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Preface

This thesis deals with a branch of modular representation theory of finite groups. Given
a finite group G and a field K, one obtains a K-vector space

KG =
{∑

g∈G
agg : ag ∈ K

}
with K-basis G. By extending the multiplication of G linearly to KG, this vector space
is even a unitary associative algebra, the group algebra of G over K. A module of the
group algebra KG is a finite-dimensional left module.
In modular representation theory of finite groups, one investigates such group algebras
and their modules in the case that K has positive characteristic. More precisely, in this
thesis, the underlying field K will always be the algebraic closure F` of the prime field
F` of characteristic `, where ` is a prime number.

Given a subgroup H of G and an F`G-module M, one can restrict the module
structure of M from F`G to F`H. This F`H-module is denoted by ResGH(M). Now, M is
called relatively H-projective if M is isomorphic to a direct summand of the F`G-module
F`G⊗F`H

ResGH(M). This generalizes the concept of projectivity: M is projective if and
only if it is relatively {1}-projective.
To each indecomposable module M one can associate a unique G-conjugacy class of
`-subgroups of G, which are called the vertices of M. In fact, an `-subgroup V of G is
a vertex of M if and only if M is relatively V-projective and V is minimal with this
property with respect to inclusion. For example, the vertices of the trivial F`G-module
F` are precisely the Sylow `-subgroups of G.

The group algebra F`G has an F`[G × G]-module structure via (g, h) · a := gah−1

for g, h ∈ G and a ∈ F`G. The indecomposable direct summands of this module are
subalgebras of F`G. They are called the blocks of F`G and they have the following
property: Given an indecomposable F`G-module M, there is a unique block B such that
B ·M 6= {0}, and in fact, one has e ·m = m for every m ∈ M, where e is the identity
element in B. One says that M lies in the block B.
The defect groups of a block B of F`G are those vertices of indecomposable modules
lying in B that are maximal with respect to inclusion. In fact, for every defect group D
of an F`G-block B there is always even a simple F`G-module M such that D is a vertex
of M. Blocks and defect groups are very important invariants of finite groups.

Every `-subgroup of G occurs as a vertex of some indecomposable F`G-module,
but if one restricts to simple F`G-modules, this is no longer true. More precisely, a
theorem due to Reinhard Knörr shows that every vertex of a simple F`G-module M is a
self-centralizing subgroup of a defect group of the block that M lies in, see [45]. Thus,
if the Sylow `-subgroups of G are abelian, then the vertices of a simple F`G-module
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are always the defect groups of the corresponding block. There are further properties
of vertices of simple modules that do not apply to vertices of arbitrary modules. For
example, a vertex V of a simple module contains every normal `-subgroup of G.

Llúıs Puig asked the question whether the order of the defect groups of a block B

of F`G can always be bounded in terms of the order of the vertices of an arbitrary simple
module lying in B. For ` = 2, there are examples due to Karin Erdmann (see [25])
showing that this is not possible in general, whereas, for odd `, no such examples are
known. By work of Susanne Danz, Burkhard Külshammer, and Llúıs Puig, it is known
that the answer to this question is positive if G is a symmetric group. More precisely,
given a prime number `, a natural number n, and a simple F` Sym(n)-module M in a
block of F` Sym(n) with defect group D, one has |D| ≤ |V |! for the vertices V of M, see
[55] and [17].

In this thesis, we mainly study the case where G is a finite classical group in
non-defining characteristic. More precisely, we generalize Puig’s original question by
replacing the vertices occurring in his question by arbitrary self-centralizing subgroups
of the defect groups, and investigate the set of finite classical groups with respect to
this generalized question. We derive positive and negative answers to this generalized
question.

Basically, the finite classical groups occur as isometry groups of geometries over
finite fields, that is, groups of linear maps over finite fields that are invariant under
non-degenerate reflexive sesquilinear forms. There are three types of such sesquilinear
forms which lead to finite symplectic, unitary, and orthogonal groups, respectively.
Together with the finite linear groups and certain subgroups and quotient groups, these
groups form the finite classical groups. Their most important property is that each type
provides an infinite family of finite simple groups.

This thesis is organized as follows:

In Chapter 1, we introduce the notation and known facts that we will use later on.
Here, we start with basics from modular representation theory such as representations,
vertices, blocks, and defect groups. Then, we consider Brauer pairs and Puig’s Question,
followed by a brief introduction to finite classical groups and a remark on Chevalley
groups and twisted Chevalley groups, since we will also consider two types of such
groups in Chapter 3.

In the second chapter, we begin with a collection of auxiliary assertions about
self-centralizing subgroups, ranks and normal ranks, and wreath products. Moreover,
we introduce a particular Sylow subgroup of a given finite symmetric group that will be
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very important in Section 2.7.
After that, we consider the Sylow subgroups of finite classical groups in non-defining
characteristic and investigate whether it is possible to bound the order of such Sylow
subgroups in terms of arbitrary self-centralizing subgroups. For most of the finite
classical groups, we can reduce this problem to the general linear groups.
However, in order to answer this question for special linear and projective (special) linear
groups, we develop some structural results about the Sylow subgroups of these groups.
In particular, we show that it is not possible to bound the order of a Sylow `-subgroup
of SLn(q), PGLn(q), or PSLn(q) if and only if ` | q− 1 and n > 1 is a power of `, except
in the case ` = 2 and q ≡ 3 mod 4, which remains open. We also use this result to prove
a similar behaviour of special unitary and projective (special) unitary groups.

In Chapter 3, we first define properties of arbitrary sets of finite groups according
to Puig’s original question as well as our generalized version where vertices are replaced
by arbitrary self-centralizing subgroups. This is followed by auxiliary assertions that we
will finally use to present our results for various sets of finite classical groups.
In particular, we show that for ` > 2, the answer to our generalized question is positive
for all finite classical groups of symplectic and orthogonal type such that the defining
characteristic is odd. Moreover, the same is true for finite general linear and finite
general unitary groups. However, our results from Chapter 2 show that the answer to
our generalized question is negative if we consider special linear, projective (special)
linear, special unitary, or projective (special) unitary groups. For ` > 2, the answer to
Puig’s original question remains open for those groups.
In addition to sets of finite classical groups, we also consider the set of Chevalley groups
G2(q) and the set of twisted Chevalley groups 3D4(q) in non-defining characteristic.

The fourth chapter is independent of the previous two chapters. Here, we consider
the unique non-trivial composition factor D of the permutation F` GLn(q)-module
corresponding to the action of GLn(q) on the one-dimensional subspaces of Fnq . With

the notation from [41], this is the unipotent simple F` GLn(q)-module labeled by the
partition (n−1, 1), and it can be seen to be the analogue of the simple F` Sym(n)-module
labeled by the partition (n − 1, 1). For the latter, the vertices are known by work of
Jürgen Müller and René Zimmermann, see [51].
We determine the vertices of D for ` = n = 2 using a method from [10] known as Brauer
construction. In fact, we show that if q ≡ 1 mod 4, then a vertex of D is a central
product of O2(F

×
q ) and the dihedral group of order 8 with respect to a central subgroup

of order 2, whereas, if q ≡ 3 mod 4, then the vertices are the Sylow 2-subgroups of SL2(q).

Finally, we collect some open problems that occurred while working on this subject.





1 Background

The reader is assumed to be familiar with the standard notation from group theory and
representation theory. Notation is also explained on pages 117 to 119.

In this first chapter, we will provide the representation-theoretic background for
this thesis. Moreover, we will introduce classical groups, whose Sylow subgroups we will
consider. The first four sections are based on [2] and [52]. Section 1.6 is based on [5],
[33], [40], and [58].

1.1 Representations

In this section, let K be an arbitrary field, and let G be a finite group. We begin by
introducing group algebras and representations.

Remark 1.1.1.

(a) If Ω is a finite set, then KΩ := Map(Ω,K) is a K-vector space with respect to
pointwise operation. By identifying ω ∈ Ω with the map Ω→ K : x 7→ δωx, where
δ denotes the Kronecker delta, we obtain

KΩ =

{∑
ω∈Ω

aωω : aω ∈ K

}
,

and Ω is a K-basis of KΩ.

For Ω = G, we obtain additionally that KG is a unitary associative K-algebra with
respect to the multiplication∑

g∈G
agg

 ·
∑
g∈G

bgg

 :=
∑
g,h∈G

agbhgh =
∑
g∈G

∑
h,k∈G
hk=g

ahbkg,

the group algebra of G over K.

(b) If G×Ω→ Ω is a group action, then∑
g∈G

agg

 ·ω :=
∑
g∈G

ag(gω)

induces a left KG-module structure on KΩ. This module KΩ is then called a
permutation module . For the regular group action we obtain the regular left
KG-module KG.



8 1.1 Representations

(c) A representation of G over K is a group homomorphism G→ GLK(V) for some
finite-dimensional K-vector space V.
Two such representations ∆1 : G → GLK(V) and ∆2 : G → GLK(W) are called
similar to each other , if there exists some K-vector space isomorphism f :W → V

satisfying ∆1(g) = f ◦ ∆2(g) ◦ f−1 for all g ∈ G.

(d) A matrix representation of G over K is a group homomorphism G→ GLn(K)
for some n ∈ N.
Two such matrix representations Γ1 : G → GLn(K) and Γ2 : G → GLm(K) are
called similar to each other , if there exists some A ∈ GLn(K) such that Γ1(g) =
AΓ2(g)A

−1 for all g ∈ G (in particular, m and n have then to be equal).

The following easily verified proposition shows that the study of (matrix) representations
of G over K is equivalent to the study of the finite-dimensional left KG-modules.

Proposition 1.1.2.

(a) If ∆ : G→ GLK(V) is a representation of G over K and (v1, . . . , vn) is an ordered
K-basis of V, then for g ∈ G we can define the matrix Λ(g) = (Λ(g)ij)i,j by

∆(g)(vj) =

n∑
i=1

Λ(g)ijvi,

and obtain a matrix representation Λ : G→ GLn(K) of G over K. Choosing another
ordered K-basis of V or replacing ∆ by a representation similar to ∆ yields a matrix
representation similar to Λ.

(b) If Λ : G → GLn(K) is a matrix representation of G over K, then Kn is a left
KG-module via g · ei :=

∑n
j=1Λ(g)ijej, where (e1, . . . , en) is the standard basis of

Kn. Replacing Λ by a matrix representation similar to Λ yields a left KG-module
structure on Kn such that the two modules are isomorphic to each other.

(c) If M is a left KG-module with dimK(M) <∞, then

∆ : G→ GLK(M) : g 7→ (m 7→ g ·m)

is a representation of G over K. Replacing M by a left KG-module isomorphic to
M yields a representation similar to ∆.

(d) Starting with a representation of G over K and applying parts (a), (b), and (c) of
this proposition successively, we obtain a representation similar to the original one.

In this thesis, we choose the module-theoretic point of view, and from now on, by a
KG-module we will always mean a finite-dimensional left KG-module.
As we can consider the set of all matrix representations of G over K and use that
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similarity defines an equivalence relation on this set, it follows from Proposition 1.1.2
that the set of isomorphism classes of KG-modules exists.

If H is a subgroup of G, then for each g ∈ G, every KH-module X is also a
K[gH]-module via a • x := (g−1ag)x for a ∈ K[gH] and x ∈ X, where gH = gHg−1 is the
conjugate of H by g. The latter module is then denoted by gX and we say that it is
conjugate to X. If g belongs to H, then the KH-modules X and gX are isomorphic to
each other.
Moreover, if H is normal in G, then G acts by conjugation on the set of isomorphism
classes of KH-modules. The stabilizer subgroup

{g ∈ G : gX ∼= X as KH-modules}

of a given KH-module X is called the inertia group of X and contains H.

Again, let H be a subgroup of G. Then every KG-module M is also a KH-module by
restricting its scalar multiplication to the group algebra KH. This KH-module is then
denoted by ResGH(M) and is called the restriction of M to H. Moreover, if X is a
KH-module, then the KG-module IndGH(X) := KG⊗KH X is called the induction of X to
G.

For two subgroups U and H of G, the group U×H acts on G via (u, h) · g := ugh−1 for
u ∈ U, h ∈ H, and g ∈ G. The orbit of an element g ∈ G is the double coset UgH.
The set of all such double cosets is denoted by U\G/H := {UgH : g ∈ G}. Mackey’s
Theorem provides a relation between restriction and induction:

Theorem 1.1.3 ([52, Thm. 2.1.9]). Let U and H be subgroups of G, and let S be a set
of representatives for U\G/H. Then for every KH-module X, we have

ResGU(IndGH(X))
∼=
⊕
s∈S

IndUsH∩U(Res
sH
sH∩U(

sX)).

By definition, the kernel of a KG-module is the kernel of a corresponding representation.
Let H be a normal subgroup of G. Then every K[G/H]-module M is also a KG-module
via g •m := gH ·m for g ∈ G and m ∈ M. This KG-module is denoted by InfGG/H(M)
and it is called the inflation of M to G. It is easily verified that inflation induces
a bijection between the set of isomorphism classes of K[G/H]-modules and the set of
isomorphism classes of those KG-modules whose kernel contains H.

Now, let M be a KG-module. If L|K is a field extension, then ML := L ⊗K M
is an LG-module, called the scalar extension of M to L. In the language
of matrix representations, this corresponds to viewing a matrix representation
G→ GLn(K) ⊆ GLn(L) of G over K as a matrix representation of G over L.
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The module M is called simple or irreducible , if M is not the zero module and if M
and {0} are the only submodules of M. Moreover, M is called absolutely simple or
absolutely irreducible , if ML is simple for all field extensions L|K.
Finally, K is called a splitting field for G, if every simple KG-module is absolutely
simple. In this case, every field extension L of K is also a splitting field for G, and
the number of isomorphism classes of the simple KG-modules is then the same as the
corresponding number for LG-modules.

We recall that the exponent Exp(G) is the least k ∈ N>0 such that gk = 1 for
all g ∈ G. The following theorem shows how to find a splitting field L for G and also
determines the number of simple LG-modules.

Theorem 1.1.4 ([39, Cor. 2.7, Cor. 9.15, Thm. 10.3], [48, Thm. 8.9]). Let ` ∈ P ∪ {0},
let F be the prime field of characteristic `, and let L be the splitting field of the polynomial
tExp(G) − 1 ∈ F[t] over F.

(a) The field L is a splitting field for G. In particular, the algebraic closure of F is a
splitting field for all finite groups.

(b) The number of isomorphism classes of the simple LG-modules is the number of
conjugacy classes of G whose elements have order not divisible by `.

In this thesis, we will consider group algebras over the algebraic closure F` of the finite
field F`, for prime numbers ` ∈ P.

1.2 Vertices

Now, we recall the concept of projectivity. In this section, let G be a finite group and let
` ∈ P be fixed.

Proposition 1.2.1 ([52, Thm. 1.10.2]). For an F`G-module M, the following statements
are equivalent:

(a) Every short exact sequence 0→ L→ N→M→ 0 of F`G-modules splits.

(b) If f ∈ HomF`G
(N, L) is surjective, then so is the map

HomF`G
(M,N)→ HomF`G

(M,L) : g 7→ f ◦ g.

(c) M is isomorphic to a direct summand of a free F`G-module.

In the situation of Proposition 1.2.1, M is called projective . Moreover, an F`G-module
M is called indecomposable , if M is not the zero module and if M is not the direct
sum of two submodules different from the zero module. Finally, the Jacobson radical
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Rad(M) is the intersection of all maximal submodules of M (or the zero module, if M
itself is the zero module).

The next theorem shows how projective indecomposable modules are related to
simple modules:

Theorem 1.2.2 ([27, Cor. I.13.6]). If M is a projective indecomposable F`G-module,
then its head M/Rad(M) is simple. Moreover, this induces a bijection between the
set of isomorphism classes of projective indecomposable F`G-modules and the set of
isomorphism classes of simple F`G-modules.

The following generalizes the concept of projectivity:

Proposition 1.2.3 ([52, Thm. 4.2.2]). Let H be a subgroup of G, and let M be an
F`G-module. The following statements are equivalent:

(a) If
0→ L→ N→M→ 0

is a short exact sequence of F`G-modules such that the short exact sequence

0→ ResGH(L)→ ResGH(N)→ ResGH(M)→ 0

of F`H-modules splits, then the first sequence splits, as well.

(b) If f ∈ HomF`G
(N, L) is surjective such that

HomF`H
(M,N)→ HomF`H

(M,L) : g 7→ f ◦ g

is surjective, then so is the map

HomF`G
(M,N)→ HomF`G

(M,L) : g 7→ f ◦ g.

(c) M is isomorphic to a direct summand of IndGH(ResGH(M)).

(d) M is isomorphic to a direct summand of IndGH(L) for some F`H-module L.

(e) If {s1, . . . , sr} is a set of representatives for the set G/H of left cosets, then the
image of the map

EndF`H
(M)→ EndF`G

(M) : f 7→ s1f+ · · ·+ srf

contains idM. Here, for every i, the map sif is defined by (sif)(m) := si · f(s−1i m)
for m ∈M.

In the situation of Proposition 1.2.3, M is called relatively H-projective . Obviously, M
is projective if and only ifM is relatively {1}-projective. We have the following properties:
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Proposition 1.2.4 ([52, Lem. 4.2.1, Thm. 4.2.5, Thm. 4.7.5]). Let H be a subgroup of
G.

(a) If ` - |G : H|, then every F`G-module is relatively H-projective.

(b) If an F`G-module is relatively U-projective for some subgroup U of H, then it is
also relatively H-projective.

(c) If an F`G-module is relatively H-projective, then it is also relatively gH-projective
for all g ∈ G.

(d) Let S ∈ Syl`(G), and let U be a subgroup of S such that M is relatively U-projective.
Then |S : U| divides dimF`

(M).

Theorem 1.2.5 ([52, Thm. 4.3.3]). Let M be an indecomposable F`G-module. There
exists a unique G-conjugacy class Vx(M) of `-subgroups of G satisfying the following:
For every subgroup H of G one has that M is relatively H-projective if and only if there
exists some Q ∈ Vx(M) satisfying Q ⊆ H.

In the situation of the previous theorem, we call the elements of Vx(M) the vertices of
M. The theory of vertices goes back to J. A. Green.

It follows that if ` does not divide the group order |G|, then every F`G-module is
projective, that is, the group algebra F`G is then semisimple. This statement is known
as Maschke’s Theorem.

We can say that vertices somehow ”measure” how far the corresponding indecomposable
module is from being projective: the smaller the order of the vertices, the closer the
corresponding module is to being projective.
We should also mention that every `-subgroup of G occurs as a vertex of an
indecomposable module (see, for example, [52, Thm. 4.7.7]).

Later on, we will make use of the following facts about vertices:

Proposition 1.2.6 ([52, Lem. 4.3.4, Lem. 4.3.5, Thm. 4.7.8]). Let M be an
indecomposable F`G-module, and let H be a subgroup of G.

(a) Let N be an indecomposable F`H-module such that M is isomorphic to a direct
summand of IndGH(N). Then every vertex of M is contained in a G-conjugate of a
vertex of N.

(b) Let N be an indecomposable F`H-module such that N is isomorphic to a direct
summand of ResGH(M). Then every vertex of N is contained in a vertex of M.

(c) If M is relatively H-projective, then there exists an indecomposable F`H-module N
satisfying parts (a) and (b). In particular, then every vertex of N is also a vertex
of M.
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(d) If M is simple, then the vertices of M contain every normal `-subgroup of G.

1.3 Blocks and defect groups

In this section, we introduce blocks of group algebras as well as their defect groups. As
before, let G be a finite group.

Let K be a field. An element e ∈ KG satisfying e2 = e is called an idempotent .
Two idempotents e, f ∈ KG are orthogonal , if ef = 0. A non-zero idempotent in
KG is primitive , if it cannot be written as the sum of two orthogonal idempotents
e, f ∈ KG \ {0}. There are only finitely many primitive idempotents e1, . . . , er of the
center Z(KG) which are called the block idempotents of KG. They are pairwise
orthogonal and satisfy e1 + · · ·+ er = 1.
Now, for each i ∈ {1, . . . , r}, the subset KGei of KG, called a block of KG, is a subalgebra
with identity element ei, and we have KG =

⊕r
i=1 KGei. In particular, if M is an

indecomposable KG-module, then there exists a unique block KGei such that eiM 6= {0},
and in this case we even have eim = m for all m ∈M. We then say that M lies in the
block KGei. The set of blocks of KG is denoted by Bl(KG). The principal block of
KG is the one the trivial KG-module K lies in.

Now, we fix a prime number ` ∈ P and consider the field F`. The group algebra
F`G is an F`[G × G]-module via (g, h) · a := gah−1 for g, h ∈ G and a ∈ F`G, and
the indecomposable direct summands of F`G as an F`[G × G]-module are precisely the
blocks of F`G (see, for instance, [27, page 133]).
Given B ∈ Bl(F`G), every vertex of B as an indecomposable F`[G × G]-module is the
image of a unique subgroup D of G under the diagonal map G → G × G : g 7→ (g, g)
(see, for example, [2, Thm. 13.4]). One calls such a group G a defect group of B and
we denote the set of all defect groups of B by Def(B). Then Def(B) is a G-conjugacy
class of `-subgroups of G.

We will use the following important properties of defect groups:

Proposition 1.3.1 ([2, Thm. 13.5, Cor. 14.5], [52, Thm. 3.6.25, Thm. 5.1.9, Thm.
5.1.11], [50], [24]). Let ` ∈ P, and let B ∈ Bl(F`G).

(a) Def(B) is the set of those `-subgroups of G that occur as vertices of indecomposable
F`G-modules lying in B and that are maximal with respect to inclusion.

(b) Def(B) is the set of those `-subgroups of G that occur as vertices of simple
F`G-modules lying in B and that are maximal with respect to inclusion.

(c) If the defect groups of B are cyclic, then every simple F`G-module M lying in B
satisfies Vx(M) = Def(B).
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(d) If a simple F`G-module M lying in B has cyclic vertices, then Vx(M) = Def(B).

For example, it follows from part (a) of Proposition 1.3.1 and part (d) of Proposition
1.2.6 that if an indecomposable F`G-module M lying in B satisfies ` - dimF`

(M), then
Def(B) = Syl`(G). In particular, this applies to the principal block.

It should be mentioned that part (c) is known as Michler’s Theorem and part (d)
is known as Erdmann’s Theorem. We will see later a theorem due to Reinhard Knörr
that generalizes Michler’s Theorem.

The following lemma will be used in Section 3.1:

Lemma 1.3.2. Let ` ∈ P, and let H be a finite group. Then the algebras F`[G×H] and
F`G⊗F`

F`H are isomorphic, and the blocks of F`[G×H] correspond to tensor products

BG⊗F`
BH of blocks BG of F`G and BH of F`H. Moreover, the defect groups of BG⊗F`

BH
are then of the form DBG ×DBH, where DBG ∈ Def(BG) and DBH ∈ Def(BH).

Proof. It is well known that (g, h) 7→ g ⊗ h defines an isomorphism F`[G × H] ∼=
F`G⊗F`

F`H, and the form of the blocks follows from [60, Lem. 1]. If D is a defect group
of BG ⊗F`

BH, then D is maximal among the vertices of simple modules in BG ⊗F`
BH,

which are tensor products of simple modules in BG and BH by [38, VII.9.14], and whose
vertices are direct products of the corresponding vertices by [46, Prop. 1.2].

Next, we come to the important concepts of block induction and covering of blocks:

First, let H be any subgroup of G. Given two blocks b ∈ Bl(F`H) and B ∈ Bl(F`G), we
say that bG is defined and write bG = B, if B is the unique block of F`G such that the
F`[H×H]-module b is isomorphic to a direct summand of ResG×GH×H(B). We then also say
that we obtain B from b via block induction . If CG(D) ⊆ H for some D ∈ Def(b), then
bG is defined andD is contained in some defect group of bG (see, for example, [2, Lem. 1]).

Now, suppose that H is normal in G. Then we say that a block B ∈ Bl(F`G)
covers a block b ∈ Bl(F`H), if the product of the corresponding block idempotents eB
and eb is non-zero.

Remark 1.3.3. Writing 1 ∈ F`G as the sum of all blocks idempotents in F`H and
multiplying this equation with a given block idempotent of F`G, we see that every block
of F`G covers some block of F`H, see [52, Lem. 5.5.3]. The analogous argument shows
also that each block of F`H is covered by some block of F`G.

We obtain the following further properties:

Proposition 1.3.4 ([52, Section 5.5.1], [2, Thm. 15.1, Lem. 15.3]). Let ` ∈ P, and let
H be a normal subgroup of G.
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(a) G acts on the blocks of F`H by conjugation. For every B ∈ Bl(F`G), the blocks of
F`H covered by B form a single G-conjugacy class.

(b) If b ∈ Bl(F`H) is covered by B ∈ Bl(F`G), then each defect group of b is the
intersection of H with some defect group of B.

(c) If b ∈ Bl(F`H) such that bG is defined, then bG is the unique block of F`G covering
b.

Finally, we introduce domination of blocks: Again, let H be normal in G, and let e be
a block idempotent of F`G. By µ we denote the residue class epimorphism µ : F`G →
F`[G/H] defined by g 7→ gH. Suppose that µ(e) 6= 0. Then µ(e) is a sum of block
idempotents f1, . . . , fr of F`[G/H]. We say that the F`[G/H]-blocks corresponding to
f1, . . . , fr are dominated by the F`G-block F`Ge corresponding to e. We will use the
following fact:

Proposition 1.3.5 ([52, page 360, Thm. 8.7]). Let ` ∈ P, let H be a normal subgroup
of G, and let B ∈ Bl(F`[G/H]). Then B is dominated by a unique block B̃ ∈ Bl(F`G).
Moreover, for D ∈ Def(B) there exists some D̃ ∈ Def(B̃) such that D ≤ D̃H/H.

1.4 Brauer pairs and Knörr’s Theorem

In this section, we introduce Brauer pairs and, in particular, a theorem due to Knörr
(Theorem 1.4.7). The theory follows [2], [3], and [54].

Let G be a finite group, and let ` ∈ P be fixed.

Lemma 1.4.1. Let Q ≤ G be an `-subgroup, and let b ∈ Bl(F`(QCG(Q))). Then bG is
defined. Moreover, given D ∈ Def(b) and E ∈ Def(bG), we have

Q ≤ D ≤G E.

Proof. By Proposition 1.2.6 and Proposition 1.3.1, the normal `-subgroup Q of QCG(Q)
is contained in every defect group D of b, so CG(D) ≤ CG(Q) ≤ QCG(Q). Thus, bG is
defined and D is contained in a defect group of bG.

In the situation of Lemma 1.4.1, we call the tuple (Q,b) a (bG-)Brauer pair of
F`G.

Next, let (R, bR) and (Q,bQ) be Brauer pairs of F`G. Given D ∈ Def(bQ) and
E ∈ Def(bR), then by what we have just seen we have Q ⊆ D and R ⊆ E. So from

CQCG(R)(D) ≤ CG(D) ≤ CG(Q) ≤ QCG(Q)
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and

CQCG(R)(E) ≤ CG(E) ≤ CG(R) ≤ RCG(R)

it follows that b
QCG(R)
Q and b

QCG(R)
R are defined.

• One writes (R, bR) E (Q,bQ) if R E Q, Q ⊆ StabG(bR), and b
QCG(R)
Q = b

QCG(R)
R .

In this case, bGQ = bGR =: B (see, for example, [2, page 114]), so (R, bR) and (Q,bQ)

are B-Brauer pairs of F`G.

• Moreover, we write (R, bR) ≤ (Q,bQ) if there exist Brauer pairs
(R1, b1), . . . , (Rn, bn) of F`G such that

(R, bR) = (R1, b1) E · · · E (Rn, bn) = (Q,bQ).

One obtains the following easily verified observation:

Observation 1.4.2. Let B ∈ Bl(F`G). Then ({1} , B) is a B-Brauer pair of F`G. The
relation ≤ is a partial ordering on the set of all B-Brauer pairs of F`G, and all such
B-Brauer pairs (Q,b) satisfy ({1} , B) E (Q,b).

Theorem 1.4.3 ([2, Thm. 16.3], [54, Prop. 1.9]). Let (Q,b) be a Brauer pair of F`G,
and let R ≤ Q. Then there exists a unique block bR ∈ Bl(F`[RCG(R)]) such that (R, bR) ≤
(Q,b). This block bR has a defect group containing RCQ(R). If R E Q, then also
(R, bR) E (Q,b).

Definition 1.4.4. Let (Q,b) be a Brauer pair of F`G.

(a) (Q,b) is called self-centralizing , if Q is a defect group of b.

(b) (Q,b) is called a Sylow (bG-)Brauer pair of F`G, if Q is a defect group of bG.

It follows immediately from Lemma 1.4.1 that every Sylow Brauer pair of F`G is
self-centralizing.
The following is a version of Sylow’s Theorem translated to our context:

Theorem 1.4.5 ([2, Thm. 16.2]). Let (Q,b) be a Brauer pair of F`G. Then (Q,b) is a
Sylow bG-Brauer pair of F`G if and only if (Q,b) is a maximal element of the set of all
Brauer pairs of F`G with respect to ≤. Moreover, G acts transitively by conjugation on
the set of all Sylow bG-Brauer pairs of F`G.

The following application of Theorem 1.4.5 explains the term ”self-centralizing” in part
(a) of the previous definition:

Theorem 1.4.6. A Brauer pair (Q,b) of F`G is self-centralizing if and only if, for all
Brauer pairs (R, bR) of F`G satisfying (Q,b) ≤ (R, bR), we have CR(Q) ⊆ Q.
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Proof. First, let (Q,b) be self-centralizing, and let (R, bR) be such that (Q,b) ≤ (R, bR).
Then by Theorem 1.4.3, the defect group Q of b contains a QCG(Q)-conjugate of
QCR(Q). It follows that CR(Q) ⊆ Q.
Now, we show the converse direction. Let D be a defect group of b. By Theorem
1.4.5, (Q,bQ) is contained in a Sylow Brauer pair (E, bE), and we have CE(Q) ⊆ Q by
assumption. As

CNG(Q)(D) ⊆ CG(D) ⊆ CG(Q) ⊆ QCG(Q)

by Lemma 1.4.1, bNG(Q) is defined, and it is the unique block of F` NG(Q) covering b.
From [2, Thm. 14.2] it follows that the defect group E of bG = (bNG(Q))G is also a
defect group of bNG(Q). Now, [2, Thm. 15.1] implies that D = gE ∩QCG(Q), for some
g ∈ NG(Q). Thus,

Q ⊆ g−1

D = E ∩QCG(Q) = CE(Q) ⊆ Q.

Now, this shows that Q = g−1
D and, thus, Q = D.

Finally, we turn to Knörr’s Theorem:

Theorem 1.4.7 (Knörr’s Theorem, [45, Cor. 3.5]). Let M be a simple F`G-module in
a block B ∈ Bl(F`G) with vertex V. Then there exists a self-centralizing B-Brauer pair
(V, b).

Corollary 1.4.8. Let M be a simple F`G-module in a block B ∈ Bl(F`G) with vertex V.
Then there exists some D ∈ Def(B) such that CD(V) ⊆ V ⊆ D. In particular, if D is
abelian, then V = D.

Proof. By Knörr’s Theorem, there exists a self-centralizing B-Brauer pair (V, b). By
Theorem 1.4.6, there exists a Sylow B-Brauer pair (D,bD) such that (Q,b) ≤ (D,bD).
Then D is a defect group of B and Q is self-centralizing in D.

1.5 Puig’s Question

We have seen in Section 1.2 that every `-subgroup of a finite group G occurs as a vertex
of an indecomposable F`-module. If we restrict ourselves to vertices of simple modules,
then Erdmann’s Theorem (part (d) of Proposition 1.3.1) and Knörr’s Theorem (Corollary
1.4.8) show that this is no longer true. More precisely, a vertex V of a simple module
lying in a block B of F`G is even a defect group of B, if either V is cyclic or the defect
groups of B are abelian. Llúıs Puig asked the question whether the order of V induces an
upper bound for the order of the defect groups of B. In Chapters 2 and 3 of this thesis,
we investigate this question.

Question 1.5.1 (Puig’s Question, [60]). If V is a vertex of a simple module in a block B
of the group algebra of a finite group, is then the order of the defect groups of B bounded
in terms of the order of V?
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In [60], Jiping Zhang proves a reduction theorem to quasi-simple groups.

The following example shows that the answer to Puig’s Question is negative for
` = 2:

Example 1.5.2 (Erdmann, [25]). If q is a prime power, then the Sylow 2-subgroups of
PSL2(q) are dihedral groups of order 1

2(q
2− 1)2 or Klein four-groups C22. If, additionally,

q ≡ 1 mod 4, then there exists a simple module in the principal block having vertices
isomorphic to C22. As q can be arbitrarily large, this shows that the answer to Puig’s
Question is negative for ` = 2.

Until now, there are no counterexamples to Puig’s Question known for ` > 2.

Our strategy to study infinite sets of groups with respect to Puig’s Question will
be as follows: Given a set of finite groups, we will define a property with respect
to Puig’s Question, and we will generalize it to self-centralizing subgroups instead of
vertices. Essentially, we will investigate sets of classical groups with regard to this
property. Therefore, we will introduce those groups in the next section.

1.6 Finite classical groups

In this section, we introduce finite classical groups, as well as their order formulae. It is
based on [5], [33], [40], and [58]. By GLn(q) and SLn(q), we denote the general linear
and special linear group, respectively, of degree n over the finite field Fq. Moreover,
Sym(n) and Alt(n) are the symmetric group and alternating group, respectively, on n
letters. Finally, 1n denotes the identity matrix of size n× n.

Theorem 1.6.1. Let q be a prime power, and let n ∈ N>0.

(a) One has |GLn(q)| = q
n(n−1)/2

∏n
j=1(q

j − 1) and |SLn(q)| =
|GLn(q)|
q−1 .

