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Abstract

Non–woven materials consist of many thousands of fibres laid down on a conveyor belt
under the influence of a turbulent air stream. To improve industrial processes for the
production of non–woven materials, we develop and explore novel mathematical fibre and
material models.
In Part I of this thesis we improve existing mathematical models describing the fibres on the
belt in the meltspinning process. In contrast to existing models, we include the fibre–fibre
interaction caused by the fibres’ thickness which prevents the intersection of the fibres and,
hence, results in a more accurate mathematical description. We start from a microscopic
characterisation, where each fibre is described by a stochastic functional differential
equation and include the interaction along the whole fibre path, which is described by a
delay term. As many fibres are required for the production of a non–woven material, we
consider the corresponding mean–field equation, which describes the evolution of the fibre
distribution with respect to fibre position and orientation. To analyse the particular case of
large turbulences in the air stream, we develop the diffusion approximation which yields a
distribution describing the fibre position. Considering the convergence to equilibrium on
an analytical level, as well as performing numerical experiments, gives an insight into the
influence of the novel interaction term in the equations.
In Part II of this thesis we model the industrial airlay process, which is a production method
whereby many short fibres build a three–dimensional non–woven material. We focus on
the development of a material model based on original fibre properties, machine data and
micro computer tomography. A possible linking of these models to other simulation tools,
for example virtual tensile tests, is discussed.
The models and methods presented in this thesis promise to further the field in mathematical
modelling and computational simulation of non–woven materials.
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1 The meltspinning process

In this chapter we give a short introduction to the industrial meltspinning process. In

particular, we review existing mathematical models of several different aspects of this

process, along with their results. We end by outlining the structure for the remainder of

this part. We note that preliminary results of this part were partially presented in NESSLER

(2013).

1.1 The production process
Meltspinning is a method used for the production of non–woven fleece materials, used
in numerous industrial settings, for example as filter or insulating materials. During the
production the melt, which is stored in a polymer distributor, runs through narrow nozzles.
The nozzle forms single fibres which get stretched and tangled due to forces exerted by a
turbulent air stream. Finally, the fibres lay down on a belt and build the material structure.

Due to the complexity of this production process, different aspects of the process have
been separately examined and mathematically modelled. A good overview of the general
modelling hierarchy is given in KLAR, MARHEINEKE, et al. (2009). In LEITHÄUSER

and FESSLER (2012), LEITHÄUSER, FESSLER, and PINNAU (2012), and LEITHÄUSER,
PINNAU, et al. (accepted) shape optimisation was performed to improve the basin shape
and resultant flow geometries to realise a given wall shear stress and thus prevent or
reduce stagnant zones. In MARHEINEKE and WEGENER (2006) and MARHEINEKE and
WEGENER (2007) further mathematical models were developed to describe the fibre
movement in the air, before hitting the belt, and include several physical effects, for
example the influence of a turbulent air stream and gravitation. These complex models
describing the fibre movement are computationally expensive and, thus, only a limited
number of fibres can be feasibly simulated. However, real materials consist of thousands
of fibres. Therefore, surrogate models for the fibre lay down, as in the case of the one
we will develop in this thesis, have become essential. These models cover the basic
physical effects, but nevertheless are computationally cheap and easy to solve, see GÖTZ

et al. (2007), KLAR, MARHEINEKE, et al. (2009), MARINGER et al. (2010), KLAR et al.

(2012a), and KLAR et al. (2012b). Using a combination of these mathematical models
and numerical simulations it has been possible to improve the production process and the
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resulting material, including the material strength (HIETEL et al., 2008). However, further
improvements in the production process are possible, and can be aided by an improvement
of the mathematical models and the numerical methods used.

1.2 Structure
The remainder of this part is structured as follows. In Chapter 2 we give an overview of
existing surrogate fibre models. Then, in Chapter 3, we present a new surrogate model for
the fibre lay down which includes the fibre thickness and the resulting fibre interactions.
Afterwards, in Chapter 4, we consider macroscopic equations derived from the microscopic
interacting fibre model presented in Chapter 3 and analyse the case of many long fibres
both analytically and numerically. To conclude, in Chapter 5, we summarise our results
and present an outlook on possible future work in this field.



2 Surrogate fibre models

In this chapter we give an overview of existing surrogate models for fibre lay down and

their connections. In particular, we focus on the mathematical models that we will use

and extend in this thesis. We concentrate on the intuitive microscopic description and also

show connections to macroscopic descriptions and known theoretical results when it is

meaningful and of interest. We start with the original two–dimensional model by GÖTZ

et al. (2007) and describe extensions to three and arbitrary dimensions (MARINGER et al.,
2010; KLAR et al., 2012a; MARINGER, 2013). Furthermore, we review smooth extensions

of the models (HERTY et al., 2009; KLAR et al., 2012b).

2.1 Two–dimensional models
We start by explaining the two–dimensional model by GÖTZ et al. (2007), exemplary in all
its details, which is the basis for all the other models and results presented in this chapter.
We then move on to extensions of the model including belt movement (BONILLA et al.,
2007) as well as smooth models (HERTY et al., 2009; KLAR et al., 2012b). This should
give the reader an insight into the underlying construction of the model and related fields
of interest.

2.1.1 The basic model

The two–dimensional model presented in GÖTZ et al. (2007) is the basic surrogate model
describing the lay down behaviour of long fibres produced by meltspinning. The main
idea of the surrogate model is to describe the resulting image of the fibres on the conveyor
belt accurately, but including only basic physical effects. These are the fibre coiling and
the influence of the turbulent air stream. The advantage of surrogate models over models
aiming to describe complicated physical phenomena is the short simulation time which
allows for the numerical simulation of thousands of fibres. Computer simulations based on
such surrogate models can yield important information about the homogeneity or weight
distribution of the resulting material (KLAR, MARHEINEKE, et al., 2009; BOCK et al.,
2014).

In the basic two–dimensional surrogate model by GÖTZ et al. (2007) each single fibre is
represented as an object without thickness and independent of all the other fibres in the
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non–woven material. Thus, any interaction between the fibres is ignored. Each individual
fibre is described by its centreline. Mathematically this is an arc–length parametrised curve
for the fibre position x with α representing the deviation angle of the fibre orientation from
the Euclidean basis vector e1

x : R+→ R2,

α : R+→ [0,2π),
(2.1)

where

R+ =
{

x ∈ R
∣∣x≥ 0

}
.

Without loss of generality it is assumed that the mathematical origin coincides with the
nozzle position and the Euclidean basis vector e1 with the orientation of the conveyor belt.
The Euclidean basis vector e2 is orthogonal to e1. The model for the fibre image consists
of the following second order stochastic differential equation (SDE)

dxt = v(αt)dt,

dαt =−∇V (xt) · v⊥(αt)dt︸ ︷︷ ︸
deterministic force

+ AdWt︸ ︷︷ ︸
stochastic force

. (2.2)

As the fibre curve described by the evolution of Equation (2.2) is arc–length parametrised, t

is the arc–length parameter. The classical interpretation of t in dynamical systems literature
is time, and so we will also sometimes use this interpretation. With xt,i, i ∈ {1,2}, we
denote the single components of xt at time t. The orientation vector v(α) in Equation (2.2)
is defined as

v(α) := (cosα,sinα)T ∈ S1,

where S1 ⊂ R2 denotes the unit circle

S1 =
{

v ∈ R2∣∣‖v‖2 = 1
}
,

and ‖·‖ denotes the Euclidean norm. By

v⊥(α) =
dv
dα

= (−sinα,cosα)T ,

we denote the orthonormal unit vector to v(α). Furthermore, V : R2→R, in Equation (2.2)
denotes a function which can be interpreted as an external potential. The standard choice
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for V (KLAR, MARHEINEKE, et al., 2009; GÖTZ et al., 2007) is

V (x) =
1
2

(
x2

1
σ2

1
+

x2
2

σ2
2

)
,

or in compact form

V (x) =
1
2

xT Σ−1 x,

where Σ is the covariance matrix of the process

Σ = diag
{

σ2
1 ,σ

2
2
}
,

and σi > 0, i = 1,2, are the throwing ranges. These describe the deviation of the fibre
position from the nozzle position. Thus, the term −∇V (xt) · v⊥(αt) in Equation (2.2) is
responsible for describing an orientation change of the fibre orthogonal to the current
fibre orientation. This motion, which is due to the external potential V , is also called
coiling, and so V is sometimes called the coiling potential. If the throwing ranges are
small, the fibres are more likely to return back to the origin. Without loss of generality in
the following we assume that σ1 = σ2 = 1. The parameter A ∈ R+ in Equation (2.2) is the
noise amplitude of the process and mimics, together with the one–dimensional Brownian
motion (Wt)t≥0, the effect of the turbulent airflow on the fibre lay down. The notation used
in Equation (2.2) implies Itô integration. For a comprehensive introduction to stochastic
differential equations, we refer the reader to ØKSENDAL (2003), GARD (1988), EVANS

(2013), and ARNOLD (1973). In addition, the system has to be equipped with initial
conditions (x0,α0) ∈ R2× [0,2π).

We note that the solutions of Equation (2.2) are random variables. Thus, we interpret each
realisation of Equation (2.2) as an independent single fibre.

In Figure 2.1 we can see the effect of the noise amplitude A on the fibre curves x with
length t = 100. Each subplot shows two realisations of fibre curves, one in blue and one in
red. Both realisations are based on Equation (2.2) where the difference lies in the choice
of the initial conditions. Figure 2.1(a), in particular, shows the deterministic case, A = 0,
which results in a regular and symmetric fibre structure. As A increases there is a loss
of this regularity. When the noise is small, in Figure 2.1(b), the deterministic structure
can still be seen, but as A increases further, as shown in Figures 2.1(c) and 2.1(d), it is
no longer visible. Overall we see that for increasing values of A the fibre image becomes
more chaotic.
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Figure 2.1 – Two independent fibres, solutions of Equation (2.2), with length t = 100 and for
different noise amplitudes A. The blue and red lines represent single fibres with the initial
positions x0 = (1,1)T and x0 = (−1,−1)T respectively. The initial orientation α0 = 0 is the
same for both fibres in all the figures.

2.1.2 The Fokker–Planck equation

When investigating statistical properties of the process, it is sometimes better to consider the
associated Fokker–Planck equation instead of the SDE description given by Equation (2.2).
The Fokker–Planck equation is a partial differential equation (PDE) and describes the
evolution of the (probability–) density f = f (t,x,α), which in our case can be interpreted
as the probability of finding a fibre point with arc–length t, position x and orientation
α . Also called the Kolmogoroff forward equation, the Fokker–Planck equation can be
rigorously derived from Equation (2.2). For details we refer the reader to ØKSENDAL

(2003), RISKEN (1996), ARNOLD (1973), and GARD (1988). The Fokker–Planck equation
corresponding to Equation (2.2) with respect to the Lebesgue measure dx on R2 and dα
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on [0,2π) is given by

∂t f + v ·∇x f −∂α∇xV (x) · v⊥(α) f =
A2

2
∂αα f , (2.3)

with an initial condition f0(x,α) = f (0,x,α). Furthermore, as f describes a (probability–)
density, the normalisation

∫

R2

∫ 2π

0
f (t,x,α) dα dx = 1,

for all t ≥ 0 is required.

Sometimes the phase space density f itself, depending on position and orientation, may
not be of particular interest. What may be more useful, rather, is the probability density for
the space coordinate ρ = ρ(t,x), defined by

ρ(t,x) =
∫ 2π

0
f (t,x,α) dα.

As f is normalised it follows that the same must be true for ρ

∫

R2
ρ(t,x) dx =

∫

R2

∫ 2π

0
f (t,x,α) dα dx = 1.

While the phase space density f gives information on the distribution of α as well as x, the
space density ρ only contains information about the position x. The stationary solution of
Equation (2.3) yields information about the fibre distribution when the fibres are very long.
It is given by

f∞(x,α) := lim
t→+∞

f (t,x,α) =
exp(−V (x))

∫

R2

∫ 2π

0
exp(−V (x))dα dx

, (2.4)

and is independent of the orientation angle α . This implies that all orientations α ∈ [0,2π)
have the same probability at the stationary state. In particular, Equation (2.4) yields the
spatial stationary solution

ρ∞(x) := lim
t→+∞

ρ(t,x) =
exp(−V (x))∫

R2
exp(−V (x)) dx

. (2.5)

One can derive simplified equations for ρ which are easier to analyse than the Fokker–
Planck equation Equation (2.3) for f , but nevertheless give important insights into the fibre
dynamics and their spatial distribution. Considering Equation (2.3) in polar coordinates
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for the position x and using the method of multiple time scales in the case of large noise A

the reduced first order equation

∂tρ =
1

A2 ∇ · (∇V ρ)+
1

A2 ∆ρ, (2.6)

was derived in BONILLA et al. (2007). This equation also called the diffusion approxi-

mation or hydrodynamic limit. The stationary solution of Equation (2.6) coincides with
the spatial stationary solution of Equation (2.3) given by Equation (2.5). The actual con-
vergence and speed of convergence of the solutions of Equation (2.3) to the stationary
state given by Equation (2.5), depending on the model parameters in Equation (2.2) or
Equation (2.3), were analysed in GROTHAUS and KLAR (2008), KOLB et al. (2012),
DOLBEAULT et al. (2013), GROTHAUS and STILGENBAUER (2014), and GROTHAUS and
STILGENBAUER (2015).

2.1.3 A model with belt movement

The belt movement and the transport of the laid down material plays an important role in the
industrial process. A strategy for including this effect in the model given by Equation (2.2)
was first hinted at by GÖTZ et al. (2007) before being developed further and analysed by
BONILLA et al. (2007). The basic idea was to introduce a reference curve γ : R+→ R2

which describes the belt movement. The surrogate model with the reference curve is given
by

dηt = v(αt)dt,

dαt =−
(

∇V (ηt− γt) · v⊥(αt)
)

dt +AdWt ,
(2.7)

where η : R+ → R2 denotes the actual fibre curve. For example, in the meltspinning
process, the reference curve can be defined by

γt =−tψe1, (2.8)

where ψ = vbelt/vprod is the ratio of the belt speed vbelt and production speed vprod. For
ψ = vbelt = 0 and, thus, γ = 0 we obtain the original model given by Equation (2.2) without
the reference curve. Writing x = η− γ allows us to consider the deviation of η from the
reference curve γ . Substitution into Equation (2.7) yields

dxt = vtdt−dγt ,

dαt =−
(

∇V (xt) · v⊥(αt)
)

dt +AdWt .
(2.9)
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There is a clear difference between the models given by Equations (2.7) and (2.9) and the
standard model described in Equation (2.2); in Equations (2.7) and (2.9) the fibre path
follows the reference curve instead of being forced in the direction of the origin. Therefore,
a stationary state for the model including belt movement cannot in general be expected.

The effect of the belt movement described by Equation (2.8) on the fibre curves is shown in
Figure 2.2. In Figure 2.2(a) we can see two fibres when the belt is not moving. Figure 2.2(b)
shows x, the deviation from the reference curve described by Equation (2.9), whereas
Figure 2.2(c) shows the actual fibre curve η described by Equation (2.7) with ψ = 0.1. We
obtain a more stretched image when we include belt movement, Figure 2.2(c), as compared
to the case of a belt at rest, Figure 2.2(a).

The Fokker–Planck equation for the phase space density f = f (t,x,α) corresponding to
Equation (2.7) with respect to the Lebesgue measure dx dα on R2× [0,2π), is given by

∂t f +(v+ψe1) ·∇x f −∂α∇xV (x) · v⊥(α) f =
A2

2
∂αα f . (2.10)

To gain some information about the long–time behaviour of Equation (2.7), for large
noise amplitudes A, BONILLA et al. (2007) derived a reduced model for the space density
ρ . This was achieved by considering the Fokker–Planck equation (2.10) and using the
Chapman–Enskog method (CERCIGNANI, 1990; BONILLA, 2000). The resulting reduced
equation is

∂tρ =
1

A2 ∇ ·
(
∇V ρ−A2ψe1ρ

)
+

1
A2 ∆ρ, (2.11)

and its stationary state is given by

ρ∞(x) =
exp
(
−V (x)+A2ψx1

)
∫

R2
exp
(
−V (x)+A2ψx1

)
dx

. (2.12)

In contrast to the case without belt movement, the stationary solution given by Equa-
tion (2.12) depends on the noise amplitude A. When ψ = 0, Equation (2.11) coincides with
Equation (2.6) as well as the stationary states given by Equations (2.5) and (2.12). The con-
vergence to equilibrium, Equation (2.12), for the reduced model given by Equation (2.11),
including convergence rates, has been analysed by BONILLA et al. (2007).

The long–time behaviour of the full model, Equation (2.7), has been analysed by KOLB et al.

(2012) using stochastic methods and recently by BOUIN et al. (2016) using hypercoercivity
methods from functional analysis. The latter result includes explicit rates for the speed of
convergence depending on the initial conditions, the external potential and, in particular, the
belt speed. In both publications it was found that convergence to a non–explicit stationary
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Figure 2.2 – Independent fibres with length t = 100 and noise A = 0.5, where the belt
movement is described by Equation (2.8) with ψ given. Figure 2.2(a) shows solutions of
Equation (2.2) without belt movement. Figure 2.2(b) shows two independent solutions of
Equation (2.9), the deviation of two fibre curves from the reference curve γ . Figure 2.2(c)
shows two fibre curves, solutions of Equation (2.7), experiencing belt movement. The initial
positions are η0 = x0 = (1,1)T and η0 = x0 = (−1,−1)T for the blue and red lines respectively.
The initial orientation α0 = 0 is the same for both fibres in all the figures.
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state is only given up to a maximal value of ψ , the ratio of belt and production speed. In
contrast to these findings, the reduced model given by Equation (2.11) always attains the
stationary state given by Equation (2.12).

We note that the belt movement may be incorporated in the remainder of the models
described in this chapter by performing the same steps as outlined in this section.

2.1.4 Smooth models

In reality the fibres are smoother than the models already presented suggest. Due to the
fact that the Brownian motion is not differentiable, the smoothness of a solution of Equa-
tion (2.2) or Equations (2.7) and (2.9) is limited. A higher order of differentiability may
be achieved by replacing the non–differentiable Wiener process (Wt)t≥0 by a differentiable
one, namely an Ornstein-Uhlenbeck process (JØRGENSEN, 1978; KLAR et al., 2012b;
MARINGER, 2013). The one–dimensional Ornstein–Uhlenbeck process is given by

dκt =−λκtdt +µdWt . (2.13)

The parameters λ and µ with λ ,µ > 0 can be interpreted as the inverse stiffness and the
diffusion coefficient respectively. Replacing the Brownian motion (Wt)t≥0 in Equation (2.2)
by the Ornstein–Uhlenbeck process given by Equation (2.13) leads to the following smooth
fibre model in two dimensions (KLAR et al., 2012b)

dxt = v(αt)dt,

dαt =−
(

∇V (xt) · v⊥(αt)
)

dt +κtdt,

dκt =−λκtdt +µdWt ,

(2.14)

with initial conditions x0 ∈ R2,α0 ∈ [0,2π) and κ0 ∈ R. The function κ can be interpreted
as the fibre curvature. In the white noise limit, i.e. the limit λ →+∞ for a fixed ratio µ/λ ,
one recovers the basic non–smooth model described by Equation (2.2). This corresponds
to the case of low stiffness, 1/λ → 0, and further details may be found in KLAR et al.

(2012b).

In Figure 2.3 we demonstrate the effect of different choices for µ and λ on the fibre
lay down, where µ/λ = 1 is kept constant and only the parameter λ is varied. As λ
increases, we observe a more chaotic image as we get closer to the white noise limit. The
Fokker–Planck equation corresponding to Equation (2.14) for the phase space density
f = f (t,x,α,κ) with respect to the Lebesgue measure dx dα dκ on R2× [0,2π)×R is
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Figure 2.3 – Effect of the inverse stiffness on the image of the fibres given by Equation (2.14),
with µ/λ = 1, varying values of λ and length t = 100. The blue and red lines represent
single fibres with the initial positions x0 = (1,1)T and x0 = (−1,−1)T respectively. The initial
orientation α0 = 0 and curvature κ0 = 0 is the same for both fibres in all the figures.

given by

∂t f =−v(α) ·∇x ·∂α

(
v⊥(α) f

)
−κ∂α f +λ∂κ (κ f )+

1
2

µ∂κκ f , (2.15)

where the normalisation
∫

R2

∫ 2π

0

∫

R
f (t,x,α,κ)dκ dα dx = 1,
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is required. The stationary solution of Equation (2.15) is given by

f∞(x,α,κ) =
exp(−V (x))exp

(
−λκ2

µ2

)

∫

R2

∫ 2π

0

∫

R
exp(−V (x))exp

(
−λκ2

µ2

)
dκ dα dx

. (2.16)

As in Section 2.1.2 we see that the stationary solution is independent of α . Furthermore,
integrating f∞ with respect to dκ and dα gives

ρ∞(x) =
exp(−V (x))∫

R2
exp(−V (x)) dx

,

which coincides with the stationary space density given by Equation (2.5) in the non–
smooth case.

The model given by Equation (2.14) was not the first smooth model for fibre lay down. In
HERTY et al. (2009) a model which is similar to the one given by Equation (2.14) was
presented. To compare both descriptions, in MARINGER (2013) an alternative formulation
of Equation (2.14) was found. Applying the Itô formula (ØKSENDAL, 2003) to κ̂ :=
−∇V (x) · v⊥(α)+κ , in combination with Equation (2.14), results in

dxt = v(αt)dt,

dαt = κ̂tdt,

dκ̂t = (∇V (xt) · v(αt)) κ̂tdt−λ
(

κ̂t +∇V (xt) · v⊥(αt)
)

dt +µdWt .

(2.17)

Compared to Equation (2.17), the term (∇V (xt) · v(αt)) κ̂tdt is missing in HERTY et al.

(2009) and this results in the loss of an explicit stationary state.

2.2 The basic model in three dimensions
As we have seen so far, two–dimensional models have been established and analysed,
including the effect of the belt movement (see Section 2.1.3), and have also been extended
to models with a higher order of differentiability (see Section 2.1.4). These simplified
models already contain many properties of the real process we aim to describe like coiling,
the influence of a turbulent air stream and the belt movement. However, as real non–woven
materials have a three–dimensional structure, the extension of the two–dimensional models
described in Section 2.1 to three dimensions can yield further detail. A formulation in
three dimensions is not directly obvious. KLAR et al. (2012a), MARINGER (2013), and
STILGENBAUER (2014) first found a formulation in arbitrary space dimensions d ≥ 2 and
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then formulated a new model for three dimensions.

2.2.1 The basic model in arbitrary dimensions

The basic two–dimensional model given by Equation (2.2) (KLAR et al., 2012a; MARINGER,
2013; STILGENBAUER, 2014) can be formulated with respect to x and v instead of x and
α . The application of Itô formula to the orientation vector v(α), in combination with
Equation (2.2), leads to (KLAR et al., 2012a)

dxt = vtdt,

dvt = (I− vt⊗ vt)◦ (−∇V (xt)dt +AdWt) .
(2.18)

Here Stratonovich integration, indicated by the symbol ◦, is used rather than Itô integration.
Furthermore, I denotes the identity matrix and ⊗ the tensor product of two vectors. In
Equation (2.18), (Wt)t≥0 denotes a two–dimensional Brownian motion. In the following
we only indicate the dimension of the Brownian motion when needed to prevent confusion.
We note that I− v⊗ v is a projection on the tangent plane at v

TvS1 =
{

N ∈ R2∣∣N · v = 0
}
,

which guarantees vt ∈ S1 in the evolution of Equation (2.18).

In the formulation given by Equation (2.18) the two–dimensional nature of the description
is no longer obvious. This gave rise to the development of a model for fibre lay down
in arbitrary dimensions d ≥ 2. Before stating the fibre equations in arbitrary dimensions,
we first introduce the d–dimensional state space Md = Rd×Sd−1, with the unit sphere
Sd−1 ⊂ Rd

Sd−1 =
{

v ∈ Rd∣∣‖v‖2 = 1
}
.

