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abstract

This thesis is concerned with different null-models that are used in network analysis. When-
ever it is of interest whether a real-world graph is exceptional regarding a particular mea-
sure, graphs from a null-model can be used to compare the real-world graph to. By analyz-
ing an appropriate null-model, a researcher may find whether the results of the measure
on the real-world graph is exceptional or not.

Deciding which null-model to use is hard and sometimes the difference between the
null-models is not even considered. In this thesis, there are several results presented: First,
based on simple global measures, undirected graphs are analyzed. The results for these
measures indicates that it is not important which null-model is used, thus, the fastest
algorithm of a null-model may be used. Next, local measures are investigated. The fastest
algorithm proves to be the most complicated to analyze. The model includes multigraphs
which do not meet the conditions of all the measures, thus, the measures themselves have
to be altered to take care of multigraphs as well. After careful consideration, the conditions
are met and the analysis shows, that the fastest is not always the best.

The same applies for directed graphs, as is shown in the last part. There, another more
complex measure on graphs is introduced. I continue testing the applicability of several
null-models; in the end, a set of equations proves to be fast and good enough as long as
conditions regarding the degree sequence are met.
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I N T R O D U C T I O N





1
M O T I VAT I O N

1.1 general introduction to network analysis

Network analysis - about what is this person talking? That is one of the first questions that
pops into someone’s mind whenever they talk to somebody from the field. Even among
scientist network analysis entails so many different things that it is not uncommon that two
people talk about something and after some time they realize they speak about different
things, even though the terminology is the same. Thus, a short explanation what I mean in
this thesis is needed.

Network analysis is an ever growing field. Some of the earliest work that can be con-
sidered as (social) network analysis is from the early nineteenth century. As one of the
most influential scientist in this field Jacob Levy Moreno has to be mentioned, who is con-
sidered one of the persecutors of the field. He was one of the first to use sociograms, i.e.,
depictions of social networks to display the group behavior of people [65]. A social network
for these sociograms is a group of people, in which some of the persons interact with each
other. Even earlier than Moreno, John C. Almack used questionnaires to gather informa-
tion about the social relations of children at school. He did not only investigate the social
connections they made. He correlated the IQs of the pairs of students. The result was that
more relations existed between persons with similar IQ than dissimilar [1]. Similarly, Beth
Wellman studied the social interactions of students in a high school and correlated found
pairs on IQ, grades, and similar measurable scores to identify homophily between students
as well [101].

These precursors of what is nowadays known as social network analysis covered only
small groups, i.e., from school class-sized groups up to 150 people. The methods developed
and ideas proposed by them are still applicable to a certain extent, some of the assumptions
made still cannot be proven but are still considered as important [86, 33].

Scientist in graph theory noticed the trend of using sociograms, depictions as graphs.
Graph theory, a field more or less initiated by Leonhard Euler, concerns itself with problems
that can either be expressed as a graph or are based on graph structures. Examples of
graph theoretic problems include the enumeration of graphs having particular properties,
coloring problems (can any map in a plane be drawn using only four different colors),
and path-based problems (finding the shortest path between two nodes). The two fields
together are powerful, such that analysis of a sociogram, which can be expressed as a graph,
based on the work of Kőnig [51], should be simple enough. Note that the term sociogram
is not commonly used in graph theory; when speaking of a depiction or some relationship
between a set of persons, network science usually uses the term (social) network.

Almost every first-world inhabitant will have had contact with any of the fields men-
tioned above. Most likely social networks touched the life in any way, since in January

7



motivation

2016 about 1.6 billion users were registered at Facebook1 [23]. Other well known social net-
working sites are Renren (31 mio. users, China2) and vk.com (100 mio. users, Russland3),
which are popular in some countries since the countries either restrict access to Facebook
or their alphabet limits themselves to a somewhat closer economy. Other points of contact
with graph theory are the use of route-planning software, or a decade ago the use of Google
search, which was said to be based on the PageRank-algorithm. This algorithm calculated
a weight for a website, based on ingoing and outgoing links, to decide which pages that
match the searched term should be presented first. Many of these applications are used by
the users without knowledge that algorithms from graph theory are applied to data.

Besides the enormous sizes social networks tend to have, what good does a value of 3.14 ·
10−2 in a measure if there is nothing to compare the result with. In Social Network Analysis,
a subfield of network analysis that concerns itself only with social networks, one usually
gathers relationships between entities, calculates some measures based on the perceived
relationships, and interprets the result. This interpretation is either made with the help
of an expert, for example, a sociologist, or with someone who knows the entities, for
example, the head of a research and development department [20]. But there is also another
way to determine whether the gathered data is exceptional with regards to the measure.
Mathematics provide a solution for this, called random graph theory. This subfield of graph
theory is based on the work of Gilbert [29], Erdős, and Rényi [24]. They gave the two most
famous random graph models. In most theoretic works they are just called the random
graph, or when names are used, the G (n,p) and the G (n,m) model. The random graph
theory was a long time a quiet field, only in the last decades a rise of publications could be
observed. With the (re-)discovery of something called “small-world”-effect or “6 degrees of
separation” [61], a surge of random graph models occurred and subsequently the field was
rejuvenated. These new models attempted to generate graphs that are in structure more
similar to the networks observed in the real world; they attempt to model structure and
behavior better, to improve results, observe anomalies, and other things. Besides the new
models, many new ideas, theories and algorithms have been proposed and are in constant
development.

Still, this leads to an interesting question: which graph sizes are used in graph theory
and network analysis?

Physics and math tend to use comparatively small graphs while social network analysis
has the option to use enormous datasets like the emails sent by a company (13k users), the
players of a game (0.5bn users), or the users of Facebook (>1bn users). Most recently, sci-
entists at Facebook discovered, that users on their social network were even closer than the
famous “six degrees of separation” [93, 2]. They found that the average distance between
721 million active Facebook users (69 billion links) is only 4.74. The experiment was not
run on the complete data set and Edunov et al. [23] estimate the current distance at 4.57

via approximative algorithms based on 1.6 billion users. To put the distance in a context,
that is as if Tim, the neighbors son who is ten years old, writes a letter and after only four
exchanges, the president of the United States of America has Tim’s letter. Still, it is not
known whether this is unique to Facebook or whether this is usual for a social network of
this order and size. For this purpose, random graph theory can be used.

1 http://www.facebook.com
2 http://www.renren.com
3 http://www.vk.com
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1.2 which model to use

1.2 which model to use

Of course, random graph theory is a powerful tool to analyze whether social networks of
a certain size do all show such small average distances. It can be done by generating a
large enough sample of graphs, computing the average distances on these and comparing
this average to the average distance of the real-world graph. But it is not entirely clear
what model to use. When the field was young, only simple models existed that are not
able to model necessary features of graphs such as the Facebook network. When using the
G (n,m) model to generate a set of graphs similar in size to the Facebook graph, problems
occur as soon as one analyzes them. A social network such as Facebook has completely
different properties than the more simple G (n,m) model. The set of sampled graphs will
have an average distance that most likely will not be similar to the one of Facebook, purely
by these properties. Does this imply that Facebook is very special? Yes and no. Of course
it is special when we consider only this model. As soon as other random graph models are
considered, it may be different. There are many more random graph models that are used
in network analysis and graph theory — how to chose one or a family of models such that
there is a basis to compare the results of different random graph models to each other?

One of the best ideas is fixing a parameter that describes the graph the best; best, in this
case, is defined by the researcher. In this thesis, a very simple but descriptive parameter of
graphs is used: the degree sequence. The degree sequence of a graph describes the graph
by recording how many connections a node has and noting it down in a list. In Part III nad
Part IV, several models that keep this parameter constant are under investigation regarding
some standard measures. Ordinarily, one would assume that models that are based on a
single fixed parameter yield the same results. That has been investigated by Schlauch,
Zweig, and Horvat [81]. The results presented in Part III are an extension of the work that
has been done already.

Based on the result of the Facebook analysis, one may ask about the average distance
per country. For the United States of America, the average distance is estimated at only
3.46[23]. That leads to next question that this thesis is concerned with: parts of larger
graphs or subgraphs.

1.3 subgraphs

Questions in the field of graph theory are: how are subgraphs extracted, how often do
subgraphs of a specific type occur, does a graph contain a certain subgraph and more. In
the context of this thesis, the question of network motif analysis [62] is of interest. A network
motif is a subgraph of small size, 3 to 4 nodes usually, that occurs in a graph statistical
significantly more often than one would expect. Since graphs with a fixed degree sequence
are of interest, this Part IV will be about which graph model are useful for network motif
analysis. Do all models that are based on a fixed degree sequence yield the same average
number of subgraphs? This question has not been explicitly asked before.

Milo [63] introduced the notion of network motif analysis by analyzing graphs in the
context of the number of subgraphs the random graphs contain—in a way, the analysis
contained the question which model is useful for the analysis, but the article was restricted
to the question whether the models generate graphs uniformly at random or not. Explic-
itly speaking, the question was not “Do different random graph models yield the same
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expected values” but “Do different random graph models generate graphs uniformly at
random”. In other articles, they used only one algorithm [62, 64] that showed satisfying
results. This algorithm is explained more in Part II.

Now, it remains to discuss why one should care about subgraphs of such minuscule size,
since looking for combinations of 3 to 4 nodes in a graph with many nodes is somewhat
a strange idea. For example, a graph with 300 nodes has

(
300
3

)
' 4.5 · 106 possible combi-

nations of nodes that could be checked for their connections pattern. Of course, no one
will check all possible combinations but use smarter approaches. One of these approaches,
while still simple, is only checking the neighborhood of a node, i.e., nodes that a node is
connected to. Why should it be important if a graph contains 42 combinations instead of
10? That this is relevant can be shown with examples from biology.

In a transcriptional regulation network, the interactions of a transcription factor X reg-
ulate a second transcription factor Y, such that both jointly regulate an operon Z [84]. In
terms of graph theory, node X has a directed connection to Y and another to Z, while Y
has a directed connection to Z. These interactions could be considered as random. Since
organisms had a long time to develop these patterns of interaction, they most likely are
not random but exist for a purpose. Finding these patterns is challenging, but may help
fighting diseases. Uhlmann et al. [94] employed network analytic methods in their research
on breast cancer and were able to identify potential tumor suppressors. That was done via
identification of co-upregulating and co-downregulating patterns in the graph consisting
of proteins and miRNA (micro ribonucleic acid). In other words, two proteins had to be
identified that had the same positive (up-regulating) or negative (down-regulating) influ-
ence to some miRNA. Via statistical analysis, based on random graph theory, it is thus
possible to identify important patterns that may help fight serious diseases.

Subgraphs are considered as important in other fields as well. Communication networks,
i.e., who talked to whom, how often, how long, at which times, can be considered as vital
in some research areas. Graph theory can be applied to this information as well. Lindelauf
et al. [57] used graph theory to analyze networks of a heroin distribution network and the
cell-phone network of a terrorist group and showed that communication structures are not
created by random but on purpose. Hindsight analysis is useful and sometimes able to
discover other possible threats as well, but predicting who is dangerous is much harder.
While some criminals are not the smartest 4, information on evil-doers are not as readily
available as sometimes portrayed in movies. Observation of known criminals and gathering
their contact networks to analyze is another useful tactic [53] that is used more frequently,
even though the public rails against gathering data from public channels such as Facebook,
and not so public channels like a cell phone.

It is important to note that not only the connection pattern is significant. It is also the
frequency with that the pattern exists. The analysis of the frequency of a connection pattern
usually consists of several steps:

1. Count how often a pattern of connections occurs in a graph;

2. Count in an ensemble of randomized graphs how often the pattern occurs;

3. Decide somehow whether the observed graph is different from the randomized graphs;

4 8 Dumb Criminals Caught Through Facebook http://mashable.com/2012/12/12/crime-social-media/
#Lm2kCY9J6aq2
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1.4 the missing ingredient

This process entails many different decisions that have to be made. The most significant
choice is the ensemble of randomized graphs: How to chose the correct algorithm that
generates this ensemble, or which ensemble shall be used to compare to? First models
that observed graphs were compared to had either a fixed structure (lattice graphs, star
graphs [57]) or were based on very simple probabilities [25, 100]. The set of possible mod-
els evolved from these simple models to be able to capture not only the size but also the
behavior of large graphs. Nowadays, graph generating algorithms can model behaviors
such as “the rich get richer”, also called preferential attachment, certain degree require-
ments, communities, and other properties.

1.4 the missing ingredient

There are many different algorithms to generate graphs. They are put forward since re-
searchers are missing something that they need for their research, and a new algorithm
can achieve what they need. Consider the example mentioned above of the G (n,m) model,
that generated graphs in a very simple way; researchers needed graphs that were more
similar to real-world graphs in terms of the degree sequence.

What is missing from a field that is putting new ideas forth? A comparison of algorithms
that claim to achieve the same, but with different effort. Comparisons regarding ease
of understanding or estimated run-time are available, but a statistical evaluation of the
different algorithms is not available, to the best of my knowledge. That is done in this
thesis. There are several algorithms that are often used when the requirement is that the
algorithms generate graphs with a given fixed degree sequence. Some researchers do not
support this, their claim being that the most interesting results are achieved when the
random graphs do not have the same degree sequence [39, 40]. Others support the idea of
the same degree sequence [66, 108]. However, they do not necessarily share the same idea
of what the algorithm should achieve [80]. In the coming pages, there will be a discussion
of the algorithms that generate graphs based on a fixed degree sequence. In Part II, the
algorithms are introduced as well as the statistical toolkit that is used in the analysis of the
different approaches to sample graphs. Afterwards, the analysis of the algorithms is split
into two parts: In Part III, algorithms used to generate undirected graphs are analyzed
based on several well-known graph theoretic measures. In Part IV, directed graphs are
analyzed regarding subgraph counting, a topic that has received much interest, but as
good as none concerning the used graph generating algorithm. Part V will wrap the thesis
up and summarize the most important findings.
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Part II

D E F I N I T I O N S





In this chapter, the necessary definitions from graph theory are introduced as well as the
algorithms that are used to generate the random graphs. Furthermore, the definition of null
models that this work uses is explained. Last but not least, mathematical approximations
that are often used to approximate the behavior of a random graph model are introduced.

This chapter is based on work from Milo et al. [63, 64], Zweig [107, 108], Newman [66],
Blitzstein and Diaconis [8], and Kim et al. [49]; these researchers developed either the
algorithms that are used throughout the thesis or show clear preference of one algorithm
over the others. There are more algorithms to generate graphs, but I restrict myself to only
a few. The algorithms considered are considered since they are either

a) often used

b) used in different fields

c) the basis of other algorithms

Alternatively, combinations of these.
Similar arguments apply to the measures that are investigated. There is an abundance

of measures that may or may not be influenced by the way graphs are generated. Again,
going through all of them would take far too long, especially since the development of
new measures does not stop. Thus, some measures that are expected yield the same result
independent from the generating algorithm are investigated as well as measures that are
expected to yield different results. Parts of this chapter were published in a paper “Differ-
ent flavors of randomness” [80]; the experiments were devised after long discussion with
my advisor Katharina Anna Zweig. Together with her and her former doctoral student,
Emöke-Ágnes Horvát, this paper was written.
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2
G R A P H M O D E L S

A graph G = (V ,E) is defined by a set of entities V , called nodes, and a set of connections
between the entities E, called edges. Nodes are referred to as v ∈ V , the number of nodes
is |V | = n, while edges are referred to as e ∈ E = {{u, v} | u, v ∈ V} (|E| = m) for graphs
where the connection is undirected, like friendships. If edges are directed, like followerships
on Twitter, the graph is called directed graph or digraph and edges are referred to as E =

{(u, v) | u, v ∈ V}. The degree sequence DS = {kv |∈ V ,kv ∈N} is a simple way to write down
one of the defining features of an undirected graph. For a directed graph the degree
sequence is DS = {(kv, jv) | v ∈ V ,kv, jv ∈N} with kv being the out-degree of node v and jv
being the in-degree. The degree sequence of a graph is the minimal information needed to
construct a graph. It does not tell anything about allowed and forbidden connections. There
are different classes of graphs that can all be described by the degree sequence property. A
graph that does not contain multiple edges between two nodes, i.e., ∀u, v ∈ V : {u, v} ≤ 1,
nor self-loops, i.e., 6 ∃e ∈ E : {u,u}, is called a simple graph. Graphs that allow either of these
properties are called multi-graph. Graphs that contain self-loops but no multiple edges are
called pseudo-graph by some authors [36, p.10].

These classes of graphs are just the most basic. There are many more, such as multiplex
graphs, temporal graphs, weighted graphs, and others. These are of no further interest in
this thesis.

For the very basic graph classes, undirected and directed graphs, random graph theory
developed many different algorithms to generate graphs. These algorithms allow to define
a statistical null model (S,P) where S is the set of possible observations and P is a proba-
bility distribution on S. At least, this is what one would hope to have; either the number of
graphs is unknown, or the probability distribution with which graphs are returned is not
known, or both. Thus, the pure statistical definition of a null model does not apply; graph
theory has its own definition for a null model. A null model is a family of graphs with either:

a) a probability distribution on the given family of graphs

b) an algorithm that produces only graphs from the given family of graphs

To define a family of graphs, I focus on one property that all graphs of the family should
share: the degree sequence DS. This family of graphs tends to be large; for example,
Blitzstein and Diaconis [8] estimate the number of simple graphs that can be generated for
a graph with 33 nodes and 71 edges as (1.533± 0.008)× 1057. It would be nice if everything
could be calculated and weighted according to a given probability distribution, but that is
as good as impossible. Thus, different algorithms to generate graphs are used throughout
the thesis.

In Chapter III, it is explained in more detail why more complex algorithms to generate
graphs are necessary. The explanation of the algorithms starts out with the Erdős-Rényi
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model, one of the oldest and best-understood graph generating algorithms. This is followed
by a more general idea, that is then divided into several possible algorithms.

2.0.1 The Erős-Rényi model - the random graph

One of the best-known graph models is the Erdős-Rényi model. That is commonly called
the random graph [3]. When reading papers of physicists, the mention of a random graph
that is not explained refers to the Erdös-Renyi graph model. The model is based on two
parameters, n and m, therefore sometimes named G (n,m)-model. A graph with n nodes
is generated, and one edge of the possible

(
n
2

)
is chosen, all edges are equiprobable. This

process is repeated for
(
n
2

)
− 1,

(
n
2

)
− 2, . . .

(
n
2

)
−m edges while all remaining possible edges

are kept equiprobable. The result is one of
(
n
m

)
graphs [25]. This model generates for large

n the same graphs as the G (n,p) model given by Gilbert. The G (n,p) model tests for each
pair of nodes if there should be an edge between them by drawing a number from [0, 1]
uniformly at random and comparing to the parameter p. If p is larger than the random
number, an edge between the two nodes is generated. An important difference is that
the G (n,m) model always generates a graph with m edges while the G (n,p) model can
generate all graphs with n nodes, i.e., it can contain m ∈

[
0, n(n−1)2

]
edges.

For large n and np being constant the degree distribution of both models follows a
Poisson distribution

P (kv = k) =
(np)k e−np

k!
. (2.1)

This is a nice property, but it is not necessarily appropriate to compare a given graph
with those models. When the degree distribution of the given graph is strongly skewed
(see Chapter III), many measures will show very different values than the same measures
taken on random samples from these models. Therefore, the real-world graph will ap-
pear extraordinary, even if the measure is not special in graphs that have the same degree
sequence as the given graph. This is shown in more detail in Chapter 4.1.

That is why one cares about fixing certain parameters of a graph and tries to get a
random graph model that keeps this parameter constant, but random in all other. For this
work, the most simple parameter is being kept fixed, the degree sequence DS, and graphs
are generated based on this sequence.

2.1 fixed degree sequence model

The fixed degree sequence model is intuitively easy to understand. Given a degree se-
quence DS, an attempt is made to construct a graph with |DS| = |V | = n nodes, each of
which has a degree equal to exactly one of the values in DS, and to connect the nodes
according to their given degree. Upon this, there can several more things be required, for
example, a fixed clustering coefficient [38], an assortativity requirement [34], or that the
graph is simple [63, 72].

Next, some algorithms are presented that can generate graphs with a fixed degree se-
quence. Their properties and whether the algorithm is useful for network analysis are
discussed in detail.
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2.1 Fixed Degree Sequence model

2.1.1 Havel-Hakimi-Algorithm

One of the oldest algorithms to generate graphs based on a fixed degree sequence is the
Havel-Hakimi-Algorithm that was developed independently by Havel [37] and Hakimi [35].
Moreover, they provided a characterization of degree sequences that are graphical, in other
words, it exists at least one graph that is simple and has this degree sequence.

Definition 1 (Havel-Hakimi Theorem):
A degree sequence is graphical if and only if the sequence

{k2 − 1,k3 − 1, . . . ,kk1+1 − 1,kk1+2, . . . ,kn}

is graphical.

All degree sequences used in this thesis are graphical.
The Havel-Hakimi algorithm works as follows. Repeat until all entries of DS are zero:

1. Sort degree sequence in non-increasing order

2. Let d = kj

3. Remove kj from degree sequence

4. Subtract 1 from the first d remaining entries of the new sequence.

This algorithm has O (n · log (n)) run-time (due to repeated sorting) and as long as the
degree sequence is graphical, it provides always a simple graph. The problem with the re-
sulting graphs is easily observable. By ordering nodes in a non-increasing order and always
connecting to the kj next nodes, the generated graph will always have many edges between
high-degree nodes and much fewer edges from high degree to low degree nodes. When
nodes with the same degree are indiscernible, only one graph can be generated. The pref-
erence to connect high degree nodes with each other will influence measures taken from
these random graphs. Therefore, the results cannot be seen as totally random and despite
being one of the first algorithms to generate graphs with a prescribed degree sequence, this
algorithm has to be dismissed for analysis of real-world graphs.

2.1.2 Configuration Model

The configuration model was described by Bender and Canfield [5]. It was refined by
Bollóbas and Thomason [10] as well as Wormald [70]. This is one of the better-studied
algorithms to generate a network from a fixed degree sequence [66]. The algorithm is as
follows:

1. Generate a graph G = (V , ∅). Each node vi has ki stubs, ki being the i-th value in the
degree sequence.

2. Choose uniformly at random two stubs of all stubs and connect them with an edge.
Repeat this process without the already chosen stubs.

This process seems to be quite simple, but a trap is hidden in this very simple description.
Two stubs of the same node can be chosen, creating a self-loop, or stubs of the same pair
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of nodes can be chosen several times, creating multiple edges between the two. For the
created matching of stubs, the algorithm was also called matching algorithm by Alon et
al. [63], but they restricted their algorithm to create only simple graphs. This variant
of the configuration model forces generated graphs to be simple by including a check
whether the new edge is a self-loop or a multiple edge between nodes. If so, the up to this
point generated graph is discarded and the process started anew. An alternative way is
creating the graph with the configuration model, including multiple edges and self-loops,
but discarding everything that makes the result not simple in the end. This approach is
also called erased configuration model [95] since edges that do not agree with the property of
being simple are erased. Of course, this changes the degree distribution. The influences
of these changes are discussed in Chapter 8. Bender and Canfield [5] showed for regular
graphs that the probability to get a simple graph is

P (G is simple) ∼ exp
1− k2

4

for n→∞ with k being the degree of the nodes in a regular graph. Blitzstein and Diaconis
tested how many samples one has to draw to get a simple regular graph with degree 8.
About 7 million samples were necessary [8], which is a remarkably bad result. Additionally,
Janson [44, 45] showed that the probability of a graph with any degree sequence being
simple is

P (G (n, (ki)
n
1 ) is simple) = exp

−
∑
i

λi −
∑
i<j

(lij − log (1+ λij))

+ o (1)

with

λi =

(
ki
2

)
1

n

λij =

√
ki (ki − 1)kj (kj − 1)

n
.

This probability converges to 0 when
∑

i k
2
i

n → ∞ but stays greater than 0 if
∑
i k
2
i = O (n).

Many real-world graphs have a degree distribution similar to a power-law, i.e., the second

moment
∑
i
k2i
n is increasing, such that these graphs can be expected to have some multiple

edges and/or self-loops.
The algorithm to generate directed graphs works in the same way, with the difference

that one stub of the out-degree sequence and one stub of the in-degree sequence are chosen
to generate edges. Besides that, the above arguments apply.

This algorithm is often used and produces results that are applied in different fields. That
is most likely due to its speed, the run-time to generate a graph is in O (m). The problem
is, that researchers rarely mention whether they accounted for the properties of the graphs
this algorithm generates, i.e., whether they accounted for multi-edges or selfloops. These
properties might influence the results of measures and algorithms that are intended for
simple graphs severly. Other researchers prefer the erased configuration model since it
generates graphs that have a degree sequence similar to the fixed degree sequence given
but are thus restricted to graphs that have less edges [39, 40]. But some algorithms can
generate graphs without creating self-loops or multiple edges while maintaining the degree
sequence.
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Figure 2.1: Possible two-edge swaps in an undirected graph.

2.1.3 Switching Algorithm

A more appropriate algorithm to generate simple graphs is the switching algorithm. This
algorithm was named thus by Alon et al. [63], even though its basic idea was used already
by Brualdi [13] as well as Roberts and Stone [77] without giving it a name. This algorithm
is based on so-called edge swaps or matrix interchanges.

In an undirected graph the swaps depicted in Figure 2.1 are sufficient to generate all
possible graphs. The problem with this approach is that the number of swaps is unknown.
The basic algorithm is the following:

1. If not given an initial graph, generate a graph based on the degree sequence (with the
Havel-Hakimi algorithm or any other simple graph generating algorithm)

2. Repeat for a large number of steps:

a) Draw two edges uniformly at random.

b) Draw a number q ∈ [0, 1] uniformly at random. If q ≤ 0.5 swap the edges
{u, v} , {w, x} to {u, x} , {w, v}, otherwise to {u,w} , {v, x}

c) Check if the swap created a self-loop or a multiple edge; if so, undo the swap

To generate directed graphs edge swapping can be used as well with a few changes.
First, it is not possible to apply all swaps from Fig. 2.1, which is evident when considering
that the edges are directed. It is not possible to apply other edge swaps to (u, v) , (w, x)
than (u, x) , (w, v), since it is not possible to connect out-stubs to other out-stubs. Directed
graphs, in contrast to undirected graphs, can show configurations that are impossible to
change by a simple two-edge swap even though it is evident that there are other realizations.
An example is given by Berger and Müller-Hannemann [6] (comp. Fig. 2.2).

They consider a digraph with 3n nodes, V = {v1, v2, . . . , v3n}, where the triples v3i, v3i+1, v3i+2
form three-cycles and all nodes of a single cycle are connected to any node not in this three-
cycle. Any standard edge swap in a three cycle leads to a self-loop, such that this is swap
is undone. Any swap of edges connecting the three-cycles either leads to the previous
graph or multiple edges between two nodes, so they are undone as well. Any swap with
one of the intra three-cycle edges and inter three-cycle edges leads to multiple edges. Thus,
apparently only one graph exists, even though it is obvious that the direction inside a three-
cycle could be swapped. A possible three-edge swap, i.e., a reorientation of a three-cycle,
is introduced to solve this problem. They prove that it is possible to reach all possible
realizations of a degree sequence with the additional three-edge swaps and give details on
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Figure 2.2: A digraph for which the standard switching algorithm (two-edge swaps) is
not sufficient to find any other realization, even though there exist much more.
Taken from [6].

how to recognize a degree sequence that allows using the simple two-swap algorithm (for
more details, see [6]).

Of significant interest for this algorithm and its variants is the large number of steps
mentioned in the description in the algorithm, written as O (c ·m). This constant was
first introduced by Alon et al. [63]. They provided results of an experiment in that they
measured a property of a network. The experiment was based on several 1000 samples with
a small constant c; they increased c and tested whether the average of the measure on the
graphs changed, i.e., they tested for when it stabilized. They found that a suitable constant
would be 100, even though their experiment indicated stable values much earlier. Viger
and Latapy found experimentally that for generating connected graphs O (m · log (n)) time
would be sufficient [96]. The proof is still missing. This is not constant, but provides an
estimate for each graph. Ray et al. [76] found experimentally that values of ε < 5 · 10−3 are
sufficient if c = ln

(
1
ε

)
, i.e., 1 ≤ c ≤ 15. For this, they took several thousand samples of very

different graphs with different c and evaluated some measures on the samples. Afterward,
they compared the distribution of the measures. They found, that the measures result in
the same distribution for most c, but very small c. Thus, they suggest a c of 5 to 10. Since
the samples are drawn from a vast set of possible graphs, the stability of the results gives
confidence in this approach.

In a Bachelor thesis [79], it was tested whether this constant depends on the degree
sequence. For this, a decreasing out-degree sequence was generated and kept constant,
the in-degree sequence being once correlated, once un-correlated, and once anti-correlated.
A “meta-graph” was generated in the following way: starting from a connected graph as
a node, all possible edge swaps were denoted; if an edge swap resulted in the original
graph, it was denoted as a selfloop, otherwise it was an edge to another graph (i.e. node in
the meta-grpah). For all new nodes the same procedure was performed. After a time, no
new graphs were found an this process terminated. Using a PageRank-like algorithm it was
possible to find an approximation of c for the original graph such that a repeated evaluation
of a measure with cm swaps yielded the same result as m log (m) swaps. Interestingly,
even though all three bi-degree sequences yielded graphs with the same amount of edges,
the constant needed to generate all possible connected graphs was different for all degree
sequences. It was also much lower than 100, even though this would have been sufficient.
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Another interesting result regarding the mixing time and the number of samples was
discovered by Brugger et al. [14]. They tested on bipartite graphs whether it is possible
to reduce the number of samples taken and whether it is possible to use only a subgraph
instead of the whole graph to reach sufficient results. The tests performed were based on
the Netflix-dataset and the MovieLens-dataset, i.e., movie-ratings of users. The assumption
of these tests is that sequels have a higher number of common neighbors, i.e., their co-
occurrence is higher. Brugger et al. calculate p-values denoting those pairs that have a
co-occurrence as least as large as the original, i.e.,

p (x,y) =
s∑
i=1

1coocci(x,y)≥coocc(x,y).

Based on the p-value they calculated the positive predictive value at k, PPVk, where k indicates
the number of pairs of films in the ground-truth (a verified set of edges in a graph that
contains also noisy data). The PPV is the fraction of correctly identified pairs from the
ground truth in the set of the k highest ranked pairs of films [107]. This is similar to
the precision at k known from information retrieval [59, Ch.8]. Their results indicate that
after a few hundred generated samples the change in the PPVk peaks and does not change
significantly after this, no matter how many samples are drawn. Additionally, they were
able to reduce the number of swaps to be taken from 109 to 106, which is equal to a
reduction from m · log (m) to m ln

(
1
ε

)
with ε ∼ 4.5 · 10−5 = 10 as shown by Ray [76].

This algorithm received much attention for generating graphs, statistical analysis, and
tuning of the parameters that are important for its runtime. Still, there is still no proof that
c ' 10 is for all graphs a large enough factor. Therefore, another algorithm that generates
only simple graphs is presented.

2.1.4 Sequential Importance Sampling

Another algorithm to generate undirected simple graphs was developed by Blitzstein and
Diaconis [8]. Later on, a very similar algorithm for directed graphs was developed by Del
Genio et al. [49], who mentioned an unpublished algorithm by Blitzstein and Diaconis for
the same purpose with almost the same approach.

The sequential importance sampling algorithm proceeds as follows based on a degree
sequence DS.

1. Let E be an empty list of edges.

2. While DS contains non-zero elements:

a) Choose the least i with ki a minimal positive entry.

b) While ki > 0:

i. Compute a candidate list

J = {j 6= i | {i, j} 6∈ E∧ {k1,k2, . . . ,ki − 1, . . . ,kj − 1, . . . ,kn}

is graphical} .
(2.2)

ii. Pick j ∈ J with probability proportional to its degree.
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Figure 2.3: Intermediate step in the graph generating process of the sequential importance
sampling.

iii. Add {i, j} to E and update DS .

3. Return E.

The test whether the remaining sequence is graphical is not used in any of the before
presented algorithms but the Havel-Hakimi test for graphicality needs O (n) time in an
elegant implementation. Additionally, there are

∑n
i=1 ki candidate lists to generate. Since it

is done for each node its degree times, the overall time is O
(
n2
∑n
i=1 ki

)
= O

(
m · n2

)
. This

approach has some disadvantages, that are reduced by a feature concept of the algorithm.
The major disadvantage is that it does not sample uniformly at random from the family of
all simple graphs. As an example, consider the graph partially given in Figure 2.3.

The probability that any of the nodes in the middle is chosen is the same, the resulting
graph does not look any different independent of which one is chosen first. Moreover, more
than one sequence of created edges can lead to the same graph. While the overall graph is
the same, the sequence constructing the graph is not, which is usually not traceable. The
algorithm calculates simultaneously to choosing a neighbor the probability of choosing
this node. This probability is calculated for all edges constructed and gives the overall
probability of a graph and its construction sequence. Calculating the probability to get a
graph helps when estimating the expected value of a measure. According to Blitzstein and
Diaconis [8] the following proposition holds, where σ (Y) is the probability that a graph Y
is constructed by a given sequence, and c (Y) = Πmk=1d

ik−1

ik
! is assumed as the number of

graphs like Y:

Propositon 1 (Blitzstein [8]). Let π be a probability distribution on Gn,d and G be a random graph
according to π. Let Y be a sequence of edges distributed according to σ. Then

E

[
π̂

c (Y)σ (Y)

]
= Ef (G) .

In particular, for Y1, . . . , YN, the output sequences of N independent runs of the algorithm,

µ̂ =
1

N
σNi=1

π̂ (Yi)

c (Yi)σ (Yi)
f̂ (Yi)

is an unbiased estimator of Ef (G).

With this, it is sufficient to take fewer samples to get a good estimate of the measure f
one is looking for. Computing the above equation with f being a constant function yields
the approximate number of graphs with the given degree sequence, i.e.,

E

[
1

c (Y)σ (Y)

]
= |Gn,d| . (2.3)
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It is important to note that Blitzstein and Diaconis [8] also consider another probability to
chose neighbors instead of the degree based choice. They suggest that a uniform choice on
the set of possible neighbors may be used, but the difference between these two probabili-
ties when choosing a neighbor has not been evaluated to the best of my knowledge.

Almost the same algorithm is used to generate directed graphs. The order of the elements
in the degree sequence is a bit more complicated. For this, the definition of normal order
is necessary.

Definition 2 (Normal Order [49]):
A degree sequence

D = {(k1, j1) , (k2, j2) , . . . , (kn, jn)}

is in normal order if and only if

∀u < v,u, v ∈N : ku > kv ∨ ku = kv ∧ ju > jv.

The degree sequence has to be in normal order before a node is chosen. The node that is
chosen is the lowest-index node u with non-zero (residual) degree. This algorithm chooses
uniformly at random from the set of possible neighbors, connects the two nodes with a
directed edge and brings the residual degree sequence in normal order again [49]. Besides
that, the algorithm has the same advantages as for undirected graphs with a worst runtime
complexity of O

(
n3
)
.

These algorithms are well-known algorithms in the field of network analysis. The con-
figuration model has several variants. They are much more elaborate and restrict the space
of possible outcomes, not necessarily preventing multiple edges or self-loops. Moreover,
sometimes very similar models have been developed, or even the same model is developed
but not attributed to the configuration model (f.e. [83]).
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M AT H E M AT I C A L T O O L K I T

Up to this point, several null models based on algorithms have been introduced. It remains,
how to compare a null model to a graph and, more importantly, how to compare null
models with each other? The first part is simple.

1. Calculate the measure of interest in the real-world graph;

2. Calculate the measure of interest in a large enough number of samples drawn from
an appropriate null model;

3. Calculate with an appropriate test method whether the result in the real-world graph
is very different from the results of the samples.

The last step is often done with a simple z-test, even though it is most of the time unknown
whether the underlying distribution is normal [63, 64]. Still, in most cases this test is
enough to assess statistical significance. Alternatively, Student’s t-statistic is also a measure
that is useful when only a sample is taken and the mean and standard deviation are only
approximated [12].

Now, how to compare two null models? As a reminder, null models are families of
graphs together with a probability distribution of the occurrence of a graph. An alternative
to describe a null model is by defining an algorithm that produces graphs from a set of
graphs with some probability. These probability distributions are of interest. The switching
algorithm uses a Monte-Carlo Markov chain that is symmetric, aperiodic, and irreducible.
The states of the Markov Chain are the graphs in the family of graphs and since the proper-
ties are all accounted for [6, 88], the probability to reach any graph of the family is uniform.
The configuration model is more problematic: due to the tendency to build self-loops and
multiple edges [44, 45] some graphs may have higher probabilities to be generated, be-
cause they are multigraphs. Milo et al. tested once whether the modified configuration
model with rejection would produce uniformly all graphs for a toy example [63]. It did not
produce the graphs uniformly at random. Thus, the probability distribution of the config-
uration model with rejection is unknown, and the standard configuration model does not
fare better. For the sequential importance sampling, it is already known that it does not
produce graphs uniformly at random. Luckily, the algorithm provides information on the
probability to draw the resulting graph in exactly the sequence, which allows for a simpler
calculation of a weighted mean of measures taken on graphs sampled with the sequential
importance sampling.

Recognizing that the null models do either not chose from the same family of graphs
(multigraphs vs. simple graphs) or that they do not do so with the same probability distri-
bution leads again to the question, how to compare different null models?
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3.1 statistical analysis of differences in results

A standard way to test whether two populations (families of graphs) do share the same
mean value in some measure is the two-sample z-statistic,

t =
(x̄1 − x̄2) − (µ1 − µ2)√

s21
n1

+
s22
n2

,

where t is distributed according to Student’s t-distribution, x̄1, x̄2 are the sample means,
µ1,µ2 are the means, s1, s2 are the sample standard deviations, and n1,n2 are the respective
sample sizes. But, in the limit of large numbers (n1 > 30,n2 > 30), it is valid to use the
two-sample z-statistic

z =
(x̄1 − x̄2) − (µ1 − µ2)√

σ21
n1

+
σ22
n2

. (3.1)

If the population variances are not known, which they are as good as never for a family of
graphs, sample variances are used. Since it is tested whether the null models coincide in a
measure, the assumption is that µ1 = µ2, i.e. µ1 − µ2 = 0.

Both of these measures assume that the measure of interest is distributed according to
a normal distribution N (µ,σ). Since this is not guaranteed, the Kolmogorov-Smirnoff
two-sample test is applied as well.

The exact explanation of this test can be found in e.g. [12, 81]. Here a more simple
but much more illustrating example is provided. The most simple explanation is visually:
The cumulative distribution function of the results of the measures in each null model is
taken and the largest difference of these is the test-result Dn1,n2

, where n1 and n2 are the
respective sample sizes. In Fig. 3.1, this is visualized with some random numbers taken
from two binomial distributions with the same mean but different standard deviations.
This value is than compared to fixed values c (α); whenever c (α)

√
n1+n2
n1n2

is larger than
Dn1,n2

, it is assumed as plausible that the two samples are from the same distribution.
Naturally, it is possible to calculate a p-value

p = 2min
{
Pr

(
Dn1,n2

≤ c (α)
√
n1 +n2
n1n2

)
,Pr

(
Dn1,n2

≥ c (α)
√
n1 +n2
n1n2

)}
(3.2)

where Pr (X ≤ x) = 1− 2
∑
i≥0(−1)

i−1 exp−2i2x [12]. This value allows to give an estimate
of how likely it is that the two distributions are the same.

These tests suffice for statistical analysis and will be used throughout the thesis.
Another measure of interest is the so called skewness of the degree sequence. Skewness

is a measure of the asymmetry of the probability distribution of a real-valued random
variable about its mean. For a degree sequence, this implies that the degree distribution of
the sequence is analyzed based on Pearson’s skewness coefficient,

γ1 = E

[(
X− µ

σ

)3]
=

E
[
(X− µ)3

]
(

E
[
(X− µ)2

])1.5 . (3.3)

Distributions such as the Poisson distribution have very low skewness (µ−0.5), while many
real-world networks show higher skewness values [81].
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3.1 Statistical Analysis of Differences in Results

Figure 3.1: Two cumulative distribution functions of samples are computed and the max-
imum difference between these (marked with a red vertical line) is the result
Dn1,n2

of the Kolmogorov-Smirnoff two-sample test.
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Besides statistical testing whether another graph model is appropriate, there is one model
that was not discussed above that is based on several simple assumptions. As some of the
algorithms take a rather long time to calculate measures, and the sampling of random
graphs is also costly, researchers always strive to improve algorithms, parallelize them or
try to develop new approaches to old problems such that faster solutions to already solved
problems can be applied. In Physics, it is similar, and it is not surprising that physicists
developed some interesting ideas. A very prominent example that is based on very simple
assumptions is explained in the following.

3.2 simple independence model

The simple independence model (sim), as it was termed by Zweig [107], is based on a series of
very simple assumptions. Consider two nodes in a graph, u, v, with degree ku,kv respec-
tively. The probability that node u connects to node v in the configuration graph model is
calculated as follows. There are 2m stubs at all, 2m− 1 subtracting one from u (this is the
one looking for a a stub to connect to). Of those 2m− 1 stubs, exactly kv belong to node v.
Since there are ku stubs coming from node u and each is equally likely to connect to node
v, the probability of a connection between u and v is equal to

pu,v =
kukv

2m− 1
. (3.4)

Actually, this is the sum of the single events, connecting single stubs of u to v, therefore
it is an expected value. Newman writes in [66] that for large m this term converges to a
probability and is sufficient to use

pu,v =
kukv

2m
. (3.5)

This equation can also be found in the Chung-Lu model [17].
Based on this simple expression several equations were developed to calculate measures

that are quite common in graph theory and network analysis. It is often applied without
considering the graphs Newman had in mind while developing this equation. Newman
developed his equations with the random graph, i.e., the ER-model in mind [66, p.420]. He
states that

Although the random graph is, as we have said, not an accurate model of most
real-world networks, this is, nonetheless, believed to be the basic mechanism
behind the small world effect in most networks[...] [66, p.420].

While this part was focused on the diameter, this statement can be found in other places
in his work as well. Still, some researchers apply the equations and state their results and
do not investigate if the results are valid, i.e., if the equations are applicable to the given
graph. Chung and Lu [17] state that if ∀v ∈ V : k2v <

∑
v∈V kv, equation 3.5 is for all node

pairs between 0 and 1. Whenever this condition is not met, the results of equation 3.5 have
to be considered as expected values. Still, for some measures the model is applicable as is
shown in this thesis.

With the probability for an edge, some additional calculations can be made. Assume that
there is an edge between nodes u and v. Since sim assumes simple independence, there
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is nothing preventing a second edge between the same nodes. The probability for a single
second edge can be calculated thus as

kukv

2m

(ku − 1) (kv − 1)

2m
. (3.6)

Summing this over all node pairs is then equal to

1

2 (2m)2

∑
u,v

kukv

2m

(ku − 1) (kv − 1)

2m
=

1

2 (2m)2

∑
u

ku (ku − 1)
∑
v

kv (kv − 1) (3.7)

2m=n〈k〉
=

1

2〈k〉2n2
∑
u

ku (ku − 1)
∑
v

kv (kv − 1) (3.8)

=
1

2〈k〉2n2
∑
u

(
k2u − ku

)∑
v

(
k2v − kv

)
(3.9)

1
n

∑
v∈V k

i
v=〈ki〉

=
1

2〈k〉2n2n
2
(
〈k2〉− 〈k〉

)2
(3.10)

=
1

2

[
〈k2〉− 〈k〉
〈k〉

]2
. (3.11)

Moreover, this allows also the quick estimation of how many self-loops a node might
have. Considering the probability to have an edge from node u to node v, it is a simple
change from v to u. Since one of the stubs is gone, the second parameter is reduced by one
and results in

pu,u =
ku (ku − 1)

2m
. (3.12)

The expected number of self-loops for a graph can be calculated very easily as

∑
u

ku (ku − 1)

2m
=
〈k2〉− 〈k〉
2〈k〉 . (3.13)

In social network analysis, these equations are not of much use. Social network analysis
is concerned with graphs that do not permit multiple edges, as long as the underlying
graph is not multiplex. Neither should a standard social network contain any self-loop
since they do not provide any information in most cases. There may be exceptions where
self-loops provide information, but those are rare. Nevertheless, the equations can tell the
expected number of self-loops and multiple edges the configuration model develops. What
the equations do not provide is information where those multiple edges and self-loops are
attached.

Other equations are introduced when necessary to avoid unnecessary repetition.

