UNIVERSITAT KAISERSLAUTERN
Zentrum fiir Computeralgebra

REPORTS ON COMPUTER ALGEBRA

NO. 16
Q\)?‘OOMPUTQ?
S o
S
& L S
< >
Ly
N A 7
Z C
5 C S
o8 oF

S&351731

String Rewriting and Grobner Bases — A General
Approach to Monoid and Group Rings

by

K. Madlener and B. Reinert

October 1997



The Zentrum fiir Computeralgebra (Centre for Computer Algebra) at the University of
Kaiserslautern was founded in June 1993 by the Ministerium fiir Wissenschaft und Weiter-
bildung in Rheinland-Pfalz (Ministry of Science and Education of the state of Rheinland-
Pfalz). The centre is a scientific institution of the departments of Mathematics, Com-
puter Science, and Electrical Engineering at the University of Kaiserslautern.

The goals of the centre are to advance and to support the use of Computer Algebra in
industry, research, and teaching. More concrete goals of the centre include

e the development, integration, and use of software for Computer Algebra

e the development of curricula in Computer Algebra under special consideration of
interdisciplinary aspects

e the realisation of seminars about Computer Algebra

e the cooperation with other centres and institutions which have similar goals

The present coordinator of the Reports on Computer Algebra is:
Olaf Bachmann (email: obachman@mathematik.uni-k1.de)

Zentrum fir Computeralgebra

c/o Prof. Dr. G.-M. Greuel, FB Mathematik
Erwin-Schrédinger-Strasse

D-67663 Kaiserslautern; Germany

Phone: 49 - 631/205-2850 Fax: 49 - 631/205-5052
email: greuel@mathematik.uni-k1.de

URL: http://www.mathematik.uni-k1.de/~zca/



String Rewriting and Grobner Bases — A General
Approach to Monoid and Group Rings

Klaus Madlener, Birgit Reinert
Universitat Kaiserslautern
67663 Kaiserslautern
{madlener,reinert } @informatik.uni-kl.de

presented at the
Workshop on Symbolic Rewriting Systems
Monte Verita, May 1995

October, 1997

Abstract

The concept of algebraic simplification is of great importance for the field of sym-
bolic computation in computer algebra. In this paper we review some fundamental
concepts concerning reduction rings in the spirit of Buchberger. The most important
properties of reduction rings are presented. The techniques for presenting monoids
or groups by string rewriting systems are used to define several types of reduction
in monoid and group rings. Grébner bases in this setting arise naturally as gener-
alizations of the corresponding known notions in the commutative and some non-
commutative cases. Several results on the connection of the word problem and the
congruence problem are proven. The concepts of saturation and completion are in-
troduced for monoid rings having a finite convergent presentation by a semi-Thue
system. For certain presentations, including free groups and context-free groups, the
existence of finite Grobner bases for finitely generated right ideals is shown and a
procedure to compute them is given.



1 Introduction

One of the amazing features of computers is the ability to discover new mathematical results
due to extensive computations impossible to be done by hand. Besides incredible numeri-
cal calculations, symbolical mathematical manipulations are substantial to many fields in
mathematics and physics. Hence the idea of using a computer to do such manipulations led
to open up whole new areas of mathematics and computer science. One important contribu-
tion to the field of computer algebra is Buchberger’s algorithm for manipulating systems of
polynomial equations. In 1965 Buchberger introduced the theory of Grébner bases! for poly-
nomial ideals in commutative polynomial rings over fields [Bu65]. It established a rewriting
approach to the theory of polynomial ideals. Polynomials can be used as rules by giving an
admissible? ordering on the terms and using the largest monomial according to this ordering
as a left hand side of a rule. “Reduction” as defined by Buchberger then can be compared
to division of one polynomial by a set of finitely many polynomials. A Grobner basis G
is a set of polynomials such that every polynomial in the polynomial ring has a unique
normal form with respect to reduction using the polynomials in G as rules (especially the
polynomials in the ideal generated by G reduce to zero using G). Buchberger developed
a terminating procedure to transform a finite generating set of a polynomial ideal into a
finite Grobner basis of the same ideal.

The method of Grobner bases allows to solve many problems related to polynomial ideals
in a computational fashion. It was shown by Hilbert (compare Hilbert’s basis theorem) that
every ideal in a polynomial ring has a finite generating set. However, an arbitrary finite
generating set need not provide much insight into the nature of the ideal. Let f; = X7 + X,
and f, = X? + X3 be two polynomials in the polynomial ring® Q[X, Xy, X3]. Then ¢ =
{fixg1+ fo*xg2 | g1,92 € Q[X1, Xo, X3]} is the ideal they generate and it is not hard to
see that the polynomial X, — X3 belongs to ¢ since Xy — X3 = f; — fo. But what can be
said about the polynomial f = X3 + X; + X37 Does it belong to ¢ or not?

The problem to decide whether a given polynomial lies in a given ideal is called the member-
ship problem for ideals. In case the generating set is a Grobner basis this problem becomes
immediately solvable, as the membership problem then reduces to checking whether the
polynomial reduces to zero.

In our example the set { X7+ X3, Xo — X3} is a generating set of ¢ which is in fact a Grébner
basis. Now returning to the polynomial f = X3 + X; + X3 we find that it cannot belong
to 2 since neither X? nor X, is a divisor of a term in f and hence f cannot be reduced to
zero by the polynomials in the Grobner basis.

Further applications of Grobner bases to algebraic questions can be found e.g. in the work
of Buchberger [Bu87], Becker and Weispfenning [BeWe92] and in the book of Cox, Little
and O’Shea [CoLiOS92].

In the last years, the method of Grobner bases and its applications have been extended from
commutative polynomial rings over fields to various types of non-commutative algebras

INote that similar concepts appear in a paper of Hironaka where the notion of a complete set of
polynomials is called a standard basis [Hi64].

2 A term ordering > is called admissible if for every term s,t,u, s > 1 holds, and s > t implies sou > tou.
An ordering fulfilling the latter condition is also said to be compatible with the respective multiplication o.

3Q denotes the rational numbers.



over fields and other rings. In general for such rings arbitrary finitely generated ideals will
not have finite Grobner bases. Nevertheless, there are interesting classes for which every
finitely generated (left or right) ideal has a finite Grobner basis which can be computed by
appropriate variants of Buchberger’s algorithm.

First successful generalizations were extensions to commutative polynomial rings over co-
efficient domains other than fields. It was shown by several authors including Buchberger,
Kandri-Rody, Kapur, Narendran, Lauer, Stifter and Weispfenning that Buchberger’s ap-
proach remains valid for polynomial rings over the integers, or even Euclidean rings, and
over regular rings (see e.g. [Bu83, Bu85, KaKa84, KaKa88, KaNa85a, La76, St85, We87]).
For regular rings Weispfenning has to deal with the situation that zero-divisors in the
coefficient domain have to be considered.

Since the development of computer algebra systems for commutative algebras enabled to
perform tedious calculations using computers, attempts to generalize such systems and es-
pecially Buchberger’s ideas to non-commutative algebras followed. Originating from special
problems in physics, Lassner in [La85] suggested how to extend existing computer algebra
systems in order to handle special classes of non-commutative algebras, e.g. Weyl algebras.
He studied structures where the elements could be represented using the usual represen-
tation of polynomials in commutative variables and the non-commutative multiplication
could be performed by a so-called “twisted product” which required only procedures in-
volving commutative algebra operations and differentiation. Later on together with Apel
he extended Buchberger’s algorithm to enveloping fields of Lie algebras [ApLa88|. Because
these ideas use representations by commutative polynomials, Dickson’s lemma can be car-
ried over. The existence and construction of finite Grobner bases for finitely generated left
ideals is ensured. In [Ga88] Galligo also studied algorithmic questions on ideals of differential
operators.

On the other hand, Mora gave a concept of Grobner bases for a class of non-commutative
algebras by saving an other property of the polynomial ring while losing the validity of
Dickson’s lemma. The usual polynomial ring can be viewed as a monoid ring where the
monoid is a finitely generated free commutative monoid. Mora studied the class where the
free commutative monoid is substituted by a free monoid — the class of finitely generated
free monoid rings (compare e.g. [Mo85, M094]). The ring operations are mainly performed
in the coefficient domain while the terms are treated like words, i.e., the variables no longer
commute with each other. The definitions of (one- and two-sided) ideals, reduction and
Grobner bases are carried over from the commutative case to establish a similar theory of
Grébner bases in “free non-commutative polynomial rings over fields”. But these rings are
no longer Noetherian if they are generated by more than one variable. Mora presented a
terminating completion procedure for finitely generated one-sided ideals and an enumeration
procedure for finitely generated two-sided ideals with respect to some term ordering in free
monoid rings.

Grobner bases and Mora’s Algorithm have been generalized to path algebras (see [FaFeGr93,
Ke97]); free non-commutative polynomial rings are in fact a particular instance of path
algebras.

Another class of non-commutative rings where the elements can be represented by the usual
polynomials and which allow the construction of finite Grobner bases for arbitrary ideals
are the so-called solvable rings, a class intermediate between commutative and general



non-commutative polynomial rings. They were studied by Kandri-Rody, Weispfenning and
Kredel [KaWe90, Kr93]. Solvable polynomial rings can be described by ordinary polynomial
rings K[X,...,X,] provided with a “new” definition of multiplication which coincides
with the ordinary multiplication except for the case that a variable X; is multiplied with
a variable X; with lower index, i.e., ¢ < j. In the latter case multiplication can be defined
by equations of the form X; x X; = ¢;;X;X; + p;; where ¢;; € K* = K\{0} and p;; is a
polynomial “smaller” than X;X, with respect to a fixed admissible term ordering on the
polynomial ring.

The more special case of twisted semi-group rings, where ¢;; = 0 is possible, has been
studied in [Ap88, Mo88|.

In [We92] Weispfenning showed the existence of finite Grobner bases for arbitrary finitely
generated ideals in non-Noetherian skew polynomial rings over two variables X, Y where a
“new” multiplication « is introduced such that X xY = XY and Y x X = X°¢Y for some
fixed e € NT.

Ore extensions have been successfully studied by Pesch in his PhD Thesis and his results
on two-sided Grobner bases are presented in this volume [Pe97].

Most of the results cited so far assume admissible well-founded orderings on the set of
terms so that in fact reduction can be defined by considering the head monomials only.
This is essential to characterize Grobner bases in the respective ring with respect to the
corresponding reduction in a finitary manner and to enable to decide whether a finite set
is a Grobner basis by checking whether the s-polynomials are reducible to zero®.

There are rings combined with reduction where admissible well-founded orderings cannot
be accomplished and, therefore, other concepts to characterize Grobner bases have been
developed. For example in case the ring contains zero-divisors a well-founded ordering on
the ring is no longer compatible with the ring multiplication®. This phenomenon has been
studied for the case of zero-divisors in the coefficient domain by Kapur and Madlener
[KaMa86] and by Weispfenning for the special case of regular rings [We87]. In his PhD
thesis [Kr93|, Kredel described problems occurring when dropping the axioms guaranteeing
the existence of admissible orderings in the theory of solvable polynomial rings by allowing
¢ij = 0 in the defining equations above. He sketched the idea of using saturation to repair
some of them. Saturation enlarges the generating sets in order to ensure that enough head
terms exist to do all necessary reductions and this process can often be related to additional
special critical pairs. Similar ideas can be found in the PhD thesis of Apel [Ap88]. For special
cases, e.g. for the Grassmann (exterior) algebras, positive results can be achieved (compare
the paper of Stokes [St90]).

Before we move on to give a more abstract generalization of structures allowing Grobner
basis algorithms, let us first summarize some important notations and definitions of re-
duction relations and basic properties related to them, as can be found more explicitly for
example in the work of Huet or Book and Otto ([Hu80, Hu81, BoOt93]).

Let £ be a set of elements and — a binary relation on £ called reduction. For a,b € £ we
will write a — b in case (a,b) € —. A pair (£, —) will be called a reduction system.

4Note that we always assume that the reduction in the ring is effective.
SWhen studying monoid rings over reduction rings it is possible that the ordering on the ring is not
compatible with scalar multiplication as well as with multiplication with monomials or polynomials.



. . . “, . * . . .
Obviously the reflexive symmetric transitive closure <— is an equivalence relation on £
. o . * . . .
and the reflexive transitive closure — can be viewed as a reduction relation on £.

Well-known decision problems related to a reduction system are the word problem and the
generalized word problem.

Definition 1.1 The word problem for (£, —) is to decide for a,b € £, whether a<+—b
holds.

Definition 1.2 The generalized word problem for (£, —) and & C & is to decide for
a € &, whether there exists b € & such that a +— b holds..

Instances of these problems are well-known in the literature and undecidable in general,
but we will outline sufficient conditions such that (£,—) has solvable word problem.

An element a € £ is said to be reducible (with respect to —») if there exists an element
b € € such that a — b. All elements b € £ such that ¢ — b are called successors of a
and in case a ——b they are called proper successors. An element which has no proper
successor is called irreducible. In case a — b and b is irreducible, b is called a normal
form of a. Notice that for an element @ in £ there can be no, one or many normal forms.

Definition 1.3 A reduction system (£,—) is said to be Noetherian (or terminating)

in case there are no infinitely descending reduction chains ay — ay — ... with a; € £,
1 € N.

In case (£, —>) is Noetherian every element in £ has at least one normal form.

Definition 1.4 A reduction system (£,—>) is called confluent, if for all a,a:,ay € &,
a—a; and a —> ay implies the ezistence of az € € such that a, —~sag and as — as.

In case (£,—) is confluent every element has at most one normal form. We can combine
these two properties to give sufficient conditions for the solvability of the word problem.

Definition 1.5 A reduction system (£,—>) is said to be complete or convergent in
case it 1s both, Noetherian and confluent.

Convergent reduction systems with effective® reduction relations have solvable word prob-
lem, as every element has a unique normal form and two elements are equal if and only
if their normal forms are equal. Of course we cannot always expect (£, —>) to be conver-
gent. Even worse, both properties are undecidable in general. Nevertheless, there are weaker
conditions which guarantee convergence.

Definition 1.6 A reduction system (€,—) is said to be locally confluent, if for all
a,ar,ay € £, a—>a, and a —> ay implies the existence of an element a3 € £ such that
a1 —> a3 and ag —> as.

6By “effective” we mean that given an element we can decide whether a successor exists and then
construct it.



Now Newman’s lemma gives an important connection between confluence and local conflu-
ence.

Lemma 1.7 (Newman) Let (£,—) be a Noetherian reduction system.
Then (£, —) is confluent if and only if (£, —) is locally confluent.

Therefore, if the reduction system is terminating, a check for confluence can be reduced
to a check for local confluence. It is often the case that the test for local confluence is a
finitary one, hence leading to ”critical-pair” based completion procedures. In case the test
for local confluence fails for a pair, the reduction relation is refined without changing the
generated equivalence relation but preserving termination. This is e.g. done for the critical
pairs in the Knuth-Bendix completion procedure and for the s-polynomials in Buchberger’s
algorithm.

Besides the extensions of Buchberger’s ideas using knowledge on the algebra mentioned
before there are also considerations of finding essential properties of reduction for a ring
to allow finite Grobner bases — the idea of defining so-called reduction rings. A first gen-
eralization of this kind was given by Buchberger himself and his student Stifter in char-
acterizing reduction rings by adding additional axioms to the ring axioms [St85, St87].
Another approach was given by Kapur and Narendran for polynomials over reduction rings
in [KaNa85a].

We will here use the axiomatization given by Madlener in 1986: Let R be a ring with a
reduction = associated with subsets B C R satisfying the following axioms

(A1) =5 = Upep =, = is terminating for all subsets B C R.
(A2) a =} ¢ implies a — ¢ € ideal (b).

(A3) a =, 0 for all a € R\{0}.

Notice that in case R is commutative (A2) implies ¢ = a — b- r for some r € R.. In the non-
commutative case in general we get ¢ = a — Zle 751 - b - 150 for some 11,70 € R, 1 <1< k
or we can define a more restricted form of reduction by demanding ¢ = a — r; - b - ry for
some 71,79 € R.

