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1 Introduction

Never before was it that easy to spread the word, communicate with people, and discuss
with strangers. Eventually these contacts are affecting a person. In particular opinions
and valuations about products and services are changing. People may use recommenda-
tions to find help in making a difficult choice. Those recommendations might either be
from good friends, whose opinion we value highly. Or they might be from strangers we
do not trust as much.

Content publishers and retailers promote these review systems. A “good” reviewer is
more influential. Popular YouTube users are earning money by simple product place-
ment, so called affiliate marketing. Yet in contrast to commercials, the advertisement
of a familiar “internet person” is valued as a friendly recommendation. Considering
these realities, we propose a model for the underlying influences. We study a product
pricing model in social networks where the value a possible buyer assigns to a product
is influenced by the current customers.

Imagine Tony has just developed his new smartshoe and wonders what would be a good
sales price, i.e., a price that yields the most revenue. A quick poll among his internet
friends Ada, Butch, and Cathy reveals that they are willing to pay different prices of
$500, $100, and $300, respectively. Using a linear time algorithm, Tony first computes
that $300 is the best price since then Ada and Cathy will buy the shoes, guaranteeing
him a revenue of $600. A chat with Butch and Cathy, however, makes Tony realize
that they are big admirers of Ada and if Ada has acquired the smartshoes, the next
day (round) Butch would pay additional $400 and Cathy $100 for the smartshoe. Thus,
under these circumstances, Tony could generate a total revenue of $1200 by offering the
product for $400 and then letting things evolve. This situation describes the “easy” case
of our model: problems such as finding a price for a product when people within a social
network influence each other “in a positive way” feature monotonicity and can therefore
be solved efficiently in polynomial time.

Though it is not that easy with Djustin. He has heard about the existence of Tony’s
revolutionary product and is willing to pay $400, no matter who else owns the product.
Butch and Cathy dislike Djustin and they would be less interested in Tony’s smartshoe
if Djustin was a customer. We model this as Djustin decreasing Butch’s and Cathy’s
valuation for the smartshoe by $400 and $200, respectively. Hence, the small social
network comprised of Ada, Butch, Cathy, and Djustin looks as in Figure 1.1 and the
highest possible revenue is $1000 obtained for the price $500 (and not $800, which would
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1 Introduction

be obtained for the price $400). This second situation, where some people may exert
negative influences within the social network, is the “NP-hard” case of our basic model.

Ada
$500

Butch
$100

Cathy
$300

Djustin
$400+$400

+$100

−$400

−$200

Figure 1.1: Tony’s friends, their initial values for his smartshoes, and influences within
the social network

The simple additive influence model described for Tony’s product is the foundation for
every model we examine in this thesis. The Product Pricing with Additive Influence
model is based on graph dynamical systems [KKM+11, MR08, BHM+07]. We assume
a graph consisting of all prospective customers, their relations and valuations, is given
to the product seller. The questions we ask are: What price is “best possible” and who
exactly is interested to purchase for a particular price?

Models for the propagation of ideas and influences through a social network have been
studied in a number of domains. Examples include the diffusion of medical and tech-
nological innovations [CKM66, Val95], the sudden and widespread adoption of various
strategies in game-theoretic settings [Blu93, Ell93, Mor00, You06], and the effects of
“word of mouth” in the promotion of new products [DR01, GLM01].

The linear threshold model [KKT03] provides the foundation for the decision making
of the potential buyers in our model. Based on the linear threshold model [FKLL13,
BFO10, CLS+10, HMS08, CBO12] are investigating game theoretic or stochastic varia-
tions. Our model differs from others in the facts that it is completely deterministic and
not strategic.

The model in [KKM+10, KKM+15] is deterministic and the goal is to find a critical set
of nodes such that the contagion is minimal. The influence maximization starting from
some seeding set is studied in [Swa14]. In our model the single choice lies in the price of
the product. The price is affecting the set of early adopters and the thresholds. While
it is usually the set of “early adopters” that is chosen.

Outline

This section provides an outline of the major results in the thesis.

In Chapter 3 we define the fundamental problem Product Pricing with Additive Influences
PPAI. We show that a for a given price the revenue can be computed in linear time.
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Thereby, checking all possible prices yields the price generating the highest revenue. This
leads to a pseudo-polynomial time algorithm. We improve upon this pseudo-polynomial
method with Algorithm Frag. A key concept in this respect is the notion of fragments —
intervals of prices sharing the exact same customer behavior. For a polynomial amount
of fragments the algorithm is also polynomial. Thereafter we provide a reduction from
3SAT and show NP-completeness of PPAI. The graph constructed in the reduction shows
that the amount of fragments can be exponential in the amount of nodes.

In the following we aim to identify restrictions to the graph and its weights such that
the amount of fragments is polynomial. For graphs with exclusively negative or positive
influences this is indeed the case. In particular, Algorithm FixHighest solves the problem
for positive graphs in polynomial time. We show that the algorithm can be implemented
to run in almost linear time. We also prove monotonicity for buyers decisions in positive
graphs with respect to prices. In the next step we examine the fragments for special
graph classes. Amongst others, a polynomial bound on the fragments is given for graphs
with bounded in-degree and graphs with bounded length of positive paths. However, the
problem remains hard even for graphs with highest out-degree 2. Assuming symmetric
influences, i.e., undirected graphs, we modify the original reduction graph and show
NP-completeness also in the undirected setting.

We study some gadgets to transform instances and conclude computational complex-
ity equivalence of our natural PPAI variants. In the penultimate section we tackle the
complexity of PPAI on trees. Even though we can not provide a proof, we have strong in-
dication for a polynomially bounded amount of fragments. The last section of Chapter 3
contains a formulation as graph dynamical system and as integer program.

In Chapter 4 on Delayed Product Pricing we extend the model by potential release times
and influence delays instead of the immediate propagation we had so far. This leads to
problem DelPPAI. We provide a polynomial algorithm to compute the revenue for a given
price and show that the problem is closely connected to PPAI.

Next, in Chapter 5, we extend the basic model by allowing price changes. We call this
Dynamic Product Pricing and denote the problem by DynPPAI. Given one particular
trend of prices, we can apply DynSell to compute the revenue. Similar to the fragments
in Chapter 3, we introduce b-fragments which capture the behavior of customers in the
dynamic setting. To solve DynPPAI we provide an algorithm iterating over all possible
b-fragments.

We provide computational complexity results for decreasing and increasing trends of
prices. Even more, we can show that the problem is NP-complete for positive and
negative graphs. The problem remains hard even if we restrict the number of different
prices in a trend. Yet, if we have only a constant amount of price changes, the problem
is equivalent to PPAI and we can solve it in polynomial time given an algorithm for
static prices. We conclude the chapter with the formulation of DynPPAI as an integer
program.

3



1 Introduction

In Chapter 6 the buyers do not remain a customer forever. Instead they have to rebuy
the perishable product or subscription if they are still interested. The problem of this
chapter is Perishable Product Pricing — PerPPAI. The durations of the product are
either individual for the nodes or fixed to a common value. Whereas the computation
of the revenue for a given price was polynomial in the previous cases, this is now a
harder problem. We define the notion of breaks, i.e., selling rounds in which someone
either decides not to rebuy anymore and rounds in which some previous non-customer
is purchasing the product. Given a polynomial amount of breaks, the Algorithm Break
can compute the revenue in polynomial time.

Positive graphs are once again benevolent and feature the same monotonicity as in
Chapter 3. In the case of exclusively negative influences and individual durations, we
provide a #P-hardness proof for the computation of the revenue for a fixed price. On
arbitrary graphs with fixed duration we give another #P-hardness reduction. However,
for individual durations the problem is even hard on acyclic graphs.

Built on these complexity results we identify that PerPPAI with fixed durations is
NP-hard. For positive graphs we rehash previous FixHighest to compute the optimum
revenue. The problem PerPPAI on negative, acyclic graphs with unit duration is shown
to be NP-complete. Instead of an algorithm for PerPPAI we state a formulation of the
problem as integer program.

We conclude the chapter with return options for the product in our basic PPAI model.
The return option results in a similar buying behavior as for perishable goods.

In Chapter 7 we study and review diverse aspects of our product pricing problem. In the
section on Cooperative Pricing we assume that the potential buyers are communicating
with each other and can therefore plan their purchase. Algorithm FixLowest provides
an optimal solution in case the influences are positive and runs in polynomial time.
The next section is groundwork for mechanism design on our PPAI model. We use one
initial value as parameter and determine the revenue for positive graphs subject to this
value. More game theoretic aspects are featured in the section on Two Product Pricing.
Introducing a competitor we show a primary result for positive graphs. Finally, we
provide another influence model — the Bounded Additive Influence.
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2 Preliminaries

In this chapter, we summarize basic definitions used throughout this thesis. While
we assume that the reader has basic knowledge of combinatorics, graph theory, and
computational complexity, the notations in literature may vary immensely. With the
following definitions, we make sure that the content is unambigous.

Sets and Basics: [BS79]

The natural numbers {1, 2, . . . } are denoted by N. The first n natural numbers are
denoted by Nn := {1, . . . , n}. By (x, y] := { z ∈ Z : x < z ≤ y } we denote the integer
intervals. For x, y ∈ Z this is {x+ 1, . . . , y} = (x, y].

By |A| we denote the cardinality of a set A. Throughout the thesis we only use finite
sets, i.e., |A| ∈ N. The power set of A is denoted by 2A. By A ∪̇B we denote the disjoint
union of two sets.

We use the binary logarithm ld = log2. Numbers n in binary representation are indicated
as (n)2.

The binomial coefficient
(
n

k

)
:= n · · · (n− k + 1)

1 · · · k for 0 ≤ k ≤ n, is the amount of

different choices to choose k elements from a set of size n, disregarding the order. For

k < 0 or k > n we set
(
n

k

)
= 0. With

((
n

k

))
:=
(
n+ k − 1

k

)
we denote the respective

amount of multisets.

Growth of Functions: [PS82]

We use the Bachmann-Landau notations to classify the growth of functions.

For functions f, g : N→ N, we write

• f(n) = O (g(n)) if there exists some constant c > 0 such that for large enough n,
f(n) ≤ c · g(n),

• f(n) = Ω (g(n)) if there exists some constant c > 0 such that for large enough n,
f(n) ≥ c · g(n), and

• f(n) = Θ (g(n)) if there exist constants c, c′ > 0 such that for large enough n,
c · g(n) ≤ f(n) ≤ c′ · g(n).
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2 Preliminaries

Furthermore, poly(n) is the class of polynomial functions, i.e., if there is some polynomial
function g such that f(n) = O (g(n)), we have f(n) = poly(n).

Graph Theory: [Die05]

A graph G = (V,A) is specified by the set of nodes V and the set of arcs A. Throughout
the thesis we assume that the graphs are finite, i.e., both n := |V | and m := |A| are
finite. Furthermore, the graphs are defined as directed graphs. The graphs do not
contain loops or parallels. Thus we can identify the arcs a = (u, v) ∈ A ⊆ V ×V without
any conflict.

By N−(v) := {u ∈ V : (u, v) ∈ A } we denote the (in-)neighborhood of node v, also
called predecessors. The in-degree of node v is g−(v) :=

∣∣N−(v)
∣∣. We define N+(v) :=

{u ∈ V : (v, u) ∈ A }, the out-neighborhood of node v, also called successors. Analo-
gously we have out-degree g+(v).

A directed path of length k is a node sequence (v0, . . . , vk) with (vi−1, vi) ∈ A for all
i = 1, . . . , k, and v1, . . . , vk distinct nodes. If we relax (vi−1, vi) ∈ A and also allow
(vi, vi−1) ∈ A we have an undirected path. For v0 = vk the path is a cycle. If a graph G
does not contain a directed cycle, we say it is acyclic. Acyclic graphs have a topological
sorting, i.e., for sorting v1, . . . , vn it holds for all arcs a ∈ A that a = (vi, vj) for some
i < j.

A graph is weakly connected if for any two nodes there is an undirected path connecting
them. A directed graph is a tree if it is weakly connected and contains m = n−1 arcs.

A tree is a rooted in-tree with root v if every other node in the graph has a directed
path to root v. In the in-tree we consider nodes with g−(v) = 0 as leaves.

Computational Complexity: [GJ79, Pap94, CSRL01]

We distinguish decision and function problems. Throughout the thesis we use the fol-
lowing classes.

P Decision problems solvable in polynomial time on a deterministic Turing machine

FP Function problems solvable in polynomial time on a deterministic Turing machine

NP Decision problems solvable in polynomial time on a non-deterministic Turing ma-
chine

NPO Optimization problems solvable in polynomial time on a non-deterministic Turing
machine

APX Problems of NPO that have polynomial time constant factor approximation algo-
rithms [APMS+99]

8



#P Counting problems: Counting the number of accepting paths of a non-deterministic
Turing machine [Val79]

As computational-machine model, we use the unit cost random-access machine. The
reductions provided in the thesis are Karp reductions. We denote A ∝ B if problem A
is reducible to problem B.

The satisfiability problem 3SAT is used for the reductions. We further assume that a
clause does not contain a complementary pair of literals.
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3 Product Pricing with Additive Influences

In this chapter we examine the basic additive influence model discussed in the introduc-
tion. We prove that in general it is NP-complete to find a price yielding a certain revenue.
Furthermore, we state an algorithm that solves the problem in pseudo-polynomial time.
We further investigate the problem for special instances and adapt the model to other
theories.

3.1 Definitions and Problems

Before we give the proper definitions for the Product Pricing with Additive Influences
model, we introduce the decision problem constituting this chapter. The exact way how
the selling process happens will be given shortly.

Problem 1: PPAI (Product Pricing with Additive Influences)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, and some revenue R̂ ∈ N.
Question: Is there a price π ∈ N such that its revenue R(π) ≥ R̂?

Throughout this dissertation we assume that the graph G = (V,A) is weakly connected
and simple, i.e., it does not contain loops or parallel arcs. Unless stated otherwise, the
number of nodes and arcs are denoted by n = |V | and m = |A|, respectively. A node
v ∈ V is designed to model the potential customer of the product we consider.

In this chapter we do not offer a return option for the product, a single customer only
needs one edition of it, and it will be available as well as functional for all eternity. This
mainly implies that we do never lose a customer. Therein lies a fundamental difference
to the basic Discrete Dynamical Systems [MR08] and to the perishable goods, temporary
services, and returnable products featured in Section 6.4.

Buying Decision: Prior to the existence of influences, every potential customer v ∈ V
has an initial value p(v) ∈ Z assigned to the product. If p(v) = 0 we loosely state that
node v has no initial value.

The arcs express the influence exerted by the nodes. Every node v ∈ V is influenced by
its predecessors N−(v) and influences its successors N+(v). Given a set C of current
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3 Product Pricing with Additive Influences

customers, i.e., the nodes that have bought the product already, the influenced value for
the particular influences w : A→ Z \ { 0 } is computed as follows:

pC(v) = p(v) +
∑

u∈C∩N−(v)
w(u, v)

We assume that a node buys deterministically for a price π once its influenced value is at
least as large as π, i.e., pC(v) ≥ π for some customer set C, provided it did not already
buy.

Selling Process: The whole selling process in an instance of PPAI proceeds in discrete,
synchronous selling rounds. Given a fixed price π, in the first round t = 1, all nodes in
the set

C1(π) := B1(π) := { v ∈ V : p∅(v) ≥ π } = { v ∈ V : p(v) ≥ π }

acquire the product. For round t > 1, we inductively let Ct−1(π) denote the previous
customers. Then, the set of buyers in round t is

Bt(π) := { v /∈ Ct−1(π) : pCt−1(π)(v) ≥ π }

and Ct = Ct−1 ∪̇ Bt. The overall revenue obtained is R(π) = π |C(π)|, where C(π) :=⋃
i≥1

Bi(π) is the set of nodes who buy the product in some round.

The prices, values, and influences are restricted to integers just to ensure a simple input
length. One could use rational and real numbers in actual computations without any
changes to the algorithms developed here.

One could imagine and interpret negative initial and influenced values, e.g., for a person
being paid for acquiring a product or contributing to the service himself. However, in
order to determine the maximum revenue in PPAI, we can restrict ourselves to non-
negative values of the sales price π. In every instance the price π = 0, i.e., giving
away the product for free, is superior to the non-positive revenue generated for negative
prices.

Apart from the fundamental PPAI problem we also consider some modifications from the
basic Instance or Question posed. Note that these notations are also applied to problems
in the following chapters for the corresponding problems therein.

Definition 3.1 (Variants of PPAI). For all of these problems the bound R̂ is obsolete
and therefore removed.

PPAIπ: Compute the revenue for a given price.

PPAIopt: The corresponding revenue maximization problem.

Note that the aforementioned problems are function problems.

Instead of the revenue bound we introduce a lower bound π̂ on a buying price.

12



3.2 Computing the Revenue

PPAI-v: Is there a price π ≥ π̂ such that for a given node v ∈ V we have v ∈ C(π)

PPAI-S: Is there a price π ≥ π̂ such that for a given subset S ⊆ V we have S ⊆ C(π)?

PPAI-i: Is there a price π ≥ π̂ such that for a given i ∈ {1, . . . , n} we have |C(π)| ≥ i?

Further outline of this chapter: The first problem posed is PPAIπ, namely how to
compute the revenue R(π) for a given price π (Section 3.2). We continue with pseudo-
polynomial algorithms (Section 3.3) and complexity results for the other problems (Sec-
tion 3.4).

Thereafter, we discuss the impact of different graph classes, in particular sign constrained
influences (Section 3.5), trees (Section 3.8) or other special graph classes (Section 3.6).

We conclude with relations inside our problems (Section 3.7) and the transition to es-
tablished models (Section 3.9).

3.2 Computing the Revenue

Before we start to maximize the revenue, we need a way to compute it for a fixed price.

Given the sequential nature of the selling rounds, the obvious approach is to evaluate
all selling rounds one after another.
Remark 3.2. If there is no buyer in some selling round t ∈ N, i.e., Bt(π) = ∅ and
Ct(π) = Ct−1(π), then the influenced values will not change for round t + 1. Hence,
there will be no new buyers in any round i > t. Since the sets Bt(π) form a partition of
C(π) ⊆ V , there can be at most n rounds with Bt(π) 6= ∅.

Also note that in case of π > pmax := max
v∈V

p(v), there will be no buyer in the first round
and hence, no customer at all.

Since we already know the revenue R(0) = 0 — our fail-safe revenue — for every instance,
the actual selling process occurs for prices π in the integer interval (0, pmax] and lasts at
most n rounds.

In Subsection 3.6.1 we show further bounds on the number of selling rounds.

Algorithm Sell implements the basic definitions of the selling process straightforward.
Since in the actual use of Sell we need the revenue as well as the customers, we output
both and assume, with some abuse of notation, we get the desired value.

Lemma 3.1. The algorithm Sell(G, π) computes the buyers C(π) and revenue R(π) of
a graph G and a fixed price π in O (m) time.

13



3 Product Pricing with Additive Influences

Algorithm 1: Sell(G, π)
Data: A graph G = (V,A) with weights p and w, and a price π.
Result: The set C(π) of customers and the revenue R(π).
Initialize: p′(v) = p(v) for v ∈ V , C = ∅, and B = { v ∈ V : p(v) ≥ π }.
while B 6= ∅ do

// Update influenced values
C = C ∪B
X = ∅ // nodes whose valuations change
for u ∈ B do

for v ∈ N+(u) \ C do
Update p′(v) = p′(v) + w(u, v).

X = X ∪
(
N+(u) \ C

)
// Compute B

B = ∅
for v ∈ X do

if p′(v) ≥ π then B = B ∪ {v}

return R(π) = π |C| and C(π) = C

Proof. The correctness follows immediately by the definition of the selling process.

The initialization takes O (n) time. To update the influenced values, we iterate over
the outgoing arcs of every customer exactly once, which takes O (m) time. And since
we only consider nodes in X for new buyers, we check every node at most g−(v) times,
again totalling to O (m) time.

Hence, and since the graphs are assumed to be weakly connected, O (m) time is needed
in total.

We end this section with the first results on complexity classes.

Corollary 3.2. PPAIπ ∈ FP and PPAI ∈ NP.

Likewise the problems PPAI-v, PPAI-S, and PPAI-i are in NP, the optimization variant
PPAIopt is in NPO.

Proof. As shown in Lemma 3.1 we can compute the revenue in polynomial time. Hence,
given a price π for an instance of PPAI, we can verify whether the required revenue
R(π) ≥ R̂ is met by a single call to Sell — in polynomial time.

Using the output C(π) we can solve the variations, i.e., check whether v ∈ C(π), S ⊆
C(π), or i ≤ |C(π)|.

14
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3.3 Pseudo-polynomial Algorithms

After we established that PPAI is in NP, we consider two increasingly apt algorithms
solving the optimization problem PPAIopt. Note that we always formulate algorithms
solving the optimization problem, whereas the complexity proofs are focused on the
decision problems. For this reason we will interchangeably claim that an algorithm
solves both and they are of the same complexity.

Algorithm 2: BruteSell(G)
Data: A graph G = (V,A) with weights p and w, and the maximum value pmax.
Result: An optimal (actually the lowest optimal) price π and revenue R(π).
Initialize: R∗ = 0, π∗ = 0 // temporary results
for π = 1, . . . , pmax do

if Sell(G, π) > R∗ then
R∗ = Sell(G, π), π∗ = π

return R∗ and π∗

Proposition 3.3. The brute-force method in Algorithm BruteSell is pseudo-polynomial
and solves PPAIopt in time O (mpmax).

Algorithm BruteSell is already running in pseudo-polynomial time, but we can see that
we have potential room for improvement — which in this case means time.

Consider some instance with integer euro values and weights. If instead of running
Algorithm Sell for every euro value, we compute the revenue for all cents in between,
the running time increases by a factor of 100. The optimal price though can only be
found at integer euro values, since in between the values of the potential buyers do not
change.

While in this case we can obviously get a speed-up, the question remains how to detect
“useless” computations all along. To answer this, we introduce the notion of fragments.

3.3.1 Fragments and the Frag Algorithm

Definition 3.3. For a round t ∈ {1, . . . , n}, a t-fragment is an inclusion-wise maximal
integer interval (a, b] := {x ∈ N : a < x ≤ b } ⊆ (0, pmax] of prices such that, for all
π, π′ ∈ (a, b] and all rounds i ≤ t, we have Bi(π) = Bi(π′).

We call Ct((a, b]) := Ct(b) the customers associated with t-fragment (a, b]. Depending
on the scarcity of either computation space or time we may assume that this set is
well-known.

15



3 Product Pricing with Additive Influences

By a temporary fragment we mean a t-fragment for some t < n. The n-fragments are
just called fragments. We denote by fragt(G) and frag(G) the collection of t-fragments
and fragments, respectively.

Remark 3.4. The sets fragt(G) and frag(G) are partitions of (0, pmax] and therefore
|fragG| ≤ pmax. Even more, the fragments in fragt+1(G) partition those of fragt(G).

If all fragments of a graph G are known, the optimal price can be computed by running
Sell once for the highest value in each fragment (in O (m · |frag(G)|) time). Thus, as
long as the complete set frag(G) is adressed, we can also identify it by a sorted list of
upper fragment endpoints.

In the remainder of this section we develop an algorithm that computes the fragments,
whilst keeping note of the corresponding revenue.

Hitters: Let (x, y] be a t-fragment and Ct the set of customers associated with it. We
partition V \ Ct into three sets:

L := { v ∈ V \ Ct : pCt(v) ≤ x },

H := { v ∈ V \ Ct : pCt(v) ∈ (x, y) }, and

O := { v ∈ V \ Ct : y ≤ pCt(v) }.

By the fact that the (t+ 1)-fragments are subsets of t-fragments, the t-fragment (x, y] is
a disjoint union of (t+ 1)-fragments. No node in L will buy in round t+ 1 for any price
π ∈ (x, y]. Similarly, any node in O buys in round t+ 1 for all prices π ∈ (x, y].

Finally, each hitter v ∈ H induces the endpoint of a (t + 1)-fragment within (x, y] at
pCt(v), where the decision of v whether to buy in round t+ 1 switches.

Hence, if s1 < · · · < sq is the sorted sequence of different influenced values from hitters,
then

{ (x = s0, s1], (s1, s2], . . . , (sq−1, sq], (sq, sq+1 = y] }

is the collection of (t + 1) -fragments that partition (x, y]. The maximum revenue
R∗((x, y]) := max

π∈(x,y]
R(π) that can be obtained by any price from the t-fragment (x, y]

then satisfies the recursion to (t+ 1)-fragments

R∗((x, y]) = max
i=1,...,q+1

R∗ ((si−1, si]) . (3.1)

Algorithm Frag uses this recursion and Equation (3.3.1) to compute the optimum revenue
for a given temporary fragment (x, y]. In order to save space, the algorithm uses a depth-
first technique to iterate over the temporary fragments into which (x, y] is ultimately
split.
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Algorithm 3: Frag(G, (x, y], C)
Data: A graph G = (V,A) with weights p and w, a temporary fragment (x, y] with its

previous customers C ⊆ V .
Result: The optimal overall revenue R∗ and its corresponding price π∗ ∈ (x, y].
Initialize: H = ∅, O = ∅, and P = ∅ // the next fragment endpoints in (x, y]

Set π∗ = y, R∗ = y |C|
// Compute H and P

if C 6= V then
Calculate influenced values pC(v) for all v ∈ V \ C.
for v ∈ V \ C do

if pC(v) ∈ (x, y) then H = H ∪ {v}, P = P ∪ {pC(v)}
if pC(v) ≥ y then O = O ∪ {v}, P = P ∪ {y}

// Initiate recursive calls
if P 6= ∅ then

Let s1 < · · · < s|P | be the sequence of prices in P and s0 = x.
for i = |P | , . . . , 1 do

Initialize Ci = ∅.
for v ∈ H do

if pC(v) ≥ si then Ci = Ci ∪ {v}
Ci = Ci ∪ C ∪O
(Ri, πi) = Frag(G, (si−1, si], Ci)
if Ri > R∗ then R∗ = Ri and π∗ = πi

return (R∗,π∗)

Theorem 3.4. Algorithm Frag correctly computes the optimum solution for PPAIopt

in O
(
|frag(G)|

(
nm+ n2 logn

))
time — with a call on the 0-fragment (0, pmax] and

customers C = ∅.