3.3 critique on the applicability of sim to all graphs

While the simple independence model seems to allow for calculation of expected values,
the applicability of the model should be discussed. The model and the equations used
therein were developed with two premises that are either not explicitly stated or not stated
at all. The model that was to be approximated was the ER-model or the G (n,m) model,
initially. Nowadays, almost any graph considered for research purposes is said to have a
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degree distribution following a power-law, being close to a power-law, or having at least a
skewed degree distribution [18].

Newman used his equations on graphs with skewed degree distributions as well. For
this purpose, other properties of the degree sequence should be checked before using the
simple independence model, such as ∀v ∈ Vk2v <

∑
v∈V kv as stated by Chung and Lu [17].

Otherwise, results may be hard to interpret or wrong (such as probabilities larger than 1).
But there are other caveats as well. As an example, we consider two different applications
of the simple independence model that should be done only with utmost care.

3.3.1 Example 1

The first example is a measure called assortativity—the idea is to have a value between -1
and 1 that says something about the mixing structure of the graph. For example, assorta-
tivity can be calculated based on scalar values assigned to people and the scalar values as-
sociated with their neighbors [67]. When people choose other people with scalar attributes
similar to their own, assortativity is high; when they choose otherwise, the assortativity is
negative. We can also speak of a disassortative behavior of groups.

This is investigated in the following based on the degree.

c 1

2

34
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8 9

10

Figure 3.2: Example 1

Consider the graph given in Fig. 3.2. It is easy to see that this is the only possible
realization of the graph without any self-loops or multiple edges, in other words, it is
the only simple graph possible. Calculating the assortativity of a graph like this is not
necessary since there are no other realizations of a degree sequence like this. Still, applying
the equation for degree assortativity,

r =

∑
i,j

(
Ai,j −

kikj
2m

)
kikj∑

i,j

(
kiδi,j −

kikj
2m

)
kikj

,

to this graph yields a value of −1 which seems on the first look reasonable—the low degree
nodes are connected to the high degree node, the graph is as disassortative as possible.
The graph is compared to the “most assortative realization” possible, i.e., the divisor in the
equation symbolizes a graph in the each high degree node is connected to a node of equal
degree, and each low degree node is connected to a node of equal degree. For the graph in
Fig. 3.2, this would imply that node c is connected to itself, and there are five two-cliques.
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(a)
(b)

Figure 3.3: Two graphs generated from the same degree sequence with different
modularity-scores.

But that is first of all not a simple graph; second, the assumption that any node can connect
to another node of the same degree is just not met in all networks. It is more likely that
this assumption is not met for all nodes in any real world graph. The probability that a
graph has enough nodes of each degree such that they connect only to each other is very
low. That is an assumption based on recent research, that almost all graphs that are used in
research either show power-law like distributions or distributions that have much less high
degree than low or average degree nodes, i.e., they have skewed degree distributions [18].

3.3.2 Example 2

As another example, consider the modularity defined as

Q =
1

2m

∑
i,j

(
Ai,j −

kikj

2m

)
δ (ci, cj) ,

where ci, cj are the identifiers of a dense group, called community, node ki,kj belong to.
This is said to be a measure of the extent to which like is connected to like in a network [66].
It takes values between 1 and −1, indicating with positive values whenever more edges are
between vertices of a group than expected, negative when not. It is similar to assortativity
in the sense, that by dividing by the maximum of the modularity another assortativity
coefficient can be calculated (for more detail see [66, p. 224f.]). Still, modularity is another
measure that is often applied in network analysis. But rarely is the equation under explicit
consideration whether it makes sense to use it at all.

In Fig. 3.3 two graphs are displayed that share a very simple degree sequence. There are
five nodes with a degree of 4 and 20 nodes with a degree of 1. In Fig. 3.3a we have a central
clique, surrounded by dyads while in Fig. 3.3b are five four-stars displayed. By the claim
of Newman [66], modularity should be higher for graphs in which more similar nodes are
connected, i.e., more nodes of a group. But as a calculation of the modularity shows, the
complete graph in Subfig. 3.3a (all components) has a modularity of 0.725 while the star-
graphs in Subfig. 3.3b (all components) have a modularity of 0.8 while a single star-graph
has a modularity of 0. Of course, when each dyad is considered as its own community cj,
each star graph as its own community cj, the results is more reasonable, yet still irritating
when the five-clique in Fig 3.3a is considered.
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In the paper by Newman and Girvan, modularity is explained as the difference between
observed edges inside a community minus the expected number of edges within them
when placed at random [68]. Implicitly, the simple independence model is used here which
directly implies that self-loops, as well as multiple edges, are possible. There are attempts
to calculate a more fair modularity score [15] that compensates for loops, or for loops and
multiple edges, but we did see no paper but this using this approach.
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In the following, some research based on artificial and real-world graphs is presented.
The analysis starts with artificial graphs, using a graph from the simple G (n,m) model,
and it can be observed that null models do show very similar results for the unskewed
degree distributions. But the more skewed the degree distribution is that is used for the
artificial graphs, i.e., the more similar to nowadays real-world graphs the degree sequence
becomes, the more the results of different null models differ.

This effect can be observed even more clearly in the analysis of the real degree sequences.
The differences sometimes seem to be minuscule, but when network analysis is applied in
real life, these differences can be of great significance. Consider as an example the television
show “Numb3rs”, in which the young Professor Charles Eppes sometimes applies network
analysis to spot the culprit. In one of the episodes, it is mentioned that Professor Eppes
compared the development of friendships to random Apollonian networks, which is not
necessarily reasonable due to the construction process of a random Apollonian network.
Something along the lines is mentioned by another character in the television show, stated
as “some of the math is a little subjective”. In another episode temporal network analysis
is performed in which sequences of graphs are analyzed to find people who are moved out
of focus of a group to find the culprit. But, as with most television shows, this does not
work well, and they miss the evil-doer until the very end.

Even though this is just a television show, some parts of network analysis have found
their way into reality and are applied in useful ways. Some criminals get caught since their
closer social network is observed via Facebook and people upload pictures without concern.
The NSA and DoD use both social network analysis, the extent of which is unknown [53].
Other papers concerned with terrorist networks or political networks have been published
in the last decade (f.e. [74, 82, 97, 16]). Seldom, more in-depth analyses than the standard
centralities are applied to find important persons. But centrality scores can sometimes be
artifacts caused by the density or some structural property of the graph. By analyzing
random graphs with the same degree sequence, it is possible to observe artifacts like this
when the random graphs show the same or similar results.

Most of the work done in this part was done in collaboration with Katharina Zweig,
who had the initial idea to compare measures on different null models to see whether null
models yield the same range of results. This was inspired by her work on bipartite graphs
in which she discovered strong discrepancies between two different null models. The paper
that originated from this is “Different flavors of randomness—which graph model to use
to assess statistical significance”. This paper was written in collaboration with Katharina
Zweig and Emöke-Ágnes Horvát, with great influence by Katharina Zweig, while Emöke-
Ágnes Horvát provided helpful insights and restructured much of the text.

Synopsis First, it is important to note that different null models can result in the same
average values, but that they do not have to. This effect seems to be strongly dependent on
the degree sequence, but that is not provable up to now. Afterward, a discussion on how
the sequential importance sampling by Blitzstein and Diaconis should choose neighbors is
used to lead into a discussion of the measures that were applied in “Different flavors of
randomness” [81]. While some of the results are of this paper, all discussed material that
references the sequential importance sampling are new. The conclusion did not change
much from “Different flavors of randomness”; some null models have side effects that
influence the analysis, like multiple edges between nodes or preference of high degrees as
partners when constructing a graph from scratch.
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In the following we will use shorthand notation for the different graph models:

cfg Configuration model

ecfg Erased configuration model

fdsm Fixed degree sequence model with the swapping algorithm

sis Sequential importance sampling

dsis with degree-based choice from the set of possible neighbors

usis with uniform choice from set of possible neighbors
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4

C O M PA R AT I V E A N A LY S I S B A S E D O N T H E M O D E L S

As an introduction to the topic, we use two artificially generated graph. One is generated
with the G (n,m) model, the other with an algorithm provided by Leskovec et al. [55], the
Forest-Fire model. While the first graph has a degree sequence that follows roughly a Pois-
sonian distribution, the second graphs degree sequence follows a powerlaw distribution.
We then generate random graphs based on the two artificial graphs, using the previousely
described algorithms. The approach is to compare the artifical graph with samples drawn
from a null model that generates graphs that are similar to a certain extent, i.e., they share
the degree sequence but nothing else. In the following it is shown that the cfg is good
to analyze graphs that have a degree sequence following a Poissonian degree distribution,
but for other degree distributions, it is not the best approach.

The measures that will be investigated are the following:

distance and diameter One of the most basic questions that sparked the interest in
graph theory was the “Königsberger Brücken” problem in which several parts of a
city were connected by bridges over rivers. The question was “Can we devise a route
that uses all of our cities seven bridges without using a bridge twice?”. Nowadays, a
travler in the city of Königsberg (Kaliningrad, Russia) has only five bridges and it is
rather more likely that the question in his mind will be “What is the shortest distance
I have to go if I want to visit all bridges in Kaliningrad?” In other words, what are the
distances between the bridges? To solve this, the single-source shortest-path problem
is a good analogy from graph theory.

Definition 3 (Sinlge-Source Shortest-Path problem):
Given a source node s in a graph G = (V ,E) find the shortest sequence of vertices
P = (s, v1, v2, . . . , vl, t) ∈ V l+2 such that vi is adjacent to vi+1 for 1 ≤ i < l for all other
vertices in the graph.

The single-source shortest-path problem is a subproblem of the All-Pairs Shortest-
Path problem, a problem that searches to answer the same question for all pairs of
nodes.

Calculating all distances between all pairs is a solved problem, but it is one of the old
and very prominent problems. Already in 1959, Dijkstra solved it with the famous
Dijkstra-algorithm and Bellman and Ford, Johnson, and Floyd-Warshall devised other
solutions for weighted graphs, negatively weighted graphs and others [22, 4, 47, 27].
The problem of the algorithms is the runtime. While the single-source shortest-path
problem can be solved in O

(
n2
)
, the all-pairs shortest-path problem still requires

with these algorithms O
(
n3
)

time.
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4 comparative analysis based on the models

Since comparing all length of shortest-paths between all pairs of nodes would take
long time and would most likely yield rather inconclusive results, we are comparing
the average distance.

Definition 4 (Average Distance):
The average distance (average path length) is one of the most robust measures of
graph theory. Assume that d (v1, v2) = 0 when v2 cannot be reached from v1, other-
wise let d (v1, v2) denote the shortest distance between v1 and v2. The average distance
is thus

1

n (n− 1)

∑
vi,vj∈V ,i 6=j

d (vi, vj) . (4.1)

Algorithms like Dijkstra’s or Bellman-Ford’s calculate the shortest distance between
all pairs of nodes. If there is no viable way from node u to node v in a graph, this
means that they are in two different components and the distance between them is
infinity per definition. For the algorithms used to calculate distance, this is not a
problem, but for the diameter it is.

Definition 5 (Diameter):
The diameter is the longest shortest distance between any two nodes in the graph.

Since calculating the diameter for a graph that is disconnected may end up with
ambigous results, depending on the definition of the distance, for the diameter the
largest connected component is considered.

Definition 6 (Component):
A (connected) component is a subgraph in which any two vertices are connected to
each other by paths, and which is connected to no additional vertices in the graph.

Most real world graphs have one so called giant component, i.e., a component that
contains most nodes and most edges while the other components tend to be smaller
such that they do not matter much. A standard approach to find connected compo-
nents is breadth-first search, labeling the found nodes and continuing while there are
other unmarked nodes with another label. In this work, whenever the diameter is
mentioned, the diameter of the giant component is meant. Since not every algorithm
to generate graphs checks whether the graph contains only one component, we check
all measures only on the largest component. This implies that neither the true diam-
eter of a graph with more than one component is recorded (∞), nor necessarily the
largest diameter of all components. Consider a graph that has 98% of its nodes in
one component with a diameter of 5; the rest builds a sparse second component with
a diameter of 6. Still, the diameter of 5 contains more information about the speed
with which messages may be passed through the graph.

A standard algorithms to calculate the diameter is the Floyd-Warshal algorithm, that
solves the all-pairs-shortest-path problem first. It is then just looking up the largest
value. Algorithms that are faster in praxis still have the same worst case runtime [11,
19].
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4.1 Erdős-Rényi graph

average neighbor degree Another classic measure is the average neighbor degree,
i.e., how many neighbors do the neighbors of a node have on average. This measure
is calculated for a single node as

av (v) =
1

kv

∑
u∈N(v)

ku. (4.2)

N (v) is the neighborhood of a node v. This measure can be seen as an indicator of
degree assortativity, i.e., when a high degree node mainly has high degree neighbors,
the average neighbor degree should be high for the node itself. The global average
neighbor degree, i.e., the average of the average neighbor degree, is calculated as

AV (G) =
1

n

∑
v∈V

av (v) =
∑
v∈V

1

kv

∑
u∈N(v)

ku. (4.3)

According to Feld [26], the mean among friends is empirical at least as great as the
mean among individuals, i.e., friends seem always to have more friends than an
individual.

average clustering coefficient The clustering coefficient is divided into two differ-
ent versions: a global and a local one. While the global clustering coefficient gives an
indication of the tendency of the nodes to build triangles, i.e., three nodes connected
to each other, the local clustering gives an indication of the embeddedness of a single
node. Embeddedness means, how well is the neighborhood of a node connected, or
how close is the neighborhood of a node to being a clique. The local measure is easy
to calculate via

Ci =
2 |{ej,k | vj, vk ∈ N (vi) , ej,k ∈ E}|

ki (ki − 1)
. (4.4)

This measure is the number of triangles that vi is a part of divided by the number of
possible triangles. We average this over all nodes in the largest component.

4.1 erdős-rényi graph

The first test will show that there are graphs that follow a degree distribution for which it
is not important which null model is chosen. The graph that is used is generated with the
Erdős-Rényi graph model. The Erdős-Rényi graph model, G (n,m) is similar to Gilbert’s
G (n,p) model, especially in the context of the number of edges attached to a node, i.e., the
degree sequence. In the latter, two nodes build an edge with probability p, which implies
that there are on average

(
n
2

)
p edges. Graphs from the G (n,m) model are generated by

choosing pairs of nodes at random and generating edges until m edges exist.
The graph generated with the G (n,m) model used has 7012 nodes and 78512 edges. It

consists of one component, has an average degree of 22.41, shows neither assortative nor
dis-assortative behavior, and the degree sequence follows a Poissonian degree distribution,
as expected.

In Fig. 4.1 all results are shown. First, observe that the diameter is, in this case, a stable
measure and it does not change based on the null model graphs are generated with. The
average distance between nodes varies only to a very small extent (comp. Fig. 4.1b). The
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4 comparative analysis based on the models

(a) Diameter around 5

(b) Average Distance fdsm exact 3.13, cfg around
this value.

(c) Average Neighbor Degree fdsm exact 1.096,
fdsm around this value.

(d) Clustering Coefficient fdsm exact 0.032, cfg

around this value.

Figure 4.1: Histograms of measures on several hundred graphs generated with the two
different based on a graph from the G (n,m) model.
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4.2 Forest-Fire graph

results are very close, the only difference being that the average distance graphs generated
with fdsm is always the same, while the average distance in graphs generated with cfg

varies to a certain but negligible degree. The other measures, i.e., the average neighbor
degree and the average clustering coefficient, do also show little variation in both null
models.

Based on this example, it is not necessary to use the fdsm due to its run-time complexity.
With a run-time in O (m logm), the fdsm takes much longer than the cfg, that has a run-
time in O (m). The question that remains is whether this is true for all graphs, i.e., is the
cfg always the algorithm to choose or does it show problems when applied to graphs with
a more skewed degree distribution.

4.2 forest-fire graph

The Forest-Fire graph algorithm, developed by Leskovec et. al. [55], works as follows:
To some not further defined base graph a new node arrives. This new node chooses an
ambassador it connects to from the existing graph. With probability p neighbors of this
ambassador are added to the neighbors of the new node (i.e., they are “burnt”). This
process is repeated recursively, until “the fire dies”, i.e., no new nodes are added to the
neighborhood. Already burned nodes cannot be burned by a node again.

The graph generated with the Forest-Fire algorithm has 7012 nodes and 78572 edges, so it
is very similar in this regard to the graph from the G (n,m) model from the former section.
It consists of one component, has an average degree of 22.41, has a slightly dis-assortative
tendency (−0.07), and the degree sequence follows a power law distribution with γ = 1.79.
Recall, that the cfg connects stubs of nodes uniformly at random. The higher the degree of
a pair of nodes, the more likely it is that they will have at least one, possibly several edges
between them. Thus, this power law distribution will change the analysis based on the cfg,
since there will be multiple edges and self-loop edges attached to the high degree nodes
(more on this see Section 7.3) (and not contribute to the analysis).

Several points can be observed. First, observe that the graphs generated with the fdsm

have in each figure in Fig. 4.2 an accumulation point that makes about 40% of all results.
The results of the measures at this point are very close to the measures taken on the original
graph, which indicates that the results of the graphs generated with the fdsm did change
the graph only marginally or that the edge-swaps lead to the original artificial Forest-Fire
graph. Second, observe that the results do only overlap in Fig. 4.2a, i.e., only the diameter is
similar in graphs sampled with the two different models. For all other measures, there is a
rather stark contrast between the graphs generated with the cfg from the graphs generated
with the fdsm. Since this experiment is based on an artificial graph, this is not explained in
more detail, but it is important to stress that the models do not necessarily yield the same
results.

In the following section the sis is explored more in depth, since the description of the
algorithm given by Blitzstein and Diaconis [8] as well as the description by DelGenio et
al. [21] does not investigate a rather important detail. This detail is studied more in the
following.
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4 comparative analysis based on the models

(a) Diameter (b) Average Distance

(c) Average Neighbor Degree (d) Clustering Coefficient

Figure 4.2: Histograms of measures based on several hundred of graphs generated with
the two different models based on a graph from the Forest-Fire model.
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5

S E Q U E N T I A L I M P O RTA N C E S A M P L I N G — W H I C H P R O B A B I L I T Y
D I S T R I B U T I O N T O U S E ?

As described in Section 2.1.4, sis chooses the next neighbor based on the remaining degrees
of the nodes in the set of possible neighbors. Blitzstein and Diaconis [8] suggested addi-
tionally using a uniform distribution, a discussion that was not introduced by Del Genio
et al. [21]. Still, an analysis of the results that the different distributions yield was not
performed to the best of my knowledge. Therefore, an investigation of the results based on
the two different distributions is performed throughout the thesis. Here, a short preview
based on the degree-assortativity is given.

Even though the degree-assortativity coefficient was described as a somewhat strange
measure due to the comparison to some assumed perfect graph in Section 3.3, it indicates
to a certain degree the connectivity between nodes. Since this section is only about the
probability distributions that is used to choose the neighbor of a node, it should be suf-
ficient to compare the degree-assortativity coefficient of graphs generated with cfg, ecfg,
and the fdsm with graph generated with the sis using different probability distributions.
The comparison is done once with the moving average

µav (j) =
1

j

j∑
i=1

assortativity (Gi) , (5.1)

where Gi is the i-th generated graph based on some null model. After a certain point
there will be not much change in this average, indicating that most graphs do show similar
assortativity values. Since the graphs generated with the fdsm are considered as ground
truth, the closer the moving average of the degree-assortativity of any model is to the one
of the fdsm, it can be assumed as more likely that other analyses do show similar results.
As a second comparison, histograms of the degree-assortativity are used that will show the
distribution of the degree-assortativity more clearly. Histogramms will show as well that
the change in assortativity is rather small.

For this analysis a real-world graph is used that encodes protein-protein interactions; this
graph has 418 nodes and 519 edges.

In Fig. 5.1a the moving average of the assortativity of graphs generated with sis with
uniform choosing of neighbors (usis), the degree-based choosing of neighbors (dsis), cfg,
ecfg, and fdsm are compared. The graphs generated with dsis do show a dis-assortative
behavior very similar to graphs generated with the cfg or the ecfg. Graphs generated with
a uniform probability when choosing a neighbor, usis, are close to the graphs generated
with the fdsm, such that the uniform sampling seems to be preferable. By comparing
the distribution of the assortativity, see Fig. 5.1b, it can be seen that the fdsm produces a
broader range of results than usis, but they are very close to each other.
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5 sequential importance sampling—which probability distribution to use?

(a) Moving average of assortativity (b) Histogram of assortativity

Figure 5.1: 5.1a the moving average of the degree-assortativity coefficient is plotted for
graphs generated with five different algorithms; 5.1b histograms of the degree-
assortativity coefficient for graphs generated with the different algorithms are
shown. Overall, the ecfg, cfg, and dsis show similar results, while the fdsm

and usis build another cluster of graphs similar regarding their assortativity.

Still, the number of samples is small (1000) compared to the full space of possible graphs
such that it is hard to decide which probability distribution to support (recall that a smaller
graph had about 1055 realizations). Since we consider as ground truth the fdsm, the uni-
form probability distribution to choose neighbors seems to produce graph more similar to
that found in the fdsm. Still, testing both probability distributions with other measures
will give insight which of the two probability distributions yields more likely results.

The graphs based on the non-uniform probability distribution do show a lower assor-
tativity, which indicates that more connections are between (high, low)-degree pairs than
otherwise. This means that measures based on graphs sampled with this choice of proba-
bility distribution will show different results from graphs build with a uniform distribution.
For example, the average neighbor degree of low degree nodes in graphs generated with
dsis will be high; in graphs generated with usis the average neighbor degree should be
more evenly distributed.

This analysis is based on one example. Still, from the probability distribution to choose
a neighbor together with the algorithmic description of how a graph is constructed, it is
likely that there will be more edges between low degree and high degree nodes when a non-
uniform probability distribution is chosen. This assumption is based on the description,
that the node with the lowest degree starts searching neighbors, combined with choosing
neighbors based on their degree. Therefore, based on the chosen distribution, the algorithm
constructs either graphs that resemble more graphs built with cfg, which tends to connect
any node more likely to high degree nodes, or graphs that resemble graphs drawn from
fdsm.

46



6
A N A LY S I S O F U N D I R E C T E D R E A L - W O R L D G R A P H S

Up to now, it was shown that different null models can influence the result of analysis. The
graphs used for the comparison of the cfg and the fdsm were artificial. On graphs with
unskewed degree-sequences, the faster cfg seems to be applicable without causing problems
(for more details see [80]). However, on graphs with more skewed degree-sequences, the
results are quite different from each other such that it is reasonable to test whether this
is true for other graphs as well. Therefore, it is interesting to see how the null models
perform in the analysis of real-world graphs. Before we start with the analysis of graphs,
we describe the data used throughout this chapter.

6.1 datasets

There is an abundance of existing datasets and the possibility to extend these is almost
limitless. The only real limits are the regulations of websites, social networks, games, and
the capabilities of the computer one has to work with. For example, the complete social net-
work of Facebook would be a great dataset to access, and it might even be possible to crawl
it. Jernigan and Mistree crawled Facebook to gather all members of the MIT-subgraph [46].
They did this automatically with a self-written crawler “Arachne”. Even though they did
nothing to prevent this crawling from being detected they were not stopped, but Facebook
stated that they had a monitoring system to detect “misuse”. It is not sure if this activity
was observed and classified as being “not misuse” or if it just was not detected. Edunov
et al. calculated, based on some approximative measures, average distances for 1.6 billion
users of Facebook [23]. However, they work for Facebook, so the problem of acquiring data
is smaller.

The datasets used are from different fields of science.

A the network of email contacts provided in the Enron corpus (Email-Enron) [50, 56],
four Facebook networks between students of Georgetown, Princeton, Oklahoma, and
Caltech from Traud et al. [92], a Facebook excerpt by McAuley and Leskovec [60]
(FacebookML), a Facebook-like social network compiled by Opsahl [73] are examples
of social networks;

B networks between arXiv-authors of the Condensed Matter, High Energy Physics -
Phenomenology (High Energy Physics), General Relativity, Astro-Physics, and the
High Energy Physics - Theory (High Energy Physics Theory) category are examples
of collabortation-networks1;

1 http://www.snap.edu/data/index.html/canets
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6 analysis of undirected real-world graphs

C Saccharomyces cerevisiae (S. cerevisiae) transcriptional regulation network, Caenorhabdi-
tis elegans2 (C. elegans) neural network, the human-disease interaction network used
by Goh et al. [30] (Diseases), and Escherichia coli transcriptional regulation network
(E. coli)3 are examples of biological networks. While transcriptional regulation net-
works are in general directed, since this analysis is only interested in the effect of
graph generation algorithms on the measures, we discard direction between nodes.

Some general information about the graphs can be found in Table 6.1. Additionally,
results of the measures applied in the following are displayed as well.

2 http://www-personal.umich.edu/m̃ejn/netdata/
3 http://www.weizman.ac.il/mcb/UriAlon/
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6.1 Datasets
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7

S TA B L E M E A S U R E S

Up to now, the results of the analysis indicate that there are two different classes of results:
one class contains algorithms and models that tend to connect nodes more likely to high
degree nodes, such as the cfg, ecfg, and the dsis; the other class of results contains al-
gorithms based on a uniform choice, either of neighbors (usis) or of edges in the rewiring
process of edge-swap algorithms (fdsm). By the high degree of some nodes, they are longer
available to connect to (usis) or edges connected to them are more often chosen (fdsm), but
the results of the previous sections on artificial graphs showed already differences between
uniform and degree based choices. Since the fdsm has a better worst-case runtime than the
usis (O (m log (m)) vs. O

(
n3
)
), this is the preferred algorithm to generate graphs from the

family of graphs with a fixed degree sequence. But the examples above were artificial and
do not necessarily reflect real-world graphs. Therefore, an analysis similar to the one per-
formed with the G (n,m) model and the Forest-Fire model is done with real world graphs
more in depth. From each graph, between 150 and 1000 examples were generated with the
respective model.

Recall, that the samples based on the graph from the G (n,m) model were quite close to
each other with respect to the diameter and the average distance between all nodes. This
is true for different types of random graph models, including the G (n,m) model [17], the
Barabási-Albert graph model [9], and for graph models with a degree sequence following
a powerlaw with 2 < β < 3 with ∀v ∈ v : k2v ≤

∑
u∈V ku [17]. For all of these models, the

diameter of graphs generated with one of these models is very similar. The same is not
necessarily true for real-world graphs, to which nodes may be added that connect to other
nodes that have only few connections. These will initially increase the diameter, but when
they become more integrated to the graph, the diameter will shrink again.

Thus, randomly generated versions of a real-world graph intuitively should have a lower
diameter. This effect is similar to the one observed by Watts and Strogatz [100] in their
seminal work that analyzed the diameter and the clustering coefficient in graphs that were
regular and clearly structured and were rewired with increasing probability. They dis-
covered that the higher the probability of rewiring an edge is, the smaller becomes the
diameter. Similar effects are to be expected for real-world graphs and generated graphs
based on the fixed degree sequence of the real-world graphs. Nodes that are more on the
“outskirts” in the real-world graph, nodes with few neighbors and of low importance, may
in a generated graph be connected to more central nodes and therefore, the diameter may
shrink.

The same may happen in the cfg with the difference, that the process that generates a
graph tends to connect high degree nodes to each other more than high and low degree
nodes. Thus, remaining groups of low degree nodes may be left that can either be on the
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outskirts of the giant component or they can build small, separate components. For the
graphs under investigation this happened, but the giant component consisted, on average,
out of 82% of the nodes of a graph (E. coli) up to 100% of the graph (FacebookML). It may
happen, that the diameter of the small component is larger than the diameter of the giant
component, but since the giant component is most of the time more important for analysis
than the small components, analysis of small components is omitted in this thesis.

Considering the cfg, one has to always to remember that multiple edges between nodes
or self-loops may be created. For the following discussion of the diameter and the average
distance, this is of no importance, since the graphs are all considered as unweighted. Two
edges between two nodes do not reduce or increase the number of steps a traveler on the
graph can take, thus, the results of the cfg and ecfg coincide. Therefore, results of the ecfg

are omitted.

7.1 diameter

For the discussion of the diameter, in all generated graphs the diameter is measured. The
results are then averaged for each graph generating null model, and the standard devia-
tion is calculated. The model that does not generate graphs, sim, has several options to
approximate the expected diameter as shown in the following.

7.1.1 Approximating the Diameter

To approximate the diameter, one can assume to start at any node in the graph and follow
from this node all possible paths to gather all distances and to calculate based on this
the diameter. When there are no nodes, one has to make assumptions on the number of
neighbors of each hypothetical node. The most simple approximation is to assume that
each node has the same number of neighbors. In fact, this assumption reduces the model
to a tree. Still, this simple assumption allows calculating an approximation of the diameter.
The degree that is used to approximate the degree of a node is the average degree of a node
in the graph before shown in equation 8.1. As a reminder,

AV (G) =
1

n

∑
v∈V

av (v) =
∑
v∈V

1

kv

∑
u∈N(v)

ku = 〈k〉.

For equations of the sim, the notation of Newman is used, i.e., averages over node degrees
are displayed as 〈ki〉 = 1

n

∑
v∈V k

i
v.

Under the assumption that every node has on average this number of neighbors, one can
sum over the neighbors at distance d and do so until we reach the number of nodes in the
graph, i.e.,

n =

l∑
i=1

〈k〉. (7.1)
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Reformulating this from a sum to an expression that is easily solvable for the expected
diameter m is possible, using an index shift we get

n =

l∑
i=1

〈k〉i (7.2)

=

l−1∑
i=0

〈k〉i+1 (7.3)

= 〈k〉
l−1∑
i=0

〈k〉i (7.4)

= 〈k〉 〈k〉
(l−1)+1 − 1

〈k〉− 1 . (7.5)

Solving this equation for m yields

l =
log
(
n(〈k〉−1)
〈k〉 + 1

)
log (〈k〉) (7.6)

An easier approximation is the maximization of the inner term.

n = 〈k〉l. (7.7)

Solving this for m yields

l =
log (n)

log (〈k〉) . (7.8)

The results of both approximations are shown in this order in the following as sim1 and
sim2.

7.1.2 Model comparison

In Table 7.1 the average diameter and the standard deviation of the graphs generated with
the fdsm and the cfg are shown. As expected, the results are very close to each other. This
result shows, that even though graphs generated with the cfg do have multiple edges and
do sometimes connect nodes to themselves instead of connecting to other nodes, the giant
components of the graphs are similar in diameter to the graphs generated with the fdsm.
On the other hand, the equations of sim severely underestimate the diameter in all cases.

While the directly solvable equation for the diameter estimate, equation 7.8, is very close
to the more involved equation 7.6, the result is always too low to be even considered as the
diameter for the given graphs. The approach to estimate the diameter via equations does
not work. The assumptions that have been made, i.e., each node having the same number
of neighbors, all nodes are equal to a certain extent, are implausible for real-world graphs.
The equations may work for graphs following a Poissonian distribution or trees, but for
graphs that follow a skewed degree distribution, they do not work in general.

In Table 7.2 the average diameter and the standard deviation of graphs generated with
the fdsm, the usis, and the dsis are shown. Remarkable are the results of graphs generated
with dsis. They are much lower than the results of the other algorithms but still closer to the
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Graph fdsm cfg sim1 sim2

Email-Enron 8.46± 1.10 8.49± 1.17 4.51 4.56

Georgetown 5.07± 0.26 5.07± 0.26 2.03 2.03

Princeton 5.06± 0.24 5.08± 0.27 1.96 1.96

Oklahoma 5.10± 0.30 5.09± 0.29 2.11 2.11

Caltech 4.85± 0.38 4.94± 0.34 1.76 1.76

FacebookML 5.10± 0.30 5.11± 0.31 2.19 2.20

Facebook-like 6.46± 0.54 6.75± 0.55 2.79 2.82

Condensed Matter 9.79± 0.77 9.78± 0.79 4.75 4.81

High Energy Physics 6.92± 0.50 6.93± 0.43 3.13 3.15

General Relativity 9.99± 0.77 10.10± 0.67 4.89 5.01

Astro Physics 7.07± 0.41 6.97± 0.39 3.21 3.23

High Energy Physics Theory 10.85± 0.79 10.85± 0.75 5.41 5.54

S. cerevisiae 10.70± 1.18 10.95± 1.11 5.47 5.82

C. elegans 5.04± 0.20 5.13± 0.34 2.11 2.13

Diseases 11.13± 0.92 11.27± 0.97 5.11 5.37

E. coli 10.57± 1.19 11.09± 1.20 6.07 6.64

Table 7.1: Average and standard deviation of the diameter in the ground truth model fdsm,
the cfg, and the two equations of the sim.

Graph fdsm usis dsis

Email-Enron 8.46± 1.10 9.43± 0.57 5.01± 0.07

Georgetown 5.07± 0.26 5.47± 0.50 4.00± 0.00

Princeton 5.06± 0.24 5.30± 0.46 4.00± 0.00

Oklahoma 5.10± 0.30 5.71± 0.45 4.00± 0.00

Caltech 4.85± 0.38 4.99± 0.23 4.00± 0.00

FacebookML 5.10± 0.30 5.41± 0.49 4.00± 0.00

Facebook-like 6.46± 0.54 6.93± 0.48 4.34± 0.47

Condensed Matter 9.79± 0.77 10.43± 0.58 7.05± 0.21

High Energy Physics 6.92± 0.50 7.62± 0.55 4.33± 0.47

General Relativity 9.99± 0.77 11.03± 0.78 7.21± 0.40

Astro Physics 7.07± 0.41 7.73± 0.51 5.00± 0.00

High Energy Physics Theory 10.85± 0.79 12.20± 0.80 8.52± 0.51

S. cerevisiae 10.70± 1.18 11.07± 1.11 9.84± 0.95

C. elegans 5.04± 0.20 5.00± 0.00 4.00± 0.00

Diseases 11.13± 0.92 11.61± 0.73 9.82± 0.64

E. coli 10.57± 1.19 10.60± 1.13 11.74± 1.43

Table 7.2: Average and standard deviation of the diameter in the ground truth model fdsm,
the usis, and the dsis.
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average diameter of the fdsm than the results of the equations 7.6 resp. 7.8. The algorithm
starts with low degree nodes and connects them according to a probability distribution
based on the remaining degree of potential neighbors. Thus, in the beginning, it is more
likely that low degree nodes connect to high degree nodes. This is similar to the cfg that
connects any node to high degree nodes more likely. The difference is, that the dsis starts
with low degree nodes and connects them with higher probability to high degree nodes; on
the other hand, the cfg tends to connect high degree nodes together. Thus, it is plausible
that some star-like structures exist that are connected via higher degree nodes, and the
average distance is small.

On the other hand, graphs generated with usis have an average diameter that is close
to the average diameter of graphs generated with the fdsm. When applying a two-sample
z-test to the averages and standard deviations of fdsm and usis with the assumption that
there is no difference between the models, the results indicate that the difference between
them does not only exist, but is in most cases rather large. The two-sample z-test assumes
that both groups of results follow a normal distribution. That is not guaranteed for the
diameter of graphs (or any graph-measure in particular) since the family of graphs is too
large to know the exact distribution. Therefore, the Kolmogorov-Smirnov two-sample test
is applied, that compares the cumulative distributions of the frequency of the results di-
rectly. The results of both tests are in Table 7.3.

Graph |z| D p

Email-Enron 11.14 0.49 2.14 · 10
−21

Georgetown 9.19 0.40 5.38 · 10
−10

Princeton 5.97 0.24 7.17 · 10
−4

Oklahoma 13.44 0.60 1.33 · 10
−21

Caltech 3.23 0.13 2.32 · 10
−1

FacebookML 6.75 0.31 3.57 · 10
−6

Facebook-like 7.37 0.41 2.14 · 10
−10

Condensed Matter 11.50 0.38 2.66 · 10
−17

High Energy Physics 10.98 0.52 2.73 · 10
−16

General Relativity 10.96 0.56 7.53 · 10
−19

Astro Physics 12.06 0.58 3.35 · 10
−20

High Energy Physics Theory 13.87 0.68 1.12 · 10
−27

S. cerevisiae 3.18 0.17 7.48 · 10
−3

C. elegans 2.04 0.04 10.00 · 10
−1

Diseases 4.49 0.24 7.17 · 10
−4

E. coli 0.36 0.03 9.39 · 10
−1

Table 7.3: Two-sample z-test results, the Kolmogorov-Smirnov two-sample test result and
its p-value for the diameter of the graphs generated with the fdsm and the usis.

Only for three of the graphs under investigation, the difference between the graphs gen-
erated with the fdsm and usis are acceptable as very close to each other (E. coli, C. elegans,
Caltech); for all other graphs, the two algorithms give very different results. While the z-

55



7 stable measures

scores show all but the E. coli graph and the C. elegans graph as rather implausible (z < 3),
the Kolmogorov-Smirnoff test says differently. Recall, that

D < c (α)

√
n1n2
n1 +n2

indicates, that it is possible that the two distributions are the same; since this is harder to
interpret than a p-value, here also these are shown. A p-value below a certain threshold,
usually 0.05, indicates that the distributions are different. Thus, the Caltech graphs with a
p-value of 0.23 yield also diameters that are from the same distribution, i.e., the algorithms
could be used interchangeably. Nevertheless, the rest of the tests show different results.
Therefore, neither probability distribution to chose a neighbor of the sis gives results that
are reasonably close to the results of the fdsm, which are considered as ground truth.

7.2 distance

As before, in all generated graphs distances are measured in the giant component and then
averaged per node and then per graph. For the sim, the equations are developed in the
following.

7.2.1 Approximating the Distance

Again, the equation that is used to approximate the expected average distance for graphs
has to be constructed based on the sim. For this, Newman defines the average number of
neighbors at distance i as

ci =

(
〈k2〉
〈k〉

)i−1
〈k〉. (7.9)

With equation 7.9 it is possible to derive an equation such as

n = 1+

d∑
i=1

ci = 1+ 〈k〉
d∑
i=1

(
〈k2〉
〈k〉

)i−1
, (7.10)

which equates the number of nodes in a graph with the number of neighbors of a single
node at any distance plus this node. As before, ci is an approximation, therefore, equa-
tion 7.10 is also an approximation. With an index shift we derive

1+ 〈k〉
d∑
i=1

(
〈k2〉
〈k〉

)i−1
= 1+ 〈k〉

d−1∑
i=0

(
〈k2〉
〈k〉

)i
(7.11)

= 1+ 〈k〉

(
〈k2〉
〈k〉

)(d−1)+1
− 1

〈k2〉
〈k〉 − 1

. (7.12)

This equation can be solved for d, such that

d =
log
(
n−1
〈k〉

(
〈k2〉
〈k〉 − 1

)
+ 1
)

log
(
〈k2〉
〈k〉

) . (7.13)
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Alternatively, it is possible to calculate the maximum distance in which a number of nodes
as large as n is,

n = cd =

(
〈k2〉
〈k〉

)d−1
〈k〉. (7.14)

Solving this equation for d yields

d =
log
(
n
〈k〉

)
log
(
〈k2〉
〈k〉

) + 1. (7.15)

How these equations perform, after seeing the former set of equations failed, is shown in
the following

7.2.2 Model comparison

Graph fdsm cfg sim1 sim2

Email-Enron 1.59± 1.59 1.62± 1.62 2.66 2.66

Georgetown 2.29± 0.01 2.32± 0.01 1.91 1.92

Princeton 2.23± 0.02 2.24± 0.02 1.85 1.85

Oklahoma 2.35± 0.01 2.36± 0.01 1.95 1.95

Caltech 2.05± 0.06 2.10± 0.05 1.66 1.67

FacebookML 2.44± 0.03 2.39± 0.03 1.97 1.97

Facebook-like 2.60± 0.08 2.65± 0.07 2.21 2.21

Condensed Matter 4.07± 0.03 4.03± 0.03 3.56 3.57

High Energy Physics 2.73± 0.03 2.77± 0.03 2.32 2.32

General Relativity 3.88± 0.08 3.91± 0.08 3.40 3.43

Astro Physics 3.05± 0.02 3.06± 0.02 2.62 2.62

High Energy Physics Theory 4.55± 0.09 4.56± 0.09 3.95 3.98

S. cerevisiae 3.25± 0.65 3.43± 0.73 3.05 3.08

C. elegans 2.29± 0.10 2.41± 0.12 1.91 1.93

Diseases 4.32± 0.38 4.42± 0.33 3.65 3.72

E. coli 2.83± 0.43 2.78± 0.45 3.08 3.12

Table 7.4: Average and standard deviation of the average distance in the ground truth
model fdsm, the cfg, and the two equations of the sim.

The averages of the average distance of graphs generated with fdsm, the cfg, and the
corresponding equations of the sim are shown in Table 7.4. As with the diameter, the
equations to estimate the average distance deliver results that misestimate the expected
value, but for the S. cerevisiae, C. elegans, Diseases, and the E. coli graph. For these four,
the z-score indicates that the equations could replace the sampling approach.

The differences between the cfg and the fdsm are small. In fact, they tend to be about the
size of the standard deviation. When applying the two-sample z-score, the result for almost
all graphs indicates that the distribution is relatively close, i.e., they can be considered as
distributions with the same mean and standard deviation, which implies that the graphs
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Graph z D p

Email-Enron 0.01 0.21 2.34 · 10
−4

Georgetown 1.23 0.64 6.66 · 10
−19

Princeton 0.37 0.27 1.03 · 10
−3

Oklahoma 0.63 0.36 2.85 · 10
−6

Caltech 0.60 0.46 5.70 · 10
−10

FacebookML 1.07 0.55 4.52 · 10
−14

Facebook-like 0.45 0.35 5.96 · 10
−6

Condensed Matter 0.93 0.55 6.63 · 10
−27

High Energy Physics 0.95 0.52 1.27 · 10
−12

General Relativity 0.31 0.24 5.04 · 10
−3

Astro Physics 0.27 0.24 5.04 · 10
−3

High Energy Physics Theory 0.04 0.10 6.77 · 10
−1

S. cerevisiae 0.18 0.21 2.05 · 10
−2

C. elegans 0.79 0.54 1.40 · 10
−13

Diseases 0.20 0.21 2.05 · 10
−2

E. coli 0.08 0.12 3.67 · 10
−1

Table 7.5: Two-sample z-test results, the Kolmogorov-Smirnov two-sample test result and
its p-value for the average distance of the graphs generated with the fdsm and
the cfg.

should be similar. When applying a Kolmogorov-Smirnoff two-sample test, the results look
quite different. Almost all D values are larger than the critical value c (α)

√
n1n2
n1+n2

, and the
p-values indicate that that only the E. coli and the High Energy Physics Theory graphs
have samples with similar distances (see Table 7.5).

The differences between the usis, dsis, and the fdsm do not merit analysis with the
two-sample z-score or the Kolmogorov-Smirnov two-sample test. The standard deviations
are very small, such that the mean value of the average distance should coincide to be
from the same distribution, which it does not. Therefore, the z-score will not show them
as very similar; the same applies for the Kolmogorov-Smirnoff two-sample test. Recall
that the maximum difference between the two cumulative distributions is the value D
that is compared to c (α) with some modifier specific to the sample sizes. With such
small standard deviations, there is a large gap between the plots of the two cumulative
distribution functions such that D will be large and the p-value small (see Table 7.7). As
can be observed in Table 7.7, only half of the rows have a z-score entry small enough such
that one might consider the distribution of the average distance from the usis similar to that
in the fdsm. Based on this, also the graphs should not be too similar. The large D-values,
all almost reaching the maximum value of 1, together with the low p-values, strengthen
this assumption.

Interestingly, the difference between the two versions of the sis is rather small in some
cases (e.g. Email-Enron, Condensed Matter), in some cases, it is large (e.g. E. coli, Okla-
homa), such that a test between these can only be considered as inconclusive.
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Graph fdsm usis dsis

Email-Enron 1.59± 1.59 3.68± 0.00 3.65± 0.00

Georgetown 2.29± 0.01 2.48± 0.00 2.35± 0.00

Princeton 2.23± 0.02 2.44± 0.00 2.30± 0.00

Oklahoma 2.35± 0.01 2.58± 0.00 2.42± 0.00

Caltech 2.05± 0.06 2.25± 0.00 2.12± 0.00

FacebookML 2.44± 0.03 2.60± 0.00 2.43± 0.00

Facebook-like 2.60± 0.08 3.05± 0.01 2.88± 0.01

Condensed Matter 4.07± 0.03 4.36± 0.00 4.32± 0.00

High Energy Physics 2.73± 0.03 3.21± 0.00 3.18± 0.01

General Relativity 3.88± 0.08 4.33± 0.01 4.25± 0.00

Astro Physics 3.05± 0.02 3.40± 0.00 3.33± 0.00

High Energy Physics Theory 4.55± 0.09 4.86± 0.01 4.86± 0.00

S. cerevisiae 3.25± 0.65 4.07± 0.04 4.22± 0.03

C. elegans 2.29± 0.10 2.39± 0.01 2.27± 0.01

Diseases 4.32± 0.38 4.69± 0.05 4.74± 0.02

E. coli 2.83± 0.43 4.05± 0.09 4.63± 0.10

Table 7.6: Average and standard deviation of the average distance in the ground truth
model fdsm, the usis, and the dsis.

