UNIVERSITAT KAISERSLAUTERN
Zentrum fur Computeralgebra

REPORTS ON COMPUTER ALGEBRA
NO. 11

0?\ OOMPU7"€9
K
N)
A
i}
N A
Z C
s C S
i Y

s
\
&35 1>

Effective simplification of cr expressions

%
Y
>
)
m
iy

by

O. Bachmann

January 1997

The Zentrum fiir Computeralgebra (Centre for Computer Algebra) at the University of Kaiserslautern was founded in June
1993 by the Ministerium fiir Wissenschaft und Weiterbildung in Rheinland-Pfalz (Ministry of Science and Education of the
state of Rheinland-Pfalz). The centre is a scientific institution of the departments of Mathematics, Computer Science,
and Electrical Engineering at the University of Kaiserslautern.

The goals of the centre are to advance and to support the use of Computer Algebra in industry, research, and teaching. More
concrete goals of the centre include

o the development, integration, and use of software for Computer Algebra
e the development of curricula in Computer Algebra under special consideration of interdisciplinary aspects

e the realisation of seminars about Computer Algebra

the cooperation with other centres and institutions which have similar goals

The present coordinator of the Reports on Computer Algebra is:
Olaf Bachmann (email: obachman@mathematik.uni-k1.de)

Zentrum fiir Computeralgebra

c/o Prof. Dr. G.-M. Greuel, FB Mathematik
Erwin-Schrédinger-Strasse

D-67663 Kaiserslautern; Germany

Phone: 49 - 631/205-2850 Fax: 49 - 631/205-5052
email: greuel@mathematik.uni-kl.de

URL: http://wuw.mathematik.uni-kl.de/~zca/

Effective Simplification of CR expressions*

Olaf Bachmann
Centre for Computer Algebra
Department of Mathematics
University of Kaiserslautern

Kaiserslautern, Germany

obachman@mathematik.uni-kl.de

Abstract

Chains of Recurrences (CRs) are a tool for expediting the
evaluation of elementary expressions over regular grids. CR
based evaluations of elementary expressions consist of 3 ma-
jor stages: CR construction, simplification, and evaluation.
This paper addresses CR simplifications. The goal of CR
simplifications is to manipulate a CR such that the result-
ing expression is more efficiently to evaluate. We develop
CR simplification strategies which take the computational
context of CR evaluations into account. Realizing that it
is infeasible to always optimally simplify a CR expression,
we give heuristic strategies which, in most cases, result in
a optimal, or close-to-optimal expressions. The motivations
behind our proposed strategies are discussed and the results
are illustrated by various examples.

1 Introduction

Chains of Recurrence (CRs) address the problem of fast eval-
uations of elementary expressions over regular grids. Infor-
mally speaking, elementary expressions are expressions built
from constants, variables, and elementary function symbols
(e.g., rational or transcendental expressions) and a regular
grid is a set of regularly spaced points (e.g., linearly spaced
points on a line, points on the intersection of lines which are
parallel to the coordinate axes, evenly distributed points on
circles, ellipses, spheres, etc).

The main idea behind the CR method is: Instead of
computing from scratch, an elementary expression can be
evaluated at the next point much faster by using its values
at previous points. That is, based on the given elemen-
tary expression and the relation of the evaluation points,
we construct an equivalent CR expression, whose evaluation
recursively connects consecutive evaluation values. CR ex-
pressions are similar to elementary expressions, except that
Chains of Recurrences play the role of variables.

A CR based evaluation of an elementary expression F'
consists of three stages:

1. The construction of a CR expression ¥ which is equiv-
alent to F'.

2. The simplification of ¥.
3. The evaluation of .

*Work reported herein has been part of the authors Ph.D. work at
Kent State University (Ohio, USA) and has been supported in part
by the National Science Foundation under Grant CCR-9503650.

Before proceeding further, let us illustrate these stages by
an example. Suppose we wish to evaluate the polynomial
p(x) = 223+ 2%+ —3 at the 1,001 points 0,.01,. ..,9.99,10.0:

1. The CR expression ¥ = 2{0, +,.01}* + {0, +,.01}* +
{0, +,.01} — 3 is obtained from the CR construction.
Notice that ¥ is similar to p, except that each occur-
rence of x in p is replaced by the Chain of Recurrence
{0, +,.01}.

2. U is simplified:

2{0, +,.01}% + {0, +,.01}* + {0, +,.01} — 3
= 2{0, +,.000001, +,.000006, +,.000006}
+{0, +,.0001, +,.0002} + {0, +,.01} — 3
= {0, +,.000002, +,.000012, +,.000012}
+{0, +,.0001, +,.0002} + {0, +,.01} — 3
= {—3, +,.010102, +,.000112, +,.000012}

where all simplification steps are based on general sim-
plification properties of CR expressions (see below).

3. The CR {-3, +,.010102, +,.000112, +,.000012} is
evaluated over 1,000 points by a procedure which is
of the following form:

po 1= —3; @1 :=.010102; @3 :=.000112; @3 := .000012;
for 7 := 0 to 1,000 do

W[i] := po;

Po = Yo + P15 Y1 1= Y1+ Y25 Y2 1= Y2 + P3;
od

where U[i] contains the values of p at the points
0,.01,...,9.99,10.0.