Proof. Correctness follows immediately from the validity of Equation (3.3.1).

To compute H and P , we need to add each influence at most once, thus O (m) time.
The sorting of P can be done in O (n logn) time. It suffices to sum the required time for
the computation of a single customer set, which takes O (n) time, since we can attribute
these costs to the succeeding calls on Frag. As the final comparison of revenues takes
O (n) time, we obtain the time-complexity of O (m+ n logn) for every call of Frag.

Since, for any t, the number of t-fragments is bounded by |fragt(G)| ≤ |frag(G)|, the
total number of recursive calls is in O (n |frag(G)|). This yields the claimed running
time.
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3 Product Pricing with Additive Influences

However, as we see in Section 3.4, |frag(G)| can be of exponential size, making this
algorithm exponential in the “worst case”. The “good cases” identified in this thesis, see
Sections 3.5 and 3.6, all rely on |frag(G)| = poly(n). For any of these, the algorithm
Frag is therefore already a polynomial time algorithm.

3.4 NP-completeness

In this section the proof of NP-completeness is developed. Since the main idea will be
reused in the course of this thesis, we portion the several aspects required to utilize them
later on.

In order to provide a reduction from 3SAT, which is known to be NP-complete [GJ79,
Pap94], we have to map the concept of variables and clauses to our PPAI problem. We
start by building a representation of variables in our additive influence setting.

3.4.1 Variable Gadget

An instance I of PPAI is given by a graph G = (V,A) with initial values p and influences
w. The only choice in I, corresponding to the choice of variable assignment, lies in the
various prices π ∈ (0, pmax]. In this subsection we establish a one-to-one correspondence
between price and variable assignment in an instance of 3SAT.

Now, given an instance J of 3SAT with ñ variables x1, . . . , xñ and m̃ clauses y1, . . . , xm̃
we have 2ñ different variable assignments, therefore we need at least 2ñ fragments in I
to cover them. Note that this implies pmax 6= poly(ñ).

Remark 3.5. For the sake of simplicity, we assume for J that every variable is con-
tained in at least one clause, as otherwise it can be deleted, so in particularñ ≤ 3m̃.
Furthermore, we have at most

m̃ ≤
(

2ñ
3

)
<

4
3 · ñ

3

potentially different clauses. Altogether this polynomially limits ñ and m̃ together to

ñ ≤ 3m̃ < 4ñ3.

Gadget 3.6 (Variable Graph).
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3.4 NP-completeness

In the gadget graph Gx = (V x, Ax), we set the
nodes V x = {t1, . . . , t2ñ, x1, . . . , xñ, x1, . . . , xñ} with
p(t1) = 2ñ+1 − 1 and p(v) = 0 for all other v ∈
V \ {t1}.
We define the arc set Ax implicitly by setting the
influences as follows:

w(ti, ti+1) = 2ñ+1 − 1 i = 1, . . . , 2ñ− 1
w(t2j−1, xj) = 2ñ − 1 + 2ñ−j j = 1, . . . , ñ
w(xi, xj) = 2ñ−i 1 ≤ i < j ≤ ñ
w(t2i, xi) = 2ñ+1 − 1 i = 1, . . . , ñ
w(xi, xi) = −(2ñ+1 − 1) i = 1, . . . , ñ

The variable graph Gx = (V x, Ax) contains n = 4ñ
nodes and m = 5ñ − 1 + ñ·(ñ−1)

2 arcs. Also includ-
ing the weights, the encoding length of graph Gx is
O
(
ñ2
)
— polynomial in the encoding length of its

original 3SAT instance.

x1t1

x1t2

x2t3

x2t4

...
...

...
...

xñt2ñ−1

xñt2ñ

Figure 3.1: Variable Graph Gx

Lemma 3.5. The graph Gx constructed in Gadget 3.6 has at least 2n/4 = 2ñ fragments.

In particular, for the set of prices Π :=
{

2ñ, . . . , 2ñ+1 − 1
}
every customer subset C(π)∩

{x1, . . . , xñ } occurs and the one-to-one correspondence between assignment and price is
given by a simple bijective function.

Proof. We restrict this proof, and the further use of the given graph, to the set of prices
Π. For PPAI we give the reasoning in the proof of Theorem 3.9, for the other problems
we just set π̂ such that Π = { π̂, . . . , pmax }.

For any price π ∈ Π the only purchase in the first round is by t1. Note that thereafter the
other time nodes t2, . . . , t2ñ buy one after another. Every variable node (positive literal)
xi ∈ {x1, . . . , xñ } has exactly one positive influence, namely w(t2i, xi) = 2ñ+1 − 1.
Hence, if at all, xi can only buy one round after t2i did — in round 2i+ 1.

A variable node (negative literals) xj ∈ {x2, . . . , xñ } has potentially more positive in-
fluences, yet without the influence of t2j−1 the influenced value does not exceed

2ñ−1 + · · ·+ 2ñ−(j−1) < 2ñ

and, hence, does not buy for any price in Π. The influence from t2j−1 itself is the latest,
thus xj can only buy one round after it — in round 2j.

Now, after we established the exact (potential) buying round of each node, we determine
their buying prices by induction.

Before we state the actual hypothesis, we start with the induction basis.
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3 Product Pricing with Additive Influences

The node x1 buys for all prices in
{

2ñ, . . . , 2ñ + 2ñ−1 − 1
}
. In binary representation

this is the set
{

100 · · · 0
ñ bits

, . . . , 101 · · · 1
ñ bits

}
, namely all prices that start with a 1, followed

by a 0 in the next digit. Node x1 either has influenced value 0, in case x1 bought before,
or 2ñ+1 − 1 otherwise. Hence, x1 buys exactly for the other half of prices in Π, those
with 1 at the second digit instead — {110 · · · 02, . . . , 111 · · · 12}.

The influence of x1 on the following nodes x2, . . . , xñ is 2ñ−1 = 010 · · · 02 and is exerted
exactly if the price features 1 on the same digit.

We show the following property by induction on k.

Property 3.4.1. Node xk buys if and only if the (k + 1)-th digit from the left of the
price π ∈ Π in binary representation is 0, otherwise xk buys.

Proof. Assume that, for a k < n, the nodes x1, . . . , xk and their counterparts x1, . . . , xk
bought as claimed and consider node xk+1 for which whether to buy or not is decided
in round 2k + 2. The node is influenced from t2k+1 by

1 0 · · · 001 · · · 1
k+2-th digit

.

Adding the potential influences from nodes x1, . . . , xk, i.e., for the digits to the left
adding 1 if and only if the price has the digit 1 as well, we get an influenced value
π(1) · · ·π(k+1)01 · · · 12 of xk+1 that shares the first k + 1 digits with π. Thus xk+1 buys
precisely as claimed, if and only if the (k + 2)-th digit of π is actually 0.

All in all, we produced a one-to-one correspondence of prices π ∈ Π and customer sets
{x1, . . . , xñ} ∩ C(π), whereof we have 2ñ many.

Corollary 3.6. Graph Gx has a number of fragments exponential in the number of
nodes.

Even though we constructed a plethora of fragments, their regularity gives us an easy
solution to the optimization problem — price pmax with 3ñmany customers is optimal.

To add some complexity, we extend the graph with a clause gadget corresponding to
J .
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3.4.2 Clause Gadget

Gadget 3.7 (Clause extension). Let V y = {x1, . . . , xñ, x1, . . . , xñ, y1, . . . , ym̃}, in which
the variable nodes are buying according to the construction in Gadget 3.6. The initial
values of the newly introduced clause nodes y1, . . . , ym̃ are set to 0.

We again define Ay implicitly by setting the weights as follows according to instance J
of 3SAT:

w(xi, yj) = 2ñ+1 − 1 if xi ∈ yj
w(xi, yj) = 2ñ+1 − 1 if xi ∈ yj

Additionally to the recycled variable nodes and influences of Gx, we set Gy = (V x ∪
V y, Ax∪Ay), the extended graph with n = 4ñ+ m̃ nodes and m = 3m̃+5ñ−1+ ñ·(ñ−1)

2
arcs. Again, the encoding length of Gy is polynomial in the size of J .
Property 3.4.2. A clause node yi buys for some price π ∈ Π if and only if at least one
of its corresponding variable nodes bought.

Proof. By definition the initial value is 0 and the node yi is influenced exactly by its
literals { l1, l2, l3 } =: yi. As every single influence is already raising the influenced value
to pmax, the clause node buys as claimed.

With these two gadgets combined, we can already prove our first NP-completeness re-
sult.
Lemma 3.7. The problem PPAI-S is NP-complete.

Proof. In Corollary 3.2 we already showed that PPAI-S is in NP.

Given an instance J of 3SAT with variables x1, . . . , xñ and clauses y1, . . . , ym̃, we con-
struct our instance I according to Gadgets 3.6 and 3.7. In total, the PPAI-S instance
I is defined by Gy, the price bound π̂ := 2ñ, and the subset S := { y1, . . . , ym̃ }. The
transformation is indeed of polynomial size and therefore we are left to show that the
output of I equals that of J .

We assume J is true, i.e., there is a valid variable assignment, which we can transform
to a price π ∈ Π. By Properties 3.4.1 and 3.4.2 we know that the respective variable
nodes buy for this price, leading to every clause node doing it as well and I is accordingly
true.

Assume the other way, there is a price π ≥ π̂, here actually also π ∈ Π, satisfying I.
Again, by the same properties, we can transform the price to a variable assignment. As
in I every clause node bought, meaning it was influenced, we know that in J every
clause contains a literal which is set to true.

We extend this result and the graph Gy by one extra node in the next subsection.
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3 Product Pricing with Additive Influences

3.4.3 Collector node

Gadget 3.8 (Clause collection extension). We add a single collector node z+ with initial
value p(z+) = (1 − m̃) · (2ñ+1 − 1) to the graph Gy of Gadget 3.7. The new node is
influenced by all variable nodes as follows:

w(yi, z+) = 2ñ+1 − 1 for i = 1, . . . , m̃

This new extended gadget is named Gz+ .

Lemma 3.8. The problem PPAI-v is NP-complete.

Proof. The newly introduced node z+ in Gz+ has an influenced value of 2ñ+1−1 = pmax
if and only if it is influenced by every single clause node.

If one mere clause node does not buy, corresponding to the clause being not fulfilled,
the influenced value is already down to 0 < π̂ := 2ñ. This establishes the equivalence of
both problems.

The next gadget completes this section and finally provides the polynomial time trans-
formation to PPAI.

3.4.4 Revenue Gadget

Gadget 3.9 (Revenue extension). To the graph Gz+ of Gadget 3.8, we add a large
amount of revenue nodes z1, . . . , zM with initial value 0 and a supplementary negative
node z− with initial value p(z−) = 2ñ − 1.

The revenue nodes are influenced by z+,

w(z+, zi) = 2ñ+1 − 1 for i = 1, . . . ,M,

whereas the negative node itself may influence z+ by w(z−, z+) = −(2ñ+1 − 1).

In total, this is graph G illustrated in Figure 3.2 (bold nodes have non-zero initial value,
unlabeled arcs have influence ±pmax, dashed arcs have negative value), consisting of
n = 4ñ+ m̃+ 2 +M nodes and m = 5ñ+ 4m̃+ ñ·(ñ−1)

2 +M arcs. The encoding length
of G depends on the size of M . To ensure a polynomial size we require M = poly(ñ).

Note that we have not yet specified the actual value of M , as we need to devise two
individual values for the remaining proofs of this section.

Theorem 3.9. The problem PPAI is NP-complete.
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x1

t1pmax

x1

t2

x2

t3

x2

t4

xñ

tñ−1

xñ

t2ñ

z−2ñ − 1 y1 y2 ym̃

z+(1−m) · pmax

z1 z2 z3 zM−1 zM

. . . . . .

. . .

. . .

. . .

. . .

2ñ − 1 + 2ñ−1

2ñ−1

2ñ−1

2ñ − 1 + 2ñ−2

2ñ−2

2ñ − 1 + 2ñ−ñ

2ñ−2

2ñ−i

Figure 3.2: Reduction Graph G for 3SAT to PPAI
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Proof. The trick of this proof is already specified by the revenue extension — “increase”
the amount of purchases of a single node with the introduction of loyal followers.

We want our instance to reach a certain revenue if and only if node z+ buys. To get
that right, we need to set R̂ and M correctly.

At first, assume that z+ is not buying. Therefore, the nodes z1, . . . , zM are not influenced
and neither buys. The maximum possible revenue R′ in such an instance would be for
the maximum price and a customer set consisting of all remaining nodes:

R′ ≤ (2ñ+1 − 1) · (4ñ+ m̃+ 1) < 2 · 2ñ · (4ñ+ m̃+ 1) =: R̂

Through the choice of R̂, we already require a purchase of z+ for a positive instance.

The negative node z− ensures what was previously part of the problem instance, namely
that only prices π ≥ 2ñ = π̂ are eligible. If the price is set lower, there is no way the
collector node z+ can have a positive influenced value, which implies we can not sell
to the revenue nodes. Remark that the modifications from Gz+ to G did not change
anything about the instance of PPAI-v: Does z+ buy for any price π ≥ 2ñ?

To find a lower bound on the revenue of an instance in which z+ is buying, we need the
lowest possible price and the fewest buyers any eligible price π ∈ Π can have.

Considering any price π ∈ Π fulfilling the instance of PPAI-v, we know that,

• the time nodes buy anyway (2ñ many),

• either xi or xi buy (ñ many),

• the clause nodes buy (m̃ many),

• the negative node does not buy,

• the collector node obviously buys, and

• the revenue nodes follow it (M many).

This totals to 3ñ+m̃+1+M buyers, while the minimum price is 2ñ. ForM := 5ñ+m̃+1,
the product of these is exactly R̂. Therefore, every price π ≥ π̂, for which the collector
node z+ buys, yields the desired revenue. This means that the positive instances of
PPAI-v and PPAI coincide on this graph.

As M = poly(n) we also did not overly inflate the size of the instance — it is still
polynomial in the size of the 3SAT instance I — and thus the proof concludes.

Corollary 3.10. Unless P = NP, there is no polynomial time r-approximate algorithm
for PPAIopt for any r = O (1).
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Proof. In the proof of Theorem 3.9, we tried to get a small revenue gap between the
positive and negative instances of the underlying PPAI-v. Thereby we did not need a
large amount of revenue nodes.

Following the same technique, we now set M = ñ(8r− 3) + m̃(2r− 1) + (2r− 1) instead.
Note that this is still polynomial in n for our choice of r = O (1). The buying behavior
of the nodes in G did not change, but the minimum revenue for an instance with z+
purchasing did increase to

2ñ · (3ñ+ m̃+ 1 +M) = 2ñ · 2r(4ñ+ m̃+ 1) = rR̂.

Assume we have a polynomial time approximation algorithm ALG with approximation
ratio r. If there is a price π∗ generating a revenue of r · R̂, which would need to be a
price with z+ ∈ C(π∗), the algorithm ALG finds a price that generates a revenue of at
least R̂, which is still only possible if z+ ∈ C(π∗) buys.

Thus it would actually solve the underlying instance J of 3SAT in polynomial time.

Remark 3.10 (Summary). Until now we concluded the following complexities:

• PPAIπ ∈ FP.

• PPAI-S, PPAI-v, and PPAI are NP-complete. To be more precise, they are weakly
NP-complete, since Algorithm Frag runs in pseudo-polynomial time.

• Unless P = NP, PPAIopt /∈ APX.

The reductions in this section are all based on the construction of G and its preliminary
stages. In Section 3.6 the remaining complexity proof for PPAI-i is presented, when
the interconnections of our different problems for restricted graph classes are formally
investigated.

3.5 Positive or Negative Influences

In our general model the influences can be a mix of positive and negative (and nonexis-
tent) relations. In possible applications we may just ignore one type of influences.

If some product can easily be shared with friends and neighbors (Public Goods [SB75,
Led97]) and there is (little to) no benefit in having a multitude of the same product in
ones neighborhood, the value of a potential buyer is only decreasing with every lender
around, e.g. a lawn-mower you are only rarely using. Thus, in our model, the influences
are negative respectively.

But if some product or service is needed to participate in a specific social activity which
is increasingly more fun the more join in, e.g. football gear, the value of a potential
buyer is only increasing and, hence, the influences are modeled positive.
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Definition 3.11. For a graph G = (V,A) and influences w, we set G+ = (V,A+) with
the positive influences A+ = { a ∈ A : w(a) > 0 }. We say G = (V,A) with influences w
is positive if G+ = G.

Analogously we set G− for the negative influences. We set G0 = (V, ∅) and name it the
unaffected graph. Note that we do not restrict the initial values herein.

We start with the easier cases — the negative graphs.
Remark 3.12. For a negative graph G, the selling stops after the first round, since
pC(v) ≤ p(v) for every v ∈ V and those v /∈ B1(π), have initial value p(v) < π. Thus
they are not persuaded by any influence to buy. In fact, we can just assume there are
no influences at all and use G0 instead of G.

Proposition 3.11. A negative or unaffected graph G has at most n fragments. We can
solve PPAI in O (n logn) time for such a graph.

Proof. As stated in the previous remark we have no purchases after the first round. Thus
the fragments are bounded by the initial values and it suffices to run Sell for every initial
value. This already gives us an algorithm that runs in O

(
n2
)
time.

Instead we can sort the values p(v1) ≤ · · · ≤ p(vn) in O (n logn) time. We know that for
π = p(vi) the nodes vi, . . . , vn, exactly n− i+ 1 many, buy. Hence, we can compute the
revenues p(v1) · n, . . . , p(vn) · 1 and find the maximum in O (n) time. In total this yields
the claimed running time of O (n logn).

We can mix positive and negative influences with caution.
Remark 3.13. If some node v ∈ V has only negative influences, we can still apply
Remark 3.12 and remove its neighbors N−(v). So, if every node in graph G has either
only positive or only negative influences, we can compute the revenue for G+ instead of
G itself.

This already completes the results on negative graphs in this chapter. In the upcoming
chapters the results on negative graphs are more elaborate and complex since we can
not apply Remark 3.12 anymore.

So in the remainder of this section, we consider only positive influences.

Definition 3.14. For a node v ∈ V , we define P (v) := {π ∈ (0, pmax] : v ∈ C(π) } to be
the set of buying prices of v.

More detailed, for every v ∈ V and rounds t = 1, . . . , n, we set

Pt(v) := {π : v ∈ Bt(π) } and P≤t(v) := {π : v ∈ Ct(π) } .

The following lemma states that, in contrast to our results for arbitrary influences, higher
prices generate fewer buyers.

26



3.5 Positive or Negative Influences

Lemma 3.12. In a positive graph G = (V,A) with initial values p and influences w, it
holds that for every node v ∈ V and all rounds t = 1, . . . , n, the set P≤t(v) is an integer
interval.

To be more precise, there is a value p∗t (v) := max
π∈P≤t(v)

π such that P≤t(v) = (0, p∗t (v)].

Proof. We show the statement by induction on t. Starting with t = 1, we immediately
have P≤1(v) = (0, p(v)] for all nodes v ∈ V .

Now assume that the claim holds for all buying sets in some round t. Thereby it follows
that C(π) ⊇ C(π′) for all prices π ≤ π′, since every v ∈ C(π′) buys for the lower price
π.

For any particular node v ∈ V and the current round t we define the map

f : (p∗t (v), pmax]→ Z, π 7→ pCt(π)(v).

The map f denotes the influenced value of v on the prices at which it did not buy yet.
Note that by definition node v buys in round t+1 for price π if and only if f(π)−π ≥ 0.

The function f is non-increasing, since the potential positive influences from N−(v) are
only fading with increasing prices. The composed function f(π)−π is actually decreasing,
so there is at most one root x of the function. It follows that Pt+1(v) = (p∗t (v), x] and
in case there is no root either Pt+1(v) = ∅ or Pt+1(v) = (p∗t (v), pmax]. In every case, it
holds that P≤t+1(v) is again an integer interval.

Corollary 3.13. For all positive graphs G the amount of fragments is bounded by
|frag(G)| ≤ n2. Hence, Algorithm Frag solves PPAIopt in time O

(
n3 · (m+ n logn)

)
.

Proof. Consider an arbitrary t-fragment (x, y]. Then, by definition, there can be no
p∗t (v) with x < p∗t (v) < y as v would otherwise be a hitter in round t. Hence, fragments
can start and end only at values p∗t′(v) for t′ ≤ t, of which there are at most tn ≤ n2

many. The running time follows from Theorem 3.4.

By the above corollary, we already have a polynomial time algorithm for PPAIopt on
positive graphs. We continue for a faster algorithm.
Remark 3.15. For the sake of a shorter notation, let p∗(v) := p∗n(v) denote the maximum
price at which node v would buy in any round. The maximum revenue R∗ then satisfies
R∗ = max

v∈V
p∗(v) · |C(p∗(v))|.

Note that this equals the revenue of a graph G0 with initial values p(v) := p∗(v) for
all nodes v ∈ V . So, as previously shown in Property 3.11, given these values we can
compute the revenue in O (n logn) time.
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Algorithm 4: FixHighest(G)
Data: A graph G = (V,A) with weights p and positive w.
Result: The optimal revenue R∗ with corresponding price π∗.
Initialize: Revenue R∗ = 0, values p′(v) = p(v) for all v ∈ V , and F = ∅.
// F for fixed nodes
while V \ F 6= ∅ do

Compute π′ = max
v∈V \F

p′(v) and N =
{
v ∈ V \ F : p′(v) = π′

}
.

F = F ∪N
if π′ · |F | > R∗ then π∗ = π′ and R∗ = π′ · |F |
Update p′(v) = min

{
pF (v), π′

}
for all v ∈ V \ F .

return R∗ and π∗

Algorithm FixHighest computes the values p∗(v) in its run and outputs the optimum
revenue price π∗ and revenue R∗. The idea is to fix the highest values p∗(v) first,
starting with some p(v) = pmax = p∗(v).

Theorem 3.14. For positive graphs Algorithm FixHighest correctly solve PPAIopt in
O (m+ n logn) time.

Proof. Denote by Fi, Ni, π′i, and p′i(v) the values of algorithm FixHighest at the end of
iteration i of the while-loop.

Correctness: By definition of N , the current nodes with highest influenced value, it
holds that Ni 6= ∅ for each round until every node is fixed. Hence, apart from the actual
revenue computed, we need to show that in every round i, the newly fixed nodes v ∈ Ni

satisfy p∗(v) = p′i−1(v), i.e. p∗(v) = π′i(v).

The highest price π′ is non-increasing over the rounds, as

π′i+1 = max
v∈V \Fi

min
{
pFi(v), π′i

}
≥ π′i.

In contrast, the influenced values p′(v) are non-decreasing, since as long as they are
updated it holds

p′i(v) ≤ pFi ≤ pFi+1 and p′i(v) ≤ π′i+1,

therefore it is also less or equal to min
{
pFi+1(v), π′i+1

}
= p′i+1. From Lemma 3.12 we

conclude that C(π′i) ⊆ C(π′i+1).

Property 3.5.1. For all iterations i, the following conditions hold:

1. Fi ⊆ C(π′i) and

2. p′i(v) ≤ p∗(v) for all v ∈ V \ Fi, i.e., v ∈ C(p′i(v)).
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3.5 Positive or Negative Influences

Proof. Note that the value p′i−1(v) is not updated anymore if v ∈ Ni, thus it suffices to
observe the nodes up to the iteration before they get fixed.

In iteration i = 1, we have π′1 = pmax. Thus F1 = N1 = { v ∈ V : p(v) = pmax } ⊆
C(pmax), (a subset of) the nodes that buy for any price π ∈ (0, pmax]. Thereupon
their influence is always present and the other nodes v ∈ V \ F1 definitely buy for
p′1(v) = min { pmax, pF1(v) }. Thus the induction basis is concluded.

We now assume that the two conditions hold at the end of iteration i and show they
still hold after iteration i+ 1. As Fi ⊆ C(π′i) by hypothesis, we know that Fi ⊆ C(π′i) ⊆
C(π′i+1).

Since Fi+1 = Fi ∪Ni+1, we yet need Ni+1 ⊆ C(π′i+1). For nodes v ∈ Ni+1 it holds that
p′i(v) = π′i+1 and p′i(v) ≤ p∗(v) by induction hypothesis. By Lemma 3.12 it follows that
v indeed buys for π′i+1.

In round i + 1 we update the values p′i+1(v) = min
{
pFi+1(v), π

′
i+1

}
. Since we already

showed that all nodes in Fi+1 buy for this value and the influenced value of v is at least
p′i+1(v), it also follows that v ∈ C(π′i(v)).

