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Abstract

We discuss the portfolio selection problem of an investor/portfolio manager in
an arbitrage-free financial market where a money market account, coupon bonds
and a stock are traded continuously. We allow for stochastic interest rates and
in particular consider one and two-factor Vasiček models for the instantaneous
short rates. In both cases we consider a complete and an incomplete market
setting by adding a suitable number of bonds.

The goal of an investor is to find a portfolio which maximizes expected utility
from terminal wealth under budget and present expected short-fall (PESF) risk
constraints. We analyze this portfolio optimization problem in both complete and
incomplete financial markets in three different cases: (a) when the PESF risk is
minimum, (b) when the PESF risk is between minimum and maximum and (c)
without risk constraints. (a) corresponds to the portfolio insurer problem, in (b)
the risk constraint is binding, i.e., it is satisfied with equality, and (c) corresponds
to the unconstrained Merton investment.

In all cases we find the optimal terminal wealth and portfolio process using the
martingale method and Malliavin calculus respectively. In particular we solve
in the incomplete market settings the dual problem explicitly. We compare the
optimal terminal wealth in the cases mentioned using numerical examples. With-
out risk constraints, we further compare the investment strategies for complete
and incomplete market numerically.
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1. Introduction

1.1. Problem formulation

Financial markets, in which financial securities are traded, have been vastly grow-
ing during the last decades. So over the last years the question of optimal invest-
ment has become more and more important. The financial securities, sometimes
called financial assets, can be divided into two main classes: risk-less assets (for
example money market account) and risk-bearing assets (for instance bonds and
stocks).The money market account is an interest-paying bank account. A bond
is a security that promises its holder regular coupon payments and/or repayment
of the principal, at a fixed maturity date. A stock is a security that represents
the ownership in a corporation and thereby is linked to the corporation’s profits
or losses.

We consider a financial market in which a money market account, n bonds
and a stock are traded. One of the problems of mathematical finance is the
problem of an investor or a portfolio manager, endowed with an initial wealth
x, who wants to invest in the financial assets provided at the market so as to
maximize his/her expected utility from terminal wealth X (T ). The problem can
be formulated in mathematical terms as follows:

max
ϕ∈A(x)

E (U (X (T ))) . (1.1)

Here, ϕ refers to the vector of the fractions of wealth invested in different secu-
rities (it describes the trading strategy of an investor), X (T ) = Xϕ (T ) is the
portfolio value at T when following ϕ and starting with X (0) = x, A (x) defines
the admissible set of trading strategies when the initial wealth is x, E denotes
the expectation with to respect the physical probability measure P and U is a
utility function. We will consider a power utility function:

U (x) =
xγ

γ
for γ ∈ {(−∞, 1) \ {0}} and x ≥ 0,

where we set U (0) = −∞ for γ < 0.

1



1. Introduction

Consider a portfolio manager who is not willing to take on arbitrary risk . In-
stead, he/she chooses the trading strategy only among strategies that allow an
acceptable risk. We measure risk by a so-called expected short-fall risk defined
by

EQ [β (T ) (X (T )− q)−
]
,

where Q ∈ Me, hereby Me denotes the set of equivalent martingale measures
with respect to P, q is the pre-set short fall level and β (T ) is the discount factor.
Then the risk is incorporated in the optimization problem as a constraint and
Problem (1.1) is modified as:

max
ϕ∈A(x)

E [U (X (T ))]

s.t. EQ [β (T ) (X (T )− q)−
]
≤ δ (risk constraint) ,

(1.2)

where δ ∈ R+ = [0,∞) is the upper limit of the investor’s risk. Let us call the
agent following this strategy Expected Shortfall Portfolio Manager (ES-PM).

Note that δ = ∞ corresponds to the optimization problem (1.1), let us call
this agent Merton Portfolio Manager (M-PM), while the case δ = 0 corresponds
to the so-called portfolio insurer problem, i.e. the risk constraint is X (T ) ≥ q
and we call this agent Portfolio Insurer Portfolio Manager (PI-PM).

1.2. Background on portfolio optimization

The modern theory of optimal portfolio management began with Markowitz’s
work [46] in 1952. This theory tries to understand how financial markets work,
how they should be made more efficient and regulated to facilitate the economic
activities. The theory of optimal portfolio management has become an increas-
ingly mathematical area of research. Markowitz’s idea, in his work [46], was to
consider the trade-offs between the mean returns and the covariance of stocks
in the one period model to judge investment strategies on stocks. His approach
became famous because of being simple and thus being applicable to high dimen-
sion, and it is still used. Sharp (see [58]) used Markowitz’s ideas and determined
the correlation of each stock and the market.

One-period models are static models: The investment strategies are fixed at
the beginning of the investment period and the results are observed at the end

2



1.2. Background on portfolio optimization

of the investment period. Merton (see [48], [49]) introduced a way how to solve
the continuous-time portfolio optimization problem. He managed to reduce the
problem to a control problem which could be solved by stochastic control method-
ology. Merton considered also the personal preferences of the investor, which is
characterized by the utility function, and under some assumptions including con-
stant market parameters he derived a closed form solution of this problem.

The martingale method to portfolio management in complete markets was in-
troduced by Harrison & Kreps [31]. It was later developed by Harrison & Pliska
(see [32], [33]) in the context of option pricing. The martingale approach on the
utility maximization problem in a complete market was first studied by Pliska
[54] and it was extended by Karatzas et al. [40], Cox & Huang (see [10], [11]),
Cvitanic & Karatzas [13], to mention but a few. Xu [64] introduced the applica-
tion of duality methods to the portfolio optimization problem. This method goes
back to Bismut [8]. In the case of an incomplete market, the utility maximization
problem was treated by Karatzas et al. [41], Kramkov & Schachermayer [44],
Cvitanić et al. [14] among others, using the martingale approach and duality
methods. Ocone & Karatzas [53] introduced the techniques of Malliavin calculus
to derive optimal trading strategies.

The portfolio optimization problem in the view of stochastic term structures
for the interest rates was first inferred by Karatzas et al. [40] and Karatzas [39].
In these papers the stochastic process of interest rates is not specified, hence lead-
ing to the general non explicit results for the optimal portfolio process. Later
on, one-factor term structure models for the interest rates were used to obtain
a closed form solution for optimal policies, e.g. the Vasiček model by Bajeux-
Besnainou & Portain [4], Sørensen [62], Korn & Kraft [42], Bajeux-Besnainou
et al. [3], Horsky [36]and Hainaut [30], and Cox-Ingersoll-Ross (CIR) model by
Deelstra & Koehl [17, 16] and Kraft [43].

The starting point of portfolio optimization problems that incorporate risk
constraints was the work by Markowitz [46]. He studied an optimization prob-
lem in a discrete time framework. He considered the variance of assets as a risk
measure. One of the drawbacks of this measure is the consideration of positive
variations of assets as a risk rather than a profit. In a continuous-time Black-
Scholes framework Basak & Shapiro [6] investigated the utility maximization
problem with Value at risk (VaR) and expected short-fall (ESF) as risk con-
straints. The literature dealing with portfolio optimization problem with risk
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1. Introduction

constraints in a Black-Scholes market include the papers by Emmer et al. [20],
Lakner & Nygren [45], Grecksch et al. [24], Basak et al. [5] and Damitrasinovic-
Vidovic et al. [19]. Hainaut [30] discussed the same problem with interest rates
modeled by one-factor Vasiček, and VaR as a risk measure in a complete mar-
ket using the martingale approach. For the incomplete market case Gundel &
Weber [27] investigated the utility maximization problem with risk constraint.
They prove the existence and uniqueness of a probability measure that solves
part of the dual problem.

1.3. Main results

There are two main approaches for solving portfolio optimization problems:
Stochastic control and martingale methods. We used the martingale method.
The martingale approach is mainly based on two steps. The first step is the
static optimization problem which deals with the determination of optimal ter-
minal wealth. The second step is the dynamic problem which deals with the
derivation of the admissible trading strategy that generates the optimal termi-
nal wealth. The static optimization problem can be solved using a Lagrangian
approach. This approach is a two-step optimization process. The first step is
the primal optimization problem that deals with the computation of the optimal
terminal wealth candidate which still depends on the Lagrange multipliers and
Q ∈ Me. The second step is the dual optimization problem that is concerned
with the determination of the Lagrange multiplier/s and Q ∈Me.

Most literature on portfolio optimization assumes that the interest rates are
deterministic. This is very far from the reality, more specifically from a long
term investment point of view, the interest rates are stochastic. The models for
the interest rates can be classified into forward rate and short rate models. For
the details about interest rate models we refer for example to Brigo & Mercurio
[15]. We consider short rate models and we have listed some of the popular ones
in Section 2.1. To overcome the restriction of the deterministic interest rates
many attempts have been made to solve portfolio optimization problems in a
framework that allows interest rates to be stochastic. Using stochastic control
methods Korn and Kraft [42] have studied the case where short rates follow a
one-factor Ho & Lee and a one-factor Vasiček model. Deelstra et al. [17] and [16]
investigated a portfolio optimization problem using the martingale approach in

4



1.3. Main results

a complete market and considered the short rates to be modeled by a one-factor
CIR. Bäuerle & Rieder [7] investigated the portfolio problem by allowing the drift
and the interest rates to depend on an external continuous-time Markov-chain
process. Hainaut [30] studied a portfolio optimization problem that incorporates
risk constraints measured in terms of VaR and the short rates following a one-
factor Vasiček model.

VaR measures the probability of a loss and ignores completely the magnitude
of a loss. As a consequence, although the probability of extreme losses is pre-
specified, a large loss may exceed the loss for the unconstrained optimization
problem. One of the risk measures that take the magnitude of a loss into ac-
count is the expected short-fall (ESF) also called expected loss (EL). First, in the
context of a complete and arbitrage-free financial market, i.e. when the number
of uncertainties is equal to the number of risk-bearing traded assets, we discuss
the portfolio optimization problem with an ESF constraint under a pre-set level
δ and allowing the interest rates to be stochastic. In particular, interest rates
are modeled by a one-factor Vasiček model. The problem of M-PM was studied
for example Korn & Kraft [42] and [30]. We derive the trading strategies for the
cases of ES-PM and PI-PM using Malliavin calculus.

Financial markets are generally incomplete, i.e. the number of random sources
is greater than the number of risk-bearing traded assets. This implies that the
set Me is composed of infinitely many elements. So, the portfolio optimization
problem in the case of an incomplete market is considerably more difficult. It was
studied, in continuous-time and the using martingale approach, for example by
Karatzas et al. [41] who used the idea of completing the market by introducing
additional fictitious risk-bearing securities. He & Pearson [34] and Kramkov &
Schachermayer [44] proved the existence and uniqueness of Q∗ ∈Me that solves
the dual problem for the given Lagrange multiplier. But the question remains,
how does Q∗ ∈Me look like?

Based on the absence of arbitrage and putting some restrictions on the market
price of risk, we also address the question above. We consider an incomplete
financial market composed of a money market account and a stock with interest
rates described by the one-factor Vasiček model. We derive explicitly the mea-
sure Q∗ ∈Me that solves the dual problem and we provide the optimal trading
strategy for the case of M-PM. We discuss further the portfolio optimization
problem in this incomplete market for the cases of ES-PM and PI-PM: We solve
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1. Introduction

the dual problem and then give optimal portfolio processes.

One-factor models of interest rates have some drawbacks in general, for exam-
ple a perfect correlation of interest rates of different maturities, however large
the difference in maturities is. For more details about interest rate models see
[15], [60], [50], among others. We relax this assumption by considering next the
interest rates to be described by a two-factor model, more precisely a two-factor
Vasiček model.

We examine the portfolio optimization problem in a financial market consist-
ing of a market account, two bonds and a stock, i.e. a complete market, with
interest rates modeled by a two-factor Vasiček model. We compute explicitly
the optimal trading strategy for the case of M-PM. We investigate moreover the
portfolio optimization problem for the cases of ES-PM and PI-PM and derive
the investment strategies that generate the optimal terminal wealth.

We extend our findings to an incomplete market with a money market account,
one bond, a stock and a two-factor Vasiček model for the interest rates. We
calculate the Q∗ ∈Me that solves the dual problem. After getting Q∗ ∈Me the
techniques are applied as for the case of a complete market to solve the dynamic
optimization problem. We then derive the optimal terminal wealth for M-PM,
ES-PM and PI-PM, and compute their corresponding trading strategies.

1.4. Thesis outline

We conclude this introductory part by giving the structure of the thesis. This
work is divided into 6 chapters:

Chapter 2 starts with the description of the financial market: It gives some
definitions, assumptions and theorems that are needed to construct the market
models. We discuss briefly the risk measures. Then the portfolio optimization
problem for the unlimited and limited risk, in terms of the risk constraint, is
stated. To solve this problem we use the martingale approach which is discussed
in Section 2.3.

6



1.4. Thesis outline

Chapter 3 deals with the review of the utility maximization problem first with-
out a risk constraint and second in the presence of limited expected shortfall risk
in the case of a Black-Scholes market, i.e. when all the market parameters are
constant (including the interest rates). This problem has been studied and the
closed form solutions were obtained, e.g by Basak & Shapiro [6]. We present
their results in this chapter for a quick reference and comparison.

In Chapter 4 we investigate the expected utility maximization problem when
the interest rates are allowed to be stochastic. In particular, we consider a one-
factor Vasiček term structure model for the interest rates. This problem for the
case of a complete market and without a risk constraint was addressed for in-
stance by Hainaut [30] and Korn & Kraft [42]. Hainaut [30] further embedded
VaR in the portfolio optimization problem. We study the same problem with
the limited ESF risk constraint in a complete market. We present the trading
strategies using Malliavin calculus. We further discuss in this chapter the cor-
responding problem in the general case of incomplete financial market. One of
the main challenges in this market using the martingale approach, is to solve
one part of the dual problem, which is concerned with the determination of
Q∗ ∈ Me that minimizes the Lagrangian function. Under a condition on a so-
called asymptotic elasticity Kramkov & Schachermayer [44] proved the existence
and uniqueness of Q∗ ∈Me for the case of M-PM but they did not show how it
looks like. Under some assumptions on the market price of risk, we provide in
this chapter the explicit solution of Q∗ ∈Me. We treat furthermore the cases of
ES-PM and PI-PM in the incomplete market. Some of our main results are given
in the Sections 4.2, 4.3 and 4.4. This chapter is concluded by numerical examples.

In Chapter 5 we start by pointing out some weaknesses of one-factor term
structure models for the interest rates. Then our results in Chapter 4 are ex-
tended to a two-factor term structure model for interest rates. More precisely, we
consider a two-factor Vasiček model for interest rates. We consider both complete
and incomplete financial markets and examine the utility maximization problem
for the cases of M-PM, ES-PM and PI-PM. We obtain the corresponding optimal
terminal wealth and optimal policies in both complete and incomplete markets.
Our results are stated in the Sections 5.1, 5.2, 5.3 and 5.4. This chapter is
concluded by numerical examples as well.
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2. Financial market and portfolio
optimization problem

2.1. Financial markets and stochastic interest rates

We consider an arbitrage free financial market where n + 2 assets are contin-
uously traded over a fixed finite time-horizon [0, T ]. The uncertainty in this
market is modeled by a complete probability space (Ω,F,P). We denote by
F = (F (t))t∈[0,T ] the augmented filtration generated by an (m+ 1)-dimensional
standard Brownian motion

W P (t) =
(
W P
r (t) ,W P

S (t)
)>

=
(
W P

1 (t) , · · · ,W P
m (t) ,W P

S (t)
)>

under the probability measure P, where > indicates a transpose. We assume
that F = F (T ). It is assumed further that all stochastic processes are adapted
to F and all stated processes are well defined. Moreover, we assume throughout
this thesis that all equalities as well as inequalities hold P-almost surely.

One of the assets is a risk-free money market account (M) following the dif-
ferential equation

dM (t) = M (t) r (t) dt, with M (0) = 1. (2.1)

As a result,

M (t) = exp

(∫ t

0

r (s)ds

)
, (2.2)

where r is the instantaneous interest rate, usually called short-term interest rate
or spot interest rate, at which the money market account accrues. From Equa-
tions (2.1) and (2.2) it means that investing a unit amount in the money market

9



2. Financial market and portfolio optimization problem

account at time 0 yields the value exp
(∫ t

0
r (s)ds

)
at time t. The amount β (t, T ),

at time t that is equivalent to one unit of currency payable at time T given by

β (t, T ) =
M (t)

M (T )
= exp

(
−
∫ T

t

r (s)ds

)
(2.3)

is the discount factor. From a general point of view, the interest rates r (t) are
modeled by

r (t) = g (t, Y (t))

dY (t) = µr (t, Y ) dt+ σr (t, Y ) dW P
r (t) ,

(2.4)

where W P
r is an m-dimensional Brownian motion under the probability measure

P, g : Rd → R is a deterministic function, Y with values in Rd is the vector of
interest rate factors in the normal form, µr with values in Rd is the drift of inter-
est rate factors and σr with values in Rd×m is a root of the variance covariance
matrix of the interest rate factors in the normal form. It is assumed that µr and
σr are regular enough to guarantee existence and uniqueness of a strong solution
to (2.4).

Throughout this work, we consider the case d = m. If m = 0, we have constant
interest rates. For m = 1, we have a class of one-factor models of interest rates
including:

• Ho-Lee model [35]

dr (t) = a (t) dt+ σrdWr (t)

• Vasiček model [63]

dr (t) = a (b− r (t)) dt+ σrdWr (t)

• Cox-Ingersoll-Ross (CIR) [12]

dr (t) = a (b− r (t)) dt+ σr
√
r (t)dWr (t) (2.5)

• Hull-White (extended Vasiček model) [37]

dr (t) = a (t) (b (t)− r (t)) dt+ σr (t) dWr (t)

10



2.1. Financial markets and stochastic interest rates

• Hull-White (extended CIR model) [37]

dr (t) = a (t) (b (t)− r (t)) dt+ σr (t)
√
r (t)dWr (t)

In the case m = 2, we obtain a class of two-factor interest rate models, for
example

• Two-factor Vasiček model

r (t) = g (t, Y (t)) := δ0 + δ1Y1 (t) + δ2Y2 (t) with

dY1 (t) = (ν − b11Y1 (t)− b12Y2 (t)) dt+ σ1dW1 (t)

dY2 (t) = (ν − b21Y1 (t)− b22Y2 (t)) dt+ σ2dW2 (t) ,

where all the coefficients are constants.

• Two-factor CIR model

r (t) = g (t, Y (t)) := δ0 + δ1Y1 (t) + δ2Y2 (t) with

dY1 (t) = (ν − b11Y1 (t)− b12Y2 (t)) dt+ σ1

√
Y1 (t)dW1 (t)

dY2 (t) = (ν − b21Y1 (t)− b22Y2 (t)) dt+ σ2

√
Y2 (t)dW2 (t) ,

where all the coefficients are constants.

There are extended versions with non-constant parameters and even interest rate
models of more than two factors but these are not discussed here. We refer the
interested reader to [15], [65] and [60], among others, for details about the inter-
est rate models.

We have n + 1 risky investment opportunities at the market as well, which
can be n bonds and/or one stock, whose price processes P (t) ∈ Rn+1 satisfy the
stochastic differential equation (SDE)

dP (t) = P (t)
(
µ (t) dt+ σ (t) dW P (t)

)
, P (0) = p ∈ R, (2.6)

where µ (t) ∈ Rn+1 is the vector of instantaneous mean returns of the risky assets
and σ (t) ∈ R(n+1)×(m+1) is the volatility matrix of the risky assets . We assume
here also that µ and σ are sufficiently regular to ensure existence and uniqueness
of a strong solution to (2.6). We can write µ and σ in matrix form as:

µ =

(
µB
µS

)
=


µB1

...
µBn
µS

 and σ =

(
σB 0
σSr σS

)
=


σ1
B1
· · · σmB1

0
...

. . .
...

...
σ1
Bn
· · · σmBn 0

σ1
Sr · · · σmSr σS

 ,
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2. Financial market and portfolio optimization problem

respectively and σσ> is assumed to be non-singular.

Definition 2.1 A zero coupon bond (which will be called here only bond) with
maturity T is a security which guarantees its holder a unity amount of money to
be paid on the date T .

Among the risky assets, we have n bonds in the market and the price of each
bond at time t ∈ [0, T ] maturing at finite time Ti > T is denoted by B (t, Ti) or
simply Bi, for 1 ≤ i ≤ n. Throughout this thesis, we assume each bond price
to dependent on the interest rate only, independent of liquidity risk, default risk
or any other factors. The price process of each bond Bi is assumed to evolve
according to the following SDE

dBi = Bi

(
µBi (t, Y ) dt+ σ>Bi (t, Y ) dW P

r (t)
)
,

where µBi (t, ·) : Rm → R is the drift rate of the bond Bi under the physical
probability measure P and σBi (t, ·) : Rm → Rm is the volatility of the bond Bi

due to the vector Y = (Y (t))t∈[0,T ] of m interest rate factors.

The remaining asset (risky asset) is a stock and the price process at time
t ∈ [0, T ] of a stock is denoted by S (t). It’s dynamics are considered to follow
the SDE

dS (t) = S (t)
(
µS (t) dt+ σ>Sr (t) dW P

r (t) + σS (t) dW P
S (t)

)
,

where σSr ∈ Rm is the volatility of the stock with respect to W P
r , and σS ∈ R is

the volatility of the stock with respect to W P
S .

Assumption 2.2 We assume that µB = (µB1 , · · · , µBn)> and µS take the form

µB (t, ·) = µ̄B + r (t)1n,

µS (t) = µ̄S + r (t) ,

where µ̄B ∈ Rn and µ̄S ∈ R are constants, and 1n denotes the n-dimensional
vector whose entries are all equal to 1.

Remark: We need this assumption to be able to compute
∫
µ (t) dt later. If the

structure of µ (t) is known, for most results deterministic µ̄ (t) should be possible.

12



2.1. Financial markets and stochastic interest rates

We consider an investor or portfolio manager endowed with an initial wealth x
to be invested in the financial assets provided at the market. He/she is allowed
to trade continuously during the investment period. We denote the fractions of
wealth invested in the bonds and a stock at time t ∈ [0, T ] by ϕB (t) ∈ Rn and
ϕS (t) ∈ R, respectively. ϕ (t) := (ϕB (t) , ϕS (t))> is a stochastic process. It
follows that the fraction of wealth invested in the money market account is given

by
(

1− ϕ (t)> 1n+1

)
. Before we give the wealth process of an investor, let us

first make some assumptions which will be considered throughout this thesis.

Assumption 2.3 • The market is frictionless.

• The investor has no knowledge about the future prices of the securities.

• The portfolio process ϕ (t) is self-financing.

• Money is invested only in bonds, stock or money market account.

• There is no consumption during the investment period.

• The assets are perfectly divisible.

Putting the assumptions above into consideration, the wealth process of an
investor at time t ∈ [0, T ], represented by X (t), under the probability measure
P is ruled by the following stochastic differential equation

dX (t) =dXM (t) + dXB (t) + dXS (t)

=
(
1− ϕ> (t)1n+1

)
X (t) r (t) dt

+X (t)ϕ>B (t)
(
µB (t) dt+ σ>B (t) dW P

r (t)
)

+X (t)ϕS (t)
(
µS (t) dt+ σ>S,Y (t) dW P

r (t) + σS (t) dW P
S (t)

)
,

where XM , XB and XS denote the wealth in the money market account, bonds
and the stock, respectively.

Definition 2.4 The (n+ 1)-dimensional stochastic process ϕ (t) is called port-
folio process if it fulfills the following conditions: It is self-financing with

• ϕ (t) is Ft-measurable,

13



2. Financial market and portfolio optimization problem

•
T∫
0

‖ϕ (t)‖2 dt <∞.

The wealth process X (t) is a process controlled by the portfolio process ϕ (t).
This means that the wealth process of an investor is driven by his/her trading
strategy.

Definition 2.5 A self-financing portfolio process ϕ (t) is called an arbitrage op-
portunity, if the corresponding wealth process satisfies

• X (0) = 0,

• X (T ) ≥ 0,

• P (X (T ) > 0) > 0.

Of course, the investor’s hope is to find a portfolio process such that his/her
terminal wealth is non-negative for sure and strictly positive with some positive
probability without any investment (zero initial wealth). In other words, an ar-
bitrage opportunity is the opportunity of making some money without risk.

The prices (P (t))t∈[0,T ] of financial securities are said to fulfill the no-arbitrage
condition if there is no arbitrage opportunity.

Definition 2.6 A probability measure Q on (Ω,F) is called an equivalent mar-
tingale measure with respect to P, if Q ∼ P and P is a martingale under Q with
respect to a given numeraire.

We denote the set of these equivalent martingale measures by Me. The follow-
ing theorem, so-called Fundamental Theorem of Asset Pricing, relates the no-
arbitrage condition to the existence of equivalent martingale measures as studied
for example by Harrison and Pliska [32].

Theorem 2.7 (Fundamental Theorem of Asset Pricing) :
For the prices (P (t))t∈[0,T ] of financial securities in a market modeled on a finite
probability space (Ω,F,P) the following are equivalent:

14



2.1. Financial markets and stochastic interest rates

(i) (P (t))t∈[0,T ] satisfy no-arbitrage condition,

(ii) Me 6= ∅.

If the numeraire is the money market account, as in our case, a probability
measure Q ∈Me is a so-called ”risk-neutral” probability constructed such that

dQ
dP
|F(t)= ZΘ (t) := exp

−1

2

t∫
0

‖Θ (s)‖2 ds−
t∫

0

Θ> (s) dW P (s)

, (2.7)

where the vector

Θ (t) = (θr (t) , θS (t))> = (θ1 (t) , · · · , θm (t) , θS (t))> ∈ Rm+1

solves
(µ (t)− r (t)1n+1) = σ (t) Θ (t)

and its components are interpreted as the market prices of risks due to the m
interest rate factors and a stock, respectively.

Assumption 2.8 We assume that
T∫
0

‖Θ (t)‖2 dt <∞, P-almost surely.

Definition 2.9 The financial market above will be called complete if n = m,
and incomplete if n < m.

If we are in the case of a complete market, Θ (t) can be determined uniquely
which is equivalent to the uniqueness of Q ∈Me. But for the case of incomplete
market, Θ (t) can not be determined uniquely.

According to the Girsanov Theorem [26], the processes defined by

WQ (t) =

(
WQ
r (t)

WQ
S (t)

)
:=

W
P
r (t) +

t∫
0

θr (s) ds

W P
S (t) +

t∫
0

θS (s) ds


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2. Financial market and portfolio optimization problem

are Brownian motions under the probability measure Q ∈ Me. This will help
us to change from a world of physical probability measure P to the equivalent
martingale measure Q ∈ Me. Now, the price processes of the n bonds and a
stock under Q ∈Me are given by

dBi (t) = Bi (t)
(
r (t) dt+ σ>Bi (t, Y ) dWQ

r (t)
)

and

dS (t) = S (t)
(
r (t) dt+ σ>Sr (t) dWQ

r (t) + σS (t) dWQ
S (t)

)
,

respectively with 1 ≤ i ≤ n.

dX (t) =dXM (t) + dXB (t) + dXS (t)

=
(
1− ϕ> (t)1n+1

)
X (t) r (t) dt

+X (t)ϕ>B (t)
(
r (t) dt1n + σB (t) dWQ

r (t)
)

+X (t)ϕS (t)
(
r (t) dt+ σ>Sr (t) dWQ

r (t) + σS (t) dWQ
S (t)

)
=X (t) r (t) dt

+X (t)
(
ϕ>B (t)σB (t) + ϕS (t)σ>Sr (t)

)
dWQ

r (t)

+X (t)ϕS (t)σS (t) dWQ
S (t) .

Applying Itô’s rule on the product of the processes β (t) and X (t) yields:

d (β (t)X (t)) =β (t)X (t)
(
ϕ>B (t)σB (t) + ϕS (t)σ>Sr (t)

)
dWQ

r (t)

+ β (t)X (t)ϕS (t)σS (t) dWQ
S (t) ,

(2.8)

which can be written in integral form as

β (T )X (T ) =X (0) +

T∫
0

β (t)X (t)
(
ϕ>B (t)σB (t) + ϕS (t)σ>Sr (t)

)
dWQ

r (t)

+

T∫
0

β (t)X (t)ϕS (t)σS (t) dWQ
S (t)

=X (0) +

T∫
0

β (t)X (t)ϕ> (t)σ (t) dWQ (t) .

(2.9)

The deflator H (T ) for the cash flow paid at T is defined by

H (T ) := β (T )ZΘ (T )

= exp

−
T∫

0

r (t) dt− 1

2

T∫
0

‖Θ (t)‖2 dt−
T∫

0

Θ> (t) dW P (t)

.
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2.2. Risk constraints

2.2. Risk constraints

Risk, in layman’s terms, is the possibility of harm or loss. Financial risk refers
to the possibility of a monetary loss associated with investments. Financial risk
is divided into the following ”general categories”: Market risk, Exchange risk,
Credit risk, Operational risk and Interest rate risk, among others. The unifying
theme for each category is that risk requires both exposure and uncertainty. If
a bank decides not to loan to a business that is likely to default, there is also no
risk for that bank because the bank has no exposure to the possibility of loss.
If a bank already knows that a loan will default, there is no uncertainty and
therefore no risk.
Why do we need risk measures in finance?
For instance in the modern portfolio selection theory: maximizing return for a
given level of risk or minimizing risk for a given level of return, the decision
depends on the risk measure used. Now the goal is to have a universal definition
of a risk measure. Theoreticians have given a number of properties that a risk
measure might or might not fulfill. Before we come to that let us first give the
risk binary relations.

Definition 2.10 Risk ordering: The binary relations %, � and ∼, where

• X % Y means that X is at least as risky as Y ,

• X � Y means that X is strictly riskier than Y and

• X ∼ Y means that X and Y are equally risky.

Definition 2.11 Let χ be some vector space of random variables that contains
the constants. The numerical representation of risk binary relations %, � and ∼
is a function ρ : χ→ R such that ∀X, Y ∈ χ

• X % Y ⇔ ρ (X) ≥ ρ (Y )

• X � Y ⇔ ρ (X) > ρ (Y )

• X ∼ Y ⇔ ρ (X) = ρ (Y )

Every such function ρ will be called risk measure.
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2. Financial market and portfolio optimization problem

Empirically, risk depends on the probability of occurrence of loss and the amount
of potential loss. So, that is why we try to measure risk in terms of moments or
quantiles. In the mean-variance principle of Markowitz [47], variance is consid-
ered to be a measure of risk. One of the drawbacks of variance as a measure of
risk is that it considers the positive deviations as a risk, which are rather gains.
To avoid this problem, the downside risk measures which are only based on nega-
tive deviations are considered, for instance the so called ”lower partial moments”
studied by Fishburn in 1977 [21]. The lower partial moments are measures of
shortfall or downside risk which consider only negative deviations from a target.
The lower partial moment of order k is computed as follows:

ρk,q (X) :=

∫ q

−∞
(q −X)k dF (X) ,

where F is the distribution function of the random variable (wealth) X, q ∈ R
is the target (of wealth) below which the deviations are measured as risk and
k ∈ N0 is a measure of the relative impact of small and large deviations.