Graph |z| D p

Email-Enron 1.31 1.00 1.42 · 10
−89

Georgetown 12.91 1.00 3.07 · 10
−60

Princeton 12.29 1.00 3.07 · 10
−60

Oklahoma 16.69 1.00 1.99 · 10
−52

Caltech 3.07 1.00 3.07 · 10
−60

FacebookML 4.47 1.00 3.07 · 10
−60

Facebook-like 5.53 1.00 1.57 · 10
−60

Condensed Matter 9.65 1.00 1.42 · 10
−89

High Energy Physics 18.02 1.00 3.07 · 10
−60

General Relativity 5.85 1.00 3.07 · 10
−60

Astro Physics 18.38 1.00 3.07 · 10
−60

High Energy Physics Theory 3.49 1.00 3.07 · 10
−60

S. cerevisiae 1.26 0.90 7.10 · 10
−49

C. elegans 0.95 0.83 1.24 · 10
−41

Diseases 0.96 0.84 1.25 · 10
−42

E. coli 2.74 0.98 1.07 · 10
−92

Table 7.7: Two-sample z-test results, the Kolmogorov-Smirnov two-sample test result and
its p-value for the average distance of the graphs generated with the fdsm and
the usis.

59



7 stable measures

7.3 implications

Diameter and distance are basic measures. Still, they contain much information about a
graph and can be of vital importance, depending on the desired outcome. If one wants
to calculate centralities, many of these include calculating either directly or indirectly dis-
tances as well. The betweenness centrality is the number of shortest path between all pairs
of nodes that go through a node divided by the number of all shortest path between all
pairs of nodes, the closeness centrality of a node is defined as the inverse of the mean of
the geodesic distances, flow-analyzing algorithms most surely need connections and are
related to distances as well [85, 91]. The diameter is used not as often in algorithms, but is
still an important measure.

The analyses based on real-world graphs confirm what was shown for artificial graphs.
The average distances and the average diameter are for most graph models very similar,
for the ecfg and the cfg they are even the same. Most surprising in this part of research is
that the results of the models containing only simple graphs and the results of the model
containing multi-graphs are close together. In fact, the two-sample z-score yields for some
measures small enough values, such that one may believe it not important which model
is used to sample graphs from. Only an analysis based on the Kolmogorov-Smirnoff two-
sample test shows that the distribution of some measure is not distributed the same.

Judging from the results of the analysis so far, it appears as if it is not important which
model is used to compare a real-world graph to when global measures are used. The
results of the fdsm and the cfg are always close to each other. The values of the sis are
not as satisfactory—while the diameter measured in the usis is similar to the diameter
measured in the fdsm, the average distance of both variants of the sis do appear to be very
different from the other models. Since the worst-case run-time of the sis is the worst of the
compared algorithms, it is not likely to be used in an in-depth analysis. Still, this behavior
was not observed beforehand. It may be interesting to analyze this as well. Differently, the
sim underestimates both measures severely, since the approximations assume that nodes
are, on average, the same.

Thus, the cfg and fdsm both can be used. Since the cfg is the faster algorithm of the
two, the cfg would be the algorithm of choice. At least this result is what one would have
to believe if research would stop here. In the following, one interesting problem regarding
the cfg is investigated.

7.4 multiple edges and self-loops

One has to be aware that the cfg does generate multiple edges and self-loops not uniformly
at random. The higher the degree of a node, the more likely it is that a self-loop is attached
to it. The same is valid for high degree pairs of nodes; it is more likely that two nodes of
high degree build more multiple edges between them than other pairs. It can even occur
that it is more likely that more than two edges between a pair of high degree nodes exist
than between high and low degree nodes. A first analysis of this was given by Schlauch et
al. [80].

In Figure 7.1 are two nodes, both with degree n− 2, and n− 2 nodes, each with degree
2. There are several things to be said about this graph. First of all, there are only very few
realizations when one is restricted to simple graphs. Second, a graph generated with cfg
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G1

G2

1

3 4 . . . n-1 n

2

Figure 7.1: Example graph for which the cfg and the sim yield many multiple edges and
self-loops.

is likely to have multiple edges between the high degree nodes and self-loops attached to
the high degree nodes.

Following the argumentation of Newman [66, p.441f], the expected number of multi-
ple edges can be calculated. This is based on the simple independence assumption; the
expected number of edges between two nodes u, v can be calculated with the following
equation

kukv

2m

(ku − 1) (kv − 1)

2m
. (7.16)

This equation, when ∀v ∈ V : k2v <
∑
v∈V kv, is the probability of a first edge times the prob-

ability of a second edge. Since real-worlds graphs do not necessarily follow this restriction,
this is the expected number of a first edge times the likelihood that a second edge exists.

Summing this over all pairs of nodes yields

1

2 (2m)2

∑
u,v

kukv

2m

(ku − 1) (kv − 1)

2m
=

1

2 (2m)2

∑
u

ku (ku − 1)
∑
v

kv (kv − 1) (7.17)

=
1

2〈k〉2n2
∑
u

ku (ku − 1)
∑
v

kv (kv − 1) (7.18)

=
1

2

[
〈k2〉− 〈k〉
〈k〉

]2
. (7.19)

To calculate the number of self-loops, a similar approach is taken. The “probability” that
a node u has a self-loop is given by

pu,u =
ku (ku − 1)

2m
. (7.20)

Thus, the expected number of self-loops can be calculated via summing over all nodes∑
u

ku (ku − 1)

2m
=
〈k2〉− 〈k〉
2〈k〉 . (7.21)

Furthermore, it is possible to estimate exactly what is contributed by nodes of which degree.
For the example in Fig. 7.1 this is done explicitly in the following.

selfloops =
〈k2〉− 〈k〉
2〈k〉 =

n− 2

4
(7.22)

multiple edges =
1

2

[
〈k2〉− 〈k〉
〈k〉

]2
=

(n− 2)2

8
(7.23)
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selfloopsk=2 = (n− 2)
2

4m
=

2 (n− 2)

4 (2 (n− 2))
=
1

4
(7.24)

selfloopsk=n−2 = 2
(n− 2) (n− 3)

4m
=

(n− 2) (n− 3)

2 (2 (n− 2))
=
n− 3

4
(7.25)

multiple edgesk=2 = (n− 2)
1

2

2

(2m)2

∑
i

(
k2i − ki

)
=

n− 2

2 (2 (n− 2))

〈k2〉− 〈k〉
〈k〉 =

n− 2

8
(7.26)

multiple edgesk=n−2 = 2
(n− 2) (n− 3)

(2m)2

∑
i

(
k2i − ki

)
=

(n− 2) (n− 3)

2 (2 (n− 2))

〈k2〉− 〈k〉
〈k〉 =

n2 − 5n+ 6

8
(7.27)

It can be observed, that nodes of degree 2 would contribute together only 1
4 of all self-loops

(each node contributes thus 1
4(n−2) ), while the two nodes of degree n− 2 would contribute

n−3
4 to the estimated number of self-loops, most of the possible self-loops would therefore

be contributed by the two high degree nodes. The same behavior can be observed for
multiple edges; here, the two large nodes would contribute again much more than the rest
of the graph’s nodes.

This behavior was shown by Schlauch et al. [81]. It was most likely not discovered
before because the cfg and the sim were developed by physicists that were concerned with
graphs that had a Poissonian distribution. Therefore, the first investigation is shown in the
following.

To investigate this behavior, for a graph generated with the cfg it is measured how many
edges each node would loose if it would have been created with the ecfg, i.e., we measure
the change in the degree of each node. This can be written as

f (k) =

∑
v∈V ,kv=k kobs

k |{v | kv = k}|
. (7.28)

Equation 7.28 adds the remaining degree of all nodes of desired degree k up and divides by
k times the number of nodes that are supposed to have degree k. This equation results in
values between 0, i.e., none of the nodes with wanted degree k has any edge, and 1, which
implies that all nodes realized all edges. In Fig 7.2 the average, minimal, and maximal
edgeloss are denoted as measured with equation 7.28 on graphs from the G (n,m)-model.
From this plot, it is clearer why the cfg or the sim have such a high appeal to anybody who
deals with Poissonian degree distributions. The average edgeloss is for each degree always
below 1%, the maximum edge loss occurs on the low degree nodes but still only reaches
∼ 7%. An average edgeloss less than 1% indicates that almost each node realized its wanted
degree, thus almost all edges were realized, thus the loss of edges is rare. Thus, the cfg

is a perfect candidate to use to analyze graphs that have a degree sequence that follows a
Poissonian distribution. The cfg is fast and almost exact for these graphs with slight losses
that tend to occur more often on high degree nodes (see the averages), but these variations
are hardly worth the trouble of using a more elaborate model.
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7.4 Multiple Edges and Self-Loops

Figure 7.2: Results of measuring edgeloss per degree, measured on 200 graphs with Poisso-
nian degree distribution, G (5000, 127754). The red striped line is the maximum
edgeloss; the red dotted line is the minimum edgeloss, and the dots are the
average edgeloss.
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(a) E. coli edgeloss (b) Email Enron edgeloss

Figure 7.3: Results of measuring edgeloss per degree, measured on 200 graphs. The red
striped line is the maximum edgeloss; the red thin dotted line is the minimum
edgeloss and the dots are the average edgeloss. In Fig 7.3a the graphs generated
are based on the E. coli graph (skewness 9.34), in Fig. 7.3b the graphs generated
are based on the Email-Enron graph (skewness 16.3).

Poissonian degree distributions are unskewed. What happens when the underlying prob-
ability distribution of a graph is more skewed? This is shown in the following on two
different graphs.

In Fig. 7.3a the edgeloss in graphs generated with the cfg with the degree sequence
of the E. coli graph is plotted. The underlying distribution of this degree sequence can be
considered as a power law distribtuion k−γ with γ = 3.04. It is easy to note that the edgeloss
is very different from the edgeloss shown in Fig 7.2. The highest degree node, a node with
degree 72, has an average edgeloss of about 20% and in none of the generated graphs its
degree was fully realized. The other nodes do also lose edges, and it is to observe that the
low degree nodes do compensate better on average for occurring edgeloss. Compensate
in the sense, that even though a node of degree 2 may lose one or both edges, the sum of
the remaining degrees of nodes with wanted degree 2 tends to be closer to the sum of the
wanted degrees, since there are more nodes of this degree than of the high degree nodes.

In Fig 7.3b, the underlying degree distribution of the Email-Enron graph is a power law
distribution with exponent γ = 2.1, and the maximum degree is significantly higher (1383)
than in the E. coli graph. The edgeloss is much more severe in total, even though the
edgeloss for the maximum degree node is on average only ∼ 15%. Almost all nodes with
degrees over 100 did not realize their full degree in any of the samples drawn with the cfg.

In Table 7.8, the expected edgeloss by self-loops and multiple edges (equation 7.19, resp.
7.20) is shown together with the observed number of self-loops and multiple edges in all
graphs. The results of the equations are very good estimates of the number of “bad” edges
in the samples.

To show that multiple edges occur more often between high degree node-pairs instead of
high-low degree node pairs, we used a reformulation of equation 7.19. Instead of summing
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7.4 Multiple Edges and Self-Loops

Network average # self-loops average # multiple edges
measured expected measured expected

Email-Enron 68 70 3944 4830

Georgetown 80 80 6274 6320

Princeton 78 79 6111 6162

Oklahoma 109 109 11 611 11 772

Caltech 38 37 1279 1332

FacebookML 53 53 2608 2756

Facebook-like 28 27 678 729

Condensed Matter 11 11 122 110

High Energy Physics 65 64 3875 4096

General Relativity 8 8 71 56

Astro Physics 32 32 1053 1024

High Energy Physics Theory 6 6 40 30

S .cerevisiae 6 6 38 36

C. elegans 13 13 144 156

Diseases 3 3 13 9

E. coli 5 5 22 25

Table 7.8: Average number of self-loops and multi-edges for samples from the cfg. The ta-
ble also contains their expected value calculated with Equation (7.19), resp. Equa-
tion (7.20).

over all nodes, we compute for the highest degree node the number of possible multiple
edges, i.e.

m (k) =
1

2

kmax · k
2m

(kmax − 1) (k− 1)

2m

=

(
k2max − kmax

)
2 (4m2)

(
k2 − k

)
(7.29)

This changes the equation such that plugging in valid values of the degree sequences di-
rectly provides information on how many multiple edges between the maximum degree
node and all other nodes are to be expected. Observing the same in samples drawn with
the cfg, it is then possible to plot them against each other. This is done for the E. coli and
the Email Enron graphs.

In Fig. 7.4a the observed number of multiple edges for the E. coli degree sequence is
plotted against the calculated number of expected multiple edges via m (k). Equation 7.29

is a good estimate for the number of multiple edges generated by the cfg based on this
degree sequence. Moreover, it is obvious that the higher the degree, the higher is the
number of multiple edges built to nodes of that degree.

For the Email-Enron graphs degree sequence the results are similar. The higher the node
degree, the more multiple edges are to be expected. The observations confirm this for
this graph as well, but only to a certain extent. The higher the degree of the node, i.e., the
higher k is chosen, the larger the difference between the observed and the expected number
of multiple edges becomes. This is most likely reasoned by the quadratic influence of k
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(a) E. coli (b) Email-Enron

Figure 7.4: Comparative plots of the number of multiple edges of the node with maximum
degree and other nodes between observed values and expected values by m (k).
For Fig. 7.4a, the degree sequence of the E. coli graph was used to generate
sample graphs with cfg, for Fig 7.4b the Email Enron graph was used.

(as well as kmax) that results in an overestimate of the importance of high degree nodes.
Therefore, the estimation of equation 7.19 might be a good approximation in sum, but for
the single nodes it will be strongly influenced by the node’s degree. This can actually be
observed for the low degree nodes as well, even if not as strongly (since it is averaged for
the sampled graphs). For low degree nodes the plot shows that the generated graphs do
actually show slightly more multiple edges than the equations expected.

These observations were not made before and are very important. Considering other
measures that are calculated on graphs from the cfg, the number of multiple edges between
high degree nodes can influence the result. In the coming section it is shown that this
influences analysis in a significant way on real-world graphs.
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8
S E N S I T I V E M E A S U R E S

Before, it was shown that the analysis of real-world graphs is not much influenced by the
algorithm graphs are generated with or which graph family they belong to. Now, a closer
look at a local level, i.e., measures that are taken based on single nodes, may reveal a
different picture. The first example is the average neighbor degree.

8.1 average neighbor degree

The average neighbor degree is a good example that is easy to calculate on graphs. The
average neighbor degree of a node v is defined as the sum of its neighbors N (v) degrees
divided by its own degree, i.e.,

AV (v) =
1

kv

∑
u∈N(v)

ku. (8.1)

This, summed over all nodes of a graph, divided by the number of nodes in the graph is
then the average of the average, or the global measure of the average neighbor degree.

AV (G) =
∑
v∈V

AV (v) =
∑
v∈V

1

kv

∑
u∈N(v)

ku (8.2)

This definition is fine for simple graphs. The definition of this measures for multigraphs is,
to the best of my knowledge, not clear.

In Fig. 8.1, the problem that can occur in multigraphs is shown. Node v has a degree
of 2, but only one neighbor u. In a simple graph, it would have two different neighbors
and the average neighbor degree of v would be simple to calculate. In a multigraph, there
are at least two different options. First, the neighbors are considered as a set, i.e., each
neighbor appears at most once. This implies that the example in Fig. 8.1 yields either 5

2

(i.e., neighbor degree divided by the actual degree of v) or 5
1 (i.e., erasing multiple edges as

v u

Figure 8.1: Example of a multigraph. The question is, how to calculate the average neighbor
degree of v.
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in the ecfg). Alternatively, each edge’s endpoint can be considered as a separate neighbor.
For the example in Fig. 8.1 this implies that AV (v) = 5+5

2 . We will use two of the proposed
methods to measure the average neighbor degree. Once, to be consistent with the approach
from before, we will use the approach to erase multiple edges and self-loops and calculate
for the resulting graphs from the ecfg the average neighbor degree. Furthermore, the last
presented method, which considers each endpoint of a node as a new neighbor, is used.

8.1.1 Approximating the Average Neighbor Degree

The sim has capabilities to estimate the average number of neighbors as well. Newman
provides for this purpose an equation [66, p.447]

AVsim (G) =
∑
k

k
kpk
〈k〉 =

〈k2〉
〈k〉 . (8.3)

pk is the total fraction of nodes with degree k in a network, the total number of nodes
with degree k is npk. Given this fraction, the product npk is the number of nodes with
degree k. The probability that any edge connects to a particular node with degree k is then
knpk
2m = kpk

〈k〉 .

8.1.2 Model comparison

Graph fdsm cfg ecfg sim

Email-Enron 156.10± 0.77 140.08± 0.79 128.61± 0.82 140.08

Georgetown 161.41± 0.29 160.19± 0.27 155.86± 0.30 160.18

Princeton 159.38± 0.32 158.29± 0.32 153.25± 0.29 158.30

Oklahoma 221.39± 0.59 218.60± 0.35 212.41± 0.36 218.62

Caltech 77.26± 0.55 74.91± 0.54 66.55± 0.45 74.93

FacebookML 111.57± 0.51 106.44± 0.51 99.00± 0.47 106.57

Facebook-like 60.56± 0.67 55.68± 0.76 49.93± 0.62 55.62

Condensed Matter 22.17± 0.09 22.10± 0.08 22.02± 0.09 22.10

High Energy Physics 137.73± 0.55 129.91± 0.64 121.36± 0.60 129.93

General Relativity 17.00± 0.13 16.85± 0.12 16.67± 0.15 16.87

Astro Physics 65.87± 0.19 65.37± 0.20 64.59± 0.20 65.39

High Energy Physics Theory 12.56± 0.06 12.54± 0.06 12.50± 0.06 12.55

S. cerevisiae 14.77± 0.35 13.42± 0.36 12.19± 0.52 13.39

C. elegans 27.88± 0.62 26.04± 0.46 22.36± 0.50 26.05

Diseases 7.71± 0.15 7.58± 0.15 7.42± 0.15 7.59

E. coli 13.08± 0.41 11.14± 0.61 9.69± 0.76 11.19

Table 8.1: Average and standard deviation of the average neighbor degree in the ground
truth model fdsm, the cfg, the ecfg, and the corresponding equations of the sim.

In Table 8.1 the means and standard deviations of the fdsm, the variants of the cfg and
the estimated average neighbor degree with the corresponding equation 8.3 of the sim are
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shown. For almost all graphs it is evident that the results do not coincide. This implies
that the samples these measures were taken on are not from the same distribution. The
ecfg underestimates for most graphs the mean of the average neighbor degree, which is
not surprising since edges are lost due to the construction process. The cfg and the sim

do, in all cases, show values that are so close together that analysis with the cfg would
only be necessary if one is interested in the difference of a real-world graph and the result
of simulations, i.e., the z-score. When it is just to show that the structure of the graph
is different from random, the quick calculation with equation 8.3 would be enough. But
for almost all graphs the difference between the results of the fdsm and the sim (and
therefore the cfg) are rather large. This difference can have an enormous influence on the
outcome of any analysis. Consider the following: The real-world Oklahoma graph has
an average neighbor degree of 185.99, the real-world FacebookML graph has an average
neighbor degree of 105.55. Now, considering just the averages of the cfg and the result of
this measure in the real-world graph would indicate the Oklahoma graph as exceptional
while the FacebookML graph is not very special. When computing z-scores, the Oklahoma
graph is still exceptional independent of the set the random graphs are from. However, the
FacebookML graph shows that it makes a difference. When computing the z-score based
on the sampling process with the cfg, a z-score of 1.74 is the result. This score indicates
that the real-world graph could be a result of the generation process using the cfg. On the
other hand, computing the z-score with the fdsm, the z-score is 11.8. This score indicates
that a graph like the real-world graph is very unlikely, even though not impossible, to be
a result of the generating process of the fdsm. The real-world graph of the FacebookML
would thus be considered as not very special when using the cfg, but very special when
using the fdsm.

Graph fdsm usis dsis

Email-Enron 156.10± 0.77 151.15± 0.92 420.15± 0.78

Georgetown 161.41± 0.29 161.11± 0.32 243.04± 0.58

Princeton 159.38± 0.32 159.30± 0.28 226.70± 0.25

Oklahoma 221.39± 0.59 220.62± 0.39 377.39± 1.14

Caltech 77.26± 0.55 76.99± 0.52 104.68± 0.34

FacebookML 111.57± 0.51 110.06± 0.55 186.42± 0.97

Facebook-like 60.56± 0.67 59.25± 0.74 119.33± 0.58

Condensed Matter 22.17± 0.09 22.09± 0.09 36.11± 0.10

High Energy Physics 137.73± 0.55 135.71± 0.68 292.94± 0.25

General Relativity 17.00± 0.13 16.97± 0.13 27.92± 0.12

Astro Physics 65.87± 0.19 65.70± 0.21 127.45± 0.25

High Energy Physics Theory 12.56± 0.06 12.54± 0.06 18.75± 0.06

S. cerevisiae 14.77± 0.35 14.38± 0.42 22.44± 0.40

C. elegans 27.88± 0.62 27.37± 0.42 35.20± 0.46

Diseases 7.71± 0.15 7.65± 0.16 10.42± 0.15

E. coli 13.08± 0.41 12.72± 0.44 17.88± 0.43

Table 8.2: Average and standard deviation of the average neighbor degree in the ground
truth model fdsm, the usis, and the dsis
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Considering the results in Table 8.2, the usis is close to the results of the fdsm in almost
all cases. The results of the fdsm and the usis are close enough in almost all cases such
that one set of graphs could have been generated using the other algorithm (see Table 8.3).

Graph zcfg zecfg zusis zdsis

Email-Enron 14.51 24.43 4.14 240.84

Georgetown 3.09 13.42 0.69 125.69

S. cerevisiae 2.68 4.13 0.71 14.32

Diseases 0.59 1.33 0.27 12.59

Table 8.3: Two-sample z-score calculation in comparison with the fdsm to test whether re-
sults can be from the distribution indicated by the samples.

On the other hand, the graphs generated with dsis are completely off. Even small
graphs such as E. coli show large differences in the average result, resulting in enormous
z-statistics. Considering that the results of the cfg and ecfg were deemed unreliable, these
results are even worse. The graph generating process causes the high average neighbor
degree. Recall that the algorithm starts with assigning neighbors to low-degree nodes. For
dsis, this decision is degree based, i.e., connections to high degree nodes are more likely.
Starting with connecting low degree nodes to high degree nodes with higher probability
influences the result of the average neighbor calculation quite strongly, as can be observed
from the z-scores in Table 8.3.

8.2 common neighbors

The common neighbor degree is the next measure to investigate. A global measure for this
is, for simple graphs, simple to evaluate. By counting for each pair of nodes the number of
common neighbors,

cooc (u, v) = |N (u)∩N (v)| , (8.4)

and adding these numbers up, it is easy to observe that

∑
u,v∈V ,u 6=v

cooc (u, v) =
∑
v∈V

(
kv

2

)
. (8.5)

As explanation, a node v has exactly as many as
(
kv
2

)
pairs of neighbors, i.e., there are

(
kv
2

)
pairs of neighbors. The right-hand side of equation 8.5 is much simpler to evaluate than the
left-hand side. Moreover, as a global measure in simple fixed degree sequence graphs it is a
constant. Thus, only the fdsm is displayed for algorithms that do not generate multigraphs
and keep the degree sequence fixed1.

For the cfg, again there is the problem of multiple edges between nodes. If u and v

both have the neighbor w, and assume there are 5 edges between v and w and 2 edges
between u and w, how often is w a common neighbor of the other two nodes? w is either
once a common neighbor, as it would be in a graph sampled with ecfg, it could also be

1 Of course it was tested whether the algorithms of the sis both produce the same result as the fdsm. They do,
as they are supposed to.
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u v

w

Figure 8.2: Calculating the co-occurrence in a multigraph is not defined.

two times considered as a neighbor since there can two different two-paths be constructed
(comp. Fig. 8.2).

Another option is the maximum possible combinations of the edges, which is for this
example 10. For the co-occurrence, there is no definition of how to count this in a multi-
graph. Additionally, self-loops should be accounted for. Since this would yield again
several possible options on how to account for the co-occurrence in a multigraph, the cfg

is dropped for this analysis.

8.2.1 Approximating the Co-Occurrence

Recall, that the expected number of multiple edges between a pair u, v of nodes could be
calculated as

kukv

2m

(ku − 1) (kv − 1)

2m
.

Using a similar approach, it is possible to calculate the expected number of edges from two
nodes u, v to a third node l as

kukl
2m

kv (kl − 1)

2m
. (8.6)

Approximating the number of common neighbors of u, v is possible by summing over the
nodes l ∑

l∈V

kukl
2m

kv (kl − 1)

2m
=
kukv

(2m)2

∑
l∈V

k2l − kl (8.7)

=
kukv

(2m)2
n
(
〈k2〉− 〈k〉

)
(8.8)

=
kukv

2m

(
〈k2〉− 〈k〉

)
〈k〉 . (8.9)
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This equation can also be found in Newman [66, p.441]. It yields the approximation of the
number of common neighbors of two nodes; summing over the remaining variables, u, v,
yields

coocsim2
(G) =

∑
u,v∈V

kukv

2m

(
〈k2〉− 〈k〉

)
〈k〉 (8.10)

=
∑
u∈V

n〈k〉 ku
2m

(
〈k2〉− 〈k〉

)
〈k〉 (8.11)

=
∑
u∈V

ku

(
〈k2〉− 〈k〉

)
〈k〉 (8.12)

= n〈k〉
(
〈k2〉− 〈k〉

)
〈k〉 (8.13)

= n
(
〈k2〉− 〈k〉

)
. (8.14)

Another approximation, for bipartite graphs, is given by Zweig and Kaufmann [108] as

coocsim1
(G) =

∑
u,v∈L,u 6=v

kukv

n
, (8.15)

where L ∪ R = V ,L ∩ R = ∅. For this equation, Zweig and Kaufmann showed that it mis-
estimates the total co-occurrence for a certain class of graphs. This class of graphs consists
out of bipartite graphs, i.e., two disjoint sets of nodes that are connected by a number of
edges. Additionally, the degree sequences for both groups of nodes are L = R = {1, 2, . . . ,n}.
The difference for this specific class of graphs is in Ω

(
n3
)

[108].
Nevertheless, both equations, the fdsm, and the ecfg are compared to see whether any

equation of the sim could be used instead of sampling from the ecfg and whether there is
a (large) gap between the equations and the fdsm.

8.2.2 Comparison of the models

The ecfg obviously fails to deliver results that are even close to the result in the other
models (see Table 8.4). To show this more pronounced, we calculated the z-score of the
real-world graph in comparison to the samples from the ecfg. Remember, that when a
fixed degree sequence model is used, the z-score would be 0 (actually not computable,
since the standard deviation would be 0 as well). Considering the results in Table 8.5, it is
obvious that the global co-occurrence is affected by the edgeloss rather severely.

As is shown in Table 8.5, the real-world graph’s global co-occurrence (and therefore the
global co-occurrence of all graphs with this exact degree sequence) would be recognized
as something very, very special. That is unreasonable. Thus, the ecfg is not necessarily a
good model for comparative analysis. On the other hand, Van Hoorn claimed that these
changes would make the analysis more interesting/useful [39, 40].

For equation 8.15, the results are bad as well. The global co-occurrence is underestimated
constantly. Since Zweig and Kaufmann [108] showed that equation 8.15 yields misestimates
for a very particular case, this confirms that it also misestimates on more general degree
sequences.
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Graph fdsm ecfg sim1 sim2

Email-Enron 2.56 · 10
7

2.18 · 10
7 ± 6.59 · 10

4
1.84 · 10

6
2.56 · 10

7

Georgetown 6.78 · 10
7

6.47 · 10
7 ± 3.97 · 10

4
3.85 · 10

7
6.77 · 10

7

Princeton 4.61 · 10
7

4.36 · 10
7 ± 3.16 · 10

4
2.61 · 10

7
4.61 · 10

7

Oklahoma 1.94 · 10
8

1.85 · 10
8 ± 9.41 · 10

4
9.14 · 10

7
1.94 · 10

8

Caltech 1.23 · 10
6

9.97 · 10
5 ± 5.05 · 10

3
7.20 · 10

5
1.23 · 10

6

FacebookML 9.31 · 10
6

8.26 · 10
6 ± 1.84 · 10

4
3.85 · 10

6
9.31 · 10

6

Facebook-like 7.56 · 10
5

6.21 · 10
5 ± 3.88 · 10

3
2.01 · 10

5
7.54 · 10

5

Condensed Matter 1.97 · 10
6

1.96 · 10
6 ± 1.61 · 10

3
7.56 · 10

5
1.97 · 10

6

High Energy Physics 1.53 · 10
7

1.34 · 10
7 ± 2.71 · 10

4
2.34 · 10

6
1.53 · 10

7

General Relativity 2.30 · 10
5

2.25 · 10
5 ± 6.20 · 10

2
8.01 · 10

4
2.30 · 10

5

Astro Physics 1.28 · 10
7

1.25 · 10
7 ± 8.72 · 10

3
4.18 · 10

6
1.28 · 10

7

High Energy Physics Theory 3.00 · 10
5

2.98 · 10
5 ± 3.18 · 10

2
1.37 · 10

5
3.00 · 10

5

S. cerevisiae 1.30 · 10
4

1.07 · 10
4 ± 3.50 · 10

2
3.20 · 10

3
1.29 · 10

4

C. elegans 5.38 · 10
4

4.17 · 10
4 ± 8.20 · 10

2
3.09 · 10

4
5.35 · 10

4

Diseases 1.01 · 10
4

9.63 · 10
3 ± 1.35 · 10

2
5.37 · 10

3
1.00 · 10

4

E. coli 5.29 · 10
3

3.99 · 10
3 ± 2.53 · 10

2
1.27 · 10

3
5.23 · 10

3

Table 8.4: Average and standard deviation of the cooccurrences in the ground truth model
fdsm, the cfg, the ecfg, and the corresponding equations of the sim.

Graph z-score

Email-Enron 57.39

Georgetown 75.96

Princeton 80.67

Oklahoma 95.79

Caltech 46.43

FacebookML 57.45

Facebook-like 34.68

Condensed Matter 8.58

High Energy Physics 68.04

General Relativity 7.45

Astro Physics 30.72

High Energy Physics Theory 5.31

S. cerevisiae 6.58

C. elegans 14.72

Diseases 3.22

E. coli 5.13

Table 8.5: z-score calculation with the graphs from the ecfg as samples and the number of
cooccurrences in the fdsm as value to test whether it can be from the distribution
indicated by the samples.
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On the other hand, based on the results in Table 8.4, the difference between the fdsm and
sim2 are negligible. Simulation is not necessary to get the co-occurrence and calculating
the global co-occurrence with the sim is possible. That this is not the case is shown in the
following. First, consider again equation 8.14. There are several averages that are removed
during the reformulation. But averages are over all nodes, i.e., in equation 8.12 the sum
considers implicitly pairs u,u as well. Since this was not considered before, we take a look
at the local, node-based co-occurrence estimates.

8.2.3 Local Co-Occurrences

It is possible to calculate for a fixed node degree the number of expected common neighbors
based on equation 8.9. By fixing one node, the equation depends only on a single variable,
i.e.,

coocfixed (w) = kfixed
kw

2m

〈k2〉− 〈k〉
〈k〉 (8.16)

= ckw (8.17)

Plotting the results of equation 8.17 against the average results of the simulations shows
the problem that occurs when using the equations. When setting kfixed = maxu∈Vku, the
calculation overestimates the co-occurrence for all nodes by far. When the fixed degree is
high, as in Fig. 8.3, equation 8.17 overestimates the number of common neighbors. More
importantly, we omitted the highest degree node, since this node occurs only once in this
graph; calculating the co-occurrence for a node with itself is a strange idea and should
yield zero. The sim would not care and yield some value following the linear scaling. Thus,
for high degree nodes such as the node with the highest degree, the sim overestimates
locally. For other fixed degrees, as for a node with an average or below average degree, the
results of the equation are closer to the values that occur on average in the sample graphs.
For the minimum degree, the approximation underestimates many values; only the high
degree nodes are still overestimated. Since there are more nodes of low degree than of high
degree in real-world graphs, this overall balances out.

8.3 implications

From the standpoint of network analysis, seeing that the cfg was used in a research paper
should be a warning to the reader. If the authors did not check that they used graphs that
have an unskewed degree distribution, did not clarify if they used the erased configuration
model or the multigraph generating model, or if the authors do not mention at all how
they handle multiple edges or self-loops, the results of the paper have to be checked. Not
only has to be checked whether equations and measures applied in the analysis handle
multiple edges at all, but it has to be checked as well whether the conclusions are reason-
able compared to the model. When a graph has an underlying degree-distribution that is
unskewed, it is not as bad to use the ecfg and claim that the cfg is used as was shown
when the edgeloss in a graph with Poissonian degree distribution was measured. When
the degree distribution is strongly skewed, this does carry weight, and it has to be carefully
examined whether the results are reasonable in any way.
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8.3 Implications

Figure 8.3: Shown are the average number of common neighbors a node of any degree has
with nodes of the maximum degree for the Oklahoma graph. This is measured
in the generated graphs of the fdsm (blue dots) and the estimated number of
co-occurrences (green crosses).
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8 sensitive measures

There are also arguments to use the ecfg. The cfg is one of the simplest random graph
models for constructing graphs. Still, usually simple graphs are used for analysis and
therefore, the ecfg is primarily of interest [39]. That a fraction of edges is lost in total,
is most of the time not considered or at least not regarded as having much influence.
Comparing the number of lost edges to the existing number of edges, it is a rather low
number for most graphs. Another work suggests that the ecfg would even be the null
model to choose when testing for statistical significance, since the constraint of a fixed
degree sequence would constrain the set of possible graphs to much [40]. Even though this
argument sounds reasonable, the ecfg will only loose or maintain the degree sequence. To
see whether graphs that follow the same degree distribution show different results than
one real-world graph, it would be more reasonable to use the exponential random graph
model, that generates not the specific degree sequence but uses the same distribution [28].
The ecfg may or may not use the same distribution, but high degree nodes will always lose
edges as was shown above.

The equations of the sim did show results that were, overall, bad. We checked whether
bad results might have been caused by too many nodes with k2u >

∑
v∈V kv; this was not the

case, at most 1.3 percent of the nodes had this indicator that the equations should not be
used. Still, the global approximations of the diameter and the distance were not very good;
this is caused by the assumption that nodes have about the same degree—an assumption
that can be made for a graph with a Poissonian degree distribution, but not for graphs with
more skewed degree distributions. The same applies for the average neighbor degree. The
global co-occurrence is surprisingly well estimated by equation 8.14. Still, when calculating
the co-occurrences that a fixed degree node has with any other node, it is evident that there
are many misestimates.

For the sis, there are two different versions of the algorithm: one, that uses a uniform
distribution to choose neighbors from the set of possible neighbors. The other uses a
probability distribution based on the remaining degree of possible neighbors. The former
shows for almost all measures taken very similar results to the fdsm, the model considered
as ground truth. The latter does sample graphs for that the measures are very different
from the results found in graphs from the fdsm. The reason for this is the construction
process of the sis. When considering the dsis, the degree based algorithm, many of the low
degree nodes will be connected to high degree nodes. This may reduce the diameter, but
since high degree nodes, hubs, do not connect as well as in other models, the distance is
higher. The average neighbor degree is higher for the same reason. On the other hand, the
usis randomizes graphs in a way such that the results are much closer to the ground truth
model, fdsm. Still, the average distances are larger than found in the graphs from the fdsm.
Since the run-time estimate of the sis is worse than the estimate for the fdsm, I suggest the
following process for analysis of undirected graphs:

1. Check which distribution the real-world graph’s degree sequence follows

a) If the degree sequence is unskewed, e.g. the Poissonian distribution, one may
use the cfg or ecfg

b) If the degree sequence is strongly skewed, use the fdsm

2. Generate a number of samples with the chosen model

3. Evaluate the measures on the samples
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8.3 Implications

4. Evaluate the measure on the real-world graph

5. Test with a t-test or, if enough samples have been taken, with a z-test, whether the
result of the measure on the real-world graph may be a result of coincidence, i.e., if
the calculated score is small, the measure is not outstanding in the graph and should
not be treated as such

Regarding the sim, for undirected graphs, it seems to be not applicable to data that
is skewed. Nevertheless, it can (and only should) be used as an approximation to see
whether the real-world graph differs strongly from the estimate of the equations of the sim.
Whenever there is a “large” difference, a more detailed analysis should be started. Large is
a very problematic term since sometimes large is 0.3 (diameter) while the same value can
also be very small (average neighbor degree). Thus, analysis should always be done with
the utmost care.

In the following, we change the graphs of interest and go from undirected to directed
graphs, using this opportunity to change the analyzed measure as well.
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Part IV

C O M PA R I S O N O F T H E D I F F E R E N T N U L L M O D E L S B A S E D O N
D I R E C T E D G R A P H S





In the last chapter, we observed that there are differences when using algorithms to
generate graphs. The configuration model uses a large family of graphs and does not
generate graphs uniformly at random. The sequential importance sampling uses a smaller
family of graphs since multigraphs are excluded. The use of so-called simple graphs makes
analysis straightforward, but this algorithm still does not generate graphs uniformly at
random, independent of the probability distribution which is used to create edges between
nodes and their possible neighbors. One probability distribution favors connections to high
degree nodes; the other does not favor any node. However, the algorithm starts always
with the lowest degree node. Therefore, some edges may not be so random. Even if the sis

would be able to generate graphs uniformly at random, it would still be slower than other
algorithms. The sequential importance sampling algorithm also gives a weighting factor
back such that analysis may take into account how likely it is to end up with a graph. The
fixed degree sequence model is the only one that does everything needed. It samples from
the same family as the sequential importance sampling algorithm uniformly at random.
Even though it is faster than the sequential importance sampling algorithm, it is still not
fast enough to apply to Big Data. The simple independence model would be fast enough,
but the results on undirected graphs are not good enough when they follow skewed degree
distributions.

The question that we are discussing in this chapter is based on the results of the former
chapter. When the models show such different results on undirected graphs, how do they
apply to directed graphs? Since the measures from the undirected graphs section are very
simple, now some more interesting problems are to be investigated.

In the following, network motif analysis is performed in the steps outlined below.

• Define a subgraph of interest;

• Count how often this subgraph occurs in a real-world graph;

• Generate random graphs and count the occurrence of the subgraph in the generated
graphs;

• Check whether the subgraph occurs statistically significantly often in the real graph.

When the subgraph does occur statistically significantly often, then the subgraph is called
a network motif, following Milo et al. [63].

synopsis First, a short history of network motif analysis is given to inform the reader
about the coming research. Afterward, the subgraphs of interest, the motifs, are introduced.
The null models are tested for their quality regarding network motif analysis. While the sis

does not need any new definition, the cfg proves again problematic due to its generation
process and the resulting multiple edges. For the sim a set of equations is developed
and applied. The results show great promise, but sometimes the estimates are wrong.
An investigation yields several possible ways to remedy this problem to a certain extent.
Additionally, the participation of a node in a subgraph is investigated based on the sim.
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9

A N A LY S I S O F D I R E C T E D G R A P H S

Instead of repeating the steps of the analysis from the last chapter for directed graphs, dis-
tances, diameter and so on, another topic is covered. Here, subgraph counting on directed
graphs is of interest. In subgraph counting one is either searching for specific connection
patterns of a fixed number of nodes in a graph and compares the result obtained in the real-
world graph to the results obtained when counting subgraphs in a set of sampled graphs
with the same degree sequence. Alternatively, all patterns of up to certain size are counted
in the real-world graph as well as in the sampled graphs. The comparison itself is usually
performed with the z-score. If the z-score is larger than 3, the subgraph in question can be
considered as a network motif. Kashtan et al. [48] suggested that the z-score should be at
least 5 to call a subgraph a network motif.

9.1 a short history of motif analysis

The first paper that performed network motifs analysis as such is from Milo et al. [62]. In
this article, the researchers checked for two things. First of all, they tested three different
algorithms to generate graphs whether they would produce graphs uniformly at random.
The models under investigation were the following: the configuration model with resam-
pling when multiple edges were created; the switching algorithm, that is equal to the fdsm;
a new algorithm called “go with the winners”, which samples several graphs simultane-
ously and discards any graph that contains multiple edges or self-loops. For one part of
their research they use the “go with the winners” as ground truth, since it samples all
possible simple graphs, even though it is very slow. They did this with a very simple toy-
graph that consists out of 12 nodes and 20 edges for that only 91 configurations exist. They
compared the "go with the winners" algorithms results to the other two. The result was
that the fdsm is a better fit regarding uniformity. The other test they performed was for
the mixing time of the fdsm. They tested how many edge swaps had to be carried out to
reach a stable average number of occurrences of a certain subgraph, i.e., when does a larger
number of sampling not change the average number of subgraphs found in a graph. From
this experiment, they concluded that 100 · |E| would be enough, even though the plot in the
paper indicates that a much lower number would be sufficient. In other works by Milo et
al. [63, 64], they perform similar research, analyzing how well this form of analysis applies
to other graphs and if other network motifs can be found as easily.

The most simple algorithm to find all subgraphs that follow a predetermined pattern is
to check for each node its neighborhood and the connections within. If the pattern occurs,
a counter is increased. Usually, the patterns investigated consist out of 3 to 4 nodes, such
that the simple way takes a long time. Considering the amount of swaps that is used and
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9 analysis of directed graphs

the number of samples that has to be drawn from the family of graphs, this process is very
time-consuming.

Several improvements regarding motif analysis have been made. Instead of scanning for
a fixed subgraph, nowadays algorithms scan a graph for all possible subgraphs of a given
size and count their occurrence. The most well-known algorithm is by Wernicke [103]. The
algorithm is called esu with the variant randesu. The former starts with single nodes,
extends their neighborhood for nodes that have a larger index than the node itself and that
are not connected to a node that is already in the set of neighbors. This procedure builds
the so-called esu-tree. According to Wernicke, all size-k subgraphs are output exactly once.
The variant randesu does what the name implies; it performs the esu algorithm with a
random element added, i.e., a probability is introduced; with this probability, a node is
added to the set. Otherwise, it is skipped. This speeds up the calculation. An additional
interesting factor is a change in the resampling process. The resampling process does not
resample the complete graph but decides based on some given probabilities whether the
esu-tree is traversed further or if some levels are skipped. For more details see [103]. An
even faster approach is provided by Itzkovitz et al. [43]. Based on the degree sequence
and some additional information, i.e., in-, out-, and mutual degree, they approximated the
number of subgraphs in a given graph. This idea is quite similar to the approach explained
later, see Section 12.1, but we were not aware of this work until after the development of
our approach. Additionally, our approach needs less information1.

Another work regarding this topic is by Birmele [7], who considered subgraphs of motifs,
called subpatterns, as a possible indicator of the presence of a motif. If the subpatterns are
overrepresented, the graph should contain certain motifs as well. It is important to note
that there is a difference between locally overrepresented and globally overrepresented
subpatterns. The models that are used for comparison do not necessarily maintain the
degree sequence, which might skew the results.

To the best of my knowledge, despite all these efforts, it was never tested whether it
is even possible to use the multigraph generating version of the configuration model to
get and estimate of the number of subgraphs in a graph and compare the result with the
real-world graph. Moreover, it was not investigated whether the directed sis yields the
same results as the fdsm. This task was most likely not done, since the sis was developed
after much of the analysis regarding network motifs was done. Still, the possibility that the
results are similar to those of the fdsm exists since both models draw from the same family
of graphs, i.e., all simple directed graphs are considered by both algorithms. It is important
to mention, that even though the sis does not draw uniformly at random from the family
of simple graphs, that standard edge-swap algorithms do also sometimes not reach every
possible graph. For this, Berger and Müller-Hannemann suggest a modified algorithm that
swaps three edges at once, when certain patterns of connection are discovered [6]. It is
not known if that is considered in the research of Milo et al. On the other hand, sis can
generate all possible graphs since it generates in each try a new graph from scratch. The
only restriction that has to be mentioned at this point is the probability distribution the
choice of a new neighbor is based on.