Introducing a factor 1
/
(d−1) in Equation (2.18) yields

dxt = vtdt,

dvt = (I− vt⊗ vt)◦
(
− 1

d−1
∇V (xt)dt +AdWt

)
,

(2.19)

where (Wt)t≥0 denotes a d–dimensional Brownian motion, (x,v)∈Md , and V is the natural
d–dimensional extension of the external potential

V (x) =
1
2

xT Σ−1 x,
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with

Σ = diag
{

σ2
1 , . . . ,σ

2
d
}
.

As in the two–dimensional case, Section 2.1, without loss of generality in the following
we will assume that σ1 = · · · = σd = 1. Sometimes it is more convenient to use the Itô
formulation of Equation (2.19) which is given by

dxt = vtdt,

dvt =−(I− vt⊗ vt)
1

d−1
∇V (xt)dt− d−1

2
A2vtdt +A(I− vt⊗ vt)dWt .

(2.20)

We note that in the case of arbitrary dimensions, Equations (2.19) and (2.20), the expression
I− v⊗ v is a projection on the tangent plane

TvSd−1 =
{

N ∈ Rd∣∣N · v = 0
}
.

Furthermore, Equations (2.19) and (2.20) have to be equipped with an initial condition
(x0,v0) ∈Md .

2.2.2 The basic three–dimensional model

Starting from the basic model in arbitrary dimensions, Equation (2.19), one can retrieve
the three–dimensional model by setting d = 3. Choosing two linear independent vectors
n1,n2 spanning the two–dimensional tangent plane at v

TvS2 = span{n1,n2} ,

the following identity for the projection on the tangent plane at v holds:

I− v⊗ v = n1⊗n1 +n2⊗n2.

Substitution into Equation (2.19) gives

dxt = vtdt,

dvt = (n1⊗n1 +n2⊗n2)◦
(
−1

2
∇V (xt)dt +AdWt

)
.

(2.21)

Sometimes it is useful to have a representation of Equation (2.21) in local coordinates of
the orientation vector v. This is done by introducing the angles α ∈ [0,2π) and θ ∈ [0,π),
which describe the deviation of v from e1 and the deviation angle of v from the Euclidean
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basis vector e3 respectively, along with the following parametrisation

v(α,θ) =




cosα sinθ
sinα sinθ

cosθ


 , n1(α) =



−sinα
cosα

0


 , n2(α,θ) =




cosα cosθ
sinα cosθ
−sinθ


 .

Here n1 and n2 describe the normal and binormal to v respectively. Note that this choice
for n1 and n2 guarantees that

TvS2 = span{n1,n2} .

With the application of Itô calculus to v in combination with Equation (2.21), a representa-
tion in local coordinates is given by

dxt = v(αt ,θt)dt,

sinθtdαt =−
1
2

∇V (xt) ·n1(αt)dt +AdWt,1,

dθt =−
1
2

∇V (xt) ·n2(αt ,θt)dt +
1
2

A2 cotθtdt +AdWt,2.

(2.22)

Here (Wt,1)t≥0 and (Wt,2)t≥0 denote one–dimensional and independent Brownian motions.
Figure 2.4 illustrates the influence of A on the fibres. As in the two–dimensional case,
we can see that the regular structure in Figure 2.4(a) becomes irregular and chaotic as A

increases. The corresponding Fokker–Planck equation for f = f (t,x,α,θ) with respect
to the Lebesgue measure dx on R3 and the spherical measure dν = dν(α,θ) = dα dθ is
given by

∂t f + v(α,θ) ·∇x f − 1
2

1
sinθ

∇xV (x) ·∂α (n1(α) f )− 1
2

∇xV (x) ·∂θ (n2(α,θ) f )

=−1
2

A2∂θ (cotθ f )+
1
2

A2

sin2 θ
∂αα f +

1
2

A2∂θθ f . (2.23)

The stationary solution is given by

f∞(x,α,θ) =
sinθ exp(−V (x))

∫

R3

∫ 2π

0

∫ π

0
sinθ exp(−V (x)) dθ dα dx

. (2.24)

Note that f∞ is independent of α . Furthermore, f∞ factorises in a component depend-
ing on θ and x respectively. Considering the angular component sinθ , one can see that
this describes a uniform distribution on S2 with respect to the measure dν . In particu-
lar, the external potential V does not influence the orientation distribution. Integrating
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Figure 2.4 – Two independent fibres, solutions of Equation (2.22), with length t = 100
and varying noise amplitude A. The blue and red lines represent single fibres with the
initial positions x0 = (1,1,0)T and x0 = (−1,−1,0)T respectively. The initial orientation
(α0,θ0) = (0,π/2) is the same for both fibres in all the figures.

Equation (2.24) with respect to dν(α,θ) results in the stationary space density

ρ∞(x) =
exp(−V (x))∫

R3
exp(−V (x)) dx

, (2.25)

which is structurally identical to the stationary solution given by Equation (2.5) for two
dimensions.

2.2.3 The anisotropic model

We have seen that, based on the model in arbitrary dimension given by Equation (2.19),
a three–dimensional version similar to the two–dimensional one given by Equation (2.2)
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can be formulated. This model has a uniform stationary distribution with respect to the
orientation angles α and θ . However, the orientation distribution of fibres in real non–
woven materials is not isotropic. They have a preferred orientation parallel to the belt. To
overcome this shortcoming in the three–dimensional model given by Equation (2.22), the
anisotropic model was developed (KLAR et al., 2012a). It aims to model the resulting
non–woven material with a realistic thickness and typical orientation distribution. Starting
from the isotropic three–dimensional model in spherical coordinates, Equation (2.22), the
idea is to scale the influence of the normal n1(α) and the binormal n2(α,θ) by introducing
a parameter B ∈ [0,1]. The resulting model is (KLAR et al., 2012a)

dxt = v(αt ,θt)dt,

sinθtdαt =−
1

B+1
∇V (xt) ·n1(αt)dt +AdWt,1,

dθt =−
B

B+1
∇V (xt) ·n2(αt ,θt)dt +

1
2

A2 cotθtdt +
√

BAdWt,2.

(2.26)

Equation (2.26) reverts to the isotropic case given by Equation (2.22) with d = 3 when
B = 1 and with the initial conditions x0 ∈ R3, α ∈ [0,2π) and θ ∈ [0,π). However,
when B = 0, we require that Equation (2.26) reverts to the two–dimensional model given
by Equation (2.2). Therefore, it is necessary that the third component of x vanishes,
xt,3 = 0, and that θt = π/2 for all t. When we set B = 0 in Equation (2.26), the terms

− B
B+1

∇V (xt) ·n2(αt ,θt)dt and
√

BAdWt,2 vanish. Recalling that the third component of

the orientation vector is v3(α,θ) = cosθ , we obtain the following set of ODEs independent
of all the other quantities

dxt,3 = cosθtdt,

dθt =
1
2

A2 cotθtdt,

which has the explicit solution

θt = arccos
(

exp
(
−1

2
A2t
)

cosθ0

)
,

xt,3 = x0,3 +
2

A2 cosθ0−
2

A2 exp
(
−1

2
A2t
)

cosθ0.

This is only possible with the initial conditions θ0 = π/2 and x0,3 = 0.

In Figure 2.5 we can see the influence of the parameter B on the fibre curves for A= 0.5. We
observe that the fibres have a more anisotropic angular distribution for decreasing B. In the
extreme case B = 0, we obtain a purely two–dimensional image for the fibre positions with
constant θ = π/2. We see that the anisotropic model given by Equation (2.26) yields the
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Figure 2.5 – Two independent fibres, solutions of Equation (2.26), with length t = 100
and fixed noise amplitude A = 0.5. The blue and red lines represent single fibres with the
initial positions x0 = (1,1,0)T and x0 = (−1,−1,0)T respectively. The initial orientation
(α0,θ0) = (0,π/2) is the same for both fibres in all the figures.

correct behaviour for the extremal cases B= 0 and B= 1. As B decreases (top left to bottom
right) we observe an increasingly two–dimensional distribution. In order to get a better
understanding of the influence of B on the fibre orientation distribution, we consider the
Fokker–Planck equation for f = f (t,x,α,θ) corresponding to Equation (2.26) with respect
to the Lebesgue measure dx on R3 and the spherical measure dν = dν(α,θ) = dα dθ on
[0,2π)× [0,π) given by (KLAR et al., 2012a)

∂t f + v(α,θ) ·∇x f − 1
B+1

1
sinθ

∇xV (x) ·∂α (n1(α) f )− B
B+1

∇xV (x) ·∂θ (n2(α,θ) f )

=−1
2

A2∂θ (cotθ f )+
1
2

A2

sin2 θ
∂αα f +

1
2

A2B∂θθ f . (2.27)
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Figure 2.6 – Angular distribution (sinθ)
1
B for different values of B.

Its stationary solution is

f∞(x,α,θ) =
(sinθ)

1
B exp(−V (x))

∫

R3

∫ π

0

∫ 2π

0
(sinθ)

1
B exp(−V (x))dθ dα dx

, (2.28)

for B > 0. Integrating Equation (2.28) with respect to dν results in the stationary space
density ρ∞ which is identical to Equation (2.25). We see that f∞, as in the isotropic
case in Equation (2.24), is independent of α and factorises in terms containing θ and x.
Furthermore, one can see that the anisotropic parameter B has an influence on the angular
distribution of f∞. The term (sinθ)

1
B is symmetric around π/2 and obtains its maximum

at π/2 for all 0 < B ≤ 1. As expected, when B = 1 the stationary solutions given by
Equations (2.24) and (2.28) are identical. In the other extreme case B→ 0 one obtains

(sinθ)
1
B

B→0−−−→ δ π
2
(θ),

where δ π
2

is the Dirac delta distribution on [0,π) centred at π/2 (MARINGER, 2013). In

Figure 2.6 we can see how the density (sinθ)
1
B behaves on the interval [0,π] for different

values of B. One can see that the variance of (sinθ)
1
B is monotonically increasing with

respect to B, whereas the expectation is constant. As in two spatial dimensions, Section 2.1,
a reduced model for the space density ρ can be derived (KLAR et al., 2012a) and is given
by

∂tρ−
1

A2 (1+2B)
∇x ·D(∇xρ +∇xV (x)ρ) = 0, (2.29)
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where

D = diag
{

1,1,
2B

1+B

}
∈ R3×3,

is a diagonal matrix. The stationary solution of Equation (2.29) is identical to the stationary
space density of Equation (2.23) and Equation (2.27). This result emphasises the fact that,
although the parameter B does not have an influence on the stationary spatial distribution,
it does have an effect on the evolution of the space density.

2.3 The smooth model in three dimensions
As we have seen for the two–dimensional case described in Section 2.1, smooth extensions
to Equation (2.2) are possible and can play a relevant role in the fibre lay down model
to achieve a higher order of regularity. This is also the case for a three–dimensional
model (KLAR et al., 2012b; MARINGER, 2013). However, as it is the case for the basic
model, a three–dimensional smooth formulation is not directly obvious. Thus, we first
summarise the results for arbitrary dimensions d ≥ 2 before we state the smooth model in
three dimensions.

2.3.1 The smooth model in arbitrary dimensions

As in the basic case described in Section 2.1.1, the smooth model in two dimensions given
by Equation (2.14) has a similar formulation in arbitrary dimensions (KLAR et al., 2012b;
MARINGER, 2013).

By introducing N := v⊥κ the two–dimensional description from Section 2.1.4 using Itô
calculus for v ∈ S1 and N ∈ TvS1 can be written as (KLAR et al., 2012b; MARINGER,
2013)

dxt = vtdt,

dvt =−(I− vt⊗ vt)∇V (xt)dt +Ntdt,

dNt = (vt⊗Nt)∇V (xt)dt−|Nt |2vtdt−λNtdt +µ (I− vt⊗ vt)dWt .

(2.30)

The initial conditions are given by x0 ∈ R2 and (v0,N0) ∈ TS1, where

TS1 :=
{
(v,N) ∈ R2×R2∣∣‖v‖2 = 1,v ·N = 0

}
,

is the tangent bundle of the sphere S1. The evolution of the process given by Equation (2.30)
guarantees that (vt ,Nt) ∈ TS1. These equations inherit, as in the basic case Section 2.1.1,
a space dimension–independent description for d ≥ 2. Introducing an additional factor
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1/(d−1), the smooth model in arbitrary dimensions d ≥ 2 is given by

dxt = vtdt,

dvt =−(I− vt⊗ vt)∇
1

d−1
V (xt)dt +Ntdt,

dNt = (vt⊗Nt)∇
1

d−1
V (xt)dt−|Nt |2vtdt−λNtdt +µ (I− vt⊗ vt)dWt ,

(2.31)

where x ∈ Rd and (v,N) ∈ TSd−1, with the tangent bundle

TSd−1 :=
{
(v,N) ∈ Rd×Rd∣∣‖v‖2 = 1,v ·N = 0

}
.

2.3.2 The smooth isotropic model

In general, one obtains the three–dimensional smooth model by setting d = 3 in Equa-
tion (2.31). In addition, one can reformulate the equation in spherical coordinates as is
done in Section 2.2.2. As N is orthogonal to v and n1,n2 span the tangential plane at v, it
is possible to write N(α,θ) = κ1n1(α)+κ2n2(α,θ), where κ1,κ2 ∈ R. The application
of Itô calculus to N and v in combination with Equation (2.31) leads to a description in
local coordinates (KLAR et al., 2012b)

dxt = v(αt ,θt)dt,

sinθtdαt =−
1
2
(∇V (xt) ·n1(αt))dt +κt,1dt,

dθt =−
1
2
(∇V (xt) ·n2(αt ,θt))dt +κt,2dt,

dκt,1 =
1
2
(∇V (xt) ·n1(αt))κ2,t cotθtdt−λκt,1dt−κt,1κt,2 cotθtdt +µdWt,1,

dκt,2 =−
1
2
(∇V (xt) ·n2(αt))κt,1 cotθtdt−λκt,2dt +κ2

t,1 cotθtdt +µdWt,2.

(2.32)

As in the two–dimensional case Section 2.1.4, we can take the white noise limit for
λ →+∞ and constant ratio µ/λ . For details, see KLAR et al. (2012b).

Figure 2.7 shows the influence of the parameters µ and λ on the solutions of Equa-
tion (2.32). Whereas Figures 2.7(a) and 2.7(c) show fibres for the ratio µ/λ = 1, Fig-
ures 2.7(b) and 2.7(d) show results for µ/λ = 1/10.

The corresponding Fokker–Planck equation for f = f (t,x,α,θ ,κ1,κ2) with respect to the
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Figure 2.7 – Two independent fibres, solutions of Equation (2.32), with length t = 100
and varying parameters µ and λ . The blue and red lines represent single fibres with the
initial positions x0 = (1,1,0)T and x0 = (−1,−1,0)T respectively. The initial orientation and
curvature, (α0,θ0) = (0,π/2) and (κ0,1,κ0,2) = (0,0) respectively, are the same for both fibres
in all the figures.
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Lebesgue measure is given by

∂t f =− v(α,θ) ·∇x f +
1

sinθ
1
2

∇xV (x) ·∂α (n1(α) f )+
1
2

∇xV (x) ·∂θ (n2(α,θ) f )

− 1
2
(∇xV (x) ·n1(α))κ2 cotθ∂κ1 f +

1
2
(∇xV (x) ·n1(α))κ1 cotθ∂κ2 f

− 1
sinθ

κ1∂α f −κ2∂θ f +λ∂κ1 (κ1 f )+κ2 cotθ∂κ1 (κ1 f )+λ∂κ2 (κ2 f )

−κ2
1 cotθ∂κ2 f +

1
2

µ2∂κ1κ1 f +
1
2

µ2∂κ2κ2 f .

The respective stationary solution is

f∞(x,α,θ ,κ1,κ2) =

sinθ exp(−V (x))exp
(
−λκ2

1
µ2

)
exp
(
−λκ2

2
µ2

)

∫

R3

∫ 2π

0

∫ π

0

∫

R

∫

R
sinθ exp(−V (x))exp

(
−λκ2

1
µ2

)
exp
(
−λκ2

2
µ2

)
dκ2 dκ1 dθ dα dx

,

(2.33)

which is as previously independent of α .

2.3.3 The smooth anisotropic model

So far we have reviewed the smooth model in three dimensions, including a formulation
in local coordinates. As in the derivation of the basic anisotropic model described in
Section 2.2.3, one can introduce an additional scaling B ∈ [0,1] of the normal n1 and
binormal n2 to achieve a desired angular distribution. The modification of Equation (2.32)
in this manner yields (KLAR et al., 2012b)

dxt = v(αt ,θt)dt,

sinθtdαt =−
1

B+1
(∇V (xt) ·n1(αt))dt +κt,1dt,

dθt =−
B

B+1
(∇V (xt) ·n2(αt ,θt))dt +Bκt,2dt,

dκt,1 =
1

B+1
(∇V (xt) ·n1(αt))κt,2 cotθtdt−λκt,1dt−κt,1κt,2 cotθtdt +µdWt,1,

dκt,2 =−
1

B+1
(∇V (xt) ·n2(αt ,θt))κt,1 cotθtdt−Bλκt,2dt +κ2

t,1 cotθtdt +
√

BµdWt,2.

(2.34)

Figure 2.8 shows the effect of the parameter B on the fibres. As in the non–smooth case,
Section 2.2.3, one observes an angular distribution concentrating towards θ = π/2 for
decreasing B.
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Figure 2.8 – Two independent fibres, solutions of Equation (2.34), which demonstrate the
effect of decreasing values of B. For all simulations we used fix values λ = 1 and µ = 1.
The blue and red lines represent single fibres with the initial positions x0 = (1,1,0)T and
x0 = (−1,−1,0)T respectively. The initial orientation and curvature, (α0,θ0) = (0,π/2) and
(κ0,1,κ0,2) = (0,0) respectively, are the same for both fibres in all the figures.



28 Chapter 2. Surrogate fibre models

As in the non–smooth case, Section 2.2.3, setting B = 1 results in the isotropic smooth
three–dimensional model described by Equation (2.32). Setting B = 0, x0,3 = 0,κ0,2 = 0
and θ0 = π/2 leads to the two–dimensional smooth model described by Equation (2.14)
(MARINGER, 2013). As in the two–dimensional case, Section 2.1.4, taking the white noise
limit, λ → ∞ for fixed ratio µ/λ , gives the non–smooth model, Equation (2.26) (KLAR

et al., 2012b).

The corresponding Fokker–Planck equation for f = f (t,x,α,θ ,κ1,κ2) with respect to the
Lebesgue measure dκ2 dκ1 dα dθ dx on R×R× [0,π)× [0,2π)×R2 is given by

∂t f =−v(α,θ)·∇x f +
1

sinθ
1

B+1
∇xV (x)·∂α (n1(α) f )+

B
B+1

∇xV (x)·∂θ (n2(α,θ) f )

− 1
B+1

(∇xV (x) ·n1(α))κ2 cotθ∂κ1 f +
1

B+1
(∇xV (x) ·n1(α))κ1 cotθ∂κ2 f

− 1
sinθ

κ1∂α f −Bκ2∂θ f +λ∂κ1 (κ1 f )+κ2 cotθ∂κ1 (κ1 f )+Bλ∂κ2 (κ2 f )

−κ2
1 cotθ∂κ2 f +

1
2

µ2∂κ1κ1 f +
1
2

Bµ2∂κ2κ2 f . (2.35)

The respective stationary solution is (KLAR et al., 2012b)

f∞(x,α,θ ,κ1,κ2) =

(sinθ)
1
B exp(−V (x))exp

(
−λκ2

1
µ2

)
exp
(
−λκ2

2
µ2

)

∫

R3

∫ 2π

0

∫ π

0

∫

R

∫

R
(sinθ)

1
B exp(−V (x))exp

(
−λκ2

1
µ2

)
exp
(
−λκ2

2
µ2

)
dκ2 dκ1 dθ dα dx

.

(2.36)

As in the non–smooth anisotropic case, Section 2.2.3, the influence of B on the angular
distribution can be seen. Integration with respect to dκ1 and dκ2, as in Section 2.3.2, gives

∫

R

∫

R
f∞(x,α,θ ,κ1,κ2) dκ2 dκ1 =

(sinθ)
1
B exp(−V (x))

∫ π

0

∫ 2π

0

∫

R3
(sinθ)

1
B exp(−V (x))dθ dα dx

,

which is identical to the stationary solution of Equation (2.27) in the non–smooth case.

2.4 Summary
In this chapter we have presented an overview of several existing surrogate models for
fibre lay down and their connections. We have seen that the basic two–dimensional model
described in GÖTZ et al. (2007) served as a basis for numerous extensions including
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models in higher dimensions, models including an anisotropic angular distribution and
smooth versions. These equations have given rise to a multitude of research questions,
including that of the convergence to equilibrium. In contrast to the models presented in
this chapter, in the following we will introduce a novel model in which the fibre thickness
and, thus, interaction between fibres, is no longer neglected.





3 Interacting fibre models

As we have seen in Chapter 2, the existing surrogate models for fibre lay down already

describe numerous realistic properties of the physical material. These include coiling due

to a coiling potential, the influence of the turbulent airflow, modelled by stochasticity, as

well the anisotropic fibre orientation represented by an anisotropic parameter. However,

an important property of the real fibres, namely the thickness of the fibres, has not yet been

included in the models. So far each fibre has only been represented by a one–dimensional

curve in space which actually describes the fibre’s centreline. In this chapter we extend the

existing surrogate models for fibre lay down to include the thickness of the fibres and the

interaction between the fibres.

3.1 The basic two–dimensional model
We derive a model for N ∈ N interacting fibres. As in Chapter 2, we describe each fibre by
its centreline. In particular, we assume that all the fibres come from the same nozzle and,
thus, the origin of our system again represents the nozzle position. In contrast to Chapter 2,
we include the effects caused by the thickness of each fibre. This is done by describing the
interactions between the fibres at their boundaries. Thus, the equations for the individual
fibres are no longer independent. To distinguish between the fibres we introduce an index i

for each fibre and denote the fibre position and orientation angle by

xi : R+→ R2,

α i : R+→ [0,2π),
(3.1)

for i ∈ {1, . . . ,N}, respectively. To include the fibre thickness and, thus, the influence of
the fibres on each other, we introduce an additional force term. We assume that each fibre
is rotationally symmetric around its centreline and that all the fibre cross sections have the
same radius denoted by R. When modelling a hard core interaction between two fibres, one
would expect a resulting force if the distance between two points on the fibre centrelines is
2R. The result would be a change in the orientation and, thus, the non–intersection of the
fibres. In contrast to the classical case for interacting particles (CERCIGNANI, 1990), we do
not simply wish to include the effect of single particles on each other but also to describe
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the interaction along the whole fibre curves. Thus, to achieve a meaningful description, we
have to include all the fibre paths. We assume that the interaction force is caused by an
interaction potential U : R2→ R depending on the distance of one fibre relative to another.
Thus, by extending the basic two–dimensional model given by Equation (2.2), a model for
each fibre i is

dxi
t = v(α i

t )dt,

dα i
t =−∇V (xi

t) · v⊥(α i
t )dt−

(
N

∑
j=1

∫ t

0
∇U(xi

t− x j
s)ds

)
· v⊥(α i

t )dt +AdW i
t ,

(3.2)

where the Brownian motions
(
W i

t
)

t≥0 , i ∈ {1, . . . ,N}, are assumed to be independent.
The sum in Equation (3.2) does not exclude the term j = i, as is normally the case for
interacting particle systems. In GOLSE (2012) the particular conceptional difficulties
of self–interactions in classical electrodynamics were discussed. As we will see in the
upcoming sections, an appropriate choice for the interaction potential U prevents both the
self–intersection of a fibre and the intersection with other fibres.
Models for interacting particles with time lag with a similar structure to Equation (3.2) have
been developed for several applications. The majority of these investigations, in contrast
to our model, considered single time lags. In SUN et al. (2014) directional switching in a
self–propelled particle model with delayed interactions was investigated. In both LIU and
WU (2014) and ERBAN et al. (2016) the Cucker–Smale model describing the behaviour
of a group of fish or birds (CUCKER and SMALE, 2007) with delay was examined. In
contrast to LIU and WU (2014), in ERBAN et al. (2016) additional noise was considered. A
mathematical model for turning delays in swarm robotics was examined in TAYLOR-KING

et al. (2015). It was found that the predictions from the model with additional delay
matched the results from experiments better than in the case without delay. In GOLSE

(2012) a regularised Vlasov–Maxwell equation and its derivation from a particle system
was performed. This system, as in our case, consists of N coupled integro–differential
equations with delay.