If k = 0, we have what is known as shortfall probability:

ρ0,q :=

∫ q

−∞
(q −X)0 dF (X) =

∫ q

−∞
fX (t) dt,

where F is the distribution function of random variable X and fX is its density
function. Shortfall probability corresponds to the widely known Value at Risk
(VaR) as a risk measure which is defined as

V aRα (Γ) := F−1
Γ (1− α) ,

where FΓ (ν) = P (Γ ≤ ν) =

∫ ν

−∞
fΓ (t) dt,

Γ := (q −X) ∈ χ, 0 ≤ α ≤ 1, FΓ is the distribution function of Γ and fΓ is its
density function. V aRα can be interpreted as the maximum loss with some pre-
specified probability α over a given time horizon. V aR has been a very popular
risk measure, one of the reasons being that it is easily understood. However, it
has some limitations, e.g. it focuses mainly on the probability of loss and ignores
completely the magnitude of loss. One alternative which puts the magnitude of
losses into account is a so-called Expected Shortfall (ESF) (it corresponds to the
case of k = 1) defined by

ESF (Γ) := ρ1,q (X) =

∫ q

−∞
ΓfΓ (t) dt.
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2.2. Risk constraints

ESF is interpreted as the average magnitude of the losses over a given time hori-
zon.

Different people have different attitudes towards risk, but the above mentioned
risk measures do not put the investor’s preferences into consideration. The pref-
erences are characterized by the utility function which is defined below.

Definition 2.12 A function U : (0,∞) → R which is strictly concave, twice
continuously differentiable and satisfies the Inada conditions:

U
′
(0) := lim

x→0
U ′ (x) = +∞ and U

′
(∞) := lim

x→∞
U
′
(x) = 0,

is called utility function.

An example of a risk measure which takes the preferences into account is the
so called Expected Utility Loss (EUL) defined by

EUL (Γ) = E [U (Γ)] .

EUL can be interpreted as the investor’s average utility from the magnitude of
losses over a given time horizon.

Artzner et al. [2] proposed desirable properties a risk measure should have,
those given in the definition below. The risk measures which fulfill these prop-
erties were named coherent risk measures.

Definition 2.13 A mapping ρ : χ → R is called a coherent risk measure if for
all X, Y ∈ χ it satisfies

• Monotonicity (M): if X ≤ Y , then ρ (X) ≥ ρ (Y ).

• Cash invariance (CI): if m ∈ R, then ρ (X +m) = ρ (X)−m.

• Convexity (C): ρ (γX + (1− γ)Y ) ≤ γρ (X) + (1− γ) ρ (Y ) for
0 ≤ γ ≤ 1.

• Subadditivity (SA): ρ (X + Y ) ≤ ρ (X) + ρ (Y ),

where χ ⊆ L∞ (Ω,F ,P).
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2. Financial market and portfolio optimization problem

Note that, X, Y are considered to be discounted here. We refer to [2] for the
discussion and interpretation of the above properties. A risk measure which
fulfills properties (M) and (CI) is called monetary risk measure (for details you
can see [22] by Föllmer and Schied). VaR, EL and EUL are monetary risk
measures. A monetary risk measure that satisfies property (C) is called convex
risk measure. VaR is not a convex risk measure (in general) because it doesn’t
fulfill property (C) for all distributions of losses [22]. As a consequence it is not
a coherent risk measure. EL and EUL are convex risk measures but not coherent
risk measures because they fail to satisfy the condition (S).

2.3. Portfolio optimization problem

Definition 2.14 A self-financing portfolio process ϕ is called admissible for the
initial wealth x > 0, if the corresponding wealth process satisfies X (t) > 0 for all
t ∈ [0, T ]. Let us denote the set of admissible portfolio processes by A (x).

Optimization without risk constraints
The aim of an investor with initial wealth x is to choose a portfolio process ϕ,
from the admissible set A (x), that maximizes his/her expected utility from the
terminal wealth X (T ). Now, the portfolio optimization problem is formulated
as

max
ϕ∈Ã(x)

E [U (X (T ))] ,

where Ã (x) =
{
ϕ ∈ A (x) | E

[
U (X (T ))−

]
<∞

}
.

(2.10)

We restrict ourselves to the admissible set Ã (x) because the expectation exists.
But it can be equal to infinity.

There are two main approaches that can be used to solve the portfolio optimiza-
tion problem (2.10), namely the martingale and the stochastic control approach.
In this work we use martingale methodology. The martingale approach is mainly
based on the decomposition of the portfolio problem (2.10) into two problems:

(i) The static optimization problem consisting of determination of the optimal
terminal wealth and
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2.3. Portfolio optimization problem

(ii) the representation problem that deals with finding a trading strategy that
replicates the optimal terminal wealth.

Static optimization problem
The static optimization problem, as we have mentioned before, is concerned
with the determination of the optimal terminal wealth. More precisely: An
investor endowed with initial wealth x > 0 has to find the terminal wealth
that maximizes his/her expected utility. Here the Lagrange approach is applied
which is composed of a primal and a dual problem. Before we state the static
optimization problem, let us first give a remark that helps to construct the budget
equation.

Remark 2.15 Any terminal wealth X (T ), for a given initial wealth x > 0, has
to satisfy the budget constraint:

EQ [β (T )X (T )] = E
[
β (T )

(
dQ
dP

)
T

X (T )

]
≤ x,∀Q ∈Me,

since by (2.8) (β (t)X (t))t∈[0,T ] is a Q-supermartingale.

Now, we can state the static optimization problem as follows:

max
X(T )∈B(x)

E [U (X (T ))]

s.t. E
[
β (T )

(
dQ
dP

)
T

X (T )

]
≤ x (budget constraint) ,

(2.11)

where

B :=
{
X (T ) > 0 | X (T ) FT -measurable,E [U (X (T ))]− <∞

}
. (2.12)

We employ the Lagrange approach to solve the problem (2.11) with the La-
grangian function L defined by

L (y,Q, X (T )) := E
[
U (X (T )) + y

(
x− β (T )

(
dQ
dP

)
T

X (T )

)]
= E

[
U (X (T ))− yβ (T )

(
dQ
dP

)
T

X (T ) + yx

]
,

(2.13)

where y is the Lagrangian multiplier. The function L is constructed by penalizing
the objective function of the problem (2.11) with its constraint. The problem
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(2.11) is equivalent to the primal problem (2.14), where we have the optimization
problem without a constraint. With the Lagrangian approach we first solve the
primal optimization problem and then its dual optimization problem which are
stated below.
Primal problem:

Ψ (y,Q) := max
X(T )∈B(x)

L (y,Q, X (T )) for y > 0 and Q ∈Me. (2.14)

Dual problem:

Φ (X (T )) := min
y>0,Q∈Me

L (y,Q, X (T )) for X (T ) ∈ B (x) . (2.15)

In the case of an incomplete market, the set Me is composed of infinitely many
elements, where in the dual problem we have to find y∗ > 0 and Q∗ ∈ Me that
minimize the Lagrangian function L (y,Q, X (T )) for a given X (T ) ∈ B (x). But
for the case of complete market the set of equivalent martingale measures is a
singleton, i.e, Me = {Q}, and we only have to find y∗ > 0 that minimizes the
Lagrangian function L (y,X (T )) for a given X (T ) ∈ B (x) to solve the dual
problem. Let us denote by I the inverse function of the derivative of the utility
function U (as defined in 2.12). I : (0,∞)→ (0,∞) is continuously differentiable,
strictly decreasing and satisfies

lim
x→∞

I (x) = 0 and lim
x→0

I (x) =∞.

The function V defined by

V (y) := max
x>0

[U (x)− xy] = U (I (y))− yI (y) for all y ∈ (0,∞) (2.16)

is the Legendre transform of −U (−x) (see for example Karatzas et al. [41]).
The function V is strictly convex, strictly decreasing, continuously differentiable
and satisfies

V
′
(y) = −I (y) for all y ∈ (0,∞) ,

V
′
(0) := lim

y→0
V
′
(y) = −∞, V

′
(∞) := lim

y→∞
V
′
(y) = 0

(2.17)

and it has the following bidual relation:

U (x) = min
y>0

(V (y) + xy) = V
(
U
′
(x)
)

+ xU
′
(x) for all x ∈ (0,∞) .

From (2.16) and (2.17) the following inequalities hold (see Karatzas et al. [41]
and Cvitanic et al. [13], among others)

U (I (y)) ≥ U (x) + y [I (y)− x] for all x, y ∈ (0,∞) (2.18)
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V
(
U
′
(x)
)
≤ V (y)− x

[
U
′
(x)− y

]
for all x, y ∈ (0,∞) . (2.19)

In our case we consider

V (y) := max
X(T )∈B(x)

[U (X (T ))− yX (T )] .

We define the value function

u (x) := max
X(T )∈B(x)

E [U (X (T ))] . (2.20)

To exclude the trivial case we assume that

u (x) = max
X(T )∈B(x)

E [U (X (T ))] <∞ for all x ∈ (0,∞) . (2.21)

We define for the dual optimization problem

v (y) := E
[
V

(
yβ (T )

(
dQ
dP

)
T

)]
= Ψ (y)− yx, (2.22)

where Ψ is defined in the Equation (2.14) for Q ∈ Me fixed or in the case of a
complete market.

Following the idea of Kramkov & Schachermayer [44], we state the following
theorem that gives the solution to the static optimization problem (in other
words, the solution to the primal and dual problems) in the case of a complete
market.

Theorem 2.16 (Complete market case) :
Let U be a utility function as in Definition 2.12, consider a complete market, i.e.,
Me = {Q} and assume that the condition (2.21) is fulfilled. Denote by u (x) and
v (y) the value functions

u (x) = max
X(T )∈B(x)

E [U (X (T ))] , x ∈ (0,∞) . (2.23)

v (y) = E
[
V

(
yβ (T )

(
dQ
dP

)
T

)]
, y ∈ (0,∞) . (2.24)

Then we have:
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• The functions u (x) and v (y) are conjugate and u inherits the properties of
the utility function U stated in Definition 2.12.

• The optimizer X∗ (T ) ∈ B (x) in (2.23) exists, is unique and satisfies X∗ =
I
(
yβ (T )

(
dQ
dP

)
T

)
,

where x ∈ (0,∞) and y ∈ (0,∞) are related via v
′
(y) = −x.

• The following hold true

u
′
(x) = E

[
U
′
(X∗ (T ))

]
for all x ∈ (0,∞)

v
′
(y) = E

[
β (T )

(
dQ
dP

)
T

V
′
(
yβ (T )

(
dQ
dP

)
T

)]
for all y ∈ (0,∞) .

Proof: see Kramkov & Schachermayer [44] �

Now we drop the case ofMe being necessarily a singleton {Q} and consider a
general case of an incomplete market. Kramkov & Schachermayer [44] considered
a certain class Y (y) of supermartingales defined by

Y (y) :=

{
Y ≥ 0 : Y0 = y and βXY = (β (t)X (t)Y (t))0≤t≤T

is a supermartingale, for all X ∈ B (1) ,

with Y (1) being a class of supermartingales extending the class of density pro-
cesses of equivalent martingale measures Q ∈ Me. In their setting (Kramkov &
Schachermayer in [44]) a further enlargement of the set Me is necessary for the
general case, but in our setting this enlargement is not necessary as shown by
Kramkov & Schachermayer [44].

The value function of the dual problem in the case of an incomplete market is
defined by

v (y) = min
Q∈Me

E
[
V

(
yβ (T )

(
dQ
dP

)
T

)]
, y ∈ (0,∞) . (2.25)

Before we state the theorem that proves the existence and uniqueness of the
solution of the static optimization problem in the case of an incomplete market,
let us first give the definition of the asymptotic elasticity AE.
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Definition 2.17 The asymptotic elasticity of a utility function U is defined by

AE (U) := lim
x→∞

sup
xU

′
(x)

U (x)

and U is said to have ”a reasonable asymptotic elasticity” if AE (U) < 1.

The notion of the asymptotic elasticity was introduced by
Kramkov & Schachamayer [44].

Theorem 2.18 (Incomplete market case) : Suppose that a utility function
U has a reasonable asymptotic elasticity, i.e.

AE (U) := lim sup
x→∞

xU
′
(x)

U (x)
< 1.

Then

• u (x) <∞, for all x ∈ (0,∞) and v (y) <∞, for all y ∈ (0,∞).
The value functions u and v defined below are conjugate:

v (y) := sup
x>0

[u (x)− xy] , y ∈ (0,∞)

u (x) := inf
y>0

[v (y) + xy] , x ∈ (0,∞) .

The value function u is continuously differentiable and the value function
v is strictly convex on {v (y) <∞} and they satisfy

u
′
(0) := lim

x→0
u
′
(x) =∞, v′ (∞) := lim

x→∞
v
′
(y) = 0.

• If v (y) <∞, then the optimal solution Q∗ ∈Me to the dual problem (2.25)
exists and is unique. The optimal solution

X∗ (T ) = I

(
y∗β (T )

(
dQ
dP

)
T

)
∈ B (x) , for all x ∈ (0,∞)

to the primal problem (2.20) exists and is unique, where v (y) + xy attains
its minimum at y∗ and y∗ = u

′
(x).
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2. Financial market and portfolio optimization problem

Proof: see Kramkov & Schachamayer [44] �

From Theorem 2.18 we know that there exists a probability measure Q∗ ∈Me

which solves the dual problem (2.25) and which is unique.

Now the question is, how we can calculate Q∗ ∈Me in (2.25)?

This question will be answered in Chapters 4 and 5 after specifying the model
for the stochastic interest rates. Once the optimal Q∗ has been found, the in-
complete markets case can be handled similarly to the complete markets case.

Representation problem
After finding the optimal terminal wealth in the static optimization problem,
we now have to find the portfolio process that replicates that terminal wealth.
We use Malliavin calculus to solve the representation problem as studied also in
[53]. The definitions and some necessary basics of Malliavin calculus are given
in Appendix A.

If the conditions of Theorem A.7 on a discounted optimal terminal wealth
β (T )X∗ (T ) are fulfilled, then the process β (T )X∗ (T ) can be represented as in
Equation (A.17). Let us call this representation Clark-Ocone representation. To
obtain the trading strategy that replicates the optimal terminal wealth X∗ (T ),
we compare the representation of β (T )X (T ) in the Equation (2.9) with Clark-
Ocone representation of β (T )X∗ (T ) which is also a task that will be discussed
in Chapters 4 and 5 after specifying the model for the stochastic interest rates.

Optimization with a risk constraint
The optimal portfolio strategy that replicates the maximum expected utility from
terminal wealth without consideration of a risk constraint may lead to extreme
positions and as a consequence the optimal terminal wealth may not exceed
even the initial wealth with a high probability. That is undesirable e.g. for a
pension fund manager. The idea to this situation is to embed the risk quantity
into the portfolio optimization problem. We consider the risk quantity to be
measured in general by the function ρ (X (T )− q), which is a function of the
terminal wealth X (T ) to fall below a preset level q > 0. Let us call it shortfall
risk. Shortfall risk might be Value at Risk, Expected Shortfall risk or Expected
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2.3. Portfolio optimization problem

Utility Loss as given in Section 2.2. The most convenient way to embed risk into
our optimization problem is to impose the shortfall risk constraint in addition
to a budget constraint, requiring shortfall risk to be maintained under some
pre-specified level δ > 0, i.e

ρ (X (T )− q) ≤ δ.

Then the dynamic optimization problem with risk constraint can be stated as
follows:

max
ϕ∈Ã(x)

E [U (X (T ))]

s.t. EQ [β (T )X (T )] ≤ x (budget constraint)

ρ (X (T )− q) ≤ δ (risk constraint) ,

(2.26)

where Ã (x) is as defined in (2.10) and Q is the equivalent martingale measure
w.r.t. P. The static optimization problem corresponding to the dynamic problem
(2.26) is stated as follows:

max
X(T )∈B(x)

E [U (X (T ))]

s.t. EQ [β (T )X (T )] ≤ x (budget constraint)

ρ (X (T )− q) ≤ δ (risk constraint) ,

(2.27)

where B (x) is as defined in (2.12).
The solutions to the problems (2.26) and (2.27) will be discussed in Chapter 3, 4
and 5 after specifying the utility function, interest rate model and risk measure
used.
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3. Portfolio optimization with
deterministic interest rates

In this chapter we consider an arbitrage free financial market where a risk-free
money market account M and a risky asset S are continuously traded over a fixed
finite time-horizon [0, T ]. Their respective prices (M (t))t∈[0,T ] and (S (t))t∈[0,T ]

evolve according to the following equations

dM (t) = M (t) rdt, with M (0) = 1, (3.1)

dS (t) = S (t)
(
µdt+ σSdW

P (t)
)
, with S (0) = s > 0. (3.2)

Here r is the interest rate of money market account and it is assumed to be
constant throughout this chapter, µ is the drift of the stock, σS is the volatility
of the stock and W P is a standard 1-dimensional Brownian motion on a complete
probability space (Ω,F,P). We denote by F the augmented filtration generated
by W P. µ and σS > 0 are also assumed to be constants.
As a result from Equation (3.1) and the interest rate being constant, we can
identify the price of the money market account at time t ∈ [0, T ] as

M (t) = exp {rt}, t ∈ [0, T ] .

β (t) := 1
M(t)

= exp {−rt} will denote the corresponding discounting factor. The

price process of the stock in Equation (3.2) is under the physical probability
measure P.

From a variant of the Fundamental Theorem of Asset Pricing (compare The-
orem 2.7) there exists a risk-neutral probability measure Q ∈ Me, where Me

is the set of equivalent martingale measures as in Definition 2.6. Q = {Me} is
constructed as in Equation (2.7) and it is characterized in this case by

dQ
dP
|F(t)= Zθ (t) := exp

{
−1

2
θ2t− θdW P (t)

}
,
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3. Portfolio optimization with deterministic interest rates

where θ := µ−r
σS

is the market price of risk which is also a constant.
The deflator H (T ) for the cash flow paid at T is defined by

H (T ) := β (T )Zθ (T )

= exp

{
−rT − 1

2
θ2T − θdW P (T )

}
.

Remark 3.1 We are in a complete market because the number of uncertainty is
equal to the number of risky assets and as a result Me is singleton, i.e. Me =
{Q}, see [9] (Meta-theorem 8.3.1).

According to the Girsanov Theorem the process

WQ (t) = W P (t) + θt

is a Brownian motion under Q.
The price process of the stock under Q is given by

dS (t) = S (t)
(
rdt+ σSdW

Q (t)
)
. (3.3)

We consider an investor endowed with an initial wealth x to be invested in a
money market account and/or a stock. He/she is allowed to trade continuously
during the investment interval [0, T ]. We denote the fraction of wealth invested in
the money market account and the stock by ϕM and ϕS, respectively. It follows
that ϕM = 1− ϕS. The wealth process of an investor at time t ∈ [0, T ], denoted
by X (t), under the probability measure P is ruled by the following stochastic
differential equation

dX (t) =dXM (t) + dXS (t)

= (1− ϕS (t))X (t) rdt

+X (t)ϕS (t)
(
µdt+ σSdW

P (t)
)
,

where XM and XS denote the wealth in the money market account and the
stock, respectively.
Using the Equations (3.1) and (3.3) the wealth process X (t) can be transformed
to

dX (t) = X (t)
(
rdt+ ϕS (t)σSdW

Q (t)
)
. (3.4)

Equation (3.4) describes the wealth process under the probability measure Q.
By applying Itô’s rule on the process β (t)X (t) and then integrate, it gives

d (β (t)X (t)) = β (t)X (t)ϕS (t)σSdW
Q (t)
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3.1. Merton optimization problem

and thus

β (T )X (T ) = X (0) +

T∫
0

β (t)X (t)ϕS (t)σSdW
Q (t) . (3.5)

3.1. Merton optimization problem

The objective of an investor, given initial wealth x > 0, is to select a portfolio
process ϕ from the admissible set A (x) (as in Definition 2.14) that maximizes
his/her expected utility from the terminal wealth X (T ). We will restrict our-
selves to the power utility function with a risk aversion parameter γ:

U (x) =
xγ

γ
for γ ∈ (−∞, 1) \ {0} and x > 0. (3.6)

Now, the dynamic optimization problem is formulated mathematically as

max
ϕ∈Ã(x)

E
[

(X (T ))γ

γ

]
,

where Ã (x) =

{
ϕ ∈ A (x) | E

[(
(X (T ))γ

γ

)−]
<∞

}
.

(3.7)

Without any additional restriction, for instance risk constraints, the portfolio
optimization problem (3.7) in the continuous-time market model was first solved
by Robert C. Merton in [48] using a stochastic control approach. That is why
we call it here Merton optimization problem. The martingale approach for solv-
ing the continuous-time portfolio optimization problem was introduced by Pliska
(see [54]), Karatzas, Lehoczky and Shreve (see [40]), and Cox and Huang (see
[10]). We solve Problem (3.7) using the martingale approach which consists of a
static optimization and a representation problem as explained in Chapter 2.

Static optimization problem
The static optimization problem can be stated as follows:

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint) ,

(3.8)
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3. Portfolio optimization with deterministic interest rates

where

B (x) :={
X (T ) > 0 | X (T ) FT -measurable,E

[(
(X (T ))γ

γ

)−]
<∞, X (0) = x

}
.

Theorem 3.2 Consider the utility function U as given in (3.6) and assume that

max
X(T )∈B(x)

E [U (X (T ))] <∞ for all x ∈ (0,∞) . (3.9)

Then the solution for the Optimization Problem (3.8) is given by

X∗ (T ) = I (y∗H (T )) , (3.10)

where y∗ ∈ R is obtained through x = E [H (T ) I (yH (T ))] with I (x) = x
1

γ−1 .

Proof: We can use Theorem 2.16 since we have the assumption (3.9). The
existence and uniqueness of the solution are guaranteed by Theorem 2.16. We
prove here only the optimality of the solution. From Problem (3.8) and the
definition of X∗ (T ) we have

E [H (T )X∗ (T )] = E [H (T ) I (yH (T ))]

= E
[
H (T ) (yH (T ))

1
γ−1

]
= x.

(3.11)

Let X (T ) ∈ B (x) be arbitrary. Then

E [U (X∗ (T ))]
1
= E [U (I (y∗H (T )))]
2

≥ E
[
U (X (T )) + U

′
(I (yH (T ))) (I (yH (T ))−X (T ))

]
3
= E [U (X (T )) + yH (T ) (I (yH (T ))−X (T ))]
4
= E [U (X (T ))] + y {E [H (T ) I (yH (T ))]− E [H (T )X (T )]}
5
= E [U (X (T ))] + y︸︷︷︸

>0

{x− E [H (T )X (T )]}︸ ︷︷ ︸
≥0

6

≥ E [U (X (T ))] .

The equalities 1, 3, 4 and 5 follow from the form of X∗ in (3.10), U
′
(I (x)) = x,

linearity of expectation and Equation (3.11), respectively. The inequalities 2 and
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3.2. Optimization under bounded expected shortfall risk

6 are result of Equation (2.18) and the budget constraint, respectively. �

Representation problem
For the representation problem we have to find the trading strategy that gener-
ates the optimal payoff X∗ (T ).

Theorem 3.3 Suppose all the conditions of Theorem 3.2 are fulfilled. Then:

(a) The optimal wealth X∗ (t) at any time t ∈ [0, T ] is given by

X∗ (t) = (y∗)
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ),

where y∗ is given as in Theorem 3.2 and

MH (t, T ) =

(
r +

1

2
θ2

)
(T − t) ,

V H (t, T ) =

(
1

2
θ2

)
(T − t) .

(b) The portfolio process ϕ∗ (t) ∈ Ã (x) at any time t ∈ [0, T ] that replicates
the optimal wealth X∗ (t) is given by

ϕ∗ (t) = (ϕ∗S (t) , ϕ∗M (t)) ,

where ϕ∗S (t) =
1

1− γ
θ

σS
and ϕ∗M (t) = 1− ϕ∗S (t) .

Proof: See for example Ocone & Karatzas [53]. �

3.2. Optimization under bounded expected
shortfall risk

In this section we consider an investor whose aim, given initial wealth x, is to
find a portfolio process ϕ ∈ Ã (x) that maximizes his/her utility function (power
utility function as defined in (3.6)) from terminal wealth in the presence of both
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3. Portfolio optimization with deterministic interest rates

a budget and a risk constraint. In particular, the risk quantity is measured here
by present expected loss, i.e.

ρ (X (T )− q) = EQ [β (T ) (X (T )− q)−
]
≤ δ, (3.12)

where q > 0 is a pre-specified benchmark or a shortfall level and δ ≥ 0 is a bound
for the present expected loss. Then, the dynamic optimization problem reads as

max
ϕ∈Ã(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint)

EQ [β (T ) (X (T )− q)−
]
≤ δ (risk constraint) ,

(3.13)

where Ã (x) is as defined in (2.10). The dynamic problem (3.13) can be as well
splitted into the static and the representation problem.

Static optimization problem
The static optimization problem corresponding to the dynamic problem (3.13)
is stated as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

EQ [β (T ) (X (T )− q)−
]
≤ δ,

(3.14)

where B (x) is as defined in (2.12).

Remark 3.4 If δ =∞, it means the risk constraint has no bound, in that case
we are faced with the Merton optimization problem, as studied in Section 3.1.
If δ = 0, the risk constraint corresponds to X (T ) ≥ q. Then the optimization
problem (3.14) is transformed to

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

X (T ) ≥ q.

(3.15)

This is a so-called portfolio insurer problem.

34



3.2. Optimization under bounded expected shortfall risk

The minimum value of the risk bound δ such that the risk constraint can be
satisfied was studied by Gundel and Weber (see [29]) and the maximum value of
the risk bound δ such that the risk constraint holds with equality is given by the
risk of the Merton portfolio.

Theorem 3.5 (a) If δ ∈
(
δ, δ
)
, then the solution to the optimization problem

(3.14) is given by

X∗ (T ) = f (y∗1H (T ) , y∗2H (T )) ,

where

f (x1, x2) =


(x1)

1
γ−1 , for x1 ≤ qγ−1

q , for qγ−1 < x1 ≤ qγ−1 + x2

(x1 − x2)
1

γ−1 , for x1 > qγ−1 + x2,

and y∗1, y
∗
2 > 0 solve the system of equations

E [H (T ) f (y∗1H (T ) , y∗2H (T ))] = x

E
[
H (T ) (f (y∗1H (T ) , y∗2H (T ))− q)−

]
= δ.

(3.16)

The optimal terminal wealth X∗ can be rewritten as

X∗ (T ) = (y∗1H (T ))
1

γ−1 1{
H(T )≤ q

γ−1

y∗1

} + q1{
qγ−1

y∗1
<H(T )≤ qγ−1

y∗1−y
∗
2

}
+ ((y∗1 − y∗2)H (T ))

1
γ−1 1{

H(T )> qγ−1

y∗1−y
∗
2

}.

(b) If δ = δ and qE [H (T )] ≤ x it holds δ = 0. Then the optimal terminal wealth
to problem (3.14) is given by

XPI (T ) = fPI
(
yPIH (T )

)
where

fPI (x) =

{
(x)

1
γ−1 , for x ≤ qγ−1

q , for x > qγ−1

and yPI solves the equation E [H (T ) fPI (yH (T ))] = x.
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3. Portfolio optimization with deterministic interest rates

Proof: See [25]. �

Representation problem
We have now to derive the trading strategies ϕ∗ (t) = (ϕ∗S (t) , ϕ∗M (t))> and

ϕPI (t) =
(
ϕPIS (t) , ϕPIM (t)

)>
that replicate the optimal terminal wealth X∗ (T )

and XPI (T ), respectively, from Theorem 3.5. This is done in the following
theorem.

Theorem 3.6 Consider all the conditions of Theorem 3.5. Then:

(a) The optimal wealth X∗ (t) and XPI (t) at any time t ∈ [0, T ] are given by

X∗ (t)

= (y∗1)
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ) ∗ Φ

(
dδ1 (t)

)
+ e−M

H(t,T )+ 1
2
V H(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
+ (y∗1 − y∗2)

1
γ−1 (H (t))

1
γ−1 e

γ
1−γM

H(t,T )+ 1
2( γ

1−γ )
2
V H(t,T ) ∗ Φ

(
dδ4 (t)

)

and

XPI (t)

=
(
yPI1

) 1
γ−1 (H (t))

1
γ−1 e

γ
1−γM

H(t,T )+ 1
2( γ

1−γ )
2
V H(t,T ) ∗ Φ

(
dPI1 (t)

)
+ e−M

H(t,T )+ 1
2
V H(t,T ) ∗ Φ

(
dPI2 (t)

)
,

where
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3.2. Optimization under bounded expected shortfall risk

dδ1 (t) =
ln
(

qγ−1

y∗1H(t)

)
+MH (t, T )√

V H (t, T )
+

γ

1− γ
√
V H (t, T ),

dδ2 (t) = −
ln
(

qγ−1

y∗1H(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ),

dδ3 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ),

dδ4 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H(t)

)
+MH (t, T )√

V H (t, T )
− γ

1− γ
√
V H (t, T ),

dPI1 (t) =
ln
(

qγ−1

yPIH(t)

)
+MH (t, T )√

V H (t, T )
+

γ

1− γ
√
V H (t, T ),

dPI2 (t) = −
ln
(

qγ−1

yPIH(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ).

(3.17)

MH (t, T ) and V H (t, T ) are as in Theorem 3.3, and Φ (·) is the standard-
normal probability distribution function.

(b) The trading strategies that replicate the optimal wealth X∗ (t) and XPI (t)

are given by ϕ∗ (t) = (ϕ∗S (t) , ϕ∗M (t))> and ϕPI (t) =
(
ϕPIS (t) , ϕPIM (t)

)>
,

respectively. Hereby

ϕ∗S (t) =
θ

(1− γ)σS
+
θqe−M

H(t,T )+ 1
2
V H(t,T ) ∗

(
Φ
(
dδ2 (t)

))
(γ − 1)X∗ (t)σS

−
θqe−M

H(t,T )+ 1
2
V H(t,T ) ∗

(
Φ
(
dδ3 (t)

))
(γ − 1)X∗ (t)σS

,

ϕ∗M (t) = 1− ϕ∗S (t) ,

ϕPIS (t) =
θ

(1− γ)σS
+
θqe−M

H(t,T )+ 1
2
V H(t,T ) ∗ Φ

(
dPI2 (t)

)
(γ − 1)XPI (t)σS

,

ϕPIM (t) = 1− ϕPIS (t) .

Proof: See [6] or [23]. �
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4. Portfolio optimization with a
one-factor Vasiček model

In the previous chapter we discussed the portfolio optimization problem under
deterministic interest rates. This has the advantage that closed form solutions
can be easily obtained. However, the assumption of deterministic interest rates is
far from the real world, especially for long term investments. In this chapter we
analyze portfolio optimization problems in which the interest rate dynamics of
the economy is described by a one-factor Vasiček model. The presentation of the
problem with one-factor Vasiček term structure without risk constraints and in
a complete market goes back to Hainaut (see [30]) but we use Malliavin calculus
to derive the optimal trading strategy of the investor. In this chapter we study
also the portfolio optimization problem without risk constraints in an incomplete
market. Furthermore, we investigate the problem of portfolio optimization in the
presence of risk constraints in both a complete and an incomplete market.

Financial market models

We consider an arbitrage free financial market where a money market account
M (a saving’s account), a (zero) coupon bond B and a stock S are contin-
uously traded over a fixed finite time-horizon [0, T ]. The uncertainty in this
market is modeled by a complete probability space (Ω,F,P). The augmented
filtration generated by a 2-dimensional standard Brownian motion: W (t) =(
W P
r (t) ,W P

S (t)
)>

under the probability measure P is denoted by F .