We should notice that the evaluation of ®[¢] requires 3 ad-
ditions per evaluation point. Therefore, compared with a
Horner evaluation of p, we saved a total of 3,000 multi-
plications. Due to this saving and due to judicious imple-
mentation techniques, a CR based evaluation of p can be
significantly faster than a “normal” Horner evaluation (for
this example, a speedup of 200 is reported in [4]).

In [2] algorithms for the construction and evaluation of
multi - dimensional CRs are given, which assure that a CR
based evaluation without simplification is at least as effi-
cient as an evaluation of the given elementary expression.
However, the true power, the “salt in the soup”, of the CR
method stems from the fact that certain classes of CR ex-
pressions (and hence, elementary expressions) can be sim-
plified in such a way that evaluations of the resulting CR ex-
pression require significantly less arithmetic operations than

the original expression, enabling a significant increase in the
evaluation efficiency.

However, as with other simplifications, there is a major
problem with CR simplifications, namely that of the evasive
and context-dependent concept of “simplicity”: As outlined
in [6], simpler might mean “closer to a canonical representa-
tion”, “shorter”, “needs less memory for a computer repre-
sentation”, “numerically more stable”, etc; some concepts of
simplicity might be undecidable (e.g., that of the canonical
simplification of transcendental expressions, see [6]) or com-
putationally very expensive to realize (e.g., critical pair sim-
plification algorithms); simplicity w.r.t. one concept mi%h’c
be diametric w.r.t. another concept (e.g. compare (z+1)'%
and its expanded canonical representation w.r.t. shortness);
and so on.

Clearly, in our context “simpler” means “can be evalu-
ated more efficiently”. However, already this qualification
is problematic, since it does not reflect some other, and of-
ten important, evaluation criteria, such as numeric stability,
memory consumption, and the time spent for the simplifica-
tion itself. But even the sole use of “evaluation efficiency”
as a measure for simplicity is problematic: The evaluation
efficiency of a given CR expression depends on many, possi-
bly varying, factors, such as the complexity and location of
the evaluation region (i.e., the regular grid), the underlying
computational domain (e.g., floating point or arbitrary pre-
cision numbers), the used hard- and software platform, etc.
In this paper we develop new simplification strategies which
take these varying factors into account, thereby closing im-
portant gaps of previous works about CRs ([3, 5, 8, 9]):

e The previously suggested unconditional application of
CR simplification rules leads to often very unsatisfiable
results for more complex expressions (like those con-
taining trigonometric functions, or high degree polyno-
mials).

o The problem of the variable ordering of multi - dimen-
sional CR expressions was not addressed.

The results given here are based on the partial solutions of
this problem for the two-dimensional case, as described in
[4].

In the ideal case, we would like to find a simplification
procedure that is optimal in the sense that it produces the
CR expression that is the most efficient to evaluate, under
consideration of all factors of the computational context.
However, this is probably not realizable, given the complex-
ity of such a task. Realistically, we can only hope for sim-
plification results which are optimal or very close to optimal
in most cases.

To achieve this goal, we introduce in Section 2 the con-
cept of the Cost Index (CI) as an approximate measure of
the efficiency of CR evaluations. This is followed an analy-
sis of the effect of CR simplification rules on the CI of the
transformed CR expression (Section 3). Based on this analy-
sis, we develop CR simplification strategies in Section 4 and
conclude this by considering an extended set of examples in
Section 5.

2 CRs and their Cost Index

Before returning to the problem of simplifying CR, expres-
sions, let us briefly define the needed CR concepts. Our
following definition of CR expressions follows the concepts

introduced in [2] which are generalizations of the respective
concepts used in earlier work on CRs (see, e.g., [5] or [3]).

Definition 1 Let R be a ring with identity. Let Rr be a
set of symbols for allowable R™ — R functions and X be
a set of allowable variables {z1,x2,...,2n}. The set CR of
CR expressions over (Rx, X) is the minimal set of terms
such that

(i) R CCR,

(ii) for any zr € X;®0,®1,...,9 € CR;®1,...,01 €
{+, *} the term {CPO,QI,(I:'I,@L---;Ql,CPl}xk € CR,
and

(iii) for any f € RF;¥1,¥s,...
fo%,... ¥, eCR

CR expressions of the form {®o,®1,®P1,02,...,01 P},
are also called Chains of Recurrences (CRs).

Moreover, if ® € CR then we define the value of @, de-
noted by V(®), to be a function V(®) : N* — R which is
recursively defined by

, U € CR the term

V(®)(3d) Condition
T d=reR
V(®0)(i) ®={®o}s,
ip—1
V(@) D)+Y_ V({P1,02,...,01, B}z,) ()
j=0 ‘I>={<I>0, +,‘1>1,®2,...,@1,<I>1}xk
ip—1
V(@0)(@) - [V({®1,@z,. .., 01, i}a,) ()
j=0 (P:{q)o’ *a¢17®25"-7®l;¢'l}wk

FV (1)), V(Em)()

Since R is a ring with identity, the summation and product
of elements of R is always well defined. If it is clear from
the context, we will often simply write ® instead of V(®)
and CR instead of CR(R#, Xy,). Furthermore, we define the
set X (@) of variables contained in @ by