3.1.1 The interaction potential

The choice of the interaction potential can have a huge effect on the dynamics of the
solution. For a good choice of U we require several properties on U to be fulfilled. The
first one is that U decays for large distances

‖U(x)‖→ 0, as ‖x‖→ ∞.
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This guarantees that fibre interactions happen locally. Furthermore, it is required that U

depends on the fibre radius R. In addition, as we consider the relative distance of two fibre
points for the strength of the interaction, we require the potential U to be symmetric. Even
taking these restrictions into account, a large number of options for the potential U exist.
We concentrate on a hard core interaction of the fibres which is described by

U(x) = cUH (2R−‖x‖) , (3.3)

where H is the Heaviside function given by

H (y) =





0, for y < 0,

1/2, for y = 0,

1, for y > 0.

The constant cU ≥ 0 accounts for the strength of the interaction force in comparison to the
external force caused by V and the Brownian motion. For cU = 0 no interaction takes place.
As a consequence, the system described by Equation (3.2) decouples for the individual
fibres, as for all the models described in Chapter 2. The gradient of the interaction potential
in Equation (3.3) is a Dirac delta distribution at 2R. This guarantees an intermediate
change of the fibre orientation as soon as two fibres come into contact. However, real
fibres resulting from the meltspinning process are not rigid bodies but have some degree of
flexibility. To allow for this flexibility we use a continuously differentiable function which
approximates the interaction potential from Equation (3.3). This is

U(x) = cU
1

1+ exp
(
−k
(

1− ‖x‖2

(2R)2

)) , (3.4)

which is a smooth parameter–dependent potential which coincides with Equation (3.3) for
k→ ∞. For finite values of k we obtain potentials where the edges are smeared out. As a
result, this interaction potential, in contrast to the one defined by Equation (3.3), does not
have a compact support for k < ∞ and, therefore, implies a change in the fibre orientation
even if the fibre distance is larger than 2R. The gradient of the potential in Equation (3.4)
is given by

∇U(x) =−cU
2k

(2R)2
x

(
exp
(

H(x)
2

)
+ exp

(
−H(x)

2

))2 ,
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Figure 3.1 – Scalar interaction potential Ũ given by Equation (3.5) for different values of k.
In addition, the dashed line indicates the limit case k→ ∞. For all plots we used R = 0.7.

where

H(x) = k

(
1− ‖x‖

2

(2R)2

)
.

In contrast to the gradient of the hard core potential given by Equation (3.3), the gradient
of the smooth version, Equation (3.4), is finite for k < ∞. Due to the radial symmetry of U

given by Equation (3.4), we introduce the scalar version of the interaction potential

Ũ : R→ R, Ũ(r) = cU
1

1+ exp
(
−k
(

1− r2

(2R)2

)) , (3.5)

where Ũ(r) =U(‖x‖) for ‖x‖= r. In Figure 3.1 we see the effect of different values of k

on the scalar interaction potential Ũ given by Equation (3.5) along with the limit k→ ∞.
The larger the value of k, the better Equation (3.4) approximates the hard core potential,
Equation (3.3).

3.2 The influence of model parameters
In order to demonstrate the influence of parameter variations on the fibre positions, we now
present illustrative solutions of Equation (3.2) using the smoothed Heaviside interaction

potential in Equation (3.4) and the standard coiling potential V =
1
2
‖x‖2. These parameters

are the smoothness parameter k, the fibre radius R and the weight for the interaction
strength cU appearing in the interaction potential U , as well as the noise amplitude A.
To investigate the different effects for different parameters, we concentrate on a single
fibre described by Equation (3.2) with N = 1. For all the simulations we use the standard
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Figure 3.2 – Fibre curves for increasing values of k. The solid blue line indicates the fibre
centre line, whereas the dashed lines represent the fibre boundaries. The initial position and
orientation are x1

0 = (1,1)T and α1
0 = 3π/2 respectively. The parameters used for these figures

are A = 0,cU = 50,R = 0.2, t = 100.

Euler–Maruyama method (ØKSENDAL, 2003) with constant step size ∆t = 0.01. For more
sophisticated methods, see KLOEDEN and PLATEN (1999).

3.2.1 The influence of the smoothness parameter

Figure 3.2 shows the effect of the smoothing parameter k, which appears in the interaction
potential, on the solution of Equation (3.2). All other parameters are fixed. In particular,
we choose A = 0. In all of the figures the continuous lines represent the fibre centre
line and the dashed lines represent the fibre boundary, with the shortest distance to the
centre line being the fibre radius R, which appears in the interaction potential U given by
Equation (3.4). Figure 3.2(a) shows the result for k = 1. Comparing the result to the case
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without interaction and noise, see Figure 2.1(a), we see that the interaction potential shows
some effect on the fibre curve as the regular structure is lost. However, the interaction is
not strong enough to prevent self–intersection. Continuing to Figure 3.2(b), we observe
that the choice of k = 10 is large enough to prevent any obvious self–intersections. The
fibre image is as expected. Although the effect of the coiling potential V is to force the
fibre back to the origin, the portion of the fibre already laid down prevents this and the fibre
movement continues along its own historical trajectory. Following the fibre curve from its
initial position, we see that the interaction almost exactly happens where it is supposed
to be, namely at the fibre boundary. However, a slight overlap of the fibre boundaries is
observed. This effect can be seen by looking closely at the dashed lines representing the
fibre boundary. Figures 3.2(c) and 3.2(d), where k = 40 and k = 100 respectively, show
the same qualitative behaviour for the fibre position and for k = 100 we see that the fibre
boundaries almost perfectly match.

3.2.2 The influence of the fibre radius

Figure 3.3 shows the fibre solution to Equation (3.2) for varying fibre radius R with all
other parameters fixed. In particular, we choose A = 0. As R increases we observe an
increase in the size of the domain occupied by the fibre, with a decrease in the number of
loops but no qualitative change in the shape of the fibre.

3.2.3 The influence of the interaction strength

Now we demonstrate the effect of increasing cU , the parameter describing the interaction
strength, on the solution of Equation (3.2) with all the other parameters fixed. In particular,
we choose A = 0. Results are shown in Figure 3.4, and it is obvious that changing the
size of cU has a big effect on the fibre shape. In Figure 3.4(a), with cU = 1, we see that
the fibre self–intersects in many places. This implies that when cU is small, intersections
cannot be prevented. However, the interaction potential obviously has an effect on the
fibre movement, which can be seen by comparing the latter figure to Figure 2.1(a) in
the case without interaction and A = 0. The fibre in Figure 3.4(b), with cU = 10, has
no self-intersections. In Figure 3.4(c), where cU = 30, the overall domain occupied by
the fibre increases and the shape changes when compared to Figure 3.4(b). The domain
occupied by the fibre increases even more for cU = 50 as the influence of the external
potential V becomes even smaller.

3.2.4 The influence of noise

To investigate the effect of noise on the fibre shape, we now examine solutions of Equa-
tion (3.2), shown in Figure 3.5, for varying A. All other parameters remain fixed. For
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Figure 3.3 – Fibre curves with different radii R. The solid line indicates the fibre centre line,
whereas the dashed lines indicate the fibre boundary. The initial position and orientation are
x1

0 = (1,1)T and α1
0 = 3π/2 respectively. The parameters used for these figures are A = 0,

k = 100, cU = 50, t = 100.
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Figure 3.4 – Fibre curves for different values cU . The initial position and orientation are
x1

0 = (1,1)T and α1
0 = 3π/2 respectively. The other parameters used for these figures are

A = 0,k = 100,R = 0.2, t = 100.



3.2 The influence of model parameters 39

−8 0 8
−8

0

8

e1

e 2

(a) A = 0.1

−8 0 8
−8

0

8

e1

e 2

(b) A = 0.3

−8 0 8
−8

0

8

e1

e 2

(c) A = 0.7

−8 0 8
−8

0

8

e1

e 2

(d) A = 1

Figure 3.5 – Fibre curves for different values A. The solid blue line indicates the fibre
centre line, whereas the dashed lines indicate the fibre boundaries. The initial position and
orientation are x1

0 = (1,1)T and α1
0 = 3π/2 respectively. The parameters used for these figures

are k = 100,cU = 10,R = 0.4, t = 100.
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all the numerical simulations we use the same random numbers in the Euler–Maruyama
scheme.

Comparing Figures 3.5(a) and 3.5(b) it is interesting to see that the increase in noise has
hardly any effect on the fibre image. However, for even larger values of A, see Figures 3.5(c)
and 3.5(d), a marked change in the fibre image compared may be observed, when compared
to Figures 3.5(a) and 3.5(b). Firstly, the orientation of the fibre changes from clockwise in
Figures 3.5(a) and 3.5(b) to counter–clockwise in Figures 3.5(c) and 3.5(d). This effect can
be explained by small variations in the orientation angle at the beginning of the simulation
due to the stochastic effects. Secondly, the fibre curves in Figures 3.5(c) and 3.5(d) do
not look very smooth compared to Figures 3.5(a) and 3.5(b), as expected for large noise
amplitudes A.

We have seen that the model strongly depends on the various parameters and that for strong
enough interaction cU and large enough k, it is possible to prevent fibre intersections.

3.3 Extensions of the two–dimensional model

In Section 3.1 we have seen that it is possible to include the thickness of the fibres in the
standard two–dimensional model given by Equation (2.2) which results in a large system
of coupled stochastic differential equations with time lag described by Equation (3.2). First
numerical experiments in Section 3.2 have illustrated that the required non–intersection
can be achieved with the correct choice of model parameters and the fibre thickness can
be represented appropriately. In this section we show how the belt movement can be
incorporated into the model.

3.3.1 A model with belt movement

As in Chapter 2, in the case without interaction, the belt movement plays an important role
for a realistic description of the fibre lay down. To include the effect of the belt movement,
we consider, as in the case without interaction, a reference curve γ . Here we assume that
all the fibres have the same production speed and, thus, we can use the same reference
curve throughout. As we want the fibre curve to follow the reference curve γ , we modify
the basic fibre model with interaction given by Equation (3.2) and consider the following
equations

dη i
t = v(α i

t )dt,

dα i
t =−

(
∇V (η i

t − γt)+

(
N

∑
j=1

∫ t

0
∇U(xi

t− x j
s)ds

)
· v⊥(α i

t )

)
dt +AdW i

t .
(3.6)
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The actual position of fibre i is denoted by η i. We see that the interaction term remains
unchanged when compared to the case without belt movement. To consider the deviation
of the actual fibre positions from the reference curve, we consider xi = η i− γ . The
corresponding equations are then given by

dxi
t = v(α i

t )dt−dγt ,

dα i
t =−

(
∇V (xi

t)+

(
N

∑
j=1

∫ t

0
∇U(xi

t− x j
s + γt− γs)ds

)
· v⊥(α i

t )

)
dt +AdW i

t .
(3.7)

We note that the reference curve γ with its complete history also appears in the interaction
term.

To examine the effect of the belt movement on the fibre shape, in Figure 3.6 we present
illustrative results with N = 2 and the belt function as defined by Equation (2.8) with
varying speed ratios ψ . As the ratio of belt to production speed ψ increases, the effect of
the belt movement dominates that of the coiling potential V and the fibres become stretched
out and less coiled. In all cases we can see that due to the interaction potential U the fibres
do not intersect.

3.3.2 The delay length

In the previous section we have seen that including the fibre interaction over the whole
length of the fibres can be achieved by introducing an interaction potential and delay
integral over the full history. However, the full length of the fibre will not always influence
the portion of the fibre currently being laid down. Only the material in the immediate
vicinity of the lay down area, which has not already been transported away by the belt,
needs to be considered. This can also be seen in Figures 3.6(c) and 3.6(d) where the
fibres are stretched out rather than tightly coiled due to the dominating effect of the belt
movement. Therefore, a legitimate assumption is to include only a fixed length of the fibre
history to include all interactions. Thus, we introduce a finite delay length H > 0 on which
fibre interactions are relevant. However, when the first fibre material is produced and laid
down on the belt, all of the current fibre material plays a role for interactions and, therefore,
should be considered. This can be realised by introducing a delay function hH depending
on H which is defined by

hH(t) =





t, for t ≤ H,

H, for t > H.
(3.8)
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Figure 3.6 – Two interacting fibres with belt movement, solutions of Equation (3.7), with length
t = 100 and for different speed ratios ψ for the reference curve γ defined by Equation (2.8).
The solid blue and red lines represent the centre lines of two single fibres, whereas the dashed
lines represent the fibres boundary. The initial positions are x1

0 = (1,1)T and x2
0 = (−1,−1)T

respectively. The initial orientations are α1
0 = 3π/2 and α2

0 = 0. The parameters used for these
figures are A = 1,k = 100,cU = 20,R = 0.4, t = 20.
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Then, the model described by Equation (3.6) changes to

dη i
t = v(α i

t )dt,

dα i
t =−

(
∇V (η i

t − γt)+

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

)
· v⊥(α i

t )

)
dt +AdW i

t ,
(3.9)

or for the relative fibre position xi

dxi
t = v(α i

t )dt−dγt ,

dα i
t =−

(
∇V (xi

t)+

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s + γt− γs)ds

)
· v⊥(α i

t )

)
dt +AdW i

t .

(3.10)

As H→ ∞ we obtain the full interaction case again, Equations (3.6) and (3.7).

We motivated the introduction of a finite delay length by the belt movement. Nevertheless,
it can also be interesting to see how the delay length influences the fibre behaviour in the
basic model without belt movement given by Equation (3.2). Thus, we also consider the
basic model for interacting fibres with finite delay given by

dxi
t = v(α i

t )dt,

dα i
t =−∇V (xi

t) · v⊥(α i
t )dt−

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

)
· v⊥(α i

t )dt +AdW i
t .

(3.11)

This formulation is a generalisation of Equation (3.2) and both models coincide for H→∞.

3.4 Models in higher dimensions

In Chapter 2 we have seen that multiple extensions of the models without interaction in
two space dimensions exist. In particular, we discussed three–dimensional models and
models with an anisotropic orientation distribution. We now apply the strategy presented
in Section 3.1 to these model extensions and include the fibre thickness. Afterwards, we
present illustrative examples.

3.4.1 The basic model in arbitrary dimensions

It is possible to derive a formulation in arbitrary dimension d ≥ 2 with interaction, as done
for the case without interaction in Chapter 2. We denote the position and orientation of the
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i–th fibre, i ∈ {1, . . . ,N}, by

xi : R+→ Rd,

vi : R+→ Sd−1,
(3.12)

and, in addition, use the d–dimensional versions for the potentials V :Rd→R, U :Rd→R.
Then, we describe the fibre paths by the following system of coupled stochastic differential
delay equations

dxi
t = vi

tdt,

dvi
t =
(
I− vi

t⊗ vi
t
)
◦
(
− 1

d−1
∇V (xi

t)dt− 1
d−1

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

)
dt +AdW i

t

)
,

(3.13)

where
(
W i

t
)

t≥0 denote independent d–dimensional Brownian motions and (xi,vi) ∈Md .
Sometimes it is more convenient to use the Itô formulation of Equation (3.13) which is

dxi
t =vi

tdt,

dvi
t =−

(
I− vi

t⊗ vi
t
)
(

1
d−1

∇V (xi
t)dt +

1
d−1

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

))

− d−1
2

A2vi
tdt +A

(
I− vi

t⊗ vi
t
)

dW i
t .

(3.14)

For d = 2 we retrieve the two–dimensional interacting fibre model described by Equa-
tion (3.2), but now with the variables (xi,vi) with the orientation vector instead of (xi,α i)

with the orientation angle.

For d = 3 we have the interacting fibre model for three space dimensions. In Figure 3.7 we
can see example solutions of Equation (3.14) for N = 2 in three dimensions with varying
noise A. In all the four cases we can see that interaction takes place.

3.4.2 The anisotropic model

The cases of particular interest in terms of applications are d = 2 and d = 3. The former
describes planar lay down and the latter isotropic lay down in all three space directions. As
in the case without interaction in Chapter 2, it would be interesting to include the anisotropic
behaviour in the angular distribution. To achieve this we consider the anisotropic model
without interaction, Equation (2.26), for each fibre and, following the same strategy as in
the isotropic case with interaction, we add the interaction term to the external potential
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(a) A = 0 (b) A = 0.1

(c) A = 0.5 (d) A = 1

Figure 3.7 – Two interacting fibres, solutions of Equation (3.14) for d = 3, with length
t = 100 and for different noise amplitudes A. The blue and red lines represent single fibres
with the initial positions x1

0 = (−6,0,0)T and x2
0 = (0,−0.1,−1)T and initial orientations

v1
0 = (1,0,0)T and v2

0 = (0,0,1)T respectively. The parameters used for these figures are
k = 100,cU = 10,R = 0.4.

which leads to

dxi
t = vi

tdt,

sinθ i
t dα i

t =−
1

B+1

(
∇V (xi

t)+

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

))
·ni

1,tdt +AdW i
t,1,

dθ i
t =−

B
B+1

(
∇V (xi

t)+

(
N

∑
j=1

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

))
·ni

2,tdt,

+
1
2

A2 cotθ i
t dt +

√
BAdW i

t,2.

(3.15)
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where vi = v(α i, θ i), ni
1 = n1(α i,θ i) and ni

2 = n2(α i,θ i). Here
(

W i
t,1

)
t≥0

and
(

W i
t,2

)
t≥0

are independent one–dimensional Brownian motions. The system inherits the geometrical
properties of the non–interacting case in the small B limit, see Section 2.2.3. This can be
seen easily when setting B = 0 and denoting the third component of the fibre position xi by
xi
·,3 which leads to

xi
t,3 = cosθ i

t dt,

θ i
t =

1
2

A2 cotθ i
t ,

for all i ∈ {1, . . . ,N} independently. As for the case without interaction, we obtain the
explicit solution

θ i
t = arccos

(
exp
(
−1

2
A2t
)

cosθ i
0

)
,

xi
t,3 = xi

0,3 +
2

A2 exp
(
−1

2
A2t
)

cosθ i
0.

To recover a two–dimensional solution, we make the choice for the initial conditions of
θ i

0 =
π
2 . This yields θ i

t =
π
2 and xi

t,3 = xi
0,3. In Figure 3.8 we give examples for solutions

of Equation (3.15) for N = 2 using different B. For B→ 0 we can see that the fibre images
become more planar. Nevertheless, intersection is avoided.

3.5 Summary
In this chapter we have introduced a novel model for fibre lay down which includes the
effects of the fibre thickness. This is achieved by including interactions between the fibres
and can, in suitable parameter regimes, prevent unphysical intersections of the fibres. We
have shown how to incorporate the interaction into several of the SDE models presented
in Chapter 2 by introducing interaction potentials along the whole of the fibre length. To
represent the movement of a belt, we extended this approach to only include a finite delay
length for the fibre interaction. Furthermore, we were able to include the effect of fibre
thickness in the anisotropic fibre model as well. To sum up, we achieved an extension of
the model hierarchy which allows for a more detailed description due to the interaction
introduced.
In the next chapter we will discuss macroscopic equations for interacting fibres based on
the SDE models presented in this chapter and discuss the characteristic behaviour for many
long interacting fibres.
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(a) B = 1 (b) B = 10−1

(c) B = 10−2 (d) B = 10−3

Figure 3.8 – Two interacting fibres, solutions of Equation (3.15), with length t = 100 and
for different anisotropy parameters B. The blue and red lines represent single fibres with the
initial positions x1

0 = (−6,0,0)T and x2
0 = (0,−0.1,−1)T and initial orientations v1

0 = (1,0,0)T

and v2
0 = (0,0,1)T respectively. The fibre radius R used for the numerical simulations is the

same as the one used in the interaction potential. The parameters used for these figures are
A = 1,k = 100,cU = 5,R = 0.4.





4 The long–time behaviour

In many physical systems the long–time behaviour plays an important role. In particular,

an analysis of the stationary states and the convergence to these states can give an insight

into the dynamics of the system and its dependence on the modelling parameters. The

convergence to a stationary state plays a particularly important role for us as the long–

time behaviour corresponds to the case of very long fibres, as is the case in the industrial

production process.

We begin by describing a macroscopic equation for many interacting fibres, before we

derive a diffusion approximation. Then, we analyse the convergence to equilibrium from

an analytical point of view. Finally, we solve the diffusion approximation numerically to

give a further insight into the long–time behaviour of the system and its dependence on the

various modelling parameters involved. In particular, we show how the interaction term

and the delay influence the fibre distribution and the convergence to an equilibrium state.

4.1 Macroscopic equations

As many fibres are necessary for the production of a non–woven material, the limit N→ ∞
is of particular interest for us. Before we can begin to give a statistical description of the
fibre position and orientation for many long fibres, we have to adapt the isotropic model
given by Equation (3.14) slightly. By scaling the interaction term with the number of fibres
N, we guarantee that the interaction term is kept to order one for arbitrary N. This scaling
is known as the weak–coupling scaling. For more details, see BRAUN and HEPP (1977),
DOBRUSHIN (1979), SPOHN (1991), GOLSE (2003), J. A. CARRILLO, D’ORSOGNA,
et al. (2009), BOLLEY, GUILLIN, et al. (2010), and GOLSE (2016). In a similar manner
we also scale the time integral by a factor 1/hH(t). This keeps the interaction part to order
one for increasing t. Both scalings together allow for the analysis of the case of many long
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fibres. Overall, the scaled interacting fibre system is given by

dxi
t =vi

tdt,

dvi
t =−

(
I− vi

t⊗ vi
t
)
(

1
d−1

∇V (xi
t)dt +

1
d−1

(
1
N

N

∑
j=1

1
hH(t)

∫ t

t−hH(t)
∇U(xi

t− x j
s)ds

))

− d−1
2

A2vi
tdt +A

(
I− vi

t⊗ vi
t
)

dW i
t .

(4.1)

Taking the limit H→ 0 leads to a non–retarded system with endpoint interaction

dxi
t =vi

tdt,

dvi
t =−

(
I− vi

t⊗ vi
t
)
(

1
d−1

∇V (xi
t)dt +

1
d−1

(
1
N

N

∑
j=1

∇U(xi
t− x j

t )

))

− d−1
2

A2vi
tdt +A

(
I− vi

t⊗ vi
t
)

dW i
t .

(4.2)

In contrast, as H→ ∞, we have hH(t) = t and, therefore, obtain the scaled retarded system
on the whole fibre length

dxi
t =vi

tdt,

dvi
t =−

(
I− vi

t⊗ vi
t
)
(

1
d−1

∇V (xi
t)dt +

1
d−1

(
1
N

N

∑
j=1

1
t

∫ t

0
∇U(xi

t− x j
s)ds

))

− d−1
2

A2vi
tdt +A

(
I− vi

t⊗ vi
t
)

dW i
t .

(4.3)

4.1.1 The mean–field equation

The system in Equation (4.1) describes the single fibre paths in detail. However, this
description has several disadvantages. Firstly, the long–time behaviour of the system is not
immediately clear and numerical simulations become cumbersome and inefficient for large
N. Secondly, in our case with delay, it is also necessary to compute the interactions along
a part of, or even along the whole of, the fibre history for every single fibre. Finally, one is
often not interested in the properties of each single fibre, but in how a system containing
many fibres behaves.