The dynamics of these securities at time t ∈ [0, T ] are modeled by the following
stochastic differential equations (SDEs):

dM (t) = M (t) r (t) dt (4.1)

dB
(
t, T̃
)

= B
(
t, T̃
) [
µB

(
t, T̃
)
dt+ σB

(
t, T̃
)
dW P

r (t)
]

(4.2)

dS (t) = S (t)
[
µS (t) dt+ σrSdW

P
r (t) + σSdW

P
S (t)

]
, (4.3)
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4. Portfolio optimization with a one-factor Vasiček model

where:

• r (t) is the interest rate or the return of the money market account,

• B
(
t, T̃
)

is the bond price at time t ∈ [0, T ] with maturity T̃ > T ,

• µB
(
t, T̃
)

is the drift of the bond price at time t ∈ [0, T ] and from the

Assumption 2.2 µB

(
t, T̃
)

= µ̄B + r (t), where µ̄B is a constant.

• σ̃B (t) = σB

(
t, T̃
)
> 0 is the volatility of the bond price at time t ∈ [0, T ],

• µS (t) is the drift of the stock price at time t ∈ [0, T ] and again from the
Assumption 2.2 µS (t) = µ̄S + r (t), where µ̄S is a constant.

• σS > 0 is the volatility of the stock price and it is considered to be constant,

• σrS is the correlation of the stock price and the interest rate, and it is also
considered to be constant.

The dynamics of the interest rates r (t) are assumed to be stochastic and we
consider in particular, throughout this chapter, the one-factor Vasiček model
whose dynamics are characterized by the following SDE:

dr (t) = a
(
bP − r (t)

)
dt+ σrdW

P
r (t) , (4.4)

where the constants a, bP, σr are the speed of the mean reversion, the level of
mean reversion with respect to the probability measure P and the volatility of
the interest rate r (t), respectively.

We can rewrite the dynamics of the bond and stock prices in the matrix form
as

d

(
B
(
t, T̃
)

S (t)

)
=

(
µB

(
t, T̃
)

µS (t)

)
dt+

(
σB

(
t, T̃
)

0

σSr σS

)
︸ ︷︷ ︸

=:A

(
dW P

r (t)
dW P

S (t)

)
. (4.5)

Therefore

A−1 =

( 1
σ̃B

0

− σSr
σ̃BσS

1
σS

)
with σ̃B = σ̃B (t) . (4.6)
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Remark 4.1 Note that the number of uncertainty is equal to the number of risky
assets. Therefore, we are still in a complete market.

Due to the absence of arbitrage and completeness of this financial market, there
exists a unique equivalent martingale measure with respect to P denoted by Q,
i.e. under Q the discounted prices of securities are martingales, and characterized
by (

dQ
dP

)
t

= ZΘ (t) = exp

(
−1

2

∫ t

0

‖Θ (u)‖2 du−
∫ t

0

Θ> (u) dW P (u)

)
, (4.7)

where the vector Θ (t) = (θr (t) , θS (t))> is composed of the market price of risk
of the bond (θr (t)) and the market price of risk of the stock (θS (t)), which are
given by

Θ (t) =

(
θr (t)
θS (t)

)
= A−1

(
µB

(
t, T̃
)
− r (t)

µS (t)− r (t)

)

=

 µB(t,T̃)−r(t)
σ̃B

µS(t)−r(t)
σS

− σSr
σS

(
µB(t,T̃)−r(t)

σ̃B

) =

( µ̄B
σ̃B

µ̄S
σS
− σSr

σS

(
µ̄B
σ̃B

)) . (4.8)

Let us define

λS :=
µS (t)− r (t)

σS
=
µ̄S
σS
. (4.9)

The processes

WQ
r (t) := W P

r (t) +

∫ t

0

θr (u) du, for t ∈ [0, T ] (4.10)

WQ
S (t) := W P

S (t) +

∫ t

0

θS (u) du, for t ∈ [0, T ] , (4.11)

from the Girsanov Theorem, are Brownian motions with respect to the proba-

bility measure Q. Therefore, the dynamics of r (t), B
(
t, T̃
)

and S (t) in terms

of Brownian motions WQ
r and WQ

S are then given by:

dr (t) = a

(
bP − σr

θr (t)

a
− r (t)

)
dt+ σr

(
dW P

r (t) + θr (t) dt
)

= a
(
bQ (t)− r (t)

)
dt+ σrdW

Q
r (t) ,

(4.12)
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4. Portfolio optimization with a one-factor Vasiček model

where bQ (t) = bP − σr
θr(t)
a

is the mean reversion of r (t) with respect to the
probability measure Q and will be denoted by b (t) in order to ease the notations.
That means we have a Hull-White model under Q (extended Vasiček with a and
σr being constants)

dB
(
t, T̃
)

B
(
t, T̃
) = µB

(
t, T̃
)
dt+ σB

(
t, T̃
)
dW P

r (t)

= µB

(
t, T̃
)
dt+ σB

(
t, T̃
)
d

(
WQ
r (t)−

∫ t

0

θr (u) du

)
= r (t) dt+ σB

(
t, T̃
)
dWQ

r (t)

(4.13)

dS (t)

S (t)
= µS (t) dt+ σSrdW

P
r (t) + σSdW

P
S (t)

= µS (t) dt+ σSrd

(
WQ
r (t)−

∫ t

0

θr (u) du

)
+ σSd

(
WQ
S (t)−

∫ t

0

λS (u) du+
σSr
σS

∫ t

0

θr (u) du

)
= r (t) dt+ σSrdW

Q
r (t) + σSdW

Q
S (t) .

(4.14)

Remark 4.2 (a) Following Musiela and Rutkowski [50] the bond price volatil-
ity in the Vasiček model is a deterministic, bounded and continuous func-

tion σ̃B = σ̃B

(
·, T̃
)

: [0, T ]→ R which is defined by

σB

(
t, T̃
)

:= −σrn
(
t, T̃
)
,

where

n
(
t, T̃
)

=
1

a

(
1− e−a(T̃−t)

)
.

Therefore, the dynamics of the bond price under the probability measure Q
in Equation (4.13) are given by

dB
(
t, T̃
)

= B
(
t, T̃
)(

r (t) dt− σrn
(
t, T̃
)
dWQ

r (t)
)
.

(b) The market price of risk is also a deterministic, bounded and continuous
function Θ : [0, T ]→ R2 which is given in (4.8).
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Remark 4.3 The stochastic differential equation ( 4.15) that characterizes the
dynamics of the stochastic interest rate under the probability measure P in the
Vasiček model:

dr (t) = a
(
bP − r (t)

)
dt+ σrdW

P
r (t) (4.15)

has the unique solution

r (t) = r (0) e−at + bP
(
1− e−at

)
+ e−atσr

∫ t

0

eaudW P
r (u) . (4.16)

We can define a unique deflator H (t, s) at time t, for a payment at time s ≥ t
as

H (t, s) :=
β (s)

β (t)

ZΘ (s)

ZΘ (t)

= exp

(
−
∫ s

t

r (u) du− 1

2

∫ s

t

‖Θ (u)‖2 du−
∫ s

t

Θ> (u) dW P (u)

)
,

(4.17)
with β as defined in (2.3) and ZΘ as in (4.7). For t = 0 we write

H (s) := exp

(
−
∫ s

0

r (u) du− 1

2

∫ s

0

‖Θ (u)‖2 du−
∫ s

0

Θ> (u) dW P (u)

)
.

(4.18)

Let us now consider an investor who initially has the wealth x > 0. We denote
the fraction of wealth invested in the money market account, bond and stock
at time t ∈ [0, T ] by the vector ϕ (t) = (ϕM (t) , ϕB (t) , ϕS (t))>, with ϕM (t) for
the money market account, ϕB for the bond and ϕS for the stock. According
to Assumptions 2.3 it follows that the fraction of wealth invested in the money
market account is given by (1− ϕB (t)− ϕS (t)).

The wealth process of an investor at time t ∈ [0, T ], denoted here also by X (t),
under the probability measure Q (using the Equations (4.1), (4.2) and (4.14))
follows the SDE:
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4. Portfolio optimization with a one-factor Vasiček model

dX (t) =dXM (t) + dXB (t) + dXS (t)

= (1− ϕB (t)− ϕS (t))X (t) r (t) dt

+X (t)ϕB (t)
(
r (t) dt− σrn

(
t, T̃
)
dWQ

r (t)
)

+X (t)ϕS (t)
(
r (t) dt+ σSrdW

Q
r (t) + σSdW

Q
S (t)

)
= X (t) r (t) dt− ϕB (t)X (t) r (t) dt− ϕS (t)X (t) r (t) dt

+X (t)ϕB (t) r (t) dt−X (t)ϕB (t)σrn
(
t, T̃
)
dWQ

r (t)

+X (t)ϕS (t) r (t) dt+X (t)ϕS (t)σSrdW
Q
r (t)

+X (t)ϕS (t)σSdW
Q
s (t)

= X (t)
[
r (t) dt+ ϕS (t)σSdW

Q
S (t)

+
(
ϕS (t)σSr − ϕB (t)σrn

(
t, T̃
))

dWQ
r (t)

]
,

(4.19)

where XM , XB and XS refer to the wealth invested in the money market account,
the bond and the stock, respectively. Applying the same procedures as used for
(2.8) and (2.9) on the process β (t)X (t) gives

d (β (t)X (t)) =β (t)X (t)
(
ϕS (t)σSr − ϕB (t)σrn

(
t, T̃
))

dWQ
r (t)

+ β (t)X (t)ϕS (t)σSdW
Q
S (t)

(4.20)

and thus

β (T )X (T ) =X (0) +

T∫
0

β (t)X (t)
(
ϕS (t)σSr − ϕB (t)σrn

(
t, T̃
))

dWQ
r (t)

+

T∫
0

β (t)X (t)ϕS (t)σSdW
Q
S (t) .

(4.21)

4.1. Optimization without risk constraints in a
complete market

In this section we focus on the portfolio optimization problem without risk con-
straints as studied in Section 3.1, but under the one-factor Vasiček model of
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4.1. Optimization without risk constraints in a complete market

interest rates. The dynamic and the static optimization problems in these set-
tings are stated as in Section 3.1.
The dynamic optimization problem is stated as in (3.7):

max
ϕ∈Ã(x)

E
[

(X (T ))γ

γ

]
,

where Ã (x) =

{
ϕ ∈ A (x) | E

[(
(X (T ))γ

γ

)−]
<∞

}
.

(4.22)

The corresponding static optimization problem is stated as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint) ,

(4.23)

where

B (x) :={
X (T ) > 0 | X (T ) FT -measurable,E

(
(X (T ))γ

γ

)−
<∞, X (0) = x

}
.

The following theorem characterizes the optimal terminal wealth, denoted by
X∗ (T ), and the trading strategy, denoted by the vector
ϕ∗ (t) = (ϕ∗M (t) , ϕ∗B (t) , ϕ∗S (t))>, that generates X∗ (T ).

Theorem 4.4 (i) The solution to the static optimization problem (4.23) is
given by

X∗ (T ) = (y∗H (T ))
1

γ−1 ,

with y∗ obtained through

E
[
y

1
γ−1 (H (T ))

γ
γ−1

]
= x, i.e. (y∗)

1
γ−1 =

x

E
[
(H (T ))

γ
γ−1

] .
(ii) The optimal wealth X∗ (t) at any time t ∈ [0, T ] is then

X∗ (t) = (y∗)
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ).
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4. Portfolio optimization with a one-factor Vasiček model

Here,

MH (t, T ) =

∫ T

t

(
r (t) e−a(s−t) + bP

(
1− e−a(s−t))+

1

2
‖Θ (s)‖2

)
ds,

V H (t, T ) =

∫ T

t

[
(σrn (s, T ) + θr (s))2 + θ2

S (s)
]
ds.

(4.24)

(iii) The trading strategy that replicates the optimal terminal wealth X∗ (t) is
given by

ϕ∗ (t) = (ϕ∗M (t) , ϕ∗B (t) , ϕ∗S (t))> , where

ϕ∗B (t) =
1

1− γ
1

σrn
(
t, T̃
) (θS (t)σSr

σS
− γσrn (t, T )− θr (t)

)
,

ϕ∗S (t) =
1

1− γ
θS (t)

σS
and

ϕ∗M (t) = 1− ϕ∗B (t)− ϕ∗S (t) .

(4.25)

Proof:

(i) From Theorem 3.2 it suffices to verify that E [U (X∗ (T ))] <∞, for all x ∈
(0,∞).

E [U (X∗ (T ))] = E
[

(X∗ (T ))γ

γ

]
= E

[
(y∗H (T ))

γ
γ−1

γ

]
=
y∗

γ
EQ
[
β (T ) (y∗H (T ))

1
γ−1

]
=
y∗

γ
EQ [β (T )X∗ (T )]

1

≤ y∗

γ
x

2
<∞.

The inequalities 1 and 2 hold because of the budget condition and y∗ ∈
(0,∞), respectively.

46



4.1. Optimization without risk constraints in a complete market

(ii) From the Equations (4.7) and (4.21), Itô’s lemma implies that the process
(H (t)X∗ (t))t∈[0,T ] is an F (t)-martingale, i.e.

H (t)X∗ (t) = E [H (T )X∗ (T ) | F (t)] . (4.26)

From (4.26) we have

X∗ (t) = E
[
H (T )

H (t)
X∗ (T ) | F (t)

]
= E

[
H (T )

H (t)

(
(y∗H (T ))

1
γ−1

)
| F (t)

]
= (y∗)

1
γ−1 E

[
(H (T ))

γ
γ−1

H (t)
| F (t)

]

= (y∗)
1

γ−1 E

[
(H (t))

γ
γ−1

H (t)

(
H (T )

H (t)

) γ
γ−1

| F (t)

]
1
= (y∗H (t))

1
γ−1 E

[(
H (T )

H (t)

) γ
γ−1

]
2
= (y∗)

1
γ−1 (H (t))

1
γ−1 e

γ
1−γM

H(t,T )+ 1
2( γ

1−γ )
2
V H(t,T ).

Equality 1 above holds because of the adaptedness and the Markov property
of (H (t))t∈[0,T ]. From Equation (4.17) we know that

H (T )

H (t)
= exp

(
−
∫ T

t

r (u) du− 1

2

∫ T

t

‖Θ (u)‖2 du−
∫ T

t

Θ> (u) dW P (u)

)
.

By Remark 4.3 we get∫ T

t

r (s) ds

=

∫ T

t

(
r (t) e−a(s−t) + bP

(
1− e−a(s−t))) ds+

∫ T

t

∫ s

t

σre
−a(s−u)dW P

r (u) ds

=

∫ T

t

(
r (t) e−a(s−t) + bP

(
1− e−a(s−t))) ds+ σr

∫ T

t

n (u, T ) dW P
r (u) ,

(4.27)

where n (u, T ) =
∫ T
u
e−a(T−s)ds = 1−e−a(T−u)

a
. The last equality of (4.27)

follows from the Fubini theorem for stochastic integration (see Theorem

64 in [55]). Hence
∫ T
t
r (s) ds is normally distributed and since Θ (t) is
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4. Portfolio optimization with a one-factor Vasiček model

deterministic, it follows that

− ln

(
H (T )

H (t)

)
∼ N

(
MH (t, T ) ,

√
V H (t, T )

)
. (4.28)

Hereby MH (t, T ) and V H (t, T ) are as given in (4.24).

(iii) We use Theorem A.7 and set F = β (T )X∗ (T ) to compute the opti-
mal trading strategy ϕ∗ (t) but we have to verify first that the process
β (T )ZΘ (T )X∗ (T ) ∈ D1,1, where D1,1 is as in Definition A.2. Let us first

show that (r (t) , θr (t) , θS (t))> ∈ (D)3 (D is as defined in the Definition
A.2) in order to use Proposition A.4 and the chain rule of Lemma A.5.
From Remark 4.2 we know that θr (t) , θS (t) ∈ D. From Equation (4.4) we
have

dr (t) = a
(
bQ (t)− r (t)

)︸ ︷︷ ︸
=:µr(t,r)

dt+ σrdW
Q
r (t) . (4.29)

Observe that µr and σr satisfy the conditions stated in Proposition A.4
and hence r (t) ∈ D. From the Equation (4.16) we have

r (t) = r (0) e−at + bQ (t)
(
1− e−at

)
+ e−atσr

∫ t

0

eaudWQ
r (u) . (4.30)

Using Theorem 3.18 and Corollary 3.19 in [18] yields

Dtr (s) = Dt

(
r (0) e−as + bQ (t)

(
1− e−as

)
+ σr

∫ s

0

e−a(s−u)dWQ
r (u)

)
= Dt

(
σr

∫ s

0

e−a(s−u)dWQ
r (u)

)
= σr

∫ s

t

Dte
−a(s−u)dWQ

r (u) + σre
−a(s−t) = σre

−a(s−t),

(4.31)
for s ∈ (t, T ]. Using the same argument as above it follows that(∫ T

0

r (s) ds,

∫ T

0

θr (s) dWQ
r (s) ,

∫ T

0

θS (s) dWQ
S (s)

)>
∈ (D)3

with

Dt

∫ T

0

r (s) ds =

∫ T

t

Dtr (s) ds =

∫ T

t

σre
−a(s−t)ds = σrn (t, T ) ,

Dt

∫ T

0

θr (s) dWQ
r (s) =

∫ T

t

Dtθr (s) dWQ
r (s) + θr (t) = θr (t) and

Dt

∫ T

0

θS (s) dWQ
S (s) =

∫ T

t

DtθS (s) dWQ
S (s) + θS (t) = θS (t) .
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4.1. Optimization without risk constraints in a complete market

The chain rule in Lemma A.5 yields

β (T )ZΘ (T )X∗ (T ) = (y∗)
1

γ−1 (H (T ))
γ
γ−1 ∈ D1,1.

Now we can use representation (A.17) of Theorem A.7 for the process
β (T )X∗ (T ).

β (T )X∗ (T ) = EQ [β (T )X∗ (T )] +

∫ T

0

EQ [Dt (β (T )X∗ (T )) | F (t)] dWQ (t) .

(4.32)
Since Dt (Θ (t)) = 0 from the definition of the Malliavin derivative and
Θ (t) being a deterministic function.

Dt (β (T )X∗ (T )) =β (T )Dt (X∗ (T )) +X∗ (T )Dt (β (T ))

=β (T )Dt (X∗ (T )) +X∗ (T ) β (T )Dt

(
−
∫ T

0

r (s) ds

)
=β (T )Dt (X∗ (T )) +X∗ (T ) β (T ) (−σrn (t, T ))

(4.33)
from the product and chain rules. By using again Lemma A.5 gives

Dt (X∗ (T )) = Dt

(
(y∗H (T ))

1
γ−1

)
=

1

γ − 1
(y∗)

1
γ−1 Dt (H (T )) (H (T ))

1
γ−1
−1

=
1

γ − 1
(y∗H (T ))

1
γ−1 ×(

Dt

(
−
∫ T

0

r (s) dse1 +
1

2

∫ T

0

‖Θ (s)‖2 ds−
∫ T

0

Θ> (s) dWQ (s)

))
=

1

γ − 1
(y∗H (T ))

1
γ−1

(
−Dt

(∫ T

0

r (s) dse1

)
−Θ> (t)

)
=

1

γ − 1
(y∗H (T ))

1
γ−1
(
−n (t, T ) e1 −Θ> (t)

)
(4.34)

where e1 =

(
1
0

)
. Combining all together we finally obtain

Dt (β (T )X∗ (T )) =
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T ) (y∗H (T ))

1
γ−1 .

(4.35)
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4. Portfolio optimization with a one-factor Vasiček model

Substituting the value of Dt (β (T )X∗ (T )) from the Equation (4.35) in the
Equation (4.32) and comparing it with (4.21) gives the result.

�

4.2. Optimization with bounded expected shortfall
risk in a complete market

In this section we focus on the portfolio optimization problem in the presence
of risk constraints as discussed in Section 3.2, but we treat the problem under
the one-factor Vasiček model of interest rates. Hainaut (see [30]) studied the
same problem considering VaR as a risk measure. However, VaR measures the
probability of losses and ignores the magnitude of losses. We consider here the
expected loss, in particular present expected loss as presented in (3.12), which is
an alternative of the risk measures that put the magnitude of losses into account.
The dynamic optimization problem is stated as in (3.13):

max
ϕ∈Ã(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint)

EQ [β (T ) (X (T )− q)−
]
≤ δ (risk constraint) ,

(4.36)

where Ã (x) is as defined in (2.10).

The corresponding static problem reads as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

EQ [β (T ) (X (T )− q)−
]
≤ δ,

(4.37)

thereby B (x) is as defined in (2.12). The static portfolio insurer problem can be
also stated as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

X (T ) ≥ q,

(4.38)
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4.2. Optimization with bounded expected shortfall risk in a complete market

as given in Remark 3.4. Adding stochastic interest rates changes the deflator
H (T ). But Theorem 3.5 remains valid since the optimal terminal wealth X∗ (T )
is given as a function of H. The solutions to the problems (4.37) and (4.38) are
restated in the next theorem.

Theorem 4.5 Let q be a fixed benchmark and x be an initial wealth of an in-
vestor.
(a) If δ ∈

(
δ, δ
)
, then the solution to the Optimization problem (4.37) is given by

Xδ (T ) = f (y∗1H (T ) , y∗2H (T )) , (4.39)

where

f (x1, x2) =


(x1)

1
γ−1 , for x1 ≤ qγ−1

q , for qγ−1 < x1 ≤ qγ−1 + x2

(x1 − x2)
1

γ−1 , for x1 > qγ−1 + x2,

and y∗1, y
∗
2 > 0 solve the system of equations

E [H (T ) f (y∗1H (T ) , y∗2H (T ))] = x

E
[
H (T ) (f (y∗1H (T ) , y∗2H (T ))− q)−

]
= δ.

(4.40)

(b) If δ = δ and qE [H (T )] ≤ x it holds δ = 0. Then the optimal terminal wealth
to the problem (4.38) is given by

XPI (T ) = fPI
(
yPIH (T )

)
,

where

fPI (x) =

{
(x)

1
γ−1 , for x ≤ qγ−1

q , for x > qγ−1

and yPI solves the equation E [H (T ) fPI (yH (T ))] = x.

Proof: see [6]. �

Representation problem

We have now to find the trading strategies that generate the optimal terminal
wealth Xδ (T ) and XPI (T ).
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4. Portfolio optimization with a one-factor Vasiček model

Theorem 4.6 Suppose all the conditions of Theorem 4.5 are satisfied . Then:

(a) The time-t ∈ [0, T ] optimal wealth Xδ (t) and XPI (t) are given by

Xδ (t)

= (y∗1)
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ) ∗ Φ

(
dδ1 (t)

)
+ qe−M

H(t,T )+ 1
2
V H(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
+ (y∗1 − y∗2)

1
γ−1 (H (t))

1
γ−1 e

γ
1−γM

H(t,T )+ 1
2( γ

1−γ )
2
V H(t,T ) ∗ Φ

(
dδ4 (t)

)
and

XPI (t)

=
(
yPI
) 1
γ−1 (H (t))

1
γ−1 e

γ
1−γM

H(t,T )+ 1
2( γ

1−γ )
2
V H(t,T ) ∗ Φ

(
dPI1 (t)

)
+ e−M

H(t,T )+ 1
2
V H(t,T ) ∗ Φ

(
dPI2 (t)

)
,

where

dδ1 (t) =
ln
(

qγ−1

y∗1H(t)

)
+MH (t, T )√

V H (t, T )
+

γ

1− γ
√
V H (t, T ),

dδ2 (t) = −
ln
(

qγ−1

y∗1H(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ),

dδ3 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ),

dδ4 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H(t)

)
+MH (t, T )√

V H (t, T )
− γ

1− γ
√
V H (t, T ),

dPI1 (t) =
ln
(

qγ−1

yPIH(t)

)
+MH (t, T )√

V H (t, T )
+

γ

1− γ
√
V H (t, T ),

dPI2 (t) = −
ln
(

qγ−1

yPIH(t)

)
+MH (t, T )√

V H (t, T )
+
√
V H (t, T ).

With MH (t, T ) and V H (t, T ) as in Theorem 4.4 and Φ (·) is the standard-
normal probability distribution function.
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4.2. Optimization with bounded expected shortfall risk in a complete market

(b) The portfolio processes at any time t ∈ [0, T ] that replicate the optimal
terminal wealth Xδ (t) and XPI (t) are given by

ϕ∗ (t) = (ϕ∗M (t) , ϕ∗B (t) , ϕ∗S (t))> and

ϕPI (t) =
(
ϕPIM (t) , ϕPIB (t) , ϕPIS (t)

)>
,

respectively. Thereby

ϕ∗B (t) =
γ

γ − 1

1

σrn
(
t, T̃
) (σrn (t, T ) +

θr
γ

)
+

1

1− γ
(σrn (t, T ) + θr)

σrn
(
t, T̃
) ×

qe−M
H(t,T )+ 1

2
V H(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
X∗ (t)

,

ϕ∗S (t) =
1

1− γ
θS
σS

+
1

γ − 1

θSqe
−MH(t,T )+ 1

2
V H(t,T )

σS
×(

Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
X∗ (t)

,

ϕ∗M (t) = 1− ϕ∗B (t)− ϕ∗S (t) ,

ϕPIB (t) =
γ

γ − 1

1

σrn
(
t, T̃
) (σrn (t, T ) +

θr
γ

)
+

1

1− γ
(σrn (t, T ) + θr)

σrn
(
t, T̃
) ×

qe−M
H(t,T )+ 1

2
V H(t,T ) ∗ Φ

(
dPI2 (t)

)
XPI (t)

,

ϕPIS (t) =
1

1− γ
θS
σS

+
θS

γ − 1
qe−M

H(t,T )+ 1
2
V H(t,T )×

Φ
(
dPI2 (t)

)
XPI (t)

and

ϕPIM (t) = 1− ϕPIB (t)− ϕPIS (t) .
(4.41)

Proof:

(a) We give the proof for Xδ (t), the proof forXPI (t) is similar and it is omitted
here. Applying again Itô’s lemma to the Equations (4.7) and (4.21) implies
that the process

(
H (t)Xδ (t)

)
t∈[0,T ]

is F (t)-measurable, that means

H (t)Xδ (t) = E
[
H (T )Xδ (T ) | F (t)

]
. (4.42)
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4. Portfolio optimization with a one-factor Vasiček model

From (4.39) we can write Xδ (T ) as

Xδ (T ) = (y∗1H (T ))
1

γ−1 1A + q1B + ((y∗1 − y∗2)H (T ))
1

γ−1 1C . (4.43)

Hereby

A :=

{
H (T ) ≤ qγ−1

y∗1

}
, B :=

{
qγ−1

y∗1
< H (T ) ≤ qγ−1

y∗1 − y∗2

}
and

C :=

{
H (T ) >

qγ−1

y∗1 − y∗2

}
.

(4.44)

Hence

Xδ (t) =E
[
H (T )

H (t)
Xδ (T ) | F (t)

]
=E

[
H (T )

H (t)
(y∗1H (T ))

1
γ−1 1A | F (t)

]
+ E

[
H (T )

H (t)
q1B | F (t)

]
+ E

[
H (T )

H (t)
((y∗1 − y∗2)H (T ))

1
γ−1 1C | F (t)

]
.

(4.45)

We compute the conditional expectation of the first term of Equation (4.45)
and the remaining two terms are calculated in Appendix B. We use the
same idea as for the proof of Theorem 4.4 part (ii) of applying the Markov
and martingale property of (H (t))t∈[0,T ], and the fact that it is log-normally
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4.2. Optimization with bounded expected shortfall risk in a complete market

distributed.

E
[
H (T )

H (t)
(y∗1H (T ))

1
γ−1 1A | F (t)

]
= (y∗1)

1
γ−1 E

[
(H (T ))

γ
γ−1

H (t)
1A | F (t)

]

= (y∗1)
1

γ−1 E

[
(H (t))

γ
γ−1

H (t)

(
H (T )

H (t)

) γ
γ−1

1{
H(T )
H(t)

≤ qγ−1

y∗1H(t)

} | F (t)

]

= (y∗1H (t))
1

γ−1 E

[(
H (T )

H (t)

) γ
γ−1

1{
H(T )
H(t)

≤ qγ−1

y∗1H(t)

}
]

= (y∗1H (t))
1

γ−1 E

[
e

γ
1−γM

H(t,T )+ γ
1−γ

√
V H(t,T )x

1{
e−MH (t,T )−

√
VH (t,T )x≤ qγ−1

y∗1H(t)

}
]

= (y∗1H (t))
1

γ−1 E

e γ
1−γM

H(t,T )+ γ
1−γ

√
V H(t,T )x

1x≥−
ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )




= (y∗1H (t))

1
γ−1

1√
2π

∞∫
−

ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )

e
γ

1−γM
H(t,T )+ γ

1−γ

√
V H(t,T )xe−

x2

2 dx

= (y∗1H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T )×

1√
2π

∞∫
−

ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )

e−
(x− γ

1−γ
√
VH (t,T ))

2

2 dx

= (y∗1)
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ) ∗ Φ

(
dδ1 (t,H (t))

)
.

(b) We prove the statement for ϕ∗ (t). The proof of ϕPI (t) is quite similar and
it is omitted here.
Let us define a function ψ as

ψ (H (T )) :=H (T )Xδ (T )

= (y∗1)
1

γ−1 (H (T ))
γ
γ−1 1A +H (T ) q1B

+ (y∗1 − y∗2)
1

γ−1 (H (T ))
γ
γ−1 1C ,
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4. Portfolio optimization with a one-factor Vasiček model

with A, B and C as given in (4.44). From Definition A.8 we can directly
observe (with H (T ) playing a role of F and ψ playing a role of ϕ) that

ψ (H (T )) ∈ PC1

((
0,
qγ−1

y∗1

)
∪
(
qγ−1

y∗1
,
qγ−1

y∗1 − y∗2

)
∪
(

qγ−1

y∗1 − y∗2
,∞
))

.

The break points are 0, q
γ−1

y∗1
, qγ−1

y∗1−y∗2
and ∞. We have shown in the proof of

Theorem 4.4 part (iii) that (r (t) , θr (t) , θS (t))> ∈ (D)3. It follows from
Lemma A.5 that H (T ) ∈ D1,1. Using Proposition A.9 it holds ψ (H (T )) ∈
D1,1. Now we are in a position to apply representation (A.17), in Theorem
A.7, for the process β (T )Xδ (T ) since ZΘ (T ) β (T )Xδ (T ) = ψ (H (T )) ∈
D1,1.

β (T )Xδ (T ) =EQ [β (T )Xδ (T )
]

+

∫ T

0

EQ [Dt

(
β (T )Xδ (T )

)
| F (t)

]
dWQ (t)

(4.46)

since Dt (Θ (u)) = 0, u > t, which follows from Θ (u) being a deterministic
function.

Dt

(
β (T )Xδ (T )

)
= β (T )Dt

(
Xδ (T )

)
+Xδ (T )Dt (β (T ))

=β (T )Dt

(
Xδ (T )

)
+Xδ (T ) β (T )Dt

(
−
∫ T

0

r (s) ds

)
(4.47)

from the product and chain rules of Malliavin calculus. Applying the argu-
ments and the ideas used for the proof of Theorem 4.4 part (iii) we obtain

Dt

(
Xδ (T )

)
=

1

1− γ
(
σrn (t, T ) e1 + Θ> (t)

)
(y∗1H (T ))

1
γ−1 1A

+
1

1− γ
(
σrn (t, T ) e1 + Θ> (t)

)
((y∗1 − y∗2)H (T ))

1
γ−1 1C ,

(4.48)
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4.2. Optimization with bounded expected shortfall risk in a complete market

with e1 =

(
1
0

)
. Combining Equations (4.47) and (4.48) gives

Dt

(
β (T )Xδ (T )

)
=

γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T ) (y∗1H (T ))

1
γ−1 1A

− σrn (t, T ) e1β (T ) q1B

+
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T ) ((y∗1 − y∗2)H (T ))

1
γ−1 1C

=
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T ) (y∗1H (T ))

1
γ−1 1A

− σrn (t, T ) e1β (T ) q1B

− γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
e1β (T ) q1B

+
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
e1β (T ) q1B

+
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T ) ((y∗1 − y∗2)H (T ))

1
γ−1 1C .