Property 3.5.2. When the price π′ drops in round i + 1, i.e., π′i+1 < π′i, we have
Fi = C(π′i)

Proof. Assume there is some v ∈ C(π′i) \ Fi. Then, for the plain selling of the product
for price π′i there is some round t such that v ∈ Bt(π′i). Either v is influenced by some
other node u ∈ C(π′i) \ Fi from an earlier round — which we can subsequently examine
— or it contradicts the assumption.

So after all the nodes are fixed to their value p∗(v). The computation of R∗ is then just
keeping tabs of the best possible revenue.

Runtime: We can implement the algorithm using Fibonacci heaps [FT87]. Since our
values p′ are increasing, we use a max-heap to store the values p′(v).

Starting with the initialization we do n insert operations. Computing π′ and N is
a delete-max operation. And updating the values p′, i.e., applying increase-key is
triggered once by each arc — m times.

In total this yields us the claimed complexity, the same as for Dijkstra’s algorithm with
Fibonacci heaps
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3 Product Pricing with Additive Influences

3.6 PPAI on Special Graph Classes

With the restriction on influences, we got our first “benevolent” instances. In this chapter
we devise bounds on |frag(G)| for more special graph classes.

Recall the notion of fragments. Given a graph G — and implicitly its initial values and
weights — we denote by frag(G) the collection of fragments on this graph. For clarity
and a shorter notation we now define frag(n).

Definition 3.16. Given any class of graphs

Gn = {G = (V,A), w, p : |V | = n and any common property } ,

we set, in context of Gn, the value frag(n) = max
G∈Gn

|frag(G)|.

Likewise, we denote the amount of additional fragment endpoints from round t− 1 to t
with fragt(n).

Remark 3.17. In the previous sections we already showed

• the arbitrary graph class contains Gadget 3.6 and therefore frag(n) ≥ 2n/4 ,

• negative or unaffected graphs have frag(n) = n, and

• positive graphs have at most frag(n) ≤ n2.

3.6.1 Round Bound

Definition 3.18. For some t-fragment (x, y] with customers Ct, the complement V \Ct
is the set of active nodes.

The activity sequence denotes the amount of active nodes for the entire collection fragt(G)
of t-fragments.

Theorem 3.15. For the class of arbitrary graphs, we have in any round t = 1, . . . , n at

most fragt(n) ≤
(
n

t

)
new endpoints for our temporary fragments. Altogether it follows

that frag(n) ≤ 2n − 1.

Proof. Assume for now that we have a graph G with the maximum amount of fragments.

In the first round we normally start with the 0-fragment (0, pmax]. For the sake of
simplicity and without negative consequences, we instead use (0,∞] in this proof. Note
that this inactual “proto”-fragment is consequently not summarized in the claim of this
Lemma.

Previous to round 1 no node bought, which means we still have n = |V \ ∅| potential
buyers left — the active nodes. We denote this by the one-element-sequence a1 = (n)
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3.6 PPAI on Special Graph Classes

We now follow the initial call of Frag(G, (0,∞], ∅). At the beginning we have the
(un)influenced values p∅(v) for all v ∈ V . The 1-fragments are created by splitting
(0,∞] through the various hitters H ⊆ V \ C0 = V .

We assume now, and in the following, that for every subsequent call of Frag, we always
have the maximum amount of hitters (H = V \ C) and furthermore, their values are
distinct (|H| = |P |).

Thus, as claimed, we can create n ≤
(
n

1

)
new fragment endpoints in the first round.

For the initial values this implies the increasing sequence 0 < p(v1) < · · · < p(vn).

In contrast to the original algorithm Frag that used a depth-first technique, in this proof
we inspect all calls for the subsequent rounds at the same time. For the second round
these are namely

Frag(G, (0, p(v1)], V )
Frag(G, (p(v1), p(v2)], V \ {v1}),
Frag(G, (p(v2), p(v3)], V \ {v1, v2}),
...
Frag(G, (p(vn−1, p(vn)], {vn})

Note that we did not call Frag(G, (p(vn),∞], ∅) as the algorithm already excludes any
fragment without a buyer in the current round. Altogether we set a2 = (0, 1, 2, . . . , n−
1) as our new activity sequence. The first entry, as well as the corresponding call
Frag(G, (0, p(v1)], V ), is actually superfluous. The following elementary Property 3.6.1
justifies along the way, that we can delete all 0 entries in the activity sequences.

Property 3.6.1. Given an activity sequence at = (at1, . . . , atα) with ati > 0 for all

i = 1, . . . , α, we can have at most
α∑
i=1

ati hits in round t. In the maximum case, the

activity sequence of the next round is as follows:

at+1 =
(
0, 1, . . . , at1 − 1, 0, 1, . . . , at2 − 1, . . . , 0, 1, . . . , atα − 1

)
An illustration of the first two rounds is given in Figure 3.3.

By the way, as already illustrated in the Figure, using Property 3.6.1 on a2 yields us the

bound of 1 + · · ·+ n− 1 =
(
n

2

)
≤ frag2(n).

Proof. The total amount of hits is again bounded by the total amount of active nodes.

Regarding the next activity sequence at+1, we conclude Algorithm Frag again. For a
single fragment with a′ active nodes we generate the canonical a′ hits. In preparation
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3 Product Pricing with Additive Influences

of the subsequent calls we compute the customer sets Ci of decreasing sizes n, . . . , n −
(a′ − 1), whereas the amount of active nodes increases as 0, . . . , a′ − 1.

Hence, for the entirety of current fragments we just sum the amount of hits and con-
catenate the single activity sequences.

round 1:
≤
(n

1
)
hits

round 2:
≤
(n

2
)
hits

0 active
1 active

2 active n− 2 active
n− 1 active

0 active
0, 0 active

0, 1, 0 active 0, 1, . . . , n− 3, 0 active
0, 1, . . . , n− 2, 0 active

0 p(v1) p(v2) p(v3) p(vn−2) p(vn−1)p(vn)

Figure 3.3: Number of potential hits

For the analysis of the activity sequences, the correct element order is not needed,
but rather the quantity a certain amount of active nodes is there. Let the amount
sequence be r(a) = (r1(a), . . . , rn(a)), with rj(a) denoting how many elements ai = j
the sequence contains. In this notation we start for a1 = (n) with r(a1) = (0, . . . , 0, 1)
and r(a2) = (1, . . . , 1, 0)

Property 3.6.2. For a round t and sequence r(at) =: rt =
(
rt1, . . . , r

t
n

)
, the sequence

r
(
at+1

)
=: rt+1 =

(
rt+1

1 , . . . , rt+1
n

)
satisfies:

rt+1
i = rti+1 + · · ·+ rtn for i = 1, . . . , n− 1

The maximum amount sequences are as follows:

rt =
((

n− 2
t− 2

)
,

(
n− 3
t− 2

)
, . . . ,

(
t− 2
t− 2

)
, 0, . . . , 0

)
for t = 3, . . . , n

Proof. As previously discussed, a fragment with ai active nodes may spawn one fragment
for each 1, . . . , ai− 1. So to compute the amount of fragments rt+1

i , we need to sum the
amount of bigger fragments of the previous round.

We show again by induction, given that round k is properly described by rk as stated,
the values of rk are also correct.

For this property it remains to show for all j = 1, . . . , n− t that

rk+1
j =

(
n− j − 1
k − 2

)
=
(
n− j − 2
k − 2

)
+ · · ·+

(
k − 2
k − 2

)
.
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3.6 PPAI on Special Graph Classes

With the series (cf. [BS79])

a∑
c=0

(
c

d

)(
a− c
b− d

)
=
(
a+ 1
b+ 1

)
, (3.2)

which holds for values 0 ≤ d ≤ b ≤ a, and with d = 0 we know(
n− j − 1
k − 2

)
=

n−j−2∑
c=0

(
n− j − 2− c

k − 2

)
=
(
n− j − 2
k − 2

)
+ · · ·+

(
k − 2
k − 2

)
.

This concludes the proof of Property 3.6.2.

Finally we can show the claim by summing the potential hits
n∑
i=1

i · rti . Following by the

last property this is:

n∑
i=1

i · rti =
n∑
i=1

i ·
(
n− 1− i
t− 2

)

Again, with the Formula (3.6.1), now for d = 1, we conclude

n−1∑
i=1

i ·
(
n− 1− i
t− 2

)
=
(
n

t

)
.

With Theorem 3.15 we established a first upper bound on the amount of fragments for
arbitrary graphs. Yet, the assumption that on every fragment every active node hits as
claimed is quite generous. And it requires additional characteristics, as longevity.

Definition 3.19. Given a graph G, we define the decay as the last round in which v
buys, i.e., decay(v) := max { t : v ∈ Bt(π) for some π ∈ (0, pmax] }.

With decay(G) := max
v∈V

decay(v) we denote the last round in which any purchase occurs.

Note that in Remark 3.2 we already established decay(G) ≤ n.

By Theorem 3.15 we conclude:
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3 Product Pricing with Additive Influences

Corollary 3.16. For a graph G there can be at most

|frag(G)| ≤
decay(G)∑
i=1

(
n

i

)
≤ decay(G) · ndecay(G)

fragments.

So given a constant decay, we would have at most a polynomial amount of fragments
and thus a polynomial algorithm with Frag.

Proposition 3.17. A node v ∈ V can only buy in round t > 2 for a price π if some
u ∈ N−(v) ∩Bt−1(π) has positive influence w(u, v) > 0.

Proof. For v to buy in round t, we require that it did not do so before, in particular, in
round t− 1 we have pCt−2(π)(v) < π. Yet π ≤ pCt−1(π)(v), therefore∑

u∈Bt−1(π)∩N−(v)
w(u, v) > 0

and at least one of those influences was positive.

From this property we devise a bound on decay(G).

Corollary 3.18. Let L(v) be the longest path — meaning path with most arcs — to v
with exclusively positive weighted arcs and |L(G)| := max

v∈V
|L(v)|. We have decay(v) ≤

|L(v)|+ 1 and equally decay(G) ≤ |L(G)|+ 1.

With Corollary 3.16 we have the bound frag(G) ≤ nL(G)+2.

The problem of finding a longest path in a graph, in this case G+, is NP-hard [GJ79].

3.6.2 Greedy Hitting

Given the round bound from the last subsection, the question remains whether getting
maximum hits in every round is achievable at all.

In this subsection we show that the fully greedy approach of getting as much hits as
possible reaches its decline already after three rounds.

Lemma 3.19. Given a graph G with n ≥ 4, we can not achieve

|frag4(G)| = n+
(
n

2

)
+
(
n

3

)
+
(
n

4

)
.
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3.6 PPAI on Special Graph Classes

Proof. At first, we need distinct initial values p(v), as otherwise we can not even achieve
the maximum of n hits in the first round. Let p(v1) < · · · < p(vn) be the sorted
sequence of those. In the second round we have amongst others the three 1-fragments
(p(v1), p(v2)], (p(v2), p(v3)], (p(v3), p(v4)]. On all these fragments we already have V \C ⊆
{v1, v2, v3} as the last possible active nodes. Without loss of generality we can say that
the nodes are not influenced by v5, . . . , vn and subsume all influences to w(v4, v), since
on these fragments, these nodes buy collectively.

We show for v ∈ {v1, . . . , v3} that the full amount of hits in the first four rounds can not
even be achieved amongst those fragments. Assume for the sake of contradiction that it
is possible.

The node v1 is active on all 1-fragments. For v1 to hit everywhere, the influenced value
has to increase for higher fragments. This implies that

p(v1) < p(v1) +
n∑
i=2

w(vi, v1) < p(v2) < p(v1) +
n∑
i=3

w(vi, v1)

< p(v3) < p(v1) +
n∑
i=4

w(vi, v1) < p(v4).

Thus, it directly follows w(v4, v1) > 0 and w(v3, v1), w(v2, v1) < 0. After the second
round the influenced value of v1 can not increase. So we avoid v1 being an active node
by having v1 providing the highest hit in all three fragments.

We can conclude this incomplete order of values, for “?” as representation of v2 and v3.

p(v1)
< p(v1) + w(v4, v1) + w(v3, v1) + w(v2, v1) = pV (v1) (3.3)
< p(v2)
< p(v2) + w(v4, v2) + w(v3, v2)
< p(v2) + w(v4, v2) + w(v3, v2) + w(v1, v2) = pV (v2) (3.4)

< p(v1) + w(v4, v1) + w(v3, v1)
< p(v3)
< p(?) + w(v4, x)
< p(?) + w(v4, ?) + w(v1, ?) + w(?, ?) = pV (?) (3.5)

< p(?) + w(v4, ?)
< p(?) + w(v4, ?) + w(v1, ?)
< p(?) + w(v4, ?) + w(v1, ?) + w(?, ?) = pV (?) (3.6)

< p(?) + w(v4, ?) + w(v1, ?)
< p(v1) + w(v4, v1)
< p(v4)
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3 Product Pricing with Additive Influences

Which Note that we have hits at pV (v1) and pV (v2) in Equations (3.6.2) and (3.6.2).
Additionally we have the fully influenced values in Equations (3.6.2) and (3.6.2). Since
only pV (v3) is left, these four lines contain a duplicate. And as we assumed that they
are distinct, there is no choice of initial values and influences such that we get the full
amount of hits in the first four rounds.

Observation 3.20. The scheme specified in the following generates a graph with

frag(G) = frag3(G) = n+
(
n

2

)
+
(
n

3

)
.

Set n distinct initial values p(v1) < · · · < p(vn).

For the second round, set the influences w(vi, vj) for i > j such that in every 1-fragment
the subsequent hits of round 2 are inverse sorted. In particular w(vn, vi) > 0 are the
only positive influences here and v1 is the highest hitter as we assumed in the proof of
Lemma 3.19.

The remaining unspecified influences w(vi, vj) for j > i can finally be set accordingly.
Now w(v1, vi) > 0 are the only positive influences and the hits are again ordinary sorted.

We illustrate the sign of the influences in the matrix W , where wi,j = w(vi, vj)

W =



0 + · · · + 0

− . . . − −
...

... . . . . . . −
...

− · · · − . . . ...
+ · · · · · · + 0


For example, the actual values for a minimum pmax and 5 nodes are specified as follows:

p(v1) = 1, p(v2) = 3, p(v3) = 7, p(v4) = 15, p(v5) = 26 and

W =


0 1 5 8 0
−4 0 −4 −4 0
−8 −7 0 −3 0
−11 −10 −10 0 0
24 18 11 1 0


Corollary 3.20. By Lemma 3.19 and Observation 3.20 we conclude frag(4) = 14.
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3.6.3 Neighborhood

A social network is typically rather large and full of complex relations. Yet one can
probably classify its own relations to a few groups of equally influential people.

Definition 3.21. Given the graph G and a node v, we set

γ(v) :=
∣∣{w(u, v) : u ∈ N−(v)

}∣∣ ,
the amount of different influences on v. For the graph itself we define γ(G) = max

v∈V
γ(v).

Remark 3.22. Any endpoint of a fragment corresponds to at least one particular hit.
More formally, for any fragment (x, y] there is a node v and a set of customers such that
pC(v) = x.

This enables us to provide another bound.

Proposition 3.21. A node v ∈ V can have at most nγ(v)+2 different influenced values.
Furthermore, it follows that |frag(G)| ≤ nγ(G)+3.

Proof. We want to determine the possible amount of distinct influenced values for every
node v ∈ V .

For v we may choose for every neighbor, i.e., exactly g−(v) times, if influence is exerted
and (in case it is) which influence is exerted on v. Thus we have γ(v) + 1 choices for a
single arc.

As we are not interested in the particular order of influences, the number of possibilities

is
((
γ(v) + 1
g−(v)

))
, the amount of multisets. With

((
n

k

))
=
(
n+ k − 1

k

)
and γ(v) ≤

g−(v) ≤ n− 1 we have((
γ(v) + 1
g−(v)

))
=
(
γ(v) + g−(v) + 2

g−(v)

)

=
(
γ(v) + g−(v) + 2

γ(v) + 2

)

= (γ(v) + g−(v) + 2) · · · (g−(v) + 1)
(γ(v) + 2) · · · 1

≤ (g−(v) + 1)γ(v)+2 ≤ nγ(v)+2.

This enables us to compute the optimum price and revenue in polynomial time, as long
as every person has classified all acquaintances in a small (constant) amount of groups.
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3 Product Pricing with Additive Influences

By setting a different value for every arc, we get g−(v) = γ(v) and thus can already
deduce that PPAI is solvable in polynomial time if the in-degree is bounded. But we can
provide a better bound for it.

Lemma 3.22. A single node v ∈ V can hit at most 2g−(v) times.

Given ∆−(G) := max
v∈V

g−(v), the maximum in-degree in G, it follows

|frag(G)| ≤ n · 2∆−(G).

Proof. The influenced value pC(v) depends by definition only on C ∩N−(v). These are
sets of size up to g−(v) and we have at most 2g−(v) different influenced values as claimed.

Since by Remark 3.22 the total amount of fragments is bounded by the potential influ-
enced values, we have |frag(G)| ≤

∑
v∈V

2g−(v) ≤ n · 2∆−(G).

For graphs with γ(G) = 1 we return to the results of Section 3.5.

Lemma 3.23. If γ(G) = 1, i.e., the potential buyers are indifferent as of who exactly
is buying and only the amount of (acquainted) buyers counts, we can determine P (v) by
running FixHighest on G+.

Proof. All v ∈ V with w(u, v) ≤ 0 will buy at exactly [0, pv] in the first round and never
in any other round. This is the same as for no influence at all and we can switch to G+

which can be solved in O
(
n2
)
.

So far we only had results for the in-degree. The following Proposition 3.24 shows why
we can not develop a polynomial bound for a limit on the out-degree.

Gadget 3.23. Given a node u ∈ V of graph G = (V,A), we substitute the arcs to
N+(u) by Gu out as follows (see Figure 3.4):

Add a full binary out-tree of height h := dld(n−1)e−1 to u, where the new nodes have no
initial value and get an influence of pmax from their predecessor. Expand the binary tree
with the nodes v ∈ N+(u), which are then influenced with the original weight w(u, v).

Applying this to all original nodes u ∈ V we get the new graph Gout.

Proposition 3.24. The gadget graph Gout has n + n ·
(
2dld(n−1)e − 2

)
≤ 2n2 − 3n =

O
(
n2
)
nodes and the original nodes from V still buy for the same prices.
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u

. . .. . .

v1

. . .

vg+(u) N+(u)

Figure 3.4: Out-degree Gadget

Proof. For every gadget Gu out we add 2dld(n−1)e− 2 new nodes. During the selling, they
have either value 0 (uninfluenced) or pmax (influenced), which implies they buy if and
only if their predecessor buys. This results in 2dld(n−1)e−2 additional purchases for every
single original node u ∈ V . The leaves buy exactly h rounds later, thus the influences
to N+(u) are exerted with a delay of h+ 1 rounds instead of one.

Since this holds for every influence on the original v ∈ V it follows that the buying
satisfies BG

t (π) = BGout
h·(t−1)+1(π).

We can even transform the graph G from Gadget 3.9, thereby reproducing the proof of
Theorem 3.9.

Corollary 3.25. The problem PPAI is still NP-complete for graphs with a maximum
out-degree of 2.

Thereby this also applies to graphs with average degree of at most 2.

This raises the question: Is PPAI still hard if the out-degree is at most 1? If we assume
that the graph is still weakly connected, this is a tree with possibly one additional arc.
We deal with the problem on trees in Section 3.8.

We already assumed that a person is indifferent about who exactly is a customer as they
are equally influenced by everyone. Now we assume the contrary, i.e., every node exerts
the same influence on the rest of the network.

Lemma 3.26. For a complete graph G with wv := w(v, u) for all v ∈ V and all u ∈

V \ {v} it holds that frag(G) ≤
(
n+ 1

2

)
.
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Proof. Given a set of customers C, we know that pC(v)− p(v) = pC(u)− p(u) for nodes
u, v ∈ V \ C. This implies that for sorted p(v1) ≤ · · · ≤ p(vn) this order is maintained
for all possible influenced values.

Hence, for any price π and round t we know that there is some node vi such that
Ct(π) = { vi, . . . , vn } or Ct(π) = ∅. We deduce that any node vi ∈ { v1, . . . , vn } can
be influenced by at most n − i + 1 customer sets, therefore can hit only as often. In

summation we have at most
(
n+ 1

2

)
fragments as claimed.

3.6.4 Undirected Setting

So far we investigated directed graphs and simply by adding the inverse arcs with equal
influence, we can create symmetric, i.e., undirected, influences. Hence, we can use all
algorithms as usual.

The other way round, given any directed graph, such as the reduction graph G of Gad-
get 3.8, is there a way to “undirect” it? We show in Gadget 3.24 that it is possible
indeed and, hence, PPAI is still NP-complete for undirected graphs.

Gadget 3.24 (Undirect Gadget). Given a directed graph G = (V,A) we construct
undirected Gsym = (V ∪ VA, E) as follows.

Every arc (u, v) = a ∈ A is substituted by gadget Ga = ({u, v}∪Va, Ea) (see Figure 3.5).
The nodes Va = { a1, a2, a3 } have no initial value. The influence w(a2, v) = w(u, v) is
set to the actual influence from u to v.

In order to ensure only the original direction we furthermore set w(u, a1) = w(a1, a2) =
w(a2, a3) = pmax and w(u, a3) = −pmax.

Proof. Given a price π, we assume that u buys in round t before v does. In round t+ 1
node a1 buys. After that in round t + 2 node a2 buys. In round t + 3 the influence
w(u, v) arrives at v, two rounds later than usual.

Assume on the contrary that v buys first. Depending on π ≤ w(u, v) node a2 buys in
round t + 1. If it doesn’t, nothing arrives at u as desired. If it does indeed, we have in
round t+ 2 nodes a1 and a3 buying. Both exert influence on u, but they cancel out each
other, so nothing happens.

Now what if they both buy in the same round or before the influences arrive. Given
that we change every single arc in the graph to this Ga, there are normal purchases in
round 1. In round 2 we then have only new gadget nodes influenced, i.e., no single node
v ∈ V changes the influenced value, so no v buys. This still holds for round 3.
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In round 3 the influences finally pushed through to the original V , whereas no new
gadget node buys. Following this we get C(π)∩V =

⋃
t=1,...,|V |

B3t−2(π), exactly the same

buyers as in the original directed G.

Note that we do not always have the same amount of buyers from the arc gadgets Ga.
Starting from v, we have possibly three purchases or even none at all. Otherwise we
have exactly 2 in any case.

In total we added 3m nodes and transformed the m arcs to 5m edges. Thus Gsym is a
polynomial transformation of G.

u

a1

a2

a3

v

pmax

−pmax

pmax

pmax

w(u, v)

Figure 3.5: Undirect Gadget G(u,v)

Considering problems PPAI-v and PPAI-S this does not change a bit for the actual in-
stances.

In the next section we develop the equivalence of all decision problems, including for
undirected graphs. We already know for now:

Corollary 3.27. The problem PPAI-v is NP-complete for undirected graphs.

Proof. We polynomially transform the graph Gz+ of Gadget 3.8 to Gz+
sym.

Actually we only need to transform the edges from variable to clause nodes. By relaxing
to symmetric influences even the behavior in Gx does not change.

3.7 Modifications and Equivalence

Given any graph G = (V,A) the important part for our problems is the specific behavior
of the nodes for prices π ∈ (0, pmax]. In the following we define three gadgets that
conserve “the original behavior”.
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3 Product Pricing with Additive Influences

Gadget 3.25 (Restrict Gadget). For graph G = (V,A) and price range (0, pmax] we
construct G|(x,y] = (V ∪ {α+, α− } , A ∪ A|(x,y]) such that on (x, y] ⊆ (0, pmax] we still
have the same customers C(π) ∩ V as before and C(π) ∩ V = ∅ otherwise.

Set the initial values from all v ∈ V to 0 so they do not buy in round 1 for any positive
price. The influences for a ∈ A stay the same.

Now to start the selling on V we set p(α+) = y and w(α+, v) = p(v) for all v ∈ V . With
one round delay and only for prices in (0, y] we set them to their initial values.

Again for α− we set p(α−) = x and w(α−, v) = −p(v) for all v ∈ V . So for prices in
(0, x] the value cancels out and only on (x, y] the selling progresses as desired.

Gadget 3.26 (Shift Gadget). For a graph G = (V,A) and the price range (0, pmax]
we construct G+x such that we have the customers shifted from price π ∈ (0, pmax] to
π + x ∈ (x, pmax + x].

We just add x to all initial values and then apply Gadget 3.25 and restrict the graph to
(x, pmax + x].

For negative x we do not need the restriction, yet lose some parts since negative prices
are always excluded.

Gadget 3.27 (Multiply Gadget). For a graph G = (V,A) we multiply all initial values
and influences by some integer x ∈ N and call this graph G·x.

Note that we somehow already Gadgets 3.25 and 3.26 in the construction of Gadgets
leading to Theorem 3.9. We constrained the prices used to

{
2ñ, . . . , 2ñ+1 − 1

}
by adding

node z−. The shift from
{

1, . . . , 2ñ
}
was already implied in the construction of Gx. We

required this to decrease the ratio from 2ñ

1 to 2ñ+1 − 1
2ñ < 2.

3.7.1 Polynomial equivalence

In the development of Theorem 3.9 we focused all effort on this specific instance. For
further use we provide polynomial equivalence for problems PPAI, PPAI-v, PPAI-S, PPAI-
i. The reductions provided are for arbitrary graphs. They can still function for other
graph classes. In preparation of Section 3.8, we already discuss trees herein.

