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Abstract

This thesis brings together convex analysis and hyperspectral image processing. Convex
analysis is the study of convex functions and their properties. Convex functions are
important because they admit minimization by efficient algorithms and the solution of
many optimization problems can be formulated as minimization of a convex objective
function, extending much beyond the classical image restoration problems of denoising,
deblurring and inpainting.
At the heart of convex analysis is the duality mapping induced within the class of

convex functions by the Fenchel transform. In the last decades efficient optimization
algorithms have been developed based on the Fenchel transform and the concept of
infimal convolution.
The infimal convolution is of similar importance in convex analysis as the convolution

in classical analysis. In particular, the infimal convolution with scaled parabolas gives
rise to the one parameter family of Moreau-Yosida envelopes, which approximate a given
function from below while preserving its minimum value and minimizers. The closely
related proximal mapping replaces the gradient step in a recently developed class of
efficient first-order iterative minimization algorithms for non-differentiable functions.
For a finite convex function, the proximal mapping coincides with a gradient step of
its Moreau-Yosida envelope. Efficient algorithms are needed in hyperspectral image
processing, where several hundred intensity values measured in each spatial point give
rise to large data volumes.
In the first part of this thesis, we are concerned with models and algorithms for

hyperspectral unmixing. As part of this thesis a hyperspectral imaging system was
taken into operation at the Fraunhofer ITWM Kaiserslautern to evaluate the developed
algorithms on real data. Motivated by missing-pixel defects common in current hyper-
spectral imaging systems, we propose a total variation regularized unmixing model for
incomplete and noisy data for the case when pure spectra are given. We minimize the
proposed model by a primal-dual algorithm based on the proximum mapping and the
Fenchel transform. To solve the unmixing problem when only a library of pure spectra
is provided, we study a modification which includes a sparsity regularizer into model.
We end the first part with the convergence analysis for a multiplicative algorithm de-

rived by optimization transfer. The proposed algorithm extends well-known multiplicat-
ive update rules for minimizing the Kullback-Leibler divergence, to solve a hyperspectral
unmixing model in the case when no prior knowledge of pure spectra is given.
In the second part of this thesis, we study the properties of Moreau-Yosida envel-

opes, first for functions defined on Hadamard manifolds, which are (possibly) infinite-
dimensional Riemannian manifolds with negative curvature, and then for functions
defined on Hadamard spaces.
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In particular we extend to infinite-dimensional Riemannian manifolds an expression
for the gradient of the Moreau-Yosida envelope in terms of the proximal mapping. With
the help of this expression we show that a sequence of functions converges to a given limit
function in the sense of Mosco if the corresponding Moreau-Yosida envelopes converge
pointwise at all scales.
Finally we extend this result to the more general setting of Hadamard spaces. As the

reverse implication is already known, this unites two definitions of Mosco convergence on
Hadamard spaces, which have both been used in the literature, and whose equivalence
has not yet been known.
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Zusammenfassung

Diese Arbeit vereint konvexe Analysis und hyperspektrale Bildverarbeitung. Konvexe
Analysis untersucht die Eigenschaften konvexer Funktionen. Konvexe Funktionen besit-
zen zentrale Bedeutung in der Optimierung: Unter praktischen Gesichtspunkten lassen
sie sich effizient minimieren und beschreiben gleichzeitig eine Vielzahl realer Problemstel-
lungen, weit über die klassischen Bildverarbeitungsaufgaben des Entrauschens, Schärfens
und Wiederherstellens hinaus.
In gleichem Maße wie die Regularisierungstheorie partieller Differentialgleichungen aus

dem Studium des Spezialfalles elliptischer Gleichungen hervorgegangen ist, so entwickeln
sich eine Vielzahl von Minimierungsmethoden für nicht-konvexe Probleme ausgehend von
den Methoden der konvexen Analysis.
Im Mittelpunkt der konvexen Analysis steht die Dualität, welche durch die Fenchel-

Konjugation auf den konvexen Funktionen induziert wird. Aufbauend auf der Dualitäts-
abbildung und der infimalen Faltung mit quadratischen Funktionen, ist in den letzten
Jahren die Klasse der proximalen Algorithmen entstanden. Proximale Algorithmen er-
lauben die effektive iterative Minimierung nicht-differenzierbarer Funktionen, die in der
Bildverarbeitung durch räumliche TV-Regularisierung entstehen.
Die infimale Faltung mit skalierten quadratischen Funktionen erzeugt die einpara-

metrische Familie der Moreau-Yosida-Regularisierungen, welche eine gegebene Funktion
von unten approximieren und dabei Minimum und Minimierer beibehalten. Für reell-
wertige Funktionen stimmt die Proximumsabbildung mit dem Gradientenschritt auf der
Moreau-Yosida-Regularisierung überein.
Effiziente Algorithmen sind in der hyperspektralen Bildverarbeitung unabdingbar, da

mehrere hundert spektrale Intensitätswerte in jedem Bildpunkt zu großen Datenmengen
führen.
Im ersten Teil dieser Arbeit ist es unser Anliegen, effiziente Algorithmen für hyper-

spektrale Entmischung zu entwickeln. Um diese auf realen Messungen zu testen, wurde
im Rahmen dieser Arbeit eine hyperspektrale Nahinfrarotkamera am Fraunhofer ITWM
in Betrieb genommen. Motiviert durch fehlende Pixel in gängigen Kamerasensoren prä-
sentieren wir ein Entmischungsmodel für unvollständige und verrauschte Daten, wenn
die Reinmaterialspektren bekannt sind. Wir minimieren dieses Modell mit einem primal-
dualen Algorithmus, welcher als Teilschritt die Proximumsabbildung verwendet.
Um das Entmischungsproblem zu lösen, wenn die Reinmaterialspektren nicht direkt

bekannt, sondern zwischen weiteren Spektren einer Spektrendatenbank versteckt sind,
untersuchen wir eine Abwandlung des Modells durch einen additiven Sparsity-Term.
Wir beenden den ersten Teil mit der Konvergenzanalyse für einen alternierenden mul-

tiplikativen Algorithmus. Dieser erweitert bekannte multiplikative iterative Verfahren
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zur Minimierung der Kullback-Leibler-Distanz, um das Entmischungsproblem ohne Vor-
abinformationen über die vorkommenden Spektren zu lösen.
Im zweiten Teil dieser Arbeit untersuchen wir die Eigenschaften von Moreau-Yosida-

Regularisierungen, zuerst für Funktionen, die auf Hadamard-Mannigfaltigkeiten definiert
sind, d.h. möglicherweise unendlichdimensionalen riemannschen Mannigfaltigkeiten mit
negativer Krümmung, und anschließend für Funktionen, die auf Hadamard-Räumen de-
finiert sind.
Insbesondere erweitern wir den klassischen Ausdruck für den Gradienten der Moreau-

Yosida-Regularisierung, in Abhängigkeit von der Proximumsabbildung, auf Hadamard-
Mannigfaltigkeiten. Mithilfe dieses Ausdruckes zeigen wir, dass eine Folge von Funktio-
nen genau dann im Sinne von Mosco gegen eine Grenzfunktion konvergiert, wenn die
zugehörigen Moreau-Yosida-Regularisierungen aller Skalen punktweise konvergieren.
Dieses Resultat erweitern wir schließlich auf allgemeine Hadamard-Räume. Da die

umgekehrte Implikation bereit bekannt ist, vereint dies zwei Definitionen der Mosco-
Konvergenz auf Hadamard-Räumen, welche beide in der Literatur verwendet werden,
ohne dass ihre Äquivalenz bislang bekannt war.
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Notation and Symbols

Basic Symbols

N Set of natural numbers without 0
Z Set of integers
R Set of real numbers
R≥ Set of nonnegative real numbers
R> Set of strictly positive real numbers
Rd> Set of d-dimensional vectors with strictly positive real entries
RL,N≥ Set of L×N matrics whose entries are nonnegative real numbers

Vectors, Matrices and Discrete Structures

vec(A) Column-wise reshaping the matrix A into a vector
diag(v) Diagonal matrix with diagonal entries v
tr(A) Trace of the matrix A
A> Transpose of the matrix A
I Identity matrix, dimension is usually clear from context
1d One-vector in Rd, i.e. 1d := (1, 1, . . . , 1)>

1L,N Matrix of ones with size L×N
4p Probability simplex defined by4p := {v ∈ Rp : 〈v,1p〉 = 1, v ≥ 0}
(4p)

N Set of N × p matrices whose column vectors belong to 4p

‖ · ‖1 l1-norm of a vextor
‖ · ‖2 l2-norm of a vextor
‖ · ‖F Frobenius norm, ‖A‖2

F := tr(A>A) =
∑

i,j A
2
i,j

‖ · ‖1,∞ Row-sparsity norm, ‖A‖1,∞ :=
∑

i maxj|Ai,j|
〈a, b〉 Inner product/scalar product of two vectors a, b
〈A,B〉F Frobenius inner product of two matrices, 〈A,B〉F :=

∑
i,j Ai,jBi,j

logA Convex extension of the natural logarithm, defined in Section 4.2
KL(a, b) Kullback-Leibler divergence or I-divergence between vectors a, b;

for matrices A,B the sum is taken over corresponding columns
∇ Discrete gradient operator, defined on page 27
Dx, Dy Forward difference matrices, defined on page 27
‖|·|‖1 See page 27
TV Isotropic total variation operator, defined in Section 2.2.1
A ◦B Hadamard product of matrices, defined by (A ◦B)i,j = Ai,jBi,j

A⊗B Kronecker product or tensor product, defined in Section 2.2.1
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Notation and Symbols

Hyperspectral Unmixing
Y Data matrix, each column is one measured spectrum
K Endmember matrix
X Abundance matrix
k1, . . . , kp Pure spectra, called endmembers, columns of the matrix K
y(j), x(j) Columns j of the matices Y,X respectively
xr(j) Abundance, i.e. estimated mixture fraction, of the r-th material

in the j-th data spectrum
x̄r Row of X, containing the abundances of the r-th material
N (µ, σ) Normal distribution with mean µ and variance σ

Functions and Topology
Br(x) Open metric ball of radius r around the point x
f ◦ g Concatenation of functions, defined by

(
f ◦ g

)
(x) := f (g(x))

ιA Indicator function ιA : Rd → R ∪ {+∞} of A defined by

ιA(x) :=

{
0 for x ∈ A,

+∞ otherwise
χA Characteristic function χA : Rd → R of A defined by

χA(x) :=

{
1 for x ∈ A,
0 otherwise

dom f Effective domain of f , defined by dom f := {x : f(x) < +∞}
intS Interior of the set S
S Metric closure of the set S
PC Metric projection to the closed convex set C
w→ Weak convergence of points in a Banach space or Hadamard space
Γ−→ Gamma convergence of functions
M−→ Mosco convergence of functions or sets
d
dtf Derivative of the univariate function f with respect to t
∂rf or ∂

∂xr
f Partial derivative with respect to the r-th variable

Hessf (x) Hessian matrix of a twice differentiable function f at the point x
∇KE(·, ·) Vector or matrix of partial derivatives corresponding to the desig-

nated block of variables
∂f Multivalued subdifferential of the function f defined by (5.4) in

Banach spaces and by (6.3) in Riemannian Manifolds
Proxf Proximum mapping defined by (5.1), and for Hadamard spaces in

Section 5.3.1
fλ Moreau-Yosida envelope of f defined by (5.2) and in Section 5.3.1

xiv



Manifolds and Hadamard Spaces

Unless stated otherwise the following symbols are introduced in Section 6.1.2.

(H, d) Finite or infinite-dimensional Hadamard manifold or Hadamard
space with distance d

TxH Tangent space to H at the point x
〈·, ·〉x Riemannian metric on TxH
∇f Riemannian gradient
logx y Riemannian logarithm
expx v Riemannian exponential map
γ_
x,y

Geodesic from x to y, defined in Section 5.3.1
Txyξ Parallel transport of the tangent vector ξ ∈ TxH to TyH
(Mκ, dκ) Model space with constant curvature κ, defined in Section 6.1.4
]ACB Euclidean angle; in Hadamard spaces the angle between the

geodesics γ _
C,A

and γ _
C,B

at the point C, defined by (6.8)
]κACB Same as ]ACB for points A,B,C in Mκ

]κ(A,C,B) Comparison angle in Mκ, for points A,B,C in a metric space,
defined on page 104
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Introduction

This thesis consists of two parts, a first applied part on hyperspectral image processing
and a second part with more fundamental results on proximal mappings and Moreau-
Yosida envelopes in Hadamard spaces.
The joining element of both parts is the proximal mapping. Proximal mappings and

Moreau-Yosida envelopes of convex functions play a central role in convex analysis. In
particular, they appeared in various minimization algorithms which have recently found
application in image processing and machine learning. For overviews, see for instance
[16, 28, 87].
For a convex lower-semicontiuous function f from a Hilbert space H into R ∪ {+∞}

the proximal mapping Proxλf : H → H is defined by

Proxλf (x) = argmin
y∈H

{
f(y) + 1

2λ
d(x, y)2

}
, (0.1)

where d(x, y) := ‖x− y‖. For λ > 0, the Moreau-Yosida envelope of f is given by

fλ(x) := min
y∈H

{
f(y) + 1

2λ
d(x, y)2

}
.

The one-parameter family of Moreau-Yosida envelopes approximates f from below
and satisfies

Proxλf (x) = x− λ∇fλ(x).

In this sense the proximal mapping is the next iterate after a gradient descent step on
the regularized version fλ of f . An efficient algorithm for the minimization of non-
differentiable convex functions, which uses proximal mappings as subiterations and al-
ternates primal-dual optimization, is the primal-dual hybrid gradient algorithm (PDHG).
We are going to use this algorithm to solve problems from hyperspectral image pro-
cessing.

In the first part of this thesis we start with an introduction to hyperspectral imaging,
an exciting technology which combines the discriminative power of spectroscopy with
fast and versatile imaging systems. Hyperspectral imaging is the next step after multis-
pectral imaging, which has up to now been reserved to specialist applications including
earth observing satellites, industrial conveyor belt sorting and process control, yet can
be expected to become cheaply available to the market in the near future. Multispectral
sensors that are small enough for smartphones, are currently being developed at the
Leibniz Institute of Photonic Technology in Jena (R. Riesenberg, personal communica-
tion).

1



Notation and Symbols

The abundance of information in a hyperspectral image requires a condensed repres-
entation. Hyperspectral unmixing represents a hyperspectral image with L channels by
p � L abundance channels and p corresponding pure spectra, k1, . . . , kp, called end-
members. According to the commonly adopted linear mixing model the spectrum at
spatial position i is given by

y(i) =

p∑

r=1

krxr(i),

where x(i) ∈ Rp, the vector of abundances at position i, with components xr(i), r =
1, . . . , p, gives the relative mixture coefficients of the endmembers.
If the endmembers are known, hyperspectral unmixing infers the abundances x(i)

at all points i = 1, . . . , N of the image. As real images contain noise and outliers, the
reconstruction is improved by spatial regularization, see e.g. [59] and the unmixing model
with total variation (TV) regularization in Section 2.
Motivated by missing-pixel defects common in current hyperspectral imaging systems,

we propose a TV-regularized unmixing model for incomplete and noisy data for the case
when pure spectra are given. We minimize the proposed model by the PDHG algorithm
with (0.1) as subiteration.
Library unmixing refers to the case where the endmembers are not known a priori and

have to be selected from a library. This problem is more difficult because the spectra
in hyperspectral libraries are commonly strongly correlated, and the unmixing can be
improved by enforcing sparsity of the abundance vector in each pixel, see e.g. [59], where
the l1-norm ‖x(i)‖1 has been used. A more sophisticated approach is to enforce a sparsity
pattern jointly on all pixels by the l∞,1-norm

‖X‖∞,1 :=

p∑

r=1

max
i∈{1,...,N}

|xr(i)|.

We present a novel unmixing model that combines for the first time spatial TV-regu-
larization with l∞,1-sparsity regularization and we minimize the model using again the
PDHG algorithm.
Finally, for blind unmixing, where no prior information about the pure spectra is given,

we consider the following unmixing model with the Kullback-Leibler divergence in the
data term,

argmin
K,X

K̃L (Y,KX) +
µ

2
‖K‖2

F +
ν

2
‖X‖2

F

subject to

K ∈ RL,p≥ , X ∈ 4N
p , 4p :=

{
x ∈ Rp : x ≥ 0,

p∑

i=1

xi = 1
}

(0.2)

with µ, ν positive regularization parameters. Extending the surrogates by D. D. Lee and
H. S. Seung [70], we derive a multiplicative algorithm which automatically preserves
the positivity constraints. The derivation by optimization transfer implies a decrease of
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the objective in each iteration. While the original multiplicative update rules suggested
in [70] for the functional E(K,X) = K̃L (Y,KX) with pure nonnegativity constraints on
K and X, received much attention, it has often been overlooked, that the convergence of
the objective does not imply convergence of the iterates. Using Zangwill’s convergence
theory [109], as suggested for the particular case of blind deblurring in [69], requires
continuity of the update operator on the set of limit points of the sequence of iterates,
which to the best of our knowledge has never been identified for the general case.
For the original update rules from [70] a convergence proof has been given in [45], by

lifting the involved matrices to stochastic tensors.
Our approach for the update rules derived for the extended objective with µ, ν > 0 and

the constraints (0.2) is independent from theirs. We give here a first rigorous convergence
analysis for the extended update rules. In particular, we provide an example which
shows that the update mapping is discontinuous on the boundary of the nonnegativity
constraint set, we identify a smaller compact set containing all limit points, to which
the update mapping extends continously, and conclude that the limit point of every
convergent subsequence is a fixed point.

In the second part of this thesis we study Moreau-Yosida envelopes for functions
defined on infinite-dimensional Hadamard manifolds and Hadamard spaces. In particular
we generalize to this setting a well known result of H. Attouch which states that Mosco
convergence of a sequence of proper convex lower semicontinuous functions defined on
a Hilbert space is equivalent to pointwise convergence of the associated Moreau-Yosida
envelopes. More precisely, while it has already been known that the Mosco convergence
of a sequence of convex lower semicontinuous functions on a Hadamard space implies
the pointwise convergence of the corresponding Moreau-Yosida envelopes, the converse
implication was an open question. We now fill this gap.
To understand the statement, let us briefly recall the result in a Hilbert space H.

First we need the definition of Mosco convergence, which goes back to U. Mosco [83]. A
sequence {fn}n of functions fn : H → R∪{+∞}Mosco-converges to f : H → R∪{+∞},
abbreviated fn

M−→ f , if, for each x ∈ H, the following two conditions are fulfilled:

i) f(x) ≤ lim infn→∞ fn(xn) whenever xn
w→ x,

ii) there is a sequence {yn}n such that yn → x and fn(yn)→ f(x),

where xn
w→ x stands for weak convergence. A weaker type of convergence particularly

suited for minimization problems is given by Γ-convergence, see, e.g. [26, 37], for which
we just have to replace the first statement in the above definition by

i) f(x) ≤ lim infn→∞ fn(xn), whenever xn → x.

The following theorem has been proved by H. Attouch, see [7, 8].

Theorem 1 Let H be a Hilbert space and let fn : H → R ∪ {+∞}, n ∈ N, be proper
convex lower semicontinuous functions. Then the following statements are equivalent:
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Notation and Symbols

i) {fn}n converges to a function f : X → R∪{+∞} in the sense of Mosco, fn
M−→ f .

ii) The sequence of Moreau-Yosida envelopes {fn,λ}n of {fn}n converges pointwise to
the Moreau-Yosida envelope fλ of f , for all λ > 0.

Our aim in the second part of this thesis is to generalize Theorem 1 to Hadamard
spaces. The implication i) ⇒ ii) has already been extended to Hadamard spaces, first for
nonnegative functions by K. Kuwae and T. Shioya [66], and then without the assumption
of nonnegativity by M. Bačák [13]. We therefore focus on the inverse implication, which
was left open [11, Question 5.2.5] and is our main result.
Our presentation is in two steps. First we give a proof in simply-connected Riemannian

manifolds of nonpositive curvature. For this we need several intermediate results on
infinite-dimensional Riemannian manifolds which can not be found in the literature.
Several of these results are interesting in their own right. In particular we prove a
subdifferential sum rule for convex functions defined on infinite-dimensional manifolds.
We prove that Hadamard manifolds with a lower bound on the sectional curvature

satisfy for every sequence {xn}n the following relation,

(A) xn
w→ x ⇒ logx xn

w→ 0.

I.e., we show that that weak convergence implies weak convergence in the tangent space,
under the assumption that the manifold has bounded nonpositive curvature. We give a
new proof in Hadamard spaces of the following result on the parameter dependence of
the Moreau-Yosida envelopes, known in Banach spaces,

d
dλ
λfλ(x) = f(Proxλf x),

which builds on the definition of weak convergence in Hadamard spaces, along with
Γ-convergence and known compactness criteria for weak convergence.
Finally we prove the following representation for the gradient of the Moreau-Yosida

envelope, see Theorem 6.22.

Theorem 2 Let H be a Hadamard manifold and let f : H → R ∪ {+∞} be a proper
convex lower semicontinuous function. Then, for all λ > 0, the Moreau-Yosida envelope
fλ is differentiable with Riemannian gradient

∇fλ(x) = − 1
λ

logx (Proxλf (x)) .

With the help of these results we build on the idea originally used by Attouch in
Banach spaces, to prove the implication ii) ⇒ i) on Hadamard manifolds satisfying (A).
In a second part of the presentation we show that the proof can be generalized further

to Hadamard spaces and is simplified considerably by working directly from the curvature
bounds and weak convergence. More precisely we prove the following main result.

Theorem 3 Let H be a Hadamard space, {fn}n a sequence of proper convex lsc functions
fn : H → R∪{+∞}, and f : H → R∪{+∞} a proper convex lsc function. Assume that
for each λ > 0 the sequence of Moreau-Yosida envelopes {fn,λ}n converges pointwise to
the Moreau-Yosida envelope fλ. Then fn

M−→ f as n→∞.
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Both Γ- and Mosco convergence have already been used in the framework of Hadam-
ard spaces. In [61], J. Jost introduced Γ-convergence on Hadamard spaces as a tool
and defined Mosco convergence by saying that a sequence of convex lsc functions on a
Hadamard space Mosco converges if their Moreau-Yosida envelopes converge pointwise.
In [66], K. Kuwae and T. Shioya give an in depth study of both Γ- and Mosco con-
vergence in Hadamard spaces. They already gave the standard definition of the Mosco
convergence, relying on the notion of weak convergence, and right after their Defini-
tion 5.7 in [66] they note “Jost’s definition of Mosco convergence. . . seems unfitting in
view of Mosco’s original definition.” By our main result it follows that both definitions
are equivalent. As a corollary we obtain that Mosco convergence of convex closed sets
is equivalent to Frolík-Wijsman convergence.
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Part I.

Hyperspectral Image Processing
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1. Introduction to Hyperspectral
Image Processing

Our major source of information from the world around us, is to observe its interaction
with electromagnetic radiation. The human eye perceives the world by averaging the
intensity of backscattered radiation over three ranges in the electromagnetic spectrum
corresponding to red, green and blue. Colour photography has been one of the major
breakthroughs in photography, yet neither nature nor technology have stopped at three
colour channels. The mantis shrimp has adapted to its colourful environment in the top
few meters of coral reefs by developing a retina with four colour receptors, and some
species have up to twelve [76].
Similarly, the number of channels recorded by satellites has increased. While the

first multispectral scanner launched to space on the Landsat I satellite in 1972 had four
bands, the Thematic Mapper had seven spectral bands in 1982 and the Hyperion sensor
system on-board an experimental NASA spacecraft in 2000 measured 220 bands [67].
At each point of the scene, the Hyperion sensor measures 220 reflectance values, which
form a spectrum that can act as a fingerprint of the materials which reflected the light.
Being on the one hand an extension of colour imaging to more than three colour chan-

nels, hyperspectral imaging can be regarded as a marriage of imaging, the acquisition
of 2D or 3D grids of measurements, with spectroscopy.
Classical spectroscopy is used to acquire single spectra. With imaging systems de-

veloped in the last years, it has become possible to measure images that have a spectrum
in each pixel, containing several hundred reflectance values. They are called hyperspec-
tral images.
Paralleling the two perspectives, a hyperspectral image can be regarded either as a

stack of images, one for each wavelength range, see Figure 1.1 (left) or as an assembly
of spectra, one for each point of the measured scene or object, see Figure 1.1 (right).
Hyperspectral images can also be obtained from classical spectrometry techniques

such as mass spectroscopy, by measuring pixel by pixel, one at a time.
Common to all kinds of hyperspectral images is a mass of available data that must be

processed to extract the information of interest. The first part of this thesis is devoted
to one kind of dimension reduction, called hyperspectral unmixing.
Dimension reduction is necessary for several reasons. The first and simplest is that

a human observer can only view one, or, with false colour combinations, at most three
channels at a time. In data exploration it may be feasible to view a few handful of
channels, yet not hundreds. Second, information may be spread over many bands and
may become visible only after a basis change in the vector space of spectra. This is
the case for near-infrared (NIR) spectroscopy. Third, the dimension reduction may be
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1. Introduction to Hyperspectral Image Processing

a)

b)

c)

a) b) c)

Figure 1.1.: A hyperspectral image can be regarded as a stack of images, one for each
wavelength range (left) or as an assembly of spectra, one for each point
(right).

required to achieve a good performance of sequential processing steps such as training of
classifies. E.g. support vector machines (SVMs) perform better on few channels than on
many channels with high redundancy. Finally the noise level is lower after the dimension
reduction.
Depending on the amount of prior knowledge, hyperspectral unmixing can be used in

various scenarios, from replacing classical dimension reduction techniques such as PCA
or ICA, to continuous relaxations of segmentation with given centres.
Before commenting on the outline and highlighting our contribution, we briefly name

three sources of hyperspectral data used in the sequel. With advancing sensor techniques,
large parts of the electromagnetic spectrum in Figure 1.2, from X-rays to infrared are
now covered. The classic near-infrared (NIR) radiation will be described in detail in
the next section.
A more recent technology is terahertz spectroscopy. For a thorough introduction

to terahertz-time domain spectroscopy (THz-TDS) we refer to [100].
MALDI imaging mass spectroscopy In mass spectrometry imaging, the sample

is moved in two dimensions and a mass spectrum is recorded in each point by locally
vapourizing and ionizing the sample with a laser beam. The term MALDI imaging mass
spectroscopy refers to the use of matrix-assisted laser desorption/ionization (MALDI)
in this setting. MALDI is a technique for soft ionization (ionization without fragment-
ation) of biopolymers and other macromolecules, developed by M. Karas and F. Hillen-
kamp [63]. A pulsed laser is used for vapourization and ionization of the sample. As
direct radiation of the analyte would fragment the macromolecules, the analyte is first
co-crystalized with a large molar excess of a matrix compound. Laser radiation of the
analyte-matrix mixture then vapourizes the matrix, which carries the analyte with it.
The matrix further acts as a proton donor and acceptor, ionizing the macromolecules of
the analyte without fragmenting them. A brief summary of the early development can
be found in [62].
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1.1. Near-Infrared Imaging

Figure 1.2.: The electromagnetic spectrum. Different types of interaction between the
electromagnetic radiation and matter are dominant in different parts of the
spectrum. Source of the image: https://commons.wikimedia.org/wiki/File:
EM_spectrum.svg, called 22 November 2016.

This introductory chapter contains two further sections, before we present our first
unmixing model in the next chapter. In Section 1.1 we give an introduction to near-
infrared (NIR) imaging, including calibration and applications.
In Section 1.2 we describe dimension reduction techniques used across to different

fields and the advantages of hyperspectral unmixing for processing of spectra.

1.1. Near-Infrared Imaging

In the last decades, NIR-imaging systems have become a robust and versatile technique
to measure without sample preparation from different observation distances. All near-
infrared images in this thesis have been measured with the hyperspectral camera at
the Fraunhofer ITWM Kaiserslautern1, which measures 256 channels in the wavelength
range 1073-2300nm. It operates as a line camera with a line width of 320 pixels, as
described in the next section. The camera is shown in Figure 1.3 (left).

1cofinanced by the European Regional Development Fund (ERDF)
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1. Introduction to Hyperspectral Image Processing

1.1.1. Line Camera

A standard approach in hyperspectral image acquisition is to measure lines of the image
one by one simultaneously at all wavelengths. In earth observation, this is referred to
as push-broom scanning. The method is also used in industrial applications, such as
plastics sorting for recycling purposes.
At any time, one line of the image is measured at all wavelengths simultaneously. The

incoming light from the current line is diffracted by an optical grid onto the area sensor
of the camera (see Figure 1.3 (right)) and recorded as one “sensor frame”. The full 2D
object is measured by moving the object relative to the camera. While the lines add up
to the full 2D object, the sensor frames with spectral and along-the-line directions are
stacked along the second image direction to form the full 3D hypercube.

Ob
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u
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sor
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fra

cti
on

Figure 1.3.: Hyperspectral line camera (left) and principle of measuring a line simultan-
eously at all wavelengths (right).

1.1.2. Calibration

We now describe the calibration which is required to obtain the hypercube from the
raw sensor counts. The snapshot of the area sensor taken for the line y = yj of the
object yields a section Y cube

:,yj ,:
of the hypercube Y cube ∈ Rm,n,L as depicted in Figure 2.1

(right), where the z-axis is the spectral direction. As the sensor frames are measured
one after another in the same way, we just consider the first sensor frame ril := Y cube

i1l ,
for i = 1, . . . ,m, l = 1, . . . , L. Then ri = (ri1, . . . , riL)> is the spectrum measured for
the light entering the camera at the ith position of the line slit.
The response zil of the (i, l)th sensor pixel increases approximately linearly with the

amount of light lil in the lth wavelength range (centered at νl) which enters the ith
position of the line slit. The slope corresponds to the sensitivity ϕil of the sensor pixel.
Denote by dil the dark counts without incoming light, due to thermal excitations. The
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1.1. Near-Infrared Imaging

relationship between the sensor counts and the incoming light is given by

zil = dil + ϕillil = dil + ϕilλilril, (1.1)

using for the second equality that the incoming light intensity lil is the product of the
illumination λil and reflectance ril in the lth wavelength range at the corresponding point
of the object.
If a reference material with reflectances rw is measured under the same illumination

λil, we can solve the equation zw = d+ ϕ ◦ λ ◦ rw for ϕ ◦ λ and obtain from (1.1) that

r =
1

ϕ ◦ λ ◦ (z − d) = rw ◦ z − d
zw − d, (1.2)

where the Hadamard matrix product is defined by (A ◦ B)ij = AijBij. The sensit-
ivities ϕil vary slightly from sensor pixel to sensor pixel due the manufacturing process,
yet depend strongly on l (i.e. the wavelength), hence the same holds for the quantit-
ies rwil

zwil−dil
= 1

ϕil◦λil
. Figure 1.4 shows the vectors ri = (ril, . . . , ril)

> for three columns
x = xi, i = 1, 2, 3 of an InGaAs-detector grid.
The sensitivity of the InGaAs-sensors declines to zero for wavelengths close to the

upper and lower end of the sensitivity interval [νmin, νmax]. Therefore the multiplication
by 1

λ◦ϕ in (1.2) increases the noise in the measurement for wavelength close to νmin, νmax.

Figure 1.4.: The raw-counts of three columns of the InGaAs-detector grid corresponding
to the spectra measured at three points of a white calibration tile. The
wavelength increases linearly with the channel index on the x-axis, in the
sensitivity range [νmin, νmax] of the InGaAs-detector pixels. Towards both
ends, νmin, νmax, the sensitivity decays to zero. After calibration these spec-
tra are approximately constant, with increased noise towards the smallest
and largest channel index.

Modelling the sensors by the usual model of Poisson random variables, which for usual
counts can be replaced by its Gaussian approximation, equation (1.1) becomes

z = d+ n+ ϕ ◦ λ ◦ r
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1. Introduction to Hyperspectral Image Processing

where the nil, i = 1, . . . ,m, l = 1, . . . , L are i.i.d. random variables nil ∼ N (0, σ) for
some σ > 0. Figure 1.4 suggests the approximation 1

ϕil λil
≈ 1

λl
for λ ∈ RL defined as the

spatial average of ϕ ◦ λ over i. This yields

ril =
ril

zwil − dil
(zil − dil) + λlnil,

i.e. ril follows a Gaussian distribution with wavelength dependent variance σλl.

1.2. Dimension Reduction

In this section we introduce standard dimension reduction techniques and explain the
necessity of a new technique such as nonnegative matrix factorization. We comment on
the advantages of the variational approach to nonnnegative matrix factorization.

1.2.1. Wavelets

A wavelet transformation represents a signal in a diffrent basis or, when redundancy is
permitted, in a socalled frame. The simplest case of orthogonal wavelets shares with the
Fourier transformation the property that the basis transformation is orthogonal, with
the difference that wavelets are “localized”, i.e. for lower frequencies there there is an
increasing number of wavelets which pick up features at different positions. This makes
wavelets suitable for spectral analysis, where, in addition to the spectral width and
amplitude of a peak in the spectrum, also the spectral position of the peak is relevant,
see e.g. the analysis of terahertz spectra in [100].
In wavelet shrinkage the wavelet frequencies which contain most of the noise, are

discarded and the spectra are represented in the smaller number of remaining wavelet
coefficients. This can lead to a considerable dimension reduction, and in addition features
may be more separated into coefficient channels, which can improve segmentation [100].
Wavelets have been used successfully for the tasks of hyperspectral inpainting [40]

and estimating the dimension of the hyperspectral subspace [91]. However, wavelets
have the disadvantage of a nonadaptive basis and especially if spectral features of both
coarse and small scales are relevant, the number of wavelet channels required for a good
representation may still be too large.

1.2.2. PCA

Principal Component Analysis (PCA) refers to representing a set of data vectors
{yi}Ni=1 ⊆ RL, assembled in a data matrix Y = (y1, . . . , yN), in an orthogonal coordin-
ate system, in which the components of the data vectors are uncorrelated and ordered
according to decreasing variance. The axes are called principle components and are
computed via the singular value decomposition (SVD) of the centered data matrix

Yc := Y − (y, . . . , y), (1.3)
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where the y denotes the data mean y := 1
N

∑N
i=1 y(i). We recall the following basic fact,

see e.g. [54, Satz 12.1], where the theorem is stated with R replaced by either R or C
and the Hermitian conjugate Y ∗ replacing the transpose Y >.

Theorem 1.1 Every matrix Y ∈ RL,N of rank r has an SVD, i.e. a system
{
σi, yj, vk : i = 1, . . . , r, j = 1, . . . , L, k = 1, . . . , N

}

with σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and orthonormal bases {uj}Lj=1 and {vk}Nk=1 of RL respect-
ively RN , such that

Y vi = σui, Y >ui = σivi, i = 1, . . . , r,

Y vk = 0 Y >uj = 0, j, k > r.