Further let ¢+ = ideal(B) be the ideal generated by the set B in R. If =, denotes the
congruence generated by 1, from (A1) and (A2) <=, C =, follows. One method for
solving the membership problem for 2 by reduction methods is to transform B into a finite
set B’ such that = p: is confluent on . Notice that 0 has to be irreducible for all =,
a € R. Therefore, 0 will be chosen as the normal form of the ideal elements. Hence the
goal is to achieve a € 1 if and only if a==4 0. In particular B’ also generates ¢ and 2
is one equivalence class of <=5, . The different definitions of reductions in rings existing
in literature show that for solving the membership problem it is not necessary to enforce
<=5 = =, E.g the D-reduction notion given by Pan in [Pa85] does not have this
property but it suffices to decide =,-equivalence of two elements because a =, b if and
only if a — b € 1. It may happen that D-reduction is not only confluent on 2 but confluent
everywhere and still @ =, b does not imply that the normal forms with respect to D-reduction
are the same.



With this in mind there are several possible definitions of G-bases (Grobner bases) when
relating them to the solvability of the membership problem. We want to restrict ourselves
to the original intention of Buchberger in which <=, = =ideal(B) holds.

Definition 1.8 A subset B of R is called a G-basis of an ideal 1, if <=, = =, and
=5 15 confluent.

R is called a reduction ring if every finitely generated ideal has a finite G-basis.

The notion of one-sided reduction rings can be defined similarly.

Also effective or computable reduction rings can be defined (e.g. Buchberger’s reduction
rings) namely those for which reduction is effective and there exists an algorithm for com-
puting a finite G-basis from a finite set of generators of the ideal.

It is often useful, if R satisfies an additional axiom strongly related to interreduction.
(A4) a = and b =, d imply a =>, or a =>,.

Now the question arises which ring constructions, as e.g. extensions, products or quotients,
preserve the property of being a reduction ring.

Theorem 1.9 Let R be a Noetherian reduction ring. Then R[X1,...,X,] is a Noetherian
reduction ring.

Theorem 1.10 Let R be a reduction ring satisfying (A4) and @ a finitely generated ideal
in R. Then R/ is a reduction ring satisfying (A4).

Theorem 1.11 Let Ry, Ry be reduction rings. Then the sum Ry X Ry = {(r1,72) | 11 €
Ry, re € Ry} is a reduction ring.

Of course for every such construction an appropriate notion of reduction has to be found
which arises naturally in these cases. Another interesting question is, when and how a given
algorithm for computing G-bases for a reduction ring can be lifted when constructing new
reduction rings. This is possible in all three cases given above and was also studied by
Buchberger and Stifter who gave an axiomatic description of the properties necessary to
enable such a lifting.

In general we have to compute G-bases and syzygy bases for sets of elements in the original
reduction ring in order to lift the G-bases computations to the new reduction ring. In case
the original reduction ring is a principal ideal ring, only special sets, namely of size two for
the G-bases and of size one for the syzygy bases, have to be considered.

That different choices of reduction are possible shall be illustrated in a short example. Let us
consider the reduction ring Z,, for some m € N*. Then the polynomial ring Z,,[ X1, . .., X,]
again is a reduction ring. Reduction in Z,,[ X1, ..., X,,] on one hand can be defined by lifting
the reduction given in Z,, (compare theorem 1.9). But we can also view Z,,,[ X1, ..., X,,] as
a quotient, namely Z[ X1, ..., X,]/(m), and lift a reduction defined for the polynomial ring
Z[X4,...,X,] to our structure (compare theorem 1.10). This shows that there are various
ways to treat a given ring as a reduction ring by specifying different reductions.



Several fields where reduction systems are studied and used can be found in computer sci-
ence. The theory of term rewriting systems plays an important role e.g. in algebraic speci-
fications of abstract data structures, equational programming, program transformation or
automated theorem proving. The concept of completion based on the Knuth-Bendix com-
pletion procedure given in [KnBe70] has become very influential in this field. In [LeCh86]
Le Chenadec describes how with many equational classes of algebras one can associate a
completion procedure of a finitely presented algebra A in the class which translates a pre-
sentation of A into a (not necessarily finite) complete set of syntactic replacement rules.
He incorporates the ideas of rewriting modulo theories (class rewriting) which can be gen-
eralized to normalized rewriting [Mar93]. He also includes algorithms encoding knowledge
about the input which linearly solve the word problem for some classes of groups (e.g. small
cancellation groups introduced by Dehn [Del2] where he presented a string-rewriting based
solution to the word problem for these groups).

Several authors have studied the relations between Buchberger’s algorithm and the Knuth-
Bendix completion procedure. The main difficulty is to capture fields, since they are not
equationally definable. Hence by using conditional or more generally constraint rewriting
this problem can be surpassed. In fact Bachmair and Ganzinger have shown that Buch-
berger’s algorithm can be viewed as a constraint-based variant of completion [BaGa94b]
where the operations in the coefficient field are expressed via constraints and separated from
the computations in the polynomial ring structure done by rewriting. Earlier attempts us-
ing class rewriting can be found in [KaKaWi89]. Madlener and Reinert have shown that
certain undecidability results for string rewriting systems carry over to monoid and group
rings since the specialization of the Knuth-Bendix completion procedure for string rewriting
systems is an instance of Mora’s generalization of Buchberger’s algorithm for free monoid
rings [Re95]. These results can be found in the next section of this paper.

As we have seen there are two main approaches to use rewriting techniques for symbolic
computation. One is to give a formal definition of the objects by means of axiomatization
in a term rewriting system. The other is to solve problems in special structures by incorpo-
rating knowledge on the structure into the procedure. In this paper we want to show how
this can be done for monoid and group rings by giving different notions of reduction and
showing how specializing the reduction according to the given group presentation leads to
algorithmic solutions for some classes of groups. Since our approach combines rewriting for
the presentation of the monoid or group and polynomial rewriting in the field of monoid
and group rings, let us first introduce a special kind of term rewriting systems, the so
called string rewriting systems or semi-Thue systems. These systems are strongly related
to the idea of presenting monoids or groups in terms of generators and defining relations
[Gi79, LySch77, MaKaSo76|.

A semi-Thue system consists of an alphabet ¥ and a set of rules T C ¥* x ¥*7. We write
u —p v if and only if u = zly and v = zry for some (I,r) € T, z,y € ¥*. —, is the
reflexive and transitive closure of —; . Every monoid M can be presented by a semi-Thue
system (X, 7T), where ¥ is an alphabet and 7" a set of rules. One only has to choose ¥ = M
and T the multiplication table of the monoid, but this presentation might be infinite or even
non-recursive. There have been numerous studies investigating special kinds of semi-Thue

"¥* is the set of all words on the alphabet ¥ where ) presents the empty word, i.e., the word of length
zero, and = the identity on words.



presentations and the influence of certain properties on the decidability of certain ques-
tions related to the monoid or group they present. Of special interest is the question which
monoids have presentations by finite convergent semi-Thue systems and how to compute
them. Kapur and Narendran in [KaNa85b| and Jantzen in [Ja81, Ja85] give examples of
monoid presentations for which completion does not terminate (i.e. there is no equivalent
finite convergent system with respect to any completion ordering) although a finite conver-
gent, semi-Thue system over a different alphabet presenting the same monoid exists. Squier
proved the existence of finitely presented monoids with decidable word problem which can-
not be presented by a finite convergent semi-Thue system [Sq87]. In [De92] Deif} introduces
conditional semi-Thue systems and gives finite convergent conditional presentations for the
monoids given by Narendran and Squier.

Besides demanding overall confluence, to decide the word problem for a group confluence on
the congruence class of ) is sufficient. The property of being confluent on specific congruence

classes only and specialized completion procedures for such presentations have been studied
by Otto and others [Ot87, OtZh91, MNOZ93].

The subgroup problem is also an important decision problem for groups. Kuhn and
Madlener have shown how the notion of prefix rewriting — a specialization of ordinary
string rewriting — can be applied to solve the subgroup problem for certain classes of groups
[KuMa89]. Prefix rewriting and its completion is a direct generalization of Nielsen’s method
to solve the subgroup problem in the class of free groups [Ni21]. In case of confluence it can
be used to compute Schreier-representatives of the subgroup cosets. A related question is
when subgroups of groups allowing certain presentations again have a presentation of the
same type. For some groups such a presentation for the subgroup can be computed from a
confluent prefix rewriting system for the subgroup [KuMaOt94].

We will restrict ourselves to presentations of monoids and groups, where X is finite and T’
is finite, confluent and Noetherian, i.e., each word in X* has a unique normal form with
respect to 7. Furthermore, we require the existence of a total, well-founded ordering >
which is admissible® on 3* such that for all (I,7) € T, [ > r holds. This ordering is called
a completion ordering of (3, 7). The monoid M is isomorphic to the set IRR(T") of words
irreducible with respect to 7. The empty word A € ¥* presents the identity of M. The
word problem is solvable, which is essential for computation in K[M]. Multiplication of two
terms u,v € M is defined by v o v = (uv)}s. The completion ordering of the presentation
induces an ordering > on M such that for u,v € M we get u > X and uv > u o v.

The elements of a monoid ring K[ M] over a field K can be presented as “polynomials” f =
Y- mem Om-m where only finitely many coefficients are non-zero. Addition and multiplication
for two polynomials f = > ,,cpm@m-m and b = > ,cr¢ B - m is defined as f + h =
ZmeM (am + ﬂm) -m and f * h = ZmEM Ym © M with Ym = Zxoy:me./\/l Oy - /By' For a subset
F of K[M)] we call the set ideal (F) = {}X" ;- fixw; | n € N,o; € K, f; € F,w; € M}
the right ideal and ideal(F) = {37 a; - u; x fi xw; | n € N,o; € K, f; € F,u;, w; € M}
the two-sided ideal generated by F'. We will henceforth always assume that the field K
is computable.

The contents of the remaining sections of the paper is an extension of our work on Grobner
bases in arbitrary monoid rings as it was presented at the ISSAC meeting in Kiew in 1993

8An ordering on X* is called admissible, if for all u,v,w,z,y € £*, w > X holds and u > v implies
TUY > TUY.



[MaRe93b| combined with some results of the PhD thesis [Re95]. It organizes as follows:
In section 2 some undecidability results on the existence of finite Grobner bases are pre-
sented. Section 3 outlines our approach of introducing reduction to a monoid ring K[M].
Two possible definitions of reduction — strong and prefix reduction — are studied and char-
acterizations of Grobner bases for finitely generated right ideals in the respective settings
are given. A procedure which enumerates prefix Grobner bases for finitely generated right
ideals is given. We close the section by extending the characterization of prefix Grobner
bases to two-sided ideals. Finally, in section 4 we prove termination of the procedure to
compute prefix Grobner bases given in section 3 for some classes of groups, namely finite,
free and plain groups, and show how this procedure can be extended to compute finite
prefix Grobner bases in the class of context-free groups. Section 5 gives some perspectives
for further work in this field.

Addendum

We want to point out that the approach given here has also been specialized for the class of
polycyclic groups [Re96, MaRe97a]. These results are outlined in the concluding remarks.
There we also present a table which illustrates how the existence of finite Grobner bases
with respect to special reductions is related to groups having a subgroup problem solvable
by rewriting methods.
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2 Fundamental Relations Between Semi-Thue Sys-
tems and Monoid Rings

Kandri-Rody and Weispfenning have shown in [KaWe90] that the ideal membership problem
for finitely generated two-sided ideals is algorithmically unsolvable for the free monoid ring
Q[{ X1, X2}*] by reducing the halting problem for Turing machines to this problem. Here we
state a similar result by showing that the word problem for semi-Thue systems is equivalent
to a restricted version of the ideal membership problem in free monoid rings K[X*| where
Y. is a finite alphabet.

Theorem 2.1 Let (X,T) be a finite semi-Thue system and Pp = {l—r | (I,7) € T} a set of
polynomials associated with T. Then for u,v € ¥* the following statements are equivalent:

(1) u+—=pv.
(2) u—v e ideal®>I(Py).

The existence of a finite semi-Thue system over an alphabet with two elements having
undecidable word problem yields that the ideal membership problem for free monoid rings



with more than one generator is undecidable. In case the free monoid is generated by
one element, we have decidable ideal membership problem. In fact this is the ordinary
polynomial ring in one variable and, e.g., the Euclidean algorithm can be applied to solve
the ideal membership problem.

Perhaps less obvious is that the word problem for finitely presented groups is similarly
equivalent to a restricted version of the membership problem for ideals in a free group
ring. Let the group be presented by a semi-Thue system (X,7") such that there exists an
involution 2 : ¥ — X such that for all @ € ¥ we have u(a) # a, 2(«(a)) = a, and the rules
(2(a)a, A) and (az(a), A) are included in 7T'. Such systems are called group systems.

Theorem 2.2 Let (X, T UTy) be a finite group system and Tr = {(x(a)a, \), (ar(a), \) |
a € X}, i.e., (X,T7) is a presentation of a free group F. Further we can associate a system
of polynomials Pr = {l —r | (I,r) € T} with T and without loss of generality we can
assume that | and r are in normal form with respect to Tr. Then for u,v € X* the following
statements are equivalent:

(1) UQTUT, v.
(2) wlr, —vlr, € ideal®F(Py).

As before, the existence of a finite group presentation over four letters (resulting from two
generators) with unsolvable word problem implies that the ideal membership problem for
free group rings with more than one generator is undecidable. Groups with one generator are
known to have decidable word problem. The ideal membership problem for free group rings
with one generator is solvable as this ring corresponds to the ring of Laurent polynomials
for the (commutative) free group with one generator.

Definition 2.3 (Mora) Let >~ be a total admissible well-founded ordering on X* used to
sort the terms in the polynomials in decreasing order. Further let p = Y0 oy - w;, g =
X7 B vy € K[S.

We say g reduces p to q at a monomial o - wy, of p in one step, denoted by p—>, q, if

a) xviy = wy for some x,y € ¥*, where vy = v;, 2<j <n, and
(a) i
(%) g=p—(ar-B')-z*gxy.
+ n

We write p—,, if there is a polynomial q as defined above. We can define = I
and reduction by a set F' C K[X*] as usual.

Notice that for a set of polynomials F', <L>F = =igeal(r) holds and if additionally —
is confluent we call F' a Grobner basis of ideal (F).

While theorem 2.1 reduces the word problem for semi-Thue systems to the ideal member-
ship problem in free monoid rings, reviewing the proof of this theorem (compare page 35) we
see that in fact the existence of finite convergent semi-Thue systems corresponds to the exis-
tence of finite Grobner bases and vice versa. Hence solvable word problem does not imply the
existence of finite Grébuner bases as the example of a finitely presented monoid X = {a, b},



T = {aba — bab} with solvable word problem but no finite convergent presentation with
respect to any admissible ordering shows (see [KaNa85b]). The ideal generated by the poly-
nomial aba — bab in K[{a,b}*] has no finite Grébner basis with respect to any admissible
ordering on {a,b}*. Notice that in this example we can apply a so called Tietze transfor-
mation to the semi-Thue system, i.e. we can change the presentation without changing the
monoid, giving us the equivalent presentation X' = {a,b,c}, T" = {aba — bab,ba —> c}
which can be successfully completed, e.g. with respect to the length-lexicographical ordering
with precedence a = b = c resulting in 7" = {ac — ¢b, ba — ¢, bch — 2, bc? — ?a}.
Similarly the ideal generated by {aba—bab, ba—c} has a finite Grébner basis with respect to
the same ordering. Due to the result of Squire in [Sq87] there are finitely presented monoids
with solvable word problem which have no finite convergent presentations and his examples
give rise to finitely generated ideals in free monoid rings with solvable ideal membership
problem which have no finite Grobner bases.