S=fU10,... U,

l
X(@)= kaUOX(\I:,-) if ®={®0,®1,...,01,Pi}a,

j=
X(T)U...UX(T,,) if ®=fT,... T,

and the dimension D(®) of ® by the cardinality of X (@),
ie., D(®) = |X(®)|.
Ifd = {‘1)07 ©1P1,02,...,01, Ql}wk is a CR, then we call

o dy, ..., ®; the coefficients of @

e | = L(®) the length of ®

o @ regular, if xr & X(Po) U X (P1)U...UX(P1_y)

o & simple, if ® is regular and z & X(P;)

o & polynomial, if ® is regular and ©1 ==y =+

o ® exponential, if @ is regular and ©1 =--- =@ = *
and will frequently use the following abbreviations

e & for ®(i)

e indexed lower-case Greek letters (like ¢;) for CR coef-
ficients for which z; & X(®y).

o o for pui)

o {®0,01,...,0;, P} and ®(¢) if ® is a one - dimensional
CR

In addition, we extend the concepts of regular, simple, and
polynomial CRs to CR expressions, by calling a CR expres-
sions ® regular/simple/polynomial if all the CRs contained
in @ are regular/simple/polynomial and, for polynomial CR
expressions, all the (function) symbols fi contained in ® are
constants, or contained in {+, —,-}.

The following definition of the Cost Index (CI) extends
the previous definition given [5]: Instead of defining the CI
as an operation count of the evaluation of one - dimensional
CR expressions, we use a weighted operation count of the
evaluation efficiency of multi - dimensional CR expressions.

Definition 2 Let ® be a CR ezpression over CR(RF, Xn)
and let W : R — R be a map which assigns each f € Rr
a real number (which is called the weight of f) such that
W(f) = 0 if f is a constant and W(+) = 1 (where + is
the symbol for addition). Furthermore, let m € N" and
m = Hle m;. Then we recursively define the Cost Index

(CI) of ® by CI(®) =
0 if® €CR

l l
§$Z?V@n+Z}U@n if @={®0,01,..., 01, i},

W (fi) -
&)
e [+ crw) ife=fw....v,

i EX(®) i=1
In other words, we may consider the CI of a CR expression
as an approximate measure of the average time (w.r.t. one
addition) spent in the inner-most loop of a CR evaluation.

If we assume that the execution times of the basic arith-
metic operations (i.e., the operations computing the value of
f(r1,...,mm)) were largely independent of their arguments,
then we can assign a weight to each arithmetic operation
such that it approximates the execution time of the opera-
tion relative to the speed of one addition. For example, for
double floating point operations, we measured the following
relative and averaged execution times'. As the table indi-
cates, the relative weights may vary greatly from platform
to platform.

If we furthermore assume that the execution time of the
evaluation algorithm considered is directly proportional to
the weighted operation count of the basic arithmetic oper-
ations, then we can use the Cost Index of a CR expression
as a relative measure of its evaluation efficiency.

However, supposing that the execution times of the basic
arithmetic operations are largely independent of their argu-
ments is a strong assumption. First, it is definitely not true
for arbitrary precision arithmetic since the execution times
of arbitrary precision operations clearly depend on the size
of the operands. Secondly, even in fixed precision arithmetic
the execution times of most basic arithmetic operations are
not truly independent of their arguments. For example, con-
sider the operation pow(x,y). If y is an integer, then we do
not need to use a numeric approximation to obtain the value

1The measurements were done using 1,000,000 randomly generated
double numbers and are relative w.r.t. the addition (i.e., the time for
the addition was taken to be the unit time of the measurements)

of z¥, but can use a repeated squaring procedure (see [7],
Section 3.4) which requires at most 2|logy| multiplications
and one division.

Unfortunately, there seems to be no realistic alternative
to this assumption, since we can not exactly predict the
operands of the basic arithmetic operations at simplification
time. Therefore, we can only try to approximate the real
execution times as much as possible, by

1. estimating the size of the operands for arbitrary preci-
sion arithmetics

2. using an average of the execution times for numeric
approximations

3. approximating the execution time of special cases (like
x™, where it is known at simplification time that n is

an integer) by a separate estimate

3 Cost Index and CR simplifications

In this section we examine the major CR simplification rules
w.r.t. their effect on the CI of the transformed CR expres-
sion.

Table 1 lists the major rules for simplifying multi - di-
mensional CR expressions. Most of these are generalizations
of the rules given in [5, 3, 9] from one- or two-dimensional
CR expressions to multi - dimensional CR expressions. For
a more detailed description and a proofs of these rules, see
[2]-
The left hand sides (LHS) of the simplification rules are
given in column 2 and the respective right hand sides (RHS)
are given in column 3. For reasons of clarity, the trivial
simplification rules for general CR expressions based on the
ring axioms are not shown.

In general, the difference CI(LHS)—CI(RHS) is depen-
dent on the complexity of the regular grid, on the weights of
the operations involved, and on a chosen variable ordering.
Column 4 marks the cases where CI(LHS)—CI(RHS) > 0
independently of all of these factors (the symbol ! is used to
mark the rules where CI(LHS)—CI(RHS) > 0 can not be
decided a priori). Column 5 shows CI(LHS)—CI(RHS) of
one - dimensional CR expressions for which this difference
depends at most on the weights of the operations involved.