The σi are called singular values of Y and their squares σ2
i are, with their respective

multiplicities, exactly the nonzero eigenvalues of Y >Y .

This can be written concisely in matrix notation. To this end we introduce the matrices

U = (u1, . . . , uL) ∈ RL,L and V = (v1, . . . , vN) ∈ RN,N ,

which satisfy
U>U = I ∈ RL,L and V >V = I ∈ RN,N ,

and

Σ =




σ1 0
. . . ...

σr 0
0 · · · 0 0


 ∈ R

L,N .

Thus the SVD reads

Y = UΣV >, Y > = V Σ>U> or

Y =
r∑

i=1

σiuiv
>
i , Y > =

r∑

i=1

σiviu
>
i .

The variance of the centred data along the axis uj is

‖Y >c uj‖2
2 = ‖

r∑

i=1

σiviu
>
i uj‖2

2 = σ2
j .

When using PCA for dimension reduction, the centred data is projected onto subspaces
spanned by principle components. For I ⊂ {1, . . . , L}, the projection PI of a vector
m =

∑L
i=1miui onto the subspace spanned by {ui}i∈I , is given by

∑
i∈Imiui. To keep

only the p < L components with respect to which the data has the largest variations
σ1 ≥ σ2 ≥ · · · ≥ σp, define the projected data YP ≈ Y by

YP = (y, . . . , y) + PI Yc, I = {1, . . . , p}.
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Due to the criterion of maximum variance in the choice of principal components, PCA
can be strongly affected by noise. If some feature channels have a large variance due to
noise, principal directions may become aligned with them. Let us illustrate this with a
simple example.

Example 1.2 We simulate qualitatively the situation for the hyperspectral NIR camera
described in Section 1.1.1 with increased noise level towards the ends of the spectral
range.
Two groups containing 23 spectra with 120 values are generated by adding weighted

random noise to the mean spectra g, h depicted in Figure 1.5 (a). One sample spectrum
from each group is shown in Figure 1.5 (b).
More precisely, the noise added to the ith component is sampled uniformly at random

from the interval [−wi, wi], independently from the other components, with weight vector
w ∈ R120 defined by the matlab command w =[ones(1,19), linspace(1,1/10,22),
1/10*ones(1,38), linspace(1/10,1,22), ones(1,19)].
All generated spectra {y1, . . . , y23}∪{y24, . . . , y46} are visualized by plotting the matrix

(y1, . . . , y46) as an image in Figure 1.5 (c). The spectra from the second group correspond
to the vertical lines of the right half of the plot, where the light bar in the middle reflects
the bump present in each of the spectra in the second group.
The PCA coefficients corresponding to the first two principal directions v1, v2 are plot-

ted for all 46 spectra in Figure 1.6. There is no obvious difference between spectra 1–23
and spectra 24–46, i.e. the first two PCA coefficients do not seem to separate the classes.
This is confirmed when looking at the projection to the subspace spanned by v1, v2, see
Figure 1.6 (b). In the projection the distinguishing bump has vanished.

In the above example, where the noise variance was channelwise detector noise, inde-
pendent between the euclidean components of the spectrum, the noise variance in each
channel may be known from calibration or previous experiments with the measurement
system. In case of the NIR hyperspectral camera described in Section 1.1.2, the vari-
ance of channel i in the calibrated image is proportional to the reciprocal sensitivity of
the sensor pixel for the associated wavelengths and —up to small variations between
the sensor pixels— it is roughly a function of the wavelength/channel. Whenever the
noise is independent between the channels and its strength per channel is known for the
given measurement system from calibration measurements, in this case we can still use
a channelwise weighted PCA, see [89] or the much more general [41], where not only
channelwise, but also pointwise weights are considered.
In other cases, where the noise does not follow a statistics with principal directions

aligned with the channels, this is no longer possible. If the noise stems from variance
of the data within classes, the principal directions of variance of the noise will typically
not be aligned with channels.
Consider the example where we seek to detect the weed percentage between agricul-

tural plants from an airborne image. One source of data variance will stem from the
amount of leaf cover within the pixel, i.e. the percentage of the pixel where the plant
covers the soil. The joined percentage of plant cover within the ground area correspond-
ing to one pixel is likely to dominate the spectral difference between the the agricultural
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Figure 1.5.: Two classes of spectra simulated by adding channelwise weighted noise to
the two respective class means: (a) The two mean spectra g, h; (b) one
sample spectrum from each class and (c) all 46 generated spectra visualized
by plotting the matrix (y1, . . . , y46).

plant and the weed. In this example one would first need to find the spectral directions
of the endmembers corresponding to both plant species and then use the contribution
of each of the two plant species as the discriminating factor.
This example has been given to stress that other knowledge needs to be incorporated.

Here spatial regularization may be used to distinguish between the fast varying per-
centages and the endmember directions, which vary slowly and roughly span the same
spectral subspace in different parts of the image. One advantage of hyperspectral un-
mixing by the variational approach to be considered is its greater flexibility compared
to an algebraic definition of PCA. Spatial regularizers can be added as summands to
the objective functional and algorithms to minimize many of the resulting functional
are now available, see e.g. Chapter 2, where after finding the endmembers, we use spa-
tial regularization in the second step to find the abundances by solving a minimization
problem.

1.2.3. ICA

Independent component analysis (ICA) is a method to analyze multivariate stat-
istical data which seeks underlying factors, called components, that are statistically
independent and nongaussian. In statistical terms, the columns {y(j)}Nj=1 ⊆ RL of the
data matrix are regarded as observations of a random vector y ∈ RL. Each component yi
corresponds to an individual measurement taken in every observation. The components
of y are assumed to be linear combinations of the components {si}pi=1 of an unknown
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Figure 1.6.: Result of dimension reduction by PCA for p = 2. The discriminating in-
formation is lost. Shown are the PCA coefficients corresponding to the first
two principal directions v1, v2 for all 46 spectra (left), and the projections
P{1,2} yi of all spectra to the subspace spanned by the first two principal
directions, visualized by plotting the matrix

(
P{1,2} y1, . . . ,P{1,2} y46

)
.

random vector s, which are called sources.
In a common illustration the components {si}pi=1 are different sources of noise pro-

duced independently at a cocktail party. Assume that L microphones are positioned at
the party (corresponding to the measurements yi, i = 1, . . . , L). It is natural to assume
that each microphone records a weighted sum of the sources, where a weight is stronger
if the source is closer to the microphone. Given the recordings of the microphones, can
one recover the mixing matrix containing the weights along with the sources?
Assuming that the sources are Gaussian, i.e. normally distributed, it is easy to find

independent components, because for Gaussian data, independence is the same as having
a diagonal covariance matrix Σ = diag(σ1, . . . , σL), and in this case the joint density,
here after subtracing the mean, factors

f(y1, . . . , yL) ∼ e−
1
2
y>Σ−1y = ΠL

i=1e
− y2i

2σi .

Further, if the mixing matrix and the axes are scaled such that all independent com-
ponents have unit variance σ1 = · · · = σL, i.e. if the data has been sphered, then the
distribution is rotationally symmetric and the independent components are not uniquely
defined. Assuming L = p and excluding Gaussian sources essentially makes the problem
well-defined [57, Section 7.5]. More precisely, ICA builds on the following assump-
tions [64]:

(i) For 1 ≤ i 6= j ≤ p, si and sj are statistically independent.

(ii) No si is normally distributed.
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(iii) For 1 ≤ i ≤ p, the variance σ2
i := E[(si − E(si))

2] of si is positive.

Then, given observations {y(j)}Nj=1 ⊆ RL, ICA assumes that

y(j) = As(j), j = 1, . . . , N

and finds the mixing matrix A ∈ RL,p and the {s(j)}j=1,...,N ⊆ Rp, where L = p, such
that the components si(·) are maximally independent. From now on we assume L = p.
A common approach is based on an idea encountered in the central limit theorem: the

sum of two random variables which are not gaussian is more gaussian, i.e., its distribution
is “closer to” a normal distribution than both individual distributions. Reformulating
ICA as finding the inverse W of the mixing matrix A, a random vector x estimating the
sources s is defined as x := Wy. Each independent component si is thus estimated by
a linear combination xi := w>y, where w ∈ RL, the ith row of W , should be found so
that the distribution of xi is as far from being gaussian as possible. Indeed, using that
y = As,

xi = w>As = z>s, z := A>w

we see that this will happen if the weight vector is trivial, z = ek, for some k ∈ {1, . . . , L},
and ek denoting the kth unit vector with entry 1 in the kth position and 0 entries
otherwise.
The vector wj := (A>)−1ej = W>ej corresponding to z = ej, for each j ∈ {1, . . . , L},

should thus be a local maximum of a suitable nongaussianity measure H evaluated at
x = w>y. The independent components are determined as L local maxima of w 7→
H(w>y). Such measures of nongaussianity are the kurtosis and negentropy, see [57] for
details.
We note that the negentropy of a random variable y is always nonnegative and zero

if and only if y has a Gaussian distribution. Being difficult to optimize, approximations
are commonly used [58].
Typical applications of ICA described in [57] are brain imaging, where sources emitting

signals in the brain are mixed up in the sensors outside the head, and econometrics, where
parallel time series should be decomposed in underlying causes.
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1.2.4. Hyperspectral Unmixing and the Variational Perspective

Hyperspectral unmixing assumes the existence of pure spectral signatures, called end-
members and seeks to represent each observed spectrum as a weighted linear sum of these
endmembers. The weights are called abundances and are assumed to be nonnegative in
all unmixing models, which increases interpretability of the representation.
Denote by k1, k2, . . . , kp ∈ RL≥ the p endmember spectra, p � L, each measured at

L wavelengths, and by x(j) = (x1(j), x2(j), . . . , xp(j))
> ∈ Rp the associated vector of

abundances for the jth observed spectrum y(j) ∈ RL≥. Defining the matrices

Y :=
(
y(1) y(2) · · · y(N)

)
∈ RL,N (data matrix),

X :=
(
x(1) x(2) · · · x(N)

)
∈ Rp,N (abundance matrix),

K := (k1 k2 . . . kp) ∈ RL,p (endmember matrix),

hyperspectral unmixing seeks an approximate factorization

Y ≈ KX s.t. K ∈ RL,p≥ , X ∈ Rp,N≥ . (1.4)

If only Y and the desired approximation dimension p ∈ N are given, the problem is
then referred to as unsupervised unmixing and is closely related to the problem
of nonnegative matrix factorization, see Chapter 4. Unsupervised hyperspectral
unmixing differs from PCA and ICA in two respects: First, the columns of K are not
assumed to be orthogonal as in PCA and the rows ofX are not assumed to be statistically
independent as in ICA. Second, the nonnegativity assumption on X and hence on the
representation of each column of Y as

y(j) =

p∑

r=1

xr(j)kr

allows for the interpretation that y(j) is similar to kr if the rth entry of the vector x(j)
is much larger than the other entries of x(j).
There are numerous approaches to hyperspectral unmixing, for an overview we refer

to the survey by Bioucas-Dias et al. [23]. The variational approach adopted in this
thesis seeks a solution (K,X) of (1.4) by minimizing an objective function E which
typically is the sum

E(K,X) := D(K,X;Y ) +R(K,X), (1.5)

of a data fidelity term D(K,X;Y ) that becomes small if the product KX is a good
approximation to Y and a regularization term R(K,X) that becomes small if K and
X agree with prior knowledge such as spatial or spectral smoothness or sparsity. Hard
constraints are incorporated by setting R(K,X) = +∞ for pairs (K,X) which violate
the constraints. In hyperspectral unmixing, R(K,X) always includes nonnegativity
constraints on K and X.
The variational approach has several advantages. One advantage is its flexibility. A

given model can be modified by adding further terms to the objective function to account
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1.2. Dimension Reduction

Figure 1.7.: Hyperspectral unmixing for PS-PP mixtures. Knowing the pure spectra of
PS, PP and the background, the abundances obtained agree well with the
true mixture percentages of both kinds of plastics, also in two tiles tiles on
the left that are made of plastic mixtures.

for additional prior knowledge, see e.g. the TV-regularization term on the abundances
added in Chapter 2. The data fidelity term can be chosen as the log-likelihood function
of the noise, obtaining the squared Frobenius norm 1

2
‖Y − KX‖2

F for Gaussian noise,
and the Kullback-Leibler divergence KL(Y,KX) for Poisson noise [96] and multiplicative
Gamma noise [99]. We use variational models which cope naturally with some outliers,
and an even greater robustness can by achieved with an l1-data term, compare the
recently suggested robust l1-formulations of PCA and ICA [64].
A last advantage is that the variational approach separates model and algorithm. This

is particularly beneficial for strictly convex models, for which the minimizer is unique.
The model can first be tested by finding the minimizer with any (simple) optimization al-
gorithm, and if the model yields good results, a faster (more sophisticated) optimization
algorithm can be developed.
Recent algorithms for the efficient minimization of convex models include the primal-

dual hybrid gradient algorithm (PDHG) [28, 29, 90], the alternating directions method of
multipliers (ADMM) [25], with references on recent extensions in [106]. For the Frobenius
norm in the data term and sparsity terms on K and X the alternating proximal gradient
scheme in [24] has been shown to converge to a stationary point even for non-convex
objective functions.
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In hyperspectral images, once the pure spectra of the materials are known, hyperspec-
tral unmixing seeks to find their relative abundances throughout the scene. We present
a novel variational model for hyperspectral unmixing from incomplete noisy data which
combines a spatial regularity prior with the knowledge of the pure spectra. The material
abundances are found by minimizing the resulting convex functional with a primal dual
algorithm. This extends least squares unmixing to the case of incomplete data, by using
total variation regularization and masking of unknown data. Numerical tests with ar-
tificial and real-world data demonstrate that our method successfully recovers the true
mixture coefficients from heavily corrupted data. The results of this chapter have been
published in [81].

2.1. Introduction

2.1.1. Hyperspectral Unmixing

Hyperspectral imaging is continuously being suggested for new industrial applications.
While it has been used for decades in remote sensing (see, e.g., [95]), it is now being
applied in various industrial sorting applications, such as recycling of polymers, paper
and quality control of crops and fruit; see the references in [85]. It has also been suggested
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2. Unmixing from Incomplete and Noisy Data

for controlling glue coverage in manufacturing of wood strand boards [6] or even gas
plume detection [103].
In hyperspectral imaging, the electromagnetic reflectance of an object or scene is

measured in several hundred wavelength ranges at once, so that the spectrum measured
at one spatial pixel acts as a fingerprint of the mixture of materials at the corresponding
point in the scene. A hyperspectral image of size m× n with L wavelength ranges can
be represented by a hypercube Y cube ∈ Rm,n,L or, alternatively, by column-wise spatial
reshaping, as two-dimensional array Y ∈ RL,N , where N = mn. In the following, we
focus on the latter representation.
Mixing of materials can be macroscopic, when, due to low resolution, several materials

are measured at one spatial pixel, or microscopic, when the surface layer is an intimate
mixture of the pure materials at different concentrations. Usually, hyperspectral unmix-
ing is based on the Linear Mixing Model. The model comes from remote sensing,
where the ground area corresponding to one pixel is large, e.g. 30 × 30 meters, and is
often made up of several kinds of ground coverage such as grass, soil or asphalt. The
intensities of light reflected by the partial areas over the measured electromagnetic range
are collected in the sensor. If the partial areas of different coverage are disjoint, it is
reasonable to assume that the spectral distribution of light collected in the sensor is the
sum of the spectral distributions reflected by the individual types of coverage, multi-
plied by their respective partial areas. For the limitations of the model and algorithmic
approaches we refer to the survey by Bioucas-Dias et al., [23].
Hyperspectral unmixing assumes the existence of pure spectral signatures, called end-

members, and seeks to infer the fractions of these endmembers, called abundances,
in each pixel of the scene. As the number of materials, here denoted p, is usually much
smaller than the number of wavelengths, hyperspectral unmixing is also an important
data reduction step. Denote by k1, k2, . . . , kp ∈ RL the endmembers, corresponding
to pure (average) reflectance spectra of the individual coverage types and measured
at L wavelengths. Let the respective relative areas which they occupy in the ground
region corresponding to the jth camera pixel, the abundances, be denoted by x1(j),
x2(j), . . . , xp(j) ∈ [0, 1]. The linear mixing model says that the spectrum y(j) ∈ RL
observed in the jth position is the convex weighted sum of k1, k2, . . . , kp, weighted by
the abundances x1(j), x2(j), . . . , xp(j), plus some noise vector w(j) ∈ RL:

y(j) =

p∑

r=1

xr(j)kr + w(j), (2.1)

where

xr(j) ≥ 0, r = 1, . . . , p, and
p∑

r=1

xr(j) = 1.

The two conditions in this constraint are referred to as abundance non-negativity
constraint (ANC) and abundance sum-to-one constraint (ASC) in the literature;
see, e.g. [23]. Setting x(j) := (x1(j), x2(j), . . . , xp(j))

> ∈ Rp, both conditions can jointly
be written as simplex constraint

x(j) ∈ 4p, 4p := {v ∈ Rp : 〈v,1〉 = 1, v ≥ 0}. (2.2)
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2.1. Introduction

Using the vectors in Equation (2.1) for j = 1, . . . , N as columns of corresponding
matrices

Y :=
(
y(1) y(2) · · · y(N)

)
∈ RL,N (data matrix),

X :=
(
x(1) x(2) · · · x(N)

)
∈ Rp,N (abundance matrix),

K := (k1 k2 . . . kp) ∈ RL,p (endmember matrix),
W :=

(
w(1) w(2) · · · w(N)

)
∈ RL,N (noise matrix)

the Linear Mixing Model becomes

Y = KX +W, X ∈ (4p)
N . (2.3)

2.1.2. Contribution

Now we make the additional assumption that only part of the entries of the data matrix
are known; this can be specified by a mask M ∈ {0, 1}L×N of known data, where

Mij =

{
1 if Yi,j is known,
0 otherwise.

Then, restricting to the known entries, the Linear Mixing Model (2.3) with missing
pixels reads

M ◦ Y = M ◦ (KX +W ), X ∈ (4p)
N , (2.4)

where the Hadamard matrix product is defined by (A ◦ B)i,j = Ai,jBi,j. Hyper-
spectral unmixing refers to the estimation of the abundance matrix X from the given
data Y ; the endmember matrix K is either known or has to be found, possibly from a
larger dictionary. We assume that K is known. This is a realistic assumption, because
in many applications, such as sorting of materials, manufacturing control or remote
sensing, reference spectra are available (see, for example, [72] or glue coverage control
in [6]).
In this chapter, published in [81], we propose a novel joint unmixing and inpainting

approach. Unmixing directly the incomplete hypercube, our approach replaces the two-
step procedure of inpainting followed by unmixing, where the inpainting step typically
introduces artefacts. These artefacts are avoided in the joint approach, because the
knowledge of the signal subspace is used from the beginning, and we successfully recover
the abundances knowing only a small part of the data cube.
Our presentation is organized as follows: In Section 2.2, we introduce our novel vari-

ational unmixing model based on the Linear Mixing Model with missing pixels and
encourage spatial regularity by an edge-preserving discrete total variation regularizer.
The minimizer of the corresponding functional is computed by primal-dual optimization
methods in Section 2.3. Both on real and simulated data, our approach yields very good
results, as can be seen in Section 2.4.
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2. Unmixing from Incomplete and Noisy Data

2.1.3. Related Work

The incompleteness of hyperspectral data cubes has different reasons and comes in dif-
ferent forms. In the first “traditional inpainting” case, the full spectrum has been
measured correctly at most object locations, while at the other locations, nothing is
known. A recent inpainting approach in this setting is [77, 78], where missing lines from
airborne push-broom scanning are inpainted by anisotropic diffusion. As seems inher-
ent to the PDE approach, the information from other channels enters the restoration of
some channel —apart from a normalization step— only in the strength coefficient for the
diffusion. Another approach, suggested for example in the survey [23] by Bioucas-Dias
et al., is to perform spectral unmixing first and then perform inpainting on the lower
dimensional signal subspace. This reduces the computational cost, and the noise level
is lower after the dimension reduction. Chen’s survey [31] combines PCA with diffusion
or TV inpainting methods, successfully inpainting small missing regions.
In the second case, there are few object locations where all of the information is

lost, but for many object pixels, only part of the spectral information is available. A
typical application are hypercubes acquired by so-called push-broom scanning or line
cameras with missing information due to faulty sensor pixels in the area sensor. One
can attempt to use the methods from the traditional inpainting case. Furthermore,
channel-wise inpainting works well if only a few neighbouring lines of pixels are missing.
If, however, missing regions become large, its performance degrades. There are inherent
problems to channel-wise methods: The affected region may contain spectra which are
not in the boundary of the missing region; it may contain intensities smaller than the
minimum or larger than the maximum occurring on the boundary of the missing region
in that channel, or the missing region may have contour lines not meeting the boundary.
If we are in one of these settings, channel-wise diffusion-based inpainting cannot be
successful.
In the context of accelerated hyperspectral image acquisition, the authors of [40] try

to recover the full cube from a partially-measured cube with a DCT sparsity prior on the
spectra. As spatial regularization, they impose spatial sparsity w.r.t. a shift-invariant
redundant wavelet basis.
So far, all approaches concentrate only on inpainting of corrupted hyperspectral im-

ages. To obtain the abundances, a second unmixing step would be required. An at-
tempt for a joint unmixing and inpainting using beta priors for the coefficient vectors
is [104]. They start from a larger endmember dictionary found by other methods (using
Hysime [22]) and encourage spatial redundancy by learning a basis of atom cubelets for
the abundance cube.

2.2. Mathematical Model

In this section, we derive our unmixing model from incomplete data, combining spatial
regularization with the masked unmixing data term. The model allows for the inpainting
of missing data during the unmixing.
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2.2. Mathematical Model

2.2.1. Unmixing Model with Spatial Regularization and
Proposed Model

We start fromModel (2.4) and add spatial regularization. If the noiseW is independently
Gaussian, the maximization of likelihood in Equation (2.4) leads us to seek X as

argmin
X∈(4p)N

‖M ◦ (Y −KX)‖2
F , (2.5)

where for a matrix Y , the square of its Frobenius norm is ‖Y ‖2
F := tr(Y Y >).

In real-world images, neighbouring pixels are likely to contain the same mixture of
materials, i.e., the same abundances. Therefore, the recovery of abundances can be
improved by adding a spatial regularity prior, penalizing too much variation of the
abundances. This is of particular importance for noisy data. Hence, we now introduce
a discrete total variation (TV) functional, see [94], which has become one of the most
widely-used regularizers in image restoration models because it preserves sharp edges.
We define the discrete gradient operator, as in [97], by

∇ :=

(
Dx

Dy

)
with Dx := Dn ⊗ Im and Dy := In ⊗Dm.

Here, In denotes the n× n identity matrix; the Kronecker product of two matrices
A ∈ Rα1×α2 and B ∈ Rβ1×β2 is given by the matrix

A⊗B :=




a11B · · · a1α2B
...

. . .
...

aα11B · · · aα1α2B


 ∈ Rα1β1×α2β2 ;

and

Dn :=




−1 1 0
−1 1

. . . . . .
−1 1

0 0



∈ Rn×n

denotes the forward difference matrix. Note that the zero row corresponds to mirrored
boundary conditions. For an image F ∈ Rm×n, column-wise reshaped into a vector
f ∈ RN , let

TV(F ) := TV(f) := ‖ |∇f | ‖1 :=
N∑

i=1

√
(Dxf)2

i + (Dyf)2
i .

Throughout this chapter, | · | operates on a matrix by replacing, at each pixel, the vector
of partial derivatives by its euclidean norm.
Recall that the reshaped abundance image of the rth material, is contained in the rth

row x̄r of X, i.e.,

X =



x1(1) . . . x1(N)
... . . . ...

xp(1) . . . xp(N)


 =



x̄1
...
x̄p


 =

(
x(1) . . . x(N)

)
.
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2. Unmixing from Incomplete and Noisy Data

Summing over all materials, we add the regularization term
∑p

r=1 TV(x̄>r ) to Equa-
tion (2.5), and arrive at the following Unmixing Model for Incomplete Data:

argmin
X

1

2
‖M ◦ (Y −KX)‖2

F +
ν

2
‖X‖2

F + λ

p∑

r=1

TV(x̄>r ) subject to X ∈ (4p)
N , (2.6)

for regularization parameters ν ≥ 0 and λ > 0. This corresponds to the isotropic spatial
TV-regularization with no coupling between the channels. As already mentioned, the
simplex constraint is also known as ANC + ASC.

Remark 2.1 A related functional has been investigated in [59]. Their model reads, for
κ ≥ 0 and λ ≥ 0,

argmin
X

1

2
‖Y −KX‖2

F + κ‖X‖1,1 + λ

p∑

r=1

TVaniso(x̄
>
r ) subject to X ≥ 0,

where ‖X‖1,1 :=
∑N

j=1 ‖x(j)‖1 and

TVaniso(f) := ‖Dxf‖1 + ‖Dyf‖1 =
N∑

i=1

(
|(Dxf)i|+ |(Dyf)i|

)
.

In contrast to our functional, this functional contains no mask, uses anisotropic TV,
and the additional term ‖X‖1,1 encourages sparsity. In [59], sparsity is important, be-
cause the authors use a larger K with columns corresponding to spectra from a library.
In the presence of the ASC, as in our model, this term is constant,

‖X‖1,1 = N for all X ∈ (4p)
N .

We have also performed experiments with anisotropic TV, i.e., replacing TV in equa-
tion (2.6) with TVaniso, and we comment on this briefly in Section 2.4.2. If not mentioned
otherwise, all of our results are obtained for isotropic TV.

Lemma 2.2 The proposed model (2.6) is a convex function of X. If ν > 0, then it is
strictly convex in X, and therefore has a unique minimizer in X ∈ (4p)

N .

Proof. The first term,
∑

ij(mij)
2
(
yi(j) −

∑p
r=1Kirxr(j)

)2 is convex, and for each r ∈
{1, . . . , p}, TV(x̄>r ) is a convex function of x̄>r . Therefore, the functional without the
term ν

2
‖X‖2

F is convex. The term 1
2
‖X‖2

F is strictly convex; thus, for ν > 0, the functional
is strictly convex.
The set 4p and, hence, also the set (4p)

N , which incorporates the ANC and ASC
constraints is closed, bounded and convex. The existence of a minimizer is ensured
because a continuous function on a compact set attains its minimum. The minimizer
is unique for ν > 0, because a strictly convex function has at most one minimizer on a
convex set.
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2.2.2. Model Reformulation

In this section, we rewrite the proposed model (2.6) in a sound matrix-vector form to
better apply algorithms from convex analysis. Reshaping the matrices in Equation (2.4)
appropriately into vectors, i.e., the abundance matrix X =

(
x(1) . . . x(N)

)
, the data

matrix Y =
(
y(1) . . . y(N)

)
∈ RL×N and the mask M ∈ {0, 1}L×N into

x := vecX :=



x(1)
...

x(N)


 ∈ RNp, y :=



y(1)
...

y(N)


 ∈ RNL, m := vecM ∈ {0, 1}NL,

we can write the model with related Kronecker products. We make repeated use of the
relation

vec(ACB>) = (B ⊗ A) vec(C). (2.7)

First note that

‖Y −KX‖2
F =

N∑

j=1

‖y(j)−Kx(j)‖2
2 = ‖y − (IN ⊗K)x‖2

2.

Next, from vecX∇> = (∇⊗ Ip)x, we have
p∑

k=1

TV(x̄>r ) = ‖ |∇X>| ‖1 = ‖ |(∇⊗ Ip)x| ‖1.

Inserting these equations in (2.6), and writing the constraint with the help of an indicator
function

ιs(x) :=

{
0 if x ∈ S,
+∞ otherwise,

we obtain the vectorized Unmixing Model for Incomplete Data:

argmin
x

1

2
‖m ◦ (y − (IN ⊗K)x)‖2

2 +
ν

2
‖x‖2

2 + λ‖ |(∇⊗ Ip)x| ‖1 + ι(4p)N (x). (2.6’)

This can equivalently be written as

argmin
x,u,v

1

2
‖m ◦ (y − u)‖2

2 +
ν

2
‖x‖2

2 + λ‖ |v| ‖1 + ι(4p)N (x) s.t.

(
IN ⊗K
∇⊗ Ip

)
x =

(
u
v

)
.

(2.6”)

2.3. Algorithm

In this section we describe a fast first order algorithm to minimize (2.6”). We briefly
recall the Primal-Dual Hybrid Gradient Algorithm (PDHGMp). For f1 ∈ Γ0(RN), f2 ∈
Γ0(RM) and C ∈ RM×N the solution of

argmin
x,y

f1(x) + f2(y) subject to Cx = y (2.8)
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2. Unmixing from Incomplete and Noisy Data

can be computed by the PDHGMp Algorithm 1, assuming that a saddle point of the
Lagrangian L(x, y, p) := f1(x) + f2(y) + 〈p, Cx− y〉 exists see [29, 90].

Algorithm 1 PDHGMp for problems in standard form (2.8)

Initialization: µ > 0. σ > 0 with µσ < 1/‖C‖2, θ ∈ (0, 1]
x(0), p(0) = p̄(0).
Iterations:
For r = 0, 1, . . .

1. x(r+1) = argminx∈RN f1(x) + 1
2µ
‖x−

(
x(r) − µσC>p̄(r)

)
‖2

2. y(r+1) = argminy∈RM f2(y) + σ
2
‖y − (p(r) + Cx(r+1))‖2

3. p(r+1) = p(r) + Cx(r+1) − y(r+1)

4. p̄(r+1) = p(r+1) + θ(p(r+1) − p(r))

The sequence (x(r), p(r))r∈N generated by Algorithm 1 then converges to the saddle
point of the Lagrangian [28, Thm. 6.4].
Let us now come back to Model (2.6). We use the Primal-Dual Hybrid Gradient

Algorithm (PDHGMp) to solve the equivalent formulation (2.6”) by finding a saddle
point of the associated Lagrangian

L(x, u, v; bu, bv) =
1

2
‖m ◦ (y − u)‖2

2 +
ν

2
‖x‖2

2 + λ‖ |v| ‖1 + ι(4p)N (x)

+

〈(
bu
bv

)
,

(
IN ⊗K
∇⊗ Ip

)
x−

(
u
v

)〉
.

This leads to Algorithm 2, which is guaranteed to converge to a saddle point of the
Lagrangian by [28, Theorem 6.4].
All steps can be computed very efficiently. In Step 1, we compute an orthogonal

projection of x̃(r)/(1+ντ) to (4p)
N . In Step 2, for v(r+1), we compute a coupled-shrinkage

of (∇ ⊗ Ip)x(r+1) + b
(r)
v , with coupling within each pair of entries corresponding to the

forward differences in both spatial directions at one pixel. The update u(r+1) = vecU is
given by

U [M==0] = (KX +Bu)

U [M==1] =
1

1 + σ
· Y +

σ

1 + σ

(
KX +Bu

)
,

where from the expressions on the right hand side only the elements corresponding to
the index set on the left are accessed.
The “Kronecker product–vector” multiplications in Algorithm 2 are implemented in

“matrix–matrix” form, using relation (2.7); e.g., for (∇⊗ Ip)x, we compute X∇>.
The number of elementary operations required for one iteration of the algorithm is

linear in the number of entries of the hypercube, for constant p. In more detail, each

30



2.3. Algorithm

iteration requires: N vector projections to 4p, which are computable with O(p2) oper-
ations each; the coupled shrinkage of Np pairs of entries, computable in constant time;
further, (2p+ 1)NL multiplications and the same order of additions.

Remark 2.3 (Parameters and Initialization) As mentioned above, the term ν
2
‖X‖2

F

ensures strict convexity of the model. We set ν = 10−3 in all experiments below. In
practice, setting ν = 0 works equally well, e.g., setting ν = 0 changes the recovery
percentages in Section 2.4.2, Table 2.1, by less than 0.1%, where more than 0.3% of the
pixels are known.
The parameters τ and σ influence only the convergence speed of the algorithm. Here,

we fix them both to
[
(maxj

∑
iKij + 4)(maxi

∑
jKij)

]−1/2, which ensures the required
bound on the product τσ; they could also be chosen adaptively [50].
The remaining regularization parameter λ is chosen heuristically taking the strength

of the noise and the size of the image features into account.
As initialization for X, we start with a uniformly random matrix and then normal-

ize, so that the columns sum to one. Finally, we always use zero initialization for
u(0), v(0), b

(0)
u , b

(0)
v .

Algorithm 2 Primal-dual hybrid gradient algorithm (PDHGMp) for Equation (2.6”).

Initialization: τ, σ > 0 with τσ ≤ 1/
∥∥(IN ⊗K
∇⊗ Ip

)∥∥2

2
,

x(0) ∈ RNp, u(0) ∈ RNL, v(0) ∈ R2Np, b
(0)
u = b̄

(0)
u ∈ RNL, b

(0)
v = b̄

(0)
v ∈ R2Np.

Iterations:
For r = 0, 1, . . .

1. x̃(r) := x(r) − τσ
(
IN ⊗K>

∣∣∣∇> ⊗ Ip
)(b̄(r)

u

b̄
(r)
v

)

x(r+1) := argmin
x

{
ι(4p)N (x) +

ν

2
‖x‖2

2 +
1

2τ

∥∥x− x̃(r)
∥∥2

2

}

2. u(r+1) := argmin
u

{
1

2
‖m ◦ (y − u)‖2

2 +
σ

2
‖(IN ⊗K)x(r+1) − u+ b(r)

u ‖2
2

}

v(r+1) := argmin
v

{
λ‖ |v| ‖1 +

σ

2
‖(∇⊗ Ip)x(r+1) − v + b(r)

v ‖2
2

}

3. b(r+1)
u := b(r)

u + (IN ⊗K)x(r+1) − u(r+1)

b(r+1)
v := b(r)

v + (∇⊗ Ip)x(r+1) − v(r+1)

4. b̄(r+1)
u := 2b(r+1)

u − b(r)
u

b̄(r+1)
v := 2b(r+1)

v − b(r)
v
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2. Unmixing from Incomplete and Noisy Data

2.4. Numerical Results

We give results on real data acquired with a hyperspectral line camera in Section 2.4.1
and on simulated data in Sections 2.4.2–2.4.4.
Recall the hyperspectral image acquisition by a hyperspectral line camera from Sec-

tion 1.1.1. The snapshot of the area sensor taken for the line y = yj of the object yields
a section Y cube

:,yj ,:
of the hypercube Y cube ∈ Rm,n,L as depicted in Figure 2.1 (right), where

the z-axis is the spectral direction. We call such a section a sensor frame.

y

x
X

Y
Z

Y=Yj

Figure 2.1.: Measured object region (left) and sensor frames y = yj of the hypercube
measured each in one sensor snapshot (right); they correspond to one line
of the object.