Lemma 3.28. PPAI-v ∝ PPAI.

Proof. Given an instance of PPAI-v, i.e., a graph G = (V,A), a fixed node v and a bound
π̂, we construct G′ := G|(π̂−1,pmax]+pmax by restriction and shift. The node v actually
functions as the collecting node, upon which we add the revenue nodes z1, . . . , zM with
M :=

∣∣G′∣∣.
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3.7 Modifications and Equivalence

We set R̂ := M · (π̂ + pmax) and analogously to the proof of Theorem 3.9 achieve the
desired revenue if and only if node v buys.

For a tree G we can conserve this property by adding seperate α+, α− for every node.
The next two reductions do not require adding any cycles and therefore uphold the tree
property.

Lemma 3.29. PPAI-v ∝ PPAI-i.

Proof. Analogously to Lemma 3.28 we add revenue nodes z1, . . . , zM to G = (V,A) with
M = |V |. So we can achieve i := M + 1 purchases if and only if v buys.

Lemma 3.30. PPAI-v ∝ PPAI-S.

Proof. Simply set S := {v}.

Now assuming on the other hand, that we have some algorithm ALG-v to solve PPAI-v
and we want to solve the other problems.

Lemma 3.31. PPAI-S ∝ PPAI-v.

Proof. Given a graph G = (V,A) and subset S ⊆ V , we add one node v with p(v) =
(1 − |S|) · pmax and influences w(u, v) = pmax for all u ∈ S. The values imply, as in
Gadget 3.8, that v buys if and only if it is influenced by all nodes in S.

Lemma 3.32. PPAI-i ∝ PPAI-v.

Proof. Analogously to Lemma 3.31 we add node v with p(v) = (1 − i) · pmax that is
influenced by all u ∈ V .

To conserve the tree property in the last two proofs, we can copy the graph G either |S|
or n times. Every copy is assigned to one specific node in S or V respectively. Adding
the arcs to v can thereby not induce a graph.

Lemma 3.33. PPAI ∝ PPAI-i.

Proof. To solve an instance I of PPAI with requested revenue R̂, we can make n calls to

any algorithm for PPAI-i. If an algorithm finds a price π ≥ R̂

i
=: π̂ with at least i buyers,

we have also found a price for the original instance I. And if no call for i = 1, . . . , n
finds an appropriate price, we can conclude that I is unsatisfied.

Corollary 3.34. Altogether we conclude the polynomial equivalence of PPAI, PPAI-i,
PPAI-v, and PPAI-S.
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3.8 Trees

In Section 3.6 we already derived some results on different graph classes. So far unmen-
tioned, this already implies complexity results for acyclic graphs, cycles and paths.
Remark 3.28. The graph constructed for the proof of Theorem 3.9 is acyclic. Hence,
PPAI is NP-complete in particular for acyclic graphs.

For cycle or path graphs we have ∆−(G) ≤ 2 and therefore frag(n) ≤ 4n by Lemma 3.22.

Kind of in between these lies the class of trees, graphs that do not even contain an
undirected cycle. In this section we review different approaches to solve the complexity
of PPAI on trees and finally conjecture that the amount of fragments is polynomially
bounded.

As previously examined in the last subsection, we can also establish an equivalence of
PPAI variations on the class of trees.

With these arguments, we focus on PPAI-v in the remainder of this section. More
precisely PPAI-v for in-trees, since we can require a directed path from the other nodes
to v.

Definition 3.29. We define Tv = (V,A) as in-tree of v, if the nodes u ∈ V \ {v} have
g+(u) = 1, the root v has g+(v) = 0 and the graph is weakly connected.

Remark 3.30. If we relax the definition such that the graph can contain some pair
{(u, v), (v, u)} ⊆ A, whether the corresponding weights are symmetric or not, the prob-
lem PPAI-v remains the problem on the in-tree of v.

Proof. Given such a graph G and a node u ∈ V \ {v}, we know that there is a unique
directed path from u to v, P = (u, u2, . . . , uk, v). If u where to be influenced by u2, this
implies that u2 already bought and is therefore unaffected by any future purchase of u.
We can basically eliminate the arc (u2, u) when considering PPAI-v and thus drop to the
in-tree Tv.

3.8.1 Constructing a Variable Gadget

In the proof of Theorem 3.9 we used Gadget 3.6, which contains the topologically sorted
Kñ as a minor.

If we could (polynomially) transform the variable gadget Gx to an in-tree with the same
buying behavior of some variable node xi or xi in the original, we could use a separate
copy of this transformed gadget for every literal (3m̃ many), influence the clause nodes
y1, . . . , ym̃ and collect their behavior in z+.

Note that we can in either case introduce a separate chain of time nodes for every node
and the size only increases by a factor n.
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Figure 3.6: Split Gadget applied to K4

We formally define the required nodes for a variable gadget.

Definition 3.31. Let g(ñ) be the minimum amount of nodes for some xñ generating
in-tree Tv, i.e., for price set Π = {πmin, . . . , πmax } of size |Π| = 2ñ and any price
π ∈ Π \ {πmax} either v ∈ C(π) or v ∈ C(π + 1) holds — v buys for all even or all odd
prices.

Lemma 3.35. To construct a graph for a reduction to instance J of 3SAT, we need at
most 3m̃ ·g(ñ)+ m̃+1 nodes. So if g(ñ) = poly(ñ) we can follow PPAI-v is NP-complete
on trees.

Gadget 3.32 (Split-Copy Gadget). Given an acyclic graph G and a topological sorting
v1, . . . , vn, we transform the graph to an in-tree Tvn as follows:

We proceed for vi = vn−2, . . . , v1 and split the node to g+(vi) nodes v(1)
i , . . . , v

(g+(v))
i .

All nodes are influenced by the complete set N−(vi) and only influence one successor of
N+(v) each.

Since every copy gets the same influence as the original node before, we have the same
buying behavior for any price π.

Proposition 3.36. Applying Gadget 3.32 to the complete oriented graph Kn we get a
tree of size 2n−1.

Proof. The out-degree for vi inKn is g+(vi) = n−i. We start with the split of node vn−2.
In this step we get one additional node and increase the out-degree of nodes v1, . . . , vn−3
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by 1. We proof by induction that in the round of the splitting node vi has out-degree
g+(vi) = 2n−i−1. This implies that we split the graph to 1+1+2+4+ · · ·+2n−2 = 2n−1

nodes in total.

For node vi we know that previously node vi+1 was split. In this step vi+1 had an out-
degree of 2n−i−2. Since we have started with a complete graph, node vi is influencing the
exact same nodes, with the addition of vi+1 itself. By splitting vi+1 we increase g+(vi)
from 2n−i−2 + 1 to 2n−i−2 + 2n−i−2 = 2n−i−1 as claimed.

Corollary 3.37. Applying Gadget 3.32 to the variable gadget Gx yields an exponential
amount of nodes.

Thus, unfortunately we can not use this gadget to show NP-completeness for PPAI on
trees.

Remark 3.33. By Lemma 3.22 and Theorem 3.15 we already know that a g(ñ)-generating
tree requires both, a high degree and a high depth.

This raises two candidates. The full ∆-nary tree of height h (where n = ∆h+1 − 1
∆− 1 ) and

alternatively the path of length h with ∆ neighbors attached to each node in the path
(where n = ∆h+ 1). We call this latter graph claw-path graph.

We do a short analysis on both graphs by the Tree-Pluck method.

Proposition 3.38 (Tree-Pluck method). Given a in-tree Tv and the initial values
p(v1) ≤ · · · ≤ p(vn), we can split the problem into n parts.

For any fragment (p(vi), p(vi+1)] we have a specific set of customers in the first round.
In order to determine all fragment endpoints at which the root v changes its buying
behavior, we can “pluck the tree” by removing nodes. In particular, we remove leaves
until in the v-rooted tree T iv exactly the leaves are buyers in the first round.

Restricted to this fragment we can just add all the influences from the leaves, remove
them altogether and continue for the next round.

Proof. Consider for some fragment any node u ∈ B1. In tree Tv there is a unique path
from u to v. If some other node on this path already bought in the first round, the
further behavior of u does not change anything for the root v. So it can be neglected.

If on the other hand some u /∈ B1 spawns a subtree Tu∩B1 = ∅, it can not be influenced
at all. In total we can remove the nodes as claimed.

For the claw-path graph we get a path after one plucking. So restricted to a 1-fragment
we know that the remaining nodes can hit at most twice. In total we have up to n·2h < n2

fragments. The graph is not suitable to generate an exponential amount of fragments.
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3.8 Trees

Whereas the claw-path graph is dropping to a path after one plucking, the ∆-nary tree
is self-similar. Note that any constant amount of successive tree plucks has to leave a
“complex” graph in order to be a potential g(ñ) generating tree.

The full ∆-nary tree has less than ∆h non-leaves, each with ∆ predecessors. In total
we have at most ∆h + ∆h · 2∆ < n · 2∆ hits, therefore fragments. By plucking the tree
down to v in up to h iterations, we conclude that the graph does not get more than nh
fragments.

Balancing both bounds, the maximum is achieved for approximately h ≈
√

∆
log ∆. Fur-

ther studies on the tree remained inconclusive.

We could not find an xñ generating in-tree Tv of polynomial size. Whereas a non-
existence thereof does not imply an upper bound for the possible amount of fragments,
it is the natural alternative to study.

3.8.2 Upper Bound on Fragments

Now given an amount of nodes in in-tree Tv we want to bound the number of fragments
it can generate.

Definition 3.34. Analogously to our previous definition of fragments we set fragv(G)
to be the partition of prices only considering changing buying behavior of v, i.e., the
integer interval (x, y] is inclusion-wise maximum for node v buying in any specific round
t.

Remark 3.35. Note that |frag(G)| ≤
∑
v∈V
|fragv(G)|.

We define f∗(n) := max
Tv :|Tv |=n

|fragv(Tv)| as the actual maximum achievable. For the first

few values we can determine f∗(n) by checking all possible in-trees Tv, e.g. f∗(1) = 1,
f∗(2) = 2, and f∗(3) = 4. Instead of actually computing f∗ we develop an upper bound
for it.

Lemma 3.39. We define the upper bound f(n) ≥ f∗(n) recursively as,

f(n) := max
a∈An−1

 |a|∑
i=1

f(ai) + min
i=1,...,|a|

 2|a|, 2|a|−i ·
i∑

j=1
f(aj)


 ,

where

An−1 =
{
a = (a1, . . . , a|a|) : a1 + · · ·+ a|a| = n− 1, a ∈ Nk, a1 ≤ · · · ≤ a|a|

}
is the set of sorted integer partitions and f(1) := 1 is set as starting value.
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Proof. Note that, at least for n > 2, the growth satisfies f(n)− f(n− 1) ≥ 2 as we can
just use partition a = (n− 1). Therefore, f(n) is strictly increasing.

Given any in-tree Tv of size n, every predecessor of v forms a subtree of its own. Let{
u1, . . . , ug−(v)

}
= N−(v) and Tui be the corresponding subtrees. For the computation

we only use the size of these subtrees, so for every tree Tv there is some a ∈ An−1 with
|Tui | = ai. This implies that maximizing over the partitions actually covers all possible
in-trees of size n.

Now given one specific tree Tv, as well as the neighbors N−(v) and the correspond-
ing partition a = (a1, . . . , ag−(v)). Before v buys anywhere, we have already the frag-
ments without it, frag(G \ {v}). Given the correctly computed lower function values

f(a1), . . . , f(ag−(v)) this amounts to
g−(v)∑
i=1

f(ai).

Considering the fragments without v, we know that v itself can land at most one hit in
each of these. Hence, the function f can at most double. However this does not take
the in-degree into account, as we can only have 2g−(v) different influenced values. This
limits the amount of hits as well.

In the case of trees we can go even further and mix both bounds. Given any subset
S ⊆ N−(v) we accumulate their fragments as before forN−(v) itself. On these fragments
the possible sets of customers C are guaranteed to satisfy C ∩ N−(v) = C ′ ∩ N−(v) for
all C,C ′ ∈ C. So the sets can only vary in N−(v) \ S and we have |C| ≤ 2|N−(v)\S|.

Translating to a partition a = (a1, . . . , ag−(v)), we get the nonempty S ⊆{1, . . . , g−(v)}.
This set has at most

∑
i∈S

f(ai) accumulated fragments and we can generate at most

2g−(v)−|S| different influenced values on each of the fragments. In total we have

2g−(v)−|S| ·
∑
i∈S

f(ai)

as upper bound on hits for the partition a and subset S.

To find a subset S that achieves the minimum, we can consider only sets of type Si =
{i, . . . , g−(v)}. Any other set would have some i ∈ S with i + 1 /∈ S. Switching those
would not increase the upper bound, since a is sorted and f is increasing, hence, we can
exclude such S.

All in all we have derived the aforementioned definition of f(n) as an upper bound on
fragv(Tv).

Observation 3.36. We implemented the recursion of Lemma 3.39 in Python and com-
puted the first hundred values by an exhaustive search of all partitions. The computed
values are plotted in Figure 3.7.
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For the first 11 Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 we noticed that the
computed value doubled from one to the other.

To be more precise, for Fk = Fk−1 + Fk−2 =
ϕk − (− 1

ϕ)k
√

5
≈ ϕk√

5
1, we observed f(Fk) =

2k−2. Even more, a partition that achieved the maximum was a = (F1, . . . , Fk−2) in
every case. For these partitions the actual minimum satisfied

min
i=1,...,k−2

 2k−2−i ·
i∑

j=1
f(Fj)

 = min
i=1,...,k−2

{
2k−2−i · 2i−1

}
= 2k−3.

The corresponding trees are generated as in Figure 3.8. Note that the trees coincide with
Trees of minimum possible size for a given rank in a Fibonacci heap as seen in [FT87].

So, assuming this phenomenon continues, the growth of f is exponential in the Fibonacci
numbers.

For the approximate value we set f̃(n) = f̃

(
ϕx√

5

)
= 2x−2. So x = logϕ(

√
5 · n) and we

solve

f̃(n) =
√

5
1/ld ϕ

4 · n1/ld ϕ ≈ 0.797 · n1.440.

In Figure 3.7 we can observe that the computed values in between the Fibonacci numbers
are bounded by this function f̃ .

Conjecture 3.40. We conjecture that the amount of fragments in a tree of size n is
frag(n) = O

(
n · n1/ld ϕ

)
. Therefore, PPAIopt on trees would be solvable in polynomial

time with Frag.

In addition to this conjecture, it is still an open question what the impact of bounded
treewidth is. Furthermore, in Remark 3.30, we already relaxed the tree to cactus graphs
with elementary cycles of length up to 2.

3.9 Discrete Dynamical System and Integer Program

As an alternative formulation for our instances of PPAI, we present it as a Discrete/Graph
Dynamical System[MR08, KKM+11]. Note that in contrast to the usual instances of
Discrete Dynamical Systems and Cellular Automata, we do have a definite round limit,
as we do not allow a node to change its state, i.e., return the product.

1The last identity is Binet’s Fibonacci Number formula, φ =
√

5 + 1
2 the Golden Ratio
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Figure 3.7: Fragment bound for trees: Computed values and the conjectured bound
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Figure 3.8: Tree with the highest possible amount of fragments
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Definition 3.37. Let (xv)t∈N ∈ (F2)t∈N be the state sequence, that denotes whether
node v ∈ V has bought the product at some stage or not. The function

fv,p : FN
−(v)∪{v}

2 −→ F2

fv
(
xN
−(v)∪{v}

)
=


1 if xv = 1
1 if

∑
u:(u,v)∈A

w(u, v) · xu ≥ p− pv

0 else

determines whether v will buy or possess the product given the previous customers.

We set (xv)1 = 1 if pv ≥ p and to 0 else. For t > 1 we set

(xv)t = fv(xN
−(v)∪{v}

t−1 ).
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3 Product Pricing with Additive Influences

As an alternative to the usage of Algorithm Frag we formulate an integer program.

Integer Program 1: PPAI (Formulation of PPAI)

max π ·
∑
v∈V

n∑
t=1

xv,t

subject to

xv,t ≥ 0 ∀v ∈ V, t = 1, . . . , n
xv,t ≤ 1 ∀v ∈ V, t = 1, . . . , n

n∑
t=1

xv,t ≤ 1 ∀v ∈ V∑
j<t

xv,j = yv,t ∀v ∈ V, t = 1, . . . , n

p(v) +
∑

u∈N−(v)
yu,t · w(u, v) = pv,t ∀v ∈ V, t = 1, . . . , n (3.7)

pv,t − π ≥ (xv,t − 1) ·M ∀v ∈ V, t = 1, . . . , n (3.8)
pv,t − π ≤ (xv,t + yv,t) ·M − 1 ∀v ∈ V, t = 1, . . . , n (3.9)

The variable xv,t denotes whether v ∈ Bt, whereas yv,t denotes whether v ∈ Ct−1.
Considering only integer values, the equations imply that every node can buy at most
once.

In Equation (1) we compute the influenced value as usual.

If we want v to buy in round t, i.e., set xv,t = 1, we obtain pv,t ≥ π from Equation (1).
And if xv,t = yv,t = 0, we obtain pv,t ≤ π − 1 < π from Equation (1), i.e., an influenced
value that is not high enough to buy.

Observation 3.38. As part of the Bachelor program at the University of Kaiserslautern,
the students Arne Herzel and Sebastian Johann generated a series of random instances
of PPAI, using the G(n, p)-model with uniformly distributed weights.

In their tests, the implementation of Frag provided a faster runtime than Gurobi on the
integer program. The necessity of using the Big M method did presumably hamper the
performance significantly.

Due to the lack of proper weighted social networks, we did not undertake further simu-
lations. Thus the actual comparison of both alternatives is yet unanswered.
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4 Delayed Product Pricing

In the standard PPAI model we assumed that every potential buyer is familiar with the
product from day one. Typically, the marketing of a new product is the major issue,
studied amongst others in [KKT03, BFO10].

For our model of Delayed Product Pricing we assume that we know the date when a
node gets to know the product.

In a related fashion we put a delay on the influences, i.e., it may take some time to
spread the word of a purchase.

Definition 4.1. For a graph G = (V,A) we define the delay τ : V ∪A→ N. For a node
v ∈ V the value τ(v) denotes the release time, whereas for influences a ∈ A the influence
delay is denoted by τ(a). This means, a node v ∈ V can not buy before its release time
τ(v) and influences w(u, v) are exerted after τ(u, v) rounds.

We further set τV := max
v∈V

τ(v) and τA :=
∑
v∈V

max
u∈N−(v)

τ(u, v), the maximum release time

and total delay, respectively.

The influenced value of v is set to 0 — or any other negative value — before the node
is released in round τ(v).

For a sequence ∅ = C0 ⊆ C1 ⊆ · · · ⊆ Ct−1 of customers we set the relevant customers
for node v as

Cvt−1 :=
{
u ∈ N−(v) : u ∈ Ct−τ(u,v)

}
,

and the influenced value to

pCv
t−1

(v) :=


p(v) +

∑
u∈Cv

t−1

w(u, v) if τ(v) ≤ t

0 else .

Node v ∈ V \ Ct−1 buys in round t for price π if and only if pCv
t−1

(v) ≥ π.
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4 Delayed Product Pricing

The basic problem of this chapter is DelPPAI.
Problem 2: DelPPAI (Delayed Product Pricing with Additive Influences)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, release times τ(v) ∈ N for
v ∈ V , influence delays τ(u, v) ∈ N for (u, v) ∈ A, and some revenue R̂ ∈ N.

Question: Is there a price π ∈ N such that R(π) ≥ R̂?

As in Definition 3.1 we set the variants.

Definition 4.2 (Variants of PPAI).

DelPPAIπ: Compute the revenue for a given price.

DelPPAIopt: The corresponding revenue maximization problem.

DelPPAI-v: Is there a price π ≥ π̂ such that v ∈ C(π)?

DelPPAI-S: Is there a price π ≥ π̂ such that S ⊆ C(π)?

DelPPAI-i: Is there a price π ≥ π̂ such that |C(π)| ≥ i?

The order of this chapter is based on Chapter 3, thus we start with the selling problem
DelPPAIπ.

Lemma 4.1. The selling stops after at most T := τV + τA rounds.

Proof. As in Corollary 3.18, we devise the decay of G by the longest path.

We consider graph GT :=
(
V ∪ {α}, A+ ∪ ({α} × V )

)
. For the new arcs (α, v) ∈ {α}×V

with arc lengths c we set c(α, v) = τ(v).

The length of the old arcs a ∈ A+ with positive influence is set to their delay — c(a) =
τ(a).

Where before node v needed a positive influence in round t − 1, since all delays were
implicitly set to 1, node v can now be influenced in various earlier rounds. The set{

t− τ(u, v) : u ∈ N−(v), w(u, v) > 0
}

contains all these rounds. The selling for node v does only start in round τ(v), hence,
the paths from v are extended by c(α, v) = τ(v).

Any path in GT that starts at some node v ∈ V can be extended by (α, v). In particular,
a longest path starts in α just as the “chain” of influences starts after the release of the
first node.

Since any path starting at α contains at most one arc to each node v ∈ V , we can
assume that it is the longest of all arcs from N−(v) to v. This concludes the bound of
τA + τV .
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Remark 4.3. We can modify the basic Algorithm Sell for T rounds and compute the
revenue R(π) for a given price π ∈ (0, pmax] by progressing every round t = 1, . . . , T .

Yet we know in advance that certain rounds are not interesting, i.e., no node changed
its influenced value. In Algorithm DelSell we skip those rounds.

Algorithm 5: DelSell(G, π)
Data: A graph G = (V,A) with weights p and w, delay τ and a price π.
Result: The set C(π) of customers and the revenue R(π).
Initialize: p′(v) = p(v), C = ∅ , B = { v ∈ V : p(v) ≥ π, τ(v) = 1 }, and

D =
{

(1 + τ(u, v), u, v) : u ∈ B, v ∈ N+(u) \B
}
.

// D denotes the round in which influence is exerted
while D 6= ∅ do

// Update influenced values
Set t′ = min

(t,u,v)∈D
t and N =

{
(t, u, v) ∈ D : t = t′

}
.

Set D = D \N and X = ∅. // nodes whose valuations change
for (t, u, v) ∈ N do

p′(v) = p′(v) + w(u, v)
X = X ∪ {v}

// Compute B and update D
B = ∅
for v ∈ X do

if p′(v) ≥ π then
B = B ∪ {v}
for u ∈ N+(v) \ C do

D = D ∪ {(t′ + τ(v, u), v, u)}

C = C ∪B
return R(π) = π |C| and C(π) = C

Lemma 4.2. Algorithm DelSell computes the revenue R(π) in O (m logm) time for a
given price π.

Proof. The set D denotes the influences that are currently “on their way”. Round t′

is computed as the next time at which influence “arrives”. So in between two while-
iterations the influenced value does not change for any node, hence, no buying occurs.
All in all, the algorithm follows the procedure of Sell and the new definition for delayed
pricing.

As for the runtime, the setD grows at mostm times, since every new element corresponds
to a unique arc and every arc is triggered at most once, i.e., by the purchase of the tail.
Thus, using Fibonacci heaps again [FT87], we have at most m insert and delete-min
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4 Delayed Product Pricing

operations to manage D, which needs O (m logm) in amortized time. The rest of the
algorithm is only simple operations, of which we have O (m+ n). This yields the runtime
as claimed.

Corollary 4.3. The problem DelPPAIπ is in FP. Furthermore, DelPPAI and the varia-
tions are in NP or NPO, respectively.

The definitions of problems PPAI and DelPPAI share most of their details. In the following
we show how exactly both are connected to each other.

Corollary 4.4. By setting delays τ = 1 for the domain of τ , we get a standard instance
of PPAI.

Therefore, it directly follows that DelPPAI is NP-complete. The same holds for the vari-
ants thereof.

The variable gadget does not even require time nodes, thus we can even achieve 2n/2

fragments with n nodes.

We already know that adding delays is as hard as before. In Gadget 4.4 we provide
a way to polynomially transform any instance of DelPPAI-S to an instance of PPAI-S,
thereby establishing equivalence.

Gadget 4.4. Given a graph G = (V,A) with delay τ , we define Gτ as follows.

Every node v ∈ V with τ(v) > 1 is substituted by a chain v1, . . . , vτ(v), where the last
node is identified with v. We set for some sufficiently largeM := pmax +

∑
a∈A : w(a)>0

w(a)

the initial values p(v1) = pmax, p(vi) = 0 for i = 2, . . . , τ(v)−1, and p(vτ(v)) = p(v)−M .
The elements in the chain are consecutively influencing their successor with w(vi, vi+1) =
M for i = 1, . . . , τ(v)− 1.

We substitute the arcs similarly. For any arc a = (u, v) ∈ A with τ(a) > 1 we
introduce nodes a1, . . . , aτ(v)−1 with no initial value. They are chained in between
u = a0, a1, . . . , aτ(v)−1, aτ(v) = v where the influences are w(ai, ai+1) = M for i =
0, . . . , τ(v)− 2. The last influence w(aτ(v)−1, aτ(v)) = w(a) is of the original weight.

The total amount of nodes and arcs are

|V τ | =
∑
v∈V

τ(v) +
∑
a∈A

(τ(a)− 1) and

|Aτ | =
∑
v∈V

(τ(v)− 1) +
∑
a∈A

τ(a).