Therefore, the following chapter is divided into several parts. First, the subgraphs that
are considered are introduced. Second, a comparison of the multigraph generating config-
uration model, including a thorough description on how to count motifs in multigraphs,

1 For a comparison to their approach, see Appendix VI
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9.2 Data

with the baseline model, fdsm, is performed. In this comparison the multigraphs gen-
erated by the cfg as well as the simplified graphs of the ecfg are considered. Third, a
comparison of the fdsm and sis with two different probability distributions for choosing
a new neighbor is performed. This is done to see whether the sis could be used for the
analysis of subgraphs and which probability distribution is a better fit to the results of the
fdsm. Fourth, a set of equations is developed and compared to the baseline model. These
equations are also used to calculate the participation of single nodes in subgraphs.

Despite using directed graphs in this chapter, the abbreviations stay the same as for
undirected graphs, i.e., the abbreviations used are fdsm for the fixed degree sequence
model, cfg for the configuration model, ecfg for the erased configuration model, usis for
uniformity-based sequential importance sampling, dsis for degree-based sequential impor-
tance sampling, and finally sim for the sequential importance sampling.

9.2 data

For this chapter, directed graphs are required. Beforehand, graphs were used as undirected
graphs. Therefore, the following graphs have been selected:

food web Examples of predatory graphs, i.e., who hunts whom, are given as Silwood
graph, Ythan Estuary graph, Little Rock graph, St. Marks Island graph, St. Martin
Seagrass graph, and Grassland graph 2

electrical circuits Two small electrial circuits, s208 and s420, with gates as nodes
and the flow of electrical signals between them as edges, as used by Milo et al.[64]

computer network Snapshots of the peer-to-peer file sharing network Gnutella from
08.09.2002

3 and 09.09.2002
4

biological Beforehand, we used the transcription regulation graphs as undirected graph;
now we include the direction for the E. coli graph and the S. Cerevisiae graph

No numbers for the occurrence of subgraphs are presented for the real-world graphs
since they do not get compared to the random graph models.

2 http://pil.phys.uniroma1.it/~gcalda/cosinsite/extra/data/foodwebs/
3 http://snap.stanford.edu/data/p2p-Gnutella08.html
4 http://snap.stanford.edu/data/p2p-Gnutella09.html
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10
O N M O T I F S

Usually, motif analysis considers only motifs of size 3 or 4. For näive implementation, this
is very understandable; one possibility is calculating powers of the adjacency matrix which
is in O

(
n3
)
. Problematic is in cases such as this the discovery of more complex subgraphs.

Another option is to check all k-tuples of nodes, which is not much better. Therefore,
initial investigation of motifs considered only three-node and four-node subgraphs to be
motifs. Newer algorithms, like esu by Wernicke [102, 103] can find motifs with more nodes,
but research regarding motifs with more nodes is challenging to find if it exists at all. A
reimplementation by one of the developers of the Stanford Network Analysis Package,
short SNAP1, implemented the algorithms with specific optimizations for three and four
nodes as fixed parameters. The optimizations speed the calculation up but restrict the
researcher to a specific number of nodes in subgraphs.

When all combinations of three nodes are taken into account, one speaks of the triad
census [99]. With three nodes, fifteen different patterns of connections can be constructed.
One of them is a special case, the not connecting pattern, i.e., three nodes without any
connections. Only a subset of these is considered here, but it would be enough to consider
even less to be able to decide whether different algorithms to sample graphs do give sim-
ilar results regarding subgraph counting. Additionally, several four node subgraphs are
considered.

When graph sampling is performed to assess statistical significance of a feature of a
graph, one can argue whether a graph should be restricted to use a specific degree sequence
or whether different sequences yield more interesting results [40]. Since the aim of this
chapter is to find network motifs, it is more reasonable to use the same degree sequence.
Otherwise, a real-world graph might seem overwhelmingly rich in a certain subgraph, even
though other degree sequences are not able to generate this particular subgraph. Still, the
ecfg only approximates the degree sequence due to edgeloss, therefore, also these cases
are covered. As will be shown, the results of the ecfg are always much lower than the
results of any other algorithm.

In the following the subgraphs that are under consideration are described in more detail;
there are three and four node subgraphs, most of them occurred in motif-based research
already.

fork : Forks are one of the subgraphs that are used in this work as a baseline. Whenever a
model is not able to yield the same amount of this subgraph for any graph generated,
either the degree sequence has been changed, or the model is just not able to capture
even this very simple pattern. This subgraph consists of three nodes, one of which

1 http://snap.stanford.edu
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is connected to the other two (Fig 10.1a). The number of Forks attached to a node is
equal to the number of pairs of neighbors a node has.

u

v

w

(a) Fork

u

v

w

x

(b) Fan

u

v

w

(c) Two-path

fan Just as the Fork, this can be used as a baseline comparison of the different graph
models. It is easy to see that this is just a way to describe that a node has different
triples of successors, i.e., that the edges (u, v) , (u,w) , (u, x) exist (see Fig. 10.1b).

twopath : Twopaths (Fig. 10.1c) are one of the most common subgraphs and not consid-
ered as a motif in many fields. Two-paths consists out of three nodes {u, v,w} and
two edges, (u, v) , (v,w). Still, this pattern is of interest, for example, in graphs of
predators (who eats whom) or in social sciences. Often it is heard that “the enemy of
my enemy is my friend” or “a friend of a friend is a friend of mine” and for some
of these, there is even evidence [89, 90]. Based on this, a researcher may look at the
connection patterns in graphs and predict whether new connections may come into
existence between persons (e.g. [78, 58, 42]).

feed-forward loop : One of the most popular, i.e., most researched motifs, is the Feed-
Forward Loop (see Fig. 10.2a). It is, more or less, a combination of the Twopath and
the Fork, i.e., the edges (u, v) , (v,w) are to be found as well as an additional edge
(u,w). Depending on the field of study the researcher is from, there can be different
types of meaning to each edge. Be it either social sciences as mentioned for Twopaths,
where “a friend of my friend is a friend of mine” can be tested, or biology, where
edges can be either be marked as excitatory or inhibitory. Considering that there are
different types of edges is usually not done in motif analysis since it requires more
computation time to do so.

threecycle This motif can also be interpreted as three Twopaths, one being (u, v) , (v,w),
another (v,w) , (w,u), and (w,u) , (u, v) (see Fig. 10.2b).

doublejoin This is another good example of overlapping motifs that is considered as
a motif in its own right. Whenever a Doublejoin is found, the Two-path counter
increases by two and the Feed-Forward Loop counter by one. The two Twopaths
consists out of the edges (u, v) , (v,w) and (v,u) , (u,w) (see Fig. 10.2c).
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complete In social science it could be an indicator of strong friendships since each of the
nodes is in a reciprocated relationship with all other nodes (see Fig. 10.3a). Depending
on the context of research it occurs in, it can either indicate strong friendships, good
collaborators, but it can also indicate strong enmity. It is one of the rather rare motifs
to be found in a graph.
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(c) Biparallel

fourcycle This subgraph can be found in electronic circuits [64], as in regulating circuits
or similar. Based on the theory of Simmel [86] and Granovetter [33], it is rather
unlikely that such a subgraph occurs in social networks. Node u is connected to
nodes v and w, and according to the theory it is rather unlikely that if the connection
is strong, that v and w are not connected.

biparallel This motif was also found in electronic circuits and synaptic connections.
The fact that there is branching with (u, v) , (u,w) and then a merge (v, x) , (w, x)
(cf. Fig.10.3c) is especially interesting for synapses, considering that evolution is the
process of maximizing potential while using minimal resources.

in-fan This can be considered as a mixture of Fan and Biparallel, or as an extension to
both. Additionally to the edges in the Fan, an edge (v,w) and an edge (x,w) are
added (see Fig. 10.4a).

out-fan Similar to the In-Fan, in this subgraph one of the targets of the Fan subgraph
connects to the other two (see Fig. 10.4b).

bifan This is a special case of overlapping motifs since two Forks are overlapping such
that the targets of the edges are the same, but the sources are different (see Fig.10.4c).
This subgraph was reported to be found in electronic circuits, in gene regulation
graphs, and in synaptic connection graphs.
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Most of these subgraphs have been looked at before [64], the most popular being the
Feed-Forward Loop, which has been analyzed in several papers [62, 78, 105, 106]. Two
baseline checks have been added to the set of previously existing motifs, such that there
is some other simple way to check whether the results of different graph generating algo-
rithms should be or can be used in motif analysis.

In the next chapter, different models are compared, starting with the two version of the
cfg with the baseline model, the fdsm.
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D I F F E R E N T M O D E L S U N D E R I N V E S T I G AT I O N

For undirected graphs, the analysis was straightforward - all models were compared based
on a single measure to the fdsm. Here, a different approach is taken; instead of comparing
a single subgraphs occurrence in the different models, we compare the occurrence of all
subgraphs considered at once. This investigation is done as follows: first, the results of
the two versions of the cfg are compared to the results of the fdsm. Second, the results of
the two variants of the sis are compared to the ones of the fdsm. Third, a set of equations
based on the sim is developed and tested against the fdsm.

11.1 on the directed configuration model

The cfg for directed graphs shows the same problem as it does for undirected graphs. It
generates multiple edges between nodes, the difference being that it now tends to generate
more edges between high out-degree and high in-degree nodes. Similar to Fig. 7.3, which
showed the edgeloss in samples of undirected graphs per degree once for the E. coli graph
and once for the Email-Enron graph, the same is possible for directed graphs and done in
the following.

For Fig. 11.1, equation 7.28 has been adapted to measure once for in-degree and once for
out-degree the loss of edges attached to each node of fixed degree k. Most interestingly,
for the in-degree sequence of the S. cerevisiae graph, the loss is rather mild, but the out-
degree sequence has a rather severe loss for high-degree nodes; in the artificially generated
example, losses in both sequences are about the same and rather severe for high degree
nodes. The example graph was generated with the Forest-Fire model; it has 4038 nodes,
87121 edges and its degree distribution follows a power law with an exponent of γ ∼ 1.6;
this example graph has only one weakly connected component.

One of the unanswered (and before not asked) questions is whether the edgeloss of the
ecfg influences the results of motif analysis severely. Another issue is how motif counting
in multigraphs should be defined and whether this yields reasonable results in comparison
to the slower sampling with the fdsm. Note that we consider a subgraph as one of the
above when the number of nodes participating is as described. For example, the Twopath
has to have three nodes which are connected (u, v) , (v,w); it is not allowed that self-loops,
i.e., (u,u) , (u, v), or only two edges, (u, v) , (v,u), are considered as Twopath in this work.

The biggest problem with the last question is the following. In Fig. 11.2a, most algo-
rithms will find exactly one Feed-Forward Loop and no more. This is, for many purposes,
correct. But when trying to find all possible motifs, it is not defined how this is done.
One has to consider what is possible to count in a multigraph; the lowest possible number
of subgraphs is found in the ecfg; edges are deleted such that the results of an analysis
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11 different models under investigation

(a) S. cerevisiae in-degree loss (b) S. cerevisiae out-degree loss

(c) Artificial graph in-degree loss (d) Artificial graph out-degree loss

Figure 11.1: Edgeloss measured on the graph of S. cerevisiae ( 11.1a, 11.1b) and an artificial
example ( 11.1c, 11.1d); in Fig. 11.1a, resp. 11.1c the loss of in-degree is shown,
in Fig. 11.1b, resp. 11.1d, the loss of out-degree is shown.
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(b) The graph contains two Forks,
(u,w1) , (u, v) and (u,w2) , (u, v); a
simple graph would have the dashed
edges instead of the self-loop and the
multiple edge and thus three Forks.
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11.1 On the Directed Configuration Model

Graph FDSM CFG eCFG

St. Marks Seagrass 8.20 · 10
2 ± 0.00 7.99 · 10

2 ± 4.49 6.30 · 10
2 ± 3.29 · 10

1

Silwood 3.67 · 10
3 ± 0.00 3.63 · 10

3 ± 5.48 2.89 · 10
3 ± 1.02 · 10

2

St. Martin Island 7.64 · 10
2 ± 0.00 7.34 · 10

2 ± 5.51 5.50 · 10
2 ± 3.03 · 10

1

Ythan Estuary 4.47 · 10
3 ± 0.00 4.40 · 10

3 ± 8.38 3.27 · 10
3 ± 1.08 · 10

2

Little Rock 2.55 · 10
4 ± 0.00 2.51 · 10

4 ± 2.00 · 10
1

1.68 · 10
4 ± 2.78 · 10

2

Grassland 2.38 · 10
2 ± 0.00 2.32 · 10

2 ± 2.36 2.08 · 10
2 ± 1.14 · 10

1

s208 1.64 · 10
2 ± 0.00 1.63 · 10

2 ± 8.98 · 10
−1

1.58 · 10
2 ± 5.40

s420 3.80 · 10
2 ± 0.00 3.79 · 10

2 ± 9.59 · 10
−1

3.72 · 10
2 ± 7.10

Gnutella 08.08.2002 9.35 · 10
4 ± 0.00 9.21 · 10

5 ± 1.67 · 10
3

9.27 · 10
4 ± 9.91 · 10

1

Gnutella 09.08.2002 1.22 · 10
5 ± 0.00 1.36 · 10

6 ± 2.30 · 10
3

1.21 · 10
5 ± 1.37 · 10

2

E .coli 4.82 · 10
3 ± 0.00 4.81 · 10

3 ± 2.87 4.41 · 10
3 ± 1.27 · 10

2

S. cerevisiae 1.18 · 10
4 ± 0.00 1.18 · 10

4 ± 4.38 1.12 · 10
4 ± 1.62 · 10

2

Table 11.1: Number of Forks found in the respective models. The standard deviation for
the cfg is due to the fact that two edges between the same node do not yield a
Fork.

based on the ecfg can have a broad range of results due to different structures of the un-
derlying multigraph generated with the cfg. This option is shown in the results as ecfg.
Another option would be to count all possible subgraphs, i.e., all permutations of edges.
In Fig. 11.2a this implies that there are the following Feed-Forward Loops: (u, v)1, (v,w)1,
(u,w); (u, v)1, (v,w)2, (u,w); and (u, v)1, (v,w)3, (u,w), moreover (u, v)2, (v,w)1, (u,w);
(u, v)2, (v,w)2, (u,w); and (u, v)2, (v,w)3, (u,w). This option does count the maximum
possible number of subgraphs. In the results, it is shown as cfg. While the first option
will most likely yield lower results than the fdsm due to lost edges which do contribute to
the number of subgraphs in the graphs generated with the fdsm, the second option can be
expected to yield higher results. Since we consider the results of the fdsm as gold standard
due to the research by Milo et al. [63, 64], the comparison with the fdsm is necessary.

First, a comparison of the baseline subgraphs is performed. Counting these two, the Fork
and the Fan, should always result in the same number of subgraphs when a graph with a
fixed degree sequence is generated. In Table 11.1 the results of counting the Fork (Fig. 10.1a)
are shown, in Table 11.2 the results of counting the Fan (Fig. 10.1b) are shown. The first
observation is that neither the cfg nor the ecfg do yield the same number of subgraphs as
the fdsm. This is a bad sign for the cfg, since it uses a fixed degree sequence but it fails to
confirm the assumption of the baseline. In Fig. 11.2b we show explicitly what can happen
when using the cfg. The fdsm allows only one graph to be generated and results always in
the same number of Forks.. The cfg may generate multiple edges and thus forfeit possible
Forks. The ecfg samples less subgraphs due to edgeloss, as expected. However, there are
several ways to calculate whether two models yield reasonably similar results. The most
famous in regards to network motif counting is the z-score or to be more exact the standard
score calculation. Since there are two groups of samples, the two-sample z-statistic [54] with
the hypothesis that the means are equal (µ1 − µ2 = 0) µ̄1−µ̄2√

σ21+σ
2
2

should be used, where µ̄i is

the observed average number of subgraphs for samples i. If the score is small, it is likely
that the models are equal. However, the test, as well as the two-sample z-score, assumes
that the distribution the samples are from is a normal distribution. Therefore, using the
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11 different models under investigation

Graph FDSM CFG eCFG

St. Marks Seagrass 2.26 · 10
3 ± 0.00 2.09 · 10

3 ± 3.97 · 10
1

1.45 · 10
3 ± 1.46 · 10

2

Silwood 3.01 · 10
4 ± 0.00 2.92 · 10

4 ± 1.37 · 10
2

2.04 · 10
4 ± 1.25 · 10

3

St. Martin Island 1.76 · 10
3 ± 0.00 1.56 · 10

3 ± 3.85 · 10
1

1.04 · 10
3 ± 1.03 · 10

2

Ythan Estuary 3.13 · 10
4 ± 0.00 2.99 · 10

4 ± 2.00 · 10
2

1.82 · 10
4 ± 1.20 · 10

3

Little Rock 2.18 · 10
5 ± 0.00 2.07 · 10

5 ± 5.93 · 10
2

1.05 · 10
5 ± 3.40 · 10

3

Grassland 3.87 · 10
2 ± 0.00 3.61 · 10

2 ± 1.32 · 10
1

3.04 · 10
2 ± 3.55 · 10

1

s208 2.22 · 10
2 ± 0.00 2.19 · 10

2 ± 4.30 2.10 · 10
2 ± 1.66 · 10

1

s420 6.32 · 10
2 ± 0.00 6.27 · 10

2 ± 6.09 6.06 · 10
2 ± 3.57 · 10

1

Gnutella 08.08.2002 3.09 · 10
5 ± 0.00 3.09 · 10

5 ± 8.07 · 10
1

3.03 · 10
5 ± 1.62 · 10

3

Gnutella 09.08.2002 4.57 · 10
5 ± 0.00 4.57 · 10

5 ± 9.25 · 10
1

4.49 · 10
5 ± 2.92 · 10

3

E .coli 7.13 · 10
4 ± 0.00 7.09 · 10

4 ± 1.55 · 10
2

5.94 · 10
4 ± 4.15 · 10

3

S. cerevisiae 1.50 · 10
5 ± 0.00 1.49 · 10

5 ± 1.86 · 10
2

1.34 · 10
5 ± 4.39 · 10

3

Table 11.2: Number of Fans found in the respective models.

Kolmogorov-Smirnov two-sample test may give more information since it compares the
distributions of the subgraphs. Therefore, in Table 11.3, resp. 11.4, the results D of this test,
the maximal difference between the cumulative distribution functions, are listed for the two
motifs Fork and Fan. Recall that a low D is necessary to judge the distributions as similar.
For α = 0.05 a D-value below 0.136 would be low enough to judge the distribution of the
number of subgraphs as indistinguishable. It is to observe that all D-values are close to 1
or 1 such that it is unlikely that the graphs are from the same family of graphs. Moreover,
even the cfg and ecfg do show results regarding the Kolmogorov-Smirnov two-sample
test close to 1, indicating that even the models which are sometimes used interchangeably
do not yield the same results regarding the number of subgraphs. P-values are omitted,
since they would add no more information but that it is rather unlikely that the subgraph
distributions are the same (p < 10−5).

Of course, these two subgraphs are very basic, and the total number of these subgraphs
is supposed to be fixed. The ecfg may lose possible interaction partners while the cfg

may build multiple edges and therefore produce entirely different results. The results of
the analyses of the Fork and the Fan show that using the cfg or ecfg may yield results
which can easily lead to misinterpretation of the graph the samples are compared to. A too
high/low number of subgraphs and a large standard deviation may show the real-world
graphs number of motifs as extraordinarily small/large. On the other hand, the fdsm may
indicate the number of subgraphs in the real-world graph as ordinary, as it is the case with
the number of Forks or Fans.

That multiple edges, self-loops or the deletion of edges can influence the number of other
subgraphs is true for other subgraphs as well. Another graph structure which is simple
to count is the Twopath subgraph. Even though the D-values are lower in general (see
Table 11.6), they are still larger than 0.2 to be considered as to be drawn from the same
distribution, such that the graphs are as well not likely to be from the same distributions.
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11.1 On the Directed Configuration Model

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 1.00 1.00 1.00

Silwood 1.00 1.00 1.00

St. Martin Island 1.00 1.00 1.00

Ythan Estuary 1.00 1.00 1.00

Little Rock 1.00 1.00 1.00

Grassland 1.00 1.00 9.45 · 10
−1

s208 5.45 · 10
−1

7.60 · 10
−1

6.20 · 10
−1

s420 6.50 · 10
−1

8.50 · 10
−1

7.10 · 10
−1

Gnutella 08.08.2002 1.00 1.00 1.00

Gnutella 09.08.2002 1.00 1.00 1.00

E .coli 1.00 1.00 1.00

S. cerevisiae 1.00 1.00 1.00

Table 11.3: Results of the Kolmogorov-Smirnov two-sample test between the different mod-
els for the Fork.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 1.00 1.00 1.00

Silwood 1.00 1.00 1.00

St. Martin Island 1.00 1.00 1.00

Ythan Estuary 1.00 1.00 1.00

Little Rock 1.00 1.00 1.00

Grassland 1.00 1.00 7.85 · 10
−1

s208 4.95 · 10
−1

6.90 · 10
−1

3.55 · 10
−1

s420 6.25 · 10
−1

7.85 · 10
−1

4.20 · 10
−1

Gnutella 08.08.2002 1.00 1.00 1.00

Gnutella 09.08.2002 1.00 1.00 1.00

E .coli 1.00 1.00 9.95 · 10
−1

S. cerevisiae 1.00 1.00 1.00

Table 11.4: Results of the Kolmogorov-Smirnov two-sample test between the different mod-
els for the Fan.
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11 different models under investigation

Graph FDSM CFG eCFG

St. Marks Seagrass 8.99 · 10
2 ± 4.47 8.73 · 10

2 ± 1.54 · 10
1

7.20 · 10
2 ± 3.28 · 10

1

Silwood 9.16 · 10
2 ± 2.92 9.01 · 10

2 ± 1.02 · 10
1

7.00 · 10
2 ± 4.61 · 10

1

St. Martin Island 8.57 · 10
2 ± 4.33 8.22 · 10

2 ± 2.13 · 10
1

6.40 · 10
2 ± 3.47 · 10

1

Ythan Estuary 3.48 · 10
3 ± 6.18 3.37 · 10

3 ± 5.66 · 10
1

2.51 · 10
3 ± 9.36 · 10

1

Little Rock 2.85 · 10
4 ± 3.42 · 10

1
2.83 · 10

4 ± 2.92 · 10
2

2.14 · 10
4 ± 3.24 · 10

2

Grassland 1.42 · 10
2 ± 1.45 1.41 · 10

2 ± 1.92 1.32 · 10
2 ± 5.35

s208 2.68 · 10
2 ± 1.93 2.65 · 10

2 ± 2.83 2.62 · 10
2 ± 4.58

s420 5.86 · 10
2 ± 2.11 5.83 · 10

2 ± 3.02 5.78 · 10
2 ± 4.88

Gnutella 08.08.2002 9.42 · 10
4 ± 6.14 9.32 · 10

4 ± 9.28 · 10
1

9.32 · 10
4 ± 1.57 · 10

2

Gnutella 09.08.2002 1.09 · 10
5 ± 5.39 1.08 · 10

5 ± 1.31 · 10
2

1.08 · 10
5 ± 1.46 · 10

2

E .coli 2.02 · 10
2 ± 5.72 · 10

−1
1.64 · 10

2 ± 2.94 · 10
1

1.92 · 10
2 ± 9.28

S. cerevisiae 3.27 · 10
2 ± 4.15 · 10

−1
3.26 · 10

2 ± 1.51 3.16 · 10
2 ± 1.01 · 10

1

Table 11.5: Number of Twopaths found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 8.70 · 10
−1

1.00 1.00

Silwood 7.60 · 10
−1

1.00 1.00

St. Martin Island 9.05 · 10
−1

1.00 1.00

Ythan Estuary 9.75 · 10
−1

1.00 1.00

Little Rock 5.80 · 10
−1

1.00 1.00

Grassland 3.95 · 10
−1

9 · 10
−1

7.80 · 10
−1

s208 4.70 · 10
−1

6.80 · 10
−1

4 · 10
−1

s420 5.05 · 10
−1

7.35 · 10
−1

4.25 · 10
−1

Gnutella 08.08.2002 1.00 1.00 2.26 · 10
−1

Gnutella 09.08.2002 1.00 1.00 4.20 · 10
−1

E .coli 6.95 · 10
−1

7.75 · 10
−1

6.15 · 10
−1

S. cerevisiae 2.65 · 10
−1

9 · 10
−1

6.60 · 10
−1

Table 11.6: Results of the Kolmogorov-Smirnov two-sample test between the different mod-
els for the Twopaths.
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11.1 On the Directed Configuration Model

Graph FDSM CFG eCFG

St. Marks Seagrass 1.84 · 10
2 ± 1.06 · 10

1
2.29 · 10

2 ± 3.16 · 10
1

1.20 · 10
2 ± 1.27 · 10

1

Silwood 1.71 · 10
2 ± 1.60 · 10

1
2.32 · 10

2 ± 4.23 · 10
1

1.01 · 10
2 ± 1.39 · 10

1

St. Martin Island 2.50 · 10
2 ± 1.29 · 10

1
2.94 · 10

2 ± 3.75 · 10
1

1.38 · 10
2 ± 1.63 · 10

1

Ythan Estuary 6.68 · 10
2 ± 3.04 · 10

1
1.03 · 10

3 ± 1.57 · 10
2

3.81 · 10
2 ± 2.92 · 10

1

Little Rock 1.06 · 10
4 ± 1.45 · 10

2
1.09 · 10

4 ± 3.14 · 10
2

5.47 · 10
3 ± 1.67 · 10

2

Grassland 1.21 · 10
1 ± 2.90 1.74 · 10

1 ± 6.56 9.25 ± 2.83

s208 2.34 ± 1.38 6.96 ± 3.98 2.55 ± 1.56

s420 2.81 ± 1.68 7.55 ± 4.39 2.68 ± 1.61

Gnutella 08.08.2002 6.22 · 10
2 ± 3.03 · 10

1
7.86 · 10

2 ± 4.95 · 10
1

6.00 · 10
2 ± 2.95 · 10

1

Gnutella 09.08.2002 5.41 · 10
2 ± 2.54 · 10

1
6.20 · 10

2 ± 6.74 · 10
1

5.27 · 10
2 ± 2.42 · 10

1

E .coli 7.94 ± 3.39 1.06 · 10
1 ± 7.65 6.19 ± 2.67

S. cerevisiae 1.18 · 10
1 ± 3.71 1.55 · 10

1 ± 8.41 1.06 · 10
1 ± 3.86

Table 11.7: Number of Feed-Forward Loops found in the respective models.

The standard procedure for comparing two means is a variant of the z-score, the two-
sample z-statistic [54], as mentioned before

z =
(µ̄1 − µ̄2) − (µ1 − µ2)√

σ21
n +

σ22
n

.

Remember that µ̄i is the observed average number of subgraphs while µi is the expected
number of subgraphs. This value is not known, but, since it is a test for equality, one may
assume µ1 = µ2, thus, the difference yields 0. For the values in Table 11.5, the compari-
son between the fdsm and the cfg yields values larger than 5 (for appropriate µi,σi see
Table 11.5). Still, since the general distribution of the number of motifs is unknown, it is
not necessarily valid to apply any variant of the z-score. Moreover, when we test each
generated graph from one of the sets to the other set, the following happens: first, assume
that we are given a graph from the fdsm to be tested whether it belongs to the samples
from the cfg. Since the cfg produces a broad range of outcomes concerning the number
of subgraphs, the standard deviation is “large”. Thus, since we divide by the standard
deviation, the resulting z-score will almost always be small. The other way around, this
does not hold. The standard deviation of the fdsm is smaller than the standard deviation
of the cfg and many graphs have a large z-score.

One of the more complex but popular motifs is the Feed-Forward Loop (see Fig. 10.2a).
In Table 11.7 the observed means and standard deviations are denoted for this subgraph.
For this subgraph, the differences are more pronounced. The standard deviation in the cfg

is much larger than in the other null models and the mean number of occurrences for this
subgraph is always higher. The effect can be observed more clearly with theD-values of the
Kolmogorov-Smirnov two-sample tests, which are always large (see Table 11.8). In Fig. 11.3,
the distributions of the Feed-Forward Loop subgraphs in the different graphs is visualized.
Even though the distributions look like normal distributions, it is not guaranteed that the
subgraphs are distributed according to a normal distribution. The sets of samples are
small compared to the family of simple graphs. Even though the histograms overlap in
many places, the cfgs histograms are much flatter and wider than the histograms of the
other models. Moreover, the mean of the cfg is higher than the means of the other models.
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11 different models under investigation

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 7.65 · 10
−1

1.00 1.00

Silwood 7.25 · 10
−1

9.75 · 10
−1

9.95 · 10
−1

St. Martin Island 6.50 · 10
−1

1.00 1.00

Ythan Estuary 9.85 · 10
−1

1.00 1.00

Little Rock 5.40 · 10
−1

1.00 1.00

Grassland 4.70 · 10
−1

3.95 · 10
−1

6.75 · 10
−1

s208 6.40 · 10
−1

7.50 · 10
−2

5.70 · 10
−1

s420 5.93 · 10
−1

3.25 · 10
−2

6.25 · 10
−1

Gnutella 08.08.2002 9.92 · 10
−1

3.04 · 10
−1

1.00

Gnutella 09.08.2002 6.05 · 10
−1

2.65 · 10
−1

6.85 · 10
−1

E .coli 1.80 · 10
−1

2 · 10
−1

3.45 · 10
−1

S. cerevisiae 2.35 · 10
−1

1.10 · 10
−1

2.65 · 10
−1

Table 11.8: Results of the Kolmogorov-Smirnov two-sample test between the different mod-
els for the Feed-Forward Loop.

Figure 11.3: Histograms and kernel density estimates of the density of subgraphs in the
different graphs. This visual clue hints that the cfg overestimates while the
ecfg understimates the number of motifs.
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11.2 On the Sequential Importance Sampling

The histograms of the ecfg are more similar to the histograms of the fdsm, but the mean is
usually lower. Therefore, when the ecfg is used, it can happen that the results are close to
the results the fdsm would yield (row 1, column 1 in Fig. 11.3) but on the other hand, this
is not guaranteed (row 2, columns 4 and row 3, column 3 in Fig. 11.3).

The other motifs do show very similar results in the sense of the Kolmogorov-Smirnoff
two-sample test, see Appendix 1. The versions of the cfg in comparison to the fdsm are
impractical in several ways. First, the cfg samples not uniformly at random from the family
of graphs [63, 8]. Second, the number of subgraphs is easily overestimated when counting
with the maximum approach. Third, when using the ecfg edges vanish non-uniformly (see
Section 11.1). Fourth, when using the ecfg the number of motifs can be underestimated
which is due to the lost edges. Van Hoorn and Litvak [39] suggest the ecfg as the best
model in their research since they want to compare to random and slightly different graphs
which follow the same distribution. For research that investigates the expected number of
a certain subgraph, changed degree sequences can skew the results. Therefore, we suggest
not to use any model of the cfg family for the network motif discovery process.

The first point was found by Milo et al. [62] and Newman [66], but in their work no al-
gorithm besides the edge swap algorithm, the fdsm, was under investigation that sampled
uniformly at random without resampling all graphs from a family of graphs. Therefore, in
the next section the sis is under investigation.

11.2 on the sequential importance sampling

The sis has the advantage of generating only simple graphs in comparison to the cfg.
The disadvantage compared to the fdsm is that the edges are generated according to a
probability distribution which is either uniform, degree based, or any other probability
distribution. sis and its method to choose neighbors of a node have been discussed only
shortly by Blitzstein and Diaconis [8] as well as DelGenio et. al. [21] for undirected graphs;
for the directed case there was no discussion which probability distribution should be
chosen but only the uniform distribution was proposed [49]. Again, this implies that a
node chooses uniformly at random from the set of allowed nodes, i.e., the set of nodes
which a node is not connected to already and which does not prohibit the generation of the
graph. The probability distribution which is used to choose neighbors is investigated in
this chapter as well. The distributions investigated are the uniform choice between possible
neighbors, as suggested by DelGenio et al. [49], and the distribution based on the remaining
degree, as suggested by Blitzstein and Diaconis [8]. usis is the abbreviation for the sis with
the uniform choice of nodes, dsis is the abbreviation for sis for which the choice of a new
neighbor is based on the remaining degree.

As for the cfg, the first subgraphs under investigation are the most simple subgraphs,
the Fork, and the Fan. These subgraphs should coincide with the number of subgraphs in
the fdsm, regardless of the probability distribution used.

Since both, usis and dsis generate simple graphs with a fixed degree sequence, they do
sample the simple subgraphs very well and without a fault. This behavior is expected when
the models generate only simple graphs since the number of Forks (Fans) for a node in a
simple graph is equal to the number of pairs (triples) of successors a node has. Thus, the
sum over the nodes is a constant for simple graphs. Thus, these results are non-exceptional,

99



11 different models under investigation

Graph FDSM uSIS dSIS

St. Marks Seagrass 8.99 · 10
2 ± 4.47 9.00 · 10

2 ± 4.25 9.01 · 10
2 ± 4.09

Silwood 9.16 · 10
2 ± 2.92 9.17 · 10

2 ± 3.03 9.16 · 10
2 ± 2.73

St. Martin Island 8.57 · 10
2 ± 4.33 8.55 · 10

2 ± 4.49 8.58 · 10
2 ± 5.65

Ythan Estuary 3.48 · 10
3 ± 6.18 3.49 · 10

3 ± 6.02 3.49 · 10
3 ± 6.73

Little Rock 2.85 · 10
4 ± 3.42 · 10

1
2.85 · 10

4 ± 1.49 · 10
1

2.85 · 10
4 ± 1.36 · 10

1

Grassland 1.42 · 10
2 ± 1.45 1.42 · 10

2 ± 9.40 · 10
−1

1.42 · 10
2 ± 1.22

s208 2.68 · 10
2 ± 1.93 2.68 · 10

2 ± 1.92 2.67 · 10
2 ± 2.07

s420 5.86 · 10
2 ± 2.11 5.86 · 10

2 ± 2.12 5.86 · 10
2 ± 2.08

Gnutella 08.08.2002 9.42 · 10
4 ± 6.14 9.42 · 10

4 ± 6.68 9.42 · 10
4 ± 6.63

Gnutella 09.08.2002 1.09 · 10
5 ± 5.39 1.09 · 10

5 ± 5.87 1.09 · 10
5 ± 5.39

E .coli 2.02 · 10
2 ± 5.72 · 10

−1
2.02 · 10

2 ± 5.43 · 10
−1

2.02 · 10
2 ± 7.26 · 10

−1

S. cerevisiae 3.27 · 10
2 ± 4.15 · 10

−1
3.27 · 10

2 ± 4.36 · 10
−1

3.27 · 10
2 ± 4.75 · 10

−1

Table 11.9: Number of Twopaths found in the respective models.

and the results regarding the other subgraphs are more interesting than for the most simple
ones.

Regardless of the way to measure the difference, counting the Twopath motifs in the
graphs drawn with the three models gives values which are quite similar. As a reminder,
the two-sample z-score as applied in the former section gave z-scores which were quite
large, but for some graphs not large enough to deny the possibility that the samples had
the same subgraph distribution. The Kolmogorov-Smirnov two-sample tests were more
explicit and showed that the distributions were indeed not the same. This indicates that
the graphs were also very different and from different families of graphs. Again, D-values
larger than 0.14 are indicators for different distributions of the subgraph counts.

The results in Table 11.10 show that it is more likely that the graphs are drawn with the
fdsm and any sis are from the same graph family. Exceptional are the graphs of Little
Rock, Ythan Estuary, Silwood, and St. Martin Island, for which the D-value indicates
that it is rather implausible that the number of subgraphs is from the same distribution
independent of the probability to choose a neighbors. Furthermore, large D-values can be
seen as a pointer that not only the distribution of the number of subgraphs is different,
but also that the graphs are not from the same distribution. For the Twopath, it seems
that the usis is the more likely to yield graphs which are similar regarding subgraphs to
the fdsm. Still, there are cases for which the dsis has a smaller D-value; despite the cases
mentioned above, the D-value is small enough in both cases such that for the Twopath
uniform choosing of neighbors seems to be the better alternative.

However, since the fdsm is considered as the gold standard for motif analysis, it has to
be investigated why the sis seems to be a viable alternative for some graphs but with some
it is not usable. We conducted several comparison based on the degree sequences of these
and the other graphs (skewness, correlation between in- and out-degree, the exponent of
the power law if the graph followed a power law, etc.), but none yielded a clear indicator.
The set of graphs used contains graphs with much more skewed, but also not as skewed
degree sequences as these four graphs. The Pearson correlation coefficient r between in-
and out-degree sequences is also not a sufficient indicator; one of the defective graphs has r
close to 0 (Silwood), for another r is close to 0.15 (Ythan Estuary), while the other two have
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11.2 On the Sequential Importance Sampling

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 9 · 10
−2

2.05 · 10
−1

1.80 · 10
−1

Silwood 3.20 · 10
−1

1.10 · 10
−1

2.40 · 10
−1

St. Martin Island 2.25 · 10
−1

1.45 · 10
−1

2.80 · 10
−1

Ythan Estuary 1.80 · 10
−1

2 · 10
−1

1.60 · 10
−1

Little Rock 3.30 · 10
−1

3.30 · 10
−1

9 · 10
−2

Grassland 1.20 · 10
−1

2.05 · 10
−1

1 · 10
−1

s208 1.40 · 10
−1

2.20 · 10
−1

3.60 · 10
−1

s420 4 · 10
−2

8 · 10
−2

1.20 · 10
−1

Gnutella 08.08.2002 1.30 · 10
−1

1.32 · 10
−1

6 · 10
−2

Gnutella 09.08.2002 1.25 · 10
−1

7 · 10
−2

1.20 · 10
−1

E .coli 1 · 10
−2

1.10 · 10
−1

1.20 · 10
−1

S. cerevisiae 5 · 10
−3

1.50 · 10
−2

1 · 10
−2

Table 11.10: Results of the Kolmogorov-Smirnov two-sample test between the different
models for the Twopath.

a negative r value. Still, Little Rock has a higher r than other graphs (s208 and s420 are
lower), such that this cannot be the only reason. A further check on the combined degree
distributions also gave no result, since the shape of the combined distribution of in- and
out-degree of these three graphs resembles the combined distributions of the s208 and s420

graphs, which do yield rather low values (comp. Fig. 11.4).
As a last option, we checked whether ∀v ∈ V : k2v <

∑
v∈V kv∧ j

2
v <
∑
v∈V jv∧ (kv + jv)

2 <∑
vinV (kv + jv) [17] and denoted the percentage of nodes which violated this condition.

Graph k j k+j

St Marks Seagrass 0.00 0.00 0.00

Silwood 5.84 0.00 3.25

St. Martin Island 0.00 6.67 4.44

Ythan Estuary 4.44 0.74 2.96

Little Rock 0.55 6.01 4.37

Grassland 0.00 1.14 1.14

s208 0.00 0.00 0.00

s420 0.00 0.00 0.00

Gnutella 08.09.2002 0.00 0.00 0.00

Gnutella 09.09.2002 0.00 0.00 0.00

E. coli 0.72 0.00 0.24

S. cerevisiae 1.02 0.00 0.29

Table 11.11: Percentage of nodes which violate the condition that the square of their out-
, in-, or combined degree should be smaller than the sum of the respective
degree sequence.

This is the only experiment with promising results. All graphs for which the simple in-
dependence model was off have large values in at least one of the measures. The Grassland
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11 different models under investigation

(a) Little Rock (b) Silwood

(c) St. Martin Island (d) s208

(e) s420 (f) E. Coli

Figure 11.4: The in-, out-, and joint degree-distributions of the 11.4a Little Rock graph, 11.4b
the Silwood graph, 11.4c the St. Martin Island, 11.4d the s208 graph, 11.4e the
s420 graph, and 11.4f the E. coli graph.

102



11.2 On the Sequential Importance Sampling

Graph FDSM uSIS dSIS

St. Marks Seagrass 1.84 · 10
2 ± 1.06 · 10

1
1.81 · 10

2 ± 1.07 · 10
1

1.81 · 10
2 ± 1.15 · 10

1

Silwood 1.71 · 10
2 ± 1.60 · 10

1
1.66 · 10

2 ± 1.43 · 10
1

1.68 · 10
2 ± 1.98 · 10

1

St. Martin Island 2.50 · 10
2 ± 1.29 · 10

1
2.29 · 10

2 ± 1.27 · 10
1

2.30 · 10
2 ± 1.44 · 10

1

Ythan Estuary 6.68 · 10
2 ± 3.04 · 10

1
6.33 · 10

2 ± 3.46 · 10
1

6.29 · 10
2 ± 3.17 · 10

1

Little Rock 1.06 · 10
4 ± 1.45 · 10

2
9.72 · 10

3 ± 1.44 · 10
2

9.79 · 10
3 ± 1.64 · 10

2

Grassland 1.21 · 10
1 ± 2.90 1.20 · 10

1 ± 2.31 1.20 · 10
1 ± 3.48

s208 2.34 ± 1.38 1.93 ± 1.35 2.48 ± 1.84

s420 2.81 ± 1.68 2.79 ± 1.23 3.56 ± 1.58

Gnutella 08.08.2002 6.22 · 10
2 ± 3.03 · 10

1
6.17 · 10

2 ± 2.55 · 10
1

6.22 · 10
2 ± 2.62 · 10

1

Gnutella 09.08.2002 5.41 · 10
2 ± 2.54 · 10

1
5.34 · 10

2 ± 2.54 · 10
1

5.44 · 10
2 ± 2.68 · 10

1

E .coli 7.94 ± 3.39 7.50 ± 3.15 9.53 ± 4.10

S. cerevisiae 1.18 · 10
1 ± 3.71 1.17 · 10

1 ± 3.05 1.08 · 10
1 ± 3.93

Table 11.12: Number of Feed-Forward Loops found in the respective models.

graph has the lowest score of these “bad” graphs, thus for some motifs the sampling with
the importance sampling algorithm may have similar results to the results of the fdsm. The
scores of the E. coli graph and the S. cerevisiae graph are both larger than 0 but still small
and as the analysis shows, they did not pose a problem.

For the Feed-Forward Loop, this is even more pronounced (see Table 11.12). The D-
values are rather high for all graphs which belong to the FoodWeb-category in the columns
that compare with the fdsm. The other categories are still in a good range. The Gnutella
graphs have the highest value of the other categories, but the results indicate that they are
still acceptable as being from the same distribution. The choice of neighbor also influences
the result for this subgraph. Thus, the algorithms are not interchangeable.

For all other subgraphs, this behavior is the same - the FoodWeb-category graphs yield
high D-values when comparing the fdsm and any sis. For the remaining graphs, the com-
parison via the Kolmogorov-Smirnov two-sample test yields different results depending on
the model used (see Appendix 2). While the number of subgraphs of graphs drawn with
usis does yield values that are either below or only slightly above the threshold which is
used to decide whether the samples are from the same distribution, the dsis shows differ-
ent results. Often, when the comparison of fdsm and usis is close to the threshold, the
comparison of fdsm and dsis yields a D-value which is above the threshold (for example,
see Tables 28, 32).

When the two-sample z-statistic is used for the calculation whether the samples are from
the same distribution, the results are different to some extent. While the z-statistic is of-
ten |2| ≤ z < |3.5| for both models compared to the fdsm, the result does not necessarily
coincide with the result of the Kolmogorov-Smirnov two-sample test. For example, con-
sidering the D-scores (see Table 32) and the z-scores (see Table 11.15) of the St. Marks
Seagrass graph concerning the Out-Fan, the results of the first test imply that dsis is a
better fit while the z-scores suggest the opposite. Considering the Silwood graph, it is the
other way around, while for the two electronic circuits s208 and s420 the results both point
to the usis as a better fit.