(b) One has

Z(GLn(q)) = F
×
q · 1n ∼= Cq−1

and

Z(SLn(q)) = Z(GLn(q)) ∩ SLn(q) =
{
a ∈ F×q : an = 1

}
· 1n ∼= Cgcd(n,q−1),

and one writes PGLn(q) := GLn(q)/Z(GLn(q)) and PSLn(q) :=
SLn(q)/Z(SLn(q)). The groups PGLn(q) and PSLn(q) are called the projective
general linear group and the projective special linear group, respectively.

(c) The group PSLn(q) is simple, except for PSL2(2) ∼= Sym(3) and PSL2(3) ∼= Alt(4).
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Proof. This is well known, see, for example, [33, Chapter 1].

Given a field K, we write Gal(K) for the group of field automorphisms of K.

Definition 1.6.2. Let K be a field, let σ ∈ Gal(K), and let V be a K-vector space.

(a) A (σ-)sesquilinear form on V is a map 〈·, ·〉 : V2 → K such that

〈x1v1 + x2v2, w〉 = x1 〈v1, w〉+ x2 〈v2, w〉

and

〈w, x1v1 + x2v2〉 = σ(x1) 〈w, v1〉+ σ(x2) 〈w, v2〉

for all x1, x2 ∈ K and all v1, v2, w ∈ V. A vector v ∈ V is called isotropic if
〈v, v〉 = 0, and a subspace U of V is called totally isotropic, if all of its vectors
are isotropic.

(b) A sesquilinear form 〈·, ·〉 on V is called alternating , if it satisfies 〈v, v〉 = 0 for all
v ∈ V.

(c) A σ-sesquilinear form 〈·, ·〉 on V is called symmetric, if it satisfies 〈u, v〉 = 〈v, u〉
for all u, v ∈ V, and it is called hermitian , if it satisfies 〈u, v〉 = σ(〈v, u〉) for all
u, v ∈ V.

(d) An idK-sesquilinear form is called a bilinear form .

(e) A sesquilinear form 〈·, ·〉 on V is called reflexive , if it satisfies 〈u, v〉 = 0 for all
u, v ∈ V such that 〈v, u〉 = 0.

(f) A reflexive sesquilinear form 〈·, ·〉 is called degenerate , if there exists a u ∈ V \ {0}

such that 〈u, v〉 = 0 for all v ∈ V.

(g) A quadratic form on V is a map Q : V → K satisfying Q(av) = a2Q(v) for all
a ∈ K and all v ∈ V, such that the map

bQ : V2 → K : (u, v) 7→ Q(u+ v) −Q(u) −Q(v)

is a bilinear form on V.
Such a quadratic form Q is called degenerate , if the corresponding bilinear form
bQ is degenerate.

The following are basic properties of sesquilinear forms:
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Observation 1.6.3. Let K be a field, let σ ∈ Gal(K), and let V be a K-vector space.

(a) Every alternating sesquilinear form 〈·, ·〉 on V satisfies 〈u, v〉 = − 〈v, u〉 for all
u, v ∈ V.

(b) Hermitian sesquilinear forms and alternating sesquilinear forms are reflexive.

(c) A non-zero symmetric or alternating σ-sesquilinear form is bilinear.

(d) A non-zero hermitian σ-sesquilinear form satisfies σ2 = idK.

(e) If char(K) 6= 2, then Q 7→ bQ is a bijection between the set of all quadratic forms
on V and the set of all symmetric bilinear forms on V.

Proof.

(a) We have 0 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈v, v〉+ 〈u, v〉+ 〈v, u〉 = 〈u, v〉+ 〈v, u〉.

(b) This is obvious for the Hermitian case, and for the alternating case it follows
immediately from part (a).

(c) Let 〈·, ·〉 be a non-zero σ-sesquilinear form on V, and let u, v ∈ V be such that
〈u, v〉 6= 0. Let a ∈ K. If 〈·, ·〉 is symmetric, then

a = a 〈u, v〉 〈u, v〉−1 = 〈au, v〉 〈u, v〉−1

= 〈v, au〉 〈v, u〉−1 = σ(a) 〈v, u〉 〈v, u〉−1 = σ(a),

so σ = idK. If 〈·, ·〉 is alternating, then by part (a) we have

a = a 〈u, v〉 〈u, v〉−1 = 〈au, v〉 〈u, v〉−1 = − 〈v, au〉 (− 〈v, u〉−1)

= 〈v, au〉 〈v, u〉−1 = σ(a) 〈v, u〉 〈v, u〉−1 = σ(a),

so σ = idK.

(d) Let 〈·, ·〉 be a non-zero hermitian σ-sesquilinear form on V, and let u, v ∈ V be
such that 〈u, v〉 6= 0. Then, for all a ∈ K, we have

a = a 〈u, v〉 〈u, v〉−1 = 〈au, v〉 〈u, v〉−1 = σ(〈v, au〉)σ(〈v, u〉)−1

= σ(〈v, au〉 〈v, u〉−1) = σ(σ(a) 〈v, u〉 〈v, u〉−1) = σ2(a),

so σ2 = idK.

(e) The inverse map is given by 〈·, ·〉 7→ (v 7→ 1
2 〈v, v〉).

The next proposition translates sesquilinear forms on abstract vector spaces into
sesquilinear forms given by matrices:
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Proposition 1.6.4 ([40, Chapter 6]). Let K be a field, let n ∈ N, let (v1, . . . , vn) be an
ordered basis of a K-vector space V, and let σ ∈ Gal(K).

(a) The set S of all σ-sesquilinear forms on V is a K-vector space, and the map

S→ Kn×n : 〈·, ·〉 7→ (〈vi, vj〉)i,j

is a K-vector space isomorphism with inverse map

Kn×n → S : (aij)i,j 7→
 n∑

i=1

xivi,

n∑
j=1

yjvj

 7→ n∑
i=1

n∑
j=1

xiσ(yj)aij

 .
If 〈·, ·〉 ∈ S is given, then the matrix (〈vi, vj〉)i,j ∈ Kn×n is called the matrix of
〈·, ·〉 with respect to (v1, . . . , vn).

(b) Let 〈·, ·〉 ∈ S. If (w1, . . . , wn) is an ordered K-basis of V, and if A is the matrix of
〈·, ·〉 with respect to (v1, . . . , vn), then

(cij)
t
i,j ·A · (σ(cij))i,j

is the matrix of 〈·, ·〉 with respect to (w1, . . . , wn), where cij ∈ K are such that
wj =

∑n
i=1 cijvi.

(c) Let 〈·, ·〉 ∈ S, and let A be the matrix of 〈·, ·〉 with respect to some ordered K-basis
of V. Then the following hold:

• 〈·, ·〉 is degenerate if and only if det(A) = 0.

• 〈·, ·〉 is alternating if and only if At = −A and the diagonal entries of A are
0.

• 〈·, ·〉 is symmetric if and only if At = A.

• 〈·, ·〉 is hermitian if and only if At = σ(A), where σ(A) is the matrix obtained
by applying σ to every entry of A.

Now, we recall the definitions of geometries and corresponding isometries over finite fields.

Definition 1.6.5. Let K be a field, and let V be a K-vector space.

(a) Let 〈·, ·〉 be a non-degenerate sesquilinear form on V, and let dimK(V) be finite.
The tuple (V, 〈·, ·〉) is called a symplectic geometry over K if 〈·, ·〉 is alternating,
and it is called a unitary geometry over K if 〈·, ·〉 is hermitian and not bilinear.

(b) If Q is a non-degenerate quadratic form on V and if dimK(V) is finite, then the
tuple (V,Q) is called a quadratic geometry over K.
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Proposition 1.6.6. Let K be a field, and let V and V ′ be K-vector spaces.

(a) Let QV be a quadratic form on V, and let QV ′ be a quadratic form on V ′. A map
f ∈ HomK(V,V

′) satisfying qV(v) = qV ′(f(v)) for all v ∈ V is called a K-linear
isometry, and it also satisfies bV(u, v) = bV ′(f(u), f(v)) for all u, v ∈ V, where
bV and bV ′ are the corresponding symmetric bilinear forms.

(b) Let sV be a sesquilinear form on V, and let sV ′ be a sesquilinear form on V ′. A
map f ∈ HomK(V,V

′) satisfying sV(u, v) = sV ′(f(u), f(v)) for all u, v ∈ V is called
a K-linear isometry. If sV is not degenerate, then every K-linear isometry V → V

is injective.

(c) Let V be finite-dimensional, and let s be a sesquilinear form on V. Then the set
of K-linear isometries V → V is a subgroup of GLK(V). It is called the isometry
group of V.

The following theorem shows that in order to study isometry groups of non-degenerate
forms, it suffices to consider symplectic, unitary, and quadratic geometries.

Theorem 1.6.7 ([5, Thm. 3.6]). Let K be a field, let V be a K-vector space, and let s
be any non-degenerate reflexive sesquilinear form on V. Then s is alternating or there
exists some a ∈ K× such that the sesquilinear form a · s is hermitian. In the second case,
the isometry groups of s and a · s coincide.

We now state Witt’s Extension Theorem, which is very important in the context of
geometries over finite fields. As an application, one can define the Witt index of a
geometry.

Theorem 1.6.8 (Witt’s Extension Theorem, [33, Thm. 5.2, Thm. 10.12, Thm. 12.10]).
Let K be a field, and let V be a symplectic, unitary, or quadratic geometry over K. If
U ⊆ V is a subspace and f : U→ V is an injective K-linear isometry, then there exists a
K-linear isometry V → V extending f.

Corollary 1.6.9. Let K be a field, and let V be a symplectic, unitary, or quadratic
geometry over K with isometry group G. Then G acts transitively on the set of all maximal
totally isotropic subspaces of V. In particular, the dimensions of all such maximal totally
isotropic subspaces coincide, and this common dimension is called the Witt index of V.

Proof. Let U and W be two such subspaces, and assume dimK(U) ≤ dimK(W). Then
every K-linear injection U ↪→W is an isometry, so by Witt’s Theorem, there exists some
g ∈ G such that g(U) ⊆ W. As g−1 is also an isometry, g−1(W) is totally isotropic, so
the maximality of U and U ⊆ g−1(W) ⊆ V implies U = g−1(W).

We are ready to present the classical groups of symplectic type:
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Theorem 1.6.10. Let q be a prime power, and let n ∈ N>0.

(a) Up to isometric isomorphism, there exists a unique non-degenerate symplectic
geometry of dimension 2n over Fq. Its isometry group is denoted by Sp2n(q) and
it is called a symplectic group. Moreover, there is no non-degenerate symplectic
geometry of dimension 2n+ 1 over Fq.

(b) Sp2n(q) is isomorphic to
{
A ∈ GL2n(q) : AtJA = J

}
, for all J ∈ GL2n(q)

satisfying Jt = −J. In particular,

Sp2n(q)
∼=
{
A ∈ GL2n(q) : At

(
1n

−1n

)
A =

(
1n

−1n

)}
.

(c) Sp2n(q) is contained in SL2n(q).

(d) Z(Sp2n(q)) = {±12n}. One writes PSp2n(q) := Sp2n(q)/Z(Sp2n(q)).

(e) |Sp2n(q)| = q
n2∏n

i=1(q
2i − 1) and |PSp2n(q)| =

|Sp2n(q)|
gcd(2,q−1) .

(f) The group PSp2n(q) is simple, except for PSp2(2)
∼= Sym(3), PSp2(3)

∼= Alt(4),
and PSp4(2)

∼= Sym(6).

Proof.

(a) It follows from [33, Cor. 2.11] that there is no non-degenerate symplectic geometry
of odd dimension 2n + 1. Moreover, the uniqueness follows from [33, Cor. 2.12].
The existence is clear, as the matrix

(
1n

−1n

)
defines a symplectic geometry of

dimension 2n.

(b) This follows from Proposition 1.6.4 and part (a).

(c) See [33, Cor. 3.5].

(d) See [33, Cor. 3.6].

(e) See [33, Thm. 3.12].

(f) See [33, page 25, page 26, Thm 3.11, Prop. 3.13].

Now, we come to unitary groups:

Observation 1.6.11. Let q be a prime power. If there exists a non-degenerate unitary
geometry over Fq, then q is a square and the corresponding field automorphism is given
by

Fq → Fq : x 7→ x
√
q.
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Proof. Let σ ∈ Gal(Fq) be the corresponding field automorphism, and let p ∈ P and
n ∈ N be such that q = pn. Then Gal(Fq) = Gal(Fq|Fp) is cyclic of order n and is
generated by the Frobenius automorphism Fq → Fq : x 7→ xp. As we consider a unitary
geometry, σ is not the identity. Thus, σ has order 2 by part (d) of Observation 1.6.3.
The claim follows.

Theorem 1.6.12. Let q be a prime power, and let n ∈ N>0.

(a) Up to isometric isomorphism, there exists a unique non-degenerate unitary
geometry of dimension n over Fq2. Its isometry group is denoted by GUn(q) and
it is called a unitary group.

(b) GUn(q) is isomorphic to
{
A ∈ GLn(q

2) : A
t
JA = J

}
, for all J ∈ GLn(q

2)

satisfying J = J
t
, where (aij)i,j := (aqij)i,j. In particular,

GUn(q) ∼=
{
A ∈ GLn(q

2) : A
t
A = 1n

}
.

(c) SUn(q) := GUn(q) ∩ SLn(q
2) has index q+ 1 in GUn(q).

(d) One has

Z(GUn(q)) = Z(GLn(q
2)) ∩GUn(q) =

{
c · 1n : c ∈ F×

q2
, cq+1 = 1

}
∼= Cq+1

and
Z(SUn(q)) = Z(GUn(q)) ∩ SUn(q) ∼= Cgcd(n,q+1).

One writes PGUn(q) := GUn(q)/Z(GUn(q)) and PSUn(q) := SUn(q)/Z(SUn(q)).

(e) |GUn(q)| = q
n(n−1)/2

∏n
j=1(q

j − (−1)j) and |PSUn(q)| =
|GUn(q)|

(q+1) gcd(n,q+1) .

(f) The group PSUn(q) is simple, except for PSU2(2) ∼= Sym(3), PSU2(3) ∼= Alt(4),
and PSU3(2).

Proof.

(a) The uniqueness follows from [33, Cor. 10.4]. The existence is clear, as the identity
matrix 1n defines a unitary geometry of dimension n.

(b) This is clear, by Proposition 1.6.4 and by part (a).

(c) See [33, Cor. 11.29].

(d) See [33, Prop. 11.6, Prop. 11.17].

(e) See [33, Thm. 11.28, Cor. 11.29].

(f) See [33, Thm. 11.26, page 110].
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Finally, we turn to orthogonal groups. Here, we distinguish odd and even dimension.
Moreover, as we want to apply a result of Paul Fong and Bhama Srinivasan in Section
3.2 which is only formulated for orthogonal groups over finite fields of odd characteristic,
we restrict ourselves to this case.

Theorem 1.6.13. Let q be an odd prime power, and let n ∈ N>0.

(a) Up to isometric isomorphism, there are two non-degenerate quadratic geometries
of dimension 2n+ 1 over Fq. Both have the same isometry group which is denoted
by GO2n+1(q) and which is called an orthogonal group.

(b) GO2n+1(q) is isomorphic to
{
A ∈ GL2n+1(q) : AtJA = J

}
, for all J ∈ GL2n+1(q)

satisfying J = Jt. In particular,

GO2n+1(q) ∼=
{
A ∈ GL2n+1(q) : AtA = 12n+1

}
.

(c) SO2n+1(q) := GO2n+1(q) ∩ SL2n+1(q) has index 2 in GO2n+1(q).

(d) Z(GO2n+1(q)) = {±12n+1} and Z(SO2n+1(q)) = {12n+1}. One writes
PGO2n+1(q) := GO2n+1(q)/Z(GO2n+1(q)).

(e) GO2n+1(q)
′ = SO2n+1(q)

′ has index 2 in SO2n+1(q). One writes Ω2n+1(q) :=
GO2n+1(q)

′.

(f) |GO2n+1(q)| = 2q
n2∏n

i=1(q
2i − 1) and |Ω2n+1(q)| =

|GO2n+1(q)|
4 = |PSp2n(q)|.

(g) The group Ω2n+1(q) is simple, except for Ω3(3) ∼= PSL2(3).

Proof.

(a) See [33, Cor. 4.10, page 79] and [58, paragraph II on page 139].

(b) This is clear by Proposition 1.6.4 and by part (a).

(c) By part (b), the elements of GO2n+1(q) have determinant ±1, hence the index is
at most 2. It cannot be 1 since −12n+1 has determinant −1 and lies in the given
group.

(d) See [33, Prop. 6.15] and [15, page xii].

(e) This follows from part (c), part (f), and [33, Prop. 6.14, Prop. 6.28].

(f) See [33, Thm. 9.11, Cor. 9.12].

(g) See [33, Thm. 6.31, page 83].
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It should be mentioned that for n ≥ 3, the groups Ω2n+1(q) and PSp2n(q) have the
same order and are both simple, but they are not isomorphic to each other, see [33, page
83].

In the following theorem, we denote by (F×q )
2 the group of squares in F×q .

Theorem 1.6.14. Let q be an odd prime power, and let n ∈ N>1.

(a) Up to isometric isomorphism, there are two non-degenerate quadratic geometries
of dimension 2n over Fq: one of Witt index n, and one of Witt index n− 1. Their
isometry groups are denoted by GO+

2n(q) and GO−
2n(q), respectively, and they are

also called orthogonal groups.

(b) Let

S :=
{{
A ∈ GL2n(q) : AtJA = J

}
: J ∈ GL2n(q), J = J

t, det(J) ∈ (F×q )
2
}

and

N :=
{{
A ∈ GL2n(q) : AtJA = J

}
: J ∈ GL2n(q), J = J

t, det(J) ∈ F×q \ (F×q )
2
}
.

Then, in particular,
{
A ∈ GL2n(q) : AtA = 1n

}
∈ S. One has the following:

• If (−1)n is a square in Fq, then GO+
2n(q) is isomorphic to all elements of S,

and GO−
2n(q) is isomorphic to all elements of N.

• If (−1)n is a non-square in Fq, then GO+
2n(q) is isomorphic to all elements of

N, and GO−
2n(q) is isomorphic to all elements of S.

(c) For ε ∈ {±1}, the subgroup SOε
2n(q) := GOε

2n(q)∩SL2n(q) has index 2 in GOε
2n(q).

(d) For ε ∈ {±1}, one has Z(GOε
2n(q)) = Z(SOε

2n(q)) = {±12n}. One writes
PGOε

2n(q) := GOε
2n+1(q)/Z(GOε

2n+1(q)) and PSOε
2n(q) := SOε

2n(q)/Z(SOε
2n(q)).

(e) For ε ∈ {±1}, the commutator subgroup GOε
2n(q)

′ = SOε
2n(q)

′ has index 2 in
SOε

2n(q). One writes Ωε2n(q) := GOε
2n(q)

′ and PΩε2n(q) := Ωε2n(q)/(Ω
ε
2n(q) ∩

{±12n}).

(f) For ε ∈ {±1}, one has |GOε
2n(q)| = 2q

n(n−1)(qn−ε)
∏n−1
i=1 (q

2i−1) and |PΩε2n(q)| =
|GOε

2n(q)|
gcd(4,qn−ε) .

(g) For ε ∈ {±1}, the group PΩε2n(q) is simple, except for PΩ+
4 (q)

∼= PSL2(q)
2.

Proof.

(a),(b) See [58, page 139] and [33, Thm 4.9, Cor. 4.10, page 79].
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(c),(d) See [15, page xii].

(e) See [33, Prop. 6.14, Prop. 6.28, Thm. 9.7].

(f) See [33, Thm. 6.31, Cor. 9.12].

(g) See [33, Thm. 6.31, page 83].

Remark 1.6.15. For n = 1, parts (a) and (b) from the previous theorem are still true,
and GOε

2(q) is the dihedral group of order 2(q − ε) or the Klein four-group C22, see [58,
Thm. 11.4]. Here, GOε

2(q) is the Klein four-group C22 if and only if q = 3, so one clearly
has Z(GO+

2 (3)) 6= {±12}. This shows that [33, Prop. 6.15] is wrong for q = 3 and
dim(V) = 2. (The case where ui + uj is isotropic is missing in the proof, but must be
considered if the underlying field is F3.)

Orthogonal groups over finite fields of characteristic 2 are not considered in this thesis.
However, we state the result corresponding to the previous theorem.

First, note that if V is any non-degenerate quadratic geometry over Fq for even q, then the
induced bilinear form 〈·, ·〉 is alternating since 〈x, x〉 = Q(x+x)−Q(x)−Q(x) = Q(0) = 0,
where Q is the corresponding quadratic form. Now part (a) of Theorem 1.6.10 implies
that V must have even dimension.

In the literature, one often replaces ”non-degeneracy” by different terms in this
case (such as ”regularity” in [33, page 114]) to obtain also quadratic geometries in odd
dimension. However, the corresponding isometry groups are then symplectic groups and
have, thus, already been considered in Theorem 1.6.10.

We are left with the case of even dimension:

Remark 1.6.16 ([33, Thm 12.9, Thm 14.43, Thm 14.46]). Let q be a power of 2,
and let n ∈ N>1. Then, up to isometric isomorphism, there are two non-degenerate
quadratic geometries of dimension 2n over Fq: one of Witt index n, and one of Witt
index n− 1. Their isometry groups are denoted by GO+

2n(q) and GO−
2n(q), respectively.

Their commutator subgroups are simple, except for the (infinitely many) groups GO+
4 (q).

Definition 1.6.17. The various groups from Theorems 1.6.1, 1.6.14, 1.6.13, 1.6.12, and
1.6.10 are called finite classical groups.

We will also consider spin groups in this thesis:

Remark 1.6.18 ([47, Section 4], see also [11, Section 16.3] and [14]). Let q be an odd
prime power, and let n ∈ N>1. Let V be a quadratic geometry over Fq, and let Ω(V) be
the commutator subgroup of the isometry group of V. Then there exists a short exact
sequence

1→ Z→ Spin(V)→ Ω(V)→ 1
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of groups, where the spin group Spin(V) occurs as a subgroup of a quotient of the
tensor algebra of V, and where Z is a central subgroup of Spin(V) of order 2. We write
Spin2n+1(q) and Spinε2n(q) with ε ∈ {±1}, respectively. In particular, |Spin2n+1(q)| =
|SO2n+1(q)| and |Spinε2n(q)| = |SOε

2n(q)|.

We finish this section with the following remark based on [12] to view the classical groups
as a part of the wider concept of Chevalley groups.

Remark 1.6.19. Given a simple Lie algebra L over C, one can construct a certain
subgroup called Lie group of L, of the automorphism group of L. There is a particular
basis of L over C (the Chevalley basis), and the subset of L of all Z-linear combinations
with respect to this basis is a Lie algebra over Z. By extending scalars, one obtains a Lie
algebra over any field K. Now, one can define a group for this Lie algebra analogously to
the Lie group. This is the Chevalley group of L over K. If K is finite, then this group
is finite, too.
The finite-dimensional simple Lie algebras over C are completely classified and correspond
to indecomposable root systems. There are the infinite families labeled by

An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4),

as well as the five exceptional types labeled by

G2, F4, E6, E7, and E8.

If q is a prime power, then one writes An(q) for the Chevalley group over Fq of type An,
and similarly for the other types. Except for the four groups A1(2), A1(3), B2(2), and
G2(2), the finite Chevalley groups are always simple groups. Moreover,

An(q) ∼= PSLn+1(q), Bn(q) ∼= Ω2n+1(q), Cn(q) ∼= PSp2n(q), and Dn(q) ∼= PΩ+
2n(q),

see [12, Thm. 11.3.2].

For some types of Chevalley groups, one can construct a certain fixed point subgroup
with respect to an automorphism coming from a non-trivial field automorphism and
a non-trivial graph automorphism of the Dynkin diagram of the corresponding root
system. In this way, one obtains the twisted Chevalley groups (see [12, pages 225,
226]). The finite twisted Chevalley groups are

2An(q
2) (n ≥ 2), 2Dn(q2) (n ≥ 4), 2E6(q2), 3D4(q3), 2B2(22m+1), 2G2(3

2m+1),
2F4(2

2m+1),

see [12, page 251], where in each case, the power of q indicates the finite field the groups
are defined over. There is also the convention to denote these groups by 2An(q),

2Dn(q)
and so on, see, for example, [15] or [49]. Except for the four groups 2An(2

2), 2B2(2),
2G2(3), and 2F4(2), the finite twisted Chevalley are always simple groups, see [12, page
262]. Moreover, one has
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2An(q
2) ∼= PSUn+1(q) and 2Dn(q

2) ∼= PΩ−
2n(q).

In particular, each finite simple classical group is a Chevalley group or a twisted
Chevalley group.

If G is a Chevalley group of a simple Lie algebra L over C, then one can construct a
certain subgroup G̃ of the automorphism group of L, the universal Chevalley group
of L ([12, page 198]). It satisfies G̃/Z(G̃) ∼= G. Now, for all central subgroups N ≤ Z(G̃),
one calls G̃/N a Chevalley group. In particular, G occurs in every Chevalley group of
L as a quotient group since we have (G̃/N)/(Z(G̃)/N) ∼= G̃/Z(G̃) ∼= G.





2 Small self-centralizing subgroups in Sylow

subgroups of classical groups

In this chapter, we introduce Sylow subgroups of finite classical groups and investigate
the existence of small self-centralizing subgroups. More precisely, given a Sylow subgroup
G of a finite classical group, we want to answer the question whether it is possible to
bound the group order |G| in terms of an arbitrary self-centralizing subgroup. In the first
four sections, we provide first mathematical tools that we will use mainly in Section 2.7.
Sections 2.5 and 2.6 provide the Sylow subgroups of most of the finite classical groups
following [59]. In the last section, we investigate the structure of Sylow subgroups of
special and projective (special) linear groups which does not seem to exist in the literature.
Our main results of this chapter are Theorem 2.5.10, Theorem 2.6.7, Corollary 2.6.10,
Theorem 2.7.14, and Corollary 2.7.15, where we answer the question whether there exist
small self-centralizing subgroups of the considered Sylow subgroups.

2.1 Self-centralizing subgroups

First, we introduce some properties of self-centralizing subgroups. Results from [37] and
[60] will show that the order of any finite group G of prime power order is always bounded
from above in terms of the exponent Exp(G) and the order of a self-centralizing subgroup.

Definition 2.1.1. Let G be a group, and let U ≤ G be a subgroup satisfying CG(U) ⊆ U.
Then U is called self-centralizing in G.

The following two observations are immediate.

Observation 2.1.2. Let G be a group, and let U ≤ G be a self-centralizing subgroup.
Then one has Z(G) ⊆ Z(U) = CG(U) ⊆ U. In particular, if G is abelian, then U = G.

Observation 2.1.3. Let G be a group, and let U ≤ G be a subgroup. The following are
equivalent:

(a) U is self-centralizing in G.

(b) U is self-centralizing in all subgroups of G containing U.

(c) All subgroups of G containing U are self-centralizing in G.

We have the following two theorems from [37] and [60]:

Theorem 2.1.4 ([37, Satz III.7.3(b)]). Let ` ∈ P, and let G be a finite `-group. If A is
a maximal normal abelian subgroup of G, then

|G| ≤
√
`log`(|A|)(log`(|A|)+1).
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Theorem 2.1.5. Let ` ∈ P, let G be a finite `-group, and let V ≤ G be a self-centralizing
subgroup. If N E G is an elementary abelian normal subgroup, then |N| ≤ |V ||V |

|V |
.

Proof. Let A be the image of the group homomorphism V → Aut(N) : v 7→ (n 7→ vn).
Then A ≤ Aut(N) is an `-subgroup and

{n ∈ N : ϕ(n) = n for all ϕ ∈ A} = CN(V) ≤ CG(V) ≤ V.

From [60, Thm. 6] it follows that |N| ≤ |V ||A|
|A|

≤ |V ||V |
|V |

.

As a corollary, we obtain that for every finite `-group G, the group order |G| can
be bounded in terms of the exponent Exp(G) and an arbitrary self-centralizing subgroup
of G. For the proof and for later use, we recall the notation Ω1(G) for the characteristic
subgroup

〈
g ∈ G : g` = 1

〉
of G.

Corollary 2.1.6. Let ` ∈ P, let G be a finite `-group, and let V ≤ G be a self-centralizing
subgroup. Then

|G| ≤
√
`c

2+c, where c := log`(Exp(G)|V |
|V | log` |V |).

Proof. For |G| = 1 there is nothing to show, so we assume that |G| > 1. We choose
a maximal normal abelian subgroup A of G. By the fundamental theorem of finitely
generated abelian groups [37, Hauptsatz I.13.12], we can write

A ∼= C`n1 × · · · × C`nk

for some n1, . . . , nk ∈ N>0. Then Ω1(A) ∼= Ck` and A/Ω1(A) ∼= C`n1−1 × · · · × C`nk−1 ≤
A ≤ G. It is clear that

Exp(A)/` = Exp(A/Ω1(A)) = `
max{ni−1 : i=1,...,k}.

Now,
|A/Ω1(A)| = `

n1−1 · · · `nk−1 ≤ `kmax{ni−1 : i=1,...,k} ≤ (Exp(A)/`)k

implies
|A| ≤ |Ω1(A)|(Exp(A)/`)k = Exp(A)k ≤ Exp(G)k.

As Ω1(A) is characteristic in A and A is normal in G, it follows from [37, Hilfssatz

I.4.8(a)] that Ω1(A) is normal in G, so `k = |Ω1(A)| ≤ |V ||V |
|V |

by Theorem 2.1.5. This

shows |A| ≤ Exp(G)|V |
|V | log` |V |. Now, the claim follows from Theorem 2.1.4.

At this point, the question arises whether there exists such a bound only depending
on ` and |V |, where ` is of course bounded by ` ≤ |V | if G has more than one element.
Corollary 2.1.9 will show that the answer is negative for ` = 2. For arbitrary `, the
answer is negative, too, as we will see in Corollary 2.7.16.

As examples and also for later use, we consider the following groups:
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Remark 2.1.7 ([32, Thm. 4.3], [36, Prop. 22.7], [57, pages 347, 348]).

(a) For n ∈ N>2, the subgroup Dih2n := 〈(1, . . . , n), (1, n)(2, n− 1)(3, n− 2) · · ·〉 of
Sym(n) is called a dihedral group. Its order is 2n.

(b) For n ∈ N>1, the finite group with presentation〈
x, y : x2n = 1, y2 = xn, yxy−1 = x−1

〉
is called a dicyclic group. It has order 4n, and the unique element y2 = xn

of order 2 generates the center. In the particular case that n is a power of 2,
the dicyclic group of order 4n is called a generalized quaternion group. The
generalized quaternion group of order 8 is the usual quaternion group.

(c) For n ∈ N>3, the finite group with presentation〈
x, y : x2

n−1

= y2 = 1, yxy = x2
n−2−1

〉
is called a semidihedral group. It has order 2n, and its center is the subgroup〈
x2

n−2
〉

of order 2.

All of the groups introduced in the previous remark contain self-centralizing subgroups
of small order:

Proposition 2.1.8.

(a) If n ∈ N>2, then the dihedral group Dih2n of order 2n has an elementary abelian
self-centralizing subgroup of order 3+ (−1)n ∈ {2, 4}.

(b) If n ∈ N>1, then the dicyclic group of order 4n has a self-centralizing subgroup
isomorphic to C4.

(c) If n ∈ N>3, then the semidihedral group of order 2n has a self-centralizing subgroup
isomorphic to the Klein four-group C22.

Proof.

(a) We write Dih2n = 〈σ, τ〉 with σ := (1, . . . , n) and τ := (1, n)(2, n − 1) · · · . Given
k ∈ {1, . . . , n} and l ∈ {0, 1} such that σkτl ∈ CDih2n(τ), we have σk = τσkτ = σ−k,
so k ∈

{
0, n2
}

. Therefore, if n is even, then 〈σn/2〉 × 〈τ〉 ∼= C22 is self-centralizing in
Dih2n, and if n is odd, then 〈τ〉 ∼= C2 is self-centralizing in Dih2n.

(b) Let G :=
〈
x, y : x2n = 1, y2 = xn, yxy−1 = x−1

〉
. If xiyj ∈ CG(y) with xi 6= 1,

then xi ∈ CG(y), so xi = yxiy−1 = x−i implies that xi has order 2. This shows
xi = xn = y2 ∈ CG(y). Thus, 〈y〉 ∼= C4 is a self-centralizing subgroup of G.
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(c) Let G :=
〈
x, y : x2

n−1
= y2 = 1, yxy = x2

n−2−1
〉

. If xiyj ∈ CG(y), then xi ∈

CG(y). Thus, xi ∈ Z(G) =
〈
x2

n−2
〉

, and it follows that xiyj ∈ Z(G) 〈y〉. Therefore,

Z(G) 〈y〉 ∼= C22 is a self-centralizing subgroup of G.

Corollary 2.1.9. For ` = 2, it is not possible to generalize Corollary 2.1.6 such that
the order of a finite `-group can be bounded in terms of the order of an arbitrary
self-centralizing subgroup.

Of course, Corollary 2.1.9 also follows immediately from Corollary 1.4.8 and Example
1.5.2.

2.2 Rank, normal rank, and wreath products

In this section, we recall the well-known notions of the rank and the normal rank of a
finite group of prime power order, as well as wreath products, to obtain two propositions
that we will use later on.

Definition 2.2.1. Let ` ∈ P, and let G be a finite `-group.

(a) The rank of G, denoted by rk(G), is the largest integer n such that G has an
elementary abelian subgroup of order `n.

(b) The normal rank of G, denoted by nrk(G), is the largest integer n such that G
has a normal elementary abelian subgroup of order `n.

The following lemma summarizes three basic properties of the rank and the normal rank.
For the reader’s convenience we also give their proofs.