To analyse the behaviour of an ensemble of many interacting particles, a classical approach
is to consider the joint probability density. In the following we consider the evolution of
the (probability–) density

f : R+×Md → R,
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where f (t,x,v) can be interpreted as the probability of finding a fibre point with arc–length
t, position x and orientation v. We refer to

ρ(t,x) =
∫

Sd−1
f (t,x,v) dν ,

as the spatial density. With dν we denote the normalised surface measure on Sd−1

∫

Sd−1
dν = 1.

We assume that the normalisation
∫

Md
f (t,x,v) dµ =

∫

Rd
ρ(t,x) dx = 1, (4.4)

holds, where dµ = dν dx, with dx being the Lebesgue measure on Rd .

We introduce ∇x, ∇v and ∆v to describe the gradient on Rd , the gradient and the Laplace–
Beltrami operator on Sd−1 respectively. With this notation, the mean–field equation

(BRAUN and HEPP, 1977; DOBRUSHIN, 1979; GOLSE, 2003; GOLSE, 2016; BOLLEY,
CANIZO, et al., 2011) for the general isotropic case can be written as (BORSCHE et al.,
submitted)

∂t f + v ·∇x f +S f =
A2

2
∆v f , (4.5)

with force term S = SV +SU defined by

SV f (t,x,v) =− 1
d−1

∇v · ( f (t,x,v)(I− v⊗ v)∇xV ) ,

SU f (t,x,v) =

− 1
d−1

∇v ·
(

f (t,x,v)(I− v⊗ v)
1

hH(t)

∫ t

t−hH(t)

∫

Rd
∇xU(x− y)ρ(s,y) dy ds

)
.

(4.6)

In Equation (4.6) the force terms SV and SU represent transport due to the external potential
V and the interaction potential U respectively. We make the assumption that our initial
condition is given by f0(x,v) = f (0,x,v). We note that, for cU = 0 in the interaction
potential U , we obtain the description of non–interacting fibres. See Chapter 2 for the
cases in two and three dimensions. The term

1
hH(t)

∫ t

t−hH(t)

∫

Rd
∇xU(x− y)ρ(s,y) dy ds, (4.7)

in Equation (4.6) can also be interpreted as the convolution ∇xU ? ρ̄(t,x) of ∇xU and the
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time average of ρ which is defined by

ρ̄(t,x) :=
1

hH(t)

∫ t

t−hH(t)
ρ(s,x) ds.

We are particularly interested in the case of long interacting fibres and their spatial distri-
bution which is given by the stationary solution of Equation (4.5) which can be found by
considering a time–independent solution. As we are interested in the spatial distribution,
we seek solutions independent of the orientation v which leads to

ρ∇x (lnρ +V +U ?ρ) = 0.

This then leads to the integral equation

lnρ +V +U ?ρ = const,

where the constant is determined by the normalisation condition for ρ given in Equa-
tion (4.4). The equivalent fixed–point form is given by

ρ =
exp(−V −U ?ρ)∫

Rd
exp(−V −U ?ρ) dx

, (4.8)

and we see that the stationary solution is only given implicitly. In addition, uniqueness and
existence are not guaranteed. Furthermore, Equation (4.8) does not give any information
about the evolution of the spatial density ρ and the influence of the parameters involved in
the model for the convergence towards a stationary solution.

4.1.2 The diffusion approximation

To obtain an evolution equation for the spatial density ρ , we now derive a simplified
version of the mean–field equation given by Equation (4.5). This is done by performing a
large diffusion scaling. In this case the diffusion with respect to the orientation variable
dominates. In terms of the fibre production process, this case corresponds to large turbu-
lences due to the air stream. This leads to the diffusion approximation, which describes
the evolution of the spatial density ρ independent of the orientation variable v. A clear
discussion of different possible scalings, in addition to the large diffusion scaling, can be
found in HILLEN and PAINTER (2013) where several scalings and their advantages and
disadvantages in different settings are discussed.

We consider large values for the noise amplitude A on a diffusive time scale. Thus, we
perform a change of variables Ã =

√
εA, t̃ = εt, where 0 < ε � 1. Substitution into
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Equation (4.5), multiplication by ε and omitting the tilde notation results in

ε2∂t f + εv ·∇x f + εS f =
A2

2
∆v f . (4.9)

Substituting the Hilbert expansion f = f (0)+ ε f (1)+ . . . (CERCIGNANI, 1990) into Equa-
tion (4.9) and examining terms with equal powers of ε gives f (0)(t,x,v) = ρ(t,x) to zero
order. To first order in ε we obtain

v ·∇x f (0)+S f (0) =
A2

2
∆v f (1).

This has the solution

f (1)(t,x,v) =− 2
A2(d−1)

v · f (0)(t,x)∇x

(
ln f (0)(t,x)+V (x)+U ? ρ̄(t,x)

)
. (4.10)

As we still have the two unknowns, f (0) and f (1), but only one equation, we integrate
Equation (4.9) by dν to obtain

ε∂t

∫

Sd−1
f (t,x,v) dν +∇x ·

∫

Sd−1
v f (t,x,v) dν = 0.

Substitution of the Hilbert expansion into the latter equation and the comparison of terms
of first order in ε yields

∂t f (0)+∇x ·
∫

Sd−1
v f (1) dν = 0.

Substitution of f (1) from Equation (4.10) gives

∂tρ(t,x)−∇x ·
∫

Sd−1
v⊗ v dν

2
A2(d−1)

ρ(t,x)∇x (lnρ(t,x)+V (x)+U ? ρ̄(t,x)) = 0.

Application of the relationship
∫

Sd−1
v⊗ v dν =

1
d

I, (HILLEN, 2005; HILLEN and PAINTER,
2013) yields

∂tρ =
2

d(d−1)A2 ∇x · [ρ∇x (lnρ +V +U ? ρ̄)] .

Note that this equation is purely dependent on time and space and no longer on the
orientation v. This equation can be rewritten as

∂tρ =
2

d(d−1)A2 [∆xρ +∇x · (ρ [∇xV +∇xU ? ρ̄])] , (4.11)
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where ∆x denotes the Laplace operator on Rd . This is an advection–diffusion equation. By
introducing a new time scale t̂ =Ct with

C :=
2

d(d−1)A2 ,

and dropping the caret notation, we end up with

∂tρ = ∆xρ +∇x · (ρ [∇xV +∇xU ? ρ̄]) . (4.12)

This shows that the case of large noise A plays the role of a time scaling and, therefore,
influences the speed of convergence towards the stationary state. In addition, the time
scaling depends on the space dimension d.

4.2 Convergence to equilibrium for interacting fibres
Our aim is to perform an analysis of the convergence to equilibrium for the diffusion ap-
proximation given by Equation (4.12). This will give us, as in the case without interaction,
an important insight into the dependence of the system on the model parameters. The delay
length H and the interaction strength represented by cU are of particular interest for us as
they contain the novel additions to the existing fibre models.
Motivated by our interacting fibre model stated in BORSCHE et al. (submitted), in KLAR,
KREUSSER, et al. (in preparation) and KREUSSER (2015), a similar second order system
with continuous delay was analysed. In contrast to BORSCHE et al. (submitted), in KLAR,
KREUSSER, et al. (in preparation) and KREUSSER (2015) no projection to the unit sphere
for the velocity was applied, but instead an additional friction term was introduced. To
analyse the long–time behaviour of the interacting particle system in these studies, the
methods introduced in BOLLEY, GUILLIN, et al. (2010) were adapted to allow for delay. In
the following we will apply the techniques developed in BOLLEY, GUILLIN, et al. (2010),
KLAR, KREUSSER, et al. (in preparation), and KREUSSER (2015) to our model. To apply
these techniques, we consider both the particle approximation of Equation (4.12) given by

dxi
t =

(
−∇V (xi

t)−
1
N

N

∑
j=1

1
hH(t)

∫ t

t−hH(t)
∇U(xi

t− x j
s) ds

)
dt +dW i

t , (4.13)

which is a first order system, and a mean–field stochastic differential equation with delay

dxt =−∇V (xt)−
1

hH(t)

∫ t

t−hH(t)
∇U ?ρs(xt) ds+dWt . (4.14)

In the latter equation we dropped the superscript notation as the particles are indistinguish-
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able in this description. Here and in the following we use the notation ρs(x) := ρ(s,x),
where ρ is the solution of Equation (4.12) and ρt is the law of xt , i.e. xt is ρt–distributed.
Therefore, we sometimes also call ρ the solution of Equation (4.14). The difference
between Equation (4.13) and Equation (4.14) is that the former describes a whole particle
system, whereas the latter is given by one equation and the information about interactions
of the fibres is given by the convolution ∇U ?ρ . However, as shown in BOLLEY, GUILLIN,
et al. (2010) and KREUSSER (2015), for second order models with and without delay,
the particle approximation converges to the mean–field stochastic differential equation as
N→ ∞.

4.2.1 Preliminaries and definitions

To specify what we mean by the convergence to equilibrium for a solution of Equa-
tion (4.14), we have to describe which space and which distance we use. Thus, we will use
the following definitions (VILLANI, 2003).

Definition 4.1 Let µ be a Borel measure on Rd , i.e. µ ∈P
(
Rd). Then, we denote the

set of probability measures on Rd with finite p–th moment, p ∈ N, by

Pp

(
Rd
)

:=
{

µ ∈P
(
Rd
)∣∣
∫

Rd
‖z‖p dµ(z)< ∞

}
.

Definition 4.2 Let µ,ν ∈P
(
Rd) be two Borel measures on Rd . Then, we define the

following set of measures on Rd×Rd by

Π(µ,ν) =
{

π ∈P
(
Rd×Rd

)∣∣
∫

Rd×Rd
(φ(x)+ψ(y)) dπ(x,y) =

∫

Rd
φ dµ +

∫

Rd
ψ dν

}
,

where φ and ψ are integrable, non–negative functions on Rd . The elements π ∈Π(µ,ν)
are called transference or transfer plans from µ to ν .

A quite popular and useful distance on the space of probability measures with finite second
moments, which we will use for our convergence result, is the 2–Wasserstein distance.

Definition 4.3 Let µ,ν ∈P2
(
Rd), i.e. Borel probability measures on Rd with finite

second moments. Then, we define the 2–Wasserstein (Monge–Kantorovich) distance by

W2 (µ,ν) =
(

inf
π∈Π(µ,ν)

∫

R2d
‖x− y‖2 dπ(x,y)

)1/2

.
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The 2–Wasserstein distance may also be written as

W2 (µ,ν) =
(

inf
[
E
(
‖Y −Z‖2

)])1/2
,

where the infimum is taken over all pairs of random variables (Y,Z) which are µ and ν
distributed respectively, i.e. µ = law Y and ν = law Z.
To actually show convergence to a stationary state, the following two results will be of
great importance (HALANAY, 1966).

Theorem 4.4 Let f : R×R×R→ R be a function such that f (t,u,v) is continuous for
all (u,v) and all t0 ≤ t < t0 +ξ for some ξ > 0. Furthermore, let f (t,u,v) be increasing

with respect to v. Let us suppose that
dy
dt
≤ f

(
t,y(t), sup

s∈[t−H,t]
y(s)

)
for t0 ≤ t < t0 +ξ

and some constant H > 0. If ϕ is the solution of the equation

dϕ
dt

= f

(
t,ϕ(t), sup

s∈[t−H,t]
ϕ(s)

)
, for t ∈ [t0, t0 +ξ ),

with the initial condition ϕ(s) = y(s), s ∈ [t0−H, t0], then

y(t)≤ ϕ(t),

for t ∈ [t0, t0 +ξ ).

From this theorem the following result can be shown.

Lemma 4.5 Let h : R+→ R denote a non–negative, continuous and bounded function
and let H = supt≥0 h(t)> 0. In addition let y be a non–negative function satisfying

dy
dt
≤−ay(t)+b sup

s∈[t−h,t]
y(s), for t > t0,

with initial datum y(s) = y(t0),s ∈ [t0−H, t0], where a and b are non-negative constants
satisfying a > b≥ 0. Then, y may be estimated from the above by

y(t)≤ y(t0)exp(−λ (t− t0)), for all t ≥ t0.

The decay rate λ is explicitly given by

λ = a− 1
H
W(bH exp(aH))> 0,
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where W denotes the product logarithm function, which is defined by z=W(z)exp(W(z))

for all z ∈ R.

We see that, according to Lemma 4.5, in order to show convergence to equilibrium it is
essential to find a function y and constants a and b which relate to Equation (4.14). As a
result exponential decay can be shown and a bound for the decay rate can be given.

4.2.2 Decay estimates and convergence

Instead of directly presenting convergence results for Equation (4.14), we first consider a
slightly more generalised equation, namely

dXt = A(Xt)dt−
(

1
h(t)

∫ t

t−h(t)

∫

Rd
B(Xt ,x)ρs(x) dx ds

)
dt +dWt , (4.15)

where h denotes a general delay function which fulfils the requirements of Lemma 4.5.
Afterwards, in Section 4.2.3, we will show how these results can be applied to Equa-
tion (4.14).
Before stating the convergence result in Theorem 4.8, we make the following two assump-
tions.

Assumptions 4.6 Assume that the function A : Rd → Rd in Equation (4.15) is of the
form

A(x) =−αx+g(x),

where α > 0 is a constant and g is Lipschitz continuous with the Lipschitzconstant
cg > 0, i.e.

‖g(x)−g(y)‖ ≤ cg ‖x− y‖ , for all x,y ∈ Rd.

Assumptions 4.7 Assume that the function B : Rd×Rd → Rd in Equation (4.15) satis-
fies

‖B(x, x̂)−B(y, x̂)‖+‖B(x, x̂)−B(x, ŷ)‖ ≤ cB (‖x− y‖+‖x̂− ŷ‖) ,

for some constant cB > 0, independent of x, x̂,y, ŷ ∈ Rd .

Theorem 4.8 Under Assumptions 4.6 and 4.7, for any α,cg,cB ≥ 0 with
α− cg−2cB > 0 and a non–negative, continuous and bounded delay function
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h : R+→ R with H = supt≥0 h(t)> 0, there exists a constant λ such that the decay
estimate

W2 (ρt , ρ̂t)
2 ≤ exp(−λ t)W2 (ρ0, ρ̂0)

2 , for t ≥ 0,

holds true for the solutions ρ and ρ̂ of Equation (4.15) with the corresponding initial
conditions ρ0, ρ̂0 ∈P2

(
Rd). In particular, the decay rate λ is explicitly given by

λ = λ1−
1
H
W(λ2H exp(λ1H))> 0, (4.16)

where λ1 > λ2 ≥ 0 with

λ1 = α− cg− cB, λ2 =
c2

B
α− cg− cB

. (4.17)

Proof. Let Xt and X̂t be solutions of Equation (4.15) with ρt = law(Xt) and ρ̂t = law(X̂t).
Suppose that X and X̂ fulfil Equation (4.15) with the same Brownian motion. Then,
xt := Xt− X̂t ∈ Rd satisfies

dxt =
(
A(Xt)−A(X̂t)

)
dt−

(
1

h(t)

∫ t

t−h(t)

∫

Rd

(
B(Xt ,y)ρs(y)−B(X̂t ,y)ρ̂s(y)

)
dy ds

)
dt.

One can directly compute

d
dt
‖xt‖2 =2

〈
xt ,−αxt +

(
g(Xt)−g(X̂t)

)〉

−2
〈

xt ,

(
1

h(t)

∫ t

t−h(t)

∫

Rd

(
B(Xt ,y)ρs(y)−B(X̂t ,y)ρ̂s(y)

)
dy ds

)〉
,

(4.18)

where 〈·, ·〉 denotes the scalar product on Rd×Rd . Thus, we have

d
dt
E
(
‖xt‖2

)
=2E

(〈
xt ,−αxt +

(
g(Xt)−g(X̂t)

)〉)

−2E
(〈

xt ,

(
1

h(t)

∫ t

t−h(t)

∫

Rd

(
B(Xt ,y)ρs(y)−B(X̂t ,y)ρ̂s(y)

)
dy ds

)〉)
.

(4.19)

To estimate the first term of this equation, we note that

〈
xt ,g(Xt)−g(X̂t)

〉
≤ cg ‖xt‖2 ,

due to the Lipschitz continuity of g by Assumptions 4.6. We set πt = ρt ⊗ ρ̂t where
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πt ∈Π(ρt , ρ̂t) is a transference plan between ρt and ρ̂t . Thus, we have the relationship
∫

Rd
B(Xt ,y) ρs(dy)−

∫

Rd
B(X̂t , ŷ) ρ̂s(dŷ) =

∫

Rd×Rd

(
B(Xt ,y)−B(X̂t , ŷ)

)
πs(dy,dŷ).

Due to the estimate

−
〈
xt ,B(Xt ,y)−B(X̂t , ŷ)

〉
≤ ‖xt‖

∥∥B(Xt ,y)−B(X̂t , ŷ)
∥∥ ,

≤ ‖xt‖
(
‖B(Xt ,y)−B(Xt , ŷ)‖+

∥∥B(Xt , ŷ)−B(X̂t , ŷ)
∥∥) ,

≤ cB ‖xt‖(‖xt‖+‖y− ŷ‖) ,

where we used the Cauchy–Schwarz and the triangle inequality, we achieve altogether

d
dt
‖xt‖2 ≤−2α ‖xt‖2 +2cg ‖xt‖2

−2
〈

xt ,
1

h(t)

∫ t

t−h(t)

∫

Rd

(
B(Xt ,y)ρs(y)−B(X̂t ,y)ρ̂s(y)

)
dyds

〉
,

≤−2α ‖xt‖2 +2cg ‖xt‖2 +2cB
‖xt‖
h(t)

∫ t

t−h(t)

∫

Rd×Rd
(‖xt‖+‖y− ŷ‖) πs(dy,dŷ)ds,

=− (2α−2cg−2cB)‖xt‖2 +2cB
‖xt‖
h(t)

∫ t

t−h(t)

∫

Rd×Rd
‖y− ŷ‖ πs(dy,dŷ)ds.

By applying Young’s inequality, i.e. ab≤ a2

2δ
+

δb2

2
, for any δ > 0 and a,b∈R, we obtain

d
dt
‖xt‖2 ≤− (2α−2cg−2cB)‖xt‖2

+2cB

(
δ
2
‖xt‖2 +

1
2δ

1
h(t)

∫ t

t−h(t)

∫

Rd×Rd
‖y− ŷ‖2 πs(dy,dŷ)ds

)
,

≤− (2α−2cg−2cB)‖xt‖2

+ cBδ ‖xt‖2 +
cB

δ
sup

s∈[t−h(t),t]

∫

Rd×Rd
‖y− ŷ‖2 πs(dy,dŷ),

=− (2α−2cg− cB(2+δ ))︸ ︷︷ ︸
=:γ

‖xt‖2 +
cB

δ
sup

s∈[t−h(t),t]

∫

Rd×Rd
‖y− ŷ‖2 πs(dy,dŷ),

=− γ ‖xt‖2 +
cB

δ
sup

s∈[t−h(t),t]
E
(
‖xs‖2

)
.

This yields the differential inequality

d
dt
E
(
‖xt‖2

)
≤−γE

(
‖xt‖2

)
+

cB

δ
sup

s∈[t−h(t),t]
E
(
‖xs‖2

)
. (4.20)
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To fulfil the conditions of Lemma 4.5 for y(t) := E
(
‖xt‖2

)
, we must have γ = γ(δ )> 0

as well as γ >
cB

δ
≥ 0. For cB = 0 these conditions are directly fulfilled. Therefore, in the

following, we assume that cB > 0. To maximise γ for the estimate given by Equation (4.20)
under the given conditions, we aim to maximise the function f defined by

f (δ ) :=
γ(δ )
cB/δ

−1 =
2
cB

(α− cg− cB)δ −δ 2−1.

We solve f ′(δmax) = 0 and obtain

δmax =
1
cB

(α− cg− cB).

Furthermore, f ′′(δmax) < 0 and, thus, δmax actually maximises f . With the assumption
α− cg−2cB > 0, a short computation shows

δmax > 1,

f (δmax) = δ 2
max−1 > 0.

Substitution of δmax in Equation (4.20) results in

d
dt
E
(
‖xt‖2

)
≤−(α− cg− cB)E

(
‖xt‖2

)
+

c2
B

α− cg− cB
sup

s∈[t−h(t),t]
E
(
‖xs‖2

)
,

=−λ1E
(
‖xt‖2

)
+λ2 sup

s∈[t−h(t),t]
E
(
‖xs‖2

)
.

Thus, by Lemma 4.5, we have

W2 (ρt , ρ̂t)
2 ≤ E

(
‖xt‖2

)
≤ E

(
‖xt0‖2

)
exp(−λ (t− t0)), for all t ≥ t0,

with

λ = λ1−
1
H
W(λ2H exp(λ1H))> 0.

Minimising over all joint distributions of X0 and X̂0 yields the result. �

With this result we can actually guarantee the existence of a unique stationary state and
the convergence towards it. As shown in BOLLEY (2008), (P2

(
Rd) ,W2) is a com-

plete metric space. Furthermore, Tt(ρ0) := ρt defines a continuous contraction semi–
group on (P2

(
Rd) ,W2). This guarantees the existence of a unique stationary solution

ρ∞ ∈P2
(
Rd) (BOLLEY, GUILLIN, et al., 2010; J. A. CARRILLO and TOSCANI, 2007).
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Therefore, under the conditions of Theorem 4.8, we have convergence to the stationary
state ρ∞ with the convergence rate

W2 (ρt ,ρ∞)
2 ≤ exp(−λ t)W2 (ρ0,ρ∞)

2 , for all t ≥ 0. (4.21)

Recalling the original fibre equations, in addition to a finite delay length, the limit H→ ∞
should also be considered. However, in this case the results for the convergence to
equilibrium shown so far do not hold. In particular, an exponential convergence rate can no
longer be guaranteed. Nevertheless, we can give a polynomial convergence rate (SMITH,
1987). This can be done by applying the same method as used in KLAR, KREUSSER, et al.

(in preparation), to obtain

O
(

t−λ∞
)
, for t→ ∞, (4.22)

where the decay rate λ∞ is defined as

λ∞ := 1− λ̂ ,

λ̂ :=
λ2

λ1
=

c2
B

(α− cg− cB)2 ∈ [0,1).
(4.23)

4.2.3 Application to the diffusion approximation

To apply the theoretical results from Section 4.2.2 to the diffusion approximation given by
Equation (4.14), we set α = 1 and cg = 0. Under these conditions the parameters λ1 and

λ2 given in Equation (4.17) are λ1 = 1−cB and λ2 =
c2

B
1− cB

. For the Lipschitz constant cB

this implies that cB < 0.5 to guarantee convergence. As H→∞ we obtain only polynomial

convergence with λ̂ =
c2

B

(1− cB)
2 . In Figure 4.1 the influence of the parameters cB and

H on the analytical decay rate is illustrated. Figure 4.1(a) shows the dependence of the
decay rate λ (cB,H) given by Equation (4.16) on cB and finite H. For fixed cB we obtain
a monotonically decreasing decay rate for increasing H, with the maximal decay rate at
H = 0. In addition, as cB increases for fixed H, the decay rate decreases monotonically.
Figure 4.1(b) illustrates the effect of the parameter cB on the polynomial decay rate λ∞

given in Equation (4.23), as H → ∞. The decay rate is maximal for cB = 0, and for
cB→ 0.5 even the polynomial convergence is lost.
We note that our delay function hH defined by Equation (3.8) fulfils the requirements of
Theorem 4.8. Furthermore, we identify B(x,y) = ∇U(x− y). Let us denote the Lipschitz
constant of ∇U by c, i.e.

‖∇U(x)−∇U(y)‖ ≤ c‖x− y‖ , for all x,y ∈ Rd.
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Figure 4.1 – The dependence of the decay rates on the parameters cB and H as t → ∞.
Figure 4.1(a) shows the exponential decay rate λ (cB,H) given by Equation (4.16) for finite
values of H for four different values cB. Figure 4.1(b) illustrates how the polynomial decay
rate λ∞ given by Equation (4.23) depends on cB as H→ ∞.