After some rearrangements we get

Dt

(
β (T )Xδ (T )

)
=

γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ> (t)

)
β (T )Xδ (T )

+
1

γ − 1

(
σrn (t, T ) e1 −Θ> (t)

)
e1β (T ) q1B

(4.49)

with Xδ as given in (4.43).

Plugging the value of Dt

(
β (T )Xδ (T )

)
from Equation (4.49) in Equation

(4.46) and comparing it with (4.21), with X (T ) replaced by Xδ (T ), we
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4. Portfolio optimization with a one-factor Vasiček model

obtain

ϕS (t)σSr − ϕB (t)σrn
(
t, T̃
)

=
γ

1− γ

(
σrn (t, T ) +

1

γ
θr (t)

)
EQ
[
β (T )Xδ (T ) | F (t)

]
β (t)Xδ (t)

+
1

γ − 1
(σrn (t, T )− θr (t))

EQ [β (T ) (T ) q1B | F (t)]

β (t)Xδ (t)

ϕS (t)σS =
1

1− γ
θS (t)

EQ
[
β (T )Xδ (T ) | F (t)

]
β (t)Xδ (t)

+
1

γ − 1
θS (t)

EQ [β (T ) (T ) q1B | F (t)]

β (t)Xδ (t)
.

(4.50)

We know from the martingale property of
(
β (t)Xδ (t)

)
t∈[0,T ]

under Q that

β (t)Xδ (t) = EQ [β (T )Xδ (T ) | F (t)
]
.

EQ [β (T ) q1B | F (t)] is computed by applying the same arguments used
for the proof of part (a). Solving the system of the Equation (4.50)
simultaneously gives ϕ∗B (t) and ϕ∗S (t), and ϕ∗M (t) is obtained through
1− ϕ∗B (t)− ϕ∗S (t).

�

4.3. Optimization without risk constraints in an
incomplete market

So far in this chapter we have been working in a complete financial market but
the financial market might as well be incomplete. In this and the next section we
turn to the world of incomplete financial markets. More precisely, we consider
a financial market consisting of one money market account M and one stock S
with prices evolving as in (4.1) and (4.3), respectively:

dM (t) = M (t) r (t) dt (4.51)

dS (t) = S (t)
[
µS (t) dt+ σSrdW

P
r (t) + σSdW

P
S (t)

]
. (4.52)

The wealth process of an investor under the probability measure P is ruled by
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4.3. Optimization without risk constraints in an incomplete market

dX (t) =dXM (t) + dXS (t)

= (1− ϕS (t))X (t) r (t) dt

+X (t)ϕS (t)
(
µS (t) dt+ σSrdW

P
r (t) + σSdW

P
S (t)

)
,

where XM and XS are as in (4.19).

Remark 4.7 Since our market is assumed to be arbitrage free, from Theorem
2.7 we know that Me 6= ∅. We shall identify Q ∈ Me by its Radon-Nikodym
derivative ZΘ (t) ∈ L1 (Ω,F ,P) defined by

ZΘ (t) :=

(
dQ
dP

)
t

= exp

{
−1

2

∫ t

0

‖Θ (u)‖2 du−
∫ t

0

Θ> (u) dW P (u)

}
.

for some Θ (t) = (θr (t) , θS (t))> solving

µS (t)− r (t) = θr (t)σSr + θS (t)σS, (4.53)

θr and θS are interpreted as the market prices of risk due to the interest rate r
and the stock S, respectively.

Observe that Θ (t) := (θr (t) , θS (t))> corresponds to (Q ∈ Me). Now we have
in the Equation (4.53) two unknowns (θr and θS) in one equation. So, the values
of these unknowns cannot be determined uniquely, that means the set Me is
comprised of infinitely many elements. This is then an indication that we are in
an incomplete market. Note also that the deflator H(s)

H(t)
at time t, for payment at

time s ≥ t defined by

H (s)

H (t)
:=

β (s)ZΘ (s)

β (t)ZΘ (t)
=
β (s)

(
dQ
dP

)
s

β (t)
(
dQ
dP

)
t

= exp

{
−
∫ s

t

r (u) du− 1

2

∫ s

t

‖Θ (u)‖2 du−
∫ s

t

Θ> (u) dW P (u)

}
,

(4.54)
where β (t) = 1

M(t)
, exists but it is not unique as it is the case in a complete

market. According the Girsanov Theorem the processes

WQ (t) =

(
WQ
r (t)

WQ
S (t)

)
:=

(
W P
r (t) +

∫ t
0
θr (u) du

W P
S (t) +

∫ t
0
θS (u) du

)
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4. Portfolio optimization with a one-factor Vasiček model

are Brownian motions under the probability measure Q ∈Me. The dynamics of
the interest rates r (t) and the stock S (t) under the measure Q ∈ Me are given
by

dr (t) = a
(
bQ (t)− r (t)

)
dt+ σrdW

Q
r (t)

dS (t) = S (t)
[
r (t) dt+ σSrdW

Q
r (t) + σSdW

Q
S (t)

]
.

Note that the dynamics of the money market account

dM (t) = M (t) r (t) dt

do not change because they do not contain a diffusion term.

The wealth process of an investor in terms of WQ, or under the probability
measure Q ∈Me, is described by the following SDE

dX (t) = (1− ϕS (t))X (t) r (t) dt

+X (t)ϕS (t)
(
r (t) dt+ σSrdW

Q
r (t) + σSdW

Q
S (t)

)
=X (t)

[
r (t) dt+ ϕS

(
σSrdW

Q
r (t) + σSdW

Q
S (t)

)]
.

By using Itô’s rule on the process β (t)X (t), as it is done in Chapter 3, it gives

d (β (t)X (t)) = β (t)X (t)ϕS (t)
[
σSrdW

Q
r (t) + σSdW

Q
S (t)

]
and

β (T )X (T ) = X (0) +

∫ T

0

β (t)X (t)ϕS (t)σSrdW
Q
r (t)

+

∫ T

0

β (t)X (t)ϕS (t)σSdW
Q
S (t) .

(4.55)

Static optimization problem
The static optimization problem in the case of incomplete market is stated as in
the case of complete market (Problem (4.23)) and it is re-stated below

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint) ,

(4.56)

where B (x) is as in (4.23).
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4.3. Optimization without risk constraints in an incomplete market

We use a Lagrangian approach to solve Problem (4.56) with the Lagrangian
function L defined by

L (y,Q, X (T )) := E
[

(X (T ))γ

γ
+ y

(
x− β (T )

(
dQ
dP

)
T

X (T )

)]
= E

[
(X (T ))γ

γ
− yβ (T )

(
dQ
dP

)
T

X (T ) + yx

]
,

(4.57)

where y is the Lagrangian multiplier. The function L in (4.57) is constructed
by penalizing the objective function of the Problem (4.56) by its constraint. Let
us first solve the primal problem and then its dual problem, which are stated as
follows:
Primal problem:

Ψ (y,Q) := max
X(T )∈B(x)

L (y,Q, X (T )) for y ∈ (0,∞) and Q ∈Me. (4.58)

Dual problem:

Φ (X (T )) := min
y∈(0,∞),Q∈Me

L (y,Q, X (T )) for X (T ) ∈ B (x) . (4.59)

For the case of incomplete markets, the set Me is composed of infinitely many
elements, as mentioned before, where in the dual problem (4.59) we have to find
y∗ ∈ (0,∞) and Q∗ ∈Me that minimize the Lagrangian function L (y,Q, X (T ))
for a given X (T ) ∈ B (x). But for the case of complete markets the set Me is
a singleton and we have only to find y∗ ∈ (0,∞) that solves the problem (4.59)
for a given X (T ) ∈ B (x). The solution to the primal problem (4.58) for the
incomplete market looks like for the complete market and is given in the following
proposition without a proof because the proof is exactly as for complete markets
for every Q fixed.

Proposition 4.8 For given Q ∈ Me, the solution to the primal problem (4.58)
is given by X∗ (T ) = f (y∗,Q), thereby

f (y∗,Q) =

(
y∗β (T )

(
dQ
dP

)
T

) 1
γ−1

and y∗ ∈ (0,∞) solves EQ [β (T ) f (y,Q)] = x.

61



4. Portfolio optimization with a one-factor Vasiček model

By inserting X∗ (T ) and y∗ from Proposition 4.8 in the Equation (4.57) it gives

L (y∗,Q, X∗ (T )) = E
[

(X∗ (T ))γ

γ
− y∗β (T )

(
dQ
dP

)
T

X∗ (T ) + y∗x

]

= E

(y∗β (T )
(
dQ
dP

)
T

) γ
γ−1

γ
− y∗β (T )

(
dQ
dP

)
T

(
y∗β (T )

(
dQ
dP

)
T

) 1
γ−1

+ y∗x


= E

[
1− γ
γ

(
y∗β (T )

(
dQ
dP

)
T

) γ
γ−1

+ y∗x

]
.

(4.60)

Recall from (4.54) and Remark 4.7 that

β (T )

(
dQ
dP

)
T

= β (T )ZΘ (T ) =

exp

{
−
∫ T

0

r (t) dt− 1

2

∫ T

0

‖Θ (t)‖2 dt−
∫ T

0

Θ> (t) dW P (t)

}
and

µS (t)− r (t) = θr (t)σSr + θS (t)σS. (4.61)

We are now ready to state a theorem that gives the solution to the dual problem
(4.59) for X∗ (T ) and y∗ from Proposition 4.8.

Theorem 4.9 For y∗ and X∗ (T ) as in Proposition 4.8, the dual problem (4.59)
is equivalent to

min
Θ(t)=(θr(t),θS(t))

E
[

1− γ
γ

(y∗)
γ
γ−1
(
β (T )ZΘ (T )

) γ
γ−1

]
s.t. θr (t)σSr + θS (t)σS = µ̄S.

(4.62)

Then, the solution to (4.62) is given by Θ∗ (t) = (θ∗r (t) , θ∗S (t))>, where

θ∗r (t) =
σSrµ̄S − γσ2

Sσrn (t, T )

σ2
S + σ2

rS

and

θ∗S (t) =
µ̄S
σS
− σSrθ

∗
r (t)

σS
.
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4.3. Optimization without risk constraints in an incomplete market

Proof: The existence and uniqueness of the solution of problem (4.62) is guar-
anteed by the fact that the asymptotic elasticity of power utility function is less
than one and Theorem 2.18. From (4.16)∫ T

0

r (t) dt

=

∫ T

0

r (0) e−atdt+

∫ T

0

bQ (t)
(
1− e−at

)
dt+

∫ T

0

e−atσr

∫ t

0

eaudWQ
r (u) dt

=

∫ T

0

r (0) e−atdt+

∫ T

0

bP
(
1− e−at

)
dt+

∫ T

0

σrn (t, T ) dW P
r (t) .

Hence
∫ T

0
r (t) dt is normally distributed and since Θ (t) is deterministic it follows

that

γ

1− γ

(∫ T

0

r (t) dt+
1

2

∫ T

0

‖Θ (t)‖2 dt+

∫ T

0

Θ> (t) dW P (t)

)
∼ N

(
M,
√
V
)
,

where

M =
γ

1− γ

[∫ T

0

r (0) e−atdt+

∫ T

0

bP
(
1− e−at

)
dt+

1

2

∫ T

0

‖Θ (t)‖2 dt

]
V =V ar

[
γ

1− γ

(∫ T

0

r (t) dt+
1

2

∫ T

0

‖Θ (t)‖2 dt+

∫ T

0

Θ> (t) dW P (t)

)]
=

γ2

(1− γ)2

[∫ T

0

[
(σrn (t, T ) + θr (t))2 + θ2

S (t)
]
dt

]
.

Therefore,

L (y∗,Q, X∗ (T )) =
1− γ
γ

(y∗)
γ
γ−1 exp

{
M +

1

2
V

}
+ xy∗.

and

min
Q∈Me

L (y∗,Q, X∗ (T )) = min
Θ(t)

1− γ
γ

(y∗)
γ
γ−1 exp

{
M (θr, θS) +

1

2
V (θr, θS)

}
,

since the market price of risk corresponds to the equivalent martingale measure
and the term xy∗ does not depend on Q. As the relation (4.61) has to be fulfilled,
then it acts as a constraint in the following optimization problem.

min
Θ=(θr,θS)

E
[

1− γ
γ

(y∗)
γ
γ−1 exp

{
M (θr, θS) +

1

2
V (θr, θS)

}]
s.t. θr (t)σSr + θS (t)σS = µS (t)− r (t) = µ̄S.

(4.63)
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4. Portfolio optimization with a one-factor Vasiček model

To solve the problem (4.63) let us set first

θr (t) = λ (t) (4.64)

and then express θS (t) in terms of λ (t) as

θS (t) =
µ̄S
σS
− σSrλ (t)

σS
. (4.65)

Let us define a function g (λ) as

g (λ) :=
1− γ
γ

(y∗)
γ
γ−1 eM(λ)+ 1

2
V (λ)

where

M (λ) =
γ

1− γ

[∫ T

0

r (0) e−atdt+

∫ T

0

bP
(
1− e−at

)
dt

]
+

γ

1− γ
1

2

[∫ T

0

(λ (t))2 dt+

∫ T

0

(
µ̄S
σS
− σSrλ (t)

σS

)2

dt

]
,

V (λ) =
γ2

(1− γ)2

∫ T

0

[
(σrn (t, T ) + λ (t))2 +

(
µ̄S
σS
− σSrλ (t)

σS

)2
]
dt.

Now, the problem (4.63) is reduced to the following:

min
λ
g (λ) . (4.66)

(i) For γ ∈ (0, 1) g is minimum, if M (λ) + 1
2
V (λ) is minimum.

M (λ) +
1

2
V (λ) =∫ T

0

γ

1− γ

[
r (0) e−at + bP

(
1− e−at

)
+

1

2

(
(λ (t))2 +

(
µ̄S
σS
− σSrλ (t)

σS

)2
)

+
1

2

γ

1− γ

(
(σrn (t, T ) + λ (t))2 +

(
µ̄S
σS
− σSrλ (t)

σS

)2
)]

dt

=:

∫ T

0

f (λ (t) , t) dt.

64



4.3. Optimization without risk constraints in an incomplete market

So, g is minimum, if λ (t) minimizes f (λ (t) , t) for all t ∈ [0, T ].

∂f (λ, t)

∂λ
=

γ

1− γ

[
λ− σSr

σS

(
µ̄S
σS
− σSrλ

σS

)
+

γ

1− γ

(
(σrn (t, T ) + λ)− σSr

σS

(
µ̄S
σS
− σSrλ

σS

))]
!

= 0.

(4.67)

After some reshuffling and making λ in Equation (4.67) the subject, we
obtain

λ∗ (t) =
σSrµ̄S − γσ2

Sσrn (t, T )

σ2
S + σ2

rS

. (4.68)

λ∗ (t) is a candidate minimizer of f (λ (t) , t). We have to prove that λ∗ (t)
is a global minimizer of f (λ (t) , t). Let us use second order condition, i.e.,

we need to show that ∂2f(λ,t)
∂λ2

> 0 at λ∗ (t) for all t ∈ [0, T ].

∂2f (λ, t)

∂λ2
=

γ

1− γ

[
1 +

σ2
Sr

σ2
S

+
γ

1− γ

(
1 +

σ2
Sr

σ2
S

)]
=

(
γ

1− γ
+

γ2

(1− γ)2

)(
1 +

σ2
Sr

σ2
S

)
> 0.

(4.69)

(ii) For γ ∈ (−∞, 0) g is minimum, if M (λ) + 1
2
V (λ) is maximum. We take

the same steps as for part (i) and we obtain λ∗ (t), as given in (4.68),
as a candidate maximizer of f (λ (t) , t). What is left, is to show that
∂2f(λ(t),t)

∂λ2
< 0 at λ∗ (t) for all t ∈ [0, T ], in order for λ∗ (t) to be a global

maximizer of f (λ (t) , t). From (4.69) we have

∂2f (λ, t)

∂λ2
=

(
γ

1− γ
+

γ2

(1− γ)2

)(
1 +

σ2
Sr

σ2
S

)

=
γ

1− γ︸ ︷︷ ︸
<0

1 +
γ

1− γ︸ ︷︷ ︸
>0


1 +

σ2
Sr

σ2
S︸ ︷︷ ︸

>0

 < 0.

�
After characterizing Q∗ ∈Me, by(

dQ∗

dP

)
T

= ZΘ∗ (T ) := exp

{
−1

2

∫ T

0

‖Θ∗ (u)‖2 du−
∫ T

0

Θ∗,> (u) dW P (u)

}
,
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4. Portfolio optimization with a one-factor Vasiček model

with Θ∗ as in Theorem 4.9, the same procedures as for the complete market are
taken to derive the optimal trading strategy. The following theorem characterizes
the trading strategy that generates the optimal terminal wealth X∗ (T ).

Theorem 4.10 Suppose that all the conditions of Proposition 4.8 and Theorem
4.9 are fulfilled. Then:

(a) The optimal wealth at any time t ∈ [0, T ] is

X∗ (t)

= (y∗)
1

γ−1 (H∗ (t))
1

γ−1 e
γ

1−γM
H∗ (t,T )+ 1

2( γ
1−γ )

2
V H
∗

(t,T ),

where

H∗ (t) = β (t)ZΘ∗ (t) ,

MH∗ (t, T ) =

∫ T

t

(
r (t) e−a(s−t) + bP

(
1− e−a(s−t))+

1

2
‖Θ∗ (s)‖2

)
ds,

V H∗ (t, T ) =

∫ T

t

[
(σrn (s, T ) + θ∗r (s))2 + (θ∗S (s))2] ds,

and Q∗ ∈Me as in Theorem 4.9.

(b) The portfolio process that generates the wealth X∗ (t) is given by

ϕ∗S (t) =
µ̄S + γσSrσrn (t, T )

(1− γ) (σ2
S + σ2

Sr)

and ϕ∗M (t) = 1− ϕ∗S (t) .

Proof: The proof is as of Theorem 4.4 part (ii) and (iii) with Θ (t) replaced
by Θ∗ (t), since Θ (t) and Θ∗ (t) share the same properties of being continuous,
deterministic and bounded. Using the same argument discussed in Theorem 4.4
for part (a) the result is obtained directly, and for part (b) the representation
(A.17) is used for the random variable β (T )X∗ (T ).

β (T )X∗ (T ) = EQ∗ [β (T )X∗ (T )] +

∫ T

0

EQ∗ [Dt (β (T )X∗ (T )) | F (t)] dWQ∗ (t) .

(4.70)
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4.3. Optimization without risk constraints in an incomplete market

Using the idea of the proof of Theorem 4.4 we obtain

Dt (β (T )X∗ (T ))

=
γ

1− γ

(
σrn (t, T ) e1 +

1

γ
Θ∗,> (t)

)
β (T )

(
y∗β (T )ZΘ∗ (T )

) 1
γ−1

(4.71)

Substituting the value of Dt (β (T )X∗ (T )) from Equation (4.71) into Equation
(4.70) and comparing it with (4.55) gives

β (t)X∗ (t)ϕS (t)σSr =
γ

1− γ

(
σrn (t, T ) +

1

γ
θ∗r (t)

)
×

EQ∗
[
β (T ) (y∗H (T ))

1
γ−1 | F (t)

] (4.72)

and

β (t)X∗ (t)ϕS (t)σS =
1

1− γ
θ∗S (t)EQ∗

[
β (T ) (y∗H (T ))

1
γ−1 | F (t)

]
(4.73)

Using Equation (4.72) and the fact that
(
β (t)X∗ (t)t∈[0,T ]

)
is a martingale under

Q∗ results in

ϕ∗S (t)σSr =
γ

1− γ

(
σrn (t, T ) +

1

γ
θ∗r (t)

)
. (4.74)

Substituting the value of θ∗r (t) from Theorem 4.9 in (4.74) and after some rear-
rangements we obtain the results. �

Remark 4.11 If we use the Equation (4.73) for the computation of ϕ∗S (t), it
gives the same results.

Proof: From Equation (4.73) and (β (t)X∗ (t))t∈[0,T ] being a martingale process
under Q∗ we get

ϕ∗S (t)σS =
1

1− γ
θ∗S (t) .

Substituting the value of θ∗S (t) from Theorem 4.9 in (4.3) gives

ϕ∗S (t) =
1

1− γ
µ̄S
σ2
S

− 1

1− γ
σrS
σ2
S

(
σrSµ̄S − γσ2

Sσrn (t, T )

σ2
S + σ2

rS

)
=
µ̄S + γσrSσrn (t, T )

(1− γ) (σ2
S + σ2

rS)
.
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4. Portfolio optimization with a one-factor Vasiček model

�
Note that if S and r are uncorrelated, i.e. for σSr = 0, we have ϕ∗S (t) = 1

1−γ
µ̄S
σ2
S

which corresponds to the case of constant r. The same applies to γ → 0 which
corresponds to logarithmic utility function.

4.4. Optimization with bounded expected shortfall
risk in an incomplete market

In this section we examine the portfolio optimization problem in an incomplete
market, as studied in Section 4.3, in the presence of an additional risk constraint.
We consider a portfolio manager who wishes to limit his/her expected loss, in
particular present expected loss, as discussed in Section 4.2 and stated below for
a revision.
The dynamic optimization problem:

max
ϕ∈Ã(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x (budget constraint)

EQ [β (T ) (X (T )− q)−
]
≤ δ (risk constraint) ,

(4.75)

where Ã (x) is as defined in (2.10) and ϕ (t) = (ϕM (t) , ϕS (t))> is a portfolio
process composed of ϕM and ϕS refering to the fraction of wealth invested in the
money market account and the stock, respectively. The differences between the
problems (4.36) and (4.75) are:

• ϕ in (4.36) is composed of ϕM , ϕB and ϕS, while in (4.75) it is composed
of ϕM and ϕS.

• in (4.36)Me is singleton, i.e it can be determined uniquely, while in (4.75)
Me is made up of infinitely many elements, as discussed in Section 4.3.

The corresponding static optimization problem to (4.75) reads as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

EQ [β (T ) (X (T )− q)−
]
≤ δ,

(4.76)
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4.4. Optimization with bounded expected shortfall risk in an incomplete market

thereby B (x) is as defined in (2.12), and its static portfolio insurer problem as

max
X(T )∈B(x)

E
[

(X (T ))γ

γ

]
s.t. EQ [β (T )X (T )] ≤ x

X (T ) ≥ q.

(4.77)

We examine the problem (4.76). For the problem (4.77) it is quite similar and we
will give only the results. We use the Lagrangian approach to solve the problem
(4.76). The Lagrangian function L (y1, y2,Q, X (T )) is defined by

L (y1, y2,Q, X (T )) =

E
[

(X (T ))γ

γ
− y1β (T )

(
dQ
dP

)
T

X (T )− y2β (T )

(
dQ
dP

)
T

(X (T )− q)−
]

+ y1x+ y2δ.

(4.78)

Primal problem:

Ψ (y1, y2,Q) := max
X(T )∈B(x)

L (y1, y2,Q, X (T ))

for y1, y2 ∈ (0,∞) and Q ∈Me.
(4.79)

Dual problem:

Φ (X (T )) := min
y1,y2∈(0,∞),Q∈Me

L (y1, y2,Q, X (T )) for X (T ) ∈ B (x) . (4.80)

The following proposition gives the solution to the primal problem (4.79) for
y1, y2 ∈ (0,∞) and Q ∈Me.

Proposition 4.12 Let q be a fixed benchmark, x an initial wealth of an investor
and Q ∈Me.

(i) If δ ∈
(
δ, δ
)
, then the solution of the primal problem (4.79) is given by

Xδ
inc (T ) = f (y∗1, y

∗
2,Q) , (4.81)

where

f (y∗1, y
∗
2,Q) =

(
y∗1β (T )

(
dQ
dP

)
T

) 1
γ−1

1A + q1B

+

(
(y∗1 − y∗2) β (T )

(
dQ
dP

)
T

) 1
γ−1

1C ,

(4.82)
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4. Portfolio optimization with a one-factor Vasiček model

A = A (y∗1, y
∗
2,Q) =

{
y∗1β (T )

(
dQ
dP

)
T

≤ qγ−1

}
,

B = B (y∗1, y
∗
2,Q) =

{
qγ−1

y∗1
< β (T )

(
dQ
dP

)
T

≤ qγ−1

y∗1 − y∗2

}
and

C = C (y∗1, y
∗
2,Q) =

{
β (T )

(
dQ
dP

)
T

>
qγ−1

y∗1 − y∗2

}
,

such that y∗1, y
∗
2 ∈ (0,∞) solve the following system of equations

E
[
β (T )

(
dQ
dP

)
T

f (y1, y2,Q)

]
= x

E
[
β (T )

(
dQ
dP

)
T

(f (y1, y2,Q)− q)−
]

= δ.

(ii) If δ = δ, i.e. in the case of portfolio insurer problem, the solution to the
primal problem (4.79) is given by

XPI
inc (T ) = f

(
yPI ,Q

)
,

where

f
(
yPI ,Q

)
=

(
yPIβ (T )

(
dQ
dP

)
T

) 1
γ−1

1API + q1BPI , (4.83)

API = API
(
yPI ,Q

)
=

{
β (T )

(
dQ
dP

)
T

≤ qγ−1

yPI

}
and

BPI = BPI
(
yPI ,Q

)
=

{
qγ−1

yPI
< β (T )

(
dQ
dP

)
T

}
,

such that yPI solves the equation

E
[
β (T )

(
dQ
dP

)
T

f
(
yPI ,Q

)]
= x.

Proof: The proof is exactly as for complete markets for every Q ∈Me fixed. �
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4.4. Optimization with bounded expected shortfall risk in an incomplete market

Let us now turn first to the dual problem (4.80) and use y∗1, y
∗
2, and Xδ

inc (T )
from Proposition 4.12. What is left is to find Q∗ ∈ Me that solves the dual
problem (4.80). The Lagrangian function, for δ ∈

(
δ, δ
)
, is given by

L
(
y∗1, y

∗
2,Q, Xδ

inc (T )
)

= E

[(
Xδ
inc (T )

)γ
γ

− y∗1β (T )

(
dQ
dP

)
T

Xδ
inc (T )

]

− E
[
y∗2β (T )

(
dQ
dP

)
T

(
Xδ
inc (T )− q

)− − y∗1x− y∗2δ]
=E

[
(f (y∗1, y

∗
2,Q))γ

γ
− y∗1β (T )

(
dQ
dP

)
T

f (y∗1, y
∗
2,Q)

]
− E

[
y∗2β (T )

(
dQ
dP

)
T

(f (y∗1, y
∗
2,Q)− q)− − y∗1x− y∗2δ

]
=E

[
(γ − 1)

γ

(
y∗1β (T )

(
dQ
dP

)
T

) γ
γ−1

1A

]

+ E

[(
qγ − y∗1qγβ (T )

(
dQ
dP

)
T

γ

)
1B

]

+ E

[(
(y∗1 − y∗2)

γ
− y∗1 − y∗2

)
(y∗1 − y∗2)

1
γ−1

(
β (T )

(
dQ
dP

)
T

) γ
γ−1

1C

]
+ y∗1x+ y∗2δ.

(4.84)

Remark 4.13 β (T )
(
dQ
dP

)
T

=: β (T )ZΘ (T ) is a log-normal random variable un-
der P:

− ln β (T )ZΘ (T ) ∼ N
(
MH (θr, θs) ,

√
V H (θr, θs)

)
,

where

MH (θr, θs) =

∫ T

0

(
r (0) e−at + bP

(
1− e−at

)
+

1

2
‖Θ (t)‖2

)
dt and

V H (θr, θs) =V ar

[∫ T

0

(
r (t) +

1

2

∫ T

0

‖Θ (t)‖2

)
dt+

∫ T

0

Θ> (t) dW P (t)

]
=

∫ T

0

[
(σrn (t, T ) + θr (t))2 + θ2

S (t)
]
dt.

(4.85)

We deal with the first term of Equation (4.84) and the remaining other two
terms containing random variables are computed analogously. From Remark
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4. Portfolio optimization with a one-factor Vasiček model

4.13 it follows

E
[

(γ − 1)

γ

(
y∗1β (T )ZΘ (T )

) γ
γ−1 1{A}

]

= E

e γ
1−γM

H+ γ
1−γ

√
V Hx

1x≤
 ln

(
qγ−1

y∗1

)
+MH

√
VH





=

(
1− γ
γ

)
(y∗1)

γ
γ−1 e

γ
1−γM

H+( γ
1−γ )

2 1
2
V HΦ (d1) ,

(4.86)

where

d1 = d1 (y∗1, θr, θS) =
ln
(
qγ−1

y∗1

)
+MH (θr, θS)√

V H (θr, θS)
+

γ

1− γ
√
V H (θr, θS)

and Φ is the cumulative distribution function of a standard normal random
variable, and then we take the same procedure to calculate for other terms in
(4.84). Therefore,

L
(
y∗1, y

∗
2, Z

Θ (T ) , Xδ
inc (T )

)
=

1− γ
γ

(y∗1)
γ
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V HΦ (d1)

+
qγ

γ
(Φ (d3)− Φ (d2))− y∗1qe−M

H+ 1
2
V H (Φ (d5)− Φ (d4))

+

(
(y∗1 − y∗2)

γ
− y∗1 − y∗2

)
(y∗1 − y∗2)

1
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V HΦ (d6)

+ y∗1x+ y∗2δ.

(4.87)

Thereby

d2 = d2 (y∗1, θr, θS) := −
ln
(
qγ−1

y∗1

)
+MH

√
V H

d3 = d3 (y∗1, y
∗
2, θr, θS) :=

ln
(

qγ−1

y∗1−y∗2

)
+MH

√
V H

d4 = d4 (y∗1, θr, θS) := d2 +
√
V H

d5 = d5 (y∗1, y
∗
2, θr, θS) := d3 −

√
V H

d6 = d6 (y∗1, y
∗
2, θr, θS) := −

ln
(

qγ−1

y∗1−y∗2

)
+MH

√
V H

− γ

1− γ
√
V H .

(4.88)
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Now, we can state the optimization problem as follows

min
(θr,θS)

L
(
y∗1, y

∗
2, Z

Θ (T ) , Xδ
inc (T )

)
s.t. θr (t)σSr + θS (t)σS = µ̄S.

(4.89)

The existence and uniqueness of a solution of problem (4.89) is guaranteed by
the reasonable asymptotic elasticity of power utility function which is less than
one and Theorem 5.9 part (iv) in [28]. The optimization problem (4.89) is solved
analogously to Theorem 4.9, by setting first

θr (λ, t) = λ (t)

⇒ θS (λ, t) =
µ̄S
σS
− σSrλ (t)

σS
.

(4.90)

We plug the values of θr (λ, t) and θS (λ, t) above in Equation (4.85) to express
M and V in terms of λ and t.