Lemma 2.2.2. Let ` ∈ P, and let G and H be finite `-groups.

(a) The rank rk(G) of G is the largest integer n such that there exists an abelian
subgroup U ≤ G that can be generated by n elements but not by n− 1 elements.

(b) The normal rank nrk(G) of G is the largest integer n such that there exists a
normal abelian subgroup U ≤ G that can be generated by n elements but not by
n− 1 elements.

(c) We have rk(G×H) = rk(G) + rk(H) and nrk(G×H) = nrk(G) + nrk(H).

Proof.

(a), (b) By definition, G has an elementary abelian (normal) subgroupU of order `rk(G),
and it is clear that U can be generated by rk(G) elements but not by rk(G) − 1
elements.
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Conversely, if U ≤ G is abelian and can be generated by n elements but not by
n− 1 elements, then it follows from the fundamental theorem of finitely generated
abelian groups [37, Hauptsatz I.13.12] that Ω1(U) is elementary abelian of order `n.
If U is normal in G, then Ω1(U) is also normal in G by part (a) and [37, Hilfssatz
I.4.8(a)].

(c) If EG is elementary abelian in G and EH is elementary abelian in H, then EG × EH
is elementary abelian in G×H. Moreover, if the subgroups EG and EH are normal
in G and H, respectively, then so is EG × EH in G×H.
Now, let E ≤ G × H be elementary abelian, say E = 〈(g1, h1), . . . , (gr, hr)〉. Then
ord(gi, hi) ∈ {1, `} and, therefore, ord(gi), ord(hi) ∈ {1, `} for each i. So 〈g1, . . . , gr〉
and 〈h1, . . . , hr〉 are elementary abelian, and E ≤ 〈g1, . . . , gr〉× 〈h1, . . . , hr〉 implies
that

|E| ≤ | 〈g1, . . . , gr〉 | · | 〈h1, . . . , hr〉 | ≤ `rk(G) · `rk(H).

If E is normal in G×H, then 〈g1, . . . , gr〉 is normal in G and 〈h1, . . . , hr〉 is normal
in H.

We continue by introducing wreath products.

Remark 2.2.3 ([37, Section I.15]). Let G and H be finite groups, let n ∈ N, and let
f : H ↪→ Sym(n) be a group monomorphism. Then

H→ Aut(Gn) : h 7→ ((g1, . . . , gn) 7→ (gh−1(1), . . . , gh−1(n)))

is a group homomorphism, and the corresponding semidirect product Gn of H is called
the wreath product of G and H with respect to f. It is denoted by G of H, or by
G oH if f is clear from the context, for example, if H is a subgroup of Sym(n) and f is the
natural embedding. The elements of G of H are written as (g1, . . . , gn;h). In particular,
G oH is a group with respect to

(g1, . . . , gn;h)(g
′
1, . . . , g

′
n;h

′) = (g1g
′
h−1(1), . . . , gng

′
h−1(n);hh

′),

its order is |G oH| = |G|n|H|, and

{(1, . . . , 1;h) : h ∈ H} ∼= H

is a complement of the normal subgroup

{(g1, . . . , gn; 1) : g1, . . . , gn ∈ G} ∼= Gn,

where the latter is also called the base group of G oH. By abuse of notation, we identify
{(1, . . . , 1;h) : h ∈ H} with H, and {(g1, . . . , gn; 1) : g1, . . . , gn ∈ G} with Gn.
If g : G ↪→ Sym(m) is a group monomorphism, then

ψf,g : G of H ↪→ Sym(mn) : (x1, . . . , xn;σ) 7→ (
(i− 1)m+ j

(σ(i) − 1)m+ xσ(i)(j)

)
i=1,...,n
j=1,...,m
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is a group monomorphism as well. Now, if U is another finite group and i : U ↪→ Sym(l)
is a group monomorphism, then (G of H) oi U and G oψi,g

(H oi U) are isomorphic. If the
monomorphisms f, g, and i are clear from the context, then we also write G o H o U :=
(G of H) oi U.

The following proposition will be used in the next section:

Proposition 2.2.4. Let ` ∈ P, and let G be a finite `-group.

(a) Let H be an `-subgroup of Sym(n) for some n ∈ N. If E is a normal subgroup of
G, then En is a normal subgroup of G oH. In particular, nrk(G oH) ≥ n · nrk(G).

(b) If rk(G) > 0, then rk(G o 〈(1, . . . , `)〉) = ` · rk(G).

(c) If rk(G) = nrk(G), then also rk(G o 〈(1, . . . , `)〉) = nrk(G o 〈(1, . . . , `)〉).

Proof.

(a) For all g1, . . . , gn ∈ G, e1, . . . , en ∈ E, and σ ∈ H we have

(g1,...,gn;σ)(e1, . . . , en; 1) = (g1, . . . , gn;σ)(e1, . . . , en; 1)(g
−1
σ(1), . . . , g

−1
σ(n);σ

−1)

= (g1eσ−1(1), . . . ,
gneσ−1(n); 1).

Now, choose an elementary abelian normal subgroup E such that |E| = `nrk(G). Then
En is elementary abelian and normal in G oH, so

nrk(G oH) ≥ log`(|E|
n) = n log`(|E|) = nnrk(G).

(b) Let W := G o 〈(1, . . . , `)〉, and let E ≤W be elementary abelian with |E| = `r, where
r := rk(W). Let E = 〈g1, . . . , gr〉. If E is contained in the base group B = G`, then
there is nothing to show because rk(G`) ≤ rk(G o 〈(1, . . . , `)〉). So we may suppose
that g1 /∈ B and write g1 = (x1, . . . , x`;σ). As g1 /∈ B, the permutation σ is not the
identity.

After renumbering, we may assume that σ = (1, . . . , `).
Now, let j > 2 and write gj = (y1j, y2j, . . . , y`j;σ

lj) for lj ∈ {0, . . . , `− 1}. If
lj 6= 0, then we can consider g̃j := g−11 g

aj
j ∈ B, where aj := l−1j in F×` . From

gj = g
lj
1 g̃

lj
j it follows that 〈g1, . . . , gr〉 = 〈{g1, . . . , gr, g̃j} \ {gj}〉, so by replacing gj

by g̃j if lj 6= 0, we may assume that E = 〈g1, . . . , gr〉 with g1 /∈ B and g2, . . . , gr ∈ B.

For all j > 1, we have

(y1jx1, . . . , y`jx`;σ) = gjg1 = g1gj = (x1yσ−1(1),j, . . . , x`yσ−1(`),j;σ),
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so yij =
xiyσ−1(i),j for all i. Hence,

gj = (y1j,
x2y1j,

x3x2y1j,
x4x3x2y1j, . . . ,

x`···x3x2y1j; 1). (∗)

This implies that ord(y1j) = ord(gj) = ` for all j > 1, since taking powers of gj is
the same as taking powers of each component. As for j, k > 1 the elements gj and
gk commute, the same is true for their first components y1j and y1k.

Suppose that there exists some k > 1 such that y1k ∈ 〈y1,k+1, . . . , y1r〉. If
mk+1, . . . ,mr ∈ Z are such that y1k = y

mk+1

1,k+1 · · ·y
mr

1r , then (∗) implies

gk = g
mk+1

k+1 · · ·g
mr
r ∈ 〈gk+1, . . . , gr〉 ,

which is a contradiction.

Therefore, 〈y12, . . . , y1r〉 is an elementary abelian subgroup of G of order
`r−1, which shows that the rank of B is at least ` · (r − 1). As the rank of G is
non-zero, it follows from part (a) that the rank of B is at least `, so r ≥ ` ≥ 2.
Thus, we have ` · (r − 1) ≥ r, that is, rk(B) satisfies r ≥ rk(B) ≥ `(r − 1) ≥ r,
proving rk(B) = r.

We also observe from the proof that the case E 6⊆ B can only occur if r = `(r− 1),
which is equivalent to r = 1+ 1

`−1 , and this in turn is equivalent to ` = r = 2.

(c) For rk(G) = 0 there is nothing to show, so let rk(G) > 0. Then, by parts (a) and
(b),

nrk(G o 〈(1, . . . , `)〉) ≥ `nrk(G) = ` rk(G) = rk(G o 〈(1, . . . , `)〉).

Moreover, it is clear by definition that also

nrk(G o 〈(1, . . . , `)〉) ≤ rk(G o 〈(1, . . . , `)〉).

Finally, the following proposition will be used in Section 2.3, Section 2.7, and
Chapter 3:

Proposition 2.2.5. Let n ∈ N, and let H be a subgroup of Sym(n). If G is a finite
group with more than one element, then Z(G oH) is the set of all (x1, . . . , xn; 1) ∈ Z(G)n

such that xi = xj whenever i and j lie in the same H-orbit.
In particular, Z(G oH) ∼= Z(G)k, where k is the number of H-orbits on {1, . . . , n}.
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Proof. Let (x1, . . . , xn;σ) ∈ Z(G oH). If g ∈ G \ {1} and i ∈ {1, . . . , n}, then

(1, . . . , 1, g↑
i

, 1, . . . , 1; 1) = (x1,...,xn;σ)(1, . . . , 1, g↑
i

, 1, . . . , 1; 1)

= (1, . . . , 1, xσ(i)gx
−1
σ(i)↑

σ(i)

, 1, . . . , 1; 1)

implies σ(i) = i and xigx
−1
i = g. Therefore, σ = 1 and x1, . . . , xn ∈ Z(G).

Moreover,

(1, . . . , 1; τ) = (x1,...,xn;1)(1, . . . , 1; τ) = (x1x
−1
τ−1(1)

, . . . , xnx
−1
τ−1(n)

; τ)

implies xτ(i) = xi for all τ ∈ H.
Conversely, if (x1, . . . , xn; 1) ∈ Z(G)n such that xi = xj whenever i and j lie in the same
H-orbit, then clearly

(x1,...,xn;1)(y1, . . . , yn; τ) = (x1y1x
−1
τ−1(1)

, . . . , xnynx
−1
τ−1(n)

; τ) = (y1, . . . , yn; τ)

for all (y1, . . . , yn; τ) ∈ G oH.

2.3 A particular Sylow subgroup of a given finite
symmetric group

Let ` ∈ P. Given a finite symmetric group Sym(n), we fix a particular Sylow `-subgroup
of Sym(n) that we will use several times in this chapter. Here, and in the remainder of
this thesis, we denote by n` the largest power of the prime number ` dividing the non-zero
integer n.

Proposition 2.3.1 ([56, page 30]). Let ` ∈ P, and let n ∈ N with `-adic expansion
n = a0 + a1`+ · · ·+ as`s. Then

(n!)` = `
n−(a0+a1+···+as)

`−1 = `
∑s

i=0 ai
`i−1
`−1 .

Notation 2.3.2. Let n ∈ N>0, and let a ∈ N. For σ ∈ Sym(n), let σ+a ∈
Sym({1+ a, . . . , n+ a}) denote the permutation

(1,1+a)···(n,n+a)σ : {1+ a, . . . , n+ a}→ {1+ a, . . . , n+ a} : k+ a 7→ σ(k) + a,

where the product (1, 1+a) · · · (n,n+a) of transpositions belongs to Sym(1, . . . , n+a).
Moreover, for S ⊆ Sym(n), write S+a := {σ+a : σ ∈ Sym(n)}. It is clear that if S is a
subgroup of Sym(n), then S+a is a subgroup of Sym({1+ a, . . . , n+ a}), and the map
S→ S+a : σ 7→ σ+a is a group isomorphism.
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Part (a) of the next proposition is well known and follows easily from [42, 4.1.20].
However, for the reader’s convenience we provide a proof.

Proposition 2.3.3. Let ` ∈ P, and let n ∈ N>0.

(a) For i = 1, . . . , n− 1 let

zi := (1, `i+1, 2`i+1, . . . , (`−1)`i+1)(2, `i+2, . . . , (`−1)`i+2) · · · (`i, 2`i, . . . , `i+1).

Then C` o · · · o C`︸ ︷︷ ︸
n

is isomorphic to

W`n := 〈(1, . . . , `), z1, . . . , zn−1〉 ,

which is a Sylow `-subgroup of Sym(`n) and whose center is the cyclic group

Z(W`n) = 〈(1, . . . , `)(`+ 1, . . . , 2`) · · · (`n − `+ 1, . . . , `n)〉

of order `.

(b) Let n = a0 + a1` + · · · + as`s be the `-adic expansion of n, let S ∈ Syl`(Sym(n)),
and let i ∈ N>0.
If ai < `− 1 or s < i, then

〈S, (W`i)+n〉 = S× (W`i)+n ∈ Syl`(Sym(n+ `i)).

Proof.

(a) By Remark 2.2.3 and Proposition 2.3.1, C` o · · · o C`︸ ︷︷ ︸
n

has order (`n!)`, and there is a

monomorphism C` o · · · o C`︸ ︷︷ ︸
n

↪→ Sym(`n). The claim is obviously true for n = 1, so

let n > 1. By induction, W`n−1 = 〈(1, . . . , `), z1, . . . , zn−2〉 ∈ Syl`(Sym(`n−1)) with

order |W`n−1 | = (`n−1!)` = `
`n−1−1
`−1 .

Write z := zn−1 and

H :=
〈
ziW`n−1z−i : i = 0, . . . , `− 1

〉
≤ Sym(`n).

By the definition of z, each conjugate ziW`n−1z−i belongs to
Sym(

{
i`n−1 + 1, . . . , (i+ 1)`n−1

}
), and as the sets

{
i`n−1 + 1, . . . , (i+ 1)`n−1

}
are

pairwise disjoint this implies that H is an inner direct product H =×`−1i=0 z
iW`n−1z−i.

Thus, |H| = |W`n−1 |`.
Finally, it is clear that W`n = 〈W`n−1 , z〉 = 〈H, z〉, and this group is an inner
semidirect product Ho 〈z〉. Therefore, its order is

|W`n | = |H| · ` = |W`n−1 |` · ` = ``
`n−1−1
`−1 +1

= |`n!|`.
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Conjugating (1, . . . , `) with all zi it is clear that

(1, . . . , `), (`+ 1, . . . , 2`), . . . , (`n − `+ 1, . . . , `n) ∈W`n .

Now, let σ ∈ Z(W`n). Then

σ ∈
`n−1⋂
i=1

CSym(`n)(〈((i− 1)`+ 1, . . . , i`)〉)

=

`n−1⋂
i=1

〈((i− 1)`+ 1, . . . , i`)〉 × (Sym({1, . . . , `n} \ {(i− 1)`+ 1, . . . , i`}))

= 〈(1, . . . , `), (`+ 1, . . . , 2`), . . . , (`n − `+ 1, . . . , `n)〉 ,

where the last equality follows from cycle decomposition in symmetric groups. This
last group is elementary abelian, so σ is a unique product σ = (1, . . . , `)k1 , (` +
1, . . . , 2`)k2 , . . . , (`n−`+1, . . . , `n)k`n−1 . As σ has to be invariant under conjugation
with all of the zi, it follows that k1 = k2 = · · · = k`n−1 .

(b) As (W`i)+n belongs to Sym(
{
n+ 1, . . . , n+ `i

}
), it follows that 〈S, (W`i)+n〉 is an

inner direct product and, thus, has order |S| · |W`i |. By assumption, this is

|S| · |W`i | = `
n−(a0+a1+···+ar)+`i−1

`−1 = ((n+ `i)!)`.

Now, we obtain the following particular Sylow subgroup of a given symmetric group. We
will use this Sylow `-subgroup several times in this chapter, mainly in Section 2.7.

Corollary 2.3.4. Let ` ∈ P, and let n ∈ N>0 with `-adic expansion n = a0+a1`+ · · ·+
as`

s. Then

〈 W`1 , (W`1)+`, . . . , (W`1)+(a1−1)`,

(W`2)+a1`, (W`2)+a1`+`2 , . . . , (W`2)+a1`+(a2−1)`2
,

...
...

...
(W`s)+n−a0−as`s , (W`s)+n−a0−as`s+`s , . . . , (W`s)+n−a0−`s 〉

= W`1 × (W`1)+` × · · · × (W`1)+(a1−1)` × · · · × (W`s)+n−a0−as`s × · · · × (W`s)+n−a0−`s

∼= Wa1
`1
× · · · ×Was

`s

is a Sylow `-subgroup of Sym(n).

Example 2.3.5. The group

〈(1, 2, 3)〉 ×
〈(4, 5, 6), (4, 7, 10)(5, 8, 11)(6, 9, 12), (4, 13, 22)(5, 14, 23)(6, 15, 24) · · · (12, 21, 30)〉

is a Sylow 3-subgroup of Sym(30), Sym(31), and Sym(32).
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We conclude this section with the following proposition which will also be used several
times in the remainder of this chapter:

Proposition 2.3.6. Let ` ∈ P, let n ∈ N>0 with `-adic expansion n = a0+a1`+· · ·+as`s,
and let S ∈ Syl`(Sym(n)).

(a) The number of orbits of S on {1, . . . , n} is the `-adic digit sum a0 + a1 + · · · + as
of n.

(b) We have rk(S) = nrk(S) = n−a0
` .

(c) Let G be a cyclic `-group with more than one element. Then |Z(G o S)| =
|G|a0+a1+···+as, and G o S has an elementary abelian normal subgroup of order `n.

Proof.

(a) It is clear that this holds for the particular Sylow `-subgroup from Corollary 2.3.4.
Now, as any two Sylow `-subgroups are conjugate, taking another Sylow `-subgroup
is the same as renumbering the elements 1, . . . , n.

(b) By Proposition 2.3.3 and Corollary 2.3.4, S is isomorphic to

Ca1` × (C` o C`)a2 × · · · × (C` o · · · o C`︸ ︷︷ ︸
s

)as .

By part (d) of Lemma 2.2.2 and by Proposition 2.2.4, both the rank and the normal
rank of this group are a1 + a2`+ · · ·+ as`s−1 = n−a0

` .

(c) Part (a) and Proposition 2.2.5 imply that |Z(G oS)| = |Z(G)|a1+···+as = |G|a1+···+as .
Moreover, by Proposition 2.2.4, the normal rank of G o S is at least n · nrk(G) = n.

2.4 Monomial matrices

In this short section, let n ∈ N>0, and let q be a prime power. Moreover, let

PerMat : Sym(n)→ GLn(q) : σ 7→ (eσ(1) · · · eσ(n)) = (δiσ(j))i,j

map a permutation to its permutation matrix, where ei denotes the i-th standard basis
vector.
It is well known and easily verified that

det(PerMat(σ)) = sign(σ)

and
PerMat(σ)−1 = PerMat(σ−1) = PerMat(σ)t
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for all σ ∈ Sym(n).

We should mention that there are two different conventions in the literature for
permutation matrices, differing by transposing the corresponding matrices. In our
definition, σ(i) = j means that multiplying the i-th standard basis vector ei with
PerMat(σ) from the left yields ej, that is, ej is the i-th column of PerMat(σ). This
convention assures that the map PerMat above is a group homomorphism. Clearly, it is
even a group monomorphism.

Definition 2.4.1. A matrix in GLn(q) is called monomial , if in each row and each
column it has a unique non-zero entry. In this thesis, the set of monomial matrices in
GLn(q) will be denoted by MonGLn(q).

Monomial matrices occur, for instance, as normalizers of tori: For q 6= 2, we have
MonGLn(q) = NGLn(q)(

{
diag(a1, . . . , an) : a1, . . . , an ∈ F×q

}
), see [49, Example 3.11].

The following easy and well-known facts are very important for Section 2.7:

Proposition 2.4.2.

(a) Let a1, . . . , an ∈ F×q , and let σ ∈ Sym(n). If, for all i = 1, . . . , n, we replace the
entry 1 of the i-th row of PerMat(σ) by ai, then we obtain the monomial matrix

A := diag(a1, . . . , an)PerMat(σ) = PerMat(σ) diag(aσ(1), . . . , aσ(n)).

If A = DP = P ′D ′ for permutation matrices P, P ′, and diagonal matrices D,D ′,
then P = P ′ = PerMat(σ), D = diag(a1, . . . , an), and D ′ = diag(aσ(1), . . . , aσ(n)).

(b) For all U ≤ F×q and all H ≤ Sym(n), the map

U oH ↪→ GLn(q) : (u1, . . . , un;σ) 7→ diag(u1, . . . , un)PerMat(σ)

is a group monomorphism. In particular, MonGLn(q) is a subgroup of GLn(q)
isomorphic to F×q o Sym(n).

Proof.

(a) The first statement is easily verified. The second statement follows immediately
from the fact that the only diagonal permutation matrix is the identity matrix.

(b) It follows from part (a) that this map is a homomorphism. The injectivity is
obvious.
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2.5 On Sylow subgroups of general linear groups

The Sylow `-subgroups of GLn(q), Spn(q), GUn(q), and GOε
n(q) (where ε ∈ {−1, 1}

whenever n is even, and where ε has no meaning for odd n) have been determined by
Weir in [59] in the case 2 6= ` - q. Weir states that these Sylow subgroups are always
direct products of iterated wreath products of certain cyclic groups, but the proofs also
show that each of these Sylow subgroups of a symplectic, unitary, or orthogonal group
is always isomorphic to a Sylow subgroup of a general linear group. In this section, we
introduce the Sylow `-subgroups of GLn(q) for 2 6= ` - q following [1] and [59], and
also for ` = 2 - q following [13], before proving our result about the existence of small
self-centralizing subgroups in such Sylow subgroups, see Theorem 2.5.10.

The following facts are well known:

Lemma 2.5.1. Let q be a prime power, and let m,n ∈ N.

(a) If G ≤ GLm(q) and H ≤ GLn(q), then G×H ↪→ GLm+n(q) : (A,B) 7→ (
A 0
0 B

)
is a

group monomorphism.

(b) Let G ≤ GLm(q), and let P ≤ Sym(n). Then

G o P ↪→ GLmn(q) : (A1, . . . , An;σ) 7→ diag(A1, . . . , An)PerMat(σ)

is a group monomorphism; here PerMat(σ) is the permutation matrix of σ, where
the entries 0 and 1 are replaced by the zero matrix and by 1m, respectively.

(c) GLn(q) has an element of order qn − 1.

Proof.

(a) This is obvious.

(b) Apply part (b) of Proposition 2.4.2 to block diagonal matrices instead of diagonal
matrices.

(c) Choose a generator a ∈ F×qn . Then the Fq-linear map Fqn → Fqn : x 7→ ax has
order qn−1 and may be viewed as an element of GLn(q) after choosing an Fq-basis
of Fqn .

Lemma 2.5.2 ([1, Lem. 2.2]). Let i ∈ N>0, let q ∈ Z, and let ` be a prime divisor of
q− 1. Then

(qi − 1)` =

{
i2(q+ 1)2, ` = 2 | i and q ≡ 3 mod 4,

i`(q− 1)`, else.

The order of the Sylow `-subgroups of GLn(q) follows immediately from Lemma 2.5.2
and the order formula |GLn(q)| = q

n(n−1)/2
∏n
j=1(q

j − 1).
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Corollary 2.5.3. Let ` ∈ P, let n ∈ N>0, and let q be a prime power not divisible by `.
Let e := ord(q) in F×` , and let r := log`((q

e − 1)`).

(a) Suppose that ` ∈ P>2 or q ≡ 1 mod 4. Then

|GLn(q)|` = (qe − 1)
bne c
` (bne c!)` = `

rbne c(bne c!)`.

(b) For q ≡ 3 mod 4 and even n one has |GLn(q)|2 = 2
n(q+ 1)

n/2
2 ((n/2)!)2.

(c) For q ≡ 3 mod 4 and odd n one has |GLn(q)|2 = 2|GLn−1(q)|2.

Before stating the result on Sylow subgroups, we obtain the following easy corollary,
which is important for Section 2.7:

Corollary 2.5.4. Let ` ∈ P, let n ∈ N>0, and let q be a prime power such that ` | q− 1.
Moreover, let q ≡ 1 mod 4 if ` = 2. Then we have Syl`(MonGLn(q)) ⊆ Syl`(GLn(q)).

Proof. By part (b) of Proposition 2.4.2, |MonGLn(q)| = |F×q |
n|Sym(n)| = (q− 1)nn!, so

part (a) of Corollary 2.5.3 implies |MonGLn(q)|` = (q− 1)n` (n!)` = |GLn(q)|`.

Remark 2.5.5. We should mention that it follows from [49, Chapter 25] and [23]
that under suitable assumptions, the Sylow subgroups of finite groups of Lie type in
non-defining characteristic are always contained in normalizers of tori. As already
mentioned in Section 2.4, the group of monomial matrices is the normalizer of the
subgroup of diagonal matrices in the general linear group, so Corollary 2.5.4 is actually
a special case of this more general result. However, it is more appropriate for us to work
with concrete matrices, and we will see in this chapter that the structure of the Sylow
subgroups of finite classical groups of our interest can be deduced from the knowledge of
the structure of the groups MonGLn(q).

Now, we come to the structure of the Sylow subgroups:

Proposition 2.5.6. Let n ∈ N>0, and let q be a prime power.

(a) Let ` ∈ P be such that ` - q, and such that q ≡ 1 mod 4 if ` = 2. Then the Sylow
`-subgroups of GLn(q) are isomorphic to C(qe−1)` o S, where e := ord(q) in F×` , and
where S ∈ Syl`(Sym(bne c)).

(b) Let q ≡ 3 mod 4.

• If n is even and if G ∈ Syl2(GL2(q)), then the Sylow 2-subgroups of GLn(q)
are isomorphic to G o S, where S ∈ Syl2(Sym(n2 )).

• If n is odd, then the Sylow 2-subgroups of GLn(q) are isomorphic to P × C2,
where P ∈ Syl2(GLn−1(q)).

Proof. This follows from Lemma 2.5.1 and Corollary 2.5.3 (for odd n in (b) apply part
(a) of Lemma 2.5.1 to GLn−1(q) and GL1(q), and observe that a Sylow 2-subgroup of
GL1(q) = F

×
q has order 2).
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To complete the description of the Sylow `-subgroups of the groups GLn(q) for ` - q, it
remains to determine the Sylow 2-subgroups of GL2(q) for q ≡ 3 mod 4. This is done in
part (b) of the following theorem. For later use, we also consider the Sylow 2-subgroups
of SL2(q), PGL2(q), and PSL2(q) for arbitrary q > 2:

Theorem 2.5.7. Let q be an odd prime power.

(a) If q ≡ 1 mod 4, then the Sylow 2-subgroups of GL2(q) are isomorphic to C(q−1)2 oC2.
Their order is 2(q− 1)22.

(b) If q ≡ 3 mod 4, then the Sylow 2-subgroups of GL2(q) are semidihedral of order
4(q+ 1)2.

(c) The Sylow 2-subgroups of SL2(q) are generalized quaternion of order (q2 − 1)2.

(d) The Sylow 2-subgroups of PGL2(q) are dihedral of order (q2 − 1)2.

(e) The Sylow 2-subgroups of PSL2(q) are dihedral of order 1
2(q

2 − 1)2 or Klein
four-groups.

Proof.

(a), (b) This is shown in [13, page 142]. Alternatively, part (a) is a special case of part
(a) of Proposition 2.5.6.

(c), (e) See [37, Satz II.8.10].

(d) See [13, page 143].

Now, we turn to the existence of small self-centralizing subgroups of Sylow `-subgroups
of GLn(q) for ` - q.
The following fact about self-centralizing subgroups will also be helpful in the next
chapter. We have not been able to find it in the existing literature.

Proposition 2.5.8. Let G be a finite `-group, let H be a subgroup of G, and let V be
a self-centralizing subgroup of H. Then there exists a self-centralizing subgroup Ṽ of G
containing V such that |Ṽ : V | ≤ |G : H| and such that Ṽ is abelian if V is.

Proof. As there exist subgroups H1, . . . , Hr of G such that H = H1 ≤ H2 ≤ · · · ≤ Hr = G
and |Hi+1 : Hi| = ` for all i = 1, . . . , r− 1, it suffices to prove the claim in the case where
|G : H| = `. In particular, H is normal in G.
We may assume that V is not self-centralizing in G. Then

CH(V) ⊆ CG(V) ∩ V 6= CG(V),

by assumption.
We choose an element g ∈ CG(V) \ H. As the normal subgroup H has index ` in G, it
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follows that g` ∈ H, so g` ∈ H ∩ CG(V) = CH(V) ⊆ V.
Now, we consider the subgroup

Ṽ := 〈g〉V = V 〈g〉

of G, and let x ∈ CG(Ṽ) ⊆ CG(V). Clearly, if V is abelian, then so is Ṽ. The set{
1, g, . . . , g`−1

}
is a set of representatives for G/H, so there exists some i ∈ {0, . . . , `− 1}

such that x ∈ giH. Thus, g`−ix ∈ H. But also g`−ix ∈ CG(V), so it follows that
g`−ix ∈ CG(V) ∩H = CH(V) ⊆ V, that is, x ∈ Ṽ.
Finally, we have

|Ṽ : V | =
| 〈g〉V |
|V |

=
| 〈g〉 ||V |

|V || 〈g〉 ∩ V |
=

| 〈g〉 |
|
{
1, g`, g2`, . . . , g(ord(g)/`−1)`

}
|
=

ord(g)

ord(g)/`
= `

since g` ∈ V.

We need the following lemma:

Lemma 2.5.9. Let G be a finite group, and let V ≤ G be a self-centralizing subgroup of
G. If H ≤ Sym(n) for some n ∈ N>0, then Vn is self-centralizing in G oH.

Proof. Let v ∈ V \ {1} be arbitrary, and let x = (x1, . . . , xn;σ) ∈ CGoH(V
n). Then, for all

i = 1, . . . , n, it follows that

(1, . . . , 1, v↑
i

, 1, . . . , 1; 1) = x(1, . . . , 1, v↑
i

, 1, . . . , 1; 1)x−1 = (1, . . . , 1, xσ(i)vx
−1
σ(i)↑

σ(i)

, 1, . . . , 1; 1).

Thus, σ = 1 and xi ∈ CG(v) for all i. As v was chosen arbitrarily, this implies
xi ∈ CG(V) ⊆ V for all i.

Now, we can prove our main result of this section. It turns out that the order of
a Sylow `-subgroup of GLn(q) for ` - q can always be bounded in terms of an arbitrary
self-centralizing subgroup, except in the case ` = 2 and q ≡ 3 mod 4, where this is not
possible, as q can be arbitrarily large for fixed n:

Theorem 2.5.10. Let ` ∈ P, let n ∈ N>0, let q be a prime power such that ` - q, and
let G ∈ Syl`(GLn(q)).

(a) Suppose that ` ∈ P>2 or q ≡ 1 mod 4. If V is a self-centralizing subgroup of G,
then

|G| ≤ |V ||V |
|V | log`(|V |)(|V ||V | log`(|V |))!.

(b) If ` = 2 and q ≡ 3 mod 4, then G has an abelian self-centralizing subgroup of order
2n.
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Proof.

(a) Let e := ord(q) in F×` . Part (c) of Proposition 2.3.6 and Theorem 2.1.5 imply

|(qe − 1)`| ≤ |Z(G)| ≤ |CG(V)| ≤ |V |

and `n ≤ |V ||V |
|V |

. Thus, we obtain

|G| = (qe − 1)
bne c
` (bne c!)` ≤ (q− 1)n` (n!)` ≤ |V ||V |

|V | log`(|V |)(|V ||V | log`(|V |))!.

(b) First, let n be even. By Proposition 2.5.6 and Theorem 2.5.7, G is isomorphic to
G̃ oS, where G̃ is semidihedral of order 4(q+1)2 and where S ∈ Syl2(Sym(n2 )). Now,

G̃ has a self-centralizing subgroup isomorphic to C22 by Proposition 2.1.8. Therefore,
the claim follows from Lemma 2.5.9.
Now, let n be odd. If n = 1, then the claim is certainly true. If n > 1, then by part
(b) of Proposition 2.5.6 G isomorphic to P× C2, where P ∈ Syl2(GLn−1(q)). Thus,
P has an abelian self-centralizing subgroup V of order 2n−1. Now, Proposition 2.5.8
implies that G has an abelian self-centralizing subgroup Ṽ containing V × {1} such
that |Ṽ : (V × {1})| ≤ 2. As {1} × C2 ⊆ CG(V × {1}) \ (V × {1}), it follows that
|Ṽ : (V × {1})| = 2, so

|Ṽ | = 2 · 2n−1 = 2n.

Before we conclude this section, we consider the case ` | q. First, we have the
following easy observation:

Observation 2.5.11. Let ` ∈ P, let n ∈ N>0, and let q be a prime power such that
` - q − 1. Then the Sylow `-subgroups of GLn(q), SLn(q), PGLn(q), and PSLn(q) are
pairwise isomorphic.

Proof. This follows immediately from |GLn(q) : SLn(q)| = q − 1 = |Z(GLn(q))| and
|Z(SLn(q))| = gcd(n, q− 1) | q− 1.

Observation 2.5.12. Let ` ∈ P, let n ∈ N>0, and let q be a power of `.

(a) The Sylow `-subgroups of SLn(q), GLn(q), PGLn(q), and PSLn(q) are isomorphic
to the group UTn(q) of upper unitriangular matrices.

(b) The center of UTn(q) is the subgroup of those upper unitriangular matrices such
that the only non-zero off-diagonal entry has position (1, n).

(c) If V is a self-centralizing subgroup of UTn(q), then q ≤ |V |.
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Proof.

(a) It is obvious that UTn(q) is a subgroup of SLn(q) of order qn(n−1)/2 = |SLn(q)|`.
As q is a power of `, the claim follows from Observation 2.5.11.

(b) This is well known and easily verified.

(c) By part (b) and by Observation 2.1.2 we have q = |Z(UTn(q))| ≤ |CUTn(q)(V)| ≤
|V |.

Here, the question arises whether the order of a self-centralizing subgroup of UTn(q)
always depends on n. We will leave this question open, as it seems to be very difficult.