Then, by applying the triangle inequality, we have

‖B(x, x̂)−B(y, x̂)‖+‖B(x, x̂)−B(x, ŷ)‖
= ‖∇U(x− x̂)−∇U(y− x̂)‖+‖∇U(x− x̂)−∇U(x− ŷ)‖ ,
≤ c‖(x− x̂)− (y− x̂)‖+ c‖(x− x̂)− (x− ŷ)‖ ,
= c(‖x− y‖+‖ŷ− x̂‖) .

Thus, the Lipschitz constant of B is identical to the Lipschitz constant of ∇U . Depending
on this value, either exponential or at least polynomial convergence can be guaranteed or
not for solutions of Equation (4.14).

4.3 Numerical results
The conditions for the analytical results presented in Sections 4.2.2 and 4.2.3 are rather
restrictive. Nevertheless, we can perform numerical experiments for situations where the
analytical conditions no longer hold. In this section we present numerical results for the
long–time behaviour of the diffusion approximation given by Equation (4.12). We consider
several different parameters and investigate the stationary states and the convergence
behaviour. Our particular focus lies in examining the influence of the delay length H and
the strength of the interaction potential U , i.e. cU , on the characteristic behaviour of the
solution.
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4.3.1 Initial conditions

As the analytical results already suggest, the convergence to equilibrium should not depend
on the initial condition as long as the conditions of Assumptions 4.6 and 4.7 are fulfilled.
To illustrate that this is actually the case, we consider three different initial conditions in
our numerical simulations. Let ρt,i be the solution of Equation (4.12) at time t with initial
conditions corresponding to the index i≥ 1

ρ0,i(x) =





(
xr,i− xl,i

)−1
, for x ∈ [xl,i,xr,i],

0, else,
(4.24)

where xl,i < xr,i. We set

xl,i = xl +(i−1)xshift,

xr,i = xr +(i−1)xshift,

where xl, xr and xshift are constants. The initial conditions we use have compact support
and fulfil the requirements of Theorem 4.8.

4.3.2 Numerical methods and parameters

For all numerical computations we use a first order splitting method (STRANG, 1968;
MCLACHLAN and QUISPEL, 2002). This means that for each time step we solve the
following two equations consecutively

∂tρ = ∇x · (ρ [∇xV +∇xU ? ρ̄]) , (4.25)

∂tρ = ∆xρ, (4.26)

where the result of one equation after half a time step is used as the initial condition for the
other one. For the first part we use the Lax–Friedrichs scheme (LEVEQUE, 1992). The
second part is solved implicitly in time using the standard second order finite differences
for the Laplace operator ∆x. For all our computations we use an equidistant spatial grid
with step size ∆x, as well as a constant time step ∆t. Furthermore, we use a finite domain
Ω⊂ R along with zero Neumann boundary conditions. If not indicated otherwise, for all
the following numerical simulations of Equation (4.12) we use the parameters as described
in Table 4.1.

We checked that the domain considered is sufficiently large and that the step sizes used
are sufficiently small. Furthermore, we consider the delay lengths H ∈ {0,10,40,∞}, the
interaction strengths cU ∈ {1,2,4,6} and the initial conditions i ∈ {1,2,3}. In Figure 4.2
the three different initial conditions given by Equation (4.24) in combination with Table 4.1
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Symbol k Ω ∆x ∆t xl xr xshift t
Value 10 (−10,10) 0.04 ∆x/64 −3 1 1 100

Table 4.1 – Joint parameters used for all numerical simulations of Equation (4.12).

−10 0 10

0

0.25

x

i = 1
i = 2
i = 3

Figure 4.2 – The initial conditions used for the numerical simulations given by Equation (4.24)
and Table 4.1.

are illustrated. For k given as in Table 4.1, the Lipschitz constant of ∇U is approximately
1.07 for cU = 1. This means that our numerical analysis is beyond the parameter regime
where the analytical results are valid.

For all the numerical simulations we used MATLAB (2015).

4.3.3 The stationary states

The steady states are of particular interest when examining the long–time behaviour of
Equation (4.12) as they describe how the long fibres are distributed. In Figure 4.3 we show
the solutions for the three different initial conditions i ∈ {1,2,3} and the four values of cU

at t = 100 for H→ ∞. The solutions for the four different non–zero values of cU shown
are symmetric around the origin and bell–shaped, like the reference solution for which
cU = 0. As cU increases the maximal value of the solution at x = 0 decreases and the
variance increases. In addition, the solutions at t = 100 for the three initial conditions and
fixed cU are indistinguishable, which indicates that the stationary state is independent of
the initial conditions. Steady state solutions for the other delay lengths H ∈ {0,10,40}
are indistinguishable and, therefore, not shown. This implies that the steady states are
independent of the delay length.
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Figure 4.3 – The solutions of Equation (4.12) at t = 100 for different values of cU with the
initial conditions as described in Equation (4.24) and H→ ∞. The red dashed line represents
the stationary reference solution, the case where there is no interaction, cU = 0. The solutions
for i ∈ {1,2,3} cannot be distinguished in all subfigures. For all numerical simulations the
parameters given in Table 4.1 are used.
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4.3.4 Convergence to equilibrium

As we have seen in the previous section, in our examples the delay length does not influence
the stationary solutions. However, we expect that the delay length influences the dynamics
and, therefore, the convergence behaviour towards the stationary state. We begin by
investigating the influence of the choice of the initial condition on the evolution of the
solution. This is done by analysing

∥∥ρt,i−ρt, j
∥∥

L1
=
∫

R
|ρt,i−ρt, j| dx, (4.27)

for i, j ∈ {1,2,3}, i 6= j.

We begin by considering the case H → ∞, which is also the most relevant case as it
describes the case of interacting fibres along the whole fibre length. In this case the delay
function hH is given by hH(t) = t. Figure 4.4 shows the convergence to equilibrium in the
L1–norm as defined in Equation (4.27) for the four separate values of cU . The behaviour
in all the graphs is similar: a fast decay towards equilibrium with a small oscillation
around t ≈ 5. As the strength of the interaction increases, the amplitude of this oscillation
increases. In all cases we observe that the quantity in Equation (4.27) approaches zero,
which shows that the different initial conditions approach the same steady state.

To get a better understanding of how the finite delay lengths H ∈ {0,10,40} change the
evolution dynamics, we investigate their effect on the convergence to equilibrium. We
begin with H = 40. In Figure 4.5 we can see the evolution of the differences of the solutions
in L1–norm for the three different initial conditions considered. In all cases convergence
to zero, which indicates the convergence to the same stationary state, is observed. Up
to t = 40 the solutions for H = 40 are identical to the ones for H → ∞ due to the delay
function which is given by hH(t) = t for t ≤H. Therefore, we can see the same oscillations
at the beginning, t ≈ 5. In contrast to the case H→ ∞, when H = 40 we can see a small
bump at t = 40. This is where the delay function switches and is given by hH(t) = H

for t > H. We now consider the case H = 10 and Figure 4.6 shows the evolution of the
difference between the solutions for different initial conditions in the L1–norm. For all
choices of cU we observe convergence to zero, as for the other values of H considered,
which indicates a unique steady state. In Figure 4.6(a) the oscillations are small and a
rather fast convergence to equilibrium is observed. As cU increases, the number and the
amplitude of the oscillations increase. In particular, at t = 10 a sudden increase in the
difference between the solutions can be observed and becomes more obvious for increased
cU . This behaviour can be explained by the structure of the delay function hH , which
changes at t = H. Here for H = 10, in contrast to H = 40, the impact of the delay is
rather large. Finally, we consider the case H→ 0 and results are shown in Figure 4.7. For
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Figure 4.4 – The convergence to a unique steady state for the different initial conditions
examined, as H→ ∞. In all subfigures the difference between the three separate solutions ρ1,
ρ2 and ρ3, with the initial conditions given in Equation (4.24), is shown, where the quantity
given in Equation (4.27) is plotted over time. For all numerical simulations the parameters
given in Table 4.1 are used.
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Figure 4.5 – The convergence to a unique steady state for the different initial conditions
examined, as H = 40. In all subfigures the difference between the three separate solutions ρ1,
ρ2 and ρ3, with the initial conditions given in Equation (4.24), is shown, where the quantity
given in Equation (4.27) is plotted over time. For all numerical simulations the parameters
given in Table 4.1 are used.
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Figure 4.6 – The convergence to a unique steady state for the different initial conditions
examined, as H = 10. In all subfigures the difference between the three separate solutions ρ1,
ρ2 and ρ3, with the initial conditions given in Equation (4.24), is shown, where the quantity
given in Equation (4.27) is plotted over time. For all numerical simulations the parameters
given in Table 4.1 are used.
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Figure 4.7 – The convergence to a unique steady state for the different initial conditions
examined, as H→ 0. In all subfigures the difference between the three separate solutions ρ1,
ρ2 and ρ3, with the initial conditions given in Equation (4.24), is shown, where the quantity
given in Equation (4.27) is plotted over time. For all numerical simulations the parameters
given in Table 4.1 are used.
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all considered cU we see a fast monotonic decay towards zero and, therefore, the same
stationary state. When compared to the other delay lengths investigated, the convergence
to equilibrium is the fastest for H → 0. This matches with the analytical findings from
Section 4.2.3. This convergence behaviour is surprising as, so far, we have observed that
the number and magnitude of the oscillations increases as H decreases.

As the use of a finite value for H is an approximation to infinite H (see Section 3.3.2
for a discussion) we examine the difference between the solutions in the L1–norm using
infinite H and H ∈ {0,10,40}. To distinguish between the solutions of Equation (4.12)
with different delay lengths, but otherwise identical parameters and initial conditions, we
introduce the notation ρ[H]. As the numerical results so far have indicated, all solutions,
independent of the initial conditions, go to a unique steady state for large time. Thus, we
only consider the case i = 1. In Figure 4.8 we present the convergence results. In all the
cases considered the difference between the solutions converges to zero, as expected from
the previous results. This indicates the same stationary state, independent of the delay
length H. One can also see that the convergence behaviour is influenced by the interaction
strength cU . As cU increases the amplitudes of the oscillations also increase. Furthermore,
for fixed cU , the difference between the solutions evolves differently, depending on which
cases are considered. Regarding the case

(
H, Ĥ

)
= (∞,40), we see that the difference

for t ≤ 40 is zero, as expected, as the delay function hH is the same in both cases. At
t = 40 a small bump appears which can be explained in the change of the delay function. A
similar result holds true when considering the case

(
H, Ĥ

)
= (∞,10). Here the difference

is identical to zero for t ≤ 10 and oscillations are observed for larger values of t. In
contrast, a different behaviour is observed for the case

(
H, Ĥ

)
= (∞,0). There is one local

maximum at a small non–zero value of t followed by a fast monotonic decay to zero. As
cu increases the value of this local maximum increases.

Overall the numerical investigations indicate that large finite H gives a good approximation
to the solution as H→ ∞. However, when ignoring the initial dynamics for H→ 0, this
yields a good approximation of H → ∞ as well, which is not expected from the results
when we decreased H from 40 to 10.

4.4 Summary
In this chapter we analysed the long–time behaviour of an interacting fibre system with
delay both analytically and numerically. We presented the mean–field equation, which is
an appropriate description for the interacting fibre system when there are many fibres. We
then derived the corresponding diffusion approximation in the case of large turbulences.
Considering a more generalised version of this diffusion approximation, we derived an
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Figure 4.8 – Illustration of the difference of solution of Equation (4.12) for different delay
lengths H and interactions cU with initial conditions as described in Equation (4.24) and
parameters given in Table 4.1.
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analytical convergence result in arbitrary space dimensions which describes the long–time
behaviour and the convergence to equilibrium with restrictions on the various parameters
involved in the equation. In particular, we obtained a dependence of the convergence rate
on the delay length.
In order to investigate the behaviour of the temporal dynamics of the solution and its con-
vergence behaviour outside the range where our analysis is valid, numerical simulations of
the one–dimensional version of the diffusion approximation were presented. In particular,
we investigated the influence of the delay length H, the interaction strength cU and the
choice of initial conditions. We observed that the stationary solution was independent of
the delay length and initial conditions, but did depend on the interaction strength. However,
the delay length did have a qualitative influence on the convergence behaviour.





5 Conclusion

5.1 Summary

In this part of the thesis we presented novel surrogate fibre models describing the fibre
lay down in the meltspinning process which includes the fibre thickness. We started by
reviewing the existing surrogate fibre models without fibre interaction in Chapter 2 before
we stated microscopic interacting fibre models in Chapter 3. In contrast to most existing
models of interacting particle systems with time lag, we needed to consider a continuous
delay representing the whole fibre length to prevent fibre intersections. Motivated by
the effects of belt movement, we additionally presented a modification to our model,
where the delay length was truncated. Our modelling approach led to a system of strongly
coupled stochastic delay differential equations. After stating the model, we gave illustrative
examples of interacting fibre curves in two and three space dimensions, including the case
of an anisotropic fibre orientation distribution, as is the case in reality. In particular, we
demonstrated the influence of several parameters, most importantly the interaction strength
and the fibre radius, and showed that fibre intersections can be prevented. In order to
analyse the case of many fibres we continued in Chapter 4 by providing a macroscopic
description of the setup in terms of the mean–field equation for the isotropic interacting
fibre system. In particular, we considered the case of large air turbulences which led to
the corresponding diffusion approximation. In order to gain a better understanding of how
many long interacting fibres behave we analysed the diffusion approximation further. We
showed that the solution to the diffusion approximation converges to equilibrium in the
2–Wasserstein metric for a range of modelling parameters, and gave explicit decay rates.
We demonstrated that the interaction force and the delay length have a notable influence on
the speed of convergence to equilibrium. In addition to the analytical results, we performed
numerical simulations for the diffusion approximation. The numerical results indicated
that convergence to a unique stationary state, independent of the initial condition, holds for
a much larger range of parameters than suggested by the theoretical results and that the
stationary states are the same for the different delay lengths.

We now discuss areas for future research which could develop and build on the work
described above.
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5.2 Future work

There are several possible avenues for extending and developing the work on the interacting
fibre model presented in this thesis. For example, the interaction could also be incorporated
into the smooth models presented in Chapter 2 by adding an additional term for fibre
interactions to the external potential which leads to even more detail in the model.

To allow for alignment of the fibres, instead of considering pure repulsion, the model could
be extended by including orientation details of the fibres in the interaction term. This could
be done by using, for example, the interaction potential introduced in B. J. BERNE and
PECHUKAS (1972) or generalised versions thereof (GAY and B. BERNE, 1981; CLEAVER

et al., 1996; EVERAERS and EJTEHADI, 2003).

The model for interacting fibres investigated in this part of this thesis has quite a general
formulation and could possibly be applied to different areas of research. Pattern formation
plays an important role in biology, but in many cases the underlying processes are not
completely understood. One could, for example, describe the paths of ants and the patterns
they form by replacing the model based on random–walks described in BOISSARD et al.

(2013) with our model. By describing paths of pheromones, secreted by ants, as particles
with continuous delay and the ants as ordinary particles which interact with one another, but
are attracted to the pheromones, one could develop a delay system for the trail formation
of ants.

Another possible application would be the description of animal swarming patterns, for
example of fish or birds. The structure of the models described in J. A. CARRILLO,
D’ORSOGNA, et al. (2009), J. A. CARRILLO et al. (2010), and J. A. CARRILLO, KLAR, et

al. (2016), where swarming patterns, for example, the formation of flocks and mills (where
animals move around in a circular pattern) have been studied, is very similar to that of the
surrogate fibre models with and without delay and the model with delay described and
analysed in KLAR, KREUSSER, et al. (in preparation) and KREUSSER (2015). By including
a finite, but continuous, delay in the interaction term, one could test the hypothesis that the
movement of animals in a swarm is influenced by the time averaged information of the
other participants. Furthermore, using a similar strategy, one could model fish and birds
as slender objects with constant length by considering a finite but continuous delay in the
interaction term. Due to the constant length, the time delay would vary with the speed of
the considered particle. It would be interesting to see if the formation of flocks and mills
would still be the same after alterations to the model or if possibly new effects and patterns
could be obtained which would represent reality more closely.
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5.3 Closing thoughts
Our newly developed fibre model which considers the fibre thickness promises to be a
useful extension to the existing surrogate fibre models. Our research showed that non–
physical intersections of the fibres can be prevented. This is an important improvement
over the existing models. With this work we further the field of surrogate fibre models and,
furthermore, provide a novel view on interacting particle systems.
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6 The airlay process

In contrast to Part I, where our focus was on the description of an idealised meltspinning

production setup, we now focus our attention on the quantitative description of real airlay

materials. We start by motivating our research into the production of these materials,

before giving an overview of the technology and finally outlining the work presented in

this part.

The material presented in this part stems from work developed within the project OPAL
05M13 supported by the German Federal Ministry of Education and Research (BMBF)
in collaboration with several project partners. The industrial partners were AUTEFA
Solutions1 and IDEAL Automotive2. The academic partners were the groups of the Profes-
sors Marheineke, Leugering and Bänsch (the Chair of Applied Mathematics 1, the Chair
of Applied Mathematics 2 and the Chair of Applied Mathematics 3 respectively) at the
Friedrich–Alexander–Universität Erlangen–Nürnberg (FAU Erlangen) and the Department
of Transport Processes at the Fraunhofer Institute for Industrial Mathematics (ITWM) in
Kaiserslautern. Several parts of this work have already been published in peer–reviewed
journals, see GRAMSCH et al. (2016) and KLAR, NESSLER, et al. (2016).

OPAL stands for Optimisation of airlay processes. The aim of this project was to develop
a consistent chain of mathematical models and computer simulations to describe the indus-
trial airlay process with the goal of furthering the understanding of the production process
which will act as a basis for the improvement of the technology. Such simulations could,
in particular, help to reduce the number of expensive and time consuming experiments and
allow for a systematic optimisation of the production process.

6.1 The production process
Airlay fabrics consist of thousands of relatively short fibres, so called staple fibres. These
fabrics usually consist of a mixture of several fibre types which can vary in weight, size
and other physical properties. In many cases the fibres stem from recycled material where
the properties of the single components are not known and can vary from batch to batch.

1www.autefa.com
2www.ideal-automotive.com
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(a) (b)

(c) (d)

Figure 6.1 – Industrial production process of airlay fabrics. From top left to bottom right: the
machine K12 by AUTEFA Solutions, a sketch of the production scenario, the fibre flow and
lay down, a finished material after thermo bonding. Images reproduced with the permission
from AUTEFA Solutions.

The production of airlay materials involves many steps, which are detailed in Figure 6.1.
The machine K12 by AUTEFA Solutions used for the production of airlay fabrics is shown
in Figure 6.1(a). In Figure 6.1(b) a sketch of the production process is shown, where
the grey and red parts indicate machine parts and fibres respectively. The rotating card

cylinder (largest circle in the centre) is fed with the incoming fibre mixture from the left. In
general, a part of this mixture consists of bicomponent fibres which either melt completely
or have a coating which melts upon the application of heat. The single fibres are picked up
and then transported by the rotation of the card cylinder. Due to the air stream (indicated
by the black arrows) and the cylinder rotation, the single fibres separate and fly towards the
moving conveyor belt where they lay down and build layers which constitute the material
structure, as may be seen in Figure 6.1(c). The fibres lying on the conveyor belt are only a
loose ensemble. Therefore, further post processing is needed to achieve a proper material.
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The fibres on the belt are moved into an oven where they are heated so that the bicomponent
fibres at least partially melt. As a result of this thermobonding process, adhesive joints
between the different fibres in the mixture are achieved upon cooling. Figure 6.1(d) shows
a sample for a finished product after thermobonding where the different layers resulting
from the lay down process are visible.

6.2 The project partners and their roles
The work of the project partners AUTEFA Solutions, IDEAL Automotive, the Department
of Transport Processes, Fraunhofer ITWM and the group of Prof. Dr. Leugering at FAU
Erlangen facilitated us in our research by providing material specifications, experiments
and numerical simulations.

AUTEFA Solutions is a machine producer who is, in particular, involved in the development
and improvement of the machines based on the airlay technology. With aerodynamic web
forming they want to fulfil the high expectations of their customers to produce high
quality materials at a low cost. They provided us with results from experiments and the
corresponding machine settings.

IDEAL Automotive is a producer of several fibre based components in the automotive
industry. Their focus lies in producing form parts and, in particular, acoustic absorbing
parts at different positions with different requirements throughout cars. They provided us
with important information about different fibre types and, like AUTEFA Solutions, gave
us an interesting insight into the production process.

The project partners at the Department of Transport Processes, Fraunhofer ITWM extended
existing and developed new models to describe the complicated flight of the short staple
fibres in the air stream. Furthermore, these models were implemented in the fibre simulation
tool FIDYST (Fraunhofer ITWM). As the numerical simulation for these models is
computationally expensive, only a few hundred fibres can actually be simulated instead of
the thousands which would be needed to build a whole airlay fabric. Nevertheless, such
simulations can give important insights into how the flight of the fibres depends on various
parameters stemming from the machine settings.

The group of Prof. Dr. Leugering at FAU Erlangen developed a mathematical model to
perform virtual tensile strength tests on virtual materials. It is hoped that these can replace
some of the expensive real experiments in future. For details, see STROHMEYER and
LEUGERING (2016) and GRAMSCH et al. (2016).

Our role in the project was to bridge the gap between the fibre flight simulations per-
formed by the Department of Transport Processes, Fraunhofer ITWM and the virtual
tensile strength tests developed at FAU Erlangen. This was done by using characteristic
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information provided by the fibre flight simulations, as well as machine settings and fibre
specifications provided by AUTEFA Solutions and IDEAL Automotive to develop a model
for a virtual non–woven material.
In contrast to the models developed for paper making (J. HÄMÄLÄINEN, LINDSTRÖM,
et al., 2011; J. HÄMÄLÄINEN, T. HÄMÄLÄINEN, et al., 2014) and the models based
on stochastic geometry (SCHLADITZ et al., 2006; OHSER and SCHLADITZ, 2009; RE-
DENBACH and VECCHIO, 2011; REDENBACH, RACK, et al., 2012; KÄRKKÄINEN et al.,
2012; REDENBACH, SCHLADITZ, et al., 2014; VECCHIO, 2014) our particular goal was to
develop a three–dimensional model which can be linked to the production process and does
not purely rely on the information gained from micro computer tomography (µ–CT). Such
a model allows for the inclusion of the effects of the various machine and fibre parameters
on the structure of the airlay fabric.

6.3 Structure
The remainder of this part of the thesis is structured as follows. In Chapter 7 we present
a material model for the airlay fabric. This includes a description of the fibre placement
within the material, as well as of the fibre model we use. Then, in Chapter 8, we describe the
parameter estimation of several fibre and material parameters which are a priori unknown
and have to be determined from computer simulations or experiments. In Chapter 9 we
explain how to perform numerical simulations based on the model introduced in Chapter 7
in combination with the parameters determined using the methods introduced in Chapter 8.
In particular, we consider three scenarios supported by experiments and discuss the results
from the numerical simulations based on this data. Finally, in Chapter 10, we conclude this
part of the thesis. We summarise the results obtained, suggest possible applications of the
model and the methods developed in this work, and discuss possible areas of future work.
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For the accurate description of an airlay material it is essential to include the effects of all

the steps of the production process. The novel model presented in this chapter consists of a

macroscopic material model coupled to a microscopic model for the individual fibres. The

material model is developed by first considering the planar distribution of the fibres on the

moving belt. The two–dimensional description is then extended by including the height

to give the three–dimensional material. After describing how to correctly account for the

orientation and placement of the fibres in the material model, we turn our attention to the

microscopic fibre model, which is extended to include additional detail.

7.1 The modelling setup
Before we develop the material model, we first set up a framework. For the lay down area
we consider a belt with width a > 0. The machine direction (md) describes the direction
the belt moves and the cross direction (cd) describes the direction orthogonal to the belt
movement in the plane of the belt. Furthermore, the thickness direction describes the
direction orthogonal to md and cd in the direction of the material height.

Airlay materials are almost always composed of several different fibre types. Therefore,
our model allows for N different types of fibres where each fibre type can have its own
specific properties. The fibre type itself is denoted with the index i ∈ {1, . . . ,N} and we
assume that there is a large number of each type of fibre.