Note that we have already used the delay in the construction of the variable graph
Gx in Gadget 3.6. Whereas we used only a single delay chain for Gx, we introduce a
separate release time chain for every node here, thereby not introducing any directed or
undirected cycles.
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Proposition 4.5. Given an instance I of DelPPAI-S, the Gadget 4.4 provides an in-
stance J of PPAI-S with equal outcome.

The reduction is polynomial if τ = poly(n).

Proof. The nodes in the chains do exactly buy one round after their predecessor and
the head of the chain always gets the influence as before. By the setting of M we make
sure that the unreleased nodes are not coincidentally released by the influences of other
nodes.

We assume that the graph Gτ is encoded as usual in an adjacency list. The delay values
τ(v) and τ(a) themselves are of logarithmic size, whereas we now require a linear amount
of nodes in Gτ . Thus we require τ = poly(n) for a polynomial reduction.

Remark 4.5. By the extension from G to Gτ we messed with the actual revenue. In
order to compute the optimum price we still can reuse the previous algorithms.

The fragments for DelPPAI can be computed by Frag on Gτ . Instead of the revenue
computation in Frag we run DelSell on G for every endpoint to find the maximum
revenue.

Proposition 4.6. Given the sorted release times τ(v1) ≤ · · · ≤ τ(vn) we can iteratively
compress it to τ ′(v1) ≤ · · · ≤ τ ′(vn) ≤ nτA.

Proof. Without loss of generality τ ′(v1) = 1. So after round 1 + τ(v1, v2) the influenced
value of v2 remains unchanged until release. Hence, we can set

τ ′(v2) = min { 1 + τ(v1, v2), τ(v2) } .

Assuming we compressed the release times up to τ ′(vi−1) already, the longest path
containing only released nodes is bounded by∑

i=1,...,i−1
max

u∈N+(vi)
τ(vi, u).

Therefore, the difference between τ ′(vi−1) and τ ′(vi) can be set to at most this value. In
sum it follows that we can construct τ ′ such that τ ′(vn) ≤ nτA.

Thereby, it suffices to have τA = poly(n) for the polynomial reduction.

In the upcoming chapters we will not consider combinations of the respective problems
and delays. However, the idea of delays is used frequently by adding time nodes.
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5 Dynamic Product Pricing

In the previous chapters we had one fixed price for our product. Thus we could not take
into account that the influenced value the potential buyers hold for the product may be
changing over time. In this chapter we are adjusting the price to increase the revenue
even more.

The dynamic pricing follows two core properties:

• The potential buyers do not act strategically, i.e., they buy as soon as their influ-
enced value exceeds the current price.

• The product is still everlasting and unreturnable.

Definition 5.1. For a given time horizon NT := {1, . . . , T} (or just T for short), a
sequence (πi)i∈NT

∈ NT of prices is a trend of prices for our product. If the time horizon
or the explicit sequence is clear from the context we will use (πi)i or π instead.

For a given trend of prices (πi)i∈NT
and some round t a node v ∈ V \ Ct−1(π) buys, if

pCt−1(π)(v) ≥ πt. By Rt(π) := πt |Bt(π)|, R≤t(π) :=
∑
i≤t

Ri(π) and R(π) := R≤T (π) we

denote the revenue generated in some round, up to some round, and the total revenue
for the trend of prices (πi)i∈NT

, respectively.

With these definitions we define the main problem of the chapter:

Problem 3: DynPPAI (Dynamic Product Pricing with Additive Influences)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, and some revenue R̂ ∈ N.
Question: Is there a trend of prices π ∈ NT such that R(π) ≥ R̂?

In the case of dynamic pricing, the former restriction to find a price π ≥ π̂ is not useful
anymore. We substitute this with π ∈ Π̂ for some set Π̂ of trends.

The variants of DynPPAI are defined analogously to Definition 3.1

Definition 5.2.

DynPPAIπ: Compute the revenue for a given price.

DynPPAIopt: The corresponding revenue maximization problem.

DynPPAI-v: Is there a price π ∈ Π̂ such that v ∈ C(π)?
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5 Dynamic Product Pricing

DynPPAI-S: Is there a price π ∈ Π̂ such that S ⊆ C(π)?

DynPPAI-i: Is there a price π ∈ Π̂ such that |C(π)| ≥ i?

Notice that, in general, prices may change as fast as the influences are exerted — from
one round to another. Therefore, we speak of fast pricing, our standard model in this
chapter.

We can alternatively wait in-between price changes to allow the influences to be spread.

Definition 5.3. Under the slow pricing paradigm, the trend of prices states the sequence
of prices, but not the actual rounds in which they are set. That means we sell for the
same price π1 as long as Bt(π1) 6= ∅, hence, until exactly the static customers C(π1)
acquired the product. The selling process is continued recursively with π2 on V \C(π1)
with preset p(v) := pC(π1)(v).

Remark 5.4. In the other chapters we could restrict π ∈ (0, pmax]. Since we can change
the prices in any round this does not apply here for the prices π1, . . . , πT . After the first
selling for some price in (0, pmax] the influenced values can exceed pmax, hence, we can
raise the price and still get buyers.

In particular we can have p(v) = 1 = pmax for v ∈ V and p(u) = 0 for the other nodes
u ∈ V \ {v}. The revenue for PPAIopt on this graph is at most n.

In the dynamic setting we can profit from the influences. Let w(v, u) = M for all
u ∈ V \{v} be the influences from v. After π1 = 1 we can sell the product for π2 = M in
the second round. Hence, the maximum revenue for DynPPAIopt is R∗ = 1 + (n− 1) ·M .

5.1 Computing the Revenue

As Algorithm Sell computed the revenue for PPAIπ, we define Algorithm DynSell to solve
DynPPAIπ.

Lemma 5.1. Algorithm DynSell computes the revenue for a given trend of prices (πi)i∈NT

in O (T +m logn) time.

Proof. Computing B and updating the influenced values p′(v) is executed exactly by
Definition 5.1.

In q we store the current highest influenced value. If q < πi we instantly know that this
round does not have a buyer and skip it. Otherwise we know that there is at least one
buyer, i.e., the outermost if -condition is true at most n times. As long as the product
did not sell to all nodes in V , we need to compare q with πi. This takes O (T ) time.

We store the nodes v ∈ V \C in a max-heap. The initialization with values p′(v) = p(v)
takes n insert-operations. Computing B requires up to O (n) delete-max-operations,
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5.1 Computing the Revenue

whereas computing q requires up to n find-max-operations. Since our influences are
not sign constrained, the update for some arc a ∈ A can be either decrease-key or
increase-key.

In total these actions take O (T +m logn) time.

Algorithm 6: DynSell(G, (π))
Data: A graph G = (V,A) with weights p and w, and a price trend (πi)i∈NT

.
Result: The set C(π) of customers and the revenue R(π).
Initialize: p′(v) = p(v) for v ∈ V , C = ∅, and q = pmax.

// q is the current highest influenced value
for i = 1, . . . , T do

if q ≥ πi then
// Compute B

for v ∈ V \ C do
if p′(v) ≥ πi then B = B ∪ {v}

R = R+ πi |B|
C = C ∪B

// Update influenced values
for u ∈ B do

for v ∈ N+(u) \ C do
p′(v) = p′(v) + w(u, v)

B = ∅
// Compute q

if V 6= C then q = max
v∈V \C

p′(v)

else break

return R(π) = R and C(π) = C

Note that the input includes T prices and not only the value T , i.e., the encoding size is
at least linear in T , whereas it is only logarithmic in the time horizon T in Chapters 4
and 6.

Corollary 5.2. Algorithm DynSell runs in polynomial time, thus DynPPAIπ is in FP
and the variations of DynPPAI are in NP or NPO, respectively.

The complexity of the selling problem is already established for trends of any size. Yet,
we can potentially skip lots of those prices.

Proposition 5.3. Given an instance of DynPPAI, every trend of prices (πi)i∈NT
can

be contracted to an equivalent trend (π′i)i∈NT ′ with T ′ ≤ min{T, n}, in the sense that
C(π) = C(π′), and R(π) = R(π′).
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5 Dynamic Product Pricing

Proof. As we have at most |C(π)| ≤ n rounds with a buyer, we can skip every round
and its price without a buyer.

For the sake of simplicity we assume that the given trends in the remainder of this
chapter are already contracted to n prices. Without loss of generality, the prices in
rounds i = T ′ + 1, . . . , n can either be set to 0 or some unaffordable price M . This
guarantees in both cases that there is no additional revenue and checking these n − T ′
rounds does take at most O (n) time.
Remark 5.5. We can solve slow pricing, by changing Algorithm DynSell such that every
price πi is considered again in the next iteration as long as q ≥ πi.

5.2 b-Fragments

In Subsection 3.3.1 we concluded that the optimal price is the endpoint of some fragment,
since the prices in the interior of fragments are inferior. In a similar fashion we can
improve the prices πi for dynamic pricing.

Proposition 5.4 (Improved trends). Given a trend of prices π, the customers Ct−1(π),
and the current buyers Bt(π), we can potentially increase the revenue by setting

π′t := min
v∈Bt(π)

pCt−1(π)(v) ≥ πt.

Proof. The price guarantees that Bt(πt) = Bt(π′t) and it is the highest with this property,
since at least one buyer would not buy for π′t + 1.

Hence, the essential information of the trend is the amount of buyers in any given
round.

Definition 5.6. For a graph G and trend of prices (πi)i∈Nn we define the trend of sales
by (bi)i∈Nn such that bi = |Bi(π)|.

The improved trend of prices (πbi )i∈Nn is constructed according to Proposition 5.4

πbt = max
{
π′t :

∣∣Bt(π′t)∣∣ = bt
}
.

The overall revenue is R(b) := R(πb) :=
n∑
i=1

bi · πi.

Remark 5.7. With the contraction in Proposition 5.3 we can conclude that there is some
round 1 ≤ t ≤ n, such that bi > 0 for rounds i = 1, . . . , t and bi = 0 for the final rounds

i = t+ 1, . . . , n. Furthermore,
n∑
i=1

bi ≤ n.
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5.2 b-Fragments

There may be choices of b for which there is no trend of prices inducing exactly b. For
example, if there are negative or coinciding influenced values. In this case, a specific
amount bi might be unattainable.

In the style of fragments, we define b-fragments and optimize over those with Algo-
rithm bFrag.

Definition 5.8. The set bfrag(G) denotes the set of all possible trend of sales b of G.
By bfragt(G) we denote the trends with exactly t non-zero entries. A trend of sales b′ is
an extension of b ∈ bfragt(G) if the first t values of both trends coincide.

Assuming both — trend of prices and trend of sales — are known, we adress them
interchangeably simply as trend.

Note that in contrast to the temporary fragments in PPAI the temporary trends of sales
are also included in bfrag(G) =

⋃
i=1,...,n

bfragi(G).

Remark 5.9. Given a trend of sales b, we can run a modified DynSell in O (m logn)
time. It is even easier, since the trend of sales does not require a value q and instead of
computing B we delete-max exactly b1 + · · ·+ bn times.

Corollary 5.5. Given an instance of DynPPAIopt and its b-fragments bfrag(G) we can
compute the optimum solution in O (|bfrag(G)| ·m logn) time.

As in Section 3.3, in particular Algorithm Frag, we define recursive Algorithm bFrag that
proceeds on bfrag(G) by depth-first technique.

Algorithm 7: bFrag(G, b, C,R)
Data: A graph G = (V,A) with weights p and w, some b ∈ bfragt−1(G), previous

customers C, and revenue R.
Result: The optimal overall revenue R∗ of any extension of b.
if C = V then return R∗ = R

// Compute bt candidates
Compute pC(v) for all v ∈ V \ C.
Determine the trend triples (b(1)

t , π
(1)
t , B

(1)
t ), . . . , (b(x)

t , π
(x)
t , B

(x)
t ).

// Initiate recursive calls
for i = 1, . . . , x do

if R < R(i) := bFrag(G, (b1, . . . , bt−1, b
(i)
t ), C ∪B(i)

t , R+ b
(i)
t · π

(i)
t ) then

R = R(i)

return R∗ = R

Theorem 5.6. Algorithm bFrag(G, (), ∅, 0) correctly computes the optimum revenue in
O (|bfrag(G)| · (m+ n logn)) time.
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5 Dynamic Product Pricing

Proof. Correctness is clear, since we iterate over all possible b-fragments.

A single call without the recursive sub-calls, takes O (m+ n logn) time to compute the
influenced values and determine the possible choices.

So if the amount of b-fragments is polynomial we can find the optimum revenue in
polynomial time.

We will discuss the amount of b-fragments in Section 5.6.

Definition 5.10. An increasing trend of prices π satisfies π1 ≤ · · · ≤ πn. Analogously,
decreasing trends have π1 ≥ · · · ≥ πn.

We examine the computational complexity of DynPPAI separately for both increasing
and decreasing trends in the next two sections.

5.3 Decreasing Trends

5.3.1 Positive Graphs

In Section 3.5 we studied PPAI for positive graphs. Since π is fixed to a single value in
PPAI, we could show a monotonicity of pC(v)− π in Lemma 3.12.

In our general dynamic pricing model this property is lost, because we can change πi to
any value. However, we show that it is still upheld in the case of decreasing trends.

Lemma 5.7. Given a positive graph G and two decreasing trends of prices (πi), (π′i)
with πi ≥ π′i for all i = 1, . . . , n, it follows that

Ci(π) ⊆ Ci(π′).

Proof. The claim obviously holds for the first round. We show the claim by induction

Given Ck(π) ⊆ Ck(π′) we can compute the influenced values for each. We have to assure
that no node from V \ Ck(π′) buys for the trend π without doing the same for π′ in
round k + 1.

This holds, as pCk(π) ≤ pCk(π′) and −πk+1 ≤ −π′k+1, therefore pCk(π) − πk+1 ≤ pCk(π′) −
π′k+1.

Given this monotonicity for dynamic pricing we can redevelop Algorithm FixHighest into
Fewest.

Lemma 5.8. Algorithm Fewest computes the maximum revenue for decreasing trends
on positive graphs in O (m+ n logn) time.
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5.3 Decreasing Trends

Proof. By the construction of p′(v) we guarantee that the prices are decreasing.

We know that v buys for the static price p∗(v) by Lemma 3.12 and Theorem 3.14, but
it does not for p∗(v) + 1.

By Lemma 5.7 this implies that it can not buy for any decreasing trend π′ with π′i ≥
p∗(v) + 1. Recall that π = (p∗(v) + 1, . . . , p∗(v) + 1) is also a decreasing trend. Thus the
overall revenue

∑
v∈V

p∗(v) is optimal.

The runtime is obviously the same as of Algorithm FixHighest.

Algorithm 8: Fewest(G)
Data: A positive graph G = (V,A) with weights p and w.
Result: The optimum trend of prices π∗ and its revenue R∗.
Initialize: Revenue R∗ = 0, π∗ = (), values p′(v) = p(v) for all v ∈ V , and C = ∅.
for i = 1, . . . , n do

if C = V then
return R∗ and π∗.

Compute next price π∗i = max
v∈V \C

p′(v).

if π∗i ≤ 0 then
return R∗ and π∗ = (π∗1, . . . , π∗i−1, 0, . . . , 0).

Compute Bi(π∗).
R = R+ π∗i · |Bi(π∗)|
C = C ∪Bi(π∗)
Update p′(v) = min{pC(v), π∗i } for all v ∈ V \ F .

Proposition 5.9. Given a positive graph G the optimal solution for DynPPAIopt with
decreasing prices may be up to Hn times as high as for the static setting in PPAIopt,
where Hn is the n-th partial sum of the harmonic series.

Proof. We have a graph G with the nodes v1, · · · , vn sorted decreasingly, i.e., p∗(v1) ≥
· · · ≥ p∗(vn). The ratio between the optimal solutions is∑n

i=1 p
∗(vi)

maxni=1 p
∗(vi) · i

.

Assume for now that all p∗(vi) are optimal for PPAIopt on G, i.e., they yield the same

revenue R∗ = p∗(vi)·i for i = 1, . . . , n. So in particular p∗(vi) = p∗(v1)
i

for all i = 1, . . . , n
and ∑n

i=1 p
∗(vi)

R∗
= p∗(v1) ·Hn

R∗
= Hn.

This gives us the ratio Hn, which we now show to be maximal.
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5 Dynamic Product Pricing

Given an optimal p∗(vj) · j = nmax
i=1

p∗(vi) · i = R∗ we have p∗(vi) ≤ j · p∗(vj) ·
1
i
. Hence,

for the ratio we have ∑n
i=1 p

∗(vi)
maxni=1 p

∗(vi) · i
≤
j · p∗(vj) ·

∑n
i=1

1
i

R∗
= Hn.

Remark 5.11. Applying Algorithm Fewest, without requiring the decreasing trend of
prices, is not necessarily optimal or even r-approximate.

On the graph G of Figure 5.1 the algorithm would sell to v3 in the first round. After
that the influenced values of the other nodes are the same and we altogether achieve a
revenue of 15.

The optimum revenue is achieved by selling to two nodes for price π1 = 2 in the first
round. The influenced value of v1 rises to 15r− 3, resulting in a revenue of 15r+ 1 over
the 15 we got from Fewest.

v1

1

v2

2
v3

5

3

415 · r − 8

Figure 5.1: Graph with bad performance of Fewest

5.3.2 Negative Graphs

On negative graphs the selling for some static price π stops after the first round (see
Remark 3.12).

For our dynamic pricing problem this implies that we can assume decreasing (contracted)
trends of prices. This enables us to offer the product to nodes that are negatively
influenced.

In the remainder of this subsection we show that it is particularly hard to find an
adequate decreasing trend of prices. During the construction of gadgets we show that
a satisfying variable assignment translates to a particular behavior and revenue. The
other way, showing that this is the only possibility to achieve revenue R̂, is covered in
the proof of Theorem 5.14.
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5.3 Decreasing Trends

Gadget 5.12 (Variable Gadget). Given an instance J of 3SAT with variables x1, . . . , xñ
we construct the variable gadget.

The gadget Gx = (V x, Ax) consists of nodes V x := { t1, . . . , t2ñ, x1, . . . , xñ, x1, . . . , xñ }.
Value X used in the initial values is determined later on in the proof of Theorem 5.14.
The initial values and influences are as follows:

p(t2i−1) = X + 4ñ− 4i+ 3 for i = 1, . . . , ñ
p(xi) = X + 4ñ− 4i+ 2 for i = 1, . . . , ñ

w(t2i−1, xi) = −p(xi) for i = 1, . . . , ñ
p(t2i) = X + 4ñ− 4i+ 1 for i = 1, . . . , ñ
p(xi) = X + 4ñ− 4i+ 0 for i = 1, . . . , ñ

w(t2i, xi) = −p(xi) for i = 1, . . . , ñ

Proposition 5.10. For every variable assignment of J we can choose a trend of sales
such that the corresponding variable nodes buy and their negated counterparts do not.
We call these assignment trends.

Proof. It takes 2ñ rounds to achieve this. Note that we have the distinct initial values
X, . . . ,X + 4ñ− 1, i.e., we can choose b1 ∈ {1, . . . , 4ñ}. For our trends corresponding to
variable assignments we choose b ∈ {1, 2}2ñ. For any bi > 2 we can have the same buyers
with bi = 2, bi+1 = 2, . . . , bi′ = 2 with i′ := i +

⌈
i− 4

2

⌉
. For odd bi we have bi′+1 = 1,

whereas bi′+1 = 2 for even bi.

In the first round we can sell to t1 alone or t1 and x1. If we do only sell to t1 the influence
of it deletes the initial value of x1. Hence, we have no chance to sell to x1 ever again.
Both cases exclude t1 and x1 from further purchases and leave the two current highest
values to t2 and x1. As we want to have either x1 or x1 buying, we need to set b1 6= b2.

We say that x1 = true for b = (1, 2, b3, . . . , b2ñ) and x1 = false for b = (2, 1, b3, . . . , b2ñ).

Since the variable nodes x1 and xi do not further interact with the subsequent variable
nodes, we can continue analogously.

Note that we did not yet force the restriction to assignment trends. The restriction will
be done through an inevitable loss of revenue any other trend suffers.

Remark 5.13. The revenue for a trend corresponding to a variable assignment is

Rx ∈
{

3ñ(X + 2ñ− 1), . . . , 3ñ(X + 2ñ− 1/3)
}
.
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5 Dynamic Product Pricing

Gadget 5.14 (Clause Gadget). For the clause gadget Gy we add nodes y1, . . . , ym̃
corresponding to the clauses in J to Gx.

We set the initial values p(yi) = 3Y < X for all clause nodes. The influences between
the variable nodes and the clause nodes have weight −Y .

However, this time we set the influences from the counterpart, i.e., w(xi, yj) = −Y for
xi ∈ yj and analogously w(xi, yj) = −Y for xi ∈ yj .

Proposition 5.11. For every assignment trend b = (b1, . . . , b2ñ), a clause node can
buy after the first 2ñ rounds for some value π2ñ+1 if and only if it is satisfied by the
underlying variable assignment.

Proof. We set X > 3Y such that the clause nodes can not buy earlier during the variable
assignment phase, i.e., rounds 1, . . . , 2ñ. If a clause node yj is influenced by all its
predecessors, the value is thereby decreased to 0 and no further purchase is possible.
But this also implies that not a single actual variable of yj bought and the clause is not
true.

On the other hand, yj clearly buys for Y if it is only influenced by up to two predecessors,
implying one actual variable of yj is true.

Gadget 5.15 (Collector and Destructive Nodes). We add the collector node z− and the
destructive nodes d1, . . . , dñ to Gy.

The initial values of a destructive node di is p(di) = 2Y . Node di is influenced by the
variable nodes xi and xi by −Y . The destructive nodes are introduced to ensure a proper
assignment trend.

Here, the collector node z− is chosen such that p(z−) = (m̃+ ñ) · (Z+1) < Y . All clause
and destructive nodes exert influence −(Z + 1) on z−. In order to achieve the requested
revenue, we want to avert a purchase of z−.

Values Y and Z, like X in Gadget 5.14, are determined later on in the proof of Theo-
rem 5.14.

For simplicity of notation, we denote a trend of sales b and a trend of prices π as pair
(b, π).

Proposition 5.12. For every extended assignment trend (b1, . . . , b2ñ, π2ñ+1 = Y ) we
decrease the influenced value pC(z−) to 0 if and only if the underlying assignment is
satisfying.

Proof. Every assignment trend implies that the destructive nodes di are influenced by
exactly one variable node. Thus their influenced value is exactly Y . This already
decreases the influenced value of z− to m · (Z + 1).

The value drops to 0 if and only if it is also influenced by every clause node. By
Proposition 5.11 we conclude the claim.
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5.3 Decreasing Trends

Note that the revenue of such an instance is at least

R ≥ 3Xñ+ 12
(
ñ

2

)
+ 3ñ+ Y · (m̃+ ñ).

We finalize the construction of the reduction graph G (illustrated in Figure 5.2) with
the Revenue Gadget 5.16.

Gadget 5.16 (Revenue Gadget). We add the nodes z1, . . . , zM and z′1, . . . , z′M ′ with the
following initial values and influences:

p(zi) = Z for i = 1, . . . ,M
w(z−, zi) = −Z for i = 1, . . . ,M

p(z′i) = Z ′ for i = 1, . . . ,M ′

w(z−, z′i) = −Z ′ for i = 1, . . . ,M ′

We furthermore have Z > Z ′.

The constructed reduction graph is illustrated in Figure 5.2.

Proposition 5.13. For every extended satisfying assignment trend

(b1, . . . , b2ñ, π2ñ+1 = Y, π2ñ+2 = Z, π2ñ+3 = Z ′)

we generate a revenue of at least

R̂ := 3Xñ+ 12
(
ñ

2

)
+ 3ñ+ Y · (m̃+ ñ) +M · Z +M ′ · Z ′.

We set R̂ for the instance I such that every trend corresponding to a satisfying variable
assignment gives R(π) ≥ R̂.

In the remainder of this subsection we show that there is no trend of prices π with
R(π) ≥ R̂ that does not correlate to a satisfying assignment.

Theorem 5.14. The problem DynPPAI is NP-complete for decreasing trends of prices.

Proof. We have already determined the reduction graph up to minor details.

We now set the remaining values:

X = (6m̃)4 Y = (6m̃)3

Z = (6m̃)2 M = (6m̃)4

Z ′ = (6m̃)1 M ′ = (6m̃)5
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5 Dynamic Product Pricing

Note that with these values the requested orderX > 3Y > Y > (ñ+m̃)·(Z+1) > Z > Z ′

is uphold.

Thus
R̂ := 3ñ((6m̃)4 + 2ñ− 1) + (6m̃)3 · (m̃+ ñ) + 2 · (6m̃)6

is the minimum revenue of a satisfying instance. We assume again that ñ < 3m̃ since
otherwise we have unused variables.

Now consider the situation where we have any trend of prices π.

Property 5.3.1. If z− ∈ C(π), we have R(π) < R̂.

Proof. Assuming the nodes prior to z− have all bought for their initial values, we measure
the difference between this revenue R′ and R̂.

R′ − R̂ < −2(6m̃)6 + 1
2(6m̃)5 + 5

6(6m̃)4 + 1
2(6m̃)2 + 1

2(6m̃)1

We have to distinguish three cases for z− buying. In all three cases the value −2(6m̃)6

dominates the achievable revenue of the revenue nodes.

1. Node z− buys before the revenue nodes do. Thus we can only add up to (m̃+ ñ) ·
(6m̃)2 revenue from z− itself to R′ − R̂. This is not enough revenue to reach R̂
altogether.