The manufacturing process of the sensor commonly produces some defect pixels.
For push-broom scanning, each sensor frame Y cube

:,yj ,:
has the same pattern of missing

pixels. One missing pixel thus creates a missing line, and a cluster of missing pixels
creates a cylinder of missing entries in the hypercube.

2.4.1. Numerical Results for Real Data

In this section, we present results for a hyperspectral image measured at the Fraunhofer
Institute for Industrial Mathematics ITWM with the line camera shown in Figure 1.3,
comparing the restoration obtained as a by-product of our unmixing to a traditional
inpainting.
We have measured the marked region of the polymer samples1 in Figure 2.1 (left), in

the wavelength range 1073–2300 nm, at a spectral resolution of L= 256 channels. The
four regions contain plastic mixtures with different spectral signatures, and the assembly
has been covered with a plastic foil.
Figure 2.2c shows the mask of working pixels with a few circular regions of corruption

artificially added, marked in violet as “simulated defects”. The small circle marked in
red is a real defect, and a camera with such a defect is sold at a considerably reduced
price.

1kindly provided by the Süddeutsche Kunststoff-Zentrum (SKZ)
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z

x

(a) y = 30 (b) y = 60

defects

simulated defects

(c) mask

Figure 2.2.: (a,b) Two sensor frames y = y0 with the spectral direction along the z-axis
and (c) the mask of working sensor pixels.

x

z

(a) input (b) NS (c) ours (d) input (e) NS (f) ours

Figure 2.3.: Sensor frames of masked noisy original input and after inpainting by Navier–
Stokes (NS) and our Model (2.6), respectively; (a–c): sensor frame y = 30,
and (d–f): y = 60.
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2. Unmixing from Incomplete and Noisy Data

Figure 2.2a,b shows two sensor frames y = 30, 60 of the measured hypercube. Being
snapshots of the area sensor, they have the same pattern of missing pixels. Figure 2.3a,d
shows the same sensor frames with the artificially added circular defects.
Slices Y cube

:,:,z , z = 1, 2, . . . , L of the hypercube corresponding to a particular wavelength
are called channels. Figure 2.4a shows Channels 10, 70, 90. Here, Channel 10 is noisy and
affected by individual broken sensor pixels, each creating one missing line. Figure 2.4b
shows the same channels, after the artificial defects have been added, i.e., masked, and
while Channel 10 stays unchanged, we see that not much remains of Channels 70 and 90.
For the unmixing, we give to Algorithm 2 the hypercube together with the mask and

the four pure spectra present in the scene, i.e., p = 4, as columns of K. These have
been obtained from averaging spectra over manually selected rectangles and are shown
in Figure 2.5a.

z
=

10

x

y

z
=

70

x

y

z
=

90

x

y

(a) noisy original (b) input (c) NS (d) ours

Figure 2.4.: Channels 10, 70, 90 of: (a) the noisy original hypercube; (b) the masked
original known to the algorithm; (c) the restoration by Navier–Stokes; and
(d) the restoration by our method.
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(a)
1 50 100 150 200 252

0

1
endmember 1
endmember 2
endmember 3
endmember 4
endmember 5
endmember 6
endmember 7
endmember 8

(b)

Figure 2.5.: (a) The four endmember spectra (p = 4) corresponding to each of the
plastics blends in Figure 2.1 (left); (b) the eight endmember spectra (p = 8)
used in Section 2.4.4.

For the comparison, we take the following approach: Starting from the unmixing coef-
ficients X obtained by minimizing Equation (2.6) with Algorithm 2, we form the product
KX, which is an approximating restoration of the data matrix Y . After reshaping, we
compare this restoration to an inpainting of the hypercube Y cube by [20].
We have chosen the Navier–Stokes-based inpainting [20] as representative of neigh-

bourhood-based inpainting methods. The Navier-Stokes inpainting is performed in each
x-z-plane of the hypercube and estimates missing data looking at surrounding pixels in
that plane. In contrast to the proposed method, such neighbourhood-based inpainting
of the data cube lacks the capacity of utilizing the provided information about pure
spectra. Runtime is several minutes.
For Algorithm 2, we used the parameters from Remark 2.3 and λ = 0.01. The relative

primal step ‖x(r+1) − x(r)‖2/‖x(r)‖2 fell below 10−3 after 111 iterations, which took 7 s
on an Intel Core i7 with 2.93 GHz. The graphics shown are after 1000 iterations.
In Figures 2.3 and 2.4, we compare the performance of Algorithm 2 to a Navier–Stokes

inpainting of each x-z-plane of the hypercube.
For larger clusters of defect pixels, the inpainting of the hypercube by Navier–Stokes

is not satisfactory: looking at Figure 2.3, the large masked region could still be guessed
from the images inpainted with Navier–Stokes. On the other hand, the inpainted sensor
images obtained from our method in Figure 2.3c,f agree well with the measured sensor
frames in Figure 2.2a,b, also removing some noise, which was not contained in the mask.
In Figure 2.4, we see that the broader missing stripes in Channels 70 and 90 cannot be
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2. Unmixing from Incomplete and Noisy Data

restored by Navier–Stokes inpainting and, hence, would introduce errors to any following
unmixing step, whereas our joint unmixing remains unaffected and gives a satisfactory
(denoised) restoration of the original, because the information from all intact channels
is being used.

2.4.2. Numerical Results for Artificial Data (Pure Regions)

We have seen that our unmixing model performs well even if large parts of the hypercube
are missing. To analyze which percentage of sensor pixels can be missing, i.e., to quantify
the unmixing results in some way, in this section, we use an artificial input image with
a small level of noise added.
The artificial image is constructed as follows. The jth of the four regions of the

piecewise constant 240×148 ground truth image in Figure 2.6 (left), is filled with copies
of the jth endmember spectrum. The four endmember spectra, which form the p = 4
columns of the matrix K, are shown in Figure 2.6 (right). The spectra come from
our measurements of common plastic blends. The resulting hypercube Y pure belongs
to R240×148×256. We add independent zero-mean Gaussian noise to each entry Y pure

i,j,r ,
obtaining the hypercube Y low. Here, the standard deviation was taken slightly larger
than 1% of the maximal entry of Y pure.

4

1 3

2
y

x

1 50 100 150 200 252
0

1 endmember 1
endmember 2
endmember 3
endmember 4

Figure 2.6.: The artificial image is constructed by filling region j of the image on the left
with the jth endmember spectrum on the right (p = 4).

For several percentages from 100% down to 0.1%, we randomly generate sensor masks
of size 240×256 with approximately this percentage of working pixels, by flipping a biased
coin for each pixel. Figure 2.7a shows the upper left quarter of the sensor mask for 3%
working pixels. Note that the percentage of known sensor pixels and the percentage of
entries of Y cube which are known to the unmixing algorithm, are the same, because each
masked sensor pixel corresponds to one line in the hypercube along the y-axis.
For each percentage and corresponding mask applied to Y low, we find the minimizer X

of equation (2.6) by Algorithm 2 with λ = 0.1 and other parameters as in Remark 2.3;
running 300 iterations took an average of 110 s per image. Then, we reshape X into the
cube X low of unmixing coefficients. To quantify the quality of X low, we assign to each
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2.4. Numerical Results

image pixel (i, j) the endmember corresponding to the largest of the four unmixing coef-
ficients X low

ij1 , . . . , X
low
ij4 at that image pixel. Some of the resulting label images are shown

in Figure 2.7b. Table 2.1 lists the percentages of correctly assigned pixels depending on
the percentage of known sensor pixels. For more than 10% working sensor pixels, the
algorithm found the largest material abundance at the correct material for 100% of the
image pixels.

z

x

(a) sensor 3%

3% 1% 0.3%
y

x

(b) label maps

Figure 2.7.: (a) Upper left corner of the 240 × 256 mask for 3% working sensor pixels;
(b) label maps obtained from the unmixing by assigning to pixel (i, j) the
index r of the largest coefficient X low

ijr ∈ {X low
ij1 , . . . , X

low
ij4 } at that location.

Furthermore, in Table 2.1, we give the results from minimizing the model obtained by
replacing isotropic TV in model (2.6) with anisotropic TV, as introduced in Remark 2.1.
The results are slightly worse, though not much.

sensor pixels known, in % 30 10 3 1 0.3 0.1

correctly assigned image pixels using TV, in % 100 100 99.5 96.3 83.9 54.1
correctly assigned image pixels using TVaniso, in % 100 100 99.4 95.5 82.8 52.7

Table 2.1.: Percentage of image pixels, for which the largest of the material abundances
found by the unmixing, correctly identifies the material at that pixel.

2.4.3. Numerical Results for Artificial Data (Mixed Regions)

Next, we construct a test image comprising patches of linear mixtures of the endmembers,
to meet the real-world scenario of mixed pixels. We take again the four endmembers
shown in Figure 2.6, hence again p = 4. As shown in the false colour visualization of
the ground truth in Figure 2.8 (left), the corners are filled with pure spectra, and along
the sides of the image, we form linear mixtures. Then, a larger amount of noise, with
a standard deviation of about 10% of the maximum, is added to the hypercube, and
only about 10% of the pixels are retained. As in the previous section, we do this by
first sampling a sensor mask under the assumption that each sensor pixel works with a
probability of 10% and then simulating the line camera measurement. In Figure 2.8, we
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2. Unmixing from Incomplete and Noisy Data

plot Channel 40 of the hypercube, in the middle before masking, and on the right, as
known to the algorithm.

y

x

Figure 2.8.: Ground truth in false colours (left); Channel 40 of the noisy hypercube
(middle); Channel 40 noisy and masked (right); here, 10% are known.

Figure 2.9 shows the obtained abundances, for parameters as in Remark 2.3 and
λ = 0.3 after 918 iterations, which took 447 s on an Intel Core i7 with 2.93 GHz. The
result is visually identical to the ground truth.

y

x

Figure 2.9.: Unmixing result, knowing 10% of the noisy hypercube. The images show
the estimated abundances Xcube

ij1 , . . . , Xcube
ij4 corresponding to the four pure

spectra.

2.4.4. Numerical Results for Non-Occurring Endmembers

In applications, some of the expected materials might not be present in the image. We
proceed as in the previous Section 2.4.3, except that the endmember matrix K now
contains the eight spectra shown in Figure 2.5b (p = 8), of which four are chosen and
mixed using the same abundances as in Section 2.4.3. The abundances obtained from
unmixing 10% of the hypercube are shown in Figure 2.10.
Again, the true abundances are perfectly recovered.
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y

x

Figure 2.10.: Unmixing result with eight endmembers of which four occur in the image;
with 10% of the noisy hypercube known. The images show the estimated
abundances Xcube

ij1 , . . . , Xcube
ij8 corresponding to the eight pure spectra.

2.5. Conclusions

In this chapter, we have introduced a novel model for hyperspectral unmixing from
incomplete and noisy data, provided that an estimate of the signal subspace is available.
The model applies if an arbitrary part of the hypercube is known, e.g., a random selection
of entries.
The model allows unmixing in one step from incomplete data cubes, having larger

regions of missing data than could be restored by preprocessing methods unaware of the
signal subspace.
We demonstrated results from line cameras, for which the mask of known entries is

structured: lines along the second spatial direction of the hypercube are either fully
known or fully unknown, which leads to a more difficult inpainting problem compared
to, say, a random distribution of known entries in the hypercube. For large missing
regions, where traditional Navier–Stokes inpainting failed, the data term approximation,
obtained by our unmixing, provided a good inpainting.
We simulated artificial data with this special structure of the mask. For an image

composed of pure materials, knowing only 3% of the sensor pixels in the simulated
measurement, the rounded unmixing is a 99.5% correct assignment of pixels to materials.
For a mixed and noisy image, knowing 10% of the sensor pixels, we obtain a visually
perfect recovery of the abundances.
Our results show on real data that unmixing results can be perfect in spite of missing

regions in the hypercube, which are orders of magnitude larger than for current line
cameras. This shows the potential for further applications, such as those arising from
novel image acquisition techniques. That the variational model is simple and can be
easily extended is certainly a further benefit.
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In real world applications, we often do not know exactly, which materials occur in an
image. Instead, we often need to choose suitable endmembers from a spectral library. In
this section we are going to extend the model from the previous chapter, (2.6), to this
setting.

3.1. Introduction and Proposed Model

Our new problem description reads: Given the spectral library Klib = K, and the
reshaped hypercube Y , select a subset K ′ of the columns of Klib

1 and spatially regular
abundance matrix X ′, such that that Y ≈ KlibX ≈ K ′X ′, as seen through the mask M .
Here X ′ can be thought of as being formed by those rows of the full abundance matrix
X which correspond to the selected columns of Klib.
Let us repeat: selecting a subset of the columns of Klib, which should occur in the

mixture, is equivalent to requiring that only the corresponding selection X ′ of rows of
X contain non-zero entries. A regularization term that induces this row-sparsity on
X is given by

‖X‖1,∞ :=

p∑

i=1

max
j
xi,j.

Adding this term to (2.6), we obtain our Row-Sparse Unmixing Model from In-

1In this paragraph we write Klib instead of K, as a reminder that Klib contains more endmember
spectra than occur in the image.
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complete Data:

argmin
X

(
1

2
‖M ◦ (Y −KX)‖2

F +
ν

2
‖X‖2

F + λ

p∑

i=1

TV(x̄>i ) + ζ

p∑

i=1

max
j
xi,j

)

subject to X ∈ (4p)
N .

(3.1)

3.2. Related Work and Exact Relaxation

3.2.1. Exact Relaxation Property

In the setting of [43], the l∞,1-norm is an exact relaxation of the (row-0)-norm, which
counts the number of non-zero rows of a matrix. We recall the result as a motivation
in our setting and comment on the practical limitation. The following has been proved
in [43, Lemma III.1].

Lemma 3.1 If we remove repeated columns of X and have l2-normalized data, the set
of minimizers of

min
T≥0
‖T‖row−0 such that XT = X (3.2)

and
min
T≥0
‖T‖1,∞ such that XT = X (3.3)

are the same.

Here we still assume the simplex constraint, which incorporates both the ASC and
ANC, and says that the data spectra are convex combinations of the endmembers. We
note that the above result still holds with l1-normalization in place of l2-normalization
and extends to the case Y = KX, for a library K, as long as those columns of K
which are endmembers, are also columns of Y , and both the columns of K and of Y are
normalized.
Unfortunately the ASC part of the simplex constraint relies on library and image

being calibrated to the same white reference. This calibration is destroyed if the library
is normalized afterwards. We are therefore not going to normalize the library or data
and the above can only serve as a motivation.

3.3. Reformulation of the Model

Before we apply the PDHGMp-Algorithm let us again rewrite the model in a sound
matrix-vector form. We proceed as in Section 2.2.2 and comment only on the differences.
Reshaping again the matrices in (3.1) into vectors x = vecX ∈ RpN , y = vecY ∈ RLN ,

m = vecM ∈ {0, 1}LN and incorporating the simplex constraint via the indicator func-
tion ι(4p)N (x) we see that (3.1) is equivalent to the Vectorized Row-Sparse Unmix-
ing Model for Incomplete Data:
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argmin
x

1

2
‖m ◦ (y− (IN ⊗K)x)‖2

2 +
ν

2
‖x‖2

2 +λ‖ |(∇⊗ Ip)x| ‖1 + ζ
∑

i

max
j
xi,j + ι(4p)N (x).

(3.1’)
or

argmin
x,u,v

1

2
‖m ◦ (y − u)‖2

2 +
ν

2
‖x‖2

2 + λ‖ |v| ‖1 + ι(4p)N (x) + ζ
∑

i

max
j
xi,j

s.t.

(
IN ⊗K
∇⊗ Ip

)
x =

(
u
v

)
.

(3.1”)

Note that the term containing x no longer decouples because ι(4p)N (x) is a sum of
functions of columns of X and ‖X‖1,∞ =

∑
i maxj xi,j is a sum of maxima along the

rows of X. We therefore split again, inserting a copy z of x into the second term:

argmin
x,u,v,z

1

2
‖m ◦ (y − u)‖2

2 + λ‖ |v| ‖1 +
(
ζ‖z‖1,∞ + ι≥0(z)

)
+
ν

2
‖x‖2

2 + ι(4p)N (x)

s.t.



IN ⊗K
∇⊗ Ip
INp


x =



u
v
z


 . (3.4)

3.3.1. Computation of the Row-Sparsity Proximation

In this subsection we explain how the proximum of the l∞,1-norm is computed via convex
duality. This will give us the remaining ingredient for Algorithm 3.4 below.
We are going to rewrite the proximum in terms of a projection and to this end re-

call a standard result by Moreau, see [82]. A proof can be found for example in [16,
Theorem 14.3].

Theorem 3.2 (Moreau decomposition) Let f : Rd → R ∪ {+∞} be a proper convex lsc
function. The following decomposition holds:

• Proxf (x) + Proxf∗(x) = x,

• (f)1(x) + (f ∗)1(x) = 1
2
‖x‖2

2.

Herein (f)1 denotes the Moreau-Yosida regularization of f with parameter one.

In order to compute the update

z(r+1) := argmin
z

{
ζ‖z‖1,∞ + ι≥0(z) +

σ

2

∥∥x(r+1) − z + b(r)
z

∥∥2

2

}
,

it is convenient to denote by Z,B(r)
z ∈ Rp,N the matrices before reshaping to z = vecZ,

b
(r)
z = vecB

(r)
z . We observe that the minimization decouples into separate problems for
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each row z̄i of Z, i = 1, . . . , p, and use that the Legendre transformation (Fenchel dual)
of hζ(z) := ι≥0(z) + ζ‖z‖∞ is the indicator function of the set

Cζ := {z ∈ RN : ‖max(z, 0)‖1 ≤ ζ}.

By Theorem 3.2 we obtain, understanding Proxh ζ
σ

row-wise, that

Z(r+1) = Proxh ζ
σ

(
X(r+1) +B(r)

z

)

=
(
X(r+1) +B(r)

z

)
− Prox(h ζ

σ
)∗
(
X(r+1) +B(r)

z

)

=
(
X(r+1) +B(r)

z

)
− P(C ζ

σ
)p
(
X(r+1) +B(r)

z

)
,

where P(C ζ
σ

)p orthogonally projects each row of X(r+1) +B
(r)
z onto C ζ

σ
.

If we know that projections commute with scaling, then

Z(r+1) =
(
X(r+1) +B(r)

z

)
− ζ

σ
P(C1)p

(σ(X(r+1) +B
(r)
z )

ζ

)
. (3.5)

Let us now prove this simple fact.

Lemma 3.3 Let C ⊂ Rn be a nonempty closed set, λ > 0, and C ′ := l(C) for l : x 7→ λx
its rescaling. Then the orthogonal projection PC′ to C ′ is given by

PC′(x) = λPC
(x
λ

)
for all x ∈ Rn.

Lemma 3.3 is a special case of the following result.

Lemma 3.4 Let C ⊂ Rn be a nonempty closed set and C ′ := l(C) for a linear angle
preserving bijection l : Rn → Rn. Then the orthogonal projection PC′ to C ′ is given by

PC′(x) = l
(
PC
(
l−1(x)

))
for all x ∈ Rn. (3.6)

Proof. The claim (3.6) is equivalent to
〈
c′ − l

(
PC(l−1(x′)

)
, x′ − l

(
PC(l−1(x′)

)〉
≤ 0 ∀x′ ∈ Rn ∀c′ ∈ C ′

⇔ 〈l(c)− l (PC x) , l(x)− l (PC(x))〉 ≤ 0 ∀x ∈ Rn ∀c ∈ C
⇔ 〈c− PC(x) , x− PC(x)〉 ≤ 0 ∀x ∈ Rn ∀c ∈ C,

where the first equivalence holds because l is surjective, and the second equivalence holds
because l is linear and angle preserving.

Finally, for each row z̃ of X(r+1) + B
(r)
z in (3.5), the projection of z̃ to C1 can be

computed by projecting the subvector containing the positive components of z̃ onto the
intersection of the unit l1-ball with the positive orthant. The projection of z̃ to C1 agrees
with z̃ in the nonpositive components of z̃. Having computed the required proximum
mapping, we present the full algorithm in the next section.
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3.4. Algorithm

We use the Primal-Dual Hybrid Gradient Algorithm (PDHGMp) [29, 90] to solve equa-
tion (3.4) and thereby model (3.1) by finding a saddle point of the associated Lagrangian

L(x, u, v, z; bu, bv, bz) =
1

2
‖m ◦ (y − u)‖2

2 + λ‖ |v| ‖1 + ζ‖z‖∞,1 +
ν

2
‖x‖2

2 + ι(4p)N (x)

+

〈

bu
bv
bz


 ,



IN ⊗K
∇⊗ Ip
INp


x−



u
v
z



〉
.

This leads to Algorithm 3, which is guaranteed to converge to a saddle point of the
Lagrangian by [28, Theorem 6.4].

Algorithm 3 PDHGMp for (3.4)

Initialization: τ, σ > 0 with τσ ≤ 1/
∥∥(IN ⊗K∇⊗ Ip

INp

)∥∥2

2
,

x(0) ∈ RNp, u(0) ∈ RNL, v(0) ∈ R2Np, b
(0)
u = b̄

(0)
u ∈ RNL, b

(0)
v = b̄

(0)
v ∈ R2Np.

Iterations:
For r = 0, 1, . . .

1. x̃(r) := x(r) − τσ
(
IN ⊗K>

∣∣∣∇> ⊗ Ip
∣∣∣ INp

)


b̄

(r)
u

b̄
(r)
v

b̄
(r)
z




x(r+1) := argmin
x

{
ι(4p)N (x) +

ν

2
‖x‖2

2 +
1

2τ

∥∥x− x̃(r)
∥∥2

2

}

2. u(r+1) := argmin
u

{
1

2
‖(y − u)‖2

2 +
σ

2
‖(IN ⊗K)x(r+1) − u+ b(r)

u ‖2
2

}

v(r+1) := argmin
v

{
λ‖ |v| ‖1 +

σ

2
‖(∇⊗ Ip)x(r+1) − v + b(r)

v ‖2
2

}

z(r+1) := argmin
z

{
ζ‖z‖∞,1 + ι≥0(z) +

σ

2
‖x(r+1) − z + b(r)

z ‖2
2

}

3. b(r+1)
u := b(r)

u + (IN ⊗K)x(r+1) − u(r+1)

b(r+1)
v := b(r)

v + (∇⊗ Ip)x(r+1) − v(r+1)

b(r+1)
z := b(r)

z + x(r+1) − z(r+1)

4. b̄(r+1)
u := 2b(r+1)

u − b(r)
u

b̄(r+1)
v := 2b(r+1)

v − b(r)
v

b̄(r+1)
z := 2b(r+1)

z − b(r)
z

We have described how to find the z(r+1)-update. All other updates were already part
of Algorithm 2 and have been commented on in the previous chapter. We can thus
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3. Sparse Unmixing

compute all steps of Algorithm 3 efficiently and consider its numerical performance in
the next section.

3.5. Numerical Results

We are interested in the improvements obtained from the inclusion of the l∞,1-sparsity
term. First we comment on the simulated datasets and measures of performance, then
we show the improvements by giving numerical results obtained with Algorithm 3 on a
coarse dataset in Section 3.5.3 and on a more finely structured dataset in Section 3.5.4.

3.5.1. Simulated Datasets

We create a hypercube by randomly ordering the library and then mixing the first four
endmembers with four given abundances. The abundances of all other endmembers are
set to zero, i.e., endmembers 5–50 are not part of the mixture.
Our spectral library is based on the one used by Iordache, Bioucas-Dias and Plaza

in [59], which is available online as part of their demonstrating code for “Minimum
Volume Simplex Analysis”, at http://www.lx.it.pt/~bioucas/code.htm. This lib-
rary contains a random selection of 240 materials of the USGS library, called splib06,
released in 2007 and available online at speclab.cr.usgs.gov/spectral.lib06. The
library contains spectra of different mineral types measured at 224 bands centered at
wavelengths ranging from 0.3 to 3 µm.
We have removed very similar spectra from the library by passing through the library

once and removing spectrum lj, j = 1, . . . , 224, if cos(](li, lj)) > .995 for some i < j.
This ensures that the pairwise angles between two spectra are at least arccos(.995) ≈
2.5°. Still the unmixing problem is badly conditioned and simple matrix inversion could
increase an input error by a factor of

cond(Klib) := ‖Klib‖ ‖K−1
lib ‖ ≈ 109.

Therefore we use a smaller library, consisting of 50 spectra chosen at random from the
166 remaining spectra.

3.5.2. Performance Discriminators

Standard performance discriminators are not a very good measure of the quality of the
unmixing. Comparing the l2-distance between the found abundances to the original
abundances (or the signal-to-noise ratio) is not a good measure of how informative the
solution is to the human perception: In a piecewise smooth image with lowered contrast
it is often easier to recognize features of interest than in a very noisy image with full
contrast.
Further, when reproducing a sparse solution, the l2-distance alone does not weight in-

formation properly to reflect possible post-processing. If it is clear from the algorithmic
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3.5. Numerical Results

result, which of the endmembers are part of the mixture, then any noise in the abund-
ances corresponding to other endmembers can be neglected, because a post-processing
could perform a second unmixing only with the chosen endmembers. Let us therefore
first consider directly the sparsity pattern of the solution. More precisely, given the
computed abundance cube Xcube, with {Xcube

i,j,k }i,j denoting the abundances of the k-th
endmember throughout the image, we compute the vectors v∞(Xcube) and v1(Xcube) by

(
v∞(Xcube)

)
k

:= max
i,j

Xcube
i,j,k and

(
v1(Xcube)

)
k

:=
∑

i,j

Xcube
i,j,k .

3.5.3. Results and Discussion for Coarse Structures

We simulate a data cube by mixing the first four spectra of the endmember library K,
shown in Figure 3.1 (left) with piecewise constant abundance channels of size 24 × 30
similar to those depicted in Figure 2.9, now with two steps instead of four “steps” between
the pure corners. In particular there are 8×10 homogeneous regions in the four corners,
which contain the pure materials. We proceed further as in the previous chapter, add
Gaussian noise with standard deviation of about 10% of the maximum independently
to each pixel of the hypercube and finally simulate the measurement with a defective
line camera, discarding part of the measured lines. To obtain the simulated instance
instDm3 we keep 30% of the lines. A few channels of the hypercube Y cube = instDm3
are shown in Figure 3.1 (right).
From the hypercube Y cube, reshaped into the data matrix Y and the matrix K, whose

columns are the chosen 50 spectra from the USGS library (with the four endmembers
among them), we obtain the abundance matrix X by solving (3.1) with Algorithm 3 and
parameter ν = 10−5 and 30000 iterations fixed throughout this section, which took about
12 minutes. In practice a smaller number of iterations can be used, and the Lagrangian
simplex constraint need not be enforced to high accuracy in each iteration.

1 50 100 150 224
0

0.5

1

Figure 3.1.: The simulated hypercube instDm3 with a coarse abundance structure: The
four spectral endmembers used (left); Channels 1, 26, 51, . . . , 201 of the sim-
ulated measurement which keeps 30% of the hypercube (right).
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Improvement The standard measure of the accuracy of the unmixing is the distance
between the recovered abundances X and the true abundances, ‖X−Xori‖F . It is shown
for different values of λ and ζ in Table 3.1.

Table 3.1.: The abundance reconstruction error ‖X − Xori‖F for different values of the
regularization parameters, on the coarse instance instDm3.

λ � ζ 0 1e-4 7.2e-4 2.16e-3 7.2e-3 0.0216 0.07 0.216 0.72 7.2

0 10.80 10.80 10.79 10.78 10.72 10.58 10.33 9.89 8.98 7.77
0.001 10.26 10.26 10.25 10.24 10.18 10.08 9.84 9.46 8.63 7.57
0.01 7.19 7.19 7.19 7.18 7.16 7.12 7.02 6.81 6.46 6.05
0.10 2.94 2.94 2.94 2.94 2.94 2.94 2.94 2.93 2.92 3.50
0.25 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.66 2.70 3.64

In the first row, for ζ = 7.2, a result of 7.77 is achieved, which is better than the
result of 10.80 without regularization, λ = ζ = 0. Hence there is a clear improvement
from using the l∞,1-norm. However, the effect of spatial regularization is much clearer:
Changing the value of λ from 0 to 0.10, decreases the recovery error from 10.80 to
2.64. For a value of λ of 0.1, there is only a slight improvement by adding the l∞,1-
regularization. For strongest spatial regularization, there is no further improvement by
adding the l∞,1-regularization (last row), the quality even deteriorates in the last entries
of the last row.

The Effect of Sparsity We notice that, even when ζ = 0, the l∞,1-norm decreases for
λ = 0.001, 0.01 compared to λ = 0 because on channels which are mostly zero, spatial
smoothing moves outliers towards zero.
This effect can be seen very clearly in the sparsity vectors v1(Xcube) obtained from

the hypercube instDm3 with only 30% of the data known. We plot these in Figure 3.2
for different values of λ, ζ. Let us comment on Figure 3.2.
Without the either TV- or l∞,1-regularization (plot 1), all components of v1(Xcube)

are large, i.e. all abundance channels are used.
Both l∞,1-norm (plot 2) and TV-norm (plot 4) suppress the noise in most channels,

while also lowering the values in the first four channels. If the regularization parameter
is too large, then some coefficients in the first four channels also drop towards zero, both
for l∞,1-norm (plot 3) and for the TV-norm (plot 6). If TV-penalization is used, (plot
4–6: ’31’, ’38’, ’40’), then the influence of the l∞,1-norm is small, as seen by comparing
the result for TV- and l∞,1-regularization (plot 5) to the result for TV-regularization
alone (plot 4).
To summarize, we can say that for images with large homogeneous regions, the used

abundances can be recovered equally well both by TV-regularization alone and by com-
bined TV- and l∞,1-regularization, as long as the regularization parameters are chosen
appropriately.
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Figure 3.2.: The sparsity vector v1(Xcube) of the abundance cube, obtained when un-
mixing instDm3 for each of the following choices of regularization para-
meters: plots 1–3: (λ, ζ) = (0, 0), (0, .72), (0, 7.2) and plots 4–6: (λ, ζ) =
(.01, 0), (.01, .216), (.01, .72).
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3.5.4. Results and Discussion for Fine Structures

Improvement In the previous example TV-unmixing already worked well, due to the
presence of large homogeneous regions. Let us now present a scenario, where the unmix-
ing can be improved by adding the l∞,1-regularization. In general the success of spatial
regularization depends on the scale separation between the relevant features of the image
and the noise. There should be more room for improvement of pure TV-unmixing, when
smaller features are present in the image.
As a very simple example we consider an image with finer structures in the abundances.

Again we mix four randomly chosen endmembers, now with the abundances shown in
Figure 3.3 (left). Figure 3.4 shows the chosen spectra (left) and the remaining spectra
of the library (right). Again we add 10% noise. Figure 3.3 (right) shows four channels
of the resulting hypercube.
We obtain the unmixed hypercube by minimizing model (3.1) with Algorithm 3. The

following table shows the l2-distance between the reconstructed and original hypercube
for different values of the regularization parameters (λ, ζ).

Table 3.2.: The abundance reconstruction error ‖X − Xori‖F for different values of the
regularization parameters, when unmixing from fine scale abundances.

λ � ζ 0 1e-4 7.2e-4 2.16e-3 7.2e-3 0.0216 0.07 0.216 0.72 7.2

0.00 13.32 13.16 12.64 11.83 10.44 9.85 9.43 9.56 9.74 10.48
0.00 12.55 12.30 11.96 11.14 10.21 9.68 9.30 9.47 9.67 10.44
0.01 9.99 9.91 9.78 9.54 9.06 8.81 8.73 9.21 9.56 10.59
0.10 13.74 13.73 13.72 13.73 13.78 13.90 14.26 15.14 15.59 16.54
0.25 18.49 18.50 18.52 18.57 18.69 18.79 18.92 18.97 18.99 19.06

TV- and l∞,1-regularization alone each yield similar improvements compared to the
unmixing without regularization (λ, ζ) = (0, 0). The optimum for l∞,1-regularization
alone with a value of 9.43 is slightly better than for TV-regularization alone with a
value of 9.99. The best result is achieved for a combination of both regularizers, with a
value of 8.73 for λ = 0.10, ζ = 0.07.
Figure 3.5 shows the abundances obtained without regularization and with combined

regularization. Figure 3.6 shows the abundances obtained from using only one of the
regularization terms.
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Figure 3.3.: The abundances in instDfineB10 (left), shown are endmembers 1–4, other
abundances being zero; Channels 1, 26, 55 and 201 of the corresponding noisy
input hypercube (right).
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Figure 3.4.: Spectra from which the mixtures in instDfineB10 are generated (left), and
all spectra contained in the library (right).
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Figure 3.5.: Recovered abundances: (top) without regularization, i.e. for (λ, ζ) = (0, 0)
and (bottom) for the best choice of parameters of λ = 0.10, ζ = 0.07. In
each case the same 16 channels out of the 50 recovered channels are shown.

52



3.5. Numerical Results

Figure 3.6.: Recovered abundances using either TV- or l∞,1-regularization: (top) for l∞,1-
regularization alone, with ζ = 0.07; (bottom) for TV-regularization alone
with λ = 0.01. The same selection of recovered channels is shown as in
Figure 3.5.
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Outline
4.1. Introduction and Related Work . . . . . . . . . . . . . . . . . . . . 56
4.2. Approximate NMF with Kullback-Leibler Divergence . . . . . . 59
4.3. Optimization Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4. NMF Algorithm via Optimization Transfer . . . . . . . . . . . . . 62
4.5. Convergence of the NMF Algorithm . . . . . . . . . . . . . . . . . 76
4.6. Convergence of Optimization Transfer Algorithms under Unique-

ness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

In Chapter 2 and Chapter 3 we assumed that spectral endmembers were known or
contained in a library. There are practical scenarios where neither is the case. Consider
the following instance of explorative data analysis: A researcher in biology is interested
in finding patterns in the plant distribution from a hyperspectral satellite image. This
requires a dimension reduction from several hundred channels (or in other applications
such as mass spectroscopy even several thousand channels) to a handful of abundance
channels, from which interesting regions or patterns can recognized.
Minimizing not only over the abundances X ∈ Rp,N≥ , but also over the endmembers

K ∈ RL,p≥ , we arrive at an extension of the problem of nonnegative matrix factoriz-
ation (NMF). Given Y , an L×N nonnegative matrix of observations, and an integer
p ∈ N with 1 ≤ p ≤ min(L,N), the NMF-Problem is the task of finding a nonnegative
L× p matrix K and a nonnegative p×N matrix X such that Y = KX. As a factoriz-
ation need not exist for p < min(L,N), the equality constraint is replaced in practical
applications by the requirement that Y ≈ KX with respect to some similarity measure.
In the variational setting (1.5), introduced at the end of Chapter 1, this can be written
as minimization problem

argmin
K,X

(
D(K,X;Y ) +R(K,X)

)

where, for the NMF-problem, the regularization term R includes nonnegativity con-
straints on both K and X. Extending from the NMF-problem to the unmixing problem,
we include further regularization terms in R, which can enforce sparsity or spatial reg-
ularity.
The data fidelityD(K,X;Y ) term measures how well the productKX approximates Y

and a least-squares distance is a common choice. Under the assumption of Poisson noise,
other measures are preferred. Here we use a sum over the Kullback-Leibler divergence
(KL-divergence) between corresponding columns following [69, 70], which is given for
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vectors Kx and y by
L∑

i=1

(
yi log

yi
(Kx)i

− yi + (Kx)i

)
=
〈
1L, y ◦ log

y

Kx
− y +Kx

〉
.