For the generation of the fibre material, we consider a box–shaped reference volume

V⊂ R3. We assume that the width in cross direction and the length in machine direction
of the reference volume are equal and given by d > 0. In addition, we assume that the
height of the reference volume coincides with the material height H > 0. Therefore, we
describe the reference volume V as the set

V =

[
−d

2
,
d
2

]2

× [0,H]⊂ R3, (7.1)

where we assume d ≤ a so that the reference volume V is completely placed on the belt.

Now that the modelling framework has been setup, we now describe how the airlay material
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in the reference volume V can be modelled.

7.2 The planar fibre distribution
The realistic placement of the fibres is essential for the development of an accurate model.
In contrast to Section 7.3 where we will describe the fibre distribution in the thickness
direction, here the different fibre types can be considered independently, as they do not
influence the planar distribution of one another.

7.2.1 The extended reference volume

Fibres with the initial point in V will naturally have at least some portion in V itself.
However, we also need to consider fibres with initial points outside V, but have portions
inside V. To include these fibres in our model, we consider an extended reference volume

Vi for each fibre type. We choose Vi in such a way that fibres with initial points outside Vi

do not need to be considered as they cannot contribute to the material inside the reference
volume V. Thus, for each fibre type i we extend the width d of the reference volume V by
the stretched fibre length Li. The stretched length Li describes the fibre length when being
completely stretched, which in mathematical terms is the arc–length. The extended width
di is, thus, given by

di := d +2Li.

This leads to the extended reference volume Vi for fibre type i with

Vi =

[
−di

2
,
di

2

]2

× [0,H]⊃ V,

where we assume di ≤ a so that the extended reference volume Vi is completely placed on
the belt. In Figure 7.1 the belt with both the reference volumes V and Vi and coordinate
directions is illustrated.

7.2.2 Fibre distribution densities

To describe the placement of the fibres in the material, it is important to understand how the
fibres are distributed on the conveyor belt. We assume that the fibre lay down is uniform
in the cross direction and, thus, assume the fibres to be uniformly distributed in cross
direction. However, uniformity in the machine direction cannot be assumed. As we assume
a large number of fibres, we are not necessarily interested in where each individual fibre is
on the belt, but in the distribution densities which we denote by gi. The value gi(x) gives
the probability that a fibre of type i lays down at x ∈ R in machine direction. We expect
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md

cd aV d

Vi

di = d +2Li

Figure 7.1 – Sketch of the lay down domain, reference volume V and extended reference
volume Vi along with dimensions and coordinate directions. The machine direction (the
direction of belt movement) and the cross direction are denoted by md and cd respectively.

the densities to be normalised, so that
∫

R
gi(x) dx = 1. (7.2)

Due to the production process, the fibres can only fly a finite distance. This allows us to
make the assumption that the fibre distribution densities gi are compactly supported with
support

supp(gi) = [xmin,i,xmax,i], (7.3)

with 0≤ xmin,i < xmax,i. The coordinates for the densities are given in the fixed coordinate
system of the machinery and indicate the distance to the card cylinder.

7.2.3 The belt movement

So far we have not allowed for the belt movement in the machine direction. To do so, we
denote the function describing the centre of the extended reference volume Vi moving
along with the belt over time by χi. Like the distribution densities gi, we assume χi to be
given in the fixed coordinate system of the machinery. Furthermore, we denote the constant
belt speed in the machine direction by vbelt > 0. We assume that, at the time t = 0, the

right–hand boundary of Vi coincides with xmin,i. This is equivalent to χi(0) = xmin,i−
di

2
.

At t = Ti we assume that the left–hand boundary of Vi coincides with xmax,i. This is
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xmin,i xmax,i

md

cd χi(0) χi(t) χi(Ti)

Figure 7.2 – An illustration of the lay down domain and extended reference volume Vi for
fibre type i ∈ {1, . . . ,N} as it is transported due to the belt movement. The centre of Vi at time
t is indicated by χi(t). The maximal lower and the minimal upper bound for the support of the
fibre distribution densities gi are denoted by xmin,i and xmax,i respectively. At t = 0, the position
of the right–hand boundary in the machine direction (md) of Vi is xmin,i. At t = Ti, the position
of the left–hand boundary of Vi is xmax,i. For t > Ti, any fibres laid down cannot contribute
to the reference volume, whereas fibres laid down for 0 < t < Ti could have portions in the
reference volume V.

equivalent to χi(Ti) = xmax,i +
di

2
. Thus, Ti is the time we have to consider to account for

all the fibres of type i contributing to the reference volume V. As we assume a constant
belt speed, we define χi by

χi : [0,Ti]→ R,

χi(t) = xmin,i−
di

2
+ tvbelt,

Ti =
1

vbelt
(xmax,i− xmin,i +di) .

(7.4)

In Figure 7.2 the lay down domain along with the moving reference volumes due to the
belt movement is illustrated.

Now we need to extend this two–dimensional description to a three–dimensional one by
allowing for the height.
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7.3 The height distribution

To give a realistic description of an airlay fabric, it is essential to derive a three–dimensional
model which includes the height of the material. Instead of modelling the effect of every
individual fibre on one another, we consider a statistical description for the distribution of
the fibres in the thickness direction. We begin with a simplified case, considering a single
fibre type, N = 1. To find out where a fibre should be laid down, we have to consider the
existing height of the material surrounding the fibre dropping point x∗ ∈ R. Assuming a
continuous production process and belt movement, we can imagine that the fibre material
is composed as a superposition of the lay down density in the machine direction. This can
be expressed as

G1(x∗) =
∫ x∗

−∞
g1(x) dx.

Scaled with the material height H, this gives the height distribution

R(x∗) = HG1(x∗).

Thus, for a given dropping point x∗ one can determine the position in the thickness direction
for a new fibre. For x∗ > xmax,1 we have R(x∗) = H as g1 is compactly supported and
fulfils the normalisation given by Equation (7.2). This means that the fibres lay down at
the maximal material height. For x∗ < xmin,1 we have R(x∗) = 0 and, thus, the fibres lay
down on the belt itself.

For several fibre types, i.e. N > 1, the situation is no longer so simple. Following the
strategy for a single fibre type and constructing height distributions for each fibre type
independently would not represent reality very well as all types jointly contribute to the
material height. Fibres of the different types build the laid down material and, therefore,
influence the shape of the material and the height for the lay down of a new fibre. We
make the assumption that there exists a joint fibre distribution density g which is given as a
convex combination of all the fibre distribution densities gi:

g(x) =
N

∑
i=1

βi gi(x), (7.5)

with

supp(g) = [xmin,xmax], (7.6)
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where

xmin := min
{

xmin,i
∣∣i ∈ {1, . . . ,N} ,βi > 0

}
,

xmax := max
{

xmax,i
∣∣i ∈ {1, . . . ,N} ,βi > 0

}
,

(7.7)

and so

supp(gi)⊆ supp(g).

The variables 0 ≤ βi ≤ 1 in Equation (7.5) with ∑N
i=1 βi = 1 are weights. We assume

that there exists i ∈ {1, . . . ,N} such that βi > 0. If β j = 1 and βi = 0 for all i 6= j, with
i, j ∈ {1, . . . ,N}, we retrieve the simplified case where the material height only depends
on a single fibre type. In the general case for arbitrary N, as in the simplified case N = 1,
we introduce the cumulative distribution functions

Gi(x∗) =
∫ x∗

−∞
gi(x) dx.

The function

G(x∗) =
N

∑
i=1

βi Gi(x∗),

is the convex combination of the cumulative distribution functions Gi. The general height
distribution is then given by

R(x∗) = HG(x∗). (7.8)

So far we have not specified the weights βi. We make the assumption that the more fibres
of one type laid down, the more this fibre type contributes to the total material height H.
Thus, we set βi := βn,i where the number based ratio βn,i is defined as

βn,i =

Mi
mi

∑N
j=1

M j
m j

. (7.9)

Here the parameter Mi denotes the overall mass of fibres of type i in the material and mi

the mass of a single fibre of type i.
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7.4 Accounting for the material weight

In practice, one of the important properties of an airlay fabric is the base weight W of the
material, i.e. the weight per surface area. To account for this property we have to use the
correct number of fibres ni ∈ N in our model to fill the reference volume V. This number
depends on the mass rate ṁ, the weight of each fibre mi, the time Ti, the ratio of the width
of the reference volume di to the belt width a and the mass ratio βm,i of the considered
fibre type, which is defined by

βm,i =
Mi

∑N
j=1 M j

.

The mass rate describes how much fibre mass per time unit is produced. The ratio of the
mass rate ṁ to the fibre mass mi multiplied by the mass ratio βm,i gives the overall number
of fibres per time unit. This, in combination with the ratio of the width of the reference
volume di to the belt width a multiplied by time Ti, gives

ni =

[
βm,i

ṁ
mi

di

a
Ti

]
, (7.10)

where [·] indicates rounding to the nearest integer. Using this we have the correct amount
of fibres for the extended reference volume Vi for each i and, thus, for the reference volume
V itself. We now describe how these fibres are placed and oriented in the reference volume.

7.5 The fibre orientation and placement

So far we have regarded the fibres as single points and considered their distribution within
the material. However, to develop a model for the whole material, we have to describe how
the complete fibres are placed and oriented. Intuitively, we can assume that a dropping
fibre would nestle against the existing material structure. Locally, the material structure can
be described by an orientation matrix S : R→ SO(R3), where SO(R3) denotes the special
orthogonal group in three dimensions. This rotation matrix describes the local orientation
of the local (tangential) surface and contains information of how a fibre is oriented within
the material. As the fibres are assumed to be uniformly distributed in the cross direction of
the material, and the position in thickness direction is given by R(x) where x ∈ R is the
coordinate in machine direction ( see Equation (7.8)), we obtain the following orientation
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matrix

S(x) =
1

1+(R′(x))2




1 0 −R′(x)

0 1 0
R′(x) 0 1


 .

We see that the columns of this matrix build an orthogonal basis, where the first two
columns locally span the contour surface of the material.
With li we denote the cut length of the fibre which is the distance from one end of the fibre
to the other end. Considering a general fibre of type i as a parametrised curve with respect
to the fibre’s cut length

ζi : [0, li]→ R3,

with arc–length Li

Li =
∫ li

0

∥∥∥∥
dζi

ds
(s)
∥∥∥∥ds, (7.11)

we can prescribe the position and orientation of the fibre within the material. In the
following, ζi has to be specified further. For simplicity, we assume that the main fibre
orientation coincides with the orientation of the initial point of the fibre ζi(0) and lies
in the md–cd plane. After rotating and shifting, the fibre in the virtual material can be
described by the parametrised curve

φs[x,y, ·] : [0,Ti]→ R3,

φs[x,y, t] = S(x)(ζi(s)−ζi(0))+




x−χi(t)

y

R(x)


 ,

(7.12)

where x ∈ supp(gi) and y ∈ [−di/2,di/2] denote the coordinates in the machine and the
cross direction respectively. The parameter t is related to the belt movement and, therefore,
to the position of the reference volume on the belt. The parameter s, however, corresponds
to the parametrisation of the fibre curve. Due to the spatial shift in machine direction
by χi(t), we obtain a fibre description with respect to the local coordinate system of the
reference volume V introduced in Equation (7.1). The fibre can contribute to the reference
volume V only for x−χi(t) ∈ [−di/2,di/2]. Note that the shift ζi(0) in Equation (7.12) is
necessary to obtain the correct fibre placement independent of the description of ζi itself
and, in particular, independent of the initial value ζi(0).
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7.6 The fibre model

So far we have described a material model without specifying the actual fibre model to
be used for the fibre ζi. The correct description of the fibres themselves is essential for a
realistic material model. Our main objective is to use a model which describes the main
characteristics of the real fibres and which can be parametrised by a few parameters related
to the fibre properties and possible to determine experientially. As in the case for long
fibres in the application of meltspinning, see Part I, we aim to model a single fibre by a
parametrised curve which describes the centre line of the fibre. Therefore, we use the
anisotropic fibre model given by Equation (2.26) to describe a single fibre ζi. Including the
anisotropic fibre orientation, represented by the anisotropy parameter B, not only allows
for fast numerical computations, but enables us to include an anisotropic orientation of the
fibres in our model.

We have to choose appropriate parameters for the model. Apart from the anisotropic pa-
rameter B, which describes an overall material property, these parameters are all dependent
on the fibre type used. Details on the parameter estimation methods used will be given in
Chapter 8.

The anisotropic model already describes many important features of a real fibre. However,
we include a more detailed representation by adding crimps which are characteristic for
the fibres used in airlay products. We describe these crimps by a crimp function γi. As for
the fibre curve ζi, we require that the crimp function is a parametrised curve given on the
interval [0, li]. As the crimps usually have a regular structure, we choose

γi : [0, li]→ R3,

γi(s) =




s

ci sin(Ciπs)

0


 .

(7.13)

This describes a sinusoidal crimp structure, where Ci and ci > 0 are parameters which relate
to the crimp, i.e. the number of arcs and the difference between the cut and the stretched
fibre length li and Li respectively. Other crimp functions are possible, in particular rotated
versions of Equation (7.13) or other periodic functions. If one does not want to add crimps,
then one can scale the fibre length by choosing

γi(s) =




ci

0
0


 , (7.14)
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to obtain the correct stretched fibre length Li. Given an arc length parametrised fibre curve
ζi : [0, li]→ R3 with the right hand orientation tripod

Qi : [0, li] 7→ SO(R3),

Qi(s) = (vi(s),n1,i(s),n2,i(s)) ,

where vi, n1,i and n2,i are the orientation, the normal and the binormal of the fibre respec-
tively, we can describe the crimped fibre curve ξi by

ξi(s) =
∫ s

0
Q(s̃)

dγ
ds

(s̃)ds̃.

As we know the specific stretched fibre length Li, in combination with Equation (7.11) we
have the condition

Li =
∫ li

0

∥∥∥∥
dξi

ds
(s)
∥∥∥∥ ds =

∫ li

0

∥∥∥∥
dγi

ds
(s)
∥∥∥∥ds.

Here we used the fact that Q ∈ SO(R3) defines a rotation matrix and, therefore, the norm
is invariant. The crimp amplitude ci in Equation (7.13) may be evaluated by solving

f (ci) = Li,

with

f (c) =
∫ li

0

√
1+ c2(Ciπ)2 cos2(Ciπs) ds.

We see that f is monotonically increasing with f (0) = li < Li and

f (c)>
∫ li

0
c(Ciπ)|cos(Ciπs)|ds > Li,

for some c large enough. Thus, by the mean value theorem, there exists a unique ci with
f (ci) = Li. Figure 7.3 shows the effect of the crimp function in Equation (7.13) on an
illustrative fibre curve.

7.7 Summary
In this chapter we have presented a model for the production of an airlay material. This
model contains important characteristic properties of the production process and of the
material itself and allows for several different fibre types, each with their own material
properties. In particular, the fibre crimp is included in the fibre model.
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Figure 7.3 – Illustrative example for the effect of added crimp on a single fibre as described
in Equation (7.13). The red curve shows a fibre curve without crimp, whereas the blue fibre
curve has crimps included.

Several parameters, characterising either the fibres or the material itself, are present in the
model. However, not all of them can be directly measured or determined. In the following
chapter we describe how the unknown parameters can be estimated from experiments or
computer simulations, before we apply the model to real data in Chapter 9.





8 Parameter identification

As we will see in Chapter 9, some of the parameters in the model presented in Chapter 7

can be determined directly from physical measurements. Accurately estimating the remain-

ing parameters, which cannot be directly determined from measurements, is essential for a

realistic virtual material model. We first present the methods used for the identification of

the fibre parameters. Then, we show how to estimate the anisotropy parameter for a given

set of angles describing the fibre orientation.

8.1 Identification of fibre parameters
In this section we consider a general data set consisting of discretised fibre positions, which
can be interpreted as measurements of two–dimensional laid down fibres. Several different
parameter identification methods for models of the meltspinning process, in combination
with the standard two–dimensional model introduced in Section 2.1.1, have been developed.
For example, in BOCK et al. (2014) a method considering occupation times and white
noise analysis was developed and used to determine the parameters in the model. For our
method, we first assume that we have a given step size ∆̃i for the discretisation of a fibre
curve for the given data set containing the discretised fibre positions. Furthermore, for
simplicity, we make the assumption that each fibre type has the same number of simulated
fibres K and the same number of discretisation points J. In the following we denote
the position of the i–th fibre type, k–th fibre and j–th discretisation point along a fibre
curve for the data by r̃ j

i,k. Furthermore, we denote all discretisation points for the position
of the i–th fibre type and the k–th fibre by r̃i,k and denote all the positions for the i–th
fibre type by r̃i = (r̃i,1, . . . r̃i,K). In addition to the fibre positions, fibre orientations are
also needed for the parameter estimation. We denote the orientation angle of the vector
r̃ j+1

i,k − r̃ j
i,k, j ∈ {1, . . . ,J−1} by α̃ j

i,k. Additionally, all orientations of the i–th fibre type
and the k–th fibre are denoted by α̃i,k and we denote all the orientations for the i–th fibre
type by α̃i = (α̃i,1, . . . α̃i,K).

In the fibre model described in Section 7.6, there are several parameters which have to
be identified and directly relate to the data r̃i and α̃i. The noise amplitude Ai relates to
the change of fibre orientation whereas the standard deviations σ1,i and σ2,i relate to the
deviation of the fibre end point from the fibre origin. To calculate these parameters, we
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proceed in a similar manner to KLAR, MARHEINEKE, et al. (2009) and MARINGER (2013)
and compute

(σ1,i,σ2,i) =




√√√√√ K

∑
k=1

((
r̃1

i,k− r̃J
i,k

)
· e1

)2

K
,

√√√√√ K

∑
k=1

((
r̃ j

i,k− r̃J
i,k

)
· e2

)2

K


 ,

Ai = max
1≤h≤J

√√√√√ K

∑
k=1

J−1−h

∑
j=1

(
α̃ j+h

i,k − α̃ j
i,k

)2

K(J−h)h∆̃i
.

(8.1)

From Section 2.1 we know that the spatial stationary solution for the two–dimensional
fibre model is given by ρ∞(x) = Ce−V (x) = Ce−xT Σ−1x, see Equation (2.5). Here C

is a normalisation constant for the density ρ∞ and the covariance matrix is given by
Σ = diag

{
σ2

1 ,σ
2
2
}
∈ R2×2. By choosing the initial points for the fibres in our model to be

ρ∞ – distributed, in contrast to MARINGER (2013), no parameter optimisation is needed.
We do not have enough information at hand to estimate σ3,i, as the data sets r̃i only contain
two–dimensional information. Therefore, it has to be chosen.

8.2 The orientation distribution
In this section we describe a method to identify the characteristic orientation distribution,
necessary for the material model introduced in Chapter 7. In particular, we show possible
methods of identifying the anisotropy parameter B for the material model introduced in
Chapter 7. We first review an existing method based on a variance estimator. Then, we
develop a new method based on a maximum likelihood estimator. Finally, in Section 8.2.3,
we compare both methods.
Similarly to the case of the parameter σ3,i, the anisotropy parameter B cannot be determined
from the data sets r̃i and α̃i. This is due to the fact that these data sets only provide two–
dimensional data in the lay down regime. In contrast to σ3,i, the value of B is linked to
information for the spatial orientation of the fibres which, in practice, is available as we
will see in Chapter 9.
We assume that there exits a main orientation plane in which most fibre parts are oriented.
The deviation angles of the fibre parts from this main orientation plane are denoted by
Θ = (θ1, . . . ,θNΘ) with θ j ∈ [0,π), j ∈ {1, . . .NΘ}. The value θ j = 0 corresponds to an
orientation orthogonal to a main orientation plane and θ j = π/2 to a fibre orientation
within the main orientation plane. In general a distinction between the different fibre types
in the orientation angle data is not possible. Therefore, we assume that the anisotropy
parameter B is the same for all fibre types. In addition, we assume that the expectation for
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Θ is π/2 and coincides with the orientation of the main orientation plane. As the fibre
geometry is given as described in Section 7.6, the stationary orientation distribution is
given by

ρB(θ) =C(B)(sinθ)
1
B ,

C(B) =
(∫ π

0
(sinθ)1/B dθ

)−1

,
(8.2)

which can be obtained by integrating Equation (2.28) with respect to the space variable.

8.2.1 The variance estimation

To determine the anisotropy parameter B, in KLAR et al. (2012a) and MARINGER (2013) a
variance estimator was used. Due to the symmetry of ρB, a simple computation yields the
expectation

µ =
∫ π

0
ρB(θ)θ dθ =

π
2
, (8.3)

for all B ∈ (0,1]. This corresponds to a fibre orientation in the main orientation plane.
Thus, the variance of ρB is given by

σ2
B =

∫ π

0
ρB(θ)

(
θ − π

2

)2
dθ . (8.4)

We assume that a density ρΘ is associated to the data set Θ. By the assumption on the
expectation of the data set Θ, the variance for ρΘ is given by

σ2
Θ =

∫ π

0
ρΘ(θ)

(
θ − π

2

)2
dθ . (8.5)

Then, a variance estimator for B with respect to the given data Θ is given by

Bvar = argminB∈(0,1]
(
σ2

B−σ2
Θ
)2
. (8.6)

8.2.2 A likelihood estimator

Although we have seen how the anisotropy parameter B can be estimated by a variance
estimator, we now pursue a different method by using a classical approach for parameter
estimation in statistics, namely the maximum likelihood method. A general introduction
can be found, for example, in GEORGII (2009). This method has the advantage over the
variance method, described in the previous section, in that one can directly work on the
measured data set Θ and does not need to approximate the angular distribution ρΘ. For the
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angles Θ, we define the likelihood function as

f (B|Θ) =
NΘ

∏
i=1

C(B)(sinθi)
1/B . (8.7)

In general it is more convenient to work with the log–likelihood function which we define
as

l f (B|Θ) = NΘ log(C(B))+
NΘ

∑
i=1

log
(
(sinθi)

1/B
)
,

= NΘ log(C(B))+
1
B

NΘ

∑
i=1

log(sinθi) .

(8.8)

Then, the log–likelihood estimator Bmlh is given by

Bmlh = argmaxB∈(0,1] l f (B|Θ). (8.9)

One can easily see that a maximiser of Equation (8.7) is also a maximiser of Equation (8.8)
and vice versa. To find a maximiser, we consider the derivative of l f (·|Θ) and solve

dl f
dB

(B|Θ) = NΘ
C(B)

B2

∫ π

0
log(sinθ)(sinθ)1/B dθ −

n

∑
i=1

log(sinθi)

B2 = 0,

or equivalently

∫ π

0
log(sinθ)ρB(θ)dθ =

1
NΘ

NΘ

∑
i=1

log(sinθi). (8.10)

This can be done numerically by choosing an appropriate quadrature rule for the integral
on the left hand side of Equation (8.10). Unlike the variance estimator, no approximation
for ρΘ is needed for the likelihood estimator. Instead the measurements Θ are directly
used.

8.2.3 Comparison

We present an example using the parameter estimation methods presented in Sections 8.2.1

and 8.2.2 in order to compare both methods. We use the case nB :=
1
B
∈ N as in this case

the primitive function for (sinθ)nB is explicitly known. Thus, we can generate random
orientations Θ̃=

(
θ1, . . . ,θNΘ̃

)
with θ j ∈ [0,π), j ∈

{
1, . . . ,NΘ̃

}
with respect to the density

ρB, which we can use as a sample for testing both methods. For nB we obtain (BRONSTEIN



8.2 The orientation distribution 101

B Bvar Bmlh σ2
B σ2

Θ̃
1 1.0000 1.0000 0.4674 0.4631

0.5000 0.5169 0.5034 0.3225 0.3225
0.3333 0.3671 0.3618 0.2452 0.2479
0.2500 0.2397 0.2402 0.1975 0.1953

Table 8.1 – Comparison of the results for both the variance and the maximum likelihood
estimators.

et al., 2005)

∫ π/2

0
(sinθ)nB dθ =





π
2

nB
2

∏
i=1

2i−1
2i , nB even,

nB−1
2

∏
i=1

2i
2i+1 , nB odd.