So now we have seen that since finitely generated ideals in free monoid rings can have
unsolvable membership problem, in general they cannot admit finite Grobner bases. It even
is possible for a finitely generated ideal to admit a finite Grobner basis with respect to one
admissible ordering and none with respect to another admissible ordering. On the other
hand, in [Mo85] Mora provided a procedure which given an admissible ordering enumerates
a Grobner basis with respect to this ordering. This procedure terminates in case a finite
Grobner basis with respect to the given ordering exists. Hence the question might arise,
whether it is possible to decide for a finite set of polynomials and an admissible ordering
whether a finite Grobner basis with respect to this ordering exists. This turns out to be
undecidable.

Theorem 2.4 It is undecidable, whether a finitely generated ideal has a finite Grobner
basis in the free monoid ring K[{s, t}*] with respect to two-sided reduction as defined in
definition 2.3.

This result holds even assuming solvable membership problem for the ideal [Sa96].

Corollary 2.5 [t is undecidable, whether for a finitely generated ideal in K[{s,t}*] there
exists a total, well-founded, admissible ordering on {s,t}* such that the ideal has a finite
Grobner basis with respect to reduction as defined in 2.3.

Hence, for two-sided ideals the case of free monoids is already hard although free monoids
allow simple presentations by semi-Thue systems, namely empty sets of defining relations.
In theorem 2.2 we have shown that the word problem for group presentations is reducible
to a restricted version of the ideal membership problem for a free group ring. We will show
now that a similar result holds for the right ideal membership problem in group rings.

Definition 2.6 Given a subset S of a group G, let (S) denote the subgroup generated by
S. The generalized word problem or subgroup problem is then to determine, given
w € G, whether w € (S).

The word problem for a group G is just the generalized word problem for the trivial subgroup
in G. Thus the existence of a group with undecidable word problem yields undecidability



for the subgroup problem. On the other hand, decidable word problem for a group does not
imply decidable generalized word problem.

The next theorem states that the subgroup problem for a group is equivalent to a special
instance of the right ideal membership problem in the corresponding group ring.

Theorem 2.7 Let S be a finite subset of G and K[G] the group ring corresponding to G.
Further let Ps = {s—1 | s € S} be a set of polynomials® associated to S. Then the following
statements are equivalent:

(1) w e (S).
(2) w—1 € ideal,(Ps).

This theorem implies that when studying group rings we can only expect those over groups
with solvable generalized word problem to allow solvable membership problem for right ide-
als. Moreover, reviewing the proof (compare page 38) we find that again reduction relations
in semi-Thue systems are related to right ideal congruences and vice versa. In section 4
and 5 we will see how this leads to strong connections to known solutions of the subgroup
problem by rewriting methods. So appropriate candidates are e.g. free, Abelian, nilpotent
and polycyclic groups. On the other hand, solvable subgroup problem only implies the
solvability of a restricted version of the right ideal membership problem.

3 Defining Reduction in K[M]

Throughout this paper let M be a monoid presented by a finite convergent semi-Thue
system (X,T) and > the well-founded ordering on M induced by the completion ordering
of its presentation. Notice that although the completion ordering is compatible on ¥* with
concatenation, this in general no longer holds for the ordering > on M with respect to the
multiplication o on M. For example groups do not allow compatible well-founded orderings
due to the existence of inverse elements. Given a non-zero polynomial p in K[M], the head
term HT(p) is the largest term in p with respect to >, HC(p) is the coefficient of this term
and HM(p) = HC(p) - HT(p) the head monomial. T(p) is the set of terms occurring in
p. The ordering on M can be extended to a partial ordering on K[M)] by setting p > ¢ if
and only if HT(p) > HT(q) or (HM(p) = HM(q) and p — HM(p) > ¢ — HM(q)), and this
ordering is Noetherian. Frequently in polynomial rings reduction is defined by using the
head monomial of a polynomial as a left hand side of a rule in case the head term of the
polynomial is a divisor of the term of the monomial to be reduced. But defining reduction
in this way for monoid rings need not be Noetherian as the following example shows.

Example 3.1 Let ¥ = {a,b} and T = {ab — \,ba — A} be a presentation of a
group G with a length-lexicographical ordering induced by a > b. Suppose we simply require
divisibility'® of the head term to allow reduction. Then we could reduce the polynomial
b>+1 € Q[G] at the monomial b* by the polynomial a+b as b*> = aob®. This would give us:

b+ 11—y 0"+ 1—(a+b)xb*=—b*+1

9Note that weuse 1 =1-X = .
10We call a term ¢ (right) divisible by a term z in case there exists a term z such that t = z o z.



and the polynomial —b* +1 likewise would be reducible by a+b at the monomial —b* causing
an infinite reduction sequence.

Hence we will need additional restrictions in order to prevent that a monomial is replaced
by a larger polynomial. Since our monoid M in general is not commutative, we will restrict
ourselves to right ideals — hence to right multiples — and inspect two variations of defining
right reduction. For further variants see e.g. [MaRe95, Re95].

Definition 3.2 Let p, f be two non-zero polynomials in K[M]. We say f strongly right
reduces p to q at a monomial o -t of p in one step, denoted by p—%q, if

(a) HT(f xw) =t for some w € M, and
(b)) g=p—a-HC(fxw) ™t f*xw.

We write p—% if there is a polynomial q as defined above and p is then called strongly
right reducible by f. Strong right reduction by a set F' C K[M]| is denoted by p —% q and
abbreviates p —% q for some f € F.

Note that in order to strongly right reduce p, the polynomial f need not be smaller than p.
The condition HT(f % w) = ¢ prevents reduction with a polynomial in case f * w = 0, i.e.,
if the monomials of f eliminate each other by multiplying f with w. This might happen
in case the monoid ring contains zero-divisors. Further, in case we have p —% ¢ at the
monomial « - t, then ¢t & T(g). In order to decide, whether a polynomial f strongly right
reduces a polynomial p at a monomial « - ¢ one has to decide whether there exist elements
s € T(p) and w € M such that s ow = HT(f * w) = ¢. Since this problem is connected
to solving equations s o x = ¢ in one variable x in the monoid M presented by (X,7),
this problem is undecidable in general, even if M is presented by a convergent semi-Thue
system. Note that there can be no, one or even (infinitely) many solutions depending on
M. In case M is a group the equation only has one unique solution.

Example 3.3 Let ¥ = {a,b} and T = {ab — a} be a presentation of a monoid M
with a length-lexicographical ordering induced by a = b. Then the equation box = a has
no solution in M, the equation box = b has one solution in M, namely x = A, and the
equation a o X = a has infinitely many solutions in M, namely the set {b"|n € N}.

The following example illustrates how different monomials can become equal when modi-
fying a polynomial in order to use it for strong right reduction.

Remark 3.4 Let ¥ = {a,b} and T = {ab —> b} be a presentation of a monoid M with a
length-lexicographical ordering induced by a > b. Furthermore, let fi, fo, p be polynomials in
Q[M] such that fi = a® +a, fo =a®> —a and p = b+ \. Then p is strongly right reducible
by f1 at b, as HT(f1 xb) =HT(2-b) = b andp—)jclp—%-fl*b:b—l—/\—%-Q-b:)\. On
the other hand, although both equations a> ox = b and a ox = b have b as a solution, we
get that p is not strongly right reducible by fs, as foxb=b—b=0.

In case M is a right cancellative monoid or a group, the phenomenon described in this
remark can no longer occur, since then uow = v ow implies v = v for all u, w,w € M. Let
us continue to state some of the properties strong right reduction satisfies.



Lemma 3.5 Let F be a set of polynomials in K[M] and p,q, q1, ¢ € K[M] some polyno-
mials. Then the following statements hold:

(1) p—5 q implies p > q, in particular HT(p) = HT(q).
(2) —% is Noetherian.

(3) If p—5, 0 and ¢t —;, 0 hold, so does p—, 0.
(4) a-p*wiﬁ,OforallaEK, w € M.

Unfortunately, for strong right reduction p—®, ¢—% ¢; in general does not imply
g rig q w
P —}wq1) » 2 the following example shows'!. Therefore, our structure satisfies (A1), (A2)

and (A3) but not (A4) of the axioms given in the introduction.

Example 3.6 Let ¥ = {a,b,c} and T = {a®> — )\, b®> — )\, ¢* — A} be a monoid
presentation of a group G with a length-lexicographical ordering induced by a > b > c.
Looking at p = ba+b,q = bc+ X and w = ac+b € Q[G] we get p—yp—qxca = —ca+b
and ¢ —%, g —wxc=—a+ A= q, but p%?w,ql} . Trying to reduce ba by w or q, we get
w x a = aca + ba,w * caba = ba + bcaba and ¢, * aba = —ba + aba, ¢, * ba = —aba + ba all
violating condition (a) of definition 3.2. Trying to reduce b we get the same problem with
w * cab = b+ bcab,q; *ab = —b+a and ¢ * b= —ab + b.

Nevertheless, strong right reduction has the essential properties which allow us to charac-
terize a right ideal by reduction with respect to a set of generators, e.g. the translation
lemma holds and the right ideal congruence can be described by reduction.

Lemma 3.7 Let F be a set of polynomials in K[M] and p, q, h € K[M] some polynomials.
Then the following statements hold:

1) Let p — q—5% h. Then there are polynomials p',q¢ € K|[M] such that we have
* * F
p—% 9, q—%q andh=p' —¢.

2) Let 0 be a normal form of p — q with respect to —%5. . Then there exists a polynomaial
* * F
g € K[M] such that p—% g and ¢ —% g.

(3) p+—%5 q if and only if p — q € ideal,.(F).

In analogy to Buchberger we will call bases of right ideals which induce a confluent strong
right reduction describing the right ideal congruence strong Grobner bases.

Definition 3.8 A set G C K[M]| is called a Grobner basis with respect to the reduc-
tion —* or a strong Grdbner basis of ideal, (G), if <% = Sideal, (¢), and —% is

confluent.

Notice that by lemma 3.7 we have

1 This property is important for introducing interreduction to a completion procedure.



Lemma 3.9 For a set of polynomials G in K[M], G is a strong Grébner basis of ideal . (G)
if and only if for all g € ideal (G) we have g —% 0.

Unlike in Buchberger’s case a polynomial itself need not be a Grobner basis of the right
ideal it generates.

Example 3.10 Let Y = {a,b,c} and T = {a®> — \,b> — A\, ab — ¢,ac — b,cb — a}
be a monoid presentation of a group G with with a length-lexicographical ordering induced
by a >~ b > c. Further, let us consider the polynomial p = a + b+ ¢ € Q[G]|. Then —
is not confluent on ideal.(p), as we can strongly right reduce a + b + c—5b — A using
pxb=c+A+aand a+b+c—0, but although b— X € ideal, (p), b—)\%j‘,ﬂ, as for all
w € G, HT(p* w) # b.

In accordance with the terminology used in Buchberger’s approach to give a confluence test
for sets of polynomials, we define critical pairs of polynomials with respect to strong right
reduction as situations were both polynomials can be applied for strong reduction.

Definition 3.11 Given two non-zero polynomials'? pi,p, € K[M)|, every pair of elements
wy, we € M such that HT (py * wy) = HT(pg * wy), defines a strong s-polynomial

spol, (p1, P2, w1, wa) = HC(py % w1) ™" - p1 x w1 — HC(po * wo) ™" - po * ws.

Let Uy, p, € M x M be the set containing all such pairs wy, ws € M.

A strong s-polynomial will be called non-trivial in case it is non-zero and notice that we
always have HT (spol,(p1, po, w1, wz)) < HT(p1 * w1) = HT (pg * wy).

Example 3.12 Reviewing example 3.10 we find that a polynomial can have a non-trivial
strong s-polynomial with itself. In fact since HT(a+b+¢) =a=HT((a+ b+ ¢) xb) we get
that (A, 0) € Usibrcatbre gives Tise to a strong s-polynomial

spol,(a+b+c,a+b+c,\b)=(a+b+c)—(c+A+a)=b— A\

This phenomenon, which differs from the one for free monoid rings, is due to the fact that
the definition of critical situations no longer only involves the head terms of the respective
polynomials but the whole polynomials. The set U, ,, is contained in the set of all solutions
in M to the equations in two variables of the form u o x = v oy where u € T(p;) and
v € T(po). It can be empty, finite or even infinite. We can now give a criterion that implies
confluence for strong right reduction in terms of strong s-polynomials.

Theorem 3.13 For a set F of polynomials in K[M], the following statements are equiva-
lent:

(1) For all polynomials g € ideal (F) we have g —% 0.

(2) For all not necessarily different polynomials fr, f € F' and every corresponding pair
(wg, wy) € Uy, .5, we have spol,(fx, f1, wy, w;) =5 0.

12Notice that p; = ps is possible.



Notice that this theorem, although characterizing a strong Grobner basis by strong s-
polynomials, in general does not give a finite test to check whether a set is a strong Grobner
basis, since in general infinitely many strong s-polynomials have to be considered. Later
on we will see that the right ideal generated by a + b + ¢ in example 3.10 has finite strong
Grobner bases and we will show how to compute such a basis.

The following example shows how already two polynomials can cause infinitely many critical
situations.

Example 3.14 Let ¥ = {a,b,c,d,e, f} and T = {abc — ba, fbc — bf,bad — e} be a
presentation of a monoid M with a length-lexicographical ordering induced by a > b > ¢ >
d > e >~ f. Further consider two polynomials py = a+ f,ps = bf +a € Q[M)|. Then we get
infinitely many critical situations

HT(p; * (be)'dw) = f o (be)'dw = bf o (be)" dw = HT (pa * (be)" ™ dw),
where i € NT,w € M, giving rise to infinitely many strong s-polynomials
spol, (p1, pa, (be)'dw, (be) rdw) = (a + f) * (be)'dw — (bf + a) * (be)" ™ dw
and Uy, p, = {((bc)'dw, (be)" tdw) | i € NT,w € M}.

Notice that in contrary to the definition of s-polynomials in commutative polynomial rings
in this example there are infinitely many strong s-polynomials originating from p; and
p2 which cannot be expressed by monomial multiples of one or even a finite set of these s-
polynomials. Therefore, localization of critical situations in general is very hard. As example
3.14 shows, the set Up, ,, need not have a “suitable finite basis”, e.g. there need not exist a
finite set B C U, ,, such that for every pair (wq, wz) € U,, ,, there exists a pair (uy, us) € B
and an element w € M with u; o w = w; and uy o w = w,. The subset {((bc)d, (bc)*~'d) |
i € Nt} C U, p, is such a basis, but it is not finite and there is in fact no finite one.

It turns out that the following uniform problem is undecidable, even in monoids where the
solvability of equations of the form u o x = v oy is decidable.

Given: Two polynomials p,q € K[M], and
(33, T) a convergent semi-Thue system presenting M.
Question: Does there exist a strong s-polynomial for p and ¢7

One way to reduce the set of critical situations that have to be considered to ensure con-
fluence is to weaken the reduction relation while preserving the generated equivalence rela-
tion. The key idea is that for two reduction relations —' and —? on a set £ such that
— € —?% and +—! = «? the confluence of —' on &£ implies the confluence of
—2 on €&.

One natural weakening strong right reduction we studied is called right reduction. Instead
of using all right multiples of a polynomial by monomials as rules we restrict ourselves to
those right multiples of a polynomial which allow the head term of the polynomial to keep
its head position. Hence, reduction defined in this way can be called “stable” and resembles
Buchberger’s definition of reduction. The results can be found in [MaRe93b, Re95].

In the following we will introduce a further weakening of strong reduction using prefixes
in X*. Notice that such prefixes are divisors with respect to word concatenation and hence
easy to determine.



Definition 3.15 Let p, f be two non-zero polynomials in K[ M]. We say f prefix reduces
p to q at a monomial -t of p in one step, denoted by p—)? q, if

(a) HT(f)w =t for some w € M, i.e., HT(f) is a prefiz of t, and
(b)) ¢g=p—a-HC(f)™ - fxw.

We write p—)? if there is a polynomial q as defined above and p is then called prefiz
reducible by f. Prefiz reduction by a set F C K[M] is denoted by p—% q and abbreviates
p—%q for some f € F.