2.6 On Sylow subgroups of symplectic, unitary, and
orthogonal groups

Following the ideas of [59], we describe the Sylow `-subgroups of Sp2n(q), GUn(q), and
GOε

n(q) (for ε ∈ {−1, 1} whenever n is even) for 2 6= ` - q and also find them as Sylow
subgroups of general linear groups. Except for the unitary case, we immediately obtain
the corresponding Sylow subgroups for PSp2n(q) and the other orthogonal groups.
In the unitary case, we will also find the Sylow subgroups of SUn(q), PGUn(q), and
PSUn(q) as Sylow subgroups of certain general linear groups, special linear groups,
and projective (special) linear groups for odd `, results that do not seem to exist in
the literature. Our main results in this section are Theorem 2.6.7 and Corollary 2.6.10
about the existence of small self-centralizing subgroups of Sylow subgroups of classical
groups. Thus, after this section, it remains to consider the Sylow subgroups of SLn(q),
PGLn(q), and PSLn(q), which will then be done in Section 2.7.

We start with symplectic and orthogonal groups. The symplectic case is very
easy:

Proposition 2.6.1. Let ` ∈ P>2, let n ∈ N>0, let q be a prime power such that ` - q,
and let e := ord(q) in F×` .

(a) Let e be even. Then

|PSp2n(q)|` = |Sp2n(q)|` = |GL2n(q)|` = |GL2n+1(q)|`.

In particular, the Sylow `-subgroups of PSp2n(q), Sp2n(q), GL2n(q), and GL2n+1(q)
are pairwise isomorphic.

(b) If e is odd, then the Sylow `-subgroups of PSp2n(q), Sp2n(q), and GLn(q) are
pairwise isomorphic.
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Proof. As ` is odd, it follows from the order formulae of PSp2n(q) and Sp2n(q) that the
Sylow `-subgroups of these groups are pairwise isomorphic.

(a) Since e is even, ` does not divide qm − 1 for odd m. Thus, the claim follows
immediately from the order formulae for these groups because Sp2n(q) ⊆ GL2n(q).

(b) If e is odd, then ` divides qm − 1 if and only if ` divides q2m − 1. Thus, it follows
from the order formulae that the Sylow `-subgroups of PSp2n(q), Sp2n(q), and
GLn(q) have the same order. Moreover,

GLn(q) ↪→ {A ∈ GL2n(q) : At
(

1n
−1n

)
A =

(
1n

−1n

)}
: A 7→ (

A 0

0 At−1

)
is a group monomorphism, and the group on the right-hand side is isomorphic to
Sp2n(q) by Theorem 1.6.10.

As in Section 1.6, we only consider odd q in the orthogonal case:

Proposition 2.6.2. Let ` ∈ P>2, let n ∈ N>0, let q be an odd prime power such that
` - q, and let e := ord(q) in F×` .

(a) Let e be even. Then |Spin2n+1(q)|` = |Ω2n+1(q)|` = |PGO2n+1(q)|` =
|SO2n+1(q)|` = |GO2n+1(q)|` = |GL2n+1(q)|` = |GL2n(q)|`. In particular, the
Sylow `-subgroups of Spin2n+1(q), Ω2n+1(q), PGO2n+1(q), SO2n+1(q), GO2n+1(q),
GL2n+1(q), and GL2n(q) are pairwise isomorphic.

(b) If e is odd, then the Sylow `-subgroups of Spin2n+1(q), Ω2n+1(q), PGO2n+1(q),
SO2n+1(q), GO2n+1(q), and GLn(q) are pairwise isomorphic.

(c) Let ε ∈ {±1}. The Sylow `-subgroups of Spinε2n(q), Ω
ε
2n(q), PΩε2n(q), PGOε

2n(q),
SOε

2n(q), PSOε
2n(q), and GOε

2n(q) are pairwise isomorphic. Moreover, they are
isomorphic to the Sylow `-subgroups of GO2n−1(q) or to the Sylow `-subgroups of
GO2n+1(q).

Proof. As ` is odd, it is clear that the Sylow `-subgroups of Spin2n+1(q), Ω2n+1(q),
PGO2n+1(q), SO2n+1(q), GO2n+1(q) are pairwise isomorphic, and that the Sylow
`-subgroups of Spinε2n(q), Ω

ε
2n(q), PΩε2n(q), PGOε

2n(q), SOε
2n(q), PSOε

2n(q), and
GOε

2n(q) are pairwise isomorphic.

(a), (b) Here, the proof is the same as for Proposition 2.6.1, if we replace the group
monomorphism

GLn(q) ↪→ {A ∈ GL2n(q) : At
(

1n
−1n

)
A =

(
1n

−1n

)}
: A 7→ (

A 0

0 At−1

)
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by

GLn(q) ↪→ {
A ∈ GL2n+1(q) : At

(
1n

1
1n

)
A =

(
1n

1
1n

)}
:

A 7→
A 0 0

0 1 0

0 0 At−1

 .
By Theorem 1.6.13, the group on the right-hand side is isomorphic to GO2n+1(q).

(c) We fix some ε ∈ {±1}. By Theorem 1.6.14, we can choose an element c ∈ F×q such
that GOε

2n(q) is isomorphic to

G :=
{
A ∈ GL2n(q) : At diag(12n−1, c)A = diag(12n−1, c)

}
(this only depends on whether or not c is a square in Fq). Now, the map{

A ∈ GL2n−1(q) : At diag(12n−2, c)A = diag(12n−2, c)
}
↪→ G : A 7→ (

A 0
0 1

)
is a group monomorphism and the group on the left-hand side is isomorphic to
GO2n−1(q) by Theorem 1.6.13.
Moreover, the map

G ↪→ {A ∈ GL2n+1(q) : At diag(12n, c)A = diag(12n, c)
}
: A 7→ (

A 0
0 1

)
is a group monomorphism and the group on the right-hand side is isomorphic to
GO2n+1(q) by Theorem 1.6.13.
Finally, recall that

|GO2n+1(q)| = 2q
n2

n∏
i=1

(q2i − 1)

and

|GOε
2n(q)| = 2q

n(n−1)(qn − ε)

n−1∏
i=1

(q2i − 1).

If ` - (qn−ε), then it follows that the Sylow `-subgroups of GOε
2n(q) are isomorphic

to those of GO2n−1(q). If ` | (qn − ε), then the Sylow `-subgroups of GOε
2n(q) are

isomorphic to those of GO2n+1(q).

Now, we come to the unitary case.

Lemma 2.6.3. Let q be a prime power, and let m,n ∈ N.

(a) If G ≤ GUm(q) and H ≤ GUn(q), then G ×H ↪→ GUm+n(q) : (A,B) 7→ (
A 0
0 B

)
is

a group monomorphism.
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(b) Let G ≤ GUm(q), and let P ≤ Sym(n). Then

G o P ↪→ GUmn(q) : (A1, . . . , An;σ) 7→ diag(A1, . . . , An)PerMat(σ)

is a group monomorphism, where PerMat(σ) is the permutation matrix of σ, where
the entries 0 and 1 are replaced by the zero matrix and by 1m, respectively.

(c) There exists a group monomorphism GLbn/2c(q
2) ↪→ GUn(q).

Proof.

(a) This follows immediately from the description

GUn(q) ∼=
{
A ∈ GLn(q

2) : A
t
A = 1n

}
of Theorem 1.6.12.

(b) Again, use the description

GUn(q) ∼=
{
A ∈ GLn(q

2) : A
t
A = 1n

}
.

Let (A1, . . . , An;σ) ∈ G o P, and write X := diag(A1, . . . , An)PerMat(σ). Then

X
t
X = (diag(A1, . . . , An)PerMat(σ))tX

= PerMat(σ)t diag(A
t
1, . . . , A

t
n) diag(A1, . . . , An)PerMat(σ)

= 1mn.

Thus, the claim follows from part (b) of Lemma 2.5.1.

(c) We write m := bn2 c. By part (b) of Theorem 1.6.12, the group GU2m(q) is
isomorphic to

G :=
{
A ∈ GL2m(q

2) : A
t
(

0 1m
1m 0

)
A =

(
0 1m
1m 0

)}
.

The map

GLm(q
2)→ G : A 7→ (

A 0

0 At
−1

)
is a group monomorphism, and it follows from part (a) that there exists a group
monomorphism

G ∼= GU2m(q) ↪→ GUn(q).

Proposition 2.6.4. Let ` ∈ P>2, let n ∈ N>0, and let q be a prime power not divisible
by `. Let e := ord(q) in F×` , and let r := log`((q

e − 1)`). Then

|GUn(q)|` =


|GLn(q

2)|`, e ≡ 2 mod 4,

|GLn(q)|`, e ≡ 0 mod 4,

|GLbn/2c(q
2)|`, e odd.
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Proof. Recall from Theorem 1.6.12 that |GUn(q)| = qn(n−1)/2
∏n
j=1(q

j − (−1)j). Let

j ∈ {1, . . . , n} be such that ` | qj−(−1)j. First, let e be even. Then q2j = 1 in F×` implies
that e | 2j.
If e ≡ 0 mod 4, then this shows that j is even, so it follows that

|GUn(q)|` =
n∏
j=1

(qj − (−1)j)` =

n∏
j=1

(qj − 1)` = |GLn(q)|`

in this case.

Now, let e ≡ 2 mod 4. Then t := 2j
e is odd, since otherwise qj = (qe)

t
2 = 1 6= −1 in

F×` would imply that ` - qj + 1 = qj − (−1)j. It follows that j is odd, too, and that
(qj − (−1)j)` = (qj + 1)` = (qj − 1)`(q

j + 1)` = (q2j − 1)`. Therefore,

|GUn(q)|` =
n∏
j=1

(qj − (−1)j)` =

n∏
j=1

(q2j − 1)` = |GLn(q
2)|`.

Finally, let e be odd. Then j must be even since otherwise we would have 1 = qje =
(qj)e = (−1)e = −1 in F×` . Thus,

|GUn(q)|` =
n∏
j=1

(qj − (−1)j)` =

bn/2c∏
i=1

(q2i − 1)` = |GLbn/2c(q
2)|`.

Proposition 2.6.5. Let n ∈ N>0, and let q be a prime power. Let ` ∈ P>2 be such that
` - q. Moreover, let e := ord(q) in F×` .

(a) If e ≡ 2 mod 4, then Syl`(GUn(q)) ⊆ Syl`(GLn(q
2)), Syl`(SUn(q)) ⊆

Syl`(SLn(q
2)), the Sylow `-subgroups of PGUn(q) are isomorphic to those of

PGLn(q
2), and the Sylow `-subgroups of PSUn(q) are isomorphic to those of

PSLn(q
2).

(b) If e ≡ 0 mod 4, then the Sylow `-subgroups of GUn(q) are isomorphic to the Sylow
`-subgroups of GLn(q).

(c) If e is odd, then the Sylow `-subgroups of GUn(q) are isomorphic to the Sylow
`-subgroups of GLbn/2c(q

2).

Proof.

(a) If e ≡ 2 mod 4, then the inclusion Syl`(GUn(q)) ⊆ Syl`(GLn(q
2)) is clear by

Proposition 2.6.4. As e 6= 1, we have ` - q− 1. This implies

|GLn(q
2) : SLn(q

2)|` = (q2−1)` = (q+1)`(q−1)` = (q+1)` = |GUn(q) : SUn(q)|`,
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so it follows that Syl`(SUn(q)) ⊆ Syl`(SLn(q
2)) as we have SUn(q) ⊆ SLn(q

2).
Moreover, it follows from Z(GUn(q)) = Z(GLn(q

2)) ∩ GUn(q) in part (d) of
Theorem 1.6.12 that the maps

PGUn(q)→ PGLn(q
2) : AZ(GUn(q)) 7→ AZ(GLn(q

2))

and

PSUn(q)→ PSLn(q
2) : AZ(SUn(q)) 7→ AZ(SLn(q

2))

are (well defined and) group monomorphisms. Thus, the claim follows from

|PGUn(q)|` =
|GUn(q)|`
(q+ 1)`

=
|GLn(q

2)|`
(q+ 1)`

=
|GLn(q

2)|`
(q2 − 1)`

= |PGLn(q
2)|`

and

|PSUn(q)|` =
|GUn(q)|`

(q+ 1)` gcd(n, q+ 1)`
=

|GLn(q
2)|`

(q2 − 1)` gcd(n, q2 − 1)`
= |PSLn(q

2)|`.

(b) Now, let e ≡ 0 mod 4. By part (c) of Lemma 2.5.1 and part (d) of Lemma 2.6.3,

GUe(q) has an element of order (q2)
e
2 − 1 = qe − 1. Now parts (a) and (b) of

Lemma 2.6.3 and Proposition 2.6.4 imply that the Sylow `-subgroups of GUn(q)
are isomorphic to C(qe−1)` oS, where S ∈ Syl`(Sym(bne c)). By part (a) of Proposition
2.5.6, this group is isomorphic to a Sylow `-subgroup of GLn(q).

(c) Finally, if e is odd, then the claim follows from part (c) of Lemma 2.6.3 and
Proposition 2.6.4.

We obtain the following corollary:

Corollary 2.6.6. Let n ∈ N>0, let q be a prime power, and let ` ∈ P>2 be such that
` - q.

(a) There exists some H ∈
{

GLn(q
2),GLn(q),GLbn/2c(q

2)
}

such that the Sylow
`-subgroups of GUn(q) are isomorphic to the Sylow `-subgroups of H.

(b) If ` - q+1, then the Sylow `-subgroups of GUn(q), SUn(q), PGUn(q), and PSUn(q)
are pairwise isomorphic.

(c) If ` | q + 1, then the Sylow `-subgroups of SUn(q), PGUn(q), and PSUn(q) are
isomorphic to those of SLn(q

2), PGLn(q
2), and PSLn(q

2), respectively.

Proof.

(a) This is clear by Proposition 2.6.5.
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(b) This follows immediately from |GUn(q) : SUn(q)| = q + 1 = |Z(GUn(q))| and
|Z(SUn(q))| = gcd(n, q+ 1) | q+ 1.

(c) If ` | q + 1, then ` > 2 implies that the order of q in F×` is 2. Thus, the claim
follows immediately from part (a) of Proposition 2.6.5.

Now, we come to the main result of this section:

Theorem 2.6.7. Let n ∈ N>0, let q be a prime power, and let ` ∈ P>2 be such
that ` - q. Let ε ∈ {±1} and let G be a Sylow `-subgroup of one of the classical
groups GLn(q), Sp2n(q), PSp2n(q), Spin2n+1(q), Ω2n+1(q), PGO2n+1(q), SO2n+1(q),
GO2n+1(q), Spinε2n(q), Ω

ε
2n(q), PΩε2n(q), PGOε

2n(q), SOε
2n(q), PSOε

2n(q), GOε
2n(q), or

GUn(q). Then |G| can be bounded in terms of any self-centralizing subgroup of G.

Proof. We have seen in this section that G is isomorphic to a Sylow `-subgroup of some
general linear group GLñ(q̃) such that ` - q̃. Therefore, the claim follows immediately
from part (a) of Theorem 2.5.10.

For the remainder of this section, we consider the Sylow 2-subgroups for unitary
groups and study the existence of small self-centralizing subgroups in this case, too.
This is done similarly to the case of general linear groups in the previous section.

Proposition 2.6.8. Let n ∈ N>0, and let q be an odd prime power.

(a) If q ≡ 3 mod 4, then |GUn(q)|2 = (q + 1)n2 (n!)2, and the Sylow 2-subgroups of
GUn(q) are isomorphic to C(q+1)2 o S, where S ∈ Syl`(Sym(n)).

(b) For q ≡ 1 mod 4 and even n we have |GUn(q)|2 = 2
n(q− 1)

n/2
2 ((n/2)!)2, and the

Sylow 2-subgroups of GUn(q) are isomorphic to G oS, where G ∈ Syl2(GU2(q)) and
S ∈ Syl2(Sym(n2 )).

(c) For q ≡ 1 mod 4 and odd n we have |GUn(q)|2 = 2|GUn−1(q)|2, and the Sylow
2-subgroups of GUn(q) are isomorphic to P × C2, where P ∈ Syl2(GUn−1(q)).

Proof.

(a) We have

|GUn(q)|2 =

n∏
j=1

(qj − (−1)j)2 =

n∏
j=1

2-j

(qj + 1)2 ·
n∏

j=1

2|j

(qj − 1)2.

Now, the first claim follows from (qj + 1)2 = 1
2(q

2j − 1)2 and from Lemma 2.5.2.
Moreover, from the description

GUn(q) ∼=
{
A ∈ GLn(q

2) : A
t
A = 1n

}
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in Theorem 1.6.12 it follows that GU1(q) is cyclic of order q + 1. Therefore, part
(b) of Lemma 2.6.3 implies that the Sylow 2-subgroups of GUn(q) are isomorphic
to C(q+1)2 o S.

(b), (c) The orders of the Sylow 2-subgroups follow from Lemma 2.5.2 similarly as in
part (a). Now, their structure follows from parts (a) and (b) of Lemma 2.6.3.

It remains to determine the Sylow 2-subgroups of GU2(q) for q ≡ 1 mod 4. As
in the case of general linear groups, we also provide the Sylow 2-subgroups of special
and projective (special) unitary groups for later use. For the latter we also give proofs
for the reader’s convenience, since they seem to be hard to find in the literature.

Theorem 2.6.9. Let q be an odd prime power.

(a) If q ≡ 3 mod 4, then the Sylow 2-subgroups of GU2(q) are isomorphic to C(q+1)2 o
C2. Their order is 2(q+ 1)n2 .

(b) If q ≡ 1 mod 4, then the Sylow 2-subgroups of GU2(q) are semidihedral of order
4(q− 1)2.

(c) The Sylow 2-subgroups of PGU2(q) are isomorphic to those of PGL2(q) and, thus,
dihedral of order (q2 − 1)2.

(d) The Sylow 2-subgroups of SU2(q) are isomorphic to those of SL2(q) and, thus,
generalized quaternion of order (q2 − 1)2.

(e) The Sylow 2-subgroups of PSU2(q) are isomorphic to those of PSL2(q) and, thus,
dihedral of order 1

2(q
2 − 1)2 or Klein four-groups.

Proof.

(a), (b) See [13, page 143]. Alternatively, part (a) is a special case of part (a) of
Proposition 2.6.8.

(c), (d), (e) Even the groups themselves are isomorphic: PGU2(q) ∼= PGL2(q),
SU2(q) ∼= SL2(q), and PSU2(q) ∼= PSL2(q), see, for example, [49]. We give an
alternative proof for the assertions of the theorem. For a finite group G, we denote
by O2(G) the largest normal 2-subgroup of G.
We easily obtain |PGU2(q)|2 = |PGL2(q)|2, |SU2(q)|2 = |SL2(q)2, and
|PSU2(q)|2 = |PSL2(q)|2 from the order formulae in Theorem 1.6.12.
First, let q ≡ 3 mod 4. Let

T := PerMat(1, 2) =

(
0 1

1 0

)
∈ GU2(q).
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Then
G := {diag(a, b) : a, b ∈ O2(GU1(q))}o 〈T〉

is a Sylow 2-subgroup of GU2(q) by part (a) using the description

GUn(q) ∼=
{
A ∈ GLn(q

2) : A
t
A = 1n

}
in Theorem 1.6.12. (In fact, this is the Sylow 2-subgroup from [13, page 143]).
Writing Z := O2(GU1(q)) · 12, we have G/Z ∈ Syl2(PGU2(q)). Let α ∈ GU1(q)
have order (q + 1)2. Then X := diag(α, 1) satisfies ord(XZ) = (q + 1)2 and
XTXT = diag(α,α) ∈ Z, so TXTZ = (XZ)−1 in G/Z. As T has order 2 and G/Z
has order |PGU2(q)|2 = (q2 − 1)2 = 2(q + 1)2, it follows that G/Z is dihedral.
Now, let us write A := diag(α,α−1) and X :=

(
0 −1
1 0

)
. Obviously, the group

G := 〈A,X〉 is contained in SU2(q) and we have XAX−1 = A−1. Thus, G = 〈A〉 〈X〉
with 〈A〉 ∩ 〈X〉 = {±12}. It follows that G is generalized quaternion of order
2(q + 1)2 = |SU2(q)|2. Moreover, G/Z is a Sylow 2-subgroup of PSU2(q), where
Z := O2(GU1(q)) · 12 ∩ SL2(q) = {12,−12}. As AZ has order 1

2 ord(α) = 1
2(q+ 1)2

and XZ has order 2 in G/Z, it follows from XAX−1 = A−1 that G/Z is a dihedral
group of order (q+ 1)2 or a Klein four-group.

Now, let q ≡ 1 mod 4. We use the description

GU2(q) ∼=
{
A ∈ GL2(q

2) : A
(
0 1
1 0

)
A

t
=
(
0 1
1 0

)}
in Theorem 1.6.12. The Sylow 2-subgroup for GU2(q) in part (b) from [13, page
143] is given by 〈A,X〉, where A := diag(α,α−q) and X :=

(
0 1
1 0

)
, and where α ∈ F×

q2

has order (q2 − 1)2 = 2(q − 1)2. We have αq = −α and XAX = diag(α−q, α) =
A(q−1)2−1. Now, we write Z := O2(GU1(q)) · 1n. Then 〈A,X〉 /Z ∈ Syl2(PGU2(q))
by Theorem 1.6.12. As ord(AZ) = (q − 1)2 and ord(XZ) = 2 in 〈A,X〉 /Z, and
as AXAX = diag(α1−q, α1−q) ∈ Z, it follows that XAXZ = (AZ)−1 in 〈A,X〉 /Z.
Therefore, 〈A,X〉 /Z is dihedral. Moreover, as det(A2) = 1 and det(AX) = 1 (this
holds since αq−1 = (−1)(q−1)2 ′ = −1), we have that

〈
A2, AX

〉
must be a generalized

quaternion group as the generators satisfy the relation from Remark 2.1.7 and the
group has the correct order. Now, for PSU2(q), we easily obtain a dihedral group
or a Klein four-group with the same argument as for PGU2(q).

Finally, we obtain the following result for self-centralizing subgroups of Sylow
2-subgroups for general unitary groups:

Corollary 2.6.10. Let n ∈ N>0, let q be an odd prime power, and let G ∈ Syl2(GUn(q)).

(a) If q ≡ 3 mod 4 and if V is a self-centralizing subgroup of G, then

|G| ≤ |V ||V |
|V | log2(|V |)(|V ||V | log2(|V |))!.
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(b) If q ≡ 1 mod 4, then G has an abelian self-centralizing subgroup of order 2n.

Proof.

(a) Part (c) of Proposition 2.3.6 and Theorem 2.1.5 show that |(q + 1)2| ≤ |Z(G)| ≤
|CG(V)| ≤ |V | and 2n ≤ |V ||V |

|V |
. Hence, in this case the claim follows from |G| =

(q+ 1)n2 (n!)2.

(b) Here, the proof is analogous to the proof of part (b) of Theorem 2.5.10.

2.7 On Sylow subgroups of special and projective (special)
linear groups

Now, we turn to Sylow `-subgroups of SLn(q), PGLn(q), and PSLn(q) for ` - q. First,
we reduce to the case ` | gcd(n, q − 1). Then, we define particular Sylow `-subgroups
that we can work with.
Calculations involving the exponents and the center of the groups as well as particular
elementary abelian normal subgroups will finally lead to the following result (Theorem
2.7.14): If we are not in the case ` = 2 and q ≡ 3 mod 4, then small self-centralizing
subgroups of the considered Sylow `-subgroups exist if and only if ` | q− 1 and n > 1 is
a power of `. The case ` = 2 and q ≡ 3 mod 4 will not be considered as it seems to be
much more complicated. We did not find any of the statements and proofs of this section
in the literature.

2.7.1 Reduction to the case ` | gcd(n, q− 1)

Proposition 2.7.1. Let ` ∈ P, let n ∈ N>0, and let q be a prime power such that ` | q−1
and ` - n. Then the Sylow `-subgroups of SLn(q), PGLn(q), and PSLn(q) are isomorphic
to those of GLn−1(q).

Proof. It follows from |Z(SLn(q))|` = gcd(n, q − 1)` = 1 that the Sylow `-subgroups of
PSLn(q) are isomorphic to those of SLn(q).

Moreover, if r ∈ N>0 satisfies `r = (q − 1)`, then |SLn(q)|` =
|GLn(q)|`

`r = |PGLn(q)|`.
Thus, if ` > 2, or ` = 2 and q ≡ 1 mod 4, then

|GLn(q)|`
`r

= `r(n−1)(n!)` = n`|GLn−1(q)|` = |GLn−1(q)|`

by part (a) of Corollary 2.5.3. If ` = 2 and q ≡ 3 mod 4, then part (c) of Corollary 2.5.3
shows

|GLn(q)|2
2r

=
1

2
|GLn(q)|2 = |GLn−1(q)|2.

Moreover,

GLn−1(q) ↪→ SLn(q) : A 7→ (
A

det(A)−1

)
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and

GLn−1(q) ↪→ PGLn(q) : A 7→ (
A
1

)
Z(GLn(q))

are group monomorphisms.

Together with Observation 2.5.11, Proposition 2.7.1 now implies that in order to
study Sylow `-subgroups of SLn(q), PGLn(q), and PSLn(q) for ` - q, it suffices to
consider the case ` | gcd(n, q− 1).

2.7.2 The setting

We will use the following objects. Here and in the remainder of this thesis, O`(G)
denotes the largest normal `-subgroup of the finite group G. Thus, if G is abelian, then
O`(G) is the unique Sylow `-subgroup of G.

For the remainder of Section 2.7, we fix a prime ` ∈ P, a positive integer n ∈ N>0, and
a prime power q such that ` | gcd(n, q− 1), and such that q ≡ 1 mod 4 if ` = 2.

Let n = a1` + · · · + as`
s be the `-adic expansion of n, and let Q = a1 + · · · + as

be its `-adic digit sum.

Let r ∈ N>0 such that `r = (q − 1)`, and let α ∈ F×q be an element of order `r.
Thus, α generates O`(F

×
q ).

Moreover, we write

T :=
{

diag(d1, . . . , dn) : d1, . . . , dn ∈ O`(F×q )
}
∼= Cn`r

and

T̃ := T ∩ SLn(q)

=
{

diag(d1, . . . , dn−1, (d1 · · ·dn−1)−1) : d1, . . . , dn−1 ∈ O`(F×q )
}

∼= Cn−1`r ,

and we denote by S the particular Sylow `-subgroup of Sym(n) from Corollary 2.3.4.

Finally, we write
Z := O`(Z(GLn(q))) = O`(F

×
q ) · 1n ∼= C`r ,

δ := diag(−1, 1, . . . , 1) ∈ Fn×nq ,

and
A :=

{
diag(1n/`, c · 1n/`, c2 · 1n/`, . . . , c`−1 · 1n/`) : c ∈

〈
α`

r−1
〉}

∼= C`.
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2.7.3 The groups

Proposition 2.7.2. The group

G := 〈T,PerMat(S)〉 = T o PerMat(S) ∼= O`(F
×
q ) o S

is a Sylow `-subgroup of MonGLn(q) and, thus, also of GLn(q). In particular, |G| =
`rn(n!)`. Its center has order |Z(G)| = `rQ. In fact,

Z(G) = CT (PerMat(S)),

that is, Z(G) is the set of all diag(d1, . . . , dn) ∈ T such that for all i = 1, . . . , s with
ai > 0 and all j = 0, . . . , ai − 1 we have

da1`+···+ai−1`i−1+j`i+1 = da1`+···+ai−1`i−1+j`i+2 = · · · = da1`+···+ai−1`i−1+(j+1)`i .

Moreover, if D ∈ T and P ∈ PerMat(S) are such that DP ∈ CG(PerMat(S)), then
D ∈ Z(G) and

P ∈ Z(PerMat(S)) ⊆ PerMat(
〈
(1, . . . , `), (`+ 1, . . . , 2`), . . . , ((n` − 1)`+ 1 . . . , n)

〉
).

Proof. It follows from Proposition 2.4.2 and Corollary 2.5.4 that G = 〈T,PerMat(S)〉 =
T o PerMat(S) is a Sylow `-subgroup of MonGLn(q) and GLn(q). The description
of CT (PerMat(S)) shows that CT (PerMat(S)) ∼= CQ`r , and it is clear that this group is
contained in Z(G). As |Z(G)| = `rQ by Proposition 2.2.5 and Proposition 2.3.6, it follows
that Z(G) = CT (PerMat(S)).
Now, let D ∈ T and P ∈ PerMat(S) such that DP ∈ CG(PerMat(S)). Then

(RDR−1)(RPR−1) = RDPR−1 = DP

for all R ∈ PerMat(S), and from the uniqueness of the decomposition of a monomial
matrix as a product of a diagonal matrix and a permutation matrix, it follows that
RDR−1 = D and RPR−1 = P. Thus, D ∈ CT (PerMat(S)) = Z(G) and P ∈ Z(PerMat(S)).
Finally, the inclusion

Z(PerMat(S)) ⊆ PerMat(
〈
(1, . . . , `), (`+ 1, . . . , 2`), . . . , ((n` − 1)`+ 1 . . . , n)

〉
)

follows from Proposition 2.3.3 and Corollary 2.3.4.

Proposition 2.7.3. Let G be the group from Proposition 2.7.2. The intersection G̃ :=
G ∩ SLn(q) is a Sylow `-subgroup of SLn(q). In particular, |G̃| = `r(n−1)(n!)`. Moreover,

G̃ =

{
T̃ o PerMat(S), ` > 2,

(T̃ o PerMat(S ∩Alt(n))) t (T̃ · δ · PerMat(S \ Alt(n))), ` = 2.
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Proof. As SLn(q) is a normal subgroup of GLn(q), it follows from Proposition 2.7.2 that
G ∩ SLn(q) ∈ Syl`(SLn(q)).
If ` is odd, then every element of S has odd order and lies therefore in Alt(n). Since the
determinant of a permutation matrix is the sign of the corresponding permutation, this
implies that PerMat(S) ⊆ SLn(q). Therefore, a monomial matrix DP ∈ G with D ∈ T
and P ∈ PerMat(S) belongs to G ∩ SLn(q) if and only if det(D) = 1.
Now, let ` = 2. Since G = ToPerMat(S), it follows that the union in the claim is disjoint.
Moreover, a monomial matrix DP ∈ G lies in SLn(q) if and only if det(D) = det(P) ∈
{±1}. If D ∈ T with det(D) = −1 is given, then clearly D = (Dδ)δ ∈ T̃ · δ. Thus, we have
T̃ · δ = {D ∈ T : det(D) = −1}, and the claim follows.

For the remainder of Section 2.7, let G be the group from Proposition 2.7.2, and let G̃
be the group from Proposition 2.7.3.

Proposition 2.7.4. The Sylow `-subgroups of PGLn(q) are isomorphic to G/Z, and the
Sylow `-subgroups of PSLn(q) are isomorphic to G̃Z/Z ≤ G/Z. In particular, |G/Z| =

|G̃| = `r(n−1)(n!)` and |G̃Z/Z| = `r(n−1)(n!)`
gcd(n,q−1)`

.

Proof. From Proposition 2.7.2 it follows that

G/Z = G/(G ∩ Z(GLn(q))) ∼= (GZ(GLn(q)))/Z(GLn(q)) ∈ Syl`(PGLn(q)).

Moreover, from Z(SLn(q)) = Z(GLn(q)) ∩ SLn(q) it follows that

G̃ ∩ Z(SLn(q)) = Z(GLn(q)) ∩ G̃ = Z ∩ G̃,

implying

G̃Z/Z ∼= G̃/(G̃ ∩ Z) = G̃/(G̃ ∩ Z(SLn(q))) ∼= (G̃Z(SLn(q)))/Z(SLn(q)).

By Proposition 2.7.3, (G̃Z(SLn(q)))/Z(SLn(q)) is a Sylow `-subgroup of PSLn(q).

Let us recall the Sylow `-subgroups that we found in this subsection:

• G = T o PerMat(S) is a Sylow `-subgroup of MonGLn(q) and of GLn(q).

• G̃ := G ∩ SLn(q) is a Sylow `-subgroup of SLn(q).

• The Sylow `-subgroups of PGLn(q) are isomorphic to G/Z.

• The Sylow `-subgroups of PSLn(q) are isomorphic to G̃Z/Z ≤ G/Z.

In what follows, we will study the structure of the groups G̃, G/Z, and G̃Z/Z.
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2.7.4 Exponents and elementary abelian normal subgroups

Proposition 2.7.5.

(a) We have Exp(G̃) ≥ `r and Exp(G/Z) ≥ `r. If n = `, then Exp(G̃) = `r and
Exp(G/Z) = `r.

(b) Let (`, n, r) 6= (2, 2, 2). Then also Exp(G̃Z/Z) ≥ `r, and for n = ` also
Exp(G̃Z/Z) = `r.

(c) If (`, n, r) = (2, 2, 2), then Exp(G̃Z/Z) = 2.

Proof.

(a) It is clear that the exponent of T̃ ∼= Cn−1`r is `r. Considering the element
diag(α, 1, . . . , 1)Z ∈ T/Z, we obtain that T/Z has exponent `r, too, so it is clear
that each of Exp(G̃), Exp(G/Z) is at least `r. Next, let n = ` = 2. Then the order
of G̃ and G/Z is 2r+1. As

diag(α2
r−2

, α−2r−2

),
(
0 −1
1 0

)
,
(
0 1
−1 0

)
∈ G̃

are pairwise different elements of order 4, and as

diag(α2
r−2

, α−2r−2

)Z,
(
0 −1
1 0

)
Z ∈ G/Z

are different elements of order 2, the groups G̃ and G/Z cannot be cyclic, so it
follows that their exponents are at most 2r.