(8.11)

So we are able directly to compute the normalization constant C(B) for ρB in Equation (8.2).
In this case a closed expression for the variance σB exists and is given by (KLAR et al.,
2012b; MARINGER, 2013)

σ2
B =





π2

12 − 1
2

nB
2

∑
j=1

1
j2 , nB even,

π2

4 −2

nB+1
2

∑
j=1

1
(2 j−1)2 , nB odd.

(8.12)

Both methods, the likelihood estimation and the variance estimator, show good results,
see Table 8.1. The first column contains the values B used to generate the angular data
Θ̃ =

(
θ̃1, . . . , θ̃NΘ̃

)
with NΘ̃ = 1000 using the exact integration formula given by Equa-

tion (8.11). The second column shows the estimated parameter Bvar computed with the
variance method. Here the variance σ2

Θ̃
was computed by representing ρΘ̃ as a histogram

and computing the integral given by Equation (8.5) explicitly. The third column is the
result of using the likelihood estimator and the fourth column shows the exact variance σ2

B

given by Equation (8.12) for the chosen B from the first column. The final column shows
the result for Bvar from the variance estimator. Comparing the values in the second and
third columns with those in the first column, we see a good agreement of both estimated
values Bvar and Bmlh with B. The values in the final two columns, σ2

B and σ2
Θ̃

, also show
good agreement for a variety of values of B. These results indicate that the maximum
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likelihood estimator method is, in addition to the variance method, is a valid method.

8.3 Summary
In this chapter we introduced methods to estimate several parameters for the fibre and
material model introduced in Chapter 7 which are not directly available or measurable. In
Section 8.1 we began by describing a method for estimating the parameters for the fibre
model. Then, in Section 8.2 we developed a maximum likelihood method to estimate the
anisotropy parameter B for a given set of angles and compared this method to an existing
variance estimator. Comparison showed that both methods are accurate. In contrast to the
variance estimator, the maximum likelihood method works directly with the given data set.
Thus, we use this method in the remainder of the thesis.
In the next chapter we will apply the methods presented in this chapter to different industrial
scenarios and present examples for the generation of virtual fibrous materials.



9 Numerical results

Simulations of virtual airlay fabrics can act as a basis for virtual tensile strength tests or

other test scenarios, which can give a further insight into the material properties and help

further improve the materials produced or the production process. Having detailed how

the unknown parameters in the model presented in Chapter 7 can be determined, we now

turn our attention to virtually simulating airlay materials. Our aim is to reproduce three

different example materials produced by AUTEFA Solutions. We start by specifying and

estimating the model parameters, using information and data provided by our collabora-

tors, before presenting simulation results. Validation and further testing of these virtual

materials are performed by Prof. Dr. Leugering, and preliminary results along with details

on the complete modelling and simulation chain within the OPAL project can be found in

GRAMSCH et al. (2016).

The production of airlay fabrics is a complex process. Several different fibre types are
normally used which are usually sourced from recycled materials. To gain a better un-
derstanding of the process, we consider an idealised scenario supported by three separate
experiments performed by AUTEFA Solutions, where the material contains only two fibre
types. The first fibre type is a bicomponent fibre, which has a melting coating. The second
fibre type does not have this property, and, thus, we refer to it as a solid fibre. Upon heating
the bicomponent fibres melt, forming one structure once cool as discussed in Chapter 6.
To distinguish between the two fibre types, we indicate the bicomponent and the solid
fibres, as well as their corresponding properties, with index i = 1 and i = 2 respectively.
Using the notation of Chapter 7, we have N = 2. We call the three different material
samples, produced by AUTEFA Solutions by altering the machine settings which resulted
in different macroscopic properties, V1, V2 and V3.

Now we detail the fibre properties and machine settings for the three experiments consid-
ered.

9.1 Fibre properties and machine settings
Several fibre parameters for both fibre types were provided by IDEAL Automotive, where
both the mean value and the variance were given. However, for simplicity we only use
the averaged quantities. Table 9.1 details all the fibre parameters of interest for our model.
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Symbol Unit i = 1 i = 2
(ρ A)i kg/m 4.4 ·10−7 6.7 ·10−7

li m 5.1 ·10−2 5.1 ·10−2

Li m 6 ·10−2 6 ·10−2

Ci arcs/m 7 ·102 5 ·102

βm,i - 0.3 0.7

Table 9.1 – Mean values for the fibre parameters, provided by IDEAL Automotive, used in all
numerical simulations.

Symbol Unit V1 V2 V3
vbelt m/min 9.9 2 1

a m 2.4 2.4 2.4
ṁ kg/h 288 173 259

Table 9.2 – Machine parameters, provided by AUTEFA Solutions, used in all numerical
simulations.

The two fibre types have the same fibre length, but differ in the line density (ρ A)i and
the crimp number Ci. Different machine settings lead to different materials with different
properties. The machine settings used for the three experiments V1 – V3 are summarised
in Table 9.2. The belt width a is the same for all three experiments, whereas all the other
values vary.

9.2 Parameters from fibre flight simulations
Not only do the fibre properties and machine settings have a large influence on the
resulting material, but the fibre flight and the resulting lay down positions also play an
important role. In particular, the distribution densities for the lay down positions and
several fibre parameters depend strongly on the fibre flight. The Department of Transport
Processes, Fraunhofer ITWM provided fibre flight data for the three separate scenarios
under consideration. The method used is described in detail in GRAMSCH et al. (2016)
for the experiment V2 and the same method was also used for the experiments V1 and
V3. Fibre flight simulations for each experiment were performed in FIDYST (Fraunhofer
ITWM) using K = 1000 fibres of each kind where each fibre is represented by J = 51
discretisation points.

9.2.1 The estimation of distribution densities

Accurate fibre distribution densities gi are essential to give the correct fibre placement
in the reference volume for the mathematical model of an airlay fabric, introduced in
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Figure 9.1 – The probability and cumulative distribution functions for the experiment V1,
denoted by pdf and cdf respectively. The coordinate axis in the machine direction is indicated
by md. The graphs corresponding to the bicomponent fibres are indicated in blue, whereas the
ones for the solid fibres are indicated in red. The convex combinations of both fibre types are
displayed in green.

Chapter 7. However, FIDYST simulation results for the fibre flight consist of coordinates
for every single fibre instead of distribution densities. To obtain the distribution densities gi

we only consider the coordinates in the machine direction. In particular, we only consider
the initial points of the fibres as reference points for each fibre and then compute an
estimator for gi with the MATLAB (2015) built–in function fitdist using a kernel density
estimation on compact support. In Figures 9.1, 9.2 and 9.3 we can see the distributions for
the experiments V1–V3. Figures 9.1(a), 9.2(a) and 9.3(a) show the probability distribution
functions, whereas in Figures 9.1(b), 9.2(b) and 9.3(b) the cumulative distribution functions
are shown. We can see that the bicomponent fibre distribution sits to the left of the solid
fibre distribution. This means that the solid fibres have a tendency to fly further away from
their leaving point at the card cylinder than the bicomponent fibres. Thus, one may assume
that there are more bicomponent than solid fibres at the base of the material. For positions
further up in the material we expect this ratio to change until, at the top of the material,
there should be mainly solid fibres.

In addition to the functions corresponding to the bicomponent and solid fibres, the con-
vex combinations with respect to the number ratios βn,1 = 0.4011, βn,2 = 0.5989 (see
Equation (7.9)) are also shown.

9.2.2 Estimating fibre parameters

As we have seen in Chapter 7.6, several parameters need to be estimated using the methods
introduced in Section 8.1 either from experimental data or other numerical simulations.
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Figure 9.2 – The probability and cumulative distribution functions for the experiment V2,
denoted by pdf and cdf respectively. The coordinate axis in the machine direction is indicated
by md. The graphs corresponding to the bicomponent fibres are indicated in blue, whereas the
ones for the solid fibres are indicated in red. The convex combinations of both fibre types are
displayed in green.
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Figure 9.3 – The probability and cumulative distribution functions for the experiment V3,
denoted by pdf and cdf respectively. The coordinate axis in the machine direction is indicated
by md. The graphs corresponding to the bicomponent fibres are indicated in blue, whereas the
ones for the solid fibres are indicated in red. The convex combinations of both fibre types are
displayed in green.
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Symbol Unit
i = 1 i = 2

V1 V2 V3 V1 V2 V3
σ1,i cm 1.0941 0.9992 1 1.2106 1.0812 1
σ2,i cm 1.0388 1.022 1 1.1957 1.1967 1
Ai cm−1/2 2.9380 2.8550 3.5002 2.2771 2.3445 2.6003

Table 9.3 – Estimated fibre parameters for all settings determined from the FIDYST simulation
data using the methods detailed in Chapter 8.

The parameters which can be directly estimated from FIDYST data are the noise amplitudes
Ai and the throwing ranges σ1,i and σ2,i, where we use the data of fibres already laid down
on the belt. The values of these parameters are summarised in Table 9.3.

9.3 The fibre orientation distribution
In contrast to the fibre parameters described in Section 9.2.2, the anisotropy parameter B

cannot be obtained from the FIDYST simulation results as it only gives two–dimensional
laid down fibres. Therefore, to estimate B, we need additional information about the
three–dimensional structure of the material. Fibre orientations within the material can
be determined from µ–CT scans and image analysis. Methods for the analysis of µ–CT
data of fibrous materials have previously been developed. Several papers deal with the
image processing of fibrous materials (SCHLADITZ et al., 2006; PEYREGA et al., 2009;
ALTENDORF and JEULIN, 2009; REDENBACH and VECCHIO, 2011; REDENBACH, RACK,
et al., 2012; REDENBACH, SCHLADITZ, et al., 2014; VECCHIO, 2014). A good review
of the methods used in image processing, as well as the statistical description of material
structures up to the year 2009 can be found in OHSER and SCHLADITZ (2009). Many of
the methods developed and the results reported in these publications have been included
in the software tool MAVI (Fraunhofer ITWM) which was developed and used by the
Department of Image Processing, Fraunhofer ITWM for the analysis of the µ–CT data of
our material sample.

Before applying the maximum likelihood estimator developed in Chapter 8, we first, in
Section 9.3.1, explain how the information from the µ–CT scan was obtained and then, in
Section 9.3.2, how this information is evaluated to determine the anisotropy parameter B.

9.3.1 Micro computer tomography data

Micro computer tomography is needed to gain information about the fibre orientation in
the material. For the µ–CT analysis, a material sample of height 8.67 mm was taken from
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(a) (b)

Figure 9.4 – Illustration of the image processing: in Figure 9.4(a) one can see the material
sample V2 prepared for micro computer tomography. Figure 9.4(b) shows a small sample
of the processed and visualised fibre data. Images reproduced with the permission from the
Department of Image Processing, Fraunhofer ITWM.

0.87 mm under the surface of the material to prevent boundary effects. Each pixel has
an edge length of 4.66 µm in the processed image and a tuple of orientation angles is
associated with each pixel. In total, the sample has a size of 2500×2300×1860 pixels.
It was not possible to distinguish the different fibre types within the scan, and so it was
not possible to judge the influence of each fibre type on the fibre orientation distribution.
Thus, we assume the evaluated anisotropy parameter B to be the same for all the fibre
types which compose the material. The anisotropy parameter, therefore, should be seen as
a material rather than a fibre parameter. In Figure 9.4 we can see images of the material
sample prepared for µ–CT and the processed and visualised fibre data, both provided by
the Department of Image Processing, Fraunhofer ITWM. In Figure 9.4(a) the single layers
are visible. Note that the part where the µ–CT data is actually obtained from is much
smaller than the sample in the image. The additional material is only needed for technical
purposes.

9.3.2 The data evaluation

After the image processing of the µ–CT data we obtained a large data set containing the
information of the fibre orientation for every single pixel. To make it feasible to process
the data, we divide the data set into 241 subsets with a million entries each. This way
we can also see if there are differences in different parts of the sample. We assume that
the material sample used for the µ–CT analysis contains a single material layer, which
is not necessarily parallel to the belt. This assumption is motivated by the small size of
the material sample. In order to ensure that the data fulfils the conditions in Section 8.2,
we perform a sequence of post processing steps. In contrast to the measurements, two
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Figure 9.5 – Visualisation of estimated values of B for different sample sets of V2 (blue dots).
The red dashed line indicates the average value B = 0.288 which we use for the simulations.

orientations at each point are possible for a real fibre. Thus, in addition to the orientation
given for each pixel, we also consider the opposite orientation. Furthermore, we identify
the main lay down plane. As the material layer and, thus, the main lay down plane is not
necessarily parallel to the belt, we rotate the orientation vectors of each pixel so that an
angle θ = π/2 is identical to an orientation in the main lay down plane. Once the data is in
the appropriate form, we perform a parameter estimation based on the likelihood method
introduced in Section 8.2.2 on each subset. From all the results we take the average to
obtain an estimator for the anisotropy parameter B. The results for each subset and the
resulting averaged value of B = 0.288 can be seen in Figure 9.5. As we only have the data
from a single µ–CT of the material sample V2, we use this data for all the simulations.

9.4 Numerical simulations

Before proceeding to discussing the numerical methods employed and presenting results,
we need to prescribe the initial conditions and discuss the choice of numerical parameters.

9.4.1 The initial lay down positions

To account for all the different possibilities for the initial lay down positions in the machine
and the cross direction, we replace x ∈ R3 and y ∈ R3 in Equation (7.12) by the random
variables Xi and Yi, and choose them to be gi– and uniformly–distributed on [−di/2,di/2]
respectively. Then, each fibre is described by
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φs[Xi,Yi, t] = S(Xi)(ζi(s)−ζi(0))+




Xi−χi(t)

Yi

R(Xi)


 .

9.4.2 Numerical parameters

Before we can proceed to performing numerical simulations we first have to specify several
additional parameters in material model introduced in Chapter 7. We have to discretise
the time interval of the production process [0,Ti] for the i–th fibre type. This is done by
introducing the constant simulation time step ∆ti ∈ R which should be small with respect
to Ti to obtain a regular fibre distribution in the whole material due to the belt movement.

As the lay down positions are given by the random variables Xi and Yi, we perform pi ∈ N
realisations for each of the random variables per time step ∆ti. Therefore, the simulation
time step ∆ti has to be chosen with respect to the number of realisations pi, the simulation
time Ti and the total number of fibres ni. This is achieved by setting

∆ti = pi
Ti

ni
.

For simplicity, in Equations (7.4) and (7.10) we replace xmin,i and xmax,i by xmin and
xmax respectively. Therefore, the considered time Ti and the position of the centre of the
reference volume χi become independent of the fibre type without changing the numerical
results.

As the standard deviation σ3,i cannot be determined from either the FIDYST simulations
or the µ–CT data, we have to choose a value. We assume that the value of σ3,i is rather
small in comparison to σ1,i and σ2,i and make the assumption σ3,i = 0.1 σ2,i. In addition,
we have to specify the simulation step size for the fibre generation ∆micro and the number
of realisations per time step pi. In general, the step size ∆micro has to be small and the
number of realisations large enough to obtain accurate results. Furthermore, we have to
choose the size of the reference volume V. On the one hand it needs to be large enough to
be representative for further tests and to include enough parts of both fibre types so that
adhesive joints exist. On the other hand, if it is too large numerical simulation becomes
very computationally expensive. In particular, the reference volume needs to be small
enough that the computationally expensive virtual tensile strength tests are still feasible
in a reasonable amount of time. All the parameters used in our simulations, additional to
those given in Tables 9.1 and 9.2, are summarised in Table 9.4.
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Symbol Unit
i = 1 i = 2

V1 V2 V3 V1 V2 V3
B - 0.288

∆micro cm 0.01
∆ti - 0.0021 0.0035 0.0023 0.0014 0.0023 0.0015
H cm 1.5 6 10 1.5 6 10
pi - 100 100
d cm 0.5
Ti s 1.4083 6.6593 12.2889 1.4083 6.6593 12.2889

xmin,i cm 19.6599 19.7231 17.4945 20.3527 20.2099 18.9105
xmax,i cm 34.5546 32.8646 32.8858 36.0981 34.7733 35.6618
βn,i - 0.4011 0.5989
ni - 67676 192225 660714 101063 287056 986666

Table 9.4 – Estimated parameters for the three different materials V1–V3

9.4.3 Numerical results

Using the parameters given in Tables 9.1 – 9.4, we now present numerical results for the
three virtual materials V1, V2 and V3 in Figure 9.6, performed using MATLAB (2015)
The bicomponent fibres are shown in blue while the solid fibres are shown in red. In the
first row of figures, the full reference volumes of the three virtual materials are shown
with a maximal height of 10 cm, which is the full height of the material V3. The material
in Figure 9.6(a) appears to be rather homogeneous. However, as the height H increases,
we see that the material appears more heterogeneous, see Figures 9.6(b) and 9.6(c). We
note that the base of the virtual material V3 is mostly blue and, therefore, mainly consists
of bicomponent fibres. This can particularly be seen by examining Figures 9.6(d)–9.6(f),
which show the base portion of Figures 9.6(a) – 9.6(c) respectively. The material V1
has predominately red fibres at the base of the material, whereas the material V2 has
predominately blue fibres. This effect is due to the difference in the distribution densities
as shown in Figures 9.1–9.3 and explained in Section 9.2.1.

9.5 Summary
In this chapter we presented details on the numerical implementation and application of
the material model developed in Chapter 7 to three different scenarios. We described how
to obtain several parameters from experiments and further computer simulations, before
we presented some numerical results for the three different scenarios considered.
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(a) (b) (c)

(d) (e) (f)

Figure 9.6 – The simulated material structure for the experiments V1–V3, where the bicom-
ponent fibres are shown in blue and the solid fibres in red. Figures 9.6(a) and 9.6(d) show
the experiment V1, Figures 9.6(b) and 9.6(e) show the experiment V2, and Figures 9.6(c)
and 9.6(f) show the experiment V3. The first row, Figures 9.6(a)–9.6(c), shows the com-
plete material columns where the maximal value of the td axis is 10 cm. The second row,
Figures 9.6(d)–9.6(f), shows the bottom portions of the materials up to a height of 1.5 cm.
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10.1 Summary
Although several models describing fibrous materials exist, to our knowledge there are no
models specifically designed for the airlay production process. In this part of the thesis
we developed a novel material model tailored to the specific requirements of the airlay
production process. The collaboration with industry experts meant that we had access both
to information on the material settings and results from experiments performed on the
samples. By using a microscopic description, where each individual fibre in the material
is described, the specific fibre properties could be built into our model. Furthermore,
information about the fibre orientation, stemming from µ–CT could be included. By
using a new maximum likelihood estimator, as opposed to the existing variance estimator,
we were able to identify the anisotropy parameter describing the distribution of the fibre
orientation directly from µ–CT data. A specific challenge in modelling the airlay process
is that, due to the fibre flight, the single fibres are distributed on the belt. This effect
was accounted for by coupling our material model to the FIDYST simulation package.
This allowed us to develop a realistic material model, which was then used to simulate
three virtual material samples with the aim of quantitatively reproducing three materials
produced by our industrial partners. Such virtual materials allow for virtual tensile strength
tests, performed by our collaborators.

10.2 Future work
There are several possible avenues for extending and developing the work on airlay
materials presented in this thesis. We first discuss possible improvements and extensions to
the model itself in Section 10.2.1. Then, in Section 10.2.2, we discuss several possibilities
for the verification and application of the material model developed.

10.2.1 Modelling improvements

The measurements of the fibre properties provided by IDEAL Automotive consisted of
a mean value and variance. In Chapter 9, for simplicity, we just used the mean value
provided. The model could be improved by replacing the mean parameters with random
variables drawn from corresponding parameter distributions. This would allow for an
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examination of the effect of this variation on the material properties. However, one would
need to make assumptions on the parameter distributions and, thus, significant further
testing and analysis of the fibre material would need to be performed.

It was neither possible to identify the parameter σ3,i from the fibre data nor from the
µ–CT data, as explained in Chapter 8. Therefore, in Chapter 9 we chose a value for σ3,i

which seemed reasonable. An option to overcome this problem would be to use additional
information from the µ–CT data. By applying fibre segmentation algorithms to the µ–CT
data as described in ALTENDORF (2011), it may be possible to describe the spatial fibre
distribution.

As described in Chapter 9 the anisotropy parameter B for the material sample V2 was
obtained from the µ–CT data and also used for the simulation of the materials V1 and V3,
too. This method has two main drawbacks. Firstly, µ–CT is expensive and can only be
performed on small samples. Secondly, information obtained from µ–CT only holds for a
given sample, and so the parameter B estimated may not be accurate for a different sample
of the same or a different material. To overcome this issue, one could neglect the µ–CT
data and use a two–dimensional fibre model. Of course, this would lead to the loss of the
third space dimension in the model. However, despite these drawbacks, the information
obtained from µ–CT in combination with computer simulations can be a very important
tool in the design of airlay fabrics. For example, keeping the anisotropy parameter B

constant, one could vary the other parameters describing the fibres or machine setup, and
analyse the effect of these parameter variations on the properties of the simulated material.

In our model we made the assumption that all the fibres of the same type had the same
thickness and length, provided a priori by collaborators. However, these properties can
change during the production process and vary within the material. In particular, the fibre
diameter of bicomponent fibres can change due to the melting of the coating during the
thermobonding process. In addition, due to the melting, fibres have a tendency to stick
together not only at single points but also along their fibre length. These fibre bundles
are common in fibrous materials and have been observed by the Department of Image
Processing, Fraunhofer ITWM in the analysed µ–CT data from the material sample V2.
Furthermore, it cannot be guaranteed that the fibre length remains the same during the
whole production process as the fibres could break. Such effects have already been anal-
ysed in different settings. In TALBOT et al. (2000) methods for measuring the diameter and
the length of insulation mineral fibres based on electron microscopy images were discussed.
Furthermore, a method with which the fibre length can be determined from µ–CT data
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was introduced in KUHLMANN and REDENBACH (2015). In general, due to the length of
the fibres and the small size of samples, it is rare that a full fibre is captured in the µ–CT
data. Furthermore, the sample volume is, in general, densely packed. Therefore, a direct
approach by fibre segmentation (ALTENDORF, 2011) is probably not sufficient. However,
methods have recently been developed which could be used in future. For example, in
KUHLMANN and REDENBACH (2015) a new approach was introduced, considering the
fibre end point distribution from which the fibre length distribution is estimated. In addition,
a method for automatic fibre thickness measurement and a model for fibre generation
including fibre bundles was developed in EASWARAN et al. (2016).

Although several improvements to the model have been suggested, the addition of further
details and the development of a more complex model needs justification to ensure that
additions contribute to the behaviour of the material and any additional parameters can be
identified.

10.2.2 Model verification and applications

With our model we are able to simulate an airlay material composed of different fibre
types with different properties using different machine settings. As detailed in GRAMSCH

et al. (2016), a preliminary validation was performed by our project partners, the group
of Prof. Dr. Leugering at FAU Erlangen, using virtual tensile strength tests as part of
the remit of the OPAL project. The methods for such tensile strength tests are described
in GRAMSCH et al. (2016) and STROHMEYER and LEUGERING (2016). Such tests are
based on a graph structure of the material consisting of nodes and edges, where the fibres
themselves build the edges of the graph. In the jointly developed method (KLAR, NESSLER,
et al., 2016; GRAMSCH et al., 2016), the adhesive joints between the fibres in the virtual
material are identified as the nodes of the graph. However, further validation is needed.
Other material tests based on computer simulations also could be performed, either for
further model verification or as a direct application of our material model. For example,
simulations of fluid flow through the material, possible in a software package such as
GEODICT (2016), or the measurement of acoustic properties as presented in SCHLADITZ

et al. (2006) for several different materials, would be useful. A comparison of the results
with real life experiments could give further insight into our material model.