Notice that in the above definition the equation in (a) has at most one solution and we
then always have HC(f * w) = HC(f). This is due to the fact that ¢ = HT(f)w implies
HT(f)w = HT(f * w) and HT(f)w > sow for all s € T(f — HM(f)). Further, in case f
prefix reduces p to ¢ at the monomial « - ¢, we have ¢ ¢ T(g) and p > ¢. In case M is
the free monoid strong and prefix reduction coincide and are in fact Mora’s reduction for
treating right ideals in the free monoid ring. The statements (1) to (3) of lemma 3.5 can be
carried over to prefix reduction. But it is no longer true that p*w —5 0 in case p* w # 0.

Example 3.16 Let ¥ = {a,b} and T = {ab — \,ba —> A} be a monoid presentation of
a group G with a length-lexicographical ordering induced by a = b. Further let p=a®+1 €
Q[G]. Then pxb=a+ b is not prefix reducible to zero by p.

As before, we can show that the translation lemma holds for prefix reduction.

Lemma 3.17 Let F be a set of polynomials in K[ M| and p, q, h € K[M] some polynomials.
Then the following statements hold:

(1) Let p — q—"% h. Then there are p',q € K[M] such that p—%.p',q—% ¢ and
h=p —¢.

(2) Let 0 be a normal form of p — q with respect to —%. . Then there exists a polynomial
g € K[M] such that p—% g and ¢ —% g.

Furthermore, p —? and ¢ —} ¢ imply p—)l{Dw’q}, i.e. the axioms (Al), (A2), (A3) and
(A4) hold. Unfortunately, prefix reduction need not capture the right ideal congruence.

Lemma 3.18 Let p,q € K[M] and F C K[M]. Then p+—% q implies p — q € ideal .(F)
but not vice versa.

Example 3.19 Let Y = {a,b,c} and T = {a®> — \, 0> — \,ab — ¢,ac — b,cb — a}
be a presentation of a group G with a length-lexicographical ordering induced by a > b > c.
Inspecting the polynomials p = a+b+c,q = b—X € Q[G] and the set F = {a+b+c} C Q[F]
we get p—q=a+c+A= (a+b-+c) b € ideal (F), but a+b+c</~%b— \. To prove this
claim, let us assume a+b~+c<—2b—\. Then, since a+b+c—> 0, we get b— X <—>.0.
Let n € Nt be minimal such that b — A% 0. As b— X —/~%0 we know n > 1. Thus, let
us look at the sequence

b—A=:py—pp1+—h ... %140,



where for all1 < i < n—-1,p =pi1+ao-(a+b+c)*xw, oy € K- w; € G and
HT((a + b+ ¢) * w;) = aw;. Further let t = max{HT(p;) |1 <i<n-—1}. Thent > b, as
aw > b for all w € G such that a o w = aw. Let p; be the first polynomial with HT (p;) = t,
i.e., HT(p;) <t for all j <1, and let p.yi be the next polynomial, where the occurrence of
t is changed. Since HT((a + b+ ¢) * wiyg) = awpyy, =t = aw; = HT((a + b+ ¢) * w;) we
can conclude wy = w;. Further our transformation sequence is supposed to be of minimal
length, i.e., t is not changed by the reductions taking place in the sequence py (Eﬁ[} Ditk—1-
But then, eliminating p; and substituting piy; by pfﬂ- =piyj— - (a+b+c)*w for all

1 < j <k gives us a shorter sequence b — A @)% 0 contradicting our assumption.

Obviously for a set of polynomials ' C K[M] we have —% C —% ) but as seen in
example 3.19 in general we cannot expect +—> = <% . This can be gained by enriching
the set F to a set F' such that ideal (F) = ideal (F') and <+—%, = <% . This will be
achieved by a process called prefix saturation.

Definition 3.20 A set of polynomials F C {a-p*xw | a € K*, w € M} is called a prefix
saturating set for a non-zero polynomial p € K[M], if for allw € M, in case px w # 0
then p x w —% 0 holds. SAT ,(p) denotes the family of all prefix saturating sets for p.

Definition 3.21 We call a set FF C K[M)| prefix saturated, if for all f € F and all
w e M, fxw—%0 holds in case f+w # 0.

Note that in defining prefix saturating sets we demand prefix reducibility to 0 in one step.
This is done to have some equivalent for p x w —, 0 in Buchberger’s approach and the fact
that for strong right reduction we have p x w —, 0 in case p x w # 0. Other definitions of
similar properties are possible and can be found in [Ap88, Kr93, Re95].

Of course there are procedures to enumerate prefix saturating sets of a polynomial p, since
the set {p*w | w € M} is recursively enumerable, and it is decidable whether ¢ —?%. 0 for
some ¢ € K[M] and F' C K[M] finite. But in general the set {p x w | w € M} is infinite
and, hence, we have to look for “suitable” subsets and to find and compute finite ones in
case they exist. Note that prefix saturating sets for a polynomial p are prefix saturated.
A nice property of prefix saturated sets is that they allow special representations of the
elements belonging to the right ideal they generate.

Lemma 3.22 Let F' C K[M)| be a prefiz saturated set. Then every non-zero polynomial
g € ideal (F) has a representation of the form g = Y% | ;- fixw; with o; € K*, fi € F,w; €

In fact using prefix reduction combined with prefix saturation we can simulate strong right
reduction and therefore we can then capture the right ideal congruence.

Lemma 3.23 For f,g,p € K[M] and S € SAT,(p), f —; g if and only if f —% g.

Lemma 3.24 For a prefiz saturated set F of polynomials in K[M] and p,q € K|M] we
have p+—%. q if and only if p — q € ideal (F).



To enumerate prefix saturating sets for a polynomial, we can make use of the fact that the
elements of the monoid are represented by words which are irreducible with respect to a
convergent semi-Thue system (3, 7"). We do not have to compute all right monoid multiples
of a polynomial but we can restrict ourselves to those which are overlaps between the
respective head term of a polynomial multiple and the rules in 7. The following procedure
uses this idea.

Procedure: PREFIX SATURATION

Given: A polynomial p € K[M] and
(3,T) a convergent semi-Thue system presenting M.
Find: S e SAT,(p).

S = {p};
H = {p};
while H # () do
q = remove(H);
% Remove an element using a fair strategy, i.e., no element is left in H for ever
t := HT(g);
for all w € C(t) = {w € &* | tw = t1tow = 111, ty # A for some (I,7) € T} do

% C(t) contains special overlaps between ¢ and left hand sides of rules in T’

q = q*uw;

if ¢ —A%0and ¢ #0
then S :=SU{¢};
H:=HU{q};
endif
endfor
endwhile

Theorem 3.25 For a given polynomial p € K[M], let S be the set generated by procedure
PREFIX SATURATION. Then for all w € M every non-zero polynomial p x w is prefix
reducible to zero in one step using S.

Hence, procedure PREFIX SATURATION enumerates a prefix saturating set for a polynomial
and we find:

Lemma 3.26 In case a polynomial has a finite prefiz saturating set, then procedure PREFIX
SATURATION terminates.

This is the case e.g. for monoids with a finite convergent monadic presentation. Similar to
definition 3.8 we can define Grobner bases with respect to prefix reduction.

Definition 3.27 A set G C K[M)] is said to be a prefix Grobner basis of ideal, (G), if
= =ideal, (G), and —g is confluent.

Notice that prefix saturating sets for a polynomial p satisfy the first statement of this
definition, but in general need not be prefix Grébner bases of ideal, (p), i.e., the elements of
ideal,.(p) do not necessarily prefix reduce to zero.



Example 3.28 Reviewing example 3.19, let p = a+b+c. Then S = {a+b+c,a+c+
Mbe+c+bba+ca+ N cata+ N\ +b+c} € SAT,(p), but —% is not confluent on
{pxw|we M}. We havea+b+c—%, ., b—Xanda+b+c—",, 0 but b—\—5%0.

This example also shows that Grobner bases via —P are Grobner bases via —® but not
vice versa. The set F' = {a+b+c,b— A} is a strong Grobner basis, but not a prefix Grébner
basis. Remember that prefix saturation enriches a polynomial p to a set S € SAT,(p) such
that we can substitute ¢ — ¢’ by ¢ _>§'e s q'. We use this additional information to give
a confluence criterion that will use a refined definition of s-polynomials.

Definition 3.29 Given two non-zero polynomials p1,ps € K[M], if there is w € M such
that HT (p1) = HT (po)w the prefix s-polynomial is defined as

spol, (p1, p2) = HC(p1) ™" - p1 — HC(p2) ™"« pa x w.

As before non-zero prefix s-polynomials are called non-trivial. In case an s-polynomial exists
we always have HT (spol,(p1, p2)) < HT(p1) = HT(po)w. Notice that a finite set F' C K[M]|
defines finitely many prefix s-polynomials and the following lemma enables us to localize
our confluence test to these s-polynomials.

Lemma 3.30 Let F be a set of polynomials in K[M)] and p € K[M]. Further let p—=%0
and let us assume this reduction sequence results in a representation p = YF_| a; - g; * w;,
where a; € K*, g; € F, and w; € M. Then for every term t € M such that t = HT(p) and
every term w € M we get that if s € U%_ T(g; * w; x w) then tw > s holds.

Prefix s-polynomials alone are not sufficient to characterize prefix Grobner bases, but in
case we demand our set of polynomials to be prefix saturated we can give a characterization
similar to theorem 3.13.

Theorem 3.31 For a prefiz saturated set F' of polynomials in K[M], the following state-
ments are equivalent:

(1) For all polynomials g € ideal, (F) we have g —% 0.

(2) For all polynomials fy, fi € F we have spol,(fx, f;) —% 0.

Corollary 3.32 A prefiz saturated set F C K[M)] is a prefic Grébner basis of ideal,.(F') if
and only if for all g € ideal .(F) we have g —% 0.

Now theorem 3.31 gives rise to the following procedure, which can be modified to enumerate
a Grobner basis with respect to —P for a finitely generated right ideal. Termination will
be shown for some special cases where finite prefix saturated Grobner bases exist in the
next section.

Procedure: PREFIX GROBNER BASES

Given: A finite set of polynomials F C K[M], and

(3,T) a convergent semi-Thue system presenting M.
Find: GB(F) a prefix Grébner basis of F.
Using: SAT), a prefix saturating procedure for polynomials.



G = Uper SAT,(f);
% G is prefix saturated

B :={(q1,9) | ¢1,9 € G,q1 # ¢};
while B # () do

% Test if statement 2 of theorem 3.31 is valid
(¢1, g2) := remove(B);
% Remove an element using a fair strategy
if spol,(q1,q2) exists
% The s-polynomial is not trivial
then h:= normal form(spol,(q1, ), —¢ );
% Compute a normal form using prefix reduction
if h#0
then G := G USAT,(h);
% G is prefix saturated
B = BU{(f,h), (h,f) | f € G,k € Sar,(h)};
endif
endif
endwhile
GB(F):=G

There are two crucial points, why procedure PREFIX GROBNER BASES might not termi-
nate: prefix saturation of a polynomial need not terminate and the set B need not become
empty. In the next section certain groups with very simple finite prefix saturating sets are
presented. Notice that in case prefix saturation does not terminate it is possible to modify
this procedure in order to enumerate a prefix Grobner basis by using fair enumerations of
the prefix saturating sets needed. This results in a more technical procedure.

Termination of procedure PREFIX GROBNER BASES can be shown e.g. for finite convergent
special monoid or monadic group presentations. More details on this subject are provided
in the next section.

In the following example we want to illustrate how procedure PREFIX GROBNER BASES
works by computing a prefix Grobner basis of the right ideal specified in example 3.10.

Example 3.33 Let Y = {a,b,c} and T = {a®> — \, 0> — \,ab — ¢,ac — b,cb — a}
with a length-lexicographical ordering induced by a > b = c. We want to compute a prefic
Grobner basis of ideal .(a + b+ ¢).

On initializing G we get G = {a+b+c,a+c+ N\, bc+c? +b,ba+ca+ N\, ca+a+\, ¢ +b+c}
(compare example 3.28).

Now inspecting this set we see that only one prefix s-polynomial has to be considered, namely

spol,(a +b+c,a+c+A)=b— A\

Since {b— A} is a saturating set for the polynomial b — X we get G = G U {b — A}.
Now there are two possible prefix s-polynomials to consider and we find

spol,(bc+ ¢+ b,b— ) = +b+c—0

respectively
spol,(ba 4+ ca+ A\, b—A) =ca+a+X—0



and hence {a +b+c,a+c+ A\bc+cE+bba+ca+Ncat+a+\c2+b+e,b—A}isa
prefic Grobner basis of ideal,(a + b+ c).

Furthermore, theorem 3.31 characterizes prefix saturated prefix Grobner bases. But prefix
Grobner bases need not be prefix saturated. In [Re95] we have hence given other character-
izations of prefix Grobner bases and introduced the concept of interreduction to the theory.
Using those results we can even state that for ideal.(a + b + ¢) in example 3.33 the set
{a+c+ X ca—c,?+c+ )\ b— A} is areduced prefix Grobner basis. We close this section
by showing how similar to the case of solvable polynomial rings ([Kr93, KaWe90]), Grobner
bases of two-sided ideals can be characterized by prefix reduction and prefix Grébner bases
which have additional properties. We will call a set of polynomials a Grobner basis of
the two-sided ideal it generates, if it fulfills one of the equivalent statements in the next
theorem.

Theorem 3.34 For a set of polynomials G C K[M)|, assuming that M is presented by
(3,T) as described above, the following properties are equivalent:

(1) G is a prefix Grébner basis of ideal, (G) and ideal, (G) = ideal (G).
(2) For all g € ideal (G) we have g —% 0.

(3) G is a prefix Grébner basis of ideal,(G) and for allw € M, g € G we have w* g €
ideal .(G).

(4) G is a prefir Grobner basis of ideal (G) and for all a € ¥, g € G we have a x g €
ideal .(G).

Statement 4 enables a constructive approach to extend procedure PREFIX GROBNER BASES
in order to enumerate prefix Grobner bases of two-sided ideals (and in fact in case prefix
saturation always terminates this procedure will compute finite prefix saturated Grobner
bases in case they exist). I[tem 2 states how prefix Grobner bases are related to the mem-
bership problem for two-sided ideals. In this case if K[M)] is a right reduction ring and G
is a finite prefix Grobner basis of ideal (@), then K[M]/ideal(G) is a right reduction ring.

4 Group Rings

In this section we show how structural information on certain classes of groups can be used
to prove termination of procedure PREFIX GROBNER BASES and to improve it. Let us start
with the classes of finite, free respectively plain groups. These groups have in common that
they can be presented using convergent 2-monadic group presentations, i.e., > contains
inverses of length one for all generators and for all rules (I,r) € T, |l| < 2 and |r| < 1
hold. In fact finite or free groups are also plain groups, but sometimes it is useful to take
advantage of the additional information we have concerning them. For example we can
improve the process of saturation. Given a non-trivial group element w we let £(w) denote
the last letter and inv(w) the inverse of w.



Definition 4.1 For a polynomial p € K[G]| which has more than one monomial, we define
o(p) = max{u € G |HT(pxu) =HT(p)owu is a prefix of HT(p)}.

Then we can set can(p) = pxo(p) and acan(p) = can(p)*inv(¢(HT (can(p)))). For a non-zero
polynomial o - t € K[G] we set o(p) = inv(t) and can(p) = acan(p) = a.

Notice that HT(can(p)) = HT(p) o o(p), but in case p has more than one monomial
HT (acan(p)) # HT(p) o o(p) o inv(¢(HT(can(p)))).

Example 4.2 Let ¥ = {a,b} and T = {ab — A, ba — A} be a presentation of a
group G with a length-lexicographical ordering induced by a > b. Then for the polynomial
p=>b+b+ )\ e Q[G] we get o(p) = a, can(p) = p* o(p) = b2+ b+ a, and acan(p) =
p*a’ =0+ \+d’

These polynomials can be used to define prefix saturating sets.

Lemma 4.3 Let p € K[G] contain more than one monomial. Then the following statements
hold:

(1) In case G is a free group presented by (X,Tr), then SAT,(p) = {can(p),acan(p)} is a
prefiz saturating set for p.