Now, let n = ` > 2.
To show that Exp(G̃) = `r, it suffices to show that every X ∈ G \ T has order
`. Write X = DP with D = diag(d1, . . . , d`) ∈ T̃ and P ∈ PerMat(S). Then
P = PerMat(1, . . . , `)i for some i ∈ {1, . . . , `− 1}, and it follows that

X` = (DP) · · · (DP)
= (DP)(DP−1P2)(DP−2P3) · · · (DP−(`−1)P`)

= D(PDP−1)(P2DP−2) · · · (P`−1DP−(`−1))P`

= diag(d1 · · ·d`, . . . , d1 · · ·d`)P`

= 1`.

Now, together with the first part, Exp(G̃) = `r implies Exp(G̃Z/Z) = `r.
Finally, consider G/Z. Again, it suffices to show that for every X ∈ G such that
XZ /∈ T/Z we have ord(XZ) = `. Writing X = DP as above, it follows that

X` = (DP) · · · (DP)
= (DP)(DP−1P2)(DP−2P3) · · · (DP−(`−1)P`)

= D(PDP−1)(P2DP−2) · · · (P`−1DP−(`−1))P`

= diag(d1 · · ·d`, . . . , d1 · · ·d`)P`

= (d1 · · ·d`)1` ∈ Z.
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Thus, X` ∈ Z.

(b) Considering the matrix diag(α,α−1, 1, . . . , 1)Z ∈ T/Z, it is clear that T̃Z/Z has
exponent `r. Therefore, Exp(G̃Z/Z) ≥ `r. Now, if n = `, then Exp(G̃Z/Z) = `r

follows from Exp(G̃) = `r in part (a).

(c) Let (`, n, r) = (2, 2, 2). Then G̃Z/Z has order 4, and it is not cyclic
since diag(α,α−1)Z and

(
0 −1
1 0

)
Z are two different elements of order 2. Thus,

Exp(G̃Z/Z) = 2.

Proposition 2.7.6. The groups Ω1(T), Ω1(T̃), Ω1(T)Z/Z, and Ω1(T̃)Z/Z are
elementary abelian normal subgroups of G, G̃, G/Z, and G̃Z/Z, respectively, with orders

|Ω1(T)| = `
n, |Ω1(T̃)| = |Ω1(T)Z/Z| = `

n−1, and |Ω1(T̃)Z/Z| = `
n−2.

Proof. As T is abelian, it is clear that Ω1(T), Ω1(T̃), Ω1(T)Z/Z ∼= Ω1(T)/(Ω1(T) ∩ Z),
and Ω1(T̃)Z/Z ∼= Ω1(T̃)/(Ω1(T̃) ∩ Z) are elementary abelian.
Moreover, T ∼= Cn`r , T̃

∼= Cn−1`r , and Z = O`(F
×
q ) · 1n imply the assertion about their

orders.
Finally, Ω1(T) is characteristic in T and T is normal in G, so Ω1(T) is normal in G, and
with the same argument Ω1(T̃) is normal in G̃. Now, Ω1(T)Z/Z and Ω1(T̃)Z/Z are also
normal in G/Z and G̃Z/Z, respectively.

We obtain the following result for the case `r | n:

Corollary 2.7.7. Let `r | n, let V be a finite group, and write cV := |V ||V | log`(|V |).

(a) If V is a self-centralizing subgroup of G̃ or of G/Z, then

|G̃| = |G/Z| ≤ (cV + 1)cV · (cV + 1)!.

(b) If V is a self-centralizing subgroup of G̃Z/Z, then

|G̃Z/Z| ≤ (cV + 2)cV · (cV + 2)!.

Proof.

(a) From Theorem 2.1.5 and Proposition 2.7.6 it follows that `n−1 ≤ |V ||V |
|V |

, so n ≤
cV + 1. Now, the claim follows from `r ≤ n and |G/Z| = |G̃| = `r(n−1)(n!)`.

(b) As in part (a), Theorem 2.1.5 and Proposition 2.7.6 imply `n−2 ≤ |V ||V |
|V |

, so
n ≤ cV + 2. The claim follows from `r ≤ n and

|G̃Z/Z| =
`r(n−1)(n!)`

gcd(n, q− 1)`
=
`r(n−1)(n!)`

`r
= `r(n−2)(n!)`.
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2.7.5 The centers

Lemma 2.7.8. Let P ∈ Z(PerMat(S)).

(a) If P ∈ CG(T̃), then P = 1n.

(b) Let (`, n, r) /∈ {(2, 2, 2), (3, 3, 1)}. If for all Y ∈ T̃ there exists some y ∈ O`(F×q )
such that Y = y(PYP−1), then P = 1n.

Proof. In the proof, we write

Yi := diag(1, . . . , 1, α↑
(i−1)`+1

, α−1↑
(i−1)`+2

, 1, . . . , 1)

for i ∈
{
1, . . . , n`

}
.

By Proposition 2.3.3 and Corollary 2.3.4, Z(PerMat(S)) is contained in the elementary
abelian group

〈
P1, . . . , Pn/`

〉
, where P1, . . . , Pn/` denote the permutation matrices of

(1, . . . , `), (`+ 1, . . . , 2`), . . . , ((n` − 1)`+ 1 . . . , n) ∈ S,

respectively. Being an elementary abelian `-group, the group
〈
P1, . . . , Pn/`

〉
is an

F`-vector space, and a basis is given by the minimal set of generators
{
P1, . . . , Pn/`

}
.

Therefore, in order to show that P = 1n, it suffices to show that in the F`-linear
combination of P in the basis P1, . . . , Pn/` no basis element Pi really occurs.

(a) As P commutes with Yi for all i ∈
{
1, . . . , n`

}
, it follows that no Pi can occur in P.

Therefore, P = 1n.

(b) First case: ` > 3.
For each i ∈

{
1, . . . , n`

}
let yi ∈ O`(F×q ) be such that Yi = yi(PYiP

−1). As
` ≥ 5, for each i there exists some ji ∈ {(i− 1)`+ 1, . . . , i`} such that the ji-th
diagonal entries of Yi and yi(PYiP

−1) are both 1n. This forces yi = 1. Thus,
no Pi can occur in P, so P = 1n.

Second case: ` ∈ {2, 3} and n > `.
We fix some i, j ∈

{
1, . . . , n`

}
with i < j, and consider the matrix

Y := diag(1, . . . , 1, α↑
(i−1)`+1

, 1, . . . , 1, α−1↑
(j−1)`+1

, 1, . . . , 1).

Let y ∈ O`(F×q ) be such that Y = y(PYP−1).
If ` = 3, then by comparing coefficients we obtain y = 1, so Pi and Pj do not
occur in P.
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If ` = 2 and Pi or Pj occur in P, then this forces α2 = 1, a contradiction to
q ≡ 1 mod 4.
Therefore, P = 1n in both cases.

Third case: n = ` = 2 and r > 2.
Let Y := Y1 = diag(α,α−1), and let y ∈ O2(F×q ) be such that Y = y(PYP−1).
If P 6= 12, then P = P1 = PerMat(1, 2), and by comparing coefficients we
obtain y = α2 = α−2. It follows that α4 = 1, so the order 2r of α divides 4.
As q ≡ 1 mod 4, this yields r = 2, contradiction.

Fourth case: n = ` = 3 and r > 1.
Again, consider the matrix Y := Y1 = diag(α,α−1, 1), and let y ∈ O3(F×q ) be

such that Y = y(PYP−1).
If P 6= 13, then P = P1 ∈ {PerMat(1, 2, 3),PerMat(1, 3, 2)}, and by comparing
coefficients we obtain α3 = 1, so r = 1. This contradicts the assumption r 6= 1.

Lemma 2.7.9. We have |Z ∩ SLn(q)| = min {`r, n`}.

Proof. If `r ≤ n`, then we have Z ⊆ SLn(q), and so |Z ∩ SLn(q)| = |Z| = `r.
Now, let `r > n`. Then αn = αn`·n` ′ = (αn` ′ )n` . As ord(α) = `r and n` ′ are coprime,
αn` ′ has order `r, too. Therefore, the image 〈αn〉 = 〈(αn` ′ )n`〉 = 〈αn`〉 of the determinant
homomorphism

Z→ F×q : αk · 1n 7→ αkn

has order `r

n`
. As the kernel of this homomorphism is Z ∩ SLn(q), it follows that

|Z ∩ SLn(q)| =
|Z|

`r/n`
= n`.

We continue with the structure and the order of the centers of our groups G̃,
G/Z, and G̃Z/Z:

Theorem 2.7.10.

(a) We have Z(G̃) = Z(G) ∩ SLn(q) with order

|Z(G̃)| = `r(Q−1) ·min {`r, n`} .

(b) Let H :=
{
D ∈ T : ∀ R ∈ PerMat(S) ∃ cR ∈ O`(F×q ) : D = cRRDR

−1
}

. Then H is
a subgroup of T containing Z, and we have

Z(G/Z) = H/Z and H =

{
Z(G), Q > 1,

Z(G)A, Q = 1.
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In particular,

|Z(G/Z)| =

{
`r(Q−1), Q > 1,

`, Q = 1.

(c) If (`, n, r) /∈ {(2, 2, 2), (3, 3, 1)}, then

Z(G̃Z/Z) = (H ∩ SLn(q))Z/Z ∼= Z(G/Z).

If (`, n, r) = (2, 2, 2), then G̃Z/Z is elementary abelian of order 4, and if (`, n, r) =
(3, 3, 1), then G̃Z/Z is elementary abelian of order 9.

Proof.

(a) The inclusion Z(G) ∩ SLn(q) ⊆ Z(G̃) is clear.
First, let ` > 2. Let D ∈ T̃ , and let P ∈ PerMat(S) be such that DP ∈ Z(G̃).
Then Proposition 2.7.2 implies D ∈ Z(G) ∩ SLn(q) and P ∈ Z(PerMat(S)). As
DP ∈ Z(G̃) ⊆ CG(T̃) and D ∈ CG(T̃), it follows that also P ∈ CG(T̃). Thus,
P ∈ Z(PerMat(S))∩CG(T̃) = {1n} by part (a) of Lemma 2.7.8, and this shows that

DP = D ∈ Z(G) ∩ SLn(q).

Therefore, Z(G) ∩ SLn(q) = Z(G̃) holds for ` > 2.
Now, let ` = 2. First, let D ∈ T̃ , and let P ∈ PerMat(S ∩ Alt(n)) be such that
DP ∈ Z(G̃). Let R ∈ PerMat(S ∩ Alt(n)) ⊆ G̃, and let U ∈ PerMat(S \ Alt(n)).
Then

(RDR−1)(RPR−1) = RDPR−1 = DP

shows that RDR−1 = D and RPR−1 = P. Moreover, δU ∈ G̃, and

δ(UDU−1)(UPU−1)δ = (δU)DP(δU)−1 = DP

implies δ(UDU−1)(UPU−1) = DPδ = D(PδP−1)P. It follows that

δ(UDU−1)(UPU−1) = DPδ = D(PδP−1)P,

so δ(UDU−1) = D(PδP−1) and UPU−1 = P. As R and U have been chosen
arbitrarily, P ∈ Z(PerMat(S)). As before, since DP ∈ Z(G̃) ⊆ CG(T̃) and
D ∈ CG(T̃), it follows that also P ∈ CG(T̃), so P ∈ Z(PerMat(S)) ∩ CG(T̃) = {1} by
part (a) of Lemma 2.7.8.
Now, δ(UDU−1) = Dδ implies UDU−1 = D since the diagonal matrices δ and D
commute. As R and U have been chosen arbitrarily, Proposition 2.7.2 implies

D ∈ CT (PerMat(S)) ∩ SLn(q) = Z(G) ∩ SLn(q).
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Next, suppose that there exist D ∈ T̃ and P ∈ PerMat(S \ Alt(n)) such that
DδP ∈ Z(G̃). Again, choose R ∈ PerMat(S ∩ Alt(n)) and U ∈ PerMat(S \ Alt(n)).
Then

(RDδR−1)(RPR−1) = RDδPR−1 = DδP

shows in particular that RPR−1 = P. Moreover,

δ(UDδU−1)(UPU−1)δ = (δU)DδP(δU)−1 = DδP

implies δ(UDδU−1)(UPU−1) = Dδ(PδP−1)P, so UPU−1 = P. Similar as
above, since DδP ∈ Z(G̃) ⊆ CG(T̃) and Dδ ∈ CG(T̃), also P ∈ CG(T̃), so
P ∈ Z(PerMat(S)) ∩ CG(T̃) = {1}. The latter is a contradiction to the choice of P.
This finishes the proof of Z(G) ∩ SLn(q) = Z(G̃).

Now, let m ∈ {1, . . . , s} be minimal such that am 6= 0, that is, `m = n`.
The image of the determinant homomorphism Z(G)→ O`(F

×
q ) is

〈
α`

m〉
. Thus, for

m ≥ r, we have Z(G) ⊆ SLn(q), so Z(G) = Z(G̃). If m < r, then
〈
α`

m〉
has order

`r−m, and the first Isomorphism Theorem and Proposition 2.7.2 imply

|Z(G̃)| =
|Z(G)|

`r−m
= `r(Q−1)+m = `r(Q−1) · n`.

(b) It is clear that Z = O`(F
×
q ) · 1n ⊆ H. Moreover, if D,E ∈ H and R ∈ PerMat(S)

are given and cR, dR ∈ O`(F×q ) satisfy D = cRRDR
−1 and E = dRRER

−1, then

DE = (cRRDR
−1)(dRRER

−1) = cRdRRDER
−1. Therefore, H is a subgroup of T

containing Z.

As G = T o PerMat(S) and T is abelian, it is obvious that H/Z ⊆ Z(G/Z).
Now, let D ∈ T and P ∈ PerMat(S) be such that DPZ ∈ Z(G/Z), and let
R ∈ PerMat(S). We write X := DP. Then

DPRP−1D−1R−1 = XRX−1R−1 ∈ Z

is a scalar matrix, say cR · 1n. It follows that PRP−1R−1 = cRD
−1RDR−1. As the

right-hand side of this equation is a diagonal matrix and the left-hand side is an
element of PerMat(S), it follows that both sides are 1n. Thus, D = cR(RDR

−1)
and PRP−1R−1 = 1. It remains to show that P = 1n. For i = 1, . . . , n consider the
matrix

Bi := diag(1, . . . , 1, α↑
i

, 1, . . . , 1).

For all i, the matrix PB−1
i P

−1 belongs to the abelian group T , so the matrix

BiPB
−1
i P

−1 = BiDPB
−1
i P

−1D−1 = BiXB
−1
i X

−1 ∈ Z
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is a scalar matrix, say bi · 1n. Then Bi = bi(PBiP
−1) for all i. Now, if n > 2, then

for each i there exists some ji ∈ {(i− 1)`+ 1, . . . , i`} such that the ji-th diagonal
entries of Bi and bi(PBiP

−1) are both 1. This forces bi = 1. Moreover, if n = 2,
then also ` = 2, and if P = PerMat(1, 2) then α2 = 1 contradicts q ≡ 1 mod 4.
Thus, bi = 1 for all i, and it follows that P must be the identity matrix. This
finishes the proof of the equality Z(G/Z) = H/Z.

Now, let i ∈ {1, . . . , s} be such that ai 6= 0. Let D ∈ H be given, say
D = diag(d1, . . . , dn).

First case: Q > 1.
Consider the part (P`i)+u of S, where u := a1`+ · · ·+ ai−1`i−1 + k`i for some
k ∈ {0, . . . , ai − 1}. Then (P`i)+u contains an element of order `i, say σ.
As D belongs to H, there exists some c ∈ (F×q )` such that

D = cPerMat(σ)DPerMat(σ)−1.

Since Q is greater than 1 and PerMat(σ) permutes only `i diagonal entries
of D, it follows that there exists some j ∈ {1, . . . , n} such that dj is the j-th
diagonal entry of both D and PerMat(σ)DPerMat(σ)−1, so c = 1.
Thus, D = PerMat(σ)DPerMat(σ)−1, implying that du+1 = · · · = du+`i .
Since i was chosen arbitrarily, it follows that D ∈ Z(G). The inclusion
Z(G) ⊆ H is obvious.

Second case: Q = 1. Then n = `m for somem ∈ N>0, so S = P`m with generators
z0, . . . , zm−1, where z0 = (1, . . . , `), and where

zi = (1, `i+1, 2`i+1, . . . , (`−1)`i+1)(2, `i+2, . . . , (`−1)`i+2) · · · (`i, 2`i, . . . , `i+1)

for i = 1, . . . ,m− 1. For k ∈ N write Dk := diag(d1, . . . , dk).
Let Ri ∈ S be the permutation matrix of zi for i = 0, . . . ,m − 1, and let
ci ∈ (F×q )` satisfy D = ciRiDR

−1
i . Since, for j = 0, . . . ,m− 2, the permutation

matrix Rj permutes only `j+1 < `m diagonal entries of D, it follows that c0 =
· · · = cm−2 = 1.
Now, D = cm−1Rm−1DR

−1
m−1 implies

D = diag(c`m−1︸ ︷︷ ︸
=1

D`m−1 , cm−1 ·D`m−1 , c2m−1 ·D`m−1 , . . . , c`−1m−1 ·D`m−1).

Let j := m− 2. Then, D = RjDR
−1
j implies

dk = d(`−1)`j+k = d(`−2)`j+k = · · · = d`j+k = dk
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for all k = 1, . . . , `j−1, so

D`j = diag(D`j−2 , . . . , D`j−2︸ ︷︷ ︸
`

).

Repeating the argument for j = m− 3 up to j = 0, we obtain

D = diag(d1 · 1`m−1 , cm−1 · d1 · 1`m−1 , c2m−1 · d1 · 1`m−1 , . . . , c`−1m−1 · d1 · 1`m−1)

∈ Z(G)A.

The inclusions Z(G) ⊆ H and A ⊆ H are obvious.

(c) First, note that for (`, n, r) ∈ {(2, 2, 2), (3, 3, 1)} we obtain

|G̃Z/Z| =
`r(n−1)(n!)`

gcd(n, q− 1)`
∈ {4, 9} ,

so G̃Z/Z is abelian in this case. Considering the exponents in Proposition 2.7.5,
we obtain that G̃Z/Z is not cyclic and, thus, elementary abelian.

Now, let (`, n, r) /∈ {(2, 2, 2), (3, 3, 1)} and show first that

Z(G̃Z/Z) = (H ∩ SLn(q))Z/Z.

If X ∈ H ∩ SLn(q) ⊆ H, then it follows from part (b) that XZ ∈ H/Z = Z(G/Z),
and as XZ belongs to G̃Z/Z, this shows that XZ ∈ Z(G̃Z/Z).
For the converse inclusion, let first ` > 2. Let D ∈ T̃ and P ∈ PerMat(S) be such
that X := DP satisfies XZ ∈ Z(G̃Z/Z). Let R ∈ PerMat(S). Then, as in the proof
of part (b),

DPRP−1D−1R−1 = XRX−1R−1 ∈ Z

is a scalar matrix, say cR · 1n, and it follows that PRP−1R−1 = cRD
−1RDR−1.

Again, as the right-hand side of this equation is a diagonal matrix and the left-hand
side is an element of PerMat(S), it follows that both sides are 1n. Thus, D =
cR(RDR

−1) and PRP−1R−1 = 1. As R has been chosen arbitrarily, it follows that
P ∈ Z(PerMat(S)). If Y ∈ T̃ , then PY−1P−1 belongs to the abelian group T̃ , so the
matrix

YPY−1P−1 = YDPY−1P−1D−1 = YXY−1X−1 ∈ Z

is a scalar matrix, say y · 1n, and it follows that Y = y(PYP−1). Thus, part (b) of
Lemma 2.7.8 implies P = 1n. Hence, Z(G̃Z/Z) = (H∩ SLn(q))Z/Z holds for ` > 2.
Now, let ` = 2. First, let D ∈ T̃ and P ∈ PerMat(S ∩ Alt(n)) be such that
X := DP satisfies XZ ∈ Z(G̃Z/Z). Let R ∈ PerMat(S ∩ Alt(n)) ⊆ G̃, and let
U ∈ PerMat(S \ Alt(n)). As in the proof of part (b),

DPRP−1D−1R−1 = XRX−1R−1 ∈ Z
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is a scalar matrix, say cR · 1n, and so is

DPδUP−1D−1U−1δ = X(δU)X−1(δU)−1 ∈ Z,

say cU · 1n. It follows that PRP−1R−1 = cRD
−1RDR−1 and that PUP−1U−1 =

cU(PδP
−1)D−1δ(UDU−1). In both equations, the right-hand side is a diagonal

matrix and the left-hand side is an element of PerMat(S), so it follows that both
sides are 1n. In particular, P ∈ Z(PerMat(S)). As before, if Y ∈ T̃ , then PY−1P−1

belongs to the abelian group T̃ , so the matrix

YPY−1P−1 = YDPY−1P−1D−1 = YXY−1X−1 ∈ Z

is a scalar matrix, say y · 1n, and it follows that Y = y(PYP−1). Thus, part (b)
of Lemma 2.7.8 implies P = 1. It follows that D = cU(UDU

−1), so X = D lies in
H ∩ SLn(q).
Finally, suppose that there exist D ∈ T̃ and P ∈ PerMat(S \ Alt(n)) such that
X := DδP satisfies XZ ∈ Z(G̃Z/Z). Again, let R ∈ PerMat(S ∩ Alt(n)) ⊆ G̃ and
U ∈ PerMat(S \ Alt(n)). Then

DδPRP−1δD−1R−1 = XRX−1R−1 ∈ Z

is a scalar matrix, say cR · 1n, and so is

DδPδUP−1δD−1U−1δ = X(δU)X−1(δU)−1 ∈ Z,

say cU · 1n. It follows that PRP−1R−1 = cRδD
−1RDδR−1 and that PUP−1U−1 =

cUPδP
−1D−1UDδU−1. As before, in both equations, the right-hand side is a

diagonal matrix and the left-hand side is an element of PerMat(S), so it follows
that both sides are 1n. In particular, P ∈ Z(PerMat(S)). Again, if Y ∈ T̃ , then
PY−1P−1 belongs to the abelian group T̃ , so the matrix

YPY−1P−1 = YDδPY−1P−1δD−1 = YXY−1X−1 ∈ Z

is a scalar matrix, say y · 1n, and it follows that Y = y(PYP−1). Now, part
(b) of Lemma 2.7.8 implies P = 1n. This is a contradiction to the choice
P ∈ PerMat(S \ Alt(n)).
Now, the proof of the equation Z(G̃Z/Z) = (H ∩ SLn(q))Z/Z is complete.

It remains to show that (H ∩ SLn(q))Z/Z ∼= Z(G/Z). The map
H ∩ SLn(q) → H/Z : X 7→ XZ is a homomorphism with kernel Z ∩ SLn(q),
so there exists a monomorphism from

(H ∩ SLn(q))Z/Z ∼= (H ∩ SLn(q))/(Z ∩ SLn(q)) ↪→ H/Z = Z(G/Z).

Therefore, it suffices to show that

|(H ∩ SLn(q))/(Z ∩ SLn(q))| = |Z(G/Z)|.
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By Lemma 2.7.9, we have |Z ∩ SLn(q)| = min {`r, n`}.

First case: Q > 1.
Then we have |Z(G/Z)| = `r(Q−1) by part (b), and it remains to show that
|H ∩ SLn(q)| = `

r(Q−1) ·min {`r, n`}. As we have

|H ∩ SLn(q)| = |Z(G) ∩ SLn(q)| = |Z(G̃)| = `r(Q−1) ·min {`r, n`}

by parts (a) and (b), the claim follows.

Second case: Q = 1.
Here, we have n = n` = `m for some m ∈ N>0. Part (b) implies that
|Z(G/Z)| = `, so it remains to show that |H ∩ SLn(q)| = `min{r,m}+1. We
also have H = Z(G)A and |H| = |Z||H/Z| = `r|Z(G/Z)| = `r+1 by part (b). Let
us consider the determinant homomorphism

ϕ : H→ F×q : X 7→ det(X).

The elements of H = Z(G)A are of the form

αi · diag(1n/`, α
j`r−1 · 1n/`, α2j`

r−1 · 1n/`, . . . , α(`−1)j`r−1 · 1n/`),

so the image of ϕ is

〈αn〉 ·
〈
α(1+2+···+`−1)n` `

r−1
〉
= 〈αn〉 ·

〈
α
`−1
2 `r−1+m

〉
.

First subcase: m ≥ r.
Clearly, then αn = α`

m
= (α`

r
)`

m−r
= 1.

If ` > 2, then `−1
2 ∈ Z and therefore

α
`−1
2 `r−1+m

∈
〈
α`

r−1+m
〉
=
〈
(α`

r

)m−1
〉
= {1} .

If ` = 2, then q ≡ 1 mod 4 implies r ≥ 2, so also m ≥ 2. Thus, ` · `−12 ∈ Z
and

α`·
`−1
2 ·`

r−1+m−1

∈
〈
α`

r−2+m
〉
=
〈
(α`

r

)m−2
〉
= {1} .

It follows that the image of ϕ is the trivial homomorphism and, therefore,
H ⊆ SLn(q). Now, we have |H ∩ SLn(q)| = |H| = `r+1 = `min{r,m}+1.

Second subcase: m < r.
If (`, n) 6= (2, 2), then the image of ϕ is clearly 〈αn〉 and has, thus, order
`r−m. Now, consider the case (`, n) = (2, 2). Then the image of ϕ is〈

α2
〉
·
〈
α2

r−1
〉
≤ 〈α〉 .
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The order of α2
r−1

= 2, and since both 〈α〉 and
〈
α2
〉

have a unique element

of order 2, it follows that α2
r−1 ∈

〈
α2
〉
, that is, the image of ϕ is

〈
α2
〉

of
order 2r−1. Hence, in any case we have | im(ϕ)| = `r−m.
Now, it follows that

|H ∩ SLn(q)| = | ker(ϕ)| =
|H|

| im(ϕ)|
=
`r+1

`r−m
= `m−1 = `min{r,m}+1.

2.7.6 Results about small self-centralizing subgroups

As a consequence of Theorem 2.7.10, we obtain the following result for the case that n
is not a power of `:

Corollary 2.7.11. Let n not be a power of `, let V be a finite group, and write cV :=
|V ||V | log`(|V |).

(a) If V is a self-centralizing subgroup of G̃ or of G/Z, then

|G̃| = |G/Z| ≤ |V |cV · (cV + 1)!.

(b) If V is a self-centralizing subgroup of G̃Z/Z, then

|G̃Z/Z| ≤ (|V |cV + 1) · (cV + 2)!.

Proof.

(a) It follows from Proposition 2.7.6 and Theorem 2.1.5 that `n−1 ≤ |V ||V |
|V |

. Moreover,
as n is not a power of `, Theorem 2.7.10 implies `r ≤ |Z(X)| ≤ |CX(V)| ≤ |V | for

X ∈
{
G̃, G/Z

}
. Now, the claim follows from

|G/Z| = |G̃| = `r(n−1)(n!)`.

(b) Proposition 2.7.6 and Theorem 2.1.5 imply `n−2 ≤ |V ||V |
|V |

, and since n is not a
power of `, we have `r ≤ |Z(G̃Z/Z)| ≤ |CG̃Z/Z(V)| ≤ |V | by Theorem 2.7.10. Thus,
the claim follows from

|G̃Z/Z| ≤ |G/Z| = `r(n−1)(n!)`.

In the next statements, we consider the case where n is a power of `. We recall
that in this case, the elements of Z(G) are scalar matrices by Proposition 2.7.2.
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Theorem 2.7.12. Let n = `m for some m ∈ N>0.

(a) If ` > 2, then Z(G̃)PerMat(S) is a self-centralizing subgroup of G̃ of order

`min{r,m}+1+`+`2+···+`m−1
.

(b) The group (Z(G)APerMat(S))/Z is a self-centralizing subgroup of G/Z of order

`1+(1+`+`2+···+`m−1).

(c) If ` > 2, then (Z(G̃)APerMat(S))Z/Z is a self-centralizing subgroup of G̃Z/Z of

order `1+(1+`+`2+···+`m−1).

Proof.

(a) By Theorem 2.7.10, the order of Z(G̃)PerMat(S) is

|Z(G̃)| · |PerMat(S)| = `min{r,m} · (`m!)` = `min{r,m}+1+`+`2+···+`m−1

.

Let D ∈ T̃ and P ∈ PerMat(S) be such that DP ∈ CG̃(Z(G̃)PerMat(S)). By

Proposition 2.7.2 and Theorem 2.7.10, D lies in Z(G) ∩ SLn(q) = Z(G̃). Thus,
DP ∈ Z(G̃)PerMat(S).

(b), (c) Z(G)A is normal inG since (Z(G)A)/Z = Z(G/Z) is a normal subgroup ofG/Z.
Thus, Z(G)APerMat(S) is a subgroup of G containing Z, so (Z(G)APerMat(S))/Z
is a subgroup of G/Z. As we have Z(G)A ∩ PerMat(S) = {1} and Z(G) ∩ A = {1},
we have

|Z(G)| · |A| · |PerMat(S)|

|Z|
=
`r · ` · `1+`+`2+···+`m−1

`r
= `1+(1+`+`2+···+`m−1)

by Theorem 2.7.10. If ` > 2, then it follows from A ⊆ SLn(q) and PerMat(S) ⊆
SLn(q), together with part (a) of Theorem 2.7.10 that

Z(G̃)APerMat(S) = ((Z(G)∩SLn(q))APerMat(S)) = (Z(G)APerMat(S)∩SLn(q))

is a subgroup of G∩SLn(q) = G̃, so (Z(G̃)APerMat(S))Z/Z is a subgroup of G̃Z/Z.
By Lemma 2.7.9 we have

|Z ∩ Z(G̃)APerMat(S)| = |Z ∩ SLn(q)| = `
min{r,m},

so the order of (Z(G̃)APerMat(S))Z/Z is

|Z(G̃)| · |A| · |PerMat(S)|

|Z ∩ SLn(q)|
=
`min{r,m} · ` · `1+`+`2+···+`m−1

`min{r,m}
= `1+(1+`+`2+···+`m−1).

Let ` be arbitrary and let D ∈ T and P ∈ PerMat(S) be such that DPZ ∈
CG/Z((Z(G)APerMat(S))/Z). Moreover, let R ∈ PerMat(S). Write X := DP. Then

DPRP−1D−1R−1 = XRX−1R−1 ∈ Z
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is a scalar matrix, say cR · 1n. It follows that PRP−1R−1 = cRD
−1RDR−1. As

the right-hand side of this equation is a diagonal matrix and the left-hand side is
an element of PerMat(S), it follows that both sides are 1n. In particular, D =
cR(RDR

−1).
Thus, D ∈ Z(G)A by Theorem 2.7.10, so DPZ ∈ (Z(G)APerMat(S))/Z. Moreover,
if ` > 2 and D ∈ T̃ , then D ∈ (Z(G)A) ∩ SLn(q) = Z(G̃)A, and thus, DPZ ∈
(Z(G̃)APerMat(S))Z/Z.

It remains to consider the groups G̃ and G̃Z/Z for ` = 2. If n = 2, then we
have already seen in Theorem 2.5.7 and Proposition 2.1.8 that small self-centralizing
subgroups exist. Therefore, it suffices to consider the case n ≥ 4:

Theorem 2.7.13. Let n = 2m for some m ∈ N>1. For i ∈ {1,−1} write

Ei := {diag(d1, . . . , dn) ∈ T : d1, . . . , dn ∈ {1,−1} , d1 · · ·dn = i} .

(a) The disjoint union

W := {DP : D ∈ E1, P ∈ PerMat(S ∩Alt(n))}

t {DP : D ∈ E−1, P ∈ PerMat(S \ Alt(n))}

is a subgroup of G̃ of order 22
m+1−2.

(b) Z(G̃)W is a self-centralizing subgroup of G̃ of order 2min{m,r}+2m+1−3.

(c) WZ/Z is a self-centralizing subgroup of G̃Z/Z of order 22
m+1−3.

Proof.

(a) The order of E1 is the number of subsets of {1, . . . , n} of even cardinality, and the
order of E−1 is the number of subsets of {1, . . . , n} of odd cardinality. As the sum
of these two numbers is the number 2n of all subsets of {1, . . . , n} and the second is

1

2
(

n∑
k=0

( nk ) −

n∑
k=0

(−1)k ( nk )) =
1

2
((1+ 1)n − (1− 1)n) = 2n−1,

it follows that the first must be 2n−1 as well. Therefore,

|W| =
2n−1(n!)2

2
+
2n−1(n!)2

2
= 2n−1(n!)2 = 2

2m−1 · 22m−1 = 22
m+1−2.

If P,Q ∈ PerMat(S), DP ∈ Edet(P), and DQ ∈ Edet(Q), then

DPPDQQ = (DPPDQP
−1)PQ ∈W,

so W is a subgroup of G̃.
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(b) As Z(G̃) ∩W = {1n,−1n} has order 2, it follows that Z(G̃)W is a subgroup of G̃

of order 2min{m,r}+2m+1−3.
Recall from Proposition 2.7.3 that

G̃ = (T̃ o PerMat(S ∩Alt(n))) t (T̃ · δ · PerMat(S \ Alt(n))).

First, let D ∈ T̃ and P ∈ PerMat(S∩Alt(n)) ⊆W be such that DP ∈ CG̃(Z(G̃)W).

Let R ∈ PerMat(S ∩Alt(n)) ⊆ G̃, and let U ∈ PerMat(S \ Alt(n)). As in the proof
of part (a) of Theorem 2.7.10, it follows from

(RDR−1)(RPR−1) = RDPR−1 = DP

and
δ(UDU−1)(UPU−1)δ = (δU)DP(δU)−1 = DP

that RDR−1 = D, RPR−1 = P, δ(UDU−1) = D(PδP−1), and UPU−1 = P. In
particular, P ∈ Z(PerMat(S)) = PerMat({id, (1, 2)(3, 4) · · · (n− 1, n)}).

