.74589 4.17324 4.48813

0.4901 0 3.702681 4.113801 4.416754

0.5 0.05 3.63846 4.07303 4.39301

0.4525 0 3.351194 3.741036 4.027234

0.5 0.1 3.55567 4.003 4.31947

0.41 0 3.075082 3.441805 3.719283

Table D.4.: Critical value of weighted norm of a d-dimensional Brownian bridge, with α = 0.01
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