In this chapter we propose a fast multiplicative algorithm to minimize a variational
formulation of the unmixing problem, using the Kullback-Leibler divergence together
with a simplex-constraint, and analyse its convergence.

4.1. Introduction and Related Work

Complexity In general the NMF-problem is NP-hard [105]. Complexity for fixed p
has been discussed in [4]. Despite its complexity, the NMF problem formulations have
been successful in a series of applications, which suggests that some real-world NMF
problems might not be as difficult as the general NMF problem. Arora et al. [4] showed
that there exists a subclass of nonnegative matrices, referred to as separable, for which
the NMF problem can be solved in polynomial time. Separability requires that there
exists an NMF (K,X) of the input matrix Y where the columns of K are a subset of
the columns of Y . More precisely, a matrix Y is p-separable if there exists an index
set J ⊆ {1, 2, . . . , N} with cardinality p and a p × N nonnegative matrix X such that
Y = Y (:, J)X. Equivalently, the cone spanned by p columns of Y contains all columns
of Y .
In hyperspectral unmixing separability is known as the pure-pixel assumption and

in document classification as the existence of an “anchor” word for each topic.
In practice the given separable matrix will be perturbed by noise and N. Gilis and

A. Vavasis [49] consider the near-separable NMF problem defined in [48]: “Given a
noisy p-separable matrix Ỹ = Y + n with Y = KX = K[Ip, X

′]Π, where K and X ′ are
nonnegative matrices, Ip is the p× p identity matrix, Π is a permutation matrix, and n
is the noise with maxj ‖n(:, j)‖2 ≤ ε for some ε ≥ 0, find a set J of p indices such that
Y (:, J) ≈ K.” Several algorithms proposed for this problem, are sensitive to the condition
number ofK, according to [49], where a preconditioning and a semidefinite programming
approach are suggested. These include [4, 5] with several complexity results, [92] the
Hottopixx algorithm suitable for large data sets, and the robust recursive algorithm
in [48].
Another approach uses clustering or removal of similar columns to reduce to a subset

Y ′ of N ′ columns of Y , where N ′ � N , from which the authors of [43] propose to select
the relevant columns by seeking an N ′ ×N ′ matrix T with

Y ′ ≈ Y ′T.

They impose weighted l1-norms and row-sparsity encouraging penalization on T and
finally select those columns of Y ′ corresponding to nonzero rows of T .
In other applications the separability assumption is violated. Remote sensing hyper-

spectral images may be heavily mixed. All approaches without a separability assumption
only seek local minimizers [19, 51, 65, 69, 70, 74, 88].
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Multiplicative Algorithms and Kullback-Leibler objective Alternating multiplicat-
ive update rules have been popularized by D. D. Lee and H. S. Seung [70] for the NMF
problem. Minimizing either a least squares criterion or the column-wise Kullback-Leibler
divergence between Y and KX given by

KL (Y,KX) =
∑

ij

(
Yij log

Yij
(KX)ij

− Yij + (KX)ij

)
,

they considered the algorithmic scheme of alternating minimization with respect to K
and X using the following update rules for k = 0, 1, . . . , starting from arbitrary but
strictly positive matrices K(0) and X(0):

K(k+1) = K(k)

1L,N (X(k))>
◦ Y
K(k)X(k) (X

(k))>;

X(k+1) = X(k)

(K(k+1))>1L,N
◦ (K(k+1))> Y

K(k+1)X(k) ,
(4.1)

where 1L,N is an L × N matrix of ones, X> is the transpose of X and we use the
Hadamard (entrywise) product ◦ and division. Lee and Seung gave surrogates (for a
definition see the next section) and derived the above updates in the quadratic and
Kullback-Leibler case, thus showing the decrease of the respective objective functions.
C. De Mol and L. Lecharlier [69] have extended the multiplicative approach by additive

penalization terms and have made the first claim of a convergence proof. In [69] an
algorithm is given for the special instance of the problem given by blind deconvolution
in incoherent optical imaging, where the original image X, the blurred image Y and
the space-invariant point spread function (PSF) K are nonnegative light intensities.
Given a blurred image Y , with Yi,j ≥ 0 for all i, j, the functional

F(K,X) = KL (Y,K ∗X) +
µ

2
‖K‖2

F + λ‖X‖1,1 +
ν

2
‖X‖2

F (4.2)

is minimized over K ∈ RL,p and X ∈ Rp,N under the constraints

Xi,j ≥ 0, Ki,j ≥ 0 and ‖K‖1,1 = 1, (4.3)

with nonnegative regularization parameters λ, µ, ν. Here the Frobenius norm ‖A‖F
and the l1-norm ‖F‖1,1 of an m× n matrix A are given, respectively, by

‖A‖2
F :=

m∑

i=1

n∑

j=1

A2
i,j and ‖A‖1,1 :=

m∑

i=1

n∑

j=1

|Ai,j|.

The matrix multiplication KX has been replaced by the 2D circular convolution K ∗X
and L = N = p =: n, so that Y,X,K are all n×n matrices, with Xi,j denoting the light
intensity in pixel (i, j).
In the case where the PSF K is known, the algorithm (4.1) without regularization

had previously been well-known in astronomy as Richardson-Lucy’s one [75, 93] and in
medical imaging as (EM)ML (Expectation-Maximization Maximum Likelihood).
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The alternate minimization algorithm for blind deconvolution had appeared already
in [46, 56]. One of the achievements in [69] is that the addition of penalty terms that
prevent the algorithm from converging to the trivial solution where the PSF K is a
delta-peak and the recovered image X equals the original one. The authors suggest an
extension with a smoothed total-variation (TV) penalty on the image, using the sep-
arable surrogate for the TV-penalty introduced in [39]. For details on the TV-penalty
and the surrogate see equations (4.55) and (4.56) in Section (4.6), where we summar-
ize [39]. Meanwhile there exists a rich literature on blind deconvolution also known as
blind deblurring. See Section 5.5.3 in [30] with comments on existance and uniqueness
and models up to 2005 and the references on more recent developments in the paper by
Figueiredo et al. [84]. Note also the related paper [1], where the boundary is treated
nicely.
For strictly convex objective functions, uniqueness of the minimizer allows to prove

convergence of the iterates, see Theorem 4.19. However, the variational formulation of
NMF is no longer convex due to the similarity measure between the productKX and the
input matrix Y . In fact, both F(K,X) := KL (Y,KX) and F(K,X) := 1

2
‖Y −KX‖2

F

are biconvex, but not jointly convex in the pair (K,X). Recall that a function F(K,X)
of two blocks of variables is biconvex if the functions F(·, X) and F(K, ·) are both convex.
For non-convex objective functions convergence results are rare in the literature. A

recent exception is [24], wherein J. Bolte, S. Sabach and M. Teboulle outline a con-
vergence analysis framework building on the Kurdyka–Łojasiewicz property. However,
their requirement that the partial gradients are globally Lipschitz is not fulfilled for the
Kullback-Leibler divergence.
In [69] a convergence result for a multiplicative algorithm minimizing the blind de-

convolution functional (4.2) has been stated without a proof. A hint is given to used
Zangwill’s convergence theory. When attempting to use Zangwill’s convergence theory
for the blind hyperspectral unmixing algorithm proposed here, it is not clear on which
set the update operator is continuous. In particular surrogates do not exist at limit
points. Further complications arise because the functional does not prevent rows of X
and columns of K from converging to zero, which leads to limit points at which the
update is not defined.
Finesso and Spreij have reinterpreted the original algorithm (4.1) from [70], lifting the

involved matrices to three index tensors [45]. They conclude that limit points (K,X) of
the algorithm are stationary, provided that K has no zero columns and X has no zero
rows.

Least squares objective For the related problem with the least squares objective
1
2
‖Y −KX‖2

F instead of the KL-divergence, multiplicative updates have also been pro-
posed in [70]. Lin [74] gives a nice succinct discussion of the difficulties in proving
convergence and proposes a modification which has the same complexity and guarantees
that limit points are stationary points.
In [51] an accelerated version of the least squares Lee-Seung algorithm is demonstrated,

yet the authors conclude that neither the original nor the accelerated algorithm converge

58



4.2. Approximate NMF with Kullback-Leibler Divergence

in a reasonable number of iterations.
The authors in the survey [32] give a comparison which shows different sides: They

also report a larger number of iterations for the Lee-Seung algorithm than for compar-
ative methods, while reporting at the same time competitive CPU time until numerical
convergence.
In [65] an alternating exact minimization of the least squares objective by an active set

method is proposed. For stationarity of every limit point of the sequence of iterates, they
refer to existing convergence theory on two block descent schemes [52], because the sub-
problems are solved exactly. The authors numerically demonstrate a faster convergence
compared to [70] and the alternating least squares algorithm (ALS) from [19].

Contribution We follow here a suggestion by C. De Mol and consider an algorithm
for the unmixing of hyperspectral images which builds on the surrogate inequality for
the KL-divergence suggested by Lee and Seung [70], adds l2-regularization as done for
image deblurring in (4.2), and enforces simplex constraints by computing a Lagrange
multipliers.
We analyse the convergence properties of the proposed algorithm. In particular we

show that the update mappings of the algorithm do not have a continuous extension to
the boundary of the positive quadrant on which the Lee-Seung algorithm is defined.
We identify a set on which the update mappings are continuous and which contains

all limit points of the sequence of iterates.
The regularization terms allow us to strengthen the descent properties from [70] into

strict descent. By extending these descent properties to limit points we show that limit
points are fixed points and that fixed points in the interior of the positive quadrant
satisfy the KKT conditions.
In the different setting where the objective function is convex, and the iterative al-

gorithm has been obtained from minimizing a strongly convex surrogate, we prove a
general convergence result and give an application.
The remainder of this chapter is structured as follows: In Section 4.2 we introduce the

mathematical model and Section 4.3 recalls how optimization transfer leads to decreasing
algorithms. In Section 4.4 we derive the suggested algorithm for the minimization of
the extended non-convex Kullback-Leibler objective for NMF. In Section 4.5 we prove
convergence of a subsequence of the iterates to a fixed point which, under additional
conditions, is a stationary point. Section 4.6 discusses a stronger result for convex
objective functions with a unique minimizer.

4.2. Approximate NMF with Kullback-Leibler
Divergence

In this section we introduce our unmixing model, which extends the NMF-problem with
the Kullback-Leibler divergence by regularization terms and simplex constraints.

59



4. Unsupervised Unmixing

We define the generalized Kullback-Leibler divergence between matrices Y , KX
by

KL (Y,KX) :=
L∑

i=1

N∑

j=1

(
Yij log

Yij
(KX)ij

− Yij + (KX)ij

)
, and

K̃L (Y,KX) := 〈1L,N , KX〉F − 〈Y, logKX〉F .
For minimization with respect to K,X only the non-constant terms of KL collected in
K̃L will be relevant. We wish to solve the minimization problem

argmin
K,X

E(K,X) s.t. K ∈ RL,p≥ , X ∈ 4N
p , (4.4)

where

E(K,X) := K̃L (Y,KX) +
µ

2
‖K‖2

F +
ν

2
‖X‖2

F , (4.5)

with µ, ν positive regularization parameters. Recall the definition of the p-dimensional
unit simplex 4p introduced earlier,

4p :=
{
x ∈ Rp : x ≥ 0,

p∑

i=1

xi = 1
}

and the Hadamard entry-wise product ◦. For two matrices A,B of the same size,

〈A,B〉F =
∑

ij

AijBij

denotes the inner product associated to the Frobenius matrix norm ‖ · ‖F . Further,
1p ∈ Rp is a vector of ones and 1r,s ∈ Rr,s is an r × s matrix of ones. Here and in
the following, log : R → R ∪ {+∞} denotes the convex extension of the usual natural
logarithm ln : R> → R, defined by

log t =

{
ln t for t > 0,

−∞ for t ≤ 0.

The cost function E is smooth on its effective domain

Ω := dom E = {(K,X) ∈ RL,p≥ × Rp,N≥ : E(K,X) < +∞}.
For ε ≥ 0 let

Ωε :=
{

(K,X) ∈ RL,p≥ × Rp,N≥ : ∀i, j (KX)i,j > ε
}
. (4.6)

Then Ω = Ω0 and E(K,X) → ∞ for mini,j(KX)i,j → 0 so that every sublevel set of
E is a subset of Ωε for some ε > 0. Further ‖X‖2

F + ‖K‖2
F is coercive on RL,p × Rp,N .

This has the following consequence: If an iterative algorithm started at some point
z(0) ∈ Ω produces a sequence of iterates z(r) := (K(r), X(r)) with the property that E is
nonincreasing along the sequence {z(r)}r, then all z(r) are contained in a compact subset
Π ⊂ Ω. Indeed Π ⊂ Ωε for some ε > 0 depending on E(z(0)). A method to derive such
decreasing algorithms is introduced in the next section.
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4.3. Optimization Transfer

4.3. Optimization Transfer

Majorization-minimization (MM), also called optimization transfer [68], is a tech-
nique to derive iterative algorithms which guarantee a monotone decrease of the cost
function. At each iteration this technique replaces the minimization of the cost function
E(z) by the minimization of a substitute function Esur(z, ẑ), called surrogate [70], which
depends on the current solution estimate ẑ and satisfies the two conditions

(i) E(ẑ) = Esur(ẑ, ẑ) for each ẑ ∈ Rd,

(ii) E(z) ≤ Esur(z, ẑ) for all z, ẑ ∈ Rd.

The general procedure is as follows, see e.g. [39]:

• Start with an initial estimate z(0) ∈ Rd of the solution.

• Obtain the (r + 1)-th estimate as

z(r+1) = argmin
z∈Rd

Esur(z, z
(r)). (4.7)

Then the following lemma holds [38, 68]:

Lemma 4.1 The sequences E(z(r)) and Esur(z
(r+1), z(r)) defined by recurrence (4.7) are

nonincreasing.

Proof. This is the usual proof for optimization transfer algorithms [38, 68].

E(z(r+1)) ≤ Esur(z
(r+1), z(r)) ≤ Esur(z

(r), z(r)) = E(z(r)) ≤ Esur(z
(r), z(r−1)),

where the second inequality follows because z(r+1) minimizes Esur(·, z(r)) by (4.7).

The objective E(K,X) for NMF we have defined above depends on two blocks of
variables K,X. To find a local minimum in Ω, we will alternate minimization with
respect to K and X, defining block-wise updates

X(r+1) = argmin
X
EK(r)

sur,1(X,X(r)), (4.8)

K(r+1) = argmin
K
EX(r+1)

sur,2 (K,K(r)), (4.9)

where EK(r)

sur,1 and EX(r+1)

sur,2 are block-wise surrogates, which we define next. Define sections
of Ω on which one variable is fixed,

Ω1(K) :=
{
X ∈ Rp,N : (K,X) ∈ Ω

}
,

Ω2(X) :=
{
K ∈ RL,p : (K,X) ∈ Ω

}
.
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4. Unsupervised Unmixing

For each K ∈ RL,p≥ without zero rows, let EKsur,1 : Ω1(K) × Rp,N> → R ∪ {+∞} be a
surrogate for E(K, ·), i.e.

EKsur,1(X̂, X̂) = E(K, X̂) for all X̂ ∈ Ω1(K),

EKsur,1(X, X̂) ≥ E(K, X̂) for all X, X̂ ∈ Ω1(K),

and similarly, for each X ∈ Rp,N≥ without zero columns, let EXsur,2 : Ω2(X) × RL,p> →
R ∪ {+∞} be a surrogate for E(·, X), i.e.

EXsur,2(K̂, K̂) = E(K̂,X) for all K̂ ∈ Ω2(X),

EXsur,2(K, K̂) ≥ E(K̂,X) for all K, K̂ ∈ Ω2(X),
(4.10)

Then alternating minimization (4.8), (4.9) implies monotone decrease

E(K(r+1), X(r+1)) ≤ E(K(r), X(r+1)) ≤ E(K(r), X(r)). (4.11)

Note that, for K ∈ RL,p≥ without zero rows, the inclusion Rp,N> ⊆ Ω1(K) holds and
for X ∈ Rp,N≥ without zero columns, the inclusion RL,p> ⊆ Ω2(X) holds. The assumption
that X has no zero columns will automatically be fulfilled because each iteration of the
algorithm that we are going to propose, will ensure X ∈ 4N

p . The property that the
block variable K does not have zero rows will be kept by the algorithm because, after
each iteration, (K(r+1), X(r+1)) will be in Ω due to the decrease of the objective that we
are going to prove in the sequel.

4.4. NMF Algorithm via Optimization Transfer

In this section we follow a suggestion by C. De Mol, define surrogates for the given
blind unmixing model (4.4) and derive Algorithm 4 below. We propose the following
surrogates, extending [70].

Lemma 4.2 Let X ∈ Rp,N≥ have no zero columns. Then the function

EXsur,2(K,A) := 〈1L,N , KX〉F −
〈
Y

AX
,

(
A ◦ log

K

A

)
X

〉

F

− 〈Y, logAX〉F +
µ

2
‖K‖2

F ,

defined on RL,p≥ × RL,p> , is a surrogate for E(·, X)− ν
2
‖X‖2

F .

Proof. In deriving the surrogate via Jensen’s inequality we follow [70]. For each (i, j) ∈
{1, . . . , L} × {1, . . . , N}, using that (AX)ij > 0, we introduce a vector σij of weights

σija :=
AiaXaj

(AX)ij
.
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4.4. NMF Algorithm via Optimization Transfer

By convexity of − log we obtain

− logKX =

[
− log

(∑

a

σija
KiaXaj

σija

)]

ij

≤
[
−
∑

a

σija log

(
KiaXaj

σija

)]

ij

=

[
− 1

(AX)ij

∑

a

AiaXaj

(
log

Kia

Aia
+ log(AX)ij

)]

ij

(4.12)

= − 1

AX
◦
(
A ◦ log

K

A

)
X − logAX

with equality at the point K = A. Using this expression we obtain for K ∈ RL,p≥ and
A ∈ RL,p> that

E(K,X) = 〈1L,N , KX〉F − 〈Y, log(KX)〉F +
µ

2
‖K‖2

F

≤ 〈1L,N , KX〉F −
〈
Y

AX
,

(
A ◦ log

K

A

)
X

〉

F

− 〈Y, logAX〉F +
µ

2
‖K‖2

F

(4.13)

with equality for K = A, which proves the surrogate properties (4.10).

Next we discuss the corresponding update obtained from (4.9). Define A2 : Ω→ RL,p≥
by

A2(K,X) =
1

2µ

(√
(1L,NX>) ◦ (1L,NX>) + 4µK ◦ Y

KX
XT − 1L,NX

>

)
. (4.14)

Note that, if (K,X) ∈ Ω, for some K ∈ RL,p≥ , then X has no zero column. (Indeed X
having no zero column is equivalent to Ω1(X) being nonempty.) Suppose further that
X has no zero rows. Then the equality 1

2µ
(
√
B2 + 4µA − B) = 2A√

B2+4µA+B
, for real

numbers A,B > 0, allows us to rewrite A2 in the form

A2(K,X) =
2K ◦

(
Y
KX

X>
)

1L,NX> +
√
1L,NX> ◦ 1L,NX> + 4µK ◦

(
Y
KX

X>
) . (4.15)

Thus, for X ∈ Rp,N> , the operator A2(·, X) : K(r) 7→ K(r+1) maps RL,p> into RL,p> .

Remark 4.3 The mapping A2 does not have a continuous extension to RL,p> × Rp,N≥ .
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4. Unsupervised Unmixing

Proof. Consider T : x 7→ K ◦
(

y
Kx
x>
)

on Rp,N> for p = L = 2, N = 1, y = 1L,N , and

K =

(
2 1
1 2

)
. We show that the limit x→ (0, 0)> is not well defined. Indeed, consider

for s ≥ 0 the sets
γs := {(x1, x2)> ∈ R2 : x1 = sx2}.

On γs we then have

T (x) = K ◦
(
1L,N

Kx
x>
)

= K ◦
(

s
2s+1

1
2s+1

s
s+2

1
s+2

)
=

(
2s

2s+1
1

2s+1
s
s+2

2
s+2

)

and therefore
lim
x→0
x∈γ 1

2

T (x) 6= lim
x→0
x∈γ1

T (x)

i.e. the limit depends on the direction along which x approaches zero. Note that T
as above is one summand in K ◦ Y

KX
X> for N > 1, so that X 7→ K ◦ Y

KX
X> is not

continuous when individual columns approach zero.

The following lemma is given to outline the later procedure. From the preceding
remark, it is clear, that we should require that X has no zero column. In fact this is
automatically fulfilled if (K,X) ∈ Ω for some K ∈ RL,p≥ . The following lemma makes
the additional assumption that X has no zero rows. Our later convergence analysis will
build on a column-wise version to be given as Corollary 4.9, which is proven without
this additional assumption.

Lemma 4.4 Let X ∈ RL,p≥ have no zero column and no zero row, let Y ∈ RL,N> and let
EXsur,2 be the surrogate from Lemma 4.2. Then the following statements hold.

(i) For any K(r) ∈ RL,p> we have A2(K(r), X) = argminK∈RL,p>
EXsur,2(K,K(r)).

(ii) Writing K(r+1) := A2(K(r), X), we have E(K(r+1), X) ≤ E(K(r), X).

Proof of Lemma 4.4. Once (i) has been shown, (ii) follows by Lemma 4.1. Therefore we
now show (i). Let A := K(r) ∈ RL,p> . From the assumptions it follows that AX > 0 and
thus ϕ := EXsur,2(·, A) is differentiable on RL,p> and the gradient with respect to 〈·, ·〉F is
given by

∇ϕ(K) = −A
K
◦
( Y

AX
X>
)

+ 1L,NX
> + µK.

The summand of EXsur,2(·, A) depending on the component Kia is

−Aia
( Y

AX
X>
)
ia

logKia + (1L,NX
>)iaKia +

µ

2
K2
ia.

As 0 < Aia
(
Y
AX
X>
)
ia
, this summand is strictly convex and coercive for Kia ∈ R>. Hence

ϕ = EXsur,2(·, A) attains its unique minimum at a point K ∈ RL,p> , at which ∇ϕ vanishes,
i.e. which satisfies

µK ◦K +K ◦ 1L,NXT − A ◦ Y

AX
XT = 0.
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4.4. NMF Algorithm via Optimization Transfer

Note that for µ = 0 the solution is given by

K =
A ◦

(
Y
AX

X>
)

1L,NX>
.

For µ 6= 0, the quadratic equation has two solutions for each component of K, of which
only one is positive. It follows that the unique minimizer K of EXsur,2(·, A) in RL,p> is given
by

K =
1

2µ

(√
(1L,NX>) ◦ (1L,NX>) + 4µA ◦ Y

AX
XT − 1L,NX

>

)
,

which proves (i).

Observe that the objective function E is separable with respect to rows of K after
removing terms depending only on X. We define e2 : R1,p

≥ × Rp,N≥ × R1,N
> → R ∪ {+∞}

by
e2(·, X, y) : k 7→ 〈(kX − y ◦ log kX)>,1N〉+

µ

2
‖k‖2

2 (4.16)

and have

E(K,X) =
L∑

k=1

e2(kl, X, yl) +
ν

2
‖X‖2

F , (4.17)

where kl and yl denote the l-th rows of K,Y respectively.
Similarly, the X-dependent part of E can be written as a sum of terms, each depending

only on one column of X. Define e1 : RL,p≥ × Rp≥ × RL> → R ∪ {+∞} by

e1(K, ·, y) : x 7→ 〈Kx− y ◦ logKx,1L〉+
ν

2
‖x‖2

2 (4.18)

so that

E(K,X) =
N∑

j=1

e1(K, x(j), y(j)) +
µ

2
‖K‖2

F , (4.19)

where x(j) and y(j) denote the j-th columns of X, Y respectively.
Next we derive the X-update in a similar manner as the K-update. As the column-

sum-to-one constraint needs to be taken into account, we consider one column of X at
a time. The proof of the following lemma is analogous to the proof of Lemma 4.2.

Lemma 4.5 Let K ∈ RL,p≥ have no zero rows and y ∈ RL>. The function eKsur,1 : Rp≥ ×
Rp> → R ∪ {+∞} given by

eKsur,1(x, a) := 〈1L, Kx〉 −
〈 y

Ka
, K

(
a ◦ log

x

a

)
+Ka ◦ logKa

〉
+
ν

2
‖x‖2

2 (4.20)

is a surrogate for e1(K, ·, y).
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We next find the corresponding update and deduce the decrease of the objective from
strong convexity of the surrogate. Let C ⊆ Rd be a convex set. Recall that a function
f : C → R ∪ {+∞} is strongly convex with modulus µ > 0 if f − µ

2
‖ · ‖2

2 is convex.
For an equivalent characterization, recall the usual order relation on the set of pos-

itive semidefinite d × d matrices defined by B � A if and only if B − A is positive
semidefinite, i.e. x>(B − A)x ≥ 0 for all x ∈ Rd. Then the following characterization
holds.

Lemma 4.6 Let C be an open convex subset of Rd and µ > 0 and let f : C → R∪{+∞}
be twice differentiable on C. Then f is strongly convex with modulus µ if and only if

Hessf (x) � µI.

Proof. Recall that a function g : C → R ∪ {+∞} is convex if and only if Hessf (x)
is positive semidefinite for all x ∈ C, see [21, Proposition 1.2.6]. Applying this to
g = f− µ

2
‖ ·‖2

2 we obtain that f : C → R∪{+∞} is strongly convex with modulus µ > 0
if and only if, for all x ∈ C,

0 � Hessg(x) = Hessg(x)− µI.
Strong convexity implies the following lower bound on the growth. For x, y ∈ Rd let

[x, y] denote the line segment between x and y.

Lemma 4.7 Let C ⊂ Rd be an open convex set and f : C → R ∪ {+∞} a proper lsc
function which is strongly convex with parameter µ > 0. Let x, y ∈ C and assume that

(i) f is twice differentiable in a neighbourhood of [x, y] and

(ii) f(x) ≤ f(z) for all points z ∈ [x, y].

Then
f(y)− f(x) ≥ µ

2
‖y − x‖2

2. (4.21)

Proof. We are going to apply Taylor’s theorem to the function ϕ : [0, 1] → R ∪ {+∞}
defined by ϕ(t) := f

(
x + t(y − x)

)
. Note that ϕ′(t) =

〈
∇f
(
x+ t(y − x)

)
, y − x

〉
and

ϕ′′(t) = 〈y − x,Ht(y − x)〉, where Ht := Hessf
(
x+ t(y − x)

)
∈ Rd,d for t ∈ [0, 1].

By Taylor’s theorem there is a ξ ∈ (0, 1) with ϕ(1) − ϕ(0) = ϕ′(0) + 1
2
ϕ′′(ξ). From

assumption (ii) it follows that ϕ′(0) ≥ 0 and thus

f(y)− f(x) ≥ 1
2
〈y − x,Hξ(y − x)〉.

Now strong convexity of f implies that Hessf
(
x+ξ(y−x)

)
� µI and we obtain (4.21).

Next, before using strong convexity of the surrogate, we define the domain for the
update mapping of columns of X, in agreement with Ω1(K) and similarly for rows of K.
Let

ω1(K) :=
{
x ∈ Rp≥ : Kx > 0

}
, for K ∈ RL,p≥ ,

ω2(X) :=
{
k ∈ R1,p

≥ : kX > 0
}
, for X ∈ Rp,N≥ .

Note that ω1(K) is empty if K has zero rows and ω2(X) is empty if X has zero columns.
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4.4. NMF Algorithm via Optimization Transfer

Theorem 4.8 Let K ∈ RL,p≥ have no zero rows, let y ∈ RL>. Let the surrogate eKsur,1 for
e1(K, ·, y) be defined by (4.20). For ν > 0 define the operator A′1(K, ·, y) : ω1(K)→ Rp≥
by

A′1(K, x, y) :=
1

2ν

(√
(K>1L + l1p)2 + 4νx ◦K>

( y

Kx

)
− (K>1L + l1p)

)
, (4.22)

where l ∈ R is the solution of

2ν + (‖K‖1,1 + pl)− 1
>
p

√
(K>1L + l1p)2 + 4νx ◦K>

( y

Kx

)
= 0.

Then the following statements hold:

(i) For x(r) ∈ Rp>, the function eKsur,1(·, x(r)) is strongly convex with modulus ν.

(ii) For x(r) ∈ Rp>, the unique minimizer of eKsur,1(·, x(r)) in4p is given by A′1(K, x(r), y).

(iii) For x(r) ∈ ω1(K) and x(r+1) := A′1(K, x(r), y), we have

e1(K, x(r), y)− e1(K, x(r+1), y) ≥ ν

2
‖x(r+1) − x(r)‖2

2.

If ν = 0 and K does not have zero columns, define the operator A′1(K, ·, y) : Rp> → Rp≥
by

A′1(K, x, y) :=
x ◦K> y

Kx

K>1L + l1p
, (4.23)

where l ∈ R is the solution of

p∑

q=1

xq
(
K> y

Kx

)
q(

K>1L
)
q

+ l
= 1. (4.24)

Then, for x(r) ∈ Rp>, a minimizer of eKsur,1(·, x(r)) in 4p is given by A′1(K, x(r), y) and
for x(r+1) := A′1(K, x(r), y) we have

e1(K, x(r+1), y) ≤ e1(K, x(r), y).

Proof of Theorem 4.8. (i) Let ϕ := eKsur,1(·, a). Then

Hessϕ(x) = diag
( a

x ◦ x ◦K
>
( y

Ka

))
+ νI � νI.

and it follows from Lemma 4.6 that ϕ is strongly convex with modulus ν.
(ii) The gradient of on Rp> is given by

∇ϕ(x) = K>1L −
a

x
◦K>

( y

Ka

)
+ νx. (4.25)
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In order to find argmin4p ϕ we introduce the Lagrangian for the constraint 1>p x = 1.
Let L : Rp × R be given by

L(x, l) := eKsur,1(x, a) + l(1>p x− 1) (4.26)

We find the minimizer as in the proof of Lemma 4.4. The summand of eKsur,1(x, a)
depending on xi is given by

ϕi(xi) := (K>1)i xi − ai
(
K>

y

Ka

)
i
log

xi
ai

+
ν

2
x2
i . (4.27)

Suppose first that K does not have zero columns. Then K>1L > 0 and ϕi is
coercive for xq ∈ R>, for each i = 1, . . . , p. Hence the minimizer x of ϕ over 4p belongs
to 4p ∩ Rp> = {x ∈ Rp : 1>x = 1} ∩ Rp> and satisfies

0 = ∇xL(x, l) = ∇ϕ(x) + l1p = K>1L −
a

x
◦K>

( y

Ka

)
+ νx+ l1p (4.28)

or equivalently
νx ◦ x+ x ◦ (K>1L + l1p)− a ◦K>

( y

Ka

)
= 0. (4.29)

Case 1: ν > 0
For ν 6= 0, this quadratic equation has one positive solution in every component and for
l ∈ R the unique minimizer xl ∈ Rp of L(·, l) is given by

xl :=
1

2ν

(√
(K>1L + l1p)2 + 4νa ◦K>

( y

Ka

)
− (K>1L + l1p)

)
(4.30)

=
2a ◦K>

(
y
Ka

)

K>1L + l1p +

√
(K>1L + l1p)2 + 4νa ◦K>

(
y
Ka

) . (4.31)

Next we show that there is a value l ∈ R for which xl is in 4p. From (4.31) we see
xl ∈ Rp>. Now 1

>
p x

l = 1 is equivalent to 2ν1>p x
l = 2ν, i.e.

2ν = 1
>
p

√
(K>1L + l1p)2 + 4νa ◦K>

( y

Ka

)
− (1>pK

>
1L + pl) =: F (l). (4.32)

Defining, for q = 1, . . . , p the quantities

βq := (K>1L)q, αq := 4νaq

(
K>

y

Ka

)
q

and fq(l) :=
√

(βq + l)2 + αq − (βq + l)

we have

F (l) =

p∑

q=1

fq(l).

From K ≥ 0 having no zero columns, we deduce that 0 < αq, 0 < βq and that f ′q(l) =

(βq + l)/
√

(βq + l)2 + αq − 1 < 0 and f ′′q (l) = α
(√

(βq + l)2 + αq
)−3

> 0. It follows
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that fq is convex, continuous and strictly decreasing on R with limt→−∞ fq(t) = +∞
and limt→+∞ fq(t) = 0 for q = 1, . . . , p. The same then holds for F : R → R>, F (l) =∑p

q=1 fq(l). Therefore (4.32) has a unique solution l ∈ R.
Case 2: ν = 0
For ν = 0, the solution xl of equation (4.29) is

xl =
a ◦K> y

Ka

K>1L + l1p
(4.33)

and l should be chosen so that

1 = 1
>
p x

l =

p∑

q=1

aq
(
K> y

Ka

)
q(

K>1L
)
q

+ l
=: F (l). (4.34)

Let γ := minq∈{1,...,p}[K
>
1L]q. As F is continuous on (−γ,+∞) and strictly decreasing

with limt↘−γ F (t) = +∞, limt→∞ F (t) = 0, there is a unique solution l of (4.34).

In both cases, the vector xl, corresponding to the solution l ∈ R of (4.32) and (4.34)
respectively, is a stationary point of ϕ = eKsur,1(·, a) on 4p ∩Rp>. By strong convexity, ϕ
has a unique minimzer and this minimizer is a stationary point and thus equals xl.

Suppose now that K has zero columns and let ν > 0. Note that this cannot
occur in Algorithm 4 and is only relevant for the convergence analysis later on. Let
J ⊂ {1, . . . , L} be the set of indices with kq = 0. For q ∈ J the function ϕq from (4.27)
becomes ϕq(xq) = ν

2
x2
q so the xq-dependent term of L(x, l) is

ν

2
x2
q + lxq,

which is still coercive for xq → +∞, but no longer for x → 0. For a local minimizer x
of L(x, l) we can thus only say xq ∈ [0,+∞), in particular xq = 0 is possible for every
zero column kq of K.
If xq > 0 then optimality requires 0 = ∂xqL(x, l) = νxq + l, which yields xq = − l

ν
and

l < 0. Conversely, for xq = 0, optimality yields 0 ≤ ∂xqL(x, l) = l. Together we have for
every q ∈ J that

l ≥ 0 ⇔ xq = 0,

l < 0 ⇔ xq = − l
ν
.