2. Node z− buys with the nodes z1, . . . , zM and before z′1, . . . , z′M ′ . The maximum
price for this is (6m̃)2 and we generate an additional revenue of (6m̃)6 + (6m̃)2,
which is still not enough to reach R̂.

3. Node z− buys together with all revenue nodes. The price is at most (6m̃)1. The
revenue (6m̃)6 + (6m̃)5 + (6m̃)1 of it does also not reach R̂.

Since we have to sell to the revenue nodes for the requested revenue, we know that the
price has to drop below Z+1. In this case we need to have {y1, . . . , ym̃, d1, . . . , dñ} ⊆ C.

Property 5.3.2. If z− /∈ C(π) and we do not have an extended assignment trend π, it
holds that R(π) < R̂.

Proof. The easiest way to achieve {y1, . . . , ym̃, d1, . . . , dñ} ⊆ C is by directly selling to
the clause and destructive nodes. That means we start with π1 = 2Y . Then the revenue
is exactly

2Y · (5ñ+ m̃) ≤ 16
3 · (6m̃)4.
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5.3 Decreasing Trends

The revenue we actually need, given that the purchases of the revenue nodes are guar-
anteed, is

3ñ((6m̃)4 + 2ñ− 1) + (m̃+ ñ)(6m̃)3.

Thus, in order to achieve the requested revenue, we can not sell to clause and destructive
nodes in the first round. Instead we start with prices like in an assignment trend.

If we do sell to a pair xi, xi of variable nodes, this must be at a price such that di can
also buy in the same round as xi. This implies that we are also selling to all nodes xj ,
xj for j > i at the same time.

We distinguish two cases:

1. The first 2t − 2 rounds we sold to exactly one corresponding variable node. In
round 2t− 1 we sell to xt, xt, and dt for 2Y . The revenue of the variable gadget,
clause and destructive nodes is at most:

t−1∑
i=1

(3X + 12ñ− 12i+ 5 + Y ) +
ñ∑
i=t

(5 · 2Y ) + m̃ · 2Y

=(t− 1) · (3X + 6(2ñ− t) + 5 + Y ) + (ñ− t+ 1) · (10Y ) + m̃2Y (5.1)

2. We sold the first 2t− 1 rounds according to a variable assignment. In round 2t we
sell to xt and dt for Y . The accumulated revenue is at most:

t−1∑
i=1

(3X + 12ñ− 12i+ 5 + Y ) + 2X + 8(ñ− t) + 4 + 2 · Y + m̃ · Y

+
ñ∑
i=t

(5 · Y )

= (t− 1) · (3X + 6(2ñ− t) + 5 + Y ) + 2X + 8(ñ− t) + 4
+ Y (2 + 5(ñ− t+ 1) + m̃) (3.2)

Both Equations (1) and (3.2) are less than the revenue an assignment trend achieves on
the same nodes, namely 3n(X + 2n− 1) + (m+ n)Y .

Hence, we showed that we need an assignment trend to achieve the requested revenue.
This concludes the proof of Property 5.3.2.

The remaining case was already done with the construction of R̂ and requires a satisfying
variable assignment for the underlying J instance of 3SAT.

Since the constructed graph, such as its initial values and influences, is of polynomial
size, the construction is complete and the claim follows.
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(6m)4 + 4n− 1, · · · , (6m)4
3(6m)3

2(6m)3

(m+ n) ·
(
(6m)2 + 1

)
(6m)2

(6m)1

t1

t2

t3

t4

...

...

t2n−1

t2n

x1

x1

x2

x2

...

...

xn

xn

y1

y2

...

ym

d1

d2

...

dn

z−

z1

z2

...
z(6m)4

z′1

z′2

...

z′(6m)5

Figure 5.2: Reduction Graph for DynPPAI on negative graphs and decreasing trend of
prices
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Since the influences are negative any contracted trend of prices is decreasing. This
already gives us two results for a more general setting.

Corollary 5.15. The problem DynPPAI is also NP-complete regarding

• negative graphs with arbitrary trends,

• arbitrary graphs with negative trends, and

• arbitray graphs with arbitrary trends.

5.4 Increasing Trends

In this section we show that DynPPAI is also NP-complete for increasing trends of prices
and positive graphs.

We construct the reduction graph for an instance J of 3SAT as usually.

Gadget 5.17 (Reduction Graph). The variable gadget Gx consists of nodes

V x = t1, . . . , t2ñ+2, x1, . . . , xñ, x1, . . . , xñ, d1, . . . , dñ.

The initial value p(t1) = 1 is the only one not set to 0.

We define the arcs indirectly by their influences as follows:

w(t2i−1, xi) = 2i− 1 for i = 1, . . . , ñ
w(t2i−1, t2i) = 2i for i = 1, . . . , ñ
w(t2i, xi) = 2i for i = 1, . . . , ñ

w(t2i, t2i+1) = 2i+ 1 for i = 1, . . . , ñ
w(xi, di) = i+ 1 for i = 1, . . . , ñ
w(xi, di) = i+ 1 for i = 1, . . . , ñ

We directly add the remaining nodes, since their interaction is needed to “steer” the
variable nodes. Those are the variable nodes y1, . . . , ym̃, the collector node z+ with
p(z+) = −m̃, and the revenue node zM with p(zM ) = −1.

Their influences are as follows:

w(xi, yj) = 1 if xi ∈ yj
w(xi, yj) = 1 if xi ∈ yj

w(t2ñ+1, yj) = 2ñ+ 1 for j = 1, . . . , m̃
w(t2ñ+2, z+) = 2ñ+ 2

w(yi, z+) = 1 for i = 1 . . . , m̃
w(di, zM ) = 2 for i = 1, . . . , ñ
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5 Dynamic Product Pricing

w(ti, zM ) = 1 for i = 1, . . . , 2ñ
w(t2ñ+1, zM ) = 2
w(z+, zM ) = M

The reduction graph is illustrated in Figure 5.3.

Theorem 5.16. DynPPAI with increasing trends of prices is NP-complete on positive
graphs.

Proof. We show that instance I on Gadget 5.17 with requested revenue

R̂ := m̃(2ñ+ 4) + 5ñ2 + 13ñ+ 5

is equivalent to our 3SAT instance J .

The maximum revenue can surely be bounded by the sum of all initial values and influ-
ences. By choice, this sum is exactly R̂−1+M . To achieve the revenue of R̂, we require
the exerted influence w(z+, zM ), i.e., the node z+ has to buy before zM , as∑

v∈V
p(v) +

∑
a∈A\{(z+,zM )}

w(a) = m̃ · (2ñ+ 4) + 5ñ2 + 11ñ+ 2 < R̂

bounds the maximum revenue without said influence. Apart of node zM , nodes ti have
the highest influenced value in rounds i = 1, . . . , 2ñ + 2. Hence, assuming every round
has at least one buyer, nodes ti buy in rounds i. Furthermore, the influenced value of
zM in round i = 1, . . . , 2ñ is at least i− 2, since the influences from the time nodes are
secured. So, in order to achieve the required revenue R̂, for rounds i = 1, . . . , 2ñ + 2
the prices have to satisfy πi ∈ {i − 1, i}. Remark that thereby the trend of prices is
guaranteed to be increasing.

Variable Nodes: In rounds i = 2, . . . , 2ñ + 1, if πi = i the time node buys, but
the “current” variable node (either x i

2
for even i or x i−1

2
otherwise) does not. As its

influenced value will not increase anymore and the trend of prices is ascending, this is a
final state. Otherwise, with πi = i− 1, the time node and variable node buy.

A variable node in G buying corresponds to the variable set to be true in the underlying
instance of 3SAT. Hence, we have to make sure that (illegitimately) setting x = true and
x = true does not benefit the potential to reach revenue R̂. The destructive nodes di
are influenced by the variable nodes xi and xi, such that a single influence is not enough
to persuade di to buy. If both variable nodes bought, in round 2i + 2 the influenced
value pB(di) = 2i+ 2 = pB(t2i+2) and di buys.

But for the next round 2i+ 3 this means that pB(t2i+3) = 2i+ 3 = pB(zM ) and zM buys
before z+. Thus for an optimal trend of prices we can rule out x = true = x. It is still
allowed that neither the variable node nor its counterpart buys, but changing the trend
of prices such that exactly one of them is buying, does only improve the overall revenue.
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Clause Nodes: The clause nodes yi for i = 1, . . . ,m are influenced by their variable
nodes contained and time node t2ñ+1. Until round 2ñ+ 2 only influences of the variable
nodes are exerted, with a maximum of pB(yi) = 3. Hence, even for the first few rounds,
this does not suffice for yi to buy beforehand.

In round 2ñ + 2 the influence w(t2ñ+1, yi) = 2ñ + 1 is added. By then, as long as
no destructive node bought, node zM has reached pB(zM ) = 2ñ + 1. Thus yi needs
the influence of at least one variable node to surpass zM and buy before it. As in the
underlying instance of 3SAT the clause node buys (is true) if and only if at least one of
the contained variable nodes buys (are true).

Collecting Node and the Big Contributor: The collecting node z+ summarizes whether
all clause nodes have bought. If so, the influenced value in round 2n + 3 is pB(z+) =
2n+ 2 ≥ π2n+2 = 2n+ 2 and by keeping the old price z+ finally buys before zM . With
π2ñ+4 = 2ñ+ 1 +R alone we can surpass the requested revenue.

All in all, the instance J of 3SAT and the constructed instance I of DynPPAI with
positive influences and increasing trends of prices are equivalent. Since the construction
given in this proof can be done in polynomial time and DynPPAI ∈ NP by Corollary 5.2,
the claim holds.

Since the influence w(z+, zM ) in itself is more than the rest, we can conclude this corollary
on approximability with w(z+, zM ) = r ·M .

Corollary 5.17. Unless P = NP, there is no polynomial time r-approximate algorithm
for DynPPAIopt for any r = O (1).

For the remaining result on graphs with positive influences and decreasing trends of
prices, we will prove some helpful results first.

We already noted that the selling stops after one round for increasing trends and negative
graphs. The solution is to choose the price giving the most revenue in this first round.
The following Algorithm Most stems from this idea.

Lemma 5.18. Algorithm Most runs in time O
(
n2 +m logn

)
.

For negative graphs and increasing trends Most computes the optimum revenue after one
round in O (ñ log ñ) time.

Proof. The algorithm computes one possible bi for each round and follows through on
this particular trend of sales, in contrast to bFrag which searches over all.

Correctness in the standard case is clear from construction.
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z+
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Figure 5.3: Reduction Graph for DynPPAI on positive graphs and increasing trend of
prices
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Algorithm 9: Most
Data: A graph G = (V,A) with weights p and w.
Result: A trend of prices π and its revenue R(π).
Initialize: Revenue R = 0, π = (), values p′(v) = p(v) for all v ∈ V , and C = ∅.
for i = 1, . . . , n do

if C = V then
return R and π.

Compute next price πi = argmax{ p′(v):v∈V \C }
∣∣Bi(p′(v))

∣∣ · p′(v).
Set R = R+ πi · |Bi(πi)| and C = C ∪Bi(πi).
if πi ≤ 0 then

return R and π = (π1, . . . , πi−1, 0, . . . , 0).
Update p′(v) = min{pC(v), πi} for all v ∈ V \ F .

In every for-iteration of Most we have to determine the price for the highest revenue
and update the influenced values. We use a height-balanced binary search tree to store
the nodes sorted by values p′(v).

This search tree is updated m times, i.e., once for every arc. Changing the influenced
value of a single node is accomplished by deleting and inserting the node once. This
takes O (m logn) time in total.

Using the search tree to find the maximum revenue in a single for-iteration is therefore
only taking O (n) time. Since we have at most n of those iterations, we conclude the
runtime O

(
n2 +m logn

)
.

For negative graphs we have already noted that prices have to decrease. So with the
restriction to increasing prices, we can only stay static. Hence, this was already covered
in Proposition 3.11

Remark 5.18. Algorithm Most provides the same result as Fewest on the graph in Fig-
ure 5.1.

We conclude the sections on increasing and decreasing trends with an overview of the
complexity results.

Corollary 5.19. We have shown the complexity of DynPPAI for all combinations of
influences and trend of prices.

aaaaaaaaaa
trend of prices

influences
arbitrary positive negative

arbitrary NP-complete NP-complete NP-complete
decreasing NP-complete Fewest in O (m+ n logn) NP-complete
increasing NP-complete NP-complete Most in O (n)
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5.5 Bounded Amount of Prices

In the reductions for increasing and decreasing trends of prices, we limited the feasible
prices to a narrow strip — πi ∈ {i − 1, i} and πi ∈ {X + 4ñ − 2i,X + 4ñ − 2i + 1},
respectively. This was managed by the introduction of a negative node z−. Even though
we only had a few viable prices in each round, the total amount of different prices
remained large.

With the possibility of arbitrary prices and trends we can furthermore limit the possible
prices to a solid set Π and still construct an instance I of DynPPAI corresponding to
some 3SAT instance J .

Definition 5.19. Let Π ⊂ N be a set of prices. If |Π| = O (1) we speak of a bounded
amount of prices.

Remark 5.20. Both reduction graphs in Figures 5.3 and 5.2 contained no directed cycle.
Using the Split-Copy Gadget 3.32 both can be transformed to trees which are still of
polynomial size.

For the reduction in this section we will directly construct a tree. The reduction also
includes a more direct take on the variants PPAI-S and PPAI-v with the restriction
π ∈ {1, 2}n =: Π̂.

We start again with the variable gadget. Since we need to have a separate in-tree for
every literal influencing the clause nodes, the constructed gadget is actually ambiguous
whether xi or xi is used.

Gadget 5.21 (Literal Gadget). For some literal l ∈ yj , where l ∈ {xi, xi}, we construct
its gadget Gl.

The tree Gl is illustrated in Figure 5.4, where the initial values are 0 except for p(tdi
1 ) =

p(tx̃i
1 ) = p(txi

1 ) = 2. Note that the time nodes on the left are nonexistent for i = 1 and
instead their influences are given to d1, x̃1, and tx1

1 directly.

The same holds analogously for the right side and i = n.

If l = xi node xi is the sole influence to tli+1 with w(xi, tli+1) = 2, otherwise it is
w(xi, tli+1) = 2.

Proposition 5.20. Any contracted trend of prices π in Gadget 5.21 satisfies π ∈
{1, 2}ñ+1.

If πi = 1 node xi buys in round i+ 1. Otherwise xi buys in round i+ 1.

Proof. Up to round i − 1 the time nodes t1, . . . , ti−1 buy consecutively and delay the
process. All these nodes have influenced value 2, so the prices are either 1 or 2.
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Figure 5.4: Tree Literal Gadget (in this case Gxi)

In round i the influenced values are as follows:

pCt−1(π)(di) = 2, pCt−1(π)(x̃i) = 1, and pCt−1(π)(txi
i ) = 2.

We have the choice πi = 1 or πi = 2. For πi = 1 all of these nodes buy. Therefore, the
influenced values in the next round are

pCt(π)(xi) = 0 and pCt(π)(xi) = 2.

If the gadget is actually for xi = l it follows that node tln+1 buys in round n+ 1.

With the other choice πi = 2 we only sell to di and txi
i . This erases the influenced value

of x̃i, hence, this node can not buy anymore. In contrast to the previous choice, the
influenced values of xi and xi are reversed, such as their buying behavior.

Theorem 5.21. The problem DynPPAI is NP-complete for a bounded amount of prices
even on trees.

Proof. Given J , we construct a literal gadget copy for all 3m̃ literals. For any trend of
prices π we restrict πi ∈ {1, 2} =: Π. A clause node yj := {l1, l2, l3} with initial value
p(yj) = 0 is then influenced by 2 from nodes tl1ñ+1, t

l2
ñ+1, t

l3
ñ+1.

The influenced value is in {0, 2, 4, 6}, so even without a restriction to Π = {1, 2} we
would have at most 6 different possible prices with buyers.

Thus, in round n + 2 the clause nodes buy for πñ+2 if and only if they are influenced
by at least one of their literal nodes. Note that this already implies a reduction for
DynPPAI-S.

Thus far we have introduced 3m̃ literal gadgets and m̃ more nodes. A literal gadget
contains ñ + 2(i + 1) ≤ 3ñ + 2 nodes. In total we have up to m̃(9ñ + 7) nodes and at
most twice that revenue.
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In the next step we connect those nodes to the collector node z+ with p(z+) = 2 − 2m̃
and w(yj , z+) = 2 for all j = 1, . . . , m̃. Node z+ buys if and only if all clause nodes do.
Hence, this implies a reduction for DynPPAI-v.

At the end, we connect z+ to revenue nodes zM forM = m̃(9ñ+7) and set R̂ = 2(M+1).
Since n = 2M + 1 the collector node together with the revenue nodes are the majority
in the reduction graph and their purchase for πñ+3 = πñ+4 = 2 is required.

Corollary 5.22. The problems DynPPAI-v, DynPPAI-S, DynPPAI-i are also NP-complete.

Unless P = NP, there is no polynomial time r-approximate algorithm for DynPPAIopt

with r = O (1).

Proof. This follows by raising the amount of revenue nodes to rM .

In the proof of Theorem 5.21 we allowed only two different prices. This sufficed to make
the problem NP-complete even on trees, in contrast to Conjecture 3.40 and PPAI where
exactly one price is allowed.

In the next section we restrict the trends of prices even further and allow only a bounded
amount of price changes.

5.6 Bounded Amount of Price Changes

The results in this chapter are most closely connected to Chapter 3.

Definition 5.22. Given a trend of prices (πi)i∈Nn , we have a price change in round
i = 2, . . . , n if πi−1 6= πi. We say that π is c-bounded if at most c price changes occur in
this trend of prices.

Remark 5.23. Recall that frag(n) denotes the maximum amount of fragments possible
for graphs G with n nodes and contained in some graph class G. For the classes we
discussed so far (bounded degree, bounded path length, sign constrained, trees, etc.) it
holds that the subgraphs, created by deletion of nodes, are still part of this class.

Proposition 5.23. For any graph G and trend of prices π with the first price change
in round t+ 1, we can assume that π1 is chosen from the endpoints of fragt(G).

Proof. Considering any price πi, it lies in a temporary fragment. Since we change the
price anyways in the next round, the upper endpoint of said fragment yields a better
revenue with the same set of customers.
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Note that in the context of a bounded amount of price changes we can not assume that
the prices are set to a current influenced value. Thus the notion of b-fragments and trends
of sales is not applicable in this case, since they miss the one-to-one correspondence with
trends of prices. However, we can use the original fragments again.

Lemma 5.24. For any graph class G with frag(n) fragments, we have at most(
n− 1
c

)
· frag(n)c+1

dominating trends of prices with up to c price changes. Algorithm bFrag therefore solves
the problem in O

(
nc · frag(n)c+1 · (m+ n logn)

)
time.

Proof. We have
(
n− 1
c

)
choices when to place the price changes. Since frag(n) is

increasing, we can assume that for each time interval around the price changes we have
up to frag(n) fragment endpoints to choose from.

Corollary 5.25. As in Chapter 3, we can polynomially bound the amount of choices
for the same graph classes with frag(n) = poly(n) (see Remark 3.17 and Section 3.6 in
general), if we restrict the amount of price changes to c = O (1).

5.7 Integer Program

Just like the Integer Program 1, we can formulate an integer program in the dynamic
setting.

Integer Program 2: DynPPAI (Formulation of DynPPAI)

max
∑
v∈V

n∑
t=1

πt · xv,t

subject to

xv,t ≥ 0 ∀v ∈ V, t = 1, . . . , n
xv,t ≤ 1 ∀v ∈ V, t = 1, . . . , n

n∑
t=1

xv,t ≤ 1 ∀v ∈ V∑
j<t

xv,j = yv,t ∀v ∈ V, t = 1, . . . , n

p(v) +
∑

u∈N−(v)
yu,t · w(u, v) = pv,t ∀v ∈ V, t = 1, . . . , n

pv,t − πt ≥ (xv,t − 1) ·M ∀v ∈ V, t = 1, . . . , n
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pv,t − πt ≤ (xv,t + yv,t) ·M − 1 ∀v ∈ V, t = 1, . . . , n

If we want to restrict the amount of price changes to c, we can add the following condi-
tions:

ct ≤ 1 t = 1, . . . , n
ct ≥ 0 t = 1, . . . , n
c1 = 0

n∑
t=1

ct ≤ k

ct ·M ≥ πt − πt−1 t = 1, . . . , n
ct ·M ≥ πt−1 − πt t = 1, . . . , n

Observation 5.24. In Observation 3.38 we already stated for PPAI — the formula-
tion of a PPAI instance — that using the combinatorial algorithm Frag had a better
performance on the G(n, p) graphs.

We did not implement Program 2, though we can assume that it is even harder, since
we only added more variables and equations.
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In this chapter we break with the paradigm “once a buyer, always a customer”.

We provide a model for perishable products and subscriptions alike. The customers may
or may not rebuy after the product perishes or the subscription ends. In Section 6.4 we
connect the model to the basic PPAI problem with returnable products.

Definition 6.1. Given a graph G = (V,A) with initial values p and influences w, we
introduce the duration d(v) ∈ N for all v ∈ V , after which node v may — or may not —
rebuy the product for price π.

The influenced value is computed as usual, but the set of customers is not increasing
anymore. Instead v stays a customer for d(v) rounds, i.e.,

v ∈ Ct(π)⇔ v ∈ Bt ∨ · · · ∨ v ∈ Bt−d(v)+1.

After that, the product is consumed and the node may buy again.

Node v with d(v) > 1 buys in round t if v /∈ Bt−1 ∪ · · · ∪Bt−d(v)+1 and pCt(v) ≥ π. For
node v ∈ V with d(v) = 1 we just require the influenced value, i.e., pCt(v) ≥ π.

The selling ends after T rounds, the given time horizon as in Definition 5.1. Every single
purchase counts towards the revenue, i.e.,

R(π, T ) = π ·
T∑
t=1
|Bt(π)| .

The special case that d(v) = d for all v ∈ V for some constant d ∈ N will be of particular
interest. We call this the case of fixed durations. Otherwise we say that durations are
individual. The special case of a fixed duration d = 1 for all nodes will be referred to as
unit durations.

Problem 4: PerPPAI (Perishable Product Pricing with Additive Influences)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, individual durations d(v) ∈ N
for the nodes v ∈ V , time horizon T , and some revenue R̂ ∈ N.

Question: Is there a price π ∈ N such that its revenue R(π) ≥ R̂?

As in Definition 3.1 we define the variants of PerPPAI:
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Definition 6.2 (Variants of PerPPAI).

PerPPAIπ: Compute the revenue for a given price.

PerPPAIopt: The corresponding revenue maximization problem.

A major focus of this chapter is the problem PerPPAIπ. The problems PerPPAI and
PerPPAIopt, i.e., finding a price with high revenue, are studied in Section 6.2 after we
determined the complexity of computing the revenue for a given price.

6.1 Computing the Revenue

Observe that it is trivial to compute the revenue R(π, T ) in time O (mT ) by going
through each round 1, . . . , T iteratively, updating influenced values and consumers. How-
ever, this running time is only pseudo-polynomial, since the encoding size is logarithmic
in T . Intuitively, the moments in time when nodes change their decisions about whether
to buy the product or not, capture the “important” rounds.
Remark 6.3. Without loss of generality, we can assume π = 1, since otherwise we can
shift the initial values as in Gadget 3.26. Thereby R(1, T ) sums the number of purchases
itself. We consider PerPPAIπ consequently as a counting problem from now on.

Definition 6.4. We say that a node v breaks in round t if

v ∈ (Ct−1 ∪ Ct) \ (Ct−1 ∩ Ct) =: Ct−1 4 Ct,

where C0 = ∅ as usual. A round t ∈ {1, . . . , T} in which at least one node breaks is
called a break.

The total number of breaks will be denoted by β.

By definition, the set of consumers remains unchanged between two breaks. This idea is
exploited in Algorithm Break, which computes the revenue R(π, T ) in a more efficient way
than the naive approach outlined above. For every node v ∈ V , we keep a number z(v) ∈
N, which is the earliest time after the current round when v must be rechecked for its
buying decision. Initially, z(v) = 1 for all v ∈ V .

Lemma 6.1. Algorithm Break correctly computes the revenue R(π, T ) in O (mβ) time.

Proof. Obviously, each round where t increases by 1 is handled correctly by the algo-
rithm. Moreover, between t and the next value of t considered in the while-loop, no
break occurs and all current consumers repeat buying, yielding additional revenue of
k · π, but not changing any influenced values or decisions.
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Algorithm 10: Break(G, π, T )
Data: A graph G = (V,A) with initial values p, influences w, durations d, price π and

time horizon 1, . . . , T .
Result: The revenue R(π, T ) generated in G.
Initialize R = 0, C = ∅, t = 1, p′(v) = p(v) and z(v) = 1 for all v ∈ V .

// z(v) is the next round to check whether z buys
while t ≤ T do

for v ∈ V with z(v) = t do
if p′(v) ≥ π then

C = C ∪ {v}, R = R+ π, z(v) = t+ d(v)
else

C = C \ {v}, z(v) = t+ 1

t = T + 1
Update p′(v) for all v ∈ V .

// Find the next round where a node breaks
D = { v ∈ V : (v ∈ C and p′(v) < π) or (v /∈ C and p′(v) ≥ π) }
Find v ∈ D with minimum z(v).
t = z(v).