(2) In case G is a plain group presented by a reduced convergent 2-monadic group system
(3,T), a=£€(HT(can(p))) and o' = £(HT (acan(p))), then SAT,(p) = {can(p), can(p) *
b | (ab,c) € T} U{acan(p),acan(p) xb | (a'b,c) € T} is a prefiz saturating set for p.

Then we can compute finite prefix Grobner bases of finitely generated right ideals for plain
group rings using procedure PREFIX GROBNER BASES and specifying saturating sets as
described in lemma 4.3.

Theorem 4.4 Given a 2-monadic confluent group presentation for a group G and a finite
set of polynomials F C K|[G|, procedure PREFIX GROBNER BASES terminates.

We continue to show how we can gain a similar result for context-free group rings. A finitely
generated context-free group G is a group with a free normal subgroup of finite index. Hence,
let the group G be given by X a finite set of generators for a free subgroup F and £ a finite
group such that (E\{A\})NX =0 and G/F =2 &€ Foralle e £ let ¢, : X UX 1 — F be
a function such that ¢, is the inclusion and for all z € X U X!, ¢.(x) = inv(e) og = og e.
For all ej,es € € let z., ., € F such that z.,, x = 2\, = A and for all e, es,e3 € £ with
€10g €3 =g €3, €10G €2 = €32¢, ¢p- Let ¥ = (E\{A\})UXUX ™! and let T contain the following
rules:

Tl — A and

r7 il — A for all z € X,

€16y — €3% ¢ for all eq, ey € E\{A}, e3 € £ such that e; og e2 =¢ e3,
xe — ede(r) and

e — ed.(xt) forallee E\{\},z € X.



(X,T) then is convergent and is called a virtually free presentation (compare [CrOt94]).
Presenting G in this way we find that the elements of the group are of the form eu where
e € £ and u € F. We can specify a total well-founded ordering on the group by combining
a total well-founded ordering >¢ on £ and a length-lexicographical ordering >, on F: Let
w1, wy € G such that w; = e;u; where e; € £, u; € F. Then we define w; > wy if and only
if |wq| > |we| or (Jwi| = |wy| and e; ¢ e3) or (|wy| = |ws|, €1 =¢ ey and u; >ex uz). This
ordering is compatible with right concatenation using elements in J in the following sense:
Given wq, wo € G presented as described above, w; > ws implies wiu > wou for all u € F
in case wiu, wou € G.

Example 4.5 Let £ be the finite group presented by X' = {a} and T' = {a®* — A} and
F the free group generated by X = {z}. Further let ¢,(z) = z and ¢,(z7') = ! be
a conjugation homomorphism. Then ¥ = {a,z,27'} and T = {xz™' — N\ z7'z —
AMU{a? — AN U{za — az,z7'a — az™'} is a virtually free presentation of G, the
direct product of £ and F.

Let us take a closer look at prefix reduction in K[G].

Example 4.6 Let G be the group specified in example 4.5. Further let p = ax® +x + A,
q =a+ 1 and g = 2% + X be polynomials in Q|[G].
Then the polynomial p is prefiz reducible at its head term ax? by qi giving us

p—Ep—qx1’ =g’ +r+A—a® —2* =z +\+2°
On the other hand, as 2% is no prefix of ax?, this is not true for g,.

Since prefix reduction using a non-constant'® polynomial involves right multiples of the
polynomial with elements in F only, we can restrict ourselves to special prefix-saturating
sets.

Definition 4.7 A set F C {a-pxw | a € K*,;w € F} is called a F-prefix saturating
set for a non-zero polynomial p in K[G], if for all w € F the polynomial p x w is prefic
reducible to zero using F in one step. A set of polynomials F C K[G] is called a F-prefix
saturated set, if for all f € F and for all w € F the polynomial f x w is prefix reducible
to zero using F' in one step.

Reviewing the results on free groups, for a polynomial p in K[G] we can specify can(p) and
acan(p) and use them to define F-prefix saturating sets.

Definition 4.8 For a non-zero polynomial p € K[G] containing more than one monomial
we define

o(p) =max{u € F | HT(pxu) = HT(p) o u is a prefiz of HT(p)}

and set can(p) = p * o(p). In case HT(p) # einv(o(p)) for e € £ we define acan(p) =
can(p) x inv(£(can(p))) and else acan(p) = can(p). For a polynomial p = o -t € K[G] we set
can(p) = acan(p) = a.

13A constant polynomial is an element in K.



Lemma 4.9 For a non-zero polynomial p in K[G] the set {can(p),acan(p)} is a F-prefix
saturating set.

Example 4.10 Let G be the group specified in example 4.5 and p = ax®+x+)\ a polynomial
in Q[G]. Then the polynomials pxx~' = ax+A+z~' = can(p) and pxz™? =a+x '+272 =
acan(p) give us a F-prefiz-saturating set for p.

The following lemma will be used as an analogon to lemma 3.30 when we characterize prefix
Grobner bases by using prefix reduction, prefix s-polynomials and now F-prefix saturated
sets.

Lemma 4.11 Let p be a non-zero polynomial and F a set of polynomials in K[G].

Then p —% 0 gives us a representation of p = Zle ;- fixw;, with o, € K* f; € Fw; € G
such that for all w € F with HT(p * w) = HT(p)w, we get HT(p)w = HT(f; x w; * w).
In particular for allt € M with t = HT(p), if t ow = tw for some w € M, then tw >
HT(f; * w; x w) holds.

For every e € & let the mapping ¢, : K[G] — K[G] be defined by v.(f) := f x e for
f € K[G]. We now can give a characterization of prefix Grobner bases by transforming a
generating set for a right ideal using these finitely many mappings. This will enable us to
restrict ourselves to F-prefix saturated sets when characterizing prefix Grobner bases.

Theorem 4.12 Let F C K[G] and G C K[G] such that
(a) ideal (F) = ideal (G),
(b) FU{t(f)If € Fle€ £} C G, and

(¢c) G is F-prefix saturated.
Then the following statements are equivalent:

(1) For all g € ideal (F) we have g —% 0.
(2) For all fy, fi € G we have spol,(fy, fi) 5% 0.

On first sight the characterization given in theorem 4.12 above might seem artificial. The
crucial point is that in losing the property “admissible” for our ordering, an essential lemma
in Buchberger’s context, namely that p —s, 0 implies p*w —. 0 for any term w, no longer
holds. Defining reduction by restricting ourselves to prefixes we gain enough structural
information to weaken this lemma, but we have to do additional work to still describe the
right ideal congruence. One step is to close the set of polynomials generating the right
ideal with respect to the finite group &: For a set of polynomials F' using the £-closure
Fe =A{ve(f) | f € F,e € £} we can characterize the right ideal generated by F' in terms
of Fg since ideal (F) = {XF ;- fi*xu; | a; € K, f; € Fg,u; € F}. If we additionally
incorporate the concept of saturation, prefix reduction can be used to express the right
ideal congruence and then a prefix Grobner basis can be characterized as usual by prefix s-
polynomials. Now, using the characterization given in theorem 4.12 we can modify procedure
PREFIX GROBNER BASES as follows:



Procedure: PREFIX GROBNER BASES IN CONTEXT-FREE GROUP RINGS

Given: A finite set of polynomials F C K[M], and
(3, T) a virtually free presentation of G.
Find: GB(F) a prefix Grobner basis of F'.

G = {can(¥e(f)),acan(p(f)) | e € &, f € F};
% G fulfills (a), (b) and (c) of theorem 4.12
B :={(q1,¢) | 01,92 € G, q # ¢};
while B # () do
% Test if statement (2) of theorem 4.12 is valid
(g1, g2) := remove(B);
% Remove an element using a fair strategy
if spol,(q1,qo) exists
% The s-polynomial is not trivial
then h:= normal form(spol,(q1,q2), —¢ );
% Compute a normal form using prefix reduction
if h#0
then G := G U {can(h),acan(h)};
% G fulfills (a), (b) and (c) of theorem 4.12
B := BU{(f,h),(h, f) | f € G,h € {can(h),acan(h)}};
endif
endif
endwhile
GB(F):=G

Termination can be shown as in theorem 4.4.

Notice that the classes of groups studied in this section are known to have solvable subgroup
problem. For free groups there is Nielsen’s approach known as Nielsen reduction (compare
[LySch77, AvMa84]). Kuhn and Madlener have developed prefix reduction methods and
applied them successfully to the class of plain groups (see [KuMa89]). Cremanns and Otto
successfully treated the class of context-free groups (see [CrOt94]).

5 Conclusions

We have shown how reduction can be introduced to monoid and group rings and how
Grobner bases can be characterized. Our approach involves techniques as saturation, since
the general absence of a well-founded compatible ordering causes severe problems. The
technique of saturating a set of rules or relations is frequently used by completion based
approaches in computer algebra and theorem proving. E.g. symmetrization of a group as
described by Le Chenadec [LeCh86], symmetrized sets for free Abelian group rings as de-
fined by Sims [Si94], right orbits for free group rings as defined by Rosenmann [Ro93],
or multiplication by non-Pommaret-multiplicatives as described by Zharkov and Blinkov
[ZhBI93] all have the same idea in common and can be subsumed under the concept of
saturation. In fact the methods of Sims and Rosenmann correspond to special cases of our
approach. The method of Zharkov and Blinkov and their definition of involutive bases which



Apel has compared to Grobner bases in [Ap95], corresponds directly to the computation
of interreduced suffix Grobner bases in the commutative polynomial ring viewed as a free
commutative monoid ring.

The weakening of strong right reduction presented here is prefix reduction. This reduction
has a finitary local confluence test and terminating procedures to compute finite prefix
Grobner bases for finitely generated right ideals in the classes of finite, free, plain respec-
tively context-free groups, were given. So all these rings are examples of effective one-sided
reduction rings. An implementation is on the way. Furthermore, in [Re95] we have shown
that prefix reduction satisfies axiom (A4) and hence successfully introduced the concept of
interreduction to prefix Grobner bases. Interreduction and critical-pair criteria are closely
related to notions of redundancy as considered in general theorem proving [BaGa94a].

Of course prefix reduction is not the appropriate weakening for every structure. There are
cases were finitely generated strong Grobner bases exist but no finite prefix ones, e.g. in
general in commutative structures. Nevertheless they can be used to compute a strong
Grobner basis, since such a basis is always contained in the weaker one [ZhBl93]. In [Re95]
other ways of weakening strong right reduction for special structures are developed and
studied, e.g., for commutative monoids and nilpotent groups. Terminating algorithms for
computing Grobner bases of both, right and two-sided ideals, in commutative monoid rings
and nilpotent group rings are provided. The key idea used is as follows:

(1) Define a weakening of strong reduction, say w-reduction, appropriate to the respective
structure in the following sense:
If for some polynomials p,g € K[M] and a set of polynomials F' C K[M] we have
p—y 0andg —¥%0, then there exists a representation of p in terms of F such that
one term in this representation equals the head term of p and all other terms are
smaller with respect to the ordering on M.
Variations of this lemma are e.g. the lemmata 3.22 and 3.30.

(2) Define saturation with respect to w-reduction.

(3) Define s-polynomials with respect to w-reduction.

Then in case the translation lemma holds for w-reduction, a characterization of w-Grobner
bases of right ideals as follows is possible:

For a w-saturated set F' C K[M)] the following statements are equivalent:

(1) For all polynomials g € ideal (F) we have g — 0.

(2) For all polynomials fy, f; € F we have spol,,(fx, fi) —} 0.

In order to get an effective procedure from this characterization some finiteness and com-
putability conditions have to be satisfied.

Similar to theorem 3.34 w-Grobner bases of two-sided ideals can be characterized and
enumerating procedures can be given.

This approach has been successfully applied to special groups. The class of finitely presented
groups contains subclasses which — using appropriate presentations — allow to solve the



subgroup problem using string-rewriting techniques. In [MaRe97b] we have pointed out how
these results are related to the existence (and in fact even the construction) of Grébner bases
in the respective group rings. This shall now be summarized in the following table, which
lists the reductions which — again using appropriate presentations for the groups — ensure
the construction of the respective finite Grobner basis of ideals. Note that —"" stands for
suffix, —P for prefix, —% for quasi-commutative, —*¢ for left-polycyclic reduction
and —"° for right-polycyclic reduction (for more information on the reductions and the
computation of Grobner bases related to them see [MaRe93b, Re95, MaRe96a, MaRe97a,
Re96]).

Group left ideals | right ideals | two-sided ideals
free —ysu BN J none'*
plain L P none
context-free —su — P none
nilpotent —lpe NG e
_>1pc
polycyclic —lpe __yrpC __lpe
—yTPC

As mentioned above, the different reductions require special forms of presentations for the
respective groups. Free groups need free presentations with length-lexicographical comple-
tion ordering for prefix and suffix reduction. Plain groups require canonical 2-monadic pre-
sentations with inverses of length 1 and again length-lexicographical completion ordering
for prefix as well as suffix reduction. Context-free groups demand virtually free presen-
tations (see [CrOt94]) for prefix and a modified version of these presentations for suffix
reduction. All these special forms of the presentations are similarly required when solving
the subgroup problem using prefix-rewriting techniques. For nilpotent groups we need con-
vergent so called PCNI-presentations for quasi-commutative and left-polycyclic reduction.
In the case of polycyclic groups we need PCP-presentations for left-polycyclic and reversed
PCP-presentations for right-polycyclic reduction.

Alternatives to restricting reduction by incorporating more and more structural knowledge
in order to get finite bases were developed in the field of term rewriting. One problem
related to the Knuth-Bendix procedure is that it diverges for many cases and it is in general
undecidable if it will diverge on a given input. Resulting from this many people have studied
what patterns of rules might cause such a divergence. Several methods to solve divergence
problems have been offered in order to detect infinite sets of rules which share certain
structural regularities e.g. by using constraints, recurrence schemes or auxiliary operators
and/or sorts. In the context of string rewriting convergent regular presentations for monoids
and groups are considered and inductive inference methods have been proposed to detect
the patterns. Another possibility is to follow the approach given by Deif} in [De92] of

4By theorem 2.2 the existence of such finite bases would solve the subgroup problem for groups presented
by convergent semi-Thue systems.



defining conditional semi-Thue systems and to develop a concept of “conditional polynomial
rewriting”. Nevertheless, Sattler-Klein in [Sa96] has shown that such approaches are limited.
This is due to her result that any recursively enumerable subset of N™, where n € N*, can
be encoded into a canonical system generated by completion.

As mentioned in the introduction, when one is solely interested in solving the membership
problem a Grobner basis with its confluence property is not necessary. Alternatives known
from term rewriting are unfailing completion or confluence on special equivalence classes
only. Our definitions of reduction in monoid rings so far always guarantee overall confluence
since the translation lemma holds. In order to approach other group rings or to develop
other techniques, “weaker” forms of reduction should be considered, especially for those
cases where the subgroup problem for the group is solvable by partial confluence but not
by confluence.

Furthermore, in [Re95] we have shown how the theory of Grébner bases in monoid and
group rings over fields can be lifted to monoid and group rings over reduction rings fulfilling
the axioms given in the introduction and some computability conditions, e.g., allowing to
compute finite Grobner bases for ideals in the coefficient domain. Hence the results of this
paper also hold for monoid and group rings over reduction rings, e.g., the case of the integers
Z is studied in [MaRe93a).
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6 Appendix

This section contains the proofs of the lemmata and theorems given in the paper.

Proof of Theorem 2.1:

1 = 2: Using induction on k we show that u <2, v implies v — v € ideal**"1(Pp). In
the base case k = 0 there is nothing to show, since v — u = 0 € ideal*®(Py). Thus let
us assume that @ <L>T o implies @ — o € ideal ™ 1(Py). Then looking at u <L>T U > U
we find uy «—p v with (I;,7;) € T. Without loss of generality we can assume uy = zl,y
for some z,y € ¥* thus giving us v = xr;y, and since multiplication in the free monoid is
concatenation, v can be expressed in terms of polynomials by v = uy — x * ([; — ;) * y. As
u—v=u—ug+z*(l; —r;)*y and u — uy, € ideal™*"1(P;) our induction hypothesis yields
u—v € ideal®=(Pp).