Suppose that P = PerMat((1, 2) · · · (n− 1, n)). Then PδP−1 = diag(1,−1, 1, . . . , 1),
so δ(UDU−1) = D(PδP−1) implies UDU−1 = D diag(−1,−1, 1, . . . , 1).
We write D = diag(d1, . . . , dn). Then taking U := PerMat(1, 2) in
UDU−1 = D diag(−1,−1, 1, . . . , 1), we obtain d1 = −d2, and taking
R := PerMat((1, 2)(3, 4)) in RDR−1 = D implies d1 = d2, a contradiction.

Thus, P must be the identity matrix. It follows that PδP−1 = δ, so
δ(UDU−1) = D(PδP−1) implies UDU−1 = D. Therefore, Proposition 2.7.2
and Theorem 2.7.10 imply

D ∈ CT (PerMat(S)) ∩ SLn(q) = Z(G) ∩ SLn(q) = Z(G̃),

so DP ∈ Z(G̃)W.
Now, suppose that there exist D ∈ T̃ and P ∈ PerMat(S \ Alt(n)) be such that
DδP ∈ CG̃(Z(G̃)W). Again, let R ∈ PerMat(S∩Alt(n)) andU ∈ PerMat(S\Alt(n)).
As in the proof of part (a) of Theorem 2.7.10, it follows from

(RDδR−1)(RPR−1) = RDδPR−1 = DδP

and
δ(UDδU−1)(UPU−1)δ = (δU)DδP(δU)−1 = DδP

that RDδR−1 = Dδ, RPR−1 = P, UDδU−1 = D(PδP−1), and UPU−1 = P. In
particular, we have

P ∈ Z(PerMat(S)) = PerMat({id, (1, 2)(3, 4) · · · (n− 1, n)}) ⊆ PerMat(Alt(n))

contradicting the choice of P.
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(c) It is clear that

|WZ/Z| =
|W|

|W ∩ Z|
=

|W|

| {±1n} |
=

|W|

2
= 22

m+1−3.

Now, let D ∈ T̃ and P ∈ PerMat(S ∩ Alt(n)) be such that X := DP satisfies XZ ∈
CG̃Z/Z(WZ/Z). As above, let R ∈ PerMat(S∩Alt(n)) and U ∈ PerMat(S \Alt(n)).
Then

DPRP−1D−1R−1 = XRX−1R−1 ∈ Z

is a scalar matrix, say cR · 1n, and it follows that PRP−1R−1 = cRD
−1RDR−1, so

both sides are 1n. Also

DPδUP−1D−1U−1δ = X(δU)X−1(δU)−1 ∈ Z

is a scalar matrix, say cU · 1n, and it follows that

PUP−1U−1 = cUD
−1UDU−1δPδP−1,

so both sides are 1n again. In particular,

P ∈ Z(PerMat(S)) = PerMat({id, (1, 2)(3, 4) · · · (n− 1, n)}).

Let us write D = diag(d1, . . . , dn).

Suppose that P = PerMat((1, 2) · · · (n − 1, n)). Then PδP−1 = diag(1,−1, 1, . . . , 1)
and D = cUUDU

−1 diag(−1,−1, 1, . . . , 1).
Next, suppose that n > 4. Taking U := PerMat(1, 2), we obtain cU = 1 and
d1 = −d2, and taking R := (1, 2)(3, 4), we obtain cR = 1 and d1 = d2, a
contradiction. Thus, we have n = 4.
For U := PerMat(1, 2), we get d1 = −d2, and for U := PerMat(3, 4), we get
d3 = −d4. Therefore, D = diag(d1,−d1, d3,−d3). By assumption, DPZ = XZ

commutes with
δPerMat(1, 3, 2, 4)︸ ︷︷ ︸

∈W

Z ∈WZ/Z,

so we obtain that
0 0 1 0

0 0 0 d1
d3

1 0 0 0

0 d1
d3

0 0

 = DPδPerMat(1, 3, 2, 4)(DP)−1(δPerMat(1, 3, 2, 4))−1

must be a scalar matrix, which is obviously not true. This contradiction shows
that P must be the identity matrix.
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It follows that δPδP−1 = 1n, so D = cUUDU
−1, and part (b) of Theorem

2.7.10 implies that D lies in Z(G)A. Now, by the definition of A we have

A =
{
1n,

(
1n/2

−1n/2

)}
⊆W,

and moreover, we have Z(G̃) = Z(G) ∩ SLn(q) = Z ∩ SLn(q) ⊆ Z. Therefore,
D ∈ Z(G)A ⊆WZ, and it follows that XZ = DPZ = DZ ∈WZ/Z.

Finally, suppose that there exist D ∈ T̃ and P ∈ PerMat(S \ Alt(n)) such that
X := DδP satisfies XZ ∈ CG̃Z/Z(Z(G̃)AWZ/Z). Again, let R ∈ PerMat(S ∩ Alt(n))

and U ∈ PerMat(S \ Alt(n)). As in the proof of parts (b) and (c) of Theorem
2.7.10,

DδPRP−1δD−1R−1 = XRX−1R−1 ∈ Z

and

DδPδUP−1δD−1U−1δ = X(δU)X−1(δU)−1 ∈ Z

are scalar matrices, say cR · 1n and cU · 1n, respectively. It follows that

PRP−1R−1 = cR(Dδ)
−1R(Dδ)R−1

and

PUP−1U−1 = cU(Dδ)
−1U(Dδ)U−1PδP−1δ.

The right-hand sides of both of these equations are diagonal matrices, and the
left-hand sides are permutation matrices, so in both equations both sides must be
1n. Now, as in the proof of part (b), we have that

P ∈ Z(PerMat(S)) = PerMat({id, (1, 2)(3, 4) · · · (n− 1, n)}) ⊆ PerMat(Alt(n))

contradicts the choice of P.

We obtain the following result for this section:

Theorem 2.7.14. Let n ∈ N>0, let ` ∈ P, and let q be a prime power such that ` - q
and such that q ≡ 1 mod 4 if ` = 2. Moreover, let L be a Sylow `-subgroup of one of the
groups SLn(q), PGLn(q), or PSLn(q). Then the following are equivalent:

(a) The group order |L| cannot be bounded in terms of an arbitrary self-centralizing
subgroup.

(b) We have ` | q− 1 and n > 1 is a power of `.
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Proof. If ` - q − 1, then this follows from Observation 2.5.11 and from part (a) of
Theorem 2.5.10. Now, let ` | q− 1. If ` - n, then the claim follows from Proposition 2.7.1
and from part (a) of Theorem 2.5.10. If ` | n, then Corollary 2.7.11, Theorem 2.7.12,
Theorem 2.5.7, Proposition 2.1.8, and Theorem 2.7.13 show that |L| can be bounded in
terms of an arbitrary self-centralizing subgroup if and only if n is not a power of `.

The previous theorem implies its analogue for special and projective (special)
unitary groups. Here we have to restrict ` to be odd, since we did not study the Sylow
2-subgroups of those groups for ` = 2.

Corollary 2.7.15. Let n ∈ N>0, let ` ∈ P>2, and let q be a prime power such that
` - q. Moreover, let L be a Sylow `-subgroup of one of the groups SUn(q), PGUn(q), or
PSUn(q). Then the following are equivalent:

(a) The group order |L| cannot be bounded in terms of an arbitrary self-centralizing
subgroup.

(b) We have ` | q+ 1 and n > 1 is a power of `.

Proof. If ` - q+ 1, then we are done by part (b) of Corollary 2.6.6 and Theorem 2.6.7. If
` | q+ 1, then the claim follows from Theorem 2.7.14, together with part (c) of Corollary
2.6.6 and Theorem 2.6.7.

We also obtain the following result in view of Corollary 2.1.6:

Corollary 2.7.16. For all prime numbers ` ∈ P, it is not possible to bound the order
of a finite `-group in terms of the order of an arbitrary self-centralizing subgroup. This
generalizes Corollary 2.1.9 which states this result for ` = 2.

Proof. If r ∈ N>0 is given, then by Dirichlet’s Theorem on arithmetic progressions
[56, see, for example, 4.IV.A on page 265] there exist infinitely many prime numbers
q ∈ P such that `r | q − 1. Therefore, r can get arbitrarily large, but the orders of the
self-centralizing subgroups given in Theorem 2.7.12 and Theorem 2.7.13 do not depend
on r if m < r is fixed.

We did not consider the groups SLn(q), PGLn(q), and PSLn(q) for ` = 2 and
q ≡ 3 mod 4 in this section. The reason is that in this case, Corollary 2.5.4 does not
apply, so we cannot work with monomial matrices as in the situation above. More
precisely, Proposition 2.5.6 shows that for ` = 2 and q ≡ 3 mod 4, a Sylow 2-subgroup of
GLn(q) is of the form G o S, where G ∈ Syl2(GL2(q)) and S ∈ Syl2(Sym(n2 )), that is, we
have to replace the diagonal part of the monomial matrices by block diagonal matrices
whose blocks come from G, and then have to intersect with SLn(q) or view the matrices
modulo scalar matrices for PGLn(q). This is much more complicated than the situation
that we have considered above. Therefore, this case remains open.





3 Bounding defect groups in terms of

self-centralizing subgroups

In this chapter, we introduce properties of sets of finite groups motivated by Puig’s
Question and then investigate sets of finite classical groups with respect to these
properties using the results from Chapter 2 of this thesis and results from [28] and
[29]. Moreover, we also consider sets of Chevalley groups G2(q) and of twisted Chevalley
groups 3D4(q

3).

3.1 The self-centralizing-bounded-defect property

Motivated by Puig’s Question 1.5.1 and Knörr’s Theorem 1.4.7, we make the following
definitions.

Definition 3.1.1. Let ` ∈ P, let X be a set of finite groups, and let V be a finite `-group.

(a) X has the vertex-bounded-defect property (VBDP) with respect to V, if
there is an nV ∈ N such that for all G ∈ X and all simple F`G-modules M with
vertices isomorphic to V, the defect groups D of the block of F`G containing M
satisfy |D| ≤ nV .

(b) X has the strongly-bounded-defect property (SBDP) with respect to V, if
there is an nV ∈ N such that if (V, bV) is any self-centralizing Brauer pair of F`G
then the defect groups D of bGV satisfy |D| ≤ nV .

(c) X has the self-centralizing-bounded-defect property (SCBDP) with respect
to V, if there is an nV ∈ N such that for all G ∈ X and all defect groups D of
blocks of F`G such that V is isomorphic to a self-centralizing subgroup of D, we
have |D| ≤ nV .

(d) X has the self-centralizing-bounded-Sylow property (SCBSP) with respect
to V, if there is an nV ∈ N such that for all G ∈ X and all Sylow `-subgroups D of
G such that V is isomorphic to a self-centralizing subgroup of D, we have |D| ≤ nV .

The definition of the VBDP and the SBDP are similar as in [18, Def. 3.2, Rmk. 3.12].
In this thesis, we prefer to consider the SCBDP which is the strongest among these
properties, see Observation 3.1.4.

First, we define the following set:

Remark 3.1.2. Let S be the set of all finite subgroups of Sym(N), and let F be a set
of representatives of S with respect to the equivalence relation given by isomorphism.
Then, by Cayley’s Theorem (see, for example, [37, Satz I.6.3]), for each finite group G
there exists a unique element of F which is isomorphic to G. Thus, F can be seen as the
set of all finite groups up to isomorphism.
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Puig’s Question 1.5.1 can now be reformulated as follows:

Remark 3.1.3 (Puig’s Question reformulated). Given ` ∈ P, does F have the VBDP
with respect to every finite `-group?

We have the following implications among the properties from Definition 3.1.1:

Observation 3.1.4. Let ` ∈ P, let X be a set of finite groups, and let V be a finite
`-group.

(a) If X has the SCBDP with respect to V, then it has also the SCBSP and the SBDP
with respect to V.

(b) If X has the SBDP with respect to V, then it has also the VBDP with respect to V.

In particular, the SCBDP implies all the other properties.

Proof.

(a) As the Sylow subgroups of a finite groups always occur as defect groups, it is clear
that the SCBDP implies the SCBSP. Moreover, by Theorem 1.4.5 and Theorem
1.4.6, the SCBDP implies the SBDP.

(b) This follows immediately from Theorem 1.4.7.

The following example shows that the set of all finite symmetric groups has the
VBDP with respect to every finite `-group:

Example 3.1.5 ([55],[17]). Let ` ∈ P, and let n ∈ N. If V is a vertex of a simple
F` Sym(n)-module and D is a defect group of the corresponding block of F` Sym(n),
then |D| ≤ |V |!.

We continue this section with the investigation of the SCBDP and the VBDP. First, we
have some easy consequences and examples.

Remark 3.1.6. Let ` ∈ P, and let X and Y be sets of finite groups.

(a) It is clear that the union X ∪ Y has the VBDP or the SCBDP or the SCBSP with
respect to a finite `-group V if and only if both X and Y have the VBDP or the
SCBDP or the SCBSP with respect to V.

(b) If X and Y have the VBDP or the SCBDP or the SCBSP with respect to every
finite `-group, then the same is true for the set {G×H : G ∈ X, H ∈ Y}. This is
obvious for the SCBSP, and for the other two properties it follows from Lemma
1.3.2.
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Proposition 3.1.7. Let ` ∈ P.

(a) The set
{G ∈ F : G has abelian Sylow `-subgroups}

has the SCBDP with respect to every finite `-group.

(b) For every k ∈ N, the set {G ∈ F : Exp`(G) < k}, where Exp`(G) is the exponent
of a Sylow `-subgroup of G, has the SCBDP with respect to every finite `-group. In
particular, every finite subset of F and the set {G ∈ F : ` - |G|} have the SCBDP
with respect to every finite `-group.

(c) The set {G ∈ F : |Syl`(G)| = 1} has the VBDP with respect to every finite `-group.
In particular, the set {G ∈ F : G nilpotent} has the VBDP with respect to every
finite `-group.

(d) F has the VBDP with respect to every cyclic `-group.

Proof.

(a) This is clear by Observation 2.1.2.

(b) This follows immediately from Corollary 2.1.6.

(c) This is a consequence of part (d) of Proposition 1.2.6.

(d) This is clear by part (d) of Proposition 1.3.1.

Example 3.1.8. Let ` ∈ P.

(a) As all of its elements have abelian Sylow `-subgroups, the set
{AGL1(q) : q prime power} has the SCBDP with respect to every finite `-group.
Here, the affine linear group AGL1(q) ∼= Fq o F×q is the group of all maps
Fq → Fq : x 7→ ax+ b where a ∈ F×q and b ∈ Fq.

(b) The finite set of all sporadic simple groups has the SCBDP with respect to every
finite `-group.

(c) Example 1.5.2 shows that {PSL2(q) : q prime power} does not have the VBDP
with respect to the Klein four-group.

The following theorem is an immediate consequence of [7, Thm. 4.3]:

Theorem 3.1.9. For all ` ∈ P, the subset {G ∈ F : G is `-solvable} of F has the VBDP
with respect to every finite `-group.

In particular, it follows that the set {Dih2n : n ∈ N>2} has the VBDP with respect to
every finite `-group. Therefore, part (c) of the following proposition shows that the
SCBDP is really stronger than the VBDP:
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Proposition 3.1.10.

(a) If ` ∈ P>2, then the set {Dih2n : n ∈ N>2} has the SCBDP with respect to every
finite `-group.

(b) The set {Dih2n : 4 - n ∈ N>2} has the SCBDP with respect to every finite 2-group.

(c) The set {Dih2n : 4 | n ∈ N>2} does not have the SCBSP with respect to the Klein
four-group. In particular, the subset of F of all `-solvable groups does not have the
SCBSP with respect to the Klein four-group.

Proof.

(a), (b) For odd `, the Sylow `-subgroups of Dih2n are cyclic and, therefore, abelian.
Moreover, in the situation of part (b), the Sylow 2-subgroups of Dih2n have order
at most 4, so they are abelian, too. Thus, the claim follows from part (a) of
Proposition 3.1.7.

(c) Let 4 | n ∈ N>2. A Sylow 2-subgroup P of Dih2n cannot be contained in the cyclic
subgroup of order n (since otherwise it cannot have order (2n)2). Thus, it is a
dihedral group itself or has order at most four, see, for example, [57, 2.37 (page
54)]. As 4 | n, it follows that |P| ≥ 8, so P must be dihedral itself. Now, by part
(a) of Proposition 2.1.8, P has a self-centralizing subgroup isomorphic to the Klein
four-group.

We continue with some auxiliary results that will be applied in the next section.
First, we need the following lemmas:

Lemma 3.1.11. Let ` ∈ P, let X be a set of finite groups, and let V be a finite `-group.

(a) X has the SCBDP with respect to V if and only if there exists a monotonously
increasing function fV : N>0 → R such that for all G ∈ X and all defect groups
D of blocks of F`G having a self-centralizing subgroup isomorphic to V, we have
|D| ≤ fV(|V |).

(b) X has the SCBSP with respect to V if and only if there exists a monotonously
increasing function fV : N>0 → R such that for all G ∈ X and all S ∈ Syl`(G)
having a self-centralizing subgroup isomorphic to V, we have |S| ≤ fV(|V |).

(c) X has the VBDP with respect to V if and only if there exists a monotonously
increasing function fV : N>0 → R such that for all G ∈ X, all defect groups D of
blocks of F`G, and all vertices V of simple F`G-modules lying in a block with defect
group D we have |D| ≤ fV(|V |).
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Proof.

(a) Up to the monotony this is just the definition. If f is such a function which is
not necessarily monotonously increasing, then define g : N>0 → R inductively
by g(1) := f(1) and g(n + 1) := max {g(n), f(n+ 1)} for n ∈ N>1. Then g is
monotonously increasing and |D| ≤ f(|V |) ≤ g(|V |) for all D and all self-centralizing
V ≤ D.

(b), (c) The proof is analogous to the one of part (a).

Lemma 3.1.12. Let G be a finite group, let N E G, let H ≤ G, and let V be a
self-centralizing subgroup of HN/N. Then H has a self-centralizing subgroup Ṽ satisfying
H ∩N ⊆ Ṽ and Ṽ/(H ∩N) ∼= V.

Proof. Let

α : H/(H ∩N)→ HN/N : h(H ∩N) 7→ hN

be the isomorphism from the Isomorphism Theorem, and let H∩N ≤ Ṽ ≤ H be such that
V = α(Ṽ/(H∩N)). Let h ∈ CH(Ṽ). Then h(H∩N) ∈ CH/(H∩N)(Ṽ/(H∩N)), and applying

α, we have hN = α(h(H ∩ N)) ∈ CHN/N(V) ⊆ V. Thus, hN ∈ V = α(Ṽ/(H ∩ N)), so

h(H ∩N) = α−1(hN) ∈ Ṽ/(H ∩N). This shows that h ∈ Ṽ.

Lemma 3.1.13. Let ` ∈ P, let G be a finite group and let N be a normal subgroup of G
such that ` - |G : N|. Moreover, let D be a defect group of a block B of F`G. Then D is
contained in N and it is also a defect group for all F`N-blocks covered by B.

Proof. Let b ∈ Bl(F`N) be covered by B. By Proposition 1.3.4, D ∩N is a defect group
of b. Moreover, it follows from ` - |G : N| that the Sylow `-subgroups of G are contained
in N. Therefore, every `-subgroup of G is contained in N. In particular, D is contained
in N and we have D ∩N = D.

Proposition 3.1.14. Let k ∈ N, and let X be a set of finite groups. If X has the SCBSP
with respect to every finite `-group (or every finite abelian `-group), then so does the set
{U : G ∈ X, U ≤ G, |G : U|` ≤ k}.

Proof. Let G ∈ X, and let U ≤ G be such that |G : U|` ≤ k. Let S ∈ Syl`(U), and let
V ≤ S be a self-centralizing subgroup. There exists some P ∈ Syl`(G) such that S = P∩U,
and by Proposition 2.5.8, there exists some self-centralizing subgroup Ṽ of P such that

|Ṽ : V | ≤ |P : S| = |G : U|` ≤ k.
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Thus, if fṼ : N>0 → R is as in Lemma 3.1.11, then

|S| ≤ |P| ≤ fṼ(|Ṽ |) ≤ fṼ(k|V |).

Proposition 3.1.15. Let ` ∈ P and let X be a set of finite groups having the SCBDP
with respect to every finite `-group.

(a) For every k ∈ N, the set {G/N : G ∈ X, N E G, |N|` ≤ k} has the SCBDP with
respect to every finite `-group.

(b) For every k ∈ N, the set {N : G ∈ X, N E G, |G : N|` ≤ k} has the SCBDP with
respect to every finite `-group.

(c) The set {G ∈ F : ∃ N ∈ X, N E G, ` - |G : N|} has the SCBDP with respect to
every finite `-group.

Proof.

(a) Let G ∈ X, and let N E G be such that |N|` ≤ k. Let B be a block of F`[G/N], let
D ∈ Def(B), and let V be a self-centralizing subgroup of D. Moreover, let B̃ and D̃
be as in Proposition 1.3.5. By Lemma 3.1.12, D̃ has a self-centralizing subgroup Ṽ
such that Ṽ/(D̃ ∩N) ∼= V. Now, with fṼ : N>0 → R as in Lemma 3.1.11, it follows
that

|D| ≤ |D̃ ∩N| · |D| ≤ |D̃| ≤ fṼ(|Ṽ |) = fṼ(|D̃ ∩N| · |V |) ≤ fṼ(|N|` · |V |) ≤ fṼ(k · |V |).

(b) Let G ∈ X, and let N E G such that |G : N|` ≤ k. Let B be a block of F`N, and let
D be a defect group of B. There is a block of F`G covering B and having a defect
group D̃ such that D = D̃ ∩N by Proposition 1.3.4. If V ≤ D is self-centralizing,
then by Proposition 2.5.8 there exists some self-centralizing subgroup Ṽ ≤ D̃ such
that

|Ṽ : V | ≤ |D̃ : D| = |D̃ : (D̃ ∩N)| = |D̃N : N| | |G : N|` ≤ k.

Now, with fṼ : N>0 → R as in Lemma 3.1.11, it follows that

|D| ≤ |D̃| ≤ fṼ(|Ṽ |) ≤ f(k · |V |).

(c) This follows immediately from Lemma 3.1.13.
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Proposition 3.1.16. Let ` ∈ P and let X be a set of finite groups having the VBDP with
respect to every finite `-group.

(a) For every k ∈ N, the set {G/N : G ∈ X, N E G, |N|` ≤ k} has the VBDP with
respect to V.

(b) The set {G ∈ F : ∃ N ∈ X, N E G, ` - |G : N|} has the VBDP with respect to V.

(c) The set {G ∈ F : ∃ N ≤ O`(Z(G)), G/N ∈ X} has the VBDP with respect to V.

Proof.

(a) As in the proof of part (a) of the previous proposition, let G ∈ X, let N E G be
such that |N|` ≤ k, let B be a block of F`[G/N], and let D ∈ Def(B). Now, let
V ≤ D be a vertex of some simple module M lying in B. Again, let B̃ and D̃ be
as in Proposition 1.3.5. Now, InfGG/N(M) is a simple module of F`G, and by the

definitions of inflation and domination it is clear that InfGG/N(M) lies in B̃. Let Ṽ

be a vertex of InfGG/N(M) contained in D̃. Then [46, Prop. 2.1] implies that ṼN/N

is a vertex of M. In particular, we have |V | = |ṼN/N|. With fṼ as in Lemma 3.1.11
it follows that

|D| ≤ |D̃ ∩N| · |D| ≤ |D̃| ≤ fṼ(|Ṽ |) = fṼ(|Ṽ ∩N| · |V |) ≤ fṼ(|N|` · |V |) ≤ fṼ(k · |V |).

(b) Let G ∈ F and N E G be such that N ∈ X and ` - |G : N|. Let B be a block
of F`G, and let M be a simple F`G-module lying in B. Then M is relatively
N ∩ O`(G)-projective by part (d) of Proposition 1.2.6. Thus, M is also relatively
N-projective by part (b) of Proposition 1.2.4. Now, part (c) of Proposition 1.2.6
shows that ResGN(M) has an indecomposable summand S whose vertices are already
vertices of M. Thus, if V is a vertex of M, then there exists some g ∈ G such that
gV is a vertex of S. Now, by Clifford’s Theorem [52, Thm. 3.3.1], ResGN(M) is
semisimple, so S must be simple. Moreover, [52, Lem. 5.5.7] implies that S belongs
to a block b of F`N covered by B. Thus, Lemma 3.1.13 implies that each defect
group of B is also a defect group of b. Therefore, if fgV is as in Lemma 3.1.11, then
we have |D| ≤ fgV(|gV |) = fgV(|V |).

(c) Let G ∈ F and let N ≤ O`(Z(G)) be such that G/N ∈ X. Let D be a defect group
of a block B of F`G, let M be a simple module lying in B, and let V ≤ D be a vertex
of M. Then N ⊆ V by part (d) of Proposition 1.2.6. By Clifford’s Theorem [52,
Thm. 3.3.1], ResGN(M) is semisimple. As the trivial F`N-module is the only simple
F`N-module up to isomorphism, it follows that ResGN(M) is a direct sum of copies of
the trivial F`N-module. Therefore, we have N ⊆ ker(M) and there exists a simple
F`[G/N]-module E lying in some block b of F`[G/N] such that M = InfGG/N(E). By
[46, Prop. 2.1], V/N is a vertex of E. As before, by the definitions of inflation and
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domination it is clear that B dominates b. Now, it follows from [6, Lem. 6.4.2] that
D/N is a defect group of b. Therefore, if fV/N is as in Lemma 3.1.11, we have

|D| = |D/N||N| ≤ fV/N(|V/N|)|N| ≤ fV/N(|V |)|N| ≤ fV/N(|V |)|O`(G)| ≤ fV/N(|V |)|V |.

Instead of the set in part (c) of Proposition 3.1.16, one might expect that the
set

{G ∈ F : ∃ N E G, ` - |N|, G/N ∈ X}

has the VBDP, or even the SCBDP, if X does. We can only prove this statement for the
SCBSP, where the proof is trivial:

Observation 3.1.17. Let ` ∈ P, let V be a finite `-group, and let X be a set of finite
groups having the SCBSP with respect to V. Then so does the set

{G ∈ F : ∃ N E G, ` - |N|, G/N ∈ X} .

Proof. If S ∈ Syl`(G) and N E G such that ` - |N|, then S ∼= S/(S ∩ N) ∼= SN/N ∈
Syl`(G/N).

Next, we consider semidirect products with an abelian normal subgroup.

Remark 3.1.18 ([43, Thm. 1.13]). Let G be a finite group, let H E G be abelian, and
let U ≤ G be such that G = H o U is an inner semidirect product. Let E be a simple
F`H-module, and let T ⊇ H denote its inertia group in G. Then E can be extended to all of
T via hu·x := h·x, and by abuse of notation, we denote this module again by E. Moreover,
let E ′ be a simple F`[T/H]-module. Then the F`G-module IndGT (E⊗F`

InfTT/H(E
′)) is simple,

and every simple F`G-module is of this form.

Lemma 3.1.19. Let G, H, U, E, T , and E ′ be given as in Remark 3.1.18. Let V be a
vertex of IndGT (E ⊗F`

InfTT/H(E
′)) or of E ⊗F`

InfTT/H(E
′) or of InfTT/H(E

′). Then V ∩ H is
the Sylow `-subgroup of H (and, therefore, normal in G).

Proof. As H is abelian and normal in G, it follows that the same is true for the Sylow
`-subgroup P of H. Therefore, by part (d) of Proposition 1.2.6, P is contained in V. On
the other hand, V ∩H is an `-subgroup of H and, thus, contained in P.

Lemma 3.1.20. Let G, H, U, E, and T be given as in Remark 3.1.18. Moreover, let E ′

and E ′′ be simple F`[T/H]-modules that lie in the same block. Then IndGT (E⊗F`
InfTT/H(E

′))

and IndGT (E⊗F`
InfTT/H(E

′′)) lie in the same block as well, and the latter block is the Brauer

induction of the F`H-block of E.
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Proof. Let e denote the block idempotent of F`[T/H] corresponding to the block of E ′

and E ′′. Moreover, let µ : F`T → F`[T/H] be the linear extension of the residue class
homomorphism. By Proposition 1.3.5, e is dominated by a unique block idempotent c
of F`T . Therefore, for all x ∈ InfTT/H(E

′) ∪ InfTT/H(E
′′) we have c · x = f(c) · x 6= 0, which

shows that both InfTT/H(E
′) and InfTT/H(E

′′) lie in the block of F`T that corresponds to c.
Now, E has dimension 1 as H is abelian, so the simple module E∗ ⊗F`

E is isomorphic to
the trivial module by [53, Lem. 2.4], where E∗ denotes the dual module of E.
By [2, Prop. 4.3], there exist simple modules T1, . . . , Tr and non-split exact sequences

0→ Ti →Mi → Ti+1 → 0

for all i = 1, . . . , r − 1 such that InfTT/H(E
′) = T1 and InfTT/H(E

′′) = Tr. As the tensor
product is taken over a field, we thus get exact sequences

0→ E⊗F`
Ti → E⊗F`

Mi → E⊗F`
Ti+1 → 0

for i = 1, . . . , r−1. The latter cannot be split exact, since by tensoring again with E∗, we
get the original sequences back. Using [2, Prop. 4.3] again, it follows that E⊗F`

InfTT/H(E
′)

and E⊗F`
InfTT/H(E

′′) lie in the same F`T -block, say bT .

Now, by Clifford’s Theorem [52, Thm. 3.3.1], the restriction ResTH(InfTT/H(E
′)) is

semisimple, so it is a direct sum of simple modules. Being an inflation from T/H, the
module InfTT/H(E

′) contains H in its kernel. Thus, ResTH(InfTT/H(E
′)) must be a direct sum

of copies of the trivial F`H-module. It follows that

ResTH(E⊗F`
InfTT/H(E

′)) ∼= ResTH(E)⊗F`
ResTH(InfTT/H(E

′))

is isomorphic to a direct sum of dimF`
(E ′) copies of ResTH(E), so [52, Lem. 5.5.7(ii)]

implies that bT covers the block bH of E. Now, let S := {g ∈ G : gbH = bH} be the
inertia group of bH.
It is obvious that T is contained in S. Conversely, if g ∈ S, then the simple module gE

lies in the block gbH = bH. As H is abelian, E is the only simple module in bH up to
isomorphism by [53, Cor. 2.10, Thm. 4.8, Prop. 4.8], so it follows that gE = E, which
shows that we actually have T = S.
Therefore, by the Fong–Reynold Theorem [52, Thm. 5.5.10], both IndGT (E⊗F`

InfTT/H(E
′))

and IndGT (E⊗F`
InfTT/H(E

′′)) lie in the block bGH of G.

Corollary 3.1.21. Let G, H, U, E, T , and E ′ be given as in Remark 3.1.18. If a vertex
D of the simple F`G-module IndGT (E⊗F`

InfTT/H(E
′)) is a defect group of the corresponding

F`G-block, then DH/H is a defect group of the F`[T/H]-block that contains E ′. Moreover,
|DH/H| = |D|/|H|`.

Proof. Lemma 3.1.19 implies that |DH/H| = |D/(D∩H)| = |D|/|H|`. Moreover, it follows
from [46, Prop. 2.1] that if D is a vertex of IndGT (E⊗F`

InfTT/H(E
′)), then DH/H is a vertex
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of E ′. Thus, ifDH/H is not a defect group of the F`[T/H]-block b containing E ′, then there
exists some simple module E ′′ in b such that a vertex Q of IndGT (E⊗F`

InfTT/H(E
′′)) satisfies

|QH/H| > |DH/H|. Again, Lemma 3.1.19 shows that |QH/H| = |Q/(Q ∩H)| = |Q|/|H|`,
so we have |Q| > |D|, a contradiction.

Proposition 3.1.22. Let H be a finite abelian group, and let k ∈ N. Moreover, let X be
a set of finite groups such that the set Y := {U ≤ G : G ∈ X} has the VBDP with respect
to every finite `-group and satisfies |U|` ≤ |D| · k for all U ∈ Y and all defect groups D of
blocks of U. Then the set

{Hoϕ U : U ∈ Y, ϕ : U→ Aut(H)}

has the VBDP with respect to every finite `-group, as well, where H oϕ U denotes the
outer semidirect product of H and U via the group homomorphism ϕ : U→ Aut(H).

Proof. LetM be a simple F`G-module, where G := HoϕU for someU ∈ X and some group
homomorphism ϕ : U → Aut(H). By Remark 3.1.18, there exist a simple F`H-module
E with inertia group T , and a simple F`[T/H]-module E ′ such that M ∼= IndGT (E ⊗F`
InfTT/H(E

′)). Let V be a vertex of M, and let B be the F`G-block containing M. By

part (b) of Proposition 1.3.1 there exists a simple module M̃ in B whose vertices are the

defect groups of B, and by Remark 3.1.18, we can write M̃ ∼= IndG
T̃
(Ẽ⊗F` Inf T̃

T̃/H
(Ẽ ′)) for

a simple F`H-module Ẽ with inertia group T̃ and a simple F`̃[T/H]-module Ẽ ′.
Now, Lemma 3.1.20 implies that the block B covers the blocks bE of E and bẼ of Ẽ.
Therefore, by part (a) of Proposition 1.3.4, there exists some g ∈ G such that gbE = bẼ.
As in the proof of Lemma 3.1.20, it follows from [53, Cor. 2.10, Thm. 4.8, Prop. 4.8]
that gE ∼= Ẽ and, thus, also gT = T̃ . Thus, we have

M̃ ∼= IndG
T̃
(Ẽ⊗F`

Inf T̃
T̃/H

(Ẽ ′))

= IndGgT (
gE⊗F`

Inf
gT
gT/H(Ẽ

′))

= IndGgT (
gE⊗F`

Inf
gT
gT/H(

gg−1

Ẽ ′))

= IndGgT (
gE⊗F`

g InfTT/H(
g−1

Ẽ ′))

= IndGgT (
g(E⊗F`

InfTT/H(
g−1

Ẽ ′)))

∼= IndGT (E⊗F`
InfTT/H(

g−1

Ẽ ′)),

where the last isomorphism follows from [16, Lem. 10.12]. Now, writing E ′′ := g−1
Ẽ ′ we

have M̃ ∼= IndGT (E⊗F`
InfTT/H(E

′′)).

