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Abstract

A first explicit connection between finitely presented commutative monoids and
ideals in polynomial rings was used 1958 by Emelichev yielding a solution to the word
problem in commutative monoids by deciding the ideal membership problem. The aim
of this paper is to show in a similar fashion how congruences on monoids and groups
can be characterized by ideals in respective monoid and group rings. These charac-
terizations enable to transfer well known results from the theory of string rewriting
systems for presenting monoids and groups to the algebraic setting of subalgebras and
ideals in monoid respectively group rings. Moreover, natural one-sided congruences
defined by subgroups of a group are connected to one-sided ideals in the respective
group ring and hence the subgroup problem and the ideal membership problem are
directly related. For several classes of finitely presented groups we show explicitly how
Grobner basis methods are related to existing solutions of the subgroup problem by
rewriting methods. For the case of general monoids and submonoids weaker results
are presented. In fact it becomes clear that string rewriting methods for monoids and
groups can be lifted in a natural fashion to define reduction relations in monoid and
group rings.

*The author was supported by the Deutsche Forschungsgemeinschaft (DFG).



1 Introduction

The development of symbolic computation theory — a field related to mathematics as well
as to computer science — has resulted in new constructive approaches to computational
problems in algebra in particular for rings, monoids and groups. Especially reduction tech-
niques provide concepts for representing congruences by rewriting systems, transform these
systems and use them for computations in quotient structures using symbolic methods.
For general varieties these techniques have been studied extensively and the general results
of term rewriting are widely applied in different areas. Since monoids respectively groups,
as examples of varieties, can be presented as quotients of free monoids respectively free
groups, general rewriting is one technique to solve computational problems related to the
respective structures. Such presentations in terms of generators and defining relations (see
e.g. [Gi79, LySch77, MaKaSo76]) are closely related to so called string rewriting systems or
semi-Thue systems, which can be seen as special rewriting systems. Hence knowledge and
procedures from this field, especially variations of the Knuth-Bendix completion procedure
[KnBe70], can be applied to solve monoid and group theoretic problems. The most basic
such problem is the word problem, i.e. decide whether two representations of elements in
fact describe the same element. This problem can be solved using rewriting techniques in
case the Knuth-Bendix completion procedure terminates for a given string rewriting system
yielding a finite convergent system. Hence the question which monoids have presentations
by finite convergent (i.e. complete) semi-Thue systems and how to compute them is of spe-
cial interest. Kapur and Narendran in [KaNa85] and Jantzen in [Ja81, Ja85] give examples
of monoid presentations which cannot be completed although a finite convergent semi-
Thue system over an other alphabet presenting the same monoid exists. Squier proved the
existence of finitely presented monoids with decidable word problem which cannot be pre-
sented by any finite convergent semi-Thue system [Sq87]. Some characterizations of classes

of groups with finite convergent presentations of certain syntactical type can be found in
[MaOt89].

Besides the word problem, the subgroup problem or generalized word problem is another
classical important well studied decision problem for groups. Kuhn and Madlener have
shown how the notion of prefix rewriting — a specialization of ordinary string rewriting
— can be applied to solve the subgroup problem for certain classes of groups [KuMag9].
Prefix rewriting and the corresponding completion method is a direct generalization of
Nielsen’s method to solve the subgroup problem in the class of free groups [Ni21]. In case
of confluence it can be used to compute Schreier-representatives of the subgroup cosets. A
related question is when subgroups of groups allowing certain presentations again have a
presentation of the same type. For some groups such a presentation for the subgroup can
be computed from a confluent prefix rewriting system for the subgroup [KuMaOt94].

The application of reduction techniques in rings for solving membership problems of ideals
and subalgebras also has a long tradition and has produced multiple results beginning with
Buchberger’s fundamental work on Grébner bases [Bu65].

The main purpose of this paper is to relate the reduction techniques used for monoids,
groups and rings by explicitly relating decision problems in appropriate related structures.
Using reductions, e.g. from the word problem for finitely presented monoids or groups to the
ideal membership problem for corresponding free monoid or free group rings, the apparently
different reduction techniques for solving the problems can be compared. We survey some



results concerning the above mentioned decision problems. A survey on reduction techniques
for rings can be found in [MaRe95].

A first connection between (finitely presented) commutative monoids and polynomial rings
can be found in the work of Emelichev 1958 (see e.g. [MaMeSa93]). He gives a solution
for the word problem in commutative monoids using algebraic methods. Assuming the
commutative monoid M is presented by a set of generators z1,...,z, and a set of defining
relations Iy = r1,...,ly, = r, the following is true: A relation u = w holds in M if and only
if the polynomial u — w lies in the ideal generated by the polynomials iy —ry,...,l, — 7 in
the polynomial ring Q[z1, .. ., z,]. In his paper Emelichev uses a result of Hermann to show
that the latter question is decidable. Of course the ideal membership problem is also solvable
using Buchberger’s method of Grobner bases, which is based on a special reduction system
associated to finite sets of polynomials which represent ideal congruences in polynomial
rings. Polynomials are used as rules by giving an admissible term ordering on the terms
and using the largest monomial according to this ordering as a left-hand side of a rule.
“Reduction” defined in this way can be interpreted as division of one polynomial by a set
of finitely many polynomials. A Grobner basis now can be defined as a set of polynomials G
such that every polynomial in the polynomial ring has a unique normal form with respect
to reduction using the polynomials in G as rules (especially the polynomials in the ideal
generated by G reduce to zero using G enabling to solve the membership problem for ideals).

In this paper we want to show how congruences on monoids and groups are connected to
ideals in the respective monoid and group rings. These connections enable to transfer results
from the former field to generalizations of Grobner basis methods in various structures. In
[Re95] we have shown that certain undecidability results for string rewriting systems carry
over to monoid and group rings since the specialization of the Knuth-Bendix completion
procedure for string rewriting systems is an instance of Mora’s generalization [Mo85] of
Buchberger’s algorithm for free monoid rings. These results are summarized in section 3
after giving some basic notions in section 2. Moreover, the subalgebra respectively one-sided
ideal membership problem in monoid respectively group rings are related to the submonoid
respectively subgroup problem in monoids respectively groups. In section 4 and 5 we show
the relations between Grobner bases in group rings and rewriting techniques for the word
and subgroup problem in groups. Section 6 outlines the more general case of subalgebras in
monoid rings, and the connections to the submonoid problem in the corresponding monoid
are studied. While the results presented in these sections make clear that only very restricted
types of monoids or groups will allow finite Grobner bases in the associated monoid or
group rings, in the concluding remarks we collect known positive results on the existence
of finite Grobner bases in some group rings, which prove that for the groups known to
have subgroup problems solvable by string rewriting methods, appropriate finite Grobner
bases can be defined in the respective group ring. These classes of finitely presented groups
include the finite, the free, the plain, the context-free respectively the polycyclic groups,
and the details can be found in [MaRe95].
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2 Presentations: Congruences in Monoids and Groups

The book of Lallement [La79] gives a good introduction to congruences and presentations
of monoids, while the book of Johnson [Jo76] was used as a source on group presentations.

Let A be a set and p C A x A a binary relation on A. By € we denote the special relation
{(a,a) | a € A}. A binary relation p is called an equivalence relation in case it is
reflexive (i.e. ¢ C p), symmetric (i.e. p C p~' = {(b,a) | (a,b) € p}) and transitive
(i.e. pop = {(a,¢) | (a,b),(b,c) € p} C p). In the following we assume that p is an
equivalence relation. For an element a € A we call the set [a], = {a' € A | (a,a’) € p} the
class of ¢ modulo p. Then A is a disjoint union of classes modulo p and the set of all such
classes modulo p is called the quotient of A modulo p, denoted by A/p.

A congruence on a monoid M is defined as an equivalence relation p on the set M which
is stable under left and right multiplication with elements of M. In particular a right
(respectively left) congruence on M is stable with respect to right (respectively left)
multiplication.

Given a congruence p on a monoid M and an element m € M, we call [m], = {m' € M |
(m, m') € p} the congruence class of m. We can define a monoid structure on the set of
all congruence classes M/p by setting [m], or, [m'], = [m o m'], for m,m' € M. Then
M/ p is called the quotient of M by p and the homomorphism x, : M — M/p induced
by m —— [m], is in fact surjective.

Congruences now provide the means to construct presentations of monoids. A set of symbols
Y is called a set of generators for M under the mapping ¢ : ¥ — M, if the extension
of ¢ to the set of words X* on X defined by é(a;...a,) = é(a1) op --- o d(an), is a
homomorphism from ¥* onto M. If for two words w,w’ € ¥* we have ¢(w) = ¢(w') we
say that M satisfies the relation w = w'. The word problem for a monoid M now is to
decide whether for two words w, w' € ¥*, M satisfies the relation w = w'.

Given a set of relations R we say that a word u is directly derivable from an other word
v under the relation (I,7) € R, if either u = zly and v = zry or u = xry and v = zly for
words z,y. We call u derivable from v under R if there exist words vy, ..., v, such that
v = vy, V41 is directly derivable from v; for 0 <7 < n — 1 and v, = u. Notice that if u is
derivable from v under R, then ¢(u) = ¢(v) holds, i.e. u = v is a relation in M. We then
call the relation a consequence of the relations R. In case all and only relations on M are
consequences of the relations R we say that (X, R) is a presentation of M defined by ¢.
(X, R) is also called a Thue system in the literature.

Now the easiest way to give a presentation of a monoid M is to take the set M itself as a
generating set and to use the multiplication table of M as the defining relations. However
this presentation in general will not be finite and other presentations fulfilling additional
conditions, e.g. finitely many generators of finitely many relations, are hoped for.

In order to construct a presentation of a monoid M one has to

1. Find a set of generators X for M. Then ¢ : ¥ — M can be chosen as the natural
inclusion mapping.

2. Find a set of relations R in M such that the smallest congruence containing these
relations coincides with the kernel congruence of the extended homomorphism ¢ :



¥* — M. This kernel congruence is {(u,v) € 3* x T* | ¢(u) =p ¢(v)}.

In order to use reduction techniques for computations in monoids or groups, presentations
are provided with an orientation of the relations and treated as string rewriting systems
(for a general reference of the terms and techniques described here see [BoOt93]). For a
finite alphabet X, again ¥* will denote the set of all words over the alphabet ¥ where A
presents the empty word, i.e., the word of length zero. = will denote the identity on
¥*. A string rewriting system or semi-Thue system is a pair (3,7) where T is a
subset of ¥* x X*. The elements (I,7) of T are called rules and will often be written as
I —> r. The (single-step) reduction relation on X* induced by a set of rules 7" is defined
as follows: For any u,v in ¥*, u —7 v if and only if there exist z,y in ¥* and (I,r) in T
such that u = zly and v = zry. v is then called a proper descendant of u. The reflexive
transitive symmetric closure is denoted by <L>T and is called the Thue congruence. If
u ——, v holds then one says that u reduces to v. In case for u there exists no v such that

U,i)TU holds, i.e. at least one reduction step must take place, u is called irreducible.
An irreducible descendant of v is called a (7-)normal form and is sometimes denoted
by ulz. The reduction relation induced by 7 is called Noetherian if and only if there is
no infinite chain v —,v; —pvo — ... It is called confluent if for all u,v,w in ¥*,
u—pv and u —,w imply the existence of z in ¥* such that v —; 2z and w ——y 2. A
string rewriting system is called convergent or complete if it is both, Noetherian and
confluent, i.e., unique normal forms exist.

By Newman’s lemma we know that under the hypothesis that a reduction relation is Noethe-
rian, a string rewriting system is confluent if and only if it is locally confluent, i.e., for all
u,v,w in X*, 4 —; v and u —; w imply the existence of z in X* such that v L>T z and
w —,, z. For finite string rewriting systems the global property of being locally confluent
can be localized to enable a finite confluence test. Remember that presentations of monoids
can be treated as string rewriting systems and notice that string rewriting systems are in
fact presentations of monoids. Hence, in case they are finite, convergent and effective, we can
“compute” in the monoid using the irreducible elements as representatives for the monoid el-
ements. The process of trying to turn a Noetherian string rewriting system into a convergent
one by resolving the not locally confluent situations is called completion. We will now sketch
how a finite string rewriting system (3, 7T") presenting a monoid can be completed in case we
have a total admissible! well-founded? ordering >= on %* such that for all (/,7) € T we have
[ > r. This ordering then will be called a completion ordering for 7" and the completion
process transforms (3, T) into a (not necessarily finite) convergent string rewriting system
presenting the same monoid. It is important that in order to check a finite Noetherian string
rewriting system 7" for confluence we only have to look at a finite set of critical situations:
for two not necessarily different rules (Iy, 1), (I2,72) in T the set of critical pairs is defined
as {(xr,my) | z,y € T*, zly = by, || < |lo|} U {(r1,zry) | z,y € %, 11 = zly, || < |l1]}-
Now given a finite string rewriting system (3,7) with a completion ordering > we can
specify a completion process as follows:

LA partial ordering > on ¥* is called admissible if for all u,v,z,y in ¥* we have u > A, and u > v
implies zuy > zvy.

2A partial ordering > on X* is called well-founded if no infinite chains of the form z1 > zo > ... with
x; € ¥* are possible.



Procedure: KNUTH BENDIX COMPLETION

Given: A string rewriting system (%, 7),
and a total well-founded admissible ordering >.

R={(r)|l>r(,r
B = {((lla rl)a (ZZa TZ))
while B # () do
((l1,71), (I, 79)) := remove(B);
% Remove an element using a fair strategy
for all critical pairs (21, z9) € critical.pairs((l1,71), (I2,72)) do
% critical.pairs((l1,71), (lo,72)) = {{xr1,m2y) | T,y € T*, 2l = by, x| < |l2]} U
% {(r1,xry) | z,y € X%, 11 = zloy, |z| < |l1|}
24 = maxy (normal.form(z;, —3 ), normal.form(zy, —5));
24 := miny (normal.form(z;, —5 ), normal.form(ze, —y));
% normal.form(z, — 5 ) computes an R-normal form of z
if 2} # 2,
then B := B U{((/,r), (21, %)), (21, %), (I,7)) | (I,r) € R};
R:=RU{(z1,%)};

yeTor (r,l) €T}
| (liym1), (loy m2) € RY;

endif
endwhile

Since the word problem for arbitrary string rewriting systems is undecidable, this proce-
dure in general will not terminate. Nevertheless, using a fair® strategy to remove elements
from the set B, it always enumerates a convergent string rewriting system based on the
completion ordering > presenting the same monoid as the input system.

3 Relating the Word and the Ideal Membership Prob-
lems in Monoids and Free Monoid Rings

Let us start this section with some algebraic notions concerning monoid rings. For a monoid
M with multiplication o and a total well-founded ordering > on M, the elements of the
monoid ring K[M] over a field K can be presented as “polynomials” f = >, .\, -1
where only finitely many a; € K are non-zero. The elements «; - t are called monomials
consisting of a coefficient a; and a term ¢. Addition and multiplication for two polynomials
f=ema-tand h=>, \ Bi-tis definedas f+h =73, \(c,+pB)-tand fxh=
Y otem Ve -t with = Zwoy:t oy - By. Given a non-zero polynomial p in K[M], the head
term HT(p) is the largest term in p with respect to >, which has non-zero coefficient
denoted by HC(p), and the head monomial is HM(p) = HC(p) - HT(p). T(p) is the set
of all t € M with non-zero coefficient in p. For a subset F' of K[M] we call the set
ideal (F) = {3 ;- fixw; | n € Nyoy € K, f; € Fw; € M}* the right ideal,
ideal,(F) = {> 7 i -wi* fi | n € Nyoy € K, f; € F,w; € M} the left ideal and
ideal (F) = {3 ;- uix fixw; | n € N,o,; € K, f; € F,u;,w; € M} the two-sided ideal

3 A fair strategy will ensure that all elements of the set B are considered at some time by the procedure.
4N denotes the natural numbers including 0.



generated by F. By =; we will denote the (right, left respectively two-sided) congruence
induced by a (right, left respectively two-sided) ideal i on K[M].

The following theorem states that the word problem for monoids is equivalent to a restricted
version of the ideal membership problem in free monoid rings. This immediately implies the
undecidability of the latter problem which is also stated in [Mo87, KaWe90], but the proof
we give here provides a stronger result outlined below. For a string rewriting system (3, T')
presenting a monoid, the related free monoid ring is K[>*], where ¥* is the free monoid
generated by X with word concatenation as binary operation and A as identity element.

Theorem 1 Let (3,T) be a finite string rewriting system presenting a monoid M and
Pr={l—r|(l,r) € T} a set of polynomials in K[X*] associated with T.
Then for u,v € X* the following statements are equivalent:

(1) u+—pv, i.c. the relation u = v holds in M.

(2) u—wv € ideal(Pr).

Proof :

1 = 2: Using induction on k we show that u <L>T v implies u—v € ideal (Pr). In the base
case k = 0 there is nothing to show, since u — u = 0 € ideal (Pr). Thus let us assume that
12<L>T17 implies @ — ¥ € ideal(Pr). Then looking at U(L>T Uy v we find ug —p v
with (I;,7;) € T. Without loss of generality we can assume uy, = xl,y for some z,y € ¥* thus
giving us v = zr;y, and since multiplication in the free monoid is concatenation, v can be
expressed in terms of polynomials by v = up—z*(l; —7;)xy. Asu—v = u—ug+z*(l; —7;)*y
and u — uy, € ideal(Pr) our induction hypothesis yields u — v € ideal (Py).

2 = 1: It remains to show that v — v € ideal(Py) implies u <, v. We know u — v =
> im1 Bi-xjx (liy —i;) % yj, where 8; € K*, z;,y; € 5*. Therefore, by showing the following
stronger result we are done: A representation u —v = 37" | p; where p; = a; - (w; — wj),
a; € K* and w; <l>T w;; implies that u<—pv. Thus let u — v = Z;nzl p; be such a rep-
resentation. Depending on this representation 7", p; and the ordering = on ¥* we can
define ¢t = max, {w;,w | j = 1,...m} and K is the number of polynomials p; containing ¢
as a term. We will show our claim by induction on (m, K), where (m’, K') < (m, K) if and
only if m' <m or (m' =m and K’ < K). In case m = 0, then u — v = 0 implies u = v and
hence u<L>T v. Now suppose m > 0.

In case K = 1, let p;, be the polynomial containing ¢. Since we either have py = oy - (t — wy},)
or py = oy - (wg — t), where o € {1, —1}, without loss of generality we can assume u =t
and p, = t — wj. Using p, we can decrease m by subtracting p, from v — v giving us
Wi —v =" ;. Since u = ¢+ wj, and our induction hypothesis yields wj, <~ v
we can conclude u <5 v.

In case K > 1 there are two polynomials pg,p; in the corresponding representation con-
taining the term ¢ and without loss of generality we can assume py = oy - (¢ — w},) and
p = oy - (t —wy), as the cases where p, = oy - (w), — t) or p; = o - (w; — t) occur can be

treated similarly by modifying the respective coefficient. If w;, = w; we can immediately



decrease m by substituting the occurrence of py + p; by (ay - ;' +1) - p;. Otherwise we can
proceed as follows:

Prtp = prok o cpitogal ptp
-0

= (ap-(t—wp) —ap-og vy (t—w)) + (o "+ 1) py

= &—ak cwW + oy - w{l%—(ak ot + 1)y

:pk

where p|, = - (W) —w},), Wy <7 t > w) and w) # w}. Therefore, in case ay-a; ' +1 = 0,
i.e., o = —ay, m is decreased. On the other hand pj, does not contain ¢, i.e., K will be
decreased in any case.

q.e.d.

In other words, the congruence generated by the relations in 7" on ¥* is related to the ideal
generated by Pp in K[X*].

Moreover, inspecting the proof of this theorem we find that every rewriting sequence

u<L>Tv gives rise to a representation of the polynomial v — v involving £ multiples of
the form z * (I — r) * y with z,y € ¥*, (I,7) € T. On the other hand the existence of a
representation u — v = Zle zi % (I — ;) * yi, ziyy; € X%, (I, ;) € T implies u <, v.
Hence not only the word problem for finite string rewriting systems is reduced to the mem-
bership problem for finitely generated ideals in free monoid rings, but also the rewriting
sequences are translated into particular polynomial representations. Especially if > is a

total admissible well-founded ordering on ¥* and the rules of T are ordered by > and we

have u i>T v then the resulting representation has the characteristics of so called standard
representations, i.e. u > x;l;y; for all 1 <4 < k. Additionally we can arrange the sum such
that u = z1hy1 > 21myr = TaloYe > ToTeYo .- Tp—1lk-1Yk—1 > Th-1Tk-1Yk—1 = TrlpYr >
TrTEYr = V.

For a monoid M presented by a string rewriting system (3,7), let p be the smallest
congruence containing the set of relations R = {u; = v; | u;,v; € X*}. Then we are
interested in the quotient of M by p and similar to theorem 1 we can relate the congruence
now generated by 77U R on X* to the ideal generated by Pryg ={l—7 | (I,r) € TUR} in
K[X].

Corollary 2 Let (X,T) be a finite string rewriting system presenting a monoid M. Fur-
thermore, let R be a set of relations on M and let Pror = {l—7r| (I,7) € TUR} C K[X*].
Then for u,v € X* the following statements are equivalent:

(1) u<L>TURv.

(2) u—v € ideal(Pryg).

The existence of a finite string rewriting system over an alphabet with two symbols hav-
ing undecidable word problem yields that the ideal membership problem for free monoid



rings with more than one generator is undecidable® in general. In case the free monoid is
generated by one element, we have decidable ideal membership problem. In fact K[{a}"|
is the ordinary commutative polynomial ring in one variable K[a| and, e.g., the Euclidean
algorithm determines a generating polynomial for the ideal which can be used to solve the
ideal membership problem.

As in the case of commutative polynomial rings, where ideal membership can successfully
be solved using reduction methods, ideal congruences in free monoid rings can be described
by reduction relations. A natural definition of a reduction relation was introduced by Mora
in [Mo85].

Definition 3 (Mora) Let ¥ be a finite alphabet with > a total admissible well-founded
ordering on ¥* and p, f be two non-zero polynomials in K[X*]. We say f reduces p to ¢
at a monomial « -7 of p in one step, denoted by p—;q, if

(a) zHT(f)y =t for some x,y € ¥*, and
(b)) g=p—(a-HC(f)™) -z * fxy.
We write p—; if there is a polynomial q such that p—;q.

Notice that for a set of polynomials F' we write p — in case there exists f € F such
that p—;. Then <L>F = =igeal(r) holds and if additionally —, is confluent we call F
a Grobner basis of ideal (F') with respect to — .

While theorem 1 reduces the word problem for string rewriting systems to the ideal member-
ship problem in free monoid rings, the proof of this theorem reveals that in fact for a fixed
admissible ordering the existence of finite convergent string rewriting systems corresponds
to the existence of finite Grobner bases and vice versa. Since there exist finitely generated
ideals in free monoid rings with unsolvable membership problem, in general finitely gen-
erated ideals will not admit finite Grobner bases. As the ordering on M determines the
head monomial of a polynomial, it has great influence on how a polynomial can be used
for reduction. Therefore, as Grobner bases are defined with respect to reduction, it even
is possible for a finitely generated ideal to admit a finite Grobner basis with respect to
one admissible ordering and none with respect to another admissible ordering. For example
in the free monoid ring over {a,b,c}* the ideal generated by F = {ac + 1,¢b — bc} has
a finite Grobner basis when using the length-lexicographic ordering on {a,b,c}* induced
by the precedence a > b > c¢ and none with precedence ¢ > a > b. Moreover, solvable
word problem does not imply the existence of a finite Grobner basis as the example of
a finitely presented monoid ¥ = {a,b}, T = {aba — bab} with solvable word problem
but no finite convergent presentation on the alphabet {a, b} with respect to any admissible
ordering shows (see [KaNa85]). Similarly, the ideal generated by the polynomial aba — bab
in K[{a, b}*] has no finite Grébner basis with respect to any admissible ordering on {a, b}*.
Notice that in this example we can apply a so called Tietze transformation to the string
rewriting system, i.e. we can change the presentation without changing the monoid, giving
us the isomorphic presentation ¥/ = {a,b,c}, 7" = {aba —> bab,ba —> ¢} which can be

5This has also been shown by Kandri-Rody and Weispfenning in [KaWe90] for the free monoid ring
Q[{X1, X2}*] by reducing the halting problem for Turing machines to this problem.



successfully completed, e.g. with respect to the length-lexicographical ordering with prece-
dence a > b > c resulting in 7" = {ac — cb,ba — ¢, bcb — 2, bc? — c?a}. Similarly,
the ideal generated by {aba — bab,ba — ¢} has a finite Grobner basis with respect to the
same ordering, namely {ac — cb,ba — ¢, bcb — ¢%,bc® — c?a}®. Due to the result of Squire
in [Sq87] there are finitely presented monoids with solvable word problem which have no
finite convergent presentations at all and his examples give rise to finitely generated ideals
in free monoid rings with solvable ideal membership problem which have no finite Grobner
bases. On the other hand, in [Mo85] Mora provided a completion procedure which, given
an admissible ordering and a finite set of polynomials F', enumerates a Grobner basis of
ideal (F') with respect to reduction determined by this ordering.

Procedure: GROBNER BASES IN FREE MONOID RINGS [MORA]

Given: A finite set F' C K[X*],
> a total admissible well-founded ordering on >*.

G:=F;
B = {(q1,9) | ¢1,92 € G};
while B # () do
(q1, q2) := remove(B);
% Remove an element using a fair strategy
for all polynomials h € S(qi,¢2) do
% S(q1,q2) ={HC(q1) ' -u*qxv—HC(g2) " - o | uHT (q1)v = HT(g2)} U
G {HC(q1) ™" - @ *u — HC(g2) " * v g2 | HT (q1)u = vHT(g2), HT(q1)| < [vl}
h' := normal.form(h, — );
if B¥#0
then G :=GU{h'};
B:=BU{(f,h), (W, f) | f € G}
endif
endfor
endwhile

Reviewing the Knuth-Bendix completion procedure it is easy to see the connection to
this Grobner basis procedure: Let Y be a finite alphabet, T' a set of rules and > a total
admissible well-founded ordering on ¥*. Then there is a correspondence between rules and
special polynomials in K[¥*] (even in Z[X*]) as follows:

T> (,r)— p(l,r) € K[X]

where
l—r >
p(lyry=4¢ r—1 r>=1
0 l=r

6Notice that for i = ideal™{**¥"I({aba — bab}) and j = ideal™®{**<}"({aba — bab, ba — ¢}) the quotients
K[{a,b}*]/i and K[{a, b, c}*]/j are isomorphic and for u,v € {a,b}* we have u—v € iifand only if u —v € j
since i =jNK[{a,b}*].

6These polynomials are frequently called s-polynomials in the literature.



Hence we can associate to T a set of polynomials Pr = {p(l,r) | (I,r) € T}. On the
other hand, given a polynomial of the form x — y or —x + y with = > y we can relate
this to a rule (z,y) and doing so associate to a set of such polynomials G' a set of rules
Te ={(z,y) | t—y or —x+y € G}. In this context it is obvious that on input 7" respectively
Pr the initialization of both procedures gives us corresponding sets R and G and corre-
sponding sets B. Furthermore, this is also true for the two sets critical.pairs((l1,71), (I2,72))
and S(p(l1,71), p(l2,r9)). It remains to show, that the treatment of a critical pair and the
corresponding polynomial is in fact the “same”. To see this we have to inspect the reduction
process in both procedures. First let us assume a polynomial of the form v — v is reduced by
a polynomial f of the form w— z or —w+ z where w > z (the case of reducing a polynomial
of the form —u + v is similar). Then we either have u = zwy implying u — v — T2y — U
or v = zwy implying u — v —,u — zzy. Hence in both cases the resulting polynomial
will be zero or contain two monomials, one having coefficient 1 and the other having co-
efficient —1. Therefore we can see that for a set of polynomials G' of the restricted form
we can express the normal form computation in the Grobner basis procedure using string
rewriting by normal.form(u — v, — ;) = normal.form(u, —;,, ) — normal.form(v, —, )
and on the other hand the normal form computed by the Grobner basis procedure
normal.form(u—v, —, ) = —y or —z+y can be used to express the pair computed in the
Knuth-Bendix completion procedure since this pair is (z,y). Hence both procedures add
the same information to the sets R respectively G in form of pairs or special polynomials
which are essentially the same in this context. Since the only possible coefficients occurring
in the Grobner basis calculation in this special case are 1 and —1, the completion can also
be done in Z,[¥*].

Procedure GROBNER BASES IN FREE MONOID RINGS terminates in case for the ideal
generated by F' a finite Grobner basis exists with respect to the reduction relation deter-
mined by the chosen admissible ordering. Hence the question arises, whether it is possible
to decide for a finite set of polynomials and a total admissible well-founded ordering if a
finite Grobner basis with respect to reduction determined by this ordering exists. This turns
out to be undecidable.

Theorem 4 ([Re95, MaRe95]) Given a total admissible well-founded ordering =, it is
undecidable, whether a finitely generated ideal has a finite Grobner basis in the free monoid
ring K[{a, b}*| with respect to reduction determined by > as defined in definition 3.

Proof :
Using the technique described by O’Dunlaing in [OD83] Madlener and Otto have shown
that the following problem is undecidable ([MaOt94]):

Let > be a compatible well-founded partial ordering on ¥5 = {a, b}* such that a > X\ and
b > A both hold.

Given a finite string rewriting system (3o, T'). Is there a finite and confluent system (35, T")
that is equivalent to (X9,7T) and based on >7

To prove our claim we show that the answer for (3,,7) is “yes” if and only if the ideal
generated by the set of polynomials Pr = {l —r | (I,r) € T} associated to T has a
finite Grébner basis in K[X3] with respect to >. If there is an equivalent, finite convergent
presentation (35,7") based on >, then the set Pr is a finite Grobner basis of ideal (Pr)



in K[33]. This follows as the string rewriting reduction —;, on X* can be simulated by
—p,, in K[¥3] (compare definition 3). Thus it remains to show that in case ideal(Pr) has
a finite Grobner basis in K[X}], there exists a finite Grobner basis G such that forall g € G
we have g = u — v or ¢ = —u + v, where u,v € 35, u > v, and u<—;v. Then (X, 7)
has an equivalent, convergent, finite presentation (X9,7”), namely 77 = {(u,v) | u —v €
G or —u+v € G}, since reduction in K[X}] when restricted to the usage of polynomials
of the form v — v or —u+ v can be compared to a transformation step in a string rewriting
system.
First we show that for a finite set F' in case ideal(F') has a finite Grobner basis in K[33]
the procedure GROBNER BASES IN FREE MONOID RINGS also computes a finite Grobner
basis of ideal (F). Let G be a finite Grobner basis of ideal (F)) with HT(G) = {HT(g) | ¢ €
G} = {t1,..., tg}. Let H, = {atyy | z,y € ©*}, then HT(ideal (F)) = U~ , Hy,, since all
polynomials in ideal (F') reduce to zero by G. Further our procedure is correct and, therefore,
for each t; there has to be at least one g; added to G such that ¢; = zHT(g;)y for some
xz,y € X*, ie., HT(g;) “divides” ¢;. Note that as soon as all such g; are added to G, we
have HT (ideal (G)) D Ule H;, and all further computed s-polynomials must reduce to zero
(we take the notion of s-polynomials as defined by Mora in [M094]). Since the procedure is
correct, G then is also a Grébner basis of ideal (F).
As we have seen before, procedure GROBNER BASES IN FREE MONOID RINGS on input
Pr only produces new polynomials of the form 0, v — v or —u + v. Hence on termination
the output has the desired form.

q.e.d.

This result holds even assuming decidable membership problems for the ideals [Sa96].

Corollary 5 It is undecidable, whether for a finitely generated ideal in K[{a,b}*] there
exists a total admissible well-founded ordering on {a,b}* such that the ideal has a finite
Grobner basis with respect to Mora’s reduction.

Proof :
In this proof we use the following technique (described in [MaOt94]):

Let P be a property of string rewriting systems over the alphabet Xy = {a, b} satisfying
the following three conditions:

(P1) Whenever (X5, T}) and (X9, T) are two finite equivalent string rewriting systems, then
(332, T1) has property P if and only if (35, 73) has it.

(P2) The trivial string rewriting system (35, {a — A,b — A}) has property P.

(P3) If a finite string rewriting system (3o, 7") has property P, then (X2, 7) has decidable
word problem, i.e., the Thue congruence <L>T is decidable.

Then the following problem for P is undecidable in general:

Given: A finite string rewriting system (3, 7).
Question: Does the Thue congruence <—, have P?



Now the claim follows using the correspondence between properties of string rewriting
systems and ideal bases of the related ideals derived in the proof in theorem 4. Let us
define a property P(7T) for string rewriting systems (X, 7") as follows: P(T) if and only if
there exists a total, well-founded, admissible ordering > on 33 such that there exists an
equivalent finite convergent string rewriting system (X5, 7") based on >. Then P fulfills the
conditions (P1), (P2) and (P3) mentioned above:

(P1): If P(T1) holds so must P(T3) as the existence of a total, well-founded, admissible
ordering > on ¥4 such that there exists an equivalent finite string rewriting system
(32, T") which is convergent with respect to > for (X5,77) at once carries over to the
equivalent system (X9, 75).

(P2): The trivial system {a — A,b — A} has property P.

(P3): Having property P implies decidability of the Thue congruence.

Hence this property is undecidable in general and this result carries over to Grobner bases
in K[{a, b}*] as before.
q.e.d.

This means that for two-sided ideals the case of free monoids is already hard although
free monoids allow simple presentations by string rewriting systems, namely empty sets of
defining relations.

For finitely generated right or left ideals the situation is much better. Using prefixes respec-
tively suffixes of words, natural reduction relations called prefix respectively suffix reduction
can be defined and finite prefix respectively suffix Grobner bases of the right respectively
left ideals exist. These bases can be in fact computed by interreducing the generating set
with respect to prefix or suffix reduction (compare e.g. [Mo094] for an algorithm to compute
prefix Grobner bases for finitely generated right ideals).

As stated in the introduction, a first explicit connection between finitely presented com-
mutative monoids and ideals in polynomial rings was used 1958 by Emelichev yielding a
solution to the word problem in the monoid by deciding the ideal membership problem.
In fact the word problem for finitely generated free commutative monoids can be solved
using Grobner bases in ordinary commutative polynomial rings and the word problem for
arbitrary finitely generated commutative monoids can be solved using Grobner bases in
quotients of commutative polynomial rings.

4 Relating the Word and Ideal Membership Problems
in Groups and Free Group Rings

In this section we want to point out how the Grobner basis methods as introduced in
[MaRe93, Re95| for general monoid rings when applied to group rings are related to the
word problem. First we state that similar to theorem 1 the word problem for groups is
equivalent to a restricted version of the membership problem for ideals in a free group



ring. Let the group be presented by a string rewriting system (X,7 U T}) such that there
exists an involution 2 : X — X, i.e for all a« € ¥ we have 4(a) # a, 1(2(a)) = a, and the
Tr = {(a(a),A) | a € £}. Every group has such a presentation. Notice that the set of rules
Ty is confluent with respect to any admissible ordering on ¥. By Fy we will denote the free
group with presentation (X, 77). The elements of Fy, will be represented by freely reduced
words, i.e. we assume that the words do not contain any subwords of the form az(a).

Theorem 6 ([Re95, MaRe95]) Let (X,7 UTy) be a finite string rewriting system pre-
senting a group and without loss of generality for all (I,r) € T we assume that | and r are
free reduced words. We associate the set of polynomials Pr = {l —r | (I,r) € T} in K[Fx]
with T

Then for u,v € ¥* the following statements are equivalent:

(1) U(L>TUTI v.
(2) U\LTI —’U\LTIE |dea|(PT)

Proof :

1 = 2: Using induction on k£ we show that U(L>TUTI v implies uly, —vlr, € ideal(Pr).
In the base case ¥ = 0 we have v = v and, therefore, vy, —ulp,= 0 € ideal(Pr).
Hence, let us assume that 1]<L>TUTI 0 implies @7, —0 1, € ideal(Pr). Thus, looking at

k e .
U >y, Up $—7ur, v We can distinguish the following cases:

1. ug¢—pv with (I,r) € T.
Without loss of generality we can assume u; = xly and v = zry for some words
z,y € X*. Now this gives us

wlr, —vlr=wlr, —uplr, +xlyls, —xryls,
—_—

=0

and zly Iy, —zrylr,= x x (I — r) x y, where * denotes multiplication in K[Fs)].
By our induction hypothesis we know u )y, —uylr, € ideal(Pr) and, hence, we get
U’\LTI —U\LTIE |deaI(PT)

2. U +—p, v with (ax(a), ) € T7".
Without loss of generality we can assume uy = zaz(a)y for some z,y € ¥* and v = zy,
i.e., uglr, = vlr, and therefore ulr, —vlr, € ideal (Pr).

2= 1: It remains to show that uls;, —vls, € ideal(Pr) implies UQTUTI v. We know
ulry, —viln= Y5 B; - xj* (li — i) * y;, where 3; € K*, x;,y; € Fx. Therefore, by
showing the following stronger result we are done: A representation v —v = Z;nzl pj where
pj = aj- (wj—wy), a; € K*, u,v,wj,w; € Fy and w <l>T wj implies that u <, v. Hence,
let u—v = 37" p; be such a representation. Depending on this representation > 7" | p; and
the ordering = on X* we can define t = max, {wj,w} | j = 1,...m} and K is the number

"The case (1(a)a, ) € T is similar.



of polynomials p; containing ¢ as a term. We will show our claim by induction on (m, K),
where

(m',K') < (m, K) if and only if m' < m or (m’ = m and K’ < K). In case m = 0, then
u — v = 0 implies u = v and hence u<L>T v8. Now suppose m > 0.

In case K =1, let p;, be the polynomial containing ¢. Since we either have py = oy - (t —wy},)
or p = oy - (wg — t), where o € {1, —1}, without loss of generality we can assume u =t
and py = t — wy. Using p, we can decrease m by subtracting p; from v — v giving us
Wy, —v =Y 5 D Since u = t <7 w), and our induction hypothesis yields w}, +— v
we get u <L>T .

In case K > 1 there are two polynomials pg, p; in the corresponding representation con-
taining the term ¢ and without loss of generality we can assume py = o - (t — w},) and
= oy - (t —wyj), as the cases where py, = oy - (w), — t) or p; = o - (w; — t) occur can be
treated similarly by modifying the respective coefficient. If w;, = w; we can immediately
decrease m by substituting the occurrence of py + p; by (ay - a;l +1) - p;. Otherwise we can
proceed as follows:

Prtp = pronc o Pt okl ptp
-0

= (—ak - wj + o - wp) +(o - o+ 1) p

-~

—p,

where p}, = oy - (W) — w}), Wy <7t +—pw} and w) # w},. Hence, in case oy - ;' +1 = 0,
i.e., ay = —ay, m is decreased. On the other hand pj, does not contain ¢, i.e., K will be
decreased in any case.

q.e.d.

The existence of a finite group presentation over four letters (resulting from two generators
as a group) with unsolvable word problem implies that the ideal membership problem for
free group rings with more than one generator is undecidable in general. Groups with one
generator are known to have decidable word problem. The ideal membership problem for
free group rings with one generator is solvable as this ring corresponds to the ring of Laurent
polynomials for the (commutative) free group with one generator (see e.g. [Si94]).

In theorem 6 we have shown how the congruence generated by the relations in 7" on Fy; is
related to the ideal generated by Pr in K[Fg]. As in the monoid case in fact we can use
additional relations R and investigate the quotient of Fy by the congruence generated by

R.
Corollary 7 Let (X, T UTy) be a finite string rewriting system as specified in theorem 6.
Furthermore, let R be a set of relations and let Pror = {l —r | (I,7) € T U R}. Then for

u,v € Fx, the following statements are equivalent:

(1) u<L>TURv.

8Remember that u,v € Fx, i.e., they are in normal form with respect to T7.



(2) wlr, —vlr, € ideal (Pryg)-

As in the monoid case (compare definition 3) we can define a natural reduction relation
on K[Fs] and we then can link the existence of finite convergent string rewriting systems
for groups to the existence of finite Grébner bases for the respective ideals and vice versa.
Moreover, the situations described for presentations of monoids (following definition 3) can
be generalized to groups hence extending the whole scenario to free group rings. Negative
results on the question of the decidability of the existence of a finite Grobner basis with
respect to a given ordering similar to theorem 4 or the question of the decidability of the
existence of an ordering such that a finite Grobner basis exists as in corollary 5 can be
derived.

5 Relating the Generalized Word and One-Sided Ideal
Membership Problems in Groups and Group Rings

This section is concerned with another fundamental decision problem introduced by Dehn
in 1911 for groups.

Definition 8 Given a subgroup U of a group G the generalized word problem for U/
or the subgroup problem for U is to determine, given w € G, whether w € U.

Given a finite subset S of a group G, we let (S) = {s10...0s, |n € N,s; € SUS'} denote
the subgroup generated by S. A subgroup U of a group G is called finitely generated if
there exists a finite subset S of G such that U = (S).

The word problem for a group G is just the generalized word problem for the trivial subgroup
in G since u = v holds in G if and only if uov™! = X holds in G, i.e. uov ™! € ().
Thus the existence of a group with undecidable word problem yields undecidability for the
generalized word problem for this group as well. On the other hand, decidable word problem
for a group does not imply decidable generalized word problem (for an overview on various
decision problems for groups see e.g. [Mi91]).

Now due to the existence of inverses, the word problem for congruences on free groups can
also be formulated as a special type of subgroup problem. Let 7" be a set of relations on a free
group Fyx. Then we can associate a set Ty C Fx, to T by setting Ty = {lox.r | (I,r) € T}.
Let N be the normal closure® of 7} in Fx. Then in fact the word problem for the group
Fs./N can be reduced to the subgroup problem for N since a relation u = v holds in Fy /N
if and only if w o v™! = X holds in Fx/N, i.e. uov™ € N. Notice that in general A is not
a finitely generated subgroup.

Subgroups of groups can be characterized by one-sided congruences on the group. In the
following we restrict ourselves to the case of right congruences (left congruences can be
introduced in a similar fashion). Let & be a subgroup of a group G. Then for u,v € G we
can define

u ~y v if and only if Yu = Uv

9The normal closure of a set T in Fx, is the smallest normal subgroup containing 7.



where Uu = {gou | g € U}. Tt is easy to prove that ~y, is a right congruence induced by
U on G. The subgroup U itself is a congruence class, namely the one generated by A. This
right congruence is a congruence if and only if ¢/ is a normal subgroup.

The fact that Uu = Uv holds if and only if v ou™! € U, is used in the proof of the next
theorem, which states that the subgroup problem for a group is equivalent to a special
instance of the right respectively left ideal membership problem in the corresponding group
ring.

Theorem 9 ([Re95, MaRe93]) Let S be a finite subset of G and KI[G| the group ring
over G. Further let Ps = {s— 1| s € S} C K[G] be the set of polynomials associated to S.
Then the following statements are equivalent:

(1) w € (S).
(2) w—1 € ideal, (Ps).
(3) w—1 € ideal,(Ps).

Proof :

1=2: Let w = s10...058;, € (5), i.e, s1,...,8, € SU{inv(s)|s € S}. We show
w — 1 € ideal,(Ps) by induction on k. In the base case k = 0 there is nothing to show, as
w= X € (S) and 0 € ideal,.(Ps). Hence, suppose w = $10...058,47 and sj0...08, —1 €
ideal, (Ps). Then (s;0...0s; — 1) * s, € ideal (Ps) and, since sx,; — 1 € ideal, (Ps)'°, we
get (s10...08;, — 1) %k sp1 + (Sgp1 — 1) = w — 1 € ideal,(Ps).

2= 1: We have to show that w — 1 € ideal.(Pr) implies w € (S). We know w — 1 =
>0 (sj — 1) x x;, where a; € K*, s; € SU {inv(s)[s € S}, z; € G. Therefore, by
showing the following stronger result we are done: A representation w—1 = Z;"Zl pj Where
pj = ;- (wj —w)), a; € K*w; # wj and w; oinv(w}) € (S) implies w € (S). Now, let
w—1= Z;nzl p;j be such a representation and = be an arbitrary total well-founded ordering
on G. Depending on this representation and = we define ¢t = max, {w;, w} | j = 1,...m}
and K is the number of polynomials p; containing ¢ as a term. We will show our claim
by induction on (m, K), where (m/, K') < (m, K) if and only if m' < m or (m' = m and
K' <K). Incase m =0, w—1=0impliesw =1 =10\ = X and hence w € (S). Thus
let us assume m > 0.

In case K =1, let p;, be the polynomial containing ¢. As we either have p, = oy - (t — wy},) or
Pk = ai - (wg—t), where oy, € {1, —1}, without loss of generality we can assume p, =t —wj,.
Using p we can decrease m by subtracting py from w — 1 giving us wj, — 1 = Z;.":Lj 21 Dj-
Since t o inv(w},) € (S) and our induction hypothesis yields wj, € (S), we can conclude
w=1t=to (inv(w,) ow;) = (toinv(w})) o wj € (S).

In case K > 1 there are at least two polynomials pg, p; in the corresponding representation
and without loss of generality we can assume py = a4 - (t — w},) and p; = o - (t — wy). If
then wj = w; we can immediately decrease m by substituting the occurrence of py + p; by

10We either have syy1 — 1 € Ps or inv(sg41) € S, i.e., (inv(sgy1) — 1) * g1 = 1 — sgq1 € ideal(Ps).



(o + ) - pr- Otherwise we can proceed as follows:

Pe+D = pk:ak'afl'pl+04k'04f1'p5+pl

~~
=0

= (—ap - wj + o - wp) +(o - o+ 1) py

Pl

where p), = oy - (W) — w},), wj, # w] and w}, oinv(w]) € (S), since wj, oinv(t), toinv(w;) € (S)
and w}, o inv(w)) = w} oinv(t) ot oinv(w}). In case ay - ;' +1 =0, i.e., ap = —oy, m is
decreased. On the other hand pj does not contain ¢, i.e., if m is not decreased K is.
The equivalence for the left ideal can be shown analogously.

q.e.d.

Remember that in the free monoid ring the one-sided ideal membership problem is decidable
by special string rewriting techniques (prefix or suffix rewriting) for the finitely generated
case. For group rings the existence of a group, while presented by a finite convergent string
rewriting system, having undecidable subgroup problem immediately implies that the one-
sided ideal membership problem in group rings is undecidable in general. Hence we can
only expect group rings where the group has solvable generalized word problem to allow
solvable membership problem for right or left ideals. So appropriate candidates are e.g. fi-
nite, free, plain, context-free, Abelian, nilpotent and polycyclic groups [KuMaOt94]. The
proof of theorem 9 again reveals how representations of products in subgroups are related
to representations of sums of products of special polynomials in group rings and vice versa
(compare the monoid case in theorem 1). We will again link rewriting techniques used to
solve the subgroup problems to the respective ideal membership problems in analogy to the
study of the word problem for monoids in the previous section.

As we have discussed before, a subgroup of a group induces a right congruence on the
group. Hence it is important to find means of describing one-sided congruences by rewriting
techniques. For groups presented by string rewriting systems this has been done using
prefix rewriting by Kuhn and Madlener (see [KuMa89, Ku91]) and for polycyclic groups
by Wiimann (see [AvWi89, Wi89, KuMaOt94]). More details on these approaches will be
given later on.

First we review how the subgroup problem can be treated by rewriting techniques. Let G
be a group presented by a finite convergent string rewriting system (3,7") and S be a finite
generating set of a subgroup of G. We assume that S is closed under inverses, i.e., if s € S
so is inv(s). Then we can define a right congruence on ¥* by w ~g v if and only if there
exists 2 € (S) such that w ¢, zv. Now the key idea is to express this right congruence
by a rewriting relation. This can for example be done by introducing a reduction relation
=—>g depending on the generators S such that w =g v for w,v € G if and only if there
exists s € S U S™! such that v = sow and w > v where > is the ordering on G induced
by the completion ordering of the string rewriting system (3, 7)) presenting G. Moreover,
since (S) is the coset of the empty word A presenting the unit, a A-confluent generating
set B of (S) for this reduction relation, i.e. we have (B) = (S) and for all w € (S) we have
w==p4 A, then is sufficient to decide the subgroup problem.



We now want to demonstrate how strong reduction!! in group rings is related to solutions
of the subgroup problem by rewriting techniques. This is a specialization of our techniques
developed for right ideals in general monoid rings. A similar definition for left ideals is
possible.

Strong reduction —*® in a group ring is defined as follows: For p, f € K[G], let HT(f*w) =t
for some t € T(p), w € G, then p—%p—a- fxw=q, where o € K such that ¢ ¢ T(q)-
Notice that for a set of polynomials F' we write p —%, in case there exists f € F' such that
p—%. Then +—%, = =ideal, () holds and if additionally —% is confluent we call F' a
strong Grobner basis of ideal, (F').

First we take a closer look at the outcome of using only restricted polynomials f of the form
x —1y or —z +y for reduction where x > y are in G. Then reducing a polynomial of the form
w € G by such a polynomial gives us either w —% yo(inv(z)ow) in case w = (zoinv(z))ow >
(y oinv(z)) o w or w——%x o (inv(y) o w) in case w = (y oinv(y)) ow > (z oinv(y)) o w.
Thus such a reduction step in the group ring corresponds directly to a reduction step of
the form w == ysinv(z) (¥ 0 inv(z)) 0w respectively w == ginv(y) (T 0inv(y)) ow in the group.
On the other hand, for s € G a reduction step w =, s o w can be restated as strongly
reducing a polynomial w by a polynomial s — 1 and, since we know that w > sow, we get
w—_;Sow.

Moreover we can show that the right ideal generated by a set of polynomials Ps = {s—1 |
s € S} has a (not necessarily finite) Grobner basis with respect to strong reduction of the
form G = {z —y | z,y € G} and the set B = {z oinv(y),yoinv(z) | z —y € G} then is
a generating set of the subgroup (S) such that =>p is confluent. The proof is done using
two lemmata. The first one shows that for a polynomial in ideal,(Ps) there exist special
representations in terms of polynomials containing only two monomials and involving only
terms of the polynomial itself.

Lemma 10 ([Re96]) Let g be a polynomial in the non-trivial right ideal generated by
Ps={s—1]|se S} CK|[G|. Then g has a representation of the form

g= Zai (T — yi)
i=1
wheren € N, o € K, z;,y; € T(g), x; — y; € ideal, (Ps).

Proof :

Remember that g € ideal, (Ps)\{0} implies ¢ = Z;”Zl Bj - f; x w; where 8; € K, f; € Ps,
and w; € G. Hence we show our claim by induction on m. In the base case m = 1 we find
g=p0-(s—1)ow=p0-(sow—w), for some § € K\{0}, s—1 € Ps, w € G, and as
sow # w for s # X then sow,w € T(g) and s ow — w € ideal, (Ps) and we are done.
Now let us assume m > 1 and

m—1
9= 8- fi*xwj+B-(sow—w).
j=1

h

11 A thorough study of the properties of strong reduction as well as other possible definitions of reduction
applicable in this context can be found in [Re95].



Then by our induction hypothesis we know h = >~ | «;-(z;—y;) where oy; € K, z;,y; € T(h),
x;—y; € ideal . (Ps). Notice that T(h) C T(g)U{sow, w}. We have to distinguish the following
cases: If sow,w ¢ T(h) we are done at once since this either implies s o w,w € T(g) or
B-(sow—w)=0.In case sow € T(h) and w ¢ T(h) (the case sow ¢ T(h) and w € T(h) is
similar) without loss of generality let sow = z; for 1 < j < k. Then in case Z?Zl B # =03
we find sow € T(g) and the representation g = > | ;- (z; —y;) + 8- (sow — w) already
has the desired form. Else we show that such a representation can be achieved by induction
on the number & of terms s o w occurring in this representation. In the base case k =1 we
get oy = —[ and hence

g = Zai'(ﬂfi—yi)+a1‘(30w_y1)+5‘(3°1"—“’)

1=2

= Yo @—y) =B (sow—u)+ B (sow—w)
1=2

= Zai-(fvi—yi)‘f‘ﬁ'(yl_w)
1=2

and we are done. Now let £ > 1 and

n k—1
g = Z ai-(a:i—yi)-l—Zai-(sow—yi)+ak-(sow—yk)+ﬂ-(sow—w)
i=k+1 i1

= Z ai'(xi—yi)-i-iozi-(sow—yi)—l—(ak-l—ﬁ)-(sow—yk)

i=k+1

—B-(sow—yy)+B-(s0w—w)

= Z ai'(xi—yi)‘f‘zai'(SOUJ—yi)"‘(ak-i-ﬂ)'(SOW—yk)"‘ﬂ'(yk—w)

i=k+1
n k—1
= Z 041‘($i—yi)+5‘(yk—w)+zai'(SOW—yz')+(ak+ﬂ)‘(3°UJ—yk)
i=k+1 i=1

and since s o w occurs at most k£ times in this finial representation, we can assume that g
has a representation of the desired form. It remains to check the case where sow,w € T(h).
Then we can proceed as in the previous case to first incorporate sow into the representation
and later on do the same for w.

q.e.d.
Notice that in general for polynomials p,q,q1,q2, p—>; and ¢ —, ¢2 need not imply
p—ﬁ s} - This property is closely related to interreduction and hence interreducing a

basis might destroy properties of the basis and there are examples where the property of
being a Grobner basis with respect to strong reduction is lost. Still in case ¢, ¢; and ¢» are
related in a special way, this will not happen due to the following fact:



Lemma 11 ([Re96]) Let p,q,q1,q2 be some polynomials in K[G] such that p—7,
q—% @, ¢ = qi+g, o € Kand T(q) = T(q1)UT(g2). Then we can concludep—9, .

Proof :

In case ¢ reduces p at a term t € T(p) we know that there exists an element u in G such

that HT (g*u) = t. Since ¢ = a-q; + g2 and T(g) = T(g1) UT(g2) only two cases are possible,

namely HT(¢; xu) =t or HT (g2 * u) = ¢, i.e., ¢; or ¢o can be used to strongly reduce p at t.
q.e.d.

It holds that a (not necessarily finite) set G is a strong Grdbner basis if and only if for all
g € ideal, (G) we have g —%,0, i.e., every g € ideal, (G)\{0} is strongly reducible using a
polynomial in GG. Suppose G contains polynomials ¢, ¢; as described in lemma 11. Then in
case we have ¢ —% o, for the set G’ = (G\{q}) U{g2} we know that ideal,(G) = ideal,(G")
and still every polynomial in this right ideal is strongly reducible by a polynomial in G’.
Hence G’ is again a strong Grobner basis.

Now it is straightforward to see that there exists a strong (not necessarily finite) Grobner
basis of the right ideal generated by Ps which contains only polynomials of the form v — v.
Let G be an arbitrary strong Grobner basis of ideal,(Ps). Every polynomial ¢ in G has
a representation as described in lemma 10, say g = >_:%, al(-g) . (acgg) — ygg)). Then the set
G'=GU {xgg) - yz(g) lg=>1 ol (x@ - yzgg)),g € G,i=1,...,n,} is again a strong

i i
Grobner basis which can be transformed into a (interreduced) generating set {acz(g) - y§~") |

g=>" - (:Ugg) — ygg)),g € G,i =1,...,n,} which by our previous remark remains a
strong Grobner basis of the right ideal generated by Ps.

Hence if a group ring allows the computation of finite strong Grobner bases for finitely gen-
erated right respectively left ideals, the subgroup problem of the corresponding group can be
solved using rewriting methods. Additionally, since for strong reduction f—g L% 0 implies
the existence of a polynomial A such that f —*>SG h and g —*% h, i.e. unique representatives
can be computed by reduction and this can be used to compute unique representatives for
the cosets in the group case. As shown in [Re95], in special cases finite strong Grébner
bases can be computed using appropriate weakenings of strong reduction. We now want to
illustrate how such weakenings are related to known rewriting solutions of the subgroup
problem.

In [KuMag89] Kuhn and Madlener have shown how the notion of prefix rewriting — a spe-
cialization of ordinary string rewriting — can be applied to solve the subgroup problem
for certain classes of groups, namely finite, free and plain groups. Prefix rewriting and its
completion procedure is a direct generalization of Nielsen’s method to solve the subgroup
problem in the class of free groups [Ni21]. Finite confluent prefix rewriting systems then
can be used to compute Schreier-representatives of the subgroup cosets. An extension of the
prefix rewriting approach has been given by Cremanns and Otto for the case of context-free
groups [CrOt94], and a thorough study of such systems and their limits can be found in
[Cr95]. In order to show the connection to Grébuner bases in group rings, we consider the fol-
lowing weakening of strong reduction — prefix reduction. For p, f € K[G], let HT(f)w =t
for some t € T(p), w € G, then p—)?p —a- f*xw = q, where a € K such that ¢t € T(q).
Then a finite prefix Grébner basis for the right ideal generated by aset Ps = {s—1 | s € S}
implies the existence of a finite prefix Grobner basis of the form {z—y | z,y € G}, which can



be interpreted as a finite convergent prefix rewriting system for the subgroup problem. In
[MaRe93, MaRe95] it is shown that finite convergent prefix Grobner bases exist for finitely
generated ideals in group rings over finite, free, plain and context-free groups. And the proof
of theorem 9 reveals an even closer connection, namely that the rewriting solutions to the
subgroup problem provided by convergent prefix rewriting systems are directly correspond
to those provided using prefix Grobner bases of the respective right ideals.

Another class of groups where rewriting techniques have been successfully applied to solve
the subgroup problem are the polycyclic groups. Using the consequences of theorem 9 in
this case we are able to strengthen the results known from literature. In [AvWi89, Wi89]
Wiflmann gives a completion based approach to the subgroup problem for polycyclic groups
using prefix rewriting for nilpotent groups presented by convergent so called PCNI-systems
and =--reduction for polycyclic groups presented by convergent so called PCP-systems.
In the latter case he gives a completion procedure which computes a finite A-confluent
basis B of (S) = [A.,, i.e., for all g € (S) we have g==4 \. Furthermore, Wiimann
states for =-reduction that while for PCNI-systems finite confluent bases always exist,
this need not be the case for PCP-systems (c.f. Theorem 3.6.9 in [Wi89]). Wilmann’s
rewriting solution for the subgroup problem in nilpotent groups can be directly related
to Grobner bases with respect to so called quasi-commutative reduction, a weakening of
strong reduction which is appropriate for groups presented by convergent PCNI-systems.
In choosing different presentations for polycyclic groups, which we named reversed PCP-
systems, we have succeeded to give terminating completion algorithms for Grobner bases
with respect to another weakening of strong reduction appropriate for those presentations
of the groups. This result now implies that when using the appropriate presentation for the
polycyclic groups it is indeed possible to give a rewriting solution for the subgroup problem
even by a convergent system, i.e. providing unique representatives for the quotient. Left
ideals can also be studied using PCNI- respectively PCP-systems. The respective reductions
are based on the concept of commutative prefixes due to the fact that the normal forms
representing the group elements are ordered group words of the form a' ... air. However,
due to the different collection properties associated with the respective commutation rules
in the string rewriting systems presenting the groups, one has to be much more careful in
defining a Noetherian reduction than in the commutative case. For more details the reader
is referred to [Re95, MaRe95, MaRe97, Re96, MaRe96].

6 Relating the Submonoid and Subalgebra Member-
ship Problems in Monoids and Monoid Rings

While the subgroup problem is thoroughly studied in the literature, the submonoid problem
is less investigated except for some special cases like the free monoid case. Submonoids in
free monoids are used in the theory of codes, but codes (as regular languages) are usually
studied using techniques from formal language theory. Since rewriting techniques are seldom
used in this context, in this section we want to introduce appropriate notions for describing
submonoids of monoids to give an analogon to the approach presented for subgroups of
groups..

Definition 12 Given a submonoid U of a monoid M, the submonoid problem is to



determine, given w € M, whether w € U.

Given a finite subset S of a monoid M, we let (S) = {s;0...0s, | n € N,s; € S} denote the
submonoid generated by S. A submonoid ¢/ of a monoid M is called finitely generated
if there exists a finite subset S of M such that U = (S5).

In the previous section we have seen how the subgroup problem is related to the membership
problem for right respectively left ideals in group rings. Unfortunately, theorem 9 cannot
be generalized for the submonoid problem as the following example shows:

Example 13 Let ¥ = {a,b},T = {ab — A} be a string rewriting system presenting of a
monoid M, the bicyclic monoid. Let U = {a™ | n € N} be the submonoid of M generated
by S = {a}. Then we have b — 1 € ideal .(Ps) since b —1 = —1-(a—1)*b but b & U.
Theorem 9 would lead to b € U.

The problem shown in this example is due to the following observation: As in the subgroup
case, a submonoid U of a monoid M induces a right congruence on M by setting

u ~y v if and only if Uu = Uv

for u,v € M. But the submonoid itself in general is no longer the right congruence class
[A]~y- In our example we find that b € [A]., while b € U = {a" | n € N}. Hence the
submonoid cannot be described adequately in the monoid ring using the right ideal con-
gruence as in the subgroup case studied before. But there is another algebraic substructure
of monoid rings which is appropriate to restate the submonoid problem in algebraic terms
- the subalgebra.

Definition 14 A nonempty subset S of K[M] is called a subalgebra of K[M], if the
following hold:

1. KCS,
2. forall f,g €S we have f —g € S, and

3. forall f,g € S we have fxg € S.

Notice how the third condition differs from the definition of ideals. For a subset P C K[M]
let subalgebra(P) denote the minimal subalgebra of K[M] containing P. The next theorem
states that the submonoid problem for a monoid is equivalent to a special instance of the
subalgebra membership problem in the corresponding monoid ring.

Theorem 15 Let S be a subset of M and Ps = {s—1 | s € S} a subset of K[M] associated
to S. Then the following statements are equivalent:

(1) w e (S).
(2) w— 1 € subalgebra(Ps).



Proof :

1= 2:Let w=s10...058; € (S), i.e, s1,...,8 € S. We show w — 1 € subalgebra(Ps)

by induction on k. In the base case k = 0 there is nothing to show, as w = 1 € (S) and

1—1 =0 € subalgebra(Ps). Hence, suppose k > 1,i.e. w=s;0...05;and s0...08; 1 —

1, s, — 1 € subalgebra(Ps). We can write
w—1=(s10...08-1—1)x(sp—1)+(s10...08.1—1)+ (sp—1)

€ subalgebra(Ps) € subalgebra(Ps) € subalgebra(Ps)

implying that w — 1 € subalgebra(Ps).
2 = 1: To see that w—1 € subalgebra(Ps) implies w € (S) we show a more general result:
For every f € subalgebra(Ps) we have that every term ¢ € T(f) is an element of (S). By the
definition of a subalgebra, f € subalgebra(Ps) has a representation of the form f =>"" | a;-
Hfgl pi; with p;; € Ps and o; € K. We show that every term occurring in such a product
H?Zl py; lies in (S) by induction on ;. In the base case k, = 1 we find HJI.:1 pi; =s—1and
since s,1 € (S) we are done. Hence, suppose k, > 1, i.e. H?llpi]‘ = (Hfglpij) x(s—1),
and by our induction hypothesis we know that Hf;;l pi; = > %, Bi - t; where every term t;
belongs to (S). Then every term occurring in Y ;" f;-t;*(s—1) = Y_" | Bi-tios—> ~, Bi-t;
again must lie in (S5).

q.e.d.

Two basic approaches to solve the subalgebra problem in the commutative case using rewrit-
ing techniques can be found in the literature. In [KaMa89] Kapur and Madlener introduce
a special rewriting relation which describes subalgebras in polynomial rings and provide a
completion procedure. Their procedure in fact computes “Grobner bases” of subalgebras
but in general need not terminate, even in case the subalgebra is finitely generated. The
termination problem can be overcome for finitely generated subalgebras when transform-
ing the subalgebra membership problem into a special ideal membership problem in an
extended polynomial ring. This is done in [ShSw88] by Shannon and Sweedler by introduc-
ing tag variables and computing ordinary Grobner bases of the transformed ideals in the
“enlarged” polynomial ring. Other approaches can be found in [RoSw90, Mi96].

Here we want to generalize the approach given in [ShSw88]: Let S be a finite subset of a
monoid M. For each s € S let z; be a new letter not occurring among the generators of
M and let Zg denote the set of all such tag variables. With M x Z% we denote the free
product of the monoid M and the free monoid Z3. We associate a set of polynomials to
S in the monoid ring K[M x Z%] by setting Ps = {s — z, | s € S}. In this context the
following holds:

Theorem 16 Let S be a subset of M and Ps = {s — z; | s € S} a subset of K[M x Z}]
associated to S. Then the following statements are equivalent:

(1) w € (S).
(2) w— t, € ideal®™M*Z3)(Pg) for some t,, € Z%.

Proof :
Within this proof we will abbreviate ideal®*#51( Pg) by ideal(Ps).



1=2:Let w=s10...08 € (S), i.e, s1,...,8, € S. We show the existence of some
ty € Z% such that w — t,, € ideal(Ps) by induction on k. In the base case k = 0 there is
nothing to show, asw =1,%, =1¢€ Zi and 1 — 1 = 0 € ideal(Ps). Hence, suppose k > 1,
i.e. w =sj;0...05; and there exists ¢t € Z§ such that s;o0...05, 1 —1, 5, — 25, € ideal(Ps).
Then we find that

(s10...0851 —1) % (Spg— 2s,) +(s510...0801 — 1) %25, +t* (s, — 1)

€ ideal (Pg) € ideal (Pg) € ideal(Ps)

lies in ideal (Ps) and this sum equals s;0...0s; —t*z,,, i.e. we can choose t,, = t*z,, € Z§
and we are done.
2 = 1: Let us introduce the following homomorphisms:

¢12Z§—)M
A )

2 > S
which is lifted to elements of Zg and then to

O MxZ; — M

wvr ... wy — ¢r(wr) o di(v1) o ... di(wy) o d1(vy)
where [ € N, w; € M and v, € Z§ and again lifted to
¢:KMxZi — K[M]|

ZO[Z' . tz — ZO!Z' . ¢2(tz)
i=1 i=1

Then ideal (Ps) C kernel(¢), as f € ideal(Ps) implies f = > p; * (s; — z5;) * ¢ for some
si € S, piyg; € KIM x Z%]. Hence w — t,, € ideal(Ps) yields ¢(w — t,,) = 0 and therefore
w = ¢(ty) = ¢1(tw). As t, € Z% this gives us w € (S).

q.e.d.

The proof of this theorem also provides a technique which can be used to give a more
precise characterization of the subalgebra generated by S. Let us study the following ho-
momorphism:

v K[Zg — K[M]

Zaz"tz‘ — Zaz"dh(ti)
i=1

=1

Then we can show that the kernel of this homomorphism is in fact idea®"™*#3( Po)NK[Z%].
The inclusion ideal®M*Z31(P)NK[Z%] C kernel (1)) follows at once as in the previous proof.
Hence let us assume f € kernel(¢)), i.e. f=>"", a;-t; with o; € K, t; € Z% and ¢(f) = 0.



Then we can represent f as
f= F=v()
= Zai “ti — Zai - p1(ti)
i=1 i=1

= Zai - (ti — d1(ts))-

In showing ¢; — ¢1(t;) € ideal(Ps) we are done. Since ¢(t;) € (S) this can be shown
straightforward as in the proof of theorem 16 by induction on k£ where ¢; contains k& variables,
ie. ¢1(t;) =s10...08, S1,...,8, € S.

In commutative polynomial rings elimination orderings are used to compute Grobner bases
of the kernel of 7). We can proceed in a similar fashion and introduce elimination orderings
for £*. Then in case a finite Grobner basis G, can be computed for ideal®* *Z5(Pg) in
K[X* x Z%| with respect to an elimination ordering the submonoid problem for (S) can
be solved using rewriting techniques since for w € ¥* we have w € (S) if and only if the
normal form of w with respect to —_ is a word in Z5. Notice that since the existence of
finite such Grébner bases in K[X* x Z§| due to theorem 1 is very restricted, this reduction
is mainly of theoretical interest.

The results of this section differ from the ones in the previous sections in the following
way: While the word problems in monoids and groups and the generalized word problem
for groups have been studied first and reduction techniques for the respective rings have
been introduced later, here the well-studied subalgebra membership problem is generalized
for monoid rings providing new techniques to treat submonoid problems. How useful these
techniques are remains to be seen.

7 Concluding Remarks

The class of finitely presented groups contains subclasses which — using appropriate pre-
sentations — allow to solve the subgroup problem using string rewriting techniques. In this
paper we have pointed out how these results are related to the existence (and in fact even
the construction) of Grébner bases in the respective group rings. This shall now be sum-
marized in the following table, which lists the reductions which — again using appropriate
presentations for the groups — ensure the construction of the respective finite Grobner basis
of ideals. Note that —®" stands for suffix, —P for prefix, —%° for quasi-commutative,
—!Pe for left-polycyclic reduction and —™¢ for right-polycyclic reduction (for more in-
formation on the reductions and the computation of Grobner bases related to them see
[MaRe93, Re95, MaRe95, MaRe97, Re96, MaRe96]).



Group left ideals | right ideals | two-sided ideals
free ——su —P none'?
plain —° —P none
context-free —5 —P none
nilpotent —lpe —ac —ac
__lpe
polycyclic —lpe —yTPe —lpe
e

As mentioned above, the different reductions require special forms of presentations for the
respective groups. Free groups need free presentations with length-lexicographical comple-
tion ordering for prefix and suffix reduction. Plain groups require canonical 2-monadic pre-
sentations with inverses of length 1 and again length-lexicographical completion ordering
for prefix as well as suffix reduction. Context-free groups demand virtually free presen-
tations (see [CrOt94]) for prefix and a modified version of these presentations for suffix
reduction. All these special forms of the presentations are similarly required when solving
the subgroup problem using prefix rewriting techniques. For nilpotent groups we need con-
vergent PCNI-systems for quasi-commutative and left-polycyclic reduction. In the case of
polycyclic groups we need PCP-systems for left-polycyclic and reversed PCP-systems for
right-polycyclic reduction.
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