Now we have to look for the λ∗ that yields the minimum of

L (λ) = L (θr (λ) , θS (λ)) = L
(
y∗1, y

∗
2, Z

Θ (T ) , Xδ
inc (T )

)
.

As far as we know, λ∗ can be only found numerically but cannot be calculated
analytically. Then, we plug λ∗ into Equation (4.90) and obtain the solution to
problem (4.89).

For the case of δ = δ and from Proposition 4.12, the Lagrangian function is
given by

L
(
yPI ,Q, XPI

inc (T )
)

= E

[(
XPI
inc (T )

)γ
γ

− yPI
(
β (T )

(
dQ
dP

)
T

XPI
inc (T )− x

)]

=E

[
(γ − 1)

γ

(
yPIβ (T )

(
dQ
dP

)
T

) γ
γ−1

1API +
qγ

γ
1BPI

]

− yPIE
[
β (T )

(
dQ
dP

)
T

q1BPI − x
]
.

(4.91)
Using Remark 4.13 we get

L
(
yPI ,Q, XPI (T )

)
=

1− γ
γ

(
yPI
) γ
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V H ∗ Φ

(
dPI1

)
+
qγ

γ
Φ
(
dPI2

)
− yPIqe−MH+ 1

2
V HΦ

(
dPI3

)
,

(4.92)
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where

dPI1 = dPI1

(
yPI , θr, θS

)
:=

ln
(
qγ−1

yPI

)
+MH (θr, θS)√

V H (θr, θS)
+

γ

1− γ
√
V H (θr, θS)

dPI2 = dPI2

(
yPI , θr, θS

)
:= −

ln
(
qγ−1

yPI

)
+MH

√
V H

dPI3 = dPI3

(
yPI , θr, θS

)
:= −

ln
(
qγ−1

yPI

)
+MH

√
V H

−
√
V H .

(4.93)
We state the optimization problem, as (4.89), for the portfolio insurer problem
as follows

min
(θr,θS)

L
(
yPI , ZΘ (T ) , XPI

inc (T )
)

s.t. θr (t)σSr + θS (t)σS = µ̄S.
(4.94)

To solve the Problem (4.94) we take the same procedures as for the case of
δ ∈

(
δ, δ
)
: set θr (λ, t) = λ and express θS in terms of λ and t using the constraint

in (4.94) and then find the minimizer

λPI

of L
(
yPI , ZΘ, XPI

inc (T )
)

= L (θr (λ) , θS (λ)) =: LPI (λ) .Like for the case of δ ∈(
δ, δ
)
, λPI can be only found numerically but cannot be calculated analytically.

We denote the market price of risk and the probability measure that correspond
to λPI by ΘPI and QPI ∈Me, respectively.

Theorem 4.14 Suppose all the conditions of Proposition 4.12 are satisfied and
we consider the equivalent martingale measures Q∗ ∈Me and QPI ∈Me corre-
sponding to Θ∗ (t) and ΘPI (t), respectively. Then:

(a) The time-t ∈ [0, T ] optimal wealth Xδ
inc (t) and XPI

inc (t) are given by

Xδ
inc (t)

= (y∗1)
1

γ−1 (H∗ (t))
1

γ−1 e
γ

1−γM
H∗ (t,T )+ 1

2( γ
1−γ )

2
V H
∗

(t,T ) ∗ Φ
(
dδ1 (t)

)
+ e−M

H∗ (t,T )+ 1
2
V H
∗

(t,T ) ∗
(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
+ (y∗1 − y∗2)

1
γ−1 (H∗ (t))

1
γ−1 e

γ
1−γM

H∗ (t,T )+ 1
2( γ

1−γ )
2
V H
∗

(t,T ) ∗ Φ
(
dδ4 (t)

)
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and

XPI
inc (t)

=
(
yPI
) 1
γ−1
(
HPI (t)

) 1
γ−1 e

γ
1−γM

HPI (t,T )+ 1
2( γ

1−γ )
2
V H

PI
(t,T )×

Φ
(
dPI1 (t)

)
+ e−M

HPI (t,T )+ 1
2
V H

PI
(t,T ) ∗ Φ

(
dPI2 (t)

)
,

where

H∗ (t) = β (t)

(
dQ∗

dP

)
t

,

HPI (t) = β (t)

(
dQPI

dP

)
t

,

MH∗ (t, T ) =

∫ T

t

(
r (t) e−as + bP

(
1− e−as

)
+

1

2
‖Θ∗ (s)‖2

)
ds,

V H∗ (t, T ) =

∫ T

t

[
(σrn (s, T ) + θ∗r (s))2 + (θ∗S)2 (s)

]
ds,

MHPI

(t, T ) =

∫ T

t

(
r (t) e−as + bP

(
1− e−as

)
+

1

2

∥∥ΘPI (s)
∥∥2
)
ds,

V HPI

(t, T ) =

∫ T

t

[(
σrn (s, T ) + θPIr (s)

)2
+
(
θPIS
)2

(s)
]
ds,

dδ1 (t) =
ln
(

qγ−1

y∗1H
∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+

γ

1− γ
√
V H∗ (t, T ),

dδ2 (t) = −
ln
(

qγ−1

y∗1H
∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+
√
V H∗ (t, T ),

dδ3 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+
√
V H∗ (t, T ),

dδ4 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
− γ

1− γ
√
V H∗ (t, T ),
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dPI1 (t) =
ln
(

qγ−1

yPIHPI(t)

)
+MHPI

(t, T )√
V HPI (t, T )

+
γ

1− γ

√
V HPI (t, T ),

dPI2 (t) = −
ln
(

qγ−1

yPIHPI(t)

)
+MHPI

(t, T )√
V HPI (t, T )

+
√
V HPI (t, T )

and Φ (·) is the standard-normal probability distribution function.

(b) The portfolio processes at any time t ∈ [0, T ] that replicate the terminal
wealth Xδ

inc (t) and XPI
inc (t) are given by ϕ∗ (t) = (ϕ∗M (t) , ϕ∗S (t))> and

ϕPI (t) =
(
ϕPIM (t) , ϕPIS (t)

)>
, respectively. Thereby

ϕ∗S (t) =
1

1− γ
θ∗S (t)

σS
+

1

γ − 1

θ∗S (t)

σS
×

qe−M
H∗ (t,T )+ 1

2
V H
∗

(t,T ) ∗
(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
Xδ
inc (t)

,

ϕ∗M (t) = 1− ϕ∗S (t) ,

ϕPIS (t) =
1

1− γ
θPIS (t)

σS
+

1

γ − 1

θPIS (t)

σS
qe−M

HPI (t,T )+ 1
2
V H

PI
(t,T )×

Φ
(
dPI2 (t)

)
XPI
inc (t)

and

ϕPIM (t) = 1− ϕPIS (t) .

(4.95)

Proof: After specifying Θ∗ (t) and ΘPI (t) the proof is as of Theorem 4.6, except
with Θ (t) replaced by Θ∗ (t) and ΘPI (t). �

4.5. Numerical examples

Let us conclude this chapter with numerical examples. Table 4.1 shows the pa-
rameters considered. Figure 4.1 plots the profiles of the optimal terminal wealth
of different portfolio managers depending on the deflator H (T ) (as given by
(4.18)) in a complete market. The managers considered are the Expected Short-
fall Portfolio Manager (ES-PM), Portfolio Insurer Portfolio Manager (PI-PM)
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Table 4.1.: Table of parameters

a 0.4077 µ̄B 0.02 γ 0.5
bP 0.0212 µ̄S 0.03 x 1
σr 0.0457 T 10 q 0.95

σSr −0.015 T̃ 12

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

H (T )

X
(T

)

Xδ

XPI

XM

Figure 4.1.: Terminal wealth for δ = 0.1.

and Merton Portfolio Manager (M-PM), with their optimal terminal wealth de-
noted by Xδ, XPI and XM respectively. The upper limit of ES-PM’s risk δ
is set to 0.1. Before we compare the performances of these managers let us

first separate H (T ) into three regions: H (T ) ∈
(

0, q
γ−1

y∗1

]
(i.e. good state),

H (T ) ∈
(
qγ−1

y∗1
, qγ−1

y∗1−y∗2

]
(i.e. intermediate state) and H (T ) ∈

(
qγ−1

y∗1−y∗2
,∞
)

(i.e.

bad state). In the good state M-PM outperforms both ES-PM and PI-PM. In
the intermediate state ES-PM behaves like PI-PM. In the bad state PI-PM out-
performs both ES-PM and M-PM, because PI-PM totally insures himself/herself
against any losses. In the same region ES-PM partially insures himself/herself
against losses and M-PM is totally exposed to all losses. If the value of δ is in-
creased, then the behavior of ES-PM tends to M-PM as it is shown in the Figure
4.2 when δ is set to 0.2. If δ is decreased, then the behavior of ES-PM tends to
PI-PM.
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Figure 4.2.: Terminal wealth for δ = 0.2.

The profiles of the optimal terminal wealth in an incomplete market case look
similar to the complete market, since considering an incomplete market changes
the value of H (T ) and the optimal terminal wealth are given as functions of
H (T ).

Figures 4.3 - 4.8 depict the optimal trading strategies as functions of time t
in both complete and incomplete markets without risk constraint. ϕ∗M,co, ϕ

∗
B,co,

ϕ∗S,co and ϕ∗R,co denote the optimal fractions of wealth invested in money market
account M , bond B, stock S and risky assets R (i.e., ϕ∗R,co = 1− ϕ∗M,co) respec-
tively in the complete market case. ϕ∗M,inc, ϕ

∗
S,inc and ϕ∗R,inc refer to the optimal

fractions of wealth invested in M , S and R (i.e., ϕ∗R,co = 1−ϕ∗M,inc) respectively
in an incomplete market case. In Figure 4.3 we set γ = 0.7 and σSr = −0.25. We
can see that ϕ∗B,co as well as ϕ∗S,inc increase and ϕ∗M,co as well as ϕ∗M,inc decrease
as t increases. The increase and the decrease get sharper as t tends to T . This
figure illustrates that in a complete market money is borrowed from M and S,
and invested in B, whereas in an incomplete market the positions of an investor
in M and S are positive as it is clearly shown in Figure 4.4. If γ = 0.7 and
σSr = 0.25, Figure 4.5 reveals that B and S are more attractive than when σSr
is negative, i.e., more money is taken from M and invested in B and S.

If γ = −20 and σSr = −0.25, Figure 4.6 shows that ϕ∗M,co as well as ϕ∗M,inc
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Figure 4.3.: Optimal trading strategies for γ = 0.7 and σSr = −0.25.
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Figure 4.4.: Optimal trading strategies in an incomplete market for γ = 0.7 and
σSr = −0.25.
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0 2 4 6 8 10
-50

-40

-30

-20

-10

0

10

20

30

40

50

time t

T
ra

d
in

g
st

ra
te

gy
ϕ

ϕ∗M,co

ϕ∗B,co
ϕ∗S,co
ϕ∗M,inc

ϕ∗S,inc

Figure 4.5.: Optimal trading strategies for γ = 0.7 and σSr = 0.25.

increase and ϕ∗B,co, ϕ
∗
S,co as well as ϕ∗S,inc decrease as t increases. The increase or

decrease of fractions of wealth get sharper as t tends to T . We can see further that
ϕ∗M,inc is always greater than ϕ∗S,inc. Moreover, the differences in the fractions
of wealth in both complete and incomplete market are smaller than for the case
of γ = 0.7. For comparison of the fractions of wealth invested in risky assets in
the case of complete and incomplete market Figures 4.7 and 4.8 show ϕ∗R,co and
ϕ∗R,inc for γ = 0.7 and σSr = −0.25, and γ = −20 and σSr = −0.25.
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Figure 4.6.: Optimal trading strategies for γ = −20 and σSr = −0.25.
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Figure 4.7.: Optimal trading strategies for γ = 0.7 and σSr = −0.25.
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Figure 4.8.: Optimal trading strategies for γ = −20 and σSr = −0.25.
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5. Portfolio optimization with a
two-factor Vasiček model

In this chapter we extend the results of the previous one-factor to the two-factor
Vasiček model. Recall that in the previous chapter we considered the interest
rates to be described by the one-factor Vasiček model. Before we go further, let us
first motivate two-factor models of interest rates by pointing out some drawbacks
of the one-factor models in general. In one-factor models, the interest rate r (t)
is the principal coordinate with which the yield curve can be characterized and
which in turn characterizes bond prices. Recall from the previous chapter that
the Vasiček model assumes the evolution of r (t) to be given by the stochastic
differential equation

dr (t) = a (b− r (t)) dt+ σrdWr (t) .

Then, the bond price at time t ∈ [0, T ] maturing at time T is given by

B (t, T ) = exp {m (t, T )− n (t, T ) r (t)}

and the continuously compounded spot rates are given by

R (t, T ) =
m (t, T )− n (t, T ) r (t)

T − t
=: a (t, T ) + b (t, T ) r (t) ,

where n (t, T ) is as given in the Remark 4.2 and

m (t, T ) =
σ2
r

2

∫ T

t

(n (u, T ))2 du− ab
∫ T

t

n (u, T ) du.

Now, if we consider a payoff depending on the joint distribution of two such rates,
of different maturities (T1 and T2), at time t < T1 < T2, then the correlation
between these two rates is computed as

Corr (R (t, T1) , R (t, T1))

= Corr (a (t, T1) + b (t, T1) r (t) , a (t, T2) + b (t, T2) r (t)) = 1.
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That means, in particular that even if T1 � T2 (say T1 = t + 1, T2 = t + 30)
interest rates are perfectly correlated. Thus all bonds are perfectly correlated.
Therefore, a shock to the interest rate curve is transmitted equally and almost
rigidly through all the maturities. In the real world, interest rates are known to
exhibit some decorrelation. If correlations play a more relevant role, or if higher
precision is needed, we need to use multifactor short rate models.

Jamshidian and Zhu in [38] (table 1), in their empirical study using JPY, USD
and DEM as data, showed that, under the objective measure, the one-factor
model can explain from 67.7% to 75.8% of the total variations.The two-factor
model can explain from 83.9% to 91.2% of the total variations, whereas the
three-factor model can explain from 93% to 94.3%. Rebonato in [56] (table 3.2)
carried out a related study on the UK market and came up with more optimistic
results, that a one-factor model can explain 92.17% of the total variations and
a two-factor model already explains 99.10% of the total variations, whereas a
three-factor model explains 99.71% of the total variations.

What is done with one-factor or two-factor models can be extended to three or
more-factor models. But as the factors of the model are increased, the analytic
tractability of the model is usually much reduced. In this chapter we consider a
two-factor model: The two-factor Vasiček.

We will investigate in this chapter the portfolio optimization problem with
and without risk constraint in both a complete and an incomplete market in the
view of a two-factor Vasiček model of interest rate.

The complete financial market model

We assume that the uncertainty in the market is modeled by a complete prob-
ability space (Ω,F,P). F denotes the augmented filtration generated by a 3-
dimensional standard Brownian motion

W P (t) =
(
W P
r (t) ,W P

S (t)
)>

=
(
W P

1 (t) ,W P
2 (t) ,W P

S (t)
)>

under the probability measure P, with W P
r (t) =

(
W P

1 (t) ,W P
2 (t)

)>
. The compo-

nents of W P (t) are assumed to be independent.
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We consider an arbitrage free financial market where a money market account
M (a saving’s account), two bonds B1 and B2, with the maturities T1 and T2, re-
spectively, and a stock S are continuously traded over a fixed finite time-horizon
[0, T ]. We assume that T1, T2 > T and T1 6= T2.

The price dynamics M (t) of the money market account at time t ∈ [0, T ] are
modeled by

dM (t) = M (t) r (t) dt, with M (0) = 1, (5.1)

as in the previous chapters, which results into

M (t) = exp

(∫ t

0

r (s)ds

)
, (5.2)

and the discounting factor

β (t, T ) :=
M (t)

M (T )
= exp

(
−
∫ T

t

r (s)ds

)
. (5.3)

As we have mentioned before, throughout this chapter we will consider the in-
terest rate r (t) in Equation (5.2) to be modeled by a two-factor Vasiček model,
described by

r (t) = ε0 + ε1Y1 (t) + ε2Y2 (t)

where ε0, ε1 and ε2 are constants, and Y1 (t) and Y2 (t) are factors given by the
following system of SDEs

dY1 (t) =
(
νP1 (t)− b11Y1 (t)− b12Y2 (t)

)︸ ︷︷ ︸
=µP1

dt+ σ1dW
P
1 (t)

dY2 (t) =
(
νP2 (t)− b21Y1 (t)− b22Y2 (t)

)︸ ︷︷ ︸
=µP2

dt+ σ2dW
P
2 (t) .

We assume that the matrix

B =

(
b11 b12

b21 b22

)
has strictly positive eigenvalues a1 and a2 to guarantee the mean-reversion of the
factors Y1 (t) and Y2 (t).

By Itô’s formula, the price processes B (t, T1) and B (t, T2) of the bonds B1 and
B2, maturing at time T1 and T2 respectively, evolve according to the following
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SDEs (see [65])

dB (t, T1) = B (t, T1)
[
µ1B (t, T1) dt+ σ11 (t, T1) dW P

1 (t) + σ12 (t, T1) dW P
2 (t)

]
dB (t, T2) = B (t, T2)

[
µ2B (t, T2) dt+ σ21 (t, T2) dW P

1 (t) + σ22 (t, T2) dW P
2 (t)

]
,

(5.4)
where

µ1B (t, T1) =
1

B (t, T1)

[
∂B (t, T1)

∂t
+ µP

1

∂B (t, T1)

∂Y1

+ µP
2

∂B (t, T1)

∂Y2

]
+

1

B (t, T1)

[
σ2

1

2

∂2B (t, T1)

∂Y 2
1

+
σ2

2

2

∂2B (t, T1)

∂Y 2
2

]
,

µ2B (t, T2) =
1

B (t, T2)

[
∂B (t, T2)

∂t
+ µP

1

∂B (t, T2)

∂Y1

+ µP
2

∂B (t, T2)

∂Y2

]
+

1

B (t, T2)

[
σ2

1

2

∂2B (t, T2)

∂Y 2
1

+
σ2

2

2

∂2B (t, T2)

∂Y 2
2

]
,

σ11 (t, T1) =
σ1

B (t, T1)

∂B (t, T1)

∂Y1

, σ12 (t, T1) =
σ2

B (t, T1)

∂B (t, T1)

∂Y2

,

σ21 (t, T2) =
σ1

B (t, T2)

∂B (t, T2)

∂Y1

and σ22 (t, T2) =
σ2

B (t, T2)

∂B (t, T2)

∂Y2

.

Another asset we have in the market is a stock S. Its price process S (t) at
time t ∈ [0, T ] is assumed to be determined by

dS (t) = S (t)
[
µP
S (t) dt+ σ1SdW

P
1 (t) + σ2SdW

P
2 (t) + σSdW

P
S (t)

]
. (5.5)

We refer to µP
S (t) as the drift of the stock under the probability measure P and

the constants σ1S, σ2S and σS as the volatility of the stock w.r.t. W P
1 , W P

2 and
W P
S , respectively. Recall from Assumption 2.2 that

µ1B (t, T1) = µ̄1B + r (t)

µ2B (t, T2) = µ̄2B + r (t)

µP
S (t) = µ̄S + r (t) ,

with µ̄1B, µ̄2B and µ̄S considered to be constants. Note that µ̄1B, µ̄2B may also
be allowed to depend on T1, T2.

Remark 5.1 Due to the assumption of the arbitrage free financial market and
Theorem 2.7 we know that Me 6= ∅. We shall characterize Q̃ ∈ Me by its
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Radon-Nikodym derivative ZΘ̃ (t) ∈ L1 (Ω,F ,P) defined by

ZΘ̃ (t) :=

(
dQ̃
dP

)
t

= exp

{
−1

2

∫ t

0

∥∥∥Θ̃ (s)
∥∥∥2

ds−
∫ t

0

Θ̃> (s) dW P (s)

}
,

for some Θ̃ (t) =
(
θ̃1 (t) , θ̃2 (t) , θ̃S (t)

)>
solving

µ̄1B = θ̃1 (t)σ11 (t, T1) + θ̃2 (t)σ12 (t, T1)

µ̄2B = θ̃1 (t)σ21 (t, T2) + θ̃2 (t)σ22 (t, T2)

µ̄S = θ̃1 (t) σ̃1S + θ̃2 (t) σ̃2S + θ̃S (t) σ̃S,

(5.6)

where θ̃1 (t), θ̃2 (t) and θ̃S (t) are interpreted as the market prices of risk due to
the factors Y1, Y2 and the stock S, respectively.

Note that Θ̃ (t) =
(
θ̃1 (t) , θ̃2 (t) , θ̃S (t)

)>
corresponds to Q̃ ∈Me. In the system

the Equations (5.6) we have three unknowns (θ̃1, θ̃2 and θ̃S) and three equations.
So the values of these unknowns exist and can be determined uniquely, if the
volatility matrix

σ (t) =

σ11 (t, T1) σ12 (t, T1) 0
σ21 (t, T2) σ22 (t, T2) 0

σ̃1S σ̃2S σ̃S


is non-singular, which implies we have one equivalent martingale measure Q̃ with
respect to the probability measure P and that means we are in a complete market.

According to the Girsanov Theorem,

W̃ Q̃ (t) =

W̃
Q̃
1 (t)

W̃ Q̃
2 (t)

W̃ Q̃
S (t)

 :=

W P
1 (t) +

∫ t
0
θ̃1 (s) ds

W P
2 (t) +

∫ t
0
θ̃2 (s) ds

W P
S (t) +

∫ t
0
θ̃S (s) ds


are Brownian motions under the probability measure Q̃. The dynamics of the
interest rate factors Y1 and Y2 under the measure Q̃ are given by

dY1 (t) = (ν̃1 − b11Y1 (t)− b12Y2 (t)) dt+ σ1dW̃
Q̃
1 (t)

dY2 (t) = (ν̃2 − b21Y1 (t)− b22Y2 (t)) dt+ σ2dW̃
Q̃
2 (t) and

r (t) = ε̃0 + ε̃1Y1 (t) + ε̃2Y2 (t) ,

(5.7)
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5. Portfolio optimization with a two-factor Vasiček model

where ν̃1, ν̃2, ε̃0, ε̃1, ε̃2 and matrix B =

(
b11 b12

b21 b22

)
are considered to be constants.

The strictly positive eigenvalues a1 and a2 of the matrix B assumed above guar-
antee the mean-reversion of the canonical factors r1 (t) and r2 (t) in Equation
(5.8) as well. The two-factor Vasiček model in its normal form (Equation (5.7))
seems to be over-parametrized. To avoid this over-parametrization, the model
(5.7) can be transformed to its canonical form (see for example [61]):

dr1 (t) = −a1r1 (t) dt+ dW Q̂
1 (t)

dr2 (t) = (−a21r1 (t)− a2r2 (t)) dt+ dW Q̂
2 (t) and

r (t) = δ0 + δ1r1 (t) + δ2r2 (t) ,

(5.8)

where a1 > 0, a21 > 0, a2 > 0, δ0, δ1 and δ2 are constants and the process W Q̂ (t)
defined by

W Q̂ (t) =

W
Q̂
1 (t)

W Q̂
2 (t)

W Q̂
S (t)

 :=

W P
1 (t) +

∫ t
0
θ̂1 (s) ds

W P
2 (t) +

∫ t
0
θ̂2 (s) ds

W P
S (t) +

∫ t
0
θ̂S (s) ds

 .

is a Brownian motion under the equivalent martingale measure Q̂ w.r.t. the
probability measure P, characterized by

ZΘ̂ (t) :=

(
dQ̂
dP

)
t

= exp

{
−1

2

∫ t

0

∥∥∥Θ̂ (s)
∥∥∥2

ds−
∫ t

0

Θ̂> (s) dW P (s)

}
. (5.9)

Thus, the price processes of the bondsB1 andB2 under the probability measure
Q̂ are described by

dB (t, T1)

B (t, T1)
= r (t) dt+ σ̂11 (t, T1) dW Q̂

1 (t) + σ̂12 (t, T1) dW Q̂
2 (t) and

dB (t, T2)

B (t, T2)
= r (t) dt+ σ̂21 (t, T2) dW Q̂

1 (t) + σ̂22 (t, T2) dW Q̂
2 (t) ,

where

σ̂i1 (t, Ti) = − 1

a1

(
δ1 −

a21δ2

a2

)(
1− e−a1(Ti−t)

)
− a21δ2

a2 (a1 − a2)

(
e−a2(Ti−t) − e−a1(Ti−t)

)
and

σ̂i2 (t, Ti) = − δ2

a2

(
1− e−a2(Ti−t)

)
for i = {1, 2} .

(5.10)
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The price process of the stock under Q̂ can be transformed to

dS (t) = S (t)
[
r (t) dt+ σ̂1SdW

Q̂
1 (t) + σ̂2SdW

Q̂
2 (t) + σ̂SdW

Q̂
S (t)

]
. (5.11)

The deflator Ĥ (T ) for the cash flow paid at T is defined by

Ĥ (T ) := β (T )

(
dQ̂
dP

)
T

= exp

{
−
∫ T

0

r (t) dt

}
exp

{
−1

2

∫ T

0

∥∥∥Θ̂ (t)
∥∥∥2

dt−
∫ T

0

Θ̂> (t) dW P (t)

}
= exp

{
−
∫ T

0

r (t) dt− 1

2

∫ T

0

∥∥∥Θ̂ (t)
∥∥∥2

dt−
∫ T

0

Θ̂> (t) dW P (t)

}
,

(5.12)

where Θ̂ (t) =
(
θ̂1 (t) , θ̂2 (t) , θ̂S (t)

)
.

As in Chapter 4 we will consider a complete and an incomplete market setting.

• In the complete market setting (Sections 5.1, 5.2) we allow investment in
S,B1, B2,M and thus, Θ̂ is the unique solution of

µ̄1B = θ̂1 (t) σ̂11 (t, T1) + θ̂2 (t) σ̂12 (t, T1)

µ̄2B = θ̂1 (t) σ̂21 (t, T2) + θ̂2 (t) σ̂22 (t, T2)

µ̄S = θ̂1 (t) σ̂1S + θ̂2 (t) σ̂2S + θ̂S (t) σ̂S.

(5.13)

• In the incomplete market setting (Sections 5.3, 5.4), we do not allow in-
vestment in B2 and thus, Θ̂ will be a solution of

µ̄1B = θ̂1 (t) σ̂11 (t, T1) + θ̂2 (t) σ̂12 (t, T1)

µ̄S = θ̂1 (t) σ̂1S + θ̂2 (t) σ̂2S + θ̂S (t) σ̂S.
(5.14)

We begin with the complete market case and consider an investor or a portfolio
manager endowed with a positive initial wealth x at time t = 0 for the investment
in the assets in the financial market. The fractions of wealth invested in B1, B2

and S at time t ∈ [0, T ] are denoted by the vector ϕ̂c (t) = (ϕ̂1 (t) , ϕ̂2 (t) , ϕ̂S (t))>

whose first component is for B1, second for B2 and the third for S. Accord-
ing to Assumption 2.3, the fraction of wealth ϕ̂M (t) invested in M is given by
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5. Portfolio optimization with a two-factor Vasiček model

(
1− ϕ̂c (t)> 13

)
. The wealth process of an investor at time t ∈ [0, T ], denoted

by Xc (t), under the probability measure Q̂, is governed by the following SDE:

dXc (t) = dXM (t) + dXB1 (t) + dXB2 (t) + dXS (t)

=
(

1− ϕc (t)> 13

)
Xc (t) r (t) dt

+Xc (t) ϕ̂1 (t)
(
r (t) dt+ σ̂11dW

Q̂
1 (t) + σ̂12dW

Q̂
2 (t)

)
+Xc (t) ϕ̂2 (t)

(
r (t) dt+ σ̂21dW

Q̂
1 (t) + σ̂22dW

Q̂
2 (t)

)
+Xc (t) ϕ̂S (t)

(
r (t) dt+ σ̂1SdW

Q̂
1 (t) + σ̂2SdW

Q̂
2 (t) + σ̂SdW

Q̂
S (t)

)
= Xc (t)

[
r (t) dt+ ϕ̂S (t) σ̂SdW

Q̂
S (t)

]
+Xc (t) (ϕ̂S (t) σ̂1S + ϕ̂1 (t) σ̂11 + ϕ̂2 (t) σ̂21) dW Q̂

1 (t)

+Xc (t) (ϕ̂S (t) σ̂2S + ϕ̂1 (t) σ̂12 + ϕ̂2 (t) σ̂22) dW Q̂
2 (t) ,

(5.15)
where XM (t) , XB1 (t) , XB2 (t) and XS (t) refer to the amount of wealth in the
money market account M , bonds B1 and B2, and the stock S, respectively. By
applying Ito’s rule to the process β (t)Xc (t) we get

d (β (t)Xc (t)) = Xc (t) β (t) (ϕ̂S (t) σ̂1S + ϕ̂1 (t) σ̂11 + ϕ̂2 (t) σ̂21) dW Q̂
1 (t)

+Xc (t) β (t) (ϕ̂S (t) σ̂2S + ϕ̂1 (t) σ̂12 + ϕ̂2 (t) σ̂22) dW Q̂
2 (t)

+Xc (t) β (t) ϕ̂S (t) σ̂SdW
Q̂
S (t)

and thus

β (T )Xc (T ) = Xc (0)

+

∫ T

0

Xc (t) β (t) (ϕ̂S (t) σ̂1S + ϕ̂1 (t) σ̂11 + ϕ̂2 (t) σ̂21) dW Q̂
1 (t)

+

∫ T

0

Xc (t) β (t) (ϕ̂S (t) σ̂2S + ϕ̂1 (t) σ̂12 + ϕ̂2 (t) σ̂22) dW Q̂
2 (t)

+

∫ T

0

Xc (t) β (t) ϕ̂S (t) σ̂SdW
Q̂
S (t) .

(5.16)
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5.1. Optimization without risk constraints in a complete market

5.1. Optimization without risk constraints in a
complete market

In this section we investigate the portfolio optimization problem without risk
constraints in a complete market, as studied in section 4.1, but under the two-
factor Vasiček model. The dynamic and static optimization problems in these
settings are stated as in Section 4.1 and we will consider the assumptions and
definitions made therein.

The Dynamic portfolio optimization problem is restated as

max
ϕ∈A(x)

E
(

(Xc (T ))γ

γ

)
s.t. EQ̂ [β (T )Xc (T )] = E

[
β (T )

(
dQ̂
dP

)
T

Xc (T )

]
≤ x (budget constraint),

(5.17)
with Q̂ given by Θ̂ as in (5.13).

Static optimization problem:

max
Xc(T )∈B(x)

E
[

(Xc (T ))γ

γ

]
s.t. E

[
β (T )

(
dQ̂
dP

)
T

Xc (T )

]
= x,

(5.18)

where

B (x) :=

{
Xc (T ) > 0 | Xc (T ) FT -measurable,E

[
(Xc (T ))γ

γ

]−
<∞

}
and the budget constraint is binding.

Proposition 5.2 The solution to the static optimization problem (5.18) is given
by

X∗c (T ) =

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

, (5.19)

91



5. Portfolio optimization with a two-factor Vasiček model

with y∗ obtained through

E

y 1
γ−1

(
β (T )

(
dQ̂
dP

)
T

) γ
γ−1

 = x.

Proof: The proof is as of Theorem 3.2 since the optimal terminal wealth is given

as a function of deflator. We only have to replace H (T ) by Ĥ (T ) = β (T )
(
dQ̂
dP

)
T

.