Let D ∈ Vx(M̃) = Def(B). Then Corollary 3.1.21 implies that DH/H is a defect group
of the block b of F`[T/H] containing E ′′. Moreover, as V is a vertex of M, it follows from
[52, Lem. 4.3.5] that V is G-conjugate to the vertices of E⊗F`

InfTT/H(E
′). Thus, replacing

V by a G-conjugate, we have that VH/H is a vertex of E ′. Now, if C is a defect group of
the F`[T/H]-block containing E ′, it follows from Lemma 3.1.19 that
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|D| = |D|

|D∩H| · |D ∩H|
= |D|

|D∩H| · |H|`

= |C|︸︷︷︸
≤fVH/H(|VH/H|)≤fVH/H(|V |)

· |H|` · |D|/|D∩H|
|C|︸ ︷︷ ︸

≤|T/H|`|≤k
≤ fVH/H(|V |) · |H|` · k,

where fVH/H : N>0 → R is as in Lemma 3.1.11.

An example for the set X in the previous proposition is given by the set
X := {G ∈ F : G nilpotent}, as subgroups of nilpotent groups are nilpotent again,
and the defect groups of nilpotent groups are always the Sylow subgroups. Moreover, X
has the VBDP by part (c) of Proposition 3.1.7.

We finish this section with the SCBDP for symmetric and alternating groups. In
fact, this statement is already a consequence of the proofs of Example 3.1.5 from [17]
and of [18, Thm 3.9] together with [18, part (ii) of the proof of Thm 3.10]. We give a
different proof here:

Theorem 3.1.23. Let ` ∈ P. Then the set {Sym(n),Alt(n) : n ∈ N} has the SCBDP
with respect to every finite `-group.

Proof. By part (b) of Proposition 3.1.15, it suffices to show that the set {Sym(n) : n ∈ N}

has the SCBDP. Let n ∈ N>0, let D be a defect group of a block of F` Sym(n), and
let V ≤ D be a self-centralizing subgroup. From [42, Thm. 6.2.45] it follows that D is
isomorphic to a Sylow `-subgroup of Sym(`w) for some w ∈ N (actually, w is the `-weight
of the corresponding block). Hence, the assertion follows from part (b) of Proposition
2.3.6 and Theorem 2.1.5.

3.2 Results for finite classical groups

Now, we come to our results for sets of finite classical groups. First, we obtain the
following two theorems from our results in Section 2:

Theorem 3.2.1. Let ` ∈ P. The following sets of classical groups have the SCBSP with
respect to every finite `-group:

(a) for all n ∈ N>0, the sets

{GLn(q), SLn(q), PGLn(q),PSLn(q) : q power of `} ;
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(b) if ` = 2, then the sets

{GLn(q) : n ∈ N>0, q prime power, q ≡ 1 mod 4} ,

{GUn(q) : n ∈ N>0, q prime power, q ≡ 3 mod 4} ,

{
SLn(q), PSLn(q), PGLn(q) :

q prime power, q ≡ 1 mod 4,

n ∈ N>0 \
{
2, 4, . . . , 12(q− 1)2

}} ;

(c) if ` > 2, then the sets

{GLn(q), GUn(q) : n ∈ N>0, q prime power, ` - q} ,

{
SLn(q), PSLn(q), PGLn(q) :

q prime power, ` - q,
n ∈ N>0 \

{
`, `2, . . . , 1` (q− 1)`

}} ,
{

SUn(q), PSUn(q), PGUn(q) :
q prime power, ` - q,

n ∈ N>0 \
{
`, `2, . . . , 1` (q

2 − 1)`
}} ;

(d) if ` > 2, then the set

{Sp2n(q), PSp2n(q) : n ∈ N, q prime power, ` - q} ;

(e) if ` > 2, then the set

{GO2n+1(q), GO+
2n(q), GO−

2n(q),

PGO2n+1(q), PGO+
2n(q), PGO−

2n(q),

PSO+
2n(q), PSO−

2n(q)

Ω2n+1(q), Ω
+
2n(q), Ω

−
2n(q),

Spin2n+1(q), Spin+
2n(q), Spin−

2n(q),

PΩ+
2n(q), PΩ−

2n(q) : n ∈ N>1, q odd prime power, ` - q}.

Proof.

(a) Part (c) of Observation 2.5.12 implies |G| = qn(n−1)/2 ≤ |V |n(n−1)/2 for all
G ∈ Syl`(GLn(q)) ∪ Syl`(SLn(q)) ∪ Syl`(PGLn(q)) ∪ Syl`(PSLn(q)) and all
self-centralizing V ≤ G.

(b), (c) For the sets containing the general groups of linear and unitary type, this
follows immediately from part (a) of Proposition 2.5.10 and part (a) of Proposition
2.6.10. For the sets containing the special and projective (special) groups of linear
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and unitary type, it suffices to prove the claim for the linear case by part (c) of
Corollary 2.6.6. Let us write

X1 :=

SLn(q), PSLn(q), PGLn(q) :

q prime power, ` - q,
n ∈ N>0 \

{
`, `2, . . . , 1` (q− 1)`

}
,

` | gcd(n, q− 1)


and

X2 :=

SLn(q), PSLn(q), PGLn(q) :

q prime power, ` - q,
n ∈ N>0 \

{
`, `2, . . . , 1` (q− 1)`

}
,

` - n or ` - q− 1

 .
Then X2 has the SCBSP with respect to every finite `-group by part (b) and
Proposition 2.7.1. Moreover, X1 has the SCBSP with respect to every finite `-group
by Corollary 2.7.7 and Corollary 2.7.11. Therefore, also

X1 ∪ X2 =
{

SLn(q), PGLn(q), PSLn(q) : n, q; n 6= `, `2, . . . , (q− 1)`/`, ` - q
}

has the SCBSP with respect to every finite `-group.

(d), (e) This follows immediately from Theorem 2.6.7.

Theorem 3.2.2. Let ` ∈ P. The following sets of classical groups (and, therefore, also
any set containing one of the following) do not have the SCBSP with respect to every
finite `-group. In particular, these sets do not have the SCBDP with respect to every
finite `-group.

(a) if ` = 2, then for all n ∈ N>0 the sets

{GLn(q) : q ∈ P>2, q ≡ 3 mod 4} ,

{GUn(q) : q ∈ P>2, q ≡ 1 mod 4} ;

(b) if ` = 2, then for k ∈ {1, 3} the sets

{SL2(q) : q prime power, q ≡ k mod 4} ,

{PGL2(q) : q prime power, q ≡ k mod 4} ,

{PSL2(q) : q prime power, q ≡ k mod 4} ,

{SU2(q) : q prime power, q ≡ k mod 4} ,

{PGU2(q) : q prime power, q ≡ k mod 4} ,

{PSU2(q) : q prime power, q ≡ k mod 4} ;
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(c) if ` = 2, then for all m ∈ N>0 the sets

{SL2m(q) : q ∈ P, q ≡ 1 mod 4} ,

{PGL2m(q) : q ∈ P, q ≡ 1 mod 4} ,

{PSL2m(q) : q ∈ P, q ≡ 1 mod 4} ;

(d) if ` > 2, then for all m ∈ N>0 the sets

{SL`m(q) : q ∈ P, ` | q− 1} ,

{PGL`m(q) : q ∈ P, ` | q− 1} ,

{PSL`m(q) : q ∈ P, ` | q− 1} ,

{SU`m(q) : q ∈ P, ` | q+ 1} ,

{PGU`m(q) : q ∈ P, ` | q+ 1} ,

{PSU`m(q) : q ∈ P, ` | q+ 1} .

Proof.

(a) We fix some n ∈ N>0. If r ∈ N>0 is given, then by Dirichlet’s Theorem on
arithmetic progressions [56, see, for example, 4.IV.A on page 265] there exist
infinitely many prime numbers q ∈ P such that 2r | q− 1 and also infinitely many
prime numbers q ∈ P such that 2r | q + 1. As we can choose r arbitrarily large, it
follows from Corollary 2.5.3 and Proposition 2.6.4 that also the order of the Sylow
2-subgroup of GLn(q), or GUn(q), respectively, can get arbitrarily large. However,
we have seen in part (b) of Theorem 2.5.10 and part (b) of Corollary 2.6.10 that
such Sylow 2-subgroups always have a self-centralizing subgroup of order 2n.

(b) This follows immediately from Proposition 2.1.8, Theorem 2.5.7, and Theorem
2.6.9.

(c) For m = 1 this follows from part (b). Now, we fix some m ∈ N>1. If r ∈ N>0 is
given, then by Dirichlet’s Theorem on arithmetic progressions there exist infinitely
many prime numbers q ∈ P such that 2r | q− 1.
As we can choose r arbitrarily large, it follows from the order formulae in
Proposition 2.7.4 that the order of a Sylow 2-subgroup of SL2m(q), PGL2m(q),
or PSL2m(q) can get arbitrarily large, too. Now, the claim follows from Theorem
2.7.12 and Theorem 2.7.13, as the orders of the self-centralizing subgroups given
there do not depend on r for large r ≥ m.

(d) For the first three sets, the proof is analogous to the proof of part (c): We fix
some m ∈ N>0. If r ∈ N>0 is given, then by Dirichlet’s Theorem on arithmetic
progressions there exist infinitely many prime numbers q ∈ P such that `r | q − 1,
so the order of the Sylow `-subgroups of SL`m(q), PGL`m(q), and PSL`m(q) can
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get arbitrarily large. Now, the claim for the first three sets follows from Theorem
2.7.12, as the orders of the self-centralizing subgroups given there do not depend
on r for large r ≥ m. Finally, the claim for the last three sets follows from part (c)
of Corollary 2.6.6.

For most of the sets in Theorem 3.2.2, we cannot say whether the assertion is
still true if we replace the properties by the VDBP. However, with results from Chapter
4, we have the following:

Theorem 3.2.3. The set

{SL2(q) : q prime power, q ≡ 1 mod 4}

(and, therefore, also any set containing this one) does not have the VBDP with respect
to the quaternion group of order 8.

Proof. It follows from part (b) of Corollary 4.1.4 that for every prime power q satisfying
q ≡ 1 mod 4, there exists a simple F2 SL2(q)-module in the principal block such that its
vertices are quaternion groups of order 8. As |SL2(q)|2 can become arbitrarily large, the
assertion follows.

To generalize results from Theorem 3.2.1 to the SCBDP instead of the SCBSP,
we need the following result due to Fong and Srinivasan:

Theorem 3.2.4. Let n ∈ N>0, let q be a prime power, let q̃ be an odd prime power, and
let ` ∈ P>2 be such that ` - q · q̃.
Let

G ∈
{

GLn(q), GUn(q), Sp2n(q̃), SO2n+1(q̃), SO+
2n(q̃), SO−

2n(q̃)
}
.

If D is a defect group of a block of F`G, then there exist k, r1, . . . , rk, n1, . . . , nk ∈ N such
that D ∼=×ki=1(C`ri o Xni

), where Xni
∈ Syl`(Sym(ni)) for all i = 1, . . . , k.

Proof. See [28, page 126] and [29, pages 142-146].

Using this, we obtain the following result for the SCBDP:

Theorem 3.2.5. Let ` ∈ P>2. Then the set

{GLn(q), GUn(q), Sp2n(q̃), SO2n+1(q̃), SO+
2n(q̃), SO−

2n(q̃) :

n ∈ N, q prime power, q̃ odd prime power, ` - q · q̃}

has the SCBDP (and, thus, also the VBDP) with respect to every finite `-group.
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Proof. Let G be an arbitrary group from this set, and let D be a defect group of a
block of F`G. By Theorem 3.2.4 there exist k, r1, . . . , rk, n1, . . . , nk ∈ N such that D ∼=

×ki=1(C`ri o Xni
), where Xni

∈ Syl`(Sym(ni)) for all i. We identify D with this direct
product and assume that each C`ri o Xni

is non-trivial (otherwise, we have the same
situation for a smaller k). Let V ≤ D be a self-centralizing subgroup. Then we have

k =

k∑
i=1

1 ≤
k∑
i=1

nrk(C`ri o Xni
) = nrk(D) ≤ |V ||V | log` |V |

by Theorem 2.1.5. Moreover, it is clear that for each i we have

`ri = |C`ri | = |Z(C`ri )| ≤ |Z(C`ri o Xni
)| ≤ |Z(D)| ≤ |V |,

where the first inequality follows from Proposition 2.2.5. It remains to bound the ni in
terms of |V |. If ri = 0, then C`ri oXni

∼= Xni
, and by part (b) of Proposition 2.3.6 it follows

that

ni ≤ nrk(Xni
)`+ `−1 = nrk(C`ri oXni

)`+ `−1 ≤ nrk(D)`+ `−1 ≤ (|V ||V | log` |V |)`+ `−1.

Finally, if ri > 0, then Proposition 2.2.5 implies

ni = ni nrk(C`ri ) ≤ nrk(C`ri o Xni
) ≤ nrk(D) ≤ |V ||V | log` |V |.

Corollary 3.2.6. Let ` ∈ P>2. The following sets of classical groups have the SCBDP
(and, thus, also the VBDP) with respect to every finite `-group:

(a) the sets

{PGLn(q), SLn(q) : n ∈ N, q prime power, ` - q, ` - q− 1} ,

{PSLn(q) : n ∈ N, q prime power, ` - q, ` - gcd(n, q− 1)} ,

{PGUn(q), SUn(q) : n ∈ N, q prime power, ` - q, ` - q+ 1} ,

{PSUn(q) : n ∈ N, q prime power, ` - q, ` - gcd(n, q+ 1)} ;

(b) for fixed prime powers q satisfying ` - q, the set

{PGLn(q), PUn(q), SLn(q), SUn(q), PSLn(q), PSUn(q) : n ∈ N} ;

(c) the set

{PSp2n(q) : n ∈ N, q odd prime power, ` - q} ;
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(d) the set

{GO2n+1(q), GO+
2n(q), GO−

2n(q),

PGO2n+1(q), PGO+
2n(q), PGO−

2n(q),

PSO+
2n(q), PSO−

2n(q)

Ω2n+1(q), Ω
+
2n(q), Ω

−
2n(q),

PΩ+
2n(q), PΩ−

2n(q) : n ∈ N>1, q odd prime power, ` - q}.

Proof.

(a), (b) We have
|Z(GLn(q))| = q− 1 = |GLn(q) : SLn(q)|,

|Z(GUn(q))| = q+ 1 = |GUn(q) : SUn(q)|,

|Z(SLn(q))| = gcd(n, q− 1),

and
|Z(SUn(q))| = gcd(n, q+ 1).

Thus, the claim follows from Theorem 3.2.5 together with parts (a) and (b) of
Proposition 3.1.15.

(c), (d) This is a consequence of Theorem 3.2.5 together with Proposition 3.1.15.

Now, we also obtain the SCBSP for the following set of spin groups:

Corollary 3.2.7. Let ` ∈ P>2. The set{
Spin2n+1(q), Spin+

2n(q), Spin−
2n(q) : n ∈ N>1, q odd prime power, ` - q

}
has the SCBSP with respect to every finite `-group.

Proof. The spin groups have a normal subgroup of order 2 such that the corresponding
quotient group is the corresponding group Ω, see Remark 1.6.18. Thus, the claim follows
from part (d) of Corollary 3.2.6 together with Observation 3.1.17 as the SCBDP implies
the SCBSP.

Using a result of Michel Broué, we can prove Theorem 3.2.4 for general linear
groups also for the case ` = 2 and q ≡ 1 mod 4:

Theorem 3.2.8. The set

{GLn(q) : n ∈ N, q prime power, q ≡ 1 mod 4}

has the SCBDP (and, thus, also the VBDP) with respect to every 2-group.
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Proof. Let n ∈ N, and let q be a prime power satisfying q ≡ 1 mod 4. If D is a
defect group of some block of F` GLn(q), then by [9, Prop. 3.6] D is isomorphic to a
direct product×ki=1Di with Di ∈ Syl`(GLni

(qi)) for some integers n1, . . . , nk ≤ n and
powers q1, . . . , qk of q. In particular, each qi satisfies qi ≡ 1 mod 4. Thus, each Di is
isomorphic to C(q−1)2 o Si, where Si ∈ Syl2(Sym(ni)). Now, the proof is the same as for
Theorem 3.2.5.

Finally, we state a result due to Dipper which considers the case ` | q:

Theorem 3.2.9 ([20], [21]). Let ` ∈ P, and let G be a Chevalley group or a twisted
Chevalley group over a finite field of characteristic `. Then the vertices of the simple
non-projective F`G-modules are the Sylow `-subgroups of G.

Corollary 3.2.10. For every ` ∈ P, the set of all Chevalley groups and all twisted
Chevalley groups over finite fields of characteristic ` has the VBDP with respect to every
finite `-group. In particular, this is also true for the subset of all simple classical groups
over finite fields of characteristic `.

3.3 Results for the groups G2(q) and 3D4(q
3)

Let q be a prime power. In this short section, we consider the Chevalley groups G2(q)
and the twisted Chevalley groups 3D4(q

3) with respect to the SCBDP for ` > 2, where
the notation is as in Remark 1.6.19. The orders of these groups are

|G2(q)| = q
6(q6 − 1)(q2 − 1)

and
|3D4(q

3)| = q12(q8 + q4 + 1)(q6 − 1)(q2 − 1),

see [49, page 208].

For 5 ≤ ` - q, the Sylow `-subgroups of F`G2(q) and F`
3D4(q

3) are abelian, see
[49]. In particular, the set{

G2(q),
3D4(q

3) : q primer power, ` - q
}

has the SCBDP with respect to every finite `-group if ` ≥ 5.

Now, we consider the case ` := 3 - q. Here, the defect groups of the blocks of
F`G2(q) and F`

3D4(q
3) are abelian or Sylow 3-subgroups by [35, page 371] and [19,

Prop. 5.4]. With our results from Section 2.7, we obtain the following:

Theorem 3.3.1. Let q be a prime power not divisible by 3.

(a) The Sylow 3-subgroups of G2(q) have self-centralizing subgroups isomorphic to C23.
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(b) The Sylow 3-subgroups of 3D4(q
3) have self-centralizing subgroups isomorphic to

C23 or abelian self-centralizing subgroups of order 27.

In particular, the sets
{G2(q) : q prime power, 3 - q}

and {
3D4(q

3) : q prime power, 3 - q
}

do not have the SCBSP and, thus, also not the SCBDP, with respect to every 3-group.

Proof.

(a) The group G2(q) has subgroups isomorphic to SL3(q) and SU3(q) by [4, page 24].
Comparing orders, it follows that the Sylow 3-subgroups of G2(q) are isomorphic
to those of SL3(q) if q ≡ 1 mod 3, and isomorphic to those of SU3(q) if q ≡
−1 mod 3. Now, it follows from Theorem 2.7.12 and Corollary 2.6.6 that these
Sylow 3-subgroups have self-centralizing subgroups of order 9.

(b) Let G ∈ Syl3(
3D4(q

3)). By [44], 3D4(q
3) has a subgroup H isomorphic to G2(q),

and replacing G by a suitable conjugate yields G ∩ H ∈ Syl3(H). Comparing the
orders of 3D4(q

3) and G2(q) and considering the cases q ≡ 1 mod 3 and q ≡
−1 mod 3, we obtain

|G : G ∩H| = |3D4(q
3)|3

|G2(q)|3
= 3.

Now, the claim follows from part (a) and Proposition 2.5.8.

Unfortunately, it seems that the arguments used in the proof of Theorem 3.3.1 do
not generalize to other Chevalley groups or twisted Chevalley groups.





4 On the vertices of the unipotent simple

F`GLn(q)-modules labeled by partitions

(n− 1, 1)

In this chapter, we consider a particular simple module for GLn(q). For ` ∈ P>2, the
vertices of this module are known to be the Sylow `-subgroups of GLn(q). For ` = n = 2,
we will determine the vertices in Theorem 4.2.1.

4.1 The module

Let ` ∈ P, let n ∈ N>1, and let q be a prime power such that ` - q. It is well known that
the groups GLn(q) and SLn(q) act 2-transitively on the set of one-dimensional subspaces
of Fnq . For both groups, the kernel of this action is the center of the corresponding

group. The number of one-dimensional subspaces of Fnq is given by [n] := 1+q+· · ·+qn−1.

Let
G ∈ {GLn(q),PGLn(q), SLn(q),PSLn(q)} .

Ifω1, . . . ,ω[n] denote the one-dimensional subspaces of Fnq , then we obtain a permutation

F`G-module M =
〈
ω1, . . . ,ω[n]

〉
F`

.

Now, we consider G := GLn(q). As M is a transitive permutation module, it is
well known and easily verified that

U :=
〈
ω1 + · · ·+ω[n]

〉
F`

is the unique submodule of M that is isomorphic to the trivial module. Moreover, M has
the submodule

S :=


[n]∑
i=1

aiωi :

[n]∑
i=1

ai = 0

 ,
which is the kernel of the augmentation map M → F`. For each fixed i ∈ {1, . . . , [n]},
the set {ωj −ωi : j 6= i} is an F`-basis of S.

With the notation from [41], the F` GLn(q)-module M from above is the permutation
module M(n−1,1) labeled by the partition (n − 1, 1), and S is the corresponding module
S(n−1,1), see [41, page 16, page 47]. As we will see, M has a unique non-trivial composition

factor D, and with the notation from [41] this is the unipotent simple F` GLn(q)-module
D(n−1,1) that can be seen to be the analogue of the simple F` Sym(n)-module labeled
by the partition (n − 1, 1). For the latter, the vertices are known by work of Jürgen
Müller and René Zimmermann, see [51]. In this chapter, we investigate the vertices of
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the simple F` GLn(q)-module D.

We have two cases:

• If ` - [n], then U 6⊆ S, and it follows that M = U⊕S. As U is the unique submodule
of M that is isomorphic to the trivial module, the module S must be simple by
[41, (11.12)(iii), Thm. 16.3, Thm. 20.7], so S is the unique non-trivial composition
factor ofM. Moreover, by [26, Lem. 2.6], the vertices of S are the Sylow `-subgroups
of the group L(n−1,1) = GLn−1(q)×GL1(q). Via the embedding L(n−1,1) ↪→ GLn(q)

from part (a) of Lemma 2.5.1, the order formula |GLn(q)| = q
n(n−1)/2

∏n
j=1(q

j− 1)
implies

|GLn(q) : L(n−1,1)|` =
(qn − 1)`
(q− 1)`

= [n]` = 1.

Therefore, the vertices of S must be the Sylow `-subgroups of GLn(q).

• If ` | [n], then U ⊆ S, and the quotient module D := S/U is simple by [41,
(11.12)(iii), Thm. 16.3, Thm. 20.7]. Thus, {0} ⊆ U ⊆ S ⊆ M is a composition
series for M and D is the unique non-trivial composition factor. As the trivial
module U occurs in S and as S/U is simple, we have that D lies in the principal
block of F` GLn(q). Clearly, here the same results hold if we replace GLn(q) by
PGLn(q).
If ` > 2, then ` - [n] − 2 = dimF`

(D). Therefore, by part (d) of Proposition 1.2.4,
we have Vx(D) = Syl`(G) for both G = GLn(q) and G = PGLn(q).

It remains to determine the vertices of D for ` = 2 | [n]. It follows immediately from the
definition of [n] that n must be even in this case. The aim of this chapter is to provide
the vertices of D for ` = 2 and n = 2. We state our result in Theorem 4.2.1.

For arbitrary n ∈ N>0, it is well known and easily verified that the map

PSLn(q)→ PGLn(q) : AZ(SLn(q)) 7→ AZ(GLn(q))

is a (well-defined) group monomorphism whose image is a normal subgroup in PGLn(q)
of index gcd(n, q − 1). In what follows, we will identify PSL2(q) with its image in
PGL2(q) under this group monomorphism. Thus, PSL2(q) is a normal subgroup of
PGL2(q) of index 2.

We need the following lemmas:

Lemma 4.1.1. Let q be a prime power, and let U ≤ SL2(q) be a 2-subgroup containing
Z := Z(SL2(q))2 = {±12} such that U/Z ≤ PSL2(q) is isomorphic to the Klein four-group.
Then U is isomorphic to the quaternion group of order 8.
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Proof. As Z has order 2 and C22 has order 4, it is clear that U has order 8. It is well
known that −12 is the unique element of order 2 in SL2(q), so −12 is also the unique
element of order 2 in U. Moreover, U is not cyclic, since otherwise U/Z would be cyclic
of order 4. Thus, U is a non-cyclic group of order 8 which has a unique element of order
2. By the classification of groups of order 8 (see, for example, [37, Satz I.14.10(a)]), it
follows that U is isomorphic to the quaternion group.

Lemma 4.1.2. Let G be a finite group, let ` ∈ P, and let N be a subgroup of Z(G).

(a) Let D be a simple F`[G/N]-module. Then D̃ := InfGG/N(D) is a simple KG-module,

and we have V/N` ∼= VN/N ∈ Vx(D) for all V ∈ Vx(D̃). In particular, Vx(D) =
Syl`(G/N) if and only if Vx(D̃) = Syl`(G).

(b) Let D̃ be a composition factor of a transitive permutation F`G-module M such that
N is contained in the corresponding stabilizer subgroups, and let V ∈ Vx(D̃). Then
there exists a simple F`[G/N]-module D such that D̃ = InfGG/N(D) and V/N` ∼=
VN/N ∈ Vx(D).

Proof.

(a) It follows immediately from [46, Prop. 2.1] that VN/N ∈ Vx(D). Moreover, by
part (d) of Proposition 1.2.6 we have N` ⊆ V, and Lagrange’s Theorem from group
theory implies N` ′ ∩ V = {1}. Thus, VN/N ∼= V/(V ∩N) = V/N`.

(b) Let M be a transitive permutation module such that D̃ is a composition factor
of M. Then M ∼= IndGH(F`) for some subgroup H ≤ G, where F` is the trivial
F`H-module. By Mackey’s Theorem 1.1.3, the F`N-module ResGN(M) is isomorphic
to ⊕

g∈[N\G/H]

IndNgH∩N(Res
gH
gH∩N(

gF`)) =
⊕

g∈[N\G/H]

F`,

since H ≤ N ≤ Z(G), so N acts trivially on M and, thus, also on D̃. Therefore,
N ⊆ ker(D̃) and D̃ = InfGG/N(D) for some simple F`[G/N]-module D. Now, the
claim follows from part (a).

We will use the following facts from the literature:

Theorem 4.1.3.

(a) The F2 PGL2(q)-module D is, up to isomorphism, the unique non-trivial simple
module lying in the principal block of F2 PGL2(q).

(b) As an F2 PSL2(q)-module, D is the direct sum of two non-trivial simple modules
S1 and S2 both of which have dimension q−1

2 . If q ≡ 1 mod 4, then the vertices of
S1 and S2 are Klein four-groups. If q ≡ 3 mod 4, then the vertices of S1 and S2
are the Sylow 2-subgroups of PSL2(q).
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Proof.

(a) By [31, Thm 5.1] (see also the proof of [30, Prop. 2.4]), the principal block of
F2 PGL2(q) has a unique non-trivial simple module up to isomorphism. By our
considerations above, D is such a module.

(b) The description of the conjugacy classes of SL2(q) in [22, Thm. 38.1] shows that
the elements of order 4 in SL2(q) form a single conjugacy class (as either q − 1
is divisible by 4 or q + 1 is). Therefore, in PSL2(q), any two involutions are
conjugate. Moreover, we have seen in Theorem 2.5.7 that the Sylow 2-subgroups
of PSL2(q) are dihedral. Thus, [8, Section VII, Case I] implies that the principal
block of PSL2(q) has exactly two non-trivial simple modules S1 and S2 up to
isomorphism.
Now, [25, page 666, Lem. 4.3, Cor. 5.2] shows that both have dimension q−1

2 .

Finally, Clifford’s Theorem [52, Thm. 3.3.1] implies that there exists some

g ∈ PGL2(q) \ PSL2(q) such that gS1 = S2 and Res
PGL2(q)
PSL2(q)

(D) = S1 ⊕ S2. The

assertion about the vertices of S1 and S2 follows from [25, Thm. 1, Thm. 3].

From these facts, we can deduce the following:

Corollary 4.1.4.

(a) As an F2 PGL2(q)-module, D is relatively PSL2(q)-projective, and the vertices of
D are Klein four-groups C22 if q ≡ 1 mod 4, and Sylow 2-subgroups of PSL2(q) for
q ≡ 3 mod 4.

(b) As an F2 SL2(q)-module, D is the direct sum of the inflations of the two modules
S1 and S2 from part (a). The vertices of these inflations are quaternion groups of
order 8 if q ≡ 1 mod 4, and Sylow 2-subgroups of SL2(q) if q ≡ 3 mod 4.

(c) As an F2 GL2(q)-module, the vertices of D have order 4(q − 1)2 if q ≡ 1 mod 4,
and order 2(q+ 1)2 if q ≡ 3 mod 4.

Proof.

(a) By part (b) of Theorem 4.1.3, the inertia group I of the module S1 is strictly
contained in PGL2(q), and so it follows from |PGL2(q) : PSL2(q)| = 2 that I =

PSL2(q). By Clifford’s Theorem [52, Thm. 3.3.1], we thus haveD = Ind
PGL2(q)
PSL2(q)

(S1).

In particular, D is relatively PSL2(q)-projective. Now, the assertion about the
vertices follows immediately from Proposition 1.2.6.

(b) This follows immediately from parts (b) and (c) of Theorem 4.1.3 together with
Lemma 4.1.1 and Lemma 4.1.2.
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(c) This follows immediately from part (c) of Theorem 4.1.3 together with Lemma
4.1.2.

4.2 The theorem

For the remainder of this chapter, we keep the following notation:

We fix an odd prime power q and an element c ∈ O2(F
×
q ) of order (q − 1)2.

Then 〈c12〉 = O2(Z(GL2(q))). Moreover, we write

A :=

(
1 0

0 −1

)
∈ GL2(q)

and

B :=

(
0 1

1 0

)
∈ GL2(q).

Then
〈A,B〉 = {±12,±A,±B,±AB} ∼= Dih8 .

We also define V := 〈c12, A, B〉. As 〈c12〉 is normal in V, we have V = 〈c12〉 〈A,B〉, so
〈c12〉 ∩ 〈A,B〉 = {±12} implies |V | = 4(q− 1)2.

With the notation from [32, Thm. 5.3], V is a central product of 〈c12〉 ∼= O2(F
×
q ) and

〈A,B〉 ∼= Dih8 with respect to {±12} ∼= C2.

It is clear that if q ≡ 3 mod 4, then c = −1 and therefore V = 〈A,B〉 ∼= Dih8.

The main result of this chapter is the following theorem which we did not find in the
literature.

Theorem 4.2.1.

(a) If q ≡ 1 mod 4, then the vertices of the F2 GL2(q)-module D are conjugate to V.
In particular, D is then not relatively SL2(q)-projective.

(b) If q ≡ 3 mod 4, then the vertices of the F2 GL2(q)-module D are the Sylow
2-subgroups of SL2(q) (and, therefore, generalized quaternion by Theorem 2.5.7).
In particular, D is then relatively SL2(q)-projective.

Remark 4.2.2. We observe that Theorem 4.2.1 fits together with Theorem 2.5.10:
If q ≡ 1 mod 4, then the vertices of the F2 GL2(q)-module D are conjugate to V, and we
have

|GL2(q)|2 = (q− 1)2(q
2 − 1)2 = 2(q− 1)22 < 16(q− 1)22 = |V |2,
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which gives a much better bound for this particular self-centralizing subgroup V of a
Sylow 2-subgroup of GL2(q) than the bound from part (a) of Theorem 2.5.10.
If q ≡ 3 mod 4, then the vertices of the F2 GL2(q)-module D are the Sylow 2-subgroups
of SL2(q), and

|GL2(q)|2 = (q− 1)2|SL2(q)|2 = 2|SL2(q)|2 < |SL2(q)|
2
2.

Thus, the vertices of D do not occur among the self-centralizing subgroups of order 4
stated in part (b) of Theorem 2.5.10.

4.3 The proof

To prove Theorem 4.2.1, we will apply a method known as Brauer construction :

Let ` ∈ P, let G be a finite group, and let Q ≤ G be an `-subgroup. Let D be
an F`G-module, let

DQ := {m ∈ D : gm = m ∀ g ∈ Q} ,

and for a subgroup P of Q let

TrQP : DP → DQ : m 7→ ∑
g∈[Q/P]

gm,

where [Q/P] denotes a set of representatives for Q/P.

Theorem 4.3.1 ([10, page 403, (1.3)]). If DQ/
∑
P<Q TrQP (D

P) 6= 0, then Q is contained
in some vertex of D.

Here, it is actually enough to only consider the maximal subgroups of Q: If R ≤ P ≤ Q
are given and if S is a set of representatives for P/R and T is a set of representatives for
Q/P, then S · T is a set of representatives for Q/R. Thus, we have TrQR = TrQP ◦TrPR. It

follows that with TrQ(D) :=
∑
P<Q maximal TrQP (D

P), we have:

If DQ/TrQ(D) 6= 0, then Q is contained in some vertex of D.

The converse of Theorem 4.3.1 is not true, in general. The idea of our proof here is to
determine all maximal subgroups of the 2-groups stated in Theorem 4.2.1, and then to
apply Theorem 4.3.1 for these maximal subgroups. As we already know the order of the
vertices of the F2 GL2(q)-module D by part (c) of Corollary 4.1.4, this will suffice.