For one - dimensional CRs, the application of a simplifi-
cation rule is always unique in the sense that the same rule
can not be applied to the same CR expression and yield dif-
ferent simplification results. However, this is, in general, not
the case for multi - dimensional CRs. Let us illustrate this
by an example: Let ® = {0, +, ¢1}. and ¥ = {tpo, +,191 },
and consider ® - ¥. Then by (2), i.e., by

) +:<pl}$lc ¢: {‘100 '¢, REREE
with z, € X (1), we can simplify @ - ¥ to

A = {{poto, +, 001}y, +,{p1%0, +, P191}y }a,

and alternatively to

AI = {{@0’@&0) +7(pl¢0}$7 +, {500'4}1) +7(pl’¢)1}m}ya

where

{90054':"' :+7<pl'¢}$k

CIA) =142 CIN)=1+ 2.
m m

z Y

SparcStationII

add mult div sqrt exp log
1.0 1.1 3.1 223 26.5 20.3

sin tan asin atan sinh tanh
21.3 27.1 32.7 38.8 25.8 33.1

HP 9000/735

add mult div sqrt exp log
1.0 1.0 33 5.9 9.3 25.1

124.0

sin tan asin atan sinh tanh
9.9 263 30.6 34.1 33.14 38.1

Table 1: Measured average relative execution times of double operations on a SparcStationIl and HP 9000/735

Hence, if m, = 1000 and m, = 10 then an evaluation of A
requires 1980 more additions than an evaluation of A’.

More generally, the freedom of choosing a variable or-
dering implies an additional degree of freedom in applying
certain simplification rules which consequently has an im-
pact on the CI of the simplified CR expression. Column 6
of table 1 marks all simplification rules to which this applies
with the symbol +/.

4 CR simplification strategies

Evaluating the results of table 1 we see that for most rules we
can not decide a priori whether they are CI reducing. There-
fore, the previously suggested CR simplification algorithms
([5], [3] [8], [9]) which recursively traverse the parse tree of
a CR expression from the bottom to the top and uncondi-
tionally apply the simplification rules, do not, in general,
result in a CR expression with a minimal CI.

An obvious algorithm which solves this problem is based
on the observation that there are only finitely many CR
expressions &’ into which a given CR expression & can be
transformed by applications of the transformation rules of
table 1. Hence, for a first, straight-forward approach, we
may use an exhaustive search algorithm which, informally
speaking,

o works on lists of CR expressions and recursively obtains
all CR expressions into which each CR expression of
the current list can be transformed

e if a CR simplification rule can be applied to the top
node of the CR expression currently under consider-
ation, then return a list of the expressions obtained
by not applying the rule, by applying the rule, and,
possibly, by applying the rule with a different variable
ordering

and, consequently, returns a list of all CR expressions &’ into
which the given input CR expression ® can be transformed.
By computing the CI of each CR expression obtained we
can then easily find the one with the minimal CI.

Unfortunately, as might be expected, this algorithm has
a (worst case) exponential time and space complexity w.r.t.
the number of nodes of the given CR expression. Therefore
its usage is limited to applications in which the CR simpli-
fication time does not contribute to the overall evaluation
time (e.g., to source code generation and optimization prob-
lems) and to computational contexts with ample computing
resources (especially memory).

However, a majority of applications require “on-the-fly”
evaluations of elementary expressions (e.g., visualization of
mathematical objects, see [1]). Hence, if we use the CR
method for such computations, then the CR simplification

time counts towards the overall evaluation time. Conse-
quently, it is necessary to develop an alternative to the ex-
haustive search simplification algorithm. The goal of such
an alternative algorithm is to balance the time spent during
simplifications with the time saved in the following evalu-
ations. In other words, we may not expect the algorithm
to always find the CR expression with the minimum CI. In-
stead, we may expect that the algorithm simplifies a CR
expression in a reasonable time (i.e., in at most polynomial
time) such that the CI of the resulting CR expression is
close to the minimum. To accomplish this goal, we need to
make some ad-hoc decisions which are based on experience
and observations, instead of strict reasoning. We refer to
the following simplification as a simplification heuristic.
The first heuristic decision is based on the observation
that exponential CRs are obtained by transformations of
polynomial CRs and that there is only one rule which trans-
forms an exponential CR back into a polynomial CR (rule
(7)). Therefore, we suggest arranging CR simplification in
two independent passes: The first pass accomplishes the sim-
plification of all polynomial CR (sub-) expressions, and the
second pass considers the simplification of exponential CRs.

4.1 Heuristic simplification of polynomial CR ex-
pressions

Given CR a expression ®, we first isolate all polynomial
CR sub-expressions of ® and consider the simplification of
each polynomial CR, sub-expression independently. Since
a CR simplification follows the CR construction, we may
assume that the expressions considered are polynomial CR
expressions whose leaves are simple, one - dimensional CRs.

Secondly, we determine the dimension of the polynomial
CR expression and handle the simplification of one- and
multi - dimensional CR expressions separately.

For both cases, the suggested simplification heuristic
makes use of the degree of a polynomial CR expression,
which is defined as follows:

Deg(®, zy) Condition
0 xzr & X (D)
l @Z{on,‘i‘,...,i-’gpl}xk
maX{Deg(QD(Jyka sy Deg(gol,xk)} ¢ = {900, AREEEPIL (pl}wj
Tj # Th

max{Deg(®1,xk),...,Deg(®p,x1)} &= P71 + -+ + P,
Ef:l Deg(éj:mk) S =P;- -- (bk
n'De.Q(q)lnxk) <I>=q>§‘

Based on this definition, we suggest a simplification al-
gorithm for the one - dimensional case which is based on the
observation that a one - dimensional polynomial CR expres-
sion ® can be transformed into a polynomial CR of length
Deg(®, x).