This agrees with formula (4.30), which for kq = 0 reads

(xl)q =
1

2ν
(
√
l2 − l) =

{
− l
ν

for l < 0,
0 for l ≥ 0.

We summarize that formula (4.30) remains valid for all q ∈ {1, . . . , p}.
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It remains to show the existence of a Lagrange multiplier l for which 1
>
p x

l = 1. For
q ∈ J we have

αq = 0, βq = 0, fq(l) =
√
l2 − l =

{
−2l for l < 0,
0 for l ≥ 0.

Thus, fq is still convex continuous and decreasing in R if q ∈ J . For indices j /∈ J , the
previous argument for nonzero columns of K remains valid and guarantees at least one
j for which fj is strictly decreasing. It follows that the function F is convex continuous
and strictly decreasing and it still holds that (4.32) has a unique solution l ∈ R, as
required.
For later reference we note, also if K has zero columns, it still holds that xq > 0

implies
0 = ∂xqL(xl, l) (4.35)

for xl given by (4.30) .
(iii) If x(r) ∈ Rp>, then the claim follows from Lemma 4.7 for ν > 0 because ϕ is

strongly convex with modulus ν and C = 4p is convex. For ν = 0 the claimed decrease
of the objective is just the surrogate property.
If x := x(r),ε ∈ ω1(K) \ Rp>, we make no claim for ν = 0. To show that the strict

decrease still holds in the case ν > 0, we use continuity and an approximation argument.
Let x(r),ε := x+ ε1p. Then

x(r),ε ∈ Rp>, x(r),ε → x(r) for ε→ 0.

and by continuity of A′ also
A′(K, x(r),ε, y) =: wε −→ x(r+1) := A′(K, x(r), y). (4.36)

As x(r),ε ∈ Rp> and the surrogate eKsur,1(·, x(r),ε) is still defined, by the previous argu-
ment, we get

e1(K, x(r),ε, y)− e1(K,wε, y) ≥ ‖wε − x(r),ε‖2
2.

Passing to the limit ε→ 0 with the help of (4.36) we obtain

e1(K, x(r), y)− e1(K, x(r+1), y) ≥ ‖x(r+1) − x(r)‖2
2.

Analogously, we introduce the operator A′2(k,X, y′) obtained as the restriction of
A2(K,X) to corresponding rows k, y′ ofK,Y , and state that it decreases the objective e2.

Corollary 4.9 Suppose that X ∈ Rp,N≥ has no zero columns, let y′ ∈ R1,N
> and µ > 0.

Define the operator A′2(·, X, y′) : ω2(X)→ R1,p
≥ by

A′2(k,X, y′) :=
1

2µ

(√
1
>
NX

> ◦ 1>NX> + 4µk ◦
(
y′

kX
X>
)
− 1

>
NX

>

)
. (4.37)

Then, for k(r) ∈ ω1(X) and k(r+1) := A′2(k(r), X, y′), we have

e2(k(r), X, y′)− e2(k(r+1), X, y′) ≥ µ

2
‖k(r+1) − k(r)‖2

2.
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Proof of Corollary 4.9. TheK-update was obtained directly in Lemma 4.2 and Lemma 4.4,
because there were no row-constraints to be taken into account. Of course we could
have proceeded row-wise in an analogous way to the column-wise procedure for the X-
update. In this way, one obtains the update (4.15) row-wise, which for given X,y′ and k
is just (4.37). The decrease property follows by repeating the argument used to prove
Theorem 4.8 (i)–(iii).

The convergence analysis requires that the operator A1 continuously extends to the
set of limit points of iterates and that this extension still leads to a decrease of the
energy. The set of limit points might contain pairs (K,X) with K having zero columns.
Therefore we restrict the later convergence analysis to the case ν > 0, in which continuity
of A1 and decrease of e2 have been shown also for points (K,X) with K having zero
columns. Note that a continuous extension of the update to A′1, defined for ν = 0 by
the equations (4.33) and (4.34), from

Z1,cols × Rp> × RL> to Z1 × Rp> × RL>,

where

Z1 := {K ∈ RL,p≥ : K has no zero rows},
Z1,cols := {K ∈ RL,p≥ : K has no zero rows and no zero columns},

is not trivial. Indeed, the following naive extension α of A′1 does not lead to a decrease
in the energy function.

Example 4.10 For a given K ∈ Z1 and y ∈ Rp> let J := {q : kq = 0} ⊂ {1, . . . , p}.
Define the operator α(K, ·, y) : Rp> → Rp≥ by

α(x)j =

{
xj(K

> y
Kx

)j
(K>1L)j+l

, j /∈ J
0, j ∈ J,

where l is the root of
∑

j /∈J

xj
(
K> y

Kx

)
j(

K>1L
)
j

+ l
= 1.

Choose some k1, k2, y1, y2 ∈ R> satisfying

1 >
y1 + y2

k1 + k2

=: t∗, (4.38)

and define

K =

(
k1 0
k2 0

)
, x∗ =

(
t∗

1− t∗
)
, y =

(
y1

y2

)
.

Then, introducing x∗∗ =: α(K, x∗, y), we have

e1(K, x∗∗, y) > e1(K, x∗, y).

Note that (4.38) is satisfied for y1 = y2 = 1
2
, k1 = k2 = 1.
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Proof. Let xt = (t, 1− t)>, t ∈ (0, 1). We then have

e1(K, xt, y) = 〈Kxt − y ◦ logKxt,12〉
= 〈tk − y ◦ log tk,12〉
= tk1 − y1 log(tk1) + tk2 − y2 log(tk2)

= t(k1 + k2)− (y1 + y2) log t− y1 log k1 − y2 log k2.

The function
f(t) := t(k1 + k2)− (y1 + y2) log t

is strongly convex and coercive on R> and its unique minimizer is the root t∗ of f ′(t) =
k1 + k2 − (y1 + y2). Assuming (4.38), it follows that

f(t∗) < f(1).

Using that
e1(K, x1, y)− e1(K, xt∗ , y) = f(1)− f(t∗)

the claim follows if x1 = α(K, xt∗ , y). Now J = {2}, α(x)2 = 0 and the columns sum
condition α(x)1 + α(x)2 = 1 implies α(x) = 1, i.e., x1 = α(K, xt∗ , y), as required.

Repeating the argument from Lemma 4.8 for x = x(j)(r), y = y(j), j = 1, . . . , N where
x(j), y(j) denote the j-th columns of X(r), Y respectively, we obtain in each column a
column update x(j)(r+1). Collecting the corresponding Lagrange multipliers lj into a
vector l = (l1, . . . , lN)>, the full update X l = (x(1)(r+1), . . . , x(N)(r+1)) can be written

X(r+1)(l) :=
1

2ν

(√
(K>1L,N + 1pl>)2 + 4νX(r) ◦K>

( Y

KX(r)

)
− (K>1L,N + 1pl

>)

)

(4.39)
where the jth component lj of l ∈ RN is defined by (4.32) with a = x(j)(r), i.e. lj is the
root of

2ν = 1
>
p

√
(K>1L + lj1p)2 + 4νx(j)(r) ◦K>

( y(j)

Kx(j)(r)

)
− (1>pK

>
1L + plj). (4.40)

By convexity of the right-hand side, we can find lj with a few Newton iterations.
LetA1 : Ω→ Rp,N≥ denote the mapping (K,X(r)) 7→ X(r+1) defined by equations (4.39)

and (4.40). For (K,X(r)) ∈ Ω and K ∈ RL,p> equation (4.39) can be written

X(r+1)(l) =
2X(r) ◦K>

(
Y

KX(r)

)

K>1L,N + 1pl> +

√
(K>1L,N + 1pl>)2 + 4νX(r) ◦K>

(
Y

KX(r)

) ,

and the operator A1(K, ·) : X(r) 7→ X(r+1) maps Rp,N> into Rp,N> .
Alternating the updates (4.39) and (4.15) we obtain Algorithm 4.
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4.4. NMF Algorithm via Optimization Transfer

Algorithm 4 Multiplicative Algorithm for Blind Unmixing (4.5), adapted from [69]

Input: Given are the data matrix Y ∈ RL,N> and p ∈ N, as well as regularization
parameters ν ≥ 0, µ > 0.
Initialization: Initialize z(0) =

(
K(0), X(0)

)
∈ RL,p> × Rp,N> with arbitrary strictly

positive values, satisfying the column normalization constraints

p∑

q=1

X
(0)
qj = 1 for j = 1, . . . , N.

At each iteration: (until stopping criterion is reached)

i) Introduce a vector l = (l1, . . . , lN)> of Lagrange parameters, with lj correspond-
ing to the constraint that the jth column of X(r+1) should sum to one, and
determine its entries as follows:

a) if ν 6= 0, for j = 1, . . . , N determine lj by solving equation (4.40), i.e.

2ν+1>p
(
K(r)>

1L+lj1p
)
−1>p

√
(K(r)>1L + lj1p)2 + 4ν a ◦K(r)>

( y

K(r)a

)
= 0,

where a denotes the jth column of X(r) and y denotes the jth column
of Y .

b) if ν = 0, for j = 1, . . . , N determine lj by solving equation (4.34), i.e.

1 =

p∑

i=1

ai

[
K(r)> y

K(r)a

]
i[

K(r)>1L
]
i
+ lj

;

ii) compute A(r) = X(r) ◦K(r)>( Y

K(r)X(r)

)
,

iii) compute B(r) = K(r)>
1LN + 1pl

>,

iv) set X(r+1) =
2A(r)

B(r) +
√
B(r) ◦B(r) + 4νA(r)

,

v) compute C = K(r+1) ◦
(

Y

K(r)X(r+1)
X(r+1)>

)
,

vi) compute D(r+1) = 1LNX
(r+1)>,

vii) set K(r+1) =
2C(r+1)

D(r+1) +
√
D(r+1) ◦D(r+1) + 4µC(r+1)

.
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We stated that the Lagrange multipliers can be found with a few Newton iterations
and briefly summarize the underlying results. The Newton scheme to solve f(x) = 0
for a differentiable function f : R→ R is the iteration defined by

x(k+1) = x(k) − f(x(k))

f ′(x(k))
, k = 0, 1, . . . , (4.41)

for some starting point x(0) ∈ R. The right-hand side of (4.41) is the intersection point
of the tangent

f(x(k)) + f ′(x(k))(x− x(k))

to the graph of f in the point (x(k), f(x(k))) with the x-axis.
For convex functions the Newton scheme converges globally, compare [54, Satz 18.3].

Theorem 4.11 Let I ⊂ R be an interval and f : I → R differentiable strictly decreasing
and convex with a root x̂ ∈ I. Then the Newton iterations converge for all x(0) ∈ I
with x(0) ≤ x̂ monotonically to x̂. If I = R and x(0) ∈ R is chosen arbitrarily, then
convergence is monotone after the first iteration.
The same results holds we replace the assumption that f be “strictly decreasing” and

x0 ≤ x̂ by “strictly increasing” and x0 ≥ x̂.

Proof. The first part of the proof can be found in [54, Satz 18.3] and is given here for
the convenience of the reader. Assuming that x(k) ≤ x̂ for some k ≥ 0, we prove the
induction step

x(k) ≤ x(k+1) ≤ x̂. (4.42)

With f being differentiable, convexity implies that the graph of f is everywhere above
the tangent to f in the point x(k), i.e.

f(x) ≥ f(x(k)) + f ′(x(k))(x− x(k)) =: t(x).

For x = x(k+1) the right-hand side of this equation vanishes by the update rule (4.41).
Therefore f(x(k+1)) is nonnegative and, by strict monotonicity of f , thus x(k+1) ≤ x̂. On
the other hand (4.41) implies x(k+1) ≥ x(k), using that f ′(x(k)) is negative by assumption,
and f(x(k)) is nonnegative by the induction hypothesis. Convergence now follows from
monotonicity and boundedness of the iterations. By (4.41) the limit is a root of f . This
proves the first statement.
Assuming I = R and x(0) ≥ x̂, we show that x(1) ≤ x̂. Indeed, for any starting point

x(0) ∈ R, convexity implies that the tangent t(x) in x(0) is everywhere below the graph
of f so that t(x(0)) = f(x(0)) ≥ 0 ≥ t(x̂) and t has a root x(1) in [x(0), x̂], as required.
To replace strictly decreasing by strictly increasing, consider g(x) := f(−x).

We say that a sequence x(k) converges quadratically to x̂ if it converges to x̂ and

‖x(k+1) − x̂‖ ≤ C‖x(k) − x̂‖2

for some C > 0 and all sufficiently large k ∈ N. Informally this means that “the number
of correct digits doubles in every iteration”. We quote the following well known result on
the convergence on the quadratic convergence of the Newton iterates [54, Theorem 19.1]:
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4.4. NMF Algorithm via Optimization Transfer

Theorem 4.12 Let ‖ ·‖ and ‖ ·‖op be compatible norms in Rn and Rn,n, and let Ω ⊂ Rn
be open. Let F : Ω→ Rn be continuously differentiable with a root x̂ ∈ Ω. Let the Jacobi
matrix F ′(x) be invertible for all x in a ball U ⊂ Ω around x̂ and assume that

‖F ′(x)−1
(
F ′(y)− F ′(x)

)
‖op ≤ L‖y − x‖ (4.43)

for all x, y ∈ U with some constant L > 0. Then the Newton iterates converge locally
quadratically to x̂.

The next remark details that these results apply and gives suitable starting points.

Remark 4.13 1. While for the case ν > 0, any starting point can be chosen by the
second statement of Theorem 4.11, this is not the case for ν = 0, where too large choices
of the initial estimate l(0) could lead to a first iterate l(1) outside the the range of definition
(−γ,+∞).
First we give starting points l(0) for which Theorem 4.11 guarantees convergence for

the cases ν > 0 and ν = 0. Recall the definitions of αq, βq and fq, q = 1, . . . , p from the
proof of Theorem 4.8. For ν > 0 we estimate

fq(l) =
√

(βq + l)2 + αq − (βq + l) ≥ −(max
q
βq + l).

Choosing l(0) := −2ν
p
− maxq βq ensures that the right-hand side is at least 2ν

p
so that

F (l(0)) is at least 2ν and l(0) is smaller than the desired root l̂ of F (l) = 2ν.
For ν = 0, define α′q := aq(K

> y
Ka

)q. Let r ∈ {1, . . . , p} be the index of a smallest
entry of the vector K>1L, i.e. an index with (K>1L)r = γ. Estimating F from (4.32)
by

F (l) =

p∑

q=1

α′q
(K>1L)q + l

≥ α′r
(K>1L)r + l

we see that l(0) := α′r − γ yields F (l(0)) ≥ 1 and thus l(0) is smaller than the root of
F (l(0))− 1.
Let us summarize. In the case ν > 0, we choose

l(0) := −2ν

p
−max

q
βq

and in the case ν = 0, we choose

l(0) := α′r − γ for r ∈ argmin
r∈{1,...,p}

(K>1L)r.

With these choices, Theorem 4.11 guarantees that the Newton iterations with starting
point l(0) converge monotonically to roots of (4.32) and (4.34) respectively.
2. We see next that quadratic convergence holds. Observe that both for ν > 0 and ν = 0
the function F ′ is M-Lipschitz on [l(0),+∞) for some M > 0, because F ′′ is bounded
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on [l(0),+∞). Next, |F ′| is bounded below by ε > 0 on a neighbourhood U of l̂ if we set
ε := 1

2
|F ′(l̂)|, where l̂ is the desired root.

Together, for all l1, l2 ∈ [l(0),+∞) ∩ U , we have

|F ′(l1)−1
(
F ′(l2)− F ′(l1)

)
| ≤ M

ε
|l1 − l2|, (4.44)

so F satisfies condition (4.43). By Theorem 4.12, the Newton iterates converge locally
quadratically both for ν > 0 and ν = 0.
Indeed, looking at the proof of [54, Satz 19.1], we see that is is sufficient to re-

quire (4.43) on line segments between successive iterates to obtain that for all k the
inequality

‖l(k+1) − l̂‖2 ≤
M

2ε
‖l(k) − l̂‖2

2 (4.45)

holds. By 1. we have l(k) ∈ [l(0), l̂] for all k, and (4.43) is satisfied on [l(0), l̂]. Therefore
(4.45) holds for all k.

4.5. Convergence of the NMF Algorithm

In this section we prove that the sequence of iterates produced by Algorithm 4 has
a convergent subsequence and that the every limit point of a subsequence is a fixed
point. Further every fixed point in the interior of the positive quadrant satisfies the
KKT-conditions.
Recall the partial updatesA1 : (K(r), X(r)) 7→ X(k+1) andA2 : (K(r), X(k+1)) 7→ K(k+1).

Writing π1 : (K,X) 7→ K for the projection and similarly for π2, the concatenation

A = (A2, π2) ◦ (π1,A1) : (K(r), X(r)) 7→ (X(k+1), K(k+1)) (4.46)

defines one iteration of Algorithm 4. We note continuity.

Lemma 4.14 The partial updates A1 and A2 are continuous on Ω and hence A = A2◦A1

is continuous on Ω.

Proof. As the function t 7→ 1
t
is continuous on (0,+∞), the mapping (K,X) 7→ 1

KX
is

continuous on Ω and it follows from (4.14) that the mapping A2 : (K(r), X) 7→ K(r+1) is
continuous.
Next we show that A1 is continuous. The Lagrange multipliers lj, j = 1, . . . , N are

defined by (4.40) or (4.34), which are both polynomials in lj and therefore depend con-
tinuously [55] on the coefficients of these polynomials, which in turn depend continuously
on X ◦ (K(r))>

(
Y

K(r)X

)
and (K(r))>1n. Then continuity of the mapping A1 follows as

for A2.

Of course continuity holds also row- and column-wise for the row- and column-wise
update operators A′1,A′2 defined by (4.22) and (4.37).
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Corollary 4.15 Let L, p,N ∈ N. Then the following assertions hold.

(i) For y ∈ RL> and K ∈ RL,p≥ the operator A′1(K, ·, y) is continuous on the set ω1(K).

(ii) For y ∈ R1,N
> and X ∈ Rp,N≥ the operator A′2(·, X, y) is continuous on the set ω2(X).

Before giving the convergence proof, we restate the immediate implication of Lemma 4.8
that the cost functions are decreasing with a strict decrease except at fixed points. Recall
the summands e1, e2 of the objective defined by (4.18) and (4.16).

Lemma 4.16 Let ν > 0, X ∈ Rp,N≥ and y ∈ R1,N
> . For any k∗ ∈ ω2(X) and k∗∗ :=

A′2(k∗, X, y) the following statements hold:

(i) e2(k∗∗, X, y) ≤ e2(k∗, X, y).

(ii) If e2(k∗∗, X, y) = e2(k∗, X, y) then k∗∗ = k∗.

Similarly, let µ > 0, let K ∈ RL,p≥ and y ∈ RL>. For x∗ ∈ ω1(K) and x∗∗ := A′1(K, x∗, y)
the following statements hold:

(iii) e1(K, x∗∗, y) ≤ e1(K, x∗, y).

(iv) If e1(K, x∗∗, y) = e1(K, x∗, y) then x∗∗ = x∗.

Now we turn to convergence. For brevity we denote the iterates generated by Al-
gorithm 4 by z(r) := (K(r), X(r)), r = 1, 2, . . . .

Theorem 4.17 Let z(0) ∈ RL,p> ×Rp,N> and ν > 0. The sequence of iterates z(r) generated
by Algorithm 4 with starting point z(0) has a convergent subsequence. Furthermore, every
limit point of a subsequence is a fixed point of A.

Proof. 1) For a starting point z(0) ∈ RL,p> × Rp,N> we have E(z(0)) < +∞. By (4.11), the
energy is decreasing under the updates (4.8) and (4.9). Additionally E is bounded below
by zero and therefore

lim
r→∞
E(z(r)) = E∗,

for some E∗ ∈ R.
By the decrease all iterates z(r) = (K(r), X(r)) are contained in the E(z(0))-sublevel set

of E , which we denote by Π. Recall that coercivity implies that for some ε > 0, we have
Π ⊆ Ωε. Note further that Π is closed and bounded and thus compact.
2) Let z∗ = (K∗, X∗) be an accumulation point of {z(r)}r and rj a subsequence with

z∗ = limj→∞ z
(rj). By continuity of E , we have E(z∗) = E∗ and if z∗∗ is any other

accumulation point, then
E(z∗∗) = E∗ = E(z∗). (4.47)

3) Consider the sequence of next iterates wj := A(zrj) whereA is the update from (4.46).
Let {jk}k ⊂ N be a convergent subsequence with limk→∞w

jk =: z∗∗ = (K∗∗, X∗∗) ∈ Π ⊆
Ωε. By continuity of A, we can pass to the limit k →∞ in wjk = A(zrjk ) and obtain
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z∗∗ = A(z∗).

As the objective E is decreasing under the substeps A1,A2, in the same way as (4.47)
was derived, it also follows that

E(K∗∗, X∗∗) = E(K∗, X∗∗) = E(K∗, X∗). (4.48)

4) We aim to show that z∗∗ = z∗. To this end we now show that the first equality
in (4.48) implies K∗∗ = K∗, by considering all rows of K∗ individually.
By (4.17) we have

E(K∗, X∗) =
L∑

l=1

e2(k∗l , X
∗, yl) +

ν

2
‖X∗‖2

F ,

where k∗l , k∗∗l and yl denote the l-th rows of K∗, K∗∗ and Y respectively, l = 1, . . . , L.
Subtracting the corresponding equation for E(K∗∗, X∗) yields

E(K∗, X∗)− E(K∗∗, X∗) =
L∑

l=1

(
e2(k∗l , X

∗, yl)− e2(k∗∗l , X
∗, yl)

)
. (4.49)

Observing that (K∗, X∗) ∈ Π ⊆ Ωε implies k∗l ∈ ω2(X), l = 1, . . . , L, and recalling
from Corollary 4.9 that the update operator A2 : (K∗, X∗) 7→ (K∗∗, X∗) is row-wise
represented by A′2, i.e.,

k∗∗l = A′2(k∗l , X
∗, yl), l = 1, . . . , L,

we deduce with Lemma 4.16 that

e2(k∗∗l , X
∗, yl) ≤ e2(k∗l , X

∗, yl), l = 1, . . . , L. (4.50)

Hence each summand on the right-hand side of (4.49) is nonnegative. By the first
equation in (4.48) the sum is zero, hence

e2(k∗∗l , X
∗, yl) = e2(k∗l , X

∗, yl), l = 1, . . . , L. (4.51)

Using again Lemma 4.16, we obtain

k∗∗l = k∗l , l = 1, . . . , L. (4.52)

5) Similarly we conclude from the second equality in (4.48) thatX∗∗ = X∗, by splitting
E(K∗, X∗∗) and E(K∗, X∗) into sums corresponding to columns of X∗, X∗∗. Together
with 4) we have shown z∗∗ = z∗ and z∗ is a fixed point of A.

Still, fixed points in the interior of the positive quadrant satisfy the KKT-conditions
for minimization problem (4.4).
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Theorem 4.18 Let Y ∈ RL,N> and ν > 0. Let z = (K,X) ∈ RL,p> ×Rp,N> be a fixed point
of A. Then z satisfies the KKT-conditions for the minimization of E over RL,p≥ ×4N

p ,
which, on RL,p> × Rp,N> become

(i) ∇KE(K,X) = 0,

(ii) ∇x(j)E(K,X) ∈ span(1p), j = 1, . . . , N ,

where x(j) denotes the j-th column of X.

Proof. From the definition of E in (4.5) we compute

∇KE(K,X) = 1L,NX
> − Y

KX
X> + µK,

∇XE(K,X) = K>1L,N −K>
Y

KX
+ νX.

As z is a fixed point of A, we have A1(K,X) = X and A2(K,X) = K. On the
one hand, from A2(K,X) = K it follows by Lemma 4.4 that K is a minimizer of
ϕ = EXsur,2(·, A) over RL,p> for A = K and satisfies

0 = ∇ϕ(K) = −A
K
◦
( Y

AX
X>
)

+ 1L,NX
> + µK

with A = K. This proves (i).
On the other hand, from A1(K,X) = X it follows first of all for each j ∈ {1, . . . , N}

that the j-th columns x(j) of X belongs to 4p. Further x(j) minimizes the Lagrangian
for the minimization over 4p of the surrogate corresponding to the j-th column, defined
in (4.26) by

L(x, l) = eKsur,1K(x, a) + l(1>p x− 1),

where now the old column is a = x(j). Details on the latter statement are in (4.28)
and (4.35).
From (4.25) we have

∇x eKsur,1(x, a) = K>1L −
a

x
K>
( y

Ka

)
+ νx.

In particular
∇x eKsur,1(x(j), x(j)) = ∇x(j)E(K,X).

With x(j) minimizing L(·, l) for a = x(j), it follows that

0 = ∇xL(x(j), l) = ∇x eKsur,1(x(j), x(j)) + l1p

= ∇x(j)E(K,X) + l1p, j = 1, . . . , N,

which is (ii).
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4.6. Convergence of Optimization Transfer
Algorithms under Uniqueness

If we consider the simpler case where the iterative mapping stems from a strongly convex
surrogate and the energy has a unique minimizer, we get the following much stronger
result.

Theorem 4.19 Let Ω ⊂ Rd be closed, let E : Ω → R ∪ {+∞} be bounded below, let
Esur be a surrogate for E and let A : Ω → Ω denote an iterative update mapping which
satisfies the following assumptions:

(i) A is continuous.

(ii) A has a unique fixed point.

(iii) A(x) = argminΩ Esur(·, x) for every x ∈ Ω.

(iv) HessEsur(·,x) is uniformly bounded below by ξI, for all x ∈ Ω, some ξ > 0.

Then, if the sequence of iterates is contained in a compact set, it converges.

The above will typically be applied replacing (ii) with

(ii’) Each fixed point of A is a minimizer of E and E is strictly convex.

Proof. Let {x(k)}k be the sequence of iterates generated by A from a starting point x(0) ∈
Ω via the update x(k+1) := A(x(k)), k = 0, 1, 2, . . . . Assumption (iii) and Lemma 4.1
imply

E(x(k+1)) ≤ E(x(k)), k = 0, 1, 2, . . . ,

and with E being bounded below, it follows that E(x(k)) is monotone decreasing to some
limit E∗ ∈ R. From the lower bound on the Hessian of the surrogate in assumption (iv)
and the surrogate properties it follows that

E(x(k))− E(x(k+1)) ≥ Esur(x
(k), x(k))− Esur(x

(k+1), x(k))

≥ ξ ‖x(k+1) − x(k)‖2
2. (4.53)

With E(x(k))↘ E∗ this implies

‖x(k+1) − x(k)‖2 ≤ ξ−
1
2

(
E(x(k))− E(x(k+1))

) 1
2 → 0 (4.54)

for k →∞.
As the sequence of iterates is contained in a compact set, it has a convergent sub-

sequence. Let x(kj) be a convergent subsequence with limit x̃. By the triangle inequality,

‖A(x̃)− x̃‖2 ≤ ‖A(x̃)−A(x(kj))‖2 + ‖A(x(kj))− x(kj)‖2 + ‖x(kj) − x̃‖2.
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Taking the limit j →∞, the first term on the right-hand side goes to zero by continuity
of A. The second term goes to zero by (4.54). Thus all three terms on the right-hand
side converge to zero as j →∞, and x̃ must be a fixed point of A. By assumption (ii),
the fixed point of A is unique, hence it follows that the whole sequence converges,

x(k) → x̃ := FixA
for k →∞.
By the decrease property (4.53), every minimizer of E is a fixed point of A. Hence E

has a unique minimizer and this minimizer is given by x̃. We have thus shown that the
whole sequence of iterates converges to the minimizer of E .
The assumptions in Theorem 4.19 are realistic in some settings and have been used

in [39]. M. Defrise, C. Vanhove and X. Lin [39] consider reconstruction from CT data
with TV-regularization, propose a block-iterative algorithm and prove its convergence
to a regularized solution.
They consider a linear measurement system y = Ax, with a matrix A ∈ RMP,N . The

goal is to reconstruct the image x ∈ RN , discretized on a grid of N voxels, from a set of
M projections measured on a detector with P pixels. The measured data is written as
a vector of M projections y = (y>1 , y

>
2 , . . . , y

>
M)>, with yj ∈ RP , for j = 1, . . . ,M .

Accordingly they define a vector σ = (σ>1 , σ
>
2 , . . . , σ

>
M)> ∈ RMP with σj denoting

the estimated variances of measurement yj. Assuming a Gaussian distribution of the
measurements they wish to find the minimizer of the penalized weighted least squares
cost function

E(x) = ‖ 1
σ
◦ (y − Ax)‖2

2 + βP (x),

where the first term is the data fidelity term and the second term ist the penalty weighted
by the regularization parameter β > 0. Their penalty is a smooth discrete approximation
of the TV-penalty

P (x) =
N∑

j=1

|∇ix|ε, (4.55)

with the notation

|∇ix|ε :=

√
ε2 +

∑

j∈Bi

(xi − xj)2

for the discrete approximation of the magnitude of the gradient of the image at voxel i,
calculated using a neighbourhood Bi ⊂ {1, . . . , N} of voxel i and a small value ε > 0.
Typically in 2D, with i = (ix, iy) one might take B(ix,iy) =

{
(ix + 1, iy), (ix, iy + 1)

}
,

with the two neighbours of (ix, iy) giving the finite difference estimate of the image
gradient components along the x-axis and y-axis at (ix, iy). Let Bj denote the adjoint
neighbourhood of Bj, defined by k ∈ Bj iff j ∈ Bk. Then, for the stated 2D example,
the adjoint neighbourhood is Bix,iy =

{
(ix − 1, iy), (ix, iy − 1)

}
.

They define the surrogate for the TV-penalty by

Psur(x, x̂) =
N∑

i=1

ε2 +
∑

j∈Bi{(xi − xj)(x̂i − x̂j) + (x̂j − xj)2 + (x̂i − xi)2}
2|∇ix̂|ε

, (4.56)
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which has the form

Psur(x, x̂) =
N∑

i=1

pi(x̂)(xi − zi(x̂))2 + terms independent of x

for suitable vectors p, z ∈ RN depending only on x̂.
Their surrogate iteration is started at some initial estimate x(0) ∈ RN and obtains the

(k + 1)-th estimate as
x(k+1) = argmin

x∈RN
Esur(x, x

(k))

with
Esur(x, x̂) = ‖ 1

σ
◦ (y − Ax)‖2

2 + βPsur(x, x̂). (4.57)

To solve this quadratic minimization problem they use the regularized fixed-block al-
gorithm [42] as inner iteration.
Showing first that the x(k) are bounded, ‖x(k)‖2 ≤ C, for some constant C, they can

deduce that βpi(x(k)) ≥ ξ for all i, k. Assume in the following that σj = 1p for all j.
The general case follows by rescaling A and the data. Then the Hessian of Esur satisfies

1

2
HessEsur(·,x(k)) = A>A+ β diag

(
(pi(x))Ni=1

)
� ξI,

which gives assumtion (iv) of Theorem 4.19. In their case, assumption (i) follows imme-
diately from the formula for the update mapping as minimum of the quadratic surrogate
and (ii) is deduced similar to (ii’) by showing that every fixed point is a stationary
point of E , [39, Lemma 3], and appealing to uniqueness. To prove compactness of the
iterates [39, Lemma 1], they require that the constant image is not in the null space of
A and that pairs of pixels are linked by a sequence of neighbourhoods. Then, for β > 0,
ε > 0, convergence follows as in Theorem 4.19, see [39, Theorem 1].
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Moreau-Yosida Envelopes in
Hadamard Spaces
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In this chapter, we introduce basic notation from convex analysis in Banach and
Hadamard spaces, including weak convergence, Γ-convergence and Mosco convergence.
In the last section we recall two growth bounds needed in the sequel.

5.1. Banach Spaces

For normed spaces X, Y , let us denote by L(X;Y ) the continuous linear functions from
X into Y and write 〈· , ·〉 : X ×X∗ → R for the dual pairing. For a real normed space
X, we call X∗ := L(X,R) its dual space. Setting

〈x∗ , JXx〉X∗ := 〈x , x∗〉X for x ∈ X, x∗ ∈ X∗

defines an isometric mapping JX ∈ L(X;X∗∗), where X∗∗ := (X∗)∗ = L(X∗;R) is the
second dual of X. A Banach space X is called reflexive if and only if the above
isometry JX is surjective. For a good introduction and further properties see [2].
A Banach space (resp. its norm) is called uniformly convex if for every ε > 0 there is

a δ > 0 such that, for all points x, y in the unit ball, ‖x−y‖ ≥ ε implies ‖1
2
(x+y)‖ ≤ 1−δ.

The Milman–Pettis theorem says that a uniformly convex space is reflexive. Particular
examples are the Lp-spaces for 1 < p < +∞.
The domain dom f of a function f : X → R ∪ {+∞} is given by dom f := {x ∈

X : f(x) < +∞} and f is proper if dom f 6= ∅. A function f : X → R ∪ {+∞} is
called lower semicontinuous (lsc) if the level sets {x ∈ X : f(x) ≤ α} are closed for
all α ∈ R. A function f : X → R ∪ {+∞} is convex if for all x, y ∈ dom f and all
t ∈ [0, 1] the relation

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds. For a proper convex lsc function f : X → R ∪ {+∞}, the proximal mapping
Proxλf : X → X is defined by

Proxλf (x) = argmin
y∈X

{
f(y) + 1

2λ
d(x, y)2

}
, (5.1)
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where d(x, y) := ‖x − y‖. For brevity, instead of Proxλf we will also write Jλf or just
Jλ if f is fixed. Indeed, the minimizer of the right-hand side exists and is unique. For
λ > 0, the Moreau-Yosida envelope of f is given by

fλ(x) := inf
y∈X

{
f(y) + 1

2λ
d(x, y)2

}
. (5.2)

Let X be a Banach space. A sequence {xn}n ⊆ X converges weakly to x ∈ X,
written xn

w→ x, if and only if

〈xn , u〉 → 〈x , u〉 for all u ∈ X∗.

We call a function weakly lower semicontinuous (weakly lsc), if it is lower semi-
continuous w.r.t. the weak convergence of sequences. Hence a weakly lsc function is
automatically lower semicontinuous. It is difficult in general to prove weak lower semi-
continuity. However, if f : X → R is a convex function, then f is weakly lsc if and
only if f is strongly lsc. For a proof of this result on finite-valued functions see [9,
Theorem 2.1.2].
A Banach space has the Kadets-Klee property, also called Radon-Riesz prop-

erty, if for every sequence {xn}n it holds that

xn
w→ x and ‖xn‖ → ‖x‖ ⇔ xn → x. (5.3)

In particular, Hilbert spaces have the Kadets-Klee property.
Let X be a reflexive Banach space and f : X → R ∪ {+∞} a proper, convex, lsc

function. The subdifferential ∂f of f is the possibly multivalued operator from X into
X∗ whose graph is equal to

∂f := {(x, ξ) ∈ X ×X∗ : f(u) ≥ f(x) + 〈ξ , u− x〉, for all u ∈ X} (5.4)
= {(x, ξ) ∈ X ×X∗ : f(x) + f ∗(x) = 〈ξ, x〉} ,

see e.g. (3.46) in [8]. Note that we use the same symbol for the operator and its graph.
In order to prove a subdifferential sum rule in infinite-dimensional manifolds, we will
need the follwing result from [16, Corollary 16.38].