�

Before we state a theorem that gives a trading strategy which replicates the
optimal terminal wealth X∗c (T ), let us first find a more tractable representation

of
∫ T

0
r (t) dt. Let

A =

(
a1 0
a21 a2

)
, A−1 =

(
ã11 ã12

ã21 ã22

)
, W Q̂

r (t) =

(
W Q̂

1 (t)

W Q̂
2 (t)

)

R (t) =

(
r1 (t)
r2 (t)

)
, δ =

(
δ1

δ2

)
and P (t) = R (t) eA(t−s), for s > t fixed.

Using Ito’s lemma and (5.8) on P (t) we obtain

dP (t) = (dR (t)) eA(t−s) + AeA(t−s)R (t) dt

= eA(t−s)
(
−AR (t) + dW Q̂

r

)
+ AeA(t−s)R (t) dt

= eA(t−s)dW Q̂
r

⇒ R (t) eA(t−s) −R (s) =

∫ t

s

eA(u−s)dW Q̂
r (u)

⇒ R (t) = R (s) e−A(t−s) + e−A(t−s)
∫ t

s

eA(u−s)dW Q̂
r (u)

= R (s) e−A(t−s) +

∫ t

s

e−A(t−u)dW Q̂
r (u) .
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5.1. Optimization without risk constraints in a complete market

∫ T

0

R (t) dt = R (0)

∫ T

0

e−Atdt+

∫ T

0

∫ t

0

e−A(t−u)dW Q̂
r (u) dt.∫ T

0

e−Atdt = A−1
(
I − e−AT

)
.∫ T

0

∫ t

0

e−A(t−u)dW Q̂
r (u) dt =

∫ T

0

∫ t

0

e−Ate−AudW Q̂
r (u) dt

=

∫ T

0

∫ T

u

e−Ate−AudtdW Q̂
r (u)

=

∫ T

0

e−Au
∫ T

u

e−AtdtdW Q̂
r (u)

=

∫ T

0

A−1
(
I − e−A(T−u)

)
dW Q̂

r (u)

Thus,∫ T

0

R (t) dt =

∫ T

0

R (0) e−Atdt+

∫ T

0

A−1
(
I − e−A(T−u)

)
dW Q̂

r (u) .

We transform A to its Jordan canonical form by choosing a non-singular matrix

P :=

(
p11 p12

p21 p22

)
with its inverse denoted by P−1 :=

(
p̃11 p̃12

p̃21 p̃22

)
such that

J := P−1AP =

(
λ1 0
k λ2

)
. It follows that A = PJP−1,

and consequently
eA = PeJP−1.

If λ1 6= λ2, then the columns of P are eigenvectors of A and k = 0. If λ1 = λ2,
then k might be zero, but it can also happen that k 6= 0, in which case P might
be chosen so that k = 1. We consider λ1 6= λ2 and define

Λ (t) :=

(
e−λ1t 0

0 e−λ2t

)
.

Then∫ T

0

R (t)dt =

∫ T

0

Pe−JtP−1R (0)dt+

∫ T

0

A−1
(
I − Pe−J(T−t)P−1

)
dW Q̂

r (t)

=

∫ T

0

PΛ (t)P−1R (0)dt+

∫ T

0

A−1
(
I − PΛ (T − t)P−1

)
dW Q̂

r (t) .
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5. Portfolio optimization with a two-factor Vasiček model

Finally, we obtain∫ T

0

r (t)dt =

∫ T

0

δ0dt+

∫ T

0

δ>PΛ (T − t)P−1R (0)dt

+

∫ T

0

δ>A−1
(
I − PΛ (T − t)P−1

)
dW Q̂

r (t)

=

∫ T

0

δ0dt+

∫ T

0

δ>PΛ (T − t)P−1R (0)dt

+

∫ T

0

δ>A−1
(
I − PΛ (T − t)P−1

)
d

(
W P
r (t) +

∫ t

0

θ̂r (s)ds

)
=

∫ T

0

δ0dt+

∫ T

0

µP (t)dt

+

∫ T

0

δ>A−1
(
I − PΛ (T − t)P−1

)
dW P

r (t)

(5.20)

where θ̂r (t) =

(
θ̂1 (t)

θ̂2 (t)

)
and W P

r =

(
W P

1

W P
2

)
,

A−1
(
I − PΛ (T − t)P−1

)
=

(
f11 (t, T ) f12 (t, T )
f21 (t, T ) f22 (t, T )

)
, (5.21)

where
f11 (t, T ) =ã11 − (ã11p11p̃21 + ã12p21p̃11) e−λ1(T−t)

− (ã11p11p̃21 + ã12p22p̃21) e−λ2(T−t),

f12 (t, T ) =ã12 − (ã11p11p̃12 + ã12p21p̃12) e−λ1(T−t)

− (ã11p12p̃22 + ã12p21p̃22) e−λ2(T−t),

f21 (t, T ) =ã21 − (ã21p11p̃11 + ã22p21p̃11) e−λ1(T−t)

− (ã21p12p̃21 + ã22p12p̃21) e−λ2(T−t),

f22 (t, T ) =ã22 − (ã21p11p̃12 + ã22p21p̃12) e−λ1(T−t)

− (ã21p12p̃22 + ã22p21p̃22) e−λ2(T−t).

Note that

µP (t) = δ>PΛ (T − t)P−1R (0) + δ>A−1
(
I − PΛ (T − t)P−1

)
θ̂r (t)

does not depend on θ̂r since
∫ T

0
r (t)dt is considered under P.

Representation problem
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5.1. Optimization without risk constraints in a complete market

Theorem 5.3 Suppose all the conditions of Proposition 5.2 are satisfied and we
consider the equivalent martingale measure Q̂. Then:

(a) The time-t ∈ [0, T ] optimal wealth is given by

X∗c (t) = (y∗)
1

γ−1

(
Ĥ (t)

) 1
γ−1

e
γ

1−γM
Ĥ(t,T )+ 1

2( γ
1−γ )

2
V Ĥ(t,T ).

Here,

Ĥ (t) = β (t)

(
dQ̂
dP

)
t

,

M Ĥ (t, T ) =

∫ T

t

(
δ0 + µP (s) +

1

2

∥∥∥Θ̂ (s)
∥∥∥2
)
ds,

V Ĥ (t, T ) =

∫ T

s

[(
δ>A−1

(
I − PΛ (T − s)P−1

)
+ θ̂>r (s)

)2

+ θ̂2
S (s)

]
ds.

(b) The portfolio process at any time t ∈ [0, T ] that replicates the terminal
wealth X∗c (t) is given by ϕ∗c (t) = (ϕ∗1 (t) , ϕ∗2 (t) , ϕ∗S (t))> where

ϕ∗1 (t) =
σ̂21 (t, T2)

(1− γ)G (t, T1, T2)

(
γF2 (t, T ) + θ̂2 (t)− θ̂S (t) σ̂2S

σ̂S

)

− σ̂22 (t, T2)

(1− γ)G (t, T1, T2)

(
γF1 (t, T ) + θ̂1 (t)− σ̂1S θ̂S (t)

σ̂S

)
,

ϕ∗2 (t) =
1

(1− γ) σ̂21 (t, T2)

(
γF1 (t, T ) + θ̂1 (t)− σ̂1S θ̂S (t)

σ̂S

)

− σ̂11 (t, T1)

(1− γ)G (t, T1, T2)

(
γF2 (t, T ) + θ̂2 (t)− θ̂S (t) σ̂2S

σ̂S

)

+
σ̂11 (t, T1) σ̂22 (t, T2)

(1− γ) σ̂21 (t, T2)G (t, T1, T2)

(
γF1 (t, T ) + θ̂1 (t)− σ̂1S θ̂S (t)

σ̂S

)
,

ϕ∗S (t) =
θ̂S (t)

(1− γ) σ̂S
and

ϕ∗M (t) = 1− ϕ∗c (t)> 13,
(5.22)
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5. Portfolio optimization with a two-factor Vasiček model

where

F1 (t, T ) := δ1f11 (t, T ) + δ2f21 (t, T )

F2 (t, T ) := δ1f12 (t, T ) + δ2f22 (t, T )

G (t, T1, T2) := σ̂12 (t, T1) σ̂21 (t, T2)− σ̂22 (t, T2) σ̂11 (t, T1) .

Proof:

(a) As proved in Theorem 4.25 part (ii), with (H (t))t∈[0,T ] replaced by
(
Ĥ (t)

)
t∈[0,T ]

,

since
(
Ĥ (t)

)
t∈[0,T ]

is also a lognormally distributed, martingale and Markov

process.

(b) Using the same argument as for the proof of Theorem 4.25 part (iii) it
can be observed that (r (t) , θ1 (t) , θ2 (t) , θS (t) , )> ∈ (D)4. This implies
from Lemma A.5 that Ĥ (T )X∗c (T ) ∈ D1,1. Now we can apply the Clark-
Ocone formula under change of measure (Theorem A.7) to the process
β (T )X∗c (T ):

β (T )X∗c (T ) = EQ̂ [β (T )X∗c (T )]

+

∫ T

0

EQ̂ [Dt (β (T )X∗c (T )) | F (t)] dW Q̂ (t)

−
∫ T

0

EQ̂
[
β (T )X∗c (T )

∫ T

t

DtΘ̂
> (u) dW Q̂ (u) | F (t)

]
dW Q̂ (t).

(5.23)
Moreover,∫ T

0

EQ̂
[
β (T )X∗c (T )

∫ T

t

DtΘ̂
> (u) dW Q̂ (u) | F (t)

]
dW Q̂ (t) = 0 (5.24)

because Θ (u) is deterministic, and the Malliavin derivative of a determin-
istic function is zero.

The product rule of Malliavin calculus and Proposition 5.2 yield

Dt (β (T )X∗c (T ))

= X∗c (T )Dtβ (T ) + β (T )DtX
∗
c (T )

=

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

Dtβ (T ) + β (T )Dt

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

.

(5.25)
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Using the chain rule of Malliavin calculus on β (T ) and the last equality of
Equation (5.20) gives

Dt (β (T )) =− β (T )Dt

∫ T

0

r (u)du = −β (T )

∫ T

t

Dtr (u)du

= −β (T ) δ>A−1
(
I − PΛ (T − t)P−1

)
,

(5.26)

since δ>A−1 (I − PΛ (T − t)P−1) is deterministic.
We apply again the chain and product rule to(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

and obtain

Dt

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

= − 1

γ − 1

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

×

Dt

(∫ T

0

r (u) du− 1

2

∫ T

0

∥∥∥Θ̂ (u)
∥∥∥2

du+

∫ T

0

Θ̂> (u) dW Q̂ (u)

)

=
1

1− γ

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

×(
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
,

(5.27)

where e3 =

(
1 0 0
0 1 0

)
. Inserting Equations (5.27) and (5.26) into Equation

(5.25) gives

Dt (β (T )X∗c (T ))

=

(
γ

1− γ
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 +

1

1− γ
Θ̂> (t)

)
×

β (T )

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

.

(5.28)

Plugging Equations (5.28) and (5.24) into Equation (5.23) results in

β (T )X∗c (T ) = EQ̂ [β (T )X∗c (T )] +∫ T

0

(
γ

1− γ
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 +

1

1− γ
Θ̂> (t)

)
×

EQ̂

β (T )

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

| F (t)

 dW Q̂ (t).

(5.29)
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5. Portfolio optimization with a two-factor Vasiček model

From Corollary 2.9 in [40] we have that

β (t)X∗c (t) = EQ̂

β (T )

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

| F (t)

 . (5.30)

Using Equations (5.30) and (5.29), the process β (T )X∗c (T ) can be ex-
pressed as

β (T )X∗c (T ) = EQ̂ [β (T )X∗c (T )] +∫ T

0

(
γ

1− γ
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 +

1

1− γ
Θ̂> (t)

)
β (t)X∗c (t) dW Q̂ (t) .

(5.31)
By using the value of A−1 (I − PΛ (T − t)P−1) in (5.21) and comparing
the expressions of β (T )X∗c (T ) in (5.31) and (5.16),follows the results.

�

5.2. Optimization with bounded expected shortfall
risk in a complete market

We will study in this section the portfolio optimization problem in the presence
of a bounded risk constraint in a complete market setting as discussed in Section
4.2, but we will consider the two-factor Vasiček model rather than one-factor
Vasiček used in Chapter 4.

The dynamic and static optimization problems in this setting look like those of
Section 4.2 or Section 3.2, since these optimization problems depend partially on
the deflator H (T ), but not on its structure and changing the model of interest
rates, modifies the structure of the deflator H (T ). Let us consider the assump-
tions made in Section 4.2 and recall below the dynamic and static optimization
problems.
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5.2. Optimization with bounded expected shortfall risk in a complete market

The dynamic optimization problem:

max
ϕ∈Ã(x)

E
[

(Xc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xc (T )] ≤ x (budget constraint)

EQ̂ [β (T ) (Xc (T )− q)−
]
≤ δ (risk constraint) ,

(5.32)

with Ã (x) as defined in (2.10).

The static optimization problem:

max
Xc(T )∈B(x)

E
[

(Xc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xc (T )] ≤ x

EQ̂ [β (T ) (Xc (T )− q)−
]
≤ δ,

(5.33)

B (x) is as defined in (2.12).

The static portfolio insurer problem:

max
Xc(T )∈B(x)

E
[

(Xc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xc (T )] ≤ x

Xc (T ) ≥ q

(5.34)

The optimal terminal wealth for the problems (5.33) and (5.34) are of the same
form as in Theorem 4.5 and Theorem 3.5 for the same reason mentioned above,
that the change of interest rate model, modifies the structure of the deflator
H (T ) and the optimal terminal wealth X∗c depends on the outcome of H (T ),
but not on its structure. We restate below a proposition that characterizes the
solutions of the problems (5.33) and (5.34).

Proposition 5.4 Let q be a fixed benchmark and x an initial wealth of an in-
vestor. (i) If δ ∈

(
δ, δ
)
, then the solution of the problem (5.33) is given by

Xδ
c (T ) = f

(
y∗1, y

∗
2, Q̂

)
, (5.35)
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5. Portfolio optimization with a two-factor Vasiček model

where

f
(
y∗1, y

∗
2, Q̂

)
=

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A + q1B

+

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C ,

(5.36)

A = A
(
y∗1, y

∗
2, Q̂

)
=

{
β (T )

(
dQ̂
dP

)
T

≤ qγ−1

y∗1

}

B = B
(
y∗1, y

∗
2, Q̂

)
=

{
qγ−1

y∗1
< β (T )

(
dQ̂
dP

)
T

≤ qγ−1

y∗1 − y∗2

}
and

C = C
(
y∗1, y

∗
2, Q̂

)
=

{
β (T )

(
dQ̂
dP

)
T

>
qγ−1

y∗1 − y∗2

}
,

such that y∗1, y
∗
2 ∈ (0,∞) solve the following system of equations

E

[
β (T )

(
dQ̂
dP

)
T

f
(
y1, y2, Q̂

)]
= x

E

[
β (T )

(
dQ̂
dP

)
T

(
f
(
y1, y2, Q̂

)
− q
)−]

= δ.

(ii) If δ = δ, i.e in the case of portfolio insurer problem, then the solution to the
problem (5.34) is given by

XPI
c (T ) = f

(
yPI , Q̂

)
,

where

f
(
yPI , Q̂

)
=

(
yPIβ (T )

(
dQ̂
dP

)
T

) 1
γ−1

1API + q1BPI , (5.37)

API = API
(
yPI , Q̂

)
=

{
β (T )

(
dQ̂
dP

)
T

≤ qγ−1

yPI

}
and

BPI = BPI
(
yPI , Q̂

)
=

{
qγ−1

yPI
< β (T )

(
dQ̂
dP

)
T

}
,

such that yPI solves the equation

E

[
β (T )

(
dQ̂
dP

)
T

f
(
yPI , Q̂

)]
= x
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Representation problem:
The following theorem gives the trading strategies that generate the optimal
terminal wealth Xδ

c (T ) and XPI
c (T ) in Proposition 5.4.

Theorem 5.5 Suppose all conditions of Proposition 5.4 are satisfied and we
consider the equivalent martingale measure Q̂. Then:

(a) The time-t ∈ [0, T ] optimal wealth Xδ
c (t) and XPI

c (t) are given by

Xδ
c (t)

= (y∗1)
1

γ−1

(
Ĥ (t)

) 1
γ−1

e
γ

1−γM
Ĥ(t,T )+ 1

2( γ
1−γ )

2
V Ĥ(t,T ) ∗ Φ

(
dδ1 (t)

)
+ e−M

Ĥ(t,T )+ 1
2
V Ĥ(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
+ (y∗1 − y∗2)

1
γ−1

(
Ĥ (t)

) 1
γ−1

e
γ

1−γM
Ĥ(t,T )+ 1

2( γ
1−γ )

2
V Ĥ(t,T ) ∗ Φ

(
dδ4 (t)

)

and

XPI (t)

=
(
yPI1

) 1
γ−1

(
Ĥ (t)

) 1
γ−1

e
γ

1−γM
Ĥ(t,T )+ 1

2( γ
1−γ )

2
V Ĥ(t,T ) ∗ Φ

(
dPI1 (t)

)
+ e−M

Ĥ(t,T )+ 1
2
V Ĥ(t,T ) ∗ Φ

(
dPI2 (t)

)
,
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where

dδ1 (t) =
ln
(

qγ−1

y∗1Ĥ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
+

γ

1− γ

√
V Ĥ (t, T ),

dδ2 (t) = −
ln
(

qγ−1

y∗1Ĥ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
+

√
V Ĥ (t, T ),

dδ3 (t) = −
ln

(
qγ−1

(y∗1−y∗2)Ĥ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
+

√
V Ĥ (t, T ),

dδ4 (t) = −
ln

(
qγ−1

(y∗1−y∗2)Ĥ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
− γ

1− γ

√
V Ĥ (t, T ),

dPI1 (t) =
ln
(

qγ−1

yPIĤ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
+

γ

1− γ

√
V Ĥ (t, T ),

dPI2 (t) = −
ln
(

qγ−1

yPIĤ(t)

)
+M Ĥ (t, T )√

V Ĥ (t, T )
+

√
V Ĥ (t, T ).

Thereby Ĥ (t), M Ĥ (t, T ) and V Ĥ (t, T ) are as given in Theorem 5.3 and
Φ (·) is the standard normal probability distribution function.

(b) The portfolio processes at any time t ∈ [0, T ] which replicate the optimal
terminal wealth Xδ

c (t) and XPI
c (t) are given by

ϕδc (t) =
(
ϕδ1 (t) , ϕδ2 (t) , ϕδS (t)

)>
and

ϕPIc (t) =
(
ϕPI1 (t) , ϕPI2 (t) , ϕPIS (t)

)>
respectively,

where

ϕδ1 (t) =
(
−σ̂22

(
γF1 (t, T ) + θ̂1 (t)

)
+ σ̂21

(
γF2 (t, T ) + θ̂2 (t)

))
ℵδ1 (t, T, T1, T2)

+ θ̂S (t) (σ̂22σ̂1S − σ̂21σ̂2S)
(
ℵδ1 (t, T, T1, T2) + ~δ1 (t, T, T1, T2)

)
+
(
σ̂22

(
θ̂1 (t)− F1 (t, T )

)
− σ̂21

(
θ̂2 (t)− F2 (t, T )

))
~δ1 (t, T, T1, T2) ,
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ϕδ2 (t) =

−
(
γF1 (t, T ) + θ̂2 (t)

)
ℵδ2 (t, T, T1, T2)−

(
θ̂2 (t) + F2 (t, T )

)
~δ2 (t, T, T1, T2)

+
(
σ̂22

(
γF1 (t, T ) + θ̂1 (t)

)
− σ̂21

(
γF2 (t, T ) + θ̂2 (t)

)) σ̂12

σ̂22

ℵδ1 (t, T, T1, T2)

− θ̂S (t) σ̂12

σ̂22

(σ̂22σ̂1S − σ̂21σ̂2S)
(
ℵδ1 (t, T, T1, T2) + ~δ1 (t, T, T1, T2)

)
− σ̂12

σ̂22

(
σ̂22

(
θ̂1 (t) + F1 (t, T )

)
+ σ̂21

(
θ̂2 (t)− F2 (t, T )

))
~δ1 (t, T, T1, T2)

+
σ̂2S θ̂S (t)

σ̂22

(
ℵδ2 (t, T, T1, T2) + ~δ2 (t, T, T1, T2)

)
,

ϕδS (t) =
θ̂S (t) σ̂22

σ̂S

(
ℵδ2 (t, T, T1, T2) + ~δ2 (t, T, T1, T2)

)
,

ϕδM (t) = 1− ϕδc (t)> 13,

ϕPI1 (t) =(
−σ̂22

(
γF1 (t, T ) + θ̂1 (t)

)
+ σ̂21

(
γF2 (t, T ) + θ̂2 (t)

))
ℵPI1 (t, T, T1, T2)

+ θ̂S (t) (σ̂22σ̂1S − σ̂21σ̂2S)
(
ℵPI1 (t, T, T1, T2) + ~δ1 (t, T, T1, T2)

)
+
(
σ̂22

(
θ̂1 (t)− F1 (t, T )

)
− σ̂21

(
θ̂2 (t)− F2 (t, T )

))
~PI1 (t, T, T1, T2) ,

ϕPI2 (t) =

−
(
γF1 (t, T ) + θ̂2 (t)

)
ℵPI2 (t, T, T1, T2)−

(
θ̂2 (t) + F2 (t, T )

)
~PI2 (t, T, T1, T2)

+
(
σ̂22

(
γF1 (t, T ) + θ̂1 (t)

)
− σ̂21

(
γF2 (t, T ) + θ̂2 (t)

)) σ̂12

σ̂22

ℵPI1 (t, T, T1, T2)

− θ̂S (t) σ̂12

σ̂22

(σ̂22σ̂1S − σ̂21σ̂2S)
(
ℵPI1 (t, T, T1, T2) + ~PI1 (t, T, T1, T2)

)
− σ̂12

σ̂22

(
σ̂22

(
θ̂1 (t) + F1 (t, T )

)
+ σ̂21

(
θ̂2 (t)− F2 (t, T )

))
~PI1 (t, T, T1, T2)

+
σ̂2S θ̂S (t)

σ̂22

(
ℵPI2 (t, T, T1, T2) + ~PI2 (t, T, T1, T2)

)
,

ϕPIS (t) =
θ̂S (t) σ̂22

σ̂S

(
ℵPI2 (t, T, T1, T2) + ~PI2 (t, T, T1, T2)

)
,

ϕPIM (t) = 1− ϕPIc (t)> 13.
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Where,

ℵδ1 (t, T, T1, T2) :=
1

(1− γ) (σ̂22σ̂11 − σ̂12σ̂21)
,

~δ1 (t, T, T1, T2) :=

qe−M
Ĥ(t,T )+ 1

2
V Ĥ(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
(1− γ)Xδ

c (t) (σ̂22σ̂11 − σ̂12σ̂21)
,

ℵδ2 (t, T, T1, T2) :=
1

(1− γ) σ̂22

,

~δ2 (t, T, T1, T2) :=

qe−M
Ĥ(t,T )+ 1

2
V Ĥ(t,T ) ∗

(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
(1− γ)Xδ

c (t) σ̂22

,

ℵPI1 (t, T, T1, T2) :=
1

(1− γ) (σ̂22σ̂11 − σ̂12σ̂21)
,

~PI1 (t, T, T1, T2) :=
qe−M

Ĥ(t,T )+ 1
2
V Ĥ(t,T )Φ

(
dPI2 (t)

)
(1− γ)XPI

c (t) (σ̂22σ̂11 − σ̂12σ̂21)
,

ℵPI2 (t, T, T1, T2) :=
1

(1− γ) σ̂22σ̂11

,

~PI2 (t, T, T1, T2) :=
qe−M

Ĥ(t,T )+ 1
2
V Ĥ(t,T )Φ

(
dPI2 (t)

)
(1− γ)XPI

c (t) σ̂22

,

and F1 (t, T ) and F2 (t, T ) as in (5.22).

Proof:

(a) See the proof of Theorem 4.6 part (a) and Theorem 5.3 part (a).

(b) We will prove only the case of ϕδc (t), i.e., δ ∈
(
δ, δ
)
. For the optimal

portfolio insurer trading strategy ϕPIc (t), i.e. in case δ = δ, it is proved
analogously. We use the same idea used to prove Theorem 4.6 part (b) and
Theorem 5.3 part (b). Note that Ĥ (T )Xδ

c (T ) ∈ D1,1 from the proof of
Theorem 5.3 part (b) and Proposition A.9. Therefore, we can apply The-
orem A.7 to β (T )Xδ

c (T ). The Clark-Ocone representation under change
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of measure of β (T )Xδ
c (T ) reads as

β (T )Xδ
c (T ) = EQ̂ [β (T )Xδ

c (T )
]

+

∫ T

0

EQ̂ [Dt

(
β (T )Xδ

c (T )
)
| F (t)

]
dW Q̂ (t)

−
∫ T

0

EQ̂
[
β (T )Xδ

c (T )

∫ T

t

DtΘ̂
> (u) dW Q̂ (u) | F (t)

]
dW Q̂ (t).

(5.38)
The third term in (5.38) is equal to zero since Θ (u) is a deterministic
function, as we have seen in the proof of Theorem 5.3. In Proposition 5.4,
for the case of δ ∈

(
δ, δ
)
, the optimal terminal wealth is given by

Xδ
c (T ) =

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A + q1B

+

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C .

Thus,

β (T )Xδ
c (T ) =β (T )

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A + β (T ) q1B

+ β (T )

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C .

In the following we use Proposition A.9 to compute the Malliavin derivative
of β (T )Xδ

c (T ):

Dt

(
β (T )Xδ

c (T )
)

= Dt

β (T )

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A


+Dt (β (T ) q1B) +Dt

β (T )

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C

 .

(5.39)
We compute first the Malliavin derivative of the first term of (5.39) by
using the same idea as in the proof of Theorem 5.3. In particular, from
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Equation (5.28) we get

Dt

β (T )

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A

 =

1

1− γ

(
γδ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
×

β (T )

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A,

(5.40)

e3 as given in (5.27). The second and the third term of Equation (5.39)
are calculated analogously.
Thus,

Dt

(
β (T )Xδ

c (T )
)

=
1

1− γ

(
γδ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
×

β (T )

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A

− δ>A−1
(
I − PΛ (T − t)P−1

)
β (T ) q1B

+
1

1− γ

(
γδ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
×

β (T )

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C .

(5.41)

After some re-arrangements of Equation (5.41) we obtain

Dt

(
β (T )Xδ

c (T )
)

=

1

1− γ

(
γδ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
β (T )Xδ

c (T )

− 1

1− γ

(
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
β (T ) q1B.

(5.42)
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Therefore,

β (T )Xδ
c (T ) = EQ̂ [β (T )Xδ

c (T )
]

+

∫ T

0

1

1− γ

(
γδ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
×

EQ̂ [β (T )Xδ
c (T ) | F (t)

]
dW Q̂ (t)

−
∫ T

0

1

1− γ

(
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 + Θ̂> (t)

)
×

EQ̂ [β (T ) q1B | F (t)] dW Q̂ (t) .

(5.43)

We compare (5.43) and (5.16), and we obtain Equations (5.44), (5.45) and
(5.46) below, which we have to solve simultaneously for ϕδ1 (t) , ϕδ2 (t) and
ϕδS (t).

β (t)Xδ
c (t)

(
ϕδS (t) σ̂1S + ϕδ1 (t) σ̂11 + ϕδ2 (t) σ̂21

)
=

1

1− γ

(
γF1 (t, T ) + θ̂1 (t)

)
EQ̂ [β (T )Xδ

c (T ) | F (t)
]

− 1

1− γ

(
F1 (t, T ) + θ̂1 (t)

)
EQ̂ [β (T ) q1B | F (t)] ,

(5.44)

β (t)Xδ
c (t)

(
ϕδS (t) σ̂2S + ϕδ1 (t) σ̂12 + ϕδ2 (t) σ̂22

)
=

1

1− γ

(
γF2 (t, T ) + θ̂2 (t)

)
EQ̂ [β (T )Xδ

c (T ) | F (t)
]

− 1

1− γ

(
F2 (t, T ) + θ̂2 (t)

)
EQ̂ [β (T ) q1B | F (t)] ,

(5.45)

β (t)Xδ
c (t)ϕδS (t) σ̂S = θ̂S (t)EQ̂ [β (T )

(
Xδ
c (T ) + q1B

)
| F (t)

]
. (5.46)

Solving Equation (5.46) for ϕδS (t) we get

ϕδS (t) =
θ̂S (t) σ̂22

σ̂S

(
ℵδ2 (t, T, T1, T2) + ~δ2 (t, T, T1, T2)

)
. (5.47)

Substituting (5.47) in (5.45) and (5.44), and solving them simultaneously
for ϕδ1 (t) and ϕδ2 (t) gives the result.

�
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5.3. Optimization without risk constraint in an
incomplete market

In the previous sections of this chapter we have studied the portfolio optimiza-
tion problem in a complete market, but as we have mentioned in Chapter 4 a
market might as well be incomplete. Now, we turn to the world of an incomplete
market in this and the next section of this chapter. The aim of this section is to
analyze portfolio optimization problem without risk constraints in an incomplete
market when the interest rates are described by the two-factor Vasiček model.

We consider a financial market composed of a money market account M , a
bond B1 and a stock S, whose dynamics under the probability measure P are
described by (5.1), (5.4) and (5.5), respectively:

dM (t) = M (t) r (t) dt,

dB (t, T1) = B (t, T1)
[
µ1B (t, T1) dt+ σ11 (t, T1) dW P

1 (t) + σ12 (t, T1) dW P
2 (t)

]
,

dS (t) = S (t)
[
µP
S (t) dt+ σ1SdW

P
1 (t) + σ2SdW

P
2 (t) + σSdW

P
S (t)

]
.

(5.48)
Note that from Definition 2.9 we are in an incomplete market.

Remark 5.6 At this financial market (composed of M , B1 and S), as in (5.14),
we have

µ̄1B = θ̂1 (t) σ̂11 (t, T1) + θ̂2 (t) σ̂12 (t, T1)

µ̄S = θ̂1 (t) σ̂1S + θ̂2 (t) σ̂2S + θ̂S (t) σ̂S.
(5.49)

A vector Θ̂ (t) =
(
θ̂1 (t) , θ̂2 (t) , θ̂S (t)

)>
correspond to Q̂ ∈Me. In the system

of Equations (5.49) we have three unknowns (θ̂1 (t) , θ̂2 (t) and θ̂S (t)) and two
equations. So, the values of these unknowns cannot be determined uniquely,
which means the set Me is composed of infinitely many elements. Q̂ ∈ Me will
be characterized by its Radon-Nikodym derivative ZΘ̂ (t) ∈ L1 (Ω,F ,P) defined
by

ZΘ̂ (t) :=

(
dQ̂
dP

)
t

= exp

{
−1

2

∫ t

0

∥∥∥Θ̂ (u)
∥∥∥2

du−
∫ t

0

Θ̂> (u) dW P (u)

}
.

Note that the differences between Section 5.1 and this section are:
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5.3. Optimization without risk constraint in an incomplete market

• In Section 5.1 we considered a financial market composed of the assets M ,
B1, B2 and S while in this section we consider a market with assets M , B1

and S.

• In Section 5.1 Me is singleton, whereas in this section Me is made up of
infinitely many elements.

These differences are severe, since we now have to deal with an incomplete mar-
ket and to find an optimal Θ̂∗ by the dual problem. This should serve as an
example how incomplete market may be modeled and solved. Now Θ̂ is a solu-
tion of (5.49).