Algorithm CRPoOLYSIMP1D(®)

CI(LHS) —CI(RHS)
LHS RHS >0 1-dim order-dependent
(1) {‘p07+7---a+atpl}wk+w {900+1/))+) . +)‘Pl}mk \/ 1 \/
ng {¢05{+5"'7+7§0l}mk }'KP %go-’lﬁ,h ﬂ+}7wl'¢’}mk \1/ Wx \//
3 D+ {0, *,...y *,Ym}a 0, + +,61}e m+1
(4) [@ {0+, 0 4 hmban 1100 +1em + 2 Yo o L1 /
(5) {@0a+a---7+7tpl};r;c {607+7"'7+7 l-m}ﬂik { 2w*|_logmj—n(l—1) /
(6) w{‘POa"' e oeitey {rd;‘PO, *o, b, ¥ }mk { '“’POW—l(w* _1) /
(7) | logy{wo, *,..., *,¢1}e, {logywo, +,..., +,l0gy @ity | 1 wiog+li(wx—1) /
(8) w'{wo;*a"'a*agm}z‘k {"/1'900,*, -'7*7wl}mk \/ Wx \/
(9) {‘poa*a"'y*ﬂDl}gk {‘powa*a"'a*a<pw}2k l Wpow /
(10) {(PO, *;...il-*,Lpl}wk - {ﬂﬂﬂ*""z*zﬂlﬁ’wk \/ (m+1)w* /
(11) wleo:tont,oitay {70, * -« s * Yt g ! wpow—l(wx—1) /
(12) | sin{wo, +,-.-5 +, @1 }ay, S{erP0, *,..., *,ePl}y, ! wgip —l(dwx+1) /
(13) COS{Q"O: REREEE +,Qal}3>k ﬁ{e“{’o, ¥y *7el(pl}$k { 1Ucos*l(4'w*+1) /
(14) | tan{wo, +,-- -, +, ¥ }ay, = {€P0, x .., x e}y, ! wgan—wy—l(4wx+1) /
(15) | cot{wo, *,..-5 +, 01 }a; S{eP0, *, ..., *, e}y, U wWeot —wy—l(dwx+1) /

¢01"'1¢l7¢07'
= fo, ¥, ..

’wm’¢€CR(Rf’X")7xk eX(QOO)UUX(SDI)UX(/I/)O)UUX(¢7TL)1 ¢={9007+7"'7+=¢l}wk7
1*1¢‘m}$ka lzma Z:\/__]-, %(G—F’Lb):(ls(a—klb):b

Figure 1: Properties of CR simplification rules

Input: Polynomial CR expression ® with X (®)={z}

Output: Simplified polynomial CR expression & with
CI(®) > CI(®")
(A) If @ is a constant or a CR then return ®;

(B) If Deg(®,z) < CI(®) then

1. Recursively simplify & by unconditionally apply-
ing the simplification rules (1) — (6) and return
the resulting polynomial CR of length cs;

(C) else if ® = &1 + --- + P then
1. Set ®; =CRPoLYSIMP1D(®;) for 1 < j < k;

2. Transform all constant or polynomial CRs among
the returned @/ into one polynomial CR (or con-
stant) by applying the rules (1) and (3) and return
the resulting CR expression.

(D) elseif ® = ®; - ---- @, then

1. Set ®; =CRPoLYSIMP1D(®;) for 1 < j < k;

2. Transform all constant or polynomial CRs among
the returned @ into one constant or polynomial
CR by applying the rules (2) and (4) and return
the resulting CR expression.

(E) else /* Now & = @ */
Set ® =CRPoLYSIMP1D(®;) and return ®”

Notice that (B) is the crucial step of this algorithm, since
it determines whether or not the CR expression is fully ex-
panded into a polynomial CR. This is also the only step
where we might lose the optimality of the CR simplifi-
cation. For example, if we consider the CR expression
@ = {xo, +,h}% + E;ilj - {xo, +,h}’ and assume that

W (%) = 1 then CI(®) = 2|log, 63] + Y. (2+1[log, j]) =

84, Deg(®) = 63, and hence, ® is simplified into a polyno-
mial CR of length 63, i.e., CI(®') = 63. However, a simpli-
fication into ® = {xo, +,h}%® + {p1, +,..., +, 012} would
yield CI(®') = 33, which is better. However, such cases
could only be remedied by backtracking algorithms which,
by their very nature, have a (worst-case) exponential time
complexity.

The heuristic simplification of n-dimensional polynomial
CR expressions is similar to the one - dimensional case.
However, in addition to determining whether or not to ex-
pand the expression into a polynomial CR, we also have to
determine a variable ordering for the expansion. Further-
more, we have to take the complexity of the evaluation grid
into consideration, since the CI of multi - dimensional CR
expressions depends on the number of evaluation points for
each variable.

Algorithm CRPOLYSIMPND(®, m)

Input: Polynomial CR expression ® with X(®) C
{z1,...,2n}, m € N"”

Output: Simplified polynomial CR expression &' with
CI(®) > CI(®)
(A) If @ is a constant or a CR then return ®;

(B) If X(®) =z then return CRPOLYSIMP1D(®);

(C) Let J = (j1,---,Js) be a tuple of s integers, such that
{zj1,...,z;,} = X(®) and for all 1 < k < s: d;;, <

dj,., or dj, = dj,,, and m;, > mj,,,, where d;, =
Deg(@, xjk);
(D) ¥ dj, + 57— (dj» + 7~ (djs +...)) < CI(®,m) then
1 2

1. Recursively simplify & by unconditionally apply-
ing the simplification rules (1) — (6) with the vari-
able ordering z;, > xj, > --- > z;, and return
the result.