// Update revenue
for v ∈ V with z(v) < t do

if v ∈ C then

k =
⌈
t− z(v)
d(v)

⌉
R = R+ k · π
z(v) = z(v) + k · d(v)

else
z(v) = t

return R(π, T ) = R
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Furthermore, a break occurs in all — but possibly the last — while-iterations. So, in
total, we have β or β + 1 rounds to check.

Each while-iteration itself has to update the influenced values p′(v). In the previous
chapters the computation of the influenced values took O (m) in total, since we had no
customers dropping out. In Break the same time is potentially needed in every iteration.

In O (n) time we determine the set D and its minimum entry z(v). The same holds for
the amounts of purchases k of each node v ∈ C.

Hence, the algorithm runs in time O (m · β) as claimed.

Remark 6.5. Note that Algorithm Break does not detect a “periodical” buying behavior.
In Algorithm Stint, introduced in Section 6.1.2 on negative influences, we detect such
behavior and avoid checking every break. Therefore, it can run in polynomial time even
for β = T .

Yet, we have not provided a polynomial time algorithm to compute the revenue. There-
fore, it remains unclear thus far whether PerPPAI is in NP. We examine this in detail,
before we start with PerPPAI itself.

6.1.1 Positive Influences

Restricting the influences to be positive, we observe a “good” behavior of the consumers.
This is similar to the results in Section 3.5, where non-perishable products were consid-
ered.

Lemma 6.2. On positive graphs, consumers will always renew the purchase of the prod-
uct without breaking. Hence, β ≤ n.

Proof. Assume that t is the first round in which some consumer v does not renew their
purchase. Then, by definition, the set of consumers in rounds 1, . . . , t − 1 has never
shrunk, i.e., C1 ⊆ C2 ⊆ · · · ⊆ Ct−1. In particular, Ct−1 ⊇ Ct−d(v)−1, and all the
influencing consumers from the previous purchase of v in round t − d(v) still own the
product in round t−1. As all influences are positive, this implies that π ≤ pCt−d(v)−1(v) ≤
pCt−1(v), which contradicts the assumption that v does not renew in round t.

As a direct consequence of Lemmas 6.1 and 6.2, we obtain that, for positive graphs, Break
runs in time O (mn). This is already polynomial, but we are still initiating superfluous
computations.

So, for positive graphs, it is straightforward to see that all breaks must happen in
consecutive rounds. Thus, determining the set D and finding the node v ∈ D with
minimum value z(v) is, in fact, not necessary. Finally, since the set of consumers only
grows, it suffices to update the values of all nodes u such that (v, u) ∈ A at the moment

86



6.1 Computing the Revenue

in time when v becomes a consumer. Basically we can apply Algorithm Sell and compute
the revenue contributed by v ∈ Bt(π) as π ·

⌈
t+ 1− t
d(v)

⌉
.

Corollary 6.3. For positive graphs the revenue R(π, T ) can be computed in time O (m).

Thus PerPPAIπ ∈ FP and PerPPAI ∈ NP.

6.1.2 Negative Influences

For some products (e.g., a sports pay TV subscription), it appears less likely that one
wants to buy it if a good friend already has it and shares it with others. We model this
phenomenon by negative influences of consumers on their friends. Recall that for PPAIπ
on negative graphs we had no purchases after the first round.

The problem PerPPAIπ, however, is more interesting on negative graphs, since influences
are fading. We first derive some important structural properties:

Lemma 6.4. Suppose that all influences are negative and durations are fixed to d = d(v)
for all v ∈ V . Then the following statements hold:

(i) If v /∈ Ci·(d+1)−d for some i ∈ N, then v /∈ Cj for all j ≥ i · (d+ 1)− d.

(ii) If v ∈ Ci·(d+1) for some i ∈ N, then v ∈ Cj for all j ≥ i · (d+ 1).

Proof. We prove the claim by induction on k :=
⌈

T

d+ 1

⌉
. For k = 1, we have at most

d+ 1 rounds, so statement (ii) trivially holds. For statement (i), we have to show that
nodes in V \C1 = V \B1 never buy in any round. If v ∈ V \B1, we have p∅(v) = p(v) < π.
But since all influences are negative, this implies that pC(v) ≤ p∅(v) = p(v) < π for all
C ⊆ V , so v will indeed never buy.

For the induction step, note that, by the above argument, nodes in V \ C1 = V \ B1
never buy in any round, so statement (i) holds for i = 1. Moreover, we can remove all
nodes in V \B1 from G without changing the values or the buying behavior of the other
nodes. The nodes in C1 = B1 first decide about whether to rebuy or not in round d+ 1.

In round d + 1, all negative influences from the nodes in B1 are still present, so as the
nodes in V \B1 were removed as they never buy, the current influenced value pB1(v) of
any node v can never be decreased further in later rounds. Thus, all nodes in Bd+1 =
Cd+1 will always continue renewing their purchase without breaking until the end, so
statement (ii) holds for i = 1.

Moreover, the influences exerted by the nodes in Bd+1 can be permanently added to the
values of all nodes from round d+ 1 onwards. In total, this shows that the situation in
rounds d + 2, . . . , T is equivalent to the situation in rounds 1, . . . , T ′ := T − (d + 1) in
the graph G′ := G− ((V \B1)∪Bd+1), where the initial value of each node v is given as

87



6 Perishable Product Pricing

p′(v) := p(v) +
∑

u∈Bd+1

w(u, v). Hence, as
⌈
T ′

d+ 1

⌉
=
⌈

T

d+ 1

⌉
− 1 = k − 1, statements (i)

and (ii) for i ≥ 2 now follow by applying the induction hypothesis to G′.

Lemma 6.4 and its proof show that, for negative influences and fixed durations, the
selling process proceeds in periods consisting of d+ 1 rounds each. Within each period,
purchases are only made in the first and the last round of the period. The nodes that
do not buy in the first round of a period never buy again in any later rounds, while the
nodes that buy in the last round of a period will always continue renewing their purchase
without breaking until the end from this point in time.

In particular, this implies that the selling process “stabilizes” with the same set of nodes
buying in the first round of each future period and no nodes buying in the last round of
each period once the set of nodes buying in the last round of a period is empty for the
first time. These observations are exploited in Algorithm Stint.

Algorithm 11: Stint(G, π, T )
Data: A graph G = (V,A) with initial values p, negative influences w, fixed durations

d(v) = d, price π and time horizon 1, . . . , T .
Result: The revenue R(π, T ) generated in G.
Initialize p(v) = pV \{v}(v) and p(v) = p(v), V ′ = V , R = 0.
// p(v) and p(v) are the minimum and maximum influenced values,

respectively

for i = 1, . . . ,
⌈

T

d+ 1

⌉
do

Si = {v ∈ V ′ : p(v) ≥ π} // Nodes that can still buy
for (u, v) ∈ (V ′ \ Si, Si) do

p(v) = p(v)− w(u, v)
V ′ = Si
Si = {v ∈ V ′ : p(v) ≥ π} // Nodes that will always buy
for (u, v) ∈ (Si, V ′ \ Si) do

p(v) = p(v) + w(u, v)
V ′ = V ′ \ Si
R = R+ π · |Si|+ π ·

⌈
T − i · (d+ 1) + 1

d

⌉
· |Si|

if Si = Si−1 and Si = ∅ then
R = R+ π ·

⌈
T

d+ 1 − i
⌉
· |Si|

return R(π, T ) = R

Theorem 6.5. For negative graphs and fixed durations, Algorithm Stint computes the
revenue R(π, T ) in time O (m).
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Proof. Correctness follows immediately from Lemma 6.4 and the discussion afterwards.

The algorithm has at most n iterations of the for-loop and, except for the initial com-
putation of p(v), iterates at most once over each arc. When we keep book of Si and Si
while updating p(v) and p(v), all other operations can be done in at most O (n) time.

For negative influences and individual durations, Lemma 6.4 does not hold. We show
that it is in fact hard to compute R(π, T ) in this case.

Theorem 6.6. PerPPAIπ for negative graphs with individual durations is #P-hard.

Proof. Let J be an instance of 3SAT, where x1, . . . , xñ and y1, . . . , ym̃ are the variables
and clauses, respectively. From J we construct the graph G for instance I of PerPPAIπ
shown in Figure 6.3. Our instance J can be assumed to be restricted such that each
clause contains literals corresponding to three different variables.

We can assume π = 1 as seen in Remark 6.3. After T := 3 · 2n + 3 rounds, the revenue
R(1, T ) has summed up all purchases. Apart from the number of purchases of z+, which
we show to coincide with the number of satisfying truth assignments in J , the revenue
can be computed in polynomial time.

The initialization phase, rounds 1, . . . , 2ñ, is needed in order to calibrate a regular buying
behavior of the variable nodes xi and xi for i = 1, . . . , ñ. Then, in the evaluation phase
in rounds 2ñ+ 4, . . . , T , node z+ starts to base its buying decision on whether the clause
nodes y1, . . . , ym̃ have purchased or not.

We set p(v) = 1 for all v ∈ V and w(a) = −1 for all a ∈ A. Thus, all nodes buy in the
first round and, afterwards, a node renews its purchase if and only if it is not influenced
by any other node.

Variable Gadgets: The variable gadget Gi in Figure 6.1 generates two nodes “almost”
alternately being consumers.

xi

2i
xi

2i

hi

2i+1 − 1

h′i

2i+1 − 1

Gi

Figure 6.1: Variable Gadget Gi with durations of the nodes.
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The nodes hi and h′i have the same duration d = 2i+1 − 1 and pause one round before
renewing (cf. Lemma 6.4). Hence, they do not exert influence in rounds k · 2i+1 + 1 for
k = 0, . . . ,

⌊
T

2i+1

⌋
.

As the node xi is influenced exactly as h′i, it buys at the same time with a duration of
d(xi) = 2i rounds. Thus, xi is a consumer in rounds k · 2i+1 + 1, . . . , k · 2i+1 + 2i for
k = 0, . . . ,

⌊
T

2i+1

⌋
(see Figure 6.2 for a complete illustration of C1, . . . , CT for ñ = 3).

h1 h′1/

x1

x1

h2 h′2/

x2

x2

h3 h′3/

x3
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g g′/

f

y1 ym̃. . .

z+
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1 2
1 2
1 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

1 ? ? ? ? ? ? ? ? ψ

1 2 ? ? ? ? ? ? ? ?

Figure 6.2: Consumer sets Ct in G with three variables

Due to the negative influence of xi, node xi with duration d(xi) = 2i buys once in the
first round and, afterwards, always two rounds after xi ceased to be a consumer. Hence,
the consumer behavior of rounds 2i + 1, . . . , 2i + 2i+1, the first period, is repeated every
2i+1 rounds. In particular, exactly 2ñ−i periods occur in the rounds 2ñ+1, . . . , 2ñ+2ñ+1.

In total, the revenue of gadget Gi for 1 ≤ i < ñ is

RGi(1, T ) = 4 ·
⌈
T

2i+1

⌉
= 3 · 2ñ−i+1 + 4.

The gadget Gñ, while defined just as the the other gadgets, has a different behavior
on rounds 1, . . . , T and is therefore investigated individually. It generates a revenue of
RGñ(1, T ) = 9 (see Figure 6.2 for x3 and x3) and the roles of xñ and xñ are switched.

90



6.1 Computing the Revenue

Supplementary and Clause Nodes: For a gadget Gi, we say that the k-th period con-
sists of rounds k ·2i+1−2i+1, . . . , (k+1)·2i+1−2i. Each period starts with an odd round
in which neither variable node is a consumer. The odd round k ·2i+1 +1 in the middle of
the period has both variable nodes as consumers. Apart from those two rounds, always
exactly one of xi and xi owns the product. In particular, after 2i rounds, exactly one
variable node is a consumer in each even round (marked gray in Figure 6.2).

x1

h1

x1

h′1

x2

h2

x2

h′2 · · · · · ·

· · · · · · xñ

hñ

xñ

h′ñ

y1

2

y2

2

· · · ym̃

2

z+

1

f

2n

g′

1g

1

G1 G2 Gn

Figure 6.3: Reduction Graph for PerPPAIπ obtained from the 3SAT instance

Altogether, the gadgets G1, . . . , Gñ run through all truth assignments exactly once in
the even rounds 2ñ + 2, 2ñ + 4, . . . , 3 · 2ñ = T − 3.

The variable nodes influence their corresponding clause nodes y1, . . . , ym̃. An edge
(xi, yj), respectively (xi, yj), exists if and only if variable xi is contained unnegated (re-
spectively negated) in clause yj . Thus, in the odd rounds after round 2ñ, node yj buys
if and only if the corresponding clause is not satisfied by the variable node consumers of
the previous round.

We use node f to discourage the clause nodes from buying in rounds 2, . . . , 2ñ + 1 and
node g to do the same in all even rounds. Together, the three nodes f , g, and g′

contribute T + 2 purchases.

The rounds in question (marked with “?” in Figure 6.2) yield exactly m̃ · 1/8 · 2ñ
purchases of clause nodes since, by the assumed structure of the 3SAT instance (each
clause contains literals corresponding to three different variables), a clause is not satisfied
in one of eight assignments. In the last round, some clause nodes buy again, say ψ times
in total. We can compute ψ easily by checking how many clauses are satisfied for one
specific truth assignment.
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So far, we have a well-known amount of purchases:

S :=
ñ−1∑
i=1

(3 · 2ñ−i+1 + 4) + 9︸ ︷︷ ︸
gadgets

+ 3 · 2ñ + 5︸ ︷︷ ︸
f,g,g′

+ m̃ · (2ñ−3 + 1) + ε︸ ︷︷ ︸
y1,...,ym̃

= 9 · 2ñ + m̃ · 2ñ−3 +m+ ψ + 4ñ− 2

The collecting node z+ buys in the first round and once in round 2ñ + 3 when f stopped
influencing and the clause nodes did not start again. In the following odd rounds, z+
buys if and only if no clause node bought (is false). Thus, R(1, T ) − S − 2 is exactly
the amount of satisfying truth assignments of the given 3SAT instance.

6.1.3 Arbitrary Influences

The hardness result of Theorem 6.6 uses only negative influences but individual durations
at the nodes. We now prove that the problem is even hard for unit durations if one allows
arbitrary influences.

Theorem 6.7. PerPPAIπ with arbitrary influences and unit durations is #P-hard.

Proof. We assume without loss of generality that π = 1 as noted in Remark 6.3. Given
an instance J of 3SAT, i.e., variables x1, . . . , xñ and clauses y1, . . . , ym̃, we construct a
graph for instance I such that the obtained revenue R(π, T ) — which equals the number
of purchases as π = 1 — counts the satisfying truth assignments.

We construct variable nodes x1, x1, . . . , xñ, xñ such that all configurations occur in rounds
ñ, . . . , ñ+ 2ñ − 1 = T − 2. Lacking longer (native) durations, we need to generate well-
synchronized periods of lengths 2i with only poly(ñ) nodes.

α

1

s1

1
s2

0
s3

0
. . . . . . sñ−1

0

t1,1

0
t1,2

0
t1,3

0
. . . . . . t1,ñ

0

−1

+1 +1 +1 +1

+1

+1 +1 +1
+1

+1

Figure 6.4: Construction of sñ−1, g1 := t1,1, and t1 := t1,ñ
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6.1 Computing the Revenue

Property 6.1.1. The node α in Figure 6.4 (labels above nodes denote initial values)
buys each round and influences s1 not to buy after the first round. Each node si for
i = 2, . . . , ñ − 1 buys exactly in round i (and in no other round). While the s-chain is
only traversed once, the nodes t1,1, . . . , t1,ñ repeat buying every two rounds because t1,1
and t1,2 “keep them alive”. Node t1,1 buys in rounds 2, 4, . . . , n+ 2ñ, and node t1,ñ buys
in rounds ñ+ 1, ñ+ 3, . . . , n+ 2ñ + 1.

gi−1

hi

0
h′i

0
ti,i

−1
ti,i+1

0
. . . . . . ti,ñ

0+1

+1

+1

+1 +1

−1
+1 +1 +1

Figure 6.5: Construction of further gi and ti

Property 6.1.2. Assuming gi−1 buys in rounds (i− 2) + 2i−1, (i− 2) + 2 · 2i−1, (i− 2) +
3 · 2i−1, . . . , node ti,i buys in rounds (i − 1) + 2i, (i − 1) + 2 · 2i, (i − 1) + 3 · 2i, . . . and
node ti,n always n− i rounds later.

Proof. Node hi buys for the first time in round (i−2)+2i−1 +1. Like the nodes t1,1 and
t1,2, the nodes hi and h′i buy alternatingly as long as they are not influenced by some
other node. When the second activation of gi−1 happens in round (i− 2) + 2 · 2i−1, the
node h′i buys as well. The influenced values in the following round are as follows:

pB(hi) = 2, pB(h′i) = 0, pB(ti,i) = 1.

Hence, as claimed, hi and ti,i buy in round (i−1) + 2i. In the next round, the influences
of hi and ti,i on h′i cancel each other and none of these nodes buy. Thus, we are in the
same situation as before and gi−1 starts the whole process anew in round (i−2)+3 ·2i−1,
namely 2i rounds after the initial start.

The node ti,ñ repeats the behavior of ti,i exactly ñ− i rounds later, as seen for the nodes
in Figure 6.4.

Property 6.1.3. For i = 2, . . . , ñ and given the proper buying behavior shown in the
previous properties, the “outer” influences on the variable nodes xi and xi are summa-
rized in Table 6.1.

ñ+ 0 · 2i−1 ñ+ 1 · 2i−1 ñ+ 2 · 2i−1 ñ+ 3 · 2i−1 . . .

xi +1 −1 +1 −1 ±1
xi 0 +1 −1 +1 ∓1

Table 6.1: Summary of the influences w(sñ−1, ·) + w(ti−1, ·) + w(ti, ·) exerted on the
variable nodes
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sn−1 xi

0
x′i

0
x′i

0
xi

0

ti−1

ti

+1
+1

+1 +1

+1

−1 +1

+2 −2

Figure 6.6: Variable Gadget

The corresponding nodes start buying (+1) or stop buying (−1) in those rounds. With
their respective duplicate nodes x′i and x′i, the buying is kept alive in between those
specific rounds, i.e., in the following rounds either xi or x′i are consumers:

ñ, . . . , ñ+ 2i−1 − 1, ñ+ 2i, . . . , ñ+ 2i + 2i−1 − 1, n+ 2 · 2i, . . .

All (future) outgoing arcs of the variable nodes are copied to stem from both the original
and duplicate nodes.
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g3 t3
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Fig. 6.4

Fig. 6.5

Fig. 6.5

Fig. 6.6

Figure 6.7: The graph constructed for the 3SAT reduction in the proof of Theorem 6.7
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6.1 Computing the Revenue

Property 6.1.4. The clause nodes y1, . . . , ym̃ are influenced by their respective variable
nodes contained (see Figure 6.7). They buy if and only if at least one of these variable
nodes did so in the previous round. The collecting node z+ buys if and only if all clause
nodes are consumers at the same time. This happens exactly when the configuration of
the variable nodes two rounds before corresponds to a satisfying assignment.

This concludes the #P-hardness proof.

In Figures 6.8 and 6.9 the status in round ñ and ñ+ 2ñ − 1, respectively, is illustrated.
In these figures the current buyers are marked gray, their influenced value is at top left
and the amount of purchases at bottom right.

6.1.4 Acyclic Graphs

In this section, we study the problem PerPPAIπ on acyclic graphs and, in addition to
more structural insights, derive polynomial time algorithms for two special cases (see
Lemma 6.9 and Corollary 6.10).

Lemma 6.8. If G = (V,A) is acyclic, no node breaks after round
∑
v∈V

d(v).

Proof. We call a node v ∈ V a source if it has in-degree 0, i.e., if there are no arcs
entering v. We define the graph

Gd = (V ∪ {s}, A ∪ {(s, v) : v is a source in G})

with arc lengths c(u, v) := d(v) for (u, v) ∈ A and c(s, v) := 1 for all sources v in G.
We show that no node v ∈ V breaks after round L(v), where L(v) is the length of the
longest path from s to v in Gd with respect to the arc lengths c. Note that, in graphs
with cycles, the longest non-simple path may be of infinite length. This is where we
make use of the fact that G is acyclic.

Let v1, . . . , vn be a topological sorting of G. The values L(vi) satisfy the recursion
L(vi) = 1 for all sources vi in G and

L(vi) = max{L(u) + c(u, vi) : u ∈ N−(vi) }
= d(vi) + max{L(u) : u ∈ N−(vi) }, (6.1)

forN−(vi) 6= ∅, where we used the fact that all arcs entering vi have the same length d(vi)
in order to obtain the last equality.

All sources vi are never influenced by any other node and, consequently, will not break
after round 1 = L(vi). Now consider a node vi such that N−(vi) 6= ∅. This node is
influenced by the nodes in N−(vi) ⊆ {v1, . . . , vi−1}. By induction, each node u ∈ N−(vi)
does not break after round L(u). By (6.1.4), the longest path to vi goes through node
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Figure 6.9: Snapshot of the selling: last round
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v∗ = argmaxvj∈N−(vi) L(vj). The influenced value of vi can change for the last time
between rounds L(v∗) and L(v∗) + 1. Hence, if vi is no consumer in round L(v∗), it
can break (to being a consumer) no later than in round L(v∗) + 1. Otherwise, the
longest delay is obtained when vi decides to buy in round L(v∗) and breaks (to being
no consumer) in round L(v∗) + d(vi) = L(vi). The claim of the lemma now follows
from (6.1.4) and the fact that d(v) ≥ 1 for all v ∈ V .

Lemma 6.9. For an acyclic graph G = (V,A), let dmin := min
v∈V

d(v) and dmax :=
max
v∈V

d(v) denote the shortest and longest duration of a node, respectively. Then, if
dmax/dmin ≤ poly(n) is polynomially bounded in n, Algorithm Break runs in polyno-
mial time.

Proof. By Lemma 6.8, after no more than
∑
v∈V

d(v) ≤ n · dmax rounds, no breaks will

occur. As a node v may only break twice in a period of d(v) + 1 rounds, no node breaks
more than O (n · dmax/dmin) times. Thus, we have β ∈ O

(
n2 · dmax/dmin

)
and the claim

follows from the assumption and Lemma 6.1.

For fixed durations, we have dmax/dmin = 1, so we obtain the following corollary:

Corollary 6.10. PerPPAIπ on acyclic graphs with fixed durations can be solved by Break
in O

(
n2 ·m

)
time.

The next theorem shows that, if the assumption on the fixed durations is dropped, the
problem becomes hard again:

Theorem 6.11. PerPPAIπ on acyclic graphs with individual durations and arbitrary
influences is #P-hard.

Proof. Let J be an instance of 3SAT where x1, . . . , xñ and y1, . . . , ym̃ are the variables
and clauses respectively. As in the proof of Theorem 6.6, we construct a graph G for
instance I of PerPPAI such that the revenue obtained for price π = 1 is

R(1, T = 2ñ+1 + 2) = 2ñ · (3 + 7m̃
8 )− 1 +X,

where X is the number of satisfying truth assignments. The graph consists of the
following set of nodes:

V = {α, α′, xñ, x′ñ, xñ, . . . , x1, x
′
1, x1, y1, . . . , ym̃, z+}.

The initial values, durations, and influences are specified as follows:

p(α) = 1, d(α) = T
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p(α′) = 1, d(α) = 2ñ+1 − 1
p(xi) = 1, d(xi) = 2i for i = 1, . . . , ñ
p(x′i) = 1, d(xi) = 2i − 1 for i = 1, . . . , ñ
p(xi) = 0, d(xi) = 2i for i = 1, . . . , ñ
p(yi) = 0, d(yi) = 2 for i = 1, . . . , m̃

p(z+) = 1− m̃, d(z+) = 2

w(α, v) = −1 for v ∈ {α′, xñ, x′ñ, xñ, . . . , x1, x
′
1, x1}

w(α′, v) = +1 for v ∈ {xñ, x′ñ, xñ, . . . , x1, x
′
1, x1}

w(xi, xi) = +1 for i = ñ, . . . , 1
w(x′i, xi) = −1 for i = ñ, . . . , 1

w(x′i+1, xi) = w(x′i+1, x
′
i) = −1 for i = ñ− 1, . . . , 1

w(xi+1, xi) = w(xi+1, x
′
i) = −1 for i = ñ− 1, . . . , 1

w(xi, yj) = +1 if xi ∈ yj
w(xi, yj) = +1 if xi ∈ yj
w(yi, z+) = +1 for i = 1, . . . , m̃

Note that the given order of nodes is a topological sorting, so the graph is acyclic. The
buying behavior of the nodes in G is illustrated in Figure 6.10. As in our previous
#P-hardness proofs, all truth assignments are traversed once (or twice as in this case).
We sum up the amount of purchases in detail. The claim then follows by the same
arguments.

Number of purchases: Nodes α and α′ buy exactly once. The variable nodes stop
buying after 2ñ+1 rounds, because the influences from α and α′ are negative from then
on. In rounds 1, . . . , 2ñ the variable nodes xi, x′i and xi are buying exactly 2ñ−i times
each. This amounts to a total of 3 · (2ñ − 1) purchases.

The clause nodes need to be influenced by one of their variable nodes. Assuming the
clauses contain three different variables, they are satisfied for all but 1

8 the time. This

amounts to a total of 7
8 · m̃ · 2

ñ purchases for the clause nodes.