In order to determine the maximal subgroups of the 2-groups of our interest, we
will use the following lemma, which is probably well known. For the reader’s
convenience, we also provide a proof.
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Lemma 4.3.2. Let G be a finite `-group, and let M be a minimal generating set of G.
Then G has exactly 1+ `+ `2 + · · ·+ `|M|−1 maximal subgroups.

Proof. The maximal subgroups of G correspond bijectively to the maximal subgroups
of G/Φ(G), where Φ(G) is the Frattini subgroup of G. As the cardinality of M is
the dimension of the F`-vector space G/Φ(G) by Burnside’s Basis Theorem [37, Thm.
III.3.15], and the maximal subgroups of G/Φ(G) are exactly the subspaces of G/Φ(G)
of dimension (dimF`

(G/Φ(G)) − 1), the claim follows.

For an arbitrary field K, a set of representatives for the one-dimensional subspaces of K2

is
{
(0, 1)t, (1, x)t : x ∈ K

}
.

For the remainder of this chapter, we write

ωx :=
〈
(1, x)t

〉
Fq

for x ∈ Fq,

and
ω :=

〈
(0, 1)t

〉
Fq
.

Moreover, we define
δx := (ωx +ω) +U for x ∈ Fq,

where U is the module from Section 4.1. Then the set
{
δx : x ∈ F×q

}
has cardinality

q − 1 = dimF2
(D) and generates D, as the sum of its elements is δ0. Therefore,{

δx : x ∈ F×q
}

is an F2-basis of D.

Before we distinguish the two cases q ≡ 1 mod 4, and q ≡ 3 mod 4, we will prove the
following lemma which will be applied in both cases later on.

Lemma 4.3.3. Let x ∈ Fq.

(a) We have A · δx = δ−x.

(b) If x 6= 0, then B · δx = δx−1 + δ0. Moreover, B · δ0 = δ0.

In particular, both δ1 + δ−1 and δ0 belong to DV .

Proof.

(a) We have
A ·ωx = A · 〈( 1x )〉Fq

=
〈(

1
−x

)〉
Fq

= ω−x

and
A ·ω = A ·

〈(
0
1

)〉
Fq

=
〈(
0
1

)〉
Fq

= ω.

It follows that

A · δx = A · (ωx +ω) +U = (A ·ωx +A ·ω) +U = (ω−x +ω) +U = δ−x.
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(b) If x 6= 0, then

B ·ωx = B · 〈( 1x )〉Fq
= 〈( x1 )〉Fq

=
〈(

1
x−1

)〉
Fq

= ωx−1 ,

and moreover,
B ·ω = B ·

〈(
0
1

)〉
Fq

=
〈(
1
0

)〉
Fq

= ω0.

As B has order 2, it follows that also B ·ω0 = ω. Thus, we have

B · δx = B · (ωx +ω) +U = (B ·ωx + B ·ω) +U = (ωx−1 +ω0) +U

= (ωx−1 +ω0 + 2ω) +U = δx−1 + δ0

for x 6= 0, and finally,

B · δ0 = B · (ω0 +ω) +U = (B ·ω0 + B ·ω) +U = (ω+ω0) +U = δ0.

4.3.1 The case q ≡ 1 mod 4

First, we consider the case q ≡ 1 mod 4.

Lemma 4.3.4. The group V has precisely seven maximal subgroups. They are given by〈
c212, A, B

〉
, 〈c12, A〉, 〈c12, B〉, 〈c12, AB〉, 〈A, cB〉, 〈cA, B〉, and 〈cA, cB〉.

Proof. It is clear that {c12, A, B} is a minimal generating set for V, so it follows
from Lemma 4.3.2 that V has precisely 1 + 2 + 22 = 7 maximal subgroups. From〈
c212, A, B

〉
=
〈
c212

〉
〈A,B〉 and

〈
c212

〉
∩ 〈A,B〉 = {±12} it follows that

〈
c212, A, B

〉
has

order 2(q− 1)2.

Moreover, for Z ∈ {A,B,AB} we have 〈c12, Z〉 = 〈c12〉 〈Z〉, so it follows from
〈c12〉∩〈A〉 = {12}, 〈c12〉∩〈B〉 = {12}, and 〈c12〉∩〈AB〉 = {±12} that the three subgroups
〈c12, A〉, 〈c12, B〉, and 〈c12, AB〉 have order 2(q− 1)2.

Next, consider the subgroups 〈A, cB〉 and 〈cA, B〉. The equation (cB)(q−1)2/2 = −12
implies that A(cB)A−1 = −cB ∈ 〈cB〉, so 〈cB〉 is normal in 〈A, cB〉. As A

has order 2, the quotient group 〈A, cB〉 / 〈cB〉 has only two elements. Thus,
| 〈A, cB〉 | = 2| 〈cB〉 | = 2 ord(cB) = 2 ord(c) = 2(q− 1)2.
Similarly, we have (cA)(q−1)2/2 = −12, so B(cA)B−1 = −cA ∈ 〈cA〉 shows that 〈cA〉 is
normal in 〈cA, B〉. As B has order 2, the quotient group 〈cA, B〉 / 〈cA〉 has only two
elements, so we have | 〈cA, B〉 | = 2| 〈cA〉 | = 2 ord(cA) = 2 ord(c) = 2(q− 1)2.

It remains to consider the subgroup 〈cA, cB〉. We have (cA)(q−1)2/2 = −12,
so (cB)(cA)(cB)−1 = −cA ∈ 〈cA〉. Thus, 〈cA〉 is normal in 〈cA, cB〉. As
(cB)2 = c212 = (cA)2 ∈ 〈cA〉, the quotient group 〈cA, cB〉 / 〈cA〉 has only two
elements. It follows that | 〈cA, cB〉 | = 2| 〈cA〉 | = 2 ord(cA) = 2 ord(c) = 2(q− 1)2.
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Lemma 4.3.5. Let P be a maximal subgroup of V, and let v =
∑
x∈F×q λxδx ∈ D

P. Then

λ1 = λ−1 and
∑
x∈F×q λx = 0.

Proof. Note that since v ∈ DP, we have v = Av or v = Bv or v = ABv.

First case: v = Av.
Then ∑

x∈F×q

λxδx =
∑
x∈F×q

λxδ−x,

and comparing the coefficients at δx on both sides yields λx = λ−x for all x ∈ F×q .
In particular, λ1 = λ−1.
Moreover, we have an equivalence relation on F×q defined by

x ∼ y :⇐⇒ x ∈ {y,−y} .

If R denotes a set of representatives, then∑
x∈F×q

λx =
∑
x∈R

λx + λ−x︸ ︷︷ ︸
=0

= 0.

Second case: v = Bv.
Then ∑

x∈F×q

λxδx =
∑
x∈F×q

λxδx−1 +
∑
x∈F×q

λxδ0.

Comparing the coefficients at δ1 on both sides yields λ1 = λ1 +
∑
x∈F×q λx, so∑

x∈F×q λx = 0. Now, comparing the coefficients at δx for x /∈ {1,−1} shows that

λx = λx−1 for all those x. As

x ∼ y :⇐⇒ x ∈
{
y, y−1

}
defines an equivalence relation on F×q \ {1,−1}, we have

0 =
∑
x∈F×q

λx = λ1 + λ−1 +
∑
x∈R

λx + λx−1︸ ︷︷ ︸
=0

= λ1 + λ−1,

where R denotes a set of representatives.

Third case: v = ABv.
Then ∑

x∈F×q

λxδx =
∑
x∈F×q

λxδ−x−1 +
∑
x∈F×q

λxδ0.

Since q ≡ 1 mod 4, there exists an element y ∈ F×q of order 4. It follows that

y = −y−1, and comparing the coefficients at δy implies
∑
x∈F×q λx = 0. Now,

comparing all coefficients, we get λx = λ−x−1 for all x ∈ F×q . In particular, λ1 = λ−1.
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Lemma 4.3.6. Let P be a maximal subgroup of V, and let v ∈ DP. Then the coefficient
of TrVP (v) ∈ DV at δ1 is zero. In particular, both δ1+δ−1 and δ0 do not belong to TrV(D).

Proof. We write v =
∑
x∈F×q λxδx. By Lemma 4.3.5, we have λ1 = λ−1 and

∑
x∈F×q λx = 0.

First case: A,B ∈ P.
It follows that c12 /∈ P, and the the claim is trivially true since then TrVP (v) =
v+ c12v = v+ v = 0.

Second case: A /∈ P.
Then

TrVP (v) = v+Av

=
∑
x∈F×q

λxδx +
∑
x∈F×q

λxδ−x

=
∑
x∈F×q

λxδx +
∑
x∈F×q

λ−xδx,

and the claim follows since λ1 = λ−1.

Third case: B /∈ P.
Then

TrVP (v) = v+ Bv

=
∑
x∈F×q

λxδx +
∑
x∈F×q

λxδx−1 +
∑
x∈F×q

λx

︸ ︷︷ ︸
=0

δ0

=
∑
x∈F×q

(λx + λx−1)δx,

and the claim follows.

We are, now, in position to prove part (a) of Theorem 4.2.1:

Proof of part (a) of Theorem 4.2.1. By Lemma 4.3.3 and Lemma 4.3.6, the vectors
δ1 + δ−1 and δ0 belong to DV \ TrV(D). Thus, V is contained in some vertex of D. As
the vertices have order 4(q− 1)2 = |V |, this proves part (a) of Theorem 4.2.1.
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4.3.2 The case q ≡ 3 mod 4

Now, we consider the case q ≡ 3 mod 4.

Let α ∈ F×
q2

be such that ord(α) = (q2−1)2 = 2(q+1)2. Then TrF
q2

|Fq
(α) = α+αq ∈ Fq.

We write

X :=

(
0 1

1 α+ αq

)
and Y := AB =

(
0 1

−1 0

)
.

Then X is the matrix of the Fq-linear map Fq2 → Fq2 : x 7→ αx with respect to the
Fq-basis {1, α}. By [13, page 142], the semidihedral group 〈X, Y〉 of order 4(q + 1)2 is a
Sylow 2-subgroup of GL2(q) (as we have already seen in part (b) Theorem 2.5.7).

Lemma 4.3.7. For all k ∈ N, we have

Xk =
1

αq − α

(
αq+k − αqk+1 αqk − αk

αqk − αk αq(k+1) − αk+1

)
.

Proof. This follows immediately by induction: The claim is clearly true for k = 0, and
moreover, (

αq+k − αqk+1 αqk − αk

αqk − αk αq(k+1) − αk+1

)(
0 1

1 α+ αq

)
=

(
αqk − αk αq(k+1) − αk+1

αq(k+1) − αk+1 αqk − αk + αqk+q+1 − αk+2 + αq(k+2) − αk+q+1

)
=

(
αq+k+1 − αq(k+1)+1 αq(k+1) − αk+1

αq(k+1) − αk+1 αq(k+2) − αk+2

)
,

where the last equality holds since αq+1 = −1.

Since ord(X) = ord(α) = 2(q + 1)2 ≥ 8 and det(X) = −1, we have that X(q+1)2 ∈ SL2(q)
is an involution. It is well known that the only involution in SL2(q) is −12, so X(q+1)2/2

satisfies (X(q+1)2/2)2 = −12. As the matrix X(q+1)2/2 is symmetric, we may write

X(q+1)2/2 =

(
a b

b d

)
,

and from (X(q+1)2/2)2 = −12 it follows that a2 + b2 = −1 and d = −a.
Moreover, the group

〈
X(q+1)2/2, Y

〉
is isomorphic to the quaternion group of order 8. The

maximal subgroups of
〈
X(q+1)2/2, Y

〉
are, thus, given by

〈
X(q+1)2/2

〉
, 〈Y〉, and

〈
X(q+1)2/2Y

〉
.

Remark 4.3.8. Note that we can also compute a and b explicitly in terms of α: For
k := (q + 1)2/2, we have αqk+k = (αq+1)k = (−1)k = 1 and α2k = −1, so it follows that
αqk = α−k = −αk. Thus, Lemma 4.3.7 shows that(

a b

b −a

)
=

1

αq − α

(
αq+k + αk+1 −2αk

−2αk −αq+k − αk+1

)
.



110 4.3 The proof

In particular, for any odd prime power q ≡ 3 mod 4, we can compute explicitly two
elements a, b ∈ F×q in terms of a primitive root of Fq2 such hat a2 + b2 = −1.

Next, we write F := F×q \
{
−a
b ,

b
a

}
, and consider the two maps

σ : S→ Fq : x 7→ −ax+ b

bx+ a
and τ : S→ Fq : x 7→ −x−1.

Lemma 4.3.9. Both σ and τ are permutations on F with σ2 = τ2 = idF and σ◦τ = τ◦σ.
The orbits of F under the action of 〈τ, σ〉 are of the form {x, σ(x), τ(x), σ(τ(x))} and have
cardinality 4.

Proof. First, we show that the images of σ and τ lie in F. This is clear for τ, since
−(−a

b )
−1 = b

a and −(ba)
−1 = −a

b . Moreover, from −ax+b
bx+a = 0 it follows that x = b

a /∈ F,
and from −ax+b

bx+a = b
a , it follows that x = 0 /∈ F. Finally, −ax+b

bx+a = −a
b implies

−1 = a2 + b2 = 0, a contradiction. Thus, the image of σ is contained in F, too.

Let x ∈ F. Then we have

σ2(x) =
−a−ax+b

bx+a + b

b−ax+b
bx+a + a

=
1

bx+a
1

bx+a

· x(a
2 + b2) − ab+ ab

a2 + b2 − abx+ abx
= x

and τ2(x) = −(−x−1)−1 = x. Moreover,

(τ ◦ σ ◦ τ)(x) = −

(
ax−1 + b

−bx−1 + a

)−1

= −
−bx−1 + a

ax−1 + b
= −

x−1

x−1
ax− b

bx+ a
= σ(x).

If x is a fixed point of τ, then x2 = −1 implies that x ∈ F×q has order 4, contradicting
the fact q ≡ 3 mod 4. If x is a fixed point of σ, then x(bx + a) = −ax + b implies
x2 + 2abx− 1 = 0, so

b2(x+ a
b )
2 = b2(1+ (ab )

2) = a2 + b2 = −1.

It follows that b(x+ a
b ) ∈ F

×
q has order 4, a contradiction.

Finally, it is clear that the orbits of F are of the form

{x, σ(x), τ(x), σ(τ(x))} .

As σ ◦ τ = τ ◦ σ, we have | 〈τ, σ〉 | = 4, and since σ and τ have no fixed points, their
cardinality is always at least 2.
Suppose that there exists some x ∈ F such that σ(x) = τ(x). Then −x−1 = −ax+b

bx+a , so

x2 − 2bax− 1 = 0, and it follows that

a2(x− b
a)
2 = a2(1+ (ba)

2) = a2 + b2 = −1,

which is a contradiction as before.
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Lemma 4.3.10. Let x ∈ F×q .

(a) If x 6= −a
b , then we have X(q+1)2/2 · δx = δσ(x) + δ−ab

. Moreover, X(q+1)2/2 · δ
−
a
b
=

δ
−
a
b

.

(b) We have Y · δx = δτ(x) + δ0, where we extend τ to all of F×q by τ(−a
b ) := b

a and

τ(ba) := −a
b .

Proof.

(a) For x ∈ F×q \
{
−a
b

}
we have

X(q+1)2/2 ·ωx = X(q+1)2/2 · 〈( 1x )〉Fq
=
〈(
a+bx
b−ax

)〉
Fq

=
〈(

1
σ(x)

)〉
Fq

= ωσ(x).

Moreover,

X(q+1)2/2 ·ω = X(q+1)2/2 ·
〈(
0
1

)〉
Fq

=
〈(

b
−a

)〉
Fq

=
〈(

1
−
a
b

)〉
Fq

= ω
−
a
b
.

As (X(q+1)2/2)2 = −12 acts trivially on each one-dimensional subspace, it follows
that also X(q+1)2/2 ·ω

−
a
b
= ω.

Now, we have x ∈ F×q \
{
−a
b

}
, then

X(q+1)2/2 · δx = X(q+1)2/2 · ((ωx +ω) +U) = (X(q+1)2/2 ·ωx + X(q+1)2/2 ·ω) +U

= (ωσ(x) +ω−
a
b
) +U = (ωσ(x) +ω−

a
b
+ 2ω) +U = δσ(x) + δ−ab

.

Finally,

X(q+1)2/2 · δ
−
a
b
= X(q+1)2/2 · (ω

−
a
b
+ω) +U = (X(q+1)2/2 ·ω

−
a
b
+ X(q+1)2/2 ·ω) +U

= (ω+ω
−
a
b
) +U = δ

−
a
b
.

(b) This follows immediately from Lemma 4.3.3 since Y = AB.
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Lemma 4.3.11. Let P be a maximal subgroup of
〈
X(q+1)2/2, Y

〉
, and let v ∈ DP. Then

the coefficient of Tr
〈X(q+1)2/2,Y〉
P (v) ∈ D〈X

(q+1)2/2,Y〉 at δb
a

is zero.

Proof. Write v =
∑
x∈F×q λxδx, and let s :=

∑
x∈F×q λx.

First case: P =
〈
X(q+1)2/2

〉
.

Then

Tr
〈X(q+1)2/2,Y〉
P (v) = v+ Yv

=
∑
x∈F×q

λxδx +
∑
x∈F×q

λxδτ(x) +
∑
x∈F×q

λxδ0

=
∑
x∈F×q

λxδx +
∑
x∈F×q

λτ(x)δx + sδ0

=
∑
x∈F×q

(λx + λτ(x) + s)δx.

It suffices that show that s = λ
−
a
b
+ λb

a

, since then the coefficient at δb
a

is clearly

zero. Since v is fixed by X(q+1)2/2 ∈ P, we have

v = X(q+1)2/2v

=
∑
x∈F

λxδσ(x) +
∑
x∈F

λxδ−ab
+ λ

−
a
b
δ
−
a
b
+ λb

a

(δ
−
a
b
+ δ0),

and comparing the coefficient at δ
−
a
b

on both sides, we have λ
−
a
b
= s+ λb

a

.

Second case: P = 〈Y〉 or P =
〈
X(q+1)2/2Y

〉
.

Then

Tr
〈X(q+1)2/2,Y〉
P (v) = v+ X(q+1)2/2v

=
∑
x∈F×q

λxδx +
∑
x∈F

λxδσ(x) +
∑
x∈F

λxδ−ab

+λ
−
a
b
δ
−
a
b
+ λb

a

(δ
−
a
b
+ δ0)

=
∑
x∈F

λxδx + λ−ab
δ
−
a
b
+ λb

a

δb
a

+
∑
x∈F

λσ(x)δx +
∑
x∈F

λxδ−ab

+λ
−
a
b
δ
−
a
b
+ λb

a

(δ
−
a
b
+ δ0)

=
∑
x∈F

(λx + λσ(x) + λb
a

)δx +
∑
x∈F

λxδ−ab
.

Thus, the coefficient at δb
a

is zero, since b
a /∈ F.
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Lemma 4.3.12. There exists a vector v =
∑
x∈F×q λxδx ∈ D

〈X(q+1)2/2,Y〉 such that λ
−
a
b
=

λb
a

= 1, and λx = λτ(x) = λσ(x) + 1 for all x ∈ F.

Proof. We fix a set of representatives R for the orbits of F under the action of 〈σ, τ〉, and
define λx := λτ(x) := 0 and λσ(x) := λσ(τ(x)) := 1 for all x ∈ R. If y ∈ F is given, then
considering the cases y ∈ R, τ(y) ∈ R, σ(y) ∈ R, and σ(τ(y)) ∈ R, one sees immediately
that λy = λτ(y) = λσ(y) + 1. Therefore, the vector

v := δ
−
a
b
+ δb

a

+
∑
x∈R

∑
f∈〈σ,τ〉

λf(x)δf(x)

has all the properties from the claim, except maybe the property v ∈ D〈X
(q+1)2/2,Y〉 which

is still to prove. First, note that∑
x∈F

λx =
∑
x∈R

λx + λx + λx + 1+ λx + 1︸ ︷︷ ︸
=0

= 0.

Therefore, we have

X(q+1)2/2v =
∑
x∈F

λxδσ(x) +
∑
x∈F

λx︸ ︷︷ ︸
=0

δ
−
a
b
+ δ

−
a
b
+ δ

−
a
b
+ δ0

=
∑
x∈F

λσ(x)δx + δ0

=
∑
x∈F

(λσ(x) + 1︸ ︷︷ ︸
=λx

)δx + δ−ab
+ δb

a

=
∑
x∈F

λxδx + δ−ab
+ δb

a

= v.

Finally,

Yv =
∑
x∈F

λxδτ(x) +
∑
x∈F

λx︸ ︷︷ ︸
=0

δ0 + δb
a

+ δ0 + δ−ab
+ δ0

=
∑
x∈F

λτ(x)δx + δb
a

+ δ
−
a
b

=
∑
x∈F

λxδx + δb
a

+ δ
−
a
b

= v.
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Lemma 4.3.13. The Sylow 2-subgroup 〈X, Y〉 of GL2(q) has precisely three maximal
subgroups. They are given by the cyclic subgroup 〈X〉, the dihedral group

〈
X2, YX

〉
, and

the generalized quaternion group
〈
X2, Y

〉
. The latter is a Sylow 2-subgroup of SL2(q).

Proof. It is clear that {X, Y} is a minimal generating set for 〈X, Y〉, so Lemma 4.3.2
implies that the number of maximal subgroups of 〈X, Y〉 is 1+ 2 = 3.

The order of 〈X, Y〉 is 4(q + 1)2, so it follows from ord(X) = ord(α) = 2(q + 1)2
that the subgroup 〈X〉 is maximal.

The matrix YX has order 2. As Y is not a power of X, we have YX /∈
〈
X2
〉
, so

the order of
〈
X2, YX

〉
is at least

|〈X2〉 · 〈YX〉 | = ord(X2) ord(YX)
1 = |〈X,Y〉|

4 · 2 = 2(q+ 1)2.

Moreover, (YX)X2(YX) = X−2 shows that
〈
X2, YX

〉
is a dihedral group which is strictly

contained in 〈X, Y〉.

Finally, the order of
〈
X2, Y

〉
of is at least

|〈X2〉 〈Y〉 | = ord(X2) ord(Y)
|{±12}| = |〈X,Y〉|/4·4

2 = 2(q+ 1)2.

As X /∈
〈
X2, Y

〉
, it must have order |

〈
X2, Y

〉
| = 2(q + 1)2. Since det(X2) = det(Y) = 1,

it follows that
〈
X2, Y

〉
is a Sylow 2-subgroup of SL2(q). It is generalized quaternion by

Theorem 2.5.7.

Now, we can prove part (b) of Theorem 4.2.1:

Proof of part (b) of Theorem 4.2.1. Every vector as in Lemma 4.3.12 belongs
to

D〈X
(q+1)2/2,Y〉 \ Tr〈X

(q+1)2/2,Y〉(D).

Thus, the quaternion group
〈
X(q+1)2/2, Y

〉
is contained in some vertex of D.

We already know that these vertices have order 2(q + 1)2 and are, thus, isomorphic to
a maximal subgroup of 〈X, Y〉. It is clear that the cyclic group 〈X〉 has no subgroup
isomorphic to the quaternion group. Alternatively, by part (d) of Proposition 1.3.1, the
cyclic group 〈X〉 cannot be a vertex of any simple module if the corresponding defect
group is non-cyclic.
Moreover, as non-abelian subgroups of dihedral groups are dihedral again (see, for
example, [57, 2.37 (page 54)]), we have shown that the dihedral group

〈
X2, XY

〉
cannot

be a vertex of D. Thus, the vertices of D must be conjugate to
〈
X2, Y

〉
⊆ SL2(q).



Open problems

At this point, we want to collect some open questions which occurred while working on
this thesis.

Let ` ∈ P>2. In Theorem 3.2.5 and Corollary 3.2.6, we present certain sets of
finite classical groups that have the SCBDP and, therefore, also the VBDP with respect
to every finite `-group. It is natural to ask the following:

Question 1: Do Theorem 3.2.5 and Corollary 3.2.6 also hold true for ` = 2?

Moreover, the classical groups of symplectic and orthogonal type occurring in
Theorem 3.2.5 and Corollary 3.2.6 are always matrix groups over finite fields of odd
characteristic. This is because in the proof we use a result due to Fong and Srinivasan
that is only formulated for this situation:

Question 2: Do Theorem 3.2.5 and Corollary 3.2.6 still hold true if the prime
powers q and q̃ are also allowed to be even?

Again, let ` ∈ P>2. Theorem 3.2.2 shows that the set {SLn(q) : n ∈ N, q prime power}
does not have the SCBDP with respect to every finite `-group, and the same is true
when we replace SLn(q) by PGLn(q), PSLn(q), SUn(q), PGUn(q), or PSUn(q).
But we cannot say whether these sets have the VBDP with respect to every finite
`-group, as it is not clear whether the small self-centralizing subgroups from Theorem
2.7.12 actually occur as vertices of simple modules lying in blocks of maximal defects.
Here, we can also ask the analogous question for parts (a), (b), and (c) of Theorem 2.7.12:

Question 3: Do some parts of Theorem 3.2.2 also hold if we replace the SCBSP
by the VBDP?

If one can show that the answer to Question 3 is positive for part (d) of Theorem 3.2.2,
then this gives a counterexample to Puig’s question for odd `.

In Section 2.7 we did not consider the case ` = 2 and q ≡ 3 mod 4. The reason
is that in this case we cannot find a Sylow 2-subgroup of GLn(q) in MonGLn(q), so the
structural arguments used in Section 2.7 do not apply. As already explained at the end
of Section 2.7, for ` = 2 the case q ≡ 3 mod 4 is much more complicated than the case
q ≡ 1 mod 4. It would be of interest to know whether the results of Section 2.7 can be
generalized such that they also apply to the case ` = 2 and q ≡ 3 mod 4:

Question 4: What can one say about exponents, elementary abelian normal
subgroups, the structure and the order of the centers and, mainly, the existence of small
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self-centralizing subgroups for the Sylow 2-subgroups of SLn(q), PGLn(q), and PSLn(q)
if q ≡ 3 mod 4?

Corollary 3.2.7 states that the set of spin groups over fields of odd characteristic
have the SCBSP with respect to every finite `-group.

Question 5: Does Corollary 3.2.7 also hold if we replace the SCBSP by the
SCBDP?

In this thesis, whenever we show that a set of finite classical groups has the SCBSP or
the SCBDP with respect to every finite `-group (and the corresponding defect groups

are non-abelian), we use the doubly exponential bound |N| ≤ |V ||V |
|V |

from Theorem
2.1.5. As a consequence, we obtain very complicated bounds as in Corollary 2.7.7 and
Corollary 2.7.11 (and not even state precise bounds in Chapter 3). Of course, one can
expect that there exist better bounds.

Question 6: How can one give better bounds for the positive results of Chapter
2 and Chapter 3?

Finally, in Chapter 4, we only determine the vertices of the simple F2 GLn(q)-module D
in the case n = 2. For even n > 2, the vertices still seem to be unknown. As the dimension
[n] − 2 = 1+q+ · · ·+qn−1 − 2 of the module D gets big very fast, it is hard to compute
examples for small q already for n = 4 in order to get a feeling what the vertices could be.

Question 7: What groups occur as vertices of the simple F2 GLn(q)-module D

in case that n > 2 is even?



Notation

General notation

δij the Kronecker delta, that is, 1 for i = j, and 0 for i 6= j
A t B the disjoint union of the sets A and B
P the set {2, 3, 5, 7, . . .} of prime numbers
N the set {0, 1, 2, 3, . . .} of non-negative integers
Z the set of integers
Q the set of rational numbers
R the set of real numbers

m | n the integer m divides the integer n
m - n the integer m does not divide the integer n
bxc the integral part of the real number x

gcd(a, b) the positive greatest common divisor of the integers a and b
n` the largest power of the prime number ` that divides the integer n 6= 0
K× the unit group K \ {0} of the field K
F` the prime field of characteristic `
Fq the finite field of q elements

(F×q )
2 the group of squares in F×q

F` the algebraic closure of F`
Map(A,B) the set of maps A→ B

HomA(M,N) the set of all A-module homomorphisms M→ N

EndA(M) the set of all A-module homomorphisms M→M

Z(A) the center of the algebra A
1n the identity matrix of size n× n

diag(a1, . . . , an) the diagonal matrix of size n× n with diagonal entries a1, . . . , an
GLK(V) the group of K-vector space automorphisms V → V

GLn(K) the group of invertible matrices of size n× n over the field K
Gal(K) the group of field automorphisms of the field K

PerMat(σ) the permutation matrix of the permutation σ, see Section 2.4
PerMat(S) the set of permutation matrices of the permutations in S ⊆ Sym(n)
F the set of finite groups up to isomorphism, see Remark 3.1.2

Notation from group theory

|G| the order of the finite group G
ord(g) the order of the group element g ∈ G
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Exp(G) the exponent of the group G
Z(G) the center of the group G
G ′ the commutator subgroup of the group G

H ≤ G H is a subgroup of G
G/H the set of left cosets of G with respect to a subgroup H ≤ G
|G : H| the cardinality of G/H
ker(f) the kernel of the group homomorphism f

im(f) the image of the group homomorphism f

Aut(G) the group of group automorphisms G→ G
gH for a subgroup H ≤ G and g ∈ G, the conjugate gHg−1

H ≤G U a G-conjugate of H is a subgroup of U
O`(G) the largest normal `-subgroup of the finite group G
CG(H) the centralizer of H in G
NG(H) the normalizer of H in G
G oH the wreath product of the groups G and H, see Remark 2.2.3

Syl`(G) the set of Sylow `-subgroups of the group G
rk(G) the rank of the group G, see Definition 2.2.1
nrk(G) the normal rank of the group G, see Definition 2.2.1
Ω1(G) see Definition 2.2.1

Exp`(G) the exponent of the Sylow `-subgroups of G, see Proposition 3.1.7

Particular groups

Cn the cyclic group Z/nZ of n elements
Ckn the group Cn × · · · × Cn︸ ︷︷ ︸

k

Klein four-group the group C22
Sym(M) the group of permutations M→M, where M is a set
Sym(n) the symmetric group Sym({1, . . . , n}) on n letters
Alt(n) the alternating group on n letters
Dih2n the dihedral group of order 2n

MonGLn(q) the subgroup of GLn(q) of monomial matrices, see Definition 2.4.1

GLn(q), SLn(q), PGLn(q), and PSLn(q) denote the finite classical groups of linear type,
see Theorem 1.6.1

Sp2n(q) and PSp2n(q) denote the finite classical groups of symplectic type, see Theorem
1.6.10
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GUn(q), SUn(q), PGUn(q), and PSUn(q) denote the finite classical groups of unitary
type, see Theorem 1.6.12

GO2n+1(q), SO2n+1(q), PGO2n+1(q), Ω2n+1(q), GO+
2n(q), SO+

2n(q), PGO+
2n(q),

PSO+
2n(q), Ω

+
2n(q), PΩ+

2n(q), GO−
2n(q), SO−

2n(q), PGO−
2n(q), PSO−

2n(q), Ω
−
2n(q), and

PΩ−
2n(q) denote the finite classical groups of orthogonal type, see Theorem 1.6.13 and

Theorem 1.6.14

Spin2n+1(q), Spin+
2n(q) and Spin−

2n(q) denote the spin groups introduced in Remark 1.6.18

Notation from representation theory

gX the conjugation of the module X by the element g, see Section 1.1
Vx(M) the set of vertices of the module M, see Theorem 1.2.5
Bl(KG) the set of blocks of the group algebra KG, see Section 1.3
Def(B) the set of defect groups of the block B, see Section 1.3

InfGG/H(M) the inflation of the module M, see Section 1.1

ResGH(M) the restriction of the module M, see Section 1.1

IndGH(M) the induction of the module M, see Section 1.1
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absolutely irreducible, 10
absolutely simple, 10
alternating sesquilinear form, 19

base group, 35
bilinear form, 19
block, 13
block idempotent, 13
block induction, 14
Brauer pair, 15

Chevalley group, 28, 29
classical group, 27
conjugation, 9
cover, 14

defect group, 13
degenerate, 19
dicyclic group, 33
dihedral group, 33
dominate, 15

Erdmann’s Theorem, 14
exponent, 10

generalized quaternion group, 33
geometry, 21
group algebra, 7

hermitian sesquilinear form, 19

idempotent, 13
indecomposable, 10
induction, 9
inertia group, 9
inflation, 9
irreducible, 10
isometry, 22
isometry group, 22
isotropic, 19

Jacobson radical, 10

Klein four-group, 27

Knörr’s Theorem, 17

Lie group, 28

matrix of a sesquilinear form, 21

matrix representation, 8

Michler’s Theorem, 14

module, 8

monomial matrix, 42

normal rank, 34

orthogonal group, 25, 26

permutation module, 7

principal block, 13

projective, 10

projective general linear group, 18

projective special linear group, 18

Puig’s Question, 17

quadratic form, 19

quadratic geometry, 21

quaternion group, 33

rank, 34

reflexive sesquilinear form, 19

relatively projective, 11

representation, 8

restriction, 9

SBDP, 79

scalar extension, 9

SCBDP, 79

SCBSP, 79

self-centralizing Brauer pair, 16
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self-centralizing-bounded-defect
property, 79

self-centralizing-bounded-Sylow
property, 79

semidihedral group, 33
sesquilinear form, 19
similar, 8
simple, 10
spin groups, 27
splitting field, 10
strongly-bounded-defect property, 79
Sylow Brauer pair, 16
symmetric sesquilinear form, 19
symplectic geometry, 21
symplectic group, 23

totally isotropic, 19

unitary geometry, 21
unitary group, 24

VBDP, 79
vertex, 12
vertex-bounded-defect property, 79

Witt’s Extension Theorem, 22
Witt-Index, 22
wreath product, 35
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