2= 1: It remains to show that u — v € ideal®™1(P;) implies u <+, v. We know
u—v =375 Bj-xj*(li, —ri;) *y;, where 8; € K*, z;,y; € X*. Therefore, by showing the fol-

: . : _ m _ !
lowing stronger result we are done: A representation u—v = 37, p; where p; = aj-(wj—w]-),

a; € K* and w; s wj implies that u 4, v. Thus let u — v = 2721 pj be such a rep-
resentation. Depending on this representation > 7%, p; and the ordering = on X* we can
define t = max{w;,w) | j = 1,...m} and K is the number of polynomials p; containing ¢
as a term. We will show our claim by induction on (m, K), where (m’, K') < (m, K) if and
only if m’ < m or (m' =m and K’ < K). In case m = 0, then v — v = 0 implies v = v and
hence u <L>T v. Now suppose m > 0.

In case K = 1, let p; be the polynomial containing ¢. Since we either have py = oy - (t — wy},)
or pr = ay - (wg — t), where o € {1, —1}, without loss of generality we can assume u =t
and py = t — wy. Using p, we can decrease m by subtracting p; from u — v giving us
Wy, — v = 270 4 pj. Since u = ¢t <, wy, and our induction hypothesis yields wj, <— v
we can conclude 4+ v.

In case K > 1 there are two polynomials py, p; in the corresponding representation con-
taining the term ¢ and without loss of generality we can assume py = oy - (¢ — w},) and
= o - (t —wyj), as the cases where py, = oy - (w}, — t) or p; = oy - (w; — t) occur can be
treated similarly by modifying the respective coefficient. If wj, = w; we can immediately
decrease m by substituting the occurrence of py + p; by (ax + ) - p;. Otherwise we can
proceed as follows:

Prtp = Pr—-op pitag-op - ptp
=0
= (a/k-(w;c—t)—ozk-al_l-al-(w{—t))—i—(ak-al_l—i-l)-pl

= (—o -w§c+ak-w{l+(ak-afl+1) Py

:pk

* * . —
where p, = oy - (w)—w}), wh, +—p t < w) and w] # w,. Therefore, in case o -a; ' +1 = 0,
i.e.,, oy = —ay, m is decreased. On the other hand p) does not contain ¢, i.e., K will be
decreased in any case.
O



Proof of Theorem 2.2:

1 = 2: Using induction on k we show that u <L>TUTI v implies wly, —v}z, € ideal™(Pp).
In the base case k¥ = 0 we have u = v and, therefore, uly, —ulnr,= 0 € ideal®71(Py).
Hence, let us assume that 11<L>TUTI ¥ implies @y, —0)7, € ideal®1(Pr). Thus, looking at

k e .
U &7, Uk <>y, v We can distinguish the following cases:

1. ug «—pv with (I,r) € T.
Without loss of generality we can assume u; = zly and v = zry for some words
x,y € X*. Now this gives us

ulr, —vlr, = wlr, — gl +alyln, —xryln
~—_———
=0

and zlylr, —zryln,= x * (I —r) %y, where * denotes multiplication in K[F]. By
our induction hypothesis we know ulr, —uglr € ideal®” ](PT) and, hence, we get
wlr, —vlr, € ideal®¥)(Pyp).

2. ug <>y, v with (az(a), A) € Tr'.
Without loss of generality we can assume uy = zaz(a)y for some z,y € X* and v = zy,
i.e., ugr,= vlr, and therefore ulr, —vlr, € idealX!”] (Pr).

2=>1: It remains to show that u |y, —v |y € ideal®™*1(Pr) implies U —>pup, v- We
know ulr, —vlr,= 37, Bj - T; * (lij — 74;) * y;, where 3; € K*,z;,y; € F. Therefore, by
showing the following stronger result we are done: A representation v —v = 327", p; where
pj = ;- (wj —wj), o € K*, u, v, w;, w; € F and w; <L>T wj implies that u <+, v. Hence,
let u—v =377, p; be such a representation. Depending on this representation »°7* ; p; and
the ordering = on X* we can define ¢t = max{w;,w} | j = 1,...m} and K is the number
of polynomials p; containing ¢ as a term. We will show our claim by induction on (m, K),
where

(m', K') < (m,K) if and only if m' < m or (m' = m and K' < K). In case m = 0, then
u — v = 0 implies u = v and hence u <L>T v!®. Now suppose m > 0.

In case K =1, let p; be the polynomial containing ¢. Since we either have py = ay - (t — wy,)
or py = oy - (wg — t), where oy € {1, —1}, without loss of generality we can assume u = ¢
and py = t — wy. Using p; we can decrease m by subtracting p; from u — v giving us
wj, — v = 37 . Pj- Since u = t<—pwj, and our induction hypothesis yields wj, <—p v
we get u <L>T v.

In case K > 1 there are two polynomials pg, p; in the corresponding representation con-
taining the term ¢ and without loss of generality we can assume py = a; - (t — w}) and
= o - (t —wy)), as the cases where py = oy - (w}, — t) or p, = a; - (w; — t) occur can be
treated similarly by modifying the respective coefficient. If w; = w; we can immediately
decrease m by substituting the occurrence of py + p; by (i + ) - p;. Otherwise we can
proceed as follows:

Prt+to = pk:&k'@fl'pl+ak'al_1'p£+pl
=0

15The case (1(a)a, ) € T is similar.
16Remember that u,v € F, i.e., they are in normal form with respect to T7.



= (=g wj +op - wp) Ha o7 +1) - p

~

* * . —
where p}, = ay - (W) — w},), W s t <y w) and w) # w},. Hence, in case oy - o ' +1 =0,
i.e., ay = —ay, m is decreased. On the other hand p) does not contain ¢, i.e., K will be
decreased in any case.
O

Proof of Theorem 2.4:
Using the technique described by O’Diinlaing in [OD83] Madlener and Otto have shown
that the following question is undecidable ([MaOt94]):

Let > be a compatible well-founded partial ordering on {s,t}* such that s = X and t > A
both hold.

Given a finite Thue system T on {s,t}. Is there a finite and confluent system T' on {s,t}
that is equivalent to T and based on >7

To prove our claim we show that the answer for 7" is “yes” if and only if the set of polynomials
Pr associated to T has a finite Grobner basis in K[{s, t}*] with respect to >. If there is
an equivalent, finite presentation ({s,t},7") convergent with respect to >, then the set Py
is a finite Grobner basis of Pr in K[{s,t}*]. This follows as the Thue reduction <—,
can be simulated by the symmetric closure of the reduction —3_ in K[{s,?}*] (compare
definition 2.3). Thus it remains to show that in case Pr has a finite Grobner basis in
K[{s,t}*], there exists a finite Grobner basis G such that for all g € G we have g = u — v,
where u,v € {s,t}*, and u<+—,v. Then ({s,t},T) has an equivalent, convergent, finite
presentation ({s,t},7"), namely 7" = {(u,v) | u — v € G}, since the reduction —™

in K[{s,}*] can be compared to a transformation step in a Thue system when restricted to
polynomials of the form u — v. First we show that in case a finite set F' has a finite Grobner
basis in K[{s, t}*] the procedure GROBNER BASES IN FREE MONOID RINGS also computes
a finite Grébner basis of F. Let G be a finite Grobner basis of Pp with HT(G) = {HT(g) |
g€ G} ={t,...,tx}. Let H,, = {at;y | 2,y € ¥*}, then HT (ideal (Pr)) = U_, H,,, since all
polynomials in ideaIK[{s’t}*}(PT) reduce to zero by G. Further our procedure is correct and,
therefore, for each ¢; there has to be at least one g; added to G such that ¢; = zHT(g;)y
for some z,y € ¥* ie., HT(g;) “divides” ¢;. Note that as soon as all such g; are added to
G, we have HT (ideal®!*®'](G)) D UL, H,, and all further computed s-polynomials must
reduce to zero (we take the notion of s-polynomials as defined by Mora in [Mo094]). Since
the procedure is correct, G then is also a Grébner basis of ideal (Pr). It remains to show
that in case Pr has a finite Grobner basis, the finite output G of our procedure has the
desired property that for all ¢ € G, g = u — v where u,v € {s,t}*, and u<+—v. Since
all polynomials in Pr have the desired property let us look at the polynomials added to G
Let us assume all polynomials in G have the desired structure and a new polynomial g is
added. In case g is due to s—polynomial computation of two polynomials u; — vy,us — vy We
do not lose our structure. The same is true for computing the normal form of a polynomial
u — v using a set of polynomials having the same structure. Further u <—s; v is inherited
within these operations (compare also the proof of theorem 2.1).

O

In this proof we used a result of Madlener and Otto in [MaOt94] - a strengthening of



O’Drinlaing’s result in [OD83] to alphabets &, containing 2 letters. Let P be a property of
semi-Thue systems over X5 satisfying the following three conditions:

(P1) Whenever T} and T; are two finite semi-Thue systems on the same alphabet 5 such
that 77 and 75 are equivalent, then 77 has property P if and only if 75 has it.

(P2) Each semi-Thue system Tx, = {a — A | a € X} has property P.

(P3) If a finite semi-Thue system 7 on 3, has property P, then 7 has decidable word
problem, i.e., the Thue congruence <. is decidable.

Then the following problem for P is undecidable in general:

Given: A finite semi-Thue system 7" on Y.
Question: Does the Thue congruence <, have P?

This result is used in the following proof.

Proof of Corollary 2.5:

This follows using the correspondence between Thue systems and ideal bases shown in
theorem 2.4. Let us define a property P(7T) for semi-Thue systems T on ¥y = {s,t} as
follows: P(T) if and only if there exists a total, well-founded, admissible ordering > on X}
such that there exists an equivalent finite semi-Thue system 7" which is convergent with
respect to >. Then P fulfills the conditions (P1), (P2) and (P3) mentioned above:

(P1): If P(T1) holds so must P(T») as the existence of a total, well-founded, admissible
ordering > on X% such that there exists an equivalent finite semi-Thue system 7"
which is convergent with respect to > for 7} at once carries over to the equivalent
system 75.

(P2): The trivial system {s — A\, ¢ — A} has property P.

(P3): Having property P implies decidability of the Thue congruence.

Hence this property is undecidable in general and this result carries over to Grobner bases
in K[{s,t}*] as before.
O

Proof of Theorem 2.7:

1=2: Let w =wujo...oux € (S), i.e, uy,...,ur € SU{inv(s)|s € S}. We show
w — 1 € ideal,(Ps) by induction on k. In the base case k£ = 0 there is nothing to show, as
w =\ € (S) and 0 € ideal (Ps). Hence, suppose w =13 0...0ug; and uy0...oup —1 €
ideal .(Ps). Then (ujo...oug — 1) xug,; € ideal (Ps) and, since ug1 — 1 € ideal, (Ps)'", we
get (ugo...oup — 1) *upp1 + (g1 — 1) = w — 1 € ideal, (Ps).

2=1: We have to show that w — 1 € ideal (Pr) implies w € (S). We know w — 1 =
Yjo1a5 - (uj — 1) % 25, where a; € K*, u; € SU{inv(s)|s € S}, z; € G. Therefore, by
showing the following stronger result we are done: A representation w —1 = 3> ; p; where

1"We either have ug1 — 1 € Ps or inv(ug41) € S, i.e., (inv(ugs1) — 1) * ugpr1 = g1 — 1 € ideal(Ps).



pj = o - (wj —wj), a; € K*w; # wj and w; oinv(wj) € (S) implies w € (S). Now, let
w—1= 377", p; be such a representation and = be an arbitrary total well-founded ordering
on G. Depending on this representation and = we define ¢ = max{w;,w} | j = 1,...m}
and K is the number of polynomials p; containing ¢ as a term. We will show our claim
by induction on (m, K), where (m', K') < (m, K) if and only if m' < m or (m’ = m and
K' < K).In case m =0, w —1 =0 implies w = 1 and hence w € (S). Thus let us assume
m > 0.

In case K = 1, let p;, be the polynomial containing ¢. As we either have p, = oy - (t — wy},) or
pr = oy - (wg—t), where ay € {1, —1}, without loss of generality we can assume py, = t —wj,.
Using py, we can decrease m by subtracting py from w — 1 giving us wj, — 1 = 37" ;. p;.
Since t o inv(w},) € (S) and our induction hypothesis yields wj, € (S), we can conclude
w=t=(toinv(w})) owj, € (S).

In case K > 1 there are two polynomials pg,p; in the corresponding representation and
without loss of generality we can assume py = o - (t — w}) and p, = o - (t — w)). If
then wj, = w; we can immediately decrease m by substituting the occurrence of py + p; by
(o + y) - pi- Otherwise we can proceed as follows:

Pt = pr=ap-olpitagopt - ptp
=0
= (—op - wp+ g wp) Hag ot 1)y

~ i

!
Py,

where p|, = ay, - (w] — wy},), wi, # w; and wj, oinv(w)) € (S}, since wj, oinv(t),toinv(w;) € (S)
and w}, o inv(w)) = wj, oinv(t) otoinv(w]). In case o - oy ' +1 =0, i.e., ap = —ay, m is
decreased. On the other hand pj does not contain ¢, i.e., if m is not decreased K is.

a

Proof of Lemma 3.5:

1. This follows from the fact that using a polynomial f together with @ € K* and w € M
for reduction we use a.- HM(f xw) — —a- RED(f *w) as a rule and we know HM(f xw) >
—RED(f * w).

2. This follows from (1), as the ordering > on K[M] is well-founded.

3. p—%5, 0 implies p = a1 - ¢1 * wy for some a; € K*, w1 € M, and ¢ —%, 0 implies
g1 = Qo - @ *x wo for some ay € K* wy € M. Combining this information we immediately
get p—3,0, a8 p= a1 -qu*rw; = ay - (- go*x W) xwy = (@1 - 2) - go ¥ (wo 0 wy) and thus
HT (g * (w2 o wy)) = HT(p).

4. This follows immediately from definition 3.2.

Proof of Lemma 3.7:
l.Letp—q¢—%h=p—qg—a-fxwwithae K* fe F,we M and let HT(f x w) = ¢,
i.e., a-HC(f % w) is the coefficient of ¢ in p — g. We have to distinguish three cases:

(a) te T(p) and t € T(q):
Then we can eliminate the term ¢ in the polynomials p respectively ¢ by reduction
and get p—3p—a1- frw=p,¢—%q¢— 0y frw=¢, with oy — @y = o, where
ap - HC(f * w) and s - HC(f * w) are the coefficients of ¢ in p respectively g.



(b) t € T(p) and t & T(q):
Then we can eliminate the term ¢ in the polynomial p by reduction and get p —% p—
a-fxw=p and g =¢'.

(c) t€T(q)and t & T(p):
Then we can eliminate the term ¢ in the polynomial g by reduction and get ¢ —% ¢+
a-f+xw=¢ and p=p.

In all three cases we have p' — ¢ =p—q—a - f xw = h.

2. We show our claim by induction on k, where p — qiﬁ; 0. In the base case £k = 0
there is nothing to show. Hence, let p—q—% h i)% 0. Then by (1) there are polynomials
P, ¢ € K[M] such that p—=5 p',¢ —% ¢’ and h = p' — ¢’. Now the induction hypothesis
for p' — ¢ i)*} 0 yields the existence of a polynomial g € K[M] such that p —5% p' —%, ¢
and ¢ —% ¢ —% g.

3. Using induction on k£ we show that p(L& g implies p — ¢ € ideal (F'). In the base case
k = 0 there is nothing to show, since p — p = 0 € ideal (F). Thus let us assume that
ﬁ&)}(j implies p — ¢ € ideal, (F'). Then looking at p<i>} P <—5% q we can distinguish
two cases:

(a) pr—% q using a polynomial f € F'.
This gives us ¢ = pr—a- f*w, where o € K*, w € M, and since p—q = p—pr+a- fxw
and p — pi, € ideal, (F'), we get p — ¢ € ideal .(F).

(b) ¢— py using a polynomial f € F' can be treated similarly.