(C) elseif ® = ®; + .- + P4, then

1. Set ®; =CRPoOLYSIMPND(®;) for 1 < j < k;

2. Merge constant or polynomial CRs among the re-
turned ®; as much as possible by applying the
rules (1) and (3) and return the resulting CR ex-
pression.

(D) elseif ® = ®; - -+ ®; then

1. Set ®; =CRPOLYSIMPND(®;) for 1 < j < k;

2. Merge constants or one - dimensional polynomial
CRs among the returned ® as much as possible
by applying the rules (2) and (4) and return the
resulting CR expression.

(E) else /* Now & = @F */
Set ® =CRPoOLYSIMPND(®;) and return "

Notice that the variable ordering is determined in step (C).
Our heuristic for determining this ordering is based on the
observation that for any variable ordering z;;, > ziy > -+ >
z;,, CI(®') < diy + mLil(di2 + m_liz(di3 +...)). Hence, by
choosing the variable ordering x;, > x;, > --- > x;, as done
in step (C), we minimize the upper bound for the CTI of the
respective fully expanded polynomial CR.

Various small and tedious to describe, but more or less
obvious improvements to the algorithm above should be
added. For example, in step C.1 (resp. D.1), we should
collect all (bkp ey (I:'kj for which X(‘I)kl) = ... = X((I)k])
and call the algorithm recursively with the expressions
@, +- - @k, as arguments (provided they are different from
®) instead of calling the algorithm recursively with each sin-
gle ®; as argument. This way, we enable a finer grained
simplification of CR expressions which contains the same
variables.

Let us look at some examples by considering the simpli-
fication of two-dimensional polynomial CR expressions over
the variables z and y: To simplify our notation, let us write
z for the CR {zo, +,hs}s, y for the CR {yo, +,hy}y, and
z; (resp. y;) for a CR of the form {po, +,p1, +,..., +, 01}«
for some constants o, ..., ;. Furthermore, let us suppose
that m = (100,100) and that W(*) = 1. Then each entry
in table 2 shows a two-dimensional CR expression with its
CIL. Column 1 shows the unsimplified CR expression, col-
umn 2 and 3 show the fully-expanded polynomial CRs with
the variable ordering z > y and y > z, respectively. Col-
umn 4 shows the CR expression returned by the algorithm
CRPoLYSIMPND and column 5 shows the respective CR ex-
pression with the minimal CI. Obviously, the larger the de-
gree of the CR expressions, the larger the difference between
the various simplification methods. However, the examples
in table 2 already illustrate that a simplification algorithm
which would fully expand a given CR expression (using any
variable ordering) is inferior to CRPOLYSIMPND, and that
CRPoLYSIMPND is not as good as the exhaustive search
simplification algorithm.

4.2 Heuristic simplification of exponential CR ex-
pressions

The second pass of the heuristic simplification procedure is
concerned with exponential CRs. Similar to the simplifica-
tion of polynomial CRs, we first isolate all subexpressions
of a CR expression which either already are, or could po-
tentially be, transformed into an exponential CR and then

deal with each of these expressions separately. Therefore,
we may assume that the expressions which are to be sim-
plified are CR expressions whose leaves are either already
simplified polynomial CRs or are simple, one - dimensional
exponential CRs.

Secondly, we once again treat the one - dimensional case
differently from the n-dimensional case.

The simplification of one - dimensional exponential CR
expressions is very similar to the simplification of one - di-
mensional polynomial CR expressions, except that we can
not use the degree of an expression to predetermine its CI.
Instead, we symbolically determine the structure of the ex-
ponential CR expression which is obtained by uncondition-
ally applying all simplification rules and can then easily read
its CI. Hence, the algorithm for simplifying one - dimen-
sional exponential CR expressions proceeds as follows:
Algorithm CRExpSIMP1D(®)

Input: CR expression ® with X (@) = {z}

Output: Simplified CR expression &' with CI(®) >
CcI(®")
(A) If @ is a constant or a CR then return ®;

(B) Let co be the CI of the expression which would be
obtained from ® by unconditionally applying the sim-
plification rules (6) — (15).

(C) If co < CI(®) then
Unconditionally apply the simplification rules (6) — (15)
to ® and return the result.

(D) else /¥ Now & = fU,...¥, */
Return f CREXPSIMP1D(¥;)...CREXPSIMP1D(¥,,).

For example, if we are given the expression ® =
sin{2, +,1, +,—1} - 2{®%*1} then to realize step (B) we
symbolically apply all simplification rules and obtain the
symbolic CR expression R{to, *,1, *,¢2} which has a
CI of ¢s = 8wx + 4w+. Consequently, if ¢, < CI(®) =
3w+ + wgip + wpow then we actually apply all simplifica-
tion rules to ® and return the results. Otherwise, we call
the algorithm recursively on sin{2, +,1, +, —1} and 2{%*:1}
before returning the result.

We apply an even simpler strategy for n-dimensional ex-
ponential CR expressions by basing the decision whether
or not to apply a simplification rule on local criteria, only.
The reason for not taking properties of the entire expression
into account is that the multi - dimensional polynomial CRs
which are the leaves of the expression already predetermine
the variable orderings, and furthermore greatly complicate
the construction of symbolic expressions:

Algorithm CREXPSIMPND(®)

Input: Multi - dimensional, exponential CR expression ®.