We consider again an investor endowed with initial wealth x > 0 for the
investment. We denote the fractions of wealth invested in the assets at time
t ∈ [0, T ] in the market by the vector ϕinc (t) = (ϕM (t) , ϕ1 (t) , ϕS (t))>, with
ϕM (t), ϕ1 (t) and ϕS (t) corresponding to M , B1 and S, respectively.

The wealth process of an investor at time t ∈ [0, T ], denoted by Xinc (t), under
the probability measure Q̂ ∈ Me (using Equations (5.1), (5.10) and (5.11))
follows the SDE:

dXinc (t) = dXM (t) + dXB1 (t) + dXS (t)

= (1− ϕ1 (t)− ϕS (t))Xinc (t) r (t) dt

+Xinc (t)ϕ1 (t)
(
r (t) dt+ σ̂11dW

Q̂
1 (t) + σ̂12dW

Q̂
2 (t)

)
+Xinc (t)ϕS (t)

(
r (t) dt+ σ̂1SdW

Q̂
1 (t) + σ̂2SdW

Q̂
2 (t) + σ̂SdW

Q̂
S (t)

)
= +Xinc (t) (ϕS (t) σ̂1S + ϕ1 (t) σ̂11) dW Q̂

1 (t)

+Xinc (t) (ϕS (t) σ̂2S + ϕ1 (t) σ̂12) dW Q̂
2 (t)

+Xinc (t)
[
r (t) dt+ ϕS (t) σ̂SdW

Q̂
S (t)

]
,

(5.50)
where XM (t) , XB1 (t) and XS (t) are as given in (5.15). By applying Ito’s rule
on the process β (t)Xinc (t) we get

d (β (t)Xinc (t)) = Xinc (t) β (t) (ϕS (t) σ̂1S + ϕ1 (t) σ̂11) dW Q̂
1 (t)

+Xinc (t) β (t) (ϕS (t) σ̂2S + ϕ1 (t) σ̂12) dW Q̂
2 (t)

+Xinc (t) β (t)ϕS (t) σ̂SdW
Q̂
S (t)
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5. Portfolio optimization with a two-factor Vasiček model

and thus

β (T )Xinc (T ) = Xinc (0) +

∫ T

0

Xinc (t) β (t) (ϕS (t) σ̂1S + ϕ1 (t) σ̂11) dW Q̂
1 (t)

+

∫ T

0

Xinc (t) β (t) (ϕS (t) σ̂2S + ϕ1 (t) σ̂12) dW Q̂
2 (t)

+

∫ T

0

Xinc (t) β (t)ϕS (t) σ̂SdW
Q̂
S (t) .

(5.51)

The aim of an investor is to choose a portfolio process from A (x) which max-
imizes the expected utility of his/her terminal wealth Xinc (T ). The dynamic
and the static optimization problems are constructed as in the case of a com-
plete market (see (5.17) and (5.18)), with Xc (T ) in (5.17) and (5.18) replaced
by Xinc (T ).

Before we state a proposition that gives the optimal terminal wealth, let us
first recall the primal and dual problem for the terminal wealth Xinc (T ).

Primal problem:

Ψ
(
y, Q̂

)
:= max

Xinc(T )∈B(x)
L
(
y, Q̂, Xinc (T )

)
for y > 0 and Q̂ ∈Me,

where L is the Lagrangian function defined by

L
(
y, Q̂, Xinc (T )

)
:= E

[
(Xinc (T ))γ

γ
− yβ (T )

(
dQ̂
dP

)
T

Xinc (T ) + yx

]
, (5.52)

and constructed as in (4.57).

Dual problem:

Φ (Xinc (T )) := min
y>0,Q̂∈Me

L
(
y, Q̂, Xinc (T )

)
for Xinc (T ) ∈ B (x) . (5.53)

For a given Q̂ ∈ Me, the solution to the primal problem (5.3) is similar to the
case of complete market and it is restated in the following proposition.
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5.3. Optimization without risk constraint in an incomplete market

Proposition 5.7 For Q̂ ∈Me, the solution to the primal problem (5.3) is given

by X∗inc (T ) = finc

(
y∗, Q̂

)
, where

finc

(
y∗, Q̂

)
=

(
y∗β (T )

(
dQ̂
dP

)
T

) 1
γ−1

, (5.54)

thereby y∗ > 0 is obtained through

(y∗)
1

γ−1 =
x

E
[(
β (T )

(
dQ̂
dP

)
T

) γ
γ−1

] . (5.55)

If we plug the value of X∗inc (T ) in (5.52), after some rearrangements, we get

L
(
y∗, Q̂

)
= E

[
1− γ
γ

(
finc

(
y∗, Q̂

))γ
+ yx

]
. (5.56)

We have now all the ingredients to state a theorem that gives a solution to the
dual problem (5.53) for X∗inc (T ) and y∗ from Proposition 5.7.

Theorem 5.8 For y∗ and X∗inc (T ) as given in Proposition 5.7, the dual problem
(5.53) is equivalent to

min
Θ̂(t)=(θ̂1(t),θ̂2(t),θ̂S(t))

E
[

1− γ
γ

(
finc

(
y∗, Q̂

))γ
+ y∗x

]
s.t. θ̂1 (t) σ̂11 (t, T1) + θ̂2 (t) σ̂12 (t, T1) = µ̄1B

θ̂1 (t) σ̂1S + θ̂2 (t) σ̂2S + θ̂S (t) σ̂S = µ̄S,

(5.57)

since there is one to one correspondence between Θ̂ and Q̂ ∈ Me together with
Remark 5.6. Then, the solution to the problem (5.57) is given by Θ∗ (t) =
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5. Portfolio optimization with a two-factor Vasiček model

(θ∗1 (t) , θ∗2 (t) , θ∗S (t))> corresponding to Q∗ ∈Me, where

θ∗1 (t) =
µ̄1B

σ̂11

+
σ̂12

σ̂11

h1 (t)

h2 (t)
,

θ∗2 (t) =
h1 (t)

h2 (t)
and

θ∗S (t) =
µ̄S
σ̂S
− σ̂1Sµ̄1B

σ̂Sσ̂11

+

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
h1 (t)

h2 (t)
with

h1 (t) =
σ̂12µ̄1B

σ̂2
11

− µ̄S
σ̂S

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
+
σ̂1Sµ̄1B

σ̂Sσ̂11

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
+ γ

(
δ1f11 (t, T )

σ̂12

σ̂11

− δ1f12 (t, T ) + δ2f21 (t, T )
σ̂12

σ̂11

− δ2f22 (t, T )

)
and

h2 (t) =

(
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2

.

(5.58)
Hereby δ1, δ2, f11 (t, T ) , f12 (t, T ) , f21 (t, T ) and f22 (t, T ) are as given in (5.21).

Proof: We have

γ

1− γ

(∫ T

0

r (t) dt+
1

2

∫ T

0

∥∥∥Θ̂ (t)
∥∥∥2

dt+

∫ T

0

Θ̂>dW P (t)

)
∼ N

(
M,
√
V
)
,

where

M =
γ

1− γ

[∫ T

0

δ0dt+

∫ T

0

µP (t)dt+
1

2

∫ T

0

∥∥∥Θ̂ (t)
∥∥∥2

dt

]
and

V = V ar

[
γ

1− γ

(∫ T

0

r (t) dt+
1

2

∫ T

0

∥∥∥Θ̂ (t)
∥∥∥2

dt+

∫ T

0

Θ̂> (t) dW P (t)

)]
=

γ2

(1− γ)2

{∫ T

0

[(
δ>A−1

(
I − PΛ (T − t)P−1

)
+ θ̂>r (t)

)2

+ θ̂2
S (t)

]
dt

}
.

(5.59)
Therefore,

E
[

1− γ
γ

(
finc

(
y∗, Q̂

))γ
+ y∗x

]
=

1− γ
γ

(y∗)
γ
γ−1 eM+ 1

2
V + y∗x =: g

(
θ̂1 (t) , θ̂2 (t) , θ̂S (t)

)
.

(5.60)
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5.3. Optimization without risk constraint in an incomplete market

Thus, we minimize the function g under two constraints since the relations in
Equation (5.49) have to be fulfilled

min
(θ̂1,θ̂2,θ̂S)

g
(
θ̂1 (t) , θ̂2 (t) , θ̂S (t)

)
s.t. θ̂1 (t) σ̂11 (t, T1) + θ̂2 (t) (t) σ̂12 (t, T1) = µ̄1B

θ̂1 (t) σ̂1S + θ̂2 (t) σ̂2S + θ̂S (t) σ̂S = µ̄S.

(5.61)

We reduce the problem (5.61) from minimizing in three dimensions to one di-
mension by expressing the two variables in terms of the remaining variable: we
set

θ̂2 (t) = λ (t)

⇒ θ̂1 (λ (t) , t) =
µ̄1B

σ̂11

− σ̂12λ (t)

σ̂11

,

θ̂S (λ (t) , t) =
µ̄S
σ̂S
− σ̂1Sµ̄1B

σ̂Sσ̂11

+

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
λ (t) ,

(5.62)

and the function g in (5.60) can be described in terms of λ as

g (λ) :=
1− γ
γ

y
γ
γ−1 eM(λ)+ 1

2
V (λ) + y∗x,

where

M (λ) =

∫ T

0

γ

1− γ

[
δ0 + µP (t) +

1

2

∥∥∥Θ̂ (λ (t) , t)
∥∥∥2
]
dt,

V (λ) =∫ T

0

γ2

(1− γ)2

[(
δ>A−

(
I − PΛ (T − t)P−

)
+ θ̂>r (λ (t) , t)

)2

+ θ̂2
S (λ (t) , t)

]
dt.

(5.63)

Now the problem (5.61) is reduced to:

min
λ
g (λ) . (5.64)
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5. Portfolio optimization with a two-factor Vasiček model

(i) For γ ∈ (0, 1) g is minimum, if M (λ) + 1
2
V (λ) is minimum.

M (λ) +
1

2
V (λ) =∫ T

0

γ

1− γ

[
δ0 + µP (t) +

1

2

∥∥∥Θ̂ (λ (t) , t)
∥∥∥2

+

1

2

γ

(1− γ)

((
δ>A−

(
I − PΛ (T − t)P−

)
+ θ̂>r (λ (t) , t)

)2

+ θ̂2
S (λ (t) , t)

)]
dt

=:

∫ T

0

f (λ (t) , t) dt.

So, g is minimum, if λ (t) minimizes f (λ (t) , t) for all t ∈ [0, T ].

∂f (λ, t)

∂λ
=

γ

1− γ

[
Θ̂> (λ, t) Θ̂λ (λ, t)

]
+

γ2

(1− γ)2

[(
δ>A−1

(
I − PΛ (T − t)P−1

)
+ θ̂>r (λ, t)

)
θ̂λ,r (λ, t)

+ θ̂S (λ, t) θ̂λ,S (λ, t)
]

!
= 0.

(5.65)

where

θ̂λ,r (λ, t) :=
∂θ̂r (λ, t)

∂λ
=

(
− σ̂12
σ̂11

1

)
,

Θ̂λ (λ, t) :=
∂Θ̂ (λ, t)

∂λ
=

 − σ̂12
σ̂11

1(
σ̂1S σ̂12
σ̂S σ̂11

− σ̂2S
σ̂S

)
 .

After some rearrangements we find that

λ∗ (t) =
h1 (t)

h2 (t)
. (5.66)

Hereby

h1 (t) =
σ̂12µ̄1B

σ̂2
11

− µ̄S
σ̂S

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
+
σ̂1Sµ̄1B

σ̂Sσ̂11

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
+ γ

(
δ1f11 (t, T )

σ̂12

σ̂11

− δ1f12 (t, T ) + δ2f21 (t, T )
σ̂12

σ̂11

− δ2f22 (t, T )

)
(5.67)
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5.3. Optimization without risk constraint in an incomplete market

and

h2 (t) =

(
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2

. (5.68)

λ∗ (t) up to now is a candidate minimizer of f (λ (t) , t) for all t ∈ [0, T ].
We now have to show that λ∗ (t) is a global minimizer of f (λ (t) , t) for all
t ∈ [0, T ]. We use the second order condition, as we have done in Chapter

4, i.e., we need to show that ∂2f(λ,t)
∂λ2

> 0 at λ∗ (t) for all t ∈ [0, T ].

∂2f (λ, t)

∂λ2
=

γ

1− γ

[(
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2
]

+
γ2

(1− γ)2

[(
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2
]

> 0.

(5.69)

(ii) For γ ∈ (−∞, 0) g is minimum, if M (λ) + 1
2
V (λ) is maximum. We take

the same steps as for part (i) and we obtain λ∗ (t), as given in (5.66),
as a candidate maximizer of f (λ (t) , t). What is left, is to show that
∂2f(λ(t),t)

∂λ2
< 0 at λ∗ (t) for all t ∈ [0, T ], in order for λ∗ (t) to be a global

maximizer of f (λ (t) , t). From (5.69) we have

∂2f (λ, t)

∂λ2
=

(
γ

1− γ
+

γ2

(1− γ)2

)((
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2
)

=
γ

1− γ︸ ︷︷ ︸
<0

1 +
γ

1− γ︸ ︷︷ ︸
>0


( σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2

︸ ︷︷ ︸
>0


< 0.

Substituting the value of λ∗ back into Equations (5.62), we obtain the
result.

�

Representation problem:
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5. Portfolio optimization with a two-factor Vasiček model

Theorem 5.9 Suppose all the conditions of Theorem 5.8 are satisfied.Then:

(a) The time-t ∈ [0, T ] optimal wealth is given by

X∗inc (t) = (y∗)
1

γ−1 (H∗ (t))
1

γ−1 e
γ

1−γM
H∗ (t,T )+ 1

2( γ
1−γ )

2
V H
∗

(t,T ).

Thereby

H∗ (t) = β (t)

(
dQ∗

dP

)
t

,

MH∗ (t, T ) =

∫ T

t

δ0ds+

∫ T

t

µP (s)ds+
1

2

∫ T

0

‖Θ∗ (s)‖2ds,

V H∗ (t, T ) =

∫ T

s

[(
δ>A−1

(
I − PΛ (T − s)P−1

)
+ θ∗,>r (s)

)2
+ (θ∗)2

S (s)
]
ds.

(b) The portfolio process at any time t ∈ [0, T ] that replicates X∗inc (t) is given

by ϕ∗inc (t) =
(
ϕ∗M,inc (t) , ϕ∗1,inc (t) , ϕ∗S,inc (t)

)>
, where

ϕ∗1,inc (t) =
1

1− γ
γF2 (t, T ) + θ∗2 (t)

σ̂12

−
ϕ∗S,inc (t) σ̂2S

σ̂12

,

ϕ∗S,inc (t) =
1

1− γ
θ∗S (t)

σ̂S
,

ϕ∗M,inc (t) =
(
1− ϕ∗1,inc (t)− ϕ∗S,inc (t)

)
.

(5.70)

Hereby
F1 (t, T ) = δ1f11 (t, T ) + δ2f21 (t, T ) ,

F2 (t, T ) = δ1f12 (t, T ) + δ2f22 (t, T ) .

Proof: After specifying Q∗ ∈ M in Theorem 5.8, the same procedures as for
the case of a complete market are taken to prove this theorem (see the proof of
Theorem 5.3). Using Equation (5.31) and replacing X∗c (T ) and Q̂ by X∗inc (T )
and Q∗, respectively, then β (T )X∗inc (T ) can be expressed as

β (T )X∗inc (T ) = EQ∗ [β (T )X∗inc (T )]

+

∫ T

0

(
γ

1− γ
δ>A−1

(
I − PΛ (T − t)P−1

)
e3 +

1

1− γ
Θ∗,> (t)

)
×

β (t)X∗inc (t) dWQ∗ (t) .
(5.71)
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5.3. Optimization without risk constraint in an incomplete market

Comparing (5.71) with (5.51) we obtain

1

1− γ

γ
F1 (t, T )
F2 (t, T )

0

+

θ∗1 (t)
θ∗2 (t)
θ∗S (t)

 =

ϕS (t) σ̂1S + ϕ1 (t) σ̂11

ϕS (t) σ̂2S + ϕ1 (t) σ̂12

ϕS (t) σ̂S

 , (5.72)

and thus

ϕ∗S,inc (t) =
1

1− γ
θ∗S (t)

σ̂S

and

ϕ∗S,inc (t) σ̂1S + ϕ1 (t) σ̂11 =
1

1− γ
(γF1 (t, T ) + θ∗1 (t)) (5.73)

ϕ∗S,inc (t) σ̂2S + ϕ1 (t) σ̂12 =
1

1− γ
(γF2 (t, T ) + θ∗2 (t)) . (5.74)

We can use either (5.73) or (5.74) to find ϕ∗1,inc (t). Using (5.74) results in

ϕ∗1,inc (t) =
1

γ − 1

γF2 (t, T ) + θ∗2 (t)

σ̂12

−
ϕ∗S,inc (t) σ̂2S

σ̂12

.

�

Remark 5.10 If we use Equation (5.73) for the computation of ϕ∗1,inc (t), it
gives the same results.

Proof: From the Equation (5.73) we have

ϕ∗1,inc (t) =
1

1− γ
(γF1 (t, T ) + θ∗1 (t))

σ̂11

−
ϕ∗S,inc (t) σ̂1S

σ̂11

(5.75)

Using the values of ϕ∗1,inc and ϕ∗S,inc from (5.70) we have to show that

1

1− γ
γF2 (t, T ) + θ∗2 (t)

σ̂12

− 1

1− γ
θ∗S (t) σ̂2S

σ̂Sσ̂12

−
(

1

1− γ
(γF1 (t, T ) + θ∗1 (t))

σ̂11

− 1

1− γ
θ∗S (t) σ̂1S

σ̂Sσ̂11

)
!

= 0

(5.76)
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Plugging the values of θ∗2 (t) , θ∗2 (t) and θ∗S (t) from (5.58) in (5.76) we get

γF2 (t, T )

σ̂12

+
1

σ̂12

h1 (t)

h2 (t)
− (γF1 (t, T ))

σ̂11

− µ̄1B

σ̂2
11

+
σ̂12

σ̂2
11

h1 (t)

h2 (t)

+

(
σ̂1S

σ̂Sσ̂11

− σ̂2S

σ̂Sσ̂12

)(
µ̄S
σ̂S
− σ̂1Sµ̄1B

σ̂Sσ̂11

)
+

(
σ̂1S

σ̂Sσ̂11

− σ̂2S

σ̂Sσ̂12

)(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)
h1 (t)

h2 (t)

=
γF2 (t, T )

σ̂12

− (γF1 (t, T ))

σ̂11

− µ̄1B

σ̂2
11

+

(
σ̂1S

σ̂Sσ̂11

− σ̂2S

σ̂Sσ̂12

)(
µ̄S
σ̂S
− σ̂1Sµ̄1B

σ̂Sσ̂11

)
+

1

σ̂12

((
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2
)
h1 (t)

h2 (t)

= − 1

σ̂12

[
γ

(
F2 (t, T )− (F1 (t, T ))

σ̂12

σ̂11

)
− σ̂12µ̄1B

σ̂2
11

]
+

1

σ̂12

(
σ̂12σ̂1S

σ̂Sσ̂11

− σ̂2S

σ̂S

)(
µ̄S
σ̂S

)
− 1

σ̂12

(
σ̂12σ̂1S

σ̂Sσ̂11

− σ̂2S

σ̂S

)
σ̂1Sµ̄1B

σ̂Sσ̂11

+
1

σ̂12

((
σ̂12

σ̂11

)2

+ 1 +

(
σ̂1Sσ̂12

σ̂Sσ̂11

− σ̂2S

σ̂S

)2
)
h1 (t)

h2 (t)

= 0.

The last equality holds from the definitions of F1 and F2 in Theorem 5.3, h1 and
h2 in Theorem 5.8. �

5.4. Optimization with bounded expected shortfall
risk in an incomplete market

In this section we focus on the portfolio optimization problem in an incomplete
market with risk constraints in the two-factor Vasiček model of interest rates. We
will consider the market model studied in the previous section. In what follows,
we review the dynamic and the static optimization problems as given in Section
5.2, with the difference that Me is not a singleton as in Section 5.2. It is rather
made up of infinitely many elements.
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5.4. Optimization with bounded expected shortfall risk in an incomplete market

The dynamic optimization problem:

max
ϕ∈Ã(x)

E
[

(Xinc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xinc (T )] ≤ x (budget constraint)

EQ̂ [β (T ) (Xinc (T )− q)−
]
≤ δ (risk constraint) ,

(5.77)

with Ã (x) as defined in (2.10) and Q̂ ∈Me.

The static optimization problem:

max
Xinc(T )∈B(x)

E
[

(Xinc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xinc (T )] ≤ x

EQ̂ [β (T ) (Xinc (T )− q)−
]
≤ δ,

(5.78)

B (x) is as defined in (2.12).

The static portfolio insurer problem:

max
Xinc(T )∈B(x)

E
[

(Xinc (T ))γ

γ

]
s.t. EQ̂ [β (T )Xinc (T )] ≤ x

Xinc (T ) ≥ q.

(5.79)

The optimal wealth for problems (5.78) and (5.79) are as in Theorem 4.5,
Theorem 3.5, Proposition 4.12. We restate below a proposition that characterizes
the solutions of the problems (5.78) and (5.79) for a sake of revision.

Proposition 5.11 Let q be a fixed benchmark, x an initial wealth of an investor
and Q̂ ∈ Me. (i) If δ ∈

(
δ, δ
)
, then the solution of the problem (5.78) is given

by

Xδ
inc (T ) = finc

(
y∗1, y

∗
2, Q̂

)
, (5.80)
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5. Portfolio optimization with a two-factor Vasiček model

where

finc

(
y∗1, y

∗
2, Q̂

)
=

(
y∗1β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1A + q1B

+

(
(y∗1 − y∗2) β (T )

(
dQ̂
dP

)
T

) 1
γ−1

1C ,

(5.81)

A = A
(
y∗1, Q̂

)
:=

{
β (T )

(
dQ̂
dP

)
T

≤ qγ−1

y∗1

}
,

B = B
(
y∗1, y

∗
2, Q̂

)
:=

{
qγ−1

y∗1
< β (T )

(
dQ̂
dP

)
T

≤ qγ−1

y∗1 − y∗2

}
, and

C = C
(
y∗1, y

∗
2, Q̂

)
:=

{
β (T )

(
dQ̂
dP

)
T

>
qγ−1

y∗1 − y∗2

}
,

such that y∗1, y
∗
2 ∈ (0,∞) solve the following system of equations

E

[
β (T )

(
dQ̂
dP

)
T

finc

(
y1, y2, Q̂

)]
= x

E

[
β (T )

(
dQ̂
dP

)
T

(
finc

(
y1, y2, Q̂

)
− q
)−]

= δ.

(ii) If δ = δ, i.e in the case of the portfolio insurer problem, the solution to (5.79)
is given by

XPI
inc (T ) = finc

(
yPI , Q̂

)
,

where

finc

(
yPI , Q̂

)
=

(
yPIβ (T )

(
dQ̂
dP

)
T

) 1
γ−1

1API + q1BPI , (5.82)

API = API
(
yPI , Q̂

)
:=

{
β (T )

(
dQ̂
dP

)
T

≤ qγ−1

yPI

}
, and

BPI = BPI
(
yPI , Q̂

)
:=

{
qγ−1

yPI
< β (T )

(
dQ̂
dP

)
T

}
,

such that yPI solves the equation

E

[
β (T )

(
dQ̂
dP

)
T

finc

(
yPI , Q̂

)]
= x.
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5.4. Optimization with bounded expected shortfall risk in an incomplete market

We use the same idea as in Section 4.4 to solve the dual problem below for the
optimal terminal wealth Xδ

inc (T ) as given in the Proposition 5.11, for the case
of XPI

inc (T ) it is done analogously.

Dual problem:

Φ
(
Xδ
inc (T )

)
:= min

Q̂∈Me
L
(
Q̂, Xδ

inc (T )
)
, (5.83)

where

L
(
Q̂, Xδ

inc (T )
)

= E

[(
Xδ
inc (T )

)γ
γ

− y∗1β (T )

(
dQ̂
dP

)
T

Xδ
inc (T )

]

− E

[
y∗2β (T )

(
dQ̂
dP

)
T

(
Xδ
inc (T )− q

)− − y∗1x− y∗2δ
]

=E


(
finc

(
y∗1, y

∗
2, Q̂

))γ
γ

− y∗1β (T )

(
dQ̂
dP

)
T

f
(
y∗1, y

∗
2, Q̂

)
− E

[
y∗2β (T )

(
dQ̂
dP

)
T

(
finc

(
y∗1, y

∗
2, Q̂

)
− q
)−
− y∗1x− y∗2δ

]

=E

(γ − 1)

γ

(
y∗1β (T )

(
dQ̂
dP

)
T

) γ
γ−1

1A


+ E

qγ − y∗1qγβ (T )
(
dQ̂
dP

)
T

γ

1B


+ E

((y∗1 (1− γ)− y∗2 (1 + γ))

γ

)
(y∗1 − y∗2)

1
γ−1

(
β (T )

(
dQ̂
dP

)
T

) γ
γ−1

1C


+ y∗1x+ y∗2δ.

(5.84)

Remark 5.12 β (T )
(
dQ̂
dP

)
T

is a log-normal random variable under P:

− ln

{
β (T )

(
dQ̂
dP

)
T

}
∼ N

(
MH (θ1, θ2, θs) ,

√
V H (θ1, θ2, θs)

)
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5. Portfolio optimization with a two-factor Vasiček model

where MH (θ1, θ2, θs) = 1−γ
γ
M (θ1, θ2, θs) and V H (θ1, θ2, θs) = 1−γ

γ
V (θ1, θ2, θs)

with M (θ1, θ2, θs) and V (θ1, θ2, θs) as given in (5.59).

Therefore,

L
(
Q̂, Xδ

inc (T )
)

=
1− γ
γ

(y∗1)
γ
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V H ∗ Φ (d1)

+
qγ

γ
(Φ (d3)− Φ (d2))− y∗1qe−M

H+ 1
2
V H (Φ (d5)− Φ (d4))

+

(
(y∗1 (1− γ)− y∗2 (1 + γ))

γ

)
(y∗1 − y∗2)

1
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V HΦ (d6)

+ y∗1x+ y∗2δ =: L (θ1, θ2, θS) ,

where

d1 = d1 (y∗1, θ1, θ2, θS) :=
ln
(
qγ−1

y∗1

)
+MH

√
V H

+
γ

1− γ
√
V H ,

d2 = d2 (y∗1, θ1, θ2, θS) := −
ln
(
qγ−1

y∗1

)
+MH

√
V H

,

d3 = d3 (y∗1, y
∗
2, θ1, θ2, θS) :=

ln
(

qγ−1

y∗1−y∗2

)
+MH

√
V H

,

d4 = d4 (y∗1, θ1, θ2, θS) := d2 +
√
V H ,

d5 = d5 (y∗1, y
∗
2, θ1, θ2, θS) := d3 −

√
V H ,

d6 = d6 (y∗1, y
∗
2, θ1, θ2, θS) := −

ln
(

qγ−1

y∗1−y∗2

)
+MH

√
V H

− γ

1− γ
√
V H .

(5.85)

We state the following optimization problem with the relations (5.49) considered
as constraints.

min
(θ1,θ2,θS)

L
(
θ1, θ2, θS, X

δ
inc (T )

)
s.t. σ11 (t, T1) θ1 (t) + σ12 (t, T1) θ2 (t) = µ̄1B

σ1Sθ1 (t) + σ2Sθ2 (t) + σSθS (t) = µ̄S.

(5.86)

To solve the problem (5.86) we use the same procedure as used to prove Theorem
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5.4. Optimization with bounded expected shortfall risk in an incomplete market

5.8 by setting first

θ2 (λ, t) = λ (t)

⇒ θ1 (λ, t) =
µ̄1B

σ11 (t, T1)
− σ12 (t, T1)λ (t)

σ11 (t, T1)
and

θS (λ, t) =
µ̄S
σS
− σ1Sµ̄1B

σSσ11 (t, T1)
+

(
σ1Sσ12 (t, T1)

σSσ11 (t, T1)
− σ2S

σS

)
λ (t) .

(5.87)

Then, problem (5.86) is reduced to

min
λ
L (λ) . (5.88)

As far as we know, the solution λ∗ to the problem (5.88) can be only found
numerically but can’t be calculated analytically. Then, we plug λ∗ in Equation
(5.87) and obtain the solution of the problem (5.86). We summarize all together
in the following theorem.

Theorem 5.13 Consider the problem

min
Θ=(θ1,θ2,θS)

L
(
θ1, θ2, θS, X

δ
inc (T )

)
s.t. σ11 (t, T1) θ1 (t) + σ12 (t, T1) θ2 (t) = µ̄1B

σ1Sθ1 (t) + σ2Sθ2 (t) + σSθS (t) = µ̄S.

Then, the optimal solution is given by Θ∗ (t) = (θ∗1 (t) , θ∗2 (t) , θ∗S (t))>, where

θ∗1 (t) =
µ̄1B

σ11 (t, T1)
− σ12 (t, T1)

σ11 (t, T1)
λ∗,

θ∗2 (t) = λ∗ and

θ∗S (t) =
µ̄S
σS
− σ1Sµ̄1B

σSσ11 (t, T1)
−
(
σ1Sσ12 (t, T1)

σSσ11 (t, T1)
+

σ2S

σS (t)

)
λ∗.

For the case of δ = δ and from Proposition 5.11, the Lagrangian function is
given by

L
(
Q, XPI

inc (T )
)

= E

[(
XPI (T )

)γ
γ

− yPI
(
β (T )

(
dQ
dP

)
T

XPI (T )− x
)]

=E

[
(γ − 1)

γ

(
yPIβ (T )

(
dQ
dP

)
T

) γ
γ−1

1API +
qγ

γ
1BPI

]

− yPIE
[
β (T )

(
dQ
dP

)
T

q1BPI − x
]
.

(5.89)
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Using Remark 5.12 we get

L
(
Q, XPI

inc (T )
)

=
1− γ
γ

(
yPI
) γ
γ−1 e

γ
1−γM

H+ 1
2( γ

1−γ )
2
V H ∗ Φ

(
dPI1

)
+
qγ

γ
Φ
(
dPI2

)
− yPIqe−MH+ 1

2
V HΦ

(
dPI3

)
,

(5.90)

where

dPI1 = dPI1

(
yPI , θ1, θ2, θS

)
:=

ln
(
qγ−1

yPI

)
+MH (θ1, θ2, θS)√

V H (θ1, θ2, θS)
+

γ

1− γ
√
V H (θ1, θ2, θS),

dPI2 = dPI2

(
yPI , θ1, θ2, θS

)
:= −

ln
(
qγ−1

yPI

)
+MH

√
V H

,

dPI3 = dPI3

(
yPI , θ1, θ2, θS

)
:= −

ln
(
qγ−1

yPI

)
+MH

√
V H

−
√
V H .

(5.91)
We state the optimization problem, as (5.86), for the portfolio insurer problem
as follows

min
(θ1,θ2,θS)

L
(
θ1, θ2, θS, X

PI
inc (T )

)
s.t. σ11 (t, T1) θ1 (t) + σ12 (t, T1) θ2 (t) = µ̄1B

σ1Sθ1 (t) + σ2Sθ2 (t) + σSθS (t) = µ̄S.