It remains to show that p— ¢ € ideal, (F) implies p +—% ¢q. Remember that p—q € ideal .(F)
gives us a representation p = ¢ + 37", «; - fj * w; such that o; € K*, f; € F, and w; € M.
We will show p<—%. ¢ by induction on m. In the base case m = 0 there is nothing to
show. Hence, let p = ¢ + X7 a5 - fj * wj + Qi1 - g1 * Wyt and by our induction
hypothesis p<=+% ¢ + Qmi1 - fmt1 * Wmet. Further, let ¢ = HT(fpmi1 * Wpmp1). In case
t ¢ T(q) we get ¢ + Qi1 * fmt1 * Wyt —5, ., ¢ and are done. In case t ¢ T(p) we get
P— Qi1 frng1 % Wiy —>§vm+1 p- Thus, as p — auq1 * frp1 ¥ Wi = ¢+ E;nd ;- fj*w; the
induction hypothesis yields p— c, 11+ fni1 * Wit1 +—% q and hence we are done. Otherwise
let 81 # 0 be the coefficient of ¢ in ¢ + @ p1 - fins1 * Wiy1 and By # 0 the coefficient of ¢ in
g. This gives us a reduction step

g+ Qmi1 - frg1 * Wi —>§°m+1

4+ 01 frgr * Wingr — B1 - HC(frng1 % Wing1) ™' - frngr * Wing1 =

q— (Br - HC(frng1 * Wing1) ™" = 1) - frngr * Wi
eliminating the occurrence of the term ¢ in ¢ + i1+ fra1 * W1 Then obviously §; =
(B1-HC(frng1 ¥ Wiy 1) ™t = 1) - HC(frnt1 ¥ Wiyt ) and, therefore, g —% 0 0= (Br-HC(frng1

-1 . C .
wm+1) - 04m+1) * fm+41 * Wi, 1.e., g and ¢ + oyt * frmg1 * Wipq are joinable.
O

Proof of Theorem 3.13:
1= 2: Let (wg,w;) € Uy, s, give us a strong s-polynomial belonging to the polynomials



f&, fi- Then by definition 3.11 we get

spol (fx, fi, wi, wr) = HC(fi % we) ™"+ fix + wp — HC(fy x wi) ™" - fix wy € ideal, (F)

and, thus, spol,(fx, fi, wg, w;) LPF 0.

2= 1: We have to show that every non-zero polynomial g € ideal, (F)\{0} is —% -
reducible to zero. Remember that for h € ideal, (F'), h —% A’ implies A’ € ideal .(F’). Hence,
as —% is Noetherian, it suffices to show that every g € ideal,(F)\{0} is —% -reducible.
Now, let g = 37" o - fj * w; be a representation of a non-zero polynomial g such that
a; € K*, f; € F, and w; € M. Depending on this representation of g and the well-
founded total ordering > on M we define ¢ = max{HT(f; xw;) | j € {1,...m}} and K
is the number of polynomials f; * w; containing ¢ as a term. Then ¢ > HT(g) and in case
HT(g) = ¢ this immediately implies that g is —% -reducible. We will show that g has a
special representation which implies that ¢ is top-reducible using F'. This will be done by
induction on (¢, K), where (¢, K') < (t,K) if and only if ' < ¢ or (# =¢ and K’ < K)'®.
In case t = HT(g) there are two polynomials f, f; in the corresponding representation®®
such that HT(fx * wg) = HT(f; * w;). By definition 3.11 we have a strong s-polynomial
spol, (fx, f1, wr,w;) = HC(fi * wg) ™' - fr x wp — HC(f; * wy) ™" - f1 % w; corresponding to this
overlap. We will now change our representation of g by using the additional information on
this s-polynomial in such a way that for the new representation of g we either have a smaller
maximal term or the occurrences of the term ¢ are decreased by at least 1. Let us assume
spol,(fx, f1, wg, w;) # 0%°. Hence, the reduction sequence spol,(fx, fi, wg, w;) —% 0 results
in a standard representation spol,(fx, fi, Wk, w;) = Yy & - h; * v;, where §; € K* h; € F,
and v; € M and all terms occurring in the sum are bounded by HT (spol,( fx, fi, wg, w;)) < t.
This gives us:

o - fr ok wg + oy - fi ok w

= o fexwe+ o B forwr —op B fix wetoq - B fiew

=0

= (ak—i_a;'ﬂk)'fk*wk_ag'\(ﬂk'fk*wk_ﬂl'fl*wl)J

=spol, (fi:fiswr,wi)

= (ak+a;-,8k)-fk*wk—af-(Z(Si-hi*vi) (1)
i=1

where B, = HC(fy * wy)™ !, B = HC(fi * wy) ! and o} - B = . By substituting (1) in
our representation of g either ¢ disappears or in case ¢ remains maximal among the terms
occurring in the new representation of g, K is decreased.

O

Proof of Lemma 3.17:
l.Let p—qg—%h=p—qg—a- f+xw, where a € K*, f € F,w € M and HT(f)w =, i.e.,
a - HC(f) is the coefficient of ¢ in p — g. We have to distinguish three cases:

8Note that this ordering is well-founded since > is well-founded on 7 and K € N.
19Not necessarily f; # fx.
20Tn case spol,(fr, fi,wr, w;) = 0, just substitute 0 for the sum Y"1 &; - h; * v; in the equations below.



(a) t € T(p) and t € T(q):
Then we can eliminate the term ¢ in the polynomials p respectively ¢ by prefix reduc-
tion and get p—ip—a1-frw=p, ¢—%q— - frw=¢, with a; —ap = q,
where ;- HC(f) and g - HC(f) are the coefficients of ¢ in p respectively g.

(b) t € T(p) and t &€ T(q):
Then we can eliminate the term ¢ in the polynomial p by prefix reduction and get
p—rp—a-fxw=p and ¢=¢.

(c) teT(¢g) and t & T(p):
Then we can eliminate the term ¢ in the polynomial ¢ by prefix reduction and get
¢g—%q+ta-fxw=q¢ and p=yp.

In all three cases we have p' — ¢ =p—q—a - f xw = h.

2. We show our claim by induction on k, where p — qiﬁ} 0. In the base case £k = 0
there is nothing to show. Hence, let p — g —% h — 0. Then by (1) there are polynomials
7', q¢ € K[M] such that p—>.p', ¢ —% ¢’ and h = p' — ¢’. Now the induction hypothesis
for p — ¢' —242.0 yields the existence of a polynomial g € K[M] such that p ——2 p' =L ¢
and ¢ —% ¢ —% g.

O

Proof of Lemma 3.23:

1. Suppose f—7 g at a monomial -, i.e., g = f — 7 -p*w for some v € K,w € M
and HT (p x w) = t. Since p x w —% 0 we have p; € S such that p * w = p; * w; for some
w; € M and further t = HT (p* w) = HT (py * wy) = HT (p1)w; which implies f — c5 9.

2. Suppose f —)EIES g,i.e., g=f—y -p *w; for some v, € K, w; € M. Since p; € S we
have v € M such that p; = pxv. Further t = HT (p;)w; = HT(p1 xwy) = HT (p*xv*w;) =
HT(p* (vow)) implies f — g.

O

Proof of Theorem 3.25:
We show that for all ¢ € S,,w € M we have ¢ *xw —>§p 0 in case g * w # 0. Suppose this is
not true. Then we can choose a non-zero counter-example g * w, where HT(¢)w is minimal
(according to the ordering =7 on ¥*) and gxw —/§ 0. Thus HT(¢)w must be T-reducible, as
otherwise g *w —)fl’esp 0. Let HT(¢)w = titowiwsy such that HT(q) = tite, ta # A, w = wiws
and | = tow; for some (I,7) € T. Furthermore, w; € M as it is a prefix of w € M.
Since ¢ € S, the polynomial ¢ must have been added to the set H at some step and as
we use a fair strategy to remove elements from H, ¢ and C(HT(q)) are considered. Thus,
we have w; € C(HT(q)) by the definition of this set and we can distinguish two cases. If
we have g * wy € S, then g x w = (g * w;) * wp —g 0, since w; € M and HT(q)w =
HT (¢)wiwe > HT (g * w1 )ws, contradicting our assumption. On the other hand, ¢ *w; ¢ S,
implies ¢ * w; —} s 0 and we know HT(q)w;, = HT(g * w1) = HT(¢')2 for some z € M.
Further g w = (g% wy) xwy = (- ¢’ * 2) * wy, and HT(¢)w > HT(¢')zwe > HT(¢')(z 0 wy).
Therefore, we have g xw = (a- ¢ * 2) xwe = - ¢ * (2 0o wy) —>§p 0, contradicting our
assumption.

O



Proof of Lemma 3.26:
Let p € K[M] be the polynomial which is being saturated and S € SAT ,(p) finite. Further
let S, be the set generated by the procedure. Since we have a correct enumeration of a prefix
saturating set for p, each polynomial ¢ € S has to be prefix reducible to zero by a polynomial
in S,2!. Therefore, there exists a finite set S’ C S, such that for every polynomials g € S
there exists a polynomial ¢’ € S’ such that ¢ —>f1’, 0. Thus as soon as all polynomials in S’
have been enumerated every remaining polynomial in H is prefix reducible to zero in one
step using S’ and hence the while loop terminates, as no more elements are added to the
set H.

O

Proof of Theorem 3.31:
1= 2: Let HT(fy) = HT(f))w for w € M. Then by definition 3.29 we get

spol,(fi, fi) = HC(fe) ™" - fr — HC(f) ™" - fix w € ideal (F),

and hence spol, ( fx, f;) —% 0.

2 =>1: We have to show that every non-zero element g € ideal (F) is —% -reducible
to zero. Remember that for A € ideal, (F), h—% A’ implies A’ € ideal, (F). Hence as
—P. is Noetherian it suffices to show that every g € ideal (F)\{0} is —?% -reducible.
Now, let g = 377" «;j - fj * w; be a representation of a non-zero polynomial g such that
a; € K* f; € F,w; € M. By lemma 3.22 we can assume HT(f; * w;) = HT(f;)w,. This
will enable a restriction to prefix s-polynomials in order to modify the representation of
g. Depending on the above representation of g and a well-founded total ordering > on M
we define ¢ = max{HT(f;) ow; | j € {1,...m}} and K is the number of polynomials
fj * w; containing t as a term. Then ¢t > HT(g) and in case HT(g) = ¢ this immediately
implies that g is —%. -reducible. We will show that g has a special representation which
implies that ¢ is top-reducible using F'. This will be done by induction on (¢, K), where
(t',K") < (t,K)ifand only if ¢ < tor (' = t and K’ < K)?2. In case t = HT(g) there are two
polynomials f, f; in the corresponding representation® such that HT(fy)wy = HT(f;)w;.
We have either HT(fx)z = HT(f;) or HT(fx) = HT(f;)z for some z € M. Without loss
of generality let us assume HT(fx) = HT(f;)z and hence w; = zwy. Then definition 3.29
provides us with a prefix s-polynomial spol,(fx, fi) = HC(fx)™' - fr — HC(fi) ™' - fi * =
Note that, while in the proof of theorem 3.13 the s-polynomials correspond directly to the
overlap HT(fx * wy) = HT(f; * w;), i.e., wy and w; are involved in the s-polynomial, now
we have an s-polynomial corresponding directly to the two polynomials f; and f;. We will
see later on that this localization is strong enough because this situation has a prefix of
the term ¢ as an upper border and lemma 3.30 can be applied. We will now change our
representation of g by using the additional information on the above prefix s-polynomial in
such a way that for the new representation of g we either have a smaller maximal term or
the occurrences of ¢ are decreased by at least 1. Let us assume spol,,(fx, fi) # 0%*. Hence, the

reduction sequence spolp( fx, fi) —% 0 results in a prefix standard representation of the form
spol,(fx, fi) = Xi=1 0i - hi ¥ v;, where 6; € K*, h; € F, v; € M and all terms occurring in the

21Especially there is a polynomial ¢’ € S, such that HT(q) = HT(¢')z for some z € M.
22Note that this ordering is well-founded since > is and K € N.

23Not necessarily f; # f.

#4In case spol,(fx, fi) = 0, just substitute 0 for Y7, &; - h; * v; in the equations below.



sum are bounded by HT(spol,(fx, fi)). Now as HT (spol,,(fx, f1)) < HT(fx) <Xt = HT(fi)ws,
by lemma 3.30 we then can conclude that ¢ is a proper bound for all terms occurring
in the sum » 7 ,0; - h; * v; x wg. Without loss of generality we can assume that for all
polynomials occurring in this representation we have HT (h; % v; * wy) = HT(h;)(v; o wy) as
F is prefix saturated and in case HT(h; * v; * wy) # HT(h;)(v; o wg) we can substitute the
polynomial h; * v; * wy by a product ¢; - ﬁi x u; such that h; xv; x wy, = @&; - ﬁi * u; and

HT (h; * v; x wy) = HT(h;)u; without increasing neither ¢ nor K. This gives us:

o - frox w4+ o - fi xw

= o fexwe+ 0y B foxwe — o) B frox weoq - B frrw
=0
= (ak'i'a;'ﬂlc)'fk*wk_a;'gﬂk'fk*wk_ﬂl'fl*wll

=spol, (fx,f1)*wk

= (ak+a;-ﬂk)-fk*wk—a;-(zn:&--hi*vi*wk) (2)

=1

where 3, = HC(fy) ™%, B, = HC(f;)™! and o] - B, = oy. By substituting (2) in our represen-
tation of g either ¢ disappears or in case ¢ remains maximal among the terms occurring in
the new representation of g, K is decreased.

O

Proof of Lemma 3.30:

As ¥ | ;- g; *w; belongs to the reduction sequence p ——% 0, for all u € U¥_, T(g; * w;) we
have HT (p) > wimplying tw > HT(p)w > uw > uow. Note that this proof uses the fact that
the ordering > on M is induced by the completion ordering > of the presentation (X, T’) of

M, as we need that the ordering is compatible with concatenation, i.e., uv > (uv){r= uov
for all u,v € M.

O
Proof of Theorem 3.34:
1 =2: Since g € ideal(G) = ideal,(G) and G is a right Grébner basis, we are done.
2 = 3: To show that G is a prefix Grébner basis we have to prove «—P, = =ideal, (G) and

for all g € ideal, (G), g —% 0. The latter follows immediately since ideal, (G) C ideal (G) and
hence for all g € ideal (G) we have g —% 0. The inclusion +—?%, C =ideal, () i obvious.
Hence let [ =igeal, (¢) 9, 1-€., f — g € ideal, (G). But then we have f — g —¢, 0 and hence by
lemma 3.17 there exists a polynomial h € K[M] such that f ——% h and g —% h, yielding
f +—% g. Furthermore, w * f € ideal(G) and w * f —% 0 implies w * f € ideal .(G).

3 = 4 : This follows immediately.

4= 1: Since it is obvious that ideal, (G) C ideal(G) it remains to show that ideal (G) C
ideal .(G) holds. Let g € ideal(G), i.e., g = 37, a; - u; * g; * w; for some o; € K, g; € G and
u;, w; € M. We will show by induction on |u;| that for u; € M, g; € G, u; * g; € ideal .(G)
holds. Then g also has a representation in terms of right multiples and hence lies in the
right ideal generated by G as well. In case |u;| = 0 we are immediately done. Hence let us
assume u; = ua for some ¢ € ¥ and by our assumption we know a * g; € ideal .(G). Let



a*g; = Z;.”:lﬂj-g;*vj. Then we get u; xg; = ua*xg; = ux (a*g;) = “*(2721 ﬂj-g;-*vj) =
Y721 B - (u* g;) * v; and by our induction hypothesis u x g; € ideal,(G) holds for every
1 < j < m. Therefore, we can conclude u; * g; € ideal (G).

O

Proof of Lemma 4.3:

We have to show that the polynomials in the set {a-p*xw | o € K*,w € G} are prefix
reducible to zero in one step by SAT,(p). In case p = a-t, « € K*, t € G, we are done as
SAT,(p) = {a} € SAT (p). In case the polynomial p contains more than one monomial, we
show that for every polynomial ¢ € SAT,(p) and every w € C(HT(q)) = {w € &* | tw =
titow = 111, ty # A for some (I,7) € T'} the multiple ¢ * w is prefix reducible to zero in one
step using SAT,(p).