Output: Simplified CR expression &' with CI(®) >
CI(®")
(A) If @ is a constant or a CR then return ®;

(B) If & is a one - dimensional CR expression return
CREXPSIMP1D(®);

(D) else /¥*Now @ =f0;...9, */
1. Set ¥; =CRExpPSIMPND(®;) for 1 < j < ny;

unsimplified x > y simplified y > x simplified CRPoLySiMPND optimal

1 zy’ +1 {y2,92}2 {z1, 21,21}y {y2,92}2 {y2,92}2
CI 2.03 1.04 2. 1.04 1.04

2 $y2+$5+y {y2ay2,§07¢}$ {$3,$1,$1}y {x?”xl’xl}y {$3,$1,$1}y

CI 3.06 3.04 2.05 2.05 2.05

3 | (ey’+32)" {ys,ys,ya}e {w2,22,7n,01,01)y {ya,ys,91)e {v2,12}2
CI 3.05 2.12 4.04 2.12 2.04

4 (4y+3x)3 {yS;y2,y1,S0}cc {$3:$2:$1a"/’}y {ylayl}3 {ylayl}‘s
CI 3.04 3.06 3.06 3.02 3.02

Table 2: Examples for simplifications of two-dimensional polynomial CR expressions

2. If one of the simplification rules (6) — (15) applies
to f ¥} ...¥, such that the CI is reduced then
apply the rule (if a choice of a variable ordering
is involved, choose the one which results in the
smaller CI) and recursively apply the algorithm
to the coefficients of the obtained CR;

3. else return f ¥} ... ¥ ;

5 Examples

We conclude this section by illustrating the suggested heuris-
tic simplification procedures. In Table 3 we give examples
which are very similar to those used in [4] to measure and
demosntrate the evaluation speed of our implementation of
the CR method. Column 1 shows the elementary expres-
sions we used as input and column 2 shows their respective
CIs (by extending the definition of the CI for CR expressions
in the obvious way to elementary expressions). Column 3
shows the CR expression obtained from the CR construc-
tion and heuristic simplification, and column 4 shows their
respective CIs. We assumed that we work over a regular
grid of 10,000 or 100 x 100 evaluation points and that we
used the weights obtained for a Sun-SparcStationlII of table
2.

We furthermore assumed that expressions of the form z™
were always evaluated using the pow operation for elemen-
tary expressions and using a repeated squaring procedure
for CR expressions.

For row 2 we used the expanded form of (z —1)!° 41 as
input, i.e. z'°—10z° + (120) z%--- — 10z and for row 3 we
used the Horner representation of (x —1)'° +1 as input, i.e.
(.. ((z—10)z + (120)):13 ...—10)z. Likewise, for rows 5 and
6, we used the expanded input y®z? — 4y32% + 3yz* + .- +
62> + 3y — 4z + 2 and the Horner representation 2 + (—4 +
6+(—4+x)p)r)e+(..+(..+ (.. + (.. + .. 2)YY)Y.

All CR expressions in column 3 are optimal, i.e., the
heuristic simplification algorithm returned the same results
as the exhaustive search algorithms. This illustrates that es-
pecially for relatively simple examples (like the ones above),
the results of the heuristic simplification algorithm are usu-
ally as good as those from the exhaustive search algorithm
(only much more efficient).

Notice also that the CR method does not result in a
decrease of the CI for the example in row 9, i.e., the input
expression does not allow CR simplifications.

6 Summary and Discussion

The simplification strategies developed in this paper, con-
sidered, for the first time, CR simplifications not indepen-
dently of the computational context and firstly addressed
the problem of variable orderings for multi - dimensional
CR expressions. Our simplification strategies were based on
the Cost Index (CI) of a CR expression, which we intro-
duced in Section 2 as a system-independent measure for the
evaluation cost, and on the analysis of the influence of CR
simplifications on the CI of the transformed CR expressions
(Section 3).

Our first CR simplification algorithm, given in Section
4, employs an exhaustive search technique to find the CR
expression with a minimal CI. While this strategy has the
advantage of resulting in a CR expression whose evaluation
cost is minimal, the algorithm itself has a (worst case) expo-
nential time and space complexity and is therefore of limited
applicability. As an alternative, we furthermore developed a
heuristic simplification algorithm, which balances the time
spent during simplifications with the time saved in the fol-
lowing evaluations. The suggested heuristics are based on
observations about the structure of CR simplification rules
and on the ratio of the dimensions of the evaluation domain
(for determining the variable ordering of multi - dimensional
CRs). The simplifications are accomplish in a reasonable
time (i.e., in at most polynomial time) such that the CI of
the resulting CR expression is close to the minimum.

The MPCR server — our implementation of the CR method
described in [4, 2] — successfully implements the simplifica-
tion algorithms described here, and the reported timings are
a further illustration that our proposed strategies work.

Numerous, often tediously to describe, but more or less
obvious refinements of these simplification strategies are
possible, especially for the multi - dimensional heuristic
simplification algorithms. Furthermore, the simplification
strategies should be extended to include rational and facto-
rial simplifications of CR expressions based on the principles
given in [9].

7 Acknowledgments

Large portions of this paper are based on Chapter four of the
Author’s Ph.D. dissertation [2], written under at Kent State
University under the direction of Paul S. Wang. The author
would like to thank all members of his Ph.D. committee, and
in particular Paul S. Wang, for their support of the author’s
Ph.D. work.