(5.92)

To solve (5.92) we take the same steps as for the case of δ ∈
(
δ, δ
)
: set θ2 (λ, t) =

λ (t) and express θ1 and θS in terms of λ and t using the constraints in (5.92)
and then find the minimizer λPI of

LPI (λ) = L (θ1 (λ) , θ2 (λ) , θS (λ)) = L
(
θ1, θ2, θS, X

PI
inc (T )

)
.

Like for the case of δ ∈
(
δ, δ
)
, λPI can be only found numerically but cannot be

calculated analytically. We denote the market price of risk and the probability
measure that correspond to λPI by ΘPI and QPI ∈Me, respectively.

Representation problem

Theorem 5.14 Suppose all conditions of the Proposition 5.11 are fulfilled and
we consider the probability measures Q∗ ∈Me and QPI ∈Me. Then:
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5.4. Optimization with bounded expected shortfall risk in an incomplete market

(a) The time-t ∈ [0, T ] optimal wealth Xδ
inc (t) and XPI

inc (t) are given by

Xδ
inc (t)

= (y∗1)
1

γ−1 (H∗ (t))
1

γ−1 e
γ

1−γM
H∗ (t,T )+ 1

2( γ
1−γ )

2
V H
∗

(t,T ) ∗ Φ
(
dδ1 (t)

)
+ e−M

H∗ (t,T )+ 1
2
V H
∗

(t,T ) ∗
(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
+ (y∗1 − y∗2)

1
γ−1 (H∗ (t))

1
γ−1 e

γ
1−γM

H∗ (t,T )+ 1
2( γ

1−γ )
2
V H
∗

(t,T ) ∗ Φ
(
dδ4 (t)

)
and

XPI (t) =
(
yPI1

) 1
γ−1
(
HPI (t)

) 1
γ−1 e

γ
1−γM

HPI (t,T )+ 1
2( γ

1−γ )
2
V H

PI
(t,T )×

Φ
(
dPI1 (t)

)
+ e−M

HPI (t,T )+ 1
2
V H

PI
(t,T ) ∗ Φ

(
dPI2 (t)

)
,

where

H∗ (t) = β (t)

(
dQ∗

dP

)
t

,

HPI (t) = β (t)

(
dQPI

dP

)
t

,

MH∗ (t, T ) =

∫ T

t

δ0ds+

∫ T

t

µP (s)ds+
1

2

∫ T

0

‖Θ∗ (s)‖2ds,

V H∗ (t, T )

=

∫ T

t

[(
δ>A−1

(
I − PΛ (T − s)P−1

)
+ θ∗,>r (s)

)2
+ (θ∗)2

S (s)
]
ds,

MHPI

(t, T ) =

∫ T

t

δ0ds+

∫ T

t

µP (s)ds+
1

2

∫ T

0

∥∥ΘPI (s)
∥∥2
ds,

V HPI

(t, T )

=

∫ T

t

[(
δ>A−1

(
I − PΛ (T − s)P−1

)
+ θPI,>r (s)

)2
+
(
θPI
)2

S
(s)
]
ds,
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dδ1 (t) =
ln
(

qγ−1

y∗1H
∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+

γ

1− γ
√
V H∗ (t, T ),

dδ2 (t) = −
ln
(

qγ−1

y∗1H
∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+
√
V H∗ (t, T ),

dδ3 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
+
√
V H∗ (t, T ),

dδ4 (t) = −
ln

(
qγ−1

(y∗1−y∗2)H∗(t)

)
+MH∗ (t, T )√

V H∗ (t, T )
− γ

1− γ
√
V H∗ (t, T ),

dPI1 (t) =
ln
(

qγ−1

yPIHPI(t)

)
+MHPI

(t, T )√
V HPI (t, T )

+
γ

1− γ

√
V HPI (t, T ),

dPI2 (t) = −
ln
(

qγ−1

yPIHPI(t)

)
+MHPI

(t, T )√
V HPI (t, T )

+
√
V HPI (t, T ),

and Φ (·) is the standard normal probability distribution function.

(b) The portfolio processes at any time t ∈ [0, T ] which replicate the optimal
terminal wealth Xδ

inc (t) and XPI
inc (t) are given by

ϕδinc (t) =
(
ϕδM,inc (t) , ϕδ1,inc (t) , ϕδS,inc (t)

)>
and

ϕPIinc (t) =
(
ϕPIM,inc (t) , ϕPI1,inc (t) , ϕPIS,inc (t)

)>
,

respectively, where
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ϕδ1,inc (t) =
1

γ − 1

(
γF1 (t, T ) + θ∗1 (t)

σ̂11

)
+

1

1− γ

(
γF1 (t, T ) + θ∗1 (t)

σ̂11

)
×

qe−M
H∗ (t,T )+ 1

2
V H
∗

(t,T )
(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
Xδ
inc (t)

−
ϕδS,inc (t) σ̂1S

σ̂11

,

ϕδS,inc (t) =
1

1− γ

(
θ∗S (t)

σ̂S

)
+

1

γ − 1

(
θ∗S (t)

σ̂S

)
×

qe−M
H∗ (t,T )+ 1

2
V H
∗

(t,T )
(
Φ
(
dδ2 (t)

)
− Φ

(
dδ3 (t)

))
Xδ
inc (t)

,

ϕδM,inc (t) =
(
1− ϕδ1,inc (t)− ϕδS,inc (t)

)
,

(5.93)

ϕPI1,inc (t) =
1

γ − 1

(
γF1 (t, T ) + θPI1 (t)

σ̂11

)
+

1

1− γ

(
γF1 (t, T ) + θPI1 (t)

σ̂11

)
×

qe−M
HPI (t,T )+ 1

2
V H

PI
(t,T )Φ

(
dPI2 (t)

)
XPI (t)

−
ϕPIS,inc (t) σ̂1S

σ̂11

,

ϕPIS,inc (t) =
1

1− γ

(
θPIS (t)

σ̂S

)
+

1

γ − 1

(
θPIS (t)

σ̂S

)
×

qe−M
HPI (t,T )+ 1

2
V H

PI
(t,T )Φ

(
dPI2 (t)

)
XPI (t)

,

ϕPIM,inc (t) =
(
1− ϕPI1,inc (t)− ϕPIS,inc (t)

)
.

(5.94)

Proof: After identifying Q∗ ∈ Me and QPI ∈ Me we take the same steps as
for the proof of Theorem 5.5 and obtain the results. �
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Table 5.1.: Table of parameters

µ̄1B 0.02 σ1S −0.25 δ1 0.002 a12 0 T 10
µ̄2B 0.03 σ2S 0.25 δ2 0.0109 a21 −0.0134 T1 12
µ̄S 0.05 σS 0.20 a1 0.1086 a2 0.0942 T2 15

5.5. Numerical examples

We conclude this chapter with numerical examples. Table 5.1 shows the pa-
rameters considered. Figures 5.1 - 5.3 depict the optimal trading strategies as
functions of time t without risk constraints in a complete market. ϕ∗1,co, ϕ

∗
2,co,

ϕ∗S,co, ϕ
∗
M,co and ϕ∗R,co represent the optimal fractions of wealth invested in bond

B1 with maturity T1, bond B2 with maturity T2, stock S, money market account
M and risky assets R (i.e., ϕ∗R,co = 1 − ϕ∗M,co), respectively. In Figure 5.1, the
risk aversion parameter γ is set to 0.7 and it can be seen that as the residual time
horizon (T − t) reduces, ϕ∗1,co and ϕ∗R,co increase, while ϕ∗M,co and ϕ∗2,co decrease.
Figure 5.2 reveals that for γ equal to −20 the differences in the optimal trad-
ing strategies reduce (in other words, the aggressiveness of an investor reduces)
compared to Figure 5.1 but their profiles remain similar. Figure 5.3 shows that
ϕ∗S,co is not equal to zero.

Figures 5.4 and 5.5 display the optimal trading strategies as functions of time
t without risk constraints in an incomplete market for γ = 0.7 and γ = −20
respectively. ϕ∗1,inc, ϕ

∗
S,inc, ϕ

∗
M,inc and ϕ∗R,inc denote the optimal fraction of wealth

invested in bond B1 with maturity T1, stock S, money market account M and
risky assets R (i.e., ϕ∗R,inc = 1 − ϕ∗M,inc) respectively. Figure 5.4 as well as 5.5
illustrate that an investor in an incomplete market reduces his/her positions in
the risky assets and increases his/her position in M as the residual time horizon
reduces. If we compare an investor in a complete market with an investor in an
incomplete market by the amount of money invested in R, we find that the one
in a complete market is more aggressive than the one in an incomplete market.
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5.5. Numerical examples
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Figure 5.1.: Optimal trading strategies for γ = 0.7 in a complete market.
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Figure 5.2.: Optimal trading strategies for γ = −20 in a complete market.
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Figure 5.3.: Optimal trading strategies for γ = −20 in a complete market.
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Figure 5.4.: Optimal trading strategies for γ = 0.7 in an incomplete market.
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5.5. Numerical examples
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Figure 5.5.: Optimal trading strategies for γ = −20 in an incomplete market.
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6. Conclusion

We conclude this thesis by giving a summary of what we have done in this work
and provide an outlook.

6.1. Summary

We have investigated the expected utility maximization problem with limited
present expected short-fall (PESF) risk when the interest rates are considered to
follow a one-factor Vasiček term structure model in a complete market. We used
the martingale approach to solve this problem. We computed the optimal trading
strategies using Malliavin calculus. We studied further the same problem with
limited present expected short-fall risk constraint and without risk constraints in
the general case of an incomplete market. In particular we solved the dual prob-
lem explicitly for the optimization problem without risk constraints, i.e, Merton
portfolio optimization problem. We derived the trading strategies using Malli-
avin calculus as well. We provided numerical examples to compare the behavior
of the portfolio managers in both complete and incomplete financial markets.

We examined further the expected utility maximization problem without risk
constraints and with limited PESF risk when the interest rates are allowed to be
modeled by a two-factor Vasiček model. We solved the dual problem explicitly
for the Merton optimization problem. We obtained the optimal policies in all
cases using Malliavin calculus. We illustrated the behavior of portfolio managers
in a complete and an incomplete market using numerical examples.
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6. Conclusion

6.2. Outlook

In this work we considered PESF as a risk measure, which is in general not a
coherent risk measure. This work might be extended to considering coherent risk
measures, for example, conditional value at risk. We assumed the Lagrangian
multipliers to exist which solve the budget and risk constraints with equality
and we supposed deterministic market prices of risk in this thesis. Further work
might be to relax this restriction and allow stochastic market prices of risk.

The Vasiček model for interest rates has been criticized for permitting negative
interest rates, but it has turned out that in the presence of economic crisis interest
rates may be negative. When there is no economic crisis interest rates are always
positive and therefore the interest rates should be described by a model which
does not allow negative values, for example, the Cox-Ingersoll-Ross (CIR) model
whose dynamics are as given in (2.5):

dr (t) = aP
(
bP − r (t)

)
dt+ σr

√
r (t)dW P

r (t) ,

for t ∈ [0, T ], aP, bP, σr > 0 and 2aPbP ≥ σr. Let us consider a complete financial
market described in Chapter 4, i.e., with the money market account M , bond
B (maturing at T̃ > T ) and stock S. We provide some details in Appendix C.
Considering two-factor CIR model for interest rates in a complete market case
the portfolio optimization problem can be solved for a suitable choice of the form
of market prices of risk. In an incomplete market case, in order to solve the dual
problem (2.15) we need to know the distribution of H (t) for t ∈ [0, T ] and it
is not known when the interest rates are modeled by CIR. So, the further work
might be to provide good numerical solution to find HCIR (t) for t ∈ [0, T ].
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A. Malliavin calculus

In this section we give some definitions and necessary basics of Malliavin calculus
that are needed for the solving of dynamic optimization problems. We refer
the interested reader for more details about Malliavin calculus to Nualart &
Pardoux [51] and Ocone [52], among others. We recall first the definitions of the
gradient operatorD and the class D1,1. These are applied on the probability space
(Ω,F,Q) and the Brownian motion

{
WQ (t) : t ≤ T

}
. We denote by F (t) the

augmented filtration generated by WQ (t). Ω is represented here as the Wiener
space, denoted by C0 ([0, T ]), of continuous functions
ω : [0, T ]→ R such that ω (0) = 0, equipped with the uniform topology.

Let S denote the set of all random variables F : C0 ([0, T ]) → R of the form

F = ϕ (θ1, . . . , θn), where ϕ (x1, . . . , xn) =
n∑

α=1

aαx
α is a polynomial of degree n

and θi =
∫ T

0
fi (t)dW

Q (t) for some deterministic function fi ∈ L2 ([0, T ]).
We define the Cameron-Martin space H as follows

H =

{
γ : [0, T ]→ R : γ (t) =

∫ t

0

γ̇ (s) ds, |γ|2H =

∫ T

0

(γ̇ (s))2 ds <∞
}
.

The derivative of a random variable

F (ω) =

∫ T

0

fγ (t)dWQ (t) (A.1)

in the direction γ ∈ H (note that H ⊂ C0 ([0, T ])) with

γ (t) =

∫ t

0

g (s) ds, (A.2)

g ∈ L2 ([0, T ]) is defined as follows.
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A. Malliavin calculus

Definition A.1 Let F ∈ S of the form (A.1) and γ ∈ H of the form (A.2).
Then the directional derivative DγF of a random variable F at the point ω ∈
C0 ([0, T ]) in the direction γ is defined by

DγF (ω) : =
d

dε
[F (ω + εγ)]ε=0

= lim
ε→0

F (ω + εγ)− F (ω)

ε

(A.3)

provided the limit exists i.e.

DγF (ω) = (∇F (ω) , γ)L2[0,T ] : =

∫ T

0

d (∇F )

dt
(t)

.
γ (t) dt

=

∫ T

0

DtF (ω)
.
γ (t) dt.

(A.4)

Let us assume that there exists ψ (t, ω) ∈ L2 ([0, T ]× C0 ([0, T ])) such that

DγF (ω) =
∫ T

0
ψ (t, ω) g (t) dt. Then F is differentiable and we set DtF (ω) :=

ψ (t, ω). Now DtF is called the Malliavin derivative of F .

Let ‖·‖L2 denote the (L2 [0, T ])
n
-norm (n ≥ 1) i.e., for ψ = (ψ1, . . . , ψn) ∈

(L2 [0, T ])
n

‖ψ‖2
L2 =

n∑
i=1

∫ T

0

ψ2
i (t) dt (A.5)

and |·| is reserved for the Euclidean norm on Rn.
We introduce now a norm ‖·‖1,p on the set S as

‖F‖1,p :=
(
E
[
|F |p +

(
‖DF‖2

L2

) p
2

]) 1
p

(A.6)

for each p ≥ 1.

Definition A.2 We define D1,p as the Banach space which is the closure of S
under the norm ‖·‖1,p and D :=

⋂
p>1 D1,p.

Remark A.3 DtF is well-defined on D1,1 (see Lemma 2.1 in [59]).

The following proposition is proved in [57] Proposition 8.3.
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Proposition A.4 For n ∈ N we consider the n-dimensional SDE

dY (t) = µ (t, Y ) dt+ σ (t, Y ) dW (t) , t ∈ [0, T ] , Y (0) = y0 ∈ Rn, W (t) ∈ Rd.
(A.7)

µ and σ are assumed to be measurable Rn and Rn×d-valued functions which are
continuously differentiable and satisfy

sup
t∈[0,T ],y∈Rn

(∣∣∣∣ ∂∂ykµi (t, y) +
∂

∂yk
σij (t, y)

∣∣∣∣) <∞, (A.8)

sup
t∈[0,T ]

(|µi (t, 0) + σij (t, 0)|) <∞ (A.9)

for i, k = 1, · · · , n, j = 1, · · · , d. Then (A.7) has a unique continuous solution
(Y (t))t∈[0,T ] which satisfies Y k (s) ∈ D,

DtY (s) = (σ (t, Y ))> +

∫ s

t

DtY (u) (∂yµ (u, Y ))> du

+

∫ s

t

DtY
d∑
j=1

(∂yσ·j (u, Y ))> dW j (u)

(A.10)

for t ∈ [0, s], and DtY (s) = 0 for t ∈ (s, T ]. ∂y denotes here the Jacobi matrix,
i.e., (∂yµ)ij = ∂

∂yj
µi, and σ·j is the jth column of σ.

Lemma A.5 Let F = (F1, · · · , Fn)> ∈ (D)n with values in Rn. Let also Φ ∈
C1 (Rn) be a real-valued function and assume that Φ (F ) ∈ L1. If Φ

′
(F ) ∈ Lq

for some q > 1, then Φ (F ) ∈ D1,1 and

DtΦ (F ) =
n∑
i=1

∂ϕ

∂xi
(F )DtFi (t). (A.11)

Proof: See the proof of the Lemma 2.1 in [53]. �

Theorem A.6 (Clark-Ocone formula) Let F ∈ D1,1 be FT measurable. Then

F = E [F ] +

∫ T

0

E [(DtF ) | F (t)] dW (t) (A.12)

and it follows that
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A. Malliavin calculus

E [F | F (t)] = E [F ] +

∫ t

0

E [(DsF ) | F (s)] dW (s), (A.13)

for t ∈ [0, T ].

Theorem A.7 (Clark-Ocone formula under change of measure) Let F ∈
D1,1 be F (T ) measurable, Θ (t) = (θ1 (t) , · · · , θn (t))> ∈ (D1,1)n be progressively
measurable bounded process and

EQ [|F |] <∞ (A.14)

EQ

[(∫ T

0

|DtF |2 dt
) 1

2

]
<∞ (A.15)

EQ |F |

(∫ T

0

(∫ T

0

DtΘ
> (u) dW (u) +

∫ T

0

Θ> (u)DtΘ (u) du

)2

dt

) 1
2

<∞,

(A.16)
with (

dQ
dP

)
T

= Z (T ) := exp

−1

2

T∫
0

‖Θ (s)‖2 ds−
T∫

0

Θ> (s) dW P (s)

.
Then ZF ∈ D1,1 and

F = EQ [F ] +

∫ T

0

EQ
[(
DtF − F

∫ T

t

DtΘ
> (u) dWQ (u)

)
| F (t)

]
dWQ (t)

(A.17)

for t ∈ [0, T ].

Proof: See the proof of Theorem 2.5 in [53]. �

Lakner & Nygren in [45] proved that the formula (A.17) is also applicable to
the piecewise continuously differentiable function and below we give its definition.

Definition A.8 A function ϕ : (a, b) → R is called piecewise continuously dif-
ferentiable if the following conditions are fulfilled:
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(i) ϕ is continuous in (a, b);

(ii) There exist finitely many points a = c0 < c1 < · · · < cm+1 = b (m ≥ 0)
such that ϕ is continuously differentiable on (ci, ci+1) for i ∈ {0, · · · ,m},
we call these points beakpoints of ϕ;

(iii) The function ϕ
′

is bounded on every compact sub-interval of (a, b), where

ϕ
′
(x) :=

{
the derivative of ϕ in x , if x ∈ (a, b) \ {c1, · · · , cm}
0 , if x ∈ {c1, · · · , cm}

(iv) The limits
lim
x→a+

ϕ (x) lim
x→b−

ϕ (x)

lim
x→a+

ϕ
′
(x) lim

x→b−
ϕ
′
(x)

exist;

(v)

If lim
x→a+

ϕ
′
(x) =∞, then lim

x→a+
ϕ (x) =∞

and if lim
x→b−

ϕ
′
(x) =∞, then lim

x→b−
ϕ (x) =∞.

The class of piecewise continuously differentiable functions is denoted by PC1 (a, b).

Proposition A.9 Suppose we have a function ϕ and a random variable F , s.t.
−∞ ≤ a < b ≤ ∞, ϕ ∈ PC1 (a, b) with breakpoints c1, . . . , cn, F ∈ D1,1, and
Q (F ∈ (a, b)) = 1.
If

EQ
[
|ϕ (F ) |+

∥∥∥ϕ′ (F )DF
∥∥∥
L2

]
<∞

and
Q (F ∈ {c1, . . . , cn}) = 0

Then ϕ (F ) ∈ D1,1 and
Dtϕ (F ) = ϕ

′
(F )DtF.

Proof: See the Appendix in [45]. �
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B. Proof of Theorem 4.6 part (a)

We compute here for the second and third terms of the Equation (4.45), i.e.,

E
[
H (T )

H (t)
q1B | F (t)

]
and E

[
H (T )

H (t)
((y∗1 − y∗2)H (T ))

1
γ−1 1C | F (t)

]

with B and C as given in the Equation (4.44). We apply the idea used for the
computation of the first term.

1 . For the second term, it holds

E
[
H (T )

H (t)
q1B | F (t)

]

= E

H (T )

H (t)
q1{

qγ−1

y∗1H(t)
<
H(T )
H(t)

≤ qγ−1

(y∗1−y∗2)H(t)

} | F (t)


= E

qe−MH(t,T )−
√
V H(t,T )x1{

ln

(
qγ−1

y∗1H(t)

)
<ln e−MH (t,T )−

√
VH (t,T )x≤ln

(
qγ−1

(y∗1−y∗2)H(t)

)}

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B. Proof of Theorem 4.6 part (a)

= E


qe−M

H(t,T )−
√
V H(t,T )x1−

ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )

>x≥−
ln

 qγ−1

(y∗1−y∗2)H(t)

+MH (t,T )

√
VH (t,T )





= q
1√
2π

−
ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )∫

−
ln

 qγ−1

(y∗1−y∗2)H(t)

+MH (t,T )

√
V H (t,T )

e−M
H(t,T )−

√
V H(t,T )xe−

x2

2 dx

= qe−M
H(t,T )+ 1

2
V H(t,T ) 1√

2π

−
ln

(
qγ−1

y∗1H(t)

)
+MH (t,T )

√
VH (t,T )∫

−
ln

 qγ−1

(y∗1−y∗2)H(t)

+MH (t,T )

√
VH (t,T )

e−
(x+
√
VH (t,T ))

2

2 dx

= qe−M
H(t,T )+ 1

2
V H(t,T ) ∗

(
Φ
(
dδ2 (t,H (t))

)
− Φ

(
dδ3 (t,H (t))

))
.

2. For the third term, we obtain

E
[
H (T )

H (t)
((y∗1 − y∗2)H (T ))

1
γ−1 1C | F (t)

]
= ((y∗1 − y∗2))

1
γ−1 E

[
(H (T ))

γ
γ−1

H (t)
1C | F (t)

]

= ((y∗1 − y∗2)H (t))
1

γ−1 E

[(
H (T )

H (t)

) γ
γ−1

1C

]
= ((y∗1 − y∗2)H (t))

1
γ−1 E

[
e

γ
1−γM

H(t,T )+ γ
1−γ

√
V H(t,T )x

1C

]
.
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C =

{
H (T )

H (t)
>

qγ−1

(y∗1 − y∗2)H (t)

}
=

{
e−M

H(t,T )−
√
V H(t,T )x >

qγ−1

(y∗1 − y∗2)H (t)

}

=

x < −
ln

(
qγ−1

(y∗1−y∗2)H(t)

)
+MH (t, T )√

V H (t, T )

 .

Finally we get

= ((y∗1 − y∗2)H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T )×

1√
2π

−
ln

 qγ−1

(y∗1−y∗2)H(t)

+MH (t,T )

√
VH (t,T )∫
−∞

e−
(x− γ

1−γ
√
V H (t,T ))

2

2 dx

= ((y∗1 − y∗2))
1

γ−1 (H (t))
1

γ−1 e
γ

1−γM
H(t,T )+ 1

2( γ
1−γ )

2
V H(t,T ) ∗ Φ

(
dδ4 (t,H (t))

)
.
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C. Optimization with CIR

In this appendix we study portfolio optimization when the interest rates are
modeled by a one factor Cox-Ingersoll-Ross (CIR) model whose dynamics are as
given in (2.5):

dr (t) = aP
(
bP − r (t)

)
dt+ σr

√
r (t)dW P

r (t) ,

for t ∈ [0, T ], aP, bP, σr > 0 and 2aPbP ≥ σr. Let us consider a complete financial
market described in Chapter 4, i.e., with the money market account M , bond
B (maturing at T̃ > T ) and stock S The dynamics of the securities under P are
modeled by:

dM (t) = M (t) r (t) dt,

dB
(
t, T̃
)

= B
(
t, T̃
) [
µB

(
t, T̃
)
dt+ σP

B

(
t, T̃
)
dW P

r (t)
]
,

dS (t) = S (t)
[
µS (t) dt+ σrSdW

P
r (t) + σSdW

P
S (t)

]
,

where

σP
B

(
t, T̃
)

= −σrnP
(
t, T̃
)√

r (t),

nP
(
t, T̃
)

=
sinh τP (T − t)

τP cosh τP (T − t) + 1
2
bP sinh τP (T − t)

and τP =

(
aP + 2σ2

r

) 1
2

2
.

We assume that the market prices of risk associated to the interest rates to be
given by θr (t) := θr

√
r (t) and the one associated to the stock to be given by

θS (t) := θS − σSr
σS
θr
√
r (t), where θr and θS are constants. We denote the vector

of market price of risk by

ΘCIR (t) =

(
θr (t)
θS (t)

)
.
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C. Optimization with CIR

The state price density process ZΘCIR (t) at time t ∈ [0, T ] corresponding to
ΘCIR (t) is characterized by

ZΘCIR (t) =

(
dQCIR

dP

)
t

= exp

(
−1

2

∫ t

0

‖ΘCIR (u)‖2 du−
∫ t

0

Θ>CIR (u) dW P (u)

)
,

where QCIR ∈Me. We define the deflator HCIR by

HCIR (t) : = β (t)ZΘCIR (t)

= exp

(
−
∫ t

0

r (u) du− 1

2

∫ t

0

‖ΘCIR (u)‖2 du−
∫ t

0

Θ>CIR (u) dW P (u)

)
,

with β (t) := exp
(
−
∫ t

0
r (u) du

)
.

Due to the Girsanov Theorem the process

WQCIR (t) =

(
WQCIR
r (t)

WQCIR
S (t)

)
:=

(
W P
r (t) +

∫ t
0
θr (u) du

W P
S (t) +

∫ t
0
θS (u) du

)
, for t ∈ [0, T ]

is a QCIR−Brownian motion.

The dynamics of r (t), B
(
t, T̃
)

and S (t) under QCIR are ruled by

dr (t) = aQCIR
(
bQCIR − r (t)

)
dt+ σr

√
r (t)dWQCIR

r (t) ,

dB
(
t, T̃
)

= B
(
t, T̃
) [
r (t) dt+ σQCIR

B

(
t, T̃
)
dWQCIR

r (t)
]
,

dS (t) = S (t)
[
r (t) dt+ σrSdW

QCIR
r (t) + σSdW

QCIR
S (t)

]
,

where

σQCIR
B

(
t, T̃
)

= −σrnQCIR
(
t, T̃
)√

r (t),

nQCIR
(
t, T̃
)

=
sinh τQCIR (T − t)

τQCIR cosh τQCIR (T − t) + 1
2
bQCIR sinh τQCIR (T − t)

,

τQCIR =

(
aQCIR + 2σ2

r

) 1
2

2
,

aQCIR = aP + σr, bQCIR =
aPbP

aP + σr
.

The wealth process X (t) of an investor under QCIR is ruled by

dX (t) = X (t)
[
r (t) dt+ ϕ> (t)σQCIR (t) dWQCIR (t)

]
, (C.1)
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where

σ (t) =

(
σQCIR
B

(
t, T̃
)

0

σSr σS

)

and ϕ (t) =

(
ϕB (t)
ϕS (t)

)
, with ϕB (t) and ϕS (t) denoting the fraction of wealth

invested in B and S respectively.
From Itô’s lemma

β (T )X (T ) = X (0) +

∫ T

0

X (t) β (t)ϕ> (t)σQCIR (t) dWQCIR (t) . (C.2)

Considering the interest rates to be modeled by CIR, the Problem (4.22) (without
risk constraints) was studied by Deelstra & Koehl [17] and Kraft [43]. For the
Problem (4.37), its solution (denoted here by Xδ

CIR (T )) looks similar to the
one given in Theorem 4.5 with H (T ) replaced by HCIR (T ), since the optimal
terminal wealth depends on the deflator and changing the model for the interest
rates, modifies the deflator.

Proposition C.1 If all conditions of Theorem 4.5 part (a) are satisfied with
H (T ) replaced by HCIR (T ), then the optimal trading strategy at any time t ∈
[0, T ] is given by ϕCIR (t) =

(
ϕCIRB (t) , ϕCIRS (t)

)>
, where

ϕCIRB (t) =
EQCIR [RB (t, T ) | F ]

β (t)Xδ
CIR (t)σQCIR

B (t)
− σSrϕ

CIR
S (t)

σQCIR
B (t)

,

ϕCIRS (t) =
EQCIR [RS (t, T ) | F ]

β (t)Xδ
CIR (t)σS

.

Thereby

RB (t, T ) =
β (T )Xδ

CIR (T )

1− γ
×[(

γ − θ2
r

) ∫ T

t

√
r (u)π (t, u, r) du+ γ

∫ T

t

θrπ (t, u, r) dWQCIR
r (u) + θr (t)

]
− 1

1− γ
β (T ) q1BCIR×[(

2− θ2
r

) ∫ T

t

√
r (u)π (t, u, r) du+ θr

∫ T

t

π (t, u, r) dWQCIR
r (u) + θr (t)

]
,
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C. Optimization with CIR

RS (t, T ) =
β (T )Xδ

CIR (T )

1− γ

∫ T

t

π (t, u, r)

(
θSθr
σS
− σ2

Srθ
2
r

σ2
S

√
r (u)

)
du

+
β (T )Xδ

CIR (T )

γ − 1

[
γ

∫ T

t

σSrθr
σS

π (t, u, r) dWQCIR
S (u)− θS (t)

]
+

1

γ − 1
β (T ) q

[∫ T

t

π (t, u, r)

(
θSθr
σS
− σ2

Srθ
2
r

σ2
S

√
r (u)

)
du

]
1BCIR

+
1

1− γ
β (T ) q

[∫ T

t

σSrθr
σS

π (t, u, r) dWQCIR
S (u)− θS (t)

]
1BCIR ,

π (t, u, r) =
σr
2

exp

{∫ u

t

(
−a

QCIR

2
−
(
aQCIRbQCIR

2
− σ2

r

8

)
1

r (s)
ds

)}
.

Proof: We use the same idea as for the proof of Theorem 4.6 part (b) and the
result by Alos & Ewald [1] for the computation of the Malliavin derivative of√
r (t) and r (t) for t ∈ [0, T ]:

Dt

√
r (u) = π (t, u, r) :=

σr
2

exp

{∫ u

t

(
−a

QCIR

2
−
(
aQCIRbQCIR

2
− σ2

r

8

)
1

r (s)
ds

)}
,

Dtr (u) = 2
√
r (u)π (t, u, r) , for u > t.

(C.3)
Using representation (A.17) to β (T )Xδ

CIR (T ) gives

β (T )Xδ
CIR (T ) = EQCIR

[
β (T )Xδ

CIR (T )
]
+

∫ T

0

EQCIR [ξ (t, T ) | F (t)] dWQCIR (t),

(C.4)
where

ξ (t, T ) =

(
Dt

(
β (T )Xδ

CIR (T )
)
− β (T )Xδ

CIR (T )

∫ T

t

DtΘ
>
CIR (u) dWQCIR (u)

)
.

(C.5)
Applying chain and product rules of Malliavin derivative, and using (C.3) to
(C.5) and then comparing (C.4) with (C.2) gives the result. �
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