1. For the polynomials can(p) and acan(p) we get the corresponding sets C(HT(can(p))) =
{inv(¢(HT(can(p))))} respectively C(HT(acan(p))) = {inv(¢{(HT(acan(p))))}. It can be
shown that can(p)*inv(¢(HT (can(p)))) = acan(p) and acan(p)*inv(£(HT (acan(p)))) = can(p)
and hence the set {can(p),acan(p)} is prefix saturated. Furthermore, as it is a subset of
{p*w | w € F} it is also a prefix saturating set for p.

2. Let HT(can(p)) = ta and HT(acan(p)) = t' oinv(a) for some ¢, € G, a € X. In case
q € {can(p), acan(p)}, the fact that C(HT(q)) = C, U {inv(¢(HT(g)))} and the definition of

SAT,(p) imply that for all b € C(HT(q)) we have g b —%AT ®) 0. Now, let us assume that

q = can(p) x b for some b € Cean(p) and (ab,c) € T, ¢ € X, b # inv(a). We have to distinguish
the following two cases. If HT(q) = tc, then C(tc) = {d | (cd,e) € T,d € ¥,e € LU {A}}
and in case this set is not empty let us look at such a rule (cd, e) € T'. Since our presentation
is a reduced convergent group presentation, there exists a rule of the form inv(a)c — b€ T
where |inv(a)| = 1. Now this gives us

bd <— inv(a)cd = inv(a)ed — inv(a)e

and as d # e and b # inv(a), there exists an element f € ¥ U {A} such that bd — f,
inv(a)e — f € T. Again this results in the situation

e +— cd +— abd = abd — af

and we either have bod = ) in case f = )\ or there exists a rule af — e € T. In
case bod = )\ this implies ¢ x d = (can(p) * b) x d = can(p) * (bo d) = can(p) and hence
qgxd _>%ATp(p) 0. Otherwise, ¢ x d = (can(p) x b) x d = can(p) * (bo d) = can(p) * f implies
q * d—>gATp(p) 0 as f € Cean(p) and hence can(p) * f € SAT,(p).

On the other hand, if HT(¢) # tc there exists a term s € T(can(p)) such that HT(¢) = sob
and s o b > tc. We have to distinguish two cases: In case |s| < |ta| we know so b = sb, as
|s 0 b| = |te|. If C(sb) is not empty let be — f € T be a corresponding rule. We get,

ce «— abe = abe — af.

As ¢ # a we either get boe = X in case f = A implying that ¢ x e = (can(p) xb) x e =
can(p) * (boe) = can(p) and hence g *xe —>§ATp(p) 0, or there exists an element g € ¥ U{A}
such that ce — g, af — g € T, giving us gxe = (can(p)*b)*e = can(p)*(boe) = can(p)x* f
and thus ¢ xe —>gATp(p) 0 as f € Ceanp)- On the other hand, if |s| = |ta| with s = s'd and



db — f € T, then s < ta and sob = s'f > tc implies s’ = t and f > ¢. Now suppose
C(s'f) # 0 and let fg — h € T be a corresponding rule. Since db — f € T we also have
inv(d)f — b € T, resulting in

bg <— inv(d) fg = inv(d) fg — inv(d)h.

Since g # h in case h = A we have bg — inv(d) € T giving us cg <— abg = abg —
ainv(d). But then, as a, ¢, g, inv(d) all are not equal to A, there exists ¢ € XU {\} such that
cg — i, ainv(d) — i € T', and thus inv(d) € Ccan(p)- This implies ¢ * g = (can(p) *b) x g =
can(p) * inv(d) € SAT,(p). On the other hand, in case h # A, there exists i € ¥ U {\}
such that bg — 1, inv(d)h — i € T. Hence, cg <— abg = abg — ai. In case i = A,
bg — A € T immediately implies ¢ * ¢ = (can(p) * b) * g = can(p) * (bo g) = can(p).
Otherwise there exists j € ¥ U {\} such that c¢g — j, ai — j € T', and hence i € Ccan(p),
giving us ¢ * g = (can(p) *b) x g = can(p) * (bo g) = can(p) * i € SAT,(p).

: p
Hence in all these cases we have ¢ x g —g AT, (p) 0.

The case ¢ = acan(p) * b is similar in case HT(acan(p)) = t'inv(a). Hence let us assume
HT(acan(p)) = t' oinv(a) # t'inv(a). Then t' = t"k, t' oinv(a) = t"l and kinv(a) — 1 € T.
The rule corresponding to b € Ciean(p) then is b — ¢ € T. We have to distinguish the
following two cases. If HT(¢) = tc, then C(tc) = {d | (cd,e) € T,d € ¥,e € XU {\}} and
in case this set is not empty let us look at such a rule (cd, e) € T. Since our presentation is
a reduced convergent group presentation, there exists a rule of the form inv(l)ce — b€ T
where |inv(l)| = 1. Now this gives us

bd «— inv(l)ed = inv(l)ed — inv(l)e

and as d # e and b # inv(l), there exists an element f € 3 U {\} such that bd — f,
inv(l)e — f € T. Again this results in the situation

cd «— lbd = lbd — If

and we either have bod = X in case f = A or there exists a rule [f — e € T. In case
bod = X this implies g * d = (acan(p) * b) * d = acan(p) * (b o d) = acan(p) and hence
q*d—)%ATp(p) 0. Otherwise, g *d = (acan(p) *b) xd = acan(p) x (bod) = acan(p) * f implies

q * d—)‘éATp(p) 0 as f € Cscan(p) and hence acan(p) * f € SAT,(p). On the other hand, if

HT(q) # tc there exists a term s € T(acan(p)) such that HT(¢) = sob and sob > tc. We
have to distinguish two cases: In case |s| < |tl| we know sob = sb, as |sob| = |tc|. If C(sb)
is not empty let be — f € T be a corresponding rule. We get

ce +— lbe = lbe — lf.

As ¢ # [ we either get boe = ) in case f = X implying that gxe = (acan(p)*b)*e = acan(p) *
(boe) = acan(p) and hence g x e —>IS)ATp(p) 0, or there exists an element g € ¥ U {\} such
that ce — g, lf — g € T, giving us ¢*e = (acan(p) *b) xe = acan(p) * (boe) = acan(p) * f

and thus ¢ e —)%ATp(p) 0 as f € Cacan(p)- On the other hand, if |s| = [t/| with s = s'd and

db — f € T then s < tl and sob = s'f > tc implies s’ = ¢t and f > ¢. Now suppose
C(s'f) # 0 and let fg — h € T be a corresponding rule. Since db — f € T we also have
inv(d)f — b € T, resulting in

bg <— inv(d) fg = inv(d) fg — inv(d)h.



Since g # h in case h = A we have bg — inv(d) € T giving us cg <— lbg = lbg — linv(d).
But then, as [, ¢, g, inv(d) all are not equal to \, there exists ¢ € XU {\} such that cg — 1,
linv(d) — 4 € T, and thus inv(d) € Cican(p)- This implies ¢ * g = (acan(p) * b) x g =
acan(p) * inv(d) € SAT,(p). On the other hand, in case h # A, there exists ¢ € ¥ U {A}
such that bg — i, inv(d)h — @ € T. Hence, cg <— [bg = lbg — li. In case i = A,
bg — A € T immediately implies ¢ * g = (acan(p) * b) * g = acan(p) * (bo g) = acan(p).
Otherwise there exists j € ¥ U {\A} such that cg — j, li — j € T', and hence i € Cican(p);
giving us ¢ * g = (acan(p) x b) x g = acan(p) * (bo g) = acan(p) * i € SAT,(p).

: p
Hence in all these cases we have ¢ x g —g AT, (D) 0.

Proof of Theorem 4.4:

Note that if (X,7’) is a convergent interreduced presentation of a cancellative monoid M,
then no rules of the form wa — a or aw — a appear in T for a € Y. This is of course
always true if such presentations are given for groups.

Let us assume that procedure normal form computes a normal form of a polynomial
allowing only prefix reduction steps at the respective head terms. The proof now is done
in two steps: first we show that all polynomials computed have a certain property that will
be used in the second step to ensure termination. We say a polynomial ¢ has property P
if and only if

(o) HT(¢)| < K, where K = max{|HT(f)|| f € F} + 1.
(B) If |[HT(¢)| = K then there exists an element a € 3 such that

(i) all terms of length K in ¢ have a as a common suffix, and

(ii) for all s € T(g) with |s| = K — 1 we either have s = s;a or in case s = s1d,
d € ¥\{a} there is arule ea — d € T,e € X.

We will show that all polynomials ¢ computed by the procedure on input F' have property
Pr.

By the choice of K all input polynomials have Pr. Hence, let G be the actual set of
polynomials having Pr, and let ¢ be the next polynomial computed by our procedure. In
case ¢ is due to computing the normal form of a polynomial p having Pr using prefix
reduction at head terms only the property is preserved. To see this we can restrict ourselves
to a single step reduction. In case [HT (p)| < K we are done. Therefore, suppose [HT(p)| = K
and HM(p) is reduced in the reduction step p —.; ¢'. We have to show that ¢' satisfies
Pr. Let HT(p) = HT(g9)w and ¢ = p—a-g*xw, a € K*, w € M. Now ¢ * w has Pg
as HT (g x w) = HT(g)w and for all s € T(RED(g)) we either have |s o w| < |sw| or sw
and HT(g)w have the same last letter. Since T(¢') C T(p) U T(g * w), ¢' then likewise
has Pr. In case ¢ is due to saturating a polynomial as specified e.g. in procedure PREFIX
SATURATION on page 19 and results from a polynomial ¢’ having Pr being overlapped
with a rule ab — ¢ € T, ¢ € ¥ U {A\}*®, we can also show that Pp is preserved. Note
that only the case |HT(¢)| = K is critical. In case |[HT(¢')| < K and |HT(q)| = K we
know HT(q) = tb and for all s € T(¢') with |[sob| = K — 1 either sob = sb € IRR(T)
or s = sje and sob = sjeob = s1d, where eb — d € T. Note that these are the only

25The polynomial ¢’ here is said to overlap with the rule ab — ¢ € T in case £(HT(q')) = a.



possibilities to gain a term of length K — 1 from a term of length less or equal to K — 1 by
multiplication with a letter b. On the other hand, if |[HT(¢')| = K with HT(¢') = ta we can
only violate Pr in case we have t1,%, € T(¢') such that |t;| = K, |to] = K — 1,t; = t{a and
t10b = tic,ty 0 b = tob with ¢ # A. Therefore, we examine all s € T(¢') with |s| = K —1. If
there are none ¢ must have P, since then a

term s € T(¢') can only reach length K — 1 by multiplication with b in case |s| = K — 2
and sb € IRR(T). Since ab — ¢ € T and G is a group including inverses of length 1 for
the generators, a has an inverse @ and b <, aab = Gab < ac gives us the existence of a
rule ac — b € T as T is confluent?®. Now let s € T(q') have length K — 1. Then if s = s;a
there is nothing to show?”. On the other hand, in case s = s1d,d # a we know that there
is a rule ea — d € T as ¢’ has Pr. Then we have db <— eab = eab — ec and, since
ea —> d € T gives us e # d, there are rules db — g,ec — g € T, g € ¥ U{A}. Finally let
us assume that ¢ is due to s-polynomial computation. But computing s-polynomials can be
compared to a single prefix reduction step on the head monomial of a polynomial and we
have seen that prefix reduction preserves property Pp.
It remains to show that the procedure does terminate. Thus let us assume the contrary. Then
there are infinitely many polynomials ¢;,7 € N resulting from s-polynomial computations
added to GG. Note that every such polynomial is in prefix normal from with respect to
all polynomials in G so far. On the other hand, as |HT(g;)| < K, this would mean that
there is a term ¢, which occurs infinitely often as a head term among these polynomials g;
contradicting the fact that the head terms of all added polynomials are in prefix normal
form with respect to the polynomials added to the Grobner set so far, and hence no head
term can appear twice among the head terms of the polynomials ever added to the set G.
O

Proof of Theorem 4.12:
1= 2:
Let HT(fx) = HT(f))w for fi, fi € G and w € G. Then by definition 3.29 we get

spol, (fi, fi) = HC(fe) ™' - fo —HC(fi) ' fixw € ideal,(G) = ideal,.(F),

and hence spol,,(fx, f;) =% 0.

2=1:

We have to show that every non-zero element g € ideal,.(F) is —{; -reducible to zero.
Remember that for h € ideal, (F) = ideal,(G), h —¢ &' implies b € ideal, (G) = ideal,.(F).
Thus as —{, is Noetherian it suffices to show that every g € ideal (F)\{0} is —.-
reducible. Let g = 37, i - f; * w; be a representation of a non-zero polynomial g such
that o; € K*, f; € F,w; € G. Further for all 1 < j < m, let w; = eju;, with ¢; € &,
u; € F. Then, we can modify our representation of g to g = 7", a; - ¥, (f;) * u;. Since
G is F-prefix saturated and ¢;(f;) € G we can assume g = Y}, a; - g; * vj, where
a; € K*, g; € G,v; € F and HT(g; *v;) = HT(g;)v;. Depending on this representation of g
and our well-founded total ordering > on G we define ¢ = max{HT(g;)v; | j € {1,...m}}
and K is the number of polynomials g; * v; containing ¢ as a term. Then ¢ > HT(g) and in
case HT (g) = t this immediately implies that g is —% -reducible. We will show that g has
a special representation which implies that g is top-reducible using F'. This will be done by

26This is no longer true in case a has an inverse u, of length |u,| > 1 or no inverse at all.
2"Then sob = sjaob = s; oc and either [sob| < K —1or sob= s;c.



induction on (¢, K), where (¢, K') < (¢, K) if and only if # < ¢t or (# =t and K’ < K)?.
If t = HT(g) there are two polynomials g, g, in the corresponding representation? and
HT (gx)vr, = HT(g;)v;. Without loss of generality let us assume HT(gx) = HT(g;)z for some
z € F and v; = zvg. Then by definition 3.29 we have a prefix s-polynomial spol,, (g, ;) =
HC(gr)™t - g» — HC(g) ™! - g; * 2. We will now change our representation of g by using the
additional information on this s-polynomial in such a way that for the new representation of
g we either have a smaller maximal term or the occurrences of the term ¢ are decreased by at
least 1. Let us assume spol, (g, g;) # 0°°. Hence, the reduction sequence spol, (g, g;) 20
yields a prefix standard representation of the form spol,(gx,g)) = X7, 6; - hi x v], 0; €
K*,h; € G,v; € F and all terms occurring in the sum are bounded by HT(spol, (g%, g:)). By
lemma 4.11 we can conclude that ¢ is a proper bound for all terms occurring in the sum

» 1 0; - h; x v} x v, and again we can substitute all polynomials h;, where HT (h; * v} * vy) #
HT (h;) (v} o v) without increasing ¢ or K. Similarly, in case v} € £, we can substitute h; by
lbu;(hz‘) € G by our assumption. Therefore, without loss of generality we can assume that
the representation has the required form. This gives us:

Qg - gk * Vg + Qq - gp * U

! ! !
= Gk *¥Vk+ 0y Bk G *Vk — 0 B - Gk * Vg +0y - B+ g1 *

v

-0
= (ak‘i‘a;'ﬂk)'gk*vk_a;'gﬂk'gk*vk_ﬂl'gl*vll

=spol,(9x,91)*vr

= (ap+0of B)-gr*xvp—ap- (D6 - by % v * ) (3)

i=1

where 3, = HC(gx) ™!, 5, = HC(g;) ™! and o] - B, = . By substituting (3) in our represen-
tation of g either ¢ disappears or in case ¢ remains maximal among the terms occurring in
the new representation of g, K is decreased.

O

28Note that this ordering is well-founded since > is and K € N.
29Not necessarily g; # g.
0In case spol, (g, g1) = 0, just substitute 0 for Y7 §; - h; * v} in the equations below.
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