It is important to keep in mind that the general form of the distribution of the number
of subgraphs in the family of graphs is unknown, and it remains unknown whether the
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11 different models under investigation

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 2.40 · 10
−1

2.10 · 10
−1

1.50 · 10
−1

Silwood 2.90 · 10
−1

2.80 · 10
−1

1.80 · 10
−1

St. Martin Island 6.60 · 10
−1

6.75 · 10
−1

2.10 · 10
−1

Ythan Estuary 5.25 · 10
−1

6.05 · 10
−1

1.60 · 10
−1

Little Rock 1.00 1.00 3.10 · 10
−1

Grassland 9.50 · 10
−2

2.10 · 10
−1

2.70 · 10
−1

s208 1.55 · 10
−1

6.50 · 10
−2

1.20 · 10
−1

s420 1 · 10
−1

2 · 10
−1

2.70 · 10
−1

Gnutella 08.08.2002 1.63 · 10
−1

9.73 · 10
−2

1.10 · 10
−1

Gnutella 09.08.2002 1.75 · 10
−1

1 · 10
−1

1.70 · 10
−1

E .coli 1.30 · 10
−1

1.60 · 10
−1

2.60 · 10
−1

S. cerevisiae 1.20 · 10
−1

1.40 · 10
−1

2.30 · 10
−1

Table 11.13: Results of the Kolmogorov-Smirnov two-sample test between the different
models for the Feed-Forward Loop.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 1.65 · 10
−1

1.40 · 10
−1

1.20 · 10
−1

Silwood 2.25 · 10
−1

2.80 · 10
−1

3.30 · 10
−1

St. Martin Island 4.05 · 10
−1

4.30 · 10
−1

2 · 10
−1

Ythan Estuary 1.35 · 10
−1

3.35 · 10
−1

4.20 · 10
−1

Little Rock 8.80 · 10
−1

8 · 10
−1

2 · 10
−1

Grassland 1.55 · 10
−1

1.05 · 10
−1

2 · 10
−1

s208 6.25 · 10
−2

1.75 · 10
−2

8 · 10
−2

s420 2 · 10
−2

7 · 10
−2

5 · 10
−2

Gnutella 08.08.2002 1.98 · 10
−1

1.51 · 10
−1

6 · 10
−2

Gnutella 09.08.2002 6 · 10
−2

7 · 10
−2

9 · 10
−2

E .coli 9 · 10
−2

2.25 · 10
−1

2.40 · 10
−1

S. cerevisiae 1.30 · 10
−1

1.20 · 10
−1

1.70 · 10
−1

Table 11.14: Results of the Kolmogorov-Smirnov two-sample test between the different
models for the Out-Fan.

104



11.3 A Faster Option to Calculate the Expected Number of Motifs

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 2.58 1.94 5.00 · 10
−1

Silwood 1.14 1.30 · 10
−1

5.49 · 10
−1

St. Martin Island 6.27 7.36 7.72 · 10
−1

Ythan Estuary 2.47 · 10
−1

3.35 2.70

Little Rock 2.21 · 10
1

2.14 · 10
1

1.61

Grassland 3.19 1.93 4.35

s208 1.70 2.55 1.84

s420 8.55 · 10
−1

2.24 1.35

Gnutella 08.08.2002 2.76 3.08 1.94 · 10
−1

Gnutella 09.08.2002 9.97 · 10
−3

1.08 9.58 · 10
−1

E .coli 1.08 · 10
−1

2.74 2.33

S. cerevisiae 4.59 · 10
−1

1.63 1.99

Table 11.15: Results of the two-sample z-score calculation between the different models
without weights for the Out-fan motif.

z-scores can be applied or not; most likely, it also will not be known due to the size of the
family of graphs. Even for small, undirected graphs (Chesapeake Bay, 33 nodes, 71 edges),
the estimate for the number of graphs which can be generated is (1.533± 0.008) · 1057 [8].
For larger graphs, the number will only become even larger. For directed graphs, the
estimation of the number of graphs is not a direct byproduct of the sampling process, but
the number of graphs in the family of graphs will not be smaller. The general form of the
distribution is not known for a simple reason. It may be that the fdsm with O

(
m2
)

edge-
swaps traverses some parts of the underlying Markov-Chain, but depending on the number
of samples, structure of the graph which is analyzed, and maybe even more features, it is
not guaranteed that the complete scope of results is sufficiently covered. Ray et al. [76]
showed that when using O (cm) edge-swaps there is no difference between c ∼ 5 and
c = 100 for some measures. It has to be pointed out that this can be important, and the
number of samples has to be considered carefully.

Still, the uniform choice of a neighbor yields results closer to that of the fdsm, even
though it may take longer than the degree based choice [8]. Blitzstein and Diaconis [8] as
well as Kim et al. [21] gave worst-case runtime estimates of their algorithm which are in
O
(
n3
)
, but claim that the algorithm is usually much faster. On the other hand, the fdsm

needs O (m log (m)) to O
(
m2
)

swaps (plus additional time for checks)
In fact, all sampling approaches are slow because they have to sample and then count.

Therefore, in the next section, a set of equations is developed and tested against the fdsm to
see whether the results of the equations are good enough to estimate the expected number
of motifs.

11.3 a faster option to calculate the expected number of motifs

Equations for estimating measures can be developed using the basic equation of the sim.
While the basic equation 3.5 for undirected graphs has a dividend of 2m, the equation for
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11 different models under investigation

directed graphs has to be changed. First, the equation has to include the difference between
in- and out-degree; second, the dividend changes to m, such that

pu,v =
kujv

m
(11.1)

is the probability to connect node u to node v. Of course, this is only an approximation of a
probability, and it is possible that pu,v is larger than 1, as seen in the undirected graphs. In
this chapter, I explore the possibility to use equation 11.1 to calculate the expected number
of subgraphs.

The two basic subgraphs, Fork and Fan, are the first two subgraphs for which equations
are developed. Considering the structure of the Fork, two edges go from one node to two
other nodes, i.e., edges (u, v) and (u,w). Since this subgraph has two nodes which are
isomorphous, i.e., they both have in- and out-degree (0, 1), the result is divided by the
factorial of the number of isomorphous nodes, 2, to prevent double counting.

1

2

∑
u,v,w

kujv

m

(ku − 1) jw
m

=
1

2m2

∑
u,v,w

(
k2u − ku

)
jvjw (11.2)

〈j〉=
∑

w∈V jw
n=

n〈j〉
2m2

∑
u,v

(
k2u − ku

)
jv

〈k〉= n
m=
n〈j〉2
2m〈k〉

∑
u

(
k2u − ku

)
=
n
(
〈k2〉− 〈k〉

)
〈j〉2

2〈k〉2

〈j〉=〈k〉
=

n
(
〈k2〉− 〈k〉

)
2

(11.3)

This equation coincides with the straightforward approach; to get the number of Forks,
it is possible to count for each node how many pairs of successors it has.

∑
v∈V

(
kv

2

)
=
∑
v∈V

k2v − kv
2

(11.4)

=
n
(
〈k2〉− 〈k〉

)
2

(11.5)

For the Fan, it would be how many triples of successors a node has.

∑
v∈V

(
kv

3

)
=
∑
v∈V

k3v − 3k
2
v + 2kv
6

(11.6)

=
n
(
〈k3〉− 3〈k2〉+ 2〈k〉

)
6

(11.7)

106



11.3 A Faster Option to Calculate the Expected Number of Motifs

For the Fan, there are three nodes which are isomorphous, i.e. (0, 1). Therefore, the
equation is divided by 3! = 6.

1

6

∑
u,v,w,x

kujv

m

(ku − 1) jw
m

(ku − 2) jx
m

=
1

6m3

∑
u,v,w,x

(
k3u − 3k

2
u + 2ku

)
jujwjx (11.8)

=
n〈j〉
6m3

∑
u,v,w

(
k3u − 3k

2
u + 2ku

)
jujv

=
n〈j〉2
6m2〈k〉

∑
u,v

(
k3u − 3k

2
u + 2ku

)
ju

=
n〈j〉3
6m〈k〉2

∑
u,v

(
k3u − 3k

2
u + 2ku

)
=
n
(
〈k3〉− 3〈k2〉+ 2〈k〉

)
6

(11.9)

A more interesting question is the calculation of the variance and thus the standard
deviation of the number of subgraphs. In theory, it is straightforward. The simple indepen-
dence assumption that the equations are based on allows calculating the variance of the
subgraph occurrence without problems. Now, consider the following. A graph which has
many low degree nodes and two hubs, i.e., high degree nodes. These high degree nodes
have a higher probability to be connected. Thus, the likelihood that they are part of more
than one subgraph is increased as well. Therefore, the occurrence of a subgraph would be
judged as a dependent event, i.e., it is not possible to calculate the variance of a subgraph
under the assumption of independence, but the equation for correlated variables has to be
used.

First, the variance of an edge has to be calculated. This is done under the assumption
that edges either are between two nodes or they are not. There are m experiments done to
create edges (provided that a graph with m edges is to be created). Thus, the variance of
an edge is

V (e) = m
kujv

m2

(
1−

kujv

m2

)
(11.10)

=
kujv

m

(
1−

kujv

m2

)
(11.11)

=
kujv

m
−
k2uj

2
v

m3
. (11.12)

For this equation it was used that the expected number of edges between two nodes is
given as kujv

m and there are m edges, thus the probability of an edge is assumed to be kujv
m2 .

An approach to calculate the variance of not necessarily independent variables was given
by Goodman [31, 32]. For two variables Goodman states the variance of not necessarily
independent variables is

V (xy) = µ2xV (y) + µ2yV (x) + 2µxµyCov (x− µx,y− µy)

+2µxCov
(
x− µx,y2 − 2yµy + µ2y

)
+ 2µyCov

(
x2 − 2xµx + µ

2
x

)
+Cov

(
x2 − 2xµx + µ

2
x,y

2 − 2yµy + µ
2
y

)
− (Cov (x− µx,y− µy))

2

, (11.13)
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11 different models under investigation

Graph FDSM SIM

St. Marks Seagrass 8.20 · 10
2 ± 0.00 8.20 · 10

2 ± 2.07 · 10
1

Silwood 3.67 · 10
3 ± 0.00 3.67 · 10

3 ± 4.86 · 10
1

St. Martin Island 7.64 · 10
2 ± 0.00 7.64 · 10

2 ± 2.29 · 10
1

Ythan Estuary 4.47 · 10
3 ± 0.00 4.47 · 10

3 ± 6.04 · 10
1

Little Rock 2.55 · 10
4 ± 0.00 2.55 · 10

4 ± 1.74 · 10
2

Grassland 2.38 · 10
2 ± 0.00 2.38 · 10

2 ± 8.28

s208 1.64 · 10
2 ± 0.00 1.64 · 10

2 ± 2.93

s420 3.80 · 10
2 ± 0.00 3.80 · 10

2 ± 3.07

Gnutella 08.08.2002 9.35 · 10
4 ± 0.00 9.35 · 10

4 ± 1.48 · 10
1

Gnutella 09.08.2002 1.22 · 10
5 ± 0.00 1.22 · 10

5 ± 1.44 · 10
1

E .coli 4.82 · 10
3 ± 0.00 4.82 · 10

3 ± 3.92 · 10
1

S. cerevisiae 1.18 · 10
4 ± 0.00 1.18 · 10

4 ± 4.01 · 10
1

Table 11.16: Number of Forks found in the respective models.

while the equation for three and more variables is much more complicated. An alternative
form of the equation is given by Goodman [32] as

V (xy) = µ2xµ
2
y

{
E
{
[δx + δy + δxδy]

2
}
−A2

}
, (11.14)

where δi =
p(i)−E[i]

E[i] and A = B− 1 = M
ΠiE[i] − 1 =

E[Πip(i)]
ΠiE[i] − 1. Observe, that δx = δy since

kujv
m2 − kujv

m
kujv
m

= m
kujv −mkujv
m2kujv

(11.15)

=
1

m
− 1. (11.16)

Using equations 11.14 and 11.16 to get the variance of the Fork subgraph yields the follow-
ing equation

∑
u,v,w∈V

(
kujv

m

(ku − 1) jw
m

)2{
E

{[(
1

m
− 1

)4
+ 4

(
1

m
− 1

)3
+ 4

(
1

m
− 1

)2]}

−

(
m2
(
〈k2〉− 〈k〉

)
〈k〉2 (k2u − ku)

2
j2vj
2
w

−
m
(
k2u − ku

)2
〈k〉 (k2u − ku) jvjw

+ 1

)} (11.17)

=

(
〈k4〉− 2〈k3〉+ 〈k2〉

)
〈j2〉2

m〈k〉3

((
1

m
− 1

)4
+ 4

(
1

m
− 1

)3
+ 4

(
1

m
− 1

)2
− 1

)

−

(
〈k2〉− 〈k〉
〈k〉2

)2 (
1

m2
− 2

). (11.18)

Evaluating this equation and taking the square root yields rather large values, see Ta-
ble 11.16.

While the number of subgraphs itself is estimated well, the standard deviation is off.
Note that the number of Forks (and Fans) in a family of graphs with fixed degree sequence
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11.3 A Faster Option to Calculate the Expected Number of Motifs

is constant, and the standard deviation of samples is, therefore, zero. However, the model-
ing approach with the sim results in values larger than zero, which is obviously not good
for these subgraphs.

For the Fan, the standard deviation is harder to calculate. According to Goodman [32], a
general form of the variance is

V (Πixi) = Πiµ
2
i


∑

i

δi +
∑
i,j,i<j

δiδj + · · ·+Πiδi

2 −A2
 . (11.19)

Calculating the variance of the Fan subgraph based on equation 11.19 yields for most
graphs negative variances. Therefore, no standard deviation can be calculated. This is true
for more complex subgraphs as well. To decide whether a subgraph is a network motif,
some measure of variation is needed. Thus, as an approximation of the variance and the
standard deviation, I decided to use another equation provided by Goodman [31, 32]. The
general equation to calculate the variance of the product of independent variables is given
as

V (Πixi) = Πiµ
2
i

∑
i

V (xi)

µ2i
+
∑
i,j,i<j

V (xi)

µ2i

V (xj)

µ2j
+ · · ·+Πi

V (xi)

µ2i

 . (11.20)

By using equation 11.20 we lose some information, i.e., it is possible that all of a subgraph
use one same edge—but the equation will not acknowledge this and thus misestimate the
variance.

Still, some estimate is better than no estimate. As δi before, the square of the coefficient
of variation simplifies to a certain degree.

V (xi)

µ2i
=
mkujv

m2

(
1− kujv

m2

)
(
kujv
m

)2 (11.21)

=
m

kujv
−
1

m
(11.22)
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11 different models under investigation

Graph FDSM SIM

St. Marks Seagrass 2.26 · 10
3 ± 0.00 2.26 · 10

3 ± 1.38 · 10
2

Silwood 3.01 · 10
4 ± 0.00 3.01 · 10

4 ± 5.15 · 10
2

St. Martin Island 1.76 · 10
3 ± 0.00 1.76 · 10

3 ± 1.31 · 10
2

Ythan Estuary 3.13 · 10
4 ± 0.00 3.13 · 10

4 ± 6.29 · 10
2

Little Rock 2.18 · 10
5 ± 0.00 2.18 · 10

5 ± 2.02 · 10
3

Grassland 3.87 · 10
2 ± 0.00 3.87 · 10

2 ± 4.67 · 10
1

s208 2.22 · 10
2 ± 0.00 2.22 · 10

2 ± 2.08 · 10
1

s420 6.32 · 10
2 ± 0.00 6.32 · 10

2 ± 3.05 · 10
1

Gnutella 08.08.2002 3.09 · 10
5 ± 0.00 3.09 · 10

5 ± 5.13 · 10
2

Gnutella 09.08.2002 4.57 · 10
5 ± 0.00 4.57 · 10

5 ± 6.21 · 10
2

E .coli 7.13 · 10
4 ± 0.00 7.13 · 10

4 ± 6.65 · 10
2

S. cerevisiae 1.50 · 10
5 ± 0.00 1.50 · 10

5 ± 6.91 · 10
2

Table 11.17: Number of Fans found in the respective models.

From equations 11.20, 11.22 we derive for the Fan

∑
u,v,w

(
kujv

m

(ku − 1) jw
m

(ku − 2) jx
m

)2 ((
m

kujv
−
1

m

)
+

(
m

(ku − 1) jw
−
1

m

)
+

(
m

(ku − 2) jx
−
1

m

)
+

(
m

kujv
−
1

m

)(
m

(ku − 1) jw
−
1

m

)
+

(
m

kujv
−
1

m

)(
m

(ku − 2) jx
−
1

m

)
+

(
m

(ku − 1) jw
−
1

m

)(
m

(ku − 2) jx
−
1

m

)
+

(
m

kujv
−
1

m

)(
m

(ku − 1) jw
−
1

m

)(
m

(ku − 2) jx
−
1

m

))
(11.23)

=

(
1−

1

m

)2 〈j2〉
m〈k3〉

(
3〈k5〉− 15〈k4〉+ 26〈k3〉− 18〈k2〉+ 4〈k〉

)
+

(
1−

1

m

)
j2

〈k〉2
(
3〈k4〉− 12〈k3〉+ 15〈k2〉− 6〈k〉

)
−

(
3−

3

m
+
1

m2

)
〈k6〉− 6〈k5〉+ 13〈k4〉− 12〈k3〉+ 4〈k2〉

m3〈k〉4

+n
(
〈k3〉− 3〈k2〉+ 2〈k〉

)
(11.24)

The intermediate steps are left out since they only involve multiplication, taking averages,
and rearranging the equation.

Observe in Table 11.17, that this approximation seems to be not very good—when using
graph generating models, this amount of discrepancy between the standard deviation in
the fdsm and the model under investigation would already be enough to discard the model.
Still, the expected number of subgraphs is calculated well. Too see whether the expected
number of subgraphs is approximated as well as for Forks and Fans, other subgraphs are
considered as well.

110



11.3 A Faster Option to Calculate the Expected Number of Motifs

Motif Equation

Fork (〈k2〉−〈k〉)n
2

Fan (〈k3〉−3〈k2〉+2〈k〉)n
6

Twopath n · 〈kj〉 (revised: n〈kj〉− 〈kj〉
2

〈k〉2 )

Double-
Join

(〈j2〉−〈j〉)(〈k2j〉−〈kj〉)
2

2m〈k〉3

Feed-
Forward
Loop

(〈k2〉−〈k〉)(〈j2〉−〈j〉)〈kj〉
〈k〉3

Threecycle 〈kj〉3
3〈k〉3

Fourcycle 〈kj〉4
4〈k〉4

Complete (〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
3

6m3〈k〉3

Out-Fan (〈j2〉−〈j〉)
2
(〈k2j〉−〈kj〉)(〈k3〉−3〈k2〉+2〈k〉)

2m〈k〉4

In-Fan (〈k3〉−3〈k2〉+2〈k〉)(〈j3〉−3〈j2〉+2〈j〉)〈kj〉2
2m〈k〉4

Biparallel (〈k2〉−〈k〉)(〈j2〉−〈j〉)〈kj〉2
2〈k〉4

Table 11.18: Equations developed based on the basic equation 11.1, following the approach
of equation 11.3 and equation 11.9

For all subgraphs under investigation, the equations are given in Table 11.18. Some
are quite simple, some more complex, reflecting the structure of the underlying subgraph-
structure. Still, deriving the equations and calculating them is much faster than using
simulations to find the expected occurrences of subgraphs. The equations for the basis-
check perform well enough, such that the advanced motifs are under investigation in the
following; the standard deviation, on the other hand, is much harder to calculate and up
to now the results have been not satisfactory.

The next subgraph under investigation is the Twopath. The results are shown in Ta-
ble 11.19. The means shown in Table 11.19 for the sim are good approximations of the
result of the simulations using the fdsm. Still, a hand-waving comparison is not accu-
rate. Thus, some measure of quality is needed. Even though for comparison the z-score
was avoided when possible, since the real distribution of the number of subgraphs is not
known, for single-value tests it is the most prominent way to test whether a value can be
from a given dataset. Thus, the test is whether the result of the equation of the sim could
be a result of the fdsm. The z-scores for the Twopath are within the bounds by Kashtan et
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11 different models under investigation

Graph FDSM SIM

St. Marks Seagrass 8.99 · 10
2 ± 4.47 9.16 · 10

2 ± 3.67 · 10
1

Silwood 9.16 · 10
2 ± 2.92 9.22 · 10

2 ± 3.79 · 10
1

St. Martin Island 8.57 · 10
2 ± 4.33 8.72 · 10

2 ± 3.74 · 10
1

Ythan Estuary 3.48 · 10
3 ± 6.18 3.52 · 10

3 ± 7.93 · 10
1

Little Rock 2.85 · 10
4 ± 3.42 · 10

1
2.86 · 10

4 ± 2.15 · 10
2

Grassland 1.42 · 10
2 ± 1.45 1.43 · 10

2 ± 1.30 · 10
1

s208 2.68 · 10
2 ± 1.93 2.70 · 10

2 ± 1.68 · 10
1

s420 5.86 · 10
2 ± 2.11 5.88 · 10

2 ± 2.46 · 10
1

Gnutella 08.08.2002 9.42 · 10
4 ± 6.14 9.42 · 10

4 ± 3.10 · 10
2

Gnutella 09.08.2002 1.09 · 10
5 ± 5.39 1.09 · 10

5 ± 3.32 · 10
2

E .coli 2.02 · 10
2 ± 5.72 · 10

−1
2.02 · 10

2 ± 1.50 · 10
1

S. cerevisiae 3.27 · 10
2 ± 4.15 · 10

−1
3.27 · 10

2 ± 1.88 · 10
1

Table 11.19: Number of Twopaths found in the respective models.

al. [48], i.e., the z-scores of the Twopath subgraph are smaller than 5. Still, for the graphs
from the biology category, the results are rather high. Considering the equation given in
Table 11.18, this can be alleviated. The base equation is

Twopath =
∑

u,v,w∈V ,u 6=v 6=w

kujv

m

kvjw

m
(11.25)

However, by taking the average of the degrees, the nodes are not guaranteed to be disjunct.
This implies, that instead of only Twopaths, also reciprocal edges, (u, v) , (v,u), are included
in this equation as well. Thus, subtracting the average number of reciprocal edges should
give results closer to the values of the fdsm.

Reciprocity =
1

2

∑
u,v∈V

kujv

m

kvju

m
(11.26)

The factor 12 is due to the degree structure of the subgraph; both nodes have the same in and
out-degree. While this equation would be necessary to estimate the number of reciprocal
subgraphs, in the correction of equation 11.25 it does not appear. The reason for this is the
straightforward application of the idea of the Twopath: equation 11.25 overestimates for
combinations such as (u, v) , (v,u). Since there is no factor in this equation, none is used for
the correction in the revised equation. Of course, some errors are still made when applying
these equations, i.e., self-loops are still included by combinations such as (u,u) , (u, v). To
avoid counting combinations which are not permitted, the averages have to be considered
more carefully. Building averages allows for combinations such as the reciprocal, but also
other combinations in which u is the only node considered. Thus, subtracting nodes which
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11.3 A Faster Option to Calculate the Expected Number of Motifs

are still to be summed over from the averages should yield better results. For the Twopath,
this implies the following∑

u,v,w∈V ,u 6=v 6=w

kujv

m

kvjw

m
=

∑
u,v∈V ,u 6=v

kujvkv

m2

(
n〈j〉− ju

n
−
jv

n

)
(11.27)

=
∑

u,v∈V ,u 6=v

(
kukvjv

m2
n〈j〉− kujukvjv

m2n
−
kukvj

2
v

m2n

)
(11.28)

=
∑
u∈V

ku

m2
n〈j〉

(
n〈kj〉− kuju

n

)
−
∑
u∈V

kuju

m2n

(
n〈kj〉− kuju

n

)

−
∑
u∈V

ku

m2n

(
n〈kj2〉− kuj

2
u

n

)
(11.29)

= n3
〈k〉〈kj〉〈j〉
m2

−n
〈j〉〈k2j〉
m2

−n
〈kj〉2
m2

−n
〈kj2〉〈k〉
m2

+ 2n
〈k2j2〉
m2

(11.30)

= n〈kj〉− 〈k
2j〉
m

−
〈kj〉2
m〈k〉 −

〈kj2〉
m

+ 2
〈k2j2〉
m2n

(11.31)

This equation was tested, but the results coincide for most tested subgraphs with the results
of the equations given in Table 11.18. Thus, I will use the basic equations for the subgraphs.

On the other hand, the more complex subgraphs are much better estimated by the corre-
sponding equation. Moreover, considering the standard deviation, there is an even simpler
approximation than the assumption of independence of the edges which participate in a
subgraph. For the Twopath, we investigated the equation and its results closer. There is one
dominant term in equation 11.31, that avoids tuples such as (u,u,u): the third term, that
is 2

n times the expected number of reciprocal subgraphs. Thus, this approach is promising
and will be considered for other subgraphs as well.

Observe the same happening in equation 11.24, which has as a last term the equation
given in Table 11.18 without a factor of 1

6 . This term is also the dominant, largest term
of equation 11.24. The rest of the equation is neglibgble in contrast. Considering that for
more complicated subgraphs the equations becoming more complex and much longer, but
that they still contain the equation for the estimated number of subgraphs, it is easier to
use it to approximate the standard deviation. Thus, from now on the standard deviation is
approximated by the square root of the estimated number of motifs. It is important to note
that this is not exact, but for the purpose of this research, it is good enough. We stress, that
when the equations are used in applied research, using this approximation may result in
erroneous rejections or acceptance as a network motif.

As before, the next subgraph under investigation is the Feed-Forward Loop. The re-
sults of the equation are shown in Table 11.20. Overall, the results are quite good for
most graphs. This is reflected in the statistics. The z-statistic regarding the occurrence of
the Feed-Forward Loop in comparison to the fdsm is in almost all graphs below 1 (see
Table 11.21), such that it seems plausible to use equations instead of time-consuming simu-
lations. Still, the Ythan Estuary graph and the Little Rock graph are examples which show
that the equations are not precise estimates. As can be seen in Appendix 3 in Tables 35

to 40, the average number of subgraphs of these two graphs are hard to estimate with the
equations. In particular, the high estimate for Complete subgraphs in the Ythan Estuary
graph (cf. Table 35) shows that the equations are not the best solution. Since the equa-
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11 different models under investigation

Graph FDSM SIM

St. Marks Seagrass 1.84 · 10
2 ± 1.06 · 10

1
1.74 · 10

2 ± 1.95 · 10
1

Silwood 1.71 · 10
2 ± 1.60 · 10

1
1.72 · 10

2 ± 2.17 · 10
1

St. Martin Island 2.50 · 10
2 ± 1.29 · 10

1
2.35 · 10

2 ± 2.56 · 10
1

Ythan Estuary 6.68 · 10
2 ± 3.04 · 10

1
8.31 · 10

2 ± 6.34 · 10
1

Little Rock 1.06 · 10
4 ± 1.45 · 10

2
1.03 · 10

4 ± 1.83 · 10
2

Grassland 1.21 · 10
1 ± 2.90 1.23 · 10

1 ± 5.33

s208 2.34 ± 1.38 2.33 ± 1.63

s420 2.81 ± 1.68 2.72 ± 1.71

Gnutella 08.08.2002 6.22 · 10
2 ± 3.03 · 10

1
6.22 · 10

2 ± 2.58 · 10
1

Gnutella 09.08.2002 5.41 · 10
2 ± 2.54 · 10

1
5.44 · 10

2 ± 2.40 · 10
1

E .coli 7.94 ± 3.39 7.49 ± 3.39

S. cerevisiae 1.18 · 10
1 ± 3.71 1.16 · 10

1 ± 3.93

Table 11.20: Number of Feed-Forward Loops found in the respective models.

Graph z-scorefdsm z-scoresim two-sample z-score

St. Marks Seagrass 0.93 0.75 0.58

Silwood 0.09 0.12 0.07

St. Martin Island 1.19 1.00 0.76

Ythan Estuary 5.37 5.66 3.90

Little Rock 1.93 2.76 1.58

Grassland 0.06 0.05 0.04

s208 0.00 0.00 0.00

s420 0.06 0.06 0.04

Gnutella 08.08.2002 0.01 0.01 0.01

Gnutella 09.08.2002 0.10 0.11 0.08

E .coli 0.13 0.16 0.10

S. cerevisiae 0.05 0.05 0.04

Table 11.21: z-score of Feed-Forward Loops comparing the sim with the range of values
of the fdsm, z-score of the mean of the fdsm compared to the sim, and the
two-sample z-statistic of the two models, fdsm and sim.
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11.3 A Faster Option to Calculate the Expected Number of Motifs

tions are only considered as an approximation, it can be good enough, but they have to be
handled with care when the result is interpreted.

A possible way to test whether the sim can be used to approximate the number of
subgraphs is shown in the following. Comparing the average adjacency matrix, i.e., the
average of the adjacency matrices of the sampled graphs to the expected probability of
connections with the sim, yields an indicator of whether the results of the equations may
be reasonable. The comparison is edgewise, and one of the easiest ways is a visualiza-
tion of this. In Fig. 11.5 for four graphs this is tested. The plots are akin to P-P plots

(a) E. coli (b) S. cerevisiae

(c) Little Rock (d) Ythan Estuary

Figure 11.5: Depicted is the average occurrence of an edge in the fdsm versus the probabil-
ity of an edge calculated in the SIM. Observe that the 11.5a E. coli and 11.5b
S. cerevisiae are almost perfectly aligned with only small deviations, while
the 11.5c Little Rock and 11.5d Ythan Estuary show large deviations for some
edges.

or Q-Q plots, with the difference that they have on the x-axis the sim probabilities, on
the y-axis the fdsm probabilities, instead of quantiles or the cumulative distribution func-
tion. The perfect plot would be a diagonal, or clustered closely around the diagonal. The
closer the estimates are around the identity, the better are the results that the equations
yield. In fact, the s208, the s420, and the Gnutella graphs are even more tightly clus-
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11 different models under investigation

tered around the identity line than the presented graphs (see Fig. 11.6). Another pos-
sible estimator error is the percentage of nodes v violating any of following conditions:
k2v <

∑
u∈V ku ∧ j

2
v <

∑
u∈V ju ∧ (kv + jv)

2 <
∑
u∈V (ku + ju). The results are shown in

Table 11.22.

Graph k j k+j

St Marks Seagrass 0.00 0.00 0.00

Silwood 5.84 0.00 3.25

St. Martin Island 0.00 6.67 4.44

Ythan Estuary 4.44 0.74 2.96

Little Rock 0.55 6.01 4.37

Grassland 0.00 1.14 1.14

s208 0.00 0.00 0.00

s420 0.00 0.00 0.00

Gnutella 08.09.2002 0.00 0.00 0.00

Gnutella 09.09.2002 0.00 0.00 0.00

E. coli 0.72 0.00 0.24

S. cerevisiae 1.02 0.00 0.29

Table 11.22: Percentage of nodes violating the condition that the square of their out-, in-,
or combined degree should be smaller than the sum of the respective degree
sequence.

As stated before, the Little Rock graph, the Ythan Estuary graph, the Silwood graph, the
St. Martin Island graph, and the Grassland graph do all show values larger than 1% for
this measure—and considering the results show in Appendix 3, for these graphs the results
are often not as good as for the other graphs.

Additionally, in the plot is the absolute mean error of the expected probability of the
samples from fdsm and the probabilities of an edge calculated with the sim. Graphs which
are very close to the optimal line show lower values. To make this point even more clear,
histograms of the observed distributions in graphs generated with the fdsm are shown
together with the estimated distributions of the sim in Figs. 11.7.

Still, the equations are good estimators for the number of subgraphs even for graphs like
Little Rock. The equations of the sim show surprisingly good results. However, for the
Bifan the results are remarkably bad.

Observe in Table 37, that for almost all graphs the equation overestimates the number of
occurrences of this subgraph. In Table 11.24, the z-score of the calculated expected value
versus the samples of the fdsm, the average number of occurrences in the fdsm versus
the calculated values of the sim, and the two-sample z-statistic are shown for the Bifan
subgraph. While for about half the graphs the results are good, i.e., |z| < 1, for the other
half the results are worse by far; even for small graphs as the E. coli graph, the z-statistic is
rather large and the result of the equation is rather unlikely to be from the same distribution
as the results of the sampling (and vice versa).

For the Twopath, the equation does count some subgraphs which were not intended, i.e.,
instead of keeping u 6= v,u 6= w, v 6= w, the averages allowed implicitly for combinations
like (u, v,u) or, even worse, (u,u,u). Subtracting the estimated number of reciprocal sub-
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(a) s208 (b) s420

(c) Gnutella 08.09.2002 (d) Gnutella 09.09.2002

Figure 11.6: Depicted is the average occurrence of an edge in the fdsm versus the probabil-
ity of an edge calculated in the SIM. All graphs show a good alignment.

Graph FDSM SIM

St. Marks Seagrass 4.60 · 10
2 ± 3.21 · 10

1
4.63 · 10

2 ± 2.15 · 10
1

Silwood 1.03 · 10
3 ± 9.35 · 10

1
1.19 · 10

3 ± 3.46 · 10
1

St. Martin Island 8.71 · 10
2 ± 4.78 · 10

1
9.09 · 10

2 ± 3.01 · 10
1

Ythan Estuary 3.22 · 10
3 ± 1.77 · 10

2
5.04 · 10

3 ± 7.10 · 10
1

Little Rock 1.67 · 10
5 ± 2.70 · 10

3
2.01 · 10

5 ± 4.48 · 10
2

Grassland 1.43 · 10
1 ± 6.22 3.46 · 10

1 ± 5.88

s208 6.48 · 10
−1± 8.96 · 10

−1
6.68 · 10

−1± 8.17 · 10
−1

s420 7.73 · 10
−1± 8.78 · 10

−1
8.49 · 10

−1± 9.21 · 10
−1

Gnutella 08.08.2002 4.61 · 10
3 ± 1.36 · 10

2
4.70 · 10

3 ± 6.86 · 10
1

Gnutella 09.08.2002 4.14 · 10
3 ± 1.20 · 10

2
4.22 · 10

3 ± 6.50 · 10
1

E .coli 6.48 · 10
1 ± 1.32 · 10

1
9.26 · 10

1 ± 9.63

S. cerevisiae 3.06 · 10
2 ± 3.50 · 10

1
3.49 · 10

2 ± 1.87 · 10
1

Table 11.23: Number of Bifans found in the respective models.
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11 different models under investigation

(a) St. Marks Seagrass (b) Silwood

(c) St. Martin Island (d) Ythan Estuary

(e) Little Rock (f) Grassland
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(g) s208 (h) s420

(i) Gnutella 08.08.2002 (j) Gnutella 09.08.2002

(k) E. coli (l) S. cerevisiae

Figure 11.7: Histograms of the distribution of subgraphs in different graphs, compared
with the estimated distribution via the sim.

119
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Graph z-scorefdsm z-scoresim two-sample z-score

St. Marks Seagrass 0.09 0.13 0.07

Silwood 1.71 4.62 1.60

St. Martin Island 0.79 1.25 0.67

Ythan Estuary 10.31 25.64 9.57

Little Rock 12.41 74.87 12.24

Grassland 3.28 3.46 2.38

s208 0.02 0.02 0.02

s420 0.09 0.08 0.06

Gnutella 08.08.2002 0.66 1.31 0.59

Gnutella 09.08.2002 0.72 1.33 0.63

E .coli 2.11 2.89 1.70

S. cerevisiae 1.22 2.28 1.08

Table 11.24: z-score of Bifans comparing the sim with the range of values of the fdsm, z-
score of the mean of the fdsm compared to the sim, and the two-sample z-
statistic of the two models.

graphs alleviated this problem already. The remaining parts of the equations were close to
0 (see Table 11.25 for change in means).

For the sake of completeness, all overcounted combinations would have to be calculated
as well. In applied research, this would be a necessity. Otherwise, it may happen that
results are accepted/rejected falsely.

This is shown in more detail on the example of the Bifan. The estimates of the Bifan with
the simple equation are, in some cases, far off (see Table 37). Thus, the correction is done
in the following.

11.4 revisiting the bifan

For the Bifan, additional constellations have to be subtracted to get more reasonable results.
There are several way to derive the equations that have to be subtracted. First, one can think
of re-using a node to have a three-node structure such as (u, v,w,w) , (u, v, x, x) , (u, v, v, x)
and so forth and draw all possible graphs which come into existence first for three, then for
two, then for one node. Explicitly speaking, this is calculating all possible graphs which
contribute to the overestimate in the equation. Constructing for each possible visualization
the corresponding equation is straightforward as is shown in Table 11.26. The only thing
that has to be considered is the principle of inclusion and exclusion; when subtracting
the equations for three-node sub-subgraphs from the equation for a four-node subgraph,
the two-node sub-subgraphs are already subtracted twice such that they have to be added
while the one-node sub-subgraph has to be subtracted again. The second option is to
calculate the equation directly.
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Graph FDSM SIMold SIMmod

St. Marks Seagrass 8.99 · 10
2

9.16 · 10
2

9.00 · 10
2

Silwood 9.16 · 10
2

9.22 · 10
2

9.16 · 10
2

St. Martin Island 8.57 · 10
2

8.72 · 10
2

8.57 · 10
2

Ythan Estuary 3.48 · 10
3

3.52 · 10
3

3.48 · 10
3

Little Rock 2.85 · 10
4

2.86 · 10
4

2.85 · 10
4

Grassland 1.42 · 10
2

1.43 · 10
2

1.42 · 10
2

s208 2.68 · 10
2

2.70 · 10
2

2.68 · 10
2

s420 5.86 · 10
2

5.88 · 10
2

5.86 · 10
2

Gnutella 08.08.2002 9.42 · 10
4

9.42 · 10
4

9.42 · 10
4

Gnutella 09.08.2002 1.09 · 10
5

1.09 · 10
5

1.09 · 10
5

E .coli 2.02 · 10
2

2.02 · 10
2

2.02 · 10
2

S. cerevisiae 3.27 · 10
2

3.27 · 10
2

3.27 · 10
2

Table 11.25: Number of Twopaths calculated with the simple equation and the slightly mod-
ified version.

1

m4

∑
u,v,w,x∈V

(
k2u − ku

) (
k2v − kv

) (
j2w − jw

) (
j2x − jx

)
=

1

m4

∑
u,v,w∈V

(
k2u − ku

) (
k2v − kv

) (
j2w − jw

)
(
n
(
〈j2〉− 〈j〉

)
−

(
j2u
n

−
ju

n

)
−

(
j2v
n

−
jv

n

)
−

(
j2w
n

−
jw

n

))
(11.32)

This equation is way more complicated to handle, and the construction of the equation, i.e.,
introduction of new terms, occurs always as soon as new averages are introduced. However,
overall, it results in the same equation as the first option. The complete development of the
equation is not shown. Thus, the first option is much simpler.

The equations in Table 11.26 result in the values given in Table 11.27. This results in the
improved scores in Table 11.28. In the last column in Table 11.28, the z-statistic is calculated
between the corrected Bifan-equation result and the results from the samples from the fdsm

are shown. For almost all graphs, the z-score improved, but the St. Martin Island graph
and the St. Marks Seagrass graph (fdsm: 871, resp. 460; simold: 908.92, resp. 462.81;
simcorrected: 748.34, resp. 397.20). The Gnutella graphs have a bit higher z-statistic, but
they are still very low. Thus, the modification of the simple equation could prove useful.
The results of the simple equation for the Ythan Estuary graph and the Little Rock graph
were not even close to the real result. With the modified equation, the z-statistic is still
large, even though the results are closer to the averages from the samples in the fdsm (see
Table 37).

This begs the question why the correction factors and the correct way to derive them are
introduced this late and not earlier. The answer to this problem is simple. When applying
the sim, the result is often thought of as an approximation to reality [66, p.448]. Thus, the
results of the equations in comparison to the averages from samples was already satisfying
for most subgraphs under investigation. For the Bifan, I showed that these modifiers do
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11 different models under investigation

Node combi-
nation

Depiction Equation

(u, v,w,u) (〈k2j2〉−〈kj2〉−〈k2j〉+〈kj〉)(〈k2〉−〈k〉)(〈j2〉−〈j〉)
4m〈k〉3

(u, v,w,w) (〈k2〉−〈k〉)
2
(〈j4〉−2〈j3〉+〈j2〉)
4m〈k〉3

(u,w,w, x) (〈k2〉−〈k〉)(〈j2〉−〈j〉)(〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
4m〈k〉3

(u,u,w, x) (〈j2〉−〈j〉)
2
(〈k4〉−2〈k3〉+〈k2〉)
4m〈k〉3

(u,u,u,w) (〈j2〉−〈j〉)(〈k4j2〉−2〈k3j2〉+〈k2j2〉−〈k4j〉+2〈k3j〉−〈k2j〉)
4m2〈k〉2

(u,u,w,w) (〈k4〉−2〈k3〉+2〈k2〉)(〈j4〉−2〈j3〉+〈j2〉)
4m2〈k〉2

(u,w,u,w) (〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
2

4m2〈k〉2

(u,w,w,w) (〈k2〉−〈k〉)(〈k2j4−2〈k2j3〉+〈k2j2〉−〈kj4〉+2〈kj3〉−〈kj2〉)
4m2〈k〉2

(u,u,u,u) 〈k4j4〉−2〈k4j3〉+〈k4j2〉−2〈k3j4〉+4〈k3j3〉−2〈k3j2〉+〈k2j4〉−2〈k2j3〉+〈k2j2〉
4m3〈k〉

Table 11.26: These graphs are counted additionally when the simple Bifan equation is used.
Subtracting the corresponding equations yields more reasonable results.

influence the result. Moreover, during research regarding network motifs, I tended to
think more in terms of simple digraphs and not, as shown in Table 11.26, in digraphs
containing self-loops or multiple edges. Of course, when the sim is applied, it should be
obvious that those are implicitly contained in the equations as shown throughout this work.
However, results which are very close to the results found with the fdsm can occlude simple
facts very easily. Worse, when calculating the sub-subgraphs of the Feed-Forward Loop,
the estimated values are low (see Table 11.29). Since the Feed-Forward Loop is the first
subgraph which is more complicated but still simple enough to be thoroughly investigated,
it was not obvious that these sub-subgraphs are of importance.

The error by over-counting combinations such as (u, v,u) and similar is small, for al-
most all subgraphs considered. Thus, as a first estimate, it seems applicable to use the
simple equations as in Table 11.18. When this estimate is significantly different from the
real-world graph’s number of subgraphs, there are two choices: either using the still fast
and exact equation to calculate the estimated number of subgraphs more accurately or
sampling graphs from the appropriate null model, the fdsm. Using the more accurate and
more complicated equations as well as the correct equations for the standard deviation
may already be enough. For example, the expected number of Twopaths was estimated
very well by the exact equation which takes care of overestimates; the standard deviation
calculated using the equation for independent variables (equation 11.20) is also more ex-
act than taking the square root of the expected number of subgraphs. Thus, this can give
more insight to whether the subgraph under consideration is, in fact, a network motif.
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11 different models under investigation

Graph Old Corrected zFDSM

St. Marks Seagrass 462.81 397.20 1.95

Silwood 1194.62 1014.56 0.22

St. Martin Island 908.92 748.34 2.57

Ythan Estuary 5039.89 3972.14 4.26

Little Rock 200 577.01 188 102.33 7.79

Grassland 34.62 18.43 0.67

s208 0.67 0.57 0.08

s420 0.85 0.77 0.14

Gnutella 08.09.2002 4703.21 4636.11 0.17

Gnutella 09.09.2002 4224.32 4167.74 0.25

E. coli 92.64 63.85 0.07

S. cerevisiae 348.98 314.65 0.24

Table 11.28: Change in the Bifan-equation when the principle of inclusion and exclusion is
applied.

Graph FFL

St. Marks Seagrass 1.74 · 10
2

4.83 · 10
−2

1.33 · 10
−1

1.30 · 10
−1

3.29 · 10
−1

Silwood 1.72 · 10
2

8.49 · 10
−3

5.86 · 10
−2

3.53 · 10
−2

4.17 · 10
−1

St. Martin Island 2.35 · 10
2

5.71 · 10
−2

1.50 · 10
−1

3.16 · 10
−1

4.66 · 10
−1

Ythan Estuary 8.31 · 10
2

1.41 · 10
−1

2.28 · 10
−1

6.28 · 10
−1

8.82

Little Rock 1.03 · 10
4

1.34 · 10
−1

3.36 · 10
−1

1.01 1.21

Grassland 1.23 · 10
1

9.35 · 10
−5

6.21 · 10
−3

1.35 · 10
−4

2.03 · 10
−3

s208 2.33 7.47 · 10
−5

2.93 · 10
−4

2.52 · 10
−4

8.32 · 10
−4

s420 2.72 1.98 · 10
−5

8.76 · 10
−5

6.28 · 10
−5

2.23 · 10
−4

Gnutella 08.09.2002 6.22 · 10
2

3.52 · 10
−5

5.12 · 10
−5

5.14 · 10
−4

2.90 · 10
−3

Gnutella 09.09.2002 5.44 · 10
2

1.53 · 10
−5

3.12 · 10
−5

2.50 · 10
−4

1.43 · 10
−3

E. coli 7.49 5.77 · 10
−6

1.62 · 10
−4

1.31 · 10
−4

7.93 · 10
−4

S. cerevisiae 1.16 · 10
1

2.09 · 10
−6

1.15 · 10
−4

5.74 · 10
−5

4.99 · 10
−4

Table 11.29: In the first column, the estimated number of Feed-Forward Loops using
(〈k2〉−〈k〉)〈kj〉(〈j2〉−〈j〉)

〈k〉3 is shown; the other columns contain the estimated number
of subgraphs that do not occur in simple graphs but do contribute to estimate
in the first column.
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11.4 Revisiting the Bifan

Even though the approach with the equations is elegant, I recommend in the end using
the sampling approach whenever the equations tell the researcher that the subgraph is a
network motif. Of course, it is also possible to only apply the equations to approximate
the number of subgraphs. However, when decisions are made based on the results of these
approximations, the decisions may be wrong.