Theorem 5.1 Let H be a real Hilbert space, let f1, f2 : H→ R∪{+∞} be proper convex
lsc functions such that one of the following holds:

(i) dom f1 ∩ int dom f2 6= ∅.

(ii) dom f2 = H.

Then ∂(f1 + f2) = ∂f1 + ∂f2.
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5.2. Γ-Convergence and Mosco Convergence

In this section we introduce Γ-convergence in a metric space (X , d), and Mosco con-
vergence in a Banach space (X, ‖ · ‖). Although we need only the definition of Mosco
convergence, in service of the unacquainted reader, we give a motivation via the Young-
Fenchel transform.

Γ-convergence (E. De Giorgi, 1975) has been called the “commonly-recognized notion
of convergence for variational problems” by the author of the introductory textbook [26].
For a family of mathematical problems, depending on a parameter, one can often foresee
a limiting behaviour, which may be captured by replacing the family with a new, often
simpler problem, in which the parameter has disappeared. Examples range from mater-
ials with microstructure and homogenization, over discretization to convex relaxations
of non-convex problems.
To capture the behaviour it is usually sufficient to consider a sequence of parameter

values and we index over n ∈ N in the following. Rephrased in variational terms, for a
family of minimization problems depending on a parameter,

min
{
fn(x) : x ∈ Xn

}
,

the asymptotic behaviour of the solutions is described by defining a limit problem (no
longer depending on n),

min
{
f(x) : x ∈ X

}
.

Γ-convergence implies that minimizers of the limit function f are related to approximate
minimizers of the functions fn. Before we state this fundamental result, we need two
definitions.

Definition 5.2 A sequence {fn}n : X → R ∪ {+∞} is said to Γ-converge to f : X →
R ∪ {+∞}, as n→∞, abbreviated fn

Γ−→ f , if and only if, for each x ∈ X , we have

(i) f(x) ≤ lim infn→∞ fn(xn), whenever xn → x, and

(ii) there is a sequence {yn} ⊆ X such that yn → x and fn(yn)→ f(x).

Weierstrass’ theorem asserts that a lower semicontinuous function attains its minimum
if it is coercive. We define equi-coercivity [26, Definition 1.19]:

Definition 5.3 A function f : X → R ∪ {+∞} is coercive if for all t ∈ R the set
{f ≤ t} is precompact. A function f : X → R ∪ {+∞} is mildly coercive if there is
a non-empty compact set K ⊆ X such that infX f = infK f . A sequence {fn}n is equi-
mildly coercive if there is a non-empty compact set K ⊆ X such that infX fn = infK fn,
for all n.

We quote further [26, Remark 1.20]: If f is coercive then it is mildly coercive. An
example of a non-coercive, mildly coercive function is given by any periodic function
f : R→ R.
We have the following fundamental result.

87



5. Prerequisites

Theorem 5.4 Let {fn}n : X → R∪{+∞}, be an equi-mildly coercive sequence of func-
tions Γ-converging to a proper function f : X → R∪{+∞}. Let us call a sequence {xn}n
minimizing for {fn}n, if limn

(
fn(xn)− infX fn

)
= 0. Then, the following statements

hold:

(i) lim
n→∞

inf
X
fn = min

X
f .

(ii) Every cluster point of a minimizing sequence for {fn}n is a minimizer of f .

(iii) Every minimizer of f is cluster point of a minimizing sequence.

A proof in metric spaces can be found in [26, Theorem 1.21].

Remark 5.5 Theorem 5.4 also holds in general topological spaces. We will need part (ii)
in the general setting, proven e.g. in [8, Theorem 1.10]. The definition of τ -epi conver-
gence in the latter [8, Definition 1.9], is equivalent to Γ-convergence by [26, Proposi-
tion 1.18].

A sequence {fn}n of functions defined on a Banach space, Γ(seq.-w)-converges to f , if
Definition 5.2 holds with convergence replaced by weak convergence, i.e. writing xn

w→ x
in part (i) and yn

w→ x in part (ii) therein.
The Γ-limit of a sequence of convex functions is convex. We will further need the

following elementary lemma, which is a special case of [8, Corollary 1.18]:

Lemma 5.6 Let {an,k}k,n∈N be a double indexed family of numbers in R ∪ {+∞} with
limn→∞ limk→∞ an,k = A. Then there is an nondecreasing mapping n : N→ N with

lim
k→∞

an(k),k = A.

Proof. There exists an increasing sequence {kn}n ⊂ N such that for all n and all k ≥ kn
one has |an,k− limp→∞ an,p| < 1

n
. Let further k0 := 1 and define a nondecreasing mapping

n : N→ N by

n(l) :=

{
1 if 1 ≤ l < k1,
j if kj ≤ l < kj+1 for j = 1, 2, . . . .

Then l ≥ kj = kn(l) for l ∈ [kj, kj+1) and thus for all l ≥ k1 we have
∣∣an(l),l − lim

k→∞
an(l),k

∣∣ ≤ 1
n(l)

.

From n(l)→∞ as l→∞ it follows that
∣∣ lim
k→∞

an(l),k − A
∣∣→ 0,

as l→∞. Together we obtain for l→∞ that
∣∣an(l),l − A

∣∣ ≤
∣∣an(l),l − lim

k→∞
an(l),k

∣∣+
∣∣ lim
k→∞

an(l),k − A
∣∣→ 0.
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Clearly the proof can be adapted if the limits are replaced by lim inf, and for related
statements see also [8, Lemma 1.15–1.17].

Remark 5.7 Note that a topological formulation of Γ-convergence agrees with the se-
quential definition in Definition 5.2 whenever every point has a countable neighbourhood
basis, that is, whenever for every point x ∈ X there is a sequence N1, N2, . . . of open
neighbourhoods of x such that for every neighbourhood N of x there is an integer j with
Nj ⊆ N . Such a space is called first countable. In particular, metric spaces are first
countable.
We would like to add a note of caution: For example the weak topology is not metrizable

and a topological definition of Γ-convergence for the weak topology is indeed different from
the sequential definition adopted here, see the sketch of an example in [11, p. 270].

A stronger notion of convergence in infinite-dimensional Banach spaces than the no-
tion of Γ-convergence has been introduced by U. Mosco [83]. We briefly motivate the
definition: Denote by Γ0(X) the family of all proper convex lsc functions on a reflexive
Banach space X. The Young-Fenchel transform f ∗ of f ∈ Γ0(X) is defined on X∗ by

f ∗(x∗) = sup
x∈X

(〈x∗, x〉 − f(x)) , x∗ ∈ X∗,

it satisfies f ∗ ∈ Γ0(X∗) and is involutory, i.e. f ∗∗ = f provided we identify X∗∗ with X.
Let {fn}n be a sequence of proper convex lsc functions on a separable reflexive Banach
space X, which satisfies the following equi-coerciveness assumption: For every sequence
{xn}n ⊂ X, n ∈ N we have

sup
n∈N

fn(xn) < +∞ −→ sup
n∈N
‖xn‖ < +∞.

Then the following statements are equivalent [8, Theorem 3.11]:

(i) fn
Γ(seq.-w)−→ f , with respect to weak convergence of sequences on X.

(ii) f ∗n
Γ−→ f ∗, with respect to strong convergence on X∗.

The norm topology and weak topology are exchanged under conjugation. The follow-
ing definition by U. Mosco, [83], combines both:

Definition 5.8 A sequence {fn}n : X → R ∪ {+∞} converges to f : X → R ∪ {+∞}
in the sense of Mosco, as n → ∞, abbreviated fn

M−→ f , if and only if, for each
x ∈ X, we have

(i) f(x) ≤ lim infn→∞ fn(xn), whenever xn
w→ x, and

(ii) there is a sequence {yn} ⊆ X such that yn → x and fn(yn)→ f(x).

Now we can state [8, Theorem 3.18], on the space Γ0(X) of proper convex lsc functions
defined on a reflexive Banach space X.
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Theorem 5.9 Let {fn}n ⊆ Γ0(X) and f ∈ Γ0(X). One then has the equivalence of the
following statements.

(i) fn M−→ f in Γ0(X)

(ii) (fn)∗
M−→ f ∗ in Γ0(X∗).

In other words, the Fenchel transformation is bicontinuous if we equip Γ0(X) and Γ0(X∗)
with the topology of Mosco convergence.

5.3. Hadamard Spaces

In this section we collect prerequisites in Hadamard spaces. We start with basic defin-
itions, then introduce weak convergence and related properties, and finally recall two
results on the growth of convex functions.

5.3.1. Preliminaries

We start with the basic notation in Hadamard spaces. A complete metric space (H, d)
is called a Hadamard space if every two points x, y ∈ H are connected by a geodesic
and the following condition holds true

d(x, v)2 + d(y, w)2 ≤ d(x,w)2 + d(y, v)2 + d(x, y)2 + d(v, w)2, (5.5)

for all x, y, v, w ∈ H. Inequality (5.5) implies that Hadamard spaces have nonpositive
curvature. Recall that a curve γ : [0, 1]→ H is called a geodesic if for all t1, t2 ∈ [0, 1]
the relation

d
(
γ(t1), γ(t2)

)
= |t1 − t2| d

(
γ(0), γ(1)

)

holds true. In Hadamard spaces, geodesics are unique. For x, y ∈ H, we denote by γ_
x,y

the geodesic starting at x and reaching y at time t = 1.
A set C ⊆ H is convex, if for all x, y ∈ H the geodesic γ_

x,y
lies in C. The intersection

of an arbitrary family of convex closed sets is itself a convex closed set. For a closed
convex subset C ⊂ H and x ∈ H, the metric projection of x to C is the point

PC(x) := argmin
c∈C

d(x, c).

Usually we write PC x instead of PC(x). The metric projection exists and is unique,
see [11, Theorem 2.1.12].
The definition of proper and lsc functions carries over from the Banach space setting.

A function f : H → R ∪ {+∞} is called convex if for all x, y ∈ H the function f ◦ γ_
x,y

is convex, i.e., we have

f
(
γ_
x,y

(t)
)
≤ tf

(
γ_
x,y

(0)
)

+ (1− t)f
(
γ_
x,y

(1)
)
, for all t ∈ [0, 1] (5.6)
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and concave if we have the opposite sign in (5.6). The function f is strictly convex
if the strict inequality holds for all 0 < t < 1, and strongly convex with parameter
κ > 0 if for all x, y ∈ H and all t ∈ [0, 1] we have

f
(
γ_
x,y

(t)
)
≤ tf

(
γ_
x,y

(0)
)

+ (1− t)f
(
γ_
x,y

(1)
)
− κt(1− t) d

(
γ_
x,y

(0), γ_
x,y

(1)
)
.

The squared distance d2(·, y) : H → R≥0 in a Hadamard space is strongly convex with
κ = 1. Every proper strongly convex lsc functions f : H → R ∪ {+∞} admits a unique
minimizer, see, e.g., [11, Proposition 2.2.17].
For a proper convex lsc function f : H → R ∪ {+∞} and λ > 0, the definition of

the Moreau-Yosida envelope fλ : H → (−∞,+∞) and the proximal mapping,
Proxλf : H → H carries over from Banach spaces, with the inner product distance
replaced by the Hadamard distance. By the strong convexity of d(·, x)2, the function f+
1

2λ
d(·, x)2 is also strongly convex so that again a unique minimizer exists. The proximal

mapping Proxλf of a proper convex function f is continuous, see [11, Theorem 2.2.22].
The Moreau-Yosida envelope of a proper convex lsc function possesses the semigroup
property

(fλ)µ(x) = fλ+µ(x), λ, µ > 0.

Moreover we have for all x ∈ H that

lim
λ→0

fλ(x) = f(x), (5.7)

see [8, Theorem 2.46]. We will also need the following auxiliary lemma.

Lemma 5.10 Let (H, d) be a Hadamard space and let f : H → R ∪ {+∞} be a convex
lsc function. Then, abbreviating Jλf := Proxλf , for all x, y ∈ H and λ > 0, we have

f (Jλfx) + 1
2λ
d (x, Jλfx)2 + 1

2λ
d (Jλfx, y)2 ≤ f(y) + 1

2λ
d(x, y)2. (5.8)

A proof can be found in [11, Lemma 2.2.23].

5.3.2. Weak Convergence

To discuss the relation between the convergence of sequences {fn}n and those of their
Moreau-Yosida envelopes {fn,λ}n we will need the convergence notion in the sense of
Mosco in Hadamard spaces see e.g. in [11, p. 103]. To this end let us introduce weak
convergence in Hadamard spaces. For a bounded sequence {xn}n of points xn ∈ H, we
define the function ω : H → [0,+∞) by

ω(x; {xn}n) := lim sup
n→∞

d(x, xn)2. (5.9)

This function is strongly convex and therefore has a unique minimzer, which is called
the asymptotic center of {xn}n, see [11, p. 58]. A sequence {xn}n weakly converges
to a point x ∈ H if it is bounded and x is the asymptotic center of each subsequence
of {xn}n. We write xn

w→ x. Note that xn → x implies xn
w→ x. Now Definition 5.8 of

Mosco convergence carries over to Hadamard spaces.
For the weak limit we collect the following properties proved in [11, Propositions 3.1.2,

3.1.6, 3.1.3, Lemma 3.2.1].
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Theorem 5.11 Let H be a Hadamard space and {xn}n a sequence of points xn ∈ H.

(i) If {xn}n is bounded, then it has a weakly convergent subsequence.

(ii) Let x ∈ H. We have xn → x if and only if both xn
w→ x and, for some y ∈ H,

d(xn, y)→ d(x, y) (Kadets-Klee property).

(iii) Let {xn}n be bounded. Then xn
w→ x if and only if Pγ xn → x as n→∞ for every

geodesic γ : [0, 1]→ H with x ∈ γ.

(iv) If {xn}n is contained in a closed convex set C ⊆ H and converges weakly to a point
x ∈ H, then x ∈ C.

The properties (i) and (iv) together imply that closed bounded convex sets in a Hadam-
ard space are compact with respect to weak convergence of sequences.
A function f : H → R ∪ {+∞} is weakly lsc if it is lsc with respect to weak conver-

gence, i.e. for all x ∈ dom f and every sequence xn
w→ x we have lim infn→∞ f(xn) ≥ f(x).

As before in Banach spaces, we give a convenient sufficient condition [11, Lemma 3.2.3]:

Lemma 5.12 If f : H → R ∪ {+∞} is a convex lsc function then f is weakly lsc.

5.3.3. Growth Bounds for Convex Functions

To conclude this chapter we introduce two growth bounds following [11]: Lemma 5.15
holds for any convex function in a Hadamard space, and Lemma 5.16 holds uniformly
along a Mosco convergent sequence of convex functions.
While closed and bounded sets are not compact in general Hadamard spaces, the

following result known for compact sets in Euclidean space holds under the additional
assumption of convexity [11, Prop. 2.1.16]:

Lemma 5.13 Let H be a Hadamard space. If {Ci}i∈I is a nested non-increasing family
of closed bounded convex sets in H, where I is an arbitrary directed set, then ∩i∈ICi 6= ∅.

The proof in [11, Prop. 2.1.16] fixes one point and uses negative curvature to deduce
that the sequence of its projections to the sets Ci is Cauchy. Alternatively, the result
follows naturally from the remark on compactness after Theorem 5.11. Next, we quote
two lemmas from [11, Lemma. 2.2.12, Lemma 2.2.13]:

Lemma 5.14 Let H be a Hadamard space and f : H → R ∪ {+∞} be a convex lsc
function. Then f is bounded from below on bounded sets.

Proof. Let C ⊆ H be bounded. Enlarging C if necessary, we may assume that C is closed
and convex. If infC f = −∞, then the sets Sk := {x ∈ C : f(x) ≤ −k} for k ∈ N are
all nonempty. Since each Sk is closed, convex and bounded, Lemma 5.13 yields a point
z ∈ ∩k∈NSk. By lower semicontinuity, f(z) = −∞, which is a contradiction.
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Lemma 5.15 Let H be a Hadamard space and let f : H → R ∪ {+∞}, be a convex lsc
function. For each x0 ∈ H there exist constants α, β ∈ R such that

f(y) ≥ −α d(y, x0)− β,

for all y ∈ H.

We omit the proof of Lemma 5.15 in [11, Lemma. 2.2.13], because it is a simpler
version of the proof of Lemma 5.16, see Remark 5.17.
Mosco convergence of a sequence of convex functions to a proper function implies that

the growth bound from Lemma 5.15 holds with the same constants for all functions in
the sequence.

Lemma 5.16 Let H be a Hadamard space and let fn : H → R ∪ {+∞}, n ∈ N be
proper, convex, lsc functions. with fn

M−→ f , as n → ∞, for some proper function
f : H → R ∪ {+∞}. Then, for each x0 ∈ H, there exist constants α, β ∈ R such that

fn(y) ≥ −α d(y, x0)− β.

for all y ∈ H and all n ∈ N.

The following argument is part of the proof of [11, Theorem 5.2.4] and given here,
with small modifications, for the convenience of the reader.

Proof. Suppose the claim does not hold, that is, for each k ∈ N there exists nk ∈ N and
xk ∈ H such that

fnk(xk) < −k[d(xk, x0) + 1]. (5.10)

Without loss of generality we may assume nk → ∞ as k → ∞, because otherwise, a
subsequence of the indices is constant, nkl = j, for some index j, and (5.10) implies
lim inf l→∞ f

j(xkl) ≤ −∞, contradicting Lemma 5.15.
If {xk} were bounded, then there would be some x̂ ∈ H and a subsequence {xk}, still

denoted {xk} such that xk
w→ x̂. By the Mosco convergence of the sequence {fn} this

would imply

f(x̂) ≤ lim inf
k→∞

fnk(xk) ≤ − lim sup
k→∞

k[d(xk, x0) + 1] ≤ −∞, (5.11)

which is impossible.
Hence, we may assume that {xk} is unbounded. Choose y0 ∈ dom f and find yk → y0

such that fnk(yk)→ f(y0). Define

zk := (1− tk)yk + tkxk, with tk :=
1√

k d(xk, yk)
;

recall that this means zk := γ(tk), where γ : [0, 1] → H is the geodesic with γ(0) = yk,
γ(1) = xk.
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Then zk → y0. By convexity

fnk(zk) ≤ (1− tk)fnk(yk) + tkfnk(xk)

≤ (1− tk)fnk(yk)− tkk[d(xk, x0) + 1]

≤ (1− tk)fnk(yk)−
√
k
d(xk, x0) + 1

d(xk, yk)
.

Hence, using that fnk(yk)→ f(y0) ∈ R, we get

f(y0) ≤ lim inf
k→∞

fnk(zk) ≤ −∞,

which is not possible, either.

Remark 5.17 The proof of Lemma 5.15 is simpler, see [11, p. 39]. The final contradic-
tion follows directly from lower semi-continuity of f , where Mosco convergence is used
in Lemma 5.16. Before, instead of inequality (5.11), we argue as follows: If the se-
quence {xn} were bounded, then the analogue to (5.10), f(xk) < −k[d(xk, x0) + 1] would
contradict Lemma 5.14.
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Proximal mappings and Moreau-Yosida envelopes of convex functions play a central
role in convex analysis. In particular, they appeared in various minimization algorithms
which have recently found application in image processing and machine learning. For
overviews, see for instance [16, 28, 87].
In this chapter we study Moreau-Yosida envelopes and some implications of negative

curvature. In Section 6.1 we begin with an introduction to trigonometry in constant
negative curvature, and thereafter introduce nonzero curvature bounds via comparison
geometry.
In Section 6.2 we consider the implications of negative curvature on differentiability

properties of Moreau-Yosida envelopes and prove several properties of independent in-
terest: Under the assumption of a lower bound on the curvature we show that weak
convergence in Hadamard manifolds implies weak convergence in the tangent space. Fi-
nally we prove a formula for the gradient of Moreau-Yosida envelopes in terms of the
proximal mapping on Hadamard manifolds.
In Section 6.3 we first use these properties to prove the equivalence between pointwise

convergence of the Moreau-Yosida envelopes and Mosco convergence in Hadamard man-
ifolds. Then we prove the same result in the more general setting of Hadamard spaces.
This work in Hadamard spaces from Section 6.3.3 has been continued in [15].
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6.1. Introduction to Hadamard Manifolds

In this section we consider Hadamard spaces (H, d) which are at the same time connected
Riemannian manifolds: we deal with Hadamard manifolds, for which we use the same
notation (H, d).
We start with an introduction and basic properties in Section 6.1.1 and Section 6.1.2.

In Section 6.1.3 we present different hyperbolic model spaces and trigonometry. In
Section 6.1.4 we prove that Hadamard manifolds with bounded sectional curvatures
are geodesic spaces with the same curvature bounds. Our exposition builds upon the
equivalence of two curvature definitions, in Theorem 6.10, and the Cartan-Alexandrov-
Topogonov Comparison Theorem. We use Corollary 6.12 later in Section 6.2.3.

6.1.1. Relevance of Hadamard Manifolds

We restrict to Hadamard manifolds for several reasons. On the one hand, in the study of
convex functions, the assumption of nonpositive curvature is natural. Indeed, on com-
plete Riemannian manifolds with finite volume, there is no nontrivial continuous convex
function [108]. The authors of [36] generalize the result to strictly monotone vector
fields. While for extended valued functions nontrivial examples exist, other problems
occur without the assumption of nonpositive curvature:
Consider e.g. the two-dimensional sphere S2 ⊂ R3 with its intrinsic metric. The ball

B1((1, 0, 0)>) =: C, contained in the upper hemisphere, is a closed convex set and the
distance of the south pole (−1, 0, 0)> to C is minimized at every point of the boundary
of C. Moreover, the projection PC to C is discontinuous at the south pole and the
squared distance 1

2
dC(·)2 from C is neither convex nor differentiable in a neighbourhood

of the south pole. Note that PC and 1
2
dC(·)2 are, respectively, the proximal mapping

and Moreau-Yosida envelope of ιC .
Nonpositive curvature implies many nice properties, which include the uniqueness

of geodesics and of the proximal mapping to convex sets as well as differentiability of
the squared distance to a point. Recent extensions of classical algorithms from convex
analysis to Hadamard spaces include the proximal point algorithm [10, 44], the proximal
point algorithm with Bregman distances [86] and Douglas Rachford Splitting [17].
On the other hand Hadamard manifolds naturally arise in many interesting applica-

tions. Let us give two examples below.

DT-MRI By magnetic resonance tomography one can obtain a diffusion tensor image
(DT-MRI), in which each pixel is the 3 × 3 symmetric positive definite (spd) matrix
representing the diffusivity of the measured tissue at the corresponding location. The
manifold P(3) of 3× 3 spd matrices together with the affine invariant metric

gM(u, v) := tr
(
x−1ux−1v

)
, u, v ∈ TxP(3)

is a Riemannian manifold of non-constant curvature. The algorithm in [17] is suitable for
the restoration of images with values in symmetric Hadamard manifolds and convergence
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has been proved for manifolds with constant sectional curvature. Figure 6.1 shows the
denoising result1 for a planar section of the Camino dataset2 [33] obtained in [17].

Figure 6.1.: Original data from the Camino set (left) and denoising (right). We visualize
an spd matrix A ∈ P(3) by the isosurface ellipsoid {x ∈ R3 : x>Ax = 1},
whose major axis lengths are the eigenvalues of A. The colouring corres-
ponds to the anisotropy index from [79]. We see the successful denoising
especially in the more homogeneous regions.

Retina Images We consider the coupled denoising of multiple shots of the same object.
The m shots are given as m similar gray-value images {gki,j}(i,j)∈G, for k = 1, . . . ,m. Here
G denotes the domain grid of the image, e.g. G := {1, . . . , n1}×{1, . . . , n2} for an n1×n2

image. We assume that the gray values gki,j, k = 1, . . . ,m at the same pixel (i, j) are
realizations of a univariate Gaussian random variable with distribution N (µi,j, σi,j). We
estimate the mean and standard deviation by the maximum likelihood estimators

µ̂i,j =
1

m

m∑

k=1

gki,j, σ̂i,j =

√√√√ 1

m

m∑

k=1

(gki,j − µ̂i,j)2.

One is interested in the underlying image of means {µi,j}(i,j)∈G. Instead of attempting
to denoise {µ̂i,j}(i,j)∈G, the approach in [17] uses knowledge of the sample variances in
the denoising process. To this end, the image of pairs {(µ̂i,j, σ̂i,j)}(i,j)∈G is regarded as
image f : G → N with values in the Riemannian manifoldN of univariate nondegenerate
Gaussian probability distributions parametrized by the mean and standard deviation,
equipped with the Fisher metric

gF (u, v) :=
u1v1 + 2u2v2

σ2
, for u, v ∈ T(µ,σ)N . (6.1)

1Courtesy of J. Persch and R. Bergmann
2see http://cmic.cs.ucl.ac.uk/camino
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Let us briefly recall the origin of this expression: A distance measure for probability
distributions with density function f(x; θ) parametrized by θ = (θ1, . . . , θn) is given by
the Fischer information matrix [35, Chapter 11, p. 397],

F (θ) :=

(∫
f(x; θ)

∂ ln f(x; θ)

∂θi

∂ ln f(x; θ)

∂θj
dx

)n

i,j=1

.

In the case of univariate Gaussian densities this reduces to

F (µ, σ) =

(
1
σ2 0
0 2

σ2

)

and gF (u, v) = u>Fv yields (6.1). Note further that (N , gF ) is isometric to the rescaling
(H2, 2gH) of the hyperbolic plane, introduced in Section 6.1.3 below, via the isomorphism
π : N → H2 given by

π(µ, σ) =
(
µ√
2
, σ
)
, π−1(x1, x2) = (

√
2x1, x2),

see also [34].
In this setting the Parallel Douglas Rachford Algorithm [17] has been shown to con-

verge. The algorithm is applied in [17] to denoise retina data, kindly provided by J. An-
gulo [3]: A sequence of m = 20 images (gki,j)

384
i,j=1 of size 384 × 384 has been taken of

the same retina with a CCD (coupled charged-device) camera. Due to the short ex-
posure time, the noise level is high. The top row of Figure 6.2 shows the first and
last image of the sequence. From these images we obtain the image f : G → N with
(fi,j)

384
i,j=1 = ((µ̂i,j, σ̂i,j))

384
i,j=1 depicted in the middle row of Figure 6.2, which is still noisy

and also blurred due to the motion of the eye. The bottom row of Figure 6.2 shows the
denoising result obtained in [17].

6.1.2. Basic Properties and Definitions

Recall that in this section (H, d) denotes a Hadamard manifold. Let TxH be the tangent
space at x on H, which is assumed to be a Hilbert space for the rest of this section. By
〈·, ·〉x we denote the corresponding Riemannian metric. We will often skip the index x
when it is clear from the context which tangential space is meant. By expx : TxH → H
we denote the exponential map at x, i.e., expx ξ = γx,ξ(1) = y, where γx,ξ is the
geodesic starting at x in direction ξ, i.e., γx,ξ(0) = x and γ̇x,ξ(0) = ξ. Its inverse, the
logarithmic map logx : H → TxH is given by logx y = ξ, where γx,ξ(1) = y. Let
Txy ξ ∈ TyH denote the parallel transported (via Levi-Civita connection) tangent
vector ξ ∈ TxH along the unique geodesic from x to y. Note that parallel transport
preserves the Riemannian metric. A Riemannian manifold is geodesically complete
if the domain of every geodesic γ_

ab
: [0, 1]→ H can be extended to all of R.

By ∇f we denote the Riemannian gradient of a differentiable function f : H →
R ∪ {+∞}, i.e., 〈∇f(x), ξ〉 = Dfx[ξ] for all ξ ∈ TxH, where Dxf is the derivative of f
at x ∈ H. In particular we have for d(·, x)2 : H → R≥0 that

∇ d(·, x)2(y) = −2 logy x. (6.2)
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(a) First image g(1) (b) Last image g(20)

(c) Original mean (d) Original standard deviation

(e) Restored mean (f) Restored standard deviation

Figure 6.2.: Denoising of the retina data from [3] with the Douglas Rachford Algorithm
in [17]. The restored image keeps the main features, e.g. veins in the mean
and their movement in the variance in an area around them.
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The subdifferential of f : H → R ∪ {+∞} at x ∈ dom f is defined by

∂f(x) :=
{
ξ ∈ TxH : f(y) ≥ f(x) + 〈ξ, logx y〉 for all y ∈ dom f

}
. (6.3)

We agree that ∂f(x) = ∅ if x 6∈ dom f . If the Riemannian gradient ∇f(x) of f in x ∈ H
exists, then ∂f(x) =

{
∇f(x)

}
. Further we see immediately from the definition that

x ∈ H is a global minimizer of a proper f if and only if

0 ∈ ∂f(x). (6.4)

The following theorem has been proved in [73] for general finite-dimensional complete
connected Riemannian manifolds with an additional assumption on dom f∩dom g which
is always fulfilled for finite-dimensional Hadamard spaces.

Theorem 6.1 Let H be a finite-dimensional Hadamard manifold and f, g : H → R ∪
{+∞} proper convex functions. Let x ∈ dom f ∩ int(dom g). Then we have the subdif-
ferential sum rule

∂(f + g)(x) = ∂f(x) + ∂g(x).

Let f : H → R ∪ {+∞} be proper and convex. The directional derivative of f at
a point x ∈ dom f in the direction v ∈ TxH is defined by

f ′(x; v) := lim
t→0+

f(expx tv)− f(x)

t
.

We agree that f ′(x; v) = +∞, if x /∈ dom f .

6.1.3. Hyperbolic Model Spaces

The hyperbolic space Hd in dimension d is the connected Riemannian manifold of con-
stant sectional curvature −1. Several models are equivalent [71, Proposition 3.5]:

Proposition 6.2 The following Riemannian manifolds are mutually isometric.

(i) The hyperboloid model (Hd
M , gM) of dimension d is defined as the “upper sheet”

{xd+1 > 0} of the two sheeted hyperboloid in Rd+1,

Hd
M :=

{
x ∈ Rd+1 : 〈x, x〉M = −x2

d+1 +
d∑

i=1

x2
i = −1, xd+1 > 0

}
⊆ Rd+1,

together with the Minkowski inner product gM := 〈·, ·〉M . given by metric
〈x, y〉M := −xd+1 yd+1 +

∑d
i=1 xiyi.

(ii) The Poincaré ball (Hd
B, gB) is the unit ball Hd

B := Bd ⊆ Rd, together with the
metric

gB(u, v) :=
4〈u, v〉

(1− ‖x‖2)2 , u, v ∈ TxBd.
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(iii) The Poincaré half-space is the upper half-space Hd
P := {x ∈ Rd : xd > 0} with

the metric
gP (u, v) :=

〈u, v〉
x2
d

, u, v ∈ TxHd
P .

Most important to us will be the hyperbolic plane H := H2, in dimension 2, rep-
resented by any of the above models together with its intrinsic distance dH derived
from the Riemannian metric. The equivalence is shown via the following isometries [71,
Proposition 3.5]: The isometry π1 : Hd

M → Hd
B is defined by

π1(x) :=
1

1 + xd+1

x̃, π−1
1 (y) =

1

1− ‖y‖2

(
2y

1 + ‖y‖2

)
,

where x = (x1, . . . , xd, xd+1)> = (x̃>, xd+1)>. The isometry π2 : Hd
B → Hd

P is defined by

π2(x) := 1
‖x̃‖2+(xd−1)2

(
2x̃

1− ‖x‖2 − x2
d

)
, π−1

2 (x) = 1
‖ỹ‖2+(yd+1)2

(
2ỹ

‖ỹ‖2 + y2
d − 1

)
,

where x = (x1, . . . , xd−1, xd)
> = (x̃>, xd)

>. For more models and explicit formulas of
distance, exponential and logarithmic map and geodesics in the hyperboloid model see
also [17, Appendix B].

Hyperbolic Trigonometry

In a triangle 4ABC we denote the interior angles at the vertices A,B,C by α, β, γ
and the lengths of opposite sides by a, b, c. Analogously, in 4ABC we write a, b, c and
α, β, γ. Recall the basic cosine and sine rules, see e.g. [60, Section III 5.1, 5.2].

Theorem 6.3 Let 4ABC be a triangle in the hyperbolic plane. Then the following
relations are satisfied.

(i) Sine Law:
sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
,

(ii) Cosine Law I: cosh a = cosh b cosh c− sinh b sinh c cosα,

(iii) Cosine Law II: cosh a =
cos β cos γ + cosα

sin β sin γ
.

Lemma 6.4 Let 4ABC be a triangle in the hyperbolic plane with γ = π
2
. Then

cosα =
tanh b

tanh c
. (6.5)

Proof. From the Cosine Law I, Theorem 6.3(ii), applied for side c, we obtain cosh c =
cosh a cosh b. Substituting into the Cosine Law I, applied for side a, gives

cosα sinh b sinh c = cosh b cosh c− cosh c

cosh b
=

cosh c

cosh b

(
cosh2 b− 1

)
.

Using cosh2 b− 1 = sinh2 b and reordering we arrive at (6.5).
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The following lemma can be considered as the limiting case of the Cosine Law II for
α = 0:

Lemma 6.5 Let 4ABC be a triangle in which the vertices B and C are ordinary points
in the hyperbolic plane while A is a point at infinity. Then

cosh a sin β sin γ = cos β cos γ + 1.

In particular, if γ = π
2
then

cosh a sin β = 1, sinh a tan β = 1, and tanh a sec β = 1,

where sec β = 1/ cos β.

For a proof see e.g. [60, Section III 6.1].

6.1.4. Curvature Bounds in Geodesic Spaces

Curvature bounds in geodesic spaces are defined by comparison. Recall our definition of
the hyperbolic plane (H2, dH) in Section 6.1.3. For the sphere S2 := {x ∈ R3 : ‖x‖ = 1},
let dS denote the intrinsic distance obtained when equipping the tangent space with the
Riemannian metric given by the standard scalar product in R3, which e.g. implies that
antipodal points have distance π. For each κ ∈ R we define a model space:

(i) If κ = 0 then M0 := R2 with dκ(x, y) := ‖x− y‖.

(ii) If κ > 0 then Mκ := S2 with distance dκ(x, y) := 1√
κ
dS(x, y).