By Theorems 6.6, 6.7, and 6.11, we obtain that the general (arbitrary influences, indi-
vidual durations) problem PerPPAIπ is #P-hard. We summarize the complexity results
of this section in Table 6.2 (where “+” and “-” denote positive and negative graphs,
respectively).
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Figure 6.10: Consumer sets Ct in G with three variables

unit/fixed duration individual duration
+ P P
− P #P-hard
acyclic P #P-hard
± #P-hard #P-hard

Table 6.2: Complexity results for different versions of PerPPAIπ

6.2 Complexity of PerPPAI

We only investigate the settings of PerPPAI for which PerPPAIπ is solvable in polynomial
time.

However, we can recycle parts of the results of Section 3.4.

Lemma 6.12. PerPPAI with individual or fixed durations is NP-hard.

Proof. For individual and fixed durations we can set d(v) ≥ T . Thus we deny any breaks
with longer durations and the reduction of Theorem 3.9 works again.

Note that this does not work for unit durations.
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Graphs with positive influences have a monotonicity in the rounds by Lemma 6.2. We
now show that there is also a monotonicity with respect to the prices:

Lemma 6.13. For positive influences, it holds that Ct(π′) ⊇ Ct(π) for all prices π′ ≤ π
and all rounds t = 1, . . . , T .

Proof. The claim is obviously true for t = 1. Assume that round t is the first round
in which the claim is false. Then, for some node v ∈ V , we have pCt−1(π′)(v) < π ≤
pCt−1(π)(v). This is a contradiction, since by definition of t, we have Ct−1(π′) ⊇ Ct−1(π)
and all influences are positive.

In positive graphs, all nodes always renew without breaking (Lemma 6.2). Thus, af-
ter round n, there will be no new buyers/consumers. For t = 1, . . . , n, let p∗t (v) :=
max{π : v ∈ Ct(π) } denote the maximum price for which node v is a consumer in
round t. By Lemma 6.13, we know that it suffices to check all prices in Π = {p∗t (v) :
t = 1, . . . , n and v ∈ V }. We have |Π| ∈ O

(
n2
)
and can compute all the values in Π in

time O (nm).

This immediately leads to a polynomial time algorithm for PerPPAI on positive graphs:
Compute the set Π and, for each π ∈ Π, compute the revenue R(π, T ) in time O (m) by
the algorithm from Corollary 6.3. Then, pick the price from Π generating the largest
revenue. This yields:

Theorem 6.14. On positive graphs, PerPPAI can be solved in polynomial time.

In contrast, the problem is hard if there are only negative influences, even for acyclic
graphs and even in the case of unit durations.

Theorem 6.15. PerPPAI is NP-complete for negative acyclic graphs with unit durations.

Proof. Given an instance J of 3SAT consisting of the variables x1, . . . , xñ and the clauses
y1, . . . , ym̃, we construct an instance of PerPPAI on the graph G shown in Figure 6.11
with time horizon T := 6 · (ñ + 5) and define a requested revenue of R := 40 · 2ñ · (ñ +
m̃+ 1) · (ñ+ 5).

For each variable xi, the graph G contains two nodes xi and xi corresponding to the
positive and negated literal associated with the variable, which are connected by an
arc (xi, xi). Additionally, there is an arc (xi, xj) whenever i < j. Moreover, for each
clause yj , there are two nodes yj and yj connected by an arc (yj , yj). If clause yj contains
the literals l1, l2, l3, then there are arcs from each of the literal nodes li to yj . Moreover,
there is a node z− that influences all other nodes and a “collecting node” z+ that is
influenced by all nodes yi and influences a large collection z1, . . . , zM of nodes that have
out-degree zero.
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We define the price range Π := {πmin := 2ñ, . . . , πmax := 2ñ+1 − 1} of meaningful prices
in our instance of PerPPAI. The initial values of the nodes in G are defined as follows:

p(z−) = πmin − 1
p(xi) = πmax − 2ñ−i for i = 1, . . . , ñ
p(z+) = m̃ · πmax

p(v) = πmax for v ∈ V \ {z−, x1, . . . , xñ, z+}

Except for the influences w(xi, xj) := −2ñ−i for all 1 ≤ i < j ≤ ñ and the influences
w(z−, z+) := −m̃ · πmax, all influences are set to −πmax.

We transform each truth assignment to a price in the range Π as follows: The binary
representation (π)2 of a price π ∈ Π has ñ + 1 digits and the leading digit is always 1.
We now show that, starting from round i+ 1, node xi (xi) buys permanently if and only
if the (i+ 1)-th digit from the left in the binary representation of π is 1 (0). Thus, the
prices in Π are in one-to-one correspondence with the truth assignments of the variables.
Afterwards, we show that a price π ∈ Π generates a revenue of at least R if and only if
the corresponding truth assignment satisfies all clauses.

Variable Gadget: As the graph is acyclic, we obtain from argumentation used in the
proof of Lemma 6.8 that node xi does not break after round i and node xi after round i+1,
respectively. Since node xi nullifies the influenced value of its partner xi, for each price
in Π, exactly one of the variable nodes xi and xi has to buy in all rounds t ≥ i+ 1.

For prices π ∈ Π with π ≤ p(x1) = 2n+1 − 2n−1 − 1 = 101 · · · 12, i.e., for all the prices
in Π for which the second digit is 0, node x1 buys the product in every round. Starting
with round 2, it thereby discourages x1 from buying. Otherwise, node x1 never buys
and the initial value p(x1) = πmax of x1 remains unchanged and x1 buys in each round.

The initial values of all nodes xi with i > 1 have a 1 as the second digit. For prices π ∈ Π
with π > 2ñ+1 − 2ñ−1 − 1, this remains unchanged and, hence, the second digit of
π coincides with those of the influenced values of the variable nodes xi. Otherwise,
the influences w(x1, xi) = −2ñ−1 for i = 2, . . . , ñ change all these 1s in the binary
representation of the initial values to 0s. Thus, once again the same digit is present in
the price π and the influenced values.

Inductively, it follows that the variable nodes buy exactly as specified by the binary
representation of the price π.

Clause Gadget: As we have no positive influences to change a node’s decision from
not buying to buying, we have to substitute this by stopping the exertion of “default”
negative influences from additional nodes (see Figure 6.11). The negation yj of a clause
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Figure 6.11: Graph used in the proof of Theorem 6.15

node yj buys permanently from round ñ+2 onwards if and only if none of the correspond-
ing variable nodes buy. The clause node yj itself buys permanently from round ñ + 3
onwards if and only if yj does not buy. Exactly if all of the clause nodes buy perma-
nently, the collecting node z+ never buys from round n + 4 onwards and its negative
influence on the nodes z1, . . . , zM (for M := 8 · (n+m+ 1)) ceases. All in all, the nodes
z1, . . . , zM buy permanently from round ñ+5 onwards if and only if the truth assignment
corresponding to the price satisfies all clauses.

Revenue: We have a total of |V | = 10 · (ñ + m̃ + 1) nodes that may buy at most
T = 6 · (ñ+ 5) times each.

• If π > πmax, only node z+ may buy and the revenue is at most T · m̃ · πmax <
12 · 2ñ · (ñ+ 5) · (ñ+ m̃+ 1) < R.

• If π < πmin, node z− buys in each round and prevents all other nodes from buying
in all rounds t ≥ 2. Thus, the revenue is at most (|V |+ T − 1) · (πmin − 1) < R.

• If π ∈ Π corresponds to a non-satisfying truth assignment, the nodes z1, . . . , zM
do not buy after round ñ + 5 since z+ always buys from round n + 4 onwards.
Thus, the revenue is at most πmax · (|V | · (ñ + 5) + (2ñ + 2m̃ + 2) · 5 · (ñ + 5)) <
2 · 2ñ · (10 + 10) · (ñ+ m̃+ 1) · (ñ+ 5) = R

• However, if π ∈ Π corresponds to a satisfying truth assignment, the revenue is at
least πmin ·M · (T − ñ− 5) = 2ñ · 8 · (ñ+ m̃+ 1) · 5 · (n+ 5) = R

Thus, there exists a price π that generates at least the requested revenue of R if and
only if there is a satisfying truth assignment for the instance of 3SAT.
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6 Perishable Product Pricing

Corollary 6.16. Unless P = NP, the above proof also shows that there is no r-approximate
polynomial time algorithm for PerPPAIπ with r = O (1) and the restrictions as in Theo-
rem 6.15. This can be established by increasing M and T in the above proof.

For example, choosing M := 16 · (ñ+ m̃+ 1) and T := 10 · (ñ+ 5) shows that there is no
2-approximate algorithm in polynomial time unless P = NP.

6.3 Integer Program

We formulate an integer program in the perishable setting, along the lines of Integer
Program 1.

Integer Program 3: PerPPAI (Formulation of PerPPAI)

max
∑
v∈V

n∑
t=1

π · xv,t

subject to

xv,t ≥ 0 ∀v ∈ V, t = 1, . . . , n
xv,t ≤ 1 ∀v ∈ V, t = 1, . . . , n

t∑
i=t−τ(v)+1

xv,t = yv,t ∀v ∈ V, t = 1, . . . , n

yv,t ≤ 1 ∀v ∈ V, t = 1, . . . , n
p(v) +

∑
u∈N−(v)

yu,t · w(u, v) = pv,t ∀v ∈ V, t = 1, . . . , n

pv,t − π ≥ (xv,t − 1) ·M ∀v ∈ V, t = 1, . . . , n
pv,t − π ≤ (xv,t + yv,t) ·M − 1 ∀v ∈ V, t = 1, . . . , n

Remark 6.6. Whereas we provided the combinatorial algorithms Frag and bFrag for
PPAIopt and DynPPAIopt, respectively, we did not state one for PerPPAIopt on arbitrary
graphs.

Instead, the formulation PerPPAI is considered as our method to solve PerPPAIopt.
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6.4 Return Option

6.4 Return Option

Using the methods and results derived in this chapter, we can examine PPAI with a
return option. The results of this section were obtained jointly with Sebastian Johann
[Joh15].
Definition 6.7. The buying decision is reached as usual, i.e., a node v ∈ V buys once
pC(v) ≥ π. Once the influenced value drops below the price, they can return and claim
a refund of α · π for 0 ≤ α ≤ 1. The set of returners

Dt(π) :=
{
v ∈ Ct−1(π) : pCt−1(π) < π

}
denotes the nodes that returned the product in round t, whereas D≤t is the set of
returners in the first t rounds and D(π) the entirety of them.

These nodes may not rebuy in the standard model and their influence ceases in round
t+1, i.e., Ct = (Ct−1 ∪Bt)\Dt. Together with the nodes v ∈ Nt that have never bought
this partitions V = Ct ∪̇D≤t ∪̇Nt.

The revenue for a fixed price π is

R(π) := π · |C(π)|+ (1− α) · |D(π)| .

In the more general model each node is allowed to buy and return up to η ∈ N times.
Problem 5: PPAIηR (Product Pricing with Additive Influences and Return Option)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, up to η ∈ N returns per node,
refund percentage 0 ≤ α ≤ 1, and some revenue R̂ ∈ N.

Question: Is there a price π ∈ N such that its revenue R(π) ≥ R̂?
Remark 6.8. The influenced values can only change if Ct does, i.e., either a node buys
or returns. Since every node can do both at most η times, the set C2nη is final and the
selling process stops.

Similar to Algorithm Sell we can compute the revenue for given π in O (ηm) time.

Allowing the return option in the instance I constructed for Theorem 3.9 does not result
in any returns. Therefore, the reduction still holds.
Corollary 6.17. PPAIηR is NP-complete for η = poly(n).

Remark 6.9. By setting η =
⌈
T

2

⌉
and d = 1 for all v ∈ V we allow the nodes to break

in every round for both, i.e., perishable and returnable instances. With α = 0 even the
revenue is the same. For PPAIηR-v and PPAIηR-S the reduction also holds. Hence, the
computational complexity proofs work analogously.

In this chapter we examined the basic product pricing model for not necessarily increas-
ing customer sets. As long as the amount of changing customers — through break or
return/rebuy — is limited we can
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7 Diverse Product Pricing Aspects

Thus far we have studied deterministic synchronous selling in discrete rounds. This chap-
ter includes elementary results for variations to the previous product pricing problems
with additive influence.

7.1 Cooperative Pricing

So far we assumed that the nodes do not share information with each other. They were
oblivious and bought once their influenced value was raised high enough. Thereby, with
the exception of perishable goods and the return option in Chapter 6, they could not
change their mind. This implies that nodes that were once eager to buy, now regret
their decision.

On the other side, nodes could not coordinate a simultaneous purchase with their neigh-
bors. In this section we examine the basic product pricing model with the possibility to
build coalitions amongst the potential buyers.

Definition 7.1. A set S ⊆ V is a stable buyers set for price π if pS(v) ≥ π for v ∈ S and
pS(u) < π for u /∈ S. If only pS(v) ≥ π holds this is called an internally stable buyers
set.

We focus on the stable buyers sets and define the corresponding problem CooPPAI.

Problem 6: CooPPAI (Cooperative Product Pricing with Additive Influences)
Instance: A directed graph G = (V,A), initial values p(v) ∈ Z for the nodes v ∈ V ,

influences w(u, v) ∈ Z \ {0} for the arcs (u, v) ∈ A, and some revenue R̂ ∈ N.
Question: Is there a price π ∈ N with a stable buyers set S such that its revenue R(π) =

π · |S| ≥ R̂?

Remark 7.2. We can check for price π and set S whether S is a stable buyers set in
linear time. Therefore, CooPPAI ∈ NP.

Note that this is closely related to Chapter 6. In this context, if we reach the last round
with a break, the remaining customers are a stable buyers set. In general, finding a
stable buyers set is akin to the Party Affiliation Game [AB92].
Remark 7.3. We do not have discrete synchronous selling rounds in CooPPAI, since all
decisions and influences are covered before anyone actually buys.
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7 Diverse Product Pricing Aspects

We identify one case in which the uniqueness of S is guaranteed. If the proverb “the more
the merrier” holds, i.e., every influence is positive, we can extend any given internally
stable buyers set by “interested” nodes. This is the result of Lemma 3.12 on PPAI. We
extend this to a maximal stable buyers set.

Lemma 7.1. For a positive graph and any two stable buyers sets S1, S2 of price π, there
exists a set S ⊇ S1 ∪ S2 that is also stable for π.

Thus there is a unique (cardinality and inclusion-wise) maximal buyers set.

Proof. The union S1 ∪ S2 is already internally stable since the influenced values are
non-decreasing in a positive graph.

To achieve a fully stable buyers set, we simply add nodes v /∈ S with pS(v) ≥ π until no
such node exists anymore.

With Algorithm FixLowest we identify the maximum stable buyers sets.

Theorem 7.2. Algorithm FixLowest correctly computes the optimal revenue for positive
graphs with cooperation in O (m+ n logn) time.

Proof. In contrast to FixHighest we start with fixing the lowest valued nodes.

Since the influences are positive, there is no higher influenced value for v than pV (v).
Every node is part of the stable buyers set for min

v∈V
pV (v). Hence, in order to determine

higher values p#(v) we know that these fixed nodes do not buy and influence anymore.

The proof follows by induction, analogously to Theorem 3.14.

Algorithm 12: FixLowest(G)
Data: A positive graph G = (V,A) with initial values p and influences w.
Result: The optimal revenue R∗.
Initialize: Revenue R∗ = 0, F = ∅, and p#(v) = pV (v) for all v ∈ V .
// p#(v) denotes the price up to which v is part of a stable buyers set
while V \ F 6= ∅ do

Compute π# = min
v∈V \F

p′(v) and N =
{
v ∈ V \ F : p#(v) = π#

}
.

F = F ∪N
Update p#(v) = max{pV \F (v), π#} for all v ∈ V \ F .

Compute for sorted p#(v1) ≥ · · · ≥ p#(vn) the revenue R∗ = max
i=1,...,n

i · p#(vi).

return R∗

108



7.2 Initial Value as Parameter

Corollary 7.3. Problem CooPPAI is in P for positive graphs.

For arbitrary graphs, CooPPAI is shown to be NP-complete in [To14].

As a product seller the main interest is a bigger revenue. So the natural question
is: How much more or less revenue can be achieved given communication between the
potential customers? We compare the revenue of positive graphs for uncooperative and
cooperative product pricing, i.e., we compare the solutions of FixHighest and FixLowest.
Remark 7.4. The nodes can buy for prices π > pmax when cooperation is allowed. As
extreme example we have p(v) = 0 for all v ∈ V and w(u, v) = M for all u, v ∈ V . In
the uncooperative setting, this yields no revenue at all, whereas the cooperative instance
has R∗ = M · n(n− 1).

Recall the values p∗(v) of Remark 3.15, i.e., the maximum price for which v ∈ V buys
the product given a positive graph.

Lemma 7.4. For a positive acyclic graph G = (V,A) the values p#(v) = p∗(v) coincide
for all v ∈ V .

Proof. We show this by induction on the topological sorting v1, . . . , vn. Node v1 is not
influenced, hence, p(v) = p∗(v) = p#(v).

Now assume that the claim holds for nodes v1, . . . , vk. Thus we have the exact same buy-
ing behavior in both uncooperative and cooperative case, for every node u ∈ N−(vk+1).
It follows that vk+1 does also have the same values p#(vk+1) = p∗(vk+1).

More studies on the topic of stable buyers sets, coalitions, and general game theoretic
aspects were done in [To14]. Amongst others, the viable coalitions are restricted to a
family S ⊆ 2V to enable further research.

7.2 Initial Value as Parameter

So far we have always set the the entirety of the parameters p and w. We assume now
that for one particular node v ∈ V the initial value is not set.

This is in preparation for future mechanism design approaches with one parameter (cf.
[AT01], [APTT03], where the initial values would serve as the private information. The
question is: How does the choice of p(v) affect the sale of our product.
Remark 7.5. Setting p(v) can potentially decrease or increase the revenue.

If the influences from v are highly negative, setting the initial value to pmax stops any
purchase after the first round. On the other side, setting the initial value such that
pC(v) ≤ 0 for all customer sets C, practically deletes v from the selling process, thereby
allowing the product to achieve a high revenue.
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7 Diverse Product Pricing Aspects

We identify one particular case with guaranteed monotonicity — positive graphs.

Theorem 7.5. For a positive graph we can determine the values p∗(u) for u ∈ V and
all choices of p(v) in O

(
nm+ n2 logn

)
time.

Proof. We compute the values p∗(u) of nodes u ∈ V \ {v} with Algorithm FixHighest for
G in O (m+ n logn). This gives us all potential customer sets before a purchase of v
itself.

Hence, we exactly know the influences on v and can determine p∗(v) for every initial value
p(v). The function f(p(v)) 7→ p∗(v) is piecewise linear and increasing. An illustration of
it is given in Figure 7.1.

By the choice of p(v) we determine which nodes are uninfluenced by v — the nodes H
with higher p∗(u). So for prices π > p∗(v) we already know the exact customer set and
the optimum revenue.

Now going on to the lower prices π ≤ p∗(v), the range where v is actually changing
something. On this range we know that nodes H ∪{v} are always buying. Which means
we can run Algorithm FixHighest again on L := V \H with H already fixed and p∗(v)
as parameter left.

In any case, node v gets fixed in the first iteration of FixHighest. We set p∗(v) = min
u∈H

p∗(u)
and determine the values p∗(u) for u ∈ L \ {v}. For any other choice of p∗(v) with the
same set H, we know that p∗(u) is either the value we just computed or p∗(v), as it was
capped at this value.

In total we need one initial call to FixHighest and n − 1 more to determine all p∗(u)
subject to p(v).

Even though one value is missing, we can easily compute the buying behavior for positive
graphs.

7.3 Two Product Pricing

The product we have marketed so far did not have any competition, i.e., getting another
(similar) product was not a choice at all.

We introduce a rivaling second product with separate influences and its own price.

Definition 7.6. Let p(1), w(1) be the values and weights for the first product and
p(2), w(2) those for the second.

The influences w(1), w(2) are separate for the two products, i.e., the purchase of one
product does only change the influenced values concerning this product.
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Figure 7.1: Buying behavior of v depending on p(v)

Given a price pair π = (π(1), π(2)), we compute for each round the values p′(v) :=
pC(1)(π)(v)− π(1) and q′(v) := pC(2)(π)(v)− π(2).

Node v buys the first product if p′(v) ≥ max{0, q′(v)}, while v buys the second product
if q′(v) ≥ max{0, p′(v)+1}, i.e., v buys whichever product has more benefit and the first
if they are equal.

Remark 7.7. For some price pair π = (π(1), π(2)) we can compute the customers C(1)(π)
and C(2)(π) with a modified Sell in O (m) (cf. [Ger14]).

Behavior in a competition with separate positive influences: We assume that all
influences are positive.

Lemma 7.6. Given a graph G = (V,A) with two products and positive influences and
v ∈ C(1)(π(1), π(2)), the node v also buys for (ρ(1), ρ(2)) with ρ(1) ≤ π(1) and ρ(2) ≥ π(2).

Given one price π(2) we therefore have prices π(1) ∈ (0, p∗(v)] for which v buys the first
product, and prices π(1) ∈ (q∗(v), p(1)

max] for which v buys the second product.

Proof. The pair π′ = (ρ(1), π(2)) only decreases the price for the first product. Since the
price for the second product remains unchanged, the monotonicity of Lemma 3.12 still
holds.

The same holds analogously for price ρ′ = (π(1), ρ(2)) and therefore for ρ itself.

Observation 7.8. The pricing remains rather simple for one fixed price. However, even
by having π(1) = π(2), we loose the monotonicity described above.
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7 Diverse Product Pricing Aspects

In [Ger14] the pricing for two products is examined in detail. In particular for positive
graphs it holds:
Theorem 7.7. It is NP-complete to determine whether there is a price pair π(1) = π(2)

that achieves a collective revenue R̂.

In a sense, the positive influences of the rivaling product are negatively influencing the
original.

7.4 Bounded Additive Influence

In our basic model the influenced value pC(v) can differ arbitrarily from the initial value
p(v). In [Ger14] the problem is examined for bounded influence.
Definition 7.9. We cap the influence with factor ω > 1 to

pC(v) ∈
[ 1
ω
p(v), ω · p(v)

]
.

Remark 7.10. The reductions of Chapter 3 can be reused. In particular we can use the
Shift Gadget 3.26.

For ω = 2 we can satisfy the upper bound by adding x :=
∑
a∈A+

w(a) to every initial value.

Thereby, we know that pC(v) ≤ 2p(v). Analogously, by adding y := −2 ·
∑
a∈A−

w(a) we

know that pC(v) ≥ 1
2p(v).

In the next step in [Ger14] the influenced values are altered altogether.
Definition 7.11. For every v ∈ V the function φv : Z→ Z changes the influenced value
to

pC(v) := p(v) + φv

 ∑
u∈N−(v)∪C

w(u, v)

 .
The functions φv are increasing and have diminishing returns, i.e.,

φv(x+ 1)− φv(x) ≥ φv(x+ 2)− φv(x+ 1) for all x ∈ N

Furthermore, we require φv(0) = 0, φv is Lipschitz continuous, and φv(x) is computable
in polynomial time.

This model covers the problem that nodes may have influences from a big variety of
neighbors, but their actual value is only dependent on a “dampened” group of cus-
tomers.

The thesis [Ger14] goes on to show that the problem to find a price π achieveing a revenue
R(π) ≥ R̂ is NP-complete for the dampened influenced values of Definition 7.11.
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8 Outlook

We derived various results on computational complexity for deterministic Product Pric-
ing with Additive Influence problems. While we have almost settled the complexity-
landscape of these problems, it remains open whether PPAI on trees is NP-complete.

For a deeper understanding of the properties that are required to create fragments, it
is an interesting endeavor to find the bare necessities of a graph with a high amount of
fragments. While a polynomial number of fragments implies polynomial time solvability,
it is not clear whether the converse implication holds. More specifically, is it true that a
polynomial time algorithm for a graph class implies that the amount of fragments has to
be polynomial as well? An answer in the affirmative would imply that Algorithm Frag
is the universal polynomial time algorithm.

Concerning possible applications of the model, the actual — or at least more realistic —
influenced values have to be determined first. First and foremost, a more accurate model
needs to include bounds on the amount and magnitude of influences. In particular, in
current social networks, one can typically choose whether to encounter other customers.
Thus the positive influences can be considered prevalent. On the other side, if an en-
counter with a disliked individual is inevitable, this can darken ones mood towards the
product or service immensely.

Furthermore, we assumed that the influenced value does not naturally decrease over
time. Especially with respect to perishable goods and subscriptions, the benefit of a
product is likely to diminish after some period. In connection to the return option, a
second-hand market is a natural extension.

To find a proper influence model, some kind of survey for a couple of different products
is advisable. This also applies to the actual structure of the social network considered.
While there are plenty of graph libraries with social networks, there is none in relation
to influences associated with a product. Considering proper instances, the actual per-
formance of our algorithms can be studied and compared with formulations as integer
program or graph dynamical system.

In any real-world application, we have to consider strategic and/or irrational behavior
of the potential customers. Friends are communicating and plan together whether they
want to use some product or service. To cater this, retailers are offering discounted
bundles, thereby providing incentive to persuade others. For more realistic models, one
would have to include among other things (partly) random behavior of the customers.
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8 Outlook

We only briefly tackled these game theoretic aspects. With a better understanding of
the purchase behavior, one could design mechanisms to manage the sale a product. In
the best-case, this would yield us truthful values and a high revenue. The question
remains, how to manage the reward for customers. Currently influential individuals are
often rewarded through affiliate marketing.

Finally, the different variants we introduced in this thesis and the possible variants we
sketched here, are yet mostly unconnected.
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