11.4.1 Summary

It was tested whether the cfg can be used reliably in the analysis of digraphs to estimate
the number of subgraphs of a particular type. The cfg produces multiple edges and self-
loops, including them in the process of subgraph counting shows that the cfg does not give
reliable results. When self-loops and multiple edges are dismissed, i.e., the ecfg is used, the
results of the subgraph counting algorithm are much lower than the ones from the samples
from the fdsm. The sis is different than in the chapter before; while the uniform choice of
neighbors from the set of possible neighbors yields for most graphs results closer to the
results of the fdsm, the dsis is not far off and in some cases even better. The algorithm
of the sis has a worst-case run-time of O

(
n3
)
; the swapping algorithm which is used for

the fdsm uses O (m log (m)) swaps with some additional checks and the swaps themselves;
this will result in at most O (n) such that, the runtime of the swapping algorithm is in
O (nm log (m)). Considering that researchers in social network analysis assume that in
real-world graphs the order and the size of a graph are asymptotically equal, n h m [71],
the swapping algorithm is to be considered faster.

Still, the swapping algorithm and the analysis of the number of subgraphs is time-
intensive work. Being able to give equations that allow for quick calculation of the expected
number of subgraphs is much easier. As shown, most of the equations work well for most
graphs—even without the correction. As a quick estimate, the equations are good enough
in most cases. Whenever the number of subgraphs in the real-world graph differs more
than three standard deviations estimated with the sim, a more in-depth analysis with the
fdsm to check whether the real-world graph is truly different from generated graphs has
to be applied. This additional analysis is needed to confirm that the subgraph is a net-
work motif. Otherwise, when the number of subgraphs in the real-world graph and the
estimated number of subgraphs by the equation coincide or are close to each other, it can
be considered as optional.

As the example of the Bifan subgraph shows, sometimes it is useful to consider also the
subgraphs which are implicitly included in the equations, even though they do not follow
the restriction of a simple graph. Calculating the expected value for them can be done
explicitly as shown in Tables 11.26, 11.27.

In the next part, the equations are investigated more in-depth. For undirected graphs,
the global co-occurrence measure of the sim was quite good, the results are very close to
that of the fdsm. However, when investigating the co-occurrence on a node base, i.e., how
often does a specific node co-occur with others, the results were worse. One would expect
that this effect translates to the subgraph counting as well. This is tested in the following.
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12
N O D E - B A S E D PA RT I C I PAT I O N E S T I M AT I O N I N M O T I F S

There has not been much research concerning local network motifs; neither is much done
on the participation of nodes in subgraphs. Sometimes, local network motifs are called
node-based triad patterns [104]. For this thesis, a local network motif is defined as a sub-
graph a node is a part of more often than expected. While this is akin to the standard
definition of a network motif (a subgraph occurring more often than expected), standard
research concerns itself with the whole graph. In this part of the research, we are inter-
ested in a single node. Research that was done based on local network motifs is sparse.
Koschützki et al. [52] developed a motif-based centrality measure based on real-world
graphs without sampling. The centrality measure is straightforward; it works by counting
in how many subgraphs of a type a node participates. The more subgraphs it participates
in, the higher the centrality. In a recent paper Wang et al. [98] developed a new importance
measure for nodes which uses the participation of nodes in subgraphs as part of the mea-
sure and builds upon the work of Koschützki et al. [52] but uses the sampling approach
with the fdsm. In 2015, Winkler and Reichardt [104] published their work on finding the
node specific triad-census, i.e., they compare the number of subgraphs a node participates
in with the expected number of subgraphs. The expected number of subgraphs a node
participates in is the mean of several hundred samples which have been drawn with the
fdsm.

Developing equations to derive the estimated number of subgraphs in a graph worked
well, but up to now this is a global measure. The sim tends to be good globally and bad for
local measures, since it misestimates node-behavior based on the degree of nodes as seen
for the co-occurrence in Section 8.2. In this chapter, I will present results on whether sim can
be applied in the context of local network motifs. This is done with three subgraphs from
the former section, i.e., the Twopath, the Feed-Forward Loop, and the Bifan. Afterward, I
will show how the idea performs in comparison to sophisticated and established methods
in the field of data science.

The analysis whether it can be applied to count how often a node participates in a
subgraph is structured as follows:

1. Generate several hundred random graphs according to the degree sequence of a
graph from the fdsm.

2. Measure for the Twopath and the Feed-Forward Loop how often a node participates;

3. Calculate mean and standard deviation of the participation of a node in these motifs;

4. Develop equations based on the simple independence assumption;

The second point entails that not only the involvement of a node in a subgraph is measured,
but also in which place the node is. This position-restricted expected participation can yield
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12 node-based participation estimation in motifs

A

B

C

Figure 12.1: In a Feed-Forward Loop there are three different positions a node can take and
each position may have a significance to it.

TwopathNode Equation FFLNode Equation

A

B

C ku
〈kj〉
〈k〉

A

B

C
k2u−ku
m

〈kj〉(〈j2〉−〈j〉)
〈k〉2

A

B

C kuju A

B

C
kuju
m

(〈k2〉−〈k〉)(〈j2〉−〈j〉)
〈k〉2

A

B

C ju
〈kj〉
〈k〉

A

B

C
j2u−ju
m

〈kj〉(〈k2〉−〈k〉)
〈k〉2

Table 12.1: Equations for the expected number of subgraphs containing node u, depending
on the possible position; basic approach without consideration of the participa-
tion of the node itself in the mean.

information on the function a node has in a real-world graph. As is shown in Fig. 12.1, in a
Feed-Forward Loop there are three positions a node can maintain. Depending on the field
of research, a node’s position in a Feed-Forward Loop may entail different meanings. Note
that this does not change the algorithm to count the participation of nodes in subgraphs.

12.1 constructing position-based equations

The equations need only small changes. Before, it was a sum over all possible tuples
of nodes. When calculating the position-restricted expected participation of a node in a
subgraph, there should be exactly as many equations needed as there are different positions
in a subgraph. For two test-subgraphs, Twopath and Feed-Forward Loop, this implies that
there are three different equations. For example, the expected number of Feed-Forward
Loops a node might participate in as node A (see Fig. 12.1) can be given as∑

B,C∈V

kAjB
m

kBjC
m

(kA − 1) (jC − 1)

m
=

1

m3

(
k2A − kA

) ∑
B,C∈V

kBjB

(
j2C − jC

)
(12.1)

=
k2A − kA
m

〈kj〉
(
〈j2〉− 〈j〉

)
〈k〉2 . (12.2)

This equation can be calculated for every node in a graph. Equations for the other positions
can be found following the same principle (results in Table 12.1).

The equations yield expected values for the participation of a node in a particular po-
sition in a subgraph. When the equations for a subgraph are summed over all possible
positions, the result is the expected number of subgraphs of this type a node participates
in. The sum over the equations over all nodes yields the equations given in Table 11.18, i.e.,

n〈kj〉 for the Twopath and
〈kj〉(〈k2〉−〈k〉)(〈j2〉−〈j〉)

〈k〉3 for the Feed-Forward Loop.
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12.1 Constructing Position-Based Equations

TwopathNode Equation FFLNode Equation

u

v

w ku
〈kj〉−kuju

n

〈k〉
u

v

w
(k2u−ku)

m

(
〈j2〉− j2u

n −〈j〉+ ju
n

)
(〈kj〉−kuju

n )

〈k〉2

v

u

w kuju v

u

w
kuju
m

(
〈k2〉−k2u

n −〈k〉+ku
n

)(
〈j2〉− j2u

n −〈j〉+ ju
n

)
〈k〉2

v

w

u ju
〈kj〉−kuju

n

〈k〉
v

w

u
j2u−ju
m

(
〈k2〉−k2u

n −〈k〉+ku
n

)
(〈kj〉−kuju

n )

〈k〉2

Table 12.2: Equations for the expected number of subgraphs containing node u, depending
on the possible position; corrected for node u by subtraction from the remaining
average in the nominator.

However, based on the knowledge from the analysis of the Bifan subgraph, it is known
that the simple equations yield too high values. Since the sum of the positions yields the
same as the equations in Table 11.18, it is evident that tuples such as (u, v,u) are considered.
Therefore, a simple modification can be made. Averages which remain in the nominator
are computed over all nodes, i.e., node u is considered as often as averages are taken, addi-
tionally to the explicit position. For example in the Twopath, node u contributes to the first
equation ku, but is also contained in each averaging of the degrees. Implictly, combinations
as such stand for combinations (u,u,u, ). Thus, subtracting the nodes contribution from
the averages alleviates the problem to a certain degree. Table 12.2 displays the modified
equations. The problem with this is the following.

∑
v,w

kujv

m

kvjw

m
= ku

〈k〉〈kj〉
〈k〉2 = ku

〈kj〉
〈k〉 (12.3)

In equation 12.3, the equation for the first position in the Twopath without correction, one
can see that there is another average, 〈k〉, in the nominator, which is not considered in
Table 12.2. This is due to the reduction of the fraction. The correct equation for the first
position in the Twopath under careful consideration of all nodes is therefore

∑
v,w∈V

kujv

m

kvjw

m
=

1

m2

∑
v∈V

kujvkv

(
n〈j〉− ju

n
−
jv

n

)
(12.4)

=
1

m2

(
kun〈j〉

(
n〈kj〉− kuju

n

)
−
kuju

n

(
n〈kj〉− kuju

n

)
−
ku

n

(
n〈kj2〉− kuj

2
u

n

))
=

1

m2

(
kun

2〈j〉〈kj〉− k2uju〈j〉− kuju〈kj〉+ 2
k2uj

2
u

n2
− ku〈kj2〉

)
(12.5)

Usually, the computation of the equations is over all triples of nodes, i.e., triples such as
(u,u,u) are included and vanish in the averages. By subtracting them explicitly, as done
in equation 12.5, the equation becomes more complex, the subtractions create new terms.
Instead of the simple equation displayed in Table 12.2, we are now faced with a longer
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12 node-based participation estimation in motifs

equation that supposedly yields the expected number of first positions a node u has in
Twopaths. For the second and third position, the equations are equally complicated.

second =
1

m2

(
n2〈k〉2kuju − 〈j〉k2uju − 〈kj〉kuju + 2

k2uj
2
u

n2
+ 〈k〉kuj2u

)
(12.6)

third =
1

m2

(
n2〈k〉〈kj〉ju − 〈kj〉kuju − 〈k2j〉ju + 2

k2uj
2
u

n2
− 〈k〉kuj2u

)
(12.7)

The average over u is then

n〈kj〉− 〈kj〉
2

m〈k〉 −
〈k2j〉
m

−
〈kj2〉
m

+ 2
〈k2j2〉
nm2

, (12.8)

which is far more complicated than the simple equation that is used to estimate the ex-
pected number of Twopaths with a high precision (see Table 11.19). Moreover, this equation
follows the principle of inclusion and exclusion outlined previously (see Section 11.4; the
initial equation n〈kj〉 for the three nodes, equations for two nodes are subtracted, and the
equation for a single node is added.

The more complicated a subgraph is, the more complex the equations will be; for a
(relatively) simple subgraph as the Feed-Forward Loop, the equation to be in first position
(position A in Fig. 12.1) would already be

1

m3

(
n2〈kj〉

(
〈j2〉− 〈j〉

) (
k2u − ku

)
− 〈kj〉

(
k2uj

2
u − kuj

2
u − k

2
uju + kuju

)
−
(
〈j2〉− 〈j〉

) (
k3uju − k

2
uju

)
−
(
〈kj3〉− 〈kj2〉

) (
k2u − ku

)
+
2

n2

(
k3uj

3
u − k

2
uj
3
u − k

3
uj
2
u + k

2
uj
2
u

))

Again, summing each part of the equation over all nodes u yields the same results as
presented in Table 11.29, i.e, the number of subgraphs which are implicitly assumed by the
equation to exist but are not allowed in a simple graph. In Table 11.29, it was shown that
it is not necessarily useful to take care of these “forbidden” sub-subgraphs. On the other
hand, for the Bifan calculating the number of these sub-subgraphs and subtracting them
from the expected number of Bifans in a graph yielded much better results. Whether or not
this detailed research is necessary cannot be decided in a thesis. A good recommendation
is using the simple modification first (see Table 12.2 and whenever a node shows a different
behavior than expected, using more complicated equations such as equation 12.8 to verify
their odd behavior. Only when the estimated value of participations of a node differs from
the number participations in the real-world graph, then a more involved research which
specializes on this node should be performed.

12.2 on the sum of equations

Despite the efforts to show that it is possible to estimate the number of subgraphs more
precisely than with the set of equations in Table 11.18, the following investigation tests
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12.2 On the Sum of Equations

whether the simple modifications are already enough (see Table 12.2)1. The following
discussion is based on only two of the twelve graphs from above, the E. coli graph and the
Ythan Estuary graph, i.e., one graph for which the equations fit sampling results very well
and one for which the equations do not fit at all.

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.59 0.94 0.98 0.00

Summod 0.59 0.94 0.98 0.00

Aunmod 0.83 0.89 1.00 0.75

Amod 0.83 0.89 1.00 0.75

Bunmod 0.98 0.98 1.00 0.94

Bmod 0.98 0.98 1.00 0.94

Cunmod 0.62 0.89 0.99 0.18

Cmod 0.63 0.89 0.99 0.18

Table 12.3: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Twopath subgraph. Sum refers to the expected
participation in any of the three places. Columns 2-4 show the percentage of
nodes with a smaller relative error than shown in the head row. The last column
keeps track of the percentage of how many nodes did never show up in any
Twopath in graphs generated with the fdsm.

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.67 1.00 1.00 0.00

Summod 0.68 1.00 1.00 0.00

Startunmod 0.56 0.94 0.98 0.39

Startmod 0.56 0.95 0.98 0.39

Middleunmod 0.93 0.96 0.99 0.39

Middlemod 0.93 0.96 0.99 0.39

Sinkunmod 0.74 0.93 0.97 0.01

Sinkmod 0.78 0.93 0.97 0.01

Table 12.4: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Twopath subgraph. Sum refers to the expected
participation in any of the three places. Columns 2-4 show the percentage of
nodes with a smaller relative error than shown in the head row. The last column
keeps track of how many nodes did never show up in any Twopath in graphs
generated with the fdsm.

For this, the relative error, µfdsm−µsim

µfdsm

, for each node of a graph is calculated. In Table 12.3,
resp. 12.4, the percentages lower than the fixed thresholds in the top row are shown.

1 The more accurate and more complex set of equations would also have been possible to test, but when the
equation from Table 12.2 suffice, this test is unnecessary.
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12 node-based participation estimation in motifs

Considering the Twopath subgraph approximations of the E. coli graph, the results are
apparently not very good. With a relative error larger than 0.1 for 41% of the nodes, the
equations cannot be reasonable.

As can be observed in Fig. 12.2 the estimates of the lower degree nodes are all very
low. For a randomly chosen node of this degree range, the observed average number of
Twopath subgraphs it participates in is 0.11; the estimated participations by the equation
is 0.076. The relative error for such a low number of found and estimated participations
would be 0.31. Thus, yes, the estimates are not very good, objectively. In Fig. 12.2, nodes
are plotted according to their expected number of participations in a Twopath in samples
from the fdsm versus the relative error, using once the sum of the unmodified equations
(Table 12.1, red squares) and once the sum of the modified equations (see Table 12.2, blue
dots).

It is obvious, that the E. coli graph is estimated well for nodes which participate more
often than once or twice in a Twopath subgraph (relative error lower than 0.1, Fig 12.2a).
For the Ythan the result is similar; only very few nodes of interest have a relative error large
enough to be of interest, as long as they participate often enough in Twopath subgraphs.
For the unmodified equation, the results are worse for all nodes of interest.

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.73 0.93 0.98 0.60

Summod 0.73 0.93 0.98 0.60

Aunmod 0.92 0.97 1.00 0.88

Amod 0.92 0.97 1.00 0.88

Bunmod 0.95 0.98 1.00 0.93

Bmod 0.95 0.98 1.00 0.93

Cunmod 0.80 0.93 0.99 0.73

Cmod 0.80 0.93 0.99 0.73

Table 12.5: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Feed-Forward Loop subgraph. Sum refers to
the expected participation in any of the three places. Columns 2-4 show the
percentage of nodes with a smaller relative error than shown in the head row.
The last column keeps track of how many nodes did never show up in any
Twopath in graphs generated with the fdsm.

For the Feed-Forward Loop, the results are similar. The relative error seems to be high
for both graphs; for the Ythan Estuary graph, half of the results of the equations are off by
more than a relative error of 0.1 while most are at least below 0.5 (see Table 12.6). However,
a comparison with Fig. 12.3b shows, that the interesting nodes which often participate in
Feed-Forward Loops and are misestimated are not as many as the “uninteresting” nodes,
i.e., nodes which participate as good as never. It is important to note that the modified
equation estimates the participation in Feed-Forward Loops much better than the unmod-
ified one. A prominent example is the highest degree node which has a relative error of
over |1| with the unmodified equation while the modified equation yields a score of about
|0.4|. The E. coli graph, on the other hand, shows even more clearly that the misestimated
nodes are the unimportant ones.
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12.2 On the Sum of Equations

(a) E. coli with 1000 samples

(b) Ythan Estuary with 350 samples

Figure 12.2: Shown are relative errors considering the Twopath subgraph in the E. coli
graph and the Ythan Estuary graph.
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12 node-based participation estimation in motifs

(a) E. coli with 1000 samples

(b) Ythan Estuary with 350 samples

Figure 12.3: Shown are relative errors considering the Feed-Forward Loop subgraph in the
E. coli graph and the Ythan Estuary graph.
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12.3 How do the Equations for Positions Fare?

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.50 0.98 0.99 0.05

Summod 0.50 0.99 1.00 0.05

Aunmod 0.64 0.89 0.97 0.53

Amod 0.64 0.91 0.97 0.53

Bunmod 0.55 0.96 0.99 0.39

Bmod 0.58 0.96 0.99 0.39

Cunmod 0.79 0.96 0.99 0.38

Cmod 0.81 0.96 1.00 0.38

Table 12.6: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Feed-Forward Loop subgraph. Sum refers to
the expected participation in any of the three places. Columns 2-4 show the
percentage of nodes with a smaller relative error than shown in the head row.
The last column keeps track of how many nodes did never show up in any
Twopath in graphs generated with the fdsm.

12.3 how do the equations for positions fare?

Up to this point, the approach to use equations to estimate the number of subgraphs a
node participates in has had some serious drawbacks. Even though it is much faster than
the standard approach via simulation, it is off with a relative error larger than 0.1 too often.
Not mentioned was that at least half of the nodes was estimated very well, and almost
all nodes were estimated better than half-off. Most of the errors were in the lower degree
region, and the high-degree nodes cause most of the global misestimates. However, how
do the equations perform concerning the node-specific position-specific participation in a
subgraph? This is evaluated on the Ythan Estuary graph.

The participation of a node in the middle position is estimated for the Twopath subgraph
well, for the Feed-Forward Loop many nodes are estimated well (see Figs. 12.4c, 12.4d).
Those that are not estimated well are most of the time low to average degree nodes. Cal-
culating the average error, µfdsm−µsim

µfdsm

, takes into account how often a node participated in a
subgraph; it may have happened that some of them never participated in any subgraph of
interest, even though they could. Thus, the error may be unreasonably large for some of
the nodes. Especially the second position is interesting. Here, the error is mostly based on
nodes that could be in a Twopath but are instead in a reciprocal subgraph.

The Feed-Forward Loop (Fig. 12.4b) is estimated much better by the equations than for
the Twopath subgraph (Fig. 12.4a) for all nodes but one. This is due to the fact that many
nodes of these graph have a low out-degree (E. coli ∼ 85%, Ythan Estuary ∼ 53%), such that(
k2u − ku

)
= 0, while ku ≥ 0. Only the highest degree node is misestimated for both (in fact

all) positions. The end position is similar in all accounts.
For the E. coli graph, figures are omitted, but the results are quite similar. In the low

degree region, there is not much difference independent of the position. Towards the higher
degrees, the difference between the average of the results of the fdsm and the equation
become more pronounced; still, many of the nodes which have a relative error larger than
0.1 are of a lower degree.
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12 node-based participation estimation in motifs

(a) Twopath first position (b) Feed-Forward Loop first position

(c) Twopath middle position (d) Feed-Forward Loop middle position

(e) Twopath end position (f) Feed-Forward Loop end position

Figure 12.4: Shown are relative errors considering the possible positions in
12.4a, 12.4c, 12.4e the Twopath subgraph and 12.4b, 12.4d, 12.4f the
Feed-Forward Loop subgraph, based on the Ythan Estuary graph (350

samples).
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12.4 Revisiting the Bifan

The equations perform on average good enough to be reasonable for a first estimate. If
there is a significant discrepancy to be observed between the results of the equations and
the real-world graph, a second, more in-depth analysis with the corrected equations would
be in order (cf. equation 12.5). If there is still a significant discrepancy, one can either
conclude that the graph and particular nodes are special; or, which is more reasonable and
more thorough, validate the claim with the fdsm. Seeing that the equations misestimate the
higher-degree nodes, an interesting question which came up beforehand may be answered
now. For the Bifan, the global estimate by the simple equation was off most of the times,
sometimes even very far off (see Table 37, worst example Ythan Estuary with a discrepancy
of ∼ 35000). How do corrected node-based equations fare for the Bifan and were the errors
caused by only a few nodes?

12.4 revisiting the bifan

Estimating how often a node is in a certain position in the Bifan subgraph is about as
complicated as for the other subgraphs. One node is being kept fixed while the others are
averaged. To calculate for this node corrected equations like equation 12.5 requires more
effort. The resulting equations contain 24 summands; some of these summands occur more
than once. This approach implies that remaining nodes are excluded from the moments,
thus

1

4m4

∑
u,v,w,x∈V

(
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) (
k2v − kv

) (
j2w − jw

) (
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n

)) (12.9)

This is only the start of the calculation, the rest is in Appendix 3.

Position Equation
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Table 12.7: Equations regarding the Bifan subgraph where corrections for node u are made
by subtracting its contribution from the averages.

We continue with the simple correction of excluding the node under consideration from
each moment (cf. Table 12.7). The factor in front of equation 12.9 is 1

4 , but in Table 12.7
it is only 1

2 ; this is due to the place the node participates in, since a node u can be in the
upper and the lower position. The two equations for this are the same and thus the factor is
2 14 =

1
2 . The results of the equations in Table 12.7 are displayed in Table 12.8, respectively

Table 12.9. As before, only the fractions of nodes with an error below 0.1, 0.5, respectively
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12 node-based participation estimation in motifs

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.66 0.88 0.96 0.61

Summod 0.67 0.89 0.96 0.61

Aunmod 0.92 0.97 1.00 0.86

Amod 0.92 0.97 1.00 0.86

Bunmod 0.74 0.91 1.00 0.73

Bmod 0.74 0.92 1.00 0.73

Table 12.8: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Bifan subgraph. Sum refers to the expected
participation in any of the four places. Columns 2-4 show the percentage of
nodes with a smaller relative error than shown in the head row. The last column
keeps track of how many nodes did never show up in any Twopath in graphs
generated with the fdsm.

Equation ≤ 0.1 ≤ 0.5 ≤ 1 = 0

Sumunmod 0.56 0.92 0.99 0.16

Summod 0.59 0.94 1.00 0.16

Startunmod 0.63 0.87 0.96 0.53

Startmod 0.67 0.88 0.96 0.53

Sinkunmod 0.74 0.95 0.99 0.38

Sinkmod 0.76 0.96 1.00 0.38

Table 12.9: Relative error observed−expected
observed is measured for the total number of participations

and each possible position in the Bifan subgraph. Sum refers to the expected
participation in any of the four places. Columns 2-4 show the percentage of
nodes with a smaller relative error than shown in the head row. The last column
keeps track of how many nodes did never show up in any Twopath in graphs
generated with the fdsm.
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12.4 Revisiting the Bifan

1, are noted down as well as the fraction of nodes which have no Bifan subgraph attached
in the fdsm. The results are about as “good” as for the Feed-Forward Loop.

In Fig. 12.5, the relative errors concerning the sum of the equations against the expecta-
tions from the samples from the fdsm are shown. As before, low degree nodes with degree
ku < 2∨ ju < 2 all have a small value in the analysis with the fdsm and the equation re-
sults are equally small. The relative errors are small, seldom larger than 0.1. The higher the
degree, the more severe the errors become. This may be caused by the quadratic influence
of the node itself, as well as the other squared factors. For the E. coli graph (cf. Fig 12.5a),
the modified equations have in general a lower relative error; still, there are more nodes
with a higher relative error than 0.5 than for any other subgraph and much more with a
higher relative error than 0.1. Most curious is the highest degree node that is completely
misestimated by the simple equation but estimated very well by the modified equations.
The results of the Ythan Estuary graph are even worse; almost all nodes of higher degree
are misestimated by the equations. The relative error of these nodes is almost always larger
than |0.1|, not a few of them even worse than a relative error larger than |0.5|. The modified
equations fare better than the simple equations, again, but still, they are not good. If one
summed the results of both equations in Table 12.7 for all nodes, the result would be higher
than the averages in the fdsm, even though they would be lower than the initial equation

of (〈k2〉−〈k〉)
2
(〈j2〉−〈j〉)

2

4〈k〉4 .
This result confirms the approach suggested at the end of the former section. The equa-

tions can be used to approach the expected number of participations of a node in a sub-
graph. When the results of the equations differ much from the results of the analysis of the
real-world graph, the second test with a more sophisticated set of equations can be useful.
The last step that should not be omitted is analyzing the nodes that show considerable
differences in a more thorough analysis with the fdsm.
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12 node-based participation estimation in motifs

(a) E. coli with 1000 samples

(b) Ythan Estuary with 350 samples

Figure 12.5: Shown are relative errors considering the Bifan subgraph in the E. coli graph
and the Ythan Estuary graph.
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13

O N P R E D I C T I N G C O - P U R C H A S E D I T E M S

The sim has been weighed, measured, and found wanting considering the prediction of co-
purchased items. This investigation was done in the context of the Netflix Dataset [107], [108]
as well as a sample of MovieLens data [87]. These datasets comprise the ratings of several
thousand users to a large number of movies and television series. Zweig [107], Zweig and
Kaufmann [108], and Spitz et al. [87] tested several different approaches to assess the sim-
ilarity between nodes, including the fdsm, a model based on the idea of the sim, and a
set of equations to estimate the similarity of nodes. Most importantly for this thesis is the
so-called leverage, i.e.,

leverage (u, v) =
1

|V |

(
cooc (u, v) −

kukv

|V |

)
. (13.1)

This equation can also be found in [107, 108] and stems from Piatetsky-Shapiro [75]. It
is used to measure the difference between the expected and observed support of u and v.
In this case, the observed support is the co-occurrence in a real world graph; the expected
support is the expected co-occurrence. Again, the co-occurrence of two nodes is the number
of nodes they share as neighbors, i.e.,

cooc (u, v) = |N (u)∩N (v)| , (13.2)

that uses N (u), the set of neighbors of a node. Equation 13.1 uses as expected number of
co-occurrences in the simple independence model the equation

E [coocsim (u, v)] =
jujv

n
.

This equation is considered as the expected co-occurrence of two nodes in a bipartite
graph [108], such as the data sets in this chapter comprise. A graph can be called bipartite
when the set of nodes can be divided into two disjoint sets such that each edge in the graph
is between these sets. In movie-user data sets such as these, this is easily possible. Based
on similarity measures, recommendations on “what to watch next” can be made. Thus, in
the following we will often refer to the result of an algorithm as a suggestion, a recom-
mendation, or a prediction. Prediction is a somewhat misleading term, but still applicable.
Based on what users watched and rated positive, developing a system which predicts what
a users is likely to watch next, is in a sense very similar to making recommendations to a
user.

Most interestingly, the sim and equation 13.1 performed in all articles remarkably bad.
For example, when looking for recommendations based on “The X-Files: Season 1”, sensi-
ble top ten recommendations what to watch next should include all other seasons of “The
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13 on predicting co-purchased items

X-Files”. Instead, the sim produced recommendations such as “Pirates of the Caribbean I”,
“The Matrix”, “Lord of the Rings: The Fellowship of the Ring”. These results are based on
the equation that takes only into account the degree of the movie, and these movies are
easily some of the most famous that the databases had at that time.

Now, considering the definition of the Fork, i.e., a node and one of its pairs of successors,
it is possible to define the subgraph which describes a single common neighbor. It consists
out of three nodes {u, v,w} and the edges {(u,w) , (v,w)}. Considering the bipartite graph
as a directed graph allows constructing an equation that yields the expected number of
these subgraphs for all pairs of nodes.

E (coocsim (u, v)) =
∑
w∈V

kujw

m

kv (jw − 1)

m
(13.3)

=
1

m2

∑
w∈V

kukv

(
j2w − jw

)
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n
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(
j2u − ju
n

)
−

(
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n
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(13.5)

=
kukv

m

〈j2〉− 〈j〉
〈j〉 . (13.6)

In equation 13.4, one might consider excluding ku,kv from the sum directly, since the sum
is only over the node w and not all triples of nodes. Still, as mentioned when reconsidering
the Bifan, the averages 〈j〉 over all nodes w ∈ V do include nodes u, v as well. Thus, in
the next step in equation 13.5, these nodes are still excluded from the averages. Since we
are considering a bipartite graph as a directed graph, a node has either an out-degree of
zero and an in-degree larger than zero or vice versa. Thus, in the last step we discard
the subtracted elements (they are zero) and end up with equation 13.6. Note that in a
standard directed graph, i.e., one that is not based on disjoint sets of nodes, discarding the
subtraction may yield results as shown for the Bifan, i.e., results which are far off from the
expected values which the fdsm yields.

We compare the recommendations the equation yields to the results in the papers by
Zweig, Zweig and Kaufmann, and Spitz et al. Their ground truth uses a simple and intu-
itive idea. Television series are usually separated in different seasons and any reasonable
prediction should point to other seasons first, to similar shows next, and after this to other
series. For movies, the same theory applies, only that seasons are called prequel or sequel.
Since computing the expected co-occurrence using the fdsm is expensive in resources as
well as in time, using equations that are much faster to calculate and much less expensive
has advantages, as long as the results of the equations are either close enough to the re-
sults of the fdsm or good enough for an expert in the field. Since we assume the sampling
approach with the fdsm as a baseline model, we assume that having results as the fdsm

should be enough.
We start out with a comparison of the results of Zweig [107] and the results which

equation 13.6 yields on the given data sets.
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13.0.1 Television Series Prediction

In the Netflix dataset are many television series included. From these, a subset has been
selected by Zweig and Kaufmann [108] to be displayed in more detail; these include the
set of "Star Trek: The Next Generation", "Star Trek: Voyager", "Star Trek: Deep Space Nine",
"Buffy the Vampire Slayer", "Sex and the City", "Stargate SG-1", and "Friends". For these,
it is important that the sequels and prequels should be the recommended shows to watch.
When talking about recommending the next shows to watch after considering a single
show, it is a local prediction, since predictions are based on the observed and expected
co-occurrences of this series alone. A short recapitulation of the results of Zweig and
Kaufmann shows that the fdsm is highly superior to the sims equation used in their work.
For example, for almost each season of "Star Trek: The Next Generation" as input, the
algorithm using the sim had a hit rate of 0, i.e., it suggested none of the other seasons
but movies like “Independence Day” and “The Matrix”. For seven seasons, Zweig and
Kaufmann had only the top five suggestions included—the algorithm using the sim gave
only 20% reasonable results, while the sampling approach using the fdsm yielded only
seasons of "Star Trek: The Next Generation", i.e., a perfect result.

While it would be simple to present the predictions of the new equation 13.6 with the
changed equation in tables, showing what had been presented, it seems more enlightening
to present it in a different way. Each series spans a row; each column presents a different
season. In the respective field is the hit-rate, i.e., what percentage of the suggested k were
part of the series, where k is the number of seasons. Shown in Table 13.1 are the results
which equation 13.6 yields, i.e., the new approach to calculate the co-occurrence using the
bipartite graph as a directed graph.

Serie Season
1 2 3 4 5 6 7 8 9

Star Trek: The Next Generation 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Star Trek: Deep Space Nine 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Star Trek: Voyager 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Buffy the Vampire Slayer 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Friends 0.5 0.5 0.5 0.5 0.63 0.63 0.63 0.63 0.5
Sex and the City 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Stargate SG-1 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

The X-Files 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 13.1: Hit-rate based on the new prediction method for the same television series as in
Zweig and Kaufmann [108].

The series which did not achieve the 100% hit-rate1 are “Friends” and “Stargate SG-1”;
for “Friends”, the suggested other series were “Best of Friends”, which is reasonable but
not a direct pre- or sequel of “Friends”. For “Stargate SG-1”, the erroneous prediction was
“Stargate: Atlantis Season 1”, which is closely related to the original series “Stargate SG-
1”, but not a direct sequel as well. For “Stargate SG-1”, the next recommendation would
have been the missing season. For “Friends”, the first recommendation that is outside the

1 Marketing term to express the relationship to selling sequels/prequels; in mathematical terms it is the percent-
age of correctly predicted (pre-/)sequels.
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13 on predicting co-purchased items

“Friends”-universe, i.e., neither “Friends” nor “Best of Friends”, comes in more than 50%
of the seasons after the “Friends”-universe. In other words, “Friends” and “Best of Friends”
are closely related, such that they are all recommended before anything else in more than
50% of all seasons of “Friends”. The other seasons recommend all the same series. Since
the data sets do not include the names of all series, shows, and movies but only the ones
for which the ground truth contains entries, it is unknown how closely related these series
are.

To compare the results of the new equation 13.6 to the old equation 13.1, consider “Star
Trek: The Next Generation”. The results of the new equation show a tremendous improve-
ment to before. While the old approach, using kukv

n as the expected co-occurrence of the
sim, yielded only a meager 20% hit-rate, the new approach delivers a 100% hit-rate with a
considerable speed-up towards the sampling approach.

Results are shown in Table 13.2; this table shows for each television series in the Netflix-
Series data set the prediction quality of the new sim equation 13.6 with simple to measure
scores:

n The number of seasons a series contains

pbr The average percentage of series for which the highest-ranked recommendation is
another part of the same series; 100% is optimal

pra the average percentage of series for which all seasons were listed in the top 100 rec-
ommendations; 100% is optimal

first the average rank of the first listed season from the same series, calculated only with
series that had 100% in pra; 1.0 is optimal

last the average rank of the last listed season from the same series, calculated only with
series that had 100% in pra; n − 1 is optimal

This idea is taken from Zweig [107]; no direct comparison between all series is made since
not all series we have are in the listing of Zweig (especially the two season series are omitted
there).

Title of series n pbr pra first last

3rd Rock from the Sun 2 0.0 50.0 13.0 13.0
7th Heaven 2 100.0 100.0 1.0 1.0
Alf 2 0.0 50.0 2.0 2.0
American Chopper 2 100.0 100.0 1.0 1.0
Arrested Development 2 100.0 100.0 1.0 1.0
Bewitched 2 0.0 0.0 - -
CSI: Miami 2 0.0 100.0 5.0 5.0
Chappelle’s Show 2 100.0 100.0 1.0 1.0
Charlie’s Angels 2 0.0 100.0 67.0 67.0
Charmed 2 100.0 100.0 1.0 1.0
Crank Yankers 1: Uncensore 2 0.0 100.0 2.5 2.5
Da Ali G Show 2 100.0 100.0 1.0 1.0
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Dallas 2 50.0 100.0 18.5 18.5
Danger Mouses 1 and 2 0.0 50.0 87.0 87.0
Dark Angel 2 100.0 100.0 1.0 1.0
Dead Like Me 2 100.0 100.0 1.0 1.0
Doogie Howser, M.D. 2 50.0 100.0 2.5 2.5
Ellen 2 50.0 100.0 2.5 2.5
Family Business 2 100.0 100.0 1.0 1.0
Family Guy: Vol. 1s 1- 2 100.0 100.0 1.0 1.0
Green Acres 2 100.0 100.0 1.0 1.0
Have Gun Will Travel 2 50.0 100.0 2.5 2.5
Highway to Heaven 2 0.0 50.0 44.0 44.0
Hogan’s Heroes 2 50.0 100.0 30.0 30.0
Home Improvement 2 100.0 100.0 1.0 1.0
Home Movies 2 100.0 100.0 1.0 1.0
Jem and The Holograms 3: Part 2 0.0 0.0 - -
Knight Rider 2 50.0 100.0 3.0 3.0
Las Vegas 2 100.0 100.0 1.0 1.0
MTV: Punk’d 2 100.0 100.0 1.0 1.0
Mad About You 2 100.0 100.0 1.0 1.0
Magnum P.I. 2 100.0 100.0 1.0 1.0
Mail Call: The Best of Season 2 50.0 100.0 1.5 1.5
Mary Tyler Moore 2 50.0 100.0 6.0 6.0
Michael Moore’s The Awful Truth 2 100.0 100.0 1.0 1.0
Mutant X 2 0.0 50.0 42.0 42.0
NYPD Blue 2 100.0 100.0 1.0 1.0
Nero Wolfe 2 50.0 100.0 8.0 8.0
Newlyweds: Nick and Jessica 2 100.0 100.0 1.0 1.0
NipandTuck 2 100.0 100.0 1.0 1.0
Once and Again 2 50.0 100.0 3.5 3.5
One Tree Hill 2 50.0 100.0 9.5 9.5
Penn and Teller: Bullsh*t! 2 100.0 100.0 1.0 1.0
Popular 2 100.0 100.0 1.0 1.0
Project Greenlight 2 100.0 100.0 1.0 1.0
Punky Brewster 2 0.0 100.0 3.0 3.0
Reno 911 2 100.0 100.0 1.0 1.0
Samurai Jack 2 50.0 100.0 8.5 8.5
Sledge Hammer! 2 50.0 100.0 1.5 1.5
Sliders 1 and 2 50.0 100.0 7.0 7.0
Tales from the Crypt 2 50.0 100.0 27.0 27.0
Teen Titans 2 50.0 50.0 1.0 1.0
That ’70s Show 2 100.0 100.0 1.0 1.0
The Bob Newhart Show 2 0.0 50.0 5.0 5.0
The Challenge of the Superfriends 2 0.0 50.0 15.0 15.0
The Fresh Prince of Bel Air 2 0.0 50.0 2.0 2.0
The Golden Girls 2 100.0 100.0 1.0 1.0
The L Word 2 100.0 100.0 1.0 1.0
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The Lost World 2 0.0 0.0 - -
The Monkees 2 0.0 100.0 5.0 5.0
The New Avengers 2 50.0 100.0 2.5 2.5
The O.C. 2 100.0 100.0 1.0 1.0
The Outer Limits: The Original Series 2 100.0 100.0 1.0 1.0
The Pretender 2 50.0 100.0 7.5 7.5
The Simple Life 2 100.0 100.0 1.0 1.0
The Twilight Zone 2 0.0 50.0 14.0 14.0
The Waltons 2 0.0 50.0 33.0 33.0
The Wire 2 100.0 100.0 1.0 1.0
Touched by an Angel 2 0.0 100.0 18.0 18.0
Trailer Park Boys 2 0.0 0.0 - -
Viva La Bam 2 100.0 100.0 1.0 1.0
Wildboyz 2 50.0 100.0 1.5 1.5
Wiseguy 1: Part 2 100.0 100.0 1.0 1.0
World Poker Tour 2 50.0 100.0 5.5 5.5
X-Men: Evolution 2 100.0 100.0 1.0 1.0
21 Jump Street 3 100.0 100.0 1.0 4.67

2 3 100.0 100.0 1.0 2.0
Beast Wars Transformers 3 100.0 100.0 1.0 2.0
Boy Meets World 3 100.0 100.0 1.0 26.33

Cold Feet 3 66.67 100.0 10.33 38.0
Columbo 3 100.0 100.0 1.0 3.33

ER 3 100.0 100.0 1.0 11.33

G.I. Joe 1: Part 3 100.0 100.0 1.0 3.33

Gilligan’s Island 3 33.33 66.67 2.0 5.0
Kung Fu 3 66.67 50.0 - -
La Femme Nikita 3 100.0 100.0 1.0 2.0
Land of the Lost 3 100.0 83.33 1.0 42.5
MacGyver 3 100.0 100.0 1.0 6.67

Millennium 3 100.0 100.0 1.0 15.67

Monk 3 100.0 100.0 1.0 2.0
Northern Exposure 3 100.0 100.0 1.0 2.0
Quantum Leap 3 100.0 100.0 1.0 2.0
Ren and Stimpy 3 and a Half-is 3 66.67 100.0 5.33 27.33

Rocky and Bullwinkle and Friends 3 66.67 33.33 - -
Roswell 3 100.0 100.0 1.0 3.67

Russell Simmons Presents Def Poetry 3 33.33 33.33 - -
Sealab 2021 3 66.67 100.0 1.67 12.67

Seinfeld 3 100.0 100.0 1.0 2.0
Silk Stalkings 3 66.67 66.67 1.0 2.0
SpongeBob SquarePants 3 100.0 100.0 1.0 36.67

Star Trek: Enterprise 3 66.67 100.0 3.67 22.33

Starsky and Hutch 3 100.0 100.0 1.0 16.0
Strangers with Candy 3 100.0 100.0 1.0 2.0
Survivor 1: Borne 3 100.0 100.0 1.0 26.33
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Taxi 3 100.0 100.0 1.0 7.0
The Andy Griffith Show 3 66.67 100.0 1.33 8.33

The Brady Bunch 3 33.33 50.0 - -
The Dead Zone 3 100.0 100.0 1.0 2.33

The Flintstones 3 66.67 100.0 1.33 2.67

The Greatest American Hero 3 100.0 100.0 1.0 61.33

The Jamie Kennedy Experiment 3 100.0 100.0 1.0 7.67

The Kids in the Hall 3 100.0 66.67 1.0 3.0
The Osbournes 3 100.0 100.0 1.0 6.33

The Shield 3 100.0 100.0 1.0 2.0
Tour of Duty 3 66.67 100.0 5.33 17.0
What’s Happening!! 3 0.0 50.0 - -
Wonder Woman 3 100.0 66.67 1.0 2.0
Alias 4 100.0 100.0 1.0 3.75

All in the Family 4 100.0 100.0 1.0 10.25

CSI 4 100.0 100.0 1.0 3.0
Curb Your Enthusiasm 4 100.0 100.0 1.0 3.25

Degrassi Junior High 4 75.0 66.67 1.0 22.0
Everybody Loves Raymond 4 100.0 100.0 1.0 29.5
Farscape 4 100.0 100.0 1.0 3.0
Felicity 4 100.0 100.0 1.0 3.0
Gilmore Girls 4 100.0 100.0 1.0 3.0
In Living Color 4 100.0 75.0 1.0 3.0
Jeeves and Wooster 4 100.0 100.0 1.0 3.0
King of the Hill 4 100.0 100.0 1.0 16.25

Lost in Space 4 75.0 75.0 1.0 14.0
Married... with Children 4 75.0 75.0 1.0 3.0
Mr. Show 4 100.0 100.0 1.0 3.0
Profiler 4 100.0 100.0 1.0 5.0
Queer as Folk 4 100.0 100.0 1.0 3.0
Six Feet Under 4 100.0 100.0 1.0 3.0
Smallville 4 100.0 100.0 1.0 3.0
Soap 4 100.0 75.0 1.0 4.0
The Best of Friends 4 75.0 100.0 1.5 5.75

The Dukes of Hazzard 4 75.0 91.67 1.33 20.0
The Jeffersons 4 75.0 50.0 - -
The King of Queens 4 100.0 100.0 1.0 7.75

The Man Show 1: Vol. 4 75.0 83.33 3.0 65.5
The West Wing 4 100.0 100.0 1.0 3.0
Three’s Company 4 100.0 100.0 1.0 7.75

Transformers 4 75.0 100.0 1.25 3.75

Will and Grace 4 100.0 100.0 1.0 19.75

Andromeda 5 80.0 80.0 1.0 26.0
Angel 5 100.0 100.0 1.0 10.2
Babylon 5 100.0 100.0 1.0 4.4
Coupling 5 100.0 95.0 1.0 33.25
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Dawson’s Creek 5 100.0 100.0 1.0 5.0
Good Times 5 100.0 85.0 1.0 40.5
I Love Lucy 5 100.0 100.0 1.0 6.4
Law and Order 5 40.0 100.0 1.8 9.4
Oz 5 100.0 100.0 1.0 4.2
Saved by the Bell 5 100.0 100.0 1.0 37.6
The Dick Van Dyke Show 5 100.0 100.0 1.0 4.0
The Sopranos 5 100.0 100.0 1.0 4.0
Upstairs, Downstairs 5 100.0 100.0 1.0 4.0
Cheers 6 100.0 100.0 1.0 34.83

Combat! Season 1: Campaign 6 83.33 96.67 1.0 26.2
Dr. Quinn, Medicine Woman 6 100.0 100.0 1.0 12.33

Hercules: The Legendary Journeys 6 66.67 93.33 2.25 41.75

Highlander 6 100.0 100.0 1.0 7.67

Homicide: Life on the Street 6 100.0 100.0 1.0 8.33

Sanford and Son 6 100.0 83.33 1.0 82.0
South Park 6 100.0 100.0 1.0 32.33

The Simpsons 6 100.0 100.0 1.0 8.83

Xena: Warrior Princess 6 100.0 100.0 1.0 6.17

A Touch of Frost 7 57.14 50.0 - -
Buffy the Vampire Slayer 7 100.0 100.0 1.0 6.0
Frasier 7 100.0 100.0 1.0 44.0
Sex and the City 7 100.0 100.0 1.0 6.0
Star Trek: Deep Space Nine 7 100.0 100.0 1.0 6.0
Star Trek: The Next Generation 7 100.0 100.0 1.0 6.0
Star Trek: Voyager 7 100.0 100.0 1.0 6.0
MASH 8 100.0 100.0 1.0 7.0
Stargate SG-1 8 100.0 100.0 1.0 30.13

Friends 9 100.0 100.0 1.0 12.78

Little House on the Prairie 9 88.89 79.17 - -
The X-Files 9 100.0 100.0 1.0 8.78

Table 13.2: Average quality of recommendations based on the simple independence model
for television series. Dashes in the last two columns indicate that no season of a
series had all other seasons of the same series in the top 100 recommendations.