EE CI(EE) CR CI(CR)
1] (z—1)"+1 2+wpow {po, +,p1}'°+1 2+5wx
2 | expand (1) 10+ 10w +9wpow {po, +,..., +,p10} 10
3 | Horner (2) 10+ 10w« {@o, +,..., +,p10} 10
4| (@—1)"(y+1)*+1 3+wx+2wpow {po, +, o1} {tho, +,1}343 1.02+1.05ws
5 | expand (3) 19428wx +23wpow {rs,z4,24,24}y 3.16
6 | Horner (3) 19+19wx {24, 24, 24,24}y 3.16
7 u20+2v w/ +wx+wpow+wWcos {po, +, 1, +, 2} uR{tbo, *,91} .044+1.04w«
8 | 1.3"**'sin(1.5z) 1+bwx+wpow+wsgin | R{po, *,¢1} 2 + dwx
9 | log(z)+vz 3t+wiegtWsqrt log{po, +, 1} ++/{tho, *,91}y 3t+wiogtwWsqrt

Table 3: Examples of simplifications of CR expressions

References

[1]

[6]

[7]

(8]

[9]

AvITZUR, R., BACHMANN, O., AND KAJLER, N. From
Honest to Intelligent Plotting. In Proceedings of the In-
ternational Symposium on Symbolic and Algebraic Com-
putation - ISSAC’95 (Montreal, Canada, July 1995),
ACM Press, pp. 32-41.

BACHMANN, O. Chains of Recurrences. PhD thesis, De-
partment of Mathematics and Computer Science, Kent
State University, 1996.

BAcHMANN, O. Chains of Recurrences for Functions
of Two Variables and their Application to Surface Plot-
ting. In Human Interaction for Symbolic Computation,
N. Kajler, Ed. Springer-Verlag, 1996. To appear.

BacuMANN, O. MPCR: An Efficient and Flexible
Chains of Recurrences Server. ACM SIGSAM Bulletin,
3 (December 1996).

BAcHMANN, O., WANG, P. S., AND ZiMA, E. V. Chains
of Recurrences - a method to expedite the evaluation
of closed-form functions. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Compu-
tation - ISSAC’94 (Oxford, England, United Kingdom,
July 1994), ACM Press, pp. 242-249.

BUCHBERGER, B., AND Loos, R. Algebraic simplifica-
tion. In Computer Algebra Symbolic and Algebraic Com-
putation, B. Buchberger, G. Collins, R. Loos, and R. Al-
brecht, Eds., 2nd ed. Springer-Verlag, 1982.

KNUTH, D. E. Seminumerical Algorithms, vol. 2 of The
Art of Computer Programming. Reading Mass.:Addison-
Wesley, 1981.

ZMA, E. V. Automatic construction of system of recur-
rence relations. Journal of Computational Mathematics
and Mathematical Physics 24, 6 (1984), 193-197.

ZiMA, E. V. Simplifications and Optimization Trans-
formations of Chains of Recurrences. In Proceedings
of the International Symposium on Symbolic and Alge-
braic Computation - ISSAC’95 (Montreal, Canada, July
1995), ACM Press, pp. 42-50.

List of papers published in the Reports on Computer
Algebra series

(1]

H. Grassmann, G.-M. Greuel, B. Martin, W. Neumann,
G. Pfister, W. Pohl, H. Schonemann, and T. Siebert. Stan-
dard bases, syzygies and their implementation in singular.
1996.

H. Schénemann. Algorithms in singular. 1996.

R. Stobbe. FACTORY: a C++ class library for multivariate
polynomial arithmetic. 1996.

O. Bachmann and H. Schénemann. A Manual for the MPP
Dictionary and MPP Library. 1996.

O. Bachmann, S. Gray, and H. Schénemann. MPP: A Frame-
work for Distributed Polynomial Computations. 1996.

G.M. Greuel and G. Pfister. Advances and improvements in
the theory of standard bases and szyzygies. 1996.

G.M. Greuel. Description of SINGULAR: A computer alge-
bra system for singularity theory, algebraic geometry, and
commutative algebra. 1996.

T. Siebert. On strategies and implementations for computa-
tions of free resolutions. September 1996.

B. Reinert. Introducing reduction to polycyclic group rings
— a comparison of methods. October 1996.

0. Bachmann, S. Gray, and H. Schénemann. A proposal for
syntactic data integration for math protocols. January 1997.

O. Bachmann. Effective simplification of cr expressions. Jan-
uary 1997.

O. Bachmann, S. Gray, and H. Schénemann. MP Prototype
Specification. January 1997.

0. Bachmann. MPT - a library for parsing and Manipulating
MP Trees. January 1997.

K. Madlener and B. Reinert. Relating rewriting techniques
on monoids and rings: Congruences on monoids and ideals
in monoid rings. September 1997.

B. Martin and T. Siebert. Splitting Algorithm for vector
bundles. September 1997.

K. Madlener and B. Reinert. String Rewriting and Grébner
Bases — A General Approach to Monoid and Group Rings.
October 1997.

Thomas Siebert. An algorithm for constructing isomor-
phisms of modules. January 1998.

O. Bachmann and H. Schénemann. Monomial Representa-
tions for Grébner Bases Computations. January 1998.

B. Reinert, K. Madlener, and T. Mora. A note on nielsen
reduction and coset enumeration. February 1998.