10.3 Closing thoughts
The novel material model developed allows for an unlimited number of fibre types and
includes various parameters describing fibre properties and machine settings. We showed
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that it is possible to connect simulation results from detailed fibre flight simulations with
our model which can then be used for further applications.
Overall, by developing the first material model specifically for airlay fabrics, we hope to
improve the understanding of such materials in the future and to give a basis for further
improvements and developments.
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11 Summary

In this thesis we developed new mathematical models for non–woven materials based on
two different production processes. We extended the existing surrogate fibre models for the
meltspinning process in Part I and in Part II we developed a new material model for airlay
fabrics. As the contents of the two parts have been summarised in detail in Chapters 5 and
10, we only briefly outline the main results here.

We started off this thesis by improving the existing surrogate fibre models by including the
thickness of each fibre in Part I. This led to a strongly coupled system of stochastic delay
differential equations. The analysis of this system and the corresponding diffusion approxi-
mation showed that the interaction strength and the delay length have a big influence on the
characteristic behaviour of the system and its convergence to equilibrium. The modelling
strategy with continuous delay in the interaction term could further the development of
existing models of interacting particle systems for several applications.

In Part II we developed a novel model which describes non–woven materials producing
using the airlay process. This model allows for the inclusion of experimental data from the
industrial process and µ–CT data through parameter identification. In particular, we were
able to couple other simulation tools to our numerical simulations. We are confident that
such simulations can facilitate the future development of the production process and the
quality of airlay fabrics.





Bibliography

ALTENDORF, H. (2011) 3D morphological analysis and modeling of random fiber

networks: applied on glass fiber reinforced composites. PhD thesis École normale
supérieure des Mines de Paris, France and Technische Universität Kaiserslautern, Ger-
many (see pp. 114, 115)

ALTENDORF, H. and D. JEULIN (2009) 3D directional mathematical morphology for
analysis of fiber orientations in: Image Analysis and Stereology, 28:3, 143–153 (see
p. 107)

ARNOLD, L. (1973) Stochastische Differentialgleichungen R. Oldenbourg Verlag (see
pp. 7, 8)

BERNE, B. J. and P. PECHUKAS (1972) Gaussian Model Potentials for Molecular Interac-
tions in: The Journal of Chemical Physics, 56:8, 4213–4216 (see p. 76)

BOCK, W., T. GÖTZ, M. GROTHAUS, and U. P. LIYANAGE (2014) Parameter estimation
from occupation times – a white noise approach in: Communications on Stochastic

Analysis, 8:4, 489–499 (see pp. 5, 97)
BOISSARD, E., P. DEGOND, and S. MOTSCH (2013) Trail formation based on directed

pheromone deposition in: Journal of Mathematical Biology, 66:6, 1267–1301 (see p. 76)
BOLLEY, F. (2008) Separability and completeness for the Wasserstein distance in: Lecture

Notes in Mathematics, 1934: 371–377 (see p. 60)
BOLLEY, F., J. CANIZO, and J. A. CARRILLO (2011) Stochastic Mean-Field Limit :

Non-Lipschitz Forces & Swarming in: Mathematical Models and Methods in Applied

Sciences, 21:11, 2179–2210 (see p. 51)
BOLLEY, F., A. GUILLIN, and F. MALRIEU (2010) Trend to equilibrium and particle

approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation in: ESAIM:

Mathematical Modelling and Numerical Analysis, 44:5, 867–884 (see pp. 49, 54, 55, 60)
BONILLA, L. L. (2000) Chapman-Enskog method and synchronization of globally coupled

oscillators in: Physical Review E, 62:4, 4862–4868 (see p. 11)
BONILLA, L. L., T. GÖTZ, A. KLAR, N. MARHEINEKE, and R. WEGENER (2007)

Hydrodynamic Limit of a Fokker-Planck Equation Describing Fiber Lay-down Processes
in: SIAM Journal on Applied Mathematics, 68:3, pp. 648–665 (see pp. 5, 10, 11)

BORSCHE, R., A. KLAR, C. NESSLER, A. ROTH, and O. TSE (submitted) A Retarded
Mean-Field Approach for Interacting Fiber Structures in: SIAM Journal on Multiscale

Modeling and Simulation, http://arxiv.org/abs/1501.06465 (see pp. 51, 54)



122 Chapter 11. Summary

BOUIN, E., F. HOFFMANN, and C. MOUHOT (2016) Exponential decay to equilibrium for
a fibre lay-down process on a moving conveyor belt (see p. 11)

BRAUN, W. and K. HEPP (1977) The Vlasov Dynamics and Its Fluctuations in the 1/N
Limit of Interacting Classical Particles in: Communications in Mathematical Physics,
56:2, 101–113 (see pp. 49, 51)

BRONSTEIN, I., K. SEMENDJAJEW, G. MUSIOL, and H. MÜHLIG (2005) Taschenbuch

der Mathematik 6th edition Verlag Harri Deutsch (see p. 100)
CARRILLO, J. A., M. D’ORSOGNA, and V. PANFEROV (2009) Double milling in self-

propelled swarms from kinetic theory in: Kinetic and Related Models, 2:2, 363–378 (see
pp. 49, 76)

CARRILLO, J. A., A. KLAR, and A. ROTH (2016) Single to Double Mill Small Noise
Transitions via Semi-Lagrangian Finite Volume Methods in: Communications in Mathe-

matical Sciences, 14:4, 1111–1136 (see p. 76)
CARRILLO, J. A., A. KLAR, S. MARTIN, and S. TIWARI (2010) Self-Propelled Interacting

Particle Systems With Roosting Force in: Mathematical Models and Methods in Applied

Sciences, 20:supp01, 1533–1552 (see p. 76)
CARRILLO, J. A. and G. TOSCANI (2007) Contractive Probability Metrics and Asymptotic

Behavior of Dissipative Kinetic Equations in: Notes of the 2006 Porto Ercole Summer

School vol. 6 75-198 (see p. 60)
CERCIGNANI, C. (1990) Mathematical Methods in Kinetic Theory 2nd edition Plenum

Press (see pp. 11, 31, 53)
CLEAVER, D. J., C. M. CARE, M. P. ALLEN, and M. P. NEAL (1996) Extension and

generalization of the Gay-Berne potential in: Physical Review E, 54:1, 559–567 (see
p. 76)

CUCKER, F. and S. SMALE (2007) Emergent behavior in flocks in: IEEE Transactions on

Automatic Control, 52:5, 852–862 (see p. 32)
DOBRUSHIN, R. (1979) Vlasov equations in: Functional Analysis and Its Applications,

13:2, 115–123 (see pp. 49, 51)
DOLBEAULT, J., A. KLAR, C. MOUHOT, and C. SCHMEISER (2013) Exponential Rate

of Convergence to Equilibrium for a Model Describing Fiber Lay-Down Processes in:
Applied Mathematics Research eXpress, 2: 165–175 (see p. 10)

EASWARAN, P., M. J. LEHMANN, O. WIRJADI, T. PRILL, S. DIDAS, and C. REDENBACH

(2016) Automatic Fiber Thickness Measurement in Scanning Electron Microscopy
Images Validated Using Synthetic Data in: Chemical Engineering & Technology, 39:3,
395–402 (see p. 115)

ERBAN, R., J. HASKOVEC, and Y. SUN (2016) A Cucker-Smale model with noise and
delay in: SIAM Journal on Applied Mathematics, 76:4, 1535–1557 (see p. 32)



123

EVANS, L. C. (2013) An Introduction to Stochastic Differential Equations American
Mathematical Society (see p. 7)

EVERAERS, R. and M. R. EJTEHADI (2003) Interaction potentials for soft and hard
ellipsoids in: Physical review. E, Statistical, nonlinear, and soft matter physics, 67:4,
041710– (see p. 76)

FIDYST Fiber Dynamics Simulation Tool (FIDYST) https://www.itwm.fraunhofer.

de / en / departments / transport - processes / products / fidyst - fiber -

dynamics-simulation-tool.html Department of Transport Processes, Fraunhofer
Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany (see pp. 83, 104)

GARD, T. (1988) Introduction to Stochastic Differential Equations Marcel Dekker Inc (see
pp. 7, 8)

GAY, J. G. and B. BERNE (1981) Modification of the overlap potential to mimic a linear
site–site potential in: The Journal of Chemical Physics, 74:6, 3316–3319 (see p. 76)

GEODICT (2016) Math2Market GmbH, Kaiserslautern, Germany http : / / www .

math2market.de (see p. 115)
GEORGII, H. (2009) Stochastik 4th edition Walter de Gruyter (see p. 99)
GOLSE, F. (2003) The Mean-Field Limit for the Dynamics of Large Particle Systems in:

Journées Équations aux Dérivées Partielles, 1–47 (see pp. 49, 51)
GOLSE, F. (2012) The Mean-Field Limit for a Regularized Vlasov-Maxwell Dynamics in:

Communications in Mathematical Physics, 310:3, 789–816 (see p. 32)
GOLSE, F. (2016) On the Dynamics of Large Particle Systems in the Mean Field Limit

in: Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits

and Ergodicity ed. by A. MUNTEAN, J. RADEMACHER, and A. ZAGARIS Springer
International Publishing, 1–144 (see pp. 49, 51)

GÖTZ, T., A. KLAR, N. MARHEINEKE, and R. WEGENER (2007) A Stochastic Model
and Associated Fokker–Planck Equation for the Fiber Lay-Down Process in Nonwoven
Production Processes in: SIAM Journal on Applied Mathematics, 67:6, 1704–1717 (see
pp. 3, 5, 7, 10, 28)

GRAMSCH, S., A. KLAR, G. LEUGERING, N. MARHEINEKE, C. NESSLER, C.
STROHMEYER, and R. WEGENER (2016) Aerodynamic web forming: process simu-
lation and material properties in: Journal of Mathematics in Industry, 6:13, 1–23 (see
pp. 81, 83, 103, 104, 115)

GROTHAUS, M. and A. KLAR (2008) Ergodicity and Rate of Convergence for a Non-
sectorial Fiber Lay-Down Process in: SIAM Journal on Mathematical Analysis, 40:3,
968–983 (see p. 10)



124 Chapter 11. Summary

GROTHAUS, M. and P. STILGENBAUER (2014) Hypocoercivity for Kolmogorov backward
evolution equations and applications in: Journal of Functional Analysis, 267:10, 3515–
3556 (see p. 10)

GROTHAUS, M. and P. STILGENBAUER (2015) A Hypocoercivity Related Ergodicity
Method for Singularly Distorted Non-Symmetric Diffusions in: Integral Equations and

Operator Theory, 83:3, 331–379 (see p. 10)
HALANAY, A. (1966) Differential Equations: Stability, Oscillations, Time Lags Academic

Press (see p. 56)
HÄMÄLÄINEN, J., S. B. LINDSTRÖM, T. HÄMÄLÄINEN, and H. NISKANEN (2011)

Papermaking fibre-suspension flow simulations at multiple scales in: Journal of Engi-

neering Mathematics, 71:1, 55–79 (see p. 84)
HÄMÄLÄINEN, J., T. HÄMÄLÄINEN, T. LEPPÄNEN, H. NISKANEN, and J. SORVARI

(2014) Mathematics in paper - from fiber suspension fluid dynamics to solid state paper
mechanics in: Journal of Mathematics in Industry, 4:1, 14 (see p. 84)

HERTY, M., A. KLAR, S. MOTSCH, and F. OLAWSKY (2009) A smooth model for fiber
lay-down processes and its diffusion approximations in: Kinetic and Related Models,
2:3, 489–502 (see pp. 5, 15)

HIETEL, D., M. GÜNTHER, and F. OLAWSKY (2008) Technologiesprung durch Simulation
von Fadendynamiken in: 23. Hofer Vliesstofftage, 1–8 (see p. 4)

HILLEN, T. (2005) On the L2-Moment Closure of Transport Equations: the General Case
in: Discrete and Continuous Dynamical Systems, 5:2, 299–318 (see p. 53)

HILLEN, T. and K. J. PAINTER (2013) Transport and anisotropic diffusion models for
movement in oriented habitats in: Dispersal, Individual Movement and Spatial Ecology:

A Mathematical Perspective ed. by M. A. LEWIS, P. K. MAINI, and S. V. PETROVSKII

Springer, 177–222 (see pp. 52, 53)
JØRGENSEN, E. (1978) Construction of the Brownian Motion and the Ornstein-Uhlenbeck

Processin a Riemannian Manifold on Basis of the Gangolli-Mc.Kean Injection Scheme
in: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 44:1, 71–87 (see
p. 13)

KÄRKKÄINEN, S., A. MIETTINEN, T. TURPEINEN, J. NYBLOM, P. PÖTSCHKE, and J.
TIMONEN (2012) A stochastic shape and orientation model for fibres with an application
to carbon nanotubes in: Image Analysis and Stereology, 31:1, 17–26 (see p. 84)

KLAR, A., L. KREUSSER, and O. TSE (in preparation) Trend to equilibrium
for a delay Vlasov-Fokker-Planck equation and explicit decay estimates in:
http://arxiv.org/abs/1512.01074, 1–16 (see pp. 54, 61, 76)



125

KLAR, A., N. MARHEINEKE, and R. WEGENER (2009) Hierarchy of mathematical models
for production processes of technical textiles in: ZAMM Zeitschrift fur Angewandte

Mathematik und Mechanik, 89:12, 941–961 (see pp. 3, 5, 7, 98)
KLAR, A., J. MARINGER, and R. WEGENER (2012a) A 3D Model for Fiber Lay-Down

in Nonwoven Production Processes in: Mathematical Models and Methods in Applied

Sciences, 22:09, 1250020 (see pp. 3, 5, 15, 16, 20–22, 99)
KLAR, A., J. MARINGER, and R. WEGENER (2012b) A smooth 3D model for fiber lay-

down in nonwoven production processes in: Kinetic and Related Models, 5:1, 97–112
(see pp. 3, 5, 13, 23, 24, 26, 28, 101)

KLAR, A., C. NESSLER, and C. STROHMEYER (2016) Construction of virtual non-wovens
in: Progress in Industrial Mathematics at ECMI 2014 ed. by G. RUSSO, V. CAPASSO,
G. NICOSIA, and V. ROMANO Springer International Publishing (see pp. 81, 115)

KLOEDEN, P. E. and E. PLATEN (1999) Numerical Solution of Stochastic Differential

Equations Springer (see p. 35)
KOLB, M., M. SAVOV, and A. WUEBKER (2012) (Non-)Ergodicity of a degenerate

diffusion modeling the fiber lay down process in: Applied Mathematics Research eXpress,
45:1, 1–13 (see pp. 10, 11)

KREUSSER, L. (2015) Particle approximation and trend to equilibrium for a delay mean-

field equation. Masters thesis Technische Universität Kaiserlautern (see pp. 54, 55,
76)

KUHLMANN, M. and C. REDENBACH (2015) Estimation of Fibre Length Distributions
from Fibre Endpoints in: Scandinavian Journal of Statistics, 42:4, 1010–1022 (see
p. 115)

LEITHÄUSER, C. and R. FESSLER (2012) Characterizing the image space of a shape-
dependent operator for a potential flow problem in: Applied Mathematics Letters, 25:11,
1959–1963 (see p. 3)

LEITHÄUSER, C., R. FESSLER, and R. PINNAU (2012) An Approach to Shape Optimiza-
tion with State Constraints in: Proceedings in Applied Mathematics and Mechanics,
12:1, 685–686 (see p. 3)

LEITHÄUSER, C., R. PINNAU, and R. FESSLER (accepted) Approximate Controllability
of Linearized Shape-Dependent Operators for Flow Problems in: ESAIM: Control,

Optimisation and Calculus of Variations, (see p. 3)
LEVEQUE, R. J. (1992) Numerical Methods for Conservation Laws Birkhäuser (see p. 63)
LIU, Y. and J. WU (2014) Flocking and asymptotic velocity of the Cucker-Smale model

with processing delay in: Journal of Mathematical Analysis and Applications, 415:1,
53–61 (see p. 32)



126 Chapter 11. Summary

MARHEINEKE, N. and R. WEGENER (2006) Fiber Dynamics in Turbulent Flows: General
Modeling Framework in: SIAM Journal on Applied Mathematics, 66:5, 1703–1726 (see
p. 3)

MARHEINEKE, N. and R. WEGENER (2007) Fiber dynamics in turbulent flows: Specific
Taylor drag in: SIAM Journal on Applied Mathematics, 68:1, 1–23 (see p. 3)

MARINGER, J. (2013) Stochastic and Deterministic Models for Fiber Lay-down. PhD
thesis Technische Universität Kaiserlautern (see pp. 5, 13, 15, 16, 22, 23, 28, 98, 99,
101)

MARINGER, J., A. KLAR, and R. WEGENER (2010) A Three-Dimensional Model for
Fiber Lay-Down Processes in: Proceedings in Applied Mathematics and Mechanics,
10:1, 701–702 (see pp. 3, 5)

MATLAB (2015) Version R2015b The MathWorks Inc. (see pp. 64, 105, 111)
MAVI (2005) Modular Algorithms for Volume Images (MAVI) http://www.itwm.

fraunhofer . de / en / departments / image - processing / microstructure -

analysis / mavi . html Department of Image Processing, Fraunhofer Institute for
Industrial Mathematics (ITWM), Kaiserslautern, Germany (see p. 107)

MCLACHLAN, R. I. and G. R. W. QUISPEL (2002) Splitting methods in: Acta Numerica,
11:2002, 341–434 (see p. 63)

NESSLER, C. H. (2013) Interacting Fiber Equations. Diploma thesis Technische Univer-
sität Kaiserlautern (see p. 3)

OHSER, J. and K. SCHLADITZ (2009) 3D Images of Material Structures Wiley-VCH (see
pp. 84, 107)

ØKSENDAL, B. (2003) Stochastic Differential Equations Springer (see pp. 7, 8, 15, 35)
PEYREGA, C., D. JEULIN, C. DELISÉE, and J. MALVESTIO (2009) 3D Morphological

modelling of a random fibrous network in: Image Analysis and Stereology, 28:3, 129–
141 (see p. 107)

REDENBACH, C., A. RACK, K. SCHLADITZ, O. WIRJADI, and M. GODEHARDT (2012)
Beyond imaging: on the quantitative analysis of tomographic volume data in: Interna-

tional Journal of Materials Research (formerly Zeitschrift für Metallkunde), 103:02,
217–227 (see pp. 84, 107)

REDENBACH, C., K. SCHLADITZ, I. VECCHIO, and O. WIRJADI (2014) Image analysis
for microstructures based on stochastic models in: GAMM (Gesellschaft für Angewandte

Mathematik und Mechanik)-Mitteilungen, 37:2, 281–305 (see pp. 84, 107)
REDENBACH, C. and I. VECCHIO (2011) Statistical analysis and stochastic modelling of

fibre composites in: Composites Science and Technology, 71:2, 107–112 (see pp. 84,
107)

RISKEN, H. (1996) The Fokker-Planck Equation 2nd edition Springer (see p. 8)



127

SCHLADITZ, K., S. PETERS, D. REINEL-BITZER, A. WIEGMANN, and J. OHSER (2006)
Design of acoustic trim based on geometric modeling and flow simulation for non-woven
in: Computational Materials Science, 38:1, 56–66 (see pp. 84, 107, 115)

SMITH, H. (1987) Monotone semiflows generated by functional differential equations in:
Journal of Differential Equations, 66:3, 420–442 (see p. 61)

SPOHN, H. (1991) Large scale dynamics of interacting particles Springer (see p. 49)
STILGENBAUER, P. (2014) The Stochastic Analysis of Fiber Lay-Down Models. PhD thesis

Technische Universität Kaiserlautern (see pp. 15, 16)
STRANG, G. (1968) On the construction and comparison of difference schemes in: SIAM

Journal on Numerical Analysis, 5:3, 506–517 (see p. 63)
STROHMEYER, C. and G. LEUGERING (2016) Effective Mechanical Properties of Nonwo-

vens Produced by Airlay Processes in: Progress in Industrial Mathematics at ECMI 2014

ed. by G. RUSSO, V. CAPASSO, G. NICOSIA, and V. ROMANO Springer International
Publishing (see pp. 83, 115)

SUN, Y., W. LIN, and R. ERBAN (2014) Time delay can facilitate coherence in self-driven
interacting-particle systems in: Physical Review E - Statistical, Nonlinear, and Soft

Matter Physics, 90:6, 062708 (see p. 32)
TALBOT, H., T. LEE, D. JEULIN, D. HANTON, and L. W. HOBBS (2000) Image analysis

of insulation mineral fibres in: Journal of Microscopy, 200:3, 251–268 (see p. 114)
TAYLOR-KING, J. P., B. FRANZ, C. A. YATES, and R. ERBAN (2015) Mathematical

modelling of turning delays in swarm robotics in: IMA Journal of Applied Mathematics

(Institute of Mathematics and Its Applications), 80:5, 1454–1474 (see p. 32)
VECCHIO, I. (2014) Image based characterization and geometric modeling of 3d materials

microstructures. PhD thesis Technische Universität Kaiserlautern (see pp. 84, 107)
VILLANI, C. (2003) Topics in Optimal Transportation (Graduate Studies in Mathematics,

Vol. 58) American Mathematical Society (see p. 55)





Akademischer Lebenslauf

Name: Christian Helmut Neßler

2013 — 2017 Doktorand in Technomathematik, Fachbereich Mathematik, Technische
Universität Kaiserslautern, Deutschland.

2008 — 2013 Diplom in Technomathematik, Fachbereich Mathematik, Technische Uni-
versität Kaiserslautern, Deutschland; Nebenfächer: Physik und Informatik.

- Diplomarbeit „Interacting Fiber Equations“.

- Auslandsaufenthalt als Erasmus–Student, Università degli Studi di Firenze,
Florenz, Italien.

1999 — 2008 Abitur am Hugo–Ball Gymnasium, Pirmasens, Deutschland.



Academic curriciulum vitae

Name: Christian Helmut Neßler

2013 — 2017 Doctoral studies in Technomathematics at the Department of Mathematics,
University of Kaiserslautern, Germany.

2008 — 2013 Diploma in Technomathematics at the University of Kaiserslautern, Ger-
many; second subjects: physics and computer science.

- Diploma Thesis “Interacting Fiber Equations”.

- Semester abroad as an Erasmus exchange student at Università degli Studi di
Firenze, Florence, Italy.

1999 — 2008 Abitur at Hugo–Ball Gymnasium, Pirmasens, Germany.


	Part I — Interacting fibres
	1 The meltspinning process
	1.1 The production process
	1.2 Structure

	2 Surrogate fibre models
	2.1 Two–dimensional models
	2.2 The basic model in three dimensions
	2.3 The smooth model in three dimensions
	2.4 Summary

	3 Interacting fibre models
	3.1 The basic two–dimensional model
	3.2 The influence of model parameters
	3.3 Extensions of the two–dimensional model
	3.4 Models in higher dimensions
	3.5 Summary

	4 The long–time behaviour
	4.1 Macroscopic equations
	4.2 Convergence to equilibrium for interacting fibres
	4.3 Numerical results
	4.4 Summary

	5 Conclusion
	5.1 Summary
	5.2 Future work
	5.3 Closing thoughts


	Part II — Airlay fabrics
	6 The airlay process
	6.1 The production process
	6.2 The project partners and their roles
	6.3 Structure

	7 A material model
	7.1 The modelling setup
	7.2 The planar fibre distribution
	7.3 The height distribution
	7.4 Accounting for the material weight
	7.5 The fibre orientation and placement
	7.6 The fibre model
	7.7 Summary

	8 Parameter identification
	8.1 Identification of fibre parameters
	8.2 The orientation distribution
	8.3 Summary

	9 Numerical results
	9.1 Fibre properties and machine settings
	9.2 Parameters from fibre flight simulations
	9.3 The fibre orientation distribution
	9.4 Numerical simulations
	9.5 Summary

	10 Conclusion
	10.1 Summary
	10.2 Future work
	10.3 Closing thoughts


	Part III — Summary
	11 Summary
	Bibliography
	Akademischer Lebenslauf
	Academic curriciulum vitae