Observe, that many series have a pbr of 100%, i.e., the best recommendation is another
season of this series. The pra is usually quite high as well, i.e., the first 100 recommenda-
tions contain often the other seasons of a series. The last two parameters that are measured
in this list are not always perfect, but for many of the two seasons series the result is
astonishingly good, since two seasons are not much and are likely to be mixed up with
other similar series (e.g. “Family Guy” and “Simpsons”, which are both by Matt Groen-
ing). Other examples with more seasons, such as “Hercules: The Legendary Journeys” do
show estimates for the last parameter which are not as good as expected; this series is
especially strange, since “Xena: Warrior Princess” is much better estimated. These two
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series are closely related and have several overlaps. A closer look at the data reveals that
the later seasons of “Hercules: The Legendary Journeys” have the complete series in their
top 100 recommendations, while early seasons do not.

Spitz et al. [87] compared different prediction algorithms with each other. Here, the most
interesting for the comparison are their sim approach, since they use the old equation 13.1,
and the z∗-rating as the best result in almost all cases. The z∗-rating uses the standard
fdsm approach, orders results by a p-value defined by the authors and decides ties between
two movies via the z-score (see [87] for more information).

Spitz et al. had a ground truth of sequels of films and television series and compared
these with the results the different algorithms yielded. One of the authors provided their
data set and ground truth such that a comparison between the adapted equation and their
result is possible. Even though in their work they used other similarity measures as well, I
will focus here on the old sim equation 13.1, the fdsm with the z∗-approach, and the new
equation for the sim, equation 13.6.

The provided ground truth contains 15 James Bond movies. For local predictions, the
graph spanned by these movies is considered as a directed graph. When making local fore-
casts, it is reasonable to use directed graphs since not every movie has the same predictions.
Within the ground truth, the James Bond movies build a clique with 210 edges, i.e., each
movie is connected with any other. The z∗-method was capable of recovering 201 of the
210 edges [87], which is a very good result. On the same data set, the algorithm using the
new equation 13.6 yields an even better result with 203 of 210 possible edges, while the
old equation 13.1 was not tested. Thus, testing whether the adapted equation yields for all
datasets results which are as good seems promising.

Computing the leverage with the adapted equation yields quick results. Even in the most
naive implementation, calculating the expected co-occurrence takes only n multiplications
for a single movie. The sampling approach has to take some samples, and each sample
requires O (m log (m)) swaps. Thus, a small loss in quality would be acceptable for
speed. The ground truth consists out of titles, and their k follow-ups. Thus, a comparison
of the top k recommendations based on the leverage to the ground truth for all series and
movies is performed. The average of the local PPVk is shown in Table 13.3.

Data set z∗ [87] sim [87] simadapted

Netflix Series 0.8694 0.6851 0.7136

Netflix Movies 0.57774 0.28954 0.3456

MovieLens 0.5122 0.2346 0.3461

Table 13.3: Comparison of the results of Spitz et al. and the algorithm using the adapted
equation of the average local PPVk.

The local predictions did in all cases improve on average to the old way to calculate the
expected co-occurrence. Still, the z∗ approach which uses sampling in the fdsm is better
in all cases. As was observed on the “James Bond”-movie series, it may be for large movie
series or TV series that the fast calculation with the sim may yield results which are at least
as good as the ones from the sampling approach.
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Similar results are found when the list of the globally top recommendations is under
investigation. This list consists out of the top y predictions of all predictions. The test is
how many of the ground truth edges are within the top y predictions.

Data set z∗ [87] second best [87] simadapted

Netflix Series 0.72 0.65 0.43

Netflix Movies 0.39 0.21 0.22

MovieLens 0.30 0.22 0.21

Table 13.4: Comparison of the results of Spitz et al. and the algorithm using equation 13.6
of the global PPVk.

The Netflix Series data set is not very well predicted on a global level; the adapted
equation does not even perform better than the second best method from Spitz et al. For
the other data sets, Netflix Movies and MovieLens, the new equation 13.6 performs about
as good as the second-best method, but still not as good as z∗. For the “James Bond” data
set, the local predictions of the adapted equation yielded more ground truth edges than
the z∗ approach (203 instead of 201).

For global predictions, this is true as well. For global predictions, the graph is considered
as undirected. It has 15 nodes, one for each movie, and in the ground truth 105 edges, one
between each pair of movies. Spitz et al. showed that the z∗ approach to this problem
yields 55 out of 105 possible edges when using the 904 globally most similar movie pairs.
The adapted equation yields only 51 edges. When using a larger number of most similar
movies, i.e., using the length of the ground truth, the approach using the adapted equation
yields 72 edges. As a side note, one of the James Bond movies was found neither in the 904

most similar movies nor the longer list. This movie is “The Living Daylights”, in the 904

pairs long list is also “License to Kill” missing, i.e., these movies are never recommended
by any of the other movies in the top list - the two movies in which James Bond is portrayed
by Timothy Dalton, who played a darker, more gritty Bond than the actors before him. The
actor may be the reason it is not as similar to the other movies from the series.

That the “James Bond” movies are predicted quite well could be a hint to a relation
between “number of elements of a series” to movies (series) watched and rated by the
same person. This assumption seems to be somewhat plausible. When a viewer watches
consistently all episodes of a TV series (or movie series), it is more likely that they all have
a rating and that they do not get confused with other series. If there is only one sequel to
a movie or only a second season to a TV show, it is much harder to find evidence that they
belong together.

As can be seen in Fig. 13.1, TV series (Fig 13.1b) or movie series (Fig. 13.1a and Fig. 13.1c)
with more elements are predicted better than the ones with fewer parts. There are two cases
for which this assumption seems to be completely wrong; thus, they need investigation:
The Netflix Movie data set for the case of 11 pre-/sequels and the MovieLens data set
with eight pre-/sequels. A quick look at the ground truth shows that these movies are
11 Godzilla-based and a set of 8 Muppet/Sesame Street films. The latter collection was
released in a time frame of 20 years; this may be the reason edges could not be assessed
correctly. The former collection was released over a time span of 36 years. It contains
only Japanese productions; Netflix officially started streaming in Japan in 2015 and the
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(a) Netflix Movies

(b) Netflix Series

(c) MovieLens

Figure 13.1: Overview of hit-rate of correctly assessed edges; the more elements a series
has, the more likely edges appear to be assessed correctly.
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dataset was released in 2006, special effects improved rather much, Japanese movies are
not necessarily the primary interest of the standard viewer of Netflix, the producers, cast,
and story changed—all of these and more may be reasons why the Godzilla collection is
not recognized very well. It may also be related to the construction of the data set—only
ratings with a grade of 4 and higher are included. In IMDB2 the movies had a rating of
about 6 out of 10, Rotten Tomatoes 3 did not have a rating for all of them but the ones
which were rated were about 60% as well. Thus, the construction of the data set used may
have an influence as well.

Overall, even though for some movie series or TV series the sim approach works well
enough to show other elements of the series, it does not work for all of them. Smaller series,
older series, series spanning a long time may benefit more from the more sophisticated z∗
approach. Still, it is interesting to see that a small change in the equation yields this much
of an improvement when using the sim to assess similarities.

13.1 the model to use and open problems

The results show for directed and undirected graphs quite similar results. When using the
cfg, there is the possibility that multiple edges or self-loops are included. Self-loops do not
contribute anything to most network analytic measures. Handling multiple edges between
nodes does need a careful consideration since multiple edges between two nodes are not
necessarily intended. Researchers who use this model sometimes drop these ”bad edges”.
Depending on the degree distribution of the graph under investigation, this may or may
not be a uniform loss in the degree sequence, but for many real-world graphs, it will be
a non-uniform loss since there are usually much less high degree nodes than low-degree
nodes. The loss may influence measures but usually is not considered when analyzing any
graph. For both variants of the cfg it is important to check several things before applying
them to analyze a graph.

1. How do measures and algorithms that are applied handle multiple edges/self-loops?

2. Are the measures degree-dependent in any way?

3. Is the loss of the property to be exact (i.e. using the fdsm) worth the speed-up by
using the cfg? If not, i.e., if multiple edges or self-loops occur and the current graph
is dismissed to start generating a new one, is it a speed-up?

The sis is not the fastest model and it is not considered very often. The results indicate
that it is not important whether a uniform or a degree dependent choice of neighbors is
used in subgraph counting or network motif analysis. Since the run-time estimate O

(
n3
)

to generate one graph is, under the assumption that n ∼ m, worse than O (nm log (m)), the
runtime of the analysis using the fdsm, the sis is not the best choice for analysis.

The sim is the mathematical approximation of the cfg. The assumption that each edge
can exist with some probability regardless of whether a node has already some edges is
the principle idea. From this idea, all equations which were used in this chapter can be
developed. It is possible to predict with the equations how many multiple edges and

2 http://www.imdb.com
3 http://www.rottentomatoes.com/
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13.1 The model to use and open problems

how many self-loops a graph that is generated with the cfg has. For directed graphs, the
results are twofold; first, global estimates of the number of motifs are possible and most
of the time within a standard deviation of the results of the baseline model, the fdsm. For
the graphs that showed problems, the node-based analysis indicated that the problems
stem from very few nodes. These nodes have high degrees and participate quite often in
the subgraphs of interest. The analysis in the last part confirms this finding. For nodes
with high degree, the equations overestimate their worth, as soon as the degree of a node
contributes non-linearly. Furthermore, equations that take into account the repetition of
a node (e.g. (u,u, v,w)), have been developed. These are more exact, but can be quite
cumbersome to calculate.

Therefore, when using the sim, several things have to be taken into consideration

1. The degree sequence should be not (too) skewed.

2. There should be only few to no nodes violating(
k2v <

∑
u∈V

ku

)
∧

(
j2v <

∑
u∈v

jv

)
∧

(
(kv + jv)

2 <
∑
u∈V

kv + jv

)

3. When the result of the equation and the value of the real-world graph are very differ-
ent (depending on the measure used), use a model that generates only simple graphs
to check the validity of the result.

Of course, the equations can misestimate the number of subgraphs and yield results which
are similar to the result of the real-world graph, which would be unfortunate. But, since
the approach of using equations to approximate real-world systems is not uncommon, my
confidence that the results of the sim and the fdsm are similar or even coincide is high. Still,
the Complete subgraph together with the Ythan Estuary graph and the Little Rock graph
show that it is never bad to be careful.
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S U M M A RY A N D C O N C L U S I O N S

Network analysis calculates measures on graphs. While usually in social network analysis
the measures are calculated and interpreted with experts regarding the network, another
approach is to calculate the measure and compare it first with other graphs, before inter-
preting it. This procedure ensures that the measure can take other values, very different
values in fact. If the other graphs have all the same value regarding a measure, it is not
important enough to discuss this measure. The problem is, with which graphs should the
comparison take place? Whenever a larger graph (n > 10000) is compared with a small
graph (n < 1000), the probability that the results are different is high — especially when
the assumption of m = O (n) holds [71]. Finding enough graphs that are similar in size is
hard. Thus, random graph models are used to achieve this goal. The interesting question
is, which random graph model to use?

14.1 summary

Historically, the G (n,m) model was enough to compare graphs to, but nowadays graphs
have very different structures and degree sequences, such that analyses based on a compar-
ison to this model yields the graph as exceptional, no matter what.

This was shown in Sections 4.1, 4.2. To do so, we used once a graph with a Poissonian
degree distribution that was randomly generated as well. To compare this to other graphs,
which have one important feature in common, the degree sequence, two different null mod-
els and their corresponding algorithms were used. The configuration model and the fixed
degree sequence model. For a graph with an unskewed Poissonian degree distribution,
it did not seem to be important which null model is used. However, when a graph with
a skewed degree distribution is analyzed, the cfg showed very different results from the
fdsm. As was observed later, this was due to a non-uniform distribution of multiple edges
and self-loops. The cfg is the only null model used that allows for such edges. Still, the
results of the analysis on real-world graphs based on purely global measures showed the
cfg is a fast and plausible alternative to the fdsm, at least for some measures. As soon
as we changed the analysis to a local measure and took the average/sum of this result,
the cfg was not accurate. Now, one might complain that the average distance is a local
measure as well since for any node all distances are computed and then the averaging
starts. However, distances involve the whole component a node is embedded in, not only
the direct neighbors. Thus, distances are considered as a global measure, while the average
neighbor degree is considered as a local measure. Moreover, for this measure, as well as the
co-occurrence, the cfg did fail to produce results similar to our baseline model, the fdsm.
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14 summary and conclusions

The erased configuration model that generates graphs based on the configuration model
and erases multiple edges and self-loops afterward fared even worse in the local measures.

For the network motif analysis, the cfg and the ecfg are both not very useful. A good
example is the Feed-Forward Loop; in the real-world E. coli graph the number of Feed-
Forward Loops is 42; the z-score that is produced by the cfg would be only 4.01, which
is too low to consider the Feed-Forward Loop as extraordinary. The fdsm has a z-score of
10.05, the ecfg 13.41. Thus, one may consider the ecfg as a null-model for motif analysis
as well. However, considering the edge-loss in graphs with skewed degree distributions, it
cannot be used as a reasonable model.

To the best of my knowledge, the sequential importance sampling has been investigated
the first time on such a scale. The choice of the next neighbor to a node is important.
When the next neighbor is chosen based on the remaining degree of the possible neighbors,
the generated graphs are more dis-assortative than when generated with the fdsm. The
dsis connects low degree more often to high degree nodes than other nodes, due to the
simple fact that the algorithm starts out with low degree nodes and attempts to connect
them to other nodes. Thus, often edges are build between low and high degree nodes,
which skews measures such as the average neighbor degree to high values for many low
degree nodes. Thus, the dsis should be avoided whenever local measures are concerned.
For global measures, one has to be aware of this as well. The diameter is a global measure
and for graphs generated from the dsis, it was always low. This observation together with
the preferences described above leads to the hypothesis that the dsis may not be the null
model to use for statistical comparison. The second variant of the sis, choosing neighbors
uniformly at random, generates diameters and distances just as the fdsm. Additionally, it
also generates the other measures tested on undirected graphs as the fdsm does. It can be
a replacement of the fdsm, but the algorithm is slow. Thus, this model can be used, but in
general, a speed-up cannot be guaranteed.

Regarding network motif analysis, it is harder to tell which of the two is more useful.
Sometimes, the usis scores better regarding the D-value of the Kolmogorov-Smirnoff two-
sample test, sometimes the dsis. Overall, both models have results close to the fdsm.
However, the fact that the worst-case run-time of the fdsm is better than of the sis shows
that the fdsm is the algorithm to use.

The last model, the simple independence model, is a very basic probability model. It
works very well with the G (n,m)-model and other graphs that have an unskewed degree
sequence. As soon as the degree sequence is skewed, it does not work very well. Measures
such as the diameter and distance cannot be calculated with the simple methods suggested,
which is due to the use of averages to calculate the measures. Using these averages may
work on some graphs, but as shown in Chapter III, it does not work very well on real-
world graphs. The average neighbor degree is estimated as bad as in the cfg, which is
understandable since it is an approximation of the same. The model does not match well
with the fdsm. For the co-occurrence the results are twofold—calculating the co-occurrence
with the basic equation by Zweig and Kaufmann [108] is still off, but the approximation of
Newman [66] is a good match for the global co-occurrence. Looking at the co-occurrence
locally, the results are again off, and thus, only usable as approximations.

Considering network motif analysis, the equations of the sim work well enough for many
graphs and many subgraphs to skip analysis with the fdsm. Luckily, several graphs showed
severe problems on some of the subgraphs, such that an investigation why it does not work
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14.2 Conclusions to draw

was started. On the data sets used, only one indicator aligned well enough with the bogus
results, ∀v ∈ V :

(
k2v <

∑
u∈V ku

)
∧
(
j2v <

∑
u∈V ju

)
∧
(
(kv + jv)

2 <
∑
u∈V ku + ju

)
. Since

this test is the only one that had satisfying results and the test is not based on a comparison
to results of a sampling algorithm, this test may be promising for future analysis. The
standard deviation was calculated explicitly, but an approximation seems to suffice.

14.2 conclusions to draw

To analyze a graph by comparing it to a appropriate null model is not the fastest way, but
it offers a statistical way to decide whether something is exceptional or if it could happen
at random. Since the generation of the random graphs is not cheap, it has to be considered
which approach should be used. For this, a simple guideline can be the following:

• Analyze the degree distribution of the graph.

– not skewed—consider using the cfg or the ecfg

– skewed—do not use the cfg or the cfg

• Test the percentage of nodes u for that k2u >
∑
v∈V kv

– not skewed—consider using the cfg or the ecfg

– skewed—do not use the cfg or the cfg

• Global or local measure?

– global and the test show you may use the cfg? Consider using the sim, cfg, or
the ecfg

– global and the test show you should not use the cfg? Use the fdsm or the usis

– local—use the fdsm

Surprisingly, the sim is as good as not mentioned in the guideline. That is because not
many measures are defined using the sim, and even worse, variances based on this model
are hard to calculate. It may be possible to calculate the variance more simple by using
generating functions [69], but for combinations of nodes, as practiced in the network motif
analysis (Section 11.3)), generating functions will most likely not be easier to handle. Fur-
thermore, whenever the cfg can be used, the sim can be used to approximate the expected
value of a measure. When an equation to calculate the standard deviation exists, it can
easily be applied. When no equation for this is given, a more thorough analysis based on
simulations with an appropriate null model is necessary.

In the network motif analysis part I showed that it is possible to calculate standard
deviation, but only when assuming the events as uncorrelated—which clearly, they are not.
Still, as an approximation, it is good enough.

14.3 future work

The sim is incredibly powerful—but also quite dangerous to use. Dangerous in the sense
of “Whenever one trusts in results without verifying with a proper null model, it may
end costly”. The ease with which equations can be developed was shown several times
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14 summary and conclusions

throughout this thesis. That not every equation is correct for every graph, was shown
as well. Thus, using the sim as a first approximation and verifying results with an ap-
propriate null model seems more reasonable. Of course, some measures should never be
calculated with the sim on real-world graphs, since some assumptions are just not appli-
cable. The other models do all have their kinks—either a worst-case runtime that is high,
multiple edges, or similar problems. It would be very useful to investigate more deeply
when the sim can be applied without causing problems. As observed in the network motif
analysis part, even though the degree sequences of some graphs do not follow the rule
∀v ∈ V :

(
k2v <

∑
u∈V ku

)
∧
(
j2v <

∑
u∈V ju

)
∧
(
(kv + jv)

2 <
∑
u∈V ku + ju

)
, not all subgraph

occurrences are estimated badly. Even some of the graphs that do not follow the rule show
quite good expectation values. A deeper investigation is necessary to get a more clear deci-
sion factor on when the sim or the cfg may be applied. Additionally, mathematically more
experienced people should take a closer look at the problem with the standard deviation.

Another necessary proof that is still missing is for the algorithm of the fdsm, i.e., the mix-
ing time. There have been many investigative attempts to lower the number of necessary
swaps, to lower the number of samples, and so on, but a proof is still missing. Without
such a proof, the run-time estimate is usually taken on the large side. The best example
for this is in Milo et. al [63], where the experiment they used was stable after ∼ 1 |E| edge
swaps, but they still chose 100 |E| to be on the safe side.

Besides this, it would be very useful to discuss the equations to estimate the number
of subgraphs with some researchers from the field of Biology. This field uses network
motif analysis the most often. Thus, it would be good to know whether they think it is
applicable. If they deemed it applicable, it would be very useful to have an easy to control
software, which allows researchers from the field to estimate the number of subgraphs,
without bothering them with math.
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pěstovánı matematiky 080.4 (1955), pp. 477–480.

[38] Lenwood S. Heath and Nidhi Parikh. “Generating random graphs with tunable clus-
tering coefficients”. In: Physica A: Statistical Mechanics and its Applications 390.23–24

(2011), pp. 4577–4587. issn: 0378-4371.

[39] Pim van der Hoorn and Nelly Litvak. “Phase transitions for scaling of structural
correlations in directed networks”. In: Phys. Rev. E 92 (2 Aug. 2015), p. 022803.

[40] Pim van der Hoorn and Nelly Litvak. “Upper bounds for number of removed edges
in the Erased Configuration Model”. In: Algorithms and Models for the Web Graph.
Springer, 2015, pp. 54–65.
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Part VI

A P P E N D I X





C O M PA R I S O N W I T H T H E R E S U LT S O F I T Z K O V I T Z E T A L .

The comparison of our own results with the results of other groups is one of the most
important parts of research, such that it is not skipped in this work.

The equations provided by Itzkovitz et al. [43] are in some aspect very similar to the
approach developed in the thesis (see Section 12.1). Still, there are some major differences
between their and the work presented here.

For the equations that are used throughout the thesis, only the in- and out-degree se-
quences are needed. Itzkovitz et al. use more information about a graph. They require

{Ki}
n
i=1 (the number of edges outgoing from each node), {Ri}

n
i=1 (the number

of incoming edges at each node), and mutual degree {Mi}
n
i=1 (the number of

mutual edges at each node).

Getting information about mutual edges requires additional effort, but it is not too com-
plex (max. O

(
n2
)
) compared to other measures.

In their paper, they used partially the same subgraphs as we did in our research, but they
used different graphs. Searching for them online did yield only non-existing web-pages;
comparing their results to some graphs that have the same name, but are not necessarily
the same, is not useful. Instead, we apply their equations as well as our equations to several
data sets that were analyzed before. For those subgraphs where the sampling process was
used the results are displayed as well.

In Table 1, the equations given by Itzkovitz et al. and the equations developed by me are
shown. Interestingly, some equations coincide. Still, since Itzkovitz et al. have to keep track
of in-, out-, and mutual degree, even the results of these base equations will be different.

In the Tables 2 to 4 the results are displayed. In the first table, the equations are applied
to the E. coli graph. From these results, the results of Itzkovitz et al. seem to coincide
in almost all cases. Only some entries are not defined, due to the fact that M is 0 for all
nodes. The next table analyzes the S. cerevisiae graph; here, the results get curious. There
are several subgraphs for which the equations of Itzokvitz et al. predict negative values;
the other set of equations yields small values, which can be considered as a sign that it is
very implausible that this subgraph would appear anyway. Thus, negative values can be
ignored up to now. Stranger still, there are two subgraphs for which our equations predict
almost no occurrence, while the equations of Itzkovitz et al. predict that there are several of
these subgraphs. The analysis of the Little Rock graph is the last pointer that the equations
of Itzkovitz et al. are not to be used. While the analysis with the fdsm yielded an expected
occurrence of ∼ 5 complete subgraphs, the sim yields an estimate of 1.64; the equation
of Itzkovitz et al. yields 100 as many. Other expected values are misestimated as well.
Consider the result of the equation for the Double-Join, for which the equation of Itzkovitz
et al. estimates a much lower value than our equation. Our equation was very close to the
result of the sampling process. Thus, our equations seem to yield better results than the
ones of Itzkovitz et al. Additionally, we have a way to calculate standard deviations, which
is not discussed in their paper.
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comparison with the results of itzkovitz et al .

Subgraph Equation [43] Equationsim

n
〈K(K−1)〉

2 n
〈k2〉−〈k〉

2

n〈KR〉 n〈kj〉

n〈KM〉 〈kj〉 〈k
2j〉−〈kj〉
〈k〉2

n
〈R(R−1)〉

2 n
〈j2〉−〈j〉

2

〈K(K−1)〉〈KR〉〈R(R−1)〉
〈K〉3

(〈k2〉−〈k〉)〈kj〉(〈j2〉−〈j〉)
〈k〉3

〈KM〉2〈R(R−1)〉
2〈K〉2〈M〉

(〈j2〉−〈j〉)(〈k2j〉−〈kj〉)
2

2m〈k〉3

n〈RM〉 〈kj〉(〈kj2〉−〈kj〉)
〈k〉2

n
〈M(M−1)〉

2

〈kj〉2(〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
2m〈k〉3

〈KR〉3
3〈K〉3

〈kj〉3
3〈k〉

〈KM〉〈RM〉〈RK〉
〈K〉2〈M〉

〈kj〉(〈k2j〉−〈kj〉)(〈kj2〉−〈kj〉)
m∗〈k〉3

〈RM〉2〈K(K−1)〉
2〈K〉2〈M〉

(〈k2〉−〈k〉)(〈kj2〉−〈kj〉)
2

2m〈k〉3

〈KM〉〈RM〉〈M(M−1)〉
〈K〉〈M〉2

(〈k2j〉−〈kj〉)(〈kj2〉−〈kj〉)(〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
m2〈k〉3

〈M(M−1)〉3
6〈M〉3

(〈k2j2〉−〈k2j〉−〈kj2〉+〈kj〉)
3

6m3〈k〉3

Table 1: Equations of Itzkovitz et al. [43] and own equations 11.18 together with the corre-
sponding subgraph. Observe, that some do have the same equation.
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Subgraph Itzkovitz Own

4819.00 4819.00

202.00 202.00

0.00 1.11

269.00 269.00

7.49 7.49

- 0.01

0.00 0.17

0.00 4.69 · 10
−3

0.02 0.02

- 9.60 · 10
−3

- 3.57 · 10
−2

- 1.53 · 10
−5

- 3.96 · 10
−8

Table 2: E. coli

Subgraph Itzkovitz Own

11 843.00 11 841.00

325.00 327.00

−4.00 1.01

871.00 873.00

11.58 11.61

3.16 · 10
−2

8.37 · 10
−2

4.00 0.14

2.00 2.23 · 10
−3

0.01 0.01

−1.18 · 10
−2

4.39 · 10
−3

0.04 2.23 · 10
−2

−3.81 · 10
−3

6.51 · 10
−6

0.17 1.63 · 10
−8

Table 3: S. cerevisiae
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comparison with the results of itzkovitz et al .

Subgraph Itzkovitz Own

24 386.00 25 532.00

25 674.00 28 597.00

1832.00 2007.03

52 878.00 54 553.00

9675.77 10 270.57

152.05 268.71

2890.00 4781.86

1022.00 140.83

412.17 502.52

116.46 335.61

174.50 713.90

108.71 62.70

167.65 1.64

Table 4: Little Rock
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D I R E C T E D G R A P H S - TA B L E S

1 on the configuration model

Graph FDSM CFG eCFG

St. Marks Seagrass 1.00 · 10
1 ± 4.07 1.02 · 10

1 ± 5.78 6.03 ± 3.56

Silwood 9.13 ± 5.82 7.78 ± 6.75 4.63 ± 3.83

St. Martin Island 1.06 · 10
1 ± 4.22 9.90 ± 5.70 5.11 ± 2.99

Ythan Estuary 3.99 · 10
1 ± 1.15 · 10

1
5.34 · 10

1 ± 2.72 · 10
1

1.90 · 10
1 ± 7.20

Little Rock 2.81 · 10
2 ± 3.80 · 10

1
2.60 · 10

2 ± 4.38 · 10
1

1.40 · 10
2 ± 2.28 · 10

1

Grassland 1.25 · 10
−1± 3.73 · 10

−1
2.05 · 10

−1± 7.83 · 10
−1

1.20 · 10
−1± 3.94 · 10

−1

s208 5 · 10
−3± 7.05 · 10

−2
5 · 10

−3± 7.05 · 10
−2

0.00 ± 0.00

s420 5 · 10
−3± 7.05 · 10

−2
3 · 10

−2± 1.71 · 10
−1

2 · 10
−2± 1.40 · 10

−1

Gnutella 08.08.2002 5.35 · 10
−1± 7.34 · 10

−1
3.91 · 10

2 ± 1.59 · 10
2

4.90 · 10
−1± 7.35 · 10

−1

Gnutella 09.08.2002 4.85 · 10
−1± 7.55 · 10

−1
1.80 · 10

2 ± 1.41 · 10
2

3.30 · 10
−1± 6.33 · 10

−1

E .coli 5 · 10
−3± 7.05 · 10

−2
1 · 10

−2± 9.95 · 10
−2

1 · 10
−2± 9.95 · 10

−2

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
1 · 10

−2± 9.95 · 10
−2

1 · 10
−2± 9.95 · 10

−2

Table 1: Number of Double-Joins found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 1 · 10
−1

4 · 10
−1

3.35 · 10
−1

St. Martin Island 1.65 · 10
−1

5.45 · 10
−1

4.05 · 10
−1

Silwood 1.55 · 10
−1

3.75 · 10
−1

2.85 · 10
−1

Ythan Estuary 2.85 · 10
−1

7.35 · 10
−1

7.65 · 10
−1

Little Rock 2.80 · 10
−1

9.75 · 10
−1

9.30 · 10
−1

Grassland 3.50 · 10
−2

1.50 · 10
−2

2.50 · 10
−2

s208 0.00 5 · 10
−3

5 · 10
−3

s420 2.50 · 10
−2

1.50 · 10
−2

1 · 10
−2

Gnutella 08.08.2002 1.00 3.16 · 10
−2

1.00

Gnutella 09.08.2002 7.50 · 10
−1

1 · 10
−1

7.50 · 10
−1

E .coli 5 · 10
−3

5 · 10
−3

0.00

S. cerevisiae 0.00 0.00 0.00

Table 2: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Double-Join.
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directed graphs - tables

Graph FDSM CFG eCFG

St. Marks Seagrass 2.20 · 10
1 ± 4.52 2.25 · 10

1 ± 5.38 1.48 · 10
1 ± 4.03

Silwood 4.48 ± 2.51 6.44 ± 3.81 2.94 ± 1.94

St. Martin Island 1.92 · 10
1 ± 5.30 2.08 · 10

1 ± 6.33 1.25 · 10
1 ± 4.12

Ythan Estuary 5.63 · 10
1 ± 1.04 · 10

1
7.14 · 10

1 ± 2.17 · 10
1

3.21 · 10
1 ± 7.05

Little Rock 4.68 · 10
2 ± 3.11 · 10

1
5.08 · 10

2 ± 3.87 · 10
1

3.49 · 10
2 ± 2.75 · 10

1

Grassland 3.60 · 10
−1± 5.92 · 10

−1
7.43 · 10

−1± 7.10 · 10
−1

4 · 10
−1± 6 · 10

−1

s208 1.04 ± 1.02 1.30 ± 9.64 · 10
−1

8.20 · 10
−1± 8.59 · 10

−1

s420 1.05 ± 1.04 1.65 ± 1.11 1.11 ± 1.01

Gnutella 08.08.2002 3.02 · 10
1 ± 5.52 9.20 · 10

1 ± 1.51 · 10
1

3.06 · 10
1 ± 5.72

Gnutella 09.08.2002 2.45 · 10
1 ± 5.69 7.55 · 10

1 ± 1.59 · 10
1

2.42 · 10
1 ± 5.05

E .coli 1.50 · 10
−2± 1.22 · 10

−1
1.22 · 10

−1± 2.06 · 10
−1

5 · 10
−3± 7.05 · 10

−2

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
1.02 · 10

−1± 1.86 · 10
−1

5 · 10
−3± 7.05 · 10

−2

Table 3: Number of Threecycles found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 7.50 · 10
−2

5.95 · 10
−1

6 · 10
−1

Silwood 2.85 · 10
−1

2.80 · 10
−1

4.95 · 10
−1

St. Martin Island 2 · 10
−1

5.15 · 10
−1

6.05 · 10
−1

Ythan Estuary 3.95 · 10
−1

8.40 · 10
−1

9.05 · 10
−1

Little Rock 4.45 · 10
−1

9.60 · 10
−1

9.90 · 10
−1

Grassland 4.50 · 10
−1

3.50 · 10
−2

4.15 · 10
−1

s208 2.58 · 10
−1

7.75 · 10
−2

3.30 · 10
−1

s420 3.35 · 10
−1

5.75 · 10
−2

3.45 · 10
−1

Gnutella 08.08.2002 1.00 4.84 · 10
−2

1.00

Gnutella 09.08.2002 1.00 6.50 · 10
−2

1.00

E .coli 2.95 · 10
−1

1 · 10
−2

3.05 · 10
−1

S. cerevisiae 2.55 · 10
−1

5 · 10
−3

2.60 · 10
−1

Table 4: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Threecycles.
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1 On the Configuration Model

Graph FDSM CFG eCFG

St. Marks Seagrass 3.50 · 10
−2± 1.84 · 10

−1
2.05 · 10

1 ± 5.44 · 10
1

0.00 ± 0.00

Silwood 3 · 10
−2± 1.71 · 10

−1
1.25 · 10

1 ± 2.99 · 10
1

0.00 ± 0.00

St. Martin Island 6.50 · 10
−2± 2.47 · 10

−1
1.55 · 10

1 ± 3.12 · 10
1

0.00 ± 0.00

Ythan Estuary 6.15 · 10
−1± 8.17 · 10

−1
6.39 · 10

2 ± 2.58 · 10
3

4.50 · 10
−1± 1.15

Little Rock 5.75 ± 4.79 1.04 · 10
2 ± 1.01 · 10

2
2.27 ± 2.72

Grassland 0.00 ± 0.00 5.03 · 10
−1± 5.09 · 10

−1
0.00 ± 0.00

s208 0.00 ± 0.00 7.20 · 10
−1± 5.60 · 10

−1
0.00 ± 0.00

s420 0.00 ± 0.00 9.25 · 10
−1± 2.32 0.00 ± 0.00

Gnutella 08.08.2002 0.00 ± 0.00 1.64 ± 3.15 0.00 ± 0.00

Gnutella 09.08.2002 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

E .coli 0.00 ± 0.00 1.75 · 10
−1± 2.95 · 10

−1
0.00 ± 0.00

S. cerevisiae 0.00 ± 0.00 1.45 · 10
−1± 2.63 · 10

−1
0.00 ± 0.00

Table 5: Number of Complete subgraphs found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 9.55 · 10
−1

3.50 · 10
−2

9.90 · 10
−1

Silwood 8.90 · 10
−1

3 · 10
−2

9.20 · 10
−1

St. Martin Island 9.30 · 10
−1

6.50 · 10
−2

9.95 · 10
−1

Ythan Estuary 9.70 · 10
−1

2.95 · 10
−1

9.60 · 10
−1

Little Rock 9.70 · 10
−1

3.25 · 10
−1

9.90 · 10
−1

Grassland 6.35 · 10
−1

0.00 6.35 · 10
−1

s208 8.10 · 10
−1

0.00 8.10 · 10
−1

s420 8.05 · 10
−1

0.00 8.05 · 10
−1

Gnutella 08.08.2002 2.14 · 10
−1

0.00 2.14 · 10
−1

Gnutella 09.08.2002 0.00 0.00 0.00

E .coli 3.05 · 10
−1

0.00 3.05 · 10
−1

S. cerevisiae 2.60 · 10
−1

0.00 2.60 · 10
−1

Table 6: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Complete subgraph.
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directed graphs - tables

Graph FDSM CFG eCFG

St. Marks Seagrass 6.01 · 10
1 ± 1.26 · 10

1
7.05 · 10

1 ± 1.66 · 10
1

4.32 · 10
1 ± 1.06 · 10

1

Silwood 6.25 ± 4.07 1.35 · 10
1 ± 9.45 5.16 ± 3.66

St. Martin Island 4.85 · 10
1 ± 1.48 · 10

1
5.99 · 10

1 ± 2.13 · 10
1

3.17 · 10
1 ± 1.16 · 10

1

Ythan Estuary 1.95 · 10
2 ± 4.52 · 10

1
3.29 · 10

2 ± 1.27 · 10
2

9.64 · 10
1 ± 2.33 · 10

1

Little Rock 3.79 · 10
3 ± 3.06 · 10

2
4.40 · 10

3 ± 3.83 · 10
2

2.58 · 10
3 ± 2.32 · 10

2

Grassland 2.40 · 10
−1± 4.72 · 10

−1
7.84 · 10

−1± 6.69 · 10
−1

5.23 · 10
−1± 6.07 · 10

−1

s208 1.02 ± 9.87 · 10
−1

1.86 ± 1.15 1.46 ± 1.04

s420 1.22 ± 1.15 2.13 ± 1.31 1.71 ± 1.23

Gnutella 08.08.2002 1.06 · 10
2 ± 1.29 · 10

1
4.43 · 10

2 ± 3.75 · 10
1

1.03 · 10
2 ± 1.35 · 10

1

Gnutella 09.08.2002 7.58 · 10
1 ± 9.68 3.38 · 10

2 ± 4.44 · 10
1

7.52 · 10
1 ± 1.06 · 10

1

E .coli 0.00 ± 0.00 1.35 · 10
−1± 2.23 · 10

−1
4.75 · 10

−2± 1.55 · 10
−1

S. cerevisiae 0.00 ± 0.00 1.15 · 10
−1± 2.04 · 10

−1
4.25 · 10

−2± 1.56 · 10
−1

Table 7: Number of Fourcycles found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 2.95 · 10
−1

5.55 · 10
−1

6.85 · 10
−1

Silwood 4.25 · 10
−1

2.10 · 10
−1

5.70 · 10
−1

St. Martin Island 2.40 · 10
−1

5.35 · 10
−1

6.35 · 10
−1

Ythan Estuary 6.45 · 10
−1

8.70 · 10
−1

9.60 · 10
−1

Little Rock 6.45 · 10
−1

9.80 · 10
−1

1.00

Grassland 6.55 · 10
−1

3.40 · 10
−1

3.15 · 10
−1

s208 4.43 · 10
−1

2.73 · 10
−1

2 · 10
−1

s420 4.03 · 10
−1

2.68 · 10
−1

1.85 · 10
−1

Gnutella 08.08.2002 1.00 1.21 · 10
−1

1.00

Gnutella 09.08.2002 1.00 5 · 10
−2

1.00

E .coli 3.50 · 10
−1

9 · 10
−2

2.60 · 10
−1

S. cerevisiae 3.15 · 10
−1

7.50 · 10
−2

2.40 · 10
−1

Table 8: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Fourcycle.
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1 On the Configuration Model

Graph FDSM CFG eCFG

St. Marks Seagrass 4.60 · 10
2 ± 3.21 · 10

1
4.22 · 10

2 ± 4.00 · 10
1

2.51 · 10
2 ± 3.76 · 10

1

Silwood 1.03 · 10
3 ± 9.35 · 10

1
1.05 · 10

3 ± 1.15 · 10
2

5.32 · 10
2 ± 7.67 · 10

1

St. Martin Island 8.71 · 10
2 ± 4.78 · 10

1
7.83 · 10

2 ± 7.13 · 10
1

3.75 · 10
2 ± 5.55 · 10

1

Ythan Estuary 3.22 · 10
3 ± 1.77 · 10

2
4.19 · 10

3 ± 4.27 · 10
2

1.59 · 10
3 ± 1.48 · 10

2

Little Rock 1.67 · 10
5 ± 2.70 · 10

3
1.89 · 10

5 ± 4.88 · 10
3

6.62 · 10
4 ± 2.53 · 10

3

Grassland 1.43 · 10
1 ± 6.22 1.90 · 10

1 ± 1.11 · 10
1

1.02 · 10
1 ± 5.12

s208 6.48 · 10
−1± 8.96 · 10

−1
5.55 · 10

−1± 8.23 · 10
−1

5.25 · 10
−1± 7.48 · 10

−1

s420 7.73 · 10
−1± 8.78 · 10

−1
6.95 · 10

−1± 8.61 · 10
−1

6.95 · 10
−1± 8.61 · 10

−1

Gnutella 08.08.2002 4.61 · 10
3 ± 1.36 · 10

2
4.65 · 10

3 ± 7.54 · 10
1

4.42 · 10
3 ± 1.39 · 10

2

Gnutella 09.08.2002 4.14 · 10
3 ± 1.20 · 10

2
4.11 · 10

3 ± 8.92 · 10
1

3.97 · 10
3 ± 1.23 · 10

2

E .coli 6.48 · 10
1 ± 1.32 · 10

1
6.55 · 10

1 ± 1.77 · 10
1

5.40 · 10
1 ± 1.35 · 10

1

S. cerevisiae 3.06 · 10
2 ± 3.50 · 10

1
3.15 · 10

2 ± 4.24 · 10
1

2.58 · 10
2 ± 3.07 · 10

1

Table 9: Number of Bifans found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 4.15 · 10
−1

1.00 9.70 · 10
−1

Silwood 1.15 · 10
−1

1.00 9.95 · 10
−1

St. Martin Island 5.70 · 10
−1

1.00 1.00

Ythan Estuary 9.40 · 10
−1

1.00 1.00

Little Rock 1.00 1.00 1.00

Grassland 2.45 · 10
−1

3.15 · 10
−1

4.05 · 10
−1

s208 4.25 · 10
−2

5.25 · 10
−2

1 · 10
−2

s420 5.25 · 10
−2

5.25 · 10
−2

0.00

Gnutella 08.08.2002 3.02 · 10
−1

5.72 · 10
−1

8.04 · 10
−1

Gnutella 09.08.2002 2.65 · 10
−1

5.50 · 10
−1

6.40 · 10
−1

E .coli 9.50 · 10
−2

3.45 · 10
−1

2.95 · 10
−1

S. cerevisiae 1.10 · 10
−1

5.40 · 10
−1

5.45 · 10
−1

Table 10: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Bifan.
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directed graphs - tables