(iii) If κ < 0 then Mκ := H2 with dκ(x, y) := 1√
−κ dH(x, y).

As a rescaling of the metric is a conformal (angle-preserving) mapping, by the defini-
tion of Mκ the standard trigonometric identities from S2,R2 and H2 have corresponding
versions in Mκ. The Cosine Law I from Theorem 6.3 has the following generalization to
spaces of constant curvature.

Theorem 6.6 Let 4xyz be a triangle in Mκ with a = d(y, z), b = d(z, x), c = d(x, y)
and inner angle γ at the point z. One of the following is true.

(i) If κ < 0 then cosh(
√−κc) = cosh(

√−κ a) cosh(
√−κ b)

− sinh(
√−κ a) sinh(

√−κ b) cos γ.

(ii) If κ = 0 then c2 = a2 + b2 − 2ab cos γ.

(iii) If κ > 0 then cos(
√
κ c) = cos(

√
κ a) cos(

√
κ b) + sin(

√
κ a) sin(

√
κ b) cos γ.
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6.1. Introduction to Hadamard Manifolds

In Mκ, for κ < 0, we are going to need the following rescaled versions of Lemma 6.4
and Lemma 6.5. In a triangle 4ABC ⊂Mκ, κ < 0, with γ = π

2
we have

cos β =
tanh(

√−κ a)

tanh(
√−κ c) . (6.6)

Further, if A is a vertex at infinity and the opposite side has length a, the third angle
β =: Πκ(a) satisfies

cos Πκ(a) = tanh(
√
−κ a). (6.7)

Given points x, y, z in a complete geodesic space X , we say that three points x, y, z ∈
Mκ form a comparison triangle for 4xyz, if dκ(x, y) = d(x, y), dκ(y, z) = d(y, z) and
dκ(z, x) = d(z, x), see Figure 6.3.
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Figure 6.3.: A triangle 4ABC in a Hadamard manifold H (left), and its comparison
triangle 4ABC in Mκ (right); the comparison angle ]κ(A,C,B), for the
angle ]ACB in H is defined to be the angle ]ACB in Mκ.

Note thatMκ is bounded (i.e. has finite diameter) if κ > 0, and not bounded if κ ≤ 0.
Denote the diameter of Mκ by Rκ, i.e.,

Rκ =

{
π/
√
κ, κ > 0

+∞, κ ≤ 0.

Comparison triangles always exist for κ ≤ 0 and for κ > 0 if the triangle is not too large:

Lemma 6.7 Let a, b, c ∈ R≥0 with a ≤ b+c, b ≤ c+a, c ≤ a+b and κ(a+b+c)2 ≤ (2π)2,
i.e., a + b + c ≤ 2Rκ, which is a void condition for κ ≤ 0. Then there are x, y, z ∈ Mκ

with dκ(x, y) = a, dκ(y, z) = b and dκ(z, x) = c.

103



6. Moreau-Yosida Envelopes in Hadamard Spaces

Note that, for three points A,B,C ∈ R2, by the cosine law, the angle between the
sements [C,A] and [C,B] equals

]ACB = arccos
d(C,A)2 + d(C,B)2 − d(A,B)

2 d(C,A) d(C,B)
,

where d(A,B) = ‖A−B‖. Let (X, d) be a geodesic space. We define the angle between
two geodesics γ : [0, 1]→ X and η : [0, 1]→ X with γ0 = η0 =: C by

](γ, η) := lim sup
s,t→+0

arccos
d(C, γs)

2 + d(C, ηt)
2 − d(γs, ηt)

2

2 d(C, γs) d(C, ηt)
, (6.8)

i.e. ](γ, η) = lim sups,t→+0 ]γsCηt, where 4Cγsηt is a comparison triangle for 4Cγsηt
in R2.
In Hadamard spaces, the functions s 7→ ]γsCηt and t 7→ ]γsCηt are both monotone,

so that the lim sup in (6.8) is a limit and ](γ, η) = limt→+0 ]γtCηt. Angles satisfy a
triangle inequality [27, Theorem 3.6.34] and, if measured between two segments in a
Hadamard space, angles depend continuously on the endpoints [11, Proposition 1.2.8].

Remark 6.8 i) The authors of [27] call (6.8) an upper angle and reserve the term
angle for the case when the lim sup is a limit. This holds for shortest paths in
lengths spaces with a curvature bound [27, Remark 3.6.31].

ii) Note that, for X = R2 and general paths, [27, Proposition 3.3.27] states that the
lim sup in (6.8) is a limit if and only both paths are differentiable at 0.

Further, for any A,B,C ∈ X and κ ∈ R, the comparison angle in Mκ for the angle
]ACB is defined to be the Riemannian angle ]κACB at C in a comparison triangle
4ABC in Mκ, and is denoted by ]κ(A,C,B), see Figure 6.3 (right).
Recall our definition of Hadamard spaces, i.e. geodesic spaces of nonpositive curvature.

Other characterizations are possible. The following theorem summarizes [11, The-
orem 1.3.3] and the remarks after [11, Definition 1.2.1].

Theorem 6.9 Let X be a geodesic space. The following assertions are equivalent:

(i) For all x, y, u, v ∈ X we have

d(x, u)2 + d(y, v)2 ≤ d(x, y)2 + d(y, u)2 + d(u, v)2 + d(v, x)2.

(ii) The angle between the sides of every geodesic triangle in X is no greater than the
angle between the corresponding sides of its comparison triangle in R2.

(iii) For every triangle 4xyz in X and any point p on a geodesic from y to z, we have

d(x, p) ≤ ‖x− p‖,

where 4xyz is a comparison triangle in R2 and p is the point on the line from y
to z with d(p, x) = ‖p− x‖.
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6.1. Introduction to Hadamard Manifolds

(iv) The distance function is 1-convex, i.e. for every geodesic γ : [0, 1]→ X , every point
p ∈ X and all t ∈ [0, 1] we have

d(p, γt)
2 ≤ (1− t) d(p, γ0)2 + t d(p, γ1)2 − t(1− t) d(γ0, γ1)2.

The equivalence between (iii) and (iv) is an elementary calculation with the Euc-
lidean inner product in R2. For further equivalences and the proof we refer to [11,
Theorem 1.3.2, Theorem 1.3.3]. Let us state that one may replace the inequality in (i)
by

d(x, u)2 + d(y, v)2 ≤ d(x, y)2 + d(u, v)2 + 2 d(x, v) d(y, u).

and that in (iv) is equivalent to the same statement allowing just t = 1
2
.

The equivalence between (ii) and (iii) holds with any model space in place of R2. The
excellent introductory text [27, Theorem 4.3.5] gives a proof for κ = 0, and outlines its
extension to the following general statement in [27, Exercise 4.6.3].

Theorem 6.10 Let X be a geodesic space and κ ∈ R. The following are equivalent:

(i) Every point of X has a neighbourhood U such that for every triangle 4ABC con-
tained in U with a+ b+ c ≤ 2Rκ and any point D ∈ [A,C] the inequality

d(B,D) ≤ dκ(B,D)

holds, where 4ABC is a comparison triangle in Mκ and D ∈ [AC] is the point
such that d(A,D) = d(A,D).

(ii) Every point of X has a neighbourhood U such that for every triangle 4ABC con-
tained in U with a+ b+ c ≤ 2Rκ we have

]ACB ≤ ]κ(A,C,B).

Further, (i) and (ii) are also equivalent if we reverse both inequalities.

A geodesic space has curvature bounded above by κ if any of the conditions in
Theorem 6.10 holds, and curvature bounded below by κ if the reverse inequalities
hold. Geodesic spaces with curvature bounds are called Alexandrov spaces and those
with curvature bounded above by κ are also referred to as CAT(κ).
In the remainder of this section we show that Hadamard manifolds with bounded

sectional curvatures are geodesic spaces with the same curvature bounds.

Relation to Riemannian Curvature Riemannian manifolds are length spaces and
curvature bounds as introduced above for geodesic spaces are related to bounds on the
Gaussian curvature. We prepare the statement in the setting of Hadamard manifolds,
which are geodesic spaces, and for κ ≤ 0, implying that comparison triangles exist.
Let A,B,C be three points in a Hadamard manifold H and let Ã, B̃, C̃ be three points

in Mκ, κ ≤ 0 such that d(B̃, C̃) = d(B,C), d(Ã, C̃) = d(A,C) and the angle between
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6. Moreau-Yosida Envelopes in Hadamard Spaces

the shortest paths γ _
C,A

and γ _
C,B

at C is equal to that between the shortest paths γ _

C̃,Ã

and γ _

C̃,B̃
at C̃, see Figure 6.4. We call 4ÃB̃C̃ an angle comparison triangle and

quote a Cartan-Alexandrov-Topogonov Comparison Theorem from [27, Theorem 6.5.6]:

Theorem 6.11 Let 4ABC be a triangle in a Hadamard manifold H and let 4ÃB̃C̃ ⊂
Mκ be as above. Then

(i) d(A,B) ≥ d(Ã, B̃) provided that the Gaussian curvature in H satisfies κ ≥ K(P )
for all P ∈ H and

(ii) d(A,B) ≤ d(Ã, B̃) provided that the Gaussian curvature in H satisfies κ ≤ K(P )
for all P ∈ H.

Theorem 6.11 has been proved in [27, Theorem 6.5.6] in the more general setting with
H replaced by a neighbourhood U in a Riemannian manifold such that there is only one
shortest path between any two points in U . Note that by [27, Lemma 5.2.11] every point
in a typical (see there for details) Riemannian manifold possesses such a neighbourhood.
As immediate consequence we obtain an angle comparison property for Hadamard

manifolds (more generally Riemannian manifolds) with curvature bounds.

Corollary 6.12 Let 4ABC be a triangle in a Hadamard manifold H. Then the angle
γ at the point C satisfies

(i) γ ≤ ]κ(A,C,B) provided K(P ) ≤ κ for all P ∈ H and

(ii) γ ≥ ]κ(A,C,B) provided K(P ) ≥ κ for all P ∈ H.

Proof. Let4ÃB̃C̃ ⊂Mκ be an angle comparison triangle as above and let4ABC ⊂Mκ

be a comparison triangle for 4ABC. Then ã = a = a, b̃ = b = b and the triangles
4ABC and 4ÃB̃C̃ are nonisomorphic only if γ 6= γ̃. By the Cosine Law I the length
c(γ) of the third side in a triangle in Mκ having two sides of length a and b with angle
γ between them is given by

c(γ) = 1√
−κ cosh−1

(
cosh(

√
−κ a) cosh(

√
−κ b) − sinh(

√
−κ a) sinh(

√
−κ b) cos γ

)
.

Note that c(γ) is monotone increasing for γ ∈ [0, π]. Therefore, having c̃ ≤ c = c
from case (i) of Theorem 6.11 (respectively ≥ in case (ii)) immediately implies γ̃ ≤ γ
(respectively ≥). By definition ]κ(A,C,B) = γ, by construction γ̃ = γ and the proof is
complete.

Hence Hadamard manifolds with bounded sectional curvatures are geodesic spaces
with the same curvature bounds. More generally, Riemannian manifolds are length
spaces with the same curvature bounds and this follows by the same line of argument
from [27, Theorem 6.5.6].

106



6.2. Useful Properties and Moreau-Yosida Envelopes
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Ã
C̃

B̃

γ̃ = γ

Mκ

||

|||

|
|
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Figure 6.4.: Angle comparison triangle 4ÃB̃C̃ in Mκ for the triangle 4ABC from Fig-
ure 6.3, (left). If the Gaussian curvature at every point ofH is at most κ, the
Cartan-Alexandrov-Topogonov Comparison Theorem states that the oppos-
ite side ÃB̃ of an angle comparison triangle inMκ is shorter than the oppos-
ite side AB of a comparison triangle. The comparison angle γ = ]κ(A,C,B)
in Mκ must therefore be larger than γ̃ = γ, see Corollary 6.12, (right).

6.2. Useful Properties and Moreau-Yosida Envelopes

In this section we consider differential properties of Moreau-Yosida envelopes and along
the way obtain several results which are of interest in their own. The main result of this
section is the differentiability of Moreau-Yosida envelopes and an analytic expression
for the gradient in terms of the proximal mapping, see Theorem 6.22. We are going to
show the usefulness of this result by proving with its help the extension of a result by
H. Attouch in Chapter 6.3.

6.2.1. Subdifferential Sum Rule

In Section 6.2.5 we are going to obtain an analytical expression for ∇fλ. To this end
we have to apply a subdifferential sum rule which is to the best of our knowledge only
known for finite-dimensional manifolds, i.e. for manifolds with Euclidean tangent spaces,
see Theorem 6.1. In this section we are going to prove the generalization to infinite-
dimensional Hadamard manifolds.
Finite convex functions in Euclidean space are locally Lipschitz. Let us prove the

infinite-dimensional generalization of this simple fact.

Lemma 6.13 Let H be a geodesically complete Riemannian manifold. Let f : H →
R ∪ {+∞} be convex. Suppose that there are x0 ∈ H, R > 0 and m,M ∈ R with

m ≤ f(x) ≤M
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6. Moreau-Yosida Envelopes in Hadamard Spaces

for all x ∈ B2R(x0). Then f is Lipschitz continuous on BR(x0). More precisely,

|f(b)− f(a)| ≤ M −m
R

d(a, b) (6.9)

for all a, b ∈ BR(x0).

Proof. For given points a, b ∈ BR(x0) with b 6= a consider the geodesic γ_
ab

: [0, 1] → H.
By geodesic completeness the domain of γ_

ab
can be extended to all of R. Let c :=

γ_
ab

(
1 + R

d(a,b)

)
. By the constant speed property we have d(a, c) = d(a, b) + R and thus

c ∈ B2R(x0). Further γ_
ac

is just a reparameterization of γ_
ab

and

b = γ_
ab

(1) = γ_
ac

(
d(a, b)

d(a, c)

)
.

From convexity of f it follows that

f ◦ γ_
ac

(
d(a, b)

d(a, c)

)
≤
(

1− d(a, b)

d(a, c)

)
f ◦ γ_

ac
(0) +

d(a, b)

d(a, c)
f ◦ γ_

ac
(1).

Reordering and using the given bounds, this implies

f(b)− f(a) ≤ d(a, b)

d(a, c)

(
f(c)− f(a)

)
≤ d(a, b)

R
(M −m).

Exchanging the roles of a and b, we obtain (6.9).

Corollary 6.14 Let H be a Hadamard manifold modelled on a Hilbert space and x ∈
H. Let f : H → R ∪ {+∞} be a proper convex lsc function which is bounded in a
neighbourhood of x. Then 0 ∈ int

(
dom f ′(x; ·)

)
.

Proof. By Lemma 6.13, there exists ε > 0 such that the function f is Lipschitz on Bε(x),
with some constant L > 0. Note that convexity of f implies monotonicity of the map
t 7→ 1

t
(f(expx(tv))− f(x)) on [0, 1] so that the limit t → +0 exists in [−∞,+∞]. For

v ∈ Bε(0) ⊆ TxH and t ∈ (0, 1) it follows that

|f ′(x; v)| =
∣∣∣∣ lim
t→+0

f(expx(tv))− f(x)

t

∣∣∣∣ ≤ 1
t
L‖tv‖ = L‖v‖,

which shows that |f ′(x; ·)| is bounded by εL on Bε(0).

The following representation has been shown in [73, Prop. 3.8 (ii)] for finite-dimensional
Riemannian manifolds, with the proof remaining unchanged for manifolds modelled on
Hilbert space.

Lemma 6.15 Let f : H → R ∪ {+∞} be a proper convex function on a Riemannian
manifold, and let x ∈ dom f . Then we have the subdifferential representation

∂f(x) =
{
w ∈ TxH : 〈w, v〉 ≤ f ′(x; v) for all v ∈ TxH

}
. (6.10)
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6.2. Useful Properties and Moreau-Yosida Envelopes

With this we can extend Theorem 6.1 to the infinite-dimensional case.

Theorem 6.16 Let H be a Hadamard manifold modelled on a Hilbert space. Let
f1, f2 : H → R ∪ {+∞} be proper convex lsc functions, let x ∈ dom f1 ∩ dom f2 and
let f2 be bounded in a neighbourhood of x. Then

∂
(
f1 + f2

)
(x) = ∂f1(x) + ∂f2(x). (6.11)

Proof of Theorem 6.16. We extend the proof in [73, Prop. 4.3] to the infinite-dimension-
al case. First note that the subdifferential of a proper convex function f at x ∈ H can
be written

∂f(x) = ∂f ′(x; ·)(0). (6.12)

To see this, note that both sides are empty if x /∈ dom f . Let now x ∈ dom f . By
the definition of the subdifferential, w ∈ ∂f ′(x; ·)(0) if for each u ∈ T0(TxH) and each
geodesic γ from 0 to u,

f ′(x;u) ≥ f ′(x; 0) + 〈w, γ′(0)〉.
As the unique geodesic γ in T0(TxH) from 0 to u is given by γ(t) = tu, with γ′(0) = u,
this is equivalent to f ′(x;u) ≥ 〈w, u〉 for all u ∈ TxH, i.e., the subdifferential represent-
ation (6.10), and hence to w ∈ ∂f(x).
Returning to the proof, it follows from (6.12), for i = 1, 2, that

∂fi(x) = ∂f ′i(x; ·)(0) and ∂(f1 + f2)(x) = ∂
[
f ′1(x; ·) + f ′2(x; ·)

]
(0).

By Corollary 6.14, we have 0 ∈ int(dom f ′2(x; ·)) and hence, by the classical Moreau-
Rockafellar Theorem in linear spaces, Theorem 5.1, it follows that

∂
[
f ′1(x; ·) + f ′2(x; ·)

]
(0) = ∂f ′1(x; ·)(0) + ∂f ′2(x; ·)(0) = ∂f1(x) + ∂f2(x).

Together with the previous equation, this proves the subdifferential sum rule (6.11).

6.2.2. Equivalent Curvature Definitions

We give an equivalent curvature definition (K. T. Sturm, Lecture at the University of
Bonn, 2012). This section is included as reference and neither the statement nor the
equivalence will be used anywhere else in this thesis.
For a locally bounded Borel function f : X → R, we say that u : X → R ∪ {+∞}

satisfies
D2u ≥ f on X along geodesics

if and only if for every geodesic γ : [0, 1]→ X and all t ∈ (0, 1) we have

u(γt) ≤ (1− t)u(γ0) + tu(γ1)− |γ̇|2
∫ 1

0

gs,t f(γs) ds,

where g denotes the Green function on (0, 1),

gs,t =

{
(1− s)t, if 0 ≤ t ≤ s ≤ 1

s(1− t), if 1 ≥ t > s ≥ 0.
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6. Moreau-Yosida Envelopes in Hadamard Spaces

Note that
∫ 1

0
gs,t ds = 1

2
t(1 − t). This is a reasonable definition because it can be

shown that u satisfies D2u ≥ f along geodesics if and only if, for all geodesics γ with
u(γ0) < +∞, u(γ1) < +∞ the function t 7→ −u(γt) is lsc on [0, 1], continuous on (0, 1)
and satisfies ∂2

t u(γt) ≥ f(γt)|γ̇|2 in distributional sense on (0, 1).
With the notation just introduced we have the language to speak about curvature

bounds.

Theorem 6.17 For any κ ∈ R and any geodesic space (X , d) the following are equival-
ent:

(i) For all z ∈ X we have along geodesics





D2 cosh(
√
−κd(z,·))
κ

≥ − cosh(
√−κ d(z, ·)), if κ < 0,

D2 d2(z, ·)/2 ≤ 1, if κ = 0,

D2 cos(
√
κ d(z,·))
κ

≥ − cos(
√
κ d(z, ·)), if κ > 0,

in Xκ(z) :=
{
x ∈ X : κ d2(z, x) <

(
π
2

)2
}
.

(ii) For every geodesic triangle (α, β, γ) with perimeter L(α) + L(β) + L(γ) ≤ 2π√
κ
and

corresponding comparison triangle (α, β, γ) in Mκ and all s, t ∈ [0, 1] we have

d(αs, βt) ≥ dκ(αs, βt).

In (ii), a triple of geodesics (α, β, γ) is a geodesic triangle if α1 = β0, β1 = γ0 and
γ1 = α0. A geodesic triangle in Mκ is a comparison triangle if the geodesics have the
same lengths.

6.2.3. Weak Convergence in the Tangent Space

In finite-dimensional Hadamard manifolds we have that

xn → x ⇒ logx xn → 0.

In this section we prove that the same is true with respect to weak convergence in
infinite-dimensional Hadamard manifolds whose curvature is locally bounded below. We
are going to say that H fulfills property (A), if for every sequence {xn}n the following
implication (A) holds true:

(A) xn
w→ x ⇒ logx xn

w→ 0.

Theorem 6.18 Let H be a Hadamard manifold with sectional curvatures bounded below
by some constant κ < 0. Then H has property (A).
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Proof. Given A ∈ TxH \ {0} we need to show 〈logx xn, A〉 → 0. Define the geodesic
γ : R→ H by

γ(t) = expx(tA).

As weakly convergent sequences are by definition bounded, there exists R > 0 with
d(x, xn) ≤ R for all n. Further, we know by Theorem 5.11(iii) that

zn := Pγ xn → x (6.13)

for n → ∞. Let n1 < n2 < · · · < nk < . . . be an enumeration of the indices n with
zn = x. Then logx xnk ⊥ A for all k. We may therefore restrict attention to the remaining
indices, assuming from now that zn 6= x for all n. Then A/‖A‖ = ± logx zn/‖ logx zn‖
and the claim is equivalent to

0 = lim
n→∞
〈logx xn,

A
‖A‖〉

= lim
n→∞

‖ logx xn‖ cos]xnxzn,= lim
n→∞

cn cos βn (6.14)

where βn := ]xnxzn denotes the inner angle at the point x and we abbreviate from now
on cn := d(x, xn), an := d(x, zn).
Let 4xnx zn be a comparison triangle for 4xnxzn inMκ, i.e. d(x, xn) = d(x, xn) = cn,

d(xn, zn) = d(xn, zn) and d(x, zn) = d(x, zn) = an. By Corollary 6.12 the comparison
angle βn := ]xnx zn in the model space of more negative curvature is smaller, that is

0 ≤ βn ≤ βn ≤ π
2

and 0 ≤ ]xnznx ≤ π
2
. (6.15)

For each n, we argue differently depending on how βn compares to the angle of par-
allelism Π(an) in the model space Mκ.
Case 1: βn ≥ Π(an).

Then π
2
≥ βn ≥ βn ≥ Π(an) > 0. By (6.7) we know cos Π(an) = tanh(

√−κ an) and
obtain with an → 0 from (6.13) that

cn cos βn ≤ cn cos Π(an) = cn tanh(
√
−κ an) ≤ R tanh(

√
−κan)→ 0

as n→∞.
Case 2: βn < Π(an).

Then there is a point x′n on the geodesic ray from x through xn with ]x′nznx = π
2
, which

satisfies cn = d(x, xn) < d(x, x′n).
Preparing to estimate more carefully than in the previous case, consider the function

t 7→ t
tanh t

. Using that t ≤ sinh t on [0,+∞), its derivative is

t 7→ 1

tanh t
− t

sinh2 t
≥ 1

tanh t
− 1

sinh t
≥ 0.

Therefore the function t 7→ t
tanh t

is increasing on [0, R] and bounded above by R
tanhR

on
[0, R]. The cos-relation (6.6) in 4x′nxzn yields

cos βn =
tanh(

√−κ an)

tanh(
√−κ d(x, x′n))

≤ tanh(
√−κ an)

tanh(
√−κ cn)

.
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Using (6.15) we conclude

cn cos βn ≤ cn cos βn ≤
1√−κ

√−κ cn
tanh(

√−κ cn)
tanh(

√
−κ an)

≤ 1√−κ
R

tanhR
tanh(

√
−κ an)

and (6.14) follows.

6.2.4. Parameter Dependence of the Moreau-Yosida Envelope

The following lemma has been proved for reflexive Banach spaces with strictly convex
primal and dual norms fulfilling the Kadets-Klee property in [8, Lemma 3.27]. Here is
the generalization to Hadamard spaces.

Lemma 6.19 Let f : H → R∪{+∞} be a proper convex lsc function and x ∈ H. Then
the function λ 7→ λ fλ(x) is a concave, continuously differentiable function on (0,+∞)
with derivative

d
dλ
λfλ(x) = f(Jλx), Jλx := Proxλf (x). (6.16)

Proof. 1. Let us start by proving that the function

λ 7→ f(Jλx) (6.17)

is continuous on (0,+∞). For a different proof via the resolvent identity [11, Prop. 2.2.24],
see [11, Prop. 2.2.26].
Suppose that λ > 0 and that {λn}n is a sequence of real numbers with λn → λ for

n→∞. Define a sequence of functions {Gn}n and the function G by

Gn(u) := f(u) + 1
2λn

d(x, u)2, G(u) := f(u) + 1
2λ

d(x, u)2.

We make the claim that the sequence {Gn}n Γ-converges to G in the topology defined
by the weak convergence of sequences. Indeed, to show the lim inf-inequality, note that
every weakly convergent sequence, un

w→ u, is bounded, i.e. for some L > 0 we have
d(x, un) ≤ L, and hence

lim inf
n→∞

(
f(un) + 1

2λn
d(x, un)2

)
≥ lim inf

n→∞
G(un)− lim

n→∞

∣∣∣ 1
2λ
− 1

2λn

∣∣∣ L2 ≥ G(u),

the last inequality coming from weak lower semicontinuity of the convex lsc function G.
To prove the lim sup-inequality we take the constant sequence.
Having shown the claim, note further that the sequence {Gn}n is equi-mildly coercive.

To see this, we argue as follows: Let M > 0 be an upper bound for the sequence {λn}n.
By [11, Lemma. 2.2.13] there are constants α, β ∈ R such that f(y) ≥ −α d(y, x) − β
for all y ∈ H. Thus

Gn(u) ≥ 1
2λn

d(x, u)2 − α d(x, u)− β
≥ 1

2M
d(x, u)2 − α d(x, u)− β.
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Let us chose t0 > 0 such that, for all t ≥ t0,

1
2M
t2 − αt− β ≥ f(x) + 1.

Then d(x, u) ≥ t implies Gn(u) > f(x) = Gn(x) and hence, for all n,

argminGn ⊆ Bt(x). (6.18)

For every sequence contained in Bt(x), Theorem 5.11(i) guarantees the existence of a
weakly convergent subsequence. Further Bt(x) is closed and convex, so that by The-
orem 5.11(iv) every limit of such a subsequence belongs to Bt(x). In other words, Bt(x)
is compact with respect to the weak topology and we have shown by (6.18) that the
sequence {Gn}n is equi-mildly coercive in the weak topology.
As the sets of minimizers are given by argminG = {Jλx} and argminGn = {Jλnx},

respectively, it follows from Theorem 5.4 and Remark 5.5 that

Jλnx
w→ Jλx. (6.19)

The theorem further tells us that

inf
u∈H

Gn(u)→ inf
u∈H

G(u),

that is

f(Jλnx) + 1
2λn

d(x, Jλnx)2 −→ f(Jλx) + 1
2λ

d(x, Jλx)2, as n→∞. (6.20)

From (6.19) and the lower semicontinuity w.r.t. weak convergence in H of the convex
functions f and d(·, x)2, we get

f(Jλx) ≤ lim inf
n

f(Jλnx), (6.21)
1

2λ
d(x, Jλx)2 ≤ lim inf

n

1
2λn

d(x, Jλnx)2. (6.22)

Combining (6.21) and (6.22),

f(Jλx) + 1
2λ

d(x, Jλx) ≤ lim inf
n

f(Jλnx) + 1
2λ

d(x, Jλx)2

≤ lim sup
n

f(Jλnx) + 1
2λ

d(x, Jλx)2

≤ lim sup
n

f(Jλnx) + lim inf
n

1
2λn

d(x, Jλnx)2

≤ lim sup
n

(
f(Jλnx) + 1

2λn
d(x, Jλnx)2

)
.

By (6.20) both sides are equal, hence all inequalities are equalities and we have

f(Jλnx)→ f(Jλx),

which proves part 1.
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Then also
d(x, Jλnx)→ d(x, Jλx).

As a side-remark, let us note that, combined with (6.19), by Theorem 5.11(iii), we obtain
for all x ∈ H that the mapping λ 7→ Jλx is continuous from (0,+∞) into H.
2. Let us now conclude the proof. From the equality

λ fλ(x) = inf
u∈H

{
λf(u) + 1

2
d(x, u)2

}

it follows that λ 7→ λ fλ(x) is a concave function. Given λ1, λ2 > 0, by definition of fλ,

λ1 fλ1(x)− λ2fλ2(x) ≤
(
λ1f(Jλ2x) + 1

2
d(x, Jλ2x])2

)
−
(
λ2f(Jλ2x) + 1

2
d(x, Jλ2x])2

)

= (λ1 − λ2)f(Jλ2x).

Exchanging λ1 and λ2 we obtain

(λ1 − λ2)f(Jλ1x) ≤ λ1 f(λ1)(x)− λ2 f(λ2)(x) ≤ (λ1 − λ2)f(Jλ2x). (6.23)

Dividing by λ1− λ2 (first with λ1 > λ2, then with λ1 < λ2), we let λ2 tend to λ1. Using
the continuity proven in part 1, we thus obtain the derivative formula (6.16).

We will use the above lemme in combination with the following result which can be
found e.g. in [8, Lemma 3.28].

Lemma 6.20 Let {hn}n be a sequence of concave, differentiable functions hn : R → R
which converge pointwise to a concave, continuously differentiable function h. Then, for
all λ > 0, it holds that

h′n(λ)→ h′(λ), as n→∞.
Moreover, the convergence is uniform on every compact subset of (0,+∞).

6.2.5. Gradients of Moreau-Yosida Envelope

In this section we prove an expression for the gradient of Moreau-Yosida envelopes in
terms of the proximum mapping, for functions defined on a finite- or infinite-dimensional
Hadamard manifold H.
Conbining the subdifferential sum rule from Section 6.2.1, Theorem 6.16, with (6.2)

and (6.4), we immediately obtain:

Lemma 6.21 (Derivative at Proximum) Let f : H → R ∪ {+∞} be a proper convex lsc
function and px := Proxλf (x), then

1
λ

logpx(x) ∈ ∂f(px). (6.24)

Starting from Lemma 6.21, we prove the following expression.
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Theorem 6.22 Let f : H → R ∪ {+∞} be a proper convex lsc function defined on a
Hadamard manifold H. Then, for all λ > 0, the Moreau-Yosida envelope fλ is differen-
tiable with Riemannian gradient

∇fλ(x) = − 1
λ

logx(Jλx) , Jλx := Proxλf (x).

Proof. We have to prove for every x ∈ H and y → x that
∣∣fλ(y)− fλ(x)− 〈− 1

λ
logx(Jλx), logx y〉

∣∣ = o(d(x, y)) . (6.25)

Recall that we write f ∈ o(t) as t→ 0 if f(t)/t→ 0 for t→ 0.
We estimate fλ(y)− fλ(x)− 〈− 1

λ
logx(Jλx), logx y〉 from above and below.

1. Lemma 6.21 guarantees 1
λ

logJλy(y) ∈ ∂f(Jλy) and by the convexity of f we obtain

f(Jλx)− f(Jλy) ≥ 〈logJλy(Jλx), 1
λ

logJλy(y)〉. (6.26)

We know that − logy(Jλx) is in the subgradient of the convex function 1
2
d(·, Jλx)2 at y

so that
1
2
d(x, Jλx)2 − 1

2
d(y, Jλx)2 ≥ 〈logy x,− logy(Jλx)〉,

and similarly as − logJλy y is in the subgradient of 1
2
d(·, y)2 at Jλy we have

1
2
d(Jλx, y)2 − 1

2
d(Jλy, y)2 ≥ 〈logJλy(Jλx),− logJλy(y)〉.

Adding the last two estimates gives

1
2
d(x, Jλx)2 − 1

2
d(y, Jλy)2 ≥ −〈logy x, logy(Jλx)〉 − 〈logJλy(Jλx), logJλy(y)〉. (6.27)

Multiplying by 1
λ
and adding (6.26), we obtain after rearranging

fλ(y)− fλ(x) ≤ 1
λ
〈logy x, logy(Jλx)〉 (6.28)

= 1
λ
〈− logx y, Tyx

(
logy(Jλx)

)
〉.

Consequently we get

fλ(y)− fλ(x)− 〈− 1
λ

logx(Jλx), logx y〉 ≤ − 1
λ
〈Tyx

(
logy(Jλx)

)
− logx(Jλx), logx y〉.

(6.29)

As the parallel transport is an isometry, we see that

‖Tyx logy(Jλx)− logx(Jλx)‖ = ‖ − logJλx(y) + logJλx(x)‖ ≤ εx
(
d(x, y)

)

where εx : R+ → R+ with εx(t) → 0 as t → 0 is the modulus of continuity of the
continuous function logJλx at x. We conclude that the right-hand side in (6.29) can be
estimated as

fλ(y)− fλ(x)− 〈− 1
λ

logx(Jλx), logx y〉 ≤ 1
λ
d(x, y) εx

(
d(x, y)

)
(6.30)

∈ o
(
d(x, y)

)

as y → x.
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2. Exchanging x and y in (6.28) we obtain

− 1
λ
〈logx(Jλy), logx y〉 ≤ fλ(y)− fλ(x)

and hence

fλ(y)− fλ(x)− 〈− 1
λ

logx(Jλx), logx y〉 ≥ − 1
λ
〈logx(Jλy)− logx(Jλx), logx y〉 (6.31)

≥ − 1
λ
d(x, y)κx

(
d(x, y)

)

where κx : R+ → R+ with κx(t) → 0 as t → 0 is the modulus of continuity at x of
logx ◦ Jλ, where both logx and the proximal mapping Jλ are continuous. Thus the
right-hand side of (6.31) is in o

(
d(x, y)

)
. This completes the proof.

6.3. Convergence of Functions and their
Moreau-Yosida Envelopes

In this section we establish a relation between Moreau-Yosida envelopes and Mosco
convergence, using the differential properties of Moreau-Yosida envelopes proven in the
previous section. Specifically, a well known result of H. Attouch says that Mosco con-
vergence of a sequence of convex lower semicontinuous functions on a Hilbert space is
completely characterized by the pointwise convergence of their Moreau-Yosida envelopes
[7, Theorem 1.2]. H. Attouch later on extended this result into a certain class of Banach
spaces, see Theorem 6.24 below.
The following theorem was proved by H. Attouch, see [7, Theorem 1.2] and [8, The-

orem 3.26].

Theorem 6.23 Let H be a Hilbert space and let fn : H → R∪ {+∞}, n ∈ N, be proper
convex lower semicontinuous functions. Then the following statements are equivalent:

i) {fn}n converges to a function f : H → R∪{+∞} in the sense of Mosco, fn
M−→ f .

ii) The sequence of Moreau-Yosida envelopes {fn,λ}n of {fn}n converge pointwise to
the Moreau-Yosida envelope fλ of f for all λ > 0.