Graph FDSM CFG eCFG

St. Marks Seagrass 3.44 · 10
2 ± 3.04 · 10

1
3.39 · 10

2 ± 3.83 · 10
1

2.04 · 10
2 ± 2.96 · 10

1

Silwood 1.89 · 10
2 ± 3.29 · 10

1
1.93 · 10

2 ± 3.88 · 10
1

9.69 · 10
1 ± 2.32 · 10

1

St. Martin Island 4.56 · 10
2 ± 4.52 · 10

1
4.36 · 10

2 ± 5.73 · 10
1

2.20 · 10
2 ± 3.32 · 10

1

Ythan Estuary 1.73 · 10
3 ± 1.20 · 10

2
2.18 · 10

3 ± 3.17 · 10
2

8.04 · 10
2 ± 9.33 · 10

1

Little Rock 6.74 · 10
4 ± 2.09 · 10

3
5.78 · 10

4 ± 2.51 · 10
3

2.80 · 10
4 ± 1.32 · 10

3

Grassland 7.35 ± 3.05 6.42 ± 3.86 4.81 ± 2.80

s208 1.67 ± 1.21 1.71 ± 1.22 1.59 ± 1.16

s420 2.00 ± 1.38 2.09 ± 1.47 2.02 ± 1.44

Gnutella 08.08.2002 1.41 · 10
3 ± 7.75 · 10

1
1.36 · 10

4 ± 1.14 · 10
3

1.35 · 10
3 ± 7.88 · 10

1

Gnutella 09.08.2002 1.13 · 10
3 ± 6.35 · 10

1
1.24 · 10

4 ± 4.08 · 10
2

1.10 · 10
3 ± 6.33 · 10

1

E .coli 1.54 ± 1.49 1.27 ± 1.41 1.06 ± 1.08

S. cerevisiae 1.78 ± 1.70 1.59 ± 1.60 1.42 ± 1.37

Table 11: Number of Biparallel subgraphs found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 1.30 · 10
−1

9.80 · 10
−1

9.65 · 10
−1

Silwood 9.50 · 10
−2

9.25 · 10
−1

8.85 · 10
−1

St. Martin Island 2.20 · 10
−1

1.00 9.95 · 10
−1

Ythan Estuary 7.15 · 10
−1

1.00 1.00

Little Rock 9.85 · 10
−1

1.00 1.00

Grassland 1.85 · 10
−1

3.50 · 10
−1

2.25 · 10
−1

s208 3 · 10
−2

3 · 10
−2

6 · 10
−2

s420 3.25 · 10
−2

2 · 10
−2

2.50 · 10
−2

Gnutella 08.08.2002 1.00 3.33 · 10
−1

1.00

Gnutella 09.08.2002 1.00 2.65 · 10
−1

1.00

E .coli 9 · 10
−2

1.25 · 10
−1

5.50 · 10
−2

S. cerevisiae 9.50 · 10
−2

1.10 · 10
−1

4 · 10
−2

Table 12: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Biparallel subgraph.
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1 On the Configuration Model

Graph FDSM CFG eCFG

St. Marks Seagrass 9.67 · 10
1 ± 1.76 · 10

1
9.71 · 10

1 ± 2.60 · 10
1

4.36 · 10
1 ± 1.17 · 10

1

Silwood 6.98 · 10
1 ± 1.91 · 10

1
6.87 · 10

1 ± 2.42 · 10
1

2.74 · 10
1 ± 9.86

St. Martin Island 1.97 · 10
2 ± 2.81 · 10

1
2.05 · 10

2 ± 6.58 · 10
1

6.52 · 10
1 ± 1.74 · 10

1

Ythan Estuary 7.73 · 10
2 ± 9.85 · 10

1
1.65 · 10

3 ± 5.83 · 10
2

2.54 · 10
2 ± 5.03 · 10

1

Little Rock 3.92 · 10
4 ± 1.63 · 10

3
3.72 · 10

4 ± 3.01 · 10
3

1.10 · 10
4 ± 7.71 · 10

2

Grassland 2.90 ± 2.23 2.92 ± 3.77 1.69 ± 1.69

s208 1.50 · 10
−2± 1.22 · 10

−1
4.50 · 10

−2± 2.07 · 10
−1

3 · 10
−2± 1.71 · 10

−1

s420 2.50 · 10
−2± 1.71 · 10

−1
1.50 · 10

−2± 1.22 · 10
−1

1 · 10
−2± 9.95 · 10

−2

Gnutella 08.08.2002 3.60 · 10
1 ± 7.50 3.56 · 10

1 ± 9.35 3.39 · 10
1 ± 7.71

Gnutella 09.08.2002 2.72 · 10
1 ± 7.08 2.43 · 10

1 ± 4.76 2.49 · 10
1 ± 6.09

E .coli 2.25 · 10
−1± 4.74 · 10

−1
1.75 · 10

−1± 6.51 · 10
−1

1.05 · 10
−1± 3.66 · 10

−1

S. cerevisiae 1.05 · 10
−1± 3.07 · 10

−1
1.45 · 10

−1± 4.73 · 10
−1

1.15 · 10
−1± 3.34 · 10

−1

Table 13: Number of In-Fans found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 1.05 · 10
−1

9.50 · 10
−1

8.75 · 10
−1

Silwood 1 · 10
−1

8.65 · 10
−1

7.95 · 10
−1

St. Martin Island 2.10 · 10
−1

1.00 9.60 · 10
−1

Ythan Estuary 8.80 · 10
−1

1.00 1.00

Little Rock 4.15 · 10
−1

1.00 1.00

Grassland 1.75 · 10
−1

2.90 · 10
−1

1.40 · 10
−1

s208 3 · 10
−2

1.50 · 10
−2

1.50 · 10
−2

s420 7.50 · 10
−3

1.25 · 10
−2

5 · 10
−3

Gnutella 08.08.2002 1.87 · 10
−1

1.26 · 10
−1

1.89 · 10
−1

Gnutella 09.08.2002 4.35 · 10
−1

1.45 · 10
−1

3.65 · 10
−1

E .coli 1.10 · 10
−1

1.10 · 10
−1

3.50 · 10
−2

S. cerevisiae 2.50 · 10
−2

5 · 10
−3

2 · 10
−2

Table 14: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the In-Fan.
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Graph FDSM CFG eCFG

St. Marks Seagrass 1.36 · 10
2 ± 2.26 · 10

1
3.12 · 10

2 ± 1.35 · 10
2

6.28 · 10
1 ± 1.57 · 10

1

Silwood 3.23 · 10
2 ± 6.55 · 10

1
1.04 · 10

3 ± 5.59 · 10
2

1.36 · 10
2 ± 3.98 · 10

1

St. Martin Island 2.00 · 10
2 ± 2.43 · 10

1
3.18 · 10

2 ± 1.02 · 10
2

7.08 · 10
1 ± 1.75 · 10

1

Ythan Estuary 1.11 · 10
3 ± 1.32 · 10

2
3.86 · 10

3 ± 1.50 · 10
3

4.35 · 10
2 ± 7.31 · 10

1

Little Rock 3.29 · 10
4 ± 1.04 · 10

3
3.86 · 10

4 ± 2.54 · 10
3

1.02 · 10
4 ± 5.76 · 10

2

Grassland 1.08 ± 1.14 1.37 · 10
1 ± 1.94 · 10

1
9.25 · 10

−1± 1.20

s208 2 · 10
−2± 1.57 · 10

−1
3.94 ± 5.94 3.50 · 10

−2± 1.84 · 10
−1

s420 3 · 10
−2± 1.71 · 10

−1
4.49 ± 6.32 3.50 · 10

−2± 1.84 · 10
−1

Gnutella 08.08.2002 1.85 · 10
1 ± 4.49 2.10 · 10

2 ± 8.31 · 10
1

1.83 · 10
1 ± 4.59

Gnutella 09.08.2002 1.42 · 10
1 ± 4.18 1.03 · 10

2 ± 7.27 · 10
1

1.39 · 10
1 ± 3.96

E .coli 3.00 ± 3.56 1.94 · 10
1 ± 4.84 · 10

1
1.51 ± 2.08

S. cerevisiae 3.47 ± 3.28 2.91 · 10
1 ± 6.08 · 10

1
3.07 ± 2.84

Table 15: Number of Out-Fans found in the respective models.

Graph FDSM - CFG FSDM - eCFG CFG - eCFG

St. Marks Seagrass 8.45 · 10
−1

9.50 · 10
−1

1.00

Silwood 8.50 · 10
−1

9.25 · 10
−1

9.80 · 10
−1

St. Martin Island 6.85 · 10
−1

1.00 1.00

Ythan Estuary 9.85 · 10
−1

1.00 1.00

Little Rock 9.35 · 10
−1

1.00 1.00

Grassland 4.90 · 10
−1

8 · 10
−2

5.10 · 10
−1

s208 4.93 · 10
−1

1.75 · 10
−2

4.75 · 10
−1

s420 5.25 · 10
−1

5 · 10
−3

5.20 · 10
−1

Gnutella 08.08.2002 1.00 6.15 · 10
−2

1.00

Gnutella 09.08.2002 7.50 · 10
−1

6 · 10
−2

7.50 · 10
−1

E .coli 2.45 · 10
−1

2.10 · 10
−1

3.05 · 10
−1

S. cerevisiae 2.45 · 10
−1

7.50 · 10
−2

2.55 · 10
−1

Table 16: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Out-Fan.
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2 on the sequential importance sampling model

Graph FDSM uSIS dSIS

St. Marks Seagrass 1.00 · 10
1 ± 4.07 1.01 · 10

1 ± 3.17 8.54 ± 3.93

Silwood 9.13 ± 5.82 6.74 ± 5.62 7.68 ± 5.59

St. Martin Island 1.06 · 10
1 ± 4.22 1.03 · 10

1 ± 4.05 7.47 ± 4.25

Ythan Estuary 3.99 · 10
1 ± 1.15 · 10

1
3.65 · 10

1 ± 7.29 3.42 · 10
1 ± 9.41

Little Rock 2.81 · 10
2 ± 3.80 · 10

1
2.79 · 10

2 ± 3.41 · 10
1

2.81 · 10
2 ± 4.56 · 10

1

Grassland 1.25 · 10
−1± 3.73 · 10

−1
2 · 10

−2± 1.40 · 10
−1

9 · 10
−2± 2.86 · 10

−1

s208 5 · 10
−3± 7.05 · 10

−2
0.00 ± 0.00 6 · 10

−2± 2.37 · 10
−1

s420 5 · 10
−3± 7.05 · 10

−2
0.00 ± 0.00 0.00 ± 0.00

Gnutella 08.08.2002 5.35 · 10
−1± 7.34 · 10

−1
5.20 · 10

−1± 7.55 · 10
−1

6.40 · 10
−1± 7.94 · 10

−1

Gnutella 09.08.2002 4.85 · 10
−1± 7.55 · 10

−1
5.20 · 10

−1± 8.42 · 10
−1

4.20 · 10
−1± 6.19 · 10

−1

E .coli 5 · 10
−3± 7.05 · 10

−2
0.00 ± 0.00 5 · 10

−2± 2.18 · 10
−1

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
0.00 ± 0.00 0.00 ± 0.00

Table 17: Number of Double-Joins found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 1.05 · 10
−1

1.95 · 10
−1

3 · 10
−1

Silwood 2.50 · 10
−1

2.65 · 10
−1

2.20 · 10
−1

St. Martin Island 1.35 · 10
−1

3.95 · 10
−1

3.90 · 10
−1

Ythan Estuary 2.70 · 10
−1

2.80 · 10
−1

2.30 · 10
−1

Little Rock 1.45 · 10
−1

1.50 · 10
−1

1.60 · 10
−1

Grassland 9 · 10
−2

2 · 10
−2

7 · 10
−2

s208 5 · 10
−3

5.50 · 10
−2

6 · 10
−2

s420 5 · 10
−3

5 · 10
−3

0.00

Gnutella 08.08.2002 2.17 · 10
−2

6.34 · 10
−2

8 · 10
−2

Gnutella 09.08.2002 1.50 · 10
−2

3 · 10
−2

4 · 10
−2

E .coli 5 · 10
−3

4.50 · 10
−2

5 · 10
−2

S. cerevisiae 1 · 10
−2

1 · 10
−2

0.00

Table 18: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Double-Join.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 2.20 · 10
1 ± 4.52 2.34 · 10

1 ± 4.87 1.88 · 10
1 ± 5.38

Silwood 4.48 ± 2.51 3.72 ± 2.52 2.55 ± 1.45

St. Martin Island 1.92 · 10
1 ± 5.30 2.09 · 10

1 ± 4.86 2.12 · 10
1 ± 6.37

Ythan Estuary 5.63 · 10
1 ± 1.04 · 10

1
4.68 · 10

1 ± 1.05 · 10
1

4.69 · 10
1 ± 8.91

Little Rock 4.68 · 10
2 ± 3.11 · 10

1
5.35 · 10

2 ± 2.97 · 10
1

5.24 · 10
2 ± 3.17 · 10

1

Grassland 3.60 · 10
−1± 5.92 · 10

−1
5.40 · 10

−1± 7.41 · 10
−1

4.40 · 10
−1± 7.66 · 10

−1

s208 1.04 ± 1.02 8.40 · 10
−1± 8.21 · 10

−1
9.20 · 10

−1± 9.66 · 10
−1

s420 1.05 ± 1.04 1.17 ± 8.61 · 10
−1

1.30 ± 1.09

Gnutella 08.08.2002 3.02 · 10
1 ± 5.52 3.13 · 10

1 ± 5.09 3.07 · 10
1 ± 5.50

Gnutella 09.08.2002 2.45 · 10
1 ± 5.69 2.45 · 10

1 ± 4.60 2.39 · 10
1 ± 4.83

E .coli 1.50 · 10
−2± 1.22 · 10

−1
3 · 10

−2± 1.71 · 10
−1

0.00 ± 0.00

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
0.00 ± 0.00 0.00 ± 0.00

Table 19: Number of Threecycles found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 2.15 · 10
−1

3.65 · 10
−1

4.70 · 10
−1

Silwood 2.65 · 10
−1

5.05 · 10
−1

2.60 · 10
−1

St. Martin Island 1.65 · 10
−1

2.40 · 10
−1

1.30 · 10
−1

Ythan Estuary 4.50 · 10
−1

5.10 · 10
−1

1.20 · 10
−1

Little Rock 7.45 · 10
−1

6.95 · 10
−1

2.80 · 10
−1

Grassland 1.10 · 10
−1

1.30 · 10
−1

1.20 · 10
−1

s208 1.58 · 10
−1

9.75 · 10
−2

6 · 10
−2

s420 1.78 · 10
−1

1.18 · 10
−1

1.60 · 10
−1

Gnutella 08.08.2002 1.20 · 10
−1

8.27 · 10
−2

8 · 10
−2

Gnutella 09.08.2002 1.15 · 10
−1

7.50 · 10
−2

1 · 10
−1

E .coli 1.50 · 10
−2

1.50 · 10
−2

3 · 10
−2

S. cerevisiae 1 · 10
−2

1 · 10
−2

0.00

Table 20: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Threecycle.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 3.50 · 10
−2± 1.84 · 10

−1
1.50 · 10

−1± 6.54 · 10
−1

0.00 ± 0.00

Silwood 3 · 10
−2± 1.71 · 10

−1
0.00 ± 0.00 0.00 ± 0.00

St. Martin Island 6.50 · 10
−2± 2.47 · 10

−1
0.00 ± 0.00 0.00 ± 0.00

Ythan Estuary 6.15 · 10
−1± 8.17 · 10

−1
7.50 · 10

−1± 1.30 8.10 · 10
−1± 1.64

Little Rock 5.75 ± 4.79 5.94 ± 4.43 4.77 ± 4.67

Grassland 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

s208 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

s420 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Gnutella 08.08.2002 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Gnutella 09.08.2002 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

E .coli 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S. cerevisiae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 21: Number of Complete subgraphs found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 5 · 10
−2

3.50 · 10
−2

5 · 10
−2

Silwood 3 · 10
−2

3 · 10
−2

0.00

St. Martin Island 6.50 · 10
−2

6.50 · 10
−2

0.00

Ythan Estuary 2.15 · 10
−1

2.15 · 10
−1

5 · 10
−2

Little Rock 6.50 · 10
−2

1.20 · 10
−1

1.70 · 10
−1

Grassland 0.00 0.00 0.00

s208 0.00 0.00 0.00

s420 0.00 0.00 0.00

Gnutella 08.08.2002 0.00 0.00 0.00

Gnutella 09.08.2002 0.00 0.00 0.00

E .coli 0.00 0.00 0.00

S. cerevisiae 0.00 0.00 0.00

Table 22: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Complete subgraph.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 6.01 · 10
1 ± 1.26 · 10

1
6.07 · 10

1 ± 1.23 · 10
1

5.19 · 10
1 ± 1.38 · 10

1

Silwood 6.25 ± 4.07 5.08 ± 3.64 4.37 ± 4.27

St. Martin Island 4.85 · 10
1 ± 1.48 · 10

1
4.98 · 10

1 ± 1.31 · 10
1

5.54 · 10
1 ± 1.55 · 10

1

Ythan Estuary 1.95 · 10
2 ± 4.52 · 10

1
1.63 · 10

2 ± 3.34 · 10
1

1.61 · 10
2 ± 3.65 · 10

1

Little Rock 3.79 · 10
3 ± 3.06 · 10

2
4.51 · 10

3 ± 2.55 · 10
2

4.41 · 10
3 ± 3.46 · 10

2

Grassland 2.40 · 10
−1± 4.72 · 10

−1
3.20 · 10

−1± 5.81 · 10
−1

3.70 · 10
−1± 7.70 · 10

−1

s208 1.02 ± 9.87 · 10
−1

1.45 ± 1.00 1.27 ± 8.59 · 10
−1

s420 1.22 ± 1.15 9.40 · 10
−1± 1.01 7.50 · 10

−1± 8.87 · 10
−1

Gnutella 08.08.2002 1.06 · 10
2 ± 1.29 · 10

1
1.06 · 10

2 ± 1.17 · 10
1

1.07 · 10
2 ± 1.08 · 10

1

Gnutella 09.08.2002 7.58 · 10
1 ± 9.68 7.73 · 10

1 ± 1.02 · 10
1

7.66 · 10
1 ± 9.61

E .coli 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S. cerevisiae 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Table 23: Number of Fourcycles found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 9 · 10
−2

2.35 · 10
−1

3.10 · 10
−1

Silwood 1.50 · 10
−1

3.85 · 10
−1

2.80 · 10
−1

St. Martin Island 1.55 · 10
−1

2.45 · 10
−1

2.80 · 10
−1

Ythan Estuary 3.70 · 10
−1

4.05 · 10
−1

1.80 · 10
−1

Little Rock 7.90 · 10
−1

6.60 · 10
−1

2.50 · 10
−1

Grassland 4 · 10
−2

6 · 10
−2

6 · 10
−2

s208 1.83 · 10
−1

1.50 · 10
−1

1.20 · 10
−1

s420 1.68 · 10
−1

1.88 · 10
−1

1.60 · 10
−1

Gnutella 08.08.2002 9.78 · 10
−2

1.84 · 10
−1

1.10 · 10
−1

Gnutella 09.08.2002 7.50 · 10
−2

1.50 · 10
−1

1 · 10
−1

E .coli 0.00 0.00 0.00

S. cerevisiae 0.00 0.00 0.00

Table 24: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Fourcycle.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 4.60 · 10
2 ± 3.21 · 10

1
4.64 · 10

2 ± 3.51 · 10
1

4.69 · 10
2 ± 2.94 · 10

1

Silwood 1.03 · 10
3 ± 9.35 · 10

1
1.11 · 10

3 ± 9.11 · 10
1

1.10 · 10
3 ± 8.02 · 10

1

St. Martin Island 8.71 · 10
2 ± 4.78 · 10

1
9.09 · 10

2 ± 5.85 · 10
1

9.01 · 10
2 ± 4.66 · 10

1

Ythan Estuary 3.22 · 10
3 ± 1.77 · 10

2
3.41 · 10

3 ± 1.79 · 10
2

3.30 · 10
3 ± 1.17 · 10

2

Little Rock 1.67 · 10
5 ± 2.70 · 10

3
1.74 · 10

5 ± 1.83 · 10
3

1.75 · 10
5 ± 1.81 · 10

3

Grassland 1.43 · 10
1 ± 6.22 1.88 · 10

1 ± 7.45 1.47 · 10
1 ± 4.80

s208 6.48 · 10
−1± 8.96 · 10

−1
7.20 · 10

−1± 6.94 · 10
−1

1.70 · 10
−1± 5.11 · 10

−1

s420 7.73 · 10
−1± 8.78 · 10

−1
7.90 · 10

−1± 8.75 · 10
−1

4.90 · 10
−1± 6.71 · 10

−1

Gnutella 08.08.2002 4.61 · 10
3 ± 1.36 · 10

2
4.64 · 10

3 ± 1.38 · 10
2

4.66 · 10
3 ± 1.37 · 10

2

Gnutella 09.08.2002 4.14 · 10
3 ± 1.20 · 10

2
4.15 · 10

3 ± 1.33 · 10
2

4.15 · 10
3 ± 1.31 · 10

2

E .coli 6.48 · 10
1 ± 1.32 · 10

1
7.58 · 10

1 ± 1.42 · 10
1

7.83 · 10
1 ± 2.05 · 10

1

S. cerevisiae 3.06 · 10
2 ± 3.50 · 10

1
3.28 · 10

2 ± 3.79 · 10
1

3.27 · 10
2 ± 3.56 · 10

1

Table 25: Number of Bifans found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 1.15 · 10
−1

2.70 · 10
−1

2.50 · 10
−1

Silwood 4.85 · 10
−1

3.30 · 10
−1

2.40 · 10
−1

St. Martin Island 2.95 · 10
−1

3.05 · 10
−1

1.70 · 10
−1

Ythan Estuary 4.70 · 10
−1

2.75 · 10
−1

4 · 10
−1

Little Rock 9.30 · 10
−1

9.70 · 10
−1

1.60 · 10
−1

Grassland 3.80 · 10
−1

1.65 · 10
−1

3.50 · 10
−1

s208 1.23 · 10
−1

3.28 · 10
−1

4.50 · 10
−1

s420 2.25 · 10
−2

1.43 · 10
−1

1.60 · 10
−1

Gnutella 08.08.2002 1.10 · 10
−1

1.78 · 10
−1

1 · 10
−1

Gnutella 09.08.2002 8 · 10
−2

1.20 · 10
−1

8 · 10
−2

E .coli 3.55 · 10
−1

3.65 · 10
−1

1.40 · 10
−1

S. cerevisiae 3.05 · 10
−1

3.20 · 10
−1

1.10 · 10
−1

Table 26: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Bifan.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 3.44 · 10
2 ± 3.04 · 10

1
3.29 · 10

2 ± 3.45 · 10
1

3.28 · 10
2 ± 3.14 · 10

1

Silwood 1.89 · 10
2 ± 3.29 · 10

1
1.74 · 10

2 ± 3.66 · 10
1

1.80 · 10
2 ± 3.93 · 10

1

St. Martin Island 4.56 · 10
2 ± 4.52 · 10

1
4.06 · 10

2 ± 5.40 · 10
1

3.98 · 10
2 ± 4.14 · 10

1

Ythan Estuary 1.73 · 10
3 ± 1.20 · 10

2
1.53 · 10

3 ± 1.25 · 10
2

1.52 · 10
3 ± 1.37 · 10

2

Little Rock 6.74 · 10
4 ± 2.09 · 10

3
5.56 · 10

4 ± 1.62 · 10
3

5.61 · 10
4 ± 1.83 · 10

3

Grassland 7.35 ± 3.05 6.93 ± 3.36 6.37 ± 3.05

s208 1.67 ± 1.21 1.73 ± 1.07 2.04 ± 1.81

s420 2.00 ± 1.38 2.35 ± 1.34 2.58 ± 1.58

Gnutella 08.08.2002 1.41 · 10
3 ± 7.75 · 10

1
1.38 · 10

3 ± 7.65 · 10
1

1.40 · 10
3 ± 7.29 · 10

1

Gnutella 09.08.2002 1.13 · 10
3 ± 6.35 · 10

1
1.12 · 10

3 ± 6.14 · 10
1

1.13 · 10
3 ± 6.24 · 10

1

E .coli 1.54 ± 1.49 1.84 ± 1.53 2.04 ± 1.57

S. cerevisiae 1.78 ± 1.70 1.59 ± 1.41 1.77 ± 1.73

Table 27: Number of Biparallel subgraphs found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 2.90 · 10
−1

2.60 · 10
−1

1 · 10
−1

Silwood 3.30 · 10
−1

2.60 · 10
−1

2 · 10
−1

St. Martin Island 5.35 · 10
−1

5.45 · 10
−1

1.20 · 10
−1

Ythan Estuary 6.55 · 10
−1

7.05 · 10
−1

2.20 · 10
−1

Little Rock 1.00 1.00 2 · 10
−1

Grassland 1.30 · 10
−1

2.60 · 10
−1

1.80 · 10
−1

s208 6 · 10
−2

2.33 · 10
−1

2.50 · 10
−1

s420 1.23 · 10
−1

1.83 · 10
−1

8 · 10
−2

Gnutella 08.08.2002 2.31 · 10
−1

9.48 · 10
−2

2 · 10
−1

Gnutella 09.08.2002 1.55 · 10
−1

1.50 · 10
−1

1 · 10
−1

E .coli 1.30 · 10
−1

1.95 · 10
−1

1.50 · 10
−1

S. cerevisiae 5 · 10
−2

9.50 · 10
−2

1 · 10
−1

Table 28: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Biparallel subgraph.
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Graph FDSM uSIS dSIS

St. Marks Seagrass 9.67 · 10
1 ± 1.76 · 10

1
8.98 · 10

1 ± 1.81 · 10
1

9.04 · 10
1 ± 1.35 · 10

1

Silwood 6.98 · 10
1 ± 1.91 · 10

1
6.40 · 10

1 ± 1.70 · 10
1

7.00 · 10
1 ± 2.66 · 10

1

St. Martin Island 1.97 · 10
2 ± 2.81 · 10

1
1.54 · 10

2 ± 2.75 · 10
1

1.57 · 10
2 ± 2.96 · 10

1

Ythan Estuary 7.73 · 10
2 ± 9.85 · 10

1
6.46 · 10

2 ± 9.68 · 10
1

6.05 · 10
2 ± 1.00 · 10

2

Little Rock 3.92 · 10
4 ± 1.63 · 10

3
3.02 · 10

4 ± 1.33 · 10
3

3.10 · 10
4 ± 1.59 · 10

3

Grassland 2.90 ± 2.23 3.15 ± 2.48 2.54 ± 1.40

s208 1.50 · 10
−2± 1.22 · 10

−1
0.00 ± 0.00 0.00 ± 0.00

s420 2.50 · 10
−2± 1.71 · 10

−1
0.00 ± 0.00 6 · 10

−2± 2.37 · 10
−1

Gnutella 08.08.2002 3.60 · 10
1 ± 7.50 3.66 · 10

1 ± 7.54 3.71 · 10
1 ± 7.04

Gnutella 09.08.2002 2.72 · 10
1 ± 7.08 2.73 · 10

1 ± 6.70 2.78 · 10
1 ± 7.18

E .coli 2.25 · 10
−1± 4.74 · 10

−1
1.40 · 10

−1± 3.47 · 10
−1

3.80 · 10
−1± 5.79 · 10

−1

S. cerevisiae 1.05 · 10
−1± 3.07 · 10

−1
2.10 · 10

−1± 4.07 · 10
−1

1.50 · 10
−1± 3.57 · 10

−1

Table 29: Number of In-Fans found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 3.05 · 10
−1

2.40 · 10
−1

2.80 · 10
−1

Silwood 2.15 · 10
−1

2 · 10
−1

1.40 · 10
−1

St. Martin Island 5.95 · 10
−1

5.95 · 10
−1

1.60 · 10
−1

Ythan Estuary 5.70 · 10
−1

6.30 · 10
−1

2.70 · 10
−1

Little Rock 1.00 1.00 3.40 · 10
−1

Grassland 1.05 · 10
−1

1.20 · 10
−1

1.80 · 10
−1

s208 1.50 · 10
−2

1.50 · 10
−2

0.00

s420 2.25 · 10
−2

3.75 · 10
−2

6 · 10
−2

Gnutella 08.08.2002 6.85 · 10
−2

1.56 · 10
−1

1.20 · 10
−1

Gnutella 09.08.2002 7 · 10
−2

1.25 · 10
−1

1.10 · 10
−1

E .coli 6 · 10
−2

1.30 · 10
−1

1.90 · 10
−1

S. cerevisiae 1.05 · 10
−1

4.50 · 10
−2

6 · 10
−2

Table 30: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the In-Fan.
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directed graphs - tables

Graph FDSM uSIS dSIS

St. Marks Seagrass 1.36 · 10
2 ± 2.26 · 10

1
1.29 · 10

2 ± 1.93 · 10
1

1.30 · 10
2 ± 2.05 · 10

1

Silwood 3.23 · 10
2 ± 6.55 · 10

1
3.31 · 10

2 ± 5.93 · 10
1

3.24 · 10
2 ± 1.12 · 10

2

St. Martin Island 2.00 · 10
2 ± 2.43 · 10

1
1.83 · 10

2 ± 2.14 · 10
1

1.81 · 10
2 ± 2.02 · 10

1

Ythan Estuary 1.11 · 10
3 ± 1.32 · 10

2
1.11 · 10

3 ± 1.69 · 10
2

1.06 · 10
3 ± 1.22 · 10

2

Little Rock 3.29 · 10
4 ± 1.04 · 10

3
3.00 · 10

4 ± 1.05 · 10
3

3.03 · 10
4 ± 9.68 · 10

2

Grassland 1.08 ± 1.14 1.69 ± 1.75 8.60 · 10
−1± 7.62 · 10

−1

s208 2 · 10
−2± 1.57 · 10

−1
2.60 · 10

−1± 1.41 0.00 ± 0.00

s420 3 · 10
−2± 1.71 · 10

−1
5 · 10

−2± 2.18 · 10
−1

1 · 10
−1± 3 · 10

−1

Gnutella 08.08.2002 1.85 · 10
1 ± 4.49 2.01 · 10

1 ± 5.19 2.03 · 10
1 ± 5.00

Gnutella 09.08.2002 1.42 · 10
1 ± 4.18 1.43 · 10

1 ± 4.05 1.48 · 10
1 ± 4.64

E .coli 3.00 ± 3.56 3.05 ± 3.88 4.51 ± 4.91

S. cerevisiae 3.47 ± 3.28 3.63 ± 2.60 2.92 ± 2.44

Table 31: Number of Out-Fans found in the respective models.

Graph FDSM - uSIS FSDM - dSIS uSIS - dSIS

St. Marks Seagrass 1.65 · 10
−1

1.40 · 10
−1

1.20 · 10
−1

Silwood 2.25 · 10
−1

2.80 · 10
−1

3.30 · 10
−1

St. Martin Island 4.05 · 10
−1

4.30 · 10
−1

2 · 10
−1

Ythan Estuary 1.35 · 10
−1

3.35 · 10
−1

4.20 · 10
−1

Little Rock 8.80 · 10
−1

8 · 10
−1

2 · 10
−1

Grassland 1.55 · 10
−1

1.05 · 10
−1

2 · 10
−1

s208 6.25 · 10
−2

1.75 · 10
−2

8 · 10
−2

s420 2 · 10
−2

7 · 10
−2

5 · 10
−2

Gnutella 08.08.2002 1.98 · 10
−1

1.51 · 10
−1

6 · 10
−2

Gnutella 09.08.2002 6 · 10
−2

7 · 10
−2

9 · 10
−2

E .coli 9 · 10
−2

2.25 · 10
−1

2.40 · 10
−1

S. cerevisiae 1.30 · 10
−1

1.20 · 10
−1

1.70 · 10
−1

Table 32: Results of the Kolmogorov-Smirnov two-sample test between the different models
for the Out-Fan.
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3 On the Faster Option

3 on the faster option

Graph FDSM SIM

St. Marks Seagrass 1.00 · 10
1 ± 4.07 9.14 ± 3.02

Silwood 9.13 ± 5.82 8.78 ± 2.96

St. Martin Island 1.06 · 10
1 ± 4.22 9.59 ± 3.10

Ythan Estuary 3.99 · 10
1 ± 1.15 · 10

1
6.56 · 10

1 ± 8.10

Little Rock 2.81 · 10
2 ± 3.80 · 10

1
2.69 · 10

2 ± 1.64 · 10
1

Grassland 1.25 · 10
−1± 3.73 · 10

−1
1.39 · 10

−1± 3.73 · 10
−1

s208 5 · 10
−3± 7.05 · 10

−2
6.96 · 10

−3± 8.35 · 10
−2

s420 5 · 10
−3± 7.05 · 10

−2
4.73 · 10

−3± 6.88 · 10
−2

Gnutella 08.08.2002 5.35 · 10
−1± 7.34 · 10

−1
5.95 · 10

−1± 7.71 · 10
−1

Gnutella 09.08.2002 4.85 · 10
−1± 7.55 · 10

−1
3.98 · 10

−1± 6.30 · 10
−1

E .coli 5 · 10
−3± 7.05 · 10

−2
8.19 · 10

−3± 9.05 · 10
−2

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
8.37 · 10

−3± 9.15 · 10
−2

Table 33: Number of Double-Joins found in the respective models.

Graph FDSM SIM

St. Marks Seagrass 2.20 · 10
1 ± 4.52 2.22 · 10

1 ± 4.71

Silwood 4.48 ± 2.51 5.16 ± 2.27

St. Martin Island 1.92 · 10
1 ± 5.30 1.97 · 10

1 ± 4.43

Ythan Estuary 5.63 · 10
1 ± 1.04 · 10

1
6.67 · 10

1 ± 8.17

Little Rock 4.68 · 10
2 ± 3.11 · 10

1
5.03 · 10

2 ± 2.24 · 10
1

Grassland 3.60 · 10
−1± 5.92 · 10

−1
3.79 · 10

−1± 6.16 · 10
−1

s208 1.04 ± 1.02 9.72 · 10
−1± 9.86 · 10

−1

s420 1.05 ± 1.04 1.07 ± 1.03

Gnutella 08.08.2002 3.02 · 10
1 ± 5.52 3.11 · 10

1 ± 5.57

Gnutella 09.08.2002 2.45 · 10
1 ± 5.69 2.44 · 10

1 ± 4.94

E .coli 1.50 · 10
−2± 1.22 · 10

−1
1.97 · 10

−2± 1.40 · 10
−1

S. cerevisiae 1 · 10
−2± 9.95 · 10

−2
1.00 · 10

−2± 1.00 · 10
−1

Table 34: Number of Threecycles found in the respective models.

191



directed graphs - tables

Graph FDSM SIM

St. Marks Seagrass 3.50 · 10
−2± 1.84 · 10

−1
3.32 · 10

−2± 1.82 · 10
−1

Silwood 3 · 10
−2± 1.71 · 10

−1
2.41 · 10

−2± 1.55 · 10
−1

St. Martin Island 6.50 · 10
−2± 2.47 · 10

−1
4.79 · 10

−2± 2.19 · 10
−1

Ythan Estuary 6.15 · 10
−1± 8.17 · 10

−1
5.77 ± 2.40

Little Rock 5.75 ± 4.79 1.64 ± 1.28

Grassland 0.00 ± 0.00 8.17 · 10
−8± 2.86 · 10

−4

s208 0.00 ± 0.00 4.33 · 10
−8± 2.08 · 10

−4

s420 0.00 ± 0.00 6.50 · 10
−9± 8.06 · 10

−5

Gnutella 08.08.2002 0.00 ± 0.00 1.96 · 10
−5± 4.42 · 10

−3

Gnutella 09.08.2002 0.00 ± 0.00 4.33 · 10
−6± 2.08 · 10

−3

E .coli 0.00 ± 0.00 3.96 · 10
−8± 1.99 · 10

−4

S. cerevisiae 0.00 ± 0.00 1.63 · 10
−8± 1.28 · 10

−4

Table 35: Number of Complete subgraphs found in the respective models.

Graph FDSM SIM

St. Marks Seagrass 6.01 · 10
1 ± 1.26 · 10

1
6.75 · 10

1 ± 8.21

Silwood 6.25 ± 4.07 9.64 ± 3.10

St. Martin Island 4.85 · 10
1 ± 1.48 · 10

1
5.74 · 10

1 ± 7.58

Ythan Estuary 1.95 · 10
2 ± 4.52 · 10

1
2.93 · 10

2 ± 1.71 · 10
1

Little Rock 3.79 · 10
3 ± 3.06 · 10

2
4.32 · 10

3 ± 6.57 · 10
1

Grassland 2.40 · 10
−1± 4.72 · 10

−1
2.97 · 10

−1± 5.45 · 10
−1

s208 1.02 ± 9.87 · 10
−1

1.04 ± 1.02

s420 1.22 ± 1.15 1.18 ± 1.09

Gnutella 08.08.2002 1.06 · 10
2 ± 1.29 · 10

1
1.06 · 10

2 ± 1.03 · 10
1

Gnutella 09.08.2002 7.58 · 10
1 ± 9.68 7.67 · 10

1 ± 8.76

E .coli 0.00 ± 0.00 5.74 · 10
−3± 7.57 · 10

−2

S. cerevisiae 0.00 ± 0.00 2.33 · 10
−3± 4.83 · 10

−2

Table 36: Number of Fourcycles found in the respective models.
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3 On the Faster Option

Graph FDSM SIM

St. Marks Seagrass 4.60 · 10
2 ± 3.21 · 10

1
4.63 · 10

2 ± 2.15 · 10
1

Silwood 1.03 · 10
3 ± 9.35 · 10

1
1.19 · 10

3 ± 3.46 · 10
1

St. Martin Island 8.71 · 10
2 ± 4.78 · 10

1
9.09 · 10

2 ± 3.01 · 10
1

Ythan Estuary 3.22 · 10
3 ± 1.77 · 10

2
5.04 · 10

3 ± 7.10 · 10
1

Little Rock 1.67 · 10
5 ± 2.70 · 10

3
2.01 · 10

5 ± 4.48 · 10
2

Grassland 1.43 · 10
1 ± 6.22 3.46 · 10

1 ± 5.88

s208 6.48 · 10
−1± 8.96 · 10

−1
6.68 · 10

−1± 8.17 · 10
−1

s420 7.73 · 10
−1± 8.78 · 10

−1
8.49 · 10

−1± 9.21 · 10
−1

Gnutella 08.08.2002 4.61 · 10
3 ± 1.36 · 10

2
4.70 · 10

3 ± 6.86 · 10
1

Gnutella 09.08.2002 4.14 · 10
3 ± 1.20 · 10

2
4.22 · 10

3 ± 6.50 · 10
1

E .coli 6.48 · 10
1 ± 1.32 · 10

1
9.26 · 10

1 ± 9.63

S. cerevisiae 3.06 · 10
2 ± 3.50 · 10

1
3.49 · 10

2 ± 1.87 · 10
1

Table 37: Number of Bifans found in the respective models.

Graph FDSM SIM

St. Marks Seagrass 3.44 · 10
2 ± 3.04 · 10

1
3.53 · 10

2 ± 1.88 · 10
1

Silwood 1.89 · 10
2 ± 3.29 · 10

1
2.15 · 10

2 ± 1.46 · 10
1

St. Martin Island 4.56 · 10
2 ± 4.52 · 10

1
4.57 · 10

2 ± 2.14 · 10
1

Ythan Estuary 1.73 · 10
3 ± 1.20 · 10

2
2.43 · 10

3 ± 4.93 · 10
1

Little Rock 6.74 · 10
4 ± 2.09 · 10

3
5.89 · 10

4 ± 2.43 · 10
2

Grassland 7.35 ± 3.05 6.41 ± 2.53

s208 1.67 ± 1.21 1.67 ± 1.29

s420 2.00 ± 1.38 2.00 ± 1.41

Gnutella 08.08.2002 1.41 · 10
3 ± 7.75 · 10

1
1.41 · 10

3 ± 3.75 · 10
1

Gnutella 09.08.2002 1.13 · 10
3 ± 6.35 · 10

1
1.14 · 10

3 ± 3.37 · 10
1

E .coli 1.54 ± 1.49 1.46 ± 1.21

S. cerevisiae 1.78 ± 1.70 1.80 ± 1.34

Table 38: Number of Biparallel subgraphs found in the respective models.
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directed graphs - tables

Graph FDSM SIM

St. Marks Seagrass 9.67 · 10
1 ± 1.76 · 10

1
8.62 · 10

1 ± 9.28

Silwood 6.98 · 10
1 ± 1.91 · 10

1
7.46 · 10

1 ± 8.64

St. Martin Island 1.97 · 10
2 ± 2.81 · 10

1
1.72 · 10

2 ± 1.31 · 10
1

Ythan Estuary 7.73 · 10
2 ± 9.85 · 10

1
1.64 · 10

3 ± 4.05 · 10
1

Little Rock 3.92 · 10
4 ± 1.63 · 10

3
3.63 · 10

4 ± 1.91 · 10
2

Grassland 2.90 ± 2.23 2.60 ± 1.61

s208 1.50 · 10
−2± 1.22 · 10

−1
1.57 · 10

−2± 1.25 · 10
−1

s420 2.50 · 10
−2± 1.71 · 10

−1
1.21 · 10

−2± 1.10 · 10
−1

Gnutella 08.08.2002 3.60 · 10
1 ± 7.50 3.72 · 10

1 ± 6.10

Gnutella 09.08.2002 2.72 · 10
1 ± 7.08 2.77 · 10

1 ± 5.26

E .coli 2.25 · 10
−1± 4.74 · 10

−1
1.77 · 10

−1± 4.20 · 10
−1

S. cerevisiae 1.05 · 10
−1± 3.07 · 10

−1
1.97 · 10

−1± 4.43 · 10
−1

Table 39: Number of In-Fans found in the respective models.

Graph FDSM SIM

St. Marks Seagrass 1.36 · 10
2 ± 2.26 · 10

1
1.23 · 10

2 ± 1.11 · 10
1

Silwood 3.23 · 10
2 ± 6.55 · 10

1
3.46 · 10

2 ± 1.86 · 10
1

St. Martin Island 2.00 · 10
2 ± 2.43 · 10

1
1.81 · 10

2 ± 1.35 · 10
1

Ythan Estuary 1.11 · 10
3 ± 1.32 · 10

2
2.15 · 10

3 ± 4.64 · 10
1

Little Rock 3.29 · 10
4 ± 1.04 · 10

3
3.52 · 10

4 ± 1.88 · 10
2

Grassland 1.08 ± 1.14 2.38 ± 1.54

s208 2 · 10
−2± 1.57 · 10

−1
2.76 · 10

−2± 1.66 · 10
−1

s420 3 · 10
−2± 1.71 · 10

−1
2.20 · 10

−2± 1.48 · 10
−1

Gnutella 08.08.2002 1.85 · 10
1 ± 4.49 2.01 · 10

1 ± 4.48

Gnutella 09.08.2002 1.42 · 10
1 ± 4.18 1.51 · 10

1 ± 3.89

E .coli 3.00 ± 3.56 2.44 ± 1.56

S. cerevisiae 3.47 ± 3.28 3.64 ± 1.91

Table 40: Number of Out-Fans found in the respective models.
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bifan equation revisited - continued

B I FA N E Q U AT I O N R E V I S I T E D - C O N T I N U E D
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P U B L I C AT I O N S

1 journal articles

1. “Different flavours of randomness—when to use which null-model to assess statistical
significance?”

In this paper, the fixed degree sequences model and the configuration model are
used in a comparative analysis on undirected graphs. While the results for global
measures, such as the diameter, coincide, local measures, such as the co-occurrence
or the average neighbor degree, do not. This analysis was based on an observation by
Zweig and Kaufmann [108], as well as Hórvat and Zweig [41]; they observed similar
behavior on bipartite graphs.

2. “Motif detection speed up by using equations based on the degree sequence”

Due to my Bachelor thesis, I was interested in network motif analysis and whether
the configuration model achieves plausible results regarding this topic. Out of curios-
ity, the simple independence model was used for the same task, assuming that the
result would be off. Since the equation yielded almost the same result as the fixed
degree sequence model, a more thorough analysis was due. The idea to calculate the
standard deviation as it is done was due to critique of one reviewer and several long
discussions of how to approach this with Katharina Zweig.

2 conferences

1. “Social Network Analysis and Gaming: Survey of the Current State of Art”

An overview of different approaches to analyze massive multiplayer online games.
Since this overview was presented at a Serious Games convention, it was highlighted
what this research may learn from network analysis on Big Data.

2. “Influence of the Null-Model on Motif Detection” A conference version of “Motif
detection speed up by using equations based on the degree sequence”. This was the
first paper that used the sim approach to calculate the occurrence of motifs; it did
this without calculating the standard deviation, since these equations were only a
curios by-product of the actual topic, the comparison of the configuration model to
the standard model of network motif analysis, the fixed degree sequence model.

3 other

1. “Dealing with Null-Models”—SunbeltXXXIII

A talk on the danger of not realizing which null-model is appropriate for analysis.
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publications

2. “Quick or exact - When to use which random graph model to asses statistical significance”—
NetSci2013

Talk based on random graph models, including more theory, due to the audience
being from the field of network scientists.
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