In this section we show the usefulness of the properties of Moreau-Yosida envelopes de-
rived in the previous section by generalizing with their help Theorem 6.23 to Hadamard
Manifolds. More precisely, while it has already been known that the Mosco convergence
of a sequence of convex lower semicontinuous functions on a Hadamard space implies
the pointwise convergence of the corresponding Moreau-Yosida envelopes, the converse
implication was an open question. We now fill this gap. In Section 6.3.2 we use the
differential properties of Moreau-Yosida envelopes to give a proof in Hadamard mani-
folds. Thereafter, in Section 6.3.3 we give an independent proof in the general setting
of Hadamard spaces.
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Related Work Note that both Γ- and Mosco convergences have already been used
in the framework of Hadamard spaces. In [61], J. Jost studied harmonic mappings
with metric space targets and as a tool he introduced Γ-convergence on Hadamard
spaces. He also defined the Mosco convergence by saying that a sequence of convex
lsc functions on a Hadamard space Mosco converges if their Moreau-Yosida envelopes
converge pointwise [61]. In [66], K. Kuwae and T. Shioya studied both Γ- and Mosco
convergence in Hadamard space in depth and obtained numerous generalizations. They
already gave the standard definition of the Mosco convergence used in this paper (relying
on the notion of weak convergence) and right after their Definition 5.7 in [66] they note
“Jost’s definition of Mosco convergence. . . seems unfitting in view of Mosco’s original
definition.” By our main result it follows that both definitions are equivalent.
In [66, Proposition 5.12], the authors prove that the Mosco convergence of nonnegative

convex lsc functions on a Hadamard space implies the pointwise convergence of their
Moreau-Yosida envelopes. This result was later proved in [13, Theorem 4.1] without
the nonnegativity assumption. The inverse implication was left open; see [11, Question
5.2.5]. We now answer this question in the positive. As a corollary of our main result
we obtain that the Mosco convergence of convex closed sets is equivalent to the Frolík-
Wijsman convergence.
In [13, 66] the Mosco convergence of functions on Hadamard spaces was studied in

connection with gradient flows. In particular, it was shown in [13] that the Mosco con-
vergence of convex lsc functions on a Hadamard space implies the pointwise convergence
of the associated gradient flow semigroups. Interestingly, apart from applications of
Hadamard space gradient flows into harmonic mappings theory, see e.g., [61], [102, Sec-
tion 8], there have been also other motivations. Most remarkably, gradient flows of a
convex function on a Hadamard space appear as an important tool in Kähler geometry
in connection with Donaldson’s conjecture on Calabi flows [18, 101]. It has also similarly
inspired new developments in Riemannian geometry [53]. Finally, in [14], a gradient flow
of a convex continuous function was used to construct a Lipschitz retraction in a Hadam-
ard space. For discrete-time gradient flows of convex functions in Hadamard spaces and
their applications, see [11, 12].

6.3.1. Previous Results

Let us begin our exposition with two previous extensions of Theorem 6.23. On the one
hand, H. Attouch proved an extension to a certain class of Banach spaces, Theorem 6.24.
On the other hand, M. Bačák has shown a partial extension to Hadamard spaces, The-
orem 6.25. The backward direction has still been open in Hadamard spaces, and we fill
the gap.

Extension to Banach Spaces In order to derive the subdifferential of the Moreau-
Yosida envelope in Section 6.2.5 we made use of the gradient of the squared distance
function. A natural minimal condition on a reflexive Banach space in which one can
hope for fλ to be differentiable, is therefore that norm and dual norm are Frechét dif-
ferentiable except at the origin. This class of reflexive Banach spaces is characterized
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by the following definition, see [8, p. 305] for a detailed statement and the bibliography
in [98]. We define

C =

{(
X, ‖ · ‖

)
:
X is a reflexive Banach space, ‖ · ‖X and ‖ · ‖X′ are
strictly convex and satisfy (5.3)

}
. (6.32)

H. Attouch [8, Theorem 3.26] proved the following extension of Theorem 6.23.

Theorem 6.24 Let X be a reflexive Banach space belonging to the class C. Let {fn}n be
a sequence of proper convex lsc functions fn : X → R∪{+∞} and let f : X → R∪{+∞}
be a proper convex lsc function. Then the following statements are equivalent:

(i) fn
M−→ f as n→∞ i.e. the sequence {fn}n Mosco converges to f .

(ii) fn,λ(x)→ fλ(x) as n→∞, for all λ > 0 and all x ∈ X.

(iii)

{
Proxλfn x→ Proxλf x for all λ > 0 and all x ∈ X and
∃(un, vn) ∈ ∂fn, ∃(u, v) ∈ ∂f s.t. un

X−→ u, vn
X∗−→ v, fn(un)→ f(u).

Here ∂f is the graph of the subdifferential defined by (5.4).

Partial Extension to Hadamard Spaces Implication (i) ⇒ (ii) in Theorem 6.23 has
been generalized to Hadamard spaces in [11, Theorem 5.2.4]:

Theorem 6.25 Let H be a Hadamard space, let {fn}n be a sequence of proper convex
lsc functions fn : H → R ∪ {+∞} and let f : H → R ∪ {+∞} be a proper function. If
fn

M−→ f as n→∞ then
lim
n→∞

fn,λ(x) = fλ(x), (6.33)

and
lim
n→∞

Proxλfn(x) = Proxλf (x), (6.34)

for every λ ∈ (0,+∞) and x ∈ H.

For the convenience of the reader, let us recall the proof. The argument around (6.36)
has been slightly modified from the proof in [11, Theorem 5.2.4].

Proof. In the following we are going to abbreviate Jnλ := Proxλfn and Jλ := Proxλf .
Note that the Mosco limit is automatically convex and lsc, so that Jλ is well-defined.
1. Given x0 ∈ H, by Lemma 5.16, there exist α, β ∈ R such that

fn(y) ≥ −α d(y, x0)− β, (6.35)

for every y ∈ H and n ∈ N. Choose a sequence {un}n ⊂ H such that un → x0 and
fn(un)→ f(x0). From the definition of Jnλx, we have

fn(un) + 1
2λ

d(x, un)2 ≥ fn(Jnλx) + 1
2λ

d(x, Jnλx)2.
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By (6.35) with y = Jnλx and the triangle inequality, further

1
2λ

d(x, Jnλx)2 ≤ fn(un) + 1
2λ

d(x, un)2 + α d(Jnλx, x0) + β

≤ fn(un) + 1
2λ

d(x, un)2 + α d(x, Jnλx) + α d(x, x0) + β.

Since the term d(x, Jnλx) occurs quadratically on the left-hand side and linearly on the
right-hand side, it follows that the sequence {Jnλx}n is bounded.

2. Boundedness of the sequence {Jnλx}n implies the existence of a weak cluster point
c ∈ H. Let {nk}k ⊂ N be a subsequence of indices with Jnkλ x

w→ c in H, for k →∞.
The following is slightly modified from the proof in [11, Theorem 5.2.4]. We believe

that, for the last inequality [11, eq. 5.2.26] to hold, we need to restrict ourselves to the
subsequence {nk}k first, as follows.
As fn

M−→ f , there is a sequence {yn}n ⊂ H such that yn → Jλx and fn(yn)→ f(Jλx).
Then, restricting first to the subsequence, and using in this order, the definition of fnk,λ,
that yn is a recovery sequence, the definition of Jλx tested with c and finally Mosco
convergence and weak lower semicontinuity of d(x, ·)2, we obtain

lim sup
k→∞

fnk,λ(x) ≤ lim sup
k→∞

(
fnk(ynk) + 1

2λ
d(x, ynk)

2
)

= f(Jλx) + 1
2λ

d(x, Jλx)2

≤ f(c) + 1
2λ

d(x, c)2

≤ lim inf
k→∞

(
fnk(J

nk
λ x) + 1

2λ
d(x, Jnkλ x)2

)
. (6.36)

Thus all inequalities are equalities, which gives Jλx = c, by the uniqueness of Jλx. As c
was arbitrary, this implies Jnλx

w→ Jλx, as n→∞.
Now the chain of equalities holds with limits taken along the whole sequence. For real

sequences {an}n, {bn}n one has lim inf an + lim sup bn ≤ lim sup(an + bn). Using this
estimate and reordering the first line of (6.36) yields

lim sup
n→∞

1
2λ

d(x, Jnλx)2 ≤ − lim inf
n→∞

fn(Jnλx) + lim sup
n→∞

fn(yn) + lim sup
n→∞

1
2λ

d(x, yn)2

≤ − lim inf
n→∞

fn(Jnλx) + f(Jλx) + 1
2λ

d(x, Jλx)2

≤ 1
2λ

d(x, Jλx)2

≤ 1
2λ

lim inf
n→∞

d(x, Jnλx)2. (6.37)

By Theorem 5.11 (iii), the weak convergence of the Jnλx, from equation (6.36), and
convergence of the “distance to a point”, from equation (6.37), together imply strong
convergence

Jnλx→ Jλx, as n→∞,
which proves (6.34). Finally, inequality (6.36) with fλ in the second line, immediately
gives (6.33), and the proof is complete.
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Remark 6.26 (Simpler proof in Rn) If the functions are defined not on a general Hadam-
ard space but on Rd, Mosco convergence agrees with Γ-convergence and Theorem 6.25
follows from Theorem 5.4, applied for each λ > 0 and x ∈ Rd as follows: Define functions
g, gn by

gn(·) = fn(·) + 1
2λ

d(·, x)2, n = 1, 2, . . .

g(·) = f(·) + 1
2λ

d(·, x)2.

Then it follows from equation (6.35) that the gn are equi-mildly coercive. Minima and
minimizers of the gn are fn,λ(x) and Jnλx, and the unique minimizer of g is Jλx, hence
Theorem 5.4 and Remark 5.5 yield that fn,λ(x) → fλ(x) and Jnλx → Jλx, respectively,
as n→∞.

Remark 6.27 This argument does not work for Mosco convergence in the infinite-
dimensional case, exactly for the reason which made Mosco convergence an interesting
concept: It is an intermediate notion between Γ-convergence w.r.t. weak convergence of
sequences and Γ-convergence w.r.t. strong convergence of sequences.
In an infinite-dimensional setting Mosco convergence implies that the gn Γ-converge

w.r.t. strong convergence of sequences, but bounded sets are not compact w.r.t. strong
convergence; on the other hand, while bounded sets are weakly sequentially compact,
Mosco convergence does not allow us to conclude that the gn Γ-converge w.r.t. weak
convergence of sequences.

6.3.2. Generalization to Hadamard Manifolds using Gradients of
Moreau-Yosida Envelopes

In the previous section we derived several properties of Moreau-Yosida envelopes. In
this section we show their usefulness in generalizing Theorem 6.23 to Hadamard mani-
folds. First we present the line of argument in the simpler setting of finite-dimensional
manifolds, see Theorem 6.29, then give the proof in infinite-dimensional manifolds, see
Theorem 6.30.
We will further need the following auxiliary lemma, which holds more generally for

metric spaces. The Lipschitz constants of the envelopes in the last part are obtained in
similar way, as for a single function in [8, Theorem 2.64].

Lemma 6.28 Let H be a Hadamard space and {fn}n a sequence of functions fn : H →
R ∪ {+∞}. Suppose that there exist 0 < λ1 < λ2, such that for λ ∈ {λ1, λ2} the
Moreau-Yosida envelopes fulfil fn,λ → fλ pointwise as n→∞, for some proper function
f : H → R ∪ {+∞}. Then, given x0 ∈ H, there exists n0 ∈ N such that the following
relations hold:

(i) The functions fn have a common minorizing quadratic, i.e., there exists r > 0 such
that for all x ∈ H and all n ≥ n0 we have

fn(x) ≥ −r d(x, x0)2 − r.
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(ii) There exists R0 > 0 and a sequence {xn}n ⊂ BR0(x0) in the ball BR0(x0) of radius
R0 around x0, such that for all n ≥ n0

fn(xn) ≤ L

with some constant L ∈ R.

(iii) For each λ > 0, the sequence of Moreau-Yosida envelopes {fn,λ}n is locally equi-
bounded, i.e. for all R > 0, there exists KR ∈ R such that for all x ∈ BR(x0) and
all n ≥ n0,

fn,λ(x) ≤ KR.

(iv) The sequence of Moreau-Yosida envelopes {fn,λ}n is locally equi-Lipschitz, i.e.,
there is a function C : R≥0 → R≥0, bounded on bounded subsets, such that for all
λ ∈ (0, 1

8r
], all x, x̃ ∈ BR(x0) and all n ≥ n0 it holds

|fn,λ(x)− fn,λ(x̃)| < 1
λ
d(x, x̃)C(R).

Moreover, C(R) depends only and in a continuous way on R,R0, r and fλ1(x0).

Proof. (i) Since f is proper, the function fλ is everywhere finite. By assumption, there
is some n0 such that for all n ≥ n0 and λ ∈ {λ1, λ2},

|fn,λ(x0)− fλ(x0)| ≤ 1. (6.38)

Since
fn,λ(x0) = inf

y

{
fn(y) + 1

2λ
d(y, x0)2

}

we obtain for λ ∈ {λ1, λ2}, y ∈ H and n ≥ n0,

fn(y) ≥ fn,λ(x0)− 1
2λ

d(y, x0)2

≥ fλ(x0)− 1− 1
2λ

d(y, x0)2 (6.39)

which gives assertion (i) for r := max
(

1
2λ
, 1− fλ(x0)

)
.

(ii) Let n ≥ n0, where n0 is defined as in (i) and xn := Proxλ1fn(x0). By (6.38) we obtain

fλ1(x0) + 1 ≥ fn,λ1(x0) = fn(xn) + 1
2λ1

d(xn, x0)2, (6.40)

and from (6.39) with y := xn and λ := λ2 further

1− fλ2(x0) ≥ − 1
2λ2

d(xn, x0)2 − fn(xn).

Summing up these inequalities gives

fλ1(x0)− fλ2(x0) + 2 ≥
(

1
2λ1
− 1

2λ2

)
d(xn, x0)2. (6.41)

Consequently, {xn}n ⊂ BR0(x0) for R0 >
(

(fλ1(x0)− fλ2(x0) + 2)/( 1
2λ1
− 1

2λ2
)
) 1

2 and
n ≥ n0. Since by (6.40) also fn(xn) ≤ fλ1(x0) + 1 =: L, we obtain (ii).
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(iii) Given R > 0, for every n ≥ n0, and x ∈ BR(x0), we have with xn := Proxλ1fn(x0)
that

d(x, xn) ≤ d(x, x0) + d(x0, xn) ≤ R +R0.

Hence, for all λ > 0,

fn,λ(x) ≤ fn(xn) + 1
2λ

d(xn, x)2 ≤ L+ 1
2λ

(R +R0)2 =: KR,

as required for (iii).

(iv) For n ≥ n0 arbitrarily fixed, let g := fn. For 0 < λ ≤ 1
8r
, x ∈ H and ε > 0, let

p = p(x, λ, ε, n) denote a point such that

gλ(x) ≤ g(p) + 1
2λ

d(p, x)2 ≤ gλ(x) + ε. (6.42)

By the quadratic minorization property in (i) we conclude

−r
(
d(p, x0)2 + 1

)
+ 1

2λ
d(p, x)2 ≤ gλ(x) + ε.

Transforming equivalently and inserting (6.42) we get

d(p, x)2 ≤ 2λr d(p, x0)2 + 2λ(gλ(x) + ε+ r)

≤ 4λr d(p, x)2 + 4λr d(x, x0)2 + 2λ(gλ(x) + ε+ r)

and then, since 1− 4λr ≤ 1
2
,

d(p, x)2 ≤ 8λr d(x, x0)2 + 4λ(gλ(x) + ε+ r). (6.43)

Consider two points x, x̃ ∈ H and corresponding points p and p̃ satisfying (6.42).
Then it follows

gλ(x̃) ≤ g(p) + 1
2λ

d(p, x̃)2

≤ gλ(x) + ε+ 1
2λ

(
d(p, x̃)2 − d(p, x)2

)
.

Together with

d(p, x̃)2 − d(p, x)2 ≤ d(x, x̃) (2 d(p, x) + d(x̃, x)) ≤ d(x, x̃)
(
d(p, x)2 + 1 + d(x̃, x)

)

and (6.43) this becomes

gλ(x̃)− gλ(x) ≤ ε+ 1
2λ

d(x, x̃)
(
d(p, x)2 + 1 + d(x̃, x)

)

≤ ε+ 1
2λ

d(x, x̃)
(
8λr d(x, x0)2 + 4λ(gλ(x) + r + ε) + 1 + d(x̃, x)

)
.

Letting ε → 0 and exchanging the roles of x, x̃, we obtain, for 0 < λ ≤ 1
8r

and x, x̃ ∈
BR(x0) by (iii), that

|gλ(x̃)− gλ(x)| ≤ 1
λ
d(x, x̃) sup

x,x̃∈BR(x0)

{
4λr max

(
d(x, x0)2, d(x̃, x0)2

)

+2λmax (gλ(x), gλ(x̃)) + 2λr + 1
2

+ 1
2
d(x̃, x)

}

≤ 1
λ
d(x, x̃)

(
1
2
R2 + 2λKR + 3

4
+R

)
︸ ︷︷ ︸

C(R)

.

This completes the proof.
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Main Result in Finite Dimensional Hadamard Manifolds

Before give the main result in infinite-dimensional Hadamard manifolds, let us consider
the simpler setting of finite-dimensional Hadamard manifolds. In finite-dimensional
Hadamard manifolds weak and strong convergence agree and the sequence {fn}n Mo-
sco converges to f if and only if it Γ-converges to f .

Theorem 6.29 Let H be a finite-dimensional Hadamard manifold. Let {fn}n be a se-
quence of proper convex lsc functions fn : H → R∪{+∞}. For all λ > 0, let the sequence
of Moreau-Yosida envelopes fn,λ converge pointwise to the Moreau-Yosida envelope fλ of
some proper convex lsc function f : H → R ∪ {+∞}. Then fn

Γ−→ f as n→∞.

Proof. We abbreviate the proximal mappings of f and fn by Jλ := Proxλf and Jnλ :=
Proxλfn . By Proposition 6.22, the envelopes fλ and fn,λ are differentiable. By convexity,
for all λ > 0, all n ∈ N and all x, y ∈ H we have the subdifferential inequality

fn,λ(y)− fn,λ(x) ≥ 〈∇fn,λ(x), logx y〉. (6.44)

1. First we show for all λ > 0 and all x ∈ H that

∇fn,λ(x)→ ∇fλ(x) (6.45)

as n → ∞. Indeed, from (6.44) and the equi-local Lipschitz property of the {fn,λ}n,
proven in Theorem 6.28 (iv), it follows for all λ > 0 and all x ∈ H that the sequence
{∇fn,λ(x)}n is bounded. As closed bounded sets in RN are compact, any subsequence
has a further subsequence which converges strongly,

∇fnk,λ(x)→ ξ as k →∞,

for some ξ ∈ TxH. Passing to the limit in (6.44) using the convergence of {fn,λ(x)}n we
obtain that

fλ(y) ≥ fλ(x) + 〈ξ, logx y〉,
for all λ > 0 and all x, y ∈ H. Hence ξ ∈ ∂fλ(x) and as fλ is differentiable, we get
ξ = ∇fλ(x). Therefore ∇fn,λ(x)→ ∇fλ(x) in TxH.
2. Following [8, p. 317], we show Γ-convergence

fn
Γ−→ f.

Let us note that by Lemma 6.28 (i), for every fixed x ∈ H, there is an r > 0 such that
for all n large enough and all y ∈ H

fn(y) ≥ −rd(y, x)2 − r. (6.46)

Now we verify both properties of Γ-convergence.
2.1 Limsup Inequality. From (5.7) we know that fλ increases to f as λ→ 0. Together

with the assumption, that fn,λ(x)→ fλ(x), for all x ∈ H as n→∞ we obtain

f(x) = lim
λ→0

fλ(x) = lim
λ→0

lim
n→∞

fn,λ(x).
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By Lemma 5.6 (diagonalization lemma), there exists a sequence {λn}n with limn→∞ λn =
0 such that

f(x) = lim
n→∞

fn,λn(x)

= lim
n→∞

(
fn
(
Jnλn(x)

)
+ 1

2λn
d
(
x, Jnλn(x)

)2
)
. (6.47)

Taking xn := Jnλn(x), we obtain

f(x) ≥ lim sup
n→∞

fn(xn).

It remains to show that, in the case f(x) < +∞, we have xn → x as n → ∞. Indeed,
inserting Lemma 6.28(i) into (6.47), we have

f(x) ≥ lim sup
n→∞

((
1

2λn
− r
)
d(xn, x)2 − r

)

and because
(

1
2λn
− r
)
→ +∞, this is only possible if d(xn, x) → 0 as n → ∞. (In the

case f(x) = +∞, there is nothing to prove.)
2. Liminf Inequality. Suppose that yn → x as n → ∞. Then logx yn → 0. From the
subdifferential inequality (6.44) we have

fn(yn) ≥ fn,λ(yn)

≥ fn,λ(x) + 〈∇fn,λ(x), logx yn〉.

Using boundedness the sequence {∇fn,λ(x)}n, we take the limit n→∞ and get

lim inf
n→∞

fn(yn) ≥ lim
n→∞

(
fn,λ(x) + 〈∇fn,λ(x), logx yn〉

)

= fλ(x).

Taking the supremum over λ > 0, we finally obtain

lim inf
n→∞

fn(yn) ≥ f(x).

Main Result on Hilbert Manifolds

Theorem 6.30 Let H be a Hadamard manifold satisfying property (A). Let {fn}n be
a sequence of proper convex lsc functions fn : H → R ∪ {+∞}. For all λ > 0, let
the sequence of Moreau-Yosida envelopes fn,λ converge pointwise to the Moreau-Yosida
envelope fλ of some proper function f : H → R ∪ {+∞}. Then fn

M−→ f as n→∞.

Recall from Section 6.2.3 that a sufficient condition for (A) is a lower bound on the
curvature. Note also that (A) holds for finite-dimensional Hadamard manifolds. In this
case Mosco convergence can be replaced by Γ-convergence and part 1 of the following
proof simplifies, as we have seen above. Basically the proof follows along the lines of the
proof in [8, Theorem 3.26].
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Proof. 1. First we prove, for all λ > 0 and all x ∈ H, that the sequence {∇fn,λ(x)}n
converges to ∇fλ(x).
1.1. First note that f is proper convex lsc. Indeed, for all λ > 0 and all n, the

envelopes fn,λ are convex and continuous. Thus f = supλ>0 fλ is a convex lsc function.
It follows further that Jλx is well-defined and from Theorem 6.22 that f is differentiable.
1.2. We start by showing weak convergence, i.e., that for all λ > 0 and all x ∈ H it
holds

∇fn,λ(x)
w→ ∇fλ(x). (6.48)

By definition of the subdifferential (6.3) and the equi-local Lipschitz property of fn,λ
proven in Lemma 6.28(iv) we have for an arbitrary fixed y ∈ H that

〈∇fn,λ(x), logx y〉 ≤ fn,λ(y)− fn,λ(x) ≤ 1
λ
d(x, y)C

(
d(x, y)

)
.

Since y ∈ H can be arbitrarily chosen, this implies that for every ζ ∈ TxH, the sequence
{〈∇fn,λ(x), ζ〉}n is bounded. Taking ζn := ∇fn,λ(x)/‖∇fn,λ(x)‖, we obtain that the
sequence {∇fn,λ(x)}n is bounded in TxH. The tangent space TxH is a Hilbert space so
that the unit ball in TxH is weakly sequentially compact. Thus there exists a weakly
convergent subsequence ∇fnk,λ(x)

∇fnk,λ(x)
w→ ξ, as k →∞

for some ξ ∈ TxH. Passing to the limit k →∞ in the subdifferential equation

fnk,λ(y) ≥ fnk,λ(x) + 〈∇fnk,λ(x), logx y〉

we obtain by the convergence of {fn,λ(x)}n that

fλ(y) ≥ fλ(x) + 〈ξ, logx y〉,

for all λ > 0 and all x, y ∈ H. Hence ξ ∈ ∂fλ(x) and as fλ is differentiable, we get
ξ = ∇fλ(x). Therefore ∇fn,λ(x)

w→ ∇fλ(x) in TxH.
1.3. Next we prove the strong convergence. As, in a Hilbert space, weak convergence

and convergence of the norm imply strong convergence, we need only show

‖∇fn,λ(x)‖ → ‖∇fλ(x)‖

for all x ∈ H. By Theorem 6.22 we know that

∇fn,λ(x) = − 1
λ

logx(J
n
λx), Jnλx := Proxλfn(x)

Hence d(x, Jnλx) = ‖ logx(J
n
λx)‖ = λ‖∇fn,λ(x)‖ and

fn,λ(x) = fn(Jnλx) + 1
2λ

d(x, Jnλx)2 = fn(Jnλx) + λ
2
‖∇fn,λ(x)‖2.

By assumption, fn,λ(x)→ fλ(x) so that it remains to show for all λ > 0 and all x ∈ H
that

fn(Jnλx)→ f(Jλx). (6.49)
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To this end, let us introduce, for each x, the two sequences of real valued functions {hn}n
and {Fn}n of the variable λ > 0:

hn(λ) := λ fn,λ(x), Fn(λ) := fn(Jnλx).

By Lemma 6.19 we have
d
dλhn(λ) = Fn(λ).

for n ∈ N. By assumption
hn(λ)→ h(λ) := λ fλ(x)

as n → ∞. By Lemma 6.20 the pointwise convergence of {hn}n implies the pointwise
convergence of {h′n}n = {Fn}n to h′ = F . In other words, we have shown (6.55).

2. Now we show Mosco convergence

fn
M−→ f.

Let us note that by Lemma 6.28(i), for every fixed x ∈ H, there is an r > 0 such that
for all n large enough and all y ∈ H

fn(y) ≥ −rd(y, x)2 − r. (6.50)

Let us now verify both properties of Mosco convergence.
2.1 Limsup Inequality. From 5.7 we know that fλ increases to f as λ → 0. Together

with the assumption, that fn,λ(x)→ fλ(x), for all x ∈ H as n→∞ we obtain

f(x) = lim
λ→0

fλ(x) = lim
λ→0

lim
n→∞

fn,λ(x).

By the diagonalization lemma, see [8, Lemma 1.18], there exists a sequence {λn}n with
limn→∞ λn = 0 such that

f(x) = lim
n→∞

fn,λn(x)

= lim
n→∞

(
fn
(
Jnλn(x)

)
+ 1

2λn
d
(
x, Jnλn(x)

)2
)
. (6.51)

Taking xn := Jnλn(x), we obtain

f(x) ≥ lim sup
n

fn(xn).

It remains to show that, in the case f(x) < +∞, we have xn → x as n → ∞. Indeed,
inserting Lemma 6.28(i) into (6.51), we have

f(x) ≥ lim sup
n→∞

((
1

2λn
− r
)
d(xn, x)2 − r

)

and because
(

1
2λn
− r
)
→ +∞, this is only possible if d(xn, x) → 0 as n → ∞. (In the

case f(x) = +∞, there is nothing to prove.)
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2.2 Liminf Inequality. Suppose that xn
w→ x as n→∞. Using strong convergence of

the sequence {∇fn,λ(x)}n from part 1 of the proof, we want to pass to the limit in

fn(xn) ≥ fn,λ(xn)

≥ fn,λ(x) + 〈∇fn,λ(x), logx xn〉.

By assumption (A) the weak convergence xn
w→ x in H implies logx xn

w→ 0 in TxH.
Together with ∇fn,λ(x)→ ∇fλ(x) from part 1 of the proof this implies the convergence
〈∇fn,λ(x), logx xn〉 → 0 as n→∞ and we have

lim inf
n→∞

fn(xn) ≥ lim
n→∞

(
fn,λ(x) + 〈∇fn,λ(x), logx xn〉

)

= fλ(x).

Taking the supremum over λ > 0, we finally obtain

lim inf
n→∞

fn(xn) ≥ f(x).

6.3.3. Generalization to Hadamard Spaces

In this section we prove the inverse implication to Theorem 6.25, and thus generalize
Theorem 6.23 to Hadamard spaces. The proof given has originated from joint work with
M. Bačák, submitted for publication [15]. It is independent of the proof in Hadam-
ard manifolds and the only result used from the previous section is Lemma 6.28 (i).
Hadamard manifolds being Hadamard spaces, Theorem 6.30 from the previous section
is contained in the following theorem.

Theorem 6.31 Let H be a Hadamard space, {fn}n a sequence of proper convex lsc
functions fn : H → R ∪ {+∞}, and f : H → R ∪ {+∞} a proper convex lsc function.
Assume that for each λ > 0 the sequence of Moreau-Yosida envelopes {fn,λ}n converges
pointwise to the Moreau-Yosida envelope fλ. Then fn

M−→ f as n→∞.

Proof. Observe that f(x) ≥ fλ(x) ≥ f (Jλx) . For x ∈ dom f, it holds by [11, Proposition
2.2.26] that limλ→+0 Jλx = x so that the lower semicontinuity of f implies

f(x) = lim
λ→+0

fλ(x) = lim
λ→+0

f (Jλx) . (6.52)

1. (Limsup Inequality) Let us show that, given x ∈ H, there exists a sequence yn → x
with lim supn→∞ fn(yn) ≤ f(x). If f(x) = +∞, then there is nothing to prove. Assume
therefore x ∈ dom f. Together with the assumption that fn,λ(x) → fλ(x) for all x ∈ H
as n→∞, we obtain

f(x) = lim
λ→+0

fλ(x) = lim
λ→+0

lim
n→∞

fn,λ(x).
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By the diagonalization lemma, see [8, Lemma 1.18], there exists a sequence {λn}n with
limn→∞ λn = 0 such that

f(x) = lim
n→∞

fn,λn(x)

= lim
n→∞

(
fn
(
Jnλnx

)
+ 1

2λn
d
(
x, Jnλnx

)2
)
, (6.53)

where Jnλ = Jλfn . Hence f(x) ≥ lim supn→∞ fn
(
Jnλnx

)
. We put yn := Jnλnx and show

that yn → x. Indeed, inserting Lemma 6.28(i) into (6.53), we have

f(x) ≥ lim sup
n→∞

((
1

2λn
− r
)
d(x, yn)2 − r

)

and we can conclude that yn → x.
2. Let us show that Jnλx→ Jλx. From the previous step, we know that there exists a

sequence yn → Jλx with lim supn→∞ fn(yn) ≤ f (Jλx) . Then we obtain

fλ(x) = f (Jλx) + 1
2λ
d (x, Jλx)2 ≥ lim sup

n→∞

(
fn(yn) + 1

2λ
d (x, yn)2)

and by (5.8) further

fλ(x) ≥ lim sup
n→∞

(
fn,λ(x) + 1

2λ
d (Jnλx, yn)2) = fλ(x) + lim sup

n→∞

1
2λ
d (Jnλx, yn)2 .

Hence we conclude Jnλx→ Jλx.

3. (Liminf Inequality) Let xn
w→ x. We have to prove lim infn→∞ fn(xn) ≥ f(x). By

definition of the Moreau-Yosida envelope and (5.8) we have

fn(xn) ≥ fn (Jnλxn) + 1
2λ
d (xn, J

n
λxn)2

≥ fn (Jnλx) + 1
2λ
d (x, Jnλx)2 + 1

2λ
d (Jnλxn, J

n
λx)2

+ 1
2λ
d (xn, J

n
λxn)2 − 1

2λ
d (x, Jnλxn)2 .

By the nonpositive curvature inequality in (5.5) we obtain

fn(xn) ≥ fn (Jnλx) + 1
2λ
d (Jnλx, xn)2 − 1

2λ
d (x, xn)2 . (6.54)

Let us show that fn (Jnλx) converges as n→∞. Consider

fn,λ(x) = fn(Jnλx) + 1
2λ

d(x, Jnλx)2,

fλ(x) = f(Jλx) + 1
2λ

d(x, Jλx)2.

By assumption we have fn,λ(x) → fλ(x), and by Step 2 also Jnλx → Jλx as n → ∞.
This implies

fn(Jnλx)→ f(Jλx). (6.55)

By the definition of the weak limit of {xn}n, for every subsequence nk →∞, we have

lim sup
k→∞

d(Jλx, xnk)
2 ≥ lim sup

k→∞
d(x, xnk)

2. (6.56)
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By the triangle inequality we obtain d(Jnkλ x, xnk) ≥ | d(Jnkλ x, Jλx)− d(Jλx, xnk)|. Using
Step 2 and (6.56) results in

lim sup
k→∞

d(Jnkλ x, xnk)
2 ≥ lim sup

k→∞
(d(Jnkλ x, Jλx)− d(Jλx, xnk))

2

= lim sup
k→∞

d(Jλx, xnk)
2

≥ lim sup
k→∞

d(x, xnk)
2.

Rearranging, we get

0 ≤ lim sup
k→∞

d(Jnkλ x, xnk)
2 + lim inf

k→∞
(− d(x, xnk)

2)

≤ lim sup
k→∞

(
d(Jnkλ x, xnk)

2 − d(x, xnk)
2
)

and, as the subsequence was arbitrary,

lim inf
n→∞

(
d(Jnλx, xn)2 − d(x, xn)2

)
≥ 0.

Returning to (6.54), the previous equation and (6.55) yield

lim inf
n→∞

fn(xn) ≥ f(Jλx).

If x ∈ dom f , then from (6.52) we obtain

lim inf
n→∞

fn(xn) ≥ f(x).

For x 6∈ dom f we can repeat the above conclusions for the finite continuous convex
functions gn := fn,µ and g = fµ for some fixed µ > 0 instead of fn and f . Note that
the assumptions are fulfilled by the semigroup property of the Moreau-Yosida envelopes.
Finally we let µ→ +0 and invoke (5.7). This concludes the proof.

Recall that a sequence of convex closed sets Cn ⊂ H converges to a convex closed
set C ⊂ H in the sense of Frolík-Wijsman if the respective distance functions converge
pointwise; that is, if d(x,Cn) → d(x,C) for each x ∈ H. This concept originated in
[47, 107]. On the other hand, a sequence of convex closed sets Cn ⊂ H converges to a
convex closed set C ⊂ H in the sense of Mosco if the indicator functions ιCn converge
in the sense of Mosco to the indicator function ιC . The following is a direct consequence
of our main result.

Corollary 6.32 (Frolík-Wijsman convergence) A sequence of convex closed sets Cn ⊂ H
converges to a convex closed set C ⊂ H in the sense of Frolík-Wijsman if and only if it
converges to C in the sense of Mosco.

Proof. Observe that the Moreau-Yosida envelope of ιC with λ = 1
2
is precisely the

distance function squared d(·, C)2 and apply Theorems 6.25 and